file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
RoboEagles4828/rift2024/src/zed_object_hardware_interface/zed_object_hardware_interface/zed_conversion.py
import rclpy from rclpy.node import Node from std_msgs.msg import String from zed_interfaces.msg import ObjectsStamped class ZedConversion(Node): def __init__(self): super().__init__('zed_conversion') self.zed_objects_subscriber = self.create_subscription(ObjectsStamped, '/real/zed/obj_det/objects', self.zed_objects_callback, 10) self.pose_publisher = self.create_publisher(String, '/real/obj_det_pose', 10) self.OKGREEN = '\033[92m' self.ENDC = '\033[0m' self.pose = String() self.get_logger().info(self.OKGREEN + "Configured and Activated Zed Conversion" + self.ENDC) def zed_objects_callback(self, objects: ObjectsStamped): if objects == None: self.get_logger().warn("Objects message recieved was null") else: if len(objects.objects) <= 0: self.get_logger().warn("NO OBJECTS DETECTED") empty = String() empty.data = "0.0|0.0|0.0" self.pose_publisher.publish(empty) else: x = objects.objects[0].position[0] y = objects.objects[0].position[1] z = objects.objects[0].position[2] self.pose.data = f"{float(x)}|{float(y)}|{float(z)}" print(self.pose) self.pose_publisher.publish(self.pose) def main(args=None): rclpy.init(args=args) zed_conversion = ZedConversion() rclpy.spin(zed_conversion) zed_conversion.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
1,638
Python
34.630434
138
0.571429
RoboEagles4828/rift2024/src/rift_bringup/launch/isaac-vslam.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'true', 'namespace': NAMESPACE } isaac_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','isaac.launch.py' )])) rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','rtab.launch.py' )])) delay_rtab_layer = TimerAction(period=8.0, actions=[rtab_layer]) pysim_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','isaac_pysim.launch.py' )])) rviz = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','rviz.launch.py' )])) # Launch! return LaunchDescription([ isaac_layer, pysim_layer, # rviz, delay_rtab_layer, ])
1,592
Python
34.399999
91
0.643216
RoboEagles4828/rift2024/src/rift_bringup/launch/gym.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import RegisterEventHandler, DeclareLaunchArgument from launch.substitutions import LaunchConfiguration, Command, PythonExpression from launch_ros.actions import Node from launch.conditions import IfCondition # Easy use of namespace since args are not strings # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') policy = Node( package='policy_runner', executable='runner', name='policy_runner_node', parameters=[{ 'use_sim_time': use_sim_time, 'odom_topic': '/saranga/zed/odom', 'target_topic': '/real/obj_det_pose', }] ) # Launch! return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), policy ])
1,094
Python
32.181817
93
0.667276
RoboEagles4828/rift2024/src/rift_bringup/launch/real-vslam.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'true', 'namespace': NAMESPACE } real_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','real.launch.py' )]), launch_arguments=common.items()) rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','rtab-real.launch.py' )])) delay_rtab = TimerAction(period=5.0, actions=[rtab_layer]) # Launch! return LaunchDescription([ real_layer, rtab_layer ])
1,214
Python
34.735293
91
0.677924
RoboEagles4828/rift2024/src/isaac_hardware_test/isaac_hardware_test/isaac_drive.py
import rclpy from rclpy.context import Context from rclpy.node import Node from rclpy.parameter import Parameter from sensor_msgs.msg import JointState, Imu from rclpy.time import Time, Duration from std_msgs.msg import Header, String import math class IsaacDriveHardware(Node): def __init__(self): super().__init__('isaac_drive_hardware') self.realtime_isaac_publisher_drive = self.create_publisher(JointState, 'isaac_drive_commands', 10) self.realtime_isaac_publisher_arm = self.create_publisher(JointState, 'isaac_arm_commands', 10) self.real_imu_publisher = self.create_publisher(String, 'real_imu', 10) # self.joint_state_publisher = self.create_publisher(JointState, 'joint_states', 10) self.isaac_subscriber = self.create_subscription(JointState, 'isaac_joint_states', self.isaac_callback, 10) self.real_subscriber = self.create_subscription(JointState, '/real/real_joint_states', self.real_callback, 10) self.imu_subscriber = self.create_subscription(Imu, 'imu', self.imu_callback, 10) self.OKGREEN = '\033[92m' self.ENDC = '\033[0m' self.joint_names: list[str] = [] self.joint_state: JointState = None self.joint_names2: list[str] = [] self.joint_state2: JointState = None self.arm_joint_names = [] self.drive_joint_names = [] self.command_effort = [] self.command_position = [] self.empty = [] self.realtime_isaac_command: JointState = JointState() self.joint_state_command: JointState = JointState() self.header = Header() self.get_logger().info(self.OKGREEN + "Configured and Activated Isaac Drive Hardware" + self.ENDC) def imu_callback(self, imu: Imu): if imu == None: self.get_logger().warn("Imu message recieved was null") imu_string = String() data = f"{imu.orientation.w}|{imu.orientation.x}|{imu.orientation.y}|{imu.orientation.z}|{imu.angular_velocity.x}|{imu.angular_velocity.y}|{imu.angular_velocity.z}|{imu.linear_acceleration.x}|{imu.linear_acceleration.y}|{imu.linear_acceleration.z}" imu_string.data = data self.real_imu_publisher.publish(imu_string) def real_callback(self, joint_state: JointState): self.joint_names = list(joint_state.name) self.joint_state = joint_state self.get_logger().info(self.OKGREEN + "Recieved Real Joint State" + self.ENDC) self.write() def isaac_callback(self, joint_state: JointState): self.joint_names2 = list(joint_state.name) self.joint_state2 = joint_state if self.joint_state2 == None: self.get_logger().warn("Velocity message recieved was null") else: self.read() def convertToRosPosition(self, isaac_position: float): if isaac_position > math.pi: return isaac_position - 2.0 * math.pi elif isaac_position < -math.pi: return isaac_position + 2.0 * math.pi return isaac_position def read(self): self.joint_state_command.effort = [] names = self.joint_state2.name positions = self.joint_state2.position velocities = self.joint_state2.velocity efforts = self.joint_state2.effort for i in range(len(self.joint_names)-1): for j in range(len(names)-1): if names[j] == self.joint_names[i]: self.joint_state_command.position.append(self.convertToRosPosition(positions[j])) self.joint_state_command.velocity.append(velocities[j]) self.joint_state_command.effort.append(efforts[j]) break # self.joint_state_command.header.stamp = Time(seconds=self._clock.now().seconds_nanoseconds()[0], nanoseconds=self._clock.now().seconds_nanoseconds()[1]) # self.joint_state_publisher.publish(self.joint_state_command) def write(self): self.command_effort = [] self.command_position = [] self.arm_joint_names.clear() self.drive_joint_names.clear() for j, i in enumerate(self.joint_names): if i.__contains__("wheel") or i.__contains__("axle"): vel = self.joint_state.velocity[j] self.command_effort.append(vel/10000.0) self.drive_joint_names.append(i) else: self.arm_joint_names.append(i) position = self.joint_state.position[j]/10000.0 # Elevator if i == "arm_roller_bar_joint": # split position among 2 joints self.command_position.append(position) self.arm_joint_names.append("elevator_outer_1_joint") if position == 0.07: self.command_position.append(0.2) elif position == 0.0: self.command_position.append(0.0) elif i == "top_slider_joint": self.command_position.append(position) elif i == "top_gripper_left_arm_joint": self.command_position.append(position) self.arm_joint_names.append("top_gripper_right_arm_joint") self.command_position.append(position) elif i == "elevator_center_joint": elevator_max = 0.56 elevator_min = 0.0 #scale position to be between 0 and 1 position = (position - elevator_min)/(elevator_max - elevator_min) self.command_position.append(position/2.0) self.arm_joint_names.append("elevator_outer_2_joint") self.command_position.append(position/2.0) self.header.stamp = self._clock.now().to_msg() self.realtime_isaac_command.header = self.header self.realtime_isaac_command.name = self.drive_joint_names self.realtime_isaac_command.velocity = self.command_effort self.realtime_isaac_command.position = self.empty self.realtime_isaac_command.effort = self.empty self.realtime_isaac_publisher_drive.publish(self.realtime_isaac_command) self.header.stamp = self._clock.now().to_msg() self.realtime_isaac_command.header = self.header self.realtime_isaac_command.name = self.arm_joint_names self.realtime_isaac_command.velocity = self.empty self.realtime_isaac_command.position = self.command_position self.realtime_isaac_command.effort = self.empty self.realtime_isaac_publisher_arm.publish(self.realtime_isaac_command) def main(args=None): rclpy.init(args=args) isaac_drive_hardware = IsaacDriveHardware() rclpy.spin(isaac_drive_hardware) isaac_drive_hardware.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
7,251
Python
43.219512
256
0.588884
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/import_bot/__init__.py
from omni.isaac.rift.import_bot.import_bot import ImportBot from omni.isaac.rift.import_bot.import_bot_extension import ImportBotExtension
140
Python
34.249991
78
0.842857
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/import_bot/import_bot.py
from omni.isaac.core.utils.stage import add_reference_to_stage import omni.graph.core as og import omni.usd from omni.isaac.rift.base_sample import BaseSample from omni.isaac.urdf import _urdf from omni.isaac.core.robots import Robot from omni.isaac.core.utils import prims from omni.isaac.core.prims import GeometryPrim, RigidPrim from omni.isaac.core_nodes.scripts.utils import set_target_prims # from omni.kit.viewport_legacy import get_default_viewport_window # from omni.isaac.sensor import IMUSensor from pxr import UsdPhysics, UsdShade, Sdf, Gf import omni.kit.commands import os import numpy as np import math import carb from omni.isaac.core.materials import PhysicsMaterial from random import randint, choice NAMESPACE = f"{os.environ.get('ROS_NAMESPACE')}" if 'ROS_NAMESPACE' in os.environ else 'default' def set_drive_params(drive, stiffness, damping, max_force): drive.GetStiffnessAttr().Set(stiffness) drive.GetDampingAttr().Set(damping) if(max_force != 0.0): drive.GetMaxForceAttr().Set(max_force) return def add_physics_material_to_prim(prim, materialPath): bindingAPI = UsdShade.MaterialBindingAPI.Apply(prim) materialPrim = UsdShade.Material(materialPath) bindingAPI.Bind(materialPrim, UsdShade.Tokens.weakerThanDescendants, "physics") class ImportBot(BaseSample): def __init__(self) -> None: super().__init__() self.cone_list = [] self.cube_list = [] return def set_friction(self, robot_prim_path): stage = omni.usd.get_context().get_stage() omni.kit.commands.execute('AddRigidBodyMaterialCommand',stage=stage, path='/World/Physics_Materials/Rubber',staticFriction=1.1,dynamicFriction=1.5,restitution=None) omni.kit.commands.execute('AddRigidBodyMaterialCommand',stage=stage, path='/World/Physics_Materials/RubberProMax',staticFriction=1.5,dynamicFriction=2.0,restitution=None) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/front_left_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/front_right_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/rear_left_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/rear_right_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/defaultGroundPlane"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_pivot_base"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_incline_panel_01"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_incline_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_pivot_connector/station_top_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_pivot_base"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_incline_panel_01"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_incline_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_pivot_connector/station_top_panel"],strength=['weakerThanDescendants'],material_purpose='physics') # omni.kit.commands.execute('BindMaterial',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/FE_2023/FE_2023/FE_2023_01"],strength=['weakerThanDescendants']) # omni.kit.commands.execute('BindMaterial',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/FE_2023/FE_2023/FE_2023_01_01"],strength=['weakerThanDescendants']) def setup_scene(self): world = self.get_world() # world.get_physics_context().enable_gpu_dynamics(True) world.set_simulation_dt(1/300.0,1/60.0) world.scene.add_default_ground_plane() self.setup_field() # self.setup_perspective_cam() self.setup_world_action_graph() return def add_game_piece(self): print("asdklj;f;asdjdfdl;asdjfkl;asdjfkl;asdjfkl;asfjkla;sdjkflka;k") self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) cone = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23701_JFL.usd") add_reference_to_stage(cone, "/World/Cone_1") substation_empty = [True, True, True, True] game_piece_list = self.cone_list+self.cube_list for game_piece in game_piece_list: pose, orienation = game_piece.get_world_pose() print(pose) if(pose[0]<8.17+0.25 and pose[0]>8.17-0.25): if(pose[1]<-2.65+0.25 and pose[1]>-2.65-0.25): substation_empty[0]=False print("substation_empty[0]=False") elif pose[1]<-3.65+0.25 and pose[1]>-3.65-0.25: substation_empty[1]=False print("substation_empty[1]=False") elif (pose[0]<-8.17+0.25 and pose[0]>-8.17-0.25): if(pose[1]<-2.65+0.25 and pose[1]>-2.65-0.25): substation_empty[2]=False print("substation_empty[2]=False") elif pose[1]<-3.65+0.25 and pose[1]>-3.65-0.25: substation_empty[3]=False print("substation_empty[3]=False") for i in range(4): if substation_empty[i]: next_cube = (len(self.cube_list)+1) next_cone = (len(self.cone_list)+1) if(i==0): position = [8.17, -2.65, 1.15] elif(i==1): position = [-8.17, -2.65, 1.15] elif(i==2): position = [8.17, -3.65, 1.15] else: position = [-8.17, -3.65, 1.15] if choice([True, False]): print("yes") name = "/World/Cube_"+str(next_cube) view = "cube_"+str(next_cube)+"_view" add_reference_to_stage(cube, "/World/Cube_"+str(next_cube)) self.cube_list.append(GeometryPrim(name, view, position=position)) else: print("yesss") name = "/World/Cone_"+str(next_cone) view = "cone_"+str(next_cone)+"_view" add_reference_to_stage(cone, name) self.cone_list.append(GeometryPrim(name, view, position=position)) return def setup_field(self): world = self.get_world() self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) field = os.path.join(self.project_root_path, "assets/flattened_field/field2.usd") cone = os.path.join(self.project_root_path, "assets/game_pieces/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/game_pieces/GE-23701_JFL.usd") chargestation = os.path.join(self.project_root_path, "assets/chargestation/chargestation.usd") add_reference_to_stage(chargestation, "/World/ChargeStation_1") add_reference_to_stage(chargestation, "/World/ChargeStation_2") add_reference_to_stage(field, "/World/FE_2023") add_reference_to_stage(cone, "/World/Cone_1") add_reference_to_stage(cone, "/World/Cone_2") add_reference_to_stage(cone, "/World/Cone_3") add_reference_to_stage(cone, "/World/Cone_4") add_reference_to_stage(cone, "/World/Cone_5") add_reference_to_stage(cone, "/World/Cone_6") # add_reference_to_stage(cone, "/World/Cone_7") # add_reference_to_stage(cone, "/World/Cone_8") field_1 = RigidPrim("/World/FE_2023","field_1_view",position=np.array([0.0,0.0,0.0]),scale=np.array([1, 1, 1])) # cone_1 = RigidPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,-0.4])) # cone_2 = GeometryPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) # cone_3 = GeometryPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) # cone_4 = GeometryPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim("/World/ChargeStation_1","cone_3_view",position=np.array([-4.53419,1.26454,0.025]),scale=np.array([0.0486220472,0.0486220472,0.0486220472]), orientation=np.array([ 1,1,0,0 ])) chargestation_2 = GeometryPrim("/World/ChargeStation_2","cone_4_view",position=np.array([4.53419,1.26454,0.025]),scale=np.array([0.0486220472,0.0486220472,0.0486220472]), orientation=np.array([ 1,1,0,0 ])) self.cone_list.append( RigidPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_5","cone_5_view",position=np.array([-7.23149,-1.97376,0.86292]))) self.cone_list.append( RigidPrim("/World/Cone_6","cone_6_view",position=np.array([7.23149,-1.97376,0.86292]))) add_reference_to_stage(cube, "/World/Cube_1") add_reference_to_stage(cube, "/World/Cube_2") add_reference_to_stage(cube, "/World/Cube_3") add_reference_to_stage(cube, "/World/Cube_4") add_reference_to_stage(cube, "/World/Cube_5") add_reference_to_stage(cube, "/World/Cube_6") # add_reference_to_stage(cube, "/World/Cube_7") # # add_reference_to_stage(cube, "/World/Cube_8") # cube_1 = GeometryPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) # cube_2 = GeometryPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) # cube_3 = GeometryPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) # cube_4 = GeometryPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) self.cube_list.append( RigidPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_5","cube_5_view",position=np.array([-7.25682,-2.99115,1.00109]))) self.cube_list.append( RigidPrim("/World/Cube_6","cube_6_view",position=np.array([7.25682,-2.99115,1.00109]))) async def setup_post_load(self): self._world = self.get_world() # self._world.get_physics_context().enable_gpu_dynamics(True) self.robot_name = "rift" self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) self.path_to_urdf = os.path.join(self.extension_path, "../../../../../../../..", "src/rift_description/urdf/rift.urdf") carb.log_info(self.path_to_urdf) self._robot_prim_path = self.import_robot(self.path_to_urdf) if self._robot_prim_path is None: print("Error: failed to import robot") return self._robot_prim = self._world.scene.add( Robot(prim_path=self._robot_prim_path, name=self.robot_name, position=np.array([0.0, 0.0, 0.5])) ) self.configure_robot(self._robot_prim_path) return def import_robot(self, urdf_path): import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = False import_config.import_inertia_tensor = True import_config.default_drive_strength = 1047.19751 import_config.default_position_drive_damping = 52.35988 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.distance_scale = 1.0 import_config.density = 0.0 result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config) if result: return prim_path return None def configure_robot(self, robot_prim_path): w_sides = ['left', 'right'] l_sides = ['front', 'back'] stage = self._world.stage chassis_name = f"swerve_chassis_link" front_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_left_axle_joint"), "angular") front_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_right_axle_joint"), "angular") rear_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_left_axle_joint"), "angular") rear_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_right_axle_joint"), "angular") front_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_left_axle_link/front_left_wheel_joint"), "angular") front_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_right_axle_link/front_right_wheel_joint"), "angular") rear_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_axle_link/rear_left_wheel_joint"), "angular") rear_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_axle_link/rear_right_wheel_joint"), "angular") arm_roller_bar_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/arm_roller_bar_joint"), "linear") elevator_center_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_1_link/elevator_center_joint"), "linear") elevator_outer_2_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_center_link/elevator_outer_2_joint"), "linear") elevator_outer_1_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_back_leg_link/elevator_outer_1_joint"), "angular") top_gripper_left_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_left_arm_joint"), "angular") top_gripper_right_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_right_arm_joint"), "angular") top_slider_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_2_link/top_slider_joint"), "linear") set_drive_params(front_left_axle, 1, 1000, 0) set_drive_params(front_right_axle, 1, 1000, 0) set_drive_params(rear_left_axle, 1, 1000, 0) set_drive_params(rear_right_axle, 1, 1000, 0) set_drive_params(front_left_wheel, 1, 100000000, 0) set_drive_params(front_right_wheel, 1, 100000000, 0) set_drive_params(rear_left_wheel, 1, 100000000, 0) set_drive_params(rear_right_wheel, 1, 100000000, 0) set_drive_params(arm_roller_bar_joint, 10000000, 100000, 98.0) set_drive_params(elevator_center_joint, 10000000, 100000, 98.0) set_drive_params(elevator_outer_1_joint, 10000000, 100000, 2000.0) set_drive_params(elevator_outer_2_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_left_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_right_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_slider_joint, 10000000, 100000, 98.0) # self.create_lidar(robot_prim_path) self.create_imu(robot_prim_path) self.create_depth_camera(robot_prim_path) self.setup_camera_action_graph(robot_prim_path) self.setup_imu_action_graph(robot_prim_path) self.setup_robot_action_graph(robot_prim_path) self.set_friction(robot_prim_path) return def create_lidar(self, robot_prim_path): lidar_parent = f"{robot_prim_path}/lidar_link" lidar_path = "/lidar" self.lidar_prim_path = lidar_parent + lidar_path result, prim = omni.kit.commands.execute( "RangeSensorCreateLidar", path=lidar_path, parent=lidar_parent, min_range=0.4, max_range=25.0, draw_points=False, draw_lines=True, horizontal_fov=360.0, vertical_fov=30.0, horizontal_resolution=0.4, vertical_resolution=4.0, rotation_rate=0.0, high_lod=False, yaw_offset=0.0, enable_semantics=False ) return def create_imu(self, robot_prim_path): imu_parent = f"{robot_prim_path}/zed2i_camera_center" imu_path = "/imu" self.imu_prim_path = imu_parent + imu_path result, prim = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path=imu_path, parent=imu_parent, translation=Gf.Vec3d(0, 0, 0), orientation=Gf.Quatd(1, 0, 0, 0), visualize=False, ) return def create_depth_camera(self, robot_prim_path): self.depth_left_camera_path = f"{robot_prim_path}/zed2i_right_camera_optical_frame/left_cam" self.depth_right_camera_path = f"{robot_prim_path}/zed2i_right_camera_optical_frame/right_cam" self.left_camera = prims.create_prim( prim_path=self.depth_left_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) self.right_camera = prims.create_prim( prim_path=self.depth_right_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) # # omni.kit.commands.execute('ChangeProperty', # # prop_path=Sdf.Path('/rift/zed2i_right_camera_isaac_frame/left_cam.xformOp:orient'), # # value=Gf.Quatd(0.0, Gf.Vec3d(1.0, 0.0, 0.0)), # # prev=Gf.Quatd(1.0, Gf.Vec3d(0, 0, 0)) # # ) # # omni.kit.commands.execute('ChangeProperty', # # prop_path=Sdf.Path('/rift/zed2i_right_camera_isaac_frame/right_cam.xformOp:orient'), # # value=Gf.Quatd(0.0, Gf.Vec3d(1.0, 0.0, 0.0)), # # prev=Gf.Quatd(1.0, Gf.Vec3d(0, 0, 0)) # ) return def setup_world_action_graph(self): og.Controller.edit( {"graph_path": "/globalclock", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ], } ) return def setup_camera_action_graph(self, robot_prim_path): camera_graph = "{}/camera_sensor_graph".format(robot_prim_path) enable_left_cam = True enable_right_cam = False rgbType = "RgbType" infoType = "InfoType" depthType = "DepthType" depthPclType = "DepthPclType" def createCamType(side, name, typeNode, topic): return { "create": [ (f"{side}CamHelper{name}", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], "connect": [ (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamHelper{name}.inputs:renderProductPath"), (f"{side}CamSet.outputs:execOut", f"{side}CamHelper{name}.inputs:execIn"), (f"{typeNode}.inputs:value", f"{side}CamHelper{name}.inputs:type"), ], "setvalues": [ (f"{side}CamHelper{name}.inputs:topicName", f"{side.lower()}/{topic}"), (f"{side}CamHelper{name}.inputs:frameId", f"{NAMESPACE}/zed2i_{side.lower()}_camera_frame"), (f"{side}CamHelper{name}.inputs:nodeNamespace", f"/{NAMESPACE}"), ] } def getCamNodes(side, enable): camNodes = { "create": [ (f"{side}CamBranch", "omni.graph.action.Branch"), (f"{side}CamCreateViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), (f"{side}CamViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), (f"{side}CamViewProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), (f"{side}CamSet", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ], "connect": [ ("OnPlaybackTick.outputs:tick", f"{side}CamBranch.inputs:execIn"), (f"{side}CamBranch.outputs:execTrue", f"{side}CamCreateViewport.inputs:execIn"), (f"{side}CamCreateViewport.outputs:execOut", f"{side}CamViewportResolution.inputs:execIn"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewportResolution.inputs:viewport"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewProduct.inputs:viewport"), (f"{side}CamViewportResolution.outputs:execOut", f"{side}CamViewProduct.inputs:execIn"), (f"{side}CamViewProduct.outputs:execOut", f"{side}CamSet.inputs:execIn"), (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamSet.inputs:renderProductPath"), ], "setvalues": [ (f"{side}CamBranch.inputs:condition", enable), (f"{side}CamCreateViewport.inputs:name", f"{side}Cam"), (f"{side}CamViewportResolution.inputs:width", 640), (f"{side}CamViewportResolution.inputs:height", 360), ] } rgbNodes = createCamType(side, "RGB", rgbType, "rgb") infoNodes = createCamType(side, "Info", infoType, "camera_info") depthNodes = createCamType(side, "Depth", depthType, "depth") depthPClNodes = createCamType(side, "DepthPcl", depthPclType, "depth_pcl") camNodes["create"] += rgbNodes["create"] + infoNodes["create"] + depthNodes["create"] + depthPClNodes["create"] camNodes["connect"] += rgbNodes["connect"] + infoNodes["connect"] + depthNodes["connect"] + depthPClNodes["connect"] camNodes["setvalues"] += rgbNodes["setvalues"] + infoNodes["setvalues"] + depthNodes["setvalues"] + depthPClNodes["setvalues"] return camNodes leftCamNodes = getCamNodes("Left", enable_left_cam) rightCamNodes = getCamNodes("Right", enable_right_cam) og.Controller.edit( {"graph_path": camera_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), (rgbType, "omni.graph.nodes.ConstantToken"), (infoType, "omni.graph.nodes.ConstantToken"), (depthType, "omni.graph.nodes.ConstantToken"), (depthPclType, "omni.graph.nodes.ConstantToken"), ] + leftCamNodes["create"] + rightCamNodes["create"], og.Controller.Keys.CONNECT: leftCamNodes["connect"] + rightCamNodes["connect"], og.Controller.Keys.SET_VALUES: [ (f"{rgbType}.inputs:value", "rgb"), (f"{infoType}.inputs:value", "camera_info"), (f"{depthType}.inputs:value", "depth"), (f"{depthPclType}.inputs:value", "depth_pcl"), ] + leftCamNodes["setvalues"] + rightCamNodes["setvalues"], } ) set_target_prims(primPath=f"{camera_graph}/RightCamSet", targetPrimPaths=[self.depth_right_camera_path], inputName="inputs:cameraPrim") set_target_prims(primPath=f"{camera_graph}/LeftCamSet", targetPrimPaths=[self.depth_left_camera_path], inputName="inputs:cameraPrim") return def setup_imu_action_graph(self, robot_prim_path): sensor_graph = "{}/imu_sensor_graph".format(robot_prim_path) swerve_link = "{}/swerve_chassis_link".format(robot_prim_path) lidar_link = "{}/lidar_link/lidar".format(robot_prim_path) og.Controller.edit( {"graph_path": sensor_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ # General Nodes ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("SimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), # Odometry Nodes ("ComputeOdometry", "omni.isaac.core_nodes.IsaacComputeOdometry"), ("PublishOdometry", "omni.isaac.ros2_bridge.ROS2PublishOdometry"), ("RawOdomTransform", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"), # LiDAR Nodes # ("ReadLidar", "omni.isaac.range_sensor.IsaacReadLidarBeams"), # ("PublishLidar", "omni.isaac.ros2_bridge.ROS2PublishLaserScan"), # IMU Nodes ("IsaacReadImu", "omni.isaac.sensor.IsaacReadIMU"), ("PublishImu", "omni.isaac.ros2_bridge.ROS2PublishImu"), ], og.Controller.Keys.SET_VALUES: [ ("PublishOdometry.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishImu.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:frameId", f"{NAMESPACE}/lidar_link"), ("RawOdomTransform.inputs:childFrameId", f"{NAMESPACE}/base_link"), ("RawOdomTransform.inputs:parentFrameId", f"{NAMESPACE}/zed/odom"), ("PublishOdometry.inputs:chassisFrameId", f"{NAMESPACE}/base_link"), ("PublishOdometry.inputs:odomFrameId", f"{NAMESPACE}/zed/odom"), # ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_imu_link"), ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_camera_center"), ("PublishOdometry.inputs:topicName", "zed/odom") ], og.Controller.Keys.CONNECT: [ # Odometry Connections ("OnPlaybackTick.outputs:tick", "ComputeOdometry.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "RawOdomTransform.inputs:execIn"), ("ComputeOdometry.outputs:execOut", "PublishOdometry.inputs:execIn"), ("ComputeOdometry.outputs:angularVelocity", "PublishOdometry.inputs:angularVelocity"), ("ComputeOdometry.outputs:linearVelocity", "PublishOdometry.inputs:linearVelocity"), ("ComputeOdometry.outputs:orientation", "PublishOdometry.inputs:orientation"), ("ComputeOdometry.outputs:orientation", "RawOdomTransform.inputs:rotation"), ("ComputeOdometry.outputs:position", "PublishOdometry.inputs:position"), ("ComputeOdometry.outputs:position", "RawOdomTransform.inputs:translation"), ("Context.outputs:context", "PublishOdometry.inputs:context"), ("Context.outputs:context", "RawOdomTransform.inputs:context"), ("SimTime.outputs:simulationTime", "PublishOdometry.inputs:timeStamp"), ("SimTime.outputs:simulationTime", "RawOdomTransform.inputs:timeStamp"), # LiDAR Connections # ("OnPlaybackTick.outputs:tick", "ReadLidar.inputs:execIn"), # ("ReadLidar.outputs:execOut", "PublishLidar.inputs:execIn"), # ("Context.outputs:context", "PublishLidar.inputs:context"), # ("SimTime.outputs:simulationTime", "PublishLidar.inputs:timeStamp"), # ("ReadLidar.outputs:azimuthRange", "PublishLidar.inputs:azimuthRange"), # ("ReadLidar.outputs:depthRange", "PublishLidar.inputs:depthRange"), # ("ReadLidar.outputs:horizontalFov", "PublishLidar.inputs:horizontalFov"), # ("ReadLidar.outputs:horizontalResolution", "PublishLidar.inputs:horizontalResolution"), # ("ReadLidar.outputs:intensitiesData", "PublishLidar.inputs:intensitiesData"), # ("ReadLidar.outputs:linearDepthData", "PublishLidar.inputs:linearDepthData"), # ("ReadLidar.outputs:numCols", "PublishLidar.inputs:numCols"), # ("ReadLidar.outputs:numRows", "PublishLidar.inputs:numRows"), # ("ReadLidar.outputs:rotationRate", "PublishLidar.inputs:rotationRate"), # IMU Connections ("OnPlaybackTick.outputs:tick", "IsaacReadImu.inputs:execIn"), ("IsaacReadImu.outputs:execOut", "PublishImu.inputs:execIn"), ("Context.outputs:context", "PublishImu.inputs:context"), ("SimTime.outputs:simulationTime", "PublishImu.inputs:timeStamp"), ("IsaacReadImu.outputs:angVel", "PublishImu.inputs:angularVelocity"), ("IsaacReadImu.outputs:linAcc", "PublishImu.inputs:linearAcceleration"), ("IsaacReadImu.outputs:orientation", "PublishImu.inputs:orientation"), ], } ) # Setup target prims for the Odometry and the Lidar set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/IsaacReadImu", targetPrimPaths=[self.imu_prim_path], inputName="inputs:imuPrim") return def setup_robot_action_graph(self, robot_prim_path): robot_controller_path = f"{robot_prim_path}/ros_interface_controller" og.Controller.edit( {"graph_path": robot_controller_path, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeDriveState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("SubscribeArmState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ("arm_articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ], og.Controller.Keys.SET_VALUES: [ ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeDriveState.inputs:topicName", "isaac_joint_commands"), ("SubscribeDriveState.inputs:topicName", "isaac_drive_commands"), ("SubscribeArmState.inputs:topicName", "isaac_arm_commands"), ("articulation_controller.inputs:usePath", False), ("arm_articulation_controller.inputs:usePath", False), ("SubscribeDriveState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("SubscribeArmState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeDriveState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeArmState.inputs:execIn"), ("SubscribeDriveState.outputs:execOut", "articulation_controller.inputs:execIn"), ("SubscribeArmState.outputs:execOut", "arm_articulation_controller.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeDriveState.inputs:context"), ("Context.outputs:context", "SubscribeArmState.inputs:context"), ("SubscribeDriveState.outputs:jointNames", "articulation_controller.inputs:jointNames"), ("SubscribeDriveState.outputs:velocityCommand", "articulation_controller.inputs:velocityCommand"), ("SubscribeArmState.outputs:jointNames", "arm_articulation_controller.inputs:jointNames"), ("SubscribeArmState.outputs:positionCommand", "arm_articulation_controller.inputs:positionCommand"), ], } ) set_target_prims(primPath=f"{robot_controller_path}/articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/arm_articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/PublishJointState", targetPrimPaths=[robot_prim_path]) return async def setup_pre_reset(self): return async def setup_post_reset(self): return async def setup_post_clear(self): return def world_cleanup(self): carb.log_info(f"Removing {self.robot_name}") if self._world is not None: self._world.scene.remove_object(self.robot_name) return
37,823
Python
59.421725
263
0.613886
RoboEagles4828/rift2024/rio/old-robot.py
from hardware_interface.drivetrain import DriveTrain import hardware_interface.drivetrain as dt from hardware_interface.joystick import Joystick from hardware_interface.armcontroller import ArmController from commands2 import * import wpilib from wpilib import Field2d from wpilib.shuffleboard import Shuffleboard from wpilib.shuffleboard import SuppliedFloatValueWidget from hardware_interface.commands.drive_commands import * from auton_selector import AutonSelector import time from dds.dds import DDS_Publisher, DDS_Subscriber import os import inspect import logging import traceback import threading from lib.mathlib.conversions import Conversions from pathplannerlib.auto import NamedCommands ENABLE_STAGE_BROADCASTER = True ENABLE_ENCODER = True # Global Variables arm_controller : ArmController = None drive_train : DriveTrain = None navx_sim_data : list = None frc_stage = "DISABLED" fms_attached = False stop_threads = False # Logging format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") # XML Path for DDS configuration curr_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) xml_path = os.path.join(curr_path, "dds/xml/ROS_RTI.xml") ############################################ ## Hardware def initDriveTrain(): global drive_train if drive_train == None: drive_train = DriveTrain() logging.info("Success: DriveTrain created") return drive_train def initArmController(): global arm_controller if arm_controller == None: arm_controller = ArmController() logging.info("Success: ArmController created") return arm_controller def initDDS(ddsAction, participantName, actionName): dds = None with rti_init_lock: dds = ddsAction(xml_path, participantName, actionName) return dds ############################################ ## Threads def threadLoop(name, dds, action): logging.info(f"Starting {name} thread") global stop_threads global frc_stage try: while stop_threads == False: if (frc_stage == 'AUTON' and name != "joystick") or (name in ["stage-broadcaster", "service", "imu", "zed"]) or (frc_stage == 'TELEOP'): action(dds) time.sleep(20/1000) except Exception as e: logging.error(f"An issue occured with the {name} thread") logging.error(e) logging.error(traceback.format_exc()) logging.info(f"Closing {name} thread") dds.close() # Generic Start Thread Function def startThread(name) -> threading.Thread | None: thread = None # if name == "encoder": # thread = threading.Thread(target=encoderThread, daemon=True) if name == "stage-broadcaster": thread = threading.Thread(target=stageBroadcasterThread, daemon=True) elif name == "service": thread = threading.Thread(target=serviceThread, daemon=True) elif name == "imu": thread = threading.Thread(target=imuThread, daemon=True) elif name == "zed": thread = threading.Thread(target=zedThread, daemon=True) thread.start() return thread # Locks rti_init_lock = threading.Lock() drive_train_lock = threading.Lock() arm_controller_lock = threading.Lock() ############################################ ################## ENCODER ################## ENCODER_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::encoder_info" ENCODER_WRITER_NAME = "encoder_info_publisher::encoder_info_writer" # def encoderThread(): # encoder_publisher = initDDS(DDS_Publisher, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) # threadLoop('encoder', encoder_publisher, encoderAction) def encoderAction(publisher): # TODO: Make these some sort of null value to identify lost data data = { 'name': [], 'position': [], 'velocity': [], 'effort': [] } global drive_train with drive_train_lock: drive_data = drive_train.getModuleCommand() data['name'] += drive_data['name'] data['position'] += drive_data['position'] data['velocity'] += drive_data['velocity'] global arm_controller with arm_controller_lock: arm_data = arm_controller.getEncoderData() data['name'] += arm_data['name'] data['position'] += arm_data['position'] data['velocity'] += arm_data['velocity'] publisher.write(data) ############################################ ################## SERVICE ################## SERVICE_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::service" SERVICE_WRITER_NAME = "service_pub::service_writer" def serviceThread(): service_publisher = initDDS(DDS_Publisher, SERVICE_PARTICIPANT_NAME, SERVICE_WRITER_NAME) threadLoop('service', service_publisher, serviceAction) def serviceAction(publisher : DDS_Publisher): temp_service = True publisher.write({ "data": temp_service }) ############################################ ################## STAGE ################## STAGE_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::stage_broadcaster" STAGE_WRITER_NAME = "stage_publisher::stage_writer" def stageBroadcasterThread(): stage_publisher = initDDS(DDS_Publisher, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) threadLoop('stage-broadcaster', stage_publisher, stageBroadcasterAction) def stageBroadcasterAction(publisher : DDS_Publisher): global frc_stage global fms_attached is_disabled = wpilib.DriverStation.isDisabled() publisher.write({ "data": f"{frc_stage}|{fms_attached}|{is_disabled}" }) ############################################ ################## IMU ##################### IMU_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::imu" IMU_READER_NAME = "imu_subscriber::imu_reader" def imuThread(): imu_subscriber = initDDS(DDS_Subscriber, IMU_PARTICIPANT_NAME, IMU_READER_NAME) threadLoop("imu", imu_subscriber, imuAction) def imuAction(subscriber): data: dict = subscriber.read() if data is not None: arr = data["data"].split("|") w = float(arr[0]) x = float(arr[1]) y = float(arr[2]) z = float(arr[3]) angular_velocity_x = float(arr[4]) angular_velocity_y = float(arr[5]) angular_velocity_z = float(arr[6]) linear_acceleration_x = float(arr[7]) linear_acceleration_y = float(arr[8]) linear_acceleration_z = float(arr[9]) global navx_sim_data navx_sim_data = [ w, x, y, z, angular_velocity_x, angular_velocity_y, angular_velocity_z, linear_acceleration_x, linear_acceleration_y, linear_acceleration_z ] ############################################ object_pos = [0.0, 0.0, 0.0] ZED_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::zed_objects" ZED_READER_NAME = "zed_objects_subscriber::zed_objects_reader" def zedThread(): zed_subscriber = initDDS(DDS_Subscriber, ZED_PARTICIPANT_NAME, ZED_READER_NAME) threadLoop("zed", zed_subscriber, zedAction) def zedAction(subscriber): global object_pos data: dict = subscriber.read() if data is not None: arr = data["data"].split("|") object_pos[0] = float(arr[0]) object_pos[1] = float(arr[1]) object_pos[2] = float(arr[2]) class Robot(wpilib.TimedRobot): def robotInit(self): self.use_threading = True wpilib.CameraServer.launch() logging.warning("Running in simulation!") if wpilib.RobotBase.isSimulation() else logging.info("Running in real!") self.threads = [] if self.use_threading: logging.info("Initializing Threads") global stop_threads stop_threads = False # if ENABLE_ENCODER: self.threads.append({"name": "encoder", "thread": startThread("encoder") }) if ENABLE_STAGE_BROADCASTER: self.threads.append({"name": "stage-broadcaster", "thread": startThread("stage-broadcaster") }) self.threads.append({"name": "service", "thread": startThread("service") }) self.threads.append({"name": "imu", "thread": startThread("imu") }) self.threads.append({"name": "zed", "thread": startThread("zed") }) else: # self.encoder_publisher = DDS_Publisher(xml_path, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) self.stage_publisher = DDS_Publisher(xml_path, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) self.service_publisher = DDS_Publisher(xml_path, SERVICE_PARTICIPANT_NAME, SERVICE_WRITER_NAME) self.imu_subscriber = DDS_Subscriber(xml_path, IMU_PARTICIPANT_NAME, IMU_READER_NAME) self.zed_subscriber = DDS_Subscriber(xml_path, ZED_PARTICIPANT_NAME, ZED_READER_NAME) self.arm_controller = initArmController() self.drive_train = initDriveTrain() self.drive_train.is_sim = self.isSimulation() self.joystick = Joystick("xbox") self.auton_selector = AutonSelector(self.arm_controller, self.drive_train) self.joystick_selector = wpilib.SendableChooser() self.joystick_selector.setDefaultOption("XBOX", "xbox") self.joystick_selector.addOption("PS4", "ps4") self.auton_run = False self.shuffleboard = Shuffleboard.getTab("Main") self.shuffleboard.add(title="AUTON", defaultValue=self.auton_selector.autonChooser) # self.shuffleboard.add(title="JOYSTICK", defaultValue=self.joystick_selector) # self.shuffleboard.add("WHINE REMOVAL", self.drive_train.whine_remove_selector) self.shuffleboard.addDoubleArray("MOTOR VELOCITY", lambda: (self.drive_train.motor_vels)) self.shuffleboard.addDoubleArray("MOTOR POSITIONS", lambda: (self.drive_train.motor_pos)) # self.shuffleboard.add("ANGLE SOURCE", self.drive_train.angle_source_selector) # self.shuffleboard.add("PROFILE", self.drive_train.profile_selector) self.shuffleboard.add("NAVX", self.drive_train.navx) self.shuffleboard.add("PP Auton", self.auton_selector.ppchooser) self.shuffleboard.addDouble("YAW", lambda: (self.drive_train.navx.getYaw())) self.shuffleboard.addBoolean("FIELD ORIENTED", lambda: (self.drive_train.field_oriented_value)) # self.shuffleboard.addBoolean("SLOW", lambda: (self.drive_train.slow)) self.shuffleboard.addDoubleArray("MOTOR TEMPS", lambda: (self.drive_train.motor_temps)) self.shuffleboard.addDoubleArray("JOYSTICK OUTPUT", lambda: ([self.drive_train.linX, self.drive_train.linY, self.drive_train.angZ])) self.shuffleboard.addDoubleArray("POSE: ", lambda: ([self.auton_selector.drive_subsystem.getPose().X(), self.auton_selector.drive_subsystem.getPose().Y(), self.auton_selector.drive_subsystem.getPose().rotation().degrees()])) self.shuffleboard.add("PP Chooser", self.auton_selector.ppchooser) self.shuffleboard.addDouble("Pose X", lambda: self.auton_selector.drive_subsystem.getPose().X()) self.shuffleboard.addDouble("Pose Y", lambda: self.auton_selector.drive_subsystem.getPose().Y()) self.shuffleboard.addDouble("Pose Rotation", lambda: self.auton_selector.drive_subsystem.getPose().rotation().degrees()) self.shuffleboard.addDouble("Sweeping Rotation", lambda: self.auton_selector.drive_subsystem.drivetrain.navx.getRotation2d().__mul__(-1).degrees()) self.shuffleboard.addDoubleArray("CHASSIS SPEEDS", lambda: [ self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().vx, self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().vy, self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().omega ]) # self.shuffleboard.addString("AUTO TURN STATE", lambda: (self.drive_train.auto_turn_value)) # self.second_order_chooser = wpilib.SendableChooser() # self.second_order_chooser.setDefaultOption("1st Order", False) # self.second_order_chooser.addOption("2nd Order", True) # self.shuffleboard.add("2nd Order", self.second_order_chooser) self.arm_controller.setToggleButtons() self.auton_run = False self.turn_90 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 90.0) self.turn_180 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 180.0) self.turn_270 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 270.0) self.turn_0 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 0.0) NamedCommands.registerCommand("Turn180", self.turn_180) def robotPeriodic(self): self.joystick.type = self.joystick_selector.getSelected() self.auton_selector.drive_subsystem.updateOdometry() if navx_sim_data is not None: self.drive_train.navx_sim.update(*navx_sim_data) # Auton def autonomousInit(self): self.drive_train.navx.reset() self.drive_train.set_navx_offset(0) self.auton_selector.run() global object_pos # self.cone_move = ConeMoveAuton(self.auton_selector.drive_subsystem, object_pos) logging.info("Entering Auton") global frc_stage frc_stage = "AUTON" def autonomousPeriodic(self): CommandScheduler.getInstance().run() global object_pos global fms_attached # dist = math.sqrt(object_pos[0]**2 + object_pos[1]**2) # if dist > 0.5: # self.cone_move.execute() # self.cone_move.object_pos = object_pos # else: # print(f"GIVEN POS: {object_pos} ********************") # self.drive_train.swerveDriveAuton(0, 0, 0) # self.drive_train.stop()( # self.drive_train.swerveDriveAuton(object_pos[0]/5.0, object_pos[1]/5.0, object_pos[2]/5.0) logging.info(f"Robot Pose: {self.auton_selector.drive_subsystem.getPose()}") fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def autonomousExit(self): CommandScheduler.getInstance().cancelAll() logging.info("Exiting Auton") global frc_stage frc_stage = "AUTON" # Teleop def teleopInit(self): self.arm_controller.setToggleButtons() CommandScheduler.getInstance().cancelAll() logging.info("Entering Teleop") global frc_stage frc_stage = "TELEOP" def teleopPeriodic(self): self.drive_train.swerveDrive(self.joystick) self.arm_controller.setArm(self.joystick) global fms_attached fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def manageThreads(self): # Check all threads and make sure they are alive for thread in self.threads: if thread["thread"].is_alive() == False: logging.warning(f"Thread {thread['name']} is not alive, restarting...") thread["thread"] = startThread(thread["name"]) def doActions(self): # encoderAction(self.encoder_publisher) stageBroadcasterAction(self.stage_publisher) serviceAction(self.service_publisher) imuAction(self.imu_subscriber) zedAction(self.zed_subscriber) def stopThreads(self): global stop_threads stop_threads = True for thread in self.threads: thread.join() logging.info('All Threads Stopped') if __name__ == '__main__': wpilib.run(Robot)
15,702
Python
38.956743
232
0.642975
RoboEagles4828/rift2024/rio/srcrobot/CTREConfigs.py
from phoenix6.configs import CANcoderConfiguration from phoenix6.configs import TalonFXConfiguration from phoenix6.signals.spn_enums import AbsoluteSensorRangeValue from phoenix6.signals import InvertedValue from constants import Constants from copy import deepcopy from wpimath.units import radiansToRotations class CTREConfigs: swerveAngleFXConfig = TalonFXConfiguration() swerveDriveFXConfig = TalonFXConfiguration() swerveCANcoderConfig = CANcoderConfiguration() # swerveCANcoderConfigList = [CANcoderConfiguration(), CANcoderConfiguration(), CANcoderConfiguration(), CANcoderConfiguration()] def __init__(self): # Swerve CANCoder Configuration # for config in self.swerveCANcoderConfigList: self.swerveCANcoderConfig.magnet_sensor.sensor_direction = Constants.Swerve.cancoderInvert #Swerve Angle Motor Configurations # Motor Inverts and Neutral Mode self.swerveAngleFXConfig.motor_output.inverted = Constants.Swerve.angleMotorInvert self.swerveAngleFXConfig.motor_output.neutral_mode = Constants.Swerve.angleNeutralMode # Gear Ratio and Wrapping Config self.swerveAngleFXConfig.feedback.sensor_to_mechanism_ratio = Constants.Swerve.angleGearRatio self.swerveAngleFXConfig.closed_loop_general.continuous_wrap = True # Current Limiting self.swerveAngleFXConfig.current_limits.supply_current_limit_enable = Constants.Swerve.angleEnableCurrentLimit self.swerveAngleFXConfig.current_limits.supply_current_limit = Constants.Swerve.angleCurrentLimit self.swerveAngleFXConfig.current_limits.supply_current_threshold = Constants.Swerve.angleCurrentThreshold self.swerveAngleFXConfig.current_limits.supply_time_threshold = Constants.Swerve.angleCurrentThresholdTime # PID Config self.swerveAngleFXConfig.slot0.k_p = Constants.Swerve.angleKP self.swerveAngleFXConfig.slot0.k_i = Constants.Swerve.angleKI self.swerveAngleFXConfig.slot0.k_d = Constants.Swerve.angleKD #* Swerve Drive Motor Configuration # Motor Inverts and Neutral Mode self.swerveDriveFXConfig.motor_output.inverted = Constants.Swerve.driveMotorInvert self.swerveDriveFXConfig.motor_output.neutral_mode = Constants.Swerve.driveNeutralMode # Gear Ratio Config self.swerveDriveFXConfig.feedback.sensor_to_mechanism_ratio = Constants.Swerve.driveGearRatio # Current Limiting self.swerveDriveFXConfig.current_limits.supply_current_limit_enable = Constants.Swerve.driveEnableCurrentLimit self.swerveDriveFXConfig.current_limits.supply_current_limit = Constants.Swerve.driveCurrentLimit self.swerveDriveFXConfig.current_limits.supply_current_threshold = Constants.Swerve.driveCurrentThreshold self.swerveDriveFXConfig.current_limits.supply_time_threshold = Constants.Swerve.driveCurrentThresholdTime # PID Config self.swerveDriveFXConfig.slot0.k_p = Constants.Swerve.driveKP self.swerveDriveFXConfig.slot0.k_i = Constants.Swerve.driveKI self.swerveDriveFXConfig.slot0.k_d = Constants.Swerve.driveKD # Open and Closed Loop Ramping self.swerveDriveFXConfig.open_loop_ramps.duty_cycle_open_loop_ramp_period = Constants.Swerve.openLoopRamp self.swerveDriveFXConfig.open_loop_ramps.voltage_open_loop_ramp_period = Constants.Swerve.openLoopRamp self.swerveDriveFXConfig.closed_loop_ramps.duty_cycle_closed_loop_ramp_period = Constants.Swerve.closedLoopRamp self.swerveDriveFXConfig.closed_loop_ramps.voltage_closed_loop_ramp_period = Constants.Swerve.closedLoopRamp self.swerveDriveFXConfigFR = deepcopy(self.swerveDriveFXConfig) # self.swerveDriveFXConfigFR.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE
3,847
Python
51.712328
133
0.77359
RoboEagles4828/rift2024/rio/srcrobot/pyproject.toml
# # Use this configuration file to control what RobotPy packages are installed # on your RoboRIO # [tool.robotpy] # Version of robotpy this project depends on robotpy_version = "2024.3.2.1" # Which extra RobotPy components should be installed # -> equivalent to `pip install robotpy[extra1, ...] robotpy_extras = [ # "all", "apriltag", # "commands2", "cscore", "navx", # "pathplannerlib", "phoenix5", # "phoenix6", # "playingwithfusion", "rev", # "romi", # "sim", # "xrp" ] # Other pip packages to install requires = [ "robotpy-commands-v2>=2024.2.2", "robotpy-ctre", "squaternion", "robotpy-pathplannerlib>=2024.1.2", "rticonnextdds-connector", "photonlibpy==2024.2.8", "robotpy-pathplannerlib==2024.2.7", "pytreemap" ]
809
TOML
19.25
76
0.6267
RoboEagles4828/rift2024/rio/srcrobot/constants.py
from phoenix6.signals import InvertedValue from phoenix6.signals import NeutralModeValue from phoenix6.signals import SensorDirectionValue from wpimath.geometry import Rotation2d from wpimath.geometry import Translation2d from wpimath.kinematics import SwerveDrive4Kinematics from wpimath.trajectory import TrapezoidProfile, TrapezoidProfileRadians import lib.mathlib.units as Units from lib.util.COTSTalonFXSwerveConstants import COTSTalonFXSwerveConstants from lib.util.SwerveModuleConstants import SwerveModuleConstants import math from enum import Enum from pytreemap import TreeMap from lib.util.InterpolatingTreeMap import InterpolatingTreeMap from wpimath.units import rotationsToRadians from pathplannerlib.auto import HolonomicPathFollowerConfig from pathplannerlib.controller import PIDConstants from pathplannerlib.config import ReplanningConfig class Constants: stickDeadband = 0.1 class Swerve: navxID = 0 chosenModule = COTSTalonFXSwerveConstants.MK4i.Falcon500(COTSTalonFXSwerveConstants.MK4i.driveRatios.L2) # Drivetrain Constants trackWidth = Units.inchesToMeters(20.75) wheelBase = Units.inchesToMeters(20.75) rotationBase = Units.inchesToMeters(31.125 - 5.25) robotWidth = 26.0 robotLength = 31.125 armLength = 18.5 frontOffset = rotationBase - wheelBase wheelCircumference = chosenModule.wheelCircumference frontLeftLocation = Translation2d(-((wheelBase / 2.0) - frontOffset), -trackWidth / 2.0) frontRightLocation = Translation2d(-((wheelBase / 2.0) - frontOffset), trackWidth / 2.0) backLeftLocation = Translation2d(wheelBase / 2.0, -trackWidth / 2.0) backRightLocation = Translation2d(wheelBase / 2.0, trackWidth / 2.0) # frontLeftLocation = Translation2d(-wheelBase / 2.0, -trackWidth / 2.0) # frontRightLocation = Translation2d(-wheelBase / 2.0, trackWidth / 2.0) # backLeftLocation = Translation2d(wheelBase / 2.0, -trackWidth / 2.0) # backRightLocation = Translation2d(wheelBase / 2.0, trackWidth / 2.0) robotCenterLocation = Translation2d(0.0, 0.0) swerveKinematics = SwerveDrive4Kinematics( frontLeftLocation, frontRightLocation, backLeftLocation, backRightLocation ) # Module Gear Ratios driveGearRatio = chosenModule.driveGearRatio angleGearRatio = chosenModule.angleGearRatio # Motor Inverts angleMotorInvert = chosenModule.angleMotorInvert driveMotorInvert = chosenModule.driveMotorInvert # Angle Encoder Invert cancoderInvert = chosenModule.cancoderInvert # Swerve Current Limiting angleCurrentLimit = 25 angleCurrentThreshold = 40 angleCurrentThresholdTime = 0.1 angleEnableCurrentLimit = True driveCurrentLimit = 35 driveCurrentThreshold = 60 driveCurrentThresholdTime = 0.1 driveEnableCurrentLimit = True openLoopRamp = 0.0 closedLoopRamp = 0.0 # Angle Motor PID Values angleKP = chosenModule.angleKP angleKI = chosenModule.angleKI angleKD = chosenModule.angleKD # Drive Motor PID Values driveKP = 2.5 driveKI = 0.0 driveKD = 0.0 driveKF = 0.0 driveKS = 0.2 driveKV = 0.28 driveKA = 0.0 # Swerve Profiling Values # Meters per Second maxSpeed = 5.0 maxAutoModuleSpeed = 4.5 # Radians per Second maxAngularVelocity = 2.5 * math.pi # Neutral Modes angleNeutralMode = NeutralModeValue.COAST driveNeutralMode = NeutralModeValue.BRAKE holonomicPathConfig = HolonomicPathFollowerConfig( PIDConstants(5.0, 0.0, 0.0), PIDConstants(4.0, 0.0, 0.0), maxAutoModuleSpeed, #distance from center to the furthest module Units.inchesToMeters(16), ReplanningConfig(), ) # Slowdown speed ## The speed is multiplied by this value when the trigger is fully held down slowMoveModifier = 0.8 slowTurnModifier = 0.8 # Module Specific Constants # Front Left Module - Module 0 class Mod0: driveMotorID = 2 angleMotorID = 1 canCoderID = 3 angleOffset = Rotation2d(rotationsToRadians(0.145020)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Front Right Module - Module 1 class Mod1: driveMotorID = 19 angleMotorID = 18 canCoderID = 20 angleOffset = Rotation2d(rotationsToRadians(1.267334)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Back Left Module - Module 2 class Mod2: driveMotorID = 9 angleMotorID = 8 canCoderID = 7 angleOffset = Rotation2d(rotationsToRadians(0.648926)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Back Right Module - Module 3 class Mod3: driveMotorID = 12 angleMotorID = 11 canCoderID = 10 angleOffset = Rotation2d(rotationsToRadians(1.575195)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) class AutoConstants: kMaxSpeedMetersPerSecond = 3 kMaxModuleSpeed = 4.5 kMaxAccelerationMetersPerSecondSquared = 3 kMaxAngularSpeedRadiansPerSecond = math.pi kMaxAngularSpeedRadiansPerSecondSquared = math.pi kPXController = 4.0 kPYController = 4.0 kPThetaController = 1.5 kThetaControllerConstraints = TrapezoidProfileRadians.Constraints( kMaxAngularSpeedRadiansPerSecond, kMaxAngularSpeedRadiansPerSecondSquared ) class ShooterConstants: kSubwooferPivotAngle = 0.0 kPodiumPivotAngle = 45.0 kAmpPivotAngle = 90.0 kSubwooferShootSpeed = 25.0 kPodiumShootSpeed = 20.0 kAmpShootSpeed = 5.0 kMechanicalAngle = 30.0 class IntakeConstants: kIntakeMotorID = 0 kIntakeSpeed = 5.0 class IndexerConstants: kIndexerMotorID = 14 kIndexerMaxSpeedMS = 20.0 kIndexerIntakeSpeedMS = 0.5 kBeamBreakerID = 0 class ClimberConstants: kLeftMotorID = 14 kRightMotorID = 13 kLeftCANID = 4 kRightCANID = 15 maxClimbHeight = 0 kClimberSpeed = 0.85 # percent output class ArmConstants: kKnownArmAngles = InterpolatingTreeMap() # kKnownArmAngles.put(0.0, 5.0) # kKnownArmAngles.put(1.0, 6.5) # kKnownArmAngles.put(2.0, 10.0) # kKnownArmAngles.put(3.0, 12.0) # kKnownArmAngles.put(4.0, 17.0) # kKnownArmAngles.put(5.0, 20.0) # kKnownArmAngles.put(6.0, 23.0) kKnownArmAngles.put(0.0, 5.0) kKnownArmAngles.put(0.833, 11.8) kKnownArmAngles.put(1.667, 18.0) kKnownArmAngles.put(2.5, 22.0) kKnownArmAngles.put(3.333, 26.0) kKnownArmAngles.put(4.1667,28.7) kKnownArmAngles.put(5.0, 30.0) kKnownArmAngles.put(5.833, 32.35) kKnownArmAngles.put(6.667, 33.3) kKnownArmAngles.put(7.5, 34.15) # An enumeration of known shot locations and data critical to executing the # shot. TODO decide on shooter velocity units and tune angles. class NextShot(Enum): AMP = (0, -90.0, 90.0, 85.0, 8.0, 5, 6) SPEAKER_AMP = (1, -60.0, -60.0, 6.5, 25.0, 4, 7) SPEAKER_CENTER = (2, 0.0, 0.0, 6.5, 25.0, 4, 7) SPEAKER_SOURCE = (3, 60.0, 60.0, 6.5, 25.0, 4, 7) PODIUM = (4, -30.0, 30.0, 26.5, 35.0, 4, 7) CENTER_AUTO = (5, -30.0, 30.0, 31.0, 35.0, 4, 7) DYNAMIC = (6, 0.0, 0.0, 0.0, 35.0, 4, 7) def __init__(self, value, blueSideBotHeading, redSideBotHeading, armAngle, shooterVelocity, red_tagID, blue_tagID): self._value_ = value self.m_blueSideBotHeading = blueSideBotHeading self.m_redSideBotHeading = redSideBotHeading self.m_armAngle = armAngle self.m_shooterVelocity = shooterVelocity self.m_redTagID = red_tagID self.m_blueTagID = blue_tagID def calculateArmAngle(self, distance: float) -> float: # a = -0.0694444 # b = 0.755952 # c = 0.968254 # d = 5.0 # armRegressionEquation = lambda x: a * (x**3) + b * (x**2) + c * x + d a = 0.130952 b = 2.35714 c = 4.58333 armRegressionEquation = lambda x: a * (x**2) + b * x + c if distance <= 0.5: armAngle = armRegressionEquation(0) else: armAngle = armRegressionEquation(distance) + 2.0 return armAngle def calculateInterpolatedArmAngle(self, distance: float) -> float: armAngle = Constants.ArmConstants.kKnownArmAngles.get(distance) return armAngle def calculateShooterVelocity(self, distance: float) -> float: if distance <= 0.5: shooterVelocity = 25.0 else: shooterVelocity = 35.0 return shooterVelocity
9,461
Python
32.434629
121
0.63376
RoboEagles4828/rift2024/rio/srcrobot/SwerveModule.py
from phoenix6.controls import DutyCycleOut, PositionVoltage, VelocityVoltage, VoltageOut from phoenix6.hardware import CANcoder, TalonFX from wpimath.controller import SimpleMotorFeedforwardMeters from wpimath.geometry import Rotation2d from wpimath.kinematics import SwerveModuleState, SwerveModulePosition from lib.mathlib.conversions import Conversions from lib.util.SwerveModuleConstants import SwerveModuleConstants from constants import Constants from CTREConfigs import CTREConfigs from phoenix6.configs import CANcoderConfiguration from phoenix6.configs import TalonFXConfiguration from sim.SwerveModuleSim import SwerveModuleSim from wpilib import RobotBase from wpimath.units import radiansToRotations, rotationsToRadians class SwerveModule: ctreConfigs = CTREConfigs() moduleNumber: int angleOffset: Rotation2d mAngleMotor: TalonFX mDriveMotor: TalonFX angleEncoder: CANcoder driveFeedForward = SimpleMotorFeedforwardMeters(Constants.Swerve.driveKS, Constants.Swerve.driveKV, Constants.Swerve.driveKA) driveDutyCycle: DutyCycleOut = DutyCycleOut(0).with_enable_foc(True) driveVelocity: VelocityVoltage = VelocityVoltage(0).with_enable_foc(True) anglePosition: PositionVoltage = PositionVoltage(0).with_enable_foc(True) def __init__(self, moduleNumber: int, moduleConstants: SwerveModuleConstants): self.moduleNumber = moduleNumber self.angleOffset = moduleConstants.angleOffset self.angleEncoder = CANcoder(moduleConstants.cancoderID, "canivore") self.angleEncoder.configurator.apply(self.ctreConfigs.swerveCANcoderConfig) self.mAngleMotor = TalonFX(moduleConstants.angleMotorID, "canivore") self.mAngleMotor.configurator.apply(self.ctreConfigs.swerveAngleFXConfig) self.resetToAbsolute() self.mDriveMotor = TalonFX(moduleConstants.driveMotorID, "canivore") if moduleNumber == 1: self.mDriveMotor.configurator.apply(self.ctreConfigs.swerveDriveFXConfigFR) else: self.mDriveMotor.configurator.apply(self.ctreConfigs.swerveDriveFXConfig) self.mDriveMotor.configurator.set_position(0.0) if RobotBase.isSimulation(): self.simModule = SwerveModuleSim() def setDesiredState(self, desiredState: SwerveModuleState, isOpenLoop: bool): desiredState = SwerveModuleState.optimize(desiredState, self.getState().angle) self.mAngleMotor.set_control(self.anglePosition.with_position(radiansToRotations(desiredState.angle.radians()))) self.setSpeed(desiredState, isOpenLoop) if RobotBase.isSimulation(): self.simModule.updateStateAndPosition(desiredState) def setDesiredStateNoOptimize(self, desiredState: SwerveModuleState, isOpenLoop: bool): # desiredState = SwerveModuleState.optimize(desiredState, self.getState().angle) self.mAngleMotor.set_control(self.anglePosition.with_position(radiansToRotations(desiredState.angle.radians()))) self.setSpeed(desiredState, isOpenLoop) def setSpeed(self, desiredState: SwerveModuleState, isOpenLoop: bool): if isOpenLoop: self.driveDutyCycle.output = desiredState.speed / Constants.Swerve.maxSpeed self.mDriveMotor.set_control(self.driveDutyCycle) else: self.driveVelocity.velocity = Conversions.MPSToRPS(desiredState.speed, Constants.Swerve.wheelCircumference) self.driveVelocity.feed_forward = self.driveFeedForward.calculate(desiredState.speed) self.mDriveMotor.set_control(self.driveVelocity) def driveMotorVoltage(self, volts): self.mDriveMotor.set_control(VoltageOut(volts, enable_foc=False)) def getCANcoder(self): return Rotation2d(rotationsToRadians(self.angleEncoder.get_absolute_position().value_as_double)) def resetToAbsolute(self): absolutePosition = self.getCANcoder().radians() - self.angleOffset.radians() self.mAngleMotor.set_position(radiansToRotations(absolutePosition)) def getState(self): if RobotBase.isSimulation(): return self.simModule.getState() return SwerveModuleState( Conversions.RPSToMPS(self.mDriveMotor.get_velocity().value_as_double, Constants.Swerve.wheelCircumference), Rotation2d(rotationsToRadians(self.mAngleMotor.get_position().value_as_double)) ) def getPosition(self): if RobotBase.isSimulation(): return self.simModule.getPosition() return SwerveModulePosition( Conversions.rotationsToMeters(self.mDriveMotor.get_position().value_as_double, Constants.Swerve.wheelCircumference), Rotation2d(rotationsToRadians(self.mAngleMotor.get_position().value_as_double)) )
4,774
Python
42.807339
129
0.753456
RoboEagles4828/rift2024/rio/srcrobot/gameState.py
from constants import Constants from wpilib import DriverStation class GameState: """ The single game state object holds information on the current state of our game play. It includes that next desired shot and if we do or do not currently hold a note. """ def __new__(cls): if not hasattr(cls, "instance"): cls.instance = super(GameState, cls).__new__(cls) return cls.instance m_hasNote = True m_noteInIntake = True """ Do we have a note onboard? Start auto holding a note. """ m_nextShot = Constants.NextShot.SPEAKER_CENTER """ What is our next planned shot? Default for basic autos. """ # Sets the next shot to take. If null is passed, the shot is reset to its # initial speaker center state. The next shot setting is never allowed to be # None. # # nextShot must be an instance of Constants.NextShot def setNextShot(self, nextShot): """ Sets the next shot to take. If null is passed, the shot is reset to its initial speaker center state. The next shot setting is never allowed to be None. :param nextShot: must be an instance of Constants.NextShot """ if isinstance(nextShot, Constants.NextShot): self.m_nextShot = nextShot else: self.m_nextShot = Constants.NextShot.SPEAKER_CENTER def getNextShot(self) -> Constants.NextShot: """ Return the next desired shot. Never None. """ return self.m_nextShot def getNextShotRobotAngle(self) -> float: """ Return the angle the robot needs to be turned to for the next shot. This value is alliance adjusted. If the FMS is misbehaving, we assume blue. """ alliance = DriverStation.getAlliance() nextShot = self.getNextShot() if alliance == DriverStation.Alliance.kRed: return nextShot.m_redSideBotHeading return nextShot.m_blueSideBotHeading def getNextShotTagID(self) -> int: """ Return the tag ID for the next shot. This value is alliance adjusted. If the FMS is misbehaving, we assume blue. """ alliance = DriverStation.getAlliance() nextShot = self.getNextShot() if alliance == DriverStation.Alliance.kRed: return nextShot.m_redTagID return nextShot.m_blueTagID def setHasNote(self, hasNote): """ Generally called by the indexer with True and the shooter with False. :param hasNote: the new setting for has note. """ self.m_hasNote = hasNote def hasNote(self) -> bool: """ Return true if the robot is currently holding a note. False, otherwise. """ return self.m_hasNote def setNoteInIntake(self, m_noteInIntake): self.m_noteInIntake = m_noteInIntake def getNoteInIntake(self) -> bool: return self.m_noteInIntake
2,974
Python
31.336956
82
0.632482
RoboEagles4828/rift2024/rio/srcrobot/robot.py
from wpilib import TimedRobot from commands2 import Command from commands2 import CommandScheduler from CTREConfigs import CTREConfigs from constants import Constants from gameState import GameState from robot_container import RobotContainer from wpimath.geometry import Rotation2d import wpilib from wpilib.shuffleboard import Shuffleboard, ShuffleboardTab from wpilib import SmartDashboard, DriverStation class Robot(TimedRobot): m_autonomousCommand: Command = None m_robotContainer: RobotContainer auton_tab: ShuffleboardTab teleop_tab: ShuffleboardTab def robotInit(self): # Instantiate our RobotContainer. This will perform all our button bindings, and put our # autonomous chooser on the dashboard. # wpilib.CameraServer.launch() self.m_robotContainer = RobotContainer() self.m_robotContainer.m_robotState.m_gameState.setHasNote(False) CommandScheduler.getInstance().setPeriod(0.02) def robotPeriodic(self): # Runs the Scheduler. This is responsible for polling buttons, adding newly-scheduled # commands, running already-scheduled commands, removing finished or interrupted commands, # and running subsystem periodic() methods. This must be called from the robot's periodic # block in order for anything in the Command-based framework to work. CommandScheduler.getInstance().run() def autonomousInit(self): # self.m_robotContainer.s_Shooter.setDefaultCommand(self.m_robotContainer.s_Shooter.idle()) m_autonomousCommand: Command = self.m_robotContainer.getAutonomousCommand() # schedule the autonomous command (example) if m_autonomousCommand != None: m_autonomousCommand.schedule() def teleopInit(self): # This makes sure that the autonomous stops running when # teleop starts running. If you want the autonomous to # continue until interrupted by another command, remove # this line or comment it out. # flip heading if DriverStation.getAlliance() == DriverStation.Alliance.kRed: self.m_robotContainer.s_Swerve.setHeading(self.m_robotContainer.s_Swerve.getHeading().rotateBy(Rotation2d.fromDegrees(180.0))) GameState().setNextShot(Constants.NextShot.SPEAKER_CENTER) self.m_robotContainer.s_Shooter.setDefaultCommand(self.m_robotContainer.s_Shooter.stop()) if self.m_autonomousCommand is not None: self.m_autonomousCommand.cancel() def testInit(self): CommandScheduler.getInstance().cancelAll()
2,453
Python
38.580645
132
0.773746
RoboEagles4828/rift2024/rio/srcrobot/robot_container.py
from wpilib.interfaces import GenericHID from wpilib import Joystick from wpilib import XboxController from commands2.button import CommandXboxController, Trigger from commands2 import Command, ParallelDeadlineGroup, Subsystem from commands2 import InstantCommand, ConditionalCommand, WaitCommand, PrintCommand, RunCommand, SequentialCommandGroup, ParallelCommandGroup, WaitUntilCommand, StartEndCommand, DeferredCommand from commands2.button import JoystickButton import commands2.cmd as cmd from CTREConfigs import CTREConfigs from commands2 import CommandScheduler import math from wpimath.geometry import * import wpimath.units as Units import lib.mathlib.units as CustomUnits from lib.mathlib.conversions import Conversions from constants import Constants from autos.exampleAuto import exampleAuto from commands.TeleopSwerve import TeleopSwerve from commands.PathFindToTag import PathFindToTag from commands.DynamicShot import DynamicShot from commands.ExecuteCommand import ExecuteCommand from subsystems.Swerve import Swerve from subsystems.intake import Intake from subsystems.indexer import Indexer from subsystems.Arm import Arm from subsystems.Climber import Climber from subsystems.Shooter import Shooter from subsystems.Vision import Vision from subsystems.Led import LED # from subsystems.Climber import Climber from commands.TurnInPlace import TurnInPlace from commands.TurnToTag import TurnToTag from commands.SysId import DriveSysId from wpilib.shuffleboard import Shuffleboard, BuiltInWidgets, BuiltInLayouts from wpilib import SendableChooser, RobotBase, DriverStation from wpimath import applyDeadband from autos.PathPlannerAutoRunner import PathPlannerAutoRunner from pathplannerlib.auto import NamedCommands, PathConstraints, AutoBuilder from pathplannerlib.controller import PPHolonomicDriveController from robotState import RobotState class RobotContainer: ctreConfigs = CTREConfigs() # Drive Controls translationAxis = XboxController.Axis.kLeftY strafeAxis = XboxController.Axis.kLeftX rotationAxis = XboxController.Axis.kRightX slowAxis = XboxController.Axis.kRightTrigger # This causes issues on certain controllers, where kRightTrigger is for some reason mapped to [5] instead of [3] driver = CommandXboxController(0) operator = CommandXboxController(1) sysId = JoystickButton(driver, XboxController.Button.kY) robotCentric_value = False # Subsystems s_Swerve : Swerve = Swerve() s_Arm : Arm = Arm() s_Intake : Intake = Intake() s_Indexer : Indexer = Indexer() s_Shooter : Shooter = Shooter() s_Vision : Vision = Vision.getInstance() # s_Climber : Climber = Climber() #SysId driveSysId = DriveSysId(s_Swerve) s_Climber : Climber = Climber() s_LED : LED = LED() # The container for the robot. Contains subsystems, OI devices, and commands. def __init__(self): self.m_robotState : RobotState = RobotState() self.m_robotState.initialize( lambda: self.s_Swerve.getHeading().degrees(), self.s_Arm.getDegrees, self.s_Shooter.getVelocity ) self.dynamicShot = DynamicShot(self.s_Swerve, self.s_Vision, self.s_Arm) # PPHolonomicDriveController.setRotationTargetOverride(self.dynamicShot.getRotationTarget()) self.currentArmAngle = self.s_Arm.getDegrees() # Driver Controls self.zeroGyro = self.driver.back() self.robotCentric = self.driver.start() self.execute = self.driver.leftBumper() self.shoot = self.driver.rightBumper() self.intake = self.driver.leftTrigger() self.fastTurn = self.driver.povUp() self.climbUp = self.driver.y() self.climbDown = self.driver.a() # Slowmode is defined with the other Axis objects # Operator Controls self.autoHome = self.operator.rightTrigger() # self.flywheel = self.operator.rightBumper() self.systemReverse = self.operator.leftBumper() self.opExec = self.operator.leftTrigger() self.opShoot = self.operator.rightBumper() self.emergencyArmUp = self.operator.povDown() # Que Controls self.queSubFront = self.operator.a() self.quePodium = self.operator.y() self.queSubRight = self.operator.b() self.queSubLeft = self.operator.x() self.queAmp = self.operator.povUp() self.queDynamic = self.operator.povRight() self.configureButtonBindings() NamedCommands.registerCommand("RevShooter", self.s_Shooter.shoot().withTimeout(1.0).withName("AutoRevShooter")) NamedCommands.registerCommand("Shoot", self.s_Indexer.indexerShoot().withTimeout(1.0).withName("AutoShoot")) NamedCommands.registerCommand("ShooterOff", InstantCommand(self.s_Shooter.brake, self.s_Shooter).withName("AutoShooterBrake")) NamedCommands.registerCommand("IndexerIntake", self.s_Indexer.indexerIntakeOnce().withName("AutoIndexerIntake")) NamedCommands.registerCommand("ArmUp", self.s_Arm.servoArmToTarget(5.0).withTimeout(0.5)) NamedCommands.registerCommand("ArmDown", self.s_Arm.seekArmZero().withTimeout(1.0)) NamedCommands.registerCommand("IndexerOff", self.s_Indexer.instantStop().withName("AutoIndexerOff")) NamedCommands.registerCommand("IntakeOn", self.s_Intake.intakeOnce().withName("AutoIntakeOn")) NamedCommands.registerCommand("IntakeOff", self.s_Intake.instantStop().withName("AutoIntakeOff")) NamedCommands.registerCommand("IndexerOut", self.s_Indexer.indexerOuttake().withTimeout(4.0)) NamedCommands.registerCommand("BringArmUp", self.bringArmUp()) NamedCommands.registerCommand("IntakeUntilBeamBreak", SequentialCommandGroup( self.s_Indexer.indexerIntakeOnce(), WaitUntilCommand(self.s_Indexer.getBeamBreakState).withTimeout(4.0).finallyDo(lambda interrupted: self.s_Indexer.stopMotor()), self.s_Indexer.instantStop() ).withTimeout(5.0)) # Compiled Commands NamedCommands.registerCommand("Full Shooter Rev", self.s_Shooter.shoot()) NamedCommands.registerCommand("Full Intake", self.s_Intake.intake().alongWith(self.s_Indexer.indexerIntake()).until(self.s_Indexer.getBeamBreakState).andThen(self.s_Indexer.instantStop()).andThen(self.s_Indexer.indexerOuttake().withTimeout(0.0005)).withName("AutoIntake").withTimeout(5.0)) NamedCommands.registerCommand("Full Shoot", self.s_Arm.servoArmToTarget(4.0).withTimeout(0.5).andThen(WaitCommand(0.7)).andThen(self.s_Indexer.indexerShoot().withTimeout(0.5).alongWith(self.s_Intake.intake().withTimeout(0.5)).withTimeout(1.0)).andThen(self.s_Arm.seekArmZero())) NamedCommands.registerCommand("All Off", self.s_Intake.instantStop().alongWith(self.s_Indexer.instantStop(), self.s_Shooter.brake()).withName("AutoAllOff")) NamedCommands.registerCommand("Combo Shot", self.autoModeShot(Constants.NextShot.SPEAKER_CENTER)) NamedCommands.registerCommand("Combo Podium Shot", self.autoModeShot(Constants.NextShot.CENTER_AUTO)) NamedCommands.registerCommand("Queue Speaker", self.autoExecuteShot(Constants.NextShot.SPEAKER_CENTER)) NamedCommands.registerCommand("Queue Podium", self.autoExecuteShot(Constants.NextShot.CENTER_AUTO)) NamedCommands.registerCommand("Queue Dynamic", self.autoDynamicShot()) #check this change with saranga NamedCommands.registerCommand("Execute Shot", self.autoShootWhenReady()) NamedCommands.registerCommand("Bring Arm Down", self.bringArmDown()) self.auton_selector = AutoBuilder.buildAutoChooser("DO NOTHING") Shuffleboard.getTab("Autonomous").add("Auton Selector", self.auton_selector) Shuffleboard.getTab("Teleoperated").addString("QUEUED SHOT", self.getQueuedShot) Shuffleboard.getTab("Teleoperated").addBoolean("Field Oriented", self.getFieldOriented) Shuffleboard.getTab("Teleoperated").addBoolean("Zero Gyro", self.zeroGyro.getAsBoolean) Shuffleboard.getTab("Teleoperated").addBoolean("Beam Break", self.s_Indexer.getBeamBreakState) Shuffleboard.getTab("Teleoperated").addDouble("Shooter Speed", self.s_Shooter.getVelocity) Shuffleboard.getTab("Teleoperated").addBoolean("Arm + Shooter Ready", lambda: self.m_robotState.isArmAndShooterReady()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Heading", lambda: self.s_Swerve.getHeading().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Front Right Module Speed", lambda: self.s_Swerve.mSwerveMods[1].getState().speed) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose X", lambda: self.s_Swerve.getPose().X()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose Y", lambda: self.s_Swerve.getPose().Y()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose Theta", lambda: self.s_Swerve.getPose().rotation().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance X", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).X()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Y", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).Y()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Norm", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).norm()) Shuffleboard.getTab("Teleoperated").addDouble("Target Arm Angle", lambda: self.dynamicShot.getInterpolatedArmAngle()) Shuffleboard.getTab("Teleoperated").addDouble("Target Robot Angle", lambda: self.dynamicShot.getRobotAngle().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Target Arm Angle Trig", lambda: self.dynamicShot.getTrigArmAngle()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Feet", lambda: Units.metersToFeet(self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0)) Shuffleboard.getTab("Teleoperated").addBoolean("PATH FLIP", self.s_Swerve.shouldFlipPath) Shuffleboard.getTab("Teleoperated").addString("FMS ALLIANCE", self.getAllianceName) Shuffleboard.getTab("Teleoperated").addDouble("Shooter Speed RPM", lambda: Conversions.MPSToRPS(self.s_Shooter.getVelocity(), self.s_Shooter.wheelCircumference) * 60.0) def getAllianceName(self): if DriverStation.getAlliance() is None: return "NONE" else: return DriverStation.getAlliance().name def autoModeShot(self, autoShot: Constants.NextShot) -> Command: """ Used during automode commands to shoot any Constants.NextShot. """ shotTimeoutSec = (autoShot.m_armAngle / 45.0) + 1.0 return SequentialCommandGroup( InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(autoShot)), ParallelDeadlineGroup( WaitUntilCommand(lambda: self.m_robotState.isArmAndShooterReady()) .withTimeout(1.0) .andThen(self.s_Indexer.indexerShoot()), InstantCommand( lambda: self.s_Shooter.setShooterVelocity( autoShot.m_shooterVelocity ), self.s_Shooter, ), self.s_Arm.servoArmToTargetGravity(autoShot.m_armAngle) ), self.s_Indexer.instantStop(), self.s_Arm.seekArmZero().withTimeout(0.5) ) def getDynamicShotCommand(self, translation, strafe, rotation, robotcentric) -> ParallelCommandGroup: return ParallelCommandGroup( self.s_Arm.servoArmToTargetDynamic( lambda: self.dynamicShot.getInterpolatedArmAngle() ).repeatedly(), InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(Constants.NextShot.DYNAMIC)), self.s_Shooter.shootVelocityWithSupplier( lambda: 35.0 ).repeatedly(), TurnInPlace( self.s_Swerve, lambda: self.dynamicShot.getRobotAngle(), translation, strafe, rotation, robotcentric ).repeatedly() ) def autoDynamicShot(self) -> Command: return DeferredCommand( lambda: ParallelDeadlineGroup( WaitUntilCommand(lambda: self.m_robotState.isReadyDynamic(lambda: self.dynamicShot.getInterpolatedArmAngle())) .withTimeout(1.0) .andThen(self.s_Indexer.indexerShoot()), self.s_Arm.servoArmToTargetDynamic( lambda: self.dynamicShot.getInterpolatedArmAngle() ), InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(Constants.NextShot.DYNAMIC)), self.s_Shooter.shootVelocityWithSupplier( lambda: 35.0 ), TurnInPlace( self.s_Swerve, lambda: self.dynamicShot.getRobotAngle(), lambda: 0.0, lambda: 0.0, lambda: 0.0, lambda: False ) ).andThen(self.s_Arm.seekArmZero().withTimeout(0.5)) ) def autoShootWhenReady(self) -> Command: return DeferredCommand( lambda: ConditionalCommand( SequentialCommandGroup( self.s_Indexer.indexerShoot(), self.s_Indexer.instantStop(), ), InstantCommand(), lambda: self.s_Indexer.getBeamBreakState() ) ) def bringArmDown(self) -> Command: return DeferredCommand(lambda: self.s_Arm.seekArmZero().withTimeout(0.5)) def bringArmUp(self) -> Command: return DeferredCommand( lambda: ParallelDeadlineGroup( WaitUntilCommand(lambda: abs(self.s_Swerve.getTranslationVelocity().norm() - 0.0) < 0.1), ConditionalCommand( self.s_Arm.servoArmToTargetDynamic(lambda: self.dynamicShot.getInterpolatedArmAngle()), self.s_Arm.seekArmZero(), lambda: self.s_Indexer.getBeamBreakState() ) ) ) def autoExecuteShot(self, autoShot: Constants.NextShot) -> Command: return ParallelCommandGroup( InstantCommand( lambda: self.s_Shooter.setShooterVelocity( autoShot.m_shooterVelocity ), self.s_Shooter, ), self.s_Arm.servoArmToTargetGravity(autoShot.m_armAngle) ) """ * Use this method to define your button->command mappings. Buttons can be created by * instantiating a {@link GenericHID} or one of its subclasses ({@link * edu.wpi.first.wpilibj.Joystick} or {@link XboxController}), and then passing it to a {@link * edu.wpi.first.wpilibj2.command.button.JoystickButton}. """ def configureButtonBindings(self): translation = lambda: -applyDeadband(self.driver.getRawAxis(self.translationAxis), 0.1) strafe = lambda: -applyDeadband(self.driver.getRawAxis(self.strafeAxis), 0.1) rotation = lambda: applyDeadband(self.driver.getRawAxis(self.rotationAxis), 0.1) robotcentric = lambda: applyDeadband(self.robotCentric_value, 0.1) slow = lambda: applyDeadband(self.driver.getRawAxis(self.slowAxis), 0.1) # slow = lambda: 0.0 self.s_Swerve.setDefaultCommand( TeleopSwerve( self.s_Swerve, translation, strafe, rotation, robotcentric, slow ) ) # Arm Buttons self.s_Arm.setDefaultCommand(self.s_Arm.holdPosition()) # Driver Buttons self.zeroGyro.onTrue(InstantCommand(lambda: self.s_Swerve.zeroHeading())) self.robotCentric.onTrue(InstantCommand(lambda: self.toggleFieldOriented())) # Intake Buttons self.s_Indexer.setDefaultCommand(self.s_Indexer.stopIndexer()) self.s_Intake.setDefaultCommand(self.s_Intake.stopIntake()) self.intake.whileTrue(self.s_Intake.intake().alongWith(self.s_Indexer.indexerIntake()).until(self.s_Indexer.getBeamBreakState).andThen(self.s_Indexer.instantStop()).andThen(self.s_Indexer.indexerIntake().withTimeout(0.0005))) self.systemReverse.whileTrue(self.s_Intake.outtake().alongWith(self.s_Indexer.indexerOuttake(), self.s_Shooter.shootReverse())) self.beamBreakTrigger = Trigger(self.s_Indexer.getBeamBreakState) self.intakeBeamBreakTrigger = Trigger(self.s_Intake.getIntakeBeamBreakState) self.beamBreakTrigger.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setHasNote(True))).onFalse(InstantCommand(lambda: self.m_robotState.m_gameState.setHasNote(False))) self.intakeBeamBreakTrigger.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNoteInIntake(True)).alongWith(self.rumbleAll())).onFalse(InstantCommand(lambda: self.m_robotState.m_gameState.setNoteInIntake(False))) # Que Buttons self.queSubFront.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_CENTER )).andThen(self.s_Arm.seekArmZero())) self.quePodium.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.PODIUM )).andThen(self.s_Arm.seekArmZero())) self.queSubRight.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_AMP )).andThen(self.s_Arm.seekArmZero())) self.queSubLeft.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_SOURCE )).andThen(self.s_Arm.seekArmZero())) self.queAmp.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.AMP )).andThen(self.s_Arm.seekArmZero())) self.queDynamic.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.DYNAMIC )).andThen(self.s_Arm.seekArmZero())) self.execute.or_(self.opExec.getAsBoolean).onTrue( ConditionalCommand( self.getDynamicShotCommand(translation, strafe, rotation, robotcentric), self.s_Arm.servoArmToTargetWithSupplier( lambda: self.m_robotState.m_gameState.getNextShot() ).alongWith( self.s_Shooter.shootVelocityWithSupplier( lambda: self.m_robotState.m_gameState.getNextShot().m_shooterVelocity ), TurnInPlace( self.s_Swerve, lambda: Rotation2d.fromDegrees( self.m_robotState.m_gameState.getNextShotRobotAngle() ), translation, strafe, rotation, robotcentric ).repeatedly() ), lambda: self.m_robotState.m_gameState.getNextShot() == Constants.NextShot.DYNAMIC ) ) self.fastTurn.whileTrue(InstantCommand(lambda: self.setFastTurn(True))).whileFalse(InstantCommand(lambda: self.setFastTurn(False))) # LED Controls self.s_LED.setDefaultCommand(self.s_LED.getStateCommand()) # Climber Buttons self.s_Climber.setDefaultCommand(self.s_Climber.stopClimbers()) self.climbUp.whileTrue(self.s_Climber.runClimbersUp()) self.climbDown.whileTrue(self.s_Climber.runClimbersDown()) # Shooter Buttons self.s_Shooter.setDefaultCommand(self.s_Shooter.stop()) self.shoot.or_(self.opShoot.getAsBoolean).whileTrue(cmd.parallel(self.s_Indexer.indexerTeleopShot(), self.s_Intake.intake(), self.s_Shooter.shootVelocityWithSupplier(lambda: self.m_robotState.m_gameState.getNextShot().m_shooterVelocity))) self.autoHome.onTrue(self.s_Arm.seekArmZero()) self.emergencyArmUp.onTrue( ConditionalCommand( self.s_Arm.seekArmZero(), self.s_Arm.servoArmToTargetGravity(90.0), lambda: self.s_Arm.getDegrees() > 45.0 ) ) # self.emergencyArmUp.whileTrue( # self.s_Shooter.shootVelocityWithSupplier(lambda: 35.0) # ) def toggleFieldOriented(self): self.robotCentric_value = not self.robotCentric_value def getFieldOriented(self): return not self.robotCentric_value def getQueuedShot(self): return self.m_robotState.m_gameState.getNextShot().name def rumbleAll(self): return ParallelCommandGroup( self.rumbleDriver(), self.rumbleOperator() ) def rumbleDriver(self): return InstantCommand( lambda: self.driver.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 1.0) ).andThen(WaitCommand(0.5)).andThen(InstantCommand(lambda: self.driver.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 0.0))).withName("Rumble") def rumbleOperator(self): return InstantCommand( lambda: self.operator.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 1.0) ).andThen(WaitCommand(0.5)).andThen(InstantCommand(lambda: self.operator.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 0.0))).withName("Rumble") """ * Use this to pass the autonomous command to the main {@link Robot} class. * * @return the command to run in autonomous """ def getAutonomousCommand(self) -> Command: auto = self.auton_selector.getSelected() return auto def setFastTurn(self, value: bool): if value: Constants.Swerve.maxAngularVelocity = 2.5 * math.pi * 2.0 else: Constants.Swerve.maxAngularVelocity = 2.5 * math.pi
22,363
Python
48.919643
297
0.672495
RoboEagles4828/rift2024/rio/srcrobot/robotState.py
import math from gameState import GameState class RobotState: """ The single robot can evaluate if the robot subsystems are ready to execute a game task. """ kRobotHeadingTolerance = 2.0 kArmAngleTolerance = 1.0 kShooterVelocityTolerance = 3.0 m_gameState = GameState() def __new__(cls): """ To initialize the singleton RobotState, call this from RobotContainer soon after creating subsystems and then immediately call initialize() the returned instance. Other clients of the singleton only call this constructor. """ if not hasattr(cls, "instance"): cls.instance = super(RobotState, cls).__new__(cls) return cls.instance def initialize( self, robotHeadingSupplier, armAngleSupplier, shooterVelocitySupplier ): """ Only called from RobotContainer after the constructor to complete initialization of the singleton. :param robotHeadingSupplier: a supplier of the robots current heading. :param armAngleSupplier: a supplier of the current arm angle. :param shooterVelocitySupplier: a supplier of the current shooter velocity. """ self.m_robotHeadingSupplier = robotHeadingSupplier self.m_armAngleSupplier = armAngleSupplier self.m_shooterVelocitySupplier = shooterVelocitySupplier def isclose(self, a, b, tolerance) -> bool: return abs(a - b) < tolerance def isShooterReady(self) -> bool: """ Return true if the current arm angle and shooter velocity are both within tolerance for the needs of the next desired shot. """ shot = self.m_gameState.getNextShot() return self.isclose( shot.m_shooterVelocity, self.m_shooterVelocitySupplier(), self.kShooterVelocityTolerance, ) def isArmReady(self) -> bool: shot = self.m_gameState.getNextShot() return self.isclose( shot.m_armAngle, self.m_armAngleSupplier(), self.kArmAngleTolerance ) def isArmAndShooterReady(self) -> bool: return self.isShooterReady() and self.isArmReady() def isRobotReady(self) -> bool: """ Return true if isShooterReady and the robot is turned correctly for the next shot. """ return self.isArmAndShooterReady() and self.isclose( self.m_gameState.getNextShotRobotAngle(), self.m_robotHeadingSupplier(), self.kRobotHeadingTolerance, ) def isReadyToIntake(self) -> bool: """ On our robot, the intake is physically dependent on the arm position for intaking to work. :return: True if we do not have a note and the arm is in the proper intaking position. """ return (not self.m_gameState.hasNote()) and self.isclose( 0.0, self.m_armAngleSupplier(), self.kArmAngleTolerance ) def isReadyDynamic(self, degreesSup) -> bool: arm = self.isclose( degreesSup(), self.m_armAngleSupplier(), self.kArmAngleTolerance ) shooter = self.isclose( 35.0, self.m_shooterVelocitySupplier(), self.kShooterVelocityTolerance ) return arm and shooter
3,387
Python
30.962264
90
0.625627
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Swerve.py
from SwerveModule import SwerveModule from constants import Constants from subsystems.Vision import Vision from wpimath.kinematics import ChassisSpeeds from wpimath.kinematics import SwerveDrive4Kinematics from wpimath.kinematics import SwerveDrive4Odometry from wpimath.estimator import SwerveDrive4PoseEstimator from wpimath.kinematics import SwerveModulePosition from navx import AHRS from wpimath.geometry import Pose2d from wpimath.geometry import Rotation2d from wpimath.geometry import Translation2d, Transform2d from wpimath.kinematics import SwerveModuleState from wpilib.shuffleboard import Shuffleboard, BuiltInWidgets from commands2.subsystem import Subsystem from wpilib.sysid import SysIdRoutineLog from wpimath.units import volts from pathplannerlib.auto import AutoBuilder, PathConstraints from wpilib import DriverStation, RobotBase, Field2d from wpiutil import Sendable, SendableBuilder from sim.SwerveIMUSim import SwerveIMUSim from sim.SwerveModuleSim import SwerveModuleSim class Swerve(Subsystem): def __init__(self): if RobotBase.isSimulation(): self.gyro = SwerveIMUSim() else: self.gyro = AHRS.create_spi() self.gyro.calibrate() self.gyro.zeroYaw() self.mSwerveMods = [ SwerveModule(0, Constants.Swerve.Mod0.constants), SwerveModule(1, Constants.Swerve.Mod1.constants), SwerveModule(2, Constants.Swerve.Mod2.constants), SwerveModule(3, Constants.Swerve.Mod3.constants) ] # self.swerveOdometry = SwerveDrive4Odometry(Constants.Swerve.swerveKinematics, self.getGyroYaw(), self.getModulePositions()) self.swerveOdometry = SwerveDrive4PoseEstimator(Constants.Swerve.swerveKinematics, self.getGyroYaw(), self.getModulePositions(), Pose2d(0, 0, Rotation2d())) self.vision : Vision = Vision.getInstance() self.field = Field2d() AutoBuilder.configureHolonomic( self.getPose, self.setPose, self.getRobotRelativeSpeeds, self.driveRobotRelative, Constants.Swerve.holonomicPathConfig, self.shouldFlipPath, self ) Shuffleboard.getTab("Field").add(self.field) self.alliance = Shuffleboard.getTab("Teleoperated").add("MANUAL ALLIANCE FLIP", False).getEntry() def drive(self, translation: Translation2d, rotation, fieldRelative, isOpenLoop): discreteSpeeds = ChassisSpeeds.discretize(translation.X(), translation.Y(), rotation, 0.02) swerveModuleStates = Constants.Swerve.swerveKinematics.toSwerveModuleStates( ChassisSpeeds.fromFieldRelativeSpeeds( discreteSpeeds.vx, discreteSpeeds.vy, discreteSpeeds.omega, self.getHeading() ) ) if fieldRelative else Constants.Swerve.swerveKinematics.toSwerveModuleStates( ChassisSpeeds(translation.X(), translation.Y(), rotation) ) SwerveDrive4Kinematics.desaturateWheelSpeeds(swerveModuleStates, Constants.Swerve.maxSpeed) self.mSwerveMods[0].setDesiredState(swerveModuleStates[0], isOpenLoop) self.mSwerveMods[1].setDesiredState(swerveModuleStates[1], isOpenLoop) self.mSwerveMods[2].setDesiredState(swerveModuleStates[2], isOpenLoop) self.mSwerveMods[3].setDesiredState(swerveModuleStates[3], isOpenLoop) def driveRobotRelative(self, speeds: ChassisSpeeds): self.drive(Translation2d(speeds.vx, speeds.vy), -speeds.omega, False, False) def shouldFlipPath(self): return DriverStation.getAlliance() == DriverStation.Alliance.kRed def setModuleStates(self, desiredStates): SwerveDrive4Kinematics.desaturateWheelSpeeds(desiredStates, Constants.Swerve.maxSpeed) self.mSwerveMods[0].setDesiredState(desiredStates[0], False) self.mSwerveMods[1].setDesiredState(desiredStates[1], False) self.mSwerveMods[2].setDesiredState(desiredStates[2], False) self.mSwerveMods[3].setDesiredState(desiredStates[3], False) def getModuleStates(self): states = list() states.append(self.mSwerveMods[0].getState()) states.append(self.mSwerveMods[1].getState()) states.append(self.mSwerveMods[2].getState()) states.append(self.mSwerveMods[3].getState()) return states def getModulePositions(self): positions = list() positions.append(self.mSwerveMods[0].getPosition()) positions.append(self.mSwerveMods[1].getPosition()) positions.append(self.mSwerveMods[2].getPosition()) positions.append(self.mSwerveMods[3].getPosition()) return positions def getTranslationVelocity(self) -> Translation2d: speed = self.getRobotRelativeSpeeds() return Translation2d(speed.vx, speed.vy) def getModules(self): return self.mSwerveMods def getPose(self): return self.swerveOdometry.getEstimatedPosition() def setPose(self, pose): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), pose) def getHeading(self): return self.getPose().rotation() def setHeading(self, heading: Rotation2d): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), Pose2d(self.getPose().translation(), heading)) def zeroHeading(self): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), Pose2d(self.getPose().translation(), Rotation2d())) def zeroYaw(self): self.gyro.zeroYaw() def getGyroYaw(self): return Rotation2d.fromDegrees(self.gyro.getYaw()).__mul__(-1) def resetModulesToAbsolute(self): self.mSwerveMods[0].resetToAbsolute() self.mSwerveMods[1].resetToAbsolute() self.mSwerveMods[2].resetToAbsolute() self.mSwerveMods[3].resetToAbsolute() def resetModuleZero(self): self.mSwerveMods[0].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[1].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[2].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[3].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) def getRobotRelativeSpeeds(self): return Constants.Swerve.swerveKinematics.toChassisSpeeds(tuple(self.getModuleStates())) def driveMotorsVoltage(self, volts): self.mSwerveMods[0].driveMotorVoltage(volts) self.mSwerveMods[1].driveMotorVoltage(volts) self.mSwerveMods[2].driveMotorVoltage(volts) self.mSwerveMods[3].driveMotorVoltage(volts) def logDriveMotors(self, routineLog: SysIdRoutineLog): for mod in self.mSwerveMods: moduleName = "Module " + str(mod.moduleNumber) routineLog.motor(moduleName)\ .voltage(mod.mDriveMotor.get_motor_voltage().value_as_double)\ .position(mod.getPosition().distance)\ .velocity(mod.getState().speed) def pathFindToPose(self, pose: Pose2d, constraints: PathConstraints, goalEndVel: float): return AutoBuilder.pathfindToPose(pose, constraints) def getSwerveModulePoses(self, robot_pose: Pose2d): poses = [] locations: list[Translation2d] = [ Constants.Swerve.frontLeftLocation, Constants.Swerve.frontRightLocation, Constants.Swerve.backLeftLocation, Constants.Swerve.backRightLocation ] for idx, module in enumerate(self.mSwerveMods): loc = locations[idx] poses.append( robot_pose + Transform2d(loc, module.getState().angle) ) return poses def stop(self): self.drive(Translation2d(), 0, False, True) def periodic(self): if RobotBase.isSimulation(): modulePoses = self.getSwerveModulePoses(self.getPose()) self.gyro.updateOdometry(Constants.Swerve.swerveKinematics, self.getModuleStates(), modulePoses, self.field) self.field.getRobotObject().setPose(self.getPose()) self.swerveOdometry.update(self.getGyroYaw(), tuple(self.getModulePositions())) optestimatedPose = self.vision.getEstimatedGlobalPose() if optestimatedPose is not None: estimatedPose = optestimatedPose heading = estimatedPose.estimatedPose.toPose2d().rotation() self.swerveOdometry.addVisionMeasurement(Pose2d(estimatedPose.estimatedPose.toPose2d().X(), estimatedPose.estimatedPose.toPose2d().Y(), self.getHeading()), estimatedPose.timestampSeconds)
8,794
Python
40.880952
199
0.699113
RoboEagles4828/rift2024/rio/srcrobot/subsystems/indexer.py
from constants import Constants from commands2.subsystem import Subsystem from commands2.cmd import waitSeconds from phoenix5 import TalonSRX, TalonSRXConfiguration, TalonSRXControlMode, TalonSRXFeedbackDevice, NeutralMode, SupplyCurrentLimitConfiguration from wpilib import DigitalInput from commands2 import InstantCommand from wpimath.filter import Debouncer import math class Indexer(Subsystem): def __init__(self): self.indexerMotor = TalonSRX(Constants.IndexerConstants.kIndexerMotorID) self.indexerMotor.configFactoryDefault() self.beamBreak = DigitalInput(Constants.IndexerConstants.kBeamBreakerID) self.indexerMotor.setInverted(True) self.indexerMotor.config_kP(0, 2.0) self.indexerMotor.setNeutralMode(NeutralMode.Brake) current_limit = 40 current_threshold = 60 current_threshold_time = 3.0 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.indexerMotor.configSupplyCurrentLimit(supply_configs) self.indexerDiameter = 0.031 self.indexerEncoderCPR = 2048.0 self.indexerIntakeVelocity = -(Constants.IndexerConstants.kIndexerIntakeSpeedMS/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR self.indexerShootVelocity = -(Constants.IndexerConstants.kIndexerMaxSpeedMS/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR self.debouncer = Debouncer(0.05, Debouncer.DebounceType.kBoth) def getBeamBreakState(self): return not bool(self.beamBreak.get()) def indexerIntake(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerIntakeVelocity)).withName("Intake") def indexerIntakeOnce(self): return self.runOnce(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerIntakeVelocity)) def indexerShoot(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerShootVelocity)).until(lambda: not self.getBeamBreakState()).withTimeout(3.0).andThen(waitSeconds(0.3)).finallyDo(lambda interrupted: self.stopMotor()).withName("Shoot") def indexerTeleopShot(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerShootVelocity)) def indexerOuttake(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, -self.indexerIntakeVelocity)).withName("Outtake") def setIndexerVelocity(self, velocity): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, -(velocity/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR)).withName("SetIndexerVelocity") def levelIndexer(self): return self.indexerIntake().withTimeout(0.005)\ .andThen(self.stopIndexer()).withName("LevelIndexer") # .andThen(self.indexerOuttake().withTimeout(0.1))\ # .andThen(self.indexerIntake().until(self.getBeamBreakState))\ # .andThen(self.indexerOuttake().withTimeout(0.1))\ def stopMotor(self): self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0) def instantStop(self): return InstantCommand(lambda: self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("InstantStop") def stopIndexer(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("StopIndexer")
3,497
Python
48.267605
264
0.750071
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Climber.py
from commands2.subsystem import Subsystem from commands2.cmd import waitSeconds, waitUntil import wpimath.filter import wpimath import wpilib import phoenix6 from wpimath.geometry import Rotation2d, Pose3d, Pose2d, Rotation3d from phoenix6.hardware.talon_fx import TalonFX from phoenix6.controls import VelocityVoltage, VoltageOut, StrictFollower, DutyCycleOut, PositionVoltage from phoenix6.signals import InvertedValue, NeutralModeValue from lib.mathlib.conversions import Conversions import math from constants import Constants from phoenix6.configs.talon_fx_configs import TalonFXConfiguration from copy import deepcopy from commands2 import InstantCommand class Climber(Subsystem): def __init__(self): self.kLeftClimberCANID = 4 self.kRightClimberCANID = 15 self.leftClimber = TalonFX(self.kLeftClimberCANID) self.rightClimber = TalonFX(self.kRightClimberCANID) self.gearRatio = 1.0/14.2 self.wheelCircumference = 0.01905*math.pi self.leftClimberConfig = TalonFXConfiguration() self.rightClimberConfig = TalonFXConfiguration() self.leftClimberConfig.slot0.k_p = 10.0 self.leftClimberConfig.slot0.k_i = 0.0 self.leftClimberConfig.slot0.k_d = 0.0 self.leftClimberConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE self.leftClimberConfig.current_limits.supply_current_limit_enable = True self.leftClimberConfig.current_limits.supply_current_limit = 40 self.leftClimberConfig.current_limits.supply_current_threshold = 40 self.leftClimberConfig.current_limits.stator_current_limit_enable = True self.leftClimberConfig.current_limits.stator_current_limit = 40 self.rightClimberConfig = deepcopy(self.leftClimberConfig) self.rightClimberConfig.motor_output.inverted = InvertedValue.COUNTER_CLOCKWISE_POSITIVE self.leftClimberConfig.motor_output.inverted = InvertedValue.COUNTER_CLOCKWISE_POSITIVE self.rightClimberConfig.software_limit_switch.reverse_soft_limit_enable = True self.rightClimberConfig.software_limit_switch.reverse_soft_limit_threshold = -97 # TODO: Change this value self.rightClimberConfig.software_limit_switch.forward_soft_limit_enable = True self.rightClimberConfig.software_limit_switch.forward_soft_limit_threshold = 0.0 self.leftClimberConfig.software_limit_switch.reverse_soft_limit_enable = True self.leftClimberConfig.software_limit_switch.reverse_soft_limit_threshold = -97 # TODO: leftClimberConfig self.leftClimberConfig.software_limit_switch.forward_soft_limit_enable = True self.leftClimberConfig.software_limit_switch.forward_soft_limit_threshold = 0.0 self.leftClimber.configurator.apply(self.leftClimberConfig) self.rightClimber.configurator.apply(self.rightClimberConfig) self.dutyCycleControl = DutyCycleOut(0).with_enable_foc(True) self.velocityControl = VelocityVoltage(0).with_enable_foc(True) self.VoltageControl = VoltageOut(0).with_enable_foc(True) self.leftClimbervelocitySupplier = self.leftClimber.get_velocity().as_supplier() self.rightClimbervelocitySupplier = self.rightClimber.get_velocity().as_supplier() self.ZeroingVelocityTolerance = 100.0 # Conversions.MPSToRPS(circumference=self.wheelCircumference, wheelMPS=velocity)*self.gearRatio) def setClimbers(self, percentOutput): self.leftClimber.set_control(self.dutyCycleControl.with_output(percentOutput)) self.rightClimber.set_control(self.dutyCycleControl.with_output(percentOutput)) # print(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio) def setClimbersLambda(self, climberAxis): return self.run(lambda: self.setClimbers(climberAxis())).withName("Manual Climbers") def runClimbersUp(self): return self.run(lambda: self.setClimbers(-Constants.ClimberConstants.kClimberSpeed)).withName("Climbers Up") # .andThen( # self.detectStallAtHardStopLeft().alongWith(self.detectStallAtHardStopRight()) # )\ # .finallyDo(self.stopClimbers()).withName("Climbers Up") def stopClimbers(self): return self.run(lambda: self.setClimbers(0.0)).withName("Stop Climbers") def runClimbersDown(self): return self.run(lambda: self.setClimbers(Constants.ClimberConstants.kClimberSpeed)).withName("Climbers Down") def isNear(self, a, b, tolerance): # if abs(a - b) < tolerance: # return True return abs(a - b) < tolerance def detectStallAtHardStopLeft(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.leftClimber.get_velocity().value_as_double, self.ZeroingVelocityTolerance) ) ).finallyDo(lambda: self.leftClimber.set_control(self.VoltageControl.with_output(0.0))) def detectStallAtHardStopRight(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.rightClimber.get_velocity(), self.ZeroingVelocityTolerance) ) ).finallyDo(lambda: self.rightClimber.set_control(self.VoltageControl.with_output(0.0)))
5,557
Python
46.504273
117
0.725391
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Vision.py
from commands2 import Subsystem from photonlibpy.photonCamera import PhotonCamera, VisionLEDMode, Packet from photonlibpy.photonPoseEstimator import PhotonPoseEstimator, PoseStrategy from photonlibpy.photonPipelineResult import PhotonPipelineResult from lib.util.PhotonUtils import PhotonUtils from robotpy_apriltag import AprilTagFieldLayout, AprilTagField, loadAprilTagLayoutField from wpimath.geometry import Pose2d, Transform2d, Transform3d, Pose3d, Rotation2d, Rotation3d, Translation2d, Translation3d import wpimath.units as Units from constants import Constants from wpilib import SmartDashboard, DriverStation from typing import Callable import math class Vision(Subsystem): instance = None def __init__(self): try: self.camera : PhotonCamera | None = PhotonCamera("camera1") except: self.camera : PhotonCamera | None = None print("========= NO PHOTON CAMERA FOUND =========") self.aprilTagFieldLayout = loadAprilTagLayoutField(AprilTagField.k2024Crescendo) self.speakerPositionBlue = Pose2d(Units.inchesToMeters(-1.50), Units.inchesToMeters(218.42), Rotation2d()) self.speakerPositionRed = Pose2d(Units.inchesToMeters(652.73), Units.inchesToMeters(218.42), Rotation2d.fromDegrees(180.0)) self.distanceSpeakerFieldToCamera = 0.0 # Right = 6.5 in # Up = 11.5 in # Froward = (frame / 2.0) - 1.25 in self.robotToCamera = Transform3d( Translation3d(-Units.inchesToMeters((31.125 / 2.0) - 1.25), -Units.inchesToMeters(6.5), Units.inchesToMeters(11.5)), Rotation3d.fromDegrees(0.0, -45.0, 180.0) ) self.fieldToCamera = Transform3d() if self.camera is not None: try: self.photonPoseEstimator = PhotonPoseEstimator( self.aprilTagFieldLayout, PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, self.camera, self.robotToCamera ) self.photonPoseEstimator.multiTagFallbackStrategy = PoseStrategy.LOWEST_AMBIGUITY except: self.photonPoseEstimator = None print("===== PHOTON PROBLEM (POSE ESTIMATOR) =======") self.CAMERA_HEIGHT_METERS = Units.inchesToMeters(11.5) self.SPEAKER_HEIGHT_METERS = 1.45 # meters self.CAMERA_PITCH_RADIANS = Rotation2d.fromDegrees(-45.0) self.instance : Vision = None @classmethod def getInstance(cls): if cls.instance == None: cls.instance = Vision() return cls.instance def getEstimatedGlobalPose(self): if self.camera is None or self.photonPoseEstimator is None: return None return self.photonPoseEstimator.update() def getDistanceToSpeakerFieldToCameraFeet(self, fieldToCamera: Pose2d): pose = fieldToCamera speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue distanceToSpeakerFieldToCamera = Units.metersToFeet( PhotonUtils.getDistanceToPose(pose, speakerPos) ) return distanceToSpeakerFieldToCamera - (36.37 / 12.0) def getDistanceVectorToSpeaker(self, pose: Pose2d): speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue distanceVector = PhotonUtils.getDistanceVectorToPose(pose, speakerPos) return distanceVector def getAngleToSpeakerFieldToCamera(self, fieldToCamera: Pose2d): pose = fieldToCamera speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue dx = speakerPos.X() - pose.X() dy = speakerPos.Y() - pose.Y() angleToSpeakerFieldToCamera = Rotation2d(math.atan2(dy, dx)) return angleToSpeakerFieldToCamera def getCamera(self): return self.camera def hasTargetBooleanSupplier(self): return lambda: self.camera.getLatestResult().hasTargets() def takeSnapshot(self): self.camera.takeInputSnapshot() def setPipeline(self, pipelineIdx): self.camera.setPipelineIndex(pipelineIdx) def setTagMode(self): self.setPipeline(0) def getBestTarget(self, result : PhotonPipelineResult): targets = result.getTargets() # sort targets by area largest to smallest targets.sort(key=lambda target: target.area, reverse=True) if len(targets) <= 0: return None return targets[0] def isTargetSeen(self, tagID) -> bool: if self.camera is None: return False result = self.camera.getLatestResult() if result.hasTargets() == False: return False best_target = self.getBestTarget(result) return best_target.getFiducialId() == tagID def isTargetSeenLambda(self, tagIDSupplier: Callable[[], int]) -> bool: if self.camera is None: return False result = self.camera.getLatestResult() if result.hasTargets() == False: return False best_target = self.getBestTarget(result) return best_target.getFiducialId() == tagIDSupplier() def getSortedTargetsList(self, result: PhotonPipelineResult): targets = result.getTargets() targets.sort(key=lambda target: target.area, reverse=True) return targets def getAngleToTag(self, tagIDSupplier: Callable[[], int]): if self.camera is None: return 0.0 if self.isTargetSeenLambda(tagIDSupplier): result = self.camera.getLatestResult() best_target = self.getBestTarget(result) if best_target is not None: return best_target.getYaw() else: return 0.0 else: return 0.0 # def periodic(self): # # if self.camera is not None: # result = self.camera.getLatestResult() # if result.multiTagResult.estimatedPose.isPresent: # self.fieldToCamera = result.multiTagResult.estimatedPose.best # hasTargets = result.hasTargets() # if hasTargets: # # get the best tag based on largest areaprint(f"================ {Units.inchesToMeters(self.s_Vision.getDistanceToSpeakerFieldToCameraInches(Transform3d(0.0, 0.0, 0.0, Rotation3d())))}") # bestTarget = self.getBestTarget(result) # if bestTarget is not None: # SmartDashboard.putNumber("tag ID", bestTarget.getFiducialId()) # SmartDashboard.putNumber("pose ambiguity", bestTarget.getPoseAmbiguity()) # SmartDashboard.putNumber("tag transform X", bestTarget.getBestCameraToTarget().X()) # SmartDashboard.putNumber("tag transform Y", bestTarget.getBestCameraToTarget().Y()) # SmartDashboard.putNumber("tag transform Z", bestTarget.getBestCameraToTarget().Z()) # SmartDashboard.putNumber("tag transform angle", bestTarget.getBestCameraToTarget().rotation().angle_degrees) # SmartDashboard.putNumber("tag yaw", bestTarget.getYaw())() # SmartDashboard.putNumber("Vision Pose X", self.getEstimatedGlobalPose().estimatedPose.X()) # SmartDashboard.putNumber("Vision Pose Y", self.getEstimatedGlobalPose().estimatedPose.Y()) # SmartDashboard.putNumber("Vision Pose Angle", self.getEstimatedGlobalPose().estimatedPose.rotation().angle_degrees)
8,021
Python
35.967742
204
0.644184
RoboEagles4828/rift2024/rio/srcrobot/subsystems/intake.py
from constants import Constants from commands2.subsystem import Subsystem from phoenix5 import TalonSRX, TalonSRXConfiguration, TalonSRXControlMode, SupplyCurrentLimitConfiguration from commands2 import InstantCommand from wpilib import DigitalInput from wpimath.filter import Debouncer import math class Intake(Subsystem): def __init__(self): self.intakeMotor = TalonSRX(Constants.IntakeConstants.kIntakeMotorID) self.intakeMotor.configFactoryDefault() current_limit = 40 current_threshold = 60 current_threshold_time = 3.0 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.intakeMotor.configSupplyCurrentLimit(supply_configs) self.intakeSpeed = 1.0 self.intakeBeam = DigitalInput(1) # self.intakeMotor.configContinuousCurrentLimit(30) # self.intakeMotor.enableCurrentLimit(True) self.debouncer = Debouncer(0.05, Debouncer.DebounceType.kBoth) def getIntakeBeamBreakState(self): return not bool(self.intakeBeam.get()) def intake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, self.intakeSpeed)).withName("Intake") def intakeOnce(self): return self.runOnce(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, self.intakeSpeed)).withName("IntakeOnce") def outtake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, -self.intakeSpeed)).withName("Outtake") def instantStop(self): return InstantCommand(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("InstantStop") def stopIntake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("StopIntake")
1,875
Python
39.782608
133
0.746133
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Shooter.py
from commands2.subsystem import Subsystem import wpimath.filter import wpimath import wpilib import phoenix6 from wpimath.geometry import Rotation2d, Pose3d, Pose2d, Rotation3d from phoenix6.hardware.talon_fx import TalonFX from phoenix6.controls import VelocityVoltage, VoltageOut, StrictFollower, DutyCycleOut from phoenix6.signals import InvertedValue, NeutralModeValue from lib.mathlib.conversions import Conversions import math from constants import Constants from phoenix6.configs.talon_fx_configs import TalonFXConfiguration from copy import deepcopy from commands2 import InstantCommand, Command class Shooter(Subsystem): def __init__(self): self.kBottomShooterCANID = 6 self.kTopShooterCANID = 13 self.bottomShooter = TalonFX(self.kBottomShooterCANID) self.topShooter = TalonFX(self.kTopShooterCANID) self.gearRatio = 1.0 self.wheelCircumference = 0.101*math.pi self.topShooterConfig = TalonFXConfiguration() self.topShooterConfig.slot0.k_v = (1/(Conversions.MPSToRPS(Constants.ShooterConstants.kPodiumShootSpeed, self.wheelCircumference)*self.gearRatio)) self.topShooterConfig.slot0.k_p = 1.5 self.topShooterConfig.slot0.k_i = 0.0 self.topShooterConfig.slot0.k_d = 0.0 self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST self.topShooterConfig.current_limits.supply_current_limit_enable = True self.topShooterConfig.current_limits.supply_current_limit = 30 self.topShooterConfig.current_limits.supply_current_threshold = 50 self.topShooterConfig.current_limits.supply_time_threshold = Constants.Swerve.driveCurrentThresholdTime self.topShooterConfig.current_limits.stator_current_limit_enable = True self.topShooterConfig.current_limits.stator_current_limit = 50 self.bottomShooterConfig = deepcopy(self.topShooterConfig) self.topShooterConfig.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE self.bottomShooterConfig.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE self.topShooter.configurator.apply(self.topShooterConfig) self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.VelocityControl = VelocityVoltage(0).with_enable_foc(False) self.VoltageControl = VoltageOut(0).with_enable_foc(False) self.percentOutput = DutyCycleOut(0).with_enable_foc(False) self.currentShotVelocity = 0.0 self.topShooterVelocitySupplier = self.topShooter.get_velocity().as_supplier() self.bottomShooterVelocitySupplier = self.bottomShooter.get_velocity().as_supplier() def setShooterVelocity(self, velocity): self.topShooter.set_control(self.VelocityControl.with_velocity(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio)) self.bottomShooter.set_control(self.VelocityControl.with_velocity(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio)) self.currentShotVelocity = Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio def shootVelocity(self, velocity) -> Command: return self.run(lambda: self.setShooterVelocity(velocity)).withName("ShootVelocity") def shootVelocityWithSupplier(self, velSup): return self.run(lambda: self.setShooterVelocity(velSup())).withName("ShootVelocity") def neutralizeShooter(self): # self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST # self.bottomShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST # self.topShooter.configurator.apply(self.topShooterConfig) # self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.topShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(False)) self.bottomShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(False)) def idle(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kAmpShootSpeed)).withName("IdleShooter") def shoot(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kSubwooferShootSpeed)).withName("Shoot") def amp(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kAmpShootSpeed)).withName("Amp") def shootReverse(self): return self.run(lambda: self.setShooterVelocity(-Constants.ShooterConstants.kPodiumShootSpeed)).withName("ShootReverse") def isShooterReady(self, isAuto=False): if not isAuto: topShooterReady = abs(self.topShooterVelocitySupplier() - self.currentShotVelocity) < 5 bottomShooterReady = abs(self.bottomShooterVelocitySupplier() - self.currentShotVelocity) < 5 else: topShooterReady = abs(self.topShooterVelocitySupplier() - Conversions.MPSToRPS(Constants.ShooterConstants.kSubwooferShootSpeed, self.wheelCircumference)*self.gearRatio) < 5 bottomShooterReady = abs(self.bottomShooterVelocitySupplier() - self.currentShotVelocity) < 5 return topShooterReady and bottomShooterReady def isShooterAtSubwooferSpeed(self): if abs(self.topShooterVelocitySupplier() - Conversions.MPSToRPS(Constants.ShooterConstants.kSubwooferShootSpeed, self.wheelCircumference)*self.gearRatio) < 5: return True return False def brake(self): # self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE # self.topShooter.configurator.apply(self.topShooterConfig) self.topShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(True)) # self.bottomShooterConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE # self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.bottomShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(True)) def stop(self): return self.run(lambda: self.neutralizeShooter()).withName("StopShooter") def getTargetVelocity(self): return Conversions.RPSToMPS(self.currentShotVelocity, self.wheelCircumference)/self.gearRatio def getVelocity(self): return Conversions.RPSToMPS(self.topShooterVelocitySupplier(), self.wheelCircumference)/self.gearRatio
6,419
Python
49.952381
185
0.753856
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Arm.py
from commands2.subsystem import Subsystem # from commands2.subsystem import Command from commands2 import WaitCommand from commands2 import WaitUntilCommand from commands2 import cmd import wpimath.filter import wpimath import wpilib from wpilib.shuffleboard import Shuffleboard import phoenix5 from phoenix5 import TalonSRXControlMode, TalonSRXFeedbackDevice, SupplyCurrentLimitConfiguration, StatorCurrentLimitConfiguration import math class Arm(Subsystem): # # The motion magic parameters are configured in slot 0. Slot 1 is configured # for velocity control for zeroing. # def __init__(self): self.kArmMotorCANId = 5 self.kMeasuredTicksWhenHorizontal = 0 self.kEncoderTickPerEncoderRotation = 4096*2 self.kEncoderToArmGearRatio = 1.0 self.kEncoderTicksPerArmRotation = self.kEncoderTickPerEncoderRotation * self.kEncoderToArmGearRatio self.kEncoderTicksPerDegreeOfArmMotion = self.kEncoderTicksPerArmRotation / 360.0 self.kMotionMagicSlot = 0 self.kVelocitySlot = 1 self.MaxGravityFF = 0.26 #0.26 # In percent output [1.0:1.0] self.kF = 0.5 self.kPMotionMagic = 1.5 #4.0 self.kPVelocity = 1.0 #0.8 self.kIMotionMagic = 0.003 self.kIZoneMotionMagic = 3.0*self.kEncoderTicksPerDegreeOfArmMotion self.kDMotionMagic = 0.4 #0.4 self.kCruiseVelocity = 1000.0 # ticks per 100ms self.kMaxAccel = 1000.0 # Accel to cruise in 1 sec self.kServoToleranceDegrees = 0.5 # +/- 1.0 for 2.0 degree window # Velocity for safely zeroing arm encoder in native units (ticks) per 100ms self.kZeroEncoderVelocity = -self.kEncoderTicksPerDegreeOfArmMotion * 6.5 self.kZeroingWaitForMoveSec = 2.0 self.ZeroingVelocityTolerance = 2.0 self.armMotor = phoenix5.TalonSRX(self.kArmMotorCANId) # True when servo control active and false otherwise. self.isServoControl = False # The last requested servo target for target checking. self.lastServoTarget = 0.0 self.kRestingAtZero = False # Configure REV Through Bore Encoder as the arm's remote sensor self.armMotor.configSelectedFeedbackSensor(TalonSRXFeedbackDevice.QuadEncoder) self.armMotor.setSensorPhase(True) self.armMotor.setInverted(False) self.armMotor.config_kP(self.kMotionMagicSlot, self.kPMotionMagic) self.armMotor.config_kI(self.kMotionMagicSlot, self.kIMotionMagic) self.armMotor.config_IntegralZone(self.kMotionMagicSlot, self.kIZoneMotionMagic) self.armMotor.config_kD(self.kMotionMagicSlot, self.kDMotionMagic) self.armMotor.config_kF(self.kMotionMagicSlot, self.kF) self.armMotor.configAllowableClosedloopError(self.kMotionMagicSlot, self.kServoToleranceDegrees*self.kEncoderTicksPerDegreeOfArmMotion) self.armMotor.configMotionCruiseVelocity(self.kCruiseVelocity) self.armMotor.configMotionAcceleration(self.kMaxAccel) self.armMotor.config_kP(self.kVelocitySlot, self.kPVelocity) self.armMotor.config_kI(self.kVelocitySlot, 0.002) self.armMotor.config_kD(self.kVelocitySlot, 0.7) self.armMotor.config_kF(self.kVelocitySlot, self.kF) self.armMotor.config_IntegralZone(self.kVelocitySlot, self.kIZoneMotionMagic) self.armMotor.configAllowableClosedloopError(self.kVelocitySlot, self.kServoToleranceDegrees*self.kEncoderTicksPerDegreeOfArmMotion) current_limit = 20 current_threshold = 40 current_threshold_time = 0.1 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.armMotor.configSupplyCurrentLimit(supply_configs) Shuffleboard.getTab("Teleoperated").addDouble("Arm degrees", self.getDegrees) # SmartDashboard.putData("Arm", self) # # Creates a command to seek the arm's zero position. This command is designed # to always be used for returning to and settling at zero. It should be the # subsystem's default command. The encoder will be reset to 0. # # @return a command that will move the arm toward 0, and stop when stalled. # def seekArmZero(self): return self.runOnce(lambda: self.selectPIDSlot(self.kVelocitySlot))\ .andThen(self.servoArmToTarget(0.0).onlyIf(lambda: self.getDegrees() >= 15).withTimeout(2.5))\ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.Velocity, self.kZeroEncoderVelocity)))\ .raceWith(cmd.waitSeconds(self.kZeroingWaitForMoveSec) \ .andThen(self.detectStallAtHardStop())) \ .andThen(self.restingAtZero()) \ .withName("seekArmZero") # phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward()))) \ # .andThen(self.servoArmToTarget(0.5).onlyIf(lambda: self.getDegrees() >= 15))\ def isNear(self, a, b, tolerance): # if abs(a - b) < tolerance: # return True return abs(a - b) < tolerance # # Creates a command to detect stall at the hard stop during # {@link #seekArmZero()}. # # @return the hard stop detection command. # def detectStallAtHardStop(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return cmd.waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.armMotor.getSelectedSensorVelocity(self.kVelocitySlot), self.ZeroingVelocityTolerance) ) ) # # Should only be called as the last step of {@link #seekArmZero()}. The encoder # is reset to 0. # # @return a command to rest at the hard stop at 0 and on target. # def restingAtZero(self): return self.runOnce(lambda: self.setRestingAtZero(True)) \ .andThen(self.run(lambda: self.armMotor.set(phoenix5.ControlMode.Velocity,0.0)).withTimeout(1.0)) \ .andThen(lambda: self.hardSetEncoderToZero() ) \ .andThen(self.run(lambda: self.armMotor.set(phoenix5.ControlMode.Velocity,-0.1))) \ .finallyDo(lambda interrupted: self.setRestingAtZero(False)) def setRestingAtZero(self, restAtZero): self.kRestingAtZero = restAtZero def hardSetEncoderToZero(self): self.armMotor.setSelectedSensorPosition(0) def holdPosition(self): # return a command that will hold the arm in place return self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, self.armMotor.getSelectedSensorPosition(), phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward())) \ .withName("holdPosition") # # Creates a command to servo the arm to a desired angle. Note that 0 is # parallel to the ground. The entire operation is run with # {@link m_isServoControl} set to true to enable on target checking. See # {@link #isServoOnTarget(double)}. # # <p> # If the target is 0 or less, the command from {@link #seekArmZero()} is # returned. # # @param degrees the target degrees from 0. Must be positive. # @return a command that will servo the arm and will not end until interrupted # by another command. # def servoArmToTarget(self, degrees): targetSensorUnits = degrees * self.kEncoderTicksPerDegreeOfArmMotion return self.runOnce(lambda: self.initializeServoArmToTarget(degrees)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, targetSensorUnits))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degrees)) #phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward() def servoArmToTargetGravity(self, degrees): targetSensorUnits = degrees * self.kEncoderTicksPerDegreeOfArmMotion return self.runOnce(lambda: self.initializeServoArmToTarget(degrees)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, targetSensorUnits, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degrees)) #phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward() def servoArmToTargetWithSupplier(self, degreesSup): # if (degreesSup() <= 0.0): # return self.seekArmZero() return self.runOnce(lambda: self.initializeServoArmToTarget(degreesSup().m_armAngle)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, degreesSup().m_armAngle * self.kEncoderTicksPerDegreeOfArmMotion, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degreesSup().m_armAngle)) def servoArmToTargetDynamic(self, degreesSup): return self.runOnce(lambda: self.initializeServoArmToTarget(degreesSup())) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, degreesSup() * self.kEncoderTicksPerDegreeOfArmMotion, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degreesSup())) def initializeServoArmToTarget(self, degrees): self.lastServoTarget = degrees self.setServoControl(True) if degrees > 45.0: self.selectPIDSlot(self.kVelocitySlot) else: self.selectPIDSlot(self.kMotionMagicSlot) def setServoControl(self, servoControl): self.isServoControl = servoControl # # This method should rarely be used. It is for pure manual control (no encoder # usage) which should be avoided. # # @param percentOutput the commanded output [-1.0..1.0]. Positive is up. # @return a command that drives the arm via double supplier. # def moveArm(self, percentOutput): return self.run(lambda: self.armMotor.set(TalonSRXControlMode.PercentOutput, -percentOutput() * 0.4)) \ .withName("moveArm") # # Assuming a properly zeroed arm (0 degrees is parallel to the ground), return # the current angle adjusted gravity feed forward. # # @return the current angle adjusted gravity feed forward. # def calculateGravityFeedForward(self): degrees = self.getDegrees() radians = math.radians(degrees) cosineScalar = math.cos(radians) return self.MaxGravityFF * cosineScalar # # Assuming a properly zeroed arm (0 degrees is parallel to the ground), return # the current arm angle. # # @return the current arm angle in degrees from 0. # def getDegrees(self): currentPos = self.armMotor.getSelectedSensorPosition() return (currentPos - self.kMeasuredTicksWhenHorizontal) / self.kEncoderTicksPerDegreeOfArmMotion # # Returns true if the arm is under servo control and we are close to the last # requested target degrees. # # @return true if under servo control and close, false otherwise. # def isServoOnTarget(self): return self.kRestingAtZero \ or (self.isServoControl \ and self.isNear(self.lastServoTarget, self.getDegrees(), self.kServoToleranceDegrees)) # # Selects the specified slot for the next PID controlled arm movement. Always # selected for primary closed loop control. # # @param slot the PID slot # def selectPIDSlot(self, slot): self.armMotor.selectProfileSlot(slot, 0) def stop(self): return self.run(lambda: self.armMotor.set(TalonSRXControlMode.Velocity, 0.0)).withName("ArmStop") # # Updates the dashboard with critical arm data. # # def periodic(self) : # # TODO reduce this to essentials. # # wpilib.SmartDashboard.putNumber("Arm current", self.armMotor.getStatorCurrent()) # # wpilib.SmartDashboard.putBoolean("Arm on target", self.isServoOnTarget()) # # currentCommand = self.getCurrentCommand() # # wpilib.SmartDashboard.putString("Arm command", currentCommand.getName() if currentCommand is not None else "<null>") # # wpilib.SmartDashboard.putNumber("Arm zeroing velocity", self.armMotor.getSelectedSensorVelocity(self.kVelocitySlot)) # # wpilib.SmartDashboard.putBoolean("Arm resting", self.kRestingAtZero) # # wpilib.SmartDashboard.putBoolean("Servo control", self.isServoControl) # # wpilib.SmartDashboard.putBoolean("Arm is near", self.isNear(self.lastServoTarget, self.getDegrees(), self.kServoToleranceDegrees))
13,606
Python
42.472843
143
0.668529
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Led.py
from commands2 import Subsystem, Command, FunctionalCommand import wpilib from wpilib import PneumaticsControlModule, Solenoid from constants import Constants from gameState import GameState from robotState import RobotState from wpilib import PneumaticsControlModule, Solenoid from constants import Constants # This subsystem will continued to be developed as the season progresses class LED(Subsystem): gameState = GameState() robotState = RobotState() def __init__(self): self.kLedPort = 0 self.pcm = PneumaticsControlModule(self.kLedPort) self.pcm.disableCompressor() # only using for leds, so don't even use the compressor self.redChan = self.pcm.makeSolenoid(1) self.greenChan = self.pcm.makeSolenoid(0) self.blueChan = self.pcm.makeSolenoid(2) # self.redChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 1) # self.greenChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 0) # self.blueChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 2) self.BLACK = 0 self.OFF = 0 self.RED = 1 self.YELLOW = 2 self.GREEN = 3 self.TEAL = 4 self.BLUE = 5 self.PURPLE = 6 self.WHITE = 7 def set(self, color): # BLACK - 0, RED - 1, YELLOW - 2, GREEN - 3, TEAL - 4, BLUE - 5, PURPLE - 6, WHITE - 7 if color == 0: # BLACK / OFF self.redChan.set(False) self.greenChan.set(False) self.blueChan.set(False) elif color == 1: # RED self.redChan.set(True) self.greenChan.set(False) self.blueChan.set(False) elif color == 2: # YELLOW self.redChan.set(True) self.greenChan.set(True) self.blueChan.set(False) elif color == 3: # GREEN self.redChan.set(False) self.greenChan.set(True) self.blueChan.set(False) elif color == 4: # TEAL self.redChan.set(False) self.greenChan.set(True) self.blueChan.set(True) elif color == 5: # BLUE self.redChan.set(False) self.greenChan.set(False) self.blueChan.set(True) elif color == 6: # PURPLE self.redChan.set(True) self.greenChan.set(False) self.blueChan.set(True) elif color == 7: # WHITE / ON self.redChan.set(True) self.greenChan.set(True) self.blueChan.set(True) self.last = None # The robot is empty, that is, it has no note. def empty(self): self.last = self.RED self.refreshLast() # The robot may have just gotten two notes!!! def suspectTwoNotes(self): self.last = self.YELLOW self.refreshLast() # A note has been detected in the indexer. def noteDetected(self): self.last = self.PURPLE self.refreshLast() # The shooter and arm are ready for the selected shot. def readytoShoot(self): self.last = self.GREEN self.refreshLast() def noteInIntake(self): self.last = self.BLUE self.refreshLast() def getStateCommand(self) -> Command: """ Return the default command for the LED subsystem. It initializes to empty and executes evaluating the game and robot states to set the LEDs for the rest of the match. """ return FunctionalCommand( self.empty, self.setNextLED, lambda _: None, lambda: False, self ) def setNextLED(self): if not self.gameState.hasNote(): if not self.gameState.getNoteInIntake(): self.empty() else: self.noteInIntake() # elif self.gameState.getNoteInIntake(): # self.suspectTwoNotes() elif self.robotState.isShooterReady(): self.readytoShoot() else: self.noteDetected() def refreshLast(self): self.set(self.last)
4,033
Python
31.015873
112
0.59633
RoboEagles4828/rift2024/rio/srcrobot/sim/SwerveModuleSim.py
from wpimath.geometry import Rotation2d from wpimath.kinematics import SwerveModulePosition, SwerveModuleState from wpilib import Timer class SwerveModuleSim(): def __init__(self) -> None: self.timer = Timer() self.timer.start() self.lastTime = self.timer.get() self.state = SwerveModuleState(0.0, Rotation2d.fromDegrees(0.0)) self.fakeSpeed = 0.0 self.fakePos = 0.0 self.dt = 0.0 def updateStateAndPosition(self, desiredState : SwerveModuleState) -> None: self.dt = self.timer.get() - self.lastTime self.lastTime = self.timer.get() self.state = desiredState self.fakeSpeed = desiredState.speed self.fakePos += self.fakeSpeed * self.dt def getPosition(self) -> SwerveModulePosition: return SwerveModulePosition(self.fakePos, self.state.angle) def getState(self) -> SwerveModuleState: return self.state
939
Python
32.571427
79
0.667732
RoboEagles4828/rift2024/rio/srcrobot/sim/SwerveIMUSim.py
from wpimath.geometry import Rotation2d, Pose2d, Rotation3d, Translation3d from wpimath.kinematics import SwerveDrive4Kinematics, SwerveModuleState from wpilib import Timer from wpilib import Field2d class SwerveIMUSim(): def __init__(self) -> None: self.timer = Timer() self.timer.start() self.lastTime = self.timer.get() self.angle = 0.0 def getYaw(self) -> Rotation2d: return Rotation2d(self.angle).degrees() def getPitch(self) -> Rotation2d: return Rotation2d() def getRoll(self) -> Rotation2d: return Rotation2d() def updateOdometry(self, kinematics: SwerveDrive4Kinematics, states: list[SwerveModuleState], modulePoses: list[Pose2d], field: Field2d) -> None: self.angle += kinematics.toChassisSpeeds(states).omega * (self.timer.get() - self.lastTime) self.lastTime = self.timer.get() field.getObject("XModules").setPoses(modulePoses) def setAngle(self, angle : float): self.angle = angle def zeroYaw(self): self.setAngle(0.0)
1,070
Python
33.548386
149
0.675701
RoboEagles4828/rift2024/rio/srcrobot/autos/PathPlannerAutoRunner.py
from commands2 import SequentialCommandGroup, InstantCommand, WaitCommand from pathplannerlib.auto import PathPlannerAuto from subsystems.Swerve import Swerve from wpimath.kinematics import ChassisSpeeds from wpimath.geometry import Rotation2d from wpimath.trajectory import Trajectory, TrajectoryGenerator, TrajectoryConfig from pathplannerlib.path import * class PathPlannerAutoRunner: def __init__(self, pathplannerauto, swerve): self.pathplannerauto: str = pathplannerauto self.swerve: Swerve = swerve self.auto = PathPlannerAuto(self.pathplannerauto) def getCommand(self): return SequentialCommandGroup( InstantCommand(lambda: self.swerve.setPose(self.auto.getStartingPoseFromAutoFile(self.pathplannerauto)), self.swerve), self.auto, InstantCommand(lambda: self.swerve.stop(), self.swerve) ).withName(self.pathplannerauto)
914
Python
42.571427
130
0.765864
RoboEagles4828/rift2024/rio/srcrobot/autos/exampleAuto.py
from constants import Constants from subsystems.Swerve import Swerve from wpimath.controller import PIDController from wpimath.controller import ProfiledPIDControllerRadians, HolonomicDriveController from wpimath.geometry import Pose2d; from wpimath.geometry import Rotation2d; from wpimath.geometry import Translation2d; from wpimath.trajectory import Trajectory; from wpimath.trajectory import TrajectoryConfig; from wpimath.trajectory import TrajectoryGenerator; from commands2 import InstantCommand from commands2 import SequentialCommandGroup from commands2 import SwerveControllerCommand import math as Math class exampleAuto: def __init__(self, s_Swerve: Swerve): config = \ TrajectoryConfig( Constants.AutoConstants.kMaxSpeedMetersPerSecond, Constants.AutoConstants.kMaxAccelerationMetersPerSecondSquared ) config.setKinematics(Constants.Swerve.swerveKinematics) self.s_Swerve = s_Swerve # An example trajectory to follow. All units in meters. self.exampleTrajectory = \ TrajectoryGenerator.generateTrajectory( # Start at the origin facing the +X direction Pose2d(0, 2, Rotation2d(0)), # Pass through these two interior waypoints, making an 's' curve path [Translation2d(1, 3), Translation2d(2, 1)], # End 3 meters straight ahead of where we started, facing forward Pose2d(3, 2, Rotation2d(0)), config ) thetaController = \ ProfiledPIDControllerRadians( Constants.AutoConstants.kPThetaController, 0, 0, Constants.AutoConstants.kThetaControllerConstraints) thetaController.enableContinuousInput(-Math.pi, Math.pi) self.holonomicController = HolonomicDriveController( PIDController(Constants.AutoConstants.kPXController, 0, 0), PIDController(Constants.AutoConstants.kPYController, 0, 0), thetaController ) self.swerveControllerCommand = \ SwerveControllerCommand( self.exampleTrajectory, s_Swerve.getPose, Constants.Swerve.swerveKinematics, self.holonomicController, s_Swerve.setModuleStates, (s_Swerve,) ) def getCommand(self): return InstantCommand(lambda: self.s_Swerve.setPose(self.exampleTrajectory.initialPose()), (self.s_Swerve,)).andThen(self.swerveControllerCommand)
2,572
Python
39.203124
154
0.677294
RoboEagles4828/rift2024/rio/srcrobot/commands/TurnToTag.py
from commands2 import Command from constants import Constants from wpimath.controller import ProfiledPIDControllerRadians, PIDController from subsystems.Swerve import Swerve from subsystems.Vision import Vision from commands.TeleopSwerve import TeleopSwerve from wpimath.geometry import Translation2d, Rotation2d from wpimath.trajectory import TrapezoidProfile import math from typing import Callable class TurnToTag(TeleopSwerve): def __init__(self, s_Swerve, s_Vision: Vision, translationSup, strafeSup, rotationSup, robotCentricSup): super().__init__(s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup) self.turnPID = PIDController(16.0, 0.0, 0.0) self.turnPID.enableContinuousInput(-math.pi, math.pi) self.currentRotation = rotationSup self.s_Vision = s_Vision self.s_Swerve = s_Swerve def initialize(self): super().initialize() self.start_angle = self.s_Swerve.getHeading().radians() self.turnPID.reset() self.turnPID.setTolerance(math.radians(1)) self.turnPID.setSetpoint(0.0) def getRotationValue(self): rotationStick = self.currentRotation() if abs(rotationStick) > 0.0: return rotationStick*Constants.Swerve.maxAngularVelocity elif self.turnPID.atSetpoint(): return 0.0 else: self.angularvelMRadiansPerSecond = self.turnPID.calculate(self.s_Vision.getAngleToSpeakerFieldToCamera(self.s_Swerve.getPose()).radians(), 0.0) return self.angularvelMRadiansPerSecond def isFinished(self) -> bool: return self.turnPID.atSetpoint()
1,643
Python
40.099999
155
0.719416
RoboEagles4828/rift2024/rio/srcrobot/commands/DynamicShot.py
from subsystems.Vision import Vision from subsystems.Swerve import Swerve from subsystems.Arm import Arm from constants import Constants import lib.mathlib.units as Units import math from wpimath.geometry import Rotation2d, Translation2d, Transform2d from wpilib import DriverStation, RobotBase from robotState import RobotState class DynamicShot(): def __init__(self, swerve: Swerve, vision: Vision, arm: Arm): self.swerve = swerve self.arm = arm self.vision = vision self.speakerTargetHeightMeters = Units.inchesToMeters(80.5) self.robotState = RobotState() def getArmAngle(self): # distanceFromSpeaker = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm() # robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) # return math.degrees(math.atan( # (self.speakerTargetHeightMeters - Units.inchesToMeters(Constants.Swerve.robotHeight)) / (distanceFromSpeaker + robotVelocity.X()*0.02) # )) - Constants.ShooterConstants.kMechanicalAngle return Constants.NextShot.DYNAMIC.calculateInterpolatedArmAngle(Units.metersToFeet(self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0)) def getTrigArmAngle(self): distanceFromSpeaker = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm() - (Units.inchesToMeters(Constants.Swerve.robotLength / 2.0)) + Units.inchesToMeters(math.cos(math.radians(self.arm.getDegrees())) * Constants.Swerve.armLength) robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) robotHeight = (math.sin(math.radians(self.arm.getDegrees())) * Constants.Swerve.armLength) + 16.5 denom = distanceFromSpeaker + robotVelocity.X()*0.02 if DriverStation.getAlliance() == DriverStation.Alliance.kRed: denom = distanceFromSpeaker - robotVelocity.X()*0.02 return math.degrees(math.atan( denom / (self.speakerTargetHeightMeters - Units.inchesToMeters(robotHeight)) )) - Constants.ShooterConstants.kMechanicalAngle def getInterpolatedArmAngle(self): robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) nextPose = self.swerve.getPose().__add__(Transform2d(robotVelocity.__mul__(-0.02), Rotation2d())) distance = Units.metersToFeet(self.vision.getDistanceVectorToSpeaker(nextPose).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0) return Constants.NextShot.DYNAMIC.calculateInterpolatedArmAngle(distance) def getRobotAngle(self): distanceVector = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()) robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) angle = 90.0 - math.degrees(math.atan( (distanceVector.X() - robotVelocity.X()*0.02) / (distanceVector.Y() - robotVelocity.Y()*0.02) )) if angle >= 90: angle = angle - 180 if DriverStation.getAlliance() == DriverStation.Alliance.kRed and DriverStation.isAutonomous(): return Rotation2d.fromDegrees(angle).rotateBy(Rotation2d.fromDegrees(180.0)) return Rotation2d.fromDegrees(angle) def getRotationTarget(self): if self.robotState.m_gameState.getNextShot() == Constants.NextShot.DYNAMIC: return self.getRobotAngle() else: return None
3,557
Python
51.323529
258
0.709306
RoboEagles4828/rift2024/rio/srcrobot/commands/TurnInPlace.py
from commands2 import Command from constants import Constants from wpimath.controller import ProfiledPIDControllerRadians, PIDController from subsystems.Swerve import Swerve from commands.TeleopSwerve import TeleopSwerve from wpimath.geometry import Translation2d, Rotation2d from wpimath.trajectory import TrapezoidProfile import math from typing import Callable class TurnInPlace(TeleopSwerve): def __init__(self, s_Swerve, desiredRotationSup: Callable[[], Rotation2d], translationSup, strafeSup, rotationSup, robotCentricSup): super().__init__(s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup) self.turnPID = PIDController(5.0, 0.001, 0.0) self.turnPID.setIZone(math.radians(2.0)) self.turnPID.enableContinuousInput(-math.pi, math.pi) self.desiredRotationSupplier = desiredRotationSup self.angle = desiredRotationSup().radians() self.currentRotation = rotationSup def initialize(self): super().initialize() self.start_angle = self.s_Swerve.getHeading().radians() self.turnPID.reset() self.turnPID.setTolerance(math.radians(0.5)) self.turnPID.setSetpoint(self.angle) def getRotationValue(self): rotationStick = self.currentRotation() if abs(rotationStick) > 0.0: return rotationStick*Constants.Swerve.maxAngularVelocity elif self.turnPID.atSetpoint(): return 0.0 else: self.angularvelMRadiansPerSecond = -self.turnPID.calculate(self.s_Swerve.getHeading().radians(), self.desiredRotationSupplier().radians()) return self.angularvelMRadiansPerSecond def isFinished(self) -> bool: return self.turnPID.atSetpoint()
1,733
Python
43.461537
150
0.723024
RoboEagles4828/rift2024/rio/srcrobot/commands/SysId.py
from commands2.sysid import SysIdRoutine from commands2 import SequentialCommandGroup, InstantCommand, WaitCommand, Command from subsystems.Swerve import Swerve class DriveSysId(): routine: SysIdRoutine def __init__(self, s_Swerve: Swerve): self.routine = SysIdRoutine( SysIdRoutine.Config(), SysIdRoutine.Mechanism( s_Swerve.driveMotorsVoltage, s_Swerve.logDriveMotors, s_Swerve, name="SwerveDrive" ) ) self.swerve = s_Swerve self.quasiStaticForward = self.routine.quasistatic(SysIdRoutine.Direction.kForward) self.quasiStaticReverse = self.routine.quasistatic(SysIdRoutine.Direction.kReverse) self.dynamicForward = self.routine.dynamic(SysIdRoutine.Direction.kForward) self.dynamicReverse = self.routine.dynamic(SysIdRoutine.Direction.kReverse) self.resetAngleMotors = InstantCommand(lambda: (s_Swerve.resetModulesToAbsolute()), s_Swerve) self.generalCommand = SequentialCommandGroup( self.resetAngleMotors, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), ) self.quasiForwardCommand = SequentialCommandGroup( self.quasiStaticForward, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.quasiReverseCommand = SequentialCommandGroup( self.quasiStaticReverse, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.dynamicForwardCommand = SequentialCommandGroup( self.dynamicForward, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.dynamicReverseCommand = SequentialCommandGroup( self.dynamicReverse, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) def getQuasiForwardCommand(self): return self.quasiForwardCommand def getQuasiReverseCommand(self): return self.quasiReverseCommand def getDynamicForwardCommand(self): return self.dynamicForwardCommand def getDynamicReverseCommand(self): return self.dynamicReverseCommand
2,313
Python
33.029411
101
0.648508
RoboEagles4828/rift2024/rio/srcrobot/commands/ExecuteCommand.py
from commands2 import ParallelCommandGroup, RunCommand, InstantCommand from commands.TurnInPlace import TurnInPlace from subsystems.Arm import Arm from subsystems.Shooter import Shooter from subsystems.Swerve import Swerve from wpimath.geometry import Rotation2d from robotState import RobotState class ExecuteCommand(ParallelCommandGroup): def __init__(self, arm : Arm, shooter : Shooter, swerve : Swerve, translationSupplier, strafeSupplier, rotationSupplier, robotCentricSupplier): super().__init__() self.robotState = RobotState() self.arm = arm self.shooter = shooter self.swerve = swerve self.arm_angle = self.robotState.m_gameState.getNextShot().m_armAngle self.shooter_velocity = self.robotState.m_gameState.getNextShot().m_shooterVelocity self.robot_angle = self.robotState.m_gameState.getNextShotRobotAngle() self.setName(f"Execute {self.robotState.m_gameState.getNextShot().name}") self.addCommands( self.arm.servoArmToTarget(self.arm_angle).withTimeout(2.0), self.shooter.shootVelocity(self.shooter_velocity), TurnInPlace(self.swerve, lambda: Rotation2d.fromDegrees(self.robot_angle), translationSupplier, strafeSupplier, rotationSupplier, robotCentricSupplier).repeatedly() ) def initialize(self): super().initialize() self.robotState = RobotState() self.arm_angle = self.robotState.m_gameState.getNextShot().m_armAngle self.shooter_velocity = self.robotState.m_gameState.getNextShot().m_shooterVelocity self.robot_angle = self.robotState.m_gameState.getNextShotRobotAngle() self.setName(f"Execute {self.robotState.m_gameState.getNextShot().name}")
1,750
Python
43.897435
176
0.729714
RoboEagles4828/rift2024/rio/srcrobot/commands/TeleopSwerve.py
from constants import Constants from subsystems.Swerve import Swerve from wpimath.geometry import Translation2d from commands2 import Command from typing import Callable import math from wpimath import applyDeadband from wpimath.controller import PIDController class TeleopSwerve(Command): s_Swerve: Swerve translationSup: Callable[[], float] strafeSup: Callable[[], float] rotationSup: Callable[[], float] robotCentricSup: Callable[[], bool] slowSup: Callable[[], list[float]] def __init__(self, s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup, slowSup=lambda: 0.0): self.s_Swerve: Swerve = s_Swerve self.addRequirements(s_Swerve) self.translationSup = translationSup self.strafeSup = strafeSup self.rotationSup = rotationSup self.robotCentricSup = robotCentricSup self.slowSup = slowSup self.lastHeading = self.s_Swerve.getHeading().radians() self.headingPID = PIDController(4.0, 0.0, 0.0) self.headingPID.enableContinuousInput(-math.pi, math.pi) self.headingPID.reset() self.headingPID.setTolerance(math.radians(1)) def initialize(self): super().initialize() self.lastHeading = self.s_Swerve.getHeading().radians() def execute(self): # Get Values, Deadband # translationVal = math.copysign(self.translationSup()**2, self.translationSup()) # strafeVal = math.copysign(self.strafeSup()**2, self.strafeSup()) translationVal = self.translationSup() strafeVal = self.strafeSup() rotationVal = self.getRotationValue() # Apply slowmode slow = self.slowSup() # TODO: REMOVE THIS IN PRODUCTION. THIS IS TO SAVE THE ROBOT DURING TESTING. if slow < 0: print("SLOWMODE ERROR: SLOW OFFSET IS NEGATIVE\nCheck that your controller axis mapping is correct and goes between [0, 1]!") slow = 0 translationVal -= translationVal*slow*Constants.Swerve.slowMoveModifier strafeVal -= strafeVal*slow*Constants.Swerve.slowMoveModifier rotationVal -= rotationVal*slow*Constants.Swerve.slowTurnModifier # Drive self.s_Swerve.drive( Translation2d(translationVal, strafeVal).__mul__(Constants.Swerve.maxSpeed), rotationVal, not self.robotCentricSup(), True ) def getRotationValue(self): return self.rotationSup() * Constants.Swerve.maxAngularVelocity # rotation = 0.0 #heading correction # if abs(self.rotationSup()) > 0.0: # # heading correction is disabled, record last heading # self.lastHeading = self.s_Swerve.getHeading().radians() # rotation = self.rotationSup() * Constants.Swerve.maxAngularVelocity # elif abs(self.translationSup()) > 0.0 or abs(self.strafeSup()) > 0.0: # # heading correction is enabled, calculate correction # rotation = -self.headingPID.calculate(self.s_Swerve.getHeading().radians(), self.lastHeading) # return rotation
3,142
Python
35.546511
137
0.660089
RoboEagles4828/rift2024/rio/srcrobot/commands/PathFindToTag.py
from commands2 import Command, DeferredCommand, InstantCommand, SequentialCommandGroup from subsystems.Vision import Vision from subsystems.Swerve import Swerve from wpilib import SmartDashboard from photonlibpy.photonTrackedTarget import PhotonTrackedTarget from pathplannerlib.auto import AutoBuilder from pathplannerlib.path import PathConstraints from wpimath.geometry import Pose3d, Rotation3d, Transform3d, Translation3d import wpimath.units as Units class PathFindToTag(SequentialCommandGroup): def __init__(self, swerve : Swerve, vision : Vision, TAG_ID, frontOffsetInches): super().__init__() self.vision = vision self.swerve = swerve self.TAG_ID = TAG_ID self.TAG_TO_GOAL = Transform3d( Translation3d(Units.inchesToMeters(frontOffsetInches), 0.0, 0.0), Rotation3d.fromDegrees(0.0, 0.0, 0.0) ) self.targetToUse = None self.addRequirements(self.swerve, self.vision) self.addCommands( DeferredCommand(lambda: self.getCommand(), swerve, vision), InstantCommand(lambda: self.swerve.stop()) ) def getCommand(self): robotToPose2d = self.swerve.getPose() robotToPose3d = Pose3d( robotToPose2d.X(), robotToPose2d.Y(), 0.0, Rotation3d(0.0, 0.0, robotToPose2d.rotation().radians()) ) result = self.vision.getCamera().getLatestResult() if result.hasTargets() == False: return InstantCommand() else: try: allTargets = result.getTargets() for target in allTargets: if target.getFiducialId() == self.TAG_ID: self.targetToUse = target if self.targetToUse.getPoseAmbiguity() >= 0.2: return InstantCommand() camToTarget = self.targetToUse.getBestCameraToTarget() cameraPose = robotToPose3d.transformBy(self.vision.robotToCamera) targetPose = cameraPose.transformBy(camToTarget) goalPose = targetPose.transformBy(self.TAG_TO_GOAL).toPose2d() return AutoBuilder.pathfindToPose(goalPose, PathConstraints( 1.5, 1, Units.degreesToRadians(540), Units.degreesToRadians(720), 0 )) except Exception as e: print(e) return InstantCommand()
2,520
Python
33.067567
86
0.610714
RoboEagles4828/rift2024/rio/srcrobot/tests/pyfrc_test.py
''' This test module imports tests that come with pyfrc, and can be used to test basic functionality of just about any robot. ''' from pyfrc.tests import *
165
Python
22.714282
72
0.715152
RoboEagles4828/rift2024/rio/srcrobot/lib/util/InterpolatingTreeMap.py
from pytreemap import TreeMap class InterpolatingTreeMap: def __init__(self): self.m_map = TreeMap() def put(self,key, value): self.m_map.put(key, value) def get(self, key) -> float: value = self.m_map.get(key) if value == None: ceilingKey = self.m_map.ceiling_key(key) floorKey = self.m_map.floor_key(key) if ceilingKey == None and floorKey == None: return None if ceilingKey == None: return float(self.m_map.get(floorKey)) if floorKey == None: return float(self.m_map.get(ceilingKey)) floor = self.m_map.get(floorKey) ceiling = self.m_map.get(ceilingKey) return self.interpolate(floor, ceiling, self.inverseInterpolate(ceilingKey, key, floorKey)) else: return float(value) def clear(self): self.m_map.clear() def interpolate(self, val1, val2, d: float) -> float: dydx = float(val2)-float(val1) return dydx*d+float(val1) def inverseInterpolate(self, up, q, down) -> float: uppertoLower = float(up)-float(down) if uppertoLower <= 0: return 0.0 querytoLower = float(q)-float(down) if querytoLower <= 0: return 0.0 return querytoLower/uppertoLower
1,380
Python
29.021738
103
0.560145
RoboEagles4828/rift2024/rio/srcrobot/lib/util/COTSTalonFXSwerveConstants.py
from phoenix6.signals import InvertedValue; from phoenix6.signals import SensorDirectionValue; import math import lib.mathlib.units as Units class COTSTalonFXSwerveConstants: wheelDiameter: float wheelCircumference: float angleGearRatio: float driveGearRatio: float angleKP: float angleKI: float angleKD: float driveMotorInvert: InvertedValue angleMotorInvert: InvertedValue cancoderInvert: SensorDirectionValue def __init__(self, wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert): self.wheelDiameter = wheelDiameter self.wheelCircumference = wheelDiameter * math.pi self.angleGearRatio = angleGearRatio self.driveGearRatio = driveGearRatio self.angleKP = angleKP self.angleKI = angleKI self.angleKD = angleKD self.driveMotorInvert = driveMotorInvert self.angleMotorInvert = angleMotorInvert self.cancoderInvert = cancoderInvert # Swerve Drive Specialties - MK4i Module class MK4i: # Swerve Drive Specialties - MK4i Module (Falcon 500) def Falcon500(driveGearRatio): wheelDiameter = Units.inchesToMeters(4.0) # (150 / 7) : 1 angleGearRatio = ((150.0 / 7.0) / 1.0) angleKP = 100.0 angleKI = 0.0 angleKD = 0.0 driveMotorInvert = InvertedValue.COUNTER_CLOCKWISE_POSITIVE angleMotorInvert = InvertedValue.CLOCKWISE_POSITIVE cancoderInvert = SensorDirectionValue.COUNTER_CLOCKWISE_POSITIVE return COTSTalonFXSwerveConstants(wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert) # Swerve Drive Specialties - MK4i Module (Kraken X60) def KrakenX60(driveGearRatio): wheelDiameter = Units.inchesToMeters(4.0) # (150 / 7) : 1 angleGearRatio = ((150.0 / 7.0) / 1.0) angleKP = 1.0 angleKI = 0.0 angleKD = 0.0 driveMotorInvert = InvertedValue.COUNTER_CLOCKWISE_POSITIVE angleMotorInvert = InvertedValue.CLOCKWISE_POSITIVE cancoderInvert = SensorDirectionValue.COUNTER_CLOCKWISE_POSITIVE return COTSTalonFXSwerveConstants(wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert) class driveRatios: # SDS MK4i - (8.14 : 1) L1 = (8.14 / 1.0) # SDS MK4i - (6.75 : 1) L2 = (6.75 / 1.0) # SDS MK4i - (6.12 : 1) L3 = (6.12 / 1.0)
2,747
Python
36.643835
171
0.650892
RoboEagles4828/rift2024/rio/srcrobot/lib/util/SwerveModuleConstants.py
from wpimath.geometry import Rotation2d class SwerveModuleConstants: driveMotorID: int angleMotorID: int cancoderID: int angleOffset: Rotation2d def __init__(self, driveMotorID: int, angleMotorID: int, canCoderID: int, angleOffset: Rotation2d): self.driveMotorID = driveMotorID self.angleMotorID = angleMotorID self.cancoderID = canCoderID self.angleOffset = angleOffset
424
Python
31.692305
103
0.721698
RoboEagles4828/rift2024/rio/srcrobot/lib/util/PhotonUtils.py
from wpimath.geometry import * import math class PhotonUtils: @staticmethod def calculateDistanceToTargetMeters(cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians): return (targetHeightMeters - cameraHeightMeters) / math.tan(cameraPitchRadians + targetPitchRadians) @staticmethod def estimateCameraToTargetTranslation(targetDistanceMeters, yaw: Rotation2d): return Translation2d(yaw.cos() * targetDistanceMeters, yaw.sin() * targetDistanceMeters); @staticmethod def estimateFieldToRobot( cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians, targetYaw: Rotation2d, gyroAngle: Rotation2d, fieldToTarget: Pose2d, cameraToRobot: Transform2d): return PhotonUtils.estimateFieldToRobot( PhotonUtils.estimateCameraToTarget( PhotonUtils.estimateCameraToTargetTranslation( PhotonUtils.calculateDistanceToTargetMeters( cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians), targetYaw), fieldToTarget, gyroAngle), fieldToTarget, cameraToRobot) @staticmethod def estimateCameraToTarget( cameraToTargetTranslation: Translation2d, fieldToTarget: Pose2d, gyroAngle: Rotation2d): return Transform2d(cameraToTargetTranslation, gyroAngle.__mul__(-1).__sub__(fieldToTarget.rotation())) @staticmethod def estimateFieldToRobot( cameraToTarget: Transform2d, fieldToTarget: Pose2d, cameraToRobot: Transform2d): return PhotonUtils.estimateFieldToCamera(cameraToTarget, fieldToTarget).transformBy(cameraToRobot) @staticmethod def estimateFieldToCamera(cameraToTarget: Transform2d, fieldToTarget: Pose2d): targetToCamera = cameraToTarget.inverse() return fieldToTarget.transformBy(targetToCamera) @staticmethod def estimateFieldToRobotAprilTag( cameraToTarget: Transform3d, fieldRelativeTagPose: Pose3d, cameraToRobot: Transform3d): return fieldRelativeTagPose.__add__(cameraToTarget.inverse()).__add__(cameraToRobot) @staticmethod def getYawToPose(robotPose: Pose2d, targetPose: Pose2d): relativeTrl = targetPose.relativeTo(robotPose).translation() angle = math.atan2(relativeTrl.Y(), relativeTrl.X()) return Rotation2d(angle) @staticmethod def getDistanceToPose(robotPose: Pose2d, targetPose: Pose2d): robotTranslation = robotPose.translation() return robotTranslation.distance(targetPose.translation()) @staticmethod def getDistanceVectorToPose(robotPose: Pose2d, targetPose: Pose2d): robotTranslation = robotPose.translation() return targetPose.translation().__sub__(robotTranslation)
3,013
Python
42.681159
120
0.688682
RoboEagles4828/rift2024/rio/srcrobot/lib/mathlib/conversions.py
class Conversions: """ :param wheelRPS: wheel rotations per second :param circumference: wheel circumference :returns: wheel meters per second """ @staticmethod def RPSToMPS(wheelRPS: float, circumference: float): wheelMPS = wheelRPS * circumference return wheelMPS """ :param wheelMPS: wheel meters per second :param circumference: wheel circumference :returns: wheel rotations per second """ @staticmethod def MPSToRPS(wheelMPS: float, circumference: float): wheelRPS = wheelMPS / circumference return wheelRPS """ :param wheelRotations: Wheel Position (in Rotations) :param circumference: Wheel Circumference (in Meters) :returns: Wheel Distance (in Meters) """ @staticmethod def rotationsToMeters(wheelRotations: float, circumference: float): wheelMeters = wheelRotations * circumference return wheelMeters """ :param wheelMeters: Wheel Distance (in Meters) :param circumference: Wheel Circumference (in Meters) :returns: Wheel Position (in Rotations) """ @staticmethod def metersToRotations(wheelMeters: float, circumference: float): wheelRotations = wheelMeters / circumference return wheelRotations
1,286
Python
29.642856
71
0.686625
RoboEagles4828/rift2024/rio/srcrobot/lib/mathlib/units.py
@staticmethod def inchesToMeters(inches): return inches * 0.0254 @staticmethod def feetToMeters(feet): return feet * 0.3048 @staticmethod def mmToMeters(mm): return mm * 0.001 @staticmethod def metersToInches(meters): return meters / 0.0254 @staticmethod def metersToFeet(meters): return meters / 0.3048 @staticmethod def metersToMm(meters): return meters / 0.001 @staticmethod def inchesToFeet(inches): return inches / 12 @staticmethod def inchesToMm(inches): return inches * 25.4 @staticmethod def feetToInches(feet): return feet * 12 @staticmethod def feetToMm(feet): return feet * 304.8 @staticmethod def mmToInches(mm): return mm / 25.4 @staticmethod def mmToFeet(mm): return mm / 304.8
751
Python
14.666666
27
0.716378
2820207922/isaac_ws/main.py
#launch Isaac Sim before any other imports #default first two lines in any standalone application from omni.isaac.kit import SimulationApp # This sample enables a livestream server to connect to when running headless KIT_CONFIG = { "width": 1280, "height": 720, "window_width": 1920, "window_height": 1080, "headless": True, "renderer": "RayTracedLighting", "display_options": 3286, # Set display options to show default grid } kit = SimulationApp(KIT_CONFIG) from omni.isaac.core.articulations import Articulation from omni.isaac.sensor import IMUSensor from omni.importer.urdf import _urdf from omni.isaac.dynamic_control import _dynamic_control from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics, Tf import omni.kit.commands import numpy as np import math def quaternion_to_euler(q): """ Convert a quaternion into euler angles (yaw, roll, pitch) Quaternion format: [w, x, y, z] Euler angles order: yaw (Z), roll (X), pitch (Y) """ # Extract the values from quaternion w, x, y, z = q # Pre-calculate common terms t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x**2 + y**2) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = np.clip(t2, a_min=-1.0, a_max=1.0) pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y**2 + z**2) yaw_z = math.atan2(t3, t4) return yaw_z, roll_x, pitch_y # Order: yaw, roll, pitch # Acquire the URDF extension interface urdf_interface = _urdf.acquire_urdf_interface() # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.import_inertia_tensor = True import_config.distance_scale = 1.0 import_config.density = 0.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.default_drive_strength = 0.0 import_config.default_position_drive_damping = 0.0 import_config.convex_decomp = False import_config.self_collision = False import_config.create_physics_scene = True import_config.make_default_prim = False # Get path to extension data: URDF_PATH = "balance_infantry/model.urdf" DEST_PATH = "balance_infantry/model/model.usd" # Import URDF, stage_path contains the path the path to the usd prim in the stage. status, stage_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=URDF_PATH, import_config=import_config, get_articulation_root=True, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Set limit LOWER_LIMIT_ANGLE = 0 UPPER_LIMIT_ANGLE = 70 left_front_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint1") left_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) left_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) left_back_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint2") left_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) left_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) right_front_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint7") right_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) right_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) right_back_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint6") right_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) right_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) # Set constraint left_wheel_link = stage.GetPrimAtPath("/balance_infantry/left_wheel_link") left_hole_link = stage.GetPrimAtPath("/balance_infantry/left_hole_link") left_constraint = UsdPhysics.RevoluteJoint.Define(stage, "/balance_infantry/base_link/left_constraint") left_constraint.CreateBody0Rel().SetTargets([left_wheel_link.GetPath()]) left_constraint.CreateBody1Rel().SetTargets([left_hole_link.GetPath()]) left_constraint.CreateAxisAttr().Set("X") left_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateExcludeFromArticulationAttr().Set(True) right_wheel_link = stage.GetPrimAtPath("/balance_infantry/right_wheel_link") right_hole_link = stage.GetPrimAtPath("/balance_infantry/right_hole_link") right_constraint = UsdPhysics.RevoluteJoint.Define(stage, "/balance_infantry/base_link/right_constraint") right_constraint.CreateBody0Rel().SetTargets([right_wheel_link.GetPath()]) right_constraint.CreateBody1Rel().SetTargets([right_hole_link.GetPath()]) right_constraint.CreateAxisAttr().Set("X") right_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateExcludeFromArticulationAttr().Set(True) # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=150.0, position=Gf.Vec3f(0, 0, -0.3), color=Gf.Vec3f(0.3), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Start simulation omni.timeline.get_timeline_interface().play() # perform one simulation step so physics is loaded and dynamic control works. kit.update() art = Articulation(prim_path=stage_path) art.initialize() if not art.handles_initialized: print(f"{stage_path} is not an articulation") else: print(f"Got articulation {stage_path} with handle {art.articulation_handle}") dc = _dynamic_control.acquire_dynamic_control_interface() dc.wake_up_articulation(art.articulation_handle) dof_properties = _dynamic_control.DofProperties() dof_properties.damping = 0.0 dof_properties.stiffness = 0.0 dof_properties.max_effort = 100.0 dof_properties.max_velocity = 10.0 left_constraint = dc.find_articulation_dof(art.articulation_handle, "left_constraint") right_constraint = dc.find_articulation_dof(art.articulation_handle, "right_constraint") dc.set_dof_properties(left_constraint, dof_properties) dc.set_dof_properties(right_constraint, dof_properties) dof_properties.damping = 100.0 dof_properties.stiffness = 0.0 dof_properties.max_effort = 100.0 dof_properties.max_velocity = 10.0 left_wheel_joint = dc.find_articulation_dof(art.articulation_handle, "joint4") right_wheel_joint = dc.find_articulation_dof(art.articulation_handle, "joint9") dc.set_dof_properties(left_wheel_joint, dof_properties) dc.set_dof_properties(right_wheel_joint, dof_properties) left_front_joint = dc.find_articulation_dof(art.articulation_handle, "joint1") left_back_joint = dc.find_articulation_dof(art.articulation_handle, "joint2") right_front_joint = dc.find_articulation_dof(art.articulation_handle, "joint7") right_back_joint = dc.find_articulation_dof(art.articulation_handle, "joint6") dc.set_dof_properties(left_front_joint, dof_properties) dc.set_dof_properties(left_back_joint, dof_properties) dc.set_dof_properties(right_front_joint, dof_properties) dc.set_dof_properties(right_back_joint, dof_properties) # Set IMU sensor # imu_sensor = IMUSensor( # prim_path="/balance_infantry/base_link/imu_sensor", # name="imu", # frequency=100, # translation=np.array([0.0, -0.2, 0.1]), # ) # imu_sensor.initialize() if not stage: print("Stage could not be used.") else: for prim in stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") k = 0 torque = 10 # perform simulation while kit._app.is_running() and not kit.is_exiting(): # Run in realtime mode, we don't specify the step size k = k + 1 if k // 500 % 2 == 1: dc.set_dof_effort(left_front_joint, torque) dc.set_dof_effort(left_back_joint, -torque) dc.set_dof_effort(right_front_joint, torque) dc.set_dof_effort(right_back_joint, -torque) else: dc.set_dof_effort(left_front_joint, -torque) dc.set_dof_effort(left_back_joint, torque) dc.set_dof_effort(right_front_joint, -torque) dc.set_dof_effort(right_back_joint, torque) # imu_data = imu_sensor.get_current_frame() # quaternion = imu_data['orientation'] # # quaternion = [1.0, 0.0, 0.0, 0.0] # rotation = quaternion_to_euler(quaternion) # euler_angles_deg = np.degrees(rotation) # print(f"quaternion: {quaternion}, angle: {euler_angles_deg}") kit.update() # Shutdown and exit omni.timeline.get_timeline_interface().stop() kit.close()
9,170
Python
37.860169
105
0.735333
2820207922/isaac_ws/balance_train.py
from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True, enable_livestream=True) # env = VecEnvBase(headless=True) from balance_task import BalanceTask task = BalanceTask(name="Balance") env.set_task(task, backend="torch") from stable_baselines3 import PPO import torch # create agent from stable baselines # model = PPO( # "MlpPolicy", # env, # n_steps=1000, # batch_size=1000, # n_epochs=10, # learning_rate=0.005, # gamma=0.99, # device="cuda:0", # ent_coef=0.0, # vf_coef=0.5, # max_grad_norm=1.0, # verbose=1, # tensorboard_log="./balance_tensorboard" # ) # torch.save(model.state_dict(),"model.pth") model = PPO.load( "models/ppo/ppo_balance0", env=env, device="cuda:0" ) model.learn(total_timesteps=300000) model.save("models/ppo/ppo_balance1") env.close()
856
Python
20.974358
55
0.661215
2820207922/isaac_ws/balance_play.py
# create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True, enable_livestream=True) # create task and register task from balance_task import BalanceTask task = BalanceTask(name="Balance") env.set_task(task, backend="torch") # import stable baselines from stable_baselines3 import PPO # Run inference on the trained policy model = PPO.load("models/ppo/ppo_balance0") env._world.reset() obs, _ = env.reset() while env._simulation_app.is_running(): action, _states = model.predict(obs) obs, rewards, terminated, truncated, info = env.step(action[0]) # print(f"obs: {obs}") # print(f"action: {action}") # print(f"obs: {obs}, rewards: {rewards}, terminated: {terminated}, truncated: {truncated}, info: {info}") env.close()
786
Python
31.791665
110
0.717557
2820207922/isaac_ws/balance_task.py
from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.materials.deformable_material import DeformableMaterial from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics, Tf, UsdShade from omni.importer.urdf import _urdf import omni.kit.commands from gymnasium import spaces import numpy as np import torch import math class BalanceTask(BaseTask): def __init__( self, name, offset=None ) -> None: # print("running: __init__") # task-specific parameters self._reward_cnt = 0 self._orders = [0, 1, 2, 3] self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._angle_limit = 90.0 * math.pi / 180 self._vel_wheel_limit = 50.0 self._effort_leg_limit = 10.0 self._effort_wheel_limit = 20.0 # values used for defining RL buffers self._num_observations = 15 self._num_actions = 6 self._device = "cpu" self.num_envs = 1 # a few class buffers to store RL-related states self.obs = torch.zeros((self.num_envs, self._num_observations)) self.obs_last = torch.zeros((self.num_envs, self._num_observations)) self.resets = torch.zeros((self.num_envs, 1)) # set the action and observation space for RL self.action_space = spaces.Box( np.ones(self._num_actions, dtype=np.float32) * -1.0, np.ones(self._num_actions, dtype=np.float32) * 1.0 ) self.observation_space = spaces.Box( np.ones(self._num_observations, dtype=np.float32) * -np.Inf, np.ones(self._num_observations, dtype=np.float32) * np.Inf, ) # trigger __init__ of parent class BaseTask.__init__(self, name=name, offset=offset) def set_up_scene(self, scene) -> None: # print("running: set_up_scene") # retrieve file path for the Cartpole USD file # usd_path = "balance_infantry/model/balance_infantry_no_constraint.usd" # add the Cartpole USD to our stage # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.import_inertia_tensor = True import_config.distance_scale = 1.0 import_config.density = 0.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.default_drive_strength = 0.0 import_config.default_position_drive_damping = 0.0 import_config.convex_decomp = False import_config.self_collision = False import_config.create_physics_scene = True import_config.make_default_prim = False urdf_path = "balance_infantry/model.urdf" status, robot_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, # get_articulation_root=True, ) add_reference_to_stage(robot_path, "/World") # Get stage handle self.stage = omni.usd.get_context().get_stage() if not self.stage: print("Stage could not be used.") else: for prim in self.stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") # Set material self.wheel_material = DeformableMaterial( prim_path="/World/balance_infantry/base_link/wheel_material", name="wheel_material", dynamic_friction=0.5, youngs_modulus=6e6, poissons_ratio=0.47, elasticity_damping=0.00784, damping_scale=0.1, ) # print("wheel_material: ", self.wheel_material) wheel_material_prim = self.stage.GetPrimAtPath("/World/balance_infantry/base_link/wheel_material") # print("wheel_material_prim: ", wheel_material_prim) wheel_material_shade = UsdShade.Material(wheel_material_prim) # print("wheel_material_shade: ", wheel_material_shade) left_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_wheel_link") right_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_wheel_link") UsdShade.MaterialBindingAPI(left_wheel_link).Bind(wheel_material_shade, UsdShade.Tokens.strongerThanDescendants) UsdShade.MaterialBindingAPI(right_wheel_link).Bind(wheel_material_shade, UsdShade.Tokens.strongerThanDescendants) # create an ArticulationView wrapper for our cartpole - this can be extended towards accessing multiple cartpoles self._robots = ArticulationView(prim_paths_expr="/World/balance_infantry/base_link*", name="robot_view") scene.add(self._robots) # scene.add_default_ground_plane() # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=self.stage, planePath="/groundPlane", axis="Z", size=150.0, position=Gf.Vec3f(0, 0, -0.2), color=Gf.Vec3f(0.2), ) # set default camera viewport position and target self.set_initial_camera_params() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): set_camera_view(eye=camera_position, target=camera_target, camera_prim_path="/OmniverseKit_Persp") def post_reset(self): # print("running: post_reset") self.robot_init() # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset(indices) def robot_init(self): self._height_lower_limit = self.calc_height(torch.tensor([0.0]), torch.tensor([0.0])) self._height_upper_limit = self.calc_height(torch.tensor([1.2217]), torch.tensor([1.2217])) self._height_target = 0.2 # Get joint index self._base_link_idx = self._robots.get_body_index("base_link") self._joint1_idx = self._robots.get_dof_index("joint1") self._joint2_idx = self._robots.get_dof_index("joint2") self._joint6_idx = self._robots.get_dof_index("joint6") self._joint7_idx = self._robots.get_dof_index("joint7") self._joint4_idx = self._robots.get_dof_index("joint4") self._joint9_idx = self._robots.get_dof_index("joint9") # print("base_link_idx: ", self._base_link_idx) # print("joint1_idx: ", self._joint1_idx) # print("joint2_idx: ", self._joint2_idx) # print("joint4_idx: ", self._joint4_idx) # print("joint6_idx: ", self._joint6_idx) # print("joint7_idx: ", self._joint7_idx) # print("joint9_idx: ", self._joint9_idx) # Set limit LOWER_LIMIT_ANGLE = 0 UPPER_LIMIT_ANGLE = 70 left_front_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint1") left_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) left_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) left_back_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint2") left_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) left_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) right_front_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint7") right_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) right_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) right_back_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint6") right_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) right_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) # Set constraint left_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_wheel_link") left_hole_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_hole_link") left_constraint = UsdPhysics.RevoluteJoint.Define(self.stage, "/World/balance_infantry/base_link/left_constraint") left_constraint.CreateBody0Rel().SetTargets([left_wheel_link.GetPath()]) left_constraint.CreateBody1Rel().SetTargets([left_hole_link.GetPath()]) left_constraint.CreateAxisAttr().Set("X") left_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateExcludeFromArticulationAttr().Set(True) right_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_wheel_link") right_hole_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_hole_link") right_constraint = UsdPhysics.RevoluteJoint.Define(self.stage, "/World/balance_infantry/base_link/right_constraint") right_constraint.CreateBody0Rel().SetTargets([right_wheel_link.GetPath()]) right_constraint.CreateBody1Rel().SetTargets([right_hole_link.GetPath()]) right_constraint.CreateAxisAttr().Set("X") right_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateExcludeFromArticulationAttr().Set(True) def reset(self, env_ids=None): # print("running: reset") if env_ids is None: env_ids = torch.arange(self.num_envs, device=self._device) num_resets = len(env_ids) if self._orders[0] == 0: self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._height_target = 0.2 elif self._orders[0] == 1: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(2, device=self._device)) self._left_wheel_target = uniform_num[0] self._right_wheel_target = uniform_num[1] self._height_target = 0.2 elif self._orders[0] == 2: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(1, device=self._device)) self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._height_target = uniform_num[0] elif self._orders[0] == 3: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(2, device=self._device)) self._left_wheel_target = uniform_num[0] self._right_wheel_target = uniform_num[1] uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(1, device=self._device)) self._height_target = uniform_num[0] print(f"left_wheel_target: {self._left_wheel_target}, right_wheel_target: {self._right_wheel_target}, height_target: {self._height_target}") self._robots.post_reset() # bookkeeping self.resets[env_ids] = 0 def pre_physics_step(self, actions) -> None: # print("running: pre_physics_step") reset_env_ids = self.resets.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset(reset_env_ids) # print("actions: ", actions) forces = torch.zeros((self._robots.count, 6), dtype=torch.float32, device=self._device) forces[:, 0] = self._effort_leg_limit * actions[0] forces[:, 1] = self._effort_leg_limit * actions[1] forces[:, 2] = self._effort_leg_limit * actions[2] forces[:, 3] = self._effort_leg_limit * actions[3] forces[:, 4] = self._effort_wheel_limit * actions[4] forces[:, 5] = self._effort_wheel_limit * actions[5] indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) self._robots.set_joint_efforts(forces, indices=indices, joint_indices=torch.tensor([self._joint1_idx, self._joint2_idx, self._joint6_idx, self._joint7_idx, self._joint4_idx, self._joint9_idx])) def get_observations(self): # print("running: get_observations") positions, orientations = self._robots.get_world_poses() # positions_check = torch.where(positions[:, 2] > 10.0, 1, 0) # if positions_check.item() == 1: # self.reset() # return # if torch.isnan(positions).any() or torch.isnan(orientations).any(): # self.reset() # return # print("positions: ", positions) # print("orientations: ", orientations) angle = self.quaternion_to_euler_zxy(orientations) # print(f"roll_x: {angle[:, 1] * 180 / math.pi}, picth_y: {angle[:, 2] * 180 / math.pi}") if torch.isnan(angle).any(): return # collect joint positions and velocities for observation dof_pos = self._robots.get_joint_positions() dof_vel = self._robots.get_joint_velocities() if torch.isnan(dof_pos).any() or torch.isnan(dof_vel).any(): return joint1_pos = dof_pos[:, self._joint1_idx] joint1_vel = dof_vel[:, self._joint1_idx] joint2_pos = dof_pos[:, self._joint2_idx] joint2_vel = dof_vel[:, self._joint2_idx] joint6_pos = dof_pos[:, self._joint6_idx] joint6_vel = dof_vel[:, self._joint6_idx] joint7_pos = dof_pos[:, self._joint7_idx] joint7_vel = dof_vel[:, self._joint7_idx] joint4_vel = dof_vel[:, self._joint4_idx] joint9_vel = dof_vel[:, self._joint9_idx] self.obs_last = self.obs.clone() self.obs[:, 0] = self._left_wheel_target self.obs[:, 1] = self._right_wheel_target self.obs[:, 2] = self._height_target self.obs[:, 3] = angle[:, 1] self.obs[:, 4] = angle[:, 2] self.obs[:, 5] = joint1_pos self.obs[:, 6] = joint2_pos self.obs[:, 7] = joint6_pos self.obs[:, 8] = joint7_pos self.obs[:, 9] = joint1_vel self.obs[:, 10] = joint2_vel self.obs[:, 11] = joint6_vel self.obs[:, 12] = joint7_vel self.obs[:, 13] = joint4_vel self.obs[:, 14] = joint9_vel # print("obs: ", self.obs) return self.obs def quaternion_to_euler_zxy(self, q): # q = torch.tensor(q) quat = torch.zeros((self._robots.count, 4), dtype=torch.float32, device=self._device) angle = torch.zeros((self._robots.count, 3), dtype=torch.float32, device=self._device) quat[:, 0] = q[:, 0] quat[:, 1] = q[:, 1] quat[:, 2] = q[:, 2] quat[:, 3] = q[:, 3] angle[:, 1] = torch.atan2(2.0 * (quat[:, 0] * quat[:, 1] + quat[:, 2] * quat[:, 3]), 1.0 - 2.0 * (quat[:, 1] * quat[:, 1] + quat[:, 2] * quat[:, 2])) angle[:, 2] = torch.asin(torch.clamp(2.0 * (quat[:, 0] * quat[:, 2] - quat[:, 3] * quat[:, 1]), min=-1.0, max=1.0)) angle[:, 0] = torch.atan2(2.0 * (quat[:, 0] * quat[:, 3] + quat[:, 1] * quat[:, 2]), 1.0 - 2.0 * (quat[:, 2] * quat[:, 2] + quat[:, 3] * quat[:, 3])) # angle = angle * 180 / math.pi return angle def calculate_metrics(self) -> None: # print("running: calculate_metrics") left_wheel_target = self.obs[:, 0] right_wheel_target = self.obs[:, 1] height_target = self.obs[:, 2] # print(f"left_wheel_target: {left_wheel_target}, right_wheel_target: {right_wheel_target}, height_target: {height_target}") roll_x = self.obs[:, 3] pitch_y = self.obs[:, 4] joint1_pos = self.obs[:, 5] joint2_pos = self.obs[:, 6] joint6_pos = self.obs[:, 7] joint7_pos = self.obs[:, 8] joint1_vel = self.obs[:, 9] joint2_vel = self.obs[:, 10] joint6_vel = self.obs[:, 11] joint7_vel = self.obs[:, 12] joint4_vel = self.obs[:, 13] joint9_vel = self.obs[:, 14] # print(f"joint4_vel: {joint4_vel}, joint9_vel: {joint9_vel}") roll_x_last = self.obs_last[:, 3] pitch_y_last = self.obs_last[:, 4] joint1_pos_last = self.obs_last[:, 5] joint2_pos_last = self.obs_last[:, 6] joint6_pos_last = self.obs_last[:, 7] joint7_pos_last = self.obs_last[:, 8] left_height = self.calc_height(joint1_pos, joint2_pos) right_height = self.calc_height(joint6_pos, joint7_pos) height_current = (left_height + right_height) / 2 left_height_last = self.calc_height(joint1_pos_last, joint2_pos_last) right_height_last = self.calc_height(joint6_pos_last, joint7_pos_last) height_last = (left_height_last + right_height_last) / 2 reward_roll_x = -0.8 * torch.abs(roll_x / self._angle_limit + (roll_x - roll_x_last) / self._angle_limit) reward_pitch_y = -0.5 * torch.abs(pitch_y / self._angle_limit + (pitch_y - pitch_y_last) / self._angle_limit) reward_wheel_vel = -0.3 * (torch.abs(left_wheel_target - joint4_vel / self._vel_wheel_limit) + torch.abs(right_wheel_target - joint9_vel / self._vel_wheel_limit)) reward_height = -0.5 * torch.abs(height_target - height_current / (self._height_upper_limit - self._height_lower_limit)) reward = 1.5 + reward_roll_x + reward_pitch_y + reward_wheel_vel + reward_height # print(f"reward: {reward.item()}") if reward.item() > 0.0: self._reward_cnt = self._reward_cnt + int(reward.item() * 10) # print("reward_cnt: ", self._reward_cnt) return reward.item() def calc_height(self, a, b): l1 = 0.075 l2 = 0.15 l3 = 0.27 d = 15 * math.pi / 180 p1 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) p2 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) p3 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) res = torch.zeros((self._robots.count, 1), dtype=torch.float32, device=self._device) a = torch.abs(a) b = torch.abs(b) p1[:, 0] = -l2 * torch.cos(a - d) - l1 p1[:, 1] = l2 * torch.sin(a - d) p2[:, 0] = l2 * torch.cos(b - d) + l1 p2[:, 1] = l2 * torch.sin(b - d) p3[:, 0] = (p1[:, 0] + p2[:, 0]) / 2 p3[:, 1] = (p1[:, 1] + p2[:, 1]) / 2 res[:, 0] = l3 * l3 - torch.pow(p2[:, 0] - p3[:, 0], 2) - torch.pow(p2[:, 1] - p3[:, 1], 2) res[:, 0] = torch.sqrt(res[:, 0] * torch.pow(p2[:, 0]- p1[:, 0], 2) / (torch.pow(p2[:, 0]- p1[:, 0], 2) + torch.pow(p2[:, 1]- p1[:, 1], 2))) return res def is_done(self) -> None: # print("running: is_done") roll_x = self.obs[:, 3] pitch_y = self.obs[:, 4] joint1_pos = self.obs[:, 5] joint2_pos = self.obs[:, 6] joint6_pos = self.obs[:, 7] joint7_pos = self.obs[:, 8] joint1_vel = self.obs[:, 9] joint2_vel = self.obs[:, 10] joint6_vel = self.obs[:, 11] joint7_vel = self.obs[:, 12] joint4_vel = self.obs[:, 13] joint9_vel = self.obs[:, 14] # reset the robot if cart has reached reset_dist or pole is too far from upright resets = torch.where(torch.abs(roll_x) > self._angle_limit, 1, 0) resets = torch.where(torch.abs(pitch_y) > self._angle_limit, 1, resets) resets = torch.where(torch.tensor([self._reward_cnt]) > 1000, 1, resets) if self._reward_cnt > 1000: order = self._orders.pop(0) self._orders.append(order) self._reward_cnt = 0 # print("order: ", order) self.resets = resets # print("resets: ", resets.item()) return resets.item()
19,987
Python
42.546841
201
0.592835
2820207922/isaac_ws/README.md
# Servicer Deployment Guide
27
Markdown
26.999973
27
0.851852
2820207922/isaac_ws/standalone_examples/replicator/amr_navigation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate synthetic data from an AMR navigating to random locations """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import builtins import os import random from itertools import cycle import carb.settings import omni.client import omni.kit.app import omni.replicator.core as rep import omni.timeline import omni.usd from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage from pxr import Gf, PhysxSchema, UsdGeom, UsdLux, UsdPhysics class NavSDGDemo: CARTER_URL = "/Isaac/Samples/Replicator/OmniGraph/nova_carter_nav_only.usd" DOLLY_URL = "/Isaac/Props/Dolly/dolly_physics.usd" PROPS_URL = "/Isaac/Props/YCB/Axis_Aligned_Physics" LEFT_CAMERA_PATH = "/NavWorld/CarterNav/chassis_link/front_hawk/left/camera_left" RIGHT_CAMERA_PATH = "/NavWorld/CarterNav/chassis_link/front_hawk/right/camera_right" def __init__(self): self._carter_chassis = None self._carter_nav_target = None self._dolly = None self._dolly_light = None self._props = [] self._cycled_env_urls = None self._env_interval = 1 self._timeline = None self._timeline_sub = None self._stage_event_sub = None self._stage = None self._trigger_distance = 2.0 self._num_frames = 0 self._frame_counter = 0 self._writer = None self._out_dir = None self._render_products = [] self._use_temp_rp = False self._in_running_state = False def start( self, num_frames=10, out_dir=None, env_urls=[], env_interval=3, use_temp_rp=False, seed=None, ): print(f"[NavSDGDemo] Starting") if seed is not None: random.seed(seed) self._num_frames = num_frames self._out_dir = out_dir if out_dir is not None else os.path.join(os.getcwd(), "_out_nav_sdg_demo") self._cycled_env_urls = cycle(env_urls) self._env_interval = env_interval self._use_temp_rp = use_temp_rp self._frame_counter = 0 self._trigger_distance = 2.0 self._load_env() self._randomize_dolly_pose() self._randomize_dolly_light() self._randomize_prop_poses() self._setup_sdg() self._timeline = omni.timeline.get_timeline_interface() self._timeline.play() self._timeline_sub = self._timeline.get_timeline_event_stream().create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.CURRENT_TIME_TICKED), self._on_timeline_event ) self._stage_event_sub = ( omni.usd.get_context() .get_stage_event_stream() .create_subscription_to_pop_by_type(int(omni.usd.StageEventType.CLOSING), self._on_stage_closing_event) ) self._in_running_state = True def clear(self): self._cycled_env_urls = None self._carter_chassis = None self._carter_nav_target = None self._dolly = None self._dolly_light = None self._timeline = None self._frame_counter = 0 if self._stage_event_sub: self._stage_event_sub.unsubscribe() self._stage_event_sub = None if self._timeline_sub: self._timeline_sub.unsubscribe() self._timeline_sub = None self._destroy_render_products() self._stage = None self._in_running_state = False def is_running(self): return self._in_running_state def _is_running_in_script_editor(self): return builtins.ISAAC_LAUNCHED_FROM_TERMINAL is True def _on_stage_closing_event(self, e: carb.events.IEvent): self.clear() def _load_env(self): # Fresh stage with custom physics scene for carter's navigation create_new_stage() self._stage = omni.usd.get_context().get_stage() self._add_physics_scene() # Environment assets_root_path = get_assets_root_path() add_reference_to_stage(usd_path=assets_root_path + next(self._cycled_env_urls), prim_path="/Environment") # Carter add_reference_to_stage(usd_path=assets_root_path + self.CARTER_URL, prim_path="/NavWorld/CarterNav") self._carter_nav_target = self._stage.GetPrimAtPath("/NavWorld/CarterNav/targetXform") self._carter_chassis = self._stage.GetPrimAtPath("/NavWorld/CarterNav/chassis_link") # Dolly add_reference_to_stage(usd_path=assets_root_path + self.DOLLY_URL, prim_path="/NavWorld/Dolly") self._dolly = self._stage.GetPrimAtPath("/NavWorld/Dolly") if not self._dolly.GetAttribute("xformOp:translate"): UsdGeom.Xformable(self._dolly).AddTranslateOp() if not self._dolly.GetAttribute("xformOp:rotateXYZ"): UsdGeom.Xformable(self._dolly).AddRotateXYZOp() # Light light = UsdLux.SphereLight.Define(self._stage, f"/NavWorld/DollyLight") light.CreateRadiusAttr(0.5) light.CreateIntensityAttr(35000) light.CreateColorAttr(Gf.Vec3f(1.0, 1.0, 1.0)) self._dolly_light = light.GetPrim() if not self._dolly_light.GetAttribute("xformOp:translate"): UsdGeom.Xformable(self._dolly_light).AddTranslateOp() # Props props_urls = [] props_folder_path = assets_root_path + self.PROPS_URL result, entries = omni.client.list(props_folder_path) if result != omni.client.Result.OK: carb.log_error(f"Could not list assets in path: {props_folder_path}") return for entry in entries: _, ext = os.path.splitext(entry.relative_path) if ext == ".usd": props_urls.append(f"{props_folder_path}/{entry.relative_path}") cycled_props_url = cycle(props_urls) for i in range(15): prop_url = next(cycled_props_url) prop_name = os.path.splitext(os.path.basename(prop_url))[0] path = f"/NavWorld/Props/Prop_{prop_name}_{i}" prim = self._stage.DefinePrim(path, "Xform") prim.GetReferences().AddReference(prop_url) self._props.append(prim) def _add_physics_scene(self): # Physics setup specific for the navigation graph physics_scene = UsdPhysics.Scene.Define(self._stage, "/physicsScene") physx_scene = PhysxSchema.PhysxSceneAPI.Apply(self._stage.GetPrimAtPath("/physicsScene")) physx_scene.GetEnableCCDAttr().Set(True) physx_scene.GetEnableGPUDynamicsAttr().Set(False) physx_scene.GetBroadphaseTypeAttr().Set("MBP") def _randomize_dolly_pose(self): min_dist_from_carter = 4 carter_loc = self._carter_chassis.GetAttribute("xformOp:translate").Get() for _ in range(100): x, y = random.uniform(-6, 6), random.uniform(-6, 6) dist = (Gf.Vec2f(x, y) - Gf.Vec2f(carter_loc[0], carter_loc[1])).GetLength() if dist > min_dist_from_carter: self._dolly.GetAttribute("xformOp:translate").Set((x, y, 0)) self._carter_nav_target.GetAttribute("xformOp:translate").Set((x, y, 0)) break self._dolly.GetAttribute("xformOp:rotateXYZ").Set((0, 0, random.uniform(-180, 180))) def _randomize_dolly_light(self): dolly_loc = self._dolly.GetAttribute("xformOp:translate").Get() self._dolly_light.GetAttribute("xformOp:translate").Set(dolly_loc + (0, 0, 2.5)) self._dolly_light.GetAttribute("inputs:color").Set( (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)) ) def _randomize_prop_poses(self): spawn_loc = self._dolly.GetAttribute("xformOp:translate").Get() spawn_loc[2] = spawn_loc[2] + 0.5 for prop in self._props: prop.GetAttribute("xformOp:translate").Set(spawn_loc + (random.uniform(-1, 1), random.uniform(-1, 1), 0)) spawn_loc[2] = spawn_loc[2] + 0.2 def _setup_sdg(self): # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Set camera sensors fStop to 0.0 to get well lit sharp images left_camera_prim = self._stage.GetPrimAtPath(self.LEFT_CAMERA_PATH) left_camera_prim.GetAttribute("fStop").Set(0.0) right_camera_prim = self._stage.GetPrimAtPath(self.RIGHT_CAMERA_PATH) right_camera_prim.GetAttribute("fStop").Set(0.0) self._writer = rep.WriterRegistry.get("BasicWriter") self._writer.initialize(output_dir=self._out_dir, rgb=True) # If no temporary render products are requested, create them once here and destroy them only at the end if not self._use_temp_rp: self._setup_render_products() def _setup_render_products(self): print(f"[NavSDGDemo] Creating render products") rp_left = rep.create.render_product( self.LEFT_CAMERA_PATH, (512, 512), name="left_sensor", force_new=True, ) rp_right = rep.create.render_product( self.RIGHT_CAMERA_PATH, (512, 512), name="right_sensor", force_new=True, ) self._render_products = [rp_left, rp_right] self._writer.attach(self._render_products) rep.orchestrator.preview() def _destroy_render_products(self): print(f"[NavSDGDemo] Destroying render products") if self._writer: self._writer.detach() for rp in self._render_products: rp.destroy() self._render_products.clear() if self._stage.GetPrimAtPath("/Replicator"): omni.kit.commands.execute("DeletePrimsCommand", paths=["/Replicator"]) def _run_sdg(self): if self._use_temp_rp: self._setup_render_products() rep.orchestrator.step(rt_subframes=16, pause_timeline=False) rep.orchestrator.wait_until_complete() if self._use_temp_rp: self._destroy_render_products() async def _run_sdg_async(self): if self._use_temp_rp: self._setup_render_products() await rep.orchestrator.step_async(rt_subframes=16, pause_timeline=False) await rep.orchestrator.wait_until_complete_async() if self._use_temp_rp: self._destroy_render_products() def _load_next_env(self): if self._stage.GetPrimAtPath("/Environment"): omni.kit.commands.execute("DeletePrimsCommand", paths=["/Environment"]) assets_root_path = get_assets_root_path() add_reference_to_stage(usd_path=assets_root_path + next(self._cycled_env_urls), prim_path="/Environment") def _on_sdg_done(self, task): self._setup_next_frame() def _setup_next_frame(self): self._frame_counter += 1 if self._frame_counter >= self._num_frames: print(f"[NavSDGDemo] Finished") self.clear() return self._randomize_dolly_pose() self._randomize_dolly_light() self._randomize_prop_poses() if self._frame_counter % self._env_interval == 0: self._load_next_env() # Set a new random distance from which to take capture the next frame self._trigger_distance = random.uniform(1.75, 2.5) self._timeline.play() self._timeline_sub = self._timeline.get_timeline_event_stream().create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.CURRENT_TIME_TICKED), self._on_timeline_event ) def _on_timeline_event(self, e: carb.events.IEvent): carter_loc = self._carter_chassis.GetAttribute("xformOp:translate").Get() dolly_loc = self._dolly.GetAttribute("xformOp:translate").Get() dist = (Gf.Vec2f(dolly_loc[0], dolly_loc[1]) - Gf.Vec2f(carter_loc[0], carter_loc[1])).GetLength() if dist < self._trigger_distance: print(f"[NavSDGDemo] Capturing frame no. {self._frame_counter}") self._timeline.pause() self._timeline_sub.unsubscribe() if self._is_running_in_script_editor(): import asyncio task = asyncio.ensure_future(self._run_sdg_async()) task.add_done_callback(self._on_sdg_done) else: self._run_sdg() self._setup_next_frame() ENV_URLS = [ "/Isaac/Environments/Grid/default_environment.usd", "/Isaac/Environments/Simple_Warehouse/warehouse.usd", "/Isaac/Environments/Grid/gridroom_black.usd", ] parser = argparse.ArgumentParser() parser.add_argument("--use_temp_rp", action="store_true", help="Create and destroy render products for each SDG frame") parser.add_argument("--num_frames", type=int, default=9, help="The number of frames to capture") parser.add_argument("--env_interval", type=int, default=3, help="Interval at which to change the environments") args, unknown = parser.parse_known_args() out_dir = os.path.join(os.getcwd(), "_out_nav_sdg_demo", "") nav_demo = NavSDGDemo() nav_demo.start( num_frames=args.num_frames, out_dir=out_dir, env_urls=ENV_URLS, env_interval=args.env_interval, use_temp_rp=args.use_temp_rp, seed=124, ) while simulation_app.is_running() and nav_demo.is_running(): simulation_app.update() simulation_app.close()
14,064
Python
39.768116
119
0.630475
2820207922/isaac_ws/standalone_examples/replicator/online_generation/generate_shapenet.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Dataset with online randomized scene generation for Instance Segmentation training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by adding assets from the user-specified classes with randomized pose and colour. The camera position is also randomized before capturing groundtruth consisting of an RGB rendered image, Tight 2D Bounding Boxes and Instance Segmentation masks. """ import glob import os import signal import sys import carb import numpy as np import torch from omni.isaac.kit import SimulationApp LABEL_TO_SYNSET = { "table": "04379243", "monitor": "03211117", "phone": "04401088", "watercraft": "04530566", "chair": "03001627", "lamp": "03636649", "speaker": "03691459", "bench": "02828884", "plane": "02691156", "bathtub": "02808440", "bookcase": "02871439", "bag": "02773838", "basket": "02801938", "bowl": "02880940", "bus": "02924116", "cabinet": "02933112", "camera": "02942699", "car": "02958343", "dishwasher": "03207941", "file": "03337140", "knife": "03624134", "laptop": "03642806", "mailbox": "03710193", "microwave": "03761084", "piano": "03928116", "pillow": "03938244", "pistol": "03948459", "printer": "04004475", "rocket": "04099429", "sofa": "04256520", "washer": "04554684", "rifle": "04090263", "can": "02946921", "bottle": "02876657", "bowl": "02880940", "earphone": "03261776", "mug": "03797390", } SYNSET_TO_LABEL = {v: k for k, v in LABEL_TO_SYNSET.items()} # Setup default variables RESOLUTION = (1024, 1024) OBJ_LOC_MIN = (-50, 5, -50) OBJ_LOC_MAX = (50, 5, 50) CAM_LOC_MIN = (100, 0, -100) CAM_LOC_MAX = (100, 100, 100) SCALE_MIN = 15 SCALE_MAX = 40 # Default rendering parameters RENDER_CONFIG = {"headless": False} class RandomObjects(torch.utils.data.IterableDataset): """Dataset of random ShapeNet objects. Objects are randomly chosen from selected categories and are positioned, rotated and coloured randomly in an empty room. RGB, BoundingBox2DTight and Instance Segmentation are captured by moving a camera aimed at the centre of the scene which is positioned at random at a fixed distance from the centre. This dataset is intended for use with ShapeNet but will function with any dataset of USD models structured as `root/category/**/*.usd. One note is that this is designed for assets without materials attached. This is to avoid requiring to compile MDLs and load textures while training. Args: categories (tuple of str): Tuple or list of categories. For ShapeNet, these will be the synset IDs. max_asset_size (int): Maximum asset file size that will be loaded. This prevents out of memory errors due to loading large meshes. num_assets_min (int): Minimum number of assets populated in the scene. num_assets_max (int): Maximum number of assets populated in the scene. split (float): Fraction of the USDs found to use for training. train (bool): If true, use the first training split and generate infinite random scenes. """ def __init__( self, root, categories, max_asset_size=None, num_assets_min=3, num_assets_max=5, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = SimulationApp(RENDER_CONFIG) import omni.replicator.core as rep import warp as wp self.rep = rep self.wp = wp from omni.isaac.core.utils.nucleus import get_assets_root_path self.assets_root_path = get_assets_root_path() if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet category_ids = [LABEL_TO_SYNSET.get(c, c) for c in categories] self.categories = category_ids self.range_num_assets = (num_assets_min, max(num_assets_min, num_assets_max)) try: self.references = self._find_usd_assets(root, category_ids, max_asset_size, split, train) except ValueError as err: carb.log_error(str(err)) self.kit.close() sys.exit() # Setup the scene, lights, walls, camera, etc. self.setup_scene() # Setup replicator randomizer graph self.setup_replicator() self.cur_idx = 0 self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) def _get_textures(self): return [ self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/checkered.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def close(self): self.rep.orchestrator.stop() self.kit.close() def setup_scene(self): from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import set_stage_up_axis """Setup lights, walls, floor, ceiling and camera""" # Set stage up axis to Y-up set_stage_up_axis("y") # In a practical setting, the room parameters should attempt to match those of the # target domain. Here, we instead opt for simplicity. create_prim("/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]}) create_prim( "/World/Ground", "Cylinder", position=np.array([0.0, -0.5, 0.0]), orientation=euler_angles_to_quat(np.array([90.0, 0.0, 0.0]), degrees=True), attributes={"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]}, ) create_prim("/World/Asset", "Xform") self.camera = self.rep.create.camera() self.render_product = self.rep.create.render_product(self.camera, RESOLUTION) # Setup annotators that will report groundtruth self.rgb = self.rep.AnnotatorRegistry.get_annotator("rgb") self.bbox_2d_tight = self.rep.AnnotatorRegistry.get_annotator("bounding_box_2d_tight") self.instance_seg = self.rep.AnnotatorRegistry.get_annotator("instance_segmentation") self.rgb.attach(self.render_product) self.bbox_2d_tight.attach(self.render_product) self.instance_seg.attach(self.render_product) self.kit.update() def _find_usd_assets(self, root, categories, max_asset_size, split, train=True): """Look for USD files under root/category for each category specified. For each category, generate a list of all USD files found and select assets up to split * len(num_assets) if `train=True`, otherwise select the remainder. """ references = {} for category in categories: all_assets = glob.glob(os.path.join(root, category, "*/*.usd"), recursive=True) print(os.path.join(root, category, "*/*.usd")) # Filter out large files (which can prevent OOM errors during training) if max_asset_size is None: assets_filtered = all_assets else: assets_filtered = [] for a in all_assets: if os.stat(a).st_size > max_asset_size * 1e6: print(f"{a} skipped as it exceeded the max size {max_asset_size} MB.") else: assets_filtered.append(a) num_assets = len(assets_filtered) if num_assets == 0: raise ValueError(f"No USDs found for category {category} under max size {max_asset_size} MB.") if train: references[category] = assets_filtered[: int(num_assets * split)] else: references[category] = assets_filtered[int(num_assets * split) :] return references def _instantiate_category(self, category, references): with self.rep.randomizer.instantiate(references, size=1, mode="reference"): self.rep.modify.semantics([("class", category)]) self.rep.modify.pose( position=self.rep.distribution.uniform(OBJ_LOC_MIN, OBJ_LOC_MAX), rotation=self.rep.distribution.uniform((0, -180, 0), (0, 180, 0)), scale=self.rep.distribution.uniform(SCALE_MIN, SCALE_MAX), ) self.rep.randomizer.texture(self._get_textures(), project_uvw=True) def setup_replicator(self): """Setup the replicator graph with various attributes.""" # Create two sphere lights light1 = self.rep.create.light(light_type="sphere", position=(-450, 350, 350), scale=100, intensity=30000.0) light2 = self.rep.create.light(light_type="sphere", position=(450, 350, 350), scale=100, intensity=30000.0) with self.rep.new_layer(): with self.rep.trigger.on_frame(): # Randomize light colors with self.rep.create.group([light1, light2]): self.rep.modify.attribute("color", self.rep.distribution.uniform((0.1, 0.1, 0.1), (1.0, 1.0, 1.0))) # Randomize camera position with self.camera: self.rep.modify.pose( position=self.rep.distribution.uniform(CAM_LOC_MIN, CAM_LOC_MAX), look_at=(0, 0, 0) ) # Randomize asset positions and textures for category, references in self.references.items(): self._instantiate_category(category, references) # Run replicator for a single iteration without triggering any writes self.rep.orchestrator.preview() def __iter__(self): return self def __next__(self): # Step - trigger a randomization and a render self.rep.orchestrator.step(rt_subframes=4) # Collect Groundtruth gt = { "rgb": self.rgb.get_data(device="cuda"), "boundingBox2DTight": self.bbox_2d_tight.get_data(device="cpu"), "instanceSegmentation": self.instance_seg.get_data(device="cuda"), } # RGB # Drop alpha channel image = self.wp.to_torch(gt["rgb"])[..., :3] # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"]["data"] # Create mapping from categories to index bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist(), device="cuda") id_to_labels = gt["boundingBox2DTight"]["info"]["idToLabels"] prim_paths = gt["boundingBox2DTight"]["info"]["primPaths"] # For each bounding box, map semantic label to label index cat_to_id = {cat: i + 1 for i, cat in enumerate(self.categories)} semantic_labels_mapping = {int(k): v.get("class", "") for k, v in id_to_labels.items()} semantic_labels = [cat_to_id[semantic_labels_mapping[i]] for i in gt_bbox["semanticId"]] labels = torch.tensor(semantic_labels, device="cuda") # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Identify invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) # Instance Segmentation instance_data = self.wp.to_torch(gt["instanceSegmentation"]["data"].view(self.wp.int32)).squeeze() path_to_instance_id = {v: int(k) for k, v in gt["instanceSegmentation"]["info"]["idToLabels"].items()} instance_list = [im[0] for im in gt_bbox] masks = torch.zeros((len(instance_list), *instance_data.shape), dtype=bool, device="cuda") # Filter for the mask of each object for i, prim_path in enumerate(prim_paths): # Merge child instances of prim_path as one instance for instance in path_to_instance_id: if prim_path in instance: masks[i] += torch.isin(instance_data, path_to_instance_id[instance]) target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "masks": masks[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import struct import matplotlib.pyplot as plt parser = argparse.ArgumentParser("Dataset test") parser.add_argument("--categories", type=str, nargs="+", required=True, help="List of object classes to use") parser.add_argument( "--max_asset_size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument( "--num_test_images", type=int, default=10, help="number of test images to generate when executing main" ) parser.add_argument( "--root", type=str, default=None, help="Root directory containing USDs. If not specified, use {SHAPENET_LOCAL_DIR}_mat as root.", ) args, unknown_args = parser.parse_known_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _mat suffix as root if args.root is None: if "SHAPENET_LOCAL_DIR" in os.environ: shapenet_local_dir = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_mat" if os.path.exists(shapenet_local_dir): args.root = shapenet_local_dir if args.root is None: print( "root argument not specified and SHAPENET_LOCAL_DIR environment variable was not set or the path did not exist" ) exit() dataset = RandomObjects(args.root, args.categories, max_asset_size=args.max_asset_size) from omni.replicator.core import random_colours categories = [LABEL_TO_SYNSET.get(c, c) for c in args.categories] # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() # Directory to save the example images to out_dir = os.path.join(os.getcwd(), "_out_gen_imgs", "") os.makedirs(out_dir, exist_ok=True) image_num = 0 for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) # Create random colors for each instance as rgb float lists colours = random_colours(num_instances, num_channels=3) colours = colours.astype(float) / 255.0 colours = colours.tolist() overlay = np.zeros_like(np_image) for mask, colour in zip(target["masks"].cpu().numpy(), colours): overlay[mask, :3] = colour axes[1].imshow(overlay) mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [SYNSET_TO_LABEL[mapping[label.item()]] for label in target["labels"]] for bb, label, colour in zip(target["boxes"].tolist(), labels, colours): maxint = 2 ** (struct.Struct("i").size * 8 - 1) - 1 # if a bbox is not visible, do not draw if bb[0] != maxint and bb[1] != maxint: x = bb[0] y = bb[1] w = bb[2] - x h = bb[3] - y box = plt.Rectangle((x, y), w, h, fill=False, edgecolor=colour) ax.add_patch(box) ax.text(bb[0], bb[1], label, fontdict={"family": "sans-serif", "color": colour, "size": 10}) plt.draw() plt.pause(0.01) fig_name = os.path.join(out_dir, f"domain_randomization_test_image_{image_num}.png") plt.savefig(fig_name) image_num += 1 if dataset.exiting or (image_num >= args.num_test_images): break # cleanup dataset.close()
17,377
Python
39.226852
127
0.61449
2820207922/isaac_ws/standalone_examples/replicator/online_generation/train_shapenet.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Instance Segmentation Training Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [Mask-RCNN](https://arxiv.org/abs/1703.06870) model. """ import os import signal import matplotlib.pyplot as plt import numpy as np from generate_shapenet import LABEL_TO_SYNSET, SYNSET_TO_LABEL, RandomObjects def main(args): device = "cuda" train_set = RandomObjects( args.root, args.categories, num_assets_min=3, num_assets_max=5, max_asset_size=args.max_asset_size ) def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) import struct import torch import torchvision from omni.replicator.core import random_colours from torch.utils.data import DataLoader # Setup data train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) # Setup Model model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights=None, num_classes=1 + len(args.categories)) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) # Directory to save the train images to out_dir = os.path.join(os.getcwd(), "_out_train_imgs", "") os.makedirs(out_dir, exist_ok=True) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.close() break model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 mask_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: fig.suptitle(f"Iteration {i:05}", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) # Create random colors for each instance as rgb float lists colours = random_colours(num_instances, num_channels=3) colours = colours.astype(float) / 255.0 colours = colours.tolist() overlay = np.zeros_like(np_image) for mask, colour in zip(pred["masks"], colours): overlay[mask.squeeze().cpu().numpy() > mask_thresh, :3] = colour axes[1].imshow(overlay, alpha=0.5) # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet args.categories = [LABEL_TO_SYNSET.get(c, c) for c in args.categories] mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [SYNSET_TO_LABEL[mapping[label.item()]] for label in pred["labels"]] for bb, label, colour in zip(pred["boxes"].cpu().numpy(), labels, colours): maxint = 2 ** (struct.Struct("i").size * 8 - 1) - 1 # if a bbox is not visible, do not draw if bb[0] != maxint and bb[1] != maxint: x = bb[0] y = bb[1] w = bb[2] - x h = bb[3] - y box = plt.Rectangle((x, y), w, h, fill=False, edgecolor=colour) ax.add_patch(box) ax.text(bb[0], bb[1], label, fontdict={"family": "sans-serif", "color": colour, "size": 10}) plt.draw() fig_name = os.path.join(out_dir, f"train_image_{i}.png") plt.savefig(fig_name) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument( "--root", type=str, default=None, help="Root directory containing ShapeNet USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) parser.add_argument( "--categories", type=str, nargs="+", required=True, help="List of ShapeNet categories to use (space seperated)." ) parser.add_argument( "--max_asset_size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max_iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted masks during training.") args, unknown_args = parser.parse_known_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: if "SHAPENET_LOCAL_DIR" in os.environ: shapenet_local_dir = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" if os.path.exists(shapenet_local_dir): args.root = shapenet_local_dir if args.root is None: print( "root argument not specified and SHAPENET_LOCAL_DIR environment variable was not set or the path did not exist" ) exit() main(args)
6,668
Python
37.549133
127
0.586083
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/offline_generation_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import random import numpy as np import omni import omni.replicator.core as rep from omni.isaac.core import World from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils import prims from omni.isaac.core.utils.bounds import compute_combined_aabb, compute_obb, create_bbox_cache, get_obb_corners from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles from omni.isaac.core.utils.semantics import remove_all_semantics from pxr import Gf # Clear any previous semantic data in the stage def remove_previous_semantics(stage, recursive: bool = False): prims = stage.Traverse() for prim in prims: remove_all_semantics(prim, recursive) # Run a simulation def simulate_falling_objects(forklift_prim, assets_root_path, config, max_sim_steps=250, num_boxes=8): # Create the isaac sim world to run any physics simulations world = World(physics_dt=1.0 / 90.0, stage_units_in_meters=1.0) # Set a random relative offset to the pallet using the forklift transform as a base frame forklift_tf = omni.usd.get_world_transform_matrix(forklift_prim) pallet_offset_tf = Gf.Matrix4d().SetTranslate(Gf.Vec3d(random.uniform(-1, 1), random.uniform(-4, -3.6), 0)) pallet_pos = (pallet_offset_tf * forklift_tf).ExtractTranslation() # Spawn pallet prim at a relative random offset to the forklift pallet_prim_name = "SimulatedPallet" pallet_prim = prims.create_prim( prim_path=f"/World/{pallet_prim_name}", usd_path=assets_root_path + config["pallet"]["url"], semantic_label=config["pallet"]["class"], translation=pallet_pos, orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), ) # Wrap the pallet as a simulation ready rigid prim a pallet_rigid_prim = RigidPrim(prim_path=str(pallet_prim.GetPrimPath()), name=pallet_prim_name) # Enable physics and add to isaacsim world scene pallet_rigid_prim.enable_rigid_body_physics() world.scene.add(pallet_rigid_prim) # Use the height of the pallet as a spawn base for the boxes bb_cache = create_bbox_cache() spawn_height = bb_cache.ComputeLocalBound(pallet_prim).GetRange().GetSize()[2] * 1.1 # Spawn boxes falling on the pallet for i in range(num_boxes): # Spawn box prim cardbox_prim_name = f"SimulatedCardbox_{i}" box_prim = prims.create_prim( prim_path=f"/World/{cardbox_prim_name}", usd_path=assets_root_path + config["cardbox"]["url"], semantic_label=config["cardbox"]["class"], ) # Get the next spawn height for the box spawn_height += bb_cache.ComputeLocalBound(box_prim).GetRange().GetSize()[2] * 1.1 # Wrap the cardbox prim into a rigid prim to be able to simulate it box_rigid_prim = RigidPrim( prim_path=str(box_prim.GetPrimPath()), name=cardbox_prim_name, position=pallet_pos + Gf.Vec3d(random.uniform(-0.2, 0.2), random.uniform(-0.2, 0.2), spawn_height), orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), ) # Make sure physics are enabled on the rigid prim box_rigid_prim.enable_rigid_body_physics() # Register rigid prim with the scene world.scene.add(box_rigid_prim) # Reset the world to handle the physics of the newly created rigid prims world.reset() # Simulate the world for the given number of steps or until the highest box stops moving last_box = world.scene.get_object(f"SimulatedCardbox_{num_boxes - 1}") for i in range(max_sim_steps): world.step(render=False) if last_box and np.linalg.norm(last_box.get_linear_velocity()) < 0.001: print(f"Falling objects simulation finished at step {i}..") break # Register the boxes and materials randomizer graph def register_scatter_boxes(pallet_prim, assets_root_path, config): # Calculate the bounds of the prim to create a scatter plane of its size bb_cache = create_bbox_cache() bbox3d_gf = bb_cache.ComputeLocalBound(pallet_prim) prim_tf_gf = omni.usd.get_world_transform_matrix(pallet_prim) # Calculate the bounds of the prim bbox3d_gf.Transform(prim_tf_gf) range_size = bbox3d_gf.GetRange().GetSize() # Get the quaterion of the prim in xyzw format from usd prim_quat_gf = prim_tf_gf.ExtractRotation().GetQuaternion() prim_quat_xyzw = (prim_quat_gf.GetReal(), *prim_quat_gf.GetImaginary()) # Create a plane on the pallet to scatter the boxes on plane_scale = (range_size[0] * 0.8, range_size[1] * 0.8, 1) plane_pos_gf = prim_tf_gf.ExtractTranslation() + Gf.Vec3d(0, 0, range_size[2]) plane_rot_euler_deg = quat_to_euler_angles(np.array(prim_quat_xyzw), degrees=True) scatter_plane = rep.create.plane( scale=plane_scale, position=plane_pos_gf, rotation=plane_rot_euler_deg, visible=False ) cardbox_mats = [ f"{assets_root_path}/Isaac/Environments/Simple_Warehouse/Materials/MI_PaperNotes_01.mdl", f"{assets_root_path}/Isaac/Environments/Simple_Warehouse/Materials/MI_CardBoxB_05.mdl", ] def scatter_boxes(): cardboxes = rep.create.from_usd( assets_root_path + config["cardbox"]["url"], semantics=[("class", config["cardbox"]["class"])], count=5 ) with cardboxes: rep.randomizer.scatter_2d(scatter_plane, check_for_collisions=True) rep.randomizer.materials(cardbox_mats) return cardboxes.node rep.randomizer.register(scatter_boxes) # Register the place cones randomizer graph def register_cone_placement(forklift_prim, assets_root_path, config): # Get the bottom corners of the oriented bounding box (OBB) of the forklift bb_cache = create_bbox_cache() centroid, axes, half_extent = compute_obb(bb_cache, forklift_prim.GetPrimPath()) larger_xy_extent = (half_extent[0] * 1.3, half_extent[1] * 1.3, half_extent[2]) obb_corners = get_obb_corners(centroid, axes, larger_xy_extent) bottom_corners = [ obb_corners[0].tolist(), obb_corners[2].tolist(), obb_corners[4].tolist(), obb_corners[6].tolist(), ] # Orient the cone using the OBB (Oriented Bounding Box) obb_quat = Gf.Matrix3d(axes).ExtractRotation().GetQuaternion() obb_quat_xyzw = (obb_quat.GetReal(), *obb_quat.GetImaginary()) obb_euler = quat_to_euler_angles(np.array(obb_quat_xyzw), degrees=True) def place_cones(): cones = rep.create.from_usd( assets_root_path + config["cone"]["url"], semantics=[("class", config["cone"]["class"])] ) with cones: rep.modify.pose(position=rep.distribution.sequence(bottom_corners), rotation_z=obb_euler[2]) return cones.node rep.randomizer.register(place_cones) # Register light randomization graph def register_lights_placement(forklift_prim, pallet_prim): bb_cache = create_bbox_cache() combined_range_arr = compute_combined_aabb(bb_cache, [forklift_prim.GetPrimPath(), pallet_prim.GetPrimPath()]) pos_min = (combined_range_arr[0], combined_range_arr[1], 6) pos_max = (combined_range_arr[3], combined_range_arr[4], 7) def randomize_lights(): lights = rep.create.light( light_type="Sphere", color=rep.distribution.uniform((0.2, 0.1, 0.1), (0.9, 0.8, 0.8)), intensity=rep.distribution.uniform(500, 2000), position=rep.distribution.uniform(pos_min, pos_max), scale=rep.distribution.uniform(5, 10), count=3, ) return lights.node rep.randomizer.register(randomize_lights)
8,124
Python
41.763158
115
0.679468
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/offline_generation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset """ import argparse import json import math import os import random import carb import yaml from omni.isaac.kit import SimulationApp # Default config (will be updated/extended by any other passed config arguments) config = { "launch_config": { "renderer": "RayTracedLighting", "headless": False, }, "resolution": [1024, 1024], "rt_subframes": 2, "num_frames": 20, "env_url": "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "scope_name": "/MyScope", "writer": "BasicWriter", "writer_config": { "output_dir": "_out_offline_generation", "rgb": True, "bounding_box_2d_tight": True, "semantic_segmentation": True, "distance_to_image_plane": True, "bounding_box_3d": True, "occlusion": True, }, "clear_previous_semantics": True, "forklift": { "url": "/Isaac/Props/Forklift/forklift.usd", "class": "Forklift", }, "cone": { "url": "/Isaac/Environments/Simple_Warehouse/Props/S_TrafficCone.usd", "class": "TrafficCone", }, "pallet": { "url": "/Isaac/Environments/Simple_Warehouse/Props/SM_PaletteA_01.usd", "class": "Pallet", }, "cardbox": { "url": "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxD_04.usd", "class": "Cardbox", }, } # Check if there are any config files (yaml or json) are passed as arguments parser = argparse.ArgumentParser() parser.add_argument("--config", required=False, help="Include specific config parameters (json or yaml))") args, unknown = parser.parse_known_args() args_config = {} if args.config and os.path.isfile(args.config): print("File exist") with open(args.config, "r") as f: if args.config.endswith(".json"): args_config = json.load(f) elif args.config.endswith(".yaml"): args_config = yaml.safe_load(f) else: carb.log_warn(f"File {args.config} is not json or yaml, will use default config") else: print(f"File {args.config} does not exist, will use default config") carb.log_warn(f"File {args.config} does not exist, will use default config") # If there are specific writer parameters in the input config file make sure they are not mixed with the default ones if "writer_config" in args_config: config["writer_config"].clear() # Update the default config dictionay with any new parameters or values from the config file config.update(args_config) # Create the simulation app with the given launch_config simulation_app = SimulationApp(launch_config=config["launch_config"]) import offline_generation_utils # Late import of runtime modules (the SimulationApp needs to be created before loading the modules) import omni.replicator.core as rep import omni.usd from omni.isaac.core.utils import prims from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import get_current_stage, open_stage from pxr import Gf # Get server path assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not get nucleus server path, closing application..") simulation_app.close() # Open the given environment in a new stage print(f"Loading Stage {config['env_url']}") if not open_stage(assets_root_path + config["env_url"]): carb.log_error(f"Could not open stage{config['env_url']}, closing application..") simulation_app.close() # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) if config["clear_previous_semantics"]: stage = get_current_stage() offline_generation_utils.remove_previous_semantics(stage) # Spawn a new forklift at a random pose forklift_prim = prims.create_prim( prim_path="/World/Forklift", position=(random.uniform(-20, -2), random.uniform(-1, 3), 0), orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), usd_path=assets_root_path + config["forklift"]["url"], semantic_label=config["forklift"]["class"], ) # Spawn the pallet in front of the forklift with a random offset on the Y (pallet's forward) axis forklift_tf = omni.usd.get_world_transform_matrix(forklift_prim) pallet_offset_tf = Gf.Matrix4d().SetTranslate(Gf.Vec3d(0, random.uniform(-1.2, -1.8), 0)) pallet_pos_gf = (pallet_offset_tf * forklift_tf).ExtractTranslation() forklift_quat_gf = forklift_tf.ExtractRotationQuat() forklift_quat_xyzw = (forklift_quat_gf.GetReal(), *forklift_quat_gf.GetImaginary()) pallet_prim = prims.create_prim( prim_path="/World/Pallet", position=pallet_pos_gf, orientation=forklift_quat_xyzw, usd_path=assets_root_path + config["pallet"]["url"], semantic_label=config["pallet"]["class"], ) # Register randomizers graphs offline_generation_utils.register_scatter_boxes(pallet_prim, assets_root_path, config) offline_generation_utils.register_cone_placement(forklift_prim, assets_root_path, config) offline_generation_utils.register_lights_placement(forklift_prim, pallet_prim) # Spawn a camera in the driver's location looking at the pallet foklift_pos_gf = forklift_tf.ExtractTranslation() driver_cam_pos_gf = foklift_pos_gf + Gf.Vec3d(0.0, 0.0, 1.9) driver_cam = rep.create.camera( focus_distance=400.0, focal_length=24.0, clipping_range=(0.1, 10000000.0), name="DriverCam" ) # Camera looking at the pallet pallet_cam = rep.create.camera(name="PalletCam") # Camera looking at the forklift from a top view with large min clipping to see the scene through the ceiling top_view_cam = rep.create.camera(clipping_range=(6.0, 1000000.0), name="TopCam") # Generate graph nodes to be triggered every frame with rep.trigger.on_frame(): rep.randomizer.scatter_boxes() rep.randomizer.place_cones() rep.randomizer.randomize_lights() pallet_cam_min = (pallet_pos_gf[0] - 2, pallet_pos_gf[1] - 2, 2) pallet_cam_max = (pallet_pos_gf[0] + 2, pallet_pos_gf[1] + 2, 4) with pallet_cam: rep.modify.pose( position=rep.distribution.uniform(pallet_cam_min, pallet_cam_max), look_at=str(pallet_prim.GetPrimPath()), ) driver_cam_min = (driver_cam_pos_gf[0], driver_cam_pos_gf[1], driver_cam_pos_gf[2] - 0.25) driver_cam_max = (driver_cam_pos_gf[0], driver_cam_pos_gf[1], driver_cam_pos_gf[2] + 0.25) with driver_cam: rep.modify.pose( position=rep.distribution.uniform(driver_cam_min, driver_cam_max), look_at=str(pallet_prim.GetPrimPath()), ) # Generate graph nodes to be triggered only at the given interval with rep.trigger.on_frame(interval=4): top_view_cam_min = (foklift_pos_gf[0], foklift_pos_gf[1], 9) top_view_cam_max = (foklift_pos_gf[0], foklift_pos_gf[1], 11) with top_view_cam: rep.modify.pose( position=rep.distribution.uniform(top_view_cam_min, top_view_cam_max), rotation=rep.distribution.uniform((0, -90, -30), (0, -90, 30)), ) # If output directory is relative, set it relative to the current working directory if config["writer_config"]["output_dir"] and not os.path.isabs(config["writer_config"]["output_dir"]): config["writer_config"]["output_dir"] = os.path.join(os.getcwd(), config["writer_config"]["output_dir"]) print(f"Output directory={config['writer_config']['output_dir']}") # Setup the writer writer = rep.WriterRegistry.get(config["writer"]) writer.initialize(**config["writer_config"]) forklift_rp = rep.create.render_product(top_view_cam, config["resolution"], name="TopView") driver_rp = rep.create.render_product(driver_cam, config["resolution"], name="DriverView") pallet_rp = rep.create.render_product(pallet_cam, config["resolution"], name="PalletView") writer.attach([forklift_rp, driver_rp, pallet_rp]) # Run a simulation before generating data offline_generation_utils.simulate_falling_objects(forklift_prim, assets_root_path, config) # Increase subframes if materials are not loaded on time or ghosting rendering artifacts appear on quickly moving objects, # see: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/subframes_examples.html if config["rt_subframes"] > 1: rep.settings.carb_settings("/omni/replicator/RTSubframes", config["rt_subframes"]) else: carb.log_warn("RTSubframes is set to 1, consider increasing it if materials are not loaded on time") # Run the SDG rep.orchestrator.run_until_complete(num_frames=config["num_frames"]) simulation_app.close()
9,138
Python
39.799107
122
0.706281
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/config/config_kitti_writer.yaml
launch_config: renderer: RayTracedLighting headless: true resolution: [512, 512] num_frames: 5 clear_previous_semantics: false writer: KittiWriter writer_config: output_dir: _out_kitti colorize_instance_segmentation: true
229
YAML
21.999998
38
0.786026
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/config/config_basic_writer.yaml
launch_config: renderer: RayTracedLighting headless: false resolution: [512, 512] env_url: "/Isaac/Environments/Grid/default_environment.usd" rt_subframes: 32 writer: BasicWriter writer_config: output_dir: _out_basicwriter rgb: true
240
YAML
23.099998
59
0.775
2820207922/isaac_ws/standalone_examples/replicator/augmentation/annotator_augmentation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate augmented synthetic data from annotators """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import os import time import carb.settings import numpy as np import omni.replicator.core as rep import warp as wp from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import open_stage from PIL import Image parser = argparse.ArgumentParser() parser.add_argument("--num_frames", type=int, default=25, help="The number of frames to capture") parser.add_argument("--use_warp", action="store_true", help="Use warp augmentations instead of numpy") args, unknown = parser.parse_known_args() NUM_FRAMES = args.num_frames USE_WARP = args.use_warp ENV_URL = "/Isaac/Environments/Grid/default_environment.usd" # Enable scripts carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True) # Illustrative augmentation switching red and blue channels in rgb data using numpy (CPU) and warp (GPU) def rgb_to_bgr_np(data_in): data_in[:, :, [0, 2]] = data_in[:, :, [2, 0]] return data_in @wp.kernel def rgb_to_bgr_wp(data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8)): i, j = wp.tid() data_out[i, j, 0] = data_in[i, j, 2] data_out[i, j, 1] = data_in[i, j, 1] data_out[i, j, 2] = data_in[i, j, 0] data_out[i, j, 3] = data_in[i, j, 3] # Gaussian noise augmentation on depth data in numpy (CPU) and warp (GPU) def gaussian_noise_depth_np(data_in, sigma: float, seed: int): np.random.seed(seed) return data_in + np.random.randn(*data_in.shape) * sigma rep.AnnotatorRegistry.register_augmentation( "gn_depth_np", rep.annotators.Augmentation.from_function(gaussian_noise_depth_np, sigma=0.1, seed=None) ) @wp.kernel def gaussian_noise_depth_wp( data_in: wp.array2d(dtype=wp.float32), data_out: wp.array2d(dtype=wp.float32), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j] = data_in[i, j] + sigma * wp.randn(state) rep.AnnotatorRegistry.register_augmentation( "gn_depth_wp", rep.annotators.Augmentation.from_function(gaussian_noise_depth_wp, sigma=0.1, seed=None) ) # Helper functions for writing images from annotator data def write_rgb(data, path): rgb_img = Image.fromarray(data, mode="RGBA") rgb_img.save(path + ".png") def write_depth(data, path): # Convert to numpy (if warp), normalize, handle any nan values, and convert to from float32 to 8-bit int array if isinstance(data, wp.array): data = data.numpy() # Replace any -inf and inf values with nan, then calculate the mean value and replace nan with the mean data[np.isinf(data)] = np.nan data = np.nan_to_num(data, nan=np.nanmean(data), copy=False) normalized_array = (data - np.min(data)) / (np.max(data) - np.min(data)) integer_array = (normalized_array * 255).astype(np.uint8) depth_img = Image.fromarray(integer_array, mode="L") depth_img.save(path + ".png") # Setup the environment assets_root_path = get_assets_root_path() open_stage(assets_root_path + ENV_URL) # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Create a red cube and a render product from a camera looking at the cube from the top red_mat = rep.create.material_omnipbr(diffuse=(1, 0, 0)) red_cube = rep.create.cube(position=(0, 0, 0.71), material=red_mat) cam = rep.create.camera(position=(0, 0, 5), look_at=(0, 0, 0)) rp = rep.create.render_product(cam, (512, 512)) # Update the app a couple of times to fully load texture/materials for _ in range(5): simulation_app.update() # Get the local augmentations, either from function or from the registry rgb_to_bgr_augm = None gn_depth_augm = None if USE_WARP: rgb_to_bgr_augm = rep.annotators.Augmentation.from_function(rgb_to_bgr_wp) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_wp") else: rgb_to_bgr_augm = rep.annotators.Augmentation.from_function(rgb_to_bgr_np) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_np") # Output directories out_dir = os.path.join(os.getcwd(), "_out_augm_annot") print(f"Writing data to: {out_dir}") os.makedirs(out_dir, exist_ok=True) # Register the annotator together with its augmentation rep.annotators.register( name="rgb_to_bgr_augm", annotator=rep.annotators.augment( source_annotator=rep.AnnotatorRegistry.get_annotator("rgb"), augmentation=rgb_to_bgr_augm, ), ) rgb_to_bgr_annot = rep.AnnotatorRegistry.get_annotator("rgb_to_bgr_augm") depth_annot_1 = rep.AnnotatorRegistry.get_annotator("distance_to_camera") depth_annot_1.augment(gn_depth_augm) depth_annot_2 = rep.AnnotatorRegistry.get_annotator("distance_to_camera") depth_annot_2.augment(gn_depth_augm, sigma=0.5) rgb_to_bgr_annot.attach(rp) depth_annot_1.attach(rp) depth_annot_2.attach(rp) # Generate a replicator graph to rotate the cube every capture frame with rep.trigger.on_frame(): with red_cube: rep.randomizer.rotation() # Evaluate the graph rep.orchestrator.preview() # Measure the duration of capturing the data start_time = time.time() # The `step()` function will trigger the randomization graph, feed annotators with new data, and trigger the writers for i in range(NUM_FRAMES): rep.orchestrator.step() rgb_data = rgb_to_bgr_annot.get_data() depth_data_1 = depth_annot_1.get_data() depth_data_2 = depth_annot_2.get_data() write_rgb(rgb_data, os.path.join(out_dir, f"annot_rgb_{i}")) write_depth(depth_data_1, os.path.join(out_dir, f"annot_depth_1_{i}")) write_depth(depth_data_2, os.path.join(out_dir, f"annot_depth_2_{i}")) print( f"The duration for capturing {NUM_FRAMES} frames using '{'warp' if USE_WARP else 'numpy'}' was: {time.time() - start_time:.4f} seconds, with an average of {(time.time() - start_time) / NUM_FRAMES:.4f} seconds per frame." ) simulation_app.close()
6,579
Python
35.759776
224
0.716978
2820207922/isaac_ws/standalone_examples/replicator/augmentation/writer_augmentation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate augmented synthetic from a writer """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import os import time import carb.settings import numpy as np import omni.replicator.core as rep import warp as wp from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import open_stage parser = argparse.ArgumentParser() parser.add_argument("--num_frames", type=int, default=25, help="The number of frames to capture") parser.add_argument("--use_warp", action="store_true", help="Use warp augmentations instead of numpy") args, unknown = parser.parse_known_args() NUM_FRAMES = args.num_frames USE_WARP = args.use_warp ENV_URL = "/Isaac/Environments/Grid/default_environment.usd" # Enable scripts carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True) # Gaussian noise augmentation on rgba data in numpy (CPU) and warp (GPU) def gaussian_noise_rgb_np(data_in, sigma: float, seed: int): np.random.seed(seed) data_in[:, :, 0] = data_in[:, :, 0] + np.random.randn(*data_in.shape[:-1]) * sigma data_in[:, :, 1] = data_in[:, :, 1] + np.random.randn(*data_in.shape[:-1]) * sigma data_in[:, :, 2] = data_in[:, :, 2] + np.random.randn(*data_in.shape[:-1]) * sigma return data_in @wp.kernel def gaussian_noise_rgb_wp( data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j, 0] = wp.uint8(wp.int32(data_in[i, j, 0]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 1] = wp.uint8(wp.int32(data_in[i, j, 1]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 2] = wp.uint8(wp.int32(data_in[i, j, 2]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 3] = data_in[i, j, 3] # Gaussian noise augmentation on depth data in numpy (CPU) and warp (GPU) def gaussian_noise_depth_np(data_in, sigma: float, seed: int): np.random.seed(seed) return data_in + np.random.randn(*data_in.shape) * sigma rep.AnnotatorRegistry.register_augmentation( "gn_depth_np", rep.annotators.Augmentation.from_function(gaussian_noise_depth_np, sigma=0.1, seed=None) ) @wp.kernel def gaussian_noise_depth_wp( data_in: wp.array2d(dtype=wp.float32), data_out: wp.array2d(dtype=wp.float32), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j] = data_in[i, j] + sigma * wp.randn(state) rep.AnnotatorRegistry.register_augmentation( "gn_depth_wp", rep.annotators.Augmentation.from_function(gaussian_noise_depth_wp, sigma=0.1, seed=None) ) # Setup the environment assets_root_path = get_assets_root_path() open_stage(assets_root_path + ENV_URL) # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Create a red cube and a render product from a camera looking at the cube from the top red_mat = rep.create.material_omnipbr(diffuse=(1, 0, 0)) red_cube = rep.create.cube(position=(0, 0, 0.71), material=red_mat) cam = rep.create.camera(position=(0, 0, 5), look_at=(0, 0, 0)) rp = rep.create.render_product(cam, (512, 512)) # Update the app a couple of times to fully load texture/materials for _ in range(5): simulation_app.update() # Access default annotators from replicator rgb_to_hsv_augm = rep.annotators.Augmentation.from_function(rep.augmentations_default.aug_rgb_to_hsv) hsv_to_rgb_augm = rep.annotators.Augmentation.from_function(rep.augmentations_default.aug_hsv_to_rgb) # Access the custom annotators as functions or from the registry gn_rgb_augm = None gn_depth_augm = None if USE_WARP: gn_rgb_augm = rep.annotators.Augmentation.from_function(gaussian_noise_rgb_wp, sigma=6.0, seed=None) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_wp") else: gn_rgb_augm = rep.annotators.Augmentation.from_function(gaussian_noise_rgb_np, sigma=6.0, seed=None) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_np") # Create a writer and apply the augmentations to its corresponding annotators out_dir = os.path.join(os.getcwd(), "_out_augm_writer") print(f"Writing data to: {out_dir}") writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir=out_dir, rgb=True, distance_to_camera=True) augmented_rgb_annot = rep.annotators.get("rgb").augment_compose( [rgb_to_hsv_augm, gn_rgb_augm, hsv_to_rgb_augm], name="rgb" ) writer.add_annotator(augmented_rgb_annot) writer.augment_annotator("distance_to_camera", gn_depth_augm) # Attach render product to writer writer.attach([rp]) # Generate a replicator graph randomizing the cube's rotation every frame with rep.trigger.on_frame(): with red_cube: rep.randomizer.rotation() # Evaluate the graph rep.orchestrator.preview() # Measure the duration of capturing the data start_time = time.time() # The `step()` function will trigger the randomization graph, feed annotators with new data, and trigger the writers for i in range(NUM_FRAMES): rep.orchestrator.step() print( f"The duration for capturing {NUM_FRAMES} frames using '{'warp' if USE_WARP else 'numpy'}' was: {time.time() - start_time:.4f} seconds, with an average of {(time.time() - start_time) / NUM_FRAMES:.4f} seconds per frame." ) simulation_app.close()
5,949
Python
38.144737
224
0.722642
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/offline_pose_generation.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Generate a [YCBVideo, DOPE] synthetic datasets """ import argparse import os import signal import carb import numpy as np import torch import yaml from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("Pose Generation data generator") parser.add_argument("--num_mesh", type=int, default=30, help="Number of frames to record similar to MESH dataset") parser.add_argument("--num_dome", type=int, default=30, help="Number of frames to record similar to DOME dataset") parser.add_argument( "--dome_interval", type=int, default=1, help="Number of frames to capture before switching DOME background. When generating large datasets, increasing this interval will reduce time taken. A good value to set is 10.", ) parser.add_argument("--output_folder", "-o", type=str, default="output", help="Output directory.") parser.add_argument("--use_s3", action="store_true", help="Saves output to s3 bucket. Only supported by DOPE writer.") parser.add_argument( "--bucket", type=str, default=None, help="Bucket name to store output in. See naming rules: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html", ) parser.add_argument("--s3_region", type=str, default="us-east-1", help="s3 region.") parser.add_argument("--endpoint", type=str, default=None, help="s3 endpoint to write to.") parser.add_argument( "--writer", type=str, default="YCBVideo", help="Which writer to use to output data. Choose between: [YCBVideo, DOPE]", ) parser.add_argument( "--test", action="store_true", help="Generates data for testing. Hardcodes the pose of the object to compare output data with expected data to ensure that generation is correct.", ) args, unknown_args = parser.parse_known_args() # Do not write to s3 if in test mode if args.test: args.use_s3 = False if args.use_s3 and (args.endpoint is None or args.bucket is None): raise Exception("To use s3, --endpoint and --bucket must be specified.") CONFIG_FILES = {"dope": "config/dope_config.yaml", "ycbvideo": "config/ycb_config.yaml"} TEST_CONFIG_FILES = {"dope": "tests/dope/test_dope_config.yaml", "ycbvideo": "tests/ycbvideo/test_ycb_config.yaml"} # Path to config file: cf_map = TEST_CONFIG_FILES if args.test else CONFIG_FILES CONFIG_FILE = cf_map[args.writer.lower()] CONFIG_FILE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), CONFIG_FILE) with open(CONFIG_FILE_PATH) as f: config_data = yaml.full_load(f) OBJECTS_TO_GENERATE = config_data["OBJECTS_TO_GENERATE"] kit = SimulationApp(launch_config=config_data["CONFIG"]) import math import omni.replicator.core as rep from omni.isaac.core import World from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.semantics import add_update_semantics from omni.replicator.isaac.scripts.writers import DOPEWriter, YCBVideoWriter # Since the simulation is mostly collision checking, a larger physics dt can be used to speed up the object movements world = World(physics_dt=1.0 / 30.0) world.reset() from flying_distractors.collision_box import CollisionBox from flying_distractors.dynamic_object import DynamicObject from flying_distractors.dynamic_object_set import DynamicObjectSet from flying_distractors.dynamic_shape_set import DynamicShapeSet from flying_distractors.flying_distractors import FlyingDistractors from omni.isaac.core.utils.random import get_random_world_pose_in_view from omni.isaac.core.utils.transformations import get_world_pose_from_relative from tests.test_utils import clean_output_dir, run_pose_generation_test class RandomScenario(torch.utils.data.IterableDataset): def __init__( self, num_mesh, num_dome, dome_interval, output_folder, use_s3=False, endpoint="", s3_region="us-east-1", writer="ycbvideo", bucket="", test=False, ): self.test = test if writer == "ycbvideo": self.writer_helper = YCBVideoWriter elif writer == "dope": self.writer_helper = DOPEWriter else: raise Exception("Invalid writer specified. Choose between [DOPE, YCBVideo].") self.result = True assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self.result = False return self.dome_texture_path = assets_root_path + "/NVIDIA/Assets/Skies/" self.ycb_asset_path = assets_root_path + "/Isaac/Props/YCB/Axis_Aligned/" self.asset_path = assets_root_path + "/Isaac/Props/YCB/Axis_Aligned/" self.train_parts = [] self.train_part_mesh_path_to_prim_path_map = {} self.mesh_distractors = FlyingDistractors() self.dome_distractors = FlyingDistractors() self.current_distractors = None self.data_writer = None self.num_mesh = max(0, num_mesh) if not self.test else 5 self.num_dome = max(0, num_dome) if not self.test else 0 self.train_size = self.num_mesh + self.num_dome self.dome_interval = dome_interval self._output_folder = output_folder if use_s3 else os.path.join(os.getcwd(), output_folder) self.use_s3 = use_s3 self.endpoint = endpoint self.s3_region = s3_region self.bucket = bucket self.writer_config = { "output_folder": self._output_folder, "use_s3": self.use_s3, "bucket_name": self.bucket, "endpoint_url": self.endpoint, "s3_region": self.s3_region, "train_size": self.train_size, } self._setup_world() self.cur_idx = 0 self.exiting = False self.last_frame_reached = False # Clean up output folder ahead of test if not self.use_s3 and self.test: clean_output_dir(self._output_folder) # Disable capture on play and async rendering self._carb_settings = carb.settings.get_settings() self._carb_settings.set("/omni/replicator/captureOnPlay", False) self._carb_settings.set("/app/asyncRendering", False) self._carb_settings.set("/omni/replicator/asyncRendering", False) signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("Exiting dataset generation..") self.exiting = True def _setup_world(self): """Populate scene with assets and prepare for synthetic data generation.""" self._setup_camera() rep.settings.set_render_rtx_realtime() # Allow flying distractors to float world.get_physics_context().set_gravity(0.0) collision_box = self._setup_collision_box() world.scene.add(collision_box) self._setup_distractors(collision_box) self._setup_train_objects() if not self.test: self._setup_randomizers() # Update the app a few times to make sure the materials are fully loaded and world scene objects are registered for _ in range(5): kit.app.update() # Setup writer self.writer_helper.register_pose_annotator(config_data=config_data) self.writer = self.writer_helper.setup_writer(config_data=config_data, writer_config=self.writer_config) self.writer.attach([self.render_product]) self.dome_distractors.set_visible(False) # Generate the replicator graphs without triggering any writing rep.orchestrator.preview() def _setup_camera(self): focal_length = config_data["HORIZONTAL_APERTURE"] * config_data["F_X"] / config_data["WIDTH"] # Setup camera and render product self.camera = rep.create.camera( position=(0, 0, 0), rotation=np.array(config_data["CAMERA_RIG_ROTATION"]), focal_length=focal_length, clipping_range=(0.01, 10000), ) self.render_product = rep.create.render_product(self.camera, (config_data["WIDTH"], config_data["HEIGHT"])) camera_rig_path = str(rep.utils.get_node_targets(self.camera.node, "inputs:primsIn")[0]) self.camera_path = camera_rig_path + "/Camera" with rep.get.prims(prim_types=["Camera"]): rep.modify.pose( rotation=rep.distribution.uniform( np.array(config_data["CAMERA_ROTATION"]), np.array(config_data["CAMERA_ROTATION"]) ) ) self.rig = XFormPrim(prim_path=camera_rig_path) def _setup_collision_box(self): # Create a collision box in view of the camera, allowing distractors placed in the box to be within # [MIN_DISTANCE, MAX_DISTANCE] of the camera. The collision box will be placed in front of the camera, # regardless of CAMERA_ROTATION or CAMERA_RIG_ROTATION. self.fov_x = 2 * math.atan(config_data["WIDTH"] / (2 * config_data["F_X"])) self.fov_y = 2 * math.atan(config_data["HEIGHT"] / (2 * config_data["F_Y"])) theta_x = self.fov_x / 2.0 theta_y = self.fov_y / 2.0 # Collision box dimensions lower than 1.3 do not work properly collision_box_width = max(2 * config_data["MAX_DISTANCE"] * math.tan(theta_x), 1.3) collision_box_height = max(2 * config_data["MAX_DISTANCE"] * math.tan(theta_y), 1.3) collision_box_depth = config_data["MAX_DISTANCE"] - config_data["MIN_DISTANCE"] collision_box_path = "/World/collision_box" collision_box_name = "collision_box" # Collision box is centered between MIN_DISTANCE and MAX_DISTANCE, with translation relative to camera in the z # direction being negative due to cameras in Isaac Sim having coordinates of -z out, +y up, and +x right. collision_box_translation_from_camera = np.array( [0, 0, (config_data["MIN_DISTANCE"] + config_data["MAX_DISTANCE"]) / 2.0] ) # Collision box has no rotation with respect to the camera. collision_box_rotation_from_camera = np.array([0, 0, 0]) collision_box_orientation_from_camera = euler_angles_to_quat(collision_box_rotation_from_camera, degrees=True) # Get the desired pose of the collision box from a pose defined locally with respect to the camera. camera_prim = world.stage.GetPrimAtPath(self.camera_path) collision_box_center, collision_box_orientation = get_world_pose_from_relative( camera_prim, collision_box_translation_from_camera, collision_box_orientation_from_camera ) return CollisionBox( collision_box_path, collision_box_name, position=collision_box_center, orientation=collision_box_orientation, width=collision_box_width, height=collision_box_height, depth=collision_box_depth, ) def _setup_distractors(self, collision_box): # List of distractor objects should not contain objects that are being used for training train_objects = [object["part_name"] for object in OBJECTS_TO_GENERATE] distractor_mesh_filenames = [ file_name for file_name in config_data["MESH_FILENAMES"] if file_name not in train_objects ] usd_path_list = [ f"{self.ycb_asset_path}{usd_filename_prefix}.usd" for usd_filename_prefix in distractor_mesh_filenames ] mesh_list = [f"_{usd_filename_prefix[1:]}" for usd_filename_prefix in distractor_mesh_filenames] if self.num_mesh > 0: # Distractors for the MESH dataset mesh_shape_set = DynamicShapeSet( "/World/mesh_shape_set", "mesh_shape_set", "mesh_shape", "mesh_shape", config_data["NUM_MESH_SHAPES"], collision_box, scale=np.array(config_data["SHAPE_SCALE"]), mass=config_data["SHAPE_MASS"], fraction_glass=config_data["MESH_FRACTION_GLASS"], ) self.mesh_distractors.add(mesh_shape_set) mesh_object_set = DynamicObjectSet( "/World/mesh_object_set", "mesh_object_set", usd_path_list, mesh_list, "mesh_object", "mesh_object", config_data["NUM_MESH_OBJECTS"], collision_box, scale=np.array(config_data["OBJECT_SCALE"]), mass=config_data["OBJECT_MASS"], fraction_glass=config_data["MESH_FRACTION_GLASS"], ) self.mesh_distractors.add(mesh_object_set) # Set the current distractors to the mesh dataset type self.current_distractors = self.mesh_distractors if self.num_dome > 0: # Distractors for the DOME dataset dome_shape_set = DynamicShapeSet( "/World/dome_shape_set", "dome_shape_set", "dome_shape", "dome_shape", config_data["NUM_DOME_SHAPES"], collision_box, scale=np.array(config_data["SHAPE_SCALE"]), mass=config_data["SHAPE_MASS"], fraction_glass=config_data["DOME_FRACTION_GLASS"], ) self.dome_distractors.add(dome_shape_set) dome_object_set = DynamicObjectSet( "/World/dome_object_set", "dome_object_set", usd_path_list, mesh_list, "dome_object", "dome_object", config_data["NUM_DOME_OBJECTS"], collision_box, scale=np.array(config_data["OBJECT_SCALE"]), mass=config_data["OBJECT_MASS"], fraction_glass=config_data["DOME_FRACTION_GLASS"], ) self.dome_distractors.add(dome_object_set) def _setup_train_objects(self): # Add the part to train the network on train_part_idx = 0 for object in OBJECTS_TO_GENERATE: for prim_idx in range(object["num"]): part_name = object["part_name"] ref_path = self.asset_path + part_name + ".usd" prim_type = object["prim_type"] if self.writer_helper == YCBVideoWriter and prim_type not in config_data["CLASS_NAME_TO_INDEX"]: raise Exception(f"Train object {prim_type} is not in CLASS_NAME_TO_INDEX in config.yaml.") path = "/World/" + prim_type + f"_{prim_idx}" mesh_path = path + "/" + prim_type name = f"train_part_{train_part_idx}" self.train_part_mesh_path_to_prim_path_map[mesh_path] = path train_part = DynamicObject( usd_path=ref_path, prim_path=path, mesh_path=mesh_path, name=name, position=np.array([0.0, 0.0, 0.0]), scale=config_data["OBJECT_SCALE"], mass=1.0, ) train_part.prim.GetAttribute("physics:rigidBodyEnabled").Set(True) self.train_parts.append(train_part) # Add semantic information mesh_prim = world.stage.GetPrimAtPath(mesh_path) add_update_semantics(mesh_prim, prim_type) train_part_idx += 1 if prim_idx == 0 and self.writer_helper == YCBVideoWriter: # Save the vertices of the part in '.xyz' format. This will be used in one of PoseCNN's loss functions coord_prim = world.stage.GetPrimAtPath(path) self.writer_helper.save_mesh_vertices(mesh_prim, coord_prim, prim_type, self._output_folder) def _setup_randomizers(self): """Add domain randomization with Replicator Randomizers""" # Create and randomize sphere lights def randomize_sphere_lights(): lights = rep.create.light( light_type="Sphere", color=rep.distribution.uniform((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), intensity=rep.distribution.uniform(100000, 3000000), position=rep.distribution.uniform((-250, -250, -250), (250, 250, 100)), scale=rep.distribution.uniform(1, 20), count=config_data["NUM_LIGHTS"], ) return lights.node # Randomize prim colors def randomize_colors(prim_path_regex): prims = rep.get.prims(path_pattern=prim_path_regex) mats = rep.create.material_omnipbr( metallic=rep.distribution.uniform(0.0, 1.0), roughness=rep.distribution.uniform(0.0, 1.0), diffuse=rep.distribution.uniform((0, 0, 0), (1, 1, 1)), count=100, ) with prims: rep.randomizer.materials(mats) return prims.node rep.randomizer.register(randomize_sphere_lights, override=True) rep.randomizer.register(randomize_colors, override=True) with rep.trigger.on_frame(): rep.randomizer.randomize_sphere_lights() rep.randomizer.randomize_colors("(?=.*shape)(?=.*nonglass).*") def _setup_dome_randomizers(self): """Add domain randomization with Replicator Randomizers""" # Create and randomize a dome light for the DOME dataset def randomize_domelight(texture_paths): lights = rep.create.light( light_type="Dome", rotation=rep.distribution.uniform((0, 0, 0), (360, 360, 360)), texture=rep.distribution.choice(texture_paths), ) return lights.node rep.randomizer.register(randomize_domelight, override=True) dome_texture_paths = [ self.dome_texture_path + dome_texture + ".hdr" for dome_texture in config_data["DOME_TEXTURES"] ] with rep.trigger.on_frame(interval=self.dome_interval): rep.randomizer.randomize_domelight(dome_texture_paths) def randomize_movement_in_view(self, prim): """Randomly move and rotate prim such that it stays in view of camera. Args: prim (DynamicObject): prim to randomly move and rotate. """ if not self.test: camera_prim = world.stage.GetPrimAtPath(self.camera_path) rig_prim = world.stage.GetPrimAtPath(self.rig.prim_path) translation, orientation = get_random_world_pose_in_view( camera_prim, config_data["MIN_DISTANCE"], config_data["MAX_DISTANCE"], self.fov_x, self.fov_y, config_data["FRACTION_TO_SCREEN_EDGE"], rig_prim, np.array(config_data["MIN_ROTATION_RANGE"]), np.array(config_data["MAX_ROTATION_RANGE"]), ) else: translation, orientation = np.array([0.0, 0.0, 1.0]), np.array([0.0, 0.0, 0.0, 1.0]) prim.set_world_pose(translation, orientation) def __iter__(self): return self def __next__(self): # First frame of DOME dataset if self.cur_idx == self.num_mesh: # MESH datset generation complete, switch to DOME dataset print(f"Starting DOME dataset generation of {self.num_dome} frames..") # Hide the FlyingDistractors used for the MESH dataset self.mesh_distractors.set_visible(False) # Show the FlyingDistractors used for the DOME dataset self.dome_distractors.set_visible(True) # Switch the distractors to DOME self.current_distractors = self.dome_distractors # Randomize the dome backgrounds self._setup_dome_randomizers() # Run another preview to generate the replicator graphs for the DOME dataset without triggering any writing rep.orchestrator.preview() # Randomize the distractors by applying forces to them and changing their materials self.current_distractors.apply_force_to_assets(config_data["FORCE_RANGE"]) self.current_distractors.randomize_asset_glass_color() # Randomize the pose of the object(s) of interest in the camera view for train_part in self.train_parts: self.randomize_movement_in_view(train_part) # Simulate the applied forces for a couple of frames for _ in range(50): world.step(render=False) print(f"ID: {self.cur_idx}/{self.train_size - 1}") rep.orchestrator.step(rt_subframes=4) # Check that there was valid training data in the last frame (target object(s) visible to camera) if self.writer.is_last_frame_valid(): self.cur_idx += 1 # Check if last frame has been reached if self.cur_idx >= self.train_size: print(f"Dataset of size {self.train_size} has been reached, generation loop will be stopped..") print(f"Data outputted to: {self._output_folder}") self.last_frame_reached = True dataset = RandomScenario( num_mesh=args.num_mesh, num_dome=args.num_dome, dome_interval=args.dome_interval, output_folder=args.output_folder, use_s3=args.use_s3, bucket=args.bucket, s3_region=args.s3_region, endpoint=args.endpoint, writer=args.writer.lower(), test=args.test, ) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") import datetime start_time = datetime.datetime.now() print("Start timestamp:", start_time.strftime("%m/%d/%Y, %H:%M:%S")) if dataset.train_size > 0: print(f"Starting dataset generation of {dataset.train_size} frames..") if dataset.num_mesh > 0: print(f"Starting MESH dataset generation of {dataset.num_mesh} frames..") # Dataset generation loop for _ in dataset: if dataset.last_frame_reached: print(f"Stopping generation loop at index {dataset.cur_idx}..") break if dataset.exiting: break else: print(f"Dataset size is set to 0 (num_mesh={dataset.num_mesh} num_dope={dataset.num_dome}), nothing to write..") print("End timestamp:", datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S")) print("Total time taken:", str(datetime.datetime.now() - start_time).split(".")[0]) if args.test: run_pose_generation_test( writer=args.writer, output_folder=dataset._output_folder, test_folder=os.path.join(os.path.dirname(os.path.abspath(__file__)), "tests"), ) # Close the app kit.close()
23,434
Python
39.128425
181
0.618716
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from flying_distractors.collision_box import CollisionBox from flying_distractors.dynamic_asset_set import DynamicAssetSet from flying_distractors.dynamic_object import DynamicObject from flying_distractors.dynamic_object_set import DynamicObjectSet from flying_distractors.dynamic_shape_set import DynamicShapeSet from flying_distractors.flying_distractors import FlyingDistractors from utils import save_points_xyz
848
Python
52.062497
76
0.84434
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_object_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from typing import List, Optional import numpy as np from omni.isaac.core.materials.omni_glass import OmniGlass from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet from .dynamic_object import DynamicObject class DynamicObjectSet(DynamicAssetSet): """Container class to hold and manage dynamic objects, providing an API to keep objects in motion within a collision box, and to allow various properties of the assets to be randomized. Please note that this class assumes that each referenced asset in usd_path_list has only a single mesh prim defining its geometry. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the objects in the object set as its children. set_name (str): name of the parent prim in the scene. usd_path_list (List[str]): list of possible USD reference paths that the prims of each dynamic object in the dynamic object set refer to. mesh_list (List[str]): list of prim path base names for underlying mesh prims. Each base name in mesh_list corresponds to the mesh prim of the referenced asset in usd_path_list. asset_prim_path_base_prefix (str): prefix of what the objects are called in the stage (prim path base name). asset_name_prefix (str): prefix of the objects' names in the scene. num_assets (int): number of objects in the object set. collision_box (CollisionBox): collision box in which to place objects, and allow objects to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each object's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each object in kg. Defaults to None. fraction_glass (int, optional): fraction of objects for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, usd_path_list: List[str], mesh_list: List[str], asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): self.usd_path_list = usd_path_list self.mesh_list = mesh_list self.glass_object_mesh_paths = [] self.nonglass_object_mesh_paths = [] if len(usd_path_list) != len(mesh_list): raise Exception("usd_path_list and mesh_list must contain the same number of elements") self.mesh_map = self._create_mesh_map(usd_path_list, mesh_list) super().__init__( set_prim_path, set_name, asset_prim_path_base_prefix, asset_name_prefix, num_assets, collision_box, scale, mass, fraction_glass, ) self._create_random_dynamic_asset_set() def _create_mesh_map(self, usd_path_list, mesh_list): """Gets a mapping from USD reference paths to the base name of the corresponding mesh prim in the referenced USD file. Args: usd_path_list (List[str]): List of possible USD reference paths that the prims of each dynamic object in the dynamic object set refer to. mesh_list (List[str]): List of prim path base names for underlying mesh prims. Each base name in mesh_list corresponds to the mesh prim of the referenced asset in usd_path_list. Returns: Dict: Mapping from USD reference paths to the base name of the corresponding mesh prim in the referenced USD file. """ mesh_map = {} for usd_path, mesh_name in zip(usd_path_list, mesh_list): mesh_map[usd_path] = mesh_name return mesh_map def _create_random_dynamic_asset(self, glass=False): """Creates a random dynamic object and adds it to the scene. The reference path of the object is randomly chosen from self.usd_path_list. Args: glass (bool, optional): flag to specify whether the created object should have a glass material applied. Defaults to False. """ object_name = f"{self.asset_name_prefix}_{self.asset_count}" if glass: object_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_{self.asset_count}" else: object_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_nonglass_{self.asset_count}" usd_path = random.choice(self.usd_path_list) mesh_path = f"{object_path}/{self.mesh_map[usd_path]}" position = self.collision_box.get_random_position() dynamic_prim = DynamicObject( usd_path=usd_path, prim_path=object_path, mesh_path=mesh_path, name=object_name, position=position, scale=self.scale, mass=self.mass, ) self.asset_names.append(object_name) if glass: color = np.random.rand(3) material = OmniGlass( object_path + "_glass", name=object_name + "_glass", ior=1.25, depth=0.001, thin_walled=False, color=color, ) self.glass_mats.append(material) dynamic_prim.apply_visual_material(material) self.glass_asset_paths.append(object_path) self.glass_assets.append(dynamic_prim) self.glass_object_mesh_paths.append(mesh_path) else: self.nonglass_asset_paths.append(object_path) self.nonglass_assets.append(dynamic_prim) self.nonglass_object_mesh_paths.append(mesh_path) self.world.scene.add(dynamic_prim) self.asset_count += 1
6,626
Python
40.679245
120
0.616963
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_shape_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from typing import Optional import numpy as np from omni.isaac.core.materials.omni_glass import OmniGlass from omni.isaac.core.objects import DynamicCapsule, DynamicCone, DynamicCuboid, DynamicCylinder, DynamicSphere from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet class DynamicShapeSet(DynamicAssetSet): """Container class to hold and manage dynamic shapes, providing an API to keep shapes in motion within a collision box, and to allow various properties of the shapes to be randomized. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the shapes in the shape set as its children. set_name (str): name of the parent prim in the scene. asset_prim_path_base_prefix (str): prefix of what the shapes are called in the stage (prim path base name). asset_name_prefix (str): prefix of the shapes' names in the scene. num_assets (int): number of shapes in the shape set. collision_box (CollisionBox): collision box in which to place shapes, and allow shapes to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each shape's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each shape in kg. Defaults to None. fraction_glass (int, optional): fraction of shapes for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): super().__init__( set_prim_path, set_name, asset_prim_path_base_prefix, asset_name_prefix, num_assets, collision_box, scale, mass, fraction_glass, ) self._create_random_dynamic_asset_set() def _create_random_dynamic_asset(self, glass=False): """Creates a random dynamic shape (Cuboid, Sphere, Cylinder, Cone, or Capsule) and adds it to the scene. Args: glass (bool, optional): flag to specify whether the created shape should have a glass material applied. Defaults to False. """ prim_type = [DynamicCapsule, DynamicCone, DynamicCuboid, DynamicCylinder, DynamicSphere] shape_name = f"{self.asset_name_prefix}_{self.asset_count}" if glass: shape_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_{self.asset_count}" else: shape_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_nonglass_{self.asset_count}" position = self.collision_box.get_random_position() shape_prim = random.choice(prim_type)( prim_path=shape_path, # The prim path of the cube in the USD stage name=shape_name, # The unique name used to retrieve the object from the scene later on position=position, # Using the current stage units which is meters by default. scale=self.scale, mass=self.mass, ) self.asset_names.append(shape_name) if glass: color = np.random.rand(3) material = OmniGlass( shape_path + "_glass", name=shape_name + "_glass", ior=1.25, depth=0.001, thin_walled=False, color=color ) self.glass_mats.append(material) shape_prim.apply_visual_material(material) self.glass_asset_paths.append(shape_path) self.glass_assets.append(shape_prim) else: self.nonglass_asset_paths.append(shape_path) self.nonglass_assets.append(shape_prim) self.world.scene.add(shape_prim) self.asset_count += 1
4,566
Python
40.899082
120
0.63929
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/collision_box.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.prims.xform_prim import XFormPrim from pxr import Usd, UsdGeom class CollisionBox(XFormPrim): """Creates a fixed box with collisions enabled, and provides an API to determine world coordinates of a random location in the interior of the collision box. Args: prim_path (str): top-level prim path (of the collision box) of the Prim to encapsulate or create. name (str): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. position (Optional[np.ndarray], optional): position in the world frame of the collision box. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the collision box (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the collision box (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the collision box's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. width (float): width of the collision box interior in world units (if unrotated, corresponds to x direction). Defaults to 1.0. height (float): height of the collision box interior in world units (if unrotated, corresponds to y direction). Defaults to 1.0. depth (float): depth of the collision box interior in world units (if unrotated, corresponds to z direction). Defaults to 1.0. thickness (float, optional): thickness of the collision box walls in world units. Defaults to 0.2. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to False. """ def __init__( self, prim_path: str, name: str, position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, width: float = 1.0, height: float = 1.0, depth: float = 1.0, thickness: float = 0.2, visible: bool = False, ): self.world = World.instance() XFormPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, ) self.width = width self.height = height self.depth = depth self.thickness = thickness self.visible = visible self._create_collision_box() def _create_face(self, suffix, translation, size): """Create a face/wall of the Collision Box, which has collisions enabled. Args: suffix (str): suffix used for the name of the face so it can be retrieved from the scene. The name of the face has the form "{collision_box_name}_{suffix}" translation (np.ndarray): translation of the center of the face (wall) from the center of the Collision Box, in stage units. Shape is (3, ). size (np.ndarray): dimensions of the face (wall) in the X, Y, and Z directions. Dimensions are in stage units. Shape is (3, ). """ face_name = f"{self.name}_{suffix}" face_path = f"{self.prim_path}/{face_name}" face_cuboid = FixedCuboid( prim_path=face_path, # The prim path of the cube in the USD stage name=face_name, # The unique name used to retrieve the object from the scene later on translation=translation, # Using the current stage units which is cms by default. scale=size, # most arguments accept mainly numpy arrays. size=1.0, visible=self.visible, ) self.world.scene.add(face_cuboid) def _create_collision_box(self): """Create a Collision Box. The Collision Box consists of 6 faces/walls forming a static box-like volume. Each wall of the Collision Box has collisions enabled. """ dx = self.width / 2.0 + self.thickness / 2.0 dy = self.height / 2.0 + self.thickness / 2.0 dz = self.depth / 2.0 + self.thickness / 2.0 floor_center = np.array([0, 0, -dz]) floor_dimensions = np.array([self.width, self.height, self.thickness]) self._create_face("floor", floor_center, floor_dimensions) ceiling_center = np.array([0, 0, +dz]) ceiling_dimensions = np.array([self.width, self.height, self.thickness]) self._create_face("ceiling", ceiling_center, ceiling_dimensions) left_wall_center = np.array([dx, 0, 0]) left_wall_dimensions = np.array([self.thickness, self.height, self.depth]) self._create_face("left_wall", left_wall_center, left_wall_dimensions) right_wall_center = np.array([-dx, 0, 0]) right_wall_dimensions = np.array([self.thickness, self.height, self.depth]) self._create_face("right_wall", right_wall_center, right_wall_dimensions) front_wall_center = np.array([0, dy, 0]) front_wall_dimensions = np.array([self.width, self.thickness, self.depth]) self._create_face("front_wall", front_wall_center, front_wall_dimensions) back_wall_center = np.array([0, -dy, 0]) back_wall_dimensions = np.array([self.width, self.thickness, self.depth]) self._create_face("back_wall", back_wall_center, back_wall_dimensions) def get_random_local_translation(self): """Get a random translation within the Collision Box in local coordinates. Translations are within the volumetric region contained by the inner walls of the Collision Box. The local coordinate frame is considered to be the frame of the prim at self.prim_path (center of the Collision Box). Returns: np.ndarray: random translation within the Collision Box in the local frame of the Collision Box. Shape is (3, ). """ dim_fractions = np.random.rand(3) tx = dim_fractions[0] * self.width - self.width / 2.0 ty = dim_fractions[1] * self.height - self.height / 2.0 tz = dim_fractions[2] * self.depth - self.depth / 2.0 translation = np.array([tx, ty, tz]) return translation def get_random_position(self): """Get a random position within the Collision Box in world coordinates. Positions are within the volumetric region contained by the inner walls of the Collision Box. Returns: np.ndarray: random position within the Collision Box in the world frame. Shape is (3, ). """ box_prim = self.world.stage.GetPrimAtPath(self.prim_path) box_transform_matrix = UsdGeom.Xformable(box_prim).ComputeLocalToWorldTransform(Usd.TimeCode.Default()) box_to_world = np.transpose(box_transform_matrix) random_local_translation = self.get_random_local_translation() random_local_translation_homogenous = np.pad(random_local_translation, ((0, 1)), constant_values=1.0) position_homogenous = box_to_world @ random_local_translation_homogenous position = position_homogenous[:-1] return position
8,637
Python
46.988889
120
0.618733
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet from .dynamic_object import DynamicObject from .dynamic_object_set import DynamicObjectSet from .dynamic_shape_set import DynamicShapeSet from .flying_distractors import FlyingDistractors
706
Python
46.13333
76
0.830028
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/flying_distractors.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import itertools from omni.isaac.core import World from .dynamic_object_set import DynamicObjectSet from .dynamic_shape_set import DynamicShapeSet class FlyingDistractors: """Container class to hold and manage both dynamic shape sets and dynamic object sets simultaneously. This class provides an API to keep assets in each asset set in motion within their respective collision boxes, to show/hide the assets of all the asset sets managed by this class, and to allow various properties of the assets of all the asset sets managed by this class to be randomized. """ def __init__(self): self.world = World.instance() self.shape_sets = [] self.object_sets = [] def add(self, asset_set): """Add an asset set to be managed by this FlyingDistractors object. Args: asset_set (Union[DynamicShapeSet, DynamicObjectSet]): the asset set to add. Raises: Exception: if asset_set is neither a DynamicShapeSet nor a DynamicObjectSet. """ if isinstance(asset_set, DynamicShapeSet): self.shape_sets.append(asset_set) elif isinstance(asset_set, DynamicObjectSet): self.object_sets.append(asset_set) else: raise Exception("The asset set provided is not of type DynamicShapeSet or DynamicObjectSet") def set_visible(self, visible): """Sets the visibility of all assets contained in the managed asset sets. Args: visible (bool): flag to set the visibility of all assets contained in the managed asset sets. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): for asset_name in asset_set.asset_names: object_xform = self.world.scene.get_object(asset_name) object_xform.set_visibility(visible=visible) def reset_asset_positions(self): """Reset the positions of all assets contained in the managed asset sets to be within its corresponding collision box. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.reset_position() def apply_force_to_assets(self, force_limit): """Apply random forces to all assets contained in the managed asset sets. Args: force_limit (float): maximum force component to apply. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.apply_force_to_assets(force_limit) def randomize_asset_glass_color(self): """Randomize color of assets in the managed asset sets with glass material applied.""" for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.randomize_glass_color()
3,231
Python
38.901234
116
0.686784
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_asset_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import itertools import math from abc import ABC, abstractmethod from typing import Optional import numpy as np from omni.isaac.core import World from .collision_box import CollisionBox class DynamicAssetSet(ABC): """Container class to hold and manage dynamic assets, providing an API to keep assets in motion within a collision box, and to allow various properties of the assets to be randomized. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the assets in the asset set as its children. set_name (str): name of the parent prim in the scene. asset_prim_path_base_prefix (str): prefix of what the assets are called in the stage (prim path base name). asset_name_prefix (str): prefix of the assets' names in the scene. num_assets (int): number of assets in the asset set. collision_box (CollisionBox): collision box in which to place assets, and allow assets to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each asset's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each asset in kg. Defaults to None. fraction_glass (int, optional): fraction of assets for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): self.world = World.instance() self.set_prim_path = set_prim_path self.set_name = set_name self.asset_prim_path_base_prefix = asset_prim_path_base_prefix self.asset_name_prefix = asset_name_prefix self.num_assets = num_assets self.collision_box = collision_box self.scale = scale self.mass = mass self.fraction_glass = fraction_glass self.asset_count = 0 self.asset_names = [] self.glass_asset_paths = [] self.nonglass_asset_paths = [] self.glass_assets = [] self.nonglass_assets = [] self.glass_mats = [] def _create_random_dynamic_asset_set(self): """Create self.num_assets assets and add them to the dynamic asset set.""" self.world.stage.DefinePrim(self.set_prim_path, "Xform") num_glass = math.floor(self.num_assets * self.fraction_glass) for i in range(self.num_assets): if i < num_glass: self._create_random_dynamic_asset(glass=True) else: self._create_random_dynamic_asset() @abstractmethod def _create_random_dynamic_asset(self, glass=False): pass def apply_force_to_assets(self, force_limit): """Apply a force in a random direction to each asset in the dynamic asset set. Args: force_limit (float): maximum force component to apply. """ for path in itertools.chain(self.glass_asset_paths, self.nonglass_asset_paths): # X, Y, and Z components of the force are constrained to be within [-force_limit, force_limit] random_force = np.random.uniform(-force_limit, force_limit, 3).tolist() handle = self.world.dc_interface.get_rigid_body(path) self.world.dc_interface.apply_body_force(handle, random_force, (0, 0, 0), False) def randomize_glass_color(self): """Randomize the color of the assets in the dynamic asset set with a glass material applied.""" for asset in itertools.chain(self.glass_assets): glass_mat = asset.get_applied_visual_material() glass_mat.set_color(np.random.rand(3)) def reset_position(self): """Reset the positions of assets in the dynamic asset set. The positions at which to place assets are randomly chosen such that they are within the collision box. """ for asset in itertools.chain(self.glass_assets, self.nonglass_assets): position = self.collision_box.get_random_position() asset.set_world_pose(position)
4,798
Python
39.669491
118
0.651105
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_object.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import UsdGeom class DynamicObject(RigidPrim, GeometryPrim): """Creates and adds a prim to stage from USD reference path, and wraps the prim with RigidPrim and GeometryPrim to provide access to APIs for rigid body attributes, physics materials and collisions. Please note that this class assumes the object has only a single mesh prim defining its geometry. Args: usd_path (str): USD reference path the Prim refers to. prim_path (str): prim path of the Prim to encapsulate or create. mesh_path (str): prim path of the underlying mesh Prim. name (str, optional): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. Defaults to "dynamic_object". position (Optional[np.ndarray], optional): position in the world frame of the prim. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the prim (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the prim (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the prim's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to True. mass (Optional[float], optional): mass in kg. Defaults to None. linear_velocity (Optional[np.ndarray], optional): linear velocity in the world frame. Defaults to None. angular_velocity (Optional[np.ndarray], optional): angular velocity in the world frame. Defaults to None. """ def __init__( self, usd_path: str, prim_path: str, mesh_path: str, name: str = "dynamic_object", position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, visible: bool = True, mass: Optional[float] = None, linear_velocity: Optional[np.ndarray] = None, angular_velocity: Optional[np.ndarray] = None, ) -> None: if is_prim_path_valid(mesh_path): prim = get_prim_at_path(mesh_path) if not prim.IsA(UsdGeom.Mesh): raise Exception("The prim at path {} cannot be parsed as a Mesh object".format(mesh_path)) self.usd_path = usd_path add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) GeometryPrim.__init__( self, prim_path=mesh_path, name=name, translation=translation, orientation=orientation, visible=visible, collision=True, ) self.set_collision_approximation("convexHull") RigidPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, mass=mass, linear_velocity=linear_velocity, angular_velocity=angular_velocity, )
4,662
Python
47.072164
120
0.614972
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/config/dope_config.yaml
--- # Default rendering parameters CONFIG: renderer: RayTracedLighting headless: false width: 512 height: 512 # Index of part in array of classes in PoseCNN training CLASS_NAME_TO_INDEX: 003_cracker_box: 1 035_power_drill: 2 # prim_type is determined by the usd file. # To determine, open the usd file in Isaac Sim and see the prim path. If you load it in /World, the path will be /World/<prim_type> OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } - { part_name: 035_power_drill, num: 1, prim_type: _35_power_drill } # Maximum force component to apply to objects to keep them in motion FORCE_RANGE: 30 # Camera Intrinsics WIDTH: 512 HEIGHT: 512 F_X: 768.1605834960938 F_Y: 768.1605834960938 C_X: 256 C_Y: 256 # Default Camera Horizontal Aperture HORIZONTAL_APERTURE: 20.955 # Number of sphere lights added to the scene NUM_LIGHTS: 6 # Minimum and maximum distances of objects away from the camera (along the optical axis) MIN_DISTANCE: 0.4 MAX_DISTANCE: 1.4 # Rotation of camera rig with respect to world frame, expressed as XYZ euler angles CAMERA_RIG_ROTATION: - 0 - 0 - 0 # Rotation of camera with respect to camera rig, expressed as XYZ euler angles. Please note that in this example, we # define poses with respect to the camera rig instead of the camera prim. By using the rig's frame as a surrogate for # the camera's frame, we effectively change the coordinate system of the camera. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([0, 0, 0]), this corresponds to the default # Isaac-Sim camera coordinate system of -z out the face of the camera, +x to the right, and +y up. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([180, 0, 0]), this corresponds to # the YCB Video Dataset camera coordinate system of +z out the face of the camera, +x to the right, and +y down. CAMERA_ROTATION: - 180 - 0 - 0 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MIN_ROTATION_RANGE: - -180 - -90 - -180 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MAX_ROTATION_RANGE: - 180 - 90 - 180 # How close the center of the part being trained on is allowed to be to the edge of the screen FRACTION_TO_SCREEN_EDGE: 0.9 # MESH and DOME datasets SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 # MESH dataset NUM_MESH_SHAPES: 500 NUM_MESH_OBJECTS: 200 MESH_FRACTION_GLASS: 0.15 MESH_FILENAMES: - 002_master_chef_can - 004_sugar_box - 005_tomato_soup_can - 006_mustard_bottle - 007_tuna_fish_can - 008_pudding_box - 009_gelatin_box - 010_potted_meat_can - 011_banana - 019_pitcher_base - 021_bleach_cleanser - 024_bowl - 025_mug - 035_power_drill - 036_wood_block - 037_scissors - 040_large_marker - 051_large_clamp - 052_extra_large_clamp - 061_foam_brick # DOME dataset NUM_DOME_SHAPES: 30 NUM_DOME_OBJECTS: 20 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: - Clear/evening_road_01_4k - Clear/kloppenheim_02_4k - Clear/mealie_road_4k - Clear/noon_grass_4k - Clear/qwantani_4k - Clear/signal_hill_sunrise_4k - Clear/sunflowers_4k - Clear/syferfontein_18d_clear_4k - Clear/venice_sunset_4k - Clear/white_cliff_top_4k - Cloudy/abandoned_parking_4k - Cloudy/champagne_castle_1_4k - Cloudy/evening_road_01_4k - Cloudy/kloofendal_48d_partly_cloudy_4k - Cloudy/lakeside_4k - Cloudy/sunflowers_4k - Cloudy/table_mountain_1_4k - Evening/evening_road_01_4k - Indoor/adams_place_bridge_4k - Indoor/autoshop_01_4k - Indoor/bathroom_4k - Indoor/carpentry_shop_01_4k - Indoor/en_suite_4k - Indoor/entrance_hall_4k - Indoor/hospital_room_4k - Indoor/hotel_room_4k - Indoor/lebombo_4k - Indoor/old_bus_depot_4k - Indoor/small_empty_house_4k - Indoor/studio_small_04_4k - Indoor/surgery_4k - Indoor/vulture_hide_4k - Indoor/wooden_lounge_4k - Night/kloppenheim_02_4k - Night/moonlit_golf_4k - Storm/approaching_storm_4k
3,989
YAML
25.25
131
0.740035
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/test_utils.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import json import os import shutil import numpy as np import scipy.io as sio def run_pose_generation_test(writer, output_folder, test_folder): if writer.lower() == "dope": run_dope_test(test_folder, output_folder) elif writer.lower() == "ycbvideo": run_ycbvideo_tests(test_folder, output_folder) else: raise Exception(f"No tests exist for the selected writer: {writer}") # Cleans up output directory so tests are not reading output files from previous run def clean_output_dir(output_folder): if os.path.isdir(output_folder): shutil.rmtree(output_folder, ignore_errors=True) # Checks if distance between points is within threshold def within_threshold(p1, p2, threshold=20): return np.linalg.norm(np.array(p1) - np.array(p2)) < threshold def run_dope_test(test_folder, output_folder): groundtruth_path = os.path.join(test_folder, "dope/000000_groundtruth.json") # Look at output for 2nd frame because 1st frame does not get generated properly sometimes output_path = os.path.join(output_folder, "000001.json") with open(groundtruth_path) as gt_f: gt_data = json.load(gt_f) with open(output_path) as op_f: op_data = json.load(op_f) gt_objects, op_objects = gt_data["objects"], op_data["objects"] # Does not work with multiple objects. There should be only one object in testing mode. if not (len(gt_objects) == 1 and len(op_objects) == 1): raise Exception( f"Mismatch in .json files between number of objects. gt_objects: {len(gt_objects)}, op_objects: {len(op_objects)}" ) for gt_obj, op_obj in zip(gt_objects, op_objects): if not within_threshold(gt_obj["location"], op_obj["location"], 10): raise Exception( f"Distance between groundtruth location and output location exceeds threshold. (location) {gt_pt} and {op_pt}" ) for gt_pt, op_pt in zip(gt_obj["projected_cuboid"], op_obj["projected_cuboid"]): if not within_threshold(gt_pt, op_pt, 20.0): raise Exception( f"Distance between groundtruth points and output points exceeds threshold. (projected_cuboid) {gt_pt} and {op_pt}" ) print("Tests pass for DOPE Writer.") def run_ycbvideo_tests(test_folder, output_folder, threshold=10): groundtruth_bbox_path = os.path.join(test_folder, "ycbvideo/000000-box_groundtruth.txt") groundtruth_meta_path = os.path.join(test_folder, "ycbvideo/000000-meta_groundtruth.mat") # Look at output for 2nd frame because 1st frame does not get generated properly sometimes output_bbox_path = os.path.join(output_folder, "data/YCB_Video/data/0000", "000001-box.txt") output_meta_path = os.path.join(output_folder, "data/YCB_Video/data/0000", "000001-meta.mat") # Compare BBox gt_bb = open(groundtruth_bbox_path, "r") op_bb = open(output_bbox_path, "r") for l1, l2 in zip(gt_bb, op_bb): for gt_point, bb_point in zip(l1.strip().split()[1:5], l2.strip().split()[1:5]): if not within_threshold([int(gt_point)], [int(bb_point)], 10): raise Exception(f"Mismatch between files {groundtruth_bbox_path} and {output_bbox_path}") gt_bb.close() op_bb.close() # Compare Meta File gt_meta = sio.loadmat(groundtruth_meta_path) op_meta = sio.loadmat(output_meta_path) keys_to_compare = ["poses", "intrinsic_matrix", "center"] print(f"gt_meta:\n{gt_meta}") print(f"op_meta:\n{op_meta}") for key in keys_to_compare: gt = gt_meta[key].flatten() op = op_meta[key].flatten() if not len(gt) == len(op): raise Exception(f"Mismatch between length of pose in {groundtruth_meta_path} and {output_meta_path}") for i in range(len(gt)): if abs(gt[i] - op[i]) > threshold: raise Exception( f"Mismatch between {key} values in groundtruth and output at index {i}. Groundtruth: {gt[i]} Output: {op[i]}" ) print(f"{key} matches between groundtruth and output.") print("Tests pass for YCBVideo Writer.")
4,599
Python
38.316239
134
0.661666
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/ycbvideo/test_ycb_config.yaml
# DO NOT MODIFY OR TESTS WILL FAIL --- CONFIG: renderer: RayTracedLighting headless: false width: 1280 height: 720 CLASS_NAME_TO_INDEX: _03_cracker_box: 1 OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } FORCE_RANGE: 30 WIDTH: 1280 HEIGHT: 720 F_X: 665.80768 F_Y: 665.80754 C_X: 637.642 C_Y: 367.56 HORIZONTAL_APERTURE: 20.955 NUM_LIGHTS: 6 MIN_DISTANCE: 1.0 MAX_DISTANCE: 1.0 CAMERA_RIG_ROTATION: - 0 - 0 - 0 CAMERA_ROTATION: - 180 - 0 - 0 MIN_ROTATION_RANGE: - 100 - 100 - 100 MAX_ROTATION_RANGE: - 100 - 100 - 100 FRACTION_TO_SCREEN_EDGE: 0.0 SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 NUM_MESH_SHAPES: 0 NUM_MESH_OBJECTS: 0 MESH_FRACTION_GLASS: 0.15 NUM_DOME_SHAPES: 0 NUM_DOME_OBJECTS: 0 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: [] MESH_FILENAMES: []
853
YAML
13.724138
68
0.691676
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/dope/test_dope_config.yaml
# DO NOT MODIFY OR TESTS WILL FAIL --- CONFIG: renderer: RayTracedLighting headless: false width: 512 height: 512 CLASS_NAME_TO_INDEX: _03_cracker_box: 1 OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } FORCE_RANGE: 30 WIDTH: 512 HEIGHT: 512 F_X: 768.1605834960938 F_Y: 768.1605834960938 C_X: 256 C_Y: 256 HORIZONTAL_APERTURE: 20.955 NUM_LIGHTS: 6 MIN_DISTANCE: 1.0 MAX_DISTANCE: 1.0 CAMERA_RIG_ROTATION: - 0 - 0 - 0 CAMERA_ROTATION: - 180 - 0 - 0 MIN_ROTATION_RANGE: - 100 - 100 - 100 MAX_ROTATION_RANGE: - 100 - 100 - 100 FRACTION_TO_SCREEN_EDGE: 0.0 SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 NUM_MESH_SHAPES: 0 NUM_MESH_OBJECTS: 0 MESH_FRACTION_GLASS: 0.15 NUM_DOME_SHAPES: 0 NUM_DOME_OBJECTS: 0 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: [] MESH_FILENAMES: []
860
YAML
13.844827
68
0.696512
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_train.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # import stable baselines import carb try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() try: import tensorboard except Exception as e: carb.log_error(e) carb.log_error( "please install tensorboard in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install tensorboard" ) exit() # create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True) # create task and register task from cartpole_task import CartpoleTask task = CartpoleTask(name="Cartpole") env.set_task(task, backend="torch") # create agent from stable baselines model = PPO( "MlpPolicy", env, n_steps=1000, batch_size=1000, n_epochs=20, learning_rate=0.001, gamma=0.99, device="cuda:0", ent_coef=0.0, vf_coef=0.5, max_grad_norm=1.0, verbose=1, tensorboard_log="./cartpole_tensorboard", ) model.learn(total_timesteps=100000) model.save("ppo_cartpole") env.close()
1,721
Python
26.774193
190
0.732714
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_play.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # import stable baselines import carb try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() # create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=False) # create task and register task from cartpole_task import CartpoleTask task = CartpoleTask(name="Cartpole") env.set_task(task, backend="torch") # Run inference on the trained policy model = PPO.load("ppo_cartpole") env._world.reset() obs, _ = env.reset() while env._simulation_app.is_running(): action, _states = model.predict(obs) obs, rewards, terminated, truncated, info = env.step(action) env.close()
1,312
Python
30.261904
190
0.759909
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_task.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import numpy as np import omni.kit import torch from gymnasium import spaces from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.viewports import set_camera_view class CartpoleTask(BaseTask): def __init__(self, name, offset=None) -> None: # task-specific parameters self._cartpole_position = [0.0, 0.0, 2.0] self._reset_dist = 3.0 self._max_push_effort = 400.0 # values used for defining RL buffers self._num_observations = 4 self._num_actions = 1 self._device = "cpu" self.num_envs = 1 # a few class buffers to store RL-related states self.obs = torch.zeros((self.num_envs, self._num_observations)) self.resets = torch.zeros((self.num_envs, 1)) # set the action and observation space for RL self.action_space = spaces.Box( np.ones(self._num_actions, dtype=np.float32) * -1.0, np.ones(self._num_actions, dtype=np.float32) * 1.0 ) self.observation_space = spaces.Box( np.ones(self._num_observations, dtype=np.float32) * -np.Inf, np.ones(self._num_observations, dtype=np.float32) * np.Inf, ) # trigger __init__ of parent class BaseTask.__init__(self, name=name, offset=offset) def set_up_scene(self, scene) -> None: # retrieve file path for the Cartpole USD file assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Cartpole/cartpole.usd" # add the Cartpole USD to our stage create_prim(prim_path="/World/Cartpole", prim_type="Xform", position=self._cartpole_position) add_reference_to_stage(usd_path, "/World/Cartpole") # Get stage handle stage = omni.usd.get_context().get_stage() if not stage: print("Stage could not be used.") else: for prim in stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") # create an ArticulationView wrapper for our cartpole - this can be extended towards accessing multiple cartpoles self._cartpoles = ArticulationView(prim_paths_expr="/World/Cartpole*", name="cartpole_view") # add Cartpole ArticulationView and ground plane to the Scene scene.add(self._cartpoles) scene.add_default_ground_plane() # set default camera viewport position and target self.set_initial_camera_params() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): set_camera_view(eye=camera_position, target=camera_target, camera_prim_path="/OmniverseKit_Persp") def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") # randomize all envs indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device) self.reset(indices) def reset(self, env_ids=None): if env_ids is None: env_ids = torch.arange(self.num_envs, device=self._device) num_resets = len(env_ids) # randomize DOF positions dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # randomize DOF velocities dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # apply resets indices = env_ids.to(dtype=torch.int32) self._cartpoles.set_joint_positions(dof_pos, indices=indices) self._cartpoles.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.resets[env_ids] = 0 def pre_physics_step(self, actions) -> None: reset_env_ids = self.resets.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset(reset_env_ids) actions = torch.tensor(actions) forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device) forces[:, self._cart_dof_idx] = self._max_push_effort * actions[0] indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device) self._cartpoles.set_joint_efforts(forces, indices=indices) def get_observations(self): dof_pos = self._cartpoles.get_joint_positions() dof_vel = self._cartpoles.get_joint_velocities() # collect pole and cart joint positions and velocities for observation cart_pos = dof_pos[:, self._cart_dof_idx] cart_vel = dof_vel[:, self._cart_dof_idx] pole_pos = dof_pos[:, self._pole_dof_idx] pole_vel = dof_vel[:, self._pole_dof_idx] self.obs[:, 0] = cart_pos self.obs[:, 1] = cart_vel self.obs[:, 2] = pole_pos self.obs[:, 3] = pole_vel return self.obs def calculate_metrics(self) -> None: cart_pos = self.obs[:, 0] cart_vel = self.obs[:, 1] pole_angle = self.obs[:, 2] pole_vel = self.obs[:, 3] # compute reward based on angle of pole and cart velocity reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel) # apply a penalty if cart is too far from center reward = torch.where(torch.abs(cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) # apply a penalty if pole is too far from upright reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) return reward.item() def is_done(self) -> None: cart_pos = self.obs[:, 0] pole_pos = self.obs[:, 2] # reset the robot if cart has reached reset_dist or pole is too far from upright resets = torch.where(torch.abs(cart_pos) > self._reset_dist, 1, 0) resets = torch.where(torch.abs(pole_pos) > math.pi / 2, 1, resets) self.resets = resets return resets.item()
7,209
Python
41.662722
121
0.636288
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/pick_place.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.dofbot.controllers.pick_place_controller import PickPlaceController from omni.isaac.dofbot.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) my_task = PickPlace() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() dofbot_name = task_params["robot_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = PickPlaceController( name="pick_place_controller", gripper=my_dofbot.gripper, robot_articulation=my_dofbot ) articulation_controller = my_dofbot.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[dofbot_name]["joint_positions"], end_effector_offset=np.array([0, -0.06, 0]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) simulation_app.close()
1,954
Python
38.897958
96
0.72262
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/follow_target_with_rmpflow.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.dofbot.controllers.rmpflow_controller import RMPFlowController from omni.isaac.dofbot.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() dofbot_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_dofbot) articulation_controller = my_dofbot.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) simulation_app.close()
1,764
Python
42.048779
98
0.747732
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/follow_target_with_ik.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.dofbot import KinematicsSolver from omni.isaac.dofbot.controllers.rmpflow_controller import RMPFlowController from omni.isaac.dofbot.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() dofbot_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = KinematicsSolver(my_dofbot) articulation_controller = my_dofbot.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() # IK does not work well on dofbot with orientation targets actions, succ = my_controller.compute_inverse_kinematics(target_position=observations[target_name]["position"]) # actions,succ = my_controller.compute_inverse_kinematics(target_position=observations[target_name]["position"], # target_orientation=observations[target_name]["orientation"], orientation_tolerance = np.pi/2) if succ: articulation_controller.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") simulation_app.close()
2,079
Python
43.255318
120
0.746513
2820207922/isaac_ws/standalone_examples/api/omni.kit.asset_converter/asset_usd_converter.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import asyncio import os import omni from omni.isaac.kit import SimulationApp async def convert(in_file, out_file, load_materials=False): # This import causes conflicts when global import omni.kit.asset_converter def progress_callback(progress, total_steps): pass converter_context = omni.kit.asset_converter.AssetConverterContext() # setup converter and flags converter_context.ignore_materials = not load_materials # converter_context.ignore_animation = False # converter_context.ignore_cameras = True # converter_context.single_mesh = True # converter_context.smooth_normals = True # converter_context.preview_surface = False # converter_context.support_point_instancer = False # converter_context.embed_mdl_in_usd = False # converter_context.use_meter_as_world_unit = True # converter_context.create_world_as_default_root_prim = False instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(in_file, out_file, progress_callback, converter_context) success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break return success def asset_convert(args): supported_file_formats = ["stl", "obj", "fbx"] for folder in args.folders: local_asset_output = folder + "_converted" result = omni.client.create_folder(f"{local_asset_output}") for folder in args.folders: print(f"\nConverting folder {folder}...") (result, models) = omni.client.list(folder) for i, entry in enumerate(models): if i >= args.max_models: print(f"max models ({args.max_models}) reached, exiting conversion") break model = str(entry.relative_path) model_name = os.path.splitext(model)[0] model_format = (os.path.splitext(model)[1])[1:] # Supported input file formats if model_format in supported_file_formats: input_model_path = folder + "/" + model converted_model_path = folder + "_converted/" + model_name + "_" + model_format + ".usd" if not os.path.exists(converted_model_path): status = asyncio.get_event_loop().run_until_complete( convert(input_model_path, converted_model_path, True) ) if not status: print(f"ERROR Status is {status}") print(f"---Added {converted_model_path}") if __name__ == "__main__": kit = SimulationApp() from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.kit.asset_converter") parser = argparse.ArgumentParser("Convert OBJ/STL assets to USD") parser.add_argument( "--folders", type=str, nargs="+", default=None, help="List of folders to convert (space seperated)." ) parser.add_argument( "--max-models", type=int, default=50, help="If specified, convert up to `max-models` per folder." ) parser.add_argument( "--load-materials", action="store_true", help="If specified, materials will be loaded from meshes" ) args, unknown_args = parser.parse_known_args() if args.folders is not None: # Ensure Omniverse Kit is launched via SimulationApp before asset_convert() is called asset_convert(args) else: print(f"No folders specified via --folders argument, exiting") # cleanup kit.close()
4,049
Python
36.850467
108
0.652013
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cloner/clone_ants.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.cloner import GridCloner from omni.isaac.core import World from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() # create initial robot asset_path = assets_root_path + "/Isaac/Robots/Ant/ant.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Ants/Ant_0") # create GridCloner instance cloner = GridCloner(spacing=2) # generate paths for clones target_paths = cloner.generate_paths("/World/Ants/Ant", 4) # clone position_offsets = np.array([[0, 0, 1]] * 4) cloner.clone( source_prim_path="/World/Ants/Ant_0", prim_paths=target_paths, position_offsets=position_offsets, replicate_physics=True, base_env_path="/World/Ants", ) # create ArticulationView ants = ArticulationView(prim_paths_expr="/World/Ants/.*/torso", name="ants_view") my_world.scene.add(ants) my_world.reset() for i in range(1000): print(ants.get_world_poses()) my_world.step() simulation_app.close()
1,909
Python
29.806451
81
0.756417
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/load_stage.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb import omni from omni.isaac.kit import SimulationApp # This sample loads a usd stage and starts simulation CONFIG = {"width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting"} # Set up command line arguments parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument( "--usd_path", type=str, help="Path to usd file, should be relative to your default assets folder", required=True ) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() # Start the omniverse application CONFIG["headless"] = args.headless kit = SimulationApp(launch_config=CONFIG) # Locate Isaac Sim assets folder to load sample from omni.isaac.core.utils.nucleus import get_assets_root_path, is_file assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kit.close() sys.exit() usd_path = assets_root_path + args.usd_path # make sure the file exists before we try to open it try: result = is_file(usd_path) except: result = False if result: omni.usd.get_context().open_stage(usd_path) else: carb.log_error( f"the usd path {usd_path} could not be opened, please make sure that {args.usd_path} is a valid usd file in {assets_root_path}" ) kit.close() sys.exit() # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): kit.update() print("Loading Complete") omni.timeline.get_timeline_interface().play() # Run in test mode, exit after a fixed number of steps if args.test is True: for i in range(10): # Run in realtime mode, we don't specify the step size kit.update() else: while kit.is_running(): # Run in realtime mode, we don't specify the step size kit.update() omni.timeline.get_timeline_interface().stop() kit.close()
2,599
Python
31.5
135
0.727972
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/hello_world.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni from omni.isaac.kit import SimulationApp # The most basic usage for creating a simulation app kit = SimulationApp() for i in range(100): kit.update() omni.kit.app.get_app().print_and_log("Hello World!") kit.close() # Cleanup application
690
Python
30.40909
76
0.781159
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/change_resolution.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from omni.isaac.kit import SimulationApp # Simple example showing how to change resolution kit = SimulationApp({"headless": True}) kit.update() for i in range(100): width = random.randint(128, 1980) height = random.randint(128, 1980) kit.set_setting("/app/renderer/resolution/width", width) kit.set_setting("/app/renderer/resolution/height", height) kit.update() print(f"resolution set to: {width}, {height}") # cleanup kit.close()
905
Python
32.555554
76
0.758011
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/add_cubes.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid, VisualCuboid my_world = World(stage_units_in_meters=1.0) cube_1 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0, 0, 0.5]), size=0.3, color=np.array([255, 255, 255]), ) ) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_1", position=np.array([0, 0, 1.0]), scale=np.array([0.6, 0.5, 0.2]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_3 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_2", position=np.array([0, 0, 3.0]), scale=np.array([0.1, 0.1, 0.1]), size=1.0, color=np.array([0, 0, 255]), linear_velocity=np.array([0, 0, 0.4]), ) ) my_world.scene.add_default_ground_plane() for i in range(5): my_world.reset() for i in range(500): my_world.step(render=True) print(cube_2.get_angular_velocity()) print(cube_2.get_world_pose()) simulation_app.close()
1,702
Python
26.031746
76
0.63631
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/cloth.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np import torch from omni.isaac.core import World from omni.isaac.core.materials.particle_material import ParticleMaterial from omni.isaac.core.prims.soft.cloth_prim import ClothPrim from omni.isaac.core.prims.soft.cloth_prim_view import ClothPrimView from omni.isaac.core.prims.soft.particle_system import ParticleSystem from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.physx.scripts import deformableUtils, physicsUtils from pxr import Gf, UsdGeom # The example shows how to create and manipulate environments with particle cloth through the ClothPrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() class ParticleClothExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch", device="cuda") self.stage = simulation_app.context.get_stage() self.num_envs = 10 self.dimx = 5 self.dimy = 5 self.my_world.scene.add_default_ground_plane() self.initial_positions = None self.makeEnvs() def makeEnvs(self): for i in range(self.num_envs): env_path = "/World/Env" + str(i) env = UsdGeom.Xform.Define(self.stage, env_path) # set up the geometry cloth_path = env.GetPrim().GetPath().AppendChild("cloth") plane_mesh = UsdGeom.Mesh.Define(self.stage, cloth_path) tri_points, tri_indices = deformableUtils.create_triangle_mesh_square(dimx=5, dimy=5, scale=1.0) if self.initial_positions is None: self.initial_positions = torch.zeros((self.num_envs, len(tri_points), 3)) plane_mesh.GetPointsAttr().Set(tri_points) plane_mesh.GetFaceVertexIndicesAttr().Set(tri_indices) plane_mesh.GetFaceVertexCountsAttr().Set([3] * (len(tri_indices) // 3)) init_loc = Gf.Vec3f(i * 2, 0.0, 2.0) physicsUtils.setup_transform_as_scale_orient_translate(plane_mesh) physicsUtils.set_or_add_translate_op(plane_mesh, init_loc) physicsUtils.set_or_add_orient_op(plane_mesh, Gf.Rotation(Gf.Vec3d([1, 0, 0]), 15 * i).GetQuat()) self.initial_positions[i] = torch.tensor(init_loc) + torch.tensor(plane_mesh.GetPointsAttr().Get()) particle_system_path = env.GetPrim().GetPath().AppendChild("particleSystem") particle_material_path = env.GetPrim().GetPath().AppendChild("particleMaterial") self.particle_material = ParticleMaterial( prim_path=particle_material_path, drag=0.1, lift=0.3, friction=0.6 ) radius = 0.5 * (0.6 / 5.0) restOffset = radius contactOffset = restOffset * 1.5 self.particle_system = ParticleSystem( prim_path=particle_system_path, simulation_owner=self.my_world.get_physics_context().prim_path, rest_offset=restOffset, contact_offset=contactOffset, solid_rest_offset=restOffset, fluid_rest_offset=restOffset, particle_contact_offset=contactOffset, ) # note that no particle material is applied to the particle system at this point. # this can be done manually via self.particle_system.apply_particle_material(self.particle_material) # or to pass the material to the clothPrim which binds it internally to the particle system self.cloth = ClothPrim( name="clothPrim" + str(i), prim_path=str(cloth_path), particle_system=self.particle_system, particle_material=self.particle_material, ) self.my_world.scene.add(self.cloth) # create a view to deal with all the cloths self.clothView = ClothPrimView(prim_paths_expr="/World/Env*/cloth", name="clothView1") self.my_world.scene.add(self.clothView) self.my_world.reset(soft=False) def play(self): while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 0: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index % 50 == 1: for i in range(self.num_envs): print( "cloth {} average height = {:.2f}".format( i, self.clothView.get_world_positions()[i, :, 2].mean() ) ) # reset some random environments if self.my_world.current_time_step_index % 200 == 1: indices = torch.tensor( np.random.choice(range(self.num_envs), self.num_envs // 2, replace=False), dtype=torch.long ) new_positions = self.initial_positions[indices] + torch.tensor([0, 0, 5]) self.clothView.set_world_positions(new_positions, indices) updated_positions = self.clothView.get_world_positions() for i in indices: print("reset index {} average height = {:.2f}".format(i, updated_positions[i, :, 2].mean())) simulation_app.close() ParticleClothExample().play()
6,331
Python
45.558823
112
0.632128
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/add_frankas.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units from omni.isaac.core.utils.types import ArticulationAction parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_1") add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_2") articulated_system_1 = my_world.scene.add(Robot(prim_path="/World/Franka_1", name="my_franka_1")) articulated_system_2 = my_world.scene.add(Robot(prim_path="/World/Franka_2", name="my_franka_2")) for i in range(5): print("resetting...") my_world.reset() articulated_system_1.set_world_pose(position=np.array([0.0, 2.0, 0.0]) / get_stage_units()) articulated_system_2.set_world_pose(position=np.array([0.0, -2.0, 0.0]) / get_stage_units()) articulated_system_1.set_joint_positions(np.array([1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5])) for j in range(500): my_world.step(render=True) if j == 100: articulated_system_2.get_articulation_controller().apply_action( ArticulationAction(joint_positions=np.array([1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5])) ) if j == 400: print("Franka 1's joint positions are: ", articulated_system_1.get_joint_positions()) print("Franka 2's joint positions are: ", articulated_system_2.get_joint_positions()) if args.test is True: break simulation_app.close()
2,637
Python
41.548386
107
0.711794
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/simulation_callbacks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) from omni.isaac.core import SimulationContext from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() art = Articulation("/Franka") art.initialize() dof_ptr = art.get_dof_index("panda_joint2") simulation_context.play() def step_callback_1(step_size): art.set_joint_positions([-1.5], [dof_ptr]) return def step_callback_2(step_size): print( "Current joint 2 position @ step " + str(simulation_context.current_time_step_index) + " : " + str(art.get_joint_positions([dof_ptr])[0]) ) print("TIME: ", simulation_context.current_time) return def render_callback(event): print("Render Frame") simulation_context.add_physics_callback("physics_callback_1", step_callback_1) simulation_context.add_physics_callback("physics_callback_2", step_callback_2) simulation_context.add_render_callback("render_callback", render_callback) # Simulate 60 timesteps for i in range(60): print("step", i) simulation_context.step(render=False) # Render one frame simulation_context.render() simulation_context.stop() simulation_app.close()
2,052
Python
30.10606
78
0.752437
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/data_logging.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb from omni.isaac.core import World from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_1") articulated_system_1 = my_world.scene.add(Robot(prim_path="/World/Franka_1", name="my_franka_1")) my_world.reset() data_logger = my_world.get_data_logger() def frame_logging_func(tasks, scene): return { "joint_positions": scene.get_object("my_franka_1").get_joint_positions().tolist(), "applied_joint_positions": scene.get_object("my_franka_1").get_applied_action().joint_positions.tolist(), } data_logger.add_data_frame_logging_func(frame_logging_func) data_logger.start() for j in range(100): my_world.step(render=True) data_logger.save(log_path="./isaac_sim_data.json") data_logger.reset() data_logger.load(log_path="./isaac_sim_data.json") print(data_logger.get_data_frame(data_frame_index=2)) simulation_app.close()
1,922
Python
32.736842
113
0.752341
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/deformable.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils import torch from omni.isaac.core import World from omni.isaac.core.materials.deformable_material import DeformableMaterial from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.physx.scripts import deformableUtils, physicsUtils from pxr import Gf, UsdGeom, UsdLux # The example shows how to create and manipulate environments with deformable deformable through the DeformablePrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() class DeformableExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch", device="cuda") self.stage = simulation_app.context.get_stage() self.num_envs = 10 self.dimx = 5 self.dimy = 5 self.my_world.scene.add_default_ground_plane() self.initial_positions = None self.makeEnvs() def makeEnvs(self): for i in range(self.num_envs): init_loc = Gf.Vec3f(i * 2 - self.num_envs, 0.0, 0.0) env_scope = UsdGeom.Scope.Define(self.stage, "/World/Envs") env_path = "/World/Envs/Env" + str(i) env = UsdGeom.Xform.Define(self.stage, env_path) physicsUtils.set_or_add_translate_op(UsdGeom.Xformable(env), init_loc) mesh_path = env.GetPrim().GetPath().AppendChild("deformable") skin_mesh = UsdGeom.Mesh.Define(self.stage, mesh_path) tri_points, tri_indices = deformableMeshUtils.createTriangleMeshCube(8) skin_mesh.GetPointsAttr().Set(tri_points) skin_mesh.GetFaceVertexIndicesAttr().Set(tri_indices) skin_mesh.GetFaceVertexCountsAttr().Set([3] * (len(tri_indices) // 3)) physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh) physicsUtils.set_or_add_translate_op(skin_mesh, (0.0, 0.0, 2.0)) physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([1, 0, 0]), 15 * i).GetQuat()) deformable_material_path = env.GetPrim().GetPath().AppendChild("deformableMaterial") self.deformable_material = DeformableMaterial( prim_path=deformable_material_path, dynamic_friction=0.5, youngs_modulus=5e4, poissons_ratio=0.4, damping_scale=0.1, elasticity_damping=0.1, ) self.deformable = DeformablePrim( name="deformablePrim" + str(i), prim_path=str(mesh_path), deformable_material=self.deformable_material, vertex_velocity_damping=0.0, sleep_damping=1.0, sleep_threshold=0.05, settling_threshold=0.1, self_collision=True, self_collision_filter_distance=0.05, solver_position_iteration_count=20, kinematic_enabled=False, simulation_hexahedral_resolution=2, collision_simplification=True, ) self.my_world.scene.add(self.deformable) # create a view to deal with all the deformables self.deformableView = DeformablePrimView(prim_paths_expr="/World/Envs/Env*/deformable", name="deformableView1") self.my_world.scene.add(self.deformableView) self.my_world.reset(soft=False) # mesh data is available only after cooking # rest_points are represented with respect to the env positions, but simulation_mesh_nodal_positions can be either global or local positions # However, because we don't currently consider subspace root path with World/SimulationContext initialization, the environment xforms are not identified # below and the following call will be positions w.r.t to a global frame. self.initial_positions = self.deformableView.get_simulation_mesh_nodal_positions().cpu() self.initial_velocities = self.deformableView.get_simulation_mesh_nodal_velocities().cpu() # print(self.initial_positions) # self.initial_positions = self.deformableView.get_simulation_mesh_rest_points().cpu() # for i in range(self.num_envs): # self.initial_positions[i] += torch.tensor([i * 2, 0.0, 2.0]) # print(self.initial_positions[i]) def play(self): while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 1: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index == 200: for i in range(self.num_envs): print( "deformable {} average height = {:.2f}".format( i, self.deformableView.get_simulation_mesh_nodal_positions()[i, :, 2].mean() ) ) print( "deformable {} average vertical speed = {:.2f}".format( i, self.deformableView.get_simulation_mesh_nodal_velocities()[i, :, 2].mean() ) ) # reset some random environments if self.my_world.current_time_step_index % 500 == 1: indices = torch.tensor( np.random.choice(range(self.num_envs), self.num_envs // 2, replace=False), dtype=torch.long ) new_positions = self.initial_positions[indices] + torch.tensor([0, 0, 5]) new_velocities = self.initial_velocities[indices] + torch.tensor([0, 0, 3]) self.deformableView.set_simulation_mesh_nodal_positions(new_positions, indices) self.deformableView.set_simulation_mesh_nodal_velocities(new_velocities, indices) updated_positions = self.deformableView.get_simulation_mesh_nodal_positions() updated_velocities = self.deformableView.get_simulation_mesh_nodal_velocities() for i in indices: print("reset index {} average height = {:.2f}".format(i, updated_positions[i, :, 2].mean())) print( "reset index {} average vertical speed = {:.2f}".format(i, updated_velocities[i, :, 2].mean()) ) simulation_app.close() DeformableExample().play()
7,196
Python
47.959183
160
0.617982
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/visual_materials.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import random import sys import carb from omni.isaac.core import World from omni.isaac.core.materials.omni_glass import OmniGlass from omni.isaac.core.materials.omni_pbr import OmniPBR from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Materials/Textures/Synthetic/bubbles_2.png" my_world = World(stage_units_in_meters=1.0) textured_material = OmniPBR( prim_path="/World/visual_cube_material", name="omni_pbr", color=np.array([1, 0, 0]), texture_path=asset_path, texture_scale=[1.0, 1.0], texture_translate=[0.5, 0], ) glass = OmniGlass( prim_path=f"/World/visual_cube_material_2", ior=1.25, depth=0.001, thin_walled=False, color=np.array([random.random(), random.random(), random.random()]), ) cube_1 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0, 0, 0.5]), size=1.0, color=np.array([255, 255, 255]), visual_material=textured_material, ) ) cube_2 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_2", name="visual_cube_2", position=np.array([2, 0.39, 0.5]), size=1.0, color=np.array([255, 255, 255]), visual_material=glass, ) ) visual_material = cube_2.get_applied_visual_material() visual_material.set_color(np.array([1.0, 0.5, 0.0])) my_world.scene.add_default_ground_plane() my_world.reset() for i in range(10000): my_world.step(render=True) if args.test is True: break simulation_app.close()
2,549
Python
27.333333
90
0.695175
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/time_stepping.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) from omni.isaac.core import SimulationContext from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext(stage_units_in_meters=1.0) add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() def step_callback(step_size): print("simulate with step: ", step_size) return def render_callback(event): print("update app with step: ", event.payload["dt"]) simulation_context.add_physics_callback("physics_callback", step_callback) simulation_context.add_render_callback("render_callback", render_callback) simulation_context.stop() simulation_context.play() print("step physics once with a step size of 1/60 second, these are the default settings") simulation_context.step(render=False) print("step physics & rendering once with a step size of 1/60 second, these are the default settings") simulation_context.step(render=True) print("step physics & rendering once with a step size of 1/60 second") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=True) print("step physics 10 steps at a 1/600s per step and rendering at 1.0/60s") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=True) print("step physics once at 600Hz without rendering") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=False) print("step physics 10 steps at a 1/600s per step and rendering at 1.0/60s") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) for step in range(10): simulation_context.step(render=False) simulation_context.render() print("render a frame, moving editor timeline forward by 1.0/60s, physics does not simulate") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0) simulation_context.render() print("render a frame, moving editor timeline forward by 1.0/60s, physics does not simulate") simulation_context.set_simulation_dt(physics_dt=0.0, rendering_dt=1.0 / 60) simulation_context.step(render=True) print("step physics once 1/60s per step and rendering 10 times at 1.0/600s") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 600.0) for step in range(10): simulation_context.step(render=True) print("step physics once 1/60s per step and rendering once at 1.0/600s by explicitly calling step and render") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 600.0) simulation_context.step(render=False) simulation_context.render() print("step physics once 1/60s per step, rendering a frame does not move editor timeline forward") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=0.0) simulation_context.step(render=False) simulation_context.render() print("step physics once 1/60s per step, rendering a frame does not move editor timeline forward") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=0.0) simulation_context.step(render=True) print("render a new frame with simulation stopped, editor timeline does not move forward") simulation_context.stop() simulation_context.render() print("cleanup and exit") simulation_context.stop() simulation_app.close()
4,101
Python
40.434343
110
0.774201
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/control_robot.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import SimulationContext from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() art = Articulation("/Franka") art.initialize() dof_ptr = art.get_dof_index("panda_joint2") simulation_context.play() # NOTE: before interacting with dc directly you need to step physics for one step at least # simulation_context.step(render=True) which happens inside .play() for i in range(1000): art.set_joint_positions([-1.5], [dof_ptr]) simulation_context.step(render=True) simulation_context.stop() simulation_app.close()
1,500
Python
36.524999
90
0.786667
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/rigid_contact_view.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np import torch from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.prims.rigid_prim_view import RigidPrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() class RigidViewExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch") self.stage = simulation_app.context.get_stage() def makeEnv(self): self.cube_height = 1.0 self.top_cube_height = self.cube_height + 3.0 self.cube_dx = 5.0 self.cube_y = 2.0 self.top_cube_y = self.cube_y + 0.0 self.my_world._physics_context.set_gravity(-10) self.my_world.scene.add_default_ground_plane() for i in range(3): DynamicCuboid( prim_path=f"/World/Box_{i+1}", name=f"box_{i}", size=1.0, color=np.array([0.5, 0, 0]), mass=1.0 ) DynamicCuboid( prim_path=f"/World/TopBox_{i+1}", name=f"top_box_{i}", size=1.0, color=np.array([0.0, 0.0, 0.5]), mass=1.0, ) # add top box as filters to the view to receive contacts between the bottom boxes and top boxes self._box_view = RigidPrimView( prim_paths_expr="/World/Box_*", name="box_view", positions=self._array_container( [ [0, self.cube_y, self.cube_height], [-self.cube_dx, self.cube_y, self.cube_height], [self.cube_dx, self.cube_y, self.cube_height], ] ), contact_filter_prim_paths_expr=["/World/TopBox_*"], ) # a view just to manipulate the top boxes self._top_box_view = RigidPrimView( prim_paths_expr="/World/TopBox_*", name="top_box_view", positions=self._array_container( [ [0.0, self.top_cube_y, self.top_cube_height], [-self.cube_dx, self.top_cube_y, self.top_cube_height], [self.cube_dx, self.top_cube_y, self.top_cube_height], ] ), track_contact_forces=True, ) # can get contact forces with non-rigid body prims such as geometry prims either via the single prim class GeometryPrim, or the view class GeometryPrimView self._geom_prim = GeometryPrim( prim_path="/World/defaultGroundPlane", name="groundPlane", collision=True, track_contact_forces=True, prepare_contact_sensor=True, contact_filter_prim_paths_expr=["/World/Box_1", "/World/Box_2"], ) self._geom_view = GeometryPrimView( prim_paths_expr="/World/defaultGroundPlane*", name="groundPlaneView", collisions=self._array_container([True]), track_contact_forces=True, prepare_contact_sensors=True, contact_filter_prim_paths_expr=["/World/Box_1", "/World/Box_2", "/World/Box_3"], ) self.my_world.scene.add(self._box_view) self.my_world.scene.add(self._top_box_view) self.my_world.scene.add(self._geom_prim) self.my_world.scene.add(self._geom_view) self.my_world.reset(soft=False) def play(self): self.makeEnv() while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 0: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index % 100 == 1: states = self._box_view.get_current_dynamic_state() top_states = self._top_box_view.get_current_dynamic_state() net_forces = self._box_view.get_net_contact_forces(None, dt=1 / 60) forces_matrix = self._box_view.get_contact_force_matrix(None, dt=1 / 60) top_net_forces = self._top_box_view.get_net_contact_forces(None, dt=1 / 60) print("==================================================================") print("Bottom box net forces: \n", net_forces) print("Top box net forces: \n", top_net_forces) print("Bottom box forces from top ones: \n", forces_matrix) print("Bottom box positions: \n", states.positions) print("Top box positions: \n", top_states.positions) print("Bottom box velocities: \n", states.linear_velocities) print("Top box velocities: \n", top_states.linear_velocities) print("ground net force from GeometryPrimView : \n", self._geom_view.get_net_contact_forces(dt=1 / 60)) print( "ground force matrix from GeometryPrimView: \n", self._geom_view.get_contact_force_matrix(dt=1 / 60) ) print("ground net force from GeometryPrim : \n", self._geom_prim.get_net_contact_forces(dt=1 / 60)) print("ground force matrix from GeometryPrim: \n", self._geom_prim.get_contact_force_matrix(dt=1 / 60)) simulation_app.close() RigidViewExample().play()
6,241
Python
42.347222
163
0.585002
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/simulate_robot.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import SimulationContext from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage, is_stage_loading assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") create_prim("/DistantLight", "DistantLight") # wait for things to load simulation_app.update() while is_stage_loading(): simulation_app.update() # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() for i in range(1000): simulation_context.step(render=True) simulation_context.stop() simulation_app.close()
1,366
Python
34.973683
80
0.791362
2820207922/isaac_ws/standalone_examples/api/omni.replicator.isaac/randomization_demo.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.cloner import GridCloner from omni.isaac.core import World from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage # create the world world = World(stage_units_in_meters=1.0, physics_prim_path="/physicsScene", backend="numpy") assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder, closing app..") simulation_app.close() usd_path = assets_root_path + "/Isaac/Environments/Grid/default_environment.usd" add_reference_to_stage(usd_path=usd_path, prim_path="/World/defaultGroundPlane") # set up grid cloner cloner = GridCloner(spacing=1.5) cloner.define_base_env("/World/envs") define_prim("/World/envs/env_0") # set up the first environment DynamicSphere(prim_path="/World/envs/env_0/object", radius=0.1, position=np.array([0.75, 0.0, 0.2])) add_reference_to_stage( usd_path=assets_root_path + "/Isaac/Robots/Franka/franka.usd", prim_path="/World/envs/env_0/franka" ) # clone environments num_envs = 4 prim_paths = cloner.generate_paths("/World/envs/env", num_envs) env_pos = cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths) # creates the views and set up world object_view = RigidPrimView(prim_paths_expr="/World/envs/*/object", name="object_view") franka_view = ArticulationView(prim_paths_expr="/World/envs/*/franka", name="franka_view") world.scene.add(object_view) world.scene.add(franka_view) world.reset() num_dof = franka_view.num_dof import omni.replicator.core as rep # set up randomization with omni.replicator.isaac, imported as dr import omni.replicator.isaac as dr dr.physics_view.register_simulation_context(world) dr.physics_view.register_rigid_prim_view(object_view) dr.physics_view.register_articulation_view(franka_view) with dr.trigger.on_rl_frame(num_envs=num_envs): with dr.gate.on_interval(interval=20): dr.physics_view.randomize_simulation_context( operation="scaling", gravity=rep.distribution.uniform((1, 1, 0.0), (1, 1, 2.0)) ) with dr.gate.on_interval(interval=50): dr.physics_view.randomize_rigid_prim_view( view_name=object_view.name, operation="direct", force=rep.distribution.uniform((0, 0, 2.5), (0, 0, 5.0)) ) with dr.gate.on_interval(interval=10): dr.physics_view.randomize_articulation_view( view_name=franka_view.name, operation="direct", joint_velocities=rep.distribution.uniform(tuple([-2] * num_dof), tuple([2] * num_dof)), ) with dr.gate.on_env_reset(): dr.physics_view.randomize_rigid_prim_view( view_name=object_view.name, operation="additive", position=rep.distribution.normal((0.0, 0.0, 0.0), (0.2, 0.2, 0.0)), velocity=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ) dr.physics_view.randomize_articulation_view( view_name=franka_view.name, operation="additive", joint_positions=rep.distribution.uniform(tuple([-0.5] * num_dof), tuple([0.5] * num_dof)), position=rep.distribution.normal((0.0, 0.0, 0.0), (0.2, 0.2, 0.0)), ) frame_idx = 0 while simulation_app.is_running(): if world.is_playing(): reset_inds = list() if frame_idx % 200 == 0: # triggers reset every 200 steps reset_inds = np.arange(num_envs) dr.physics_view.step_randomization(reset_inds) world.step(render=True) frame_idx += 1 simulation_app.close()
4,393
Python
38.945454
116
0.700433
2820207922/isaac_ws/standalone_examples/api/omni.kit.app/app_framework.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.kit.app from omni.isaac.kit import AppFramework argv = [ "--empty", "--ext-folder", f'{os.path.abspath(os.environ["ISAAC_PATH"])}/exts', "--no-window", "--/app/asyncRendering=False", "--/app/fastShutdown=True", "--enable", "omni.usd", "--enable", "omni.kit.uiapp", ] # startup app = AppFramework("test_app", argv) import omni.usd stage_task = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) while not stage_task.done(): app.update() print("exiting") app.close()
997
Python
23.949999
76
0.711133
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dynamic_control/franka_articulation.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) # This sample loads an articulation and prints its information import omni from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.dynamic_control import _dynamic_control stage = simulation_app.context.get_stage() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" omni.usd.get_context().open_stage(asset_path) # start simulation omni.timeline.get_timeline_interface().play() # perform timestep simulation_app.update() dc = _dynamic_control.acquire_dynamic_control_interface() # Get handle to articulation art = dc.get_articulation("/panda") if art == _dynamic_control.INVALID_HANDLE: print("*** '%s' is not an articulation" % "/panda") else: # Print information about articulation root = dc.get_articulation_root_body(art) print(str("Got articulation handle %d \n" % art) + str("--- Hierarchy\n")) body_states = dc.get_articulation_body_states(art, _dynamic_control.STATE_ALL) print(str("--- Body states:\n") + str(body_states) + "\n") dof_states = dc.get_articulation_dof_states(art, _dynamic_control.STATE_ALL) print(str("--- DOF states:\n") + str(dof_states) + "\n") dof_props = dc.get_articulation_dof_properties(art) print(str("--- DOF properties:\n") + str(dof_props) + "\n") # Simulate robot coming to a rest configuration for i in range(100): simulation_app.update() # Simulate robot for a fixed number of frames and specify a joint position target for i in range(100): dof_ptr = dc.find_articulation_dof(art, "panda_joint2") # This should be called each frame of simulation if state on the articulation is being changed. dc.wake_up_articulation(art) # Set joint position target dc.set_dof_position_target(dof_ptr, -1.5) simulation_app.update() simulation_app.close()
2,529
Python
35.142857
99
0.732305
2820207922/isaac_ws/standalone_examples/api/omni.isaac.shapenet/usd_convertor.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Convert ShapeNetCore V2 to USD without materials. By only converting the ShapeNet geometry, we can more quickly load assets into scenes for the purpose of creating large datasets or for online training of Deep Learning models. """ import argparse import os import carb from omni.isaac.kit import SimulationApp if "SHAPENET_LOCAL_DIR" not in os.environ: carb.log_error("SHAPENET_LOCAL_DIR not defined:") carb.log_error( "Please specify the SHAPENET_LOCAL_DIR environment variable to the location of your local shapenet database, exiting" ) exit() kit = SimulationApp() from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.isaac.shapenet") from omni.isaac.shapenet import utils parser = argparse.ArgumentParser("Convert ShapeNet assets to USD") parser.add_argument( "--categories", type=str, nargs="+", default=None, help="List of ShapeNet categories to convert (space seperated)." ) parser.add_argument( "--max_models", type=int, default=50, help="If specified, convert up to `max_models` per category, default is 50" ) parser.add_argument( "--load_materials", action="store_true", help="If specified, materials will be loaded from shapenet meshes" ) args, unknown_args = parser.parse_known_args() # Ensure Omniverse Kit is launched via SimulationApp before shapenet_convert() is called utils.shapenet_convert(args.categories, args.max_models, args.load_materials) # cleanup kit.close()
1,900
Python
34.203703
125
0.769474
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/franka_pick_up.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka") gripper = ParallelGripper( end_effector_prim_path="/World/Franka/panda_rightfinger", joint_prim_names=["panda_finger_joint1", "panda_finger_joint2"], joint_opened_positions=np.array([0.05, 0.05]), joint_closed_positions=np.array([0.0, 0.0]), action_deltas=np.array([0.05, 0.05]), ) my_franka = my_world.scene.add( SingleManipulator( prim_path="/World/Franka", name="my_franka", end_effector_prim_name="panda_rightfinger", gripper=gripper ) ) cube = my_world.scene.add( DynamicCuboid( name="cube", position=np.array([0.3, 0.3, 0.3]), prim_path="/World/Cube", scale=np.array([0.0515, 0.0515, 0.0515]), size=1.0, color=np.array([0, 0, 1]), ) ) my_world.scene.add_default_ground_plane() my_franka.gripper.set_default_state(my_franka.gripper.joint_opened_positions) my_world.reset() my_controller = PickPlaceController( name="pick_place_controller", gripper=my_franka.gripper, robot_articulation=my_franka ) articulation_controller = my_franka.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=cube.get_local_pose()[0], placing_position=np.array([-0.3, -0.3, 0.0515 / 2.0]), current_joint_positions=my_franka.get_joint_positions(), end_effector_offset=np.array([0, 0.005, 0]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
3,410
Python
34.53125
112
0.708798
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/ur10_pick_up.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/UR10") gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x") ur10 = my_world.scene.add( SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper) ) ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) cube = my_world.scene.add( DynamicCuboid( name="cube", position=np.array([0.3, 0.3, 0.3]), prim_path="/World/Cube", scale=np.array([0.0515, 0.0515, 0.0515]), size=1.0, color=np.array([0, 0, 1]), ) ) my_world.scene.add_default_ground_plane() ur10.gripper.set_default_state(opened=True) my_world.reset() my_controller = PickPlaceController(name="pick_place_controller", gripper=ur10.gripper, robot_articulation=ur10) articulation_controller = ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=cube.get_local_pose()[0], placing_position=np.array([0.7, 0.7, 0.0515 / 2.0]), current_joint_positions=ur10.get_joint_positions(), end_effector_offset=np.array([0, 0, 0.02]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
3,376
Python
37.375
113
0.712085
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/rmpflow_supported_robots/supported_robot_follow_target_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse from pprint import pprint import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import cuboid from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.motion_generation.articulation_motion_policy import ArticulationMotionPolicy from omni.isaac.motion_generation.interface_config_loader import ( get_supported_robot_policy_pairs, load_supported_motion_policy_config, ) from omni.isaac.motion_generation.lula import RmpFlow parser = argparse.ArgumentParser() parser.add_argument( "-v", "--verbose", action="store_true", default=True, help="Print useful runtime information such as the list of supported robots", ) parser.add_argument( "--robot-name", type=str, default="Cobotta_Pro_900", help="Key to use to access RMPflow config files for a specific robot.", ) parser.add_argument( "--usd-path", type=str, default="/Isaac/Robots/Denso/cobotta_pro_900.usd", help="Path to supported robot on Nucleus Server", ) parser.add_argument("--add-orientation-target", action="store_true", default=False, help="Add orientation target") args, unknown = parser.parse_known_args() robot_name = args.robot_name usd_path = get_assets_root_path() + args.usd_path prim_path = "/my_robot" add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) light_prim = create_prim("/DistantLight", "DistantLight") light_prim.GetAttribute("inputs:intensity").Set(5000) my_world = World(stage_units_in_meters=1.0) robot = my_world.scene.add(Robot(prim_path=prim_path, name=robot_name)) if args.verbose: print("Names of supported robots with provided RMPflow config") print("\t", list(get_supported_robot_policy_pairs().keys())) print() # The load_supported_motion_policy_config() function is currently the simplest way to load supported robots. # In the future, Isaac Sim will provide a centralized registry of robots with Lula robot description files # and RMP configuration files stored alongside the robot USD. rmp_config = load_supported_motion_policy_config(robot_name, "RMPflow") if args.verbose: print( f"Successfully referenced RMPflow config for {robot_name}. Using the following parameters to initialize RmpFlow class:" ) pprint(rmp_config) print() # Initialize an RmpFlow object rmpflow = RmpFlow(**rmp_config) physics_dt = 1 / 60.0 articulation_rmpflow = ArticulationMotionPolicy(robot, rmpflow, physics_dt) articulation_controller = robot.get_articulation_controller() # Make a target to follow target_cube = cuboid.VisualCuboid( "/World/target", position=np.array([0.5, 0, 0.5]), color=np.array([1.0, 0, 0]), size=0.1 ) # Make an obstacle to avoid obstacle = cuboid.VisualCuboid( "/World/obstacle", position=np.array([0.8, 0, 0.5]), color=np.array([0, 1.0, 0]), size=0.1 ) rmpflow.add_obstacle(obstacle) my_world.reset() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() # Set rmpflow target to be the current position of the target cube. if args.add_orientation_target: target_orientation = target_cube.get_world_pose()[1] else: target_orientation = None rmpflow.set_end_effector_target( target_position=target_cube.get_world_pose()[0], target_orientation=target_orientation ) # Query the current obstacle position rmpflow.update_world() actions = articulation_rmpflow.get_next_articulation_action() articulation_controller.apply_action(actions) simulation_app.close()
4,364
Python
33.642857
128
0.730981
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/rmpflow_supported_robots/README.md
This standalone example provides a generic script for running a follow-target example on any supported robot that uses RMPflow to reach a target while avoiding obstacles. The purpose of this script is to show only how to use RMPflow, and for the sake of simplicity, it does not use the task/controller paradigm that is typical in other Isaac Sim examples. The ./supported_robot_follow_target_example.py script takes in runtime with the path to the robot USD asset (which is assumed to be stored on the Nucleus Server) and the name of the robot. By running the script with the default command line arguments, the list of supported robot names will be printed in the terminal. ###### Command Line Arguments The supported command-line arguments are as follows: -v,--verbose: If True, prints out useful runtime information such as the list of supported robot names that map to RMPflow config files. Defaults to 'True' --robot-name: Name of robot that maps to the stored RMPflow config. Defaults to "Cobotta_Pro_900" --usd-path: Path to robot USD asset on the Nucleus Server. Defaults to "/Isaac/Robots/Denso/cobotta_pro_900.usd". The typical location of a specific robot is under "/Isaac/Robots/{manufacturer_name}/{robot_name}/{robot_name}.usd" --add-orientation-target: Add the orientation of the target cube to the RMPflow target. Defaults to False. ###### Choosing Correct Robot Name Argument With the default arguments, the above script will run using the Cobotta Pro 900 robot and will produce the following output: Names of supported robots with provided RMPflow config ['Franka', 'UR3', 'UR3e', 'UR5', 'UR5e', 'UR10', 'UR10e', 'UR16e', 'Rizon4', 'DofBot', 'Cobotta_Pro_900', 'Cobotta_Pro_1300', 'RS007L', 'RS007N', 'RS013N', 'RS025N', 'RS080N', 'FestoCobot'] Successfully referenced RMPflow config for Cobotta_Pro_900. Using the following parameters to initialize RmpFlow class: { 'end_effector_frame_name': 'gripper_center', 'ignore_robot_state_updates': False, 'maximum_substep_size': 0.00334, 'rmpflow_config_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/cobotta_rmpflow_common.yaml', 'robot_description_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/robot_descriptor.yaml', 'urdf_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/../cobotta_pro_900_gripper_frame.urdf' } The names of supported robots are suitable for the `--robot-name` argument, and each must correctly correspond to the robot USD path. In a future release, configuration data for supported robots will be centralized such that only a single argument will be required. The specific method of accessing supported robot RMPflow configs provided here will then be deprecated. The remaining output shows the RMPflow configuration information that is found under the name "Cobotta_Pro_900". This configuration is used to initialize the `RmpFlow` class. ###### Examples of loading other robots Multiple valid combinations of command line arguments are shown for different supported robots: python.sh supported_robot_follow_target_example.py --robot-name RS080N --usd-path "/Isaac/Robots/Kawasaki/RS080N/rs080n_onrobot_rg2.usd" python.sh supported_robot_follow_target_example.py --robot-name UR16e --usd-path "/Isaac/Robots/UniversalRobots/ur16e/ur16e.usd" python.sh supported_robot_follow_target_example.py --robot-name FestoCobot --usd-path "/Isaac/Robots/Festo/FestoCobot/festo_cobot.usd"
3,811
Markdown
72.307691
371
0.755445
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/ik_solver.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.motion_generation.articulation_kinematics_solver import ArticulationKinematicsSolver from omni.isaac.motion_generation.lula.kinematics import LulaKinematicsSolver class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: urdf_extension_path = get_extension_path_from_name("omni.isaac.urdf") self._kinematics = LulaKinematicsSolver( robot_description_path=os.path.join(os.path.dirname(__file__), "../rmpflow/robot_descriptor.yaml"), urdf_path=os.path.join(urdf_extension_path, "data/urdf/robots/cobotta_pro_900/cobotta_pro_900.urdf"), ) if end_effector_frame_name is None: end_effector_frame_name = "onrobot_rg6_base_link" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,547
Python
50.599998
114
0.76212