file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
cKohl10/TactileSim/exts/README.md
To add the contact extension to Isaac Sim: 1: Open the extensions window, *Window* > *Extensions* 2: Add the path to extenstions in the *Extension Search Paths* window in the form `/TactileSim/exts` 3: Open the extension from the toolbar at the top of the screen. To use the extension: 1: After creating a CSV list of sensor positions, radius, and paths as described in `/TactileSim/blender_scripts/sensor_bay_addon/README.md` 2: IMPORTANT: For a new robot, a contact sensor has to first be manually added to each link that will be covered. This allows the link to become the parent of a contact sensor. After manually adding the sensor once, it can be deleted and the robot can be saved.
714
Markdown
43.687497
150
0.7507
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "Contact Extension Test" EXTENSION_DESCRIPTION = "First test of using isaac sim extensions"
543
Python
40.846151
76
0.80663
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ContactSensorClass.py
# Tactile Contact Sensor Functions # Author: Carson Kohlbrenner # Date: 6/3/2024 from .AbstracSensorClass import AbstractSensorOperator import numpy as np import omni.kit.commands import omni.ui as ui from omni.isaac.sensor import _sensor from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.prims import is_prim_path_valid, get_prim_children from omni.isaac.ui.element_wrappers import CollapsableFrame from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from pxr import Gf class ContactSensorOperator(AbstractSensorOperator): def __init__(self): super().__init__() self.parent_paths = [] # List of parent paths for each sensor self.sliders = [] # List of sliders for each sensor on the UI self.meters_per_unit = 1.00 # Unit conversion factor self.activated = False # Flag to determine if the sensors are active self.sensor_description = "Contact Sensors" # Description of the sensor type # Data structure to store sensor information class Sensor: def __init__(self, name, position, radius, parent_path): self.name = name self.position = position self.radius = radius self.parent_path = parent_path self.path = parent_path + "/tact_sensor_" + name def import_sensors_fn(self): """ Function that executes when the user clicks the 'Update' button Imports the sensor data from the CSV file and creates the sensors Expects the CSV file to have the following format: Sensor Name, X Offset, Y Offset, Z Offset, Radius, Parent Path """ self.activated = True self._cs = _sensor.acquire_contact_sensor_interface() # Remove all sensors already on the robot message = "Removing existing sensors...\n" self._status_report_field.set_text(message) self.remove_sensors() message += "Sensors successfully removed\n\n" self._status_report_field.set_text(message) #Change the text of the status report field to show the import status path = self.config_path message += "Importing sensor data from '" + path + "'...\n" self._status_report_field.set_text(message) #Import the sensor data from the CSV file try: names, positions, radii, parent_paths, data = self.import_csv(path) self.parent_paths = parent_paths self.remove_sensors() # Second call to ensure all sensors are removed after parent paths are updated message += "File opened successfully\n" # Output the data to the status report field # message += "\n\nSensor Data:\n" # for i in range(len(names)): # message += str(data[i]) + "\n" except: message += "Invalid file path or file format!" message += "\nPlease make sure the file has at least 2 sensors and is formatted correctly.\n" self._status_report_field.set_text(message) return self._status_report_field.set_text(message) # Determine the number of sensors and their positions num_sensors = len(data) self.sensors = {} sensor_count = 0 # Keep track of the number of sensors created successfully for i in range(num_sensors): # Create a contact sensor at the specified position # message += "\nCreating sensor " + str(i) + " at position " + str(positions[i]) + "...\n" # self._status_report_field.set_text(message) # Check if the parent path is valid if not is_prim_path_valid(parent_paths[i]): message += "Could not find parent path: " + parent_paths[i] + "\n" self._status_report_field.set_text(message) continue # Get the parent prim parent_prim = get_current_stage().GetPrimAtPath(parent_paths[i]) # Check if the appled link has a rigidbody component (Unknown if this is necessary) # if not parent_prim.HasAPI(UsdPhysics.RigidBodyAPI): # message += "Parent path does not have a rigidbody component: " + parent_paths[i] + "\n" # self._status_report_field.set_text(message) # continue # Create the sensor self.create_contact_sensor(parent_paths[i], positions[i], radii[i], names[i]) sensor_count = sensor_count + 1 message += "\nSuccessfully created " + str(sensor_count) + " sensors\n" self._status_report_field.set_text(message) # Populate the sensor readings frame with the new sensors self.update_sensor_readings_frame() def import_csv(self, path): """ Function that imports the sensor data from a CSV file CSV file should have the following format: Sensor Name, X Offset, Y Offset, Z Offset, Radius, Parent Path """ try: data = np.genfromtxt(path, delimiter=',', skip_header=1, dtype=str) # Save the first column as a list of names, the 2-4th columns as a list of positions, and the 5th column as a list of parent paths names = data[:, 0] # Convert the positions to a list of Gf.Vec3d objects positions = [] for i in range(len(data)): positions.append(Gf.Vec3d(float(data[i, 1]), float(data[i, 2]), float(data[i, 3]))) radii = [] for i in range(len(data)): radii.append(float(data[i, 4])) # Save the parent paths as a list of strings parent_paths = [] for i in range(len(data)): parent_paths.append(data[i, 5]) return names, positions, radii, parent_paths, data except: return None def create_contact_sensor(self, parent_path, position, radius, name): # Create the sensor at the specified position result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/tact_sensor_" + name, parent=parent_path, min_threshold=0, max_threshold=1000000, color=(1, 0, 0, 1), radius=radius, sensor_period=1, translation=position, visualize=True, ) # Add the sensor to the list of sensors self.sensors[name] = self.Sensor(name, position, radius, parent_path) def remove_sensors(self): """ Function that removes all sensors from the robot """ if len(self.parent_paths) == 0: return for parent_path in self.parent_paths: # Find all prims under the parent path that contain "tact_sensor" in their name try: parent_prim = get_current_stage().GetPrimAtPath(parent_path) prims = get_prim_children(parent_prim) except: self._status_report_field.set_text("Unexpected path!\n") return #self._status_report_field.set_text("Found " + str(len(prims)) + " sensors to remove\n") # Remove all prims found for prim in prims: if "tact_sensor" in prim.GetName(): omni.kit.commands.execute('DeletePrims', paths=[parent_path + "/" + prim.GetName()]) def remove_sensors_fn(self): """ Function that executes when the user clicks the 'Remove Sensors' button Removes all sensors from the robot """ self.activated = False self.remove_sensors() self._status_report_field.set_text("All sensors removed\n\n\n If sensors remain, choose the correct configuration file and click 'Update'\n") # This function updates the sensor readings in the UI at every physics step def sensor_update(self, dt): #self._status_report_field.set_text("Updating sensor readings...\n") if len(self.sliders) > 0: slider_num = 0 for s in self.sensors.values(): #self._status_report_field.set_text("Updating sensor " + s.name + " at path " + s.path + "...\n") reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) def create_sensor_readings_frame(self): self.sensor_readings_frame = CollapsableFrame("Sensor Readings", collapsed=False) def update_sensor_readings_frame(self): # Color and style for the UI elements self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} #message = "There are " + str(len(self.sensors)) + " sensors\n" with self.sensor_readings_frame: # Vertical stack to hold the sensor readings in the frame with ui.VStack(style=get_style(), spacing=5, height=0): for s in self.sensors.values(): #message += "Creating reading bar for sensor " + s.name + "...\n" with ui.HStack(): ui.Label(s.name, width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[0] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20)
10,168
Python
41.195021
149
0.586644
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/scenario.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # class ScenarioTemplate: def __init__(self): pass def setup_scenario(self): pass def teardown_scenario(self): pass def update_scenario(self): pass import numpy as np from omni.isaac.core.utils.types import ArticulationAction """ This scenario takes in a robot Articulation and makes it move through its joint DOFs. Additionally, it adds a cuboid prim to the stage that moves in a circle around the robot. The particular framework under which this scenario operates should not be taken as a direct recomendation to the user about how to structure their code. In the simple example put together in this template, this particular structure served to improve code readability and separate the logic that runs the example from the UI design. """ class ExampleScenario(ScenarioTemplate): def __init__(self): self._object = None self._articulation = None self._running_scenario = False self._time = 0.0 # s self._object_radius = 0.5 # m self._object_height = 0.5 # m self._object_frequency = 0.25 # Hz self._joint_index = 0 self._max_joint_speed = 4 # rad/sec self._lower_joint_limits = None self._upper_joint_limits = None self._joint_time = 0 self._path_duration = 0 self._calculate_position = lambda t, x: 0 self._calculate_velocity = lambda t, x: 0 def setup_scenario(self, articulation, object_prim): self._articulation = articulation self._object = object_prim self._initial_object_position = self._object.get_world_pose()[0] self._initial_object_phase = np.arctan2(self._initial_object_position[1], self._initial_object_position[0]) self._object_radius = np.linalg.norm(self._initial_object_position[:2]) self._running_scenario = True self._joint_index = 0 self._lower_joint_limits = articulation.dof_properties["lower"] self._upper_joint_limits = articulation.dof_properties["upper"] # teleport robot to lower joint range epsilon = 0.001 articulation.set_joint_positions(self._lower_joint_limits + epsilon) self._derive_sinusoid_params(0) def teardown_scenario(self): self._time = 0.0 self._object = None self._articulation = None self._running_scenario = False self._joint_index = 0 self._lower_joint_limits = None self._upper_joint_limits = None self._joint_time = 0 self._path_duration = 0 self._calculate_position = lambda t, x: 0 self._calculate_velocity = lambda t, x: 0 def update_scenario(self, step: float): if not self._running_scenario: return self._time += step x = self._object_radius * np.cos(self._initial_object_phase + self._time * self._object_frequency * 2 * np.pi) y = self._object_radius * np.sin(self._initial_object_phase + self._time * self._object_frequency * 2 * np.pi) z = self._initial_object_position[2] self._object.set_world_pose(np.array([x, y, z])) self._update_sinusoidal_joint_path(step) def _derive_sinusoid_params(self, joint_index: int): # Derive the parameters of the joint target sinusoids for joint {joint_index} start_position = self._lower_joint_limits[joint_index] P_max = self._upper_joint_limits[joint_index] - start_position V_max = self._max_joint_speed T = P_max * np.pi / V_max # T is the expected time of the joint path self._path_duration = T self._calculate_position = ( lambda time, path_duration: start_position + -P_max / 2 * np.cos(time * 2 * np.pi / path_duration) + P_max / 2 ) self._calculate_velocity = lambda time, path_duration: V_max * np.sin(2 * np.pi * time / path_duration) def _update_sinusoidal_joint_path(self, step): # Update the target for the robot joints self._joint_time += step if self._joint_time > self._path_duration: self._joint_time = 0 self._joint_index = (self._joint_index + 1) % self._articulation.num_dof self._derive_sinusoid_params(self._joint_index) joint_position_target = self._calculate_position(self._joint_time, self._path_duration) joint_velocity_target = self._calculate_velocity(self._joint_time, self._path_duration) action = ArticulationAction( np.array([joint_position_target]), np.array([joint_velocity_target]), joint_indices=np.array([self._joint_index]), ) self._articulation.apply_action(action)
5,180
Python
34.244898
118
0.643822
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/AbstracSensorClass.py
# Abstract Sensor Class # Author: Carson Kohlbrenner # Date: 6/3/2024 """ This class is an abstract class that defines the basic structure of a sensor. """ class AbstractSensorOperator: def __init__(self): self.sensors = {} self.config_path = "" self._status_report_field = None def import_sensors_fn(self): """ Function that executes when the user clicks the 'Update' button Imports the sensor data from the CSV file and creates the sensors """ pass def remove_sensors_fn(self): """ Function that removes all sensors from the robot """ pass def sensor_update(self, dt): """ Function that updates the sensor data """ pass def create_sensor_readings_frame(self): """ Function that creates the sensor readings frame """ pass def update_sensor_readings_frame(self): """ Function that updates the sensor readings """ pass
1,040
Python
22.65909
77
0.584615
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import gc import omni import omni.kit.commands import omni.physx as _physx import omni.timeline import omni.ui as ui import omni.usd from omni.isaac.ui.element_wrappers import ScrollingWindow from omni.isaac.ui.menu import MenuItemDescription from omni.kit.menu.utils import add_menu_items, remove_menu_items from omni.usd import StageEventType from .global_variables import EXTENSION_DESCRIPTION, EXTENSION_TITLE from .ui_builder import UIBuilder """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class ContactExtension(omni.ext.IExt): def on_startup(self, ext_id: str): """Initialize extension and UI elements""" self.ext_id = ext_id self._usd_context = omni.usd.get_context() # Build Window self._window = ScrollingWindow( title=EXTENSION_TITLE, width=800, height=500, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) self._window.set_visibility_changed_fn(self._on_window) action_registry = omni.kit.actions.core.get_action_registry() action_registry.register_action( ext_id, f"CreateUIExtension:{EXTENSION_TITLE}", self._menu_callback, description=f"Add {EXTENSION_TITLE} Extension to UI toolbar", ) self._menu_items = [ MenuItemDescription(name="Demo Test", onclick_action=(ext_id, f"CreateUIExtension:{EXTENSION_TITLE}")), ] add_menu_items(self._menu_items, EXTENSION_TITLE) # Filled in with User Functions self.ui_builder = UIBuilder(self._window) # Events self._usd_context = omni.usd.get_context() self._physxIFace = _physx.acquire_physx_interface() self._physx_subscription = None self._stage_event_sub = None self._timeline = omni.timeline.get_timeline_interface() def on_shutdown(self): self._models = {} remove_menu_items(self._menu_items, EXTENSION_TITLE) action_registry = omni.kit.actions.core.get_action_registry() action_registry.deregister_action(self.ext_id, f"CreateUIExtension:{EXTENSION_TITLE}") if self._window: self._window = None self.ui_builder.cleanup() gc.collect() def _on_window(self, visible): if self._window.visible: # Subscribe to Stage and Timeline Events self._usd_context = omni.usd.get_context() events = self._usd_context.get_stage_event_stream() self._stage_event_sub = events.create_subscription_to_pop(self._on_stage_event) stream = self._timeline.get_timeline_event_stream() self._timeline_event_sub = stream.create_subscription_to_pop(self._on_timeline_event) self._build_ui() else: self._usd_context = None self._stage_event_sub = None self._timeline_event_sub = None self.ui_builder.cleanup() def _build_ui(self): with self._window.frame: with ui.VStack(spacing=5, height=0): self._build_extension_ui() async def dock_window(): await omni.kit.app.get_app().next_update_async() def dock(space, name, location, pos=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, pos) return window tgt = ui.Workspace.get_window("Viewport") dock(tgt, EXTENSION_TITLE, omni.ui.DockPosition.LEFT, 0.33) await omni.kit.app.get_app().next_update_async() self._task = asyncio.ensure_future(dock_window()) ################################################################# # Functions below this point call user functions ################################################################# def _menu_callback(self): self._window.visible = not self._window.visible self.ui_builder.on_menu_callback() def _on_timeline_event(self, event): if event.type == int(omni.timeline.TimelineEventType.PLAY): if not self._physx_subscription: self._physx_subscription = self._physxIFace.subscribe_physics_step_events(self._on_physics_step) elif event.type == int(omni.timeline.TimelineEventType.STOP): self._physx_subscription = None self.ui_builder.on_timeline_event(event) def _on_physics_step(self, step): self.ui_builder.on_physics_step(step) def _on_stage_event(self, event): if event.type == int(StageEventType.OPENED) or event.type == int(StageEventType.CLOSED): # stage was opened or closed, cleanup self._physx_subscription = None self.ui_builder.cleanup() self.ui_builder.on_stage_event(event) def _build_extension_ui(self): # Call user function for building UI self.ui_builder.build_ui() def _on_update(self, dt): if self._timeline.is_playing() and self.ui_builder.sliders: slider_num = 0 for s in self.ui_builder.sensors.values(): reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c)
6,988
Python
37.401099
117
0.632227
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import *
456
Python
44.699996
76
0.809211
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/contact_sensor_example.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import weakref import carb import omni import omni.kit.commands import omni.physx as _physx import omni.ui as ui from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.sensor import _sensor from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import LABEL_WIDTH, get_style, setup_ui_headers from omni.kit.menu.utils import MenuItemDescription, add_menu_items, remove_menu_items from pxr import Gf, UsdGeom EXTENSION_NAME = "Contact Sensor Example" class Contact_sensor_demo(omni.ext.IExt): def on_startup(self, ext_id: str): ext_manager = omni.kit.app.get_app().get_extension_manager() self._ext_id = ext_id self._extension_path = ext_manager.get_extension_path(ext_id) self._menu_items = [ MenuItemDescription( name="Sensors", sub_menu=[make_menu_item_description(ext_id, "Contact", lambda a=weakref.proxy(self): a.build_ui())], ) ] add_menu_items(self._menu_items, "Isaac Examples") self.meters_per_unit = 1.00 self._window = None def _on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): self.on_closed() def build_ui(self): if self._window is None: self._cs = _sensor.acquire_contact_sensor_interface() self._timeline = omni.timeline.get_timeline_interface() self.sub = _physx.get_physx_interface().subscribe_physics_step_events(self._on_update) self.leg_paths = ["/Ant/Arm_{:02d}/Lower_Arm".format(i + 1) for i in range(4)] self.shoulder_joints = ["/Ant/Arm_{:02d}/Upper_Arm/shoulder_joint".format(i + 1) for i in range(4)] self.lower_joints = ["{}/lower_arm_joint".format(i) for i in self.leg_paths] self._sensor_handles = [0 for i in range(4)] self.sliders = None # self._window = ui.Window( # title="Contact Sensor Sample", width=300, height=200, dockPreference=ui.DockPreference.LEFT_BOTTOM # ) self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} self.plots = [] self.plot_vals = [] self._window = ui.Window( title=EXTENSION_NAME, width=600, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): title = "Contact Sensor Example" doc_link = "https://docs.omniverse.nvidia.com/isaacsim/latest/features/sensors_simulation/isaac_sim_sensors_physics_based_contact.html" overview = "This Example shows how to Surface load sensors applied to a body. " overview += "It works by summing all forces applied on a given trigger shperical region intersected with the given body surface." overview += ( "\nPress PLAY to start the simulation, hold 'shift' and left click the model to drag it around" ) overview += "\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) frame = ui.CollapsableFrame( title="Sensor Readings", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5): for i in range(4): with ui.HStack(): ui.Label("Arm {}".format(i + 1), width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[i] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20) asyncio.ensure_future(self.create_scenario()) self._window.visible = True def on_shutdown(self): self.on_closed() remove_menu_items(self._menu_items, "Isaac Examples") def on_closed(self): if self._window: self.sub = None self._timeline = None self._stage_event_subscription = None self._window = None def _on_update(self, dt): if self._timeline.is_playing() and self.sliders: for i in range(4): reading = self._cs.get_sensor_reading(self.leg_paths[i] + "/sensor") if reading.is_valid: self.sliders[i].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[i].model.set_value(0) # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) async def create_scenario(self): self._assets_root_path = get_assets_root_path() if self._assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return # Add Contact Sensor await omni.usd.get_context().open_stage_async(self._assets_root_path + "/Isaac/Robots/Simple/ant.usd") await omni.kit.app.get_app().next_update_async() self.meters_per_unit = UsdGeom.GetStageMetersPerUnit(omni.usd.get_context().get_stage()) self.sensor_offsets = [Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0), Gf.Vec3d(40, 0, 0)] self.color = [(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 0, 1)] self.sensorGeoms = [] for i in range(4): result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/sensor", parent=self.leg_paths[i], min_threshold=0, max_threshold=10000000, color=self.color[i], radius=0.12, sensor_period=-1, translation=self.sensor_offsets[i], visualize=True, ) self._events = omni.usd.get_context().get_stage_event_stream() self._stage_event_subscription = self._events.create_subscription_to_pop( self._on_stage_event, name="Contact Sensor Sample stage Watch" )
7,649
Python
43.219653
155
0.569225
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ui_builder backup.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np import omni.timeline import omni.ui as ui import omni.kit.commands import time import os import sys import carb from omni.isaac.core.articulations import Articulation from omni.isaac.core.objects.cuboid import FixedCuboid from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import is_prim_path_valid, get_all_matching_child_prims, delete_prim, get_prim_children from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage, get_current_stage from omni.isaac.core.world import World from omni.isaac.ui.element_wrappers import CollapsableFrame, StateButton, Button, TextBlock, StringField, DropDown from omni.isaac.ui.element_wrappers.core_connectors import LoadButton, ResetButton from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from omni.usd import StageEventType from pxr import Sdf, UsdLux, Gf from omni.isaac.sensor import _sensor from omni.isaac.proximity_sensor import Sensor, register_sensor, clear_sensors from .scenario import ExampleScenario from pxr import UsdPhysics class UIBuilder: def __init__(self, window): # Window to hold the UI elements self.window = window # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() self.parent_paths = [] self.sensors = {} # Contact Parameters self.meters_per_unit = 1.00 version = sys.version executable = sys.executable print(f"Python version: {version}") print(f"Python executable location: {executable}") # Data structure to store sensor information class Sensor: def __init__(self, name, position, radius, parent_path): self.name = name self.position = position self.radius = radius self.parent_path = parent_path self.path = parent_path + "/tact_sensor_" + name ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ if event.type == int(omni.timeline.TimelineEventType.STOP): # When the user hits the stop button through the UI, they will inevitably discover edge cases where things break # For complete robustness, the user should resolve those edge cases here # In general, for extensions based off this template, there is no value to having the user click the play/stop # button instead of using the Load/Reset/Run buttons provided. #self._scenario_state_btn.reset() #self._scenario_state_btn.enabled = False pass def on_physics_step(self, step: float): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ self.contact_sensor_update(step) def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._reset_extension() def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() ################################# Individual Frames ################################################## def create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def update_sensor_readings_frame(self): # Color and style for the UI elements self.sliders = [] self.colors = [0xFFBBBBFF, 0xFFBBFFBB, 0xBBFFBBBB, 0xBBBBFFFF] style = {"background_color": 0xFF888888, "color": 0xFF333333, "secondary_color": self.colors[0]} #message = "There are " + str(len(self.sensors)) + " sensors\n" with self.sensor_readings_frame: # Vertical stack to hold the sensor readings in the frame with ui.VStack(style=get_style(), spacing=5, height=0): for s in self.sensors.values(): #message += "Creating reading bar for sensor " + s.name + "...\n" with ui.HStack(): ui.Label(s.name, width=LABEL_WIDTH, tooltip="Force in Newtons") # ui.Spacer(height=0, width=10) style["secondary_color"] = self.colors[0] self.sliders.append(ui.FloatDrag(min=0.0, max=15.0, step=0.001, style=style)) self.sliders[-1].enabled = False ui.Spacer(width=20) #self._status_report_field.set_text(message) def create_sensor_readings_frame(self): self.sensor_readings_frame = CollapsableFrame("Sensor Readings", collapsed=False) def create_import_sensors_frame(self): buttons_frame = CollapsableFrame("Import Sensors", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): string_field = StringField( "Import CSV File", default_value="TactileSim/sensor_configs", tooltip="Path to sensor positioning file", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, #item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) dropdown = DropDown( "Config Options", tooltip=" Select an option from the DropDown", populate_fn=self.dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn button = Button( "Refresh Sensor Positions", "Update", tooltip="Reread the data from the specified file path to update sensors", on_click_fn=self.import_sensors_fn, ) self.wrapped_ui_elements.append(button) self._status_report_field = TextBlock( "Import Status", num_lines=10, tooltip="Outputs the status of the import process", include_copy_button=True, ) def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self._cs = _sensor.acquire_contact_sensor_interface() self.create_import_sensors_frame() self.create_sensor_readings_frame() #self.create_status_report_frame() ############################## Import Frame Functions ######################################## def dropdown_populate_fn(self): """ Function that populates the dropdown with options Returns all the files in the directory specified by the string field """ options = [] # Get the path from the string field path = self.wrapped_ui_elements[0].get_value() # Get all the files in the directory try: options = os.listdir(path) # Add an empty string to the beginning of the list options.insert(0, "") # Add a 'Go Back' option at the end of the list options.append("Go Back") except: options = [] return options def import_sensors_fn(self): """ Function that executes when the user clicks the 'Refresh Sensors' button """ # Remove all sensors already on the robot message = "Removing existing sensors...\n" self._status_report_field.set_text(message) #self.countdown(3, "Remove Sensors") self.remove_sensors("tactile_sensors") message += "Sensors successfully removed\n\n" self._status_report_field.set_text(message) #Change the text of the status report field to show the import status path = self.config_path message += "Importing sensor data from '" + path + "'...\n" self._status_report_field.set_text(message) #Import the sensor data from the CSV file try: names, positions, radii, parent_paths, data = self.import_csv(path) self.parent_paths = parent_paths self.remove_sensors("tactile_sensors") # Second call to ensure all sensors are removed after parent paths are updated message += "File opened successfully\n" # Output the data to the status report field # message += "\n\nSensor Data:\n" # for i in range(len(names)): # message += str(data[i]) + "\n" except: message += "Invalid file path or file format!" message += "\nPlease make sure the file has at least 2 sensors and is formatted correctly.\n" self._status_report_field.set_text(message) return self._status_report_field.set_text(message) # Determine the number of sensors and their positions num_sensors = len(data) self.sensors = {} sensor_count = 0 # Keep track of the number of sensors created successfully for i in range(num_sensors): # Create a contact sensor at the specified position # message += "\nCreating sensor " + str(i) + " at position " + str(positions[i]) + "...\n" # self._status_report_field.set_text(message) # Check if the parent path is valid if not is_prim_path_valid(parent_paths[i]): message += "Could not find parent path: " + parent_paths[i] + "\n" self._status_report_field.set_text(message) continue # Get the parent prim parent_prim = get_current_stage().GetPrimAtPath(parent_paths[i]) # Check if the appled link has a rigidbody component # if not parent_prim.HasAPI(UsdPhysics.RigidBodyAPI): # message += "Parent path does not have a rigidbody component: " + parent_paths[i] + "\n" # self._status_report_field.set_text(message) # continue # Create the sensor self.create_contact_sensor(parent_paths[i], positions[i], radii[i], names[i]) sensor_count = sensor_count + 1 message += "\nSuccessfully created " + str(sensor_count) + " sensors\n" self._status_report_field.set_text(message) # Populate the sensor readings frame with the new sensors #self.update_sensor_readings_frame() # This function breaks down the CSV file into its components. Make sure the CSV file is formatted correctly # # The CSV file should be formatted as follows: # - The first row should contain the names of the sensors # - The second row should contain the x, y, and z positions of the sensors # - The third row should contain the radii of the sensors # - The fourth row should contain the parent paths of the sensors # def import_csv(self, path): """ Function that imports data from a CSV file Args: path (str): The path to the CSV file """ try: data = np.genfromtxt(path, delimiter=',', skip_header=1, dtype=str) # Save the first column as a list of names, the 2-4th columns as a list of positions, and the 5th column as a list of parent paths names = data[:, 0] # Convert the positions to a list of Gf.Vec3d objects positions = [] for i in range(len(data)): positions.append(Gf.Vec3d(float(data[i, 1]), float(data[i, 2]), float(data[i, 3]))) radii = [] for i in range(len(data)): radii.append(float(data[i, 4])) # Save the parent paths as a list of strings parent_paths = [] for i in range(len(data)): parent_paths.append(data[i, 5]) return names, positions, radii, parent_paths, data except: return None def create_contact_sensor(self, parent_path, position, radius, name): result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/tact_sensor_" + name, parent=parent_path, min_threshold=0, max_threshold=1000000, color=(1, 0, 0, 1), radius=radius, sensor_period=1, translation=position, visualize=True, ) # Add the sensor to the list of sensors self.sensors[name] = self.Sensor(name, position, radius, parent_path) def remove_sensors(self, sensor_label): """ Function that removes all sensors from the robot """ if len(self.parent_paths) == 0: return for parent_path in self.parent_paths: # Find all prims under the parent path that contain "tact_sensor" in their name try: parent_prim = get_current_stage().GetPrimAtPath(parent_path) prims = get_prim_children(parent_prim) except: self._status_report_field.set_text("Unexpected path!\n") return #self._status_report_field.set_text("Found " + str(len(prims)) + " sensors to remove\n") # Remove all prims found for prim in prims: if sensor_label in prim.GetName(): omni.kit.commands.execute('DeletePrims', paths=[parent_path + "/" + prim.GetName()]) def _on_string_field_value_changed_fn(self, value): """ Function that executes when the user changes the value of the string field Sets the value of the string field to what the user entered """ self.wrapped_ui_elements[0].set_value(value) # Update the dropdown with the new path self.wrapped_ui_elements[1].repopulate() def _on_dropdown_item_selection(self, item): """ Function that executes when the user selects an item from the dropdown Sets the value of the dropdown to the item the user selected """ # Go back if the user selects the empty string if item == "Go Back": # Get the path from the string field minus the last folder path = self.wrapped_ui_elements[0].get_value() parts = path.split("/") path = "/".join(parts[:-1]) self.wrapped_ui_elements[0].set_value(path) self.wrapped_ui_elements[1].repopulate() return if item == "": return self.config_path = self.wrapped_ui_elements[0].get_value() + "/" + item if self.config_path[-4:] != ".csv": # If the user selects a file that is not a CSV file, and it is a folder, update the string field with the new path self.wrapped_ui_elements[0].set_value(self.config_path) self.wrapped_ui_elements[1].repopulate() pass ###################################################################################### # Contact updates ###################################################################################### # This function updates the sensor readings in the UI at every physics step def contact_sensor_update(self, dt): #self._status_report_field.set_text("Updating sensor readings...\n") if len(self.sliders) > 0: slider_num = 0 for s in self.sensors.values(): reading = self._cs.get_sensor_reading(s.path) if reading.is_valid: self.sliders[slider_num].model.set_value( float(reading.value) * self.meters_per_unit ) # readings are in kg⋅m⋅s−2, converting to Newtons else: self.sliders[slider_num].model.set_value(0) slider_num += 1 # contacts_raw = self._cs.get_body_contact_raw_data(self.leg_paths[0]) # if len(contacts_raw): # c = contacts_raw[0] # # print(c) ###################################################################################### # Functions Below This Point Support The Provided Example And Can Be Deleted/Replaced ###################################################################################### def countdown(self, seconds, name=""): for i in range(seconds, 0, -1): #message += str(i) + "...\n" # self._status_report_field.set_text(message) print(name + " Countdown: " + str(i)) time.sleep(1) print("\n") return # def _on_init(self): # self._articulation = None # self._cuboid = None # self._scenario = ExampleScenario() # def _add_light_to_stage(self): # """ # A new stage does not have a light by default. This function creates a spherical light # """ # sphereLight = UsdLux.SphereLight.Define(get_current_stage(), Sdf.Path("/World/SphereLight")) # sphereLight.CreateRadiusAttr(2) # sphereLight.CreateIntensityAttr(100000) # XFormPrim(str(sphereLight.GetPath())).set_world_pose([6.5, 0, 12]) # def _setup_scene(self): # """ # This function is attached to the Load Button as the setup_scene_fn callback. # On pressing the Load Button, a new instance of World() is created and then this function is called. # The user should now load their assets onto the stage and add them to the World Scene. # In this example, a new stage is loaded explicitly, and all assets are reloaded. # If the user is relying on hot-reloading and does not want to reload assets every time, # they may perform a check here to see if their desired assets are already on the stage, # and avoid loading anything if they are. In this case, the user would still need to add # their assets to the World (which has low overhead). See commented code section in this function. # """ # # Load the UR10e # robot_prim_path = "/ur10e" # path_to_robot_usd = get_assets_root_path() + "/Isaac/Robots/UniversalRobots/ur10e/ur10e.usd" # # Do not reload assets when hot reloading. This should only be done while extension is under development. # # if not is_prim_path_valid(robot_prim_path): # # create_new_stage() # # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # else: # # print("Robot already on Stage") # create_new_stage() # self._add_light_to_stage() # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # Create a cuboid # self._cuboid = FixedCuboid( # "/Scenario/cuboid", position=np.array([0.3, 0.3, 0.5]), size=0.05, color=np.array([255, 0, 0]) # ) # self._articulation = Articulation(robot_prim_path) # # Add user-loaded objects to the World # world = World.instance() # world.scene.add(self._articulation) # world.scene.add(self._cuboid) # def _setup_scenario(self): # """ # This function is attached to the Load Button as the setup_post_load_fn callback. # The user may assume that their assets have been loaded by their setup_scene_fn callback, that # their objects are properly initialized, and that the timeline is paused on timestep 0. # In this example, a scenario is initialized which will move each robot joint one at a time in a loop while moving the # provided prim in a circle around the robot. # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # self._reset_btn.enabled = True # def _reset_scenario(self): # self._scenario.teardown_scenario() # self._scenario.setup_scenario(self._articulation, self._cuboid) # def _on_post_reset_btn(self): # """ # This function is attached to the Reset Button as the post_reset_fn callback. # The user may assume that their objects are properly initialized, and that the timeline is paused on timestep 0. # They may also assume that objects that were added to the World.Scene have been moved to their default positions. # I.e. the cube prim will move back to the position it was in when it was created in self._setup_scene(). # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # def _update_scenario(self, step: float): # """This function is attached to the Run Scenario StateButton. # This function was passed in as the physics_callback_fn argument. # This means that when the a_text "RUN" is pressed, a subscription is made to call this function on every physics step. # When the b_text "STOP" is pressed, the physics callback is removed. # Args: # step (float): The dt of the current physics step # """ # self._scenario.update_scenario(step) # def _on_run_scenario_a_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_a_click_fn argument. # It is called when the StateButton is clicked while saying a_text "RUN". # This function simply plays the timeline, which means that physics steps will start happening. After the world is loaded or reset, # the timeline is paused, which means that no physics steps will occur until the user makes it play either programmatically or # through the left-hand UI toolbar. # """ # self._timeline.play() # def _on_run_scenario_b_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_b_click_fn argument. # It is called when the StateButton is clicked while saying a_text "STOP" # Pausing the timeline on b_text is not strictly necessary for this example to run. # Clicking "STOP" will cancel the physics subscription that updates the scenario, which means that # the robot will stop getting new commands and the cube will stop updating without needing to # pause at all. The reason that the timeline is paused here is to prevent the robot being carried # forward by momentum for a few frames after the physics subscription is canceled. Pausing here makes # this example prettier, but if curious, the user should observe what happens when this line is removed. # """ # self._timeline.pause() def _reset_extension(self): """This is called when the user opens a new stage from self.on_stage_event(). All state should be reset. """ self._on_init() self._reset_ui() # def _reset_ui(self): # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = False # self._reset_btn.enabled = False
25,818
Python
41.187908
142
0.589395
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/ui_builder.py
# This software contains source code provided by NVIDIA Corporation. # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .AbstracSensorClass import AbstractSensorOperator from .ContactSensorClass import ContactSensorOperator import numpy as np import omni.timeline import omni.ui as ui import omni.kit.commands import time import os import sys import carb from omni.isaac.core.utils.prims import is_prim_path_valid, get_all_matching_child_prims, delete_prim, get_prim_children from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage, get_current_stage from omni.isaac.core.world import World from omni.isaac.ui.element_wrappers import CollapsableFrame, StateButton, Button, TextBlock, StringField, DropDown from omni.isaac.ui.ui_utils import get_style, LABEL_WIDTH from omni.usd import StageEventType from pxr import Sdf, UsdLux, Gf from omni.isaac.sensor import _sensor #from omni.isaac.proximity_sensor import Sensor, register_sensor, clear_sensors from .scenario import ExampleScenario from pxr import UsdPhysics class UIBuilder: def __init__(self, window): # Window to hold the UI elements self.window = window # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() # Create a list to hold all sensor operators self._sensor_operators = [] ############### Add Sensor Operators Here ################ self._sensor_operators.append(ContactSensorOperator()) # Add a contact sensor operator ######################################################### # Debugging # version = sys.version # executable = sys.executable # print(f"Python version: {version}") # print(f"Python executable location: {executable}") ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ if event.type == int(omni.timeline.TimelineEventType.STOP): # When the user hits the stop button through the UI, they will inevitably discover edge cases where things break # For complete robustness, the user should resolve those edge cases here # In general, for extensions based off this template, there is no value to having the user click the play/stop # button instead of using the Load/Reset/Run buttons provided. #self._scenario_state_btn.reset() #self._scenario_state_btn.enabled = False pass def on_physics_step(self, step: float): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ # Update the sensor readings for all added sensors for operator in self._sensor_operators: operator.sensor_update(step) def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ if event.type == int(StageEventType.OPENED): # If the user opens a new stage, the extension should completely reset self._reset_extension() def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() ################################# Individual Frames ################################################## def create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) #link the status report frame to the sensor operators to allow them to update the status report for operator in self._sensor_operators: operator._status_report_field = self._status_report_field def create_import_sensors_frame(self): buttons_frame = CollapsableFrame("Import Sensors", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): string_field = StringField( "Import CSV File", default_value="TactileSim/sensor_configs", tooltip="Path to sensor positioning file", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, #item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) dropdown = DropDown( "Config Options", tooltip=" Select an option from the DropDown", populate_fn=self.dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn # Add a button to all supported sensor operators for operator in self._sensor_operators: button = Button( "Refresh " + operator.sensor_description, "Update", tooltip="Reread the data from the specified file path to update sensors", on_click_fn=operator.import_sensors_fn, ) self.wrapped_ui_elements.append(button) # Add a remove sensors button to all supported sensor operators for operator in self._sensor_operators: button = Button( "Remove " + operator.sensor_description, "Remove All", tooltip="Remove all sensors " + operator.sensor_description + " from the robot", on_click_fn=operator.remove_sensors_fn, ) self.wrapped_ui_elements.append(button) self._status_report_field = TextBlock( "Import Status", num_lines=10, tooltip="Outputs the status of the import process", include_copy_button=True, ) # Add the status report field to the sensor operators for operator in self._sensor_operators: operator._status_report_field = self._status_report_field def create_all_sensor_readings_frames(self): # Create a sensor readings frame for each sensor operator for operator in self._sensor_operators: operator.create_sensor_readings_frame() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ self.create_import_sensors_frame() self.create_all_sensor_readings_frames() ############################## Import Frame Functions ######################################## def dropdown_populate_fn(self): """ Function that populates the dropdown with options Returns all the files in the directory specified by the string field """ options = [] # Get the path from the string field path = self.wrapped_ui_elements[0].get_value() # Get all the files in the directory try: options = os.listdir(path) # Add an empty string to the beginning of the list options.insert(0, "") # Add a 'Go Back' option at the end of the list options.append("Go Back") except: options = [] return options def _on_string_field_value_changed_fn(self, value): """ Function that executes when the user changes the value of the string field Sets the value of the string field to what the user entered """ self.wrapped_ui_elements[0].set_value(value) # Update the dropdown with the new path self.wrapped_ui_elements[1].repopulate() def _on_dropdown_item_selection(self, item): """ Function that executes when the user selects an item from the dropdown Sets the value of the dropdown to the item the user selected """ # Go back if the user selects the empty string if item == "Go Back": # Get the path from the string field minus the last folder path = self.wrapped_ui_elements[0].get_value() parts = path.split("/") path = "/".join(parts[:-1]) self.wrapped_ui_elements[0].set_value(path) self.wrapped_ui_elements[1].repopulate() return if item == "": return self.config_path = self.wrapped_ui_elements[0].get_value() + "/" + item # Update the config path in the sensor operators for operator in self._sensor_operators: operator.config_path = self.config_path if self.config_path[-4:] != ".csv": # If the user selects a file that is not a CSV file, and it is a folder, update the string field with the new path self.wrapped_ui_elements[0].set_value(self.config_path) self.wrapped_ui_elements[1].repopulate() pass ###################################################################################### # Functions Below This Point Support The Provided Example And Can Be Deleted/Replaced ###################################################################################### def countdown(self, seconds, name=""): for i in range(seconds, 0, -1): #message += str(i) + "...\n" # self._status_report_field.set_text(message) print(name + " Countdown: " + str(i)) time.sleep(1) print("\n") return def _on_init(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper instance self.wrapped_ui_elements = [] # Get access to the timeline to control stop/pause/play programmatically self._timeline = omni.timeline.get_timeline_interface() # Create a list to hold all sensor operators self._sensor_operators = [] ############### Add Sensor Operators Here ################ self._sensor_operators.append(ContactSensorOperator()) # Add a contact sensor operator ######################################################### # Debugging # version = sys.version # executable = sys.executable # print(f"Python version: {version}") # print(f"Python executable location: {executable}") # def _add_light_to_stage(self): # """ # A new stage does not have a light by default. This function creates a spherical light # """ # sphereLight = UsdLux.SphereLight.Define(get_current_stage(), Sdf.Path("/World/SphereLight")) # sphereLight.CreateRadiusAttr(2) # sphereLight.CreateIntensityAttr(100000) # XFormPrim(str(sphereLight.GetPath())).set_world_pose([6.5, 0, 12]) # def _setup_scene(self): # """ # This function is attached to the Load Button as the setup_scene_fn callback. # On pressing the Load Button, a new instance of World() is created and then this function is called. # The user should now load their assets onto the stage and add them to the World Scene. # In this example, a new stage is loaded explicitly, and all assets are reloaded. # If the user is relying on hot-reloading and does not want to reload assets every time, # they may perform a check here to see if their desired assets are already on the stage, # and avoid loading anything if they are. In this case, the user would still need to add # their assets to the World (which has low overhead). See commented code section in this function. # """ # # Load the UR10e # robot_prim_path = "/ur10e" # path_to_robot_usd = get_assets_root_path() + "/Isaac/Robots/UniversalRobots/ur10e/ur10e.usd" # # Do not reload assets when hot reloading. This should only be done while extension is under development. # # if not is_prim_path_valid(robot_prim_path): # # create_new_stage() # # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # else: # # print("Robot already on Stage") # create_new_stage() # self._add_light_to_stage() # add_reference_to_stage(path_to_robot_usd, robot_prim_path) # # Create a cuboid # self._cuboid = FixedCuboid( # "/Scenario/cuboid", position=np.array([0.3, 0.3, 0.5]), size=0.05, color=np.array([255, 0, 0]) # ) # self._articulation = Articulation(robot_prim_path) # # Add user-loaded objects to the World # world = World.instance() # world.scene.add(self._articulation) # world.scene.add(self._cuboid) # def _setup_scenario(self): # """ # This function is attached to the Load Button as the setup_post_load_fn callback. # The user may assume that their assets have been loaded by their setup_scene_fn callback, that # their objects are properly initialized, and that the timeline is paused on timestep 0. # In this example, a scenario is initialized which will move each robot joint one at a time in a loop while moving the # provided prim in a circle around the robot. # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # self._reset_btn.enabled = True # def _reset_scenario(self): # self._scenario.teardown_scenario() # self._scenario.setup_scenario(self._articulation, self._cuboid) # def _on_post_reset_btn(self): # """ # This function is attached to the Reset Button as the post_reset_fn callback. # The user may assume that their objects are properly initialized, and that the timeline is paused on timestep 0. # They may also assume that objects that were added to the World.Scene have been moved to their default positions. # I.e. the cube prim will move back to the position it was in when it was created in self._setup_scene(). # """ # self._reset_scenario() # # UI management # self._scenario_state_btn.reset() # self._scenario_state_btn.enabled = True # def _update_scenario(self, step: float): # """This function is attached to the Run Scenario StateButton. # This function was passed in as the physics_callback_fn argument. # This means that when the a_text "RUN" is pressed, a subscription is made to call this function on every physics step. # When the b_text "STOP" is pressed, the physics callback is removed. # Args: # step (float): The dt of the current physics step # """ # self._scenario.update_scenario(step) # def _on_run_scenario_a_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_a_click_fn argument. # It is called when the StateButton is clicked while saying a_text "RUN". # This function simply plays the timeline, which means that physics steps will start happening. After the world is loaded or reset, # the timeline is paused, which means that no physics steps will occur until the user makes it play either programmatically or # through the left-hand UI toolbar. # """ # self._timeline.play() # def _on_run_scenario_b_text(self): # """ # This function is attached to the Run Scenario StateButton. # This function was passed in as the on_b_click_fn argument. # It is called when the StateButton is clicked while saying a_text "STOP" # Pausing the timeline on b_text is not strictly necessary for this example to run. # Clicking "STOP" will cancel the physics subscription that updates the scenario, which means that # the robot will stop getting new commands and the cube will stop updating without needing to # pause at all. The reason that the timeline is paused here is to prevent the robot being carried # forward by momentum for a few frames after the physics subscription is canceled. Pausing here makes # this example prettier, but if curious, the user should observe what happens when this line is removed. # """ # self._timeline.pause() def _reset_extension(self): """This is called when the user opens a new stage from self.on_stage_event(). All state should be reset. """ self._on_init() self._reset_ui() def _reset_ui(self): """This function is called by _reset_extension() to reset the UI to its initial state. This function should not reset the state of the extension, only the UI. """ for frame in self.frames: frame.delete() self.frames = [] self.wrapped_ui_elements = [] self.build_ui()
19,266
Python
41.720621
140
0.598827
cKohl10/TactileSim/exts/contact_ext_test/Contact_Extension_Test_python/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template extension creates a Load, Reset, and Run button in a simple UI. The Load and Reset buttons interact with the omni.isaac.core World() in order to simplify user interaction with the simulator and provide certain gurantees to the user at the times their callback functions are called. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification. scenario.py: This file contains an implementation of an example "Scenario" that implements a "teardown", "setup", and "update" function. This particular structure was chosen to make a clear code separation between UI management and the scenario logic. In this way, the ExampleScenario() class serves as a simple backend to the UI. The user should feel encouraged to implement the backend to their UI that best suits their needs.
2,078
Markdown
58.399998
137
0.783927
cKohl10/TactileSim/exts/contact_ext_test/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "Contact Extension Test" description = "First test of using isaac sim extensions" authors = ["NVIDIA"] repository = "" keywords = [] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} [[python.module]] name = "Contact_Extension_Test_python"
485
TOML
18.439999
56
0.686598
cKohl10/TactileSim/exts/contact_ext_test/docs/CHANGELOG.md
# Changelog ## [0.1.0] - 2024-05-17 ### Added - Initial version of Contact Extension Test Extension
103
Markdown
11.999999
53
0.679612
cKohl10/TactileSim/exts/contact_ext_test/docs/README.md
# Usage To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
129
Markdown
24.999995
118
0.736434
cKohl10/TactileSim/exts/Util_example/Example_of_utilities_python/global_variables.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # EXTENSION_TITLE = "Example of utilities" EXTENSION_DESCRIPTION = ""
501
Python
37.615382
76
0.802395
cKohl10/TactileSim/exts/Util_example/Example_of_utilities_python/extension.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import gc import omni import omni.kit.commands import omni.physx as _physx import omni.timeline import omni.ui as ui import omni.usd from omni.isaac.ui.element_wrappers import ScrollingWindow from omni.isaac.ui.menu import MenuItemDescription from omni.kit.menu.utils import add_menu_items, remove_menu_items from omni.usd import StageEventType from .global_variables import EXTENSION_DESCRIPTION, EXTENSION_TITLE from .ui_builder import UIBuilder """ This file serves as a basic template for the standard boilerplate operations that make a UI-based extension appear on the toolbar. This implementation is meant to cover most use-cases without modification. Various callbacks are hooked up to a seperate class UIBuilder in .ui_builder.py Most users will be able to make their desired UI extension by interacting solely with UIBuilder. This class sets up standard useful callback functions in UIBuilder: on_menu_callback: Called when extension is opened on_timeline_event: Called when timeline is stopped, paused, or played on_physics_step: Called on every physics step on_stage_event: Called when stage is opened or closed cleanup: Called when resources such as physics subscriptions should be cleaned up build_ui: User function that creates the UI they want. """ class Extension(omni.ext.IExt): def on_startup(self, ext_id: str): """Initialize extension and UI elements""" self.ext_id = ext_id self._usd_context = omni.usd.get_context() # Build Window self._window = ScrollingWindow( title=EXTENSION_TITLE, width=600, height=500, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) self._window.set_visibility_changed_fn(self._on_window) action_registry = omni.kit.actions.core.get_action_registry() action_registry.register_action( ext_id, f"CreateUIExtension:{EXTENSION_TITLE}", self._menu_callback, description=f"Add {EXTENSION_TITLE} Extension to UI toolbar", ) self._menu_items = [ MenuItemDescription(name=EXTENSION_TITLE, onclick_action=(ext_id, f"CreateUIExtension:{EXTENSION_TITLE}")) ] add_menu_items(self._menu_items, EXTENSION_TITLE) # Filled in with User Functions self.ui_builder = UIBuilder() # Events self._usd_context = omni.usd.get_context() self._physxIFace = _physx.acquire_physx_interface() self._physx_subscription = None self._stage_event_sub = None self._timeline = omni.timeline.get_timeline_interface() def on_shutdown(self): self._models = {} remove_menu_items(self._menu_items, EXTENSION_TITLE) action_registry = omni.kit.actions.core.get_action_registry() action_registry.deregister_action(self.ext_id, f"CreateUIExtension:{EXTENSION_TITLE}") if self._window: self._window = None self.ui_builder.cleanup() gc.collect() def _on_window(self, visible): if self._window.visible: # Subscribe to Stage and Timeline Events self._usd_context = omni.usd.get_context() events = self._usd_context.get_stage_event_stream() self._stage_event_sub = events.create_subscription_to_pop(self._on_stage_event) stream = self._timeline.get_timeline_event_stream() self._timeline_event_sub = stream.create_subscription_to_pop(self._on_timeline_event) self._build_ui() else: self._usd_context = None self._stage_event_sub = None self._timeline_event_sub = None self.ui_builder.cleanup() def _build_ui(self): with self._window.frame: with ui.VStack(spacing=5, height=0): self._build_extension_ui() async def dock_window(): await omni.kit.app.get_app().next_update_async() def dock(space, name, location, pos=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, pos) return window tgt = ui.Workspace.get_window("Viewport") dock(tgt, EXTENSION_TITLE, omni.ui.DockPosition.LEFT, 0.33) await omni.kit.app.get_app().next_update_async() self._task = asyncio.ensure_future(dock_window()) ################################################################# # Functions below this point call user functions ################################################################# def _menu_callback(self): self._window.visible = not self._window.visible self.ui_builder.on_menu_callback() def _on_timeline_event(self, event): if event.type == int(omni.timeline.TimelineEventType.PLAY): if not self._physx_subscription: self._physx_subscription = self._physxIFace.subscribe_physics_step_events(self._on_physics_step) elif event.type == int(omni.timeline.TimelineEventType.STOP): self._physx_subscription = None self.ui_builder.on_timeline_event(event) def _on_physics_step(self, step): self.ui_builder.on_physics_step(step) def _on_stage_event(self, event): if event.type == int(StageEventType.OPENED) or event.type == int(StageEventType.CLOSED): # stage was opened or closed, cleanup self._physx_subscription = None self.ui_builder.cleanup() self.ui_builder.on_stage_event(event) def _build_extension_ui(self): # Call user function for building UI self.ui_builder.build_ui()
6,165
Python
37.298136
118
0.651095
cKohl10/TactileSim/exts/Util_example/Example_of_utilities_python/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .extension import *
456
Python
44.699996
76
0.809211
cKohl10/TactileSim/exts/Util_example/Example_of_utilities_python/ui_builder.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import List import omni.ui as ui from omni.isaac.ui.element_wrappers import ( Button, CheckBox, CollapsableFrame, ColorPicker, DropDown, FloatField, IntField, StateButton, StringField, TextBlock, XYPlot, ) from omni.isaac.ui.ui_utils import get_style class UIBuilder: def __init__(self): # Frames are sub-windows that can contain multiple UI elements self.frames = [] # UI elements created using a UIElementWrapper from omni.isaac.ui.element_wrappers self.wrapped_ui_elements = [] ################################################################################### # The Functions Below Are Called Automatically By extension.py ################################################################################### def on_menu_callback(self): """Callback for when the UI is opened from the toolbar. This is called directly after build_ui(). """ pass def on_timeline_event(self, event): """Callback for Timeline events (Play, Pause, Stop) Args: event (omni.timeline.TimelineEventType): Event Type """ pass def on_physics_step(self, step): """Callback for Physics Step. Physics steps only occur when the timeline is playing Args: step (float): Size of physics step """ pass def on_stage_event(self, event): """Callback for Stage Events Args: event (omni.usd.StageEventType): Event Type """ pass def cleanup(self): """ Called when the stage is closed or the extension is hot reloaded. Perform any necessary cleanup such as removing active callback functions Buttons imported from omni.isaac.ui.element_wrappers implement a cleanup function that should be called """ # None of the UI elements in this template actually have any internal state that needs to be cleaned up. # But it is best practice to call cleanup() on all wrapped UI elements to simplify development. for ui_elem in self.wrapped_ui_elements: ui_elem.cleanup() def build_ui(self): """ Build a custom UI tool to run your extension. This function will be called any time the UI window is closed and reopened. """ # Create a UI frame that prints the latest UI event. self._create_status_report_frame() # Create a UI frame demonstrating simple UI elements for user input self._create_simple_editable_fields_frame() # Create a UI frame with different button types self._create_buttons_frame() # Create a UI frame with different selection widgets self._create_selection_widgets_frame() # Create a UI frame with different plotting tools self._create_plotting_frame() def _create_status_report_frame(self): self._status_report_frame = CollapsableFrame("Status Report", collapsed=False) with self._status_report_frame: with ui.VStack(style=get_style(), spacing=5, height=0): self._status_report_field = TextBlock( "Last UI Event", num_lines=3, tooltip="Prints the latest change to this UI", include_copy_button=True, ) def _create_simple_editable_fields_frame(self): self._simple_fields_frame = CollapsableFrame("Simple Editable Fields", collapsed=False) with self._simple_fields_frame: with ui.VStack(style=get_style(), spacing=5, height=0): int_field = IntField( "Int Field", default_value=1, tooltip="Type an int or click and drag to set a new value.", lower_limit=-100, upper_limit=100, on_value_changed_fn=self._on_int_field_value_changed_fn, ) self.wrapped_ui_elements.append(int_field) float_field = FloatField( "Float Field", default_value=1.0, tooltip="Type a float or click and drag to set a new value.", step=0.5, format="%.2f", lower_limit=-100.0, upper_limit=100.0, on_value_changed_fn=self._on_float_field_value_changed_fn, ) self.wrapped_ui_elements.append(float_field) def is_usd_or_python_path(file_path: str): # Filter file paths shown in the file picker to only be USD or Python files _, ext = os.path.splitext(file_path.lower()) return ext == ".usd" or ext == ".py" string_field = StringField( "String Field", default_value="Type Here or Use File Picker on the Right", tooltip="Type a string or use the file picker to set a value", read_only=False, multiline_okay=False, on_value_changed_fn=self._on_string_field_value_changed_fn, use_folder_picker=True, item_filter_fn=is_usd_or_python_path, ) self.wrapped_ui_elements.append(string_field) def _create_buttons_frame(self): buttons_frame = CollapsableFrame("Buttons Frame", collapsed=False) with buttons_frame: with ui.VStack(style=get_style(), spacing=5, height=0): button = Button( "Button", "CLICK ME", tooltip="Click This Button to activate a callback function", on_click_fn=self._on_button_clicked_fn, ) self.wrapped_ui_elements.append(button) state_button = StateButton( "State Button", "State A", "State B", tooltip="Click this button to transition between two states", on_a_click_fn=self._on_state_btn_a_click_fn, on_b_click_fn=self._on_state_btn_b_click_fn, physics_callback_fn=None, # See Loaded Scenario Template for example usage ) self.wrapped_ui_elements.append(state_button) check_box = CheckBox( "Check Box", default_value=False, tooltip=" Click this checkbox to activate a callback function", on_click_fn=self._on_checkbox_click_fn, ) self.wrapped_ui_elements.append(check_box) def _create_selection_widgets_frame(self): self._selection_widgets_frame = CollapsableFrame("Selection Widgets", collapsed=False) with self._selection_widgets_frame: with ui.VStack(style=get_style(), spacing=5, height=0): def dropdown_populate_fn(): return ["Option A", "Option B", "Option C"] dropdown = DropDown( "Drop Down", tooltip=" Select an option from the DropDown", populate_fn=dropdown_populate_fn, on_selection_fn=self._on_dropdown_item_selection, ) self.wrapped_ui_elements.append(dropdown) dropdown.repopulate() # This does not happen automatically, and it triggers the on_selection_fn color_picker = ColorPicker( "Color Picker", default_value=[0.69, 0.61, 0.39, 1.0], tooltip="Select a Color", on_color_picked_fn=self._on_color_picked, ) self.wrapped_ui_elements.append(color_picker) def _create_plotting_frame(self): self._plotting_frame = CollapsableFrame("Plotting Tools", collapsed=False) with self._plotting_frame: with ui.VStack(style=get_style(), spacing=5, height=0): import numpy as np x = np.arange(-1, 6.01, 0.01) y = np.sin((x - 0.5) * np.pi) plot = XYPlot( "XY Plot", tooltip="Press mouse over the plot for data label", x_data=[x[:300], x[100:400], x[200:]], y_data=[y[:300], y[100:400], y[200:]], x_min=None, # Use default behavior to fit plotted data to entire frame x_max=None, y_min=-1.5, y_max=1.5, x_label="X [rad]", y_label="Y", plot_height=10, legends=["Line 1", "Line 2", "Line 3"], show_legend=True, plot_colors=[ [255, 0, 0], [0, 255, 0], [0, 100, 200], ], # List of [r,g,b] values; not necessary to specify ) ###################################################################################### # Functions Below This Point Are Callback Functions Attached to UI Element Wrappers ###################################################################################### def _on_int_field_value_changed_fn(self, new_value: int): status = f"Value was changed in int field to {new_value}" self._status_report_field.set_text(status) def _on_float_field_value_changed_fn(self, new_value: float): status = f"Value was changed in float field to {new_value}" self._status_report_field.set_text(status) def _on_string_field_value_changed_fn(self, new_value: str): status = f"Value was changed in string field to {new_value}" self._status_report_field.set_text(status) def _on_button_clicked_fn(self): status = "The Button was Clicked!" self._status_report_field.set_text(status) def _on_state_btn_a_click_fn(self): status = "State Button was Clicked in State A!" self._status_report_field.set_text(status) def _on_state_btn_b_click_fn(self): status = "State Button was Clicked in State B!" self._status_report_field.set_text(status) def _on_checkbox_click_fn(self, value: bool): status = f"CheckBox was set to {value}!" self._status_report_field.set_text(status) def _on_dropdown_item_selection(self, item: str): status = f"{item} was selected from DropDown" self._status_report_field.set_text(status) def _on_color_picked(self, color: List[float]): formatted_color = [float("%0.2f" % i) for i in color] status = f"RGBA Color {formatted_color} was picked in the ColorPicker" self._status_report_field.set_text(status)
11,487
Python
38.888889
112
0.542178
cKohl10/TactileSim/exts/Util_example/Example_of_utilities_python/README.md
# Loading Extension To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name} The user will see the extension appear on the toolbar on startup with the title they specified in the Extension Generator # Extension Usage This template provides the example usage for a library of UIElementWrapper objects that help to quickly develop custom UI tools with minimal boilerplate code. # Template Code Overview The template is well documented and is meant to be self-explanatory to the user should they start reading the provided python files. A short overview is also provided here: global_variables.py: A script that stores in global variables that the user specified when creating this extension such as the Title and Description. extension.py: A class containing the standard boilerplate necessary to have the user extension show up on the Toolbar. This class is meant to fulfill most ues-cases without modification. In extension.py, useful standard callback functions are created that the user may complete in ui_builder.py. ui_builder.py: This file is the user's main entrypoint into the template. Here, the user can see useful callback functions that have been set up for them, and they may also create UI buttons that are hooked up to more user-defined callback functions. This file is the most thoroughly documented, and the user should read through it before making serious modification.
1,488
Markdown
58.559998
132
0.793011
cKohl10/TactileSim/exts/Util_example/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "Example of utilities" description = "" authors = ["NVIDIA"] repository = "" keywords = [] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" [dependencies] "omni.kit.uiapp" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} [[python.module]] name = "Example_of_utilities_python"
441
TOML
16.679999
36
0.668934
cKohl10/TactileSim/exts/Util_example/docs/CHANGELOG.md
# Changelog ## [0.1.0] - 2024-05-17 ### Added - Initial version of Example of utilities Extension
101
Markdown
11.749999
51
0.673267
cKohl10/TactileSim/exts/Util_example/docs/README.md
# Usage To enable this extension, run Isaac Sim with the flags --ext-folder {path_to_ext_folder} --enable {ext_directory_name}
129
Markdown
24.999995
118
0.736434
cKohl10/TactileSim/blender_scripts/save_sensor_pos.py
# Save Sensor Position Script # Author: Carson Kohlbrenner # Date Created: 5/29/2024 # Last Modified: 5/29/2024 # Description: This exports all sensor locations in Blender into a CSV file that Isaac Sim can accept. # # Output CSV format: # SensorNum, X, Y, Z, radius, parent_path import bpy import bmesh # Get the active object obj = bpy.context.active_object # Ensure we are in the correct mode bpy.ops.object.mode_set(mode='OBJECT') # Get the geometry data mesh = obj.data # Create a BMesh to access vertex data bm = bmesh.new() bm.from_mesh(mesh) # Get the custom attribute (assuming it is a point cloud) positions = [v.co for v in bm.verts] # Write positions to a file output_file = "C:/path_to_your_file/instance_positions.txt" with open(output_file, 'w') as f: for pos in positions: f.write(f"{pos.x}, {pos.y}, {pos.z}\n") bm.free() print(f"Instance positions written to {output_file}")
915
Python
22.487179
102
0.713661
cKohl10/TactileSim/blender_scripts/verts2sensors.py
import csv import re from pxr import Usd, UsdGeom ######################################################## # Extract vertices from a USD file and save to a CSV file # All sensors positions are the vertices of the geometry in the USD file ######################################################## def remove_repeated_prims(path): parts = path.split('/') for i in range(len(parts) - 1, 0, -1): if parts[i] == parts[i - 1]: del parts[i] return '/'.join(parts) def extract_vertices(usd_file, csv_file): # Open the USD file stage = Usd.Stage.Open(usd_file) # Open the CSV file for writing with open(csv_file, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) # Write the header row csvwriter.writerow(['SensorNum', 'X', 'Y', 'Z', 'parent_path']) vert_count = 1 # Iterate through all the prims in the stage for prim in stage.Traverse(): # Check if the prim is a geometry (has points) if prim.IsA(UsdGeom.PointBased): geom = UsdGeom.PointBased(prim) # Get the points (vertices) of the geometry points = geom.GetPointsAttr().Get() parent_path = prim.GetPath().pathString # Omit 'Root' from the parent path parent_path = parent_path.replace('/Root', '') # Remove any triple digit numbers from the parent path parent_path = re.sub(r'_\d{3,}', '', parent_path) # Blender splits the vertices into seperate objects, so we need to remove the repeated prims parent_path = remove_repeated_prims(parent_path) # Write each point to the CSV for point in points: csvwriter.writerow([vert_count, point[0], point[1], point[2], 0.1, parent_path]) vert_count += 1 print(f'Vertices extracted from {usd_file} and saved to {csv_file}') print(f'Vertex count: {vert_count - 1}') # Example usage usd_file = 'scenes/Ant Scene/robots/Ant_decimated.usd' csv_file = 'sensor_configs/ant_vertices.csv' extract_vertices(usd_file, csv_file)
2,233
Python
36.864406
108
0.552172
cKohl10/TactileSim/blender_scripts/sensor_bay_addon/README.md
Blender Tactile Sensor Addon Capabilities 1) Use weight painting to apply tactile sensors with configurable density. 2) Save the output as a CSV for reading into Isaac Sim Importing the Addon: Applying the Skin Geometry Node: Saving your Configurations
267
Markdown
19.615383
78
0.782772
cKohl10/TactileSim/blender_scripts/sensor_bay_addon/sensor_bay_addon.py
bl_info = { "name": "Tactile Sensor Bay", "author": "Carson Kohlbrenner", "version": (1, 0), "blender": (2, 80, 0), "location": "View3D > Add > Mesh > New Object", "description": "Paint on tactile sensors over a surface and save them for Isaac Sim", "warning": "", "doc_url": "https://github.com/cKohl10/TactileSim", "category": "", } import bpy import bmesh import csv import os import re from bpy.utils import resource_path from pathlib import Path from bpy_extras.io_utils import ExportHelper from bpy.props import StringProperty from bpy.types import Operator class SensorData: def __init__(self, pos, radius, parent): self.pos = pos self.radius = radius self.parent = parent def __str__(self): return f"Pos: {self.pos}, Radius: {self.radius}, Parent: {self.parent}" def __repr__(self): return str(self) def check_children_for_sensors(obj, parent_path): sensor_data = [] # Get the parent path from the root object parent_path = parent_path + "/" + obj.name is_sensor_attribtue_name = "is_sensor" pos_attribute_name = "sensor_pos" rad_attribute_name = "radii" default_radius = False # Loop through all of the children objects and search for GeometryNodes modifier for child in obj.children: pos_attribute_data = [] # Recursively check the children for sensors sensor_data = check_children_for_sensors(child, sensor_data, parent_path) # Loop through all of the children objects and search for GeometryNodes modifier #print(f"\nChecking object {child.name} under {parent_path}...") # Ensure the object has geometry nodes modifier if child.modifiers.get('Skin') is None: #print(f"{child.name} does not have a Skin modifier.") continue # Get the evaluated geometry depsgraph = bpy.context.evaluated_depsgraph_get() eval_obj = child.evaluated_get(depsgraph) mesh = eval_obj.to_mesh() # Check if the position data exists if pos_attribute_name not in mesh.attributes: #print(f"Attribute {attribute_name} not found in object {child.name}.") # for other_name in mesh.attributes: # print(f"Found attribute: {other_name}.") continue if is_sensor_attribtue_name not in mesh.attributes: #print(f"Attribute {is_sensor_attribtue_name} not found in object {child.name}.") continue if rad_attribute_name not in mesh.attributes: #Set a default radius value if the radii attribute is not found print(f"Attribute {rad_attribute_name} not found in object {child.name}. Setting default radius of 0.1.") default_radius = True # Get the attribute data pos_attribute_data = mesh.attributes[pos_attribute_name].data # Get the radii attribute data rad_attribute_data = [] if not default_radius: rad_attribute_data = mesh.attributes[rad_attribute_name].data is_sensor_data = mesh.attributes[is_sensor_attribtue_name].data # Get path to object parent_path = parent_path + "/" + child.name # Remove any triple digit numbers from the parent path parent_path = re.sub(r'\.\d{3,}', '', parent_path) # Add the attribute data to the sensor data list for i in range(len(pos_attribute_data)): if is_sensor_data[i].value: if default_radius: sensor_data.append(SensorData(pos_attribute_data[i].vector, 0.1, parent_path)) else: sensor_data.append(SensorData(pos_attribute_data[i].vector, rad_attribute_data[i].value, parent_path)) print(f"Found {len(pos_attribute_data)} sensor positions in object {child.name}.") # Clean up eval_obj.to_mesh_clear() return sensor_data def save_attribute_to_csv(context, file_path): # Get the object obj = context.object # Expand the ~ symbol into the path of the home directory #file_path = os.path.expanduser(file_path) # Make an array of all sensor positions,radii, and parent paths sensor_data = [] # Check the children for sensors sensor_data = check_children_for_sensors(obj, "") # Check if there are any sensor positions if len(sensor_data) == 0: print("No sensor positions found.") return # Save the attribute data to CSV with open(file_path, 'w', newline='') as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerow(['Index', 'X', 'Y', 'Z', 'Radius', 'Parent']) for i, element in enumerate(sensor_data): pos = element.pos csv_writer.writerow([i, pos.x, pos.y, pos.z, element.radius, element.parent]) # print(f"\nAttribute {attribute_name} saved to {file_path}") print(f"Sensor count: {len(sensor_data)}") class SensorSaveOperator(Operator, ExportHelper): """Saves the sensors in the scene""" bl_idname = "object.save_sensors_operator" bl_label = "Save Sensor Positions" filename_ext = ".csv" filter_glob: StringProperty( default="*.csv", options={'HIDDEN'}, maxlen=255, # Max internal buffer length, longer would be clamped. ) def execute(self, context): print("SensorSaveOperator.execute called\n") if self.filepath: # Check if filepath has been set save_attribute_to_csv(context, self.filepath) else: self.report({'WARNING'}, "No file selected") # Report a warning if no file was selected return {'CANCELLED'} return {'FINISHED'} def invoke(self, context, event): context.window_manager.fileselect_add(self) # Open file explorer return {'RUNNING_MODAL'} class SensorPanel(bpy.types.Panel): """Creates a Panel in the Object properties window""" bl_label = "Sensor Bay" bl_idname = "OBJECT_PT_SENSOR_BAY" bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "object" def draw(self, context): layout = self.layout obj = context.object row = layout.row() row.label(text="Save sensors as CSV", icon='FILE_TICK') row = layout.row() row.label(text="Selected root prim: " + obj.name) row = layout.row() row.prop(obj, "name") row = layout.row() row.operator("object.save_sensors_operator") def register(): bpy.utils.register_class(SensorSaveOperator) bpy.utils.register_class(SensorPanel) def unregister(): bpy.utils.unregister_class(SensorSaveOperator) bpy.utils.unregister_class(SensorPanel) if __name__ == "__main__": register()
6,835
Python
31.865384
122
0.625018
makolon/hsr_isaac_tamp/README.md
# TAMP-HSR This repository implement PDDLStream for Toyota Human Support Robot (HSR) and offer parallel reinforcement learning environment on Isaac Sim. ## Getting Started ### Prerequisited - NVIDIA Docker - NVIDIA RTX GPU - NVIDIA Driver 515.xx https://github.com/makolon/hsr_isaac_tamp/assets/39409362/e7945ca0-e040-47cc-b73f-0cf99413d30d https://github.com/makolon/hsr_isaac_tamp/assets/39409362/0322855f-2aa6-46a2-963e-28bc1f77577c ### Installation 1. Clone the repository ``` $ git clone --recursive [email protected]/makolon/tamp-hsr.git ``` 2. Build docker image ``` $ cd tamp-hsr/docker/docker_hsr/ $ ./build.sh ``` 3. Run docker container ``` $ cd tamp-hsr/docker/docker_hsr/ $ ./run.sh ``` 4. Compile FastDownward ``` $ cd tamp-hsr/hsr_tamp/downward/ $ git submodule update --init --recursive $ python3 build.py $ cd ./builds/ $ ln -s release release32 ``` ## Usage ### Simulation #### PDDLStream only for 2d environment You can test PDDLStream on 2D pygame environment. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_2d/ $ python3 tamp_planner.py ``` #### PDDLStream only for 3d environment You can test PDDLStream on 3D pybullet environment including cooking, holding block task. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_3d/ $ python3 tamp_planner.py --problem <problem_name> ``` ### Real #### Execute plan on 2D environment 1. Enter to hsrb_mode ``` $ hsrb_mode ``` 2. Set up ROS configurations ``` $ cd tamp-hsr/hsr_ros/hsr_ws/ $ source devel/setup.bash ``` 3. Execute ROS scripts ``` $ roslaunch env_2d exec_tamp.launch --mode <feedforward/feedback> ``` #### Execute plan on 3D environment 1. Enter to hsrb_mode ``` $ hsrb_mode ``` 2. Set up ROS configurations ``` $ cd tamp-hsr/hsr_ros/hsr_ws/ $ source devel/setup.bash ``` 3. Launch gearbox assembling scipts ``` $ roslaunch env_3d exec_tamp.launch --mode <feedforward/feedback> ```` ## Setup IKfast ### Compile IKfast Build & run docker for openrave that contain IKfast scripts. ``` $ cd tamp-hsr/docker/docker_openrave/ $ ./build.sh $ ./run.sh ``` Then, execute ikfast scripts that can automatically create cpp IK solver and copy and plaste the appropriate scripts to <ik_solver>.cpp. ``` $ ./exec_openrave.sh ``` After that process, you can call IK solver in python script by executing the following commands. ``` $ cd tamp-hsr/hsr_tamp/experiments/env_3d/utils/pybullet_tools/ikfast/hsrb/ $ python3 setup.py ``` ### Create HSR Collada Model If you don't have hsr collada model, you have to run the following commands in docker_openrave container. \ Terminal 1. ``` $ cd /ikfast/ $ roscore ``` Terminal 2. ``` $ cd /ikfast $ export MYROBOT_NAME='hsrb4s' $ rosrun collada_urdf urdf_to_collada "$MYROBOT_NAME".urdf "$MYROBOT_NAME".dae ``` Then, you can see the generated HSR collada model using following commands. ``` $ openrave-robot.py "$MYROBOT_NAME".dae --info links $ openrave "$MYROBOT_NAME".dae ``` For more informations, please refer to the [following document](http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/ikfast/ikfast_tutorial.html). ## Setup Motion Capture ### Prerequisited - Windows11 PC - Windows11 with ROS - OptiTrack ### Usage Check IP address of the HSR PC and own IP address. ``` ipconfig ``` Then, execute the following commands in the ROS executable terminal. ``` set ROS_HOSTNAME=<OWN IP ADDRESS> set ROS_IP=<OWN IP ADDRESS> set ROS_MASTER_URI=http://<HSR PC IP ADDRESS>:11311 C:\path\to\catkin_ws\devel\setup.bat cd C:\path\to\catkin_ws\src\mocap_msg\src && python MocapRosPublisher.py ```
3,514
Markdown
22.433333
154
0.72453
makolon/hsr_isaac_tamp/hsr_ros/README.md
# HSR-ROS
10
Markdown
4.499998
9
0.6
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/test/script/analyze_trajectory.py
import glob import argparse import numpy as np import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as R from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation class AnalyzeTrajectory(object): def __init__(self, idx=0, mode='both', joint_index=None): # Load ee trajectory self.sim_ee_traj = np.load(f"log/simulation_ee_traj.npy", allow_pickle=True) self.measured_ee_traj = np.load(f"log/measured_ee_traj_{idx}.npy", allow_pickle=True) # Load joint trajectory self.sim_joint_traj = np.load(f"log/simulation_joint_traj.npy", allow_pickle=True) self.measured_joint_traj = np.load(f"log/measured_joint_traj_{idx}.npy", allow_pickle=True) # Length of ee/joint trajectory self.ee_traj_len = min(len(self.sim_ee_traj), len(self.measured_ee_traj)) self.jt_traj_len = min(len(self.sim_joint_traj), len(self.measured_joint_traj)) # Visualization settings self.fps = 8 self.num_joints = 8 self.mode = mode self.joint_index = joint_index self.joint_name = {'2': 'BaseRotation', '3': 'ArmLift', '4': 'ArmFlex', '5': 'ArmRoll', '6': 'WristFlex', '7': 'WristRoll'} if self.joint_index is None: self.vis_all = True else: self.vis_all = False def visualize_ee_3d_traj(self): # Visualize end effector trajectory animation_duration = self.ee_traj_len self.time_steps_ee_3d = np.linspace(0, animation_duration, animation_duration * self.fps) fig = plt.figure() self.ax_ee_3d = fig.add_subplot(111, projection='3d') self.ax_ee_3d.view_init(elev=45, azim=75) ani = FuncAnimation(fig, self.update_ee_3d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig ani.save(f"{self.mode}_end_effector_3d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_end_effector_3d_trajectory.mp4", writer='ffmpeg', fps=10) def visualize_ee_2d_traj(self, dir='x'): # Visualize end effector trajectory animation_duration = self.ee_traj_len self.time_steps_ee_2d = np.linspace(0, animation_duration, animation_duration * self.fps) fig = plt.figure() self.ax_ee_2d = fig.add_subplot(1, 1, 1) ani = FuncAnimation(fig, self.update_ee_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig ani.save(f"{self.mode}_end_effector_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_end_effector_2d_trajectory.mp4", writer='ffmpeg', fps=10) def visualize_joint_2d_traj(self): # Visualize each joint trajectory animation_duration = self.jt_traj_len self.time_steps_jt_2d = np.linspace(0, animation_duration, animation_duration * self.fps) if self.vis_all: fig, self.ax_jt = plt.subplots(self.num_joints, 1, sharex=True) ani = FuncAnimation(fig, self.update_all_joint_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) else: fig = plt.figure() self.ax_jt = fig.add_subplot(1, 1, 1) ani = FuncAnimation(fig, self.update_joint_2d_traj_animation, frames=animation_duration, interval=1000/self.fps) # Save fig if self.vis_all: ani.save(f"{self.mode}_all_joint_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_all_joint_2d_trajectory.mp4", writer='ffmpeg', fps=10) else: ani.save(f"{self.mode}_joint_{self.joint_index}_2d_trajectory.gif", writer='imagemagick', fps=10) ani.save(f"{self.mode}_joint_{self.joint_index}_2d_trajectory.mp4", writer='ffmpeg', fps=10) def update_ee_3d_traj_animation(self, i): self.ax_ee_3d.cla() self.ax_ee_3d.set_xlim(0.5, 1.5) self.ax_ee_3d.set_ylim(-1.0, 1.0) self.ax_ee_3d.set_zlim(0.0, 1.0) self.ax_ee_3d.set_xticks([0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5]) self.ax_ee_3d.set_yticks([-1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0]) self.ax_ee_3d.set_xlabel("X") self.ax_ee_3d.set_ylabel("Y") self.ax_ee_3d.set_zlabel("Z") self.ax_ee_3d.set_title(f"Time: {self.time_steps_ee_3d[i]:.2f}s") if self.mode == 'simulation': ### Simulation position = self.sim_ee_traj[i][0] orientation = self.sim_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='b', marker='*', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.sim_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='deepskyblue', linewidth=1, marker='*', markersize=2) elif self.mode == 'measured': ### Measured position = self.measured_ee_traj[i][0] orientation = self.measured_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='g', marker='^', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.measured_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='limegreen', linewidth=1, marker='^', markersize=2) elif self.mode == 'both': ### Simulation position = self.sim_ee_traj[i][0] orientation = self.sim_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='b', marker='*', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.sim_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='deepskyblue', linewidth=1, marker='*', markersize=2) ### Measured position = self.measured_ee_traj[i][0] orientation = self.measured_ee_traj[i][1] rotation_matrix = R.from_quat(orientation).as_matrix() self.ax_ee_3d.scatter(*position, color='g', marker='^', s=3) axis_x_length, axis_y_length, axis_z_length = 0.075, 0.1, 0.05 x_axis = position + axis_x_length * rotation_matrix[:, 0] y_axis = position + axis_y_length * rotation_matrix[:, 1] z_axis = position + axis_z_length * rotation_matrix[:, 2] self.ax_ee_3d.plot([position[0], x_axis[0]], [position[1], x_axis[1]], [position[2], x_axis[2]], color='r', linewidth='3') self.ax_ee_3d.plot([position[0], y_axis[0]], [position[1], y_axis[1]], [position[2], y_axis[2]], color='g', linewidth='3') self.ax_ee_3d.plot([position[0], z_axis[0]], [position[1], z_axis[1]], [position[2], z_axis[2]], color='b', linewidth='3') traj = self.measured_ee_traj[:i+1, 0] x = [point[0] for point in traj] y = [point[1] for point in traj] z = [point[2] for point in traj] self.ax_ee_3d.plot(x, y, z, color='limegreen', linewidth=1, marker='^', markersize=2) def update_ee_2d_traj_animation(self, i): self.ax_ee_2d.cla() self.ax_ee_2d.set_xlim(0, self.ee_traj_len) self.ax_ee_2d.set_ylim(0.0, 1.5) self.ax_ee_2d.set_xlabel("Time (s)") self.ax_ee_2d.set_ylabel("End Effector Value (rad)") self.ax_ee_2d.set_title(f"Joint Values over Time") self.sim_ee_traj.T self.measured_ee_traj.T ### Simulation / Measured for idx in self.joint_idxs: for joint_values in self.sim_ee_traj[idx*len(self.joint_idxs)]: self.ax_ee_2d.plot(self.time_steps_jt_2d[:i+1], joint_values[:i+1]) for joint_values in self.measured_joint_traj[idx*len(self.joint_idxs)]: self.ax_ee_2d.plot(self.time_steps_jt_2d[:i+1], joint_values[:i+1]) self.ax_ee_2d.legend(loc="upper left") def update_all_joint_2d_traj_animation(self, i): plot_length = self.jt_traj_len / self.fps for joint_index in range(self.num_joints): if joint_index == 0: min_range, max_range = 0.0, 1.5 self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel("X Position (m)", fontsize=8) self.ax_jt[joint_index].set_title("Joint Values over Time", fontsize=14) elif joint_index == 1: min_range, max_range = -1.0, 1.0 self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylabel("Y Position (m)", fontsize=8) self.ax_jt[joint_index].set_ylim(min_range, max_range) elif joint_index == 2: min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index == 3: min_range, max_range = -0.1, 0.5 y_label = f"{self.joint_name[str(joint_index)]} Value(m)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index in (4, 5, 6): min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) elif joint_index == 7: min_range, max_range = -np.pi, np.pi y_label = f"{self.joint_name[str(joint_index)]} Value(rad)" self.ax_jt[joint_index].cla() self.ax_jt[joint_index].grid() self.ax_jt[joint_index].set_xlim(0, plot_length) self.ax_jt[joint_index].set_ylim(min_range, max_range) self.ax_jt[joint_index].set_ylabel(y_label, fontsize=8) self.ax_jt[joint_index].set_xlabel("Time (s)", fontsize=12) ### Simulation traj = self.sim_joint_traj[:i, joint_index] self.ax_jt[joint_index].plot(self.time_steps_jt_2d[:i], traj, linestyle='dashed', label='simulation') ### Measured traj = self.measured_joint_traj[:i, joint_index] self.ax_jt[joint_index].plot(self.time_steps_jt_2d[:i], traj, linestyle='dashdot', label='measured') self.ax_jt[joint_index].legend(loc="upper right", fontsize=12) def update_joint_2d_traj_animation(self, i): plot_length = self.jt_traj_len / self.fps if self.joint_index == 0: min_range, max_range = 0.0, 1.5 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("X Position (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) elif self.joint_index == 1: min_range, max_range = -1.0, 1.0 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("Y Position Value (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) elif self.joint_index == 3: min_range, max_range = -0.1, 0.5 self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel("ArmLift Value (m)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) else: min_range, max_range = -np.pi, np.pi self.ax_jt.cla() self.ax_jt.grid() self.ax_jt.set_xlim(0, plot_length) self.ax_jt.set_ylim(min_range, max_range) self.ax_jt.set_xlabel("Time (s)", fontsize=12) self.ax_jt.set_ylabel(f"{self.joint_name[str(self.joint_index)]} Value(rad)", fontsize=12) self.ax_jt.set_title("Joint Values over Time", fontsize=14) ### Simulation traj = self.sim_joint_traj[:i, self.joint_index] self.ax_jt.plot(self.time_steps_jt_2d[:i], traj, linestyle='dashed', label='simulation') ### Measured traj = self.measured_joint_traj[:i, self.joint_index] self.ax_jt.plot(self.time_steps_jt_2d[:i], traj, linestyle='dashdot', label='measured') self.ax_jt.legend(loc="upper right", fontsize=12) class AnalyzeMultipleTrajectory(object): def __init__(self): self.file_names = glob.glob('log/*.npy', recursive=True) self.num_files = 1 # int(len(self.file_names) / 4) self.sim_ee_traj = [] self.measured_ee_traj = [] self.true_ee_traj = [] self.sim_joint_traj = [] self.measured_joint_traj = [] self.ee_traj_len = [] self.jt_traj_len = [] for idx in range(self.num_files): # Load ee trajectory self.sim_ee_traj.append(np.load(f"log/simulation_ee_traj.npy", allow_pickle=True)) self.measured_ee_traj.append(np.load(f"log/measured_ee_traj_{idx}.npy", allow_pickle=True)) self.true_ee_traj.append(np.load(f"log/true_ee_traj_{idx}.npy", allow_pickle=True)) # Load joint trajectory self.sim_joint_traj.append(np.load(f"log/simulation_joint_traj.npy", allow_pickle=True)) self.measured_joint_traj.append(np.load(f"log/measured_joint_traj_{idx}.npy", allow_pickle=True)) # Length of ee/joint trajectory self.ee_traj_len.append(min(len(self.sim_ee_traj[idx]), len(self.measured_ee_traj[idx]))) self.jt_traj_len.append(min(len(self.sim_joint_traj[idx]), len(self.measured_joint_traj[idx]))) # Visualization settings self.num_joints = 8 self.joint_name = {'2': 'BaseRotation', '3': 'ArmLift', '4': 'ArmFlex', '5': 'ArmRoll', '6': 'WristFlex', '7': 'WristRoll'} def plot_ee_traj(self, axis='xy'): all_in_one = False if all_in_one: if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(0.5, 1.5) ax_xy.set_ylim(-1.0, 1.0) ax_xy.set_xlabel('X-axis Position (m)') ax_xy.set_ylabel('Y-axis Position (m)') elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-1.0, 1.0) ax_yz.set_ylim(0.0, 1.0) ax_yz.set_xlabel('Y-axis Position (m)') ax_yz.set_ylabel('Z-axis Position (m)') elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(0.0, 1.0) ax_zx.set_ylim(0.5, 1.5) ax_zx.set_xlabel('Z-axis Position (m)') ax_zx.set_ylabel('X-axis Position (m)') for idx in range(self.num_files): for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] true_traj = self.true_ee_traj[idx][i] true_x = true_traj[0][0] true_y = true_traj[0][1] true_z = true_traj[0][2] if axis == 'xy': ax_xy.plot(sim_x, sim_y, marker='*', markersize=3, color='tomato', label='Simulation Trajectory') ax_xy.plot(measured_x, measured_y, marker='^', markersize=3, color='deepskyblue', label='Measured Trajectory') elif axis == 'yz': ax_yz.plot(sim_y, sim_z, marker='*', markersize=3, color='coral', label='Simulation Trajectory') ax_yz.plot(measured_y, measured_z, marker='^', markersize=3, color='goldenrod', label='Measured Trajectory') elif axis == 'zx': ax_zx.plot(sim_z, sim_x, marker='*', markersize=3, color='springgreen', label='Simulation Trajectory') ax_zx.plot(measured_z, measured_x, marker='^', markersize=3, color='lightseagreen', label='Measured Trajectory') if axis == 'xy': ax_xy.set_title('End Effector XY-axis Trajectory') plt.savefig('XY_traj.png') plt.close() elif axis == 'yz': ax_yz.set_title('End Effector YZ-axis Trajectory') plt.savefig('YZ_traj.png') plt.close() elif axis == 'zx': ax_zx.set_title('End Effector ZX-axis Trajectory') plt.savefig('ZX_traj.png') plt.close() else: for idx in range(self.num_files): if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(0.5, 1.5) ax_xy.set_ylim(-1.0, 1.0) ax_xy.set_xlabel('X-axis Position (m)') ax_xy.set_ylabel('Y-axis Position (m)') elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-1.0, 1.0) ax_yz.set_ylim(0.0, 1.0) ax_yz.set_xlabel('Y-axis Position (m)') ax_yz.set_ylabel('Z-axis Position (m)') elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(0.0, 1.0) ax_zx.set_ylim(0.5, 1.5) ax_zx.set_xlabel('Z-axis Position (m)') ax_zx.set_ylabel('X-axis Position (m)') for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] true_traj = self.true_ee_traj[idx][i] true_x = true_traj[0][0] true_y = true_traj[0][1] true_z = true_traj[0][2] if axis == 'xy': ax_xy.plot(sim_x, sim_y, marker='*', markersize=3, color='tomato', label='Simulation Trajectory') ax_xy.plot(measured_x, measured_y, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_xy.plot(true_x, true_y, marker='*', markersize=3, color='green', label='True Trajectory') elif axis == 'yz': ax_yz.plot(sim_y, sim_z, marker='*', markersize=3, color='coral', label='Simulation Trajectory') ax_yz.plot(measured_y, measured_z, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_yz.plot(true_y, true_z, marker='*', markersize=3, color='green', label='True Trajectory') elif axis == 'zx': ax_zx.plot(sim_z, sim_x, marker='*', markersize=3, color='springgreen', label='Simulation Trajectory') ax_zx.plot(measured_z, measured_x, marker='*', markersize=3, color='deepskyblue', label='Measured Trajectory') ax_zx.plot(true_z, true_x, marker='*', markersize=3, color='green', label='True Trajectory') if axis == 'xy': ax_xy.set_title('End Effector XY-axis Trajectory') plt.savefig('XY_traj.png') plt.close() elif axis == 'yz': ax_yz.set_title('End Effector YZ-axis Trajectory') plt.savefig('YZ_traj.png') plt.close() elif axis == 'zx': ax_zx.set_title('End Effector ZX-axis Trajectory') plt.savefig('ZX_traj.png') plt.close() def evaluate_ee_error_correlation(self, axis='yz'): all_in_one = False if all_in_one: if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(-0.5, 0.5) ax_xy.set_ylim(-0.5, 0.5) ax_xy.set_xlabel('X-axis Error (m)') ax_xy.set_ylabel('Y-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_xy.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-0.5, 0.5) ax_yz.set_ylim(-0.5, 0.5) ax_yz.set_xlabel('Y-axis Error (m)') ax_yz.set_ylabel('Z-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_yz.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(-0.5, 0.5) ax_zx.set_ylim(-0.5, 0.5) ax_zx.set_xlabel('Z-axis Error (m)') ax_zx.set_ylabel('X-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_zx.plot(x_range, y_range, color='tan', linestyle="--") for idx in range(self.num_files): diff_l1_all = [] diff_l1_x = [] diff_l1_y = [] diff_l1_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l1_x = np.array([sim_x - measured_x]) l1_y = np.array([sim_y - measured_y]) l1_z = np.array([sim_z - measured_z]) l1_norm = l1_x + l1_y + l1_z diff_l1_x.append(l1_x) diff_l1_y.append(l1_y) diff_l1_z.append(l1_z) diff_l1_all.append(l1_norm) if axis == 'xy': ax_xy.plot(l1_x, l1_y, marker='x', markersize=3, color='teal', label='XY Error') elif axis == 'yz': ax_yz.plot(l1_y, l1_z, marker='x', markersize=3, color='coral', label='YZ Error') elif axis == 'zx': ax_zx.plot(l1_z, l1_x, marker='x', markersize=3, color='palevioletred', label='ZX Error') diff_l1_x = np.array(diff_l1_x) diff_l1_y = np.array(diff_l1_y) diff_l1_z = np.array(diff_l1_z) corr_mat = np.concatenate((diff_l1_x, diff_l1_y, diff_l1_z), axis=1) corr_mat = corr_mat.T corr_coef = np.corrcoef(corr_mat) print('corr_coef:', corr_coef) if axis == 'xy': coef = corr_coef[0][1] ax_xy.set_title(f'End Effector XY-axis Error Correlation: r={coef:.3f}') plt.savefig('XY_correlation.png') plt.close() elif axis == 'yz': coef = corr_coef[1][2] ax_yz.set_title(f'End Effector YZ-axis Error Correlation: r={coef:.3f}') plt.savefig('YZ_correlation.png') plt.close() elif axis == 'zx': coef = corr_coef[2][0] ax_zx.set_title(f'End Effector ZX-axis Error Correlation: r={coef:.3f}') plt.savefig('ZX_correlation.png') plt.close() else: for idx in range(self.num_files): if axis == 'xy': fig_xy, ax_xy = plt.subplots() ax_xy.set_xlim(-0.5, 0.5) ax_xy.set_ylim(-0.5, 0.5) ax_xy.set_xlabel('X-axis Error (m)') ax_xy.set_ylabel('Y-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_xy.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'yz': fig_yz, ax_yz = plt.subplots() ax_yz.set_xlim(-0.5, 0.5) ax_yz.set_ylim(-0.5, 0.5) ax_yz.set_xlabel('Y-axis Error (m)') ax_yz.set_ylabel('Z-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_yz.plot(x_range, y_range, color='tan', linestyle="--") elif axis == 'zx': fig_zx, ax_zx = plt.subplots() ax_zx.set_xlim(-0.5, 0.5) ax_zx.set_ylim(-0.5, 0.5) ax_zx.set_xlabel('Z-axis Error (m)') ax_zx.set_ylabel('X-axis Error (m)') x_range = np.arange(-0.5, 0.5, 0.01) y_range = np.arange(-0.5, 0.5, 0.01) ax_zx.plot(x_range, y_range, color='tan', linestyle="--") diff_l1_all = [] diff_l1_x = [] diff_l1_y = [] diff_l1_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l1_x = np.array([sim_x - measured_x]) l1_y = np.array([sim_y - measured_y]) l1_z = np.array([sim_z - measured_z]) l1_norm = l1_x + l1_y + l1_z diff_l1_x.append(l1_x) diff_l1_y.append(l1_y) diff_l1_z.append(l1_z) diff_l1_all.append(l1_norm) if axis == 'xy': ax_xy.plot(l1_x, l1_y, marker='x', markersize=3, color='teal', label='XY Error') elif axis == 'yz': ax_yz.plot(l1_y, l1_z, marker='x', markersize=3, color='coral', label='YZ Error') elif axis == 'zx': ax_zx.plot(l1_z, l1_x, marker='x', markersize=3, color='palevioletred', label='ZX Error') diff_l1_x = np.array(diff_l1_x) diff_l1_y = np.array(diff_l1_y) diff_l1_z = np.array(diff_l1_z) corr_mat = np.concatenate((diff_l1_x, diff_l1_y, diff_l1_z), axis=1) corr_mat = corr_mat.T corr_coef = np.corrcoef(corr_mat) print('corr_coef:', corr_coef) if axis == 'xy': coef = corr_coef[0][1] ax_xy.set_title(f'End Effector XY-axis Error Correlation: r={coef:.3f}') plt.savefig(f'XY_correlation_{idx}.png') plt.close() elif axis == 'yz': coef = corr_coef[1][2] ax_yz.set_title(f'End Effector YZ-axis Error Correlation: r={coef:.3f}') plt.savefig(f'YZ_correlation_{idx}.png') plt.close() elif axis == 'zx': coef = corr_coef[2][0] ax_zx.set_title(f'End Effector ZX-axis Error Correlation: r={coef:.3f}') plt.savefig(f'ZX_correlation_{idx}.png') plt.close() def evaluate_ee_error(self): mean_x_l2_all = [] mean_y_l2_all = [] mean_z_l2_all = [] mean_all_l2_all = [] std_x_l2_all = [] std_y_l2_all = [] std_z_l2_all = [] std_all_l2_all = [] max_x_l2_all = [] max_y_l2_all = [] max_z_l2_all = [] max_all_l2_all = [] for idx in range(self.num_files): diff_l2_all = [] diff_l2_x = [] diff_l2_y = [] diff_l2_z = [] for i in range(self.ee_traj_len[idx]): sim_traj = self.sim_ee_traj[idx][i] sim_x = sim_traj[0][0] sim_y = sim_traj[0][1] sim_z = sim_traj[0][2] measured_traj = self.measured_ee_traj[idx][i] measured_x = measured_traj[0][0] measured_y = measured_traj[0][1] measured_z = measured_traj[0][2] l2_x = np.sqrt(np.square(sim_x-measured_x)) l2_y = np.sqrt(np.square(sim_y-measured_y)) l2_z = np.sqrt(np.square(sim_z-measured_z)) l2_norm = np.sqrt(np.square(sim_x-measured_x)+np.square(sim_y-measured_y)+np.square(sim_z-measured_z)) diff_l2_x.append(l2_x) diff_l2_y.append(l2_y) diff_l2_z.append(l2_z) diff_l2_all.append(l2_norm) # Calculate mean mean_l2_x = np.mean(diff_l2_x) mean_l2_y = np.mean(diff_l2_y) mean_l2_z = np.mean(diff_l2_z) mean_l2_all = np.mean(diff_l2_all) mean_x_l2_all.append(mean_l2_x) mean_y_l2_all.append(mean_l2_y) mean_z_l2_all.append(mean_l2_z) mean_all_l2_all.append(mean_l2_all) # Calculate std std_l2_x = np.var(diff_l2_x) std_l2_y = np.var(diff_l2_y) std_l2_z = np.var(diff_l2_z) std_l2_all = np.var(diff_l2_all) std_x_l2_all.append(std_l2_x) std_y_l2_all.append(std_l2_y) std_z_l2_all.append(std_l2_z) std_all_l2_all.append(std_l2_all) # Calculate max max_l2_x = np.max(diff_l2_x) max_l2_y = np.max(diff_l2_y) max_l2_z = np.max(diff_l2_z) max_l2_all = np.max(diff_l2_all) print('Mean difference in direction X:', mean_l2_x) print('Mean difference in direction Y:', mean_l2_y) print('Mean difference in direction Z:', mean_l2_z) print('Mean difference: ', mean_l2_all) print('Std difference in direction X:', std_l2_x) print('Std difference in direction Y:', std_l2_y) print('Std difference in direction Z:', std_l2_y) print('Std difference:', std_l2_all) print('Max difference in direction X:', max_l2_x) print('Max difference in direction Y:', max_l2_y) print('Max difference in direction Z:', max_l2_z) print('Max difference:', max_l2_all) ### Visualize mean and std all_in_one = True # Visualize X direction if all_in_one: x_range = np.arange(1, self.num_files+1) y_range = mean_x_l2_all fig, ax = plt.subplots() ax.set_title('End-Effector Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_x_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4, label='X position') # Visualize Y direction x_range = np.arange(1, self.num_files+1) y_range = mean_y_l2_all ax.errorbar(x_range, y_range, yerr=std_y_l2_all, fmt='-d', markersize=6, color='chocolate', markeredgecolor='chocolate', ecolor='chocolate', capsize=4, label='Y position') # Visualize Z direction x_range = np.arange(1, self.num_files+1) y_range = mean_z_l2_all ax.errorbar(x_range, y_range, yerr=std_z_l2_all, fmt='-o', markersize=6, color='olivedrab', markeredgecolor='olivedrab', ecolor='olivedrab', capsize=4, label='Z position') # Visualize All x_range = np.arange(1, self.num_files+1) y_range = mean_all_l2_all ax.errorbar(x_range, y_range, yerr=std_all_l2_all, fmt='-*', markersize=6, color='midnightblue', markeredgecolor='midnightblue', ecolor='midnightblue', capsize=4, label='XYZ position') ax.legend(loc="upper right") else: x_range = np.arange(1, self.num_files+1) y_range = mean_x_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in X Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_x_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.close() # Visualize Y direction x_range = np.arange(1, self.num_files+1) y_range = mean_y_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in Y Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_y_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) # Visualize Z direction x_range = np.arange(1, self.num_files+1) y_range = mean_z_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error in Z Direction') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_z_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.close() # Visualize All x_range = np.arange(1, self.num_files+1) y_range = mean_all_l2_all fig, ax = plt.subplots() ax.set_title('End Effector Mean Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.2) ax.set_xlabel('Number of Trials') ax.set_ylabel('Mean Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=std_all_l2_all, fmt='-^', markersize=6, color='darkorange', markeredgecolor='darkorange', ecolor='darkorange', capsize=4) plt.show() plt.savefig('mea_error.png') def evaluate_jt_error(self): mean_joint_all = [] std_joint_all = [] max_joint_all = [] for idx in range(self.num_files): mean_joint_each = [] std_joint_each = [] max_joint_each = [] for i in range(self.num_joints): diff_each_joints = [] for j in range(self.jt_traj_len[idx]): sim_joint = self.sim_joint_traj[idx][j, i] measured_joint = self.measured_joint_traj[idx][j, i] diff_joint = np.sqrt(np.square(sim_joint-measured_joint)) diff_each_joints.append(diff_joint) mean_joint = np.mean(diff_each_joints) std_joint = np.var(diff_each_joints) max_joint = np.max(diff_each_joints) print(f"Mean joint_{i} difference:", mean_joint) print(f"Std joint_{i} difference:", std_joint) print(f"Max joint_{i} difference:", max_joint) mean_joint_each.append(mean_joint) std_joint_each.append(std_joint) max_joint_each.append(max_joint) mean_joint_all.append(mean_joint_each) std_joint_all.append(std_joint_each) max_joint_all.append(max_joint_all) # Visualize results for i in range(self.num_joints): if i == 0: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('X Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='X Position Error') ax.legend(loc="upper right") plt.savefig('joint_x_error.png') plt.close() elif i == 1: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('Y Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='Y Position Error') ax.legend(loc="upper right") plt.savefig('joint_y_error.png') plt.close() elif i == 3: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title('ArmLift Joint Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (m)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label='ArmLift Position Error') ax.legend(loc="upper right") plt.savefig('joint_armlift_error.png') plt.close() else: x_range = np.arange(1, self.num_files+1) y_range = np.array(mean_joint_all).T[i] fig, ax = plt.subplots() ax.set_title(f'{self.joint_name[str(i)]} Position Error') ax.set_xlim(0.5, self.num_files+0.5) ax.set_ylim(-0.05, 0.15) ax.set_xlabel('Number of Trials') ax.set_ylabel('Position Error (rad)') ax.grid() ax.errorbar(x_range, y_range, yerr=np.array(std_joint_all).T[i], fmt='-^', markersize=6, color='navy', markeredgecolor='navy', ecolor='navy', capsize=4, label=f'{self.joint_name[str(i)]} Position Error') ax.legend(loc="upper right") plt.savefig(f'joint_{self.joint_name[str(i)].lower()}_error.png') plt.close() if __name__ == "__main__": parser = argparse.ArgumentParser('Visualize trajectory') parser.add_argument('--index', type=int, default=0, help='set index') parser.add_argument('--joint_index', type=int, default=None, help='set joint index') parser.add_argument('--mode', type=str, default='both', help='set visualization mode') parser.add_argument('--visualize', action='store_true', help='set visualization') args = parser.parse_args() if args.visualize: at = AnalyzeTrajectory(idx=args.index, mode=args.mode, joint_index=args.joint_index) at.visualize_ee_3d_traj() at.visualize_joint_2d_traj() else: at = AnalyzeMultipleTrajectory() at.evaluate_ee_error() at.evaluate_jt_error() at.evaluate_ee_error_correlation() at.plot_ee_traj()
45,050
Python
45.684974
136
0.508746
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/hsr_py_interface.py
#!/usr/bin/env/python3 import sys import rospy import hsrb_interface import numpy as np from controller_manager_msgs.srv import ListControllers class HSRPyInterface(object): def __init__(self, standalone=False): # Initialize ROS node if standalone: rospy.init_node('hsr_python_interface') # Check server status self.check_status() self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') def initialize_arm(self): # Initialize arm position self.whole_body.move_to_go() def initialize_base(self): # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) def set_task_pose(self, grasp_type='side'): # Set base to configuration position self.omni_base.go_abs(-0.80, 0.75, np.pi/2, 300.0) # Set arm to configuration pose self.whole_body.move_to_neutral() if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=-1.57), ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def fix_task_pose(self, diff_pose): diff_x_pose, diff_y_pose, diff_z_pose = diff_pose[0], diff_pose[1], diff_pose[2] if np.abs(diff_z_pose) < 0.1: diff_z_pose = -0.12 else: diff_z_pose = 0.0 self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=diff_y_pose, z=diff_z_pose) ], ref_frame_id='hand_palm_link') def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def close_gripper(self, force=0.5): self.gripper.apply_force(force) def open_gripper(self, width=1.0): self.gripper.command(width) def insert_object(self, ee_mode): if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.03, y=0.0, z=0.0), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-0.03, z=0.0), ], ref_frame_id='hand_palm_link') def grasp_gear(self, diff_ee_pose, pick_offset=0.1): # Open gripper self.open_gripper(0.5) # Move to grasp self.whole_body.move_end_effector_by_line((0, 0, 1), -pick_offset) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]+pick_offset) # Close gripper self.close_gripper(0.5) if __name__ == '__main__': hsr_py = HSRPyInterface() hsr_py.initialize_arm() hsr_py.initialize_base()
4,143
Python
33.823529
107
0.567946
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/tf_interface.py
#!/bin/env/python3 import tf import rospy import tf2_ros import numpy as np import tf2_geometry_msgs from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from scipy.spatial.transform import Rotation as R class TfManager(object): def __init__(self, standalone=False): if standalone: rospy.init_node('tf_manager') # TF listener self.tfBuffer = tf2_ros.Buffer() self.listener = tf2_ros.TransformListener(self.tfBuffer) # Publisher self.tf_pub = rospy.Publisher('/tf', TFMessage, queue_size=1) def get_link_pose(self, link_name='hand_palm_link'): # Translate from map coordinate to arbitrary coordinate of robot. ee_pose = tf2_geometry_msgs.PoseStamped() ee_pose.header.frame_id = link_name ee_pose.header.stamp = rospy.Time(0) ee_pose.pose.orientation.w = 1.0 try: # Get transform at current time global_pose = self.tfBuffer.transform(ee_pose, 'map') except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as e: print(e) return None return global_pose def get_init_pose(self, mocap_poses): # Get red_shaft pose gearbox_x = mocap_poses['green_gear'].pose.position.x gearbox_y = mocap_poses['green_gear'].pose.position.y gearbox_z = mocap_poses['green_gear'].pose.position.z # Get current end effector pose current_ee_pose_x = mocap_poses['end_effector'].pose.position.x current_ee_pose_y = mocap_poses['end_effector'].pose.position.y current_ee_pose_z = mocap_poses['end_effector'].pose.position.z # Culculate difference pose diff_x_pose = current_ee_pose_x - gearbox_x diff_y_pose = current_ee_pose_y - gearbox_y diff_z_pose = current_ee_pose_z - gearbox_z init_base_pose = np.array([diff_x_pose, diff_y_pose, diff_z_pose]) return init_base_pose # Transform target_pose on end effector coordinate to map coordinate def transform_coordinate(self, target_pose): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) # Initialize map coordination qc_trans[0] = target_pose[0] qc_trans[1] = target_pose[1] qc_trans[2] = target_pose[2] qc_trans[3] = 1.0 ee_pose = self.get_link_pose() if ee_pose is None: return # Initialize ee coordination translation = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) rot_mat = R.from_quat(rot).as_matrix() # Calculate translation trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = translation trans_mat[:3, :3] = rot_mat qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qw_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) return np.concatenate([qw_trans, qw_rot]) def publish_mocap_to_map(self, mocap_poses): tf_list = [] for rigid_name, mocap_pose in mocap_poses.items(): t = TransformStamped() t.header.frame_id = 'map' t.header.stamp = rospy.Time.now() t.child_frame_id = rigid_name t.transform.translation.x = mocap_pose.pose.position.x t.transform.translation.y = mocap_pose.pose.position.y t.transform.translation.z = mocap_pose.pose.position.z t.transform.rotation.x = mocap_pose.pose.rotation.x t.transform.rotation.y = mocap_pose.pose.rotation.y t.transform.rotation.z = mocap_pose.pose.rotation.z t.transform.rotation.w = mocap_pose.pose.rotation.w tf_list.append(t) tfm = TFMessage(tf_list) # Publish tf message self.tf_pub.publish(tfm) if __name__ == '__main__': tf_manager = TfManager(standalone=True) while not rospy.is_shutdown(): transform = tf_manager.get_link_pose('hand_palm_link') test_pose1 = np.array([-0.5, 0.0, 0.0]) # -0.5 to z direction on map test_pose1 = tf_manager.transform_coordinate(test_pose1) test_pose2 = np.array([0.0, 1.0, 0.0]) # -1.0 to x direction on map test_pose2 = tf_manager.transform_coordinate(test_pose2) test_pose3 = np.array([-0.3, -1.0, 0.0]) test_pose3 = tf_manager.transform_coordinate(test_pose3) ee_pose = tf_manager.get_link_pose() if ee_pose is None: continue test_pose4 = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) test_pose4 = tf_manager.transform_coordinate(test_pose4) test_pose5 = np.zeros(3) test_pose5 = tf_manager.transform_coordinate(test_pose5) print('test_1: ', test_pose1) print('test_2: ', test_pose2) print('test_3: ', test_pose3) print('test_4: ', test_pose4) print('test_5: ', test_pose5)
5,495
Python
32.512195
109
0.592903
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/mocap_interface.py
#!/bin/env/python3 import rospy import numpy as np from geometry_msgs.msg import PoseStamped from scipy.spatial.transform import Rotation as R class MocapInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('mocap_interface') # Mocap list self.rigid_body_list = ( "base", "blue_gear", "green_gear", "red_gear", "yellow_shaft", "red_shaft", "end_effector" ) # Mocap to map self.translation = np.array([0.0, 0.0, 0.0]) self.rotation = np.array([ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0] ]) # Rigid body pose dictionary self.rigid_posestamped = { name: PoseStamped() for name in self.rigid_body_list } # Subscriber self._mocap_sub = [ rospy.Subscriber('/mocap_pose_topic/{0}_pose'.format(self.rigid_body_list[i]), PoseStamped, self._mocap_cb, callback_args=i) for i in range(len(self.rigid_body_list)) ] def _mocap_cb(self, mocap_data, id): converted_pose = self.convert_mocap_to_map(mocap_data) mocap_data.header.frame_id = 'map' mocap_data.pose.position.x = converted_pose[0] mocap_data.pose.position.y = converted_pose[1] mocap_data.pose.position.z = converted_pose[2] mocap_data.pose.orientation.x = converted_pose[3] mocap_data.pose.orientation.y = converted_pose[4] mocap_data.pose.orientation.z = converted_pose[5] mocap_data.pose.orientation.w = converted_pose[6] self.rigid_posestamped[self.rigid_body_list[id]] = mocap_data def get_pose(self, name): return self.rigid_posestamped[name] def get_poses(self): return self.rigid_posestamped def convert_mocap_to_map(self, mocap_data): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) qc_rot = np.zeros(4) # Calculate translation qc_trans[0] = mocap_data.pose.position.x qc_trans[1] = mocap_data.pose.position.y qc_trans[2] = mocap_data.pose.position.z qc_trans[3] = 1.0 trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = self.translation trans_mat[:3, :3] = self.rotation qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qc_rot[0] = mocap_data.pose.orientation.x qc_rot[1] = mocap_data.pose.orientation.y qc_rot[2] = mocap_data.pose.orientation.z qc_rot[3] = mocap_data.pose.orientation.w qc_rot_mat = R.from_quat(qc_rot).as_matrix() qw_rot_mat = self.rotation @ qc_rot_mat qw_rot = R.from_matrix(qw_rot_mat).as_quat() return np.concatenate([qw_trans, qw_rot]) if __name__ == '__main__': mocap_interface = MocapInterface(standalone=True) while not rospy.is_shutdown(): # Test each rigid body base_pose = mocap_interface.get_pose('base') print('base_pose: ', base_pose) blue_gear_pose = mocap_interface.get_pose('blue_gear') print('blue_gear_pose: ', blue_gear_pose) green_gear_pose = mocap_interface.get_pose('green_gear') print('green_gear_pose: ', green_gear_pose) red_gear_pose = mocap_interface.get_pose('red_gear') print('red_gear_pose: ', red_gear_pose) yellow_shaft_pose = mocap_interface.get_pose('yellow_shaft') print('yellow_shaft_pose: ', yellow_shaft_pose) red_shaft_pose = mocap_interface.get_pose('red_shaft') print('red_shaft_pose: ', red_shaft_pose) end_effector_pose = mocap_interface.get_pose('end_effector') print('end_effector_pose: ', end_effector_pose) # Test all rigid bodies rigid_poses = mocap_interface.get_poses() print('rigid_poses: ', rigid_poses['blue_gear'])
4,000
Python
33.791304
136
0.5855
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/force_sensor_interface.py
import sys import math import rospy from geometry_msgs.msg import WrenchStamped class ForceSensorInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('force_torque_sensor_interface') self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 # Subscribe force torque sensor data from HSRB self._wrist_wrench_sub = rospy.Subscriber( '/hsrb/wrist_wrench/raw', WrenchStamped, self._ft_sensor_callback ) # Wait for connection try: rospy.wait_for_message('/hsrb/wrist_wrench/raw', WrenchStamped, timeout=10.0) except Exception as e: rospy.logerr(e) sys.exit(1) def _ft_sensor_callback(self, data): self._force_data_x = data.wrench.force.x self._force_data_y = data.wrench.force.y self._force_data_z = data.wrench.force.z def initialize_ft(self): self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 def get_current_force(self): return [self._force_data_x, self._force_data_y, self._force_data_z] def compute_difference(self, pre_data_list, post_data_list, calc_type='l1'): if (len(pre_data_list) != len(post_data_list)): raise ValueError('Argument lists differ in length') # Calcurate square sum of difference if calc_type == 'l1': l1_sums = sum([b - a for (a, b) in zip(pre_data_list, post_data_list)]) return l1_sums elif calc_type == 'l2': l2_sums = sum([math.pow(b - a, 2) for (a, b) in zip(pre_data_list, post_data_list)]) return math.sqrt(l2_sums) if __name__ == '__main__': ft_interface = ForceSensorInterface(standalone=True) rate = rospy.Rate(50) while not rospy.is_shutdown(): prev_ft_data = ft_interface.get_current_force() input('wait_for_user') curr_ft_data = ft_interface.get_current_force() force_difference = ft_interface.compute_difference(prev_ft_data, curr_ft_data) weight = round(force_difference / 9.81 * 1000, 1) print('weight:', weight) rate.sleep()
2,244
Python
32.014705
96
0.595365
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/cross_entropy_method.py
import numpy as np from planner import Planner class CrossEntropyMethod(Planner): def __init__(self): super().__init__() def compute_path(self): pass
176
Python
16.699998
34
0.630682
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/planner.py
import numpy as np class Planner(object): def __init__(self): pass @staticmethod def compute_path(self): raise NotImplementedError("Implement compute_path")
187
Python
17.799998
59
0.652406
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/linear_interpolation.py
import numpy as np from .planner import Planner class LinearInterpolationPlanner(Planner): def __init__(self): super().__init__() def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
557
Python
29.999998
61
0.621185
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/planner/spline_interpolation.py
import numpy as np from planner import Planner class SplineInterpolationPlanner(Planner): def __init__(self, offset): super().__init__() # Set parameters self.offset = offset def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
619
Python
28.523808
61
0.615509
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedback/demo.py
#!/usr/bin/env/python3 import tf import sys import rospy import moveit_commander import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_2d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_py_interface import HSRPyInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from geometry_msgs.msg import Pose from controller_manager_msgs.srv import ListControllers class ExecutePlan(object): def __init__(self, grasp_type='side'): # Initialize moveit moveit_commander.roscpp_initialize(sys.argv) # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.rate = rospy.Rate(10) # Threshold self.move_threshold = 0.05 self.pick_threshold = 0.05 self.place_threshold = 0.04 # 0.038 self.stack_threshold = 0.04 # 0.038 # Core module self.tamp_planner = TAMPPlanner() self.hsr_py = HSRPyInterface() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.tf_manager = TfManager() # Initialize Robot self.initialize_robot(grasp_type) def initialize_robot(self, grasp_type='side'): self.check_status() # Set moveit commander self.robot = moveit_commander.RobotCommander() self.arm = moveit_commander.MoveGroupCommander('arm', wait_for_servers=0.0) self.base = moveit_commander.MoveGroupCommander('base', wait_for_servers=0.0) self.gripper = moveit_commander.MoveGroupCommander('gripper', wait_for_servers=0.0) self.whole_body = moveit_commander.MoveGroupCommander('whole_body', wait_for_servers=0.0) # Set planning parameters self.set_planning_parameter() # Set arm to configuration position self.hsr_py.initialize_arm() # Set base to configuration position self.hsr_py.initialize_base() # Move to neutral self.hsr_py.set_task_pose(grasp_type) def set_planning_parameter(self): # Planning parameters self.whole_body.allow_replanning(True) self.whole_body.set_planning_time(3) self.whole_body.set_pose_reference_frame('map') # Scene parameters self.scene = moveit_commander.PlanningSceneInterface() self.scene.remove_world_object() def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Get rigid body poses from mocap mocap_poses = self.mocap_interface.get_poses() # Modify plan action_name, modified_action, ee_mode = self.path_modifier.post_process(action_name, args, mocap_poses) return modified_action, ee_mode def check_ee_mode(self): # Get end effector pose ee_pose = self.whole_body.get_current_pose() ee_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) ee_euler = R.from_quat(ee_rot).as_euler('xyz') # Check whether end effector is vertical to ground plane, or horizontal if -0.8 < ee_euler[1] and 0.8 > ee_euler[1]: ee_mode = 'vertical' elif -2.0 < ee_euler[1] and -1.0 > ee_euler[1]: ee_mode = 'horizontal' return ee_mode def create_trajectory(self, diff_pose, num_steps=2): # Temporally linear interpolation assert num_steps > 1, "Too shot to create waypoints" traj_x = np.linspace(0.0, diff_pose[0], num_steps) traj_y = np.linspace(0.0, diff_pose[1], num_steps) traj_z = np.linspace(0.0, diff_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory def set_target_pose(self, trajectory, move_mode='outward', ee_mode='horizontal'): if move_mode == 'outward': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points elif move_mode == 'return': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] - 0.2 # TODO: modify goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points def modify_pose(self, diff_ee_pose, ee_mode): if ee_mode == 'horizontal': return (diff_ee_pose[0], diff_ee_pose[1], diff_ee_pose[2]) elif ee_mode == 'vertical': return (-diff_ee_pose[1], diff_ee_pose[0], diff_ee_pose[2]) def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): print('action_name:', action_name) if action_name == 'move': (_, diff_ee_pose), _ = self.process(action_name, args) # Set end effector mode ee_mode = self.check_ee_mode() # Move to next pose diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif action_name == 'pick': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) if ee_mode == 'horizontal': # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to grasp pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) if np.sum(np.absolute(diff_ee_pose)) < self.pick_threshold: finish = True # Grasp object self.hsr_py.close_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif ee_mode == 'vertical': finish = True # Move to target object & grasp object self.hsr_py.grasp_gear(diff_ee_pose) target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return', ee_mode='vertical') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'place': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to place pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) print('difference (place):', np.sum(np.absolute(diff_ee_pose))) if np.sum(np.absolute(diff_ee_pose)) < self.place_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'stack': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) # Move and plan to stack pose (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) print('diff_ee_pose (stack):', diff_ee_pose) if np.sum(np.absolute(diff_ee_pose)) < self.stack_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
14,549
Python
39.304709
114
0.530552
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedback/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self, x_offset=0.0, y_offset=-0.065, z_offset=-0.04): self.mocap_x_offset = x_offset self.mocap_y_offset = y_offset self.mocap_z_offset = z_offset self.left_hole_x = -0.10 self.left_hole_y = -0.18 self.left_hole_z = 0.125 # 0.135 # 0.125 # 0.12 self.right_hole_x = 0.095 self.right_hole_y = -0.18 self.right_hole_z = 0.142 # 0.15 # 0.145 # 0.14 self.x_scale = 0.0 # 0.0~0.1 self.y_scale = 0.065 # 0.0~0.1 self.z_scale = 0.0 # 0.0~0.0 self.ee_mode = 'horizontal' self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear' } def post_process(self, action_name, args, mocap_poses, grasp_type='side'): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ ee_pose = mocap_poses['end_effector'] if grasp_type == 'side': if action_name == 'move': robot, init_robot_pose, way_point, term_robot_pose = args # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Calculate difference from target pose in configuration space diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Set pick hyperparameters if block == 'A': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'B': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.11 self.ee_mode = 'vertical' elif block == 'C': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'D': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.13 self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ rigid_pose_z - ee_pose_z - ee_x_offset, rigid_pose_x - ee_pose_x - ee_y_offset, rigid_pose_y - ee_pose_y - ee_z_offset, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] # Modify hole position from mocap marker if block == 'A': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z self.ee_mode = 'horizontal' elif block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z self.ee_mode = 'vertical' elif block == 'C': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z self.ee_mode = 'horizontal' elif block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Calculate place pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Get hole pose base_pose = mocap_poses['base'] # Modify hole position from mocap marker if u_block == 'A': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z - 0.01 # TODO: modify self.ee_mode = 'horizontal' elif u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x + 0.0175 # TODO: modify hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z - 0.015 # TODO: modify self.ee_mode = 'vertical' elif u_block == 'C': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z - 0.01 # TODO: modify self.ee_mode = 'horizontal' elif u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x + 0.0175 # TODO: modify hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z - 0.015 # TODO: modify self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Get end effector orientation ee_ori_x = ee_pose.pose.orientation.x ee_ori_y = ee_pose.pose.orientation.y ee_ori_z = ee_pose.pose.orientation.z ee_ori_w = ee_pose.pose.orientation.w # Initial pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z, ee_ori_x, ee_ori_y, ee_ori_z, ee_ori_w ], dtype=np.float64) # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] # Calculate stack pose in configuration space rigid_pose_x = u_rigid_pose.pose.position.x rigid_pose_y = u_rigid_pose.pose.position.y rigid_pose_z = u_rigid_pose.pose.position.z diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ], dtype=np.float64) new_command = (action_name, [init_ee_pose, diff_ee_pose], self.ee_mode) else: pass elif grasp_type == 'top': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y + self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset if action_name == 'move': robot, init_robot_pose, way_point, term_robot_pose = args # Calculate grasp pose in configuration space init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ]) term_ee_pose = init_ee_pose + diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ ee_pose_y - rigid_pose_y, ee_pose_x - rigid_pose_x, ee_pose_z - rigid_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] if block == 'A' or block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif block == 'C' or block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate place pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] # Get hole pose base_pose = mocap_poses['base'] if u_block == 'A' or u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif u_block == 'C' or u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate stack pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) else: pass return new_command
18,528
Python
44.192683
103
0.489259
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedback/execute_plan.py
#!/usr/bin/env/python3 import tf import sys import rospy import moveit_commander import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_2d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_py_interface import HSRPyInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from controller.ik_controller import IKController from geometry_msgs.msg import Pose from controller_manager_msgs.srv import ListControllers class ExecutePlan(object): def __init__(self, grasp_type='side'): # Initialize moveit moveit_commander.roscpp_initialize(sys.argv) # Initialize ROS node # rospy.init_node('execute_tamp_plan') # Feedback rate self.rate = rospy.Rate(50) # Threshold self.move_threshold = 0.05 self.pick_threshold = 0.05 self.place_threshold = 0.04 # 0.038 self.stack_threshold = 0.032 # 0.038 self.weight_threshold = 500 # Core module self.tamp_planner = TAMPPlanner() self.hsr_py = HSRPyInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() self.ik_controller = IKController() # Initialize Robot self.initialize_robot(grasp_type) def initialize_robot(self, grasp_type='side'): self.check_status() # Set moveit commander self.robot = moveit_commander.RobotCommander() self.arm = moveit_commander.MoveGroupCommander('arm', wait_for_servers=0.0) self.base = moveit_commander.MoveGroupCommander('base', wait_for_servers=0.0) self.gripper = moveit_commander.MoveGroupCommander('gripper', wait_for_servers=0.0) self.whole_body = moveit_commander.MoveGroupCommander('whole_body', wait_for_servers=0.0) # Set planning parameters self.set_planning_parameter() # Set arm to configuration position self.hsr_py.initialize_arm() # Set base to configuration position self.hsr_py.initialize_base() # Move to neutral self.hsr_py.set_task_pose(grasp_type) def set_planning_parameter(self): # Planning parameters self.whole_body.allow_replanning(True) self.whole_body.set_planning_time(3) self.whole_body.set_pose_reference_frame('map') # Scene parameters self.scene = moveit_commander.PlanningSceneInterface() self.scene.remove_world_object() def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Get rigid body poses from mocap mocap_poses = self.mocap_interface.get_poses() # Modify plan action_name, modified_action, ee_mode = self.path_modifier.post_process(action_name, args, mocap_poses) return modified_action, ee_mode def check_ee_mode(self): # Get end effector pose ee_pose = self.whole_body.get_current_pose() ee_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) ee_euler = R.from_quat(ee_rot).as_euler('xyz') # Check whether end effector is vertical to ground plane, or horizontal if -0.8 < ee_euler[1] and 0.8 > ee_euler[1]: ee_mode = 'vertical' elif -2.0 < ee_euler[1] and -1.0 > ee_euler[1]: ee_mode = 'horizontal' return ee_mode def create_trajectory(self, diff_pose, num_steps=2): # Temporally linear interpolation assert num_steps > 1, "Too shot to create waypoints" # num_steps = int(np.max(np.abs(diff_pose))//0.03) # if num_steps < 2: # num_steps = 2 traj_x = np.linspace(0.0, diff_pose[0], num_steps) traj_y = np.linspace(0.0, diff_pose[1], num_steps) traj_z = np.linspace(0.0, diff_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory def set_target_pose(self, trajectory, move_mode='outward', ee_mode='horizontal'): if move_mode == 'outward': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = target_map_pose[0] goal_pose.position.y = target_map_pose[1] goal_pose.position.z = target_map_pose[2] goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points elif move_mode == 'return': # Extract full trajectory diff_ee_traj = trajectory[0] goal_way_points = [] for i in range(1, len(diff_ee_traj)): # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj[i]) if ee_mode == 'horizontal': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] goal_pose.orientation.x = 0.5 goal_pose.orientation.y = 0.5 goal_pose.orientation.z = 0.5 goal_pose.orientation.w = -0.5 goal_way_points.append(goal_pose) elif ee_mode == 'vertical': goal_pose = Pose() goal_pose.position.x = diff_ee_traj[i][0] goal_pose.position.y = diff_ee_traj[i][1] - 0.12 # TODO: modify goal_pose.position.z = diff_ee_traj[i][2] - 0.2 # TODO: modify goal_pose.orientation.x = 0.0 goal_pose.orientation.y = 0.707106781 goal_pose.orientation.z = 0.707106781 goal_pose.orientation.w = 0.0 goal_way_points.append(goal_pose) return goal_way_points def create_goal(self, trajectory, ee_mode='horizontal'): # Extract full trajectory diff_ee_traj = trajectory[0][1] # Transform difference pose on end effector frame to map frame target_map_pose = self.tf_manager.transform_coordinate(diff_ee_traj) if ee_mode == 'horizontal': goal_pose = ((target_map_pose[0], target_map_pose[1], target_map_pose[2]), (0.5, 0.5, 0.5, -0.5)) elif ee_mode == 'vertical': goal_pose = ((target_map_pose[0], target_map_pose[1], target_map_pose[2]), (0.0, 0.707106781, 0.707106781, 0.0)) return goal_pose def modify_pose(self, diff_ee_pose, ee_mode): if ee_mode == 'horizontal': return (diff_ee_pose[0], diff_ee_pose[1], diff_ee_pose[2]) elif ee_mode == 'vertical': return (-diff_ee_pose[1], diff_ee_pose[0], diff_ee_pose[2]) def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): print('action_name:', action_name) if action_name == 'move': (_, diff_ee_pose), _ = self.process(action_name, args) # Set end effector mode ee_mode = self.check_ee_mode() # Move to next pose diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.set_target_pose(target_traj, ee_mode=ee_mode) (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif action_name == 'pick': finish = False (init_ee_pose, diff_ee_pose), _ = self.process(action_name, args) self.hsr_py.fix_task_pose(diff_ee_pose) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # ee_mode = 'horizontal' if ee_mode == 'horizontal': # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.create_goal(target_traj, ee_mode=ee_mode) # Move and plan to grasp pose self.ik_controller.control(goal_pose) if np.sum(np.absolute(diff_ee_pose)) < self.pick_threshold: finish = True # Grasp object self.hsr_py.close_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) elif ee_mode == 'vertical': finish = True # Move to target object & grasp object self.hsr_py.grasp_gear(diff_ee_pose) target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return', ee_mode='vertical') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'place': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.create_goal(target_traj, ee_mode=ee_mode) prev_ft_data = self.ft_interface.get_current_force() # Move and plan to place pose self.ik_controller.control(goal_pose) current_ft_data = self.ft_interface.get_current_force() force_difference = self.ft_interface.compute_difference(prev_ft_data, current_ft_data) weight = round(force_difference / 9.81 * 1000, 1) if np.sum(np.absolute(diff_ee_pose)) < self.place_threshold or weight > self.weight_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() elif action_name == 'stack': finish = False (init_ee_pose, _), _ = self.process(action_name, args) while not finish: (_, diff_ee_pose), ee_mode = self.process(action_name, args) # Crete trajectory diff_ee_pose = self.modify_pose(diff_ee_pose, ee_mode) target_traj = self.create_trajectory(diff_ee_pose) goal_pose = self.create_goal(target_traj, ee_mode=ee_mode) # Move and plan to stack pose self.ik_controller.control(goal_pose) if np.sum(np.absolute(diff_ee_pose)) < self.stack_threshold: finish = True # Sleep until stable rospy.sleep(1.0) # Put down end effector self.hsr_py.insert_object(ee_mode) # Release object self.hsr_py.open_gripper() # Move to terminal pose target_traj = self.create_trajectory(init_ee_pose) goal_pose = self.set_target_pose(target_traj, move_mode='return') (plan, fraction) = self.whole_body.compute_cartesian_path(goal_pose, 0.01, 0.0, False) self.whole_body.execute(plan, wait=True) # Sleep up to rate self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
15,552
Python
39.085051
114
0.534915
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedforward/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self, x_offset=0.0, y_offset=-0.065, z_offset=-0.04): self.mocap_x_offset = x_offset self.mocap_y_offset = y_offset self.mocap_z_offset = z_offset self.left_hole_x = -0.10 self.left_hole_y = -0.17 self.left_hole_z = 0.12 self.right_hole_x = 0.095 self.right_hole_y = -0.17 self.right_hole_z = 0.12 self.x_scale = 0.0 # 0.0~0.1 self.y_scale = 0.075 # 0.0~0.1 self.z_scale = 0.0 # 0.0~0.0 self.ee_mode = 'horizontal' self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear' } def post_process(self, action_name, args, mocap_poses, grasp_type='side'): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ ee_pose = mocap_poses['end_effector'] if grasp_type == 'side': if action_name == 'move': # Parse TAMP returns robot, init_robot_pose, way_point, term_robot_pose = args # Calculate difference from target pose in configuration space diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ]) new_command = (action_name, diff_ee_pose, self.ee_mode) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Set pick hyperparameters if block == 'A': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'B': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.11 self.ee_mode = 'vertical' elif block == 'C': ee_x_offset = 0.03 ee_y_offset = 0.0 ee_z_offset = 0.04 self.ee_mode = 'horizontal' elif block == 'D': ee_x_offset = -0.05 ee_y_offset = 0.0 ee_z_offset = 0.13 self.ee_mode = 'vertical' # Modify end effector position from mocap marker attached position if self.ee_mode == 'horizontal': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset elif self.ee_mode == 'vertical': ee_pose_x = ee_pose.pose.position.x - self.mocap_z_offset ee_pose_y = ee_pose.pose.position.y - self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_x_offset # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ rigid_pose_z - ee_pose_z - ee_x_offset, rigid_pose_x - ee_pose_x - ee_y_offset, rigid_pose_y - ee_pose_y - ee_z_offset, ]) new_command = (action_name, diff_ee_pose, self.ee_mode) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] if block == 'A' or block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z if block == 'A': self.ee_mode = 'horizontal' else: self.ee_mode = 'vertical' elif block == 'C' or block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z if block == 'C': self.ee_mode = 'horizontal' else: self.ee_mode = 'vertical' # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z # Calculate place pose in configuration space diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ]) new_command = (action_name, diff_ee_pose, self.ee_mode) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Get hole pose base_pose = mocap_poses['base'] if u_block == 'A' or u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z if u_block == 'A': self.ee_mode = 'horizontal' else: self.ee_mode = 'vertical' elif u_block == 'C' or u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z if u_block == 'C': self.ee_mode = 'horizontal' else: self.ee_mode = 'vertical' # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] rigid_pose_x = u_rigid_pose.pose.position.x rigid_pose_y = u_rigid_pose.pose.position.y rigid_pose_z = u_rigid_pose.pose.position.z # Calculate place pose in configuration space diff_ee_pose = np.array([ hole_pose_z - rigid_pose_z, hole_pose_x - rigid_pose_x, hole_pose_y - rigid_pose_y, ]) new_command = (action_name, diff_ee_pose, self.ee_mode) else: pass elif grasp_type == 'top': ee_pose_x = ee_pose.pose.position.x + self.mocap_x_offset ee_pose_y = ee_pose.pose.position.y + self.mocap_y_offset ee_pose_z = ee_pose.pose.position.z + self.mocap_z_offset if action_name == 'move': robot, init_robot_pose, way_point, term_robot_pose = args # Calculate grasp pose in configuration space init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) diff_ee_pose = np.array([ self.x_scale * 0.0, self.y_scale * (term_robot_pose[0] - init_robot_pose[0]), self.z_scale * (term_robot_pose[1] - init_robot_pose[1]) ]) term_ee_pose = init_ee_pose + diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'pick': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Map symbolic block name to real block name rigid_name = self.block_rigid_map[block] rigid_pose = mocap_poses[rigid_name] # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate grasp pose in configuration space rigid_pose_x = rigid_pose.pose.position.x rigid_pose_y = rigid_pose.pose.position.y rigid_pose_z = rigid_pose.pose.position.z diff_ee_pose = np.array([ ee_pose_y - rigid_pose_y, ee_pose_x - rigid_pose_x, ee_pose_z - rigid_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'place': robot, block, init_block_pose, grasp_diff_pose, term_robot_pose = args # Get hole pose base_pose = mocap_poses['base'] if block == 'A' or block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif block == 'C' or block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate place pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) elif action_name == 'stack': robot, u_block, u_pose, grasp_diff_pose, \ term_robot_pose, l_block, l_pose = args # Map symbolic block name to real block name u_rigid_name = self.block_rigid_map[u_block] l_rigid_name = self.block_rigid_map[l_block] u_rigid_pose = mocap_poses[u_rigid_name] l_rigid_pose = mocap_poses[l_rigid_name] # Get hole pose base_pose = mocap_poses['base'] if u_block == 'A' or u_block == 'B': hole_pose_x = base_pose.pose.position.x + self.left_hole_x hole_pose_y = base_pose.pose.position.y + self.left_hole_y hole_pose_z = base_pose.pose.position.z + self.left_hole_z elif u_block == 'C' or u_block == 'D': hole_pose_x = base_pose.pose.position.x + self.right_hole_x hole_pose_y = base_pose.pose.position.y + self.right_hole_y hole_pose_z = base_pose.pose.position.z + self.right_hole_z # Get curent end effector pose init_ee_pose = np.array([ ee_pose_x, ee_pose_y, ee_pose_z ]) # Calculate stack pose in configuration space diff_ee_pose = np.array([ ee_pose_y - hole_pose_y, ee_pose_x - hole_pose_x, ee_pose_z - hole_pose_z - 0.10 ]) # Get terminal end effector pose as reverse of diff_ee_pose term_ee_pose = -diff_ee_pose new_command = (action_name, [init_ee_pose, diff_ee_pose, term_ee_pose]) else: pass return new_command
13,500
Python
40.41411
92
0.472815
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/feedforward/execute_plan.py
#!/usr/bin/env/python3 import sys import rospy import hsrb_interface import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_2d/') sys.path.append('..') from tamp_planner import TAMPPlanner from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from controller_manager_msgs.srv import ListControllers class ExecutePlan(object): def __init__(self, grasp_type='side'): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Core module self.tamp_planner = TAMPPlanner() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.tf_manager = TfManager() # Initialize Robot self.initialize_robot(grasp_type) def initialize_robot(self, grasp_type='side'): self.check_status() # Get hsr python interface self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') # Initialize arm position self.whole_body.move_to_go() # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) # Set base to configuration position self.omni_base.go_abs(-0.8, 0.80, np.pi/2, 300.0) # Set arm to neutral self.whole_body.move_to_neutral() # Set hsr to configuration pose if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.25, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') # Fix base position using mocap data gearbox_poses = self.mocap_interface.get_poses() initial_pose = self.tf_manager.get_init_pose(gearbox_poses) diff_x_pose, diff_y_pose, diff_z_pose = initial_pose[1], initial_pose[0], initial_pose[2] self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-diff_y_pose, z=0.0) ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.25, y=0.0, z=0.0, ej=-np.pi/2), ], ref_frame_id='hand_palm_link') # Fix base position using mocap data gearbox_poses = self.mocap_interface.get_poses() initial_pose = self.tf_manager.get_init_pose(gearbox_poses) diff_x_pose, diff_y_pose, diff_z_pose = initial_pose[0], initial_pose[1], initial_pose[2] self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-diff_x_pose, y=-diff_y_pose, z=0.0) ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args, grasp_type='side'): # Get rigid body poses from mocap mocap_poses = self.mocap_interface.get_poses() # Modify plan action_name, modified_action, ee_mode = self.path_modifier.post_process(action_name, args, mocap_poses, grasp_type) return action_name, modified_action, ee_mode def check_ee_mode(self): # Get end effector pose ee_pose = self.whole_body.get_end_effector_pose() ee_rot = np.array([ ee_pose.ori.x, ee_pose.ori.y, ee_pose.ori.z, ee_pose.ori.w ]) ee_euler = R.from_quat(ee_rot).as_euler('xyz') # Check whether end effector is vertical to ground plane, or horizontal if -0.8 < ee_euler[1] and 0.8 > ee_euler[1]: ee_mode = 'vertical' elif -2.0 < ee_euler[1] and -1.0 > ee_euler[1]: ee_mode = 'horizontal' return ee_mode def execute(self, grasp_type='side'): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, diff_ee_pose, ee_mode = self.process(action_name, args, grasp_type) if action_name == 'move': # Set end effector mode ee_mode = self.check_ee_mode() # Move to next pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], z=diff_ee_pose[2] ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], y=diff_ee_pose[0], z=diff_ee_pose[2] ), ], ref_frame_id='hand_palm_link') elif action_name == 'pick': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]) # Grasp object self.gripper.apply_force(0.8) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) # Remove impedance self.whole_body.impedance_config = None elif action_name == 'place': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((1, 0, 0), diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) # Release object self.gripper.command(0.5) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=-diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ek=np.pi/2 ), ], ref_frame_id='hand_palm_link') # Remove impedance self.whole_body.impedance_config = None elif action_name == 'stack': # Set impedance self.whole_body.impedance_config = 'compliance_hard' # Move to grasp pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=-diff_ee_pose[1], z=diff_ee_pose[2], ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 1, 0), diff_ee_pose[0]) # Release object self.gripper.command(1.2) # Move to terminal pose if ee_mode == 'horizontal': self.whole_body.move_end_effector_by_line((1, 0, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( y=-diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_by_line((0, 1, 0), -diff_ee_pose[0]) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[1], z=-diff_ee_pose[2]-0.15, ek=np.pi/2 ), ], ref_frame_id='hand_palm_link') # Remove impedance self.whole_body.impedance_config = None else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
12,041
Python
38.611842
123
0.487584
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/ik_solver.py
import os import sys import glob import random import numpy as np from scipy.spatial.transform import Rotation as R from .utils import multiply, invert, all_between, compute_forward_kinematics, \ compute_inverse_kinematics, select_solution, USE_ALL, USE_CURRENT from .hsrb_utils import get_link_pose, get_joint_positions, get_custom_limits BASE_FRAME = 'base_footprint' TORSO_JOINT = 'torso_lift_joint' ROTATION_JOINT = 'joint_rz' LIFT_JOINT = 'arm_lift_joint' HSR_TOOL_FRAMES = {'arm': 'hand_palm_link'} IK_FRAME = {'arm': 'hand_palm_link'} def get_ik_lib(): lib_path = os.environ['PYTHONPATH'].split(':')[1] # TODO: modify ik_lib_path = glob.glob(os.path.join(lib_path, '**/hsrb'), recursive=True) return ik_lib_path[0] ##################################### def get_tool_pose(arm): sys.path.append(get_ik_lib()) from ikArm import armFK arm_fk = {'arm': armFK} ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] conf = get_joint_positions(ik_joints) assert len(conf) == 8 base_from_tool = compute_forward_kinematics(arm_fk[arm], conf) world_from_base = get_link_pose(BASE_FRAME) return multiply(world_from_base, base_from_tool) ##################################### def get_ik_generator(arm, ik_pose, custom_limits={}): sys.path.append(get_ik_lib()) from ikArm import armIK arm_ik = {'arm': armIK} base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] min_limits, max_limits = get_custom_limits(base_joints, arm_joints, custom_limits) arm_rot = R.from_quat(ik_pose[1]).as_euler('xyz')[0] sampled_limits = [(arm_rot-np.pi, arm_rot-np.pi), (0.0, 0.34)] while True: sampled_values = [random.uniform(*limits) for limits in sampled_limits] confs = compute_inverse_kinematics(arm_ik[arm], ik_pose, sampled_values) solutions = [q for q in confs if all_between(min_limits, q, max_limits)] yield solutions if all(lower == upper for lower, upper in sampled_limits): break def get_tool_from_ik(arm): world_from_tool = get_link_pose(HSR_TOOL_FRAMES[arm]) world_from_ik = get_link_pose(IK_FRAME[arm]) return multiply(invert(world_from_tool), world_from_ik) def sample_tool_ik(arm, tool_pose, nearby_conf=USE_CURRENT, max_attempts=100, **kwargs): generator = get_ik_generator(arm, tool_pose, **kwargs) whole_body_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for _ in range(max_attempts): try: solutions = next(generator) if solutions: return select_solution(whole_body_joints, solutions, nearby_conf=nearby_conf) except StopIteration: break return None def hsr_inverse_kinematics(arm, gripper_pose, custom_limits={}, **kwargs): base_arm_conf = sample_tool_ik(arm, gripper_pose, custom_limits=custom_limits, **kwargs) if base_arm_conf is None: return None return base_arm_conf if __name__ == '__main__': # test forward kinematics fk_pose = get_tool_pose('arm') print('fk_pose:', fk_pose) # test inverse kinematics import numpy as np pos_x = 0.0 pos_y = 0.0 pos_z = 0.6 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) pose = ((pos_x, pos_y, pos_z), foward) print('pose:', pose) ik_pose = hsr_inverse_kinematics('arm', pose) print('ik_pose:', ik_pose) # test inverse kinematics generator import time for i in range(100): start = time.time() pose_x = 2.5 pose_y = 2.0 pose_z = 0.6 tool_pose = ((pose_x, pose_y, pose_z), (0.707107, 0.0, 0.707107, 0.0)) generator = get_ik_generator('arm', tool_pose) solutions = next(generator) print(solutions) print('Loop Hz:', 1/(time.time()-start))
4,179
Python
33.545454
111
0.615219
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/hsrb_utils.py
import rospy import numpy as np import hsrb_interface from scipy.spatial.transform import Rotation as R robot = hsrb_interface.Robot() base = robot.get('omni_base') gripper = robot.get('gripper') whole_body = robot.get('whole_body') def get_link_pose(link): tf_pose = whole_body._tf2_buffer.lookup_transform('map', link, rospy.Time(0)) link_pose = ((tf_pose.transform.translation.x, tf_pose.transform.translation.y, tf_pose.transform.translation.z), (tf_pose.transform.rotation.x, tf_pose.transform.rotation.y, tf_pose.transform.rotation.z, tf_pose.transform.rotation.w)) return link_pose def get_joint_limits(joint): if joint == 'odom_x': limit = (-10.0, 10.0) elif joint == 'odom_y': limit = (-10.0, 10.0) elif joint == 'odom_t': limit = (-10.0, 10.0) else: limit = whole_body.joint_limits[joint] return limit def get_custom_limits(base_joints, arm_joints, custom_limits={}): joint_limits = [] for joint in base_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) for joint in arm_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) return zip(*joint_limits) def get_distance(p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def get_joint_position(joint): if joint == 'world_joint': joint_position = base.pose else: joint_position = whole_body.joint_positions[joint] return joint_position def get_joint_positions(jonits): joint_positions = [] for joint in jonits: if joint == 'world_joint': base_pose = base._tf2_buffer.lookup_transform('map', 'base_footprint', rospy.Time(0)) joint_positions.append(base_pose.transform.translation.x) joint_positions.append(base_pose.transform.translation.y) base_quat = np.array([base_pose.transform.rotation.x, base_pose.transform.rotation.y, base_pose.transform.rotation.z, base_pose.transform.rotation.w]) base_rz = R.from_quat(base_quat).as_euler('xyz')[2] joint_positions.append(base_rz) else: joint_positions.append(whole_body.joint_positions[joint]) return joint_positions if __name__ == '__main__': # Test get_link_pose base_link_pose = get_link_pose('base_footprint') print('base_link_pose:', base_link_pose) hand_palm_link_pose = get_link_pose('hand_palm_link') print('hand_palm_link_pose:', hand_palm_link_pose) # Test get_custom_limits base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] custom_limits = get_custom_limits(base_joints, arm_joints) print('custom_limits:', custom_limits) # Test get_joint_limits for b_joint in base_joints: joint_limit = get_joint_limits(b_joint) print('joint_limit:', joint_limit) for a_joint in arm_joints: joint_limit = get_joint_limits(a_joint) print('joint_limit:', joint_limit) # Test get_joint_position ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for joint in ik_joints: joint_position = get_joint_position(joint) print('joint_position:', joint_position) # Test get_joint_positions joint_positions = get_joint_positions(ik_joints) print('joint_positions:', joint_positions)
3,904
Python
35.495327
97
0.615523
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/ik_controller.py
import rospy import numpy as np from .controller import Controller from .ik_solver import get_tool_pose, get_ik_generator, hsr_inverse_kinematics from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class IKController(Controller): def __init__(self): super(IKController, self).__init__() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def set_pose(self, base_pose, joint_pose): base_traj = JointTrajectory() arm_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] # Set arm trajectory assert len(joint_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = joint_pose arm_p.velocities = np.zeros(len(joint_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return base_traj, arm_traj def control(self, pose): # Inverse kinematics ik_pose = hsr_inverse_kinematics('arm', pose) # pose must be contain (pos, quat) if ik_pose is None: return else: base_pose, arm_pose = ik_pose[:3], ik_pose[3:] # Set target pose base_traj, arm_traj = self.set_pose(base_pose, arm_pose) # Publish target pose self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) if __name__ == '__main__': ik_controller = IKController() rate = rospy.Rate(50) pose_x = 0.0 pose_y = 0.0 pose_z = 0.5 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) while not rospy.is_shutdown(): # Test forward kinematics fk_pose = get_tool_pose('arm') # Test inverse kinematics tool_pose = ((pose_x, pose_y, pose_z), foward) ik_controller.control(tool_pose) # Sleep rate.sleep()
2,848
Python
32.517647
113
0.596559
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/controller.py
import rospy import numpy as np class Controller(object): def __init__(self): pass def set_pose(self): raise NotImplementedError("Implement set_pose method") def control(self): raise NotImplementedError("Implement control method")
271
Python
18.42857
62
0.671587
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_2d/script/controller/utils.py
import random import numpy as np import pybullet as p from collections import namedtuple from scipy.spatial.transform import Rotation as R from .hsrb_utils import get_joint_limits, get_joint_position, get_joint_positions, get_distance IKFastInfo = namedtuple('IKFastInfo', ['module_name', 'base_link', 'ee_link', 'free_joints']) USE_ALL = False USE_CURRENT = None ############ Mathematics def invert(pose): point, quat = pose return p.invertTransform(point, quat) # TODO: modify def multiply(*poses): pose = poses[0] for next_pose in poses[1:]: pose = p.multiplyTransforms(pose[0], pose[1], *next_pose) # TODO: modify return pose ############## def all_between(lower_limits, values, upper_limits): assert len(lower_limits) == len(values) assert len(values) == len(upper_limits) return np.less_equal(lower_limits, values).all() and \ np.less_equal(values, upper_limits).all() def compute_forward_kinematics(fk_fn, conf): pose = fk_fn(list(conf)) pos, rot = pose quat = R.from_matrix(rot).as_quat() return pos, quat def compute_inverse_kinematics(ik_fn, pose, sampled=[]): pos, quat = pose[0], pose[1] rot = R.from_quat(quat).as_matrix().tolist() if len(sampled) == 0: solutions = ik_fn(list(rot), list(pos)) else: solutions = ik_fn(list(rot), list(pos), list(sampled)) if solutions is None: return [] return solutions def get_ik_limits(joint, limits=USE_ALL): if limits is USE_ALL: return get_joint_limits(joint) elif limits is USE_CURRENT: value = get_joint_position(joint) return value, value return limits def select_solution(joints, solutions, nearby_conf=USE_ALL, **kwargs): if not solutions: return None if nearby_conf is USE_ALL: return random.choice(solutions) if nearby_conf is USE_CURRENT: nearby_conf = get_joint_positions(joints) return min(solutions, key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
2,034
Python
26.133333
95
0.656834
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/hsr_interface.py
#!/usr/bin/env/python3 import rospy import hsrb_interface import numpy as np from scipy.spatial.transform import Rotation as R from controller_manager_msgs.srv import ListControllers from control_msgs.msg import JointTrajectoryControllerState class HSRInterface(object): def __init__(self, standalone=False): # Initialize ROS node if standalone: rospy.init_node('hsr_interface') # Check server status self.check_status() self.robot = hsrb_interface.Robot() self.omni_base = self.robot.get('omni_base') self.gripper = self.robot.get('gripper') self.whole_body = self.robot.get('whole_body') self.base_sub = rospy.Subscriber('/hsrb/omni_base_controller/state', JointTrajectoryControllerState, self.base_callback) self.arm_sub = rospy.Subscriber('/hsrb/arm_trajectory_controller/state', JointTrajectoryControllerState, self.arm_callback) self.base_pos, self.base_vel, self.base_acc = None, None, None self.arm_pos, self.arm_vel, self.arm_acc = None, None, None self.base_joints = ['joint_x', 'joint_y', 'joint_rz'] self.arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] self.joint_ids_to_name = {'joint_x': 0, 'joint_y': 1, 'joint_rz': 2, 'arm_lift_joint': 0, 'arm_flex_joint': 1, 'arm_roll_joint': 2, 'wrist_flex_joint': 3, 'wrist_roll_joint': 4} def initialize_arm(self): # Initialize arm position self.whole_body.move_to_go() # Set TAMP pose self.whole_body.move_to_joint_positions({ 'arm_lift_joint': 0.1, 'arm_flex_joint': -np.pi/2, 'arm_roll_joint': 0.0, 'wrist_flex_joint': 0.0, 'wrist_roll_joint': 0.0, }) def initialize_base(self): # Initialize base position self.omni_base.go_abs(0.0, 0.0, 0.0, 300.0) def set_task_pose(self, grasp_type='side'): # Set base to configuration position self.omni_base.go_abs(-0.80, 0.75, np.pi/2, 300.0) # Set arm to configuration pose self.whole_body.move_to_neutral() if grasp_type == 'side': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=0.0), ], ref_frame_id='hand_palm_link') elif grasp_type == 'top': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.3, y=0.0, z=0.0, ej=-1.57), ], ref_frame_id='hand_palm_link') # Open gripper self.gripper.command(1.2) def fix_task_pose(self, diff_pose): diff_x_pose, diff_y_pose, diff_z_pose = diff_pose[0], diff_pose[1], diff_pose[2] if np.abs(diff_z_pose) < 0.1: diff_z_pose = -0.12 else: diff_z_pose = 0.0 self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=diff_y_pose, z=diff_z_pose) ], ref_frame_id='hand_palm_link') def check_status(self): # Make sure the controller is running rospy.wait_for_service('/hsrb/controller_manager/list_controllers') list_controllers = rospy.ServiceProxy('/hsrb/controller_manager/list_controllers', ListControllers) running = False while running is False: rospy.sleep(0.1) for c in list_controllers().controller: if c.name == 'arm_trajectory_controller' and c.state == 'running': running |= True if c.name == 'head_trajectory_controller' and c.state == 'running': running |= True if c.name == 'gripper_controller' and c.state == 'running': running |= True if c.name == 'omni_base_controller' and c.state == 'running': running |= True return running def close_gripper(self, force=0.5): self.gripper.apply_force(force) def open_gripper(self, width=1.0): self.gripper.command(width) def insert_object(self, ee_mode): if ee_mode == 'horizontal': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=-0.03, y=0.0, z=0.0), ], ref_frame_id='hand_palm_link') elif ee_mode == 'vertical': self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose(x=0.0, y=-0.03, z=0.0), ], ref_frame_id='hand_palm_link') def grasp_gear(self, diff_ee_pose, pick_offset=0.1): # Open gripper self.open_gripper(0.5) # Move to grasp self.whole_body.move_end_effector_by_line((0, 0, 1), -pick_offset) self.whole_body.move_end_effector_pose([ hsrb_interface.geometry.pose( x=diff_ee_pose[0], y=diff_ee_pose[1], ek=-np.pi/2 ), ], ref_frame_id='hand_palm_link') self.whole_body.move_end_effector_by_line((0, 0, 1), diff_ee_pose[2]+pick_offset) # Close gripper self.close_gripper(0.5) def get_link_pose(self, link): tf_pose = self.whole_body._tf2_buffer.lookup_transform('map', link, rospy.Time(0)) link_pose = [[tf_pose.transform.translation.x, tf_pose.transform.translation.y, tf_pose.transform.translation.z], [tf_pose.transform.rotation.x, tf_pose.transform.rotation.y, tf_pose.transform.rotation.z, tf_pose.transform.rotation.w]] return link_pose def get_joint_limits(self, joint): if joint == 'odom_x': limit = (-10.0, 10.0) elif joint == 'odom_y': limit = (-10.0, 10.0) elif joint == 'odom_t': limit = (-10.0, 10.0) else: limit = self.whole_body.joint_limits[joint] return limit def get_custom_limits(self, base_joints, arm_joints, custom_limits={}): joint_limits = [] for joint in base_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(self.get_joint_limits(joint)) for joint in arm_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(self.get_joint_limits(joint)) return zip(*joint_limits) def get_distance(self, p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def get_joint_position(self, joint, group=None): if group == 'base': joint_position = self.base_pos[self.joint_ids_to_name[joint]] elif group == 'arm': joint_position = self.arm_pos[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_position def get_joint_positions(self, group=None): joint_positions = [] if group == 'base': for base_joint in self.base_joints: base_pos = self.get_joint_position(base_joint, 'base') joint_positions.append(base_pos) elif group == 'arm': for arm_joint in self.arm_joints: arm_pos = self.get_joint_position(arm_joint, 'arm') joint_positions.append(arm_pos) else: for base_joint in self.base_joints: base_pos = self.get_joint_position(base_joint, 'base') joint_positions.append(base_pos) for arm_joint in self.arm_joints: arm_pos = self.get_joint_position(arm_joint, 'arm') joint_positions.append(arm_pos) return joint_positions def get_joint_velocity(self, joint, group=None): if group == 'base': joint_velocity = self.base_vel[self.joint_ids_to_name[joint]] elif group == 'arm': joint_velocity = self.arm_vel[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_velocity def get_joint_velocities(self, group=None): joint_velocities = [] if group == 'base': for base_joint in self.base_joints: joint_vel = self.get_joint_velocity(base_joint, 'base') joint_velocities.append(joint_vel) elif group == 'arm': for arm_joint in self.arm_joints: joint_vel = self.get_joint_velocity(arm_joint, 'arm') joint_velocities.append(joint_vel) else: for base_joint in self.base_joints: joint_vel = self.get_joint_velocity(base_joint, 'base') joint_velocities.append(joint_vel) for arm_joint in self.arm_joints: joint_vel = self.get_joint_velocity(arm_joint, 'arm') joint_velocities.append(joint_vel) return joint_velocities def get_joint_acceleration(self, joint, group=None): if group == 'base': joint_acceleration = self.base_acc[self.joint_ids_to_name[joint]] elif group == 'arm': joint_acceleration = self.arm_acc[self.joint_ids_to_name[joint]] else: raise ValueError(joint) return joint_acceleration def get_joint_accelerations(self, group=None): joint_acceralataions = [] if group == 'base': for base_joint in self.base_joints: joint_acc = self.get_joint_acceleration(base_joint, 'base') joint_acceralataions.append(joint_acc) elif group == 'arm': for arm_joint in self.arm_joints: joint_acc = self.get_joint_acceleration(arm_joint, 'arm') joint_acceralataions.append(joint_acc) else: for base_joint in self.base_joints: joint_acc = self.get_joint_acceleration(base_joint, 'base') joint_acceralataions.append(joint_acc) for arm_joint in self.arm_joints: joint_acc = self.get_joint_acceleration(arm_joint, 'arm') joint_acceralataions.append(joint_acc) return joint_acceralataions def base_callback(self, data): self.base_pos = data.actual.positions self.base_vel = data.actual.velocities self.base_acc = data.actual.accelerations def arm_callback(self, data): self.arm_pos = data.actual.positions self.arm_vel = data.actual.velocities self.arm_acc = data.actual.accelerations if __name__ == '__main__': hsr_interface = HSRInterface() hsr_interface.initialize_arm() hsr_interface.initialize_base() print('positions:', hsr_interface.get_joint_positions()) print('velocities:', hsr_interface.get_joint_velocities())
11,059
Python
38.784173
131
0.570757
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/tf_interface.py
#!/bin/env/python3 import tf import rospy import tf2_ros import numpy as np import tf2_geometry_msgs from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from scipy.spatial.transform import Rotation as R class TfManager(object): def __init__(self, standalone=False): if standalone: rospy.init_node('tf_manager') # TF listener self.tfBuffer = tf2_ros.Buffer() self.listener = tf2_ros.TransformListener(self.tfBuffer) # Publisher self.tf_pub = rospy.Publisher('/tf', TFMessage, queue_size=1) def get_link_pose(self, link_name='hand_palm_link'): # Translate from map coordinate to arbitrary coordinate of robot. ee_pose = tf2_geometry_msgs.PoseStamped() ee_pose.header.frame_id = link_name ee_pose.header.stamp = rospy.Time(0) ee_pose.pose.orientation.w = 1.0 try: # Get transform at current time global_pose = self.tfBuffer.transform(ee_pose, 'map') except (tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationException) as e: print(e) return None return global_pose def get_init_pose(self, mocap_poses): # Get red_shaft pose gearbox_x = mocap_poses['gear1'].pose.position.x gearbox_y = mocap_poses['gear1'].pose.position.y gearbox_z = mocap_poses['gear1'].pose.position.z # Get current end effector pose current_ee_pose_x = mocap_poses['end_effector'].pose.position.x current_ee_pose_y = mocap_poses['end_effector'].pose.position.y current_ee_pose_z = mocap_poses['end_effector'].pose.position.z # Culculate difference pose diff_x_pose = current_ee_pose_x - gearbox_x diff_y_pose = current_ee_pose_y - gearbox_y diff_z_pose = current_ee_pose_z - gearbox_z init_base_pose = np.array([diff_x_pose, diff_y_pose, diff_z_pose]) return init_base_pose # Transform target_pose on end effector coordinate to map coordinate def transform_coordinate(self, target_pose): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) # Initialize map coordination qc_trans[0] = target_pose[0] qc_trans[1] = target_pose[1] qc_trans[2] = target_pose[2] qc_trans[3] = 1.0 ee_pose = self.get_link_pose() if ee_pose is None: return # Initialize ee coordination translation = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) rot_mat = R.from_quat(rot).as_matrix() # Calculate translation trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = translation trans_mat[:3, :3] = rot_mat qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qw_rot = np.array([ ee_pose.pose.orientation.x, ee_pose.pose.orientation.y, ee_pose.pose.orientation.z, ee_pose.pose.orientation.w ]) return np.concatenate([qw_trans, qw_rot]) def publish_mocap_to_map(self, mocap_poses): tf_list = [] for rigid_name, mocap_pose in mocap_poses.items(): t = TransformStamped() t.header.frame_id = 'map' t.header.stamp = rospy.Time.now() t.child_frame_id = rigid_name t.transform.translation.x = mocap_pose.pose.position.x t.transform.translation.y = mocap_pose.pose.position.y t.transform.translation.z = mocap_pose.pose.position.z t.transform.rotation.x = mocap_pose.pose.rotation.x t.transform.rotation.y = mocap_pose.pose.rotation.y t.transform.rotation.z = mocap_pose.pose.rotation.z t.transform.rotation.w = mocap_pose.pose.rotation.w tf_list.append(t) tfm = TFMessage(tf_list) # Publish tf message self.tf_pub.publish(tfm) if __name__ == '__main__': tf_manager = TfManager(standalone=True) while not rospy.is_shutdown(): transform = tf_manager.get_link_pose('hand_palm_link') test_pose1 = np.array([-0.5, 0.0, 0.0]) # -0.5 to z direction on map test_pose1 = tf_manager.transform_coordinate(test_pose1) test_pose2 = np.array([0.0, 1.0, 0.0]) # -1.0 to x direction on map test_pose2 = tf_manager.transform_coordinate(test_pose2) test_pose3 = np.array([-0.3, -1.0, 0.0]) test_pose3 = tf_manager.transform_coordinate(test_pose3) ee_pose = tf_manager.get_link_pose() if ee_pose is None: continue test_pose4 = np.array([ ee_pose.pose.position.x, ee_pose.pose.position.y, ee_pose.pose.position.z ]) test_pose4 = tf_manager.transform_coordinate(test_pose4) test_pose5 = np.zeros(3) test_pose5 = tf_manager.transform_coordinate(test_pose5) print('test_1: ', test_pose1) print('test_2: ', test_pose2) print('test_3: ', test_pose3) print('test_4: ', test_pose4) print('test_5: ', test_pose5)
5,480
Python
32.420732
109
0.592336
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/mocap_interface.py
#!/bin/env/python3 import rospy import numpy as np from ros_numpy import numpify from geometry_msgs.msg import PoseStamped from scipy.spatial.transform import Rotation as R class MocapInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('mocap_interface') # Mocap list self.rigid_body_list = ( "base", "gear1", "gear2", "gear3", "shaft1", "shaft2", "end_effector" ) # Mocap to map self.translation = np.array([0.0, 0.0, 0.0]) self.rotation = np.array([ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0] ]) # Rigid body pose dictionary self.rigid_posestamped = { name: PoseStamped() for name in self.rigid_body_list } # Subscriber self._mocap_sub = [ rospy.Subscriber('/mocap_pose_topic/{0}_pose'.format(self.rigid_body_list[i]), PoseStamped, self._mocap_cb, callback_args=i) for i in range(len(self.rigid_body_list)) ] def _mocap_cb(self, mocap_data, id): converted_pose = self.convert_mocap_to_map(mocap_data) mocap_data.header.frame_id = 'map' mocap_data.pose.position.x = converted_pose[0] mocap_data.pose.position.y = converted_pose[1] mocap_data.pose.position.z = converted_pose[2] mocap_data.pose.orientation.x = converted_pose[3] mocap_data.pose.orientation.y = converted_pose[4] mocap_data.pose.orientation.z = converted_pose[5] mocap_data.pose.orientation.w = converted_pose[6] self.rigid_posestamped[self.rigid_body_list[id]] = mocap_data def get_pose(self, name): pos = numpify(self.rigid_posestamped[name].pose.position) orn = numpify(self.rigid_posestamped[name].pose.orientation) return [pos, orn] def get_poses(self): rigid_poses = {} for name, pose_stamped in self.rigid_posestamped.items(): pos = numpify(pose_stamped.pose.position) orn = numpify(pose_stamped.pose.orientation) rigid_poses[name] = [pos, orn] return rigid_poses def convert_mocap_to_map(self, mocap_data): # Initialize vector and matrix trans_mat = np.zeros((4, 4)) qc_trans = np.zeros(4) qc_rot = np.zeros(4) # Calculate translation qc_trans[0] = mocap_data.pose.position.x qc_trans[1] = mocap_data.pose.position.y qc_trans[2] = mocap_data.pose.position.z qc_trans[3] = 1.0 trans_mat[3:, 3:] = 1.0 trans_mat[:3, 3] = self.translation trans_mat[:3, :3] = self.rotation qw_trans = trans_mat @ qc_trans qw_trans = qw_trans[:3] # Calculate rotation qc_rot[0] = mocap_data.pose.orientation.x qc_rot[1] = mocap_data.pose.orientation.y qc_rot[2] = mocap_data.pose.orientation.z qc_rot[3] = mocap_data.pose.orientation.w qc_rot_mat = R.from_quat(qc_rot).as_matrix() qw_rot_mat = self.rotation @ qc_rot_mat qw_rot = R.from_matrix(qw_rot_mat).as_quat() return np.concatenate([qw_trans, qw_rot]) if __name__ == '__main__': mocap_interface = MocapInterface(standalone=True) while not rospy.is_shutdown(): # Test each rigid body base_pose = mocap_interface.get_pose('base') print('base_pose: ', base_pose) green_gear_pose = mocap_interface.get_pose('gear1') print('green_gear_pose: ', green_gear_pose) blue_gear_pose = mocap_interface.get_pose('gear2') print('blue_gear_pose: ', blue_gear_pose) red_gear_pose = mocap_interface.get_pose('gear3') print('red_gear_pose: ', red_gear_pose) red_shaft_pose = mocap_interface.get_pose('shaft1') print('red_shaft_pose: ', red_shaft_pose) yellow_shaft_pose = mocap_interface.get_pose('shaft2') print('yellow_shaft_pose: ', yellow_shaft_pose) end_effector_pose = mocap_interface.get_pose('end_effector') print('end_effector_pose: ', end_effector_pose) # Test all rigid bodies rigid_poses = mocap_interface.get_poses() print('rigid_poses: ', rigid_poses['gear1'])
4,331
Python
34.219512
136
0.587162
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/force_sensor_interface.py
import sys import math import rospy from geometry_msgs.msg import WrenchStamped class ForceSensorInterface(object): def __init__(self, standalone=False): if standalone: rospy.init_node('force_torque_sensor_interface') self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 # Subscribe force torque sensor data from HSRB self._wrist_wrench_sub = rospy.Subscriber( '/hsrb/wrist_wrench/raw', WrenchStamped, self._ft_sensor_callback ) # Wait for connection try: rospy.wait_for_message('/hsrb/wrist_wrench/raw', WrenchStamped, timeout=10.0) except Exception as e: rospy.logerr(e) sys.exit(1) def _ft_sensor_callback(self, data): self._force_data_x = data.wrench.force.x self._force_data_y = data.wrench.force.y self._force_data_z = data.wrench.force.z def initialize_ft(self): self._force_data_x = 0.0 self._force_data_y = 0.0 self._force_data_z = 0.0 def get_current_force(self): return [self._force_data_x, self._force_data_y, self._force_data_z] def compute_difference(self, pre_data_list, post_data_list, calc_type='l1'): if (len(pre_data_list) != len(post_data_list)): raise ValueError('Argument lists differ in length') # Calcurate square sum of difference if calc_type == 'l1': l1_sums = sum([b - a for (a, b) in zip(pre_data_list, post_data_list)]) return l1_sums elif calc_type == 'l2': l2_sums = sum([math.pow(b - a, 2) for (a, b) in zip(pre_data_list, post_data_list)]) return math.sqrt(l2_sums) if __name__ == '__main__': ft_interface = ForceSensorInterface(standalone=True) rate = rospy.Rate(50) while not rospy.is_shutdown(): prev_ft_data = ft_interface.get_current_force() input('wait_for_user') curr_ft_data = ft_interface.get_current_force() force_difference = ft_interface.compute_difference(prev_ft_data, curr_ft_data) weight = round(force_difference / 9.81 * 1000, 1) print('weight:', weight) rate.sleep()
2,244
Python
32.014705
96
0.595365
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/planner/cross_entropy_method.py
import numpy as np from planner import Planner class CrossEntropyMethod(Planner): def __init__(self): super().__init__() def compute_path(self): pass
176
Python
16.699998
34
0.630682
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/planner/planner.py
import numpy as np class Planner(object): def __init__(self): pass @staticmethod def compute_path(self): raise NotImplementedError("Implement compute_path")
187
Python
17.799998
59
0.652406
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/planner/linear_interpolation.py
import numpy as np from .planner import Planner class LinearInterpolationPlanner(Planner): def __init__(self): super().__init__() def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
557
Python
29.999998
61
0.621185
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/planner/spline_interpolation.py
import numpy as np from planner import Planner class SplineInterpolationPlanner(Planner): def __init__(self, offset): super().__init__() # Set parameters self.offset = offset def compute_path(self, op_pose, num_steps=10): # Compute linear interpolation path assert num_steps > 1, "Too short to create waypoints" traj_x = np.linspace(0.0, op_pose[0], num_steps) traj_y = np.linspace(0.0, op_pose[1], num_steps) traj_z = np.linspace(0.0, op_pose[2], num_steps) trajectory = np.dstack((traj_x, traj_y, traj_z)) return trajectory
619
Python
28.523808
61
0.615509
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedback/test_plan.py
#!/usr/bin/env/python3 import sys import rospy import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class ExecutePlan(object): def __init__(self): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.control_freq = 3 self.rate = rospy.Rate(self.control_freq) # Threshold self.move_threshold = 0.05 self.pick_threshold = 0.05 self.place_threshold = 0.04 self.stack_threshold = 0.032 self.weight_threshold = 500 # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() # Reset dataset self.reset_dataset() def reset_dataset(self): self.measured_ee_traj = [] self.measured_joint_traj = [] def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses self.robot_joints = ['joint_x', 'joint_y', 'joint_rz', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Modify plan action_name, modified_action = self.path_modifier.post_process(action_name, args) return action_name, modified_action def calculate_base_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='base') curr_vel = self.hsr_interface.get_joint_velocities(group='base') delta_pose = np.array(target_pose) - np.array(curr_pose) kp = 1.0 D = 1.0 kd = 2 * np.sqrt(kp) * D command = kp * delta_pose + kd * curr_vel command += np.array(curr_pose) return command def calculate_arm_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='arm') curr_vel = self.hsr_interface.get_joint_velocities(group='arm') delta_pose = np.array(target_pose) - np.array(curr_pose) kp = 1.0 D = 1.0 kd = 2 * np.sqrt(kp) * D command = kp * delta_pose + kd * curr_vel command += np.array(curr_pose) return command def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: target_base_pose = self.calculate_base_command(target_pose[:3]) base_traj = self.set_base_pose(target_base_pose) self.base_pub.publish(base_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'pick': pick_traj, return_traj = modified_action for target_pose in pick_traj: # pick target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.close_gripper() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'place': place_traj = modified_action for target_pose in place_traj: # place target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action for target_pose in insert_traj: # insert target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() else: continue self.save_traj() def save_traj(self): np.save(f'measured_ee_traj', self.measured_ee_traj) np.save(f'measured_joint_traj', self.measured_joint_traj) if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
12,401
Python
38.496815
113
0.569148
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedback/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self): self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear', 'E' : 'red_gear' } def post_process(self, action_name, args): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ if action_name == 'move_base': # Parse TAMP returns start_pose, end_pose, traj = args base_traj = [] for commands in traj.commands: for path in commands.path: base_traj.append(path.values) new_command = (action_name, base_traj) elif action_name == 'pick': arm, block, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_pick] = traj.commands pick_traj = [] for path in traj_pick.path: pick_traj.append(path.values) return_traj = [] for path in traj_pick.reverse().path: return_traj.append(path.values) new_command = (action_name, (pick_traj, return_traj)) elif action_name == 'place': arm, block1, block2, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_place] = traj.commands place_traj = [] for path in traj_place.path: place_traj.append(path.values) new_command = (action_name, (place_traj)) elif action_name == 'insert': arm, block1, block2, block_pose1, block_pose2, grasp_pose, _, _, traj = args [traj_insert, traj_depart, traj_return] = traj.commands insert_traj = [] for path in traj_insert.path: insert_traj.append(path.values) depart_traj = [] for path in traj_depart.path: depart_traj.append(path.values) return_traj = [] for path in traj_return.reverse().path: return_traj.append(path.values) new_command = (action_name, (insert_traj, depart_traj, return_traj)) else: pass return new_command
2,576
Python
30.426829
92
0.522904
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedback/execute_plan.py
#!/usr/bin/env/python3 import sys import rospy import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class ExecutePlan(object): def __init__(self): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.control_freq = 3 self.rate = rospy.Rate(self.control_freq) # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses self.robot_joints = ['joint_x', 'joint_y', 'joint_rz', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Modify plan action_name, modified_action = self.path_modifier.post_process(action_name, args) return action_name, modified_action def calculate_base_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='base') curr_vel = self.hsr_interface.get_joint_velocities(group='base') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.0 D = 0.03 kd = 2 * np.sqrt(kp) * D command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def calculate_arm_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='arm') curr_vel = self.hsr_interface.get_joint_velocities(group='arm') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.0 D = 0.03 kd = 2 * np.sqrt(kp) * D command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: target_base_pose = self.calculate_base_command(target_pose[:3]) base_traj = self.set_base_pose(target_base_pose) self.base_pub.publish(base_traj) self.rate.sleep() elif action_name == 'pick': pick_traj, return_traj = modified_action for target_pose in pick_traj: # pick target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(3.0) self.hsr_interface.close_gripper() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'place': place_traj = modified_action for target_pose in place_traj: # place target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action for target_pose in insert_traj: # insert target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(3.0) self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() for target_pose in return_traj: # return target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
9,073
Python
37.777778
113
0.575223
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedforward/test_plan.py
#!/usr/bin/env/python3 import sys import rospy import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class ExecutePlan(object): def __init__(self): # Initialize ROS node rospy.init_node('execute_tamp_plan') self.rate = rospy.Rate(3) # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() self.reset_dataset() def reset_dataset(self): self.measured_ee_traj = [] self.true_ee_traj = [] self.measured_joint_traj = [] def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses self.robot_joints = ['joint_x', 'joint_y', 'joint_rz', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Modify plan action_name, modified_action = self.path_modifier.post_process(action_name, args) return action_name, modified_action def execute(self): plan = self.plan() if plan is None: return None def make_tuple(pose_msg): return ((pose_msg.pose.position.x, pose_msg.pose.position.y, pose_msg.pose.position.z), (pose_msg.pose.orientation.x, pose_msg.pose.orientation.y, pose_msg.pose.orientation.z, pose_msg.pose.orientation.w)) for num_trial in range(5): for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: base_traj = self.set_base_pose(target_pose) self.base_pub.publish(base_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'pick': pick_traj, return_traj = modified_action for target_pose in pick_traj: # forward base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.close_gripper() for target_pose in return_traj: # reverse base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'place': place_traj = modified_action for target_pose in place_traj: # forward base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action for target_pose in insert_traj: # insert base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() # rospy.sleep(5.0) # self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() for target_pose in return_traj: # return base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) # Get measured/true EE traj measured_ee_pose = self.hsr_interface.get_link_pose('hand_palm_link') self.measured_ee_traj.append(measured_ee_pose) true_ee_pose = self.mocap_interface.get_pose('end_effector') self.true_ee_traj.append(make_tuple(true_ee_pose)) # Get measured joint traj measured_joint_pos = self.hsr_interface.get_joint_positions() self.measured_joint_traj.append(measured_joint_pos) self.rate.sleep() else: continue self.save_traj(num_trial) self.reset_dataset() self.hsr_interface.initialize_base() self.hsr_interface.initialize_arm() def save_traj(self, num_trial): np.save(f'measured_ee_traj_{num_trial}', self.measured_ee_traj) np.save(f'measured_joint_traj_{num_trial}', self.measured_joint_traj) # np.save(f'true_ee_traj_{num_trial}', self.true_ee_traj) if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
12,155
Python
39.655518
137
0.541999
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedforward/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self): self.block_rigid_map = { 'A' : 'shaft1', 'B' : 'gear1', 'C' : 'shaft2', 'D' : 'gear2', 'E' : 'gear3' } def post_process(self, action_name, args): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ if action_name == 'move_base': # Parse TAMP returns start_pose, end_pose, traj = args base_traj = [] for commands in traj.commands: for path in commands.path: base_traj.append(path.values) new_command = (action_name, base_traj) elif action_name == 'pick': arm, block, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_pick] = traj.commands pick_traj = [] for path in traj_pick.path: pick_traj.append(path.values) return_traj = [] for path in traj_pick.reverse().path: return_traj.append(path.values) new_command = (action_name, (pick_traj, return_traj)) elif action_name == 'place': arm, block1, block2, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_place] = traj.commands place_traj = [] for path in traj_place.path: place_traj.append(path.values) new_command = (action_name, (place_traj)) elif action_name == 'insert': arm, block1, block2, block_pose1, block_pose2, grasp_pose, _, _, traj = args [traj_insert, traj_depart, traj_return] = traj.commands insert_traj = [] for path in traj_insert.path: insert_traj.append(path.values) depart_traj = [] for path in traj_depart.path: depart_traj.append(path.values) return_traj = [] for path in traj_return.reverse().path: return_traj.append(path.values) new_command = (action_name, (insert_traj, depart_traj, return_traj)) else: pass return new_command
2,555
Python
30.170731
92
0.520939
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/feedforward/execute_plan.py
#!/usr/bin/env/python3 import sys import rospy import numpy as np from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class ExecutePlan(object): def __init__(self): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Control rate self.rate = rospy.Rate(3) # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Modify plan action_name, modified_action = self.path_modifier.post_process(action_name, args) return action_name, modified_action def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: base_traj = self.set_base_pose(target_pose) self.base_pub.publish(base_traj) self.rate.sleep() elif action_name == 'pick': pick_traj, return_traj = modified_action for target_pose in pick_traj: # pick base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(5.0) self.hsr_interface.close_gripper() for target_pose in return_traj: # return base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'place': place_traj = modified_action for target_pose in place_traj: # place base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'insert': insert_traj, depart_traj, return_traj = modified_action for target_pose in insert_traj: # insert base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(5.0) self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() for target_pose in return_traj: # return base_traj = self.set_base_pose(target_pose[:3]) arm_traj = self.set_arm_pose(target_pose[3:]) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
6,688
Python
34.020942
113
0.566836
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/controller/ik_solver.py
import os import sys import glob import random import numpy as np from scipy.spatial.transform import Rotation as R from utils import multiply, invert, all_between, compute_forward_kinematics, \ compute_inverse_kinematics, select_solution, USE_ALL, USE_CURRENT from hsrb_utils import get_link_pose, get_joint_positions, get_custom_limits BASE_FRAME = 'base_footprint' TORSO_JOINT = 'torso_lift_joint' ROTATION_JOINT = 'joint_rz' LIFT_JOINT = 'arm_lift_joint' HSR_TOOL_FRAMES = {'arm': 'hand_palm_link'} IK_FRAME = {'arm': 'hand_palm_link'} def get_ik_lib(): lib_path = os.environ['PYTHONPATH'].split(':')[1] # TODO: modify ik_lib_path = glob.glob(os.path.join(lib_path, '**/hsrb'), recursive=True) return ik_lib_path[0] ##################################### def get_tool_pose(arm, curr_conf=None): sys.path.append(get_ik_lib()) from ikArm import armFK arm_fk = {'arm': armFK} ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] if curr_conf == None: conf = get_joint_positions(ik_joints) assert len(conf) == 8 base_from_tool = compute_forward_kinematics(arm_fk[arm], conf) world_from_base = get_link_pose(BASE_FRAME) return multiply(world_from_base, base_from_tool) ##################################### def get_ik_generator(arm, ik_pose, custom_limits={}): sys.path.append(get_ik_lib()) from ikArm import armIK arm_ik = {'arm': armIK} base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] min_limits, max_limits = get_custom_limits(base_joints, arm_joints, custom_limits) arm_rot = R.from_quat(ik_pose[1]).as_euler('xyz')[0] sampled_limits = [(arm_rot-np.pi, arm_rot-np.pi), (0.0, 0.34)] while True: sampled_values = [random.uniform(*limits) for limits in sampled_limits] confs = compute_inverse_kinematics(arm_ik[arm], ik_pose, sampled_values) solutions = [q for q in confs if all_between(min_limits, q, max_limits)] yield solutions if all(lower == upper for lower, upper in sampled_limits): break def get_tool_from_ik(arm): world_from_tool = get_link_pose(HSR_TOOL_FRAMES[arm]) world_from_ik = get_link_pose(IK_FRAME[arm]) return multiply(invert(world_from_tool), world_from_ik) def sample_tool_ik(arm, tool_pose, nearby_conf=USE_CURRENT, max_attempts=100, **kwargs): generator = get_ik_generator(arm, tool_pose, **kwargs) whole_body_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for _ in range(max_attempts): try: solutions = next(generator) if solutions: return select_solution(whole_body_joints, solutions, nearby_conf=nearby_conf) except StopIteration: break return None def hsr_inverse_kinematics(arm, gripper_pose, custom_limits={}, **kwargs): base_arm_conf = sample_tool_ik(arm, gripper_pose, custom_limits=custom_limits, **kwargs) if base_arm_conf is None: return None return base_arm_conf if __name__ == '__main__': # test forward kinematics fk_pose = get_tool_pose('arm') print('fk_pose:', fk_pose) # test inverse kinematics import numpy as np pos_x = 0.0 pos_y = 0.0 pos_z = 0.6 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) pose = ((pos_x, pos_y, pos_z), foward) print('pose:', pose) ik_pose = hsr_inverse_kinematics('arm', pose) print('ik_pose:', ik_pose) # test inverse kinematics generator import time for i in range(100): start = time.time() pose_x = 2.5 pose_y = 2.0 pose_z = 0.6 tool_pose = ((pose_x, pose_y, pose_z), (0.707107, 0.0, 0.707107, 0.0)) generator = get_ik_generator('arm', tool_pose) solutions = next(generator) print(solutions) print('Loop Hz:', 1/(time.time()-start))
4,228
Python
33.382114
111
0.614238
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/controller/hsrb_utils.py
import rospy import numpy as np import hsrb_interface from scipy.spatial.transform import Rotation as R robot = hsrb_interface.Robot() base = robot.get('omni_base') gripper = robot.get('gripper') whole_body = robot.get('whole_body') def get_link_pose(link): tf_pose = whole_body._tf2_buffer.lookup_transform('map', link, rospy.Time(0)) link_pose = ((tf_pose.transform.translation.x, tf_pose.transform.translation.y, tf_pose.transform.translation.z), (tf_pose.transform.rotation.x, tf_pose.transform.rotation.y, tf_pose.transform.rotation.z, tf_pose.transform.rotation.w)) return link_pose def get_joint_limits(joint): if joint == 'odom_x': limit = (-10.0, 10.0) elif joint == 'odom_y': limit = (-10.0, 10.0) elif joint == 'odom_t': limit = (-10.0, 10.0) else: limit = whole_body.joint_limits[joint] return limit def get_custom_limits(base_joints, arm_joints, custom_limits={}): joint_limits = [] for joint in base_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) for joint in arm_joints: if joint in custom_limits: joint_limits.append(custom_limits[joint]) else: joint_limits.append(get_joint_limits(joint)) return zip(*joint_limits) def get_distance(p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def get_joint_position(joint): if joint == 'world_joint': joint_position = base.pose else: joint_position = whole_body.joint_positions[joint] return joint_position def get_joint_positions(jonits): joint_positions = [] for joint in jonits: if joint == 'world_joint': base_pose = base._tf2_buffer.lookup_transform('map', 'base_footprint', rospy.Time(0)) joint_positions.append(base_pose.transform.translation.x) joint_positions.append(base_pose.transform.translation.y) base_quat = np.array([base_pose.transform.rotation.x, base_pose.transform.rotation.y, base_pose.transform.rotation.z, base_pose.transform.rotation.w]) base_rz = R.from_quat(base_quat).as_euler('xyz')[2] joint_positions.append(base_rz) else: joint_positions.append(whole_body.joint_positions[joint]) return joint_positions if __name__ == '__main__': # Test get_link_pose base_link_pose = get_link_pose('base_footprint') print('base_link_pose:', base_link_pose) hand_palm_link_pose = get_link_pose('hand_palm_link') print('hand_palm_link_pose:', hand_palm_link_pose) # Test get_custom_limits base_joints = ['odom_x', 'odom_y', 'odom_t'] arm_joints = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] custom_limits = get_custom_limits(base_joints, arm_joints) print('custom_limits:', custom_limits) # Test get_joint_limits for b_joint in base_joints: joint_limit = get_joint_limits(b_joint) print('joint_limit:', joint_limit) for a_joint in arm_joints: joint_limit = get_joint_limits(a_joint) print('joint_limit:', joint_limit) # Test get_joint_position ik_joints = ['world_joint', 'arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] for joint in ik_joints: joint_position = get_joint_position(joint) print('joint_position:', joint_position) # Test get_joint_positions joint_positions = get_joint_positions(ik_joints) print('joint_positions:', joint_positions)
3,904
Python
35.495327
97
0.615523
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/controller/ik_controller.py
import rospy import numpy as np from controller import Controller from ik_solver import get_tool_pose, get_ik_generator, hsr_inverse_kinematics from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class IKController(Controller): def __init__(self): super(IKController, self).__init__() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) def set_pose(self, base_pose, joint_pose): base_traj = JointTrajectory() arm_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] # Set arm trajectory assert len(joint_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = joint_pose arm_p.velocities = np.zeros(len(joint_pose)) arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return base_traj, arm_traj def control(self, pose): # Inverse kinematics ik_pose = hsr_inverse_kinematics('arm', pose) # pose must be contain (pos, quat) if ik_pose is None: return else: base_pose, arm_pose = ik_pose[:3], ik_pose[3:] # Set target pose base_traj, arm_traj = self.set_pose(base_pose, arm_pose) # Publish target pose self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) if __name__ == '__main__': ik_controller = IKController() rate = rospy.Rate(50) pose_x = 0.0 pose_y = 0.0 pose_z = 0.5 foward = (0.70710678, 0.0, 0.70710678, 0.0) back = (0.0, -0.70710678, 0.0, 0.70710678) right = (0.5, -0.5, 0.5, 0.5) left = (0.5, 0.5, 0.5, -0.5) while not rospy.is_shutdown(): # Test forward kinematics fk_pose = get_tool_pose('arm') # Test inverse kinematics tool_pose = ((pose_x, pose_y, pose_z), foward) ik_controller.control(tool_pose) # Sleep rate.sleep()
2,846
Python
32.494117
113
0.596978
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/controller/controller.py
import rospy import numpy as np class Controller(object): def __init__(self): pass def set_pose(self): raise NotImplementedError("Implement set_pose method") def control(self): raise NotImplementedError("Implement control method")
271
Python
18.42857
62
0.671587
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/controller/utils.py
import random import numpy as np import pybullet as p from collections import namedtuple from scipy.spatial.transform import Rotation as R from .hsrb_utils import get_joint_limits, get_joint_position, get_joint_positions, get_distance IKFastInfo = namedtuple('IKFastInfo', ['module_name', 'base_link', 'ee_link', 'free_joints']) USE_ALL = False USE_CURRENT = None ############ Mathematics def invert(pose): point, quat = pose return p.invertTransform(point, quat) # TODO: modify def multiply(*poses): pose = poses[0] for next_pose in poses[1:]: pose = p.multiplyTransforms(pose[0], pose[1], *next_pose) # TODO: modify return pose ############## def all_between(lower_limits, values, upper_limits): assert len(lower_limits) == len(values) assert len(values) == len(upper_limits) return np.less_equal(lower_limits, values).all() and \ np.less_equal(values, upper_limits).all() def compute_forward_kinematics(fk_fn, conf): pose = fk_fn(list(conf)) pos, rot = pose quat = R.from_matrix(rot).as_quat() return pos, quat def compute_inverse_kinematics(ik_fn, pose, sampled=[]): pos, quat = pose[0], pose[1] rot = R.from_quat(quat).as_matrix().tolist() if len(sampled) == 0: solutions = ik_fn(list(rot), list(pos)) else: solutions = ik_fn(list(rot), list(pos), list(sampled)) if solutions is None: return [] return solutions def get_ik_limits(joint, limits=USE_ALL): if limits is USE_ALL: return get_joint_limits(joint) elif limits is USE_CURRENT: value = get_joint_position(joint) return value, value return limits def select_solution(joints, solutions, nearby_conf=USE_ALL, **kwargs): if not solutions: return None if nearby_conf is USE_ALL: return random.choice(solutions) if nearby_conf is USE_CURRENT: nearby_conf = get_joint_positions(joints) return min(solutions, key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
2,034
Python
26.133333
95
0.656834
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/post_process.py
#!/usr/bin/env/python3 import numpy as np class PlanModifier(object): def __init__(self): self.block_rigid_map = { 'A' : 'red_shaft', 'B' : 'green_gear', 'C' : 'yellow_shaft', 'D' : 'blue_gear', 'E' : 'red_gear' } def post_process(self, action_name, object_names, args): """ Modify plan using sensor data. Args: plan (list): plan is trajectory of the tamp. robot_pose (list): robot_pose consists of base_pose, end_effector_pose, gripper. rigid_poses (dict): rigid_pose consists of captured rigid body poses Returns: commands (list): commands is modified plan """ if action_name == 'move_base': # Parse TAMP returns start_pose, end_pose, traj = args base_traj = [] for commands in traj.commands: for path in commands.path: base_traj.append(path.values) object_name = None new_command = (action_name, object_name, base_traj) elif action_name == 'pick': arm, block, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_pick] = traj.commands pick_traj = [] for path in traj_pick.path: pick_traj.append(path.values) return_traj = [] for path in traj_pick.reverse().path: return_traj.append(path.values) object_name = object_names[block] new_command = (action_name, object_name, (pick_traj, return_traj)) elif action_name == 'place': arm, block1, block2, init_block_pose, grasp_pose, term_robot_pose, traj = args [traj_place] = traj.commands place_traj = [] for path in traj_place.path: place_traj.append(path.values) object_name = object_names[block1] # TODO: check whether block1 is correct new_command = (action_name, object_name, (place_traj)) elif action_name == 'insert': arm, block1, block2, block_pose1, block_pose2, grasp_pose, _, _, traj = args [traj_insert, traj_depart, traj_return] = traj.commands insert_traj = [] for path in traj_insert.path: insert_traj.append(path.values) depart_traj = [] for path in traj_depart.path: depart_traj.append(path.values) return_traj = [] for path in traj_return.reverse().path: return_traj.append(path.values) object_name = object_names[block1] # TODO: check whether block1 is correct new_command = (action_name, object_name, (insert_traj, depart_traj, return_traj)) else: pass return new_command
2,898
Python
30.857143
93
0.536232
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/rl_agent.py
#!/usr/bin/env python3 import gym import copy import torch import numpy as np from rl_games.algos_torch import model_builder, torch_ext def rescale_actions(low, high, action): d = (high - low) / 2.0 m = (high + low) / 2.0 scaled_action = action * d + m return scaled_action class ResidualRL(object): def __init__(self, params): builder = model_builder.ModelBuilder() self.network = builder.load(params) self.states = None self.batch_size = 1 self.config = params['config'] self.clip_actions = self.config['clip_actions'] self.normalize_input = self.config['normalize_input'] self.normalize_value = self.config['normalize_value'] self.device = 'cuda' self.num_actions = self.config['num_actions'] self.num_observations = self.config['num_observations'] self.action_space = gym.spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) self.actions_num = self.action_space.shape[0] self.actions_low = torch.from_numpy(self.action_space.low.copy()).float().to(self.device) self.actions_high = torch.from_numpy(self.action_space.high.copy()).float().to(self.device) self.mask = [False] self.observation_space = gym.spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) obs_shape = self.observation_space.shape config = { 'actions_num' : self.actions_num, 'input_shape' : obs_shape, 'num_seqs' : self.config['num_actors'], 'value_size': self.config.get('value_size', 1), 'normalize_value': self.normalize_value, 'normalize_input': self.normalize_input, } self.model = self.network.build(config) self.model.to(self.device) self.model.eval() self.is_rnn = self.model.is_rnn() def get_action(self, obs, is_determenistic=True): obs = self.unsqueeze_obs(obs) obs = self.preprocess_obs(obs) input_dict = { 'is_train': False, 'prev_actions': None, 'obs' : obs, 'rnn_states' : self.states } with torch.no_grad(): res_dict = self.model(input_dict) mu = res_dict['mus'] action = res_dict['actions'] self.states = res_dict['rnn_states'] if is_determenistic: current_action = mu else: current_action = action if self.clip_actions: return rescale_actions(self.actions_low, self.actions_high, torch.clamp(current_action, -1.0, 1.0)) else: return current_action def unsqueeze_obs(self, obs): if type(obs) is dict: for k, v in obs.items(): obs[k] = self.unsqueeze_obs(v) else: if len(obs.size()) > 1 or obs.size()[0] > 1: obs = obs.unsqueeze(0) return obs def preprocess_obs(self, obs): if type(obs) is dict: obs = copy.copy(obs) for k, v in obs.items(): if v.dtype == torch.uint8: obs[k] = v.float() / 255.0 else: obs[k] = v.float() else: if obs.dtype == torch.uint8: obs = obs.float() / 255.0 return obs def restore(self, fn): checkpoint = torch_ext.load_checkpoint(fn) self.model.load_state_dict(checkpoint['model']) if self.normalize_input and 'running_mean_std' in checkpoint: self.model.running_mean_std.load_state_dict(checkpoint['running_mean_std']) def init_rnn(self): if self.is_rnn: rnn_states = self.model.get_default_rnn_state() self.states = [torch.zeros((s.size()[0], self.batch_size, s.size()[2]), dtype=torch.float32).to(self.device) for s in rnn_states] def reset(self): self.init_rnn()
4,007
Python
34.157894
130
0.564512
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/execute_plan.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #!/usr/bin/env/python3 import os import sys import yaml import rospy import torch import numpy as np from typing import Union from scipy.spatial.transform import Rotation as R # TODO: fix sys.path.append('/root/tamp-hsr/hsr_tamp/experiments/env_3d/') sys.path.append('..') from tamp_planner import TAMPPlanner from hsr_interface import HSRInterface from force_sensor_interface import ForceSensorInterface from post_process import PlanModifier from mocap_interface import MocapInterface from tf_interface import TfManager from rl_agent import ResidualRL sys.path.append('/root/tamp-hsr/') from hsr_rl.utils.hydra_cfg.reformat import omegaconf_to_dict from hsr_rl.tasks.utils.pinoc_utils import HSRIKSolver from hsr_rl.tasks.utils.ik_utils import DifferentialInverseKinematicsCfg, DifferentialInverseKinematics from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint def load_config(policy_name: str = 'pick'): file_name = os.path.join('.', 'config', policy_name + '_config.yaml') with open(file_name, 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) return config def norm_diff_pos(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1 - p2, p=2, dim=-1) return diff_norm def norm_diff_xy(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1[:2] - p2[:2], p=2, dim=-1) return diff_norm def norm_diff_rot(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm1 = torch.norm(q1 - q2, p=2, dim=-1) diff_norm2 = torch.norm(q2 - q1, p=2, dim=-1) diff_norm = torch.min(diff_norm1, diff_norm2) return diff_norm def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) def calc_diff_pos(p1, p2): return p1 - p2 def calc_diff_rot(q1, q2): q1 = normalize(q1) q2 = normalize(q2) scaling = torch.tensor([1, -1, -1, -1], device=q1.device) q1_inv = q1 * scaling q_diff = quaternion_multiply(q2, q1_inv) return q_diff class ExecutePlan(object): def __init__(self, standalone=False): # Initialize ROS node rospy.init_node('execute_tamp_plan') # Feedback rate self.control_freq = 3.0 self.rate = rospy.Rate(self.control_freq) self._device = 'cuda' self._command_type = 'position_rel' self._pd_control = False self._dt = torch.tensor(1.0, device=self._device) self._clip_obs = torch.tensor(5.0, device=self._device) # Core module self.tamp_planner = TAMPPlanner() self.hsr_interface = HSRInterface() self.tf_manager = TfManager() self.path_modifier = PlanModifier() self.mocap_interface = MocapInterface() self.ft_interface = ForceSensorInterface() self.hsr_ik_utils = HSRIKSolver() # Publisher self.arm_pub = rospy.Publisher('/hsrb/arm_trajectory_controller/command', JointTrajectory, queue_size=10) self.base_pub = rospy.Publisher('/hsrb/omni_base_controller/command', JointTrajectory, queue_size=10) pick_yaml = load_config('pick') place_yaml = load_config('place') insert_yaml = load_config('insert') pick_policy_cfg = omegaconf_to_dict(pick_yaml) place_policy_cfg = omegaconf_to_dict(place_yaml) insert_policy_cfg = omegaconf_to_dict(insert_yaml) # Skill based residual policy agents self.pick_agent = ResidualRL(pick_policy_cfg.get("params")) self.place_agent = ResidualRL(place_policy_cfg.get("params")) self.insert_agent = ResidualRL(insert_policy_cfg.get("params")) # Restore learned params self.pick_agent.restore(pick_policy_cfg["params"]["load_path"]) self.place_agent.restore(place_policy_cfg["params"]["load_path"]) self.insert_agent.restore(insert_policy_cfg["params"]["load_path"]) # Get action scales for each skills self.pick_action_scale = torch.tensor(pick_policy_cfg["params"]["config"]["action_scale"], device=self._device) self.place_action_scale = torch.tensor(place_policy_cfg["params"]["config"]["action_scale"], device=self._device) self.insert_action_scale = torch.tensor(insert_policy_cfg["params"]["config"]["action_scale"], device=self._device) # Set ik controller self.ik_controller = self.set_ik_controller() # Initialize Robot self.initialize_robot() # Initialize TAMP self.initialize_tamp() def initialize_robot(self): self.check_status() # Set gripper to configuration position self.hsr_interface.open_gripper() # Set arm to configuration position self.hsr_interface.initialize_arm() # Set base to configuration position self.hsr_interface.initialize_base() def initialize_tamp(self): # Get object poses object_poses = self.mocap_interface.get_poses() # Get robot poses robot_poses = self.hsr_interface.get_joint_positions() # Initialize tamp simulator observations = (robot_poses, object_poses) self.tamp_planner.initialize(observations) ######################### #### ROS utils #### ######################### def set_base_pose(self, base_pose): base_traj = JointTrajectory() base_traj.joint_names = ['odom_x', 'odom_y', 'odom_t'] # Set base trajectory assert len(base_pose) == 3, "Does not match the size of base pose" base_p = JointTrajectoryPoint() base_p.positions = base_pose base_p.velocities = np.zeros(len(base_pose)) # TODO: modify velocity base_p.time_from_start = rospy.Duration(1) base_traj.points = [base_p] return base_traj def set_arm_pose(self, arm_pose): arm_traj = JointTrajectory() arm_traj.joint_names = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Set arm trajectory assert len(arm_pose) == 5, "Does not match the size of base pose" arm_p = JointTrajectoryPoint() arm_p.positions = arm_pose arm_p.velocities = np.zeros(len(arm_pose)) # TODO: modify velocity arm_p.time_from_start = rospy.Duration(1) arm_traj.points = [arm_p] return arm_traj def check_status(self): # Wait for publisher has built while self.base_pub.get_num_connections() == 0: rospy.sleep(0.1) while self.arm_pub.get_num_connections() == 0: rospy.sleep(0.1) ########################## #### TAMP utils #### ########################## def plan(self): # Run TAMP plan, _, _ = self.tamp_planner.plan() return plan def process(self, action_name, args): # Get object names object_names = self.tamp_planner.tamp_problem.body_names # Modify plan action_name, object_name, modified_action = self.path_modifier.post_process(action_name, object_names, args) return action_name, object_name, modified_action ######################### #### RL utils #### ######################### def get_pick_observation(self, obj_name, pick_pose, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target end effector and object pose target_ee_pos, target_ee_rot = pick_pose[0], pick_pose[1] target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_ee_pos, target_ee_rot = torch.tensor(target_ee_pos), torch.tensor(target_ee_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, target_ee_pos) # difference ee_pos and pick_pos diff_ee_rot = calc_diff_rot(ee_rot, target_ee_rot) # difference ee_rot and pick_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def get_place_observation(self, obj_name, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target pose from base pose target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, obj_pos) # difference ee_pos and obj_pos diff_ee_rot = calc_diff_rot(ee_rot, obj_rot) # difference ee_rot and obj_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def get_insert_observation(self, obj_name, target_obj_pose) -> torch.Tensor: # Get joint pose joint_pose = self.hsr_interface.get_joint_positions(group='arm') # Get end effector and target object pose ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) # Calculate target pose from base pose target_obj_pos, target_obj_rot = target_obj_pose[0], target_obj_pose[1] # To Tensor joint_pose = torch.tensor(joint_pose) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # TODO: -torch.tensor(ee_rot) obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_obj_pos, target_obj_rot = torch.tensor(target_obj_pos), torch.tensor(target_obj_rot) diff_ee_pos = calc_diff_pos(ee_pos, obj_pos) # difference ee_pos and obj_pos diff_ee_rot = calc_diff_rot(ee_rot, obj_rot) # difference ee_rot and obj_rot diff_obj_pos = calc_diff_pos(obj_pos, target_obj_pos) # difference obj_pos and target_pos diff_obj_rot = calc_diff_rot(obj_rot, target_obj_rot) # difference obj_rot and target_rot obs = torch.cat((joint_pose, diff_ee_pos, diff_ee_rot, diff_obj_pos, diff_obj_rot)) obs = self._process_data(obs) return obs def _process_data(self, obs: torch.Tensor) -> torch.Tensor: # To device obs = obs.to(self._device) # To torch.float32 obs = obs.to(torch.float32) # Clamp observation obs = torch.clamp(obs, -self._clip_obs, self._clip_obs).to(self._device).clone() return obs def check_pick_status(self, obj_name): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) ee_pos, ee_rot = torch.tensor(ee_pos), torch.tensor(ee_rot) # Calculate norm distance pos_dist = norm_diff_pos(ee_pos, obj_pos) print('pick distance:', pos_dist) pick_success = torch.where( pos_dist < torch.tensor([0.1]), torch.ones((1,)), torch.zeros((1,)) ) return True def check_place_status(self, obj_name, target_obj_pose): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) target_pos, target_rot = target_obj_pose[0], target_obj_pose[1] obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_pos, target_rot = torch.tensor(target_pos), torch.tensor(target_rot) # Calculate norm distance pos_dist = norm_diff_pos(obj_pos, target_pos) print('place distance:', pos_dist) place_success = torch.where( pos_dist < torch.tensor([0.03]), torch.ones((1,)), torch.zeros((1,)) ) return True def check_insert_status(self, obj_name, target_obj_pose): obj_pos, obj_rot = self.mocap_interface.get_pose(obj_name) target_pos, target_rot = target_obj_pose[0], target_obj_pose[1] obj_pos, obj_rot = torch.tensor(obj_pos), torch.tensor(obj_rot) target_pos, target_rot = torch.tensor(target_pos), torch.tensor(target_rot) # Calculate norm distance pos_dist = norm_diff_pos(obj_pos, target_pos) print('insert distance:', pos_dist) insert_success = torch.where( pos_dist < torch.tensor([0.02]), torch.ones((1,)), torch.zeros((1,)) ) return insert_success ########################## #### Real Robot utils #### ########################## def set_ik_controller(self): ik_control_cfg = DifferentialInverseKinematicsCfg( command_type=self._command_type, ik_method="dls", position_offset=(0.0, 0.0, 0.0), rotation_offset=(1.0, 0.0, 0.0, 0.0), ) return DifferentialInverseKinematics(ik_control_cfg, 1, self._device) def calculate_base_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='base') curr_vel = self.hsr_interface.get_joint_velocities(group='base') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.25 kd = 0.1 command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def calculate_arm_command(self, target_pose): curr_pose = self.hsr_interface.get_joint_positions(group='arm') curr_vel = self.hsr_interface.get_joint_velocities(group='arm') diff_pose = np.array(target_pose) - np.array(curr_pose) diff_vel = np.array(curr_vel) kp = 1.25 kd = 0.1 command = kp * diff_pose + kd * diff_vel command += np.array(curr_pose) return command def execute(self): plan = self.plan() if plan is None: return None for i, (action_name, args) in enumerate(plan): # Post process TAMP commands to hsr executable actions action_name, object_name, modified_action = self.process(action_name, args) if action_name == 'move_base': for target_pose in modified_action: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) else: target_base_pose = target_pose[:3] base_traj = self.set_base_pose(target_base_pose) self.base_pub.publish(base_traj) self.rate.sleep() elif action_name == 'pick': finish = False pick_traj, return_traj = modified_action for target_pose in pick_traj: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_pick_observation(object_name, pick_pose, target_obj_pose) # Residual action with torch.no_grad(): actions = self.pick_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.pick_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() rospy.sleep(2.0) self.hsr_interface.close_gripper() for target_pose in return_traj: # return if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'place': finish = False place_traj = modified_action for target_pose in place_traj: if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_place_observation(object_name, target_obj_pose) # Residual action with torch.no_grad(): actions = self.place_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.place_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() elif action_name == 'insert': finish = False loop_count = 0 insert_traj, depart_traj, return_traj = modified_action while not finish: # insert target_pose = insert_traj[loop_count] if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] # Get observation obs = self.get_insert_observation(object_name, target_obj_pose) # Residual action with torch.no_grad(): actions = self.insert_agent.get_action(obs) # Multiply target 6D pose and residual 6D pose ik_action = self._dt * self.insert_action_scale * actions.to(self._device) # (dx, dy, dz) self.ik_controller.set_command(ik_action) # Calculate robot jacobian ee_pos, ee_rot = self.hsr_interface.get_link_pose('hand_palm_link') joint_positions = np.array(self.hsr_interface.get_joint_positions()) robot_jacobian = self.hsr_ik_utils.get_jacobian(joint_positions) # To tensor and device ee_pos = torch.tensor(ee_pos, dtype=torch.float32, device=self._device).view(1, 3) ee_rot = -torch.tensor(ee_rot, dtype=torch.float32, device=self._device).view(1, 4) robot_jacobian = torch.tensor(robot_jacobian, dtype=torch.float32, device=self._device).view(1, -1, 8) # Calcurate delta pose delta_pose = self.ik_controller.compute_delta(ee_pos, ee_rot, robot_jacobian) delta_pose = torch.squeeze(delta_pose, dim=0) delta_pose = delta_pose.to('cpu').detach().numpy().copy() # 8 dim # Add delta pose to reference trajectory target_base_pose += delta_pose[:3] target_arm_pose += delta_pose[3:] # Set target pose base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) prev_ft_data = self.ft_interface.get_current_force() # Publish command self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() loop_count += 1 if loop_count >= len(insert_traj): loop_count = len(insert_traj)-1 current_ft_data = self.ft_interface.get_current_force() force_difference = self.ft_interface.compute_difference(prev_ft_data, current_ft_data) weight = round(force_difference / 9.81 * 1000, 1) finish = bool(self.check_insert_status(object_name)) finish |= True if weight > 500 else False rospy.sleep(2.0) self.hsr_interface.open_gripper() for target_pose in depart_traj: # depart if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() for target_pose in return_traj: # return if self._pd_control: target_base_pose = self.calculate_base_command(target_pose[:3]) target_arm_pose = self.calculate_arm_command(target_pose[3:]) else: target_base_pose = target_pose[:3] target_arm_pose = target_pose[3:] base_traj = self.set_base_pose(target_base_pose) arm_traj = self.set_arm_pose(target_arm_pose) self.base_pub.publish(base_traj) self.arm_pub.publish(arm_traj) self.rate.sleep() else: continue if __name__ == '__main__': exec_plan = ExecutePlan() exec_plan.execute()
28,687
Python
41.188235
123
0.578799
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/config/place_config.yaml
name: HSRGearboxResidualPlacePPO params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: None load_checkpoint: True # flag which sets whether to load the checkpoint load_path: runs/HSRGearboxResidualPlace/nn/HSRGearboxResidualPlace.pth # path to the checkpoint to load config: name: HSRGearboxResidualPlace full_experiment_name: HSRGearboxResidualPlace env_name: rlgpu device: cuda device_name: cuda multi_gpu: False ppo: True mixed_precision: False clip_actions: True normalize_input: True normalize_value: True num_actors: 1 num_actions: 3 num_observations: 19 action_scale: 0.03 reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 256 save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,615
YAML
20.263158
105
0.629102
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/config/insert_config.yaml
name: HSRGearboxResidualInsertPPO params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: None load_checkpoint: True # flag which sets whether to load the checkpoint load_path: runs/HSRGearboxResidualInsert/nn/HSRGearboxResidualInsert.pth # path to the checkpoint to load config: name: HSRGearboxResidualInsert full_experiment_name: HSRGearboxResidualInsert env_name: rlgpu device: cuda device_name: cuda multi_gpu: False ppo: True mixed_precision: False clip_actions: True normalize_input: True normalize_value: True num_actors: 1 num_actions: 3 num_observations: 19 action_scale: 0.03 reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 256 save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,620
YAML
20.328947
107
0.630247
makolon/hsr_isaac_tamp/hsr_ros/hsr_ws/src/env_3d/script/rl_policy/config/pick_config.yaml
name: HSRGearboxResidualPickPPO params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu initializer: name: default regularizer: name: None load_checkpoint: True # flag which sets whether to load the checkpoint load_path: runs/HSRGearboxResidualPick/nn/HSRGearboxResidualPick.pth # path to the checkpoint to load config: name: HSRGearboxResidualPick full_experiment_name: HSRGearboxResidualPick env_name: rlgpu device: cuda device_name: cuda multi_gpu: False ppo: True mixed_precision: False clip_actions: True normalize_input: True normalize_value: True num_actors: 1 num_actions: 3 num_observations: 19 action_scale: 0.03 reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 256 save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,610
YAML
20.197368
103
0.62795
makolon/hsr_isaac_tamp/hsr_rl/README.md
# HSR-RL
9
Markdown
3.999998
8
0.555555
makolon/hsr_isaac_tamp/hsr_rl/envs/isaac_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvBase import torch import numpy as np from datetime import datetime # VecEnv Wrapper for RL training class IsaacEnvRlgames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = self._rew.to(self._task.rl_device).clone() self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = self._resets.to(self._task.rl_device).clone() self._extras = self._extras.copy() def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self._task.pre_physics_step(actions) for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self): """ Resets the task and applies default zero actions to recompute observations and states. """ now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device) obs_dict, _, _, _ = self.step(actions) return obs_dict
3,934
Python
42.722222
124
0.6909
makolon/hsr_isaac_tamp/hsr_rl/envs/isaac_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvMT from omni.isaac.gym.vec_env import TaskStopException from .isaac_env_rlgames import IsaacEnvRlgames import torch import numpy as np # VecEnv Wrapper for RL training class IsaacEnvRlgamesMT(IsaacEnvRlgames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"].clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() def step(self, actions): if self._stop: raise TaskStopException() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization(observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,155
Python
44.085714
163
0.716006
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_place.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.articulations.articulation_view import ArticulationView from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.stage import print_stage_prim_paths from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.objects import DynamicSphere, DynamicCuboid, FixedCuboid from omni.isaac.sensor import _sensor import re import torch from pxr import Usd, UsdGeom class HSRExamplePlaceTask(RLTask): def __init__( self, name, sim_config, env, ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = torch.tensor(self._task_cfg["sim"]["dt"] * self._task_cfg["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._num_props = self._task_cfg["env"]["numProps"] self._table_height = 0.2 self._table_width = 0.65 self._table_depth = 1.2 self._table_size = 1.0 self._prop_size = 0.04 self._hsr_position = torch.tensor([0.0, 0.0, 0.03], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.5, 0.0, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._prop_position = torch.tensor([1.3, 0.0, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0.0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) self.initial_dof_positions = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, -0.392699, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] # Add contact sensor self._contact_sensor_interface = _sensor.acquire_contact_sensor_interface() self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_prop() self.add_table() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, color=torch.tensor([0.2, 0.4, 0.6]), mass=0.1, density=100.0) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) def add_table(self): table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:23] = end_effector_orientations self.obs_buf[..., 23:26] = end_effector_linvels self.obs_buf[..., 26:29] = end_effector_angvels self.obs_buf[..., 29:32] = prop_positions self.obs_buf[..., 32:36] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # Update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_positions(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = -0.01 # min horizontal dist from origin max_d = 0.01 # max horizontal dist from origin min_height = 0.01 max_height = 0.02 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_positions(self.initial_dof_positions, indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the box dist_hand = torch.norm(self.obs_buf[..., 29:32] - self.obs_buf[..., 16:19], p=2, dim=-1) # Distance from left gripper to the box lfinger_pos, _ = self._robots._lfingers.get_world_poses(clone=False) lfinger_pos -= self._env_pos dist_lf = torch.norm(self.obs_buf[..., 29:32] - lfinger_pos, p=2, dim=-1) # Distance from right gripper to the box rfinger_pos, _ = self._robots._rfingers.get_world_poses(clone=False) rfinger_pos -= self._env_pos dist_rf = torch.norm(self.obs_buf[..., 29:32] - rfinger_pos, p=2, dim=-1) dist_reward = 1.0 - torch.tanh(10.0 * (dist_hand + dist_lf + dist_rf) / 3) self.rew_buf[:] = dist_reward # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_threashold=0.24) self.rew_buf[:] += lift_success * self._task_cfg['rl']['success_bonus'] self.extras['successes'] = torch.mean(lift_success.float()) def is_done(self) -> None: # prop height index is 31, NOTE: modify according to observation self.reset_buf = torch.where( self.obs_buf[:, 31] <= self._table_height, torch.ones_like(self.reset_buf), self.reset_buf ) self.reset_buf = torch.where( self.progress_buf[:] >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: self._close_gripper(sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) self._lift_gripper(sim_steps=self._task_cfg['env']['num_gripper_lift_sim_steps']) self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def _get_keypoint_dist(self): # end effector pose indices are 0:3, and prop pose indices are 13:16 keypoint_dist = torch.sum(torch.norm(self.obs_buf[:, 0:3] - self.obs_buf[:, 13:16], p=2, dim=-1), dim=-1) return keypoint_dist def _close_gripper(self, sim_steps=10): gripper_dof_pos = torch.tensor([-1.75, -1.75], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(gripper_dof_pos, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) def _lift_gripper(self, sim_steps=10): lift_dof_pos = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(lift_dof_pos) SimulationContext.step(self._env._world, render=True) def _check_lift_success(self, height_threashold): lift_success = torch.where( self.prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def _check_robot_collisions(self): # Check if the robot collided with an object for obst_prim in self._tables._prim_paths: match = re.search(r'\d+', obst_prim) env_id = int(match.group()) raw_readings = self._contact_sensor_interface.get_contact_sensor_raw_data(obst_prim + "/Contact_Sensor") if raw_readings.shape[0]: for reading in raw_readings: if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body1"])): self.is_collided[env_id] = True if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body0"])): self.is_collided[env_id] = True collide_penalty = torch.where( self.is_collided == True, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return collide_penalty
20,725
Python
45.68018
170
0.623836
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_insert.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.tasks.base.hsr_task import HSRBaseTask from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.articulations.articulation_view import ArticulationView from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp from omni.isaac.core.utils.stage import print_stage_prim_paths from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.objects import DynamicSphere, DynamicCuboid, FixedCuboid from pxr import Usd, UsdGeom class HSRExampleInsertTask(HSRBaseTask): def __init__( self, name, sim_config, env, ) -> None: HSRBaseTask.__init__(self, name, sim_config, env) self._num_props = self._task_cfg["env"]["numProps"] self._prop_size = self._task_cfg["env"]["propSize"] self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) return def set_up_environment(self): self._prop_position = torch.tensor([1.3, 0.0, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) def set_up_scene(self, scene) -> None: self.add_hsr() self.add_prop() self.add_table() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, color=torch.tensor([0.2, 0.4, 0.6]), mass=0.1, density=100.0) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) def add_table(self): table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:23] = end_effector_orientations self.obs_buf[..., 23:26] = end_effector_linvels self.obs_buf[..., 26:29] = end_effector_angvels self.obs_buf[..., 29:32] = prop_positions self.obs_buf[..., 32:36] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # Update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_positions(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = -0.01 # min horizontal dist from origin max_d = 0.01 # max horizontal dist from origin min_height = 0.01 max_height = 0.02 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_positions(self.initial_dof_positions, indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the box dist_hand = torch.norm(self.obs_buf[..., 29:32] - self.obs_buf[..., 16:19], p=2, dim=-1) # Distance from left gripper to the box lfinger_pos, _ = self._robots._lfingers.get_world_poses(clone=False) lfinger_pos -= self._env_pos dist_lf = torch.norm(self.obs_buf[..., 29:32] - lfinger_pos, p=2, dim=-1) # Distance from right gripper to the box rfinger_pos, _ = self._robots._rfingers.get_world_poses(clone=False) rfinger_pos -= self._env_pos dist_rf = torch.norm(self.obs_buf[..., 29:32] - rfinger_pos, p=2, dim=-1) dist_reward = 1.0 - torch.tanh(10.0 * (dist_hand + dist_lf + dist_rf) / 3) self.rew_buf[:] = dist_reward # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_threashold=0.24) self.rew_buf[:] += lift_success * self._task_cfg['rl']['success_bonus'] self.extras['successes'] = torch.mean(lift_success.float()) def is_done(self) -> None: # prop height index is 31, NOTE: modify according to observation self.reset_buf = torch.where( self.obs_buf[:, 31] <= self._table_height, torch.ones_like(self.reset_buf), self.reset_buf ) self.reset_buf = torch.where( self.progress_buf[:] >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant is_last_step = (self.progress_buf[0] == self._max_episode_length - 1) if is_last_step: self._close_gripper(sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) self._lift_gripper(sim_steps=self._task_cfg['env']['num_gripper_lift_sim_steps']) self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def _get_keypoint_dist(self): # end effector pose indices are 0:3, and prop pose indices are 13:16 keypoint_dist = torch.sum(torch.norm(self.obs_buf[:, 0:3] - self.obs_buf[:, 13:16], p=2, dim=-1), dim=-1) return keypoint_dist def _close_gripper(self, sim_steps=10): gripper_dof_pos = torch.tensor([-1.75, -1.75], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(gripper_dof_pos, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) def _lift_gripper(self, sim_steps=10): lift_dof_pos = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_velocity_targets(lift_dof_pos) SimulationContext.step(self._env._world, render=True) def _check_lift_success(self, height_threashold): lift_success = torch.where( self.prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def _check_robot_collisions(self): # Check if the robot collided with an object for obst_prim in self._tables._prim_paths: match = re.search(r'\d+', obst_prim) env_id = int(match.group()) raw_readings = self._contact_sensor_interface.get_contact_sensor_raw_data(obst_prim + "/Contact_Sensor") if raw_readings.shape[0]: for reading in raw_readings: if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body1"])): self.is_collided[env_id] = True if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body0"])): self.is_collided[env_id] = True collide_penalty = torch.where( self.is_collided == True, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return collide_penalty
18,130
Python
45.850129
170
0.62995
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_cabinet.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.cabinet import Cabinet from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.robots.articulations.views.cabinet_view import CabinetView from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.cloner import Cloner import math import torch import numpy as np from pxr import Usd, UsdGeom # Whole Body example task with holonomic robot base class HSRExampleCabinetTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] self.distX_offset = 0.04 self.dt = 1/60. self._num_observations = 35 self._num_actions = 15 RLTask.__init__(self, name, env) self.hsr_position = torch.tensor([1.5, 0.0, 0.03]) self.hsr_rotation = torch.tensor([0.0, 0.0, 0.0, 1.0]) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_cabinet() if self.num_props > 0: self.add_props() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False) scene.add(self._props) self.init_data() return def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self.hsr_position, orientation=self.hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings("cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet")) def add_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.04 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0 ) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos)+drawer_pos.numpy(), replicate_physics=False ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose(self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_palm_link")), self._device) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_l_proximal_link")), self._device ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/hsrb/hand_r_proximal_link")), self._device ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = (tf_inverse(hand_pose[3:7], hand_pose[0:3])) grasp_pose_axis = 1 hsr_local_grasp_pose_rot, hsr_local_pose_pos = tf_combine(hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3]) hsr_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.hsr_local_grasp_pos = hsr_local_pose_pos.repeat((self._num_envs, 1)) self.hsr_local_grasp_rot = hsr_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.hsr_default_dof_pos = torch.tensor( [0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, -0.392699, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self): hand_pos, hand_rot = self._robots._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) hsr_dof_pos = self._robots.get_joint_positions(clone=False) hsr_dof_vel = self._robots.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.hsr_dof_pos = hsr_dof_pos self.hsr_grasp_rot, self.hsr_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos = self.compute_grasp_transforms( hand_rot, hand_pos, self.hsr_local_grasp_rot, self.hsr_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.hsr_lfinger_pos, self.hsr_lfinger_rot = self._robots._lfingers.get_world_poses(clone=False) self.hsr_rfinger_pos, self.hsr_rfinger_rot = self._robots._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (hsr_dof_pos - self.hsr_dof_lower_limits) / (self.hsr_dof_upper_limits - self.hsr_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.hsr_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, hsr_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.hsr_dof_targets + self.hsr_dof_speed_scales * self.dt * self.actions * self.action_scale self.hsr_dof_targets[:] = tensor_clamp(targets, self.hsr_dof_lower_limits, self.hsr_dof_upper_limits) env_ids_int32 = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) self._robots.set_joint_positions(self.hsr_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset hsr pos = tensor_clamp( self.hsr_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_hsr_dofs), device=self._device) - 0.5), self.hsr_dof_lower_limits, self.hsr_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._robots.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._robots.num_dof), device=self._device) dof_pos[:, :] = pos self.hsr_dof_targets[env_ids, :] = pos self.hsr_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions(torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices) self._cabinets.set_joint_velocities(torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32) ) self._robots.set_joint_position_targets(self.hsr_dof_targets[env_ids], indices=indices) self._robots.set_joint_positions(dof_pos, indices=indices) self._robots.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_hsr_dofs = self._robots.num_dof self.hsr_dof_pos = torch.zeros((self.num_envs, self.num_hsr_dofs), device=self._device) dof_limits = self._robots.get_dof_limits() self.hsr_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.hsr_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.hsr_dof_speed_scales = torch.ones_like(self.hsr_dof_lower_limits) self.hsr_dof_speed_scales[self._robots.gripper_indices] = 0.1 self.hsr_dof_targets = torch.zeros( (self._num_envs, self.num_hsr_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_hsr_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.hsr_grasp_pos, self.drawer_grasp_pos, self.hsr_grasp_rot, self.drawer_grasp_rot, self.hsr_lfinger_pos, self.hsr_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.hsr_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) def compute_grasp_transforms( self, hand_rot, hand_pos, hsr_local_grasp_rot, hsr_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_hsr_rot, global_hsr_pos = tf_combine( hand_rot, hand_pos, hsr_local_grasp_rot, hsr_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_hsr_rot, global_hsr_pos, global_drawer_rot, global_drawer_pos def compute_hsr_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, hsr_grasp_pos, drawer_grasp_pos, hsr_grasp_rot, drawer_grasp_rot, hsr_lfinger_pos, hsr_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(hsr_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d ** 2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(hsr_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(hsr_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of forward axis for gripper dot2 = torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1 ** 2 + torch.sign(dot2) * dot2 ** 2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where(hsr_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(hsr_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward), around_handle_reward) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(hsr_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(hsr_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where(hsr_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(hsr_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward), finger_dist_reward) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where(d <=0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions ** 2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = dist_reward_scale * dist_reward + rot_reward_scale * rot_reward \ + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward \ + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) return rewards
21,223
Python
47.346241
222
0.625077
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_reach.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, torch_random_dir_2 from omni.isaac.core.objects import DynamicSphere # Whole Body example task with holonomic robot base class HSRExampleReachTask(RLTask): def __init__( self, name, sim_config, env ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = torch.tensor(self._sim_config.task_config["sim"]["dt"] * self._sim_config.task_config["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._hsr_position = torch.tensor([0.0, 0.0, 0.01], device=self._device) # ball properties self._ball_position = torch.tensor([1.5, 0.0, 0.045], device=self._device) self._ball_radius = torch.tensor([0.05], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) # Opened gripper by default # joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_ball() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") # ArticulationView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view", reset_xform_properties=False) scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add ball to scene self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False) scene.add(self._balls) return def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=0.05, color=torch.tensor([0.2, 0.4, 0.6]), ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) def get_observations(self): # Get ball positions and orientations ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos # Get ball velocities ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:22] = end_effector_linvels self.obs_buf[..., 22:25] = ball_positions self.obs_buf[..., 25:28] = ball_linvels self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = { "hsr_reach": { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._robots.set_joint_positions(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.4 # max horizontal dist from origin min_height = 0.0 max_height = 0.2 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset root pose and velocity self._robots.set_world_poses(self.initial_robot_pos[env_ids_64].clone(), self.initial_robot_rot[env_ids_64].clone(), indices=env_ids_32) self._robots.set_velocities(self.initial_robot_velocities[env_ids_64].clone(), indices=env_ids_32) # reset DOF states for bbots in selected envs self._robots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() dof_limits = self._robots.get_dof_limits() self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) # reset ball pos / rot, and velocities self.initial_dof_positions = self._robots.get_joint_positions() self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_ball_velocities = self._balls.get_velocities() self.dof_position_targets = self._robots.get_joints_default_state().positions self.actuated_dof_indices = torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def calculate_metrics(self) -> None: # Distance from hand to the ball dist = torch.norm(self.obs_buf[..., 22:25] - self.obs_buf[..., 16:19], p=2, dim=-1) dist_reward = 1.0 / (1.0 + dist ** 2) dist_reward *= dist_reward dist_reward = torch.where(dist <= 0.02, dist_reward * 2, dist_reward) self.rew_buf[:] = dist_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where(self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset) self.reset_buf[:] = reset def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel)
15,063
Python
45.637771
193
0.642701
makolon/hsr_isaac_tamp/hsr_rl/tasks/example/hsr_pick.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import carb import hydra import torch import numpy as np from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.utils.dataset_utils import load_dataset from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.tasks.utils.scene_utils import spawn_dynamic_object from hsr_rl.tasks.utils.ik_utils import DifferentialInverseKinematics, DifferentialInverseKinematicsCfg from omni.isaac.core.prims import GeometryPrimView, RigidPrimView, XFormPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, print_stage_prim_paths from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp from omni.isaac.core.utils.torch.rotations import euler_angles_to_quats, quat_diff_rad, torch_random_dir_2 from omni.isaac.core.objects import FixedCuboid, DynamicCuboid from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.sensor import _sensor from omni.isaac.surface_gripper._surface_gripper import Surface_Gripper_Properties, Surface_Gripper from omni.physx.scripts import utils, physicsUtils from pxr import Gf, Sdf, UsdGeom, PhysxSchema, UsdPhysics class HSRExamplePickTask(RLTask): def __init__( self, name, sim_config, env ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] # Get dt for integrating velocity commands and checking limit violations self._dt = torch.tensor(self._task_cfg["sim"]["dt"] * self._task_cfg["env"]["controlFrequencyInv"], device=self._device) self._action_type = self._task_cfg["env"]["action_type"] self._target_space = self._task_cfg["env"]["target_space"] self._num_props = self._task_cfg["env"]["numProps"] self._num_actions = self._task_cfg["env"]["num_actions"] self._num_observations = self._task_cfg["env"]["num_observations"] # Table and prop settings self._table_height = 0.2 self._table_width = 0.65 self._table_depth = 1.2 self._table_size = 1.0 self._prop_size = self._sim_config.task_config["sim"]["parts"]["size"] self._prop_mass = self._sim_config.task_config["sim"]["parts"]["mass"] self._prop_density = self._sim_config.task_config["sim"]["parts"]["density"] self._prop_static_friction = self._sim_config.task_config["sim"]["parts"]["static_friction"] self._prop_dynamic_friction = self._sim_config.task_config["sim"]["parts"]["dynamic_friction"] self._prop_restitution = self._sim_config.task_config["sim"]["parts"]["restitution"] self._gripper_mass = self._sim_config.task_config["sim"]["gripper"]["mass"] self._gripper_density = self._sim_config.task_config["sim"]["gripper"]["density"] self._gripper_static_friction = self._sim_config.task_config["sim"]["gripper"]["static_friction"] self._gripper_dynamic_friction = self._sim_config.task_config["sim"]["gripper"]["dynamic_friction"] self._gripper_restitution = self._sim_config.task_config["sim"]["gripper"]["restitution"] self._pick_success = self._table_height + 0.05 self._place_success = torch.tensor([0.2, 0.2], device=self._device) self._hsr_position = torch.tensor([0.0, 0.0, 0.03], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.4, 0.0, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._prop_position = torch.tensor([1.25, 0.0, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, 0.0, 0.0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) self.initial_dof_positions = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, 0.0, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device) # Dof joint gains self.joint_kps = torch.tensor([1e9, 1e9, 5.7296e10, 1e9, 1e9, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 2.8648e4, 2.8648e4, 5.7296e10, 5.7296e10], device=self._device) self.joint_kds = torch.tensor([1.4, 1.4, 80.2141, 1.4, 0.0, 80.2141, 0.0, 80.2141, 0.0, 80.2141, 80.2141, 17.1887, 17.1887, 17.1887, 17.1887], device=self._device) # Dof joint friction coefficients self.joint_friction_coefficients = torch.tensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] # Add contact sensor self._contact_sensor_interface = _sensor.acquire_contact_sensor_interface() self.replay_count = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.lift_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.place_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.gripper_close = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_open = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_hold = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.exp_actions = self.load_exp_dataset() self.ik_controller = self.set_ik_controller() self._dynamic_control = _dynamic_control.acquire_dynamic_control_interface() RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.create_prop_material() self.create_gripper_material() self.add_hsr() self.add_prop() self.add_table() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def create_prop_material(self): self._stage = get_current_stage() self.propPhysicsMaterialPath = "/World/Physics_Materials/PropMaterial" utils.addRigidBodyMaterial( self._stage, self.propPhysicsMaterialPath, density=self._prop_density, staticFriction=self._prop_static_friction, dynamicFriction=self._prop_dynamic_friction, ) def create_gripper_material(self): self._stage = get_current_stage() self.gripperPhysicsMaterialPath = "/World/Physics_Materials/GripperMaterial" utils.addRigidBodyMaterial( self._stage, self.gripperPhysicsMaterialPath, density=self._gripper_density, staticFriction=self._gripper_static_friction, dynamicFriction=self._gripper_dynamic_friction, restitution=self._gripper_restitution ) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, color=torch.tensor([0.2, 0.4, 0.6]), mass=0.1, density=100.0) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath(self.default_zero_env_path + "/prop"), self.propPhysicsMaterialPath ) def add_table(self): table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:10] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 10:20] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 20:23] = end_effector_positions self.obs_buf[..., 23:27] = end_effector_orientations self.obs_buf[..., 27:30] = end_effector_linvels self.obs_buf[..., 30:33] = end_effector_angvels self.obs_buf[..., 33:36] = prop_positions self.obs_buf[..., 38:42] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) if self._target_space == "task": # Set IK target positions replay_indices = torch.tensor(self.replay_count) actions = self.exp_actions[replay_indices, :self._num_actions] self.ik_controller.set_command(actions) # Calculate joint positions ee_pos, ee_rot = self._robots._fingertip_centered.get_world_poses() ee_pos -= self._env_pos robot_jacobian = self._robots.get_jacobians(clone=False)[:, self._robots._body_indices['hand_palm_link'], :, self.movable_dof_indices] joint_positions = self._robots.get_joint_positions(joint_indices=self.movable_dof_indices) self.dof_position_targets[..., self.movable_dof_indices] = self.ik_controller.compute( ee_pos, ee_rot, robot_jacobian, joint_positions ) else: # Update position targets from actions self.dof_position_targets[..., self.movable_dof_indices] = self._robots.get_joint_positions(joint_indices=self.movable_dof_indices) self.dof_position_targets[..., self.movable_dof_indices] += self.exp_actions[self.replay_count, :self._num_actions] self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_position_targets(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.0 # min horizontal dist from origin max_d = 0.0 # max horizontal dist from origin min_height = 0.0 # min vertical dist from origin max_height = 0.0 # min vertical dist from origin dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_position_targets(self.initial_dof_positions, indices=env_ids_32) # bookkeeping self.gripper_close[env_ids] = False self.gripper_open[env_ids] = False self.gripper_hold[env_ids] = False self.replay_count[env_ids] = 0 self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 self.lift_success[env_ids] = 0 self.place_success[env_ids] = 0 def post_reset(self): if self._task_cfg["sim"]["disable_gravity"]: self.disable_gravity() self.set_dof_idxs() self.set_dof_limits() self.set_default_state() self.set_joint_gains() self.set_joint_frictions() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the ball dist = torch.norm(self.obs_buf[..., 33:36] - self.obs_buf[..., 20:23], p=2, dim=-1) dist_reward = 1.0 / (1.0 + dist ** 2) dist_reward *= dist_reward dist_reward = torch.where(dist <= 0.02, dist_reward * 2, dist_reward) self.rew_buf[:] = dist_reward * self._task_cfg['rl']['distance_scale'] # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == int(self.exp_actions.size()[0] - 1)) if is_last_step: # Check if block is picked up and above table lift_success = self._check_lift_success(height_threashold=self._pick_success) self.rew_buf[:] += lift_success * self._task_cfg['rl']['pick_success_bonus'] self.extras['lift_successes'] = torch.mean(lift_success.float()) self.lift_success = torch.where( lift_success[:] == 1, torch.ones_like(lift_success), -torch.ones_like(lift_success) ) def is_done(self) -> None: self.reset_buf = torch.where( self.progress_buf == self.exp_actions.size()[0] - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.replay_count[:] += 1 self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant replay_indices = torch.tensor(self.replay_count) self.gripper_close = self.exp_actions[replay_indices, -1] < -0.01 self.gripper_open = self.exp_actions[replay_indices, -1] > 0.01 if torch.any(self.gripper_close): close_indices = torch.where(self.gripper_close)[0] self._close_gripper(close_indices, sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) elif torch.any(self.gripper_open): open_indices = torch.where(self.gripper_open)[0] self._open_gripper(open_indices, sim_steps=self._task_cfg['env']['num_gripper_open_sim_steps']) elif torch.any(self.gripper_hold): hold_indices = torch.where(self.gripper_hold)[0] self._hold_gripper(hold_indices) self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs+self.gripper_proximal_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10, 11, 12]).to(self._device) self.movable_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def set_joint_gains(self): self._robots.set_gains(kps=self.joint_kps, kds=self.joint_kds) def set_joint_frictions(self): self._robots.set_friction_coefficients(self.joint_friction_coefficients) def _close_gripper(self, env_ids, sim_steps=10): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-0.1, -0.1], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = True def _open_gripper(self, env_ids, sim_steps=10): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([0.5, 0.5], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = False def _hold_gripper(self, env_ids): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-0.1, -0.1], device=self._device) self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) def _check_lift_success(self, height_threashold): prop_pos, _ = self._props.get_world_poses() prop_pos -= self._env_pos # check z direction range lift_success = torch.where( prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def load_exp_dataset(self): exp_actions = load_dataset('holding_problem', action_type=self._action_type, target_space=self._target_space) return torch.tensor(exp_actions, device=self._device) # (dataset_length, num_actions) def set_ik_controller(self): command_type = "pose_rel" if self._action_type == 'relative' else "pose_abs" ik_control_cfg = DifferentialInverseKinematicsCfg( command_type=command_type, ik_method="dls", position_offset=(0.0, 0.0, 0.0), rotation_offset=(1.0, 0.0, 0.0, 0.0), ) return DifferentialInverseKinematics(ik_control_cfg, self._num_envs, self._device) def enable_gravity(self, gravity_mag): """Enable gravity.""" gravity = [0.0, 0.0, -9.81] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) def disable_gravity(self): """Disable gravity.""" gravity = [0.0, 0.0, 0.0] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2]))
28,313
Python
47.4
209
0.632112
makolon/hsr_isaac_tamp/hsr_rl/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import torch from gym import spaces from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.prims import define_prim from omni.isaac.cloner import GridCloner from hsr_rl.tasks.utils.usd_utils import create_distant_light from hsr_rl.utils.domain_randomization.randomize import Randomizer import omni.kit from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Gf class RLTask(BaseTask): """ This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """ Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ super().__init__(name=name, offset=offset) # optimization flags for pytorch JIT torch._C._jit_set_nvfuser_enabled(False) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] self._dr_randomizer = Randomizer(self._sim_config) print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._cfg["task"]["env"].get("clipObservations", np.Inf) self.clip_actions = self._cfg["task"]["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._cfg["task"]["env"].get("controlFrequencyInv", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) if not hasattr(self, "state_space"): self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) self.cleanup() def cleanup(self) -> None: """ Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene(self, scene, replicate_physics=True) -> None: """ Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. replicate_physics (bool): Clone physics using PhysX API for better performance """ super().set_up_scene(scene) collision_filter_global_paths = list() if self._sim_config.task_config["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths) self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._sim_config.task_config["sim"].get("add_distant_light", True): create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): if self._env._render: viewport_api_2 = get_viewport_from_window_name("Viewport") viewport_api_2.set_active_camera("/OmniverseKit_Persp") camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2) camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True) camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True) @property def default_base_env_path(self): """ Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """ Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" @property def num_envs(self): """ Retrieves number of environments for task. Returns: num_envs(int): Number of environments. """ return self._num_envs @property def num_actions(self): """ Retrieves dimension of actions. Returns: num_actions(int): Dimension of actions. """ return self._num_actions @property def num_observations(self): """ Retrieves dimension of observations. Returns: num_observations(int): Dimension of observations. """ return self._num_observations @property def num_states(self): """ Retrieves dimesion of states. Returns: num_states(int): Dimension of states. """ return self._num_states @property def num_agents(self): """ Retrieves number of agents for multi-agent environments. Returns: num_agents(int): Dimension of states. """ return self._num_agents def get_states(self): """ API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ return self.states_buf def get_extras(self): """ API for retrieving extras data for RL. Returns: extras(dict): Dictionary containing extras data. """ return self.extras def reset(self): """ Flags all environments for reset. """ # self.reset_buf = torch.ones_like(self.reset_buf) pass def pre_physics_step(self, actions): """ Optionally implemented by individual task classes to process actions. Args: actions (torch.Tensor): Actions generated by RL policy. """ pass def post_physics_step(self): """ Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
10,441
Python
39.007663
140
0.652715
makolon/hsr_isaac_tamp/hsr_rl/tasks/base/hsr_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import carb import hydra import torch from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.tasks.utils.ik_utils import DifferentialInverseKinematics, DifferentialInverseKinematicsCfg from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import quat_diff_rad, quat_mul, normalize from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.simulation_context import SimulationContext from omni.physx.scripts import utils, physicsUtils class HSRBaseTask(RLTask): def __init__( self, name, sim_config, env ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] # Get dt for integrating velocity commands and checking limit violations self._dt = torch.tensor(self._sim_config.task_config["sim"]["dt"] * self._sim_config.task_config["env"]["controlFrequencyInv"], device=self._device) # Set environment properties self._table_height = self._task_cfg["env"]["table_height"] self._table_width = self._task_cfg["env"]["table_width"] self._table_depth = self._task_cfg["env"]["table_depth"] # Set physics parameters for gripper self._gripper_mass = self._sim_config.task_config["sim"]["gripper"]["mass"] self._gripper_density = self._sim_config.task_config["sim"]["gripper"]["density"] self._gripper_static_friction = self._sim_config.task_config["sim"]["gripper"]["static_friction"] self._gripper_dynamic_friction = self._sim_config.task_config["sim"]["gripper"]["dynamic_friction"] self._gripper_restitution = self._sim_config.task_config["sim"]["gripper"]["restitution"] # Choose num_obs and num_actions based on task. self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] # Set inverse kinematics configurations self._action_type = self._task_cfg["env"]["action_type"] self._target_space = self._task_cfg["env"]["target_space"] # Set up environment from loaded demonstration self._hsr_position = torch.tensor([0.0, 0.0, 0.01], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.2, -0.2, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) # Dof joint gains self.joint_kps = torch.tensor([1e9, 1e9, 5.7296e10, 1e9, 1e9, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 2.8648e4, 2.8648e4, 5.7296e10, 5.7296e10], device=self._device) self.joint_kds = torch.tensor([1.4, 1.4, 80.2141, 1.4, 0.0, 80.2141, 0.0, 80.2141, 0.0, 80.2141, 80.2141, 17.1887, 17.1887, 17.1887, 17.1887], device=self._device) # Dof joint friction coefficients self.joint_friction_coefficients = torch.tensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_proximal_dof_lower = [] self.gripper_proximal_dof_upper = [] # Gripper settings self.gripper_close = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_open = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_hold = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) # Load ik controller self.ik_controller = self.set_ik_controller() RLTask.__init__(self, name, env) return def set_up_environment(self) -> None: raise NotImplementedError def set_up_scene(self, scene) -> None: # Create gripper materials self.create_gripper_material() # Import before environment parallelization self.add_hsr() self.add_table() # Set up scene super().set_up_scene(scene, replicate_physics=False) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) def add_hsr(self): # Add HSR hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_table(self): # Add table table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def create_gripper_material(self): self._stage = get_current_stage() self.gripperPhysicsMaterialPath = "/World/Physics_Materials/GripperMaterial" utils.addRigidBodyMaterial( self._stage, self.gripperPhysicsMaterialPath, density=self._gripper_density, staticFriction=self._gripper_static_friction, dynamicFriction=self._gripper_dynamic_friction, restitution=self._gripper_restitution ) def get_observations(self): raise NotImplementedError() def pre_physics_step(self, actions) -> None: raise NotImplementedError() def reset_idx(self, env_ids): raise NotImplementedError() def post_reset(self): raise NotImplementedError() def calculate_metrics(self) -> None: raise NotImplementedError() def is_done(self) -> None: raise NotImplementedError() def post_physics_step(self): raise NotImplementedError() def load_dataset(self): raise NotImplementedError() def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs+self.gripper_proximal_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10, 11, 12]).to(self._device) self.movable_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_proximal_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_proximal_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Start at 'home' positions self.torso_start = self.initial_dof_positions[:, self.torso_dof_idx] self.base_start = self.initial_dof_positions[:, self.base_dof_idxs] self.arm_start = self.initial_dof_positions[:, self.arm_dof_idxs] self.gripper_proximal_start = self.initial_dof_positions[:, self.gripper_proximal_dof_idxs] # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start.float() jt_pos[:, self.base_dof_idxs] = self.base_start.float() jt_pos[:, self.arm_dof_idxs] = self.arm_start.float() jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start.float() jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device, dtype=torch.float) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device, dtype=torch.float) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device, dtype=torch.float) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device, dtype=torch.float) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def set_joint_gains(self): self._robots.set_gains(kps=self.joint_kps, kds=self.joint_kds) def set_joint_frictions(self): self._robots.set_friction_coefficients(self.joint_friction_coefficients) def _close_gripper(self, env_ids, sim_steps=1): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-50., -50.], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = True def _open_gripper(self, env_ids, sim_steps=1): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_effort = torch.tensor([0., 0.], device=self._device) self._robots.set_joint_efforts(gripper_dof_effort, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) gripper_dof_pos = torch.tensor([0.5, 0.5], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = False def _hold_gripper(self, env_ids): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-30., -30.], device=self._device) self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) def set_ik_controller(self): command_type = "pose_rel" if self._action_type == 'relative' else "pose_abs" ik_control_cfg = DifferentialInverseKinematicsCfg( command_type=command_type, ik_method="dls", position_offset=(0.0, 0.0, 0.0), rotation_offset=(1.0, 0.0, 0.0, 0.0), ) return DifferentialInverseKinematics(ik_control_cfg, self._num_envs, self._device) def enable_gravity(self): """Enable gravity.""" gravity = [0.0, 0.0, -9.81] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) def disable_gravity(self): """Disable gravity.""" gravity = [0.0, 0.0, 0.0] self._env._world._physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) @torch.jit.script def norm_diff_pos(p1: torch.Tensor, p2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm = torch.norm(p1 - p2, p=2, dim=-1) return diff_norm @torch.jit.script def norm_diff_rot(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: # Calculate norm diff_norm1 = torch.norm(q1 - q2, p=2, dim=-1) diff_norm2 = torch.norm(q2 - q1, p=2, dim=-1) diff_norm = torch.min(diff_norm1, diff_norm2) return diff_norm @torch.jit.script def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) @torch.jit.script def calc_diff_pos(p1, p2): return p1 - p2 @torch.jit.script def calc_diff_rot(q1, q2): # Normalize the input quaternions q1 = normalize(q1) q2 = normalize(q2) # Calculate the quaternion product between q2 and the inverse of q1 scaling = torch.tensor([1, -1, -1, -1], device=q1.device) q1_inv = q1 * scaling q_diff = quaternion_multiply(q2, q1_inv) return q_diff
17,085
Python
44.684492
209
0.650454
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/robot_utils.py
import random import numpy as np import pybullet as p from collections import namedtuple from scipy.spatial.transform import Rotation as R IKFastInfo = namedtuple('IKFastInfo', ['module_name', 'base_link', 'ee_link', 'free_joints']) USE_ALL = False USE_CURRENT = True ############ Mathematics def invert(pose): point, quat = pose return p.invertTransform(point, quat) # TODO: modify def multiply(*poses): pose = poses[0] for next_pose in poses[1:]: pose = p.multiplyTransforms(pose[0], pose[1], *next_pose) # TODO: modify return pose ############## def get_distance(p1, p2, **kwargs): assert len(p1) == len(p2) diff = np.array(p2) - np.array(p1) return np.linalg.norm(diff, ord=2) def all_between(lower_limits, values, upper_limits): assert len(lower_limits) == len(values) assert len(values) == len(upper_limits) return np.less_equal(lower_limits, values).all() and \ np.less_equal(values, upper_limits).all() def compute_forward_kinematics(fk_fn, conf): pose = fk_fn(list(conf)) pos, rot = pose quat = R.from_matrix(rot).as_quat() return pos, quat def compute_inverse_kinematics(ik_fn, pose, sampled=[]): pos, quat = pose[0], pose[1] rot = R.from_quat(quat).as_matrix().tolist() if len(sampled) == 0: solutions = ik_fn(list(rot), list(pos)) else: solutions = ik_fn(list(rot), list(pos), list(sampled)) if solutions is None: return [] return solutions def select_solution(joints, solutions, curr_joints, nearby_conf=USE_ALL, **kwargs): if not solutions: return None if nearby_conf is USE_ALL: return random.choice(solutions) if nearby_conf is USE_CURRENT: nearby_conf = curr_joints return min(solutions, key=lambda conf: get_distance(nearby_conf, conf, **kwargs))
1,849
Python
26.205882
93
0.646836
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/array_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for working with different array backends.""" import numpy as np import torch from typing import Optional, Sequence, Union import warp as wp __all__ = ["TENSOR_TYPES", "TENSOR_TYPE_CONVERSIONS", "convert_to_torch"] TENSOR_TYPES = { "numpy": np.ndarray, "torch": torch.Tensor, "warp": wp.array, } """A dictionary containing the types for each backend. The keys are the name of the backend ("numpy", "torch", "warp") and the values are the corresponding type (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ TENSOR_TYPE_CONVERSIONS = { "numpy": {wp.array: lambda x: x.numpy(), torch.Tensor: lambda x: x.detach().cpu().numpy()}, "torch": {wp.array: lambda x: wp.torch.to_torch(x), np.ndarray: lambda x: torch.from_numpy(x)}, "warp": {np.array: lambda x: wp.array(x), torch.Tensor: lambda x: wp.torch.from_torch(x)}, } """A nested dictionary containing the conversion functions for each backend. The keys of the outer dictionary are the name of target backend ("numpy", "torch", "warp"). The keys of the inner dictionary are the source backend (``np.ndarray``, ``torch.Tensor``, ``wp.array``). """ def convert_to_torch( array: Sequence[float], dtype: torch.dtype = None, device: Optional[Union[torch.device, str]] = None, ) -> torch.Tensor: """Converts a given array into a torch tensor. The function tries to convert the array to a torch tensor. If the array is a numpy/warp arrays, or python list/tuples, it is converted to a torch tensor. If the array is already a torch tensor, it is returned directly. If ``device`` is :obj:`None`, then the function deduces the current device of the data. For numpy arrays, this defaults to "cpu", for torch tensors it is "cpu" or "cuda", and for warp arrays it is "cuda". Args: array (Sequence[float]): The input array. It can be a numpy array, warp array, python list/tuple, or torch tensor. dtype (torch.dtype, optional): Target data-type for the tensor. device (Optional[Union[torch.device, str]], optional): The target device for the tensor. Defaults to None. Returns: torch.Tensor: The converted array as torch tensor. """ # Convert array to tensor if isinstance(array, torch.Tensor): tensor = array elif isinstance(array, np.ndarray): tensor = torch.from_numpy(array) elif isinstance(array, wp.array): tensor = wp.to_torch(array) else: tensor = torch.Tensor(array) # Convert tensor to the right device if device is not None and str(tensor.device) != str(device): tensor = tensor.to(device) # Convert dtype of tensor if requested if dtype is not None and tensor.dtype != dtype: tensor = tensor.type(dtype) return tensor
2,943
Python
37.233766
122
0.678899
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/math_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Provides utilities for math operations. Some of these are imported from the module `omni.isaac.core.utils.torch` for convenience. """ import numpy as np import torch import torch.nn.functional from typing import Optional, Sequence, Tuple, Union from omni.isaac.core.utils.torch.maths import normalize, scale_transform, unscale_transform from omni.isaac.core.utils.torch.rotations import ( quat_apply, quat_conjugate, quat_from_angle_axis, quat_mul, quat_rotate, quat_rotate_inverse, ) __all__ = [ # General "wrap_to_pi", "saturate", "copysign", # General-Isaac Sim "normalize", "scale_transform", "unscale_transform", # Rotation "matrix_from_quat", "quat_inv", "quat_from_euler_xyz", "quat_apply_yaw", "quat_box_minus", "euler_xyz_from_quat", "axis_angle_from_quat", # Rotation-Isaac Sim "quat_apply", "quat_from_angle_axis", "quat_mul", "quat_conjugate", "quat_rotate", "quat_rotate_inverse", # Transformations "combine_frame_transforms", "subtract_frame_transforms", "compute_pose_error", "apply_delta_pose", # Sampling "default_orientation", "random_orientation", "random_yaw_orientation", "sample_triangle", "sample_uniform", ] """ General """ @torch.jit.script def wrap_to_pi(angles: torch.Tensor) -> torch.Tensor: """Wraps input angles (in radians) to the range [-pi, pi]. Args: angles (torch.Tensor): Input angles. Returns: torch.Tensor: Angles in the range [-pi, pi]. """ angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles @torch.jit.script def saturate(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Clamps a given input tensor to (lower, upper). It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape (dims,) upper: The maximum value of the tensor. Shape (dims,) Returns: Clamped transform of the tensor. Shape (N, dims) """ return torch.max(torch.min(x, upper), lower) @torch.jit.script def copysign(mag: float, other: torch.Tensor) -> torch.Tensor: """Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag (float): The magnitude scalar. other (torch.Tensor): The tensor containing values whose signbits are applied to magnitude. Returns: torch.Tensor: The output tensor. """ mag = torch.tensor(mag, device=other.device, dtype=torch.float).repeat(other.shape[0]) return torch.abs(mag) * torch.sign(other) """ Rotation """ @torch.jit.script def matrix_from_quat(quaternions: torch.Tensor) -> torch.Tensor: """Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70) """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def convert_quat( quat: Union[torch.tensor, Sequence[float]], to: Optional[str] = "xyzw" ) -> Union[torch.tensor, np.ndarray]: """Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat (Union[torch.tensor, Sequence[float]]): Input quaternion of shape (..., 4). to (Optional[str], optional): Convention to convert quaternion to.. Defaults to "xyzw". Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,). Returns: Union[torch.tensor, np.ndarray]: The converted quaternion in specified convention. """ # convert to numpy (sanity check) if not isinstance(quat, torch.Tensor): quat = np.asarray(quat) # check input is correct if quat.shape[-1] != 4: msg = f"convert_quat(): Expected input quaternion shape mismatch: {quat.shape} != (..., 4)." raise ValueError(msg) # convert to specified quaternion type if to == "xyzw": return quat[..., [1, 2, 3, 0]] elif to == "wxyz": return quat[..., [3, 0, 1, 2]] else: raise ValueError("convert_quat(): Choose a valid `to` argument (xyzw or wxyz).") @torch.jit.script def quat_inv(q: torch.Tensor) -> torch.Tensor: """Compute the inverse of a quaternion. Args: q (torch.Tensor): The input quaternion (w, x, y, z). Returns: torch.Tensor: The inverse quaternion (w, x, y, z). """ return normalize(quat_conjugate(q)) @torch.jit.script def quat_from_euler_xyz(roll: torch.Tensor, pitch: torch.Tensor, yaw: torch.Tensor) -> torch.Tensor: """Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape: [N,] pitch: Rotation around y-axis (in radians). Shape: [N,] yaw: Rotation around z-axis (in radians). Shape: [N,] Returns: torch.Tensor: Quaternion with real part in the start. Shape: [N, 4,] """ cy = torch.cos(yaw * 0.5) sy = torch.sin(yaw * 0.5) cr = torch.cos(roll * 0.5) sr = torch.sin(roll * 0.5) cp = torch.cos(pitch * 0.5) sp = torch.sin(pitch * 0.5) # compute quaternion qw = cy * cr * cp + sy * sr * sp qx = cy * sr * cp - sy * cr * sp qy = cy * cr * sp + sy * sr * cp qz = sy * cr * cp - cy * sr * sp return torch.stack([qw, qx, qy, qz], dim=-1) @torch.jit.script def euler_xyz_from_quat(quat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles Args: quat: Quaternion with real part in the start. Shape: [N, 4,] Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing roll-pitch-yaw. """ q_w, q_x, q_y, q_z = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] # roll (x-axis rotation) sin_roll = 2.0 * (q_w * q_x + q_y * q_z) cos_roll = 1 - 2 * (q_x * q_x + q_y * q_y) roll = torch.atan2(sin_roll, cos_roll) # pitch (y-axis rotation) sin_pitch = 2.0 * (q_w * q_y - q_z * q_x) pitch = torch.where(torch.abs(sin_pitch) >= 1, copysign(np.pi / 2.0, sin_pitch), torch.asin(sin_pitch)) # yaw (z-axis rotation) sin_yaw = 2.0 * (q_w * q_z + q_x * q_y) cos_yaw = 1 - 2 * (q_y * q_y + q_z * q_z) yaw = torch.atan2(sin_yaw, cos_yaw) return roll % (2 * np.pi), pitch % (2 * np.pi), yaw % (2 * np.pi) @torch.jit.script def quat_apply_yaw(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Rotate a vector only around the yaw-direction. Args: quat (torch.Tensor): Input orientation to extract yaw from. vec (torch.Tensor): Input vector. Returns: torch.Tensor: Rotated vector. """ quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 # set x, y components as zero quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def quat_box_minus(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Implements box-minus operator (quaternion difference). Args: q1 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) q2 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) Returns: torch.Tensor: q1 box-minus q2 Reference: https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf """ quat_diff = quat_mul(q1, quat_conjugate(q2)) # q1 * q2^-1 re = quat_diff[:, 0] # real part, q = [w, x, y, z] = [re, im] im = quat_diff[:, 1:] # imaginary part norm_im = torch.norm(im, dim=1) scale = 2.0 * torch.where(norm_im > 1.0e-7, torch.atan(norm_im / re) / norm_im, torch.sign(re)) return scale.unsqueeze(-1) * im @torch.jit.script def axis_angle_from_quat(quat: torch.Tensor, eps: float = 1.0e-6) -> torch.Tensor: """Convert rotations given as quaternions to axis/angle. Args: quat (torch.Tensor): quaternions with real part first, as tensor of shape (..., 4). eps (float): The tolerance for Taylor approximation. Defaults to 1.0e-6. Returns: torch.Tensor: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anti-clockwise in radians around the vector's direction. Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554) """ # Modified to take in quat as [q_w, q_x, q_y, q_z] # Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)] # Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z] # Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta) # When theta = 0, (sin(theta/2) / theta) is undefined # However, as theta --> 0, we can use the Taylor approximation 1/2 - theta^2 / 48 quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0)) mag = torch.linalg.norm(quat[..., 1:], dim=1) half_angle = torch.atan2(mag, quat[..., 0]) angle = 2.0 * half_angle # check whether to apply Taylor approximation sin_half_angles_over_angles = torch.where( torch.abs(angle.abs()) > eps, torch.sin(half_angle) / angle, 0.5 - angle * angle / 48 ) return quat[..., 1:4] / sin_half_angles_over_angles.unsqueeze(-1) """ Transformations """ @torch.jit.script def combine_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t12: torch.Tensor = None, q12: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Combine transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{02} = T_{01} \times T_{12}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0. t12 (torch.Tensor): Position of frame 2 w.r.t. frame 1. q12 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 1. Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 0. """ # compute orientation if q12 is not None: q02 = quat_mul(q01, q12) else: q02 = q01 # compute translation if t12 is not None: t02 = t01 + quat_apply(q01, t12) else: t02 = t01 return t02, q02 @torch.jit.script def subtract_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Subtract transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{12} = T_{01}^{-1} \times T_{02}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). t02 (torch.Tensor): Position of frame 2 w.r.t. frame 0. q02 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 0 in (w, x, y, z). Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 1. """ # compute orientation q10 = quat_inv(q01) q12 = quat_mul(q10, q02) # compute translation t12 = quat_apply(q10, t02 - t01) return t12, q12 @torch.jit.script def compute_pose_error(t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor, rot_error_type: str): """Compute the position and orientation error between source and target frames. Args: t01 (torch.Tensor): Position of source frame. q01 (torch.Tensor): Quaternion orientation of source frame. t02 (torch.Tensor): Position of target frame. q02 (torch.Tensor): Quaternion orientation of target frame. rot_error_type (str): The rotation error type to return: "quat", "axis_angle". Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing position and orientation error. """ # Compute quaternion error (i.e., difference quaternion) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quaternion.html # q_current_norm = q_current * q_current_conj source_quat_norm = quat_mul(q01, quat_conjugate(q01))[:, 0] # q_current_inv = q_current_conj / q_current_norm source_quat_inv = quat_conjugate(q01) / source_quat_norm.unsqueeze(-1) # q_error = q_target * q_current_inv quat_error = quat_mul(q02, source_quat_inv) # Compute position error pos_error = t02 - t01 # return error based on specified type if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) return pos_error, axis_angle_error else: raise ValueError(f"Unsupported orientation error type: {rot_error_type}. Valid: 'quat', 'axis_angle'.") @torch.jit.script def apply_delta_pose( source_pos: torch.Tensor, source_rot, delta_pose: torch.Tensor, eps: float = 1.0e-6 ) -> Tuple[torch.Tensor, torch.Tensor]: """Applies delta pose transformation on source pose. The first three elements of `delta_pose` are interpreted as cartesian position displacement. The remaining three elements of `delta_pose` are interpreted as orientation displacement in the angle-axis format. Args: frame_pos (torch.Tensor): Position of source frame. Shape: [N, 3] frame_rot (torch.Tensor): Quaternion orientation of source frame in (w, x, y,z). delta_pose (torch.Tensor): Position and orientation displacements. Shape [N, 6]. eps (float): The tolerance to consider orientation displacement as zero. Returns: torch.Tensor: A tuple containing the displaced position and orientation frames. Shape: ([N, 3], [N, 4]) """ # number of poses given num_poses = source_pos.shape[0] device = source_pos.device # interpret delta_pose[:, 0:3] as target position displacements target_pos = source_pos + delta_pose[:, 0:3] # interpret delta_pose[:, 3:6] as target rotation displacements rot_actions = delta_pose[:, 3:6] angle = torch.linalg.vector_norm(rot_actions, dim=1) axis = rot_actions / angle.unsqueeze(-1) # change from axis-angle to quat convention identity_quat = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat(num_poses, 1) rot_delta_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > eps, quat_from_angle_axis(angle, axis), identity_quat ) # TODO: Check if this is the correct order for this multiplication. target_rot = quat_mul(rot_delta_quat, source_rot) return target_pos, target_rot """ Sampling """ @torch.jit.script def default_orientation(num: int, device: str) -> torch.Tensor: """Returns identity rotation transform. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Identity quaternion (w, x, y, z). """ quat = torch.zeros((num, 4), dtype=torch.float, device=device) quat[..., 0] = 1.0 return quat @torch.jit.script def random_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation in 3D as quaternion. Reference: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ # sample random orientation from normal distribution quat = torch.randn((num, 4), dtype=torch.float, device=device) # normalize the quaternion return torch.nn.functional.normalize(quat, p=2.0, dim=-1, eps=1e-12) @torch.jit.script def random_yaw_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation around z-axis. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ roll = torch.zeros(num, dtype=torch.float, device=device) pitch = torch.zeros(num, dtype=torch.float, device=device) yaw = 2 * np.pi * torch.rand(num, dtype=torch.float, device=device) return quat_from_euler_xyz(roll, pitch, yaw) def sample_triangle(lower: float, upper: float, size: Union[int, Tuple[int, ...]], device: str) -> torch.Tensor: """Randomly samples tensor from a triangular distribution. Args: lower (float): The lower range of the sampled tensor. upper (float): The upper range of the sampled tensor. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # create random tensor in the range [-1, 1] r = 2 * torch.rand(*size, device=device) - 1 # convert to triangular distribution r = torch.where(r < 0.0, -torch.sqrt(-r), torch.sqrt(r)) # rescale back to [0, 1] r = (r + 1.0) / 2.0 # rescale to range [lower, upper] return (upper - lower) * r + lower def sample_uniform( lower: Union[torch.Tensor, float], upper: Union[torch.Tensor, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample uniformly within a range. Args: lower (Union[torch.Tensor, float]): Lower bound of uniform range. upper (Union[torch.Tensor, float]): Upper bound of uniform range. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # return tensor return torch.rand(*size, device=device) * (upper - lower) + lower def sample_cylinder( radius: float, h_range: Tuple[float, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample 3D points uniformly on a cylinder's surface. The cylinder is centered at the origin and aligned with the z-axis. The height of the cylinder is sampled uniformly from the range :obj:`h_range`, while the radius is fixed to :obj:`radius`. The sampled points are returned as a tensor of shape :obj:`(*size, 3)`, i.e. the last dimension contains the x, y, and z coordinates of the sampled points. Args: radius (float): The radius of the cylinder. h_range (Tuple[float, float]): The minimum and maximum height of the cylinder. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`(*size, 3)`. """ # sample angles angles = (torch.rand(size, device=device) * 2 - 1) * np.pi h_min, h_max = h_range # add shape if isinstance(size, int): size = (size, 3) else: size += (3,) # allocate a tensor xyz = torch.zeros(size, device=device) xyz[..., 0] = radius * torch.cos(angles) xyz[..., 1] = radius * torch.sin(angles) xyz[..., 2].uniform_(h_min, h_max) # return positions return xyz
21,379
Python
33.153355
139
0.627391
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/dict_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Utilities for working with dictionaries.""" import collections.abc import importlib import inspect from typing import Any, Callable, Dict, Iterable, Mapping from hsr_rl.tasks.utils.array_utils import TENSOR_TYPE_CONVERSIONS, TENSOR_TYPES __all__ = ["class_to_dict", "update_class_from_dict", "convert_dict_to_backend", "update_dict", "print_dict"] """ Dictionary <-> Class operations. """ def class_to_dict(obj: object) -> Dict[str, Any]: """Convert an object into dictionary recursively. Note: Ignores all names starting with "__" (i.e. built-in methods). Args: obj (object): An instance of a class to convert. Raises: ValueError: When input argument is not an object. Returns: Dict[str, Any]: Converted dictionary mapping. """ # check that input data is class instance if not hasattr(obj, "__class__"): raise ValueError(f"Expected a class instance. Received: {type(obj)}.") # convert object to dictionary if isinstance(obj, dict): obj_dict = obj else: obj_dict = obj.__dict__ # convert to dictionary data = dict() for key, value in obj_dict.items(): # disregard builtin attributes if key.startswith("__"): continue # check if attribute is callable -- function if callable(value): data[key] = f"{value.__module__}:{value.__name__}" # check if attribute is a dictionary elif hasattr(value, "__dict__") or isinstance(value, dict): data[key] = class_to_dict(value) else: data[key] = value return data def update_class_from_dict(obj, data: Dict[str, Any], _ns: str = "") -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: obj (object): An instance of a class to update. data (Dict[str, Any]): Input dictionary to update from. _ns (str): Namespace of the current object. This is useful for nested configuration classes or dictionaries. Defaults to "". Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ for key, value in data.items(): # key_ns is the full namespace of the key key_ns = _ns + "/" + key # check if key is present in the object if hasattr(obj, key): obj_mem = getattr(obj, key) if isinstance(obj_mem, Mapping): # Note: We don't handle two-level nested dictionaries. Just use configclass if this is needed. # iterate over the dictionary to look for callable values for k, v in obj_mem.items(): if callable(v): value[k] = _string_to_callable(value[k]) setattr(obj, key, value) elif isinstance(value, Mapping): # recursively call if it is a dictionary update_class_from_dict(obj_mem, value, _ns=key_ns) elif isinstance(value, Iterable) and not isinstance(value, str): # check length of value to be safe if len(obj_mem) != len(value) and obj_mem is not None: raise ValueError( f"[Config]: Incorrect length under namespace: {key_ns}. Expected: {len(obj_mem)}, Received: {len(value)}." ) # set value setattr(obj, key, value) elif callable(obj_mem): # update function name value = _string_to_callable(value) setattr(obj, key, value) elif isinstance(value, type(obj_mem)): # check that they are type-safe setattr(obj, key, value) else: raise ValueError( f"[Config]: Incorrect type under namespace: {key_ns}. Expected: {type(obj_mem)}, Received: {type(value)}." ) else: raise KeyError(f"[Config]: Key not found under namespace: {key_ns}.") """ Dictionary operations. """ def convert_dict_to_backend( data: dict, backend: str = "numpy", array_types: Iterable[str] = ("numpy", "torch", "warp") ) -> dict: """Convert all arrays or tensors in a dictionary to a given backend. This function iterates over the dictionary, converts all arrays or tensors with the given types to the desired backend, and stores them in a new dictionary. It also works with nested dictionaries. Currently supported backends are "numpy", "torch", and "warp". Note: This function only converts arrays or tensors. Other types of data are left unchanged. Mutable types (e.g. lists) are referenced by the new dictionary, so they are not copied. Args: data (dict): An input dict containing array or tensor data as values. backend(str): The backend ("numpy", "torch", "warp") to which arrays in this dict should be converted. Defaults to "numpy". array_types(Iterable[str]): A list containing the types of arrays that should be converted to the desired backend. Defaults to ("numpy", "torch", "warp"). Raises: ValueError: If the specified ``backend`` or ``array_types`` are unknown, i.e. not in the list of supported backends ("numpy", "torch", "warp"). Returns: dict: The updated dict with the data converted to the desired backend. """ # THINK: Should we also support converting to a specific device, e.g. "cuda:0"? # Check the backend is valid. if backend not in TENSOR_TYPE_CONVERSIONS: raise ValueError(f"Unknown backend '{backend}'. Supported backends are 'numpy', 'torch', and 'warp'.") # Define the conversion functions for each backend. tensor_type_conversions = TENSOR_TYPE_CONVERSIONS[backend] # Parse the array types and convert them to the corresponding types: "numpy" -> np.ndarray, etc. parsed_types = list() for t in array_types: # Check type is valid. if t not in TENSOR_TYPES: raise ValueError(f"Unknown array type: '{t}'. Supported array types are 'numpy', 'torch', and 'warp'.") # Exclude types that match the backend, since we do not need to convert these. if t == backend: continue # Convert the string types to the corresponding types. parsed_types.append(TENSOR_TYPES[t]) # Convert the data to the desired backend. output_dict = dict() for key, value in data.items(): # Obtain the data type of the current value. data_type = type(value) # -- arrays if data_type in parsed_types: # check if we have a known conversion. if data_type not in tensor_type_conversions: raise ValueError(f"No registered conversion for data type: {data_type} to {backend}!") # convert the data to the desired backend. output_dict[key] = tensor_type_conversions[data_type](value) # -- nested dictionaries elif isinstance(data[key], dict): output_dict[key] = convert_dict_to_backend(value) # -- everything else else: output_dict[key] = value return output_dict def update_dict(orig_dict: dict, new_dict: collections.abc.Mapping) -> dict: """Updates existing dictionary with values from a new dictionary. This function mimics the dict.update() function. However, it works for nested dictionaries as well. Reference: https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth Args: orig_dict (dict): The original dictionary to insert items to. new_dict (collections.abc.Mapping): The new dictionary to insert items from. Returns: dict: The updated dictionary. """ for keyname, value in new_dict.items(): if isinstance(value, collections.abc.Mapping): orig_dict[keyname] = update_dict(orig_dict.get(keyname, {}), value) else: orig_dict[keyname] = value return orig_dict def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionary.""" if type(val) == dict: if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: # deal with functions in print statements if callable(val) and val.__name__ == "<lambda>": print("lambda", inspect.getsourcelines(val)[0][0].strip().split("lambda")[1].strip()[:-1]) elif callable(val): print(f"{val.__module__}:{val.__name__}") else: print(val) """ Private helper functions. """ def _string_to_callable(name: str) -> Callable: """Resolves the module and function names to return the function. Args: name (str): The function name. The format should be 'module:attribute_name'. Raises: ValueError: When the resolved attribute is not a function. ValueError: _description_ Returns: Callable: The function loaded from the module. """ try: mod_name, attr_name = name.split(":") mod = importlib.import_module(mod_name) callable_object = getattr(mod, attr_name) # check if attribute is callable if callable(callable_object): return callable_object else: raise ValueError(f"The imported object is not callable: '{name}'") except AttributeError as e: msg = ( "While updating the config from a dictionary, we could not interpret the entry" "as a callable object. The format of input should be 'module:attribute_name'\n" f"While processing input '{name}', received the error:\n {e}." ) raise ValueError(msg)
10,319
Python
37.364312
130
0.612462
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/pinoc_utils.py
from __future__ import print_function import os import numpy as np import pinocchio as pin from scipy.spatial.transform import Rotation as R def get_se3_err(pos_first, quat_first, pos_second, quat_second): # Retruns 6 dimensional log.SE3 error between two poses expressed as position and quaternion rotation rot_first = R.from_quat(np.array([quat_first[1],quat_first[2],quat_first[3],quat_first[0]])).as_matrix() # Quaternion in scalar last format!!! rot_second = R.from_quat(np.array([quat_second[1],quat_second[2],quat_second[3],quat_second[0]])).as_matrix() # Quaternion in scalar last format!!! oMfirst = pin.SE3(rot_first, pos_first) oMsecond = pin.SE3(rot_second, pos_second) firstMsecond = oMfirst.actInv(oMsecond) return pin.log(firstMsecond).vector # log gives us a spatial vector (exp co-ords) class HSRIKSolver(object): def __init__( self, include_torso: bool = False, # Use torso in th IK solution include_base: bool = True, # Use base in th IK solution max_rot_vel: float = 1.0472 ) -> None: # Settings self.damp = 1e-10 self._include_torso = include_torso self._include_base = include_base self.max_rot_vel = max_rot_vel # Load urdf # TODO: fix urdf_file = "/root/tamp-hsr/hsr_rl/models/urdf/hsrb_description/hsrb4s.urdf" self.model = pin.buildModelFromUrdf(urdf_file) # Choose joints name_end_effector = "hand_palm_link" jointsOfInterest = ['arm_lift_joint', 'arm_flex_joint', 'arm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint'] # Add torso joints if self._include_torso: jointsOfInterest = ['torso_lift_joint'] + jointsOfInterest # Add base joints if self._include_base: jointsOfInterest = ['joint_x', 'joint_y', 'joint_rz'] + jointsOfInterest remove_ids = list() for jnt in jointsOfInterest: if self.model.existJointName(jnt): remove_ids.append(self.model.getJointId(jnt)) else: print('[IK WARNING]: joint ' + str(jnt) + ' does not belong to the model!') jointIdsToExclude = np.delete(np.arange(0, self.model.njoints), remove_ids) # Lock extra joints except joint 0 (root) reference_configuration=pin.neutral(self.model) if not self._include_torso: reference_configuration[4] = 0.1 # lock torso_lift_joint at 0.1 self.model = pin.buildReducedModel(self.model, jointIdsToExclude[1:].tolist(), reference_configuration=reference_configuration) assert (len(self.model.joints)==(len(jointsOfInterest)+1)), "[IK Error]: Joints != nDoFs" self.model_data = self.model.createData() # Define Joint-Limits self.joint_pos_min = np.array([-2.617, -1.919, -1.919, -1.919]) self.joint_pos_max = np.array([+0.0, +3.665, +1.221, +3.665]) if self._include_torso: self.joint_pos_min = np.hstack((np.array([+0.0]), self.joint_pos_min)) self.joint_pos_max = np.hstack((np.array([+0.69]), self.joint_pos_max)) if self._include_base: self.joint_pos_min = np.hstack((np.array([-10.0, -10.0, -10.0]), self.joint_pos_min)) self.joint_pos_max = np.hstack((np.array([+10.0, +10.0, +10.0]), self.joint_pos_max)) self.joint_pos_mid = (self.joint_pos_max + self.joint_pos_min) / 2.0 # Get End Effector Frame ID self.id_EE = self.model.getFrameId(name_end_effector) def get_jacobian(self, curr_conf): # Compute Jacobian J = pin.computeFrameJacobian(self.model, self.model_data, curr_conf, self.id_EE) return J def solve_fk_hsr(self, curr_joints): pin.framesForwardKinematics(self.model, self.model_data, curr_joints) oMf = self.model_data.oMf[self.id_EE] ee_pos = oMf.translation ee_quat = pin.Quaternion(oMf.rotation) return ee_pos, np.array([ee_quat.w, ee_quat.x, ee_quat.y, ee_quat.z]) def solve_ik_pos_hsr(self, des_pos, des_quat, curr_joints=None, n_trials=7, dt=0.1, pos_threshold=0.05, angle_threshold=15.*np.pi/180, verbose=True): # Get IK positions for hsr robot damp = 1e-10 success = False if des_quat is not None: # quaternion to rot matrix des_rot = R.from_quat(np.array([des_quat[1], des_quat[2], des_quat[3], des_quat[0]])).as_matrix() # Quaternion in scalar last format!!! oMdes = pin.SE3(des_rot, des_pos) else: # 3D position error only des_rot = None if curr_joints is None: q = np.random.uniform(self.joint_pos_min, self.joint_pos_max) for n in range(n_trials): for i in range(800): pin.framesForwardKinematics(self.model, self.model_data, q) oMf = self.model_data.oMf[self.id_EE] if des_rot is None: oMdes = pin.SE3(oMf.rotation, des_pos) # Set rotation equal to current rotation to exclude this error dMf = oMdes.actInv(oMf) err = pin.log(dMf).vector if (np.linalg.norm(err[0:3]) < pos_threshold) and (np.linalg.norm(err[3:6]) < angle_threshold): success = True break J = pin.computeFrameJacobian(self.model, self.model_data, q, self.id_EE) if des_rot is None: J = J[:3, :] # Only pos errors err = err[:3] v = - J.T.dot(np.linalg.solve(J.dot(J.T) + damp * np.eye(6), err)) q = pin.integrate(self.model, q, v*dt) # Clip q to within joint limits q = np.clip(q, self.joint_pos_min, self.joint_pos_max) if verbose: if not i % 100: print('Trial %d: iter %d: error = %s' % (n+1, i, err.T)) i += 1 if success: best_q = np.array(q) else: # Save current solution best_q = np.array(q) # Reset q to random configuration q = np.random.uniform(self.joint_pos_min, self.joint_pos_max) if verbose: if success: print("[[[[IK: Convergence achieved!]]]") else: print("[Warning: the IK iterative algorithm has not reached convergence to the desired precision]") return success, best_q if __name__ == '__main__': hsr_ik_solver = HSRIKSolver() success, best_q = hsr_ik_solver.solve_ik_pos_hsr(np.array([0.5, 0.1, 0.3]), np.array([0., 0., 0., 1.0])) print('best_q: ', best_q)
6,825
Python
39.630952
153
0.57348
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdPhysics, UsdLux def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force) def create_distant_light(prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.GetPrim().GetAttribute("intensity").Set(intensity)
3,627
Python
40.701149
103
0.742211
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/annotation_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrapper around the Python 3.7 onwards `dataclasses` module.""" from copy import deepcopy from dataclasses import Field, dataclass, field from typing import Any, Callable, ClassVar, Dict from hsr_rl.tasks.utils.dict_utils import class_to_dict, update_class_from_dict # List of all methods provided by sub-module. __all__ = ["configclass"] """ Wrapper around dataclass. """ def __dataclass_transform__(): """Add annotations decorator for PyLance.""" return lambda a: a @__dataclass_transform__() def configclass(cls, **kwargs): """Wrapper around `dataclass` functionality to add extra checks and utilities. As of Python3.8, the standard dataclasses have two main issues which makes them non-generic for configuration use-cases. These include: 1. Requiring a type annotation for all its members. 2. Requiring explicit usage of :meth:`field(default_factory=...)` to reinitialize mutable variables. This function wraps around :class:`dataclass` utility to deal with the above two issues. Usage: .. code-block:: python from dataclasses import MISSING from omni.isaac.orbit.utils.configclass import configclass @configclass class ViewerCfg: eye: list = [7.5, 7.5, 7.5] # field missing on purpose lookat: list = field(default_factory=[0.0, 0.0, 0.0]) @configclass class EnvCfg: num_envs: int = MISSING episode_length: int = 2000 viewer: ViewerCfg = ViewerCfg() # create configuration instance env_cfg = EnvCfg(num_envs=24) # print information print(env_cfg.to_dict()) Reference: https://docs.python.org/3/library/dataclasses.html#dataclasses.Field """ # add type annotations _add_annotation_types(cls) # add field factory _process_mutable_types(cls) # copy mutable members setattr(cls, "__post_init__", _custom_post_init) # add helper functions for dictionary conversion setattr(cls, "to_dict", _class_to_dict) setattr(cls, "from_dict", _update_class_from_dict) # wrap around dataclass cls = dataclass(cls, **kwargs) # return wrapped class return cls """ Dictionary <-> Class operations. These are redefined here to add new docstrings. """ def _class_to_dict(obj: object) -> Dict[str, Any]: """Convert an object into dictionary recursively. Returns: Dict[str, Any]: Converted dictionary mapping. """ return class_to_dict(obj) def _update_class_from_dict(obj, data: Dict[str, Any]) -> None: """Reads a dictionary and sets object variables recursively. This function performs in-place update of the class member attributes. Args: data (Dict[str, Any]): Input (nested) dictionary to update from. Raises: TypeError: When input is not a dictionary. ValueError: When dictionary has a value that does not match default config type. KeyError: When dictionary has a key that does not exist in the default config type. """ return update_class_from_dict(obj, data, _ns="") """ Private helper functions. """ def _add_annotation_types(cls): """Add annotations to all elements in the dataclass. By definition in Python, a field is defined as a class variable that has a type annotation. In case type annotations are not provided, dataclass ignores those members when :func:`__dict__()` is called. This function adds these annotations to the class variable to prevent any issues in case the user forgets to specify the type annotation. This makes the following a feasible operation: @dataclass class State: pos = (0.0, 0.0, 0.0) ^^ If the function is NOT used, the following type-error is returned: TypeError: 'pos' is a field but has no type annotation """ # Note: Do not change this line. `cls.__dict__.get("__annotations__", {})` is different from `cls.__annotations__` because of inheritance. cls.__annotations__ = cls.__dict__.get("__annotations__", {}) # cls.__annotations__ = dict() for key in dir(cls): # skip dunder members if key.startswith("__"): continue # skip class functions if key in ["from_dict", "to_dict"]: continue # add type annotations for members that are not functions var = getattr(cls, key) if not isinstance(var, type): if key not in cls.__annotations__: cls.__annotations__[key] = type(var) def _process_mutable_types(cls): """Initialize all mutable elements through :obj:`dataclasses.Field` to avoid unnecessary complaints. By default, dataclass requires usage of :obj:`field(default_factory=...)` to reinitialize mutable objects every time a new class instance is created. If a member has a mutable type and it is created without specifying the `field(default_factory=...)`, then Python throws an error requiring the usage of `default_factory`. Additionally, Python only explicitly checks for field specification when the type is a list, set or dict. This misses the use-case where the type is class itself. Thus, the code silently carries a bug with it which can lead to undesirable effects. This function deals with this issue This makes the following a feasible operation: @dataclass class State: pos: list = [0.0, 0.0, 0.0] ^^ If the function is NOT used, the following value-error is returned: ValueError: mutable default <class 'list'> for field pos is not allowed: use default_factory """ def _return_f(f: Any) -> Callable[[], Any]: """Returns default function for creating mutable/immutable variables.""" def _wrap(): if isinstance(f, Field): return f.default_factory else: return f return _wrap for key in dir(cls): # skip dunder members if key.startswith("__"): continue # skip class functions if key in ["from_dict", "to_dict"]: continue # do not create field for class variables if key in cls.__annotations__: origin = getattr(cls.__annotations__[key], "__origin__", None) if origin is ClassVar: continue # define explicit field for data members f = getattr(cls, key) if not isinstance(f, type): f = field(default_factory=_return_f(f)) setattr(cls, key, f) def _custom_post_init(obj): """Deepcopy all elements to avoid shared memory issues for mutable objects in dataclasses initialization. This function is called explicitly instead of as a part of :func:`_process_mutable_types()` to prevent mapping proxy type i.e. a read only proxy for mapping objects. The error is thrown when using hierarchical data-classes for configuration. """ for key in dir(obj): # skip dunder members if key.startswith("__"): continue # duplicate data members var = getattr(obj, key) if not callable(var): setattr(obj, key, deepcopy(var))
7,468
Python
32.644144
142
0.64301
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/transform_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Provides utilities for math operations. Some of these are imported from the module `omni.isaac.core.utils.torch` for convenience. """ import numpy as np import torch import torch.nn.functional from typing import Optional, Sequence, Tuple, Union @torch.jit.script def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def scale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """ Normalizes a given input tensor to a range of [-1, 1]. @note It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape (dims,) upper: The maximum value of the tensor. Shape (dims,) Returns: Normalized transform of the tensor. Shape (N, dims) """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return 2 * (x - offset) / (upper - lower) @torch.jit.script def unscale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """ Denormalizes a given input tensor from range of [-1, 1] to (lower, upper). @note It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape (dims,) upper: The maximum value of the tensor. Shape (dims,) Returns: Denormalized transform of the tensor. Shape (N, dims) """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return x * (upper - lower) * 0.5 + offset @torch.jit.script def quat_apply(a, b): shape = b.shape a = a.reshape(-1, 4) b = b.reshape(-1, 3) xyz = a[:, 1:] t = xyz.cross(b, dim=-1) * 2 return (b + a[:, 0:1] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((a[:, 0:1], -a[:, 1:]), dim=-1).view(shape) @torch.jit.script def quat_unit(a): return normalize(a) @torch.jit.script def quat_from_angle_axis(angle, axis): theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return quat_unit(torch.cat([w, xyz], dim=-1)) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) w1, x1, y1, z1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] w2, x2, y2, z2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([w, x, y, z], dim=-1).view(shape) return quat @torch.jit.script def quat_rotate(q, v): shape = q.shape q_w = q[:, 0] q_vec = q[:, 1:] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * torch.bmm(q_vec.view(shape[0], 1, 3), v.view(shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q, v): shape = q.shape q_w = q[:, 0] q_vec = q[:, 1:] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * torch.bmm(q_vec.view(shape[0], 1, 3), v.view(shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c __all__ = [ # General "wrap_to_pi", "saturate", "copysign", # General-Isaac Sim "normalize", "scale_transform", "unscale_transform", # Rotation "matrix_from_quat", "quat_inv", "quat_from_euler_xyz", "quat_apply_yaw", "quat_box_minus", "euler_xyz_from_quat", "axis_angle_from_quat", # Rotation-Isaac Sim "quat_apply", "quat_from_angle_axis", "quat_mul", "quat_conjugate", "quat_rotate", "quat_rotate_inverse", # Transformations "combine_frame_transforms", "subtract_frame_transforms", "compute_pose_error", "apply_delta_pose", # Sampling "default_orientation", "random_orientation", "random_yaw_orientation", "sample_triangle", "sample_uniform", ] """ General """ @torch.jit.script def wrap_to_pi(angles: torch.Tensor) -> torch.Tensor: """Wraps input angles (in radians) to the range [-pi, pi]. Args: angles (torch.Tensor): Input angles. Returns: torch.Tensor: Angles in the range [-pi, pi]. """ angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles @torch.jit.script def saturate(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Clamps a given input tensor to (lower, upper). It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape (dims,) upper: The maximum value of the tensor. Shape (dims,) Returns: Clamped transform of the tensor. Shape (N, dims) """ return torch.max(torch.min(x, upper), lower) @torch.jit.script def copysign(mag: float, other: torch.Tensor) -> torch.Tensor: """Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag (float): The magnitude scalar. other (torch.Tensor): The tensor containing values whose signbits are applied to magnitude. Returns: torch.Tensor: The output tensor. """ mag = torch.tensor(mag, device=other.device, dtype=torch.float).repeat(other.shape[0]) return torch.abs(mag) * torch.sign(other) """ Rotation """ @torch.jit.script def matrix_from_quat(quaternions: torch.Tensor) -> torch.Tensor: """Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70) """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def convert_quat( quat: Union[torch.tensor, Sequence[float]], to: Optional[str] = "xyzw" ) -> Union[torch.tensor, np.ndarray]: """Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat (Union[torch.tensor, Sequence[float]]): Input quaternion of shape (..., 4). to (Optional[str], optional): Convention to convert quaternion to.. Defaults to "xyzw". Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,). Returns: Union[torch.tensor, np.ndarray]: The converted quaternion in specified convention. """ # convert to numpy (sanity check) if not isinstance(quat, torch.Tensor): quat = np.asarray(quat) # check input is correct if quat.shape[-1] != 4: msg = f"convert_quat(): Expected input quaternion shape mismatch: {quat.shape} != (..., 4)." raise ValueError(msg) # convert to specified quaternion type if to == "xyzw": return quat[..., [1, 2, 3, 0]] elif to == "wxyz": return quat[..., [3, 0, 1, 2]] else: raise ValueError("convert_quat(): Choose a valid `to` argument (xyzw or wxyz).") @torch.jit.script def quat_inv(q: torch.Tensor) -> torch.Tensor: """Compute the inverse of a quaternion. Args: q (torch.Tensor): The input quaternion (w, x, y, z). Returns: torch.Tensor: The inverse quaternion (w, x, y, z). """ return normalize(quat_conjugate(q)) @torch.jit.script def quat_from_euler_xyz(roll: torch.Tensor, pitch: torch.Tensor, yaw: torch.Tensor) -> torch.Tensor: """Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape: [N,] pitch: Rotation around y-axis (in radians). Shape: [N,] yaw: Rotation around z-axis (in radians). Shape: [N,] Returns: torch.Tensor: Quaternion with real part in the start. Shape: [N, 4,] """ cy = torch.cos(yaw * 0.5) sy = torch.sin(yaw * 0.5) cr = torch.cos(roll * 0.5) sr = torch.sin(roll * 0.5) cp = torch.cos(pitch * 0.5) sp = torch.sin(pitch * 0.5) # compute quaternion qw = cy * cr * cp + sy * sr * sp qx = cy * sr * cp - sy * cr * sp qy = cy * cr * sp + sy * sr * cp qz = sy * cr * cp - cy * sr * sp return torch.stack([qw, qx, qy, qz], dim=-1) @torch.jit.script def euler_xyz_from_quat(quat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles Args: quat: Quaternion with real part in the start. Shape: [N, 4,] Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing roll-pitch-yaw. """ q_w, q_x, q_y, q_z = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] # roll (x-axis rotation) sin_roll = 2.0 * (q_w * q_x + q_y * q_z) cos_roll = 1 - 2 * (q_x * q_x + q_y * q_y) roll = torch.atan2(sin_roll, cos_roll) # pitch (y-axis rotation) sin_pitch = 2.0 * (q_w * q_y - q_z * q_x) pitch = torch.where(torch.abs(sin_pitch) >= 1, copysign(np.pi / 2.0, sin_pitch), torch.asin(sin_pitch)) # yaw (z-axis rotation) sin_yaw = 2.0 * (q_w * q_z + q_x * q_y) cos_yaw = 1 - 2 * (q_y * q_y + q_z * q_z) yaw = torch.atan2(sin_yaw, cos_yaw) return roll % (2 * np.pi), pitch % (2 * np.pi), yaw % (2 * np.pi) @torch.jit.script def quat_apply_yaw(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Rotate a vector only around the yaw-direction. Args: quat (torch.Tensor): Input orientation to extract yaw from. vec (torch.Tensor): Input vector. Returns: torch.Tensor: Rotated vector. """ quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 # set x, y components as zero quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def quat_box_minus(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Implements box-minus operator (quaternion difference). Args: q1 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) q2 (torch.Tensor): A (N, 4) tensor for quaternion (x, y, z, w) Returns: torch.Tensor: q1 box-minus q2 Reference: https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf """ quat_diff = quat_mul(q1, quat_conjugate(q2)) # q1 * q2^-1 re = quat_diff[:, 0] # real part, q = [w, x, y, z] = [re, im] im = quat_diff[:, 1:] # imaginary part norm_im = torch.norm(im, dim=1) scale = 2.0 * torch.where(norm_im > 1.0e-7, torch.atan(norm_im / re) / norm_im, torch.sign(re)) return scale.unsqueeze(-1) * im @torch.jit.script def axis_angle_from_quat(quat: torch.Tensor, eps: float = 1.0e-6) -> torch.Tensor: """Convert rotations given as quaternions to axis/angle. Args: quat (torch.Tensor): quaternions with real part first, as tensor of shape (..., 4). eps (float): The tolerance for Taylor approximation. Defaults to 1.0e-6. Returns: torch.Tensor: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anti-clockwise in radians around the vector's direction. Reference: Based on PyTorch3D (https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554) """ # Modified to take in quat as [q_w, q_x, q_y, q_z] # Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)] # Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z] # Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta) # When theta = 0, (sin(theta/2) / theta) is undefined # However, as theta --> 0, we can use the Taylor approximation 1/2 - theta^2 / 48 quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0)) mag = torch.linalg.norm(quat[..., 1:], dim=1) half_angle = torch.atan2(mag, quat[..., 0]) angle = 2.0 * half_angle # check whether to apply Taylor approximation sin_half_angles_over_angles = torch.where( torch.abs(angle.abs()) > eps, torch.sin(half_angle) / angle, 0.5 - angle * angle / 48 ) return quat[..., 1:4] / sin_half_angles_over_angles.unsqueeze(-1) """ Transformations """ @torch.jit.script def combine_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t12: torch.Tensor = None, q12: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Combine transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{02} = T_{01} \times T_{12}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0. t12 (torch.Tensor): Position of frame 2 w.r.t. frame 1. q12 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 1. Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 0. """ # compute orientation if q12 is not None: q02 = quat_mul(q01, q12) else: q02 = q01 # compute translation if t12 is not None: t02 = t01 + quat_apply(q01, t12) else: t02 = t01 return t02, q02 @torch.jit.script def subtract_frame_transforms( t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: r"""Subtract transformations between two reference frames into a stationary frame. It performs the following transformation operation: :math:`T_{12} = T_{01}^{-1} \times T_{02}`, where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B. Args: t01 (torch.Tensor): Position of frame 1 w.r.t. frame 0. q01 (torch.Tensor): Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). t02 (torch.Tensor): Position of frame 2 w.r.t. frame 0. q02 (torch.Tensor): Quaternion orientation of frame 2 w.r.t. frame 0 in (w, x, y, z). Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing the position and orientation of frame 2 w.r.t. frame 1. """ # compute orientation q10 = quat_inv(q01) q12 = quat_mul(q10, q02) # compute translation t12 = quat_apply(q10, t02 - t01) return t12, q12 @torch.jit.script def compute_pose_error(t01: torch.Tensor, q01: torch.Tensor, t02: torch.Tensor, q02: torch.Tensor, rot_error_type: str): """Compute the position and orientation error between source and target frames. Args: t01 (torch.Tensor): Position of source frame. q01 (torch.Tensor): Quaternion orientation of source frame. t02 (torch.Tensor): Position of target frame. q02 (torch.Tensor): Quaternion orientation of target frame. rot_error_type (str): The rotation error type to return: "quat", "axis_angle". Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple containing position and orientation error. """ # Compute quaternion error (i.e., difference quaternion) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quaternion.html # q_current_norm = q_current * q_current_conj source_quat_norm = quat_mul(q01, quat_conjugate(q01))[:, 0] # q_current_inv = q_current_conj / q_current_norm source_quat_inv = quat_conjugate(q01) / source_quat_norm.unsqueeze(-1) # q_error = q_target * q_current_inv quat_error = quat_mul(q02, source_quat_inv) # Compute position error pos_error = t02 - t01 # return error based on specified type if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) return pos_error, axis_angle_error else: raise ValueError(f"Unsupported orientation error type: {rot_error_type}. Valid: 'quat', 'axis_angle'.") @torch.jit.script def apply_delta_pose( source_pos: torch.Tensor, source_rot, delta_pose: torch.Tensor, eps: float = 1.0e-6 ) -> Tuple[torch.Tensor, torch.Tensor]: """Applies delta pose transformation on source pose. The first three elements of `delta_pose` are interpreted as cartesian position displacement. The remaining three elements of `delta_pose` are interpreted as orientation displacement in the angle-axis format. Args: frame_pos (torch.Tensor): Position of source frame. Shape: [N, 3] frame_rot (torch.Tensor): Quaternion orientation of source frame in (w, x, y,z). delta_pose (torch.Tensor): Position and orientation displacements. Shape [N, 6]. eps (float): The tolerance to consider orientation displacement as zero. Returns: torch.Tensor: A tuple containing the displaced position and orientation frames. Shape: ([N, 3], [N, 4]) """ # number of poses given num_poses = source_pos.shape[0] device = source_pos.device # interpret delta_pose[:, 0:3] as target position displacements target_pos = source_pos + delta_pose[:, 0:3] # interpret delta_pose[:, 3:6] as target rotation displacements rot_actions = delta_pose[:, 3:6] angle = torch.linalg.vector_norm(rot_actions, dim=1) axis = rot_actions / angle.unsqueeze(-1) # change from axis-angle to quat convention identity_quat = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat(num_poses, 1) rot_delta_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > eps, quat_from_angle_axis(angle, axis), identity_quat ) # TODO: Check if this is the correct order for this multiplication. target_rot = quat_mul(rot_delta_quat, source_rot) return target_pos, target_rot """ Sampling """ @torch.jit.script def default_orientation(num: int, device: str) -> torch.Tensor: """Returns identity rotation transform. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Identity quaternion (w, x, y, z). """ quat = torch.zeros((num, 4), dtype=torch.float, device=device) quat[..., 0] = 1.0 return quat @torch.jit.script def random_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation in 3D as quaternion. Reference: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ # sample random orientation from normal distribution quat = torch.randn((num, 4), dtype=torch.float, device=device) # normalize the quaternion return torch.nn.functional.normalize(quat, p=2.0, dim=-1, eps=1e-12) @torch.jit.script def random_yaw_orientation(num: int, device: str) -> torch.Tensor: """Returns sampled rotation around z-axis. Args: num (int): The number of rotations to sample. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled quaternion (w, x, y, z). """ roll = torch.zeros(num, dtype=torch.float, device=device) pitch = torch.zeros(num, dtype=torch.float, device=device) yaw = 2 * np.pi * torch.rand(num, dtype=torch.float, device=device) return quat_from_euler_xyz(roll, pitch, yaw) def sample_triangle(lower: float, upper: float, size: Union[int, Tuple[int, ...]], device: str) -> torch.Tensor: """Randomly samples tensor from a triangular distribution. Args: lower (float): The lower range of the sampled tensor. upper (float): The upper range of the sampled tensor. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # create random tensor in the range [-1, 1] r = 2 * torch.rand(*size, device=device) - 1 # convert to triangular distribution r = torch.where(r < 0.0, -torch.sqrt(-r), torch.sqrt(r)) # rescale back to [0, 1] r = (r + 1.0) / 2.0 # rescale to range [lower, upper] return (upper - lower) * r + lower def sample_uniform( lower: Union[torch.Tensor, float], upper: Union[torch.Tensor, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample uniformly within a range. Args: lower (Union[torch.Tensor, float]): Lower bound of uniform range. upper (Union[torch.Tensor, float]): Upper bound of uniform range. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`size`. """ # convert to tuple if isinstance(size, int): size = (size,) # return tensor return torch.rand(*size, device=device) * (upper - lower) + lower def sample_cylinder( radius: float, h_range: Tuple[float, float], size: Union[int, Tuple[int, ...]], device: str ) -> torch.Tensor: """Sample 3D points uniformly on a cylinder's surface. The cylinder is centered at the origin and aligned with the z-axis. The height of the cylinder is sampled uniformly from the range :obj:`h_range`, while the radius is fixed to :obj:`radius`. The sampled points are returned as a tensor of shape :obj:`(*size, 3)`, i.e. the last dimension contains the x, y, and z coordinates of the sampled points. Args: radius (float): The radius of the cylinder. h_range (Tuple[float, float]): The minimum and maximum height of the cylinder. size (Union[int, Tuple[int, ...]]): The shape of the tensor. device (str): Device to create tensor on. Returns: torch.Tensor: Sampled tensor of shape :obj:`(*size, 3)`. """ # sample angles angles = (torch.rand(size, device=device) * 2 - 1) * np.pi h_min, h_max = h_range # add shape if isinstance(size, int): size = (size, 3) else: size += (3,) # allocate a tensor xyz = torch.zeros(size, device=device) xyz[..., 0] = radius * torch.cos(angles) xyz[..., 1] = radius * torch.sin(angles) xyz[..., 2].uniform_(h_min, h_max) # return positions return xyz
24,568
Python
32.610123
139
0.616167
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/ik_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES, ETH Zurich, and University of Toronto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import MISSING from typing import Dict, Optional, Tuple from hsr_rl.tasks.utils.annotation_utils import configclass from hsr_rl.tasks.utils.transform_utils import ( apply_delta_pose, combine_frame_transforms, compute_pose_error, quat_apply, quat_inv ) @configclass class DifferentialInverseKinematicsCfg: """Configuration for inverse differential kinematics controller.""" command_type: str = MISSING """Type of command: "position_abs", "position_rel", "pose_abs", "pose_rel".""" ik_method: str = MISSING """Method for computing inverse of Jacobian: "pinv", "svd", "trans", "dls".""" ik_params: Optional[Dict[str, float]] = None """Parameters for the inverse-kinematics method. (default: obj:`None`). - Moore-Penrose pseudo-inverse ("pinv"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - Adaptive Singular Value Decomposition ("svd"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - "min_singular_value": Single values less than this are suppressed to zero (default: 1e-5). - Jacobian transpose ("trans"): - "k_val": Scaling of computed delta-dof positions (default: 1.0). - Damped Moore-Penrose pseudo-inverse ("dls"): - "lambda_val": Damping coefficient (default: 0.1). """ position_offset: Tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset from parent body to end-effector frame in parent body frame.""" rotation_offset: Tuple[float, float, float, float] = (1.0, 0.0, 0.0, 0.0) """Rotational offset from parent body to end-effector frame in parent body frame.""" position_command_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the position command received. Used only in relative mode.""" rotation_command_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0) """Scaling of the rotation command received. Used only in relative mode.""" class DifferentialInverseKinematics: """Inverse differential kinematics controller. This controller uses the Jacobian mapping from joint-space velocities to end-effector velocities to compute the delta-change in the joint-space that moves the robot closer to a desired end-effector position. To deal with singularity in Jacobian, the following methods are supported for computing inverse of the Jacobian: - "pinv": Moore-Penrose pseudo-inverse - "svd": Adaptive singular-value decomposition (SVD) - "trans": Transpose of matrix - "dls": Damped version of Moore-Penrose pseudo-inverse (also called Levenberg-Marquardt) Note: We use the quaternions in the convention: [w, x, y, z]. Reference: [1] https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf [2] https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf """ _DEFAULT_IK_PARAMS = { "pinv": {"k_val": 1.0}, "svd": {"k_val": 1.0, "min_singular_value": 1e-5}, "trans": {"k_val": 1.0}, "dls": {"lambda_val": 0.1}, } """Default parameters for different inverse kinematics approaches.""" def __init__(self, cfg: DifferentialInverseKinematicsCfg, num_robots: int, device: str): """Initialize the controller. Args: cfg (DifferentialInverseKinematicsCfg): The configuration for the controller. num_robots (int): The number of robots to control. device (str): The device to use for computations. Raises: ValueError: When configured IK-method is not supported. ValueError: When configured command type is not supported. """ # store inputs self.cfg = cfg self.num_robots = num_robots self._device = device # check valid input if self.cfg.ik_method not in ["pinv", "svd", "trans", "dls"]: raise ValueError(f"Unsupported inverse-kinematics method: {self.cfg.ik_method}.") if self.cfg.command_type not in ["position_abs", "position_rel", "pose_abs", "pose_rel"]: raise ValueError(f"Unsupported inverse-kinematics command: {self.cfg.command_type}.") # update parameters for IK-method self._ik_params = self._DEFAULT_IK_PARAMS[self.cfg.ik_method].copy() if self.cfg.ik_params is not None: self._ik_params.update(self.cfg.ik_params) # end-effector offsets # -- position tool_child_link_pos = torch.tensor(self.cfg.position_offset, device=self._device) self._tool_child_link_pos = tool_child_link_pos.repeat(self.num_robots, 1) # -- orientation tool_child_link_rot = torch.tensor(self.cfg.rotation_offset, device=self._device) self._tool_child_link_rot = tool_child_link_rot.repeat(self.num_robots, 1) # transform from tool -> parent frame self._tool_parent_link_rot = quat_inv(self._tool_child_link_rot) self._tool_parent_link_pos = -quat_apply(self._tool_parent_link_rot, self._tool_child_link_pos) # scaling of command self._position_command_scale = torch.diag(torch.tensor(self.cfg.position_command_scale, device=self._device)) self._rotation_command_scale = torch.diag(torch.tensor(self.cfg.rotation_command_scale, device=self._device)) # create buffers self.desired_ee_pos = torch.zeros(self.num_robots, 3, device=self._device) self.desired_ee_rot = torch.zeros(self.num_robots, 4, device=self._device) # -- input command self._command = torch.zeros(self.num_robots, self.num_actions, device=self._device) """ Properties. """ @property def num_actions(self) -> int: """Dimension of the action space of controller.""" if "position" in self.cfg.command_type: return 3 elif self.cfg.command_type == "pose_rel": return 6 elif self.cfg.command_type == "pose_abs": return 7 else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") """ Operations. """ def initialize(self): """Initialize the internals.""" pass def reset_idx(self, robot_ids: torch.Tensor = None): """Reset the internals.""" pass def set_command(self, command: torch.Tensor): """Set target end-effector pose command.""" # check input size if command.shape != (self.num_robots, self.num_actions): raise ValueError( f"Invalid command shape '{command.shape}'. Expected: '{(self.num_robots, self.num_actions)}'." ) # store command self._command[:] = command def compute( self, current_ee_pos: torch.Tensor, current_ee_rot: torch.Tensor, jacobian: torch.Tensor, joint_positions: torch.Tensor, ) -> torch.Tensor: """Performs inference with the controller. Returns: torch.Tensor: The target joint positions commands. """ # compute the desired end-effector pose if "position_rel" in self.cfg.command_type: # scale command self._command @= self._position_command_scale # compute targets self.desired_ee_pos = current_ee_pos + self._command self.desired_ee_rot = current_ee_rot elif "position_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command self.desired_ee_rot = current_ee_rot elif "pose_rel" in self.cfg.command_type: # scale command self._command[:, 0:3] @= self._position_command_scale self._command[:, 3:6] @= self._rotation_command_scale # compute targets self.desired_ee_pos, self.desired_ee_rot = apply_delta_pose(current_ee_pos, current_ee_rot, self._command) elif "pose_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command[:, 0:3] self.desired_ee_rot = self._command[:, 3:7] else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") # transform from ee -> parent # TODO: Make this optional to reduce overhead? desired_parent_pos, desired_parent_rot = combine_frame_transforms( self.desired_ee_pos, self.desired_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # transform from ee -> parent # TODO: Make this optional to reduce overhead? current_parent_pos, current_parent_rot = combine_frame_transforms( current_ee_pos, current_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # compute pose error between current and desired position_error, axis_angle_error = compute_pose_error( current_parent_pos, current_parent_rot, desired_parent_pos, desired_parent_rot, rot_error_type="axis_angle" ) # compute the delta in joint-space if "position" in self.cfg.command_type: jacobian_pos = jacobian[:, 0:3] delta_joint_positions = self._compute_delta_dof_pos(delta_pose=position_error, jacobian=jacobian_pos) else: pose_error = torch.cat((position_error, axis_angle_error), dim=1) delta_joint_positions = self._compute_delta_dof_pos(delta_pose=pose_error, jacobian=jacobian) # return the desired joint positions return joint_positions + delta_joint_positions def compute_delta( self, current_ee_pos: torch.Tensor, current_ee_rot: torch.Tensor, jacobian: torch.Tensor, ) -> torch.Tensor: """Performs inference with the controller. Returns: torch.Tensor: The target joint positions commands. """ # compute the desired end-effector pose if "position_rel" in self.cfg.command_type: # scale command self._command @= self._position_command_scale # compute targets self.desired_ee_pos = current_ee_pos + self._command self.desired_ee_rot = current_ee_rot elif "position_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command self.desired_ee_rot = current_ee_rot elif "pose_rel" in self.cfg.command_type: # scale command self._command[:, 0:3] @= self._position_command_scale self._command[:, 3:6] @= self._rotation_command_scale # compute targets self.desired_ee_pos, self.desired_ee_rot = apply_delta_pose(current_ee_pos, current_ee_rot, self._command) elif "pose_abs" in self.cfg.command_type: # compute targets self.desired_ee_pos = self._command[:, 0:3] self.desired_ee_rot = self._command[:, 3:7] else: raise ValueError(f"Invalid control command: {self.cfg.command_type}.") # transform from ee -> parent # TODO: Make this optional to reduce overhead? desired_parent_pos, desired_parent_rot = combine_frame_transforms( self.desired_ee_pos, self.desired_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # transform from ee -> parent # TODO: Make this optional to reduce overhead? current_parent_pos, current_parent_rot = combine_frame_transforms( current_ee_pos, current_ee_rot, self._tool_parent_link_pos, self._tool_parent_link_rot ) # compute pose error between current and desired position_error, axis_angle_error = compute_pose_error( current_parent_pos, current_parent_rot, desired_parent_pos, desired_parent_rot, rot_error_type="axis_angle" ) # compute the delta in joint-space if "position" in self.cfg.command_type: jacobian_pos = jacobian[:, 0:3] delta_joint_positions = self._compute_delta_dof_pos(delta_pose=position_error, jacobian=jacobian_pos) else: pose_error = torch.cat((position_error, axis_angle_error), dim=1) delta_joint_positions = self._compute_delta_dof_pos(delta_pose=pose_error, jacobian=jacobian) # return the desired joint positions return delta_joint_positions """ Helper functions. """ def _compute_delta_dof_pos(self, delta_pose: torch.Tensor, jacobian: torch.Tensor) -> torch.Tensor: """Computes the change in dos-position that yields the desired change in pose. The method uses the Jacobian mapping from joint-space velocities to end-effector velocities to compute the delta-change in the joint-space that moves the robot closer to a desired end-effector position. Args: delta_pose (torch.Tensor): The desired delta pose in shape [N, 3 or 6]. jacobian (torch.Tensor): The geometric jacobian matrix in shape [N, 3 or 6, num-dof] Returns: torch.Tensor: The desired delta in joint space. """ if self.cfg.ik_method == "pinv": # Jacobian pseudo-inverse # parameters k_val = self._ik_params["k_val"] # computation jacobian_pinv = torch.linalg.pinv(jacobian) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "svd": # adaptive SVD # parameters k_val = self._ik_params["k_val"] min_singular_value = self._ik_params["min_singular_value"] # computation # U: 6xd, S: dxd, V: d x num-dof U, S, Vh = torch.linalg.svd(jacobian) S_inv = 1.0 / S S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv)) jacobian_pinv = ( torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2) ) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "trans": # Jacobian transpose # parameters k_val = self._ik_params["k_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif self.cfg.ik_method == "dls": # damped least squares # parameters lambda_val = self._ik_params["lambda_val"] # computation jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) lambda_matrix = (lambda_val**2) * torch.eye(n=jacobian.shape[1], device=self._device) delta_dof_pos = jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) else: raise ValueError(f"Unsupported inverse-kinematics method: {self.cfg.ik_method}") return delta_dof_pos
15,553
Python
39.824147
153
0.618852
makolon/hsr_isaac_tamp/hsr_rl/tasks/utils/scene_utils.py
import os import torch import numpy as np from typing import Optional from pxr import Gf from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.physx.scripts import utils from pxr import UsdGeom from hsr_rl.utils.files import get_usd_path from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.torch.rotations import euler_angles_to_quats def spawn_obstacle(name, prim_path, device): object_translation = torch.tensor([1.7, 0.0, 0.055], device=device) object_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=device) # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/obstacle/"+name) obst_prim = XFormPrim( prim_path=prim_path+"/obstacle/"+name, translation=object_translation, orientation=object_orientation ) return obst_prim def spawn_dynamic_object(name, prim_path, object_translation, object_orientation): # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox_dynamic', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/"+name) obj_prim = XFormPrim( prim_path=prim_path+"/"+name, translation=object_translation, orientation=object_orientation ) return obj_prim def spawn_static_object(name, prim_path, object_translation, object_orientation): # Spawn object model from usd path object_usd_path = os.path.join(get_usd_path(), 'gearbox_static', name, name+'.usd') add_reference_to_stage(object_usd_path, prim_path+"/"+name) obj_prim = XFormPrim( prim_path=prim_path+"/"+name, translation=object_translation, orientation=object_orientation ) return obj_prim def setup_gearbox_scene(env_ids, indices, obstacles, obstacles_state, grasp_objs, grasp_objs_state, device): # Place all grasp objects on the tabular obstacle (without overlaps) for idx, _ in enumerate(obstacles): obst_position = obstacles_state[idx][env_ids, :3] obst_orientation = obstacles_state[idx][env_ids, 3:] obstacles[idx].set_world_poses(positions=obst_position, orientations=obst_orientation, indices=indices) for idx, _ in enumerate(grasp_objs): grasp_obj_position = grasp_objs_state[idx][env_ids, :3] grsap_obj_orientation = grasp_objs_state[idx][env_ids, 3:] grasp_objs[idx].set_world_poses(positions=grasp_obj_position, orientations=grsap_obj_orientation, indices=indices) # Pick one object to be the grasp object and compute its grasp: goal_obj_index = np.random.randint(len(grasp_objs)) return grasp_objs[goal_obj_index] class DynamicObject(RigidPrim, GeometryPrim): """Creates and adds a prim to stage from USD reference path, and wraps the prim with RigidPrim and GeometryPrim to provide access to APIs for rigid body attributes, physics materials and collisions. Please note that this class assumes the object has only a single mesh prim defining its geometry. Args: usd_path (str): USD reference path the Prim refers to. prim_path (str): prim path of the Prim to encapsulate or create. mesh_path (str): prim path of the underlying mesh Prim. name (str, optional): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. Defaults to "dynamic_object". position (Optional[np.ndarray], optional): position in the world frame of the prim. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the prim (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the prim (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the prim's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to True. mass (Optional[float], optional): mass in kg. Defaults to None. linear_velocity (Optional[np.ndarray], optional): linear velocity in the world frame. Defaults to None. angular_velocity (Optional[np.ndarray], optional): angular velocity in the world frame. Defaults to None. """ def __init__( self, usd_path: str, prim_path: str, mesh_path: str, name: str = "dynamic_object", position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, visible: bool = True, mass: Optional[float] = None, linear_velocity: Optional[np.ndarray] = None, angular_velocity: Optional[np.ndarray] = None, ) -> None: if is_prim_path_valid(mesh_path): prim = get_prim_at_path(mesh_path) if not prim.IsA(UsdGeom.Mesh): raise Exception("The prim at path {} cannot be parsed as a Mesh object".format(mesh_path)) self.usd_path = usd_path add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) GeometryPrim.__init__( self, prim_path=mesh_path, name=name, translation=translation, orientation=orientation, visible=visible, collision=True, ) self.set_collision_approximation("convexHull") RigidPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, mass=mass, linear_velocity=linear_velocity, angular_velocity=angular_velocity, )
7,020
Python
44.296774
121
0.618946
makolon/hsr_isaac_tamp/hsr_rl/tasks/residual/hsr_residual_stack.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.utils.dataset_utils import load_dataset from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.articulations.articulation_view import ArticulationView from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.stage import print_stage_prim_paths from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.objects import DynamicCuboid, FixedCuboid from omni.isaac.core.materials import PhysicsMaterial from omni.isaac.sensor import _sensor from omni.isaac.cloner import Cloner from omni.physx.scripts import utils, physicsUtils import re import math import torch import numpy as np from pxr import Usd, UsdGeom, PhysxSchema, UsdPhysics, Gf class HSRResidualStackTask(RLTask): def __init__( self, name, sim_config, env, ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] # Get dt for integrating velocity commands and checking limit violations self._dt = torch.tensor(self._task_cfg["sim"]["dt"] * self._task_cfg["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._num_props = self._task_cfg["env"]["numProps"] # Table and prop settings self._table_height = 0.26 self._table_width = 0.5 self._table_depth = 0.5 self._table_size = 1.0 self._prop_size = self._sim_config.task_config["sim"]["parts"]["size"] self._prop_density = self._sim_config.task_config["sim"]["parts"]["density"] self._prop_static_friction = self._sim_config.task_config["sim"]["parts"]["static_friction"] self._prop_dynamic_friction = self._sim_config.task_config["sim"]["parts"]["dynamic_friction"] self._prop_restitution = self._sim_config.task_config["sim"]["parts"]["restitution"] self._gripper_mass = self._sim_config.task_config["sim"]["gripper"]["mass"] self._gripper_density = self._sim_config.task_config["sim"]["gripper"]["density"] self._gripper_static_friction = self._sim_config.task_config["sim"]["gripper"]["static_friction"] self._gripper_dynamic_friction = self._sim_config.task_config["sim"]["gripper"]["dynamic_friction"] self._gripper_restitution = self._sim_config.task_config["sim"]["gripper"]["restitution"] self._pick_success = self._table_height + 0.05 self._place_success = torch.tensor([0.2, 0.2], device=self._device) self._hsr_position = torch.tensor([0.0, 0.0, 0.03], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.625, 0.0, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._prop_position = torch.tensor([1.48, 0.455, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0.0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) self.initial_dof_positions = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, 0.0, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device) # Dof joint gains self.joint_kps = torch.tensor([1e9, 1e9, 5.7296e10, 1e9, 1e9, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 5.7296e10, 2.8648e4, 2.8648e4, 5.7296e10, 5.7296e10], device=self._device) self.joint_kds = torch.tensor([1.4, 1.4, 80.2141, 1.4, 0.0, 80.2141, 0.0, 80.2141, 0.0, 80.2141, 80.2141, 17.1887, 17.1887, 17.1887, 17.1887], device=self._device) # Dof joint friction coefficients self.joint_friction_coefficients = torch.tensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] # Add contact sensor self._contact_sensor_interface = _sensor.acquire_contact_sensor_interface() self.replay_count = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.lift_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.place_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.gripper_close = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_open = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.gripper_hold = torch.zeros(self._num_envs, device=self._device, dtype=torch.bool) self.exp_actions = self.load_exp_dataset() RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.create_prop_material() self.create_gripper_material() self.add_hsr() self.add_prop() self.add_table1() self.add_table2() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def create_prop_material(self): self._stage = get_current_stage() self.propPhysicsMaterialPath = "/World/Physics_Materials/PropMaterial" utils.addRigidBodyMaterial( self._stage, self.propPhysicsMaterialPath, density=self._prop_density, staticFriction=self._prop_static_friction, dynamicFriction=self._prop_dynamic_friction, ) def create_gripper_material(self): self._stage = get_current_stage() self.gripperPhysicsMaterialPath = "/World/Physics_Materials/GripperMaterial" utils.addRigidBodyMaterial( self._stage, self.gripperPhysicsMaterialPath, density=self._gripper_density, staticFriction=self._gripper_static_friction, dynamicFriction=self._gripper_dynamic_friction, restitution=self._gripper_restitution ) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, density=self._prop_density, color=torch.tensor([0.2, 0.4, 0.6])) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath(self.default_zero_env_path + "/prop"), self.propPhysicsMaterialPath ) def add_table1(self): table_pos = torch.tensor([1.5, -0.5, self._table_height/2], device=self._device) table_orn = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) table = FixedCuboid(prim_path=self.default_zero_env_path + "/table1", name="table1", translation=table_pos, orientation=table_orn, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table1", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def add_table2(self): table_pos = torch.tensor([1.5, 0.5, self._table_height/2], device=self._device) table_orn = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) table = FixedCuboid(prim_path=self.default_zero_env_path + "/table2", name="table2", translation=table_pos, orientation=table_orn, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table2", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:10] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 10:20] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 20:23] = end_effector_positions self.obs_buf[..., 23:27] = end_effector_orientations self.obs_buf[..., 27:30] = end_effector_linvels self.obs_buf[..., 30:33] = end_effector_angvels self.obs_buf[..., 33:36] = prop_positions self.obs_buf[..., 38:42] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # Update position targets from actions replay_indices = torch.tensor(self.replay_count) self.dof_position_targets[..., self.movable_dof_indices] = self._robots.get_joint_positions(joint_indices=self.movable_dof_indices) self.dof_position_targets[..., self.movable_dof_indices] += self.exp_actions[replay_indices, :8] # replay tamp trajectory self.dof_position_targets[..., self.movable_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) # add residual rl action self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_position_targets(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.0 # min horizontal dist from origin max_d = 0.0 # max horizontal dist from origin min_height = 0.0 # min vertical dist from origin max_height = 0.0 # min vertical dist from origin dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_position_targets(self.initial_dof_positions, indices=env_ids_32) gripper_dof_effort = torch.tensor([0., 0.], device=self._device) self._robots.set_joint_efforts(gripper_dof_effort, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) # bookkeeping self.gripper_close[env_ids] = False self.gripper_open[env_ids] = False self.gripper_hold[env_ids] = False self.replay_count[env_ids] = 0 self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 self.lift_success[env_ids] = 0 self.place_success[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() self.set_joint_gains() self.set_joint_frictions() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the ball dist = torch.norm(self.obs_buf[..., 33:36] - self.obs_buf[..., 20:23], p=2, dim=-1) dist_reward = 1.0 / (1.0 + dist ** 2) dist_reward *= dist_reward dist_reward = torch.where(dist <= 0.02, dist_reward * 2, dist_reward) self.rew_buf[:] = dist_reward * self._task_cfg['rl']['distance_scale'] # In this policy, episode length is constant across all envs is_mid_step = (self.progress_buf[0] == int(self.exp_actions.size()[0] / 2)) is_last_step = (self.progress_buf[0] == int(self.exp_actions.size()[0] - 1)) if is_mid_step: # Check if block is picked up and above table lift_success = self._check_lift_success(height_threashold=self._pick_success) self.rew_buf[:] += lift_success * self._task_cfg['rl']['pick_success_bonus'] self.extras['lift_successes'] = torch.mean(lift_success.float()) self.lift_success = torch.where( lift_success[:] == 1, torch.ones_like(lift_success), -torch.ones_like(lift_success) ) if is_last_step: # Check if block is in a target region place_success = self._check_place_success(place_threashold=self._place_success) self.rew_buf[:] += place_success * self._task_cfg['rl']['place_success_bonus'] self.extras['place_successes'] = torch.mean(place_success.float()) self.place_success = torch.where( place_success[:] == 1, torch.ones_like(place_success), -torch.ones_like(place_success) ) def is_done(self) -> None: self.reset_buf = torch.where( self.progress_buf == self.exp_actions.size()[0] - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.replay_count[:] += 1 self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant replay_indices = torch.tensor(self.replay_count) self.gripper_close = self.exp_actions[replay_indices, -1] < -0.01 self.gripper_open = self.exp_actions[replay_indices, -1] > 0.01 if torch.any(self.gripper_close): close_indices = torch.where(self.gripper_close)[0] self._close_gripper(close_indices, sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) elif torch.any(self.gripper_open): open_indices = torch.where(self.gripper_open)[0] self._open_gripper(open_indices, sim_steps=self._task_cfg['env']['num_gripper_open_sim_steps']) elif torch.any(self.gripper_hold): hold_indices = torch.where(self.gripper_hold)[0] self._hold_gripper(hold_indices) self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs+self.gripper_proximal_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10, 11, 12]).to(self._device) self.movable_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def set_joint_gains(self): self._robots.set_gains(kps=self.joint_kps, kds=self.joint_kds) def set_joint_frictions(self): self._robots.set_friction_coefficients(self.joint_friction_coefficients) def _close_gripper(self, env_ids, sim_steps=10): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-30., -30.], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = True def _open_gripper(self, env_ids, sim_steps=10): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_effort = torch.tensor([0., 0.], device=self._device) self._robots.set_joint_efforts(gripper_dof_effort, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) gripper_dof_pos = torch.tensor([0.5, 0.5], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold[env_ids_64] = False def _hold_gripper(self, env_ids): env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) gripper_dof_pos = torch.tensor([-30., -30.], device=self._device) self._robots.set_joint_efforts(gripper_dof_pos, indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) self.dof_position_targets[env_ids_64[:, None], self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(indices=env_ids_32, joint_indices=self.gripper_proximal_dof_idxs) def _check_lift_success(self, height_threashold): prop_pos, _ = self._props.get_world_poses() prop_pos -= self._env_pos # check z direction range lift_success = torch.where( prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def _check_place_success(self, place_threashold): table_pos = torch.tensor([1.5, -0.5, self._table_height/2], device=self._device) prop_pos, _ = self._props.get_world_poses() prop_pos -= self._env_pos # check x direction range place_success = torch.where( prop_pos[:, 0] > table_pos[0]-place_threashold[0], torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device) ) place_success = torch.where( prop_pos[:, 0] < table_pos[0]+place_threashold[1], place_success, torch.zeros((self.num_envs,), device=self._device) ) # check y direction range place_success = torch.where( prop_pos[:, 1] > table_pos[1]-place_threashold[1], place_success, torch.zeros((self.num_envs,), device=self._device) ) place_success = torch.where( prop_pos[:, 1] < table_pos[1]+place_threashold[1], place_success, torch.zeros((self.num_envs,), device=self._device) ) return place_success def _check_robot_collisions(self): # Check if the robot collided with an object for obst_prim in self._tables._prim_paths: match = re.search(r'\d+', obst_prim) env_id = int(match.group()) raw_readings = self._contact_sensor_interface.get_contact_sensor_raw_data(obst_prim + "/Contact_Sensor") if raw_readings.shape[0]: for reading in raw_readings: if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body1"])): self.is_collided[env_id] = True if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body0"])): self.is_collided[env_id] = True collide_penalty = torch.where( self.is_collided == True, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return collide_penalty def load_exp_dataset(self): exp_actions = load_dataset('stacking_problem') return torch.tensor(exp_actions, device=self._device) # (dataset_length, num_actions)
30,080
Python
47.674757
209
0.627427
makolon/hsr_isaac_tamp/hsr_rl/tasks/residual/hsr_residual_lift.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from hsr_rl.tasks.base.rl_task import RLTask from hsr_rl.robots.articulations.hsr import HSR from hsr_rl.robots.articulations.views.hsr_view import HSRView from hsr_rl.utils.dataset_utils import load_dataset from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.articulations.articulation_view import ArticulationView from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.stage import print_stage_prim_paths from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.objects import DynamicCuboid, FixedCuboid from omni.isaac.sensor import _sensor import torch from pxr import Usd, UsdGeom class HSRResidualLiftTask(RLTask): def __init__( self, name, sim_config, env, ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._device = self._cfg["sim_device"] self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = torch.tensor(self._task_cfg["sim"]["dt"] * self._task_cfg["env"]["controlFrequencyInv"], device=self._device) self._num_observations = self._task_cfg["env"]["num_observations"] self._num_actions = self._task_cfg["env"]["num_actions"] self._num_props = self._task_cfg["env"]["numProps"] self._table_height = 0.12 self._table_width = 0.65 self._table_depth = 1.2 self._table_size = 1.0 self._prop_size = 0.04 self._pick_success = 0.15 self._hsr_position = torch.tensor([0.0, 0.0, 0.03], device=self._device) self._hsr_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._table_position = torch.tensor([1.5, 0.0, self._table_height/2], device=self._device) self._table_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._prop_position = torch.tensor([1.275, 0.0, self._table_height+self._prop_size/2], device=self._device) self._prop_rotation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] # Start at 'home' positions self.torso_start = torch.tensor([0.1], device=self._device) self.base_start = torch.tensor([0.0, 0.0, 0.0], device=self._device) self.arm_start = torch.tensor([0.1, -1.570796, 0.0, -0.392699, 0.0], device=self._device) self.gripper_proximal_start = torch.tensor([0.75, 0.75], device=self._device) self.initial_dof_positions = torch.tensor([0.0, 0.0, 0.0, 0.1, 0.1, -1.570796, 0.0, 0.0, 0.0, -0.392699, 0.0, 0.75, 0.75, 0.0, 0.0], device=self._device) # Joint & body names self._torso_joint_name = ["torso_lift_joint"] self._base_joint_names = ["joint_x", "joint_y", "joint_rz"] self._arm_names = ["arm_lift_joint", "arm_flex_joint", "arm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self._gripper_proximal_names = ["hand_l_proximal_joint", "hand_r_proximal_joint"] # Values are set in post_reset after model is loaded self.torso_dof_idx = [] self.base_dof_idxs = [] self.arm_dof_idxs = [] self.gripper_proximal_dof_idxs = [] # Dof joint position limits self.torso_dof_lower = [] self.torso_dof_upper = [] self.base_dof_lower = [] self.base_dof_upper = [] self.arm_dof_lower = [] self.arm_dof_upper = [] self.gripper_p_dof_lower = [] self.gripper_p_dof_upper = [] # Add contact sensor self._contact_sensor_interface = _sensor.acquire_contact_sensor_interface() self.is_collided = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.is_success = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.exp_actions = self.load_exp_dataset() RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.add_hsr() self.add_prop() self.add_table() self.add_cover() # Set up scene super().set_up_scene(scene) # Add robot to scene self._robots = HSRView(prim_paths_expr="/World/envs/.*/hsrb", name="hsrb_view") scene.add(self._robots) scene.add(self._robots._hands) scene.add(self._robots._lfingers) scene.add(self._robots._rfingers) scene.add(self._robots._fingertip_centered) # Add prop to scene self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop", name="prop_view", reset_xform_properties=False) scene.add(self._props) def add_hsr(self): hsrb = HSR(prim_path=self.default_zero_env_path + "/hsrb", name="hsrb", translation=self._hsr_position, orientation=self._hsr_rotation) self._sim_config.apply_articulation_settings("hsrb", get_prim_at_path(hsrb.prim_path), self._sim_config.parse_actor_config("hsrb")) def add_prop(self): prop = DynamicCuboid(prim_path=self.default_zero_env_path + "/prop", name="prop", translation=self._prop_position, orientation=self._prop_rotation, size=self._prop_size, color=torch.tensor([0.2, 0.4, 0.6]), mass=0.1, density=100.0) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) def add_table(self): table = FixedCuboid(prim_path=self.default_zero_env_path + "/table", name="table", translation=self._table_position, orientation=self._table_rotation, size=self._table_size, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([self._table_width, self._table_depth, self._table_height])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(table.prim_path), self._sim_config.parse_actor_config("table")) def add_cover(self): cover_0 = FixedCuboid(prim_path=self.default_zero_env_path + "/cover_0", name="cover_0", translation=torch.tensor([1.825, 0.0, 0.2], device=self._device), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device), size=1.0, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([0.05, 1.2, 0.15])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(cover_0.prim_path), self._sim_config.parse_actor_config("table")) cover_1 = FixedCuboid(prim_path=self.default_zero_env_path + "/cover_1", name="cover_1", translation=torch.tensor([1.5, 0.6, 0.2], device=self._device), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device), size=1.0, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([0.65, 0.05, 0.15])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(cover_1.prim_path), self._sim_config.parse_actor_config("table")) cover_2 = FixedCuboid(prim_path=self.default_zero_env_path + "/cover_2", name="cover_2", translation=torch.tensor([1.5, -0.6, 0.2], device=self._device), orientation=torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device), size=1.0, color=torch.tensor([0.75, 0.75, 0.75]), scale=torch.tensor([0.65, 0.05, 0.15])) self._sim_config.apply_articulation_settings("table", get_prim_at_path(cover_2.prim_path), self._sim_config.parse_actor_config("table")) def get_observations(self): # Get prop positions and orientations prop_positions, prop_orientations = self._props.get_world_poses(clone=False) prop_positions = prop_positions[:, 0:3] - self._env_pos # Get prop velocities prop_velocities = self._props.get_velocities(clone=False) prop_linvels = prop_velocities[:, 0:3] prop_angvels = prop_velocities[:, 3:6] # Get end effector positions and orientations end_effector_positions, end_effector_orientations = self._robots._fingertip_centered.get_world_poses(clone=False) end_effector_positions = end_effector_positions[:, 0:3] - self._env_pos # Get end effector velocities end_effector_velocities = self._robots._fingertip_centered.get_velocities(clone=False) end_effector_linvels = end_effector_velocities[:, 0:3] end_effector_angvels = end_effector_velocities[:, 3:6] self.prop_positions = prop_positions self.prop_linvels = prop_linvels dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) self.obs_buf[..., 0:8] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 8:16] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 16:19] = end_effector_positions self.obs_buf[..., 19:23] = end_effector_orientations self.obs_buf[..., 23:26] = end_effector_linvels self.obs_buf[..., 26:29] = end_effector_angvels self.obs_buf[..., 29:32] = prop_positions self.obs_buf[..., 32:36] = prop_orientations observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # Update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] = self._robots.get_joint_positions(joint_indices=self.actuated_dof_indices) self.dof_position_targets[..., self.actuated_dof_indices] += self.exp_actions[self.replay_count, :8] self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits ) # Modify torso joint positions dof_pos = self._robots.get_joint_positions() arm_pos = dof_pos[:, self.arm_dof_idxs] scaled_arm_lift_pos = arm_pos[:, 0] / self.arm_dof_upper[0] scaled_torso_lift_pos = scaled_arm_lift_pos * self.torso_dof_upper[0] self.dof_position_targets[:, self.torso_dof_idx] = scaled_torso_lift_pos.unsqueeze(dim=1) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = self.initial_dof_positions self._robots.set_joint_position_targets(self.dof_position_targets) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.0 # min horizontal dist from origin max_d = 0.0 # max horizontal dist from origin min_height = 0.0 max_height = 0.0 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs # Prop pos / rot, velocities self.prop_pos = self.initial_prop_pos.clone() self.prop_rot = self.initial_prop_rot.clone() # position self.prop_pos[env_ids_64, 0:2] += hpos[..., 0:2] self.prop_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation self.prop_rot[env_ids_64, 0] = 1 self.prop_rot[env_ids_64, 1:] = 0 # reset root state for props in selected envs self._props.set_world_poses(self.prop_pos[env_ids_64], self.prop_rot[env_ids_64], indices=env_ids_32) # reset root state for robots in selected envs self._robots.set_world_poses(self.initial_robot_pos[env_ids_64], self.initial_robot_rot[env_ids_64], indices=env_ids_32) # reset DOF states for robots in selected envs self._robots.set_joint_position_targets(self.initial_dof_positions, indices=env_ids_32) # bookkeeping self.gripper_close = False self.gripper_hold = False self.replay_count = 0 self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.extras[env_ids] = 0 self.is_collided[env_ids] = 0 def post_reset(self): self.set_dof_idxs() self.set_dof_limits() self.set_default_state() # reset prop pos / rot, and velocities self.initial_robot_pos, self.initial_robot_rot = self._robots.get_world_poses() self.initial_robot_velocities = self._robots.get_velocities() # reset prop pos / rot, and velocities self.initial_prop_pos, self.initial_prop_rot = self._props.get_world_poses() self.initial_prop_velocities = self._props.get_velocities() def calculate_metrics(self) -> None: # Distance from hand to the ball dist = torch.norm(self.obs_buf[..., 29:32] - self.obs_buf[..., 16:19], p=2, dim=-1) dist_reward = 1.0 / (1.0 + dist ** 2) dist_reward *= dist_reward dist_reward = torch.where(dist <= 0.02, dist_reward * 2, dist_reward) self.rew_buf[:] = dist_reward * self._task_cfg['rl']['distance_scale'] # In this policy, episode length is constant across all envs is_last_step = (self.progress_buf[0] == self.exp_actions.size()[0] - 1) if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_threashold=self._pick_success) self.rew_buf[:] += lift_success * self._task_cfg['rl']['success_bonus'] self.extras['successes'] = torch.mean(lift_success.float()) def is_done(self) -> None: self.reset_buf = torch.where( self.progress_buf[:] >= self.exp_actions.size()[0] - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.replay_count += 1 self.progress_buf[:] += 1 if self._env._world.is_playing(): # In this policy, episode length is constant self.gripper_close = True if self.exp_actions[self.replay_count, -1] < -0.01 else False if self.gripper_close: self._close_gripper(sim_steps=self._task_cfg['env']['num_gripper_close_sim_steps']) if self.gripper_hold: self._hold_gripper() self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def set_dof_idxs(self): [self.torso_dof_idx.append(self._robots.get_dof_index(name)) for name in self._torso_joint_name] [self.base_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._base_joint_names] [self.arm_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._arm_names] [self.gripper_proximal_dof_idxs.append(self._robots.get_dof_index(name)) for name in self._gripper_proximal_names] # Movable joints self.actuated_dof_indices = torch.LongTensor(self.base_dof_idxs+self.arm_dof_idxs).to(self._device) # torch.LongTensor([0, 1, 2, 3, 5, 7, 9, 10]).to(self._device) def set_dof_limits(self): # dof position limits # (num_envs, num_dofs, 2) dof_limits = self._robots.get_dof_limits() dof_limits_lower = dof_limits[0, :, 0].to(self._device) dof_limits_upper = dof_limits[0, :, 1].to(self._device) # Set relevant joint position limit values self.torso_dof_lower = dof_limits_lower[self.torso_dof_idx] self.torso_dof_upper = dof_limits_upper[self.torso_dof_idx] self.base_dof_lower = dof_limits_lower[self.base_dof_idxs] self.base_dof_upper = dof_limits_upper[self.base_dof_idxs] self.arm_dof_lower = dof_limits_lower[self.arm_dof_idxs] self.arm_dof_upper = dof_limits_upper[self.arm_dof_idxs] self.gripper_p_dof_lower = dof_limits_lower[self.gripper_proximal_dof_idxs] self.gripper_p_dof_upper = dof_limits_upper[self.gripper_proximal_dof_idxs] self.robot_dof_lower_limits, self.robot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) def set_default_state(self): # Set default joint state joint_states = self._robots.get_joints_default_state() jt_pos = joint_states.positions jt_pos[:, self.torso_dof_idx] = self.torso_start jt_pos[:, self.base_dof_idxs] = self.base_start jt_pos[:, self.arm_dof_idxs] = self.arm_start jt_pos[:, self.gripper_proximal_dof_idxs] = self.gripper_proximal_start jt_vel = joint_states.velocities jt_vel[:, self.torso_dof_idx] = torch.zeros_like(self.torso_start, device=self._device) jt_vel[:, self.base_dof_idxs] = torch.zeros_like(self.base_start, device=self._device) jt_vel[:, self.arm_dof_idxs] = torch.zeros_like(self.arm_start, device=self._device) jt_vel[:, self.gripper_proximal_dof_idxs] = torch.zeros_like(self.gripper_proximal_start, device=self._device) self._robots.set_joints_default_state(positions=jt_pos, velocities=jt_vel) # Initialize target positions self.dof_position_targets = jt_pos def _close_gripper(self, sim_steps=10): gripper_dof_pos = torch.tensor([-0.75, -0.75], device=self._device) # Step sim for _ in range(sim_steps): self._robots.set_joint_position_targets(gripper_dof_pos, joint_indices=self.gripper_proximal_dof_idxs) SimulationContext.step(self._env._world, render=True) self.dof_position_targets[:, self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(joint_indices=self.gripper_proximal_dof_idxs) self.gripper_hold = True def _hold_gripper(self): gripper_dof_pos = torch.tensor([-0.7980, -0.7980], device=self._device) self._robots.set_joint_position_targets(gripper_dof_pos, joint_indices=self.gripper_proximal_dof_idxs) self.dof_position_targets[:, self.gripper_proximal_dof_idxs] = self._robots.get_joint_positions(joint_indices=self.gripper_proximal_dof_idxs) def _check_lift_success(self, height_threashold): prop_pos, prop_rot = self._props.get_world_poses() lift_success = torch.where( prop_pos[:, 2] > height_threashold, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return lift_success def _check_robot_collisions(self): # Check if the robot collided with an object for obst_prim in self._tables._prim_paths: match = re.search(r'\d+', obst_prim) env_id = int(match.group()) raw_readings = self._contact_sensor_interface.get_contact_sensor_raw_data(obst_prim + "/Contact_Sensor") if raw_readings.shape[0]: for reading in raw_readings: if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body1"])): self.is_collided[env_id] = True if "hsrb" in str(self._contact_sensor_interface.decode_body_name(reading["body0"])): self.is_collided[env_id] = True collide_penalty = torch.where( self.is_collided == True, torch.ones((self.num_envs,), device=self._device), torch.zeros((self.num_envs,), device=self._device)) return collide_penalty def load_exp_dataset(self): exp_actions = load_dataset('holding_problem') return torch.tensor(exp_actions, device=self._device) # (dataset_length, num_actions)
22,747
Python
47.606838
170
0.618016
makolon/hsr_isaac_tamp/hsr_rl/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: 256 # seed - set to -1 to choose random seed seed: -1 # set to True for deterministic performance torch_deterministic: False # (Optional) Use the isaac sim configuration from file sim_app_cfg_path: "" # "/isaac_app_configs/omni.isaac.sim.python.kit" # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: 1500 ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # 'cpu' or 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # 'cpu' or 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' #'cpu' or 'cuda:0' # multi-GPU training multi_gpu: False ## PhysX arguments num_threads: 4 # Number of worker threads per scene used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RL Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # enable/disable headless mode and rendering (in pygame window) headless: False # enables native livestream enable_livestream: False # timeout for MT script mt_timeout: 30 # Wandb settings (optional) wandb_activate: True wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'tamp-hsr' # set default task and default training config based on task defaults: - task: HSRExample - train: ${task}PPO - hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
1,842
YAML
26.924242
103
0.736699
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRResidualLift.yaml
# used to create the object name: HSRResidualLift physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 resetDist: 1.0 maxEffort: 400.0 controlFrequencyInv: 2 # 60 Hz maxEpisodeLength: 600 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 1 aggregateMode: 3 gamma: 0.999 horizon: 600 move_group: "whole_body" randomize_robot_on_reset: False num_actions: 8 # base and arm num_observations: 36 # observation space num_gripper_open_sim_steps: 1 # number of timesteps to reserve for opening gripper before first step of episode num_gripper_close_sim_steps: 1 # number of timesteps to reserve for closing gripper after last step of episode sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] disable_gravity: False add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False enable_cameras: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 32 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.01 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 5.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 17060160 # 524288 gpu_found_lost_aggregate_pairs_capacity: 17060160 # 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 32 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.005 # per-body density: -1 max_depenetration_velocity: 5.0 # per-shape contact_offset: 0.005 rest_offset: 0.7e-5 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 32 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.005 # per-body density: -1 max_depenetration_velocity: 5.0 # per-shape contact_offset: 0.005 rest_offset: 0.7e-5 table: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 32 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.005 # per-body density: 1000 max_depenetration_velocity: 5.0 # per-shape contact_offset: 0.005 rest_offset: 0.7e-5 rl: pos_action_scale: [0.1, 0.1, 0.1] rot_action_scale: [0.1, 0.1, 0.1] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints keypoint_reward_scale: 1.0 # scale on keypoint-based reward action_penalty_scale: 0.0 # scale on action penalty max_episode_length: 100 # 200 distance_scale: 0.1 # length of line of keypoints success_bonus: 5.0 # bonus if nut has been lifted collision_penalty: 0.5 # collision penalty
4,315
YAML
28.360544
113
0.692236
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRExampleInsert.yaml
# used to create the object name: HSRExampleInsert physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 resetDist: 1.0 maxEffort: 400.0 controlFrequencyInv: 2 # 60 Hz maxEpisodeLength: 200 actionSpeedScale: 1 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 1 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 gamma: 0.999 horizon: 600 move_group: "whole_body" randomize_robot_on_reset: False num_actions: 8 # base and arm num_observations: 36 # observation space num_gripper_move_sim_steps: 40 # 20 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 50 # 25 # number of timesteps to reserve for closing gripper after last step of episode num_gripper_lift_sim_steps: 60 # 25 # number of timesteps to reserve for lift after last step of episode sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] disable_gravity: False add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False enable_cameras: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.01 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 17060160 # 524288 gpu_found_lost_aggregate_pairs_capacity: 17060160 # 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 table: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 rl: pos_action_scale: [0.1, 0.1, 0.1] rot_action_scale: [0.1, 0.1, 0.1] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints keypoint_reward_scale: 1.0 # scale on keypoint-based reward action_penalty_scale: 0.0 # scale on action penalty max_episode_length: 100 # 200 success_bonus: 1.0 # bonus if nut has been lifted collision_penalty: 0.5 # collision penalty
4,575
YAML
28.714286
118
0.699672
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRExampleReach.yaml
# used to create the object name: HSRExampleReach physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 resetDist: 1.0 maxEffort: 400.0 controlFrequencyInv: 2 # 60 Hz maxEpisodeLength: 600 actionSpeedScale: 1 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 gamma: 0.999 horizon: 600 # Move group to be used move_group: "whole_body" # String. Can be arm_left or arm_right use_gripper: True randomize_robot_on_reset: False # Set custom state and action space limits max_rot_vel: 0.5236 # 1.0472 # in radians (default is 60 degrees per second) max_base_xy_vel: 0.1 # metres per second max_base_rz_vel: 0.5236 # metres per second # Hybrid action space num_actions: 8 # base and arm # Observation space num_observations: 28 sim: dt: 0.0083 # 1/120 s action_base_scale: 0.05 action_arm_scale: 0.05 action_gripper_scale: 0.05 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False enable_cameras: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 17060160 # 524288 gpu_found_lost_aggregate_pairs_capacity: 17060160 # 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1.0 # per-shape contact_offset: 0.02 rest_offset: 0.001 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 1 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,593
YAML
26.646154
82
0.697189
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRExampleCabinet.yaml
# used to create the object name: HSRExampleCabinet physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 episodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 3.0 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cabinet: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.0 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,286
YAML
25.296
60
0.696287
makolon/hsr_isaac_tamp/hsr_rl/cfg/task/HSRExamplePlace.yaml
# used to create the object name: HSRExamplePlace physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5.0 resetDist: 1.0 maxEffort: 400.0 controlFrequencyInv: 2 # 60 Hz maxEpisodeLength: 200 actionSpeedScale: 1 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 1 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 gamma: 0.999 horizon: 600 move_group: "whole_body" randomize_robot_on_reset: False num_actions: 8 # base and arm num_observations: 36 # observation space num_gripper_move_sim_steps: 40 # 20 # number of timesteps to reserve for moving gripper before first step of episode num_gripper_close_sim_steps: 50 # 25 # number of timesteps to reserve for closing gripper after last step of episode num_gripper_lift_sim_steps: 60 # 25 # number of timesteps to reserve for lift after last step of episode sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] disable_gravity: False add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: True disable_contact_processing: False enable_cameras: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.01 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 17060160 # 524288 gpu_found_lost_aggregate_pairs_capacity: 17060160 # 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 # sim asset configs here hsrb: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 table: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 rl: pos_action_scale: [0.1, 0.1, 0.1] rot_action_scale: [0.1, 0.1, 0.1] force_action_scale: [1.0, 1.0, 1.0] torque_action_scale: [1.0, 1.0, 1.0] clamp_rot: True clamp_rot_thresh: 1.0e-6 num_keypoints: 4 # number of keypoints used in reward keypoint_scale: 0.5 # length of line of keypoints keypoint_reward_scale: 1.0 # scale on keypoint-based reward action_penalty_scale: 0.0 # scale on action penalty max_episode_length: 100 # 200 success_bonus: 1.0 # bonus if nut has been lifted collision_penalty: 0.5 # collision penalty
4,574
YAML
28.707792
118
0.699606