file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/simple_CartPole_actor_critic_manual_loop.py
import collections import gym import numpy as np import statistics import tensorflow as tf import tqdm from matplotlib import pyplot as plt from tensorflow.keras import layers from typing import Any, List, Sequence, Tuple # Create the environment env = gym.make("CartPole-v1") # Set seed for experiment reproducibility seed = 42 env.seed(seed) tf.random.set_seed(seed) np.random.seed(seed) # Small epsilon value for stabilizing division operations eps = np.finfo(np.float32).eps.item() class ActorCritic(tf.keras.Model): """Combined actor-critic network.""" def __init__( self, num_actions: int, num_hidden_units: int): """Initialize.""" super().__init__() self.common = layers.Dense(num_hidden_units, activation="relu") # self.lstm = layers.LSTM(units=num_hidden_units, activation="relu", recurrent_activation="sigmoid", stateful=True) self.actor = layers.Dense(num_actions) self.critic = layers.Dense(1) def call(self, inputs: tf.Tensor, states = None) -> Tuple[tf.Tensor, tf.Tensor]: x = inputs x = self.common(x) # if states is None: states = self.lstm.get_initial_state(x) # else: states = self.lstm.states # x = self.lstm(inputs, initial_state=states) return self.actor(x), self.critic(x) num_actions = env.action_space.n # 2 num_hidden_units = 128 model = ActorCritic(num_actions, num_hidden_units) # Wrap OpenAI Gym's `env.step` call as an operation in a TensorFlow function. # This would allow it to be included in a callable TensorFlow graph. def env_step(action: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Returns state, reward and done flag given an action.""" state, reward, done, _ = env.step(action) return (state.astype(np.float32), np.array(reward, np.int32), np.array(done, np.int32)) def tf_env_step(action: tf.Tensor) -> List[tf.Tensor]: return tf.numpy_function(env_step, [action], [tf.float32, tf.int32, tf.int32]) def run_episode( initial_state: tf.Tensor, model: tf.keras.Model, max_steps: int) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """Runs a single episode to collect training data.""" action_probs = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) values = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True) rewards = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True) initial_state_shape = initial_state.shape state = initial_state for t in tf.range(max_steps): # Convert state into a batched tensor (batch size = 1) state = tf.expand_dims(state, 0) # Run the model and to get action probabilities and critic value action_logits_t, value = model(state) print("ACTION_LOGITS_T") print(action_logits_t) print("S.D.") print(value) # Sample next action from the action probability distribution action = tf.random.categorical(action_logits_t, 1)[0, 0] print("ACTION") print(action) action_probs_t = tf.nn.softmax(action_logits_t) # Store critic values values = values.write(t, tf.squeeze(value)) # Store log probability of the action chosen action_probs = action_probs.write(t, action_probs_t[0, action]) # Apply action to the environment to get next state and reward state, reward, done = tf_env_step(action) state.set_shape(initial_state_shape) # Store reward rewards = rewards.write(t, reward) if tf.cast(done, tf.bool): break action_probs = action_probs.stack() values = values.stack() rewards = rewards.stack() return action_probs, values, rewards def get_expected_return( rewards: tf.Tensor, gamma: float, standardize: bool = True) -> tf.Tensor: """Compute expected returns per timestep.""" n = tf.shape(rewards)[0] returns = tf.TensorArray(dtype=tf.float32, size=n) # Start from the end of `rewards` and accumulate reward sums # into the `returns` array rewards = tf.cast(rewards[::-1], dtype=tf.float32) discounted_sum = tf.constant(0.0) discounted_sum_shape = discounted_sum.shape for i in tf.range(n): reward = rewards[i] discounted_sum = reward + gamma * discounted_sum discounted_sum.set_shape(discounted_sum_shape) returns = returns.write(i, discounted_sum) returns = returns.stack()[::-1] if standardize: returns = ((returns - tf.math.reduce_mean(returns)) / (tf.math.reduce_std(returns) + eps)) return returns huber_loss = tf.keras.losses.Huber(reduction=tf.keras.losses.Reduction.SUM) def compute_loss( action_probs: tf.Tensor, values: tf.Tensor, returns: tf.Tensor) -> tf.Tensor: """Computes the combined actor-critic loss.""" advantage = returns - values action_log_probs = tf.math.log(action_probs) actor_loss = -tf.math.reduce_sum(action_log_probs * advantage) critic_loss = huber_loss(values, returns) return actor_loss + critic_loss optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) @tf.function def train_step( initial_state: tf.Tensor, model: tf.keras.Model, optimizer: tf.keras.optimizers.Optimizer, gamma: float, max_steps_per_episode: int) -> tf.Tensor: """Runs a model training step.""" with tf.GradientTape() as tape: # Run the model for one episode to collect training data action_probs, values, rewards = run_episode( initial_state, model, max_steps_per_episode) # Calculate expected returns returns = get_expected_return(rewards, gamma) # Convert training data to appropriate TF tensor shapes action_probs, values, returns = [tf.expand_dims(x, 1) for x in [action_probs, values, returns]] # Calculating loss values to update our network loss = compute_loss(action_probs, values, returns) # Compute the gradients from the loss grads = tape.gradient(loss, model.trainable_variables) # Apply the gradients to the model's parameters optimizer.apply_gradients(zip(grads, model.trainable_variables)) episode_reward = tf.math.reduce_sum(rewards) return episode_reward min_episodes_criterion = 100 max_episodes = 10000 max_steps_per_episode = 1000 # Cartpole-v0 is considered solved if average reward is >= 195 over 100 # consecutive trials reward_threshold = 195 running_reward = 0 # Discount factor for future rewards gamma = 0.99 # Keep last episodes reward episodes_reward: collections.deque = collections.deque(maxlen=min_episodes_criterion) with tqdm.trange(max_episodes) as t: for i in t: initial_state = tf.constant(env.reset(), dtype=tf.float32) episode_reward = int(train_step(initial_state, model, optimizer, gamma, max_steps_per_episode)) episodes_reward.append(episode_reward) running_reward = statistics.mean(episodes_reward) t.set_description(f'Episode {i}') t.set_postfix( episode_reward=episode_reward, running_reward=running_reward) # Show average episode reward every 10 episodes if i % 10 == 0: pass # print(f'Episode {i}: average reward: {avg_reward}') if running_reward > reward_threshold and i >= min_episodes_criterion: break print(f'\nSolved at episode {i}: average reward: {running_reward:.2f}!')
7,501
Python
32.19469
123
0.665245
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/simple_RNN_state_reuse.py
import random import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers batch_size = 16 batch_count = 10 patience = 5 # if no improvement in N steps -> stop training timesteps = 9 def get_train_data(): x_batch_train, y_batch_train = [], [] for i in range(batch_size): offset = random.random() width = random.random()*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_train.append(sequence[:timesteps]) y_batch_train.append((sequence[timesteps]+1)/2) x_batch_train = np.array(x_batch_train).reshape((batch_size, timesteps, 1)) y_batch_train = np.array(y_batch_train).reshape((batch_size, 1)) return x_batch_train, y_batch_train def get_val_data(): x_batch_val, y_batch_val = [], [] for i in range(batch_size): offset = i/batch_size width = (1+i)/batch_size*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_val.append(sequence[:timesteps]) y_batch_val.append((sequence[timesteps]+1)/2) x_batch_val = np.array(x_batch_val).reshape((batch_size, timesteps, 1)) y_batch_val = np.array(y_batch_val).reshape((batch_size, 1)) return x_batch_val, y_batch_val def train_step(x, y, model, optimizer, loss_fn, train_acc_metric): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) train_acc_metric.update_state(y, logits) # update training matric return loss_value def test_step(x, y, model, loss_fn, val_acc_metric): val_logits = model(x, training=False) loss_value = loss_fn(y, val_logits) val_acc_metric.update_state(y, val_logits) return loss_value class SimpleLSTM(keras.Model): def __init__(self, num_input, embedding_dim, lstm_units, num_output): super().__init__(self) # self.embedding = layers.Embedding(num_input, embedding_dim) self.lstm1 = layers.LSTM(lstm_units, return_sequences=True, return_state=True) self.dense = layers.Dense(num_output) def call(self, inputs, states=None, return_state = False, training=False): x = inputs # x = self.embedding(x, training=training) if states is None: states = self.lstm1.get_initial_state(x) # state shape = (2, batch_size, lstm_units) print(x.shape) print(len(states)) print(states[0].shape) x, sequence, states = self.lstm1(x, initial_state=states, training=training) x = self.dense(x, training=training) if return_state: return x, states else: return x model = SimpleLSTM(num_input=9, embedding_dim=32, lstm_units=64, num_output=3) model.build(input_shape=(1, 9)) model.summary() optimizer = tf.optimizers.Adam(learning_rate=0.0025) loss_fn = keras.losses.MeanSquaredError() # Instantiate a loss function. train_mse_metric = keras.metrics.MeanSquaredError() val_mse_metric = keras.metrics.MeanSquaredError() test_mse_metric = keras.metrics.MeanSquaredError() val_loss_tracker = [] for epoch in range(1000): print("\nStart of epoch %d" % (epoch,)) train_loss = [] val_loss = [] test_loss = [] # Iterate over the batches of the dataset for step in range(batch_count): x_batch_train, y_batch_train = get_train_data() loss_value = train_step(x_batch_train, y_batch_train, model, optimizer, loss_fn, train_mse_metric) train_loss.append(float(loss_value)) # Run a validation loop at the end of each epoch for step in range(batch_count): x_batch_val, y_batch_val = get_val_data() val_loss_value = test_step(x_batch_val, y_batch_val, model, loss_fn, val_mse_metric) val_loss.append(float(val_loss_value)) val_loss_tracker.append(np.mean(val_loss)) # Display metrics at the end of each epoch train_acc = train_mse_metric.result() print("Training mse over epoch: %.4f" % (float(train_acc),)) val_acc = val_mse_metric.result() print("Validation mse: %.4f" % (float(val_acc),)) test_acc = test_mse_metric.result() # Reset metrics at the end of each epoch train_mse_metric.reset_states() val_mse_metric.reset_states() if len(val_loss_tracker) > patience: still_better = False for i in range(patience): if val_loss_tracker[len(val_loss_tracker) - patience + i] < min( val_loss_tracker[:len(val_loss_tracker) - patience]): still_better = True if still_better == False: break
4,889
Python
40.794871
111
0.628554
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/simple_RNN.py
import random import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers batch_size = 16 batch_count = 10 patience = 5 # if no improvement in N steps -> stop training timesteps = 9 input_dim = 1 # Build the RNN model def build_model(): model = keras.models.Sequential( [ keras.layers.LSTM(32, input_shape=(timesteps, input_dim)), # (time-steps, n_features) # keras.layers.BatchNormalization(), keras.layers.Dense(1), ] ) return model def get_train_data(): x_batch_train, y_batch_train = [], [] for i in range(batch_size): offset = random.random() width = random.random()*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_train.append(sequence[:timesteps]) y_batch_train.append((sequence[timesteps]+1)/2) x_batch_train = np.array(x_batch_train).reshape((batch_size, timesteps, 1)) y_batch_train = np.array(y_batch_train).reshape((batch_size, 1)) return x_batch_train, y_batch_train def get_val_data(): x_batch_val, y_batch_val = [], [] for i in range(batch_size): offset = i/batch_size width = (1+i)/batch_size*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_val.append(sequence[:timesteps]) y_batch_val.append((sequence[timesteps]+1)/2) x_batch_val = np.array(x_batch_val).reshape((batch_size, timesteps, 1)) y_batch_val = np.array(y_batch_val).reshape((batch_size, 1)) return x_batch_val, y_batch_val def train_step(x, y, model, optimizer, loss_fn, train_acc_metric): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) train_acc_metric.update_state(y, logits) # update training matric return loss_value def test_step(x, y, model, loss_fn, val_acc_metric): val_logits = model(x, training=False) loss_value = loss_fn(y, val_logits) val_acc_metric.update_state(y, val_logits) return loss_value # mnist = keras.datasets.mnist # (x_train, y_train), (x_test, y_test) = mnist.load_data() # x_train, x_test = x_train / 255.0, x_test / 255.0 # sample, sample_label = x_train[0], y_train[0] model = build_model() print(model.summary()) optimizer = tf.optimizers.Adam(learning_rate=0.0025) # Instantiate a loss function. # loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Computes the crossentropy loss between the labels and predictions. (use one-hot) produces a category index of the most likely matching category. # loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) # Computes the crossentropy loss between the labels and predictions. (use one-hot) produces a one-hot array containing the probable match for each category. loss_fn = keras.losses.MeanSquaredError() # Instantiate a loss function. # Prepare the metrics. # train_acc_metric = keras.metrics.CategoricalAccuracy() # val_acc_metric = keras.metrics.CategoricalAccuracy() # test_acc_metric = keras.metrics.CategoricalAccuracy() train_acc_metric = keras.metrics.MeanSquaredError() val_acc_metric = keras.metrics.MeanSquaredError() test_acc_metric = keras.metrics.MeanSquaredError() val_loss_tracker = [] for epoch in range(1000): print("\nStart of epoch %d" % (epoch,)) train_loss = [] val_loss = [] test_loss = [] # Iterate over the batches of the dataset for step in range(batch_count): x_batch_train, y_batch_train = get_train_data() loss_value = train_step(x_batch_train, y_batch_train, model, optimizer, loss_fn, train_acc_metric) train_loss.append(float(loss_value)) # Run a validation loop at the end of each epoch for step in range(batch_count): x_batch_val, y_batch_val = get_val_data() val_loss_value = test_step(x_batch_val, y_batch_val, model, loss_fn, val_acc_metric) val_loss.append(float(val_loss_value)) val_loss_tracker.append(np.mean(val_loss)) # Display metrics at the end of each epoch train_acc = train_acc_metric.result() print("Training mse over epoch: %.4f" % (float(train_acc),)) val_acc = val_acc_metric.result() print("Validation mse: %.4f" % (float(val_acc),)) test_acc = test_acc_metric.result() # Reset metrics at the end of each epoch train_acc_metric.reset_states() val_acc_metric.reset_states() if len(val_loss_tracker) > patience: still_better = False for i in range(patience): if val_loss_tracker[len(val_loss_tracker) - patience + i] < min( val_loss_tracker[:len(val_loss_tracker) - patience]): still_better = True if still_better == False: break # model.fit( # x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=10 # )
5,220
Python
40.768
224
0.643295
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/wandb_RNN.py
import wandb from wandb.keras import WandbCallback wandb.login() import random import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # batch_size = 16 train_batch_count = 20 # number of training batch(s) per epoch val_batch_count = 10 # number of validation batch(s) per epoch patience = 10 # if no improvement in N steps -> stop training # timesteps = 9 input_dim = 1 sweep_config = { 'method': 'random', # bayes 'metric': { 'name': 'val_loss', 'goal': 'minimize' }, 'early_terminate': { 'type': 'hyperband', 'min_iter': 10 }, 'parameters': { 'timesteps': { "min": 1, "max": 20 }, 'batch_size': { 'values': [8, 16, 32, 64] }, 'learning_rate':{ "min": 0.0001, "max": 0.1 }, 'n_lstm': { "min": 1, "max": 64 } } } # Build the RNN model def build_model(n_lstm, timesteps): model = keras.models.Sequential( [ keras.layers.LSTM(n_lstm, input_shape=(timesteps, input_dim)), # (time-steps, n_features) # keras.layers.BatchNormalization(), keras.layers.Dense(1), ] ) return model def get_train_data(batch_size, timesteps): x_batch_train, y_batch_train = [], [] for i in range(batch_size): offset = random.random() width = random.random()*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_train.append(sequence[:timesteps]) y_batch_train.append((sequence[timesteps]+1)/2) x_batch_train = np.array(x_batch_train).reshape((batch_size, timesteps, 1)) y_batch_train = np.array(y_batch_train).reshape((batch_size, 1)) return x_batch_train, y_batch_train def get_val_data(batch_size, timesteps): x_batch_val, y_batch_val = [], [] for i in range(batch_size): offset = i/batch_size width = (1+i)/batch_size*3 sequence = np.cos(np.arange(offset, offset+width, width/(timesteps+1))) x_batch_val.append(sequence[:timesteps]) y_batch_val.append((sequence[timesteps]+1)/2) x_batch_val = np.array(x_batch_val).reshape((batch_size, timesteps, 1)) y_batch_val = np.array(y_batch_val).reshape((batch_size, 1)) return x_batch_val, y_batch_val def train_step(x, y, model, optimizer, loss_fn, train_acc_metric): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) train_acc_metric.update_state(y, logits) # update training matric return loss_value def test_step(x, y, model, loss_fn, val_acc_metric): val_logits = model(x, training=False) loss_value = loss_fn(y, val_logits) val_acc_metric.update_state(y, val_logits) return loss_value def train(model, optimizer, loss_fn, train_mse_metric, val_mse_metric, batch_size, timesteps): val_loss_tracker = [] for epoch in range(1000): print("\nStart of epoch %d" % (epoch,)) train_loss = [] val_loss = [] # Iterate over the batches of the dataset for step in range(train_batch_count): x_batch_train, y_batch_train = get_train_data(batch_size=batch_size, timesteps=timesteps) loss_value = train_step(x_batch_train, y_batch_train, model, optimizer, loss_fn, train_mse_metric) train_loss.append(float(loss_value)) # Run a validation loop at the end of each epoch for step in range(val_batch_count): x_batch_val, y_batch_val = get_val_data(batch_size=batch_size, timesteps=timesteps) val_loss_value = test_step(x_batch_val, y_batch_val, model, loss_fn, val_mse_metric) val_loss.append(float(val_loss_value)) val_loss_tracker.append(np.mean(val_loss)) # track validation loss for no improvment elimination manually # Display metrics at the end of each epoch train_mse = train_mse_metric.result() print("Training mse over epoch: %.4f" % (float(train_mse),)) val_mse= val_mse_metric.result() print("Validation mse: %.4f" % (float(val_mse),)) # Reset metrics at the end of each epoch train_mse_metric.reset_states() val_mse_metric.reset_states() # 3️⃣ log metrics using wandb.log wandb.log({'epochs': epoch, 'loss': np.mean(train_loss), 'mse': float(train_mse), 'val_loss': np.mean(val_loss), 'val_mse': float(val_mse)}) if len(val_loss_tracker) > patience: still_better = False for i in range(patience): if val_loss_tracker[len(val_loss_tracker) - patience + i] < min(val_loss_tracker[:len(val_loss_tracker) - patience]): still_better = True if still_better == False: break def sweep_train(): config_defaults = { # default hyperparameters 'batch_size': 8, 'learning_rate': 0.01 } # Initialize wandb with a sample project name wandb.init(config=config_defaults) # this gets over-written in the Sweep wandb.config.architecture_name = "RNN" wandb.config.dataset_name = "cosine_test" model = build_model(n_lstm=wandb.config.n_lstm, timesteps=wandb.config.timesteps) print(model.summary()) optimizer = tf.optimizers.Adam(learning_rate=wandb.config.learning_rate) # Instantiate a loss function. # loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Computes the crossentropy loss between the labels and predictions. (use one-hot) produces a category index of the most likely matching category. # loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) # Computes the crossentropy loss between the labels and predictions. (use one-hot) produces a one-hot array containing the probable match for each category. loss_fn = keras.losses.MeanSquaredError() # Instantiate a loss function. # Prepare the metrics. # train_acc_metric = keras.metrics.CategoricalAccuracy() # val_acc_metric = keras.metrics.CategoricalAccuracy() train_mse_metric = keras.metrics.MeanSquaredError() val_mse_metric = keras.metrics.MeanSquaredError() train(model, optimizer, loss_fn, train_mse_metric, val_mse_metric, batch_size=wandb.config.batch_size, timesteps=wandb.config.timesteps) sweep_id = wandb.sweep(sweep_config, project="cosine_RNN_test") wandb.agent(sweep_id, function=sweep_train, count=20000)
7,089
Python
38.83146
228
0.598533
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/imu/mpu9250_i2c.py
import smbus bus = smbus.SMBus(1) # this is to be saved in the local folder under the name "mpu9250_i2c.py" # it will be used as the I2C controller and function harbor for the project # refer to datasheet and register map for full explanation import smbus,time def MPU6050_start(): # alter sample rate (stability) samp_rate_div = 0 # sample rate = 8 kHz/(1+samp_rate_div) bus.write_byte_data(MPU6050_ADDR, SMPLRT_DIV, samp_rate_div) time.sleep(0.1) # reset all sensors bus.write_byte_data(MPU6050_ADDR,PWR_MGMT_1,0x00) time.sleep(0.1) # power management and crystal settings bus.write_byte_data(MPU6050_ADDR, PWR_MGMT_1, 0x01) time.sleep(0.1) #Write to Configuration register bus.write_byte_data(MPU6050_ADDR, CONFIG, 0) time.sleep(0.1) #Write to Gyro configuration register gyro_config_sel = [0b00000,0b010000,0b10000,0b11000] # byte registers gyro_config_vals = [250.0,500.0,1000.0,2000.0] # degrees/sec gyro_indx = 0 bus.write_byte_data(MPU6050_ADDR, GYRO_CONFIG, int(gyro_config_sel[gyro_indx])) time.sleep(0.1) #Write to Accel configuration register accel_config_sel = [0b00000,0b01000,0b10000,0b11000] # byte registers accel_config_vals = [2.0,4.0,8.0,16.0] # g (g = 9.81 m/s^2) accel_indx = 0 bus.write_byte_data(MPU6050_ADDR, ACCEL_CONFIG, int(accel_config_sel[accel_indx])) time.sleep(0.1) # interrupt register (related to overflow of data [FIFO]) bus.write_byte_data(MPU6050_ADDR, INT_ENABLE, 1) time.sleep(0.1) return gyro_config_vals[gyro_indx],accel_config_vals[accel_indx] def read_raw_bits(register): # read accel and gyro values high = bus.read_byte_data(MPU6050_ADDR, register) low = bus.read_byte_data(MPU6050_ADDR, register+1) # combine higha and low for unsigned bit value value = ((high << 8) | low) # convert to +- value if(value > 32768): value -= 65536 return value def mpu6050_conv(): # raw acceleration bits acc_x = read_raw_bits(ACCEL_XOUT_H) acc_y = read_raw_bits(ACCEL_YOUT_H) acc_z = read_raw_bits(ACCEL_ZOUT_H) # raw temp bits ## t_val = read_raw_bits(TEMP_OUT_H) # uncomment to read temp # raw gyroscope bits gyro_x = read_raw_bits(GYRO_XOUT_H) gyro_y = read_raw_bits(GYRO_YOUT_H) gyro_z = read_raw_bits(GYRO_ZOUT_H) #convert to acceleration in g and gyro dps a_x = (acc_x/(2.0**15.0))*accel_sens a_y = (acc_y/(2.0**15.0))*accel_sens a_z = (acc_z/(2.0**15.0))*accel_sens w_x = (gyro_x/(2.0**15.0))*gyro_sens w_y = (gyro_y/(2.0**15.0))*gyro_sens w_z = (gyro_z/(2.0**15.0))*gyro_sens ## temp = ((t_val)/333.87)+21.0 # uncomment and add below in return return a_x,a_y,a_z,w_x,w_y,w_z def AK8963_start(): bus.write_byte_data(AK8963_ADDR,AK8963_CNTL,0x00) time.sleep(0.1) AK8963_bit_res = 0b0001 # 0b0001 = 16-bit AK8963_samp_rate = 0b0110 # 0b0010 = 8 Hz, 0b0110 = 100 Hz AK8963_mode = (AK8963_bit_res <<4)+AK8963_samp_rate # bit conversion bus.write_byte_data(AK8963_ADDR,AK8963_CNTL,AK8963_mode) time.sleep(0.1) def AK8963_reader(register): # read magnetometer values low = bus.read_byte_data(AK8963_ADDR, register-1) high = bus.read_byte_data(AK8963_ADDR, register) # combine higha and low for unsigned bit value value = ((high << 8) | low) # convert to +- value if(value > 32768): value -= 65536 return value def AK8963_conv(): # raw magnetometer bits loop_count = 0 while 1: mag_x = AK8963_reader(HXH) mag_y = AK8963_reader(HYH) mag_z = AK8963_reader(HZH) # the next line is needed for AK8963 if bin(bus.read_byte_data(AK8963_ADDR,AK8963_ST2))=='0b10000': break loop_count+=1 #convert to acceleration in g and gyro dps m_x = (mag_x/(2.0**15.0))*mag_sens m_y = (mag_y/(2.0**15.0))*mag_sens m_z = (mag_z/(2.0**15.0))*mag_sens return m_x,m_y,m_z # MPU6050 Registers MPU6050_ADDR = 0x68 PWR_MGMT_1 = 0x6B SMPLRT_DIV = 0x19 CONFIG = 0x1A GYRO_CONFIG = 0x1B ACCEL_CONFIG = 0x1C INT_ENABLE = 0x38 ACCEL_XOUT_H = 0x3B ACCEL_YOUT_H = 0x3D ACCEL_ZOUT_H = 0x3F TEMP_OUT_H = 0x41 GYRO_XOUT_H = 0x43 GYRO_YOUT_H = 0x45 GYRO_ZOUT_H = 0x47 #AK8963 registers AK8963_ADDR = 0x0C AK8963_ST1 = 0x02 HXH = 0x04 HYH = 0x06 HZH = 0x08 AK8963_ST2 = 0x09 AK8963_CNTL = 0x0A mag_sens = 4900.0 # magnetometer sensitivity: 4800 uT # start I2C driver bus = smbus.SMBus(1) # start comm with i2c bus gyro_sens,accel_sens = MPU6050_start() # instantiate gyro/accel # AK8963_start() # instantiate magnetometer
4,734
Python
30.151316
86
0.637093
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/examples/imu/test_sensor_visualizer.py
############################################### # MPU6050 9-DoF Example Printout from mpu9250_i2c import * time.sleep(1) # delay necessary to allow mpu9250 to settle print('recording data') # while 1: # try: # ax,ay,az,wx,wy,wz = mpu6050_conv() # read and convert mpu6050 data # # mx,my,mz = AK8963_conv() # read and convert AK8963 magnetometer data # except: # continue # print('{}'.format('-'*30)) # print('accel [g]: x = {0:2.2f}, y = {1:2.2f}, z {2:2.2f}= '.format(ax,ay,az)) # print('gyro [dps]: x = {0:2.2f}, y = {1:2.2f}, z = {2:2.2f}'.format(wx,wy,wz)) # # print('mag [uT]: x = {0:2.2f}, y = {1:2.2f}, z = {2:2.2f}'.format(mx,my,mz)) # # print('{}'.format('-'*30)) # time.sleep(0.01) #!/usr/bin/python """ Update a simple plot as rapidly as possible to measure speed. """ import argparse from collections import deque from time import perf_counter import numpy as np import pyqtgraph as pg import pyqtgraph.functions as fn import pyqtgraph.parametertree as ptree from pyqtgraph.Qt import QtCore, QtGui, QtWidgets nsamples = 50 ax_list =[0]*nsamples ay_list =[0]*nsamples az_list =[0]*nsamples gx_list =[0]*nsamples gy_list =[0]*nsamples gz_list =[0]*nsamples readrate = 100 class MonkeyCurveItem(pg.PlotCurveItem): def __init__(self, *args, **kwds): super().__init__(*args, **kwds) self.monkey_mode = '' def setMethod(self, param, value): self.monkey_mode = value def paint(self, painter, opt, widget): if self.monkey_mode not in ['drawPolyline']: return super().paint(painter, opt, widget) painter.setRenderHint(painter.RenderHint.Antialiasing, self.opts['antialias']) painter.setPen(pg.mkPen(self.opts['pen'])) if self.monkey_mode == 'drawPolyline': painter.drawPolyline(fn.arrayToQPolygonF(self.xData, self.yData)) app = pg.mkQApp("Plot Speed Test") default_pen = pg.mkPen() pw = pg.PlotWidget() pw.setRange(QtCore.QRectF(0, -5, nsamples, 10)) splitter = QtWidgets.QSplitter() splitter.addWidget(pw) splitter.show() pw.setWindowTitle('pyqtgraph example: PlotSpeedTest') pw.setLabel('bottom', 'Index', units='B') curve = MonkeyCurveItem(pen=default_pen, brush='b') pw.addItem(curve) rollingAverageSize = 1000 elapsed = deque(maxlen=rollingAverageSize) def resetTimings(*args): elapsed.clear() # def makeData(*args): # global data, connect_array, ptr # # sigopts = params.child('sigopts') # if sigopts['noise']: # data += np.random.normal(size=data.shape) # connect_array = np.ones(data.shape[-1], dtype=bool) # ptr = 0 # pw.setRange(QtCore.QRectF(0, -10, nsamples, 20)) def onUseOpenGLChanged(param, enable): pw.useOpenGL(enable) def onEnableExperimentalChanged(param, enable): pg.setConfigOption('enableExperimental', enable) def onPenChanged(param, pen): curve.setPen(pen) def onFillChanged(param, enable): curve.setFillLevel(0.0 if enable else None) # params.child('sigopts').sigTreeStateChanged.connect(makeData) # params.child('useOpenGL').sigValueChanged.connect(onUseOpenGLChanged) # params.child('enableExperimental').sigValueChanged.connect(onEnableExperimentalChanged) # params.child('pen').sigValueChanged.connect(onPenChanged) # params.child('fill').sigValueChanged.connect(onFillChanged) # params.child('plotMethod').sigValueChanged.connect(curve.setMethod) # params.sigTreeStateChanged.connect(resetTimings) # makeData() fpsLastUpdate = perf_counter() def update(): global curve, data, ptr, elapsed, fpsLastUpdate, readrate global ax_list,ay_list,az_list,gx_list,gy_list,gz_list t_start = perf_counter() ax,ay,az,gx,gy,gz = mpu6050_conv() # read and convert mpu6050 data ax_list.append(ax) ay_list.append(ay) az_list.append(az) gx_list.append(gx) gy_list.append(gy) gz_list.append(gz) ax_list = ax_list[1:] ay_list = ay_list[1:] az_list = az_list[1:] gx_list = gx_list[1:] gy_list = gy_list[1:] gz_list = gz_list[1:] # Measure curve.setData(ax_list) app.processEvents(QtCore.QEventLoop.ProcessEventsFlag.AllEvents) t_end = perf_counter() time.sleep((1/readrate)-(t_end-t_start)) # desire - currentfps timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(0) if __name__ == '__main__': pg.exec()
4,362
Python
28.281879
89
0.663916
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/cfg/task/Mooncake.yaml
# used to create the object name: Mooncake physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:32,${...num_envs}} envSpacing: 1.0 resetDist: 3.0 maxEffort: 100 maxWheelVelocity: 0.3 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.25 alive_reward_scale: 2.0 sim: dt: 0.01 # 1/100 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Mooncake: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,346
YAML
24.791209
71
0.68798
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/common.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os import carb.tokens import omni from pxr import UsdGeom, PhysxSchema, UsdPhysics def set_drive_parameters(drive, target_type, target_value, stiffness=None, damping=None, max_force=None): """Enable velocity drive for a given joint""" if target_type == "position": if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) elif target_type == "velocity": if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) if stiffness is not None: if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) if damping is not None: if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) if max_force is not None: if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force)
1,653
Python
34.191489
105
0.69147
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/lqr_controller.py
import numpy as np import scipy from scipy import linalg import control import math def k_gain_calculator(Q_state,R_state): # defined dynamics parameters mb = 4.0 mB = 3.3155 mw = 1.098 # mB = 4.9064 # mw = 1.415 rb = 0.12 rw = 0.05 l = 0.208 Ib = 0.01165 IB = 0.3 Iw = 0.00004566491 g = -9.81 IB_xy = 0.3 Iw_xy = 0.0002770398 ############### A_mat_3_2 = -(g*(rb**4)*(l*mB + mw*rb + mw*rw)*( (mw*(rw**3)) - Iw*rb + (l*mB*(rw**2)) + (mw*rb*(rw**2)))) / ( (IB*Ib*(rw**2)) + (IB*Iw*(rb**2)) + (Ib*Iw*(rb**2)) + (Iw*mB*(rb**4)) + (Iw*mb*(rb**4)) + (Ib*mw*(rw**4)) + (4*Iw*mw*(rb**4)) + (2*Iw*l*mB*(rb**3)) + (2*Ib*mw*rb*(rw**3)) + (4*Iw*mw*(rb**3)*rw) - ((l**2)*(mB**2)*(rb**2)*(rw**2)) + (IB*mB*(rb**2)*(rw**2)) + (IB*mb*(rb**2)*(rw**2)) + (IB*mw*(rb**2)*(rw**2)) + (Ib*mw*(rb**2)*(rw**2)) + (Iw*mw*(rb**2)*(rw**2)) + (mB*mw*(rb**2)*(rw**4)) + (2*mB*mw*(rb**3)*(rw**3)) + (mB*mw*(rb**4)*(rw**2)) + (mb*mw*(rb**2)*(rw**4)) + (2*mb*mw*(rb**3)*(rw**3)) + (mb*mw*(rb**4)*(rw**2)) - (2*l*mB*mw*(rb**2)*(rw**3)) - (2*l*mB*mw*(rb**3)*(rw**2))) A_mat_4_2 = (g*(l*mB + mw*rb + mw*rw)*( (Ib*(rw**2)) + (Iw*(rb**2)) + (mB*(rb**2)*(rw**2)) + (mb*(rb**2)*(rw**2)) + (mw*(rb**2)*(rw**2))))/( (IB*Ib*(rw**2)) + (IB*Iw*(rb**2)) + (Ib*Iw*(rb**2)) + (Iw*mB*(rb**4)) + (Iw*mb*(rb**4)) + (Ib*mw*(rw**4)) + (4*Iw*mw*(rb**4)) + (2*Iw*l*mB*(rb**3)) + (2*Ib*mw*rb*(rw**3)) + (4*Iw*mw*(rb**3)*rw) - ((l**2)*(mB**2)*(rb**2)*(rw**2)) + (IB*mB*(rb**2)*(rw**2)) + (IB*mb*(rb**2)*(rw**2)) + (IB*mw*(rb**2)*(rw**2)) + (Ib*mw*(rb**2)*(rw**2)) + (Iw*mw*(rb**2)*(rw**2)) + (mB*mw*(rb**2)*(rw**4)) + (2*mB*mw*(rb**3)*(rw**3)) + (mB*mw*(rb**4)*(rw**2)) + (mb*mw*(rb**2)*(rw**4)) + (2*mb*mw*(rb**3)*(rw**3)) + (mb*mw*(rb**4)*(rw**2)) - (2*l*mB*mw*(rb**2)*(rw**3)) - (2*l*mB*mw*(rb**3)*(rw**2))) B_mat_3 = ((rb**2)*rw*( (2*mw*(rb**2)) + (3*mw*rb*rw) + (l*mB*rb) + (mw*rw**2) + IB))/( (IB*Ib*(rw**2)) + (IB*Iw*(rb**2)) + (Ib*Iw*(rb**2)) + (Iw*mB*(rb**4)) + (Iw*mb*(rb**4)) + (Ib*mw*(rw**4)) + (4*Iw*mw*(rb**4)) + (2*Iw*l*mB*(rb**3)) + (2*Ib*mw*rb*(rw**3)) + (4*Iw*mw*(rb**3)*rw) - ((l**2)*(mB**2)*(rb**2)*(rw**2)) + (IB*mB*(rb**2)*(rw**2)) + (IB*mb*(rb**2)*(rw**2)) + (IB*mw*(rb**2)*(rw**2)) + (Ib*mw*(rb**2)*(rw**2)) + (Iw*mw*(rb**2)*(rw**2)) + (mB*mw*(rb**2)*(rw**4)) + (2*mB*mw*(rb**3)*(rw**3)) + (mB*mw*(rb**4)*(rw**2)) + (mb*mw*rb**2*rw**4) + (2*mb*mw*(rb**3)*(rw**3)) + (mb*mw*(rb**4)*(rw**2)) - (2*l*mB*mw*(rb**2)*(rw**3)) - (2*l*mB*mw*(rb**3)*(rw**2))) B_mat_4 = -(rb*rw*(Ib + (mB*(rb**2)) + (mb*(rb**2)) + (2*mw*rb**2) + (l*mB*rb) + (mw*rb*rw)))/((IB*Ib*(rw**2)) + (IB*Iw*(rb**2)) + (Ib*Iw*(rb**2)) + (Iw*mB*(rb**4)) + (Iw*mb*(rb**4)) + (Ib*mw*(rw**4)) + (4*Iw*mw*(rb**4)) + (2*Iw*l*mB*(rb**3)) + 2*Ib*mw*rb*rw**3 + 4*Iw*mw*rb**3*rw - l**2*mB**2*rb**2*rw**2 + IB*mB*rb**2*rw**2 + IB*mb*rb**2*rw**2 + IB*mw*rb**2*rw**2 + Ib*mw*rb**2*rw**2 + Iw*mw*rb**2*rw**2 + mB*mw*rb**2*rw**4 + 2*mB*mw*rb**3*rw**3 + mB*mw*rb**4*rw**2 + mb*mw*rb**2*rw**4 + 2*mb*mw*rb**3*rw**3 + mb*mw*rb**4*rw**2 - 2*l*mB*mw*rb**2*rw**3 - 2*l*mB*mw*rb**3*rw**2) B_mat_xy = (-rb/( (IB_xy*rw**2) + (mw*rw**2*(rb+rw)**2 + (Iw_xy*rb**2)))) A_sys = np.array([ [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, A_mat_3_2, 0, 0, 0, 0, 0, 0], [A_mat_3_2, 0, 0, 0, 0, 0, 0, 0], [0, A_mat_4_2, 0, 0, 0, 0, 0, 0], [A_mat_4_2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ]) B_sys =np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [B_mat_3, 0, 0], [0, B_mat_3, 0], [B_mat_4, 0, 0], [0, B_mat_4, 0], [0, 0, B_mat_xy]]) C_sys = np.eye(8) D_sys = np.zeros((8,3)) # Q_state = np.array([5, 5, 5, 30, 30, 30, 30, 30]) # R_state = np.array([10, 10, 10]) Q = np.eye(8) * Q_state R = np.eye(3) * R_state K, S, E = control.lqr(A_sys, B_sys, Q, R) # print("A_sys =", A_sys) # print("B_sys =", B_sys) # print("C_sys =", C_sys) # print("D_sys =", D_sys) # print("K =", K) # print(2*5**2*3*2) return K def euler_from_quaternion(x, y, z, w): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw_z = math.atan2(t3, t4) return [roll_x, pitch_y, yaw_z] # in radians def lqr_controller(x_ref,x_fb,K): u= K @ (x_ref-x_fb) return u def euler_from_quaternion(x, y, z, w): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw_z = math.atan2(t3, t4) return [roll_x, pitch_y, yaw_z] # in radians def ball_velocity(pre_vel,now_vel,dt): v = (now_vel-pre_vel)/dt return v def Txyz2wheel(Txyz): alpha = 50.0*np.pi/180.0 # wheelaxis_theta Twheels = np.array([[-np.cos(alpha) , 0 , -np.sin(alpha)], [np.cos(alpha)/2 , -np.sqrt(3)*np.cos(alpha)/2 , -np.sin(alpha)], [np.cos(alpha)/2 , np.sqrt(3)*np.cos(alpha)/2, -np.sin(alpha)]]) @ Txyz # -x axis # Twheels = np.array([[ np.cos(alpha) , 0 , -np.sin(alpha)], # [-np.cos(alpha)/2 , np.sqrt(3)*np.cos(alpha)/2 , -np.sin(alpha)], # [-np.cos(alpha)/2 , -np.sqrt(3)*np.cos(alpha)/2, -np.sin(alpha)]]) @ Txyz # x axis return Twheels
6,666
Python
54.099173
724
0.419442
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/import_mooncake.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import torch from torch import roll import omni import omni.kit.commands import omni.usd import omni.client import asyncio import math import weakref import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription from omni.isaac.isaac_sensor import _isaac_sensor from omni.isaac.core.prims import RigidPrimView from .common import set_drive_parameters from pxr import UsdLux, Sdf, Gf, UsdPhysics, Usd, UsdGeom from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder from omni.isaac.core.utils.prims import get_prim_at_path EXTENSION_NAME = "Import Mooncake" def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """ Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def velocity2omega(v_x, v_y, w_z=0, d=0.105, r=0.1): omega_0 = (v_x-d*w_z)/r omega_1 = -(v_x-math.sqrt(3)*v_y+2*d*w_z)/(2*r) omega_2 = -(v_x+math.sqrt(3)*v_y+2*d*w_z)/(2*r) return [omega_0, omega_1, omega_2] class Extension(omni.ext.IExt): def on_startup(self, ext_id: str): ext_manager = omni.kit.app.get_app().get_extension_manager() self._ext_id = ext_id self._extension_path = ext_manager.get_extension_path(ext_id) self._menu_items = [ MenuItemDescription( name="Import Robots", sub_menu=[ MenuItemDescription(name="Mooncake URDF", onclick_fn=lambda a=weakref.proxy(self): a._menu_callback()) ], ) ] add_menu_items(self._menu_items, "Isaac Examples") self._build_ui() def _build_ui(self): self._window = omni.ui.Window( EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): title = "Import a Mooncake Robot via URDF" doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html" overview = "This Example shows you import an NVIDIA Mooncake robot via URDF.\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) frame = ui.CollapsableFrame( title="Command Panel", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5): dict = { "label": "Load Robot", "type": "button", "text": "Load", "tooltip": "Load a Mooncake Robot into the Scene", "on_clicked_fn": self._on_load_robot, } btn_builder(**dict) dict = { "label": "Configure Drives", "type": "button", "text": "Configure", "tooltip": "Configure Joint Drives", "on_clicked_fn": self._on_config_robot, } btn_builder(**dict) dict = { "label": "Spin Robot", "type": "button", "text": "move", "tooltip": "Spin the Robot in Place", "on_clicked_fn": self._on_config_drives, } btn_builder(**dict) def on_shutdown(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None def _menu_callback(self): self._window.visible = not self._window.visible def _on_load_robot(self): load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) asyncio.ensure_future(self._load_mooncake(load_stage)) async def _load_mooncake(self, task): done, pending = await asyncio.wait({task}) if task in done: viewport = omni.kit.viewport_legacy.get_default_viewport_window() viewport.set_camera_position("/OmniverseKit_Persp", -1.02, 1.26, 0.5, True) viewport.set_camera_target("/OmniverseKit_Persp", 2.20, -2.18, -1.60, True) stage = omni.usd.get_context().get_stage() scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) result, plane_path = omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, 0), color=Gf.Vec3f(0.5), ) status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = True import_config.import_inertia_tensor = False # import_config.distance_scale = 100 import_config.fix_base = False import_config.set_make_instanceable(True) # import_config.set_instanceable_usd_path("./mooncake_instanceable.usd") import_config.set_instanceable_usd_path("omniverse://localhost/Library/Robots/mooncake/mooncake_instanceable.usd") import_config.set_default_drive_type(2) # 0=None, 1=position, 2=velocity import_config.make_default_prim = True import_config.create_physics_scene = True result, robot_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=self._extension_path + "/data/urdf/robots/mooncake/urdf/mooncake.urdf", import_config=import_config, dest_path="omniverse://localhost/Library/Robots/mooncake/mooncake.usd" ) # convert_asset_instanceable(asset_usd_path=, # USD file path to the current existing USD asset # source_prim_path=, # USD prim path of root prim of the asset # save_as_path=None, # USD file path for modified USD stage. Defaults to None, will save in same file. # create_xforms=True) # create_parent_xforms( # asset_usd_path='omniverse://localhost/Library/Robots/mooncake.usd', # source_prim_path="/mooncake", # save_as_path='omniverse://localhost/Library/Robots/mooncake_instanceable.usd' # ) # make sure the ground plane is under root prim and not robot # omni.kit.commands.execute( # "MovePrimCommand", path_from=robot_path, path_to="/mooncake", keep_world_transform=True # ) distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) def _on_config_robot(self): stage = omni.usd.get_context().get_stage() # Make all rollers spin freely by removing extra drive API for wheel_index in range(3): for plate_index in range(2): for roller_index in range(9): prim_path = "/mooncake/wheel_{}/roller_{}_{}_{}_joint".format(wheel_index, wheel_index, plate_index, roller_index) prim = stage.GetPrimAtPath(prim_path) omni.kit.commands.execute( "UnapplyAPISchemaCommand", api=UsdPhysics.DriveAPI, prim=prim, api_prefix="drive", multiple_api_token="angular", ) ## Attact IMU sensor ## self._is = _isaac_sensor.acquire_imu_sensor_interface() self.body_path = "/mooncake/base_plate" result, sensor = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path="/sensor", parent=self.body_path, sensor_period=1 / 500.0, # 2ms translation=Gf.Vec3d(0, 0, 17.15), # translate to surface of /mooncake/top_plate orientation=Gf.Quatd(1, 0, 0, 0), # (x, y, z, w) visualize=True, ) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/mooncake.xformOp:translate'), value=Gf.Vec3d(0.0, 0.0, 0.3162), prev=Gf.Vec3d(0.0, 0.0, 0.0)) # Set Damping & Stiffness # Position Control: for position controlled joints, set a high stiffness and relatively low or zero damping. # Velocity Control: for velocity controller joints, set a high damping and zero stiffness. # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path( # '/mooncake/base_plate/wheel_0_joint.drive:angular:physics:stiffness'), # value=0.0, # prev=10000000.0) # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path( # '/mooncake/base_plate/wheel_1_joint.drive:angular:physics:stiffness'), # value=0.0, # prev=10000000.0) # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path('/mooncake/base_plate/wheel_2_joint.drive:angular:physics:stiffness'), # value=0.0, # prev=10000000.0) ############### # Create Ball # ############### # result, ball_path = omni.kit.commands.execute( # "CreatePrimWithDefaultXform", # prim_type="Sphere", # attributes={'radius':0.12}, # select_new_prim=True # ) # omni.kit.commands.execute("MovePrimCommand", path_from='/mooncake/Sphere', path_to='/mooncake/ball') # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path('/mooncake/ball.xformOp:translate'), # value=Gf.Vec3d(0.0, 0.0, -0.1962), # prev=Gf.Vec3d(0.0, 0.0, 0.0)) # omni.kit.commands.execute('SetRigidBody', # path=Sdf.Path('/mooncake/ball'), # approximationShape='convexHull', # kinematic=False) # # omni.kit.commands.execute('AddPhysicsComponent', # usd_prim=get_prim_at_path('/mooncake/ball'), # component='PhysicsMassAPI') # # omni.kit.commands.execute('ApplyAPISchema', # # api= 'pxr.UsdPhysics.MassAPI', # # prim=get_prim_at_path('/mooncake/ball')) # omni.kit.commands.execute('ChangeProperty', # prop_path=Sdf.Path('/mooncake/ball.physics:mass'), # value=4.0, # prev=0.0) ## USE 3 IMUs ## # result, sensor = omni.kit.commands.execute( # "IsaacSensorCreateImuSensor", # path="/sensor0", # parent=self.body_path, # sensor_period=1 / 500.0, # 2ms # offset=Gf.Vec3d(0, 15, 17.15), # translate to upper surface of /mooncake/top_plate # orientation=Gf.Quatd(1, 0, 0, 0), # (x, y, z, w) # visualize=True, # ) # result, sensor = omni.kit.commands.execute( # "IsaacSensorCreateImuSensor", # path="/sensor1", # parent=self.body_path, # sensor_period=1 / 500.0, # 2ms # offset=Gf.Vec3d(15*math.sqrt(3)/2, -15/2, 17.15), # translate to surface of /mooncake/top_plate # orientation=Gf.Quatd(1, 0, 0, 0), # (x, y, z, w) # visualize=True, # ) # result, sensor = omni.kit.commands.execute( # "IsaacSensorCreateImuSensor", # path="/sensor2", # parent=self.body_path, # sensor_period=1 / 500.0, # 2ms # offset=Gf.Vec3d(-15*math.sqrt(3)/2, -15/2, 17.15), # translate to surface of /mooncake/top_plate # orientation=Gf.Quatd(1, 0, 0, 0), # (x, y, z, w) # visualize=True, # ) def _on_config_drives(self): # self._on_config_robot() # make sure drives are configured first stage = omni.usd.get_context().get_stage() # set each axis to spin at a rate of 1 rad/s axle_0 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/mooncake/base_plate/wheel_0_joint"), "angular") axle_1 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/mooncake/base_plate/wheel_1_joint"), "angular") axle_2 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/mooncake/base_plate/wheel_2_joint"), "angular") omega = velocity2omega(0, 0.1, 0) print(omega) set_drive_parameters(axle_0, "velocity", math.degrees(omega[0]), 0, math.radians(1e7)) set_drive_parameters(axle_1, "velocity", math.degrees(omega[1]), 0, math.radians(1e7)) set_drive_parameters(axle_2, "velocity", math.degrees(omega[2]), 0, math.radians(1e7))
15,614
Python
46.752293
152
0.546433
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/test.py
# import omni.isaac.core.utils.torch.rotations as torch_rot import torch import torch.nn.functional as f def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) def quat_unit(a): return normalize(a) def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) w1, x1, y1, z1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] w2, x2, y2, z2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([w, x, y, z], dim=-1).view(shape) return quat def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((a[:, 0:1], -a[:, 1:]), dim=-1).view(shape) def quat_diff_rad(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """ Get the difference in radians between two quaternions. Args: a: first quaternion, shape (N, 4) b: second quaternion, shape (N, 4) Returns: Difference in radians, shape (N,) """ b_conj = quat_conjugate(b) mul = quat_mul(a, b_conj) # 2 * torch.acos(torch.abs(mul[:, -1])) return 2.0 * torch.asin(torch.clamp(torch.norm(mul[:, 1:], p=2, dim=-1), max=1.0)) def q2falling(q): # q = f.normalize(q, p=1, dim=1) norm_vec = f.normalize(q[:, 1:], p=1, dim=1) print(norm_vec) return 2 * torch.acos(q[:, 0]) * torch.sqrt((norm_vec[:, 0]*norm_vec[:, 0]+norm_vec[:, 1]*norm_vec[:, 1])) # return 2*torch.asin(torch.norm(torch.mul(robots_orientation[:, 1:], up_vectors[:, 1:]))) # return quat_diff_rad(robots_orientation, up_vectors) test_a = torch.zeros((1, 4)) test_a[:, 0] = 1 test_b = torch.zeros_like(test_a) test_b[:, 0] = 0.71 test_b[:, 3] = 0.71 # print(quat_diff_rad(test_a, test_b)) print(q2falling(test_b)/3.14*180) test_b = torch.zeros_like(test_a) test_b[:, 0] = 0.71 test_b[:, 2] = 0.71 print(q2falling(test_b)/3.14*180) test_b = torch.zeros_like(test_a) test_b[:, 0] = 0.71 test_b[:, 1] = 0.71 print(q2falling(test_b)/3.14*180) test_b = torch.zeros_like(test_a) test_b[:, 0] = 0.64 test_b[:, 3] = 0.77 print(q2falling(test_b)/3.14*180)
2,416
Python
29.987179
110
0.550083
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/import_ball.py
#launch Isaac Sim before any other imports #default first two lines in any standalone application from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) # we can also run as headless. from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere import numpy as np world = World() world.scene.add_default_ground_plane() ball = world.scene.add( DynamicSphere( prim_path="/ball", name="ball", position=np.array([0, 0, 0.12]), radius=0.12, # mediciene ball diameter 24cm. color=np.array([1.0, 0, 0]), mass=4, ) ) # Resetting the world needs to be called before querying anything related to an articulation specifically. # Its recommended to always do a reset after adding your assets, for physics handles to be propagated properly world.reset() while True: # position, orientation = fancy_cube.get_world_pose() # linear_velocity = fancy_cube.get_linear_velocity() # # will be shown on terminal # print("Cube position is : " + str(position)) # print("Cube's orientation is : " + str(orientation)) # print("Cube's linear velocity is : " + str(linear_velocity)) # # we have control over stepping physics and rendering in this workflow # # things run in sync world.step(render=True) # execute one physics step and one rendering step simulation_app.close() # close Isaac Sim
1,485
Python
40.277777
110
0.674074
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/hello_rl.py
import gym from stable_baselines3 import A2C env = gym.make('CartPole-v1') model = A2C('MlpPolicy', env, verbose=1) model.learn(total_timesteps=10000) obs = env.reset() for i in range(1000): action, _state = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset()
355
Python
21.249999
59
0.676056
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/log2graph.py
import matplotlib.pyplot as plt import pandas as pd plt.xlim([0, 500000]) plt.ylim([0, 6000]) fig=plt.figure() d = {} for i, filename in enumerate(['log_11111', 'log_01111', 'log_10111', 'log_11011', 'log_11101', 'log_11110']): # path = "F:/mooncake_policy_01111/log.txt" f = open('log/'+filename+'.txt') lines = f.readlines() topic = lines[0][:-1] lines = lines[1:] ax=fig.add_subplot(6, 1, i+1) # ax = plt.subplot(6, 1, i+1) # ax.set_xlim(xmin=0.0, xmax=500000) ax.set_ylim(ymin=0.0, ymax=600) ax.xaxis.set_major_locator(plt.MaxNLocator(10)) ax.yaxis.set_major_locator(plt.MaxNLocator(10)) X, Y = [], [] for line in lines: [x, y] = line[:-1].split('\t') X.append(x) Y.append(y) ax.plot(X, Y) d[topic+'x'] = X.copy() d[topic+'y'] = Y.copy() plt.show() df = pd.DataFrame(data=d) df.to_csv('log.csv')
885
Python
27.580644
109
0.579661
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/rl_luna_lander.py
import gym from stable_baselines3 import DQN from stable_baselines3.common.evaluation import evaluate_policy # Create environment env = gym.make('LunarLander-v2') # Instantiate the agent model = DQN('MlpPolicy', env, verbose=1) # Train the agent model.learn(total_timesteps=int(2e5)) # Save the agent model.save("dqn_lunar") del model # delete trained model to demonstrate loading # Load the trained agent # NOTE: if you have loading issue, you can pass `print_system_info=True` # to compare the system on which the model was trained vs the current one # model = DQN.load("dqn_lunar", env=env, print_system_info=True) model = DQN.load("dqn_lunar", env=env) # Evaluate the agent # NOTE: If you use wrappers with your environment that modify rewards, # this will be reflected here. To evaluate with original rewards, # wrap environment in a "Monitor" wrapper before other wrappers. mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10) # Enjoy trained agent obs = env.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, rewards, dones, info = env.step(action) env.render()
1,174
Python
32.571428
85
0.739353
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/test/test2.py
import ray from ray.rllib.agents.ppo import PPOTrainer ray.init() # Skip or set to ignore if already called config = {'gamma': 0.9, 'lr': 1e-2, 'num_workers': 4, 'train_batch_size': 1000, 'model': { 'fcnet_hiddens': [128, 128] }} trainer = PPOTrainer(env='CartPole-v0', config=config) for i in range(100): print(trainer.train())
396
Python
29.538459
54
0.575758
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/test/test3.py
# from env import MoonCakeEnv import ray import ray.rllib.agents.ppo as ppo import shutil, os CHECKPOINT_ROOT = "tmp/ppo/taxi" shutil.rmtree(CHECKPOINT_ROOT, ignore_errors=True, onerror=None) ray_results = os.getenv("HOME") + "/ray_results/" shutil.rmtree(ray_results, ignore_errors=True, onerror=None) ray.shutdown() ray.init(ignore_reinit_error=True) SELECT_ENV = "Taxi-v3" config = ppo.DEFAULT_CONFIG.copy() config["log_level"] = "WARN" agent = ppo.PPOTrainer(config, env=SELECT_ENV) N_ITER = 30 s = "{:3d} reward {:6.2f}/{:6.2f}/{:6.2f} len {:6.2f} saved {}" for n in range(N_ITER): result = agent.train() file_name = agent.save(CHECKPOINT_ROOT) print(s.format( n + 1, result["episode_reward_min"], result["episode_reward_mean"], result["episode_reward_max"], result["episode_len_mean"], file_name ))
845
Python
23.171428
64
0.680473
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/scripts/test/test.py
# Import the RL algorithm (Trainer) we would like to use. from ray.rllib.agents.ppo import PPOTrainer # Configure the algorithm. config = { # Environment (RLlib understands openAI gym registered strings). "env": "Taxi-v3", # Use 2 environment workers (aka "rollout workers") that parallelly # collect samples from their own environment clone(s). "num_workers": 2, # Change this to "framework: torch", if you are using PyTorch. # Also, use "framework: tf2" for tf2.x eager execution. "framework": "tf", # Tweak the default model provided automatically by RLlib, # given the environment's observation- and action spaces. "model": { "fcnet_hiddens": [64, 64], "fcnet_activation": "relu", }, # Set up a separate evaluation worker set for the # `trainer.evaluate()` call after training (see below). "evaluation_num_workers": 1, # Only for evaluation runs, render the env. "evaluation_config": { "render_env": True, }, } # Create our RLlib Trainer. trainer = PPOTrainer(config=config) # Run it for n training iterations. A training iteration includes # parallel sample collection by the environment workers as well as # loss calculation on the collected batch and a model update. for _ in range(30): print(trainer.train()) # Evaluate the trained Trainer (and render each timestep to the shell's # output). trainer.evaluate()
1,423
Python
33.731706
71
0.690794
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/mooncake/environments/env_mooncake_vector.py
import gym from gym import spaces import numpy as np import math import time import carb from omni.isaac.imu_sensor import _imu_sensor
137
Python
12.799999
45
0.80292
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/obike_task.py
import time from omniisaacgymenvs.tasks.base.rl_task import RLTask from obike import Obike import omni from pxr import Gf, UsdGeom from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path, get_all_matching_child_prims from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.isaac_sensor import _isaac_sensor import numpy as np import torch import math import random def euler_to_quaternion(r): (roll, pitch, yaw) = (r[0], r[1], r[2]) qx = np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) - np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2) qy = np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) qz = np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2) - np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2) qw = np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2) + np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2) return [qx, qy, qz, qw] def q2falling(q): fall_angle = 2*torch.acos(q[:,0])*torch.sqrt((q[:,1]*q[:,1] + q[:,2]*q[:,2])/(q[:,1]*q[:,1]) + q[:,2]*q[:,2] + q[:,3]*q[:,3]) return fall_angle class ObikeTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._robot_positions = torch.tensor([0.0, 0.0, 0.0167]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 self._imu_buf = [{"lin_acc_x":0.0, "lin_acc_y":0.0, "lin_acc_z":0.0, "ang_vel_x":0.0, "ang_vel_y":0.0, "ang_vel_z":0.0}]*128 # default initial sensor buffer self._is = _isaac_sensor.acquire_imu_sensor_interface() # Sensor reader RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_obike() # mush be called before "super().set_up_scene(scene)" super().set_up_scene(scene) print(get_all_matching_child_prims("/")) self._robots = ArticulationView(prim_paths_expr="/World/envs/*/Obike/obike", name="obike_view") scene.add(self._robots) self.meters_per_unit = UsdGeom.GetStageMetersPerUnit(omni.usd.get_context().get_stage()) return def get_obike(self): # must be called at very first line of set_up_scene() obike = Obike(prim_path=self.default_zero_env_path + "/Obike", name="Obike", translation=self._robot_positions) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings("Obike", get_prim_at_path(obike.prim_path), self._sim_config.parse_actor_config("Obike")) def get_robot(self): return self._robots def get_observations(self) -> dict: # dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) reaction_vel = dof_vel[:, self._reaction_wheel_dof_idx] imu_accel_y = torch.tensor([imu["lin_acc_y"] for imu in self._imu_buf]) imu_accel_z = torch.tensor([imu["lin_acc_z"] for imu in self._imu_buf]) imu_gyro_x = torch.tensor([imu["ang_vel_x"] for imu in self._imu_buf]) self.obs_buf[:, 0] = reaction_vel self.obs_buf[:, 1] = imu_accel_y self.obs_buf[:, 2] = imu_accel_z self.obs_buf[:, 3] = imu_gyro_x observations = { self._robots.name: { "obs_buf": self.obs_buf } } # print(observations) return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.to(self._device) actions = 2*(actions - 0.5) forces = torch.zeros((self._robots.count, self._robots.num_dof), dtype=torch.float32, device=self._device) forces[:, self._reaction_wheel_dof_idx] = self._max_push_effort * actions[:, 0] indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) self._robots.set_joint_efforts(forces, indices=indices) # apply joints torque ## Read IMU & store in buffer ## buffer = [] robots_prim_path = self._robots.prim_paths for robot_prim_path in robots_prim_path: reading = self._is.get_sensor_readings(robot_prim_path + "/chassic/sensor") # read from select sensor (by prim_path) if reading.shape[0]: buffer.append(reading[-1]) # get only lastest reading else: buffer.append({"lin_acc_x":0.0, "lin_acc_y":0.0, "lin_acc_z":0.0, "ang_vel_x":0.0, "ang_vel_y":0.0, "ang_vel_z":0.0}) # default initial sensor buffer self._imu_buf = buffer def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF velocities dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, 1), device=self._device) # apply resets self._robots.set_joint_velocities(dof_vel, indices=env_ids) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): # Run only once after simulation started # self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() # save initial position for reset self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self._reaction_wheel_dof_idx = self._robots.get_dof_index("reaction_wheel_joint") self._rear_wheel_dof_idx = self._robots.get_dof_index("rear_wheel_joint") self._steering_arm_dof_idx = self._robots.get_dof_index("front_wheel_arm_joint") # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: # calculate reward for each env reaction_vel = self.obs_buf[:, 0] robots_position, robots_orientation = self._robots.get_world_poses() fall_angles = q2falling(robots_orientation) # find fall angle of all robot (batched) # cart_pos = self.obs_buf[:, 0] # cart_vel = self.obs_buf[:, 1] # pole_angle = self.obs_buf[:, 2] # pole_vel = self.obs_buf[:, 3] # reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel) # reward = torch.where(torch.abs(cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) # reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) reward = 1.0 - fall_angles * fall_angles - 0.01 * torch.abs(reaction_vel) reward = torch.where(torch.abs(fall_angles) > 25*(np.pi / 180), torch.ones_like(reward) * -2.0, reward) # fall_angle must <= 25 degree self.rew_buf[:] = reward def is_done(self) -> None: # check termination for each env robots_position, robots_orientation = self._robots.get_world_poses() fall_angles = q2falling(robots_orientation) # find fall angle of all robot (batched) # cart_pos = self.obs_buf[:, 0] # pole_pos = self.obs_buf[:, 2] # resets = torch.where(torch.abs(cart_pos) > self._reset_dist, 1, 0) # resets = torch.where(torch.abs(pole_pos) > math.pi / 2, 1, resets) # resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets) resets = torch.where(torch.abs(fall_angles) > 25*(np.pi / 180), 1, 0) # reset by falling resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets) # reset by time self.reset_buf[:] = resets
9,113
Python
45.030303
168
0.617799
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/test.py
import time import tensorflow as tf import random from env_obike import ObikeEnv env = ObikeEnv(headless=False) state = env.reset() print(state) with tf.GradientTape() as tape: while True: state, reward, done, _ = env.step(action=0.5) print(state, reward, done) if done: state = env.reset() print(state)
355
Python
24.42857
53
0.639437
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/obike.py
from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_server_path from omni.isaac.core.utils.stage import add_reference_to_stage import carb class Obike(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Obike", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: server_path = get_server_path() if server_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = server_path + "/Library/obike.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
1,116
Python
30.027777
72
0.58871
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/train_obike_lstm_Karn.py
import gym from gym import spaces import numpy as np import math import time import carb from omni.isaac.kit import SimulationApp from omni.isaac.imu_sensor import _imu_sensor def discount_rewards(r, gamma=0.8): discounted_r = np.zeros_like(r) running_add = 0 for t in reversed(range(0, r.size)): running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r def q2falling(q): q[0] = 1 if q[0] > 1 else q[0] try: if q[1] == 0 and q[2] == 0 and q[3] == 0: return 0 return 2*math.acos(q[0])*math.sqrt((q[1]**2 + q[2]**2)/(q[1]**2 + q[2]**2 + q[3]**2)) except: print(q) return 0 def omni_unit2_sensor_unit(observations): observations[0] = observations[0] / 981.0 observations[1] = observations[1] / 981.0 observations[2] = ( observations[2] * 180.0 ) / math.pi return observations def sensor_unit2_omni_unit(observations): observations[0] = observations[0] * 981.0 observations[1] = observations[1] * 981.0 observations[2] = ( observations[2] * math.pi ) / 180.0 return observations ## Specify simulation parameters ## _physics_dt = 1/100 _rendering_dt = 1/30 _max_episode_length = 60/_physics_dt # 60 second after reset _iteration_count = 0 _display_every_iter = 1 _update_every = 1 _headless = False simulation_app = SimulationApp({"headless": _headless, "anti_aliasing": 0}) ## Setup World ## from omni.isaac.core import World from obike_old import Obike # from omni.isaac.core.objects import DynamicSphere world = World(physics_dt=_physics_dt, rendering_dt=_rendering_dt, stage_units_in_meters=0.01) world.scene.add_default_ground_plane() robot = world.scene.add( Obike( prim_path="/obike", name="obike_mk0", position=np.array([0, 0.0, 1.435]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) ## Setup IMU ## imu_interface = _imu_sensor.acquire_imu_sensor_interface() props = _imu_sensor.SensorProperties() props.position = carb.Float3(0, 0, 10) # translate from /obike/chassic to above motor (cm.) props.orientation = carb.Float4(0, 0, 0, 1) # (x, y, z, w) props.sensorPeriod = 1 / 500 # 2ms _sensor_handle = imu_interface.add_sensor_on_body("/obike/chassic", props) ## Create LSTM Model ## import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers ## Train parameter ## n_episodes = 10000 input_dim = 3 output_dim = 1 num_timesteps = 1 batch_size = 1 lstm_nodes = 32 input_layer = tf.keras.Input(shape=(num_timesteps, input_dim), batch_size=batch_size) lstm_cell = tf.keras.layers.LSTMCell( lstm_nodes, kernel_initializer='glorot_uniform', recurrent_initializer='glorot_uniform', bias_initializer='zeros', ) lstm_layer = tf.keras.layers.RNN( lstm_cell, return_state=True, return_sequences=True, stateful=True, ) lstm_out, hidden_state, cell_state = lstm_layer(input_layer) output = tf.keras.layers.Dense(output_dim)(lstm_out) model = tf.keras.Model( inputs=input_layer, outputs=[hidden_state, cell_state, output] ) # class SimpleLSTM(keras.Model): # def __init__(self, lstm_units, num_output): # super().__init__(self) # cell = layers.LSTMCell(lstm_units, # kernel_initializer='glorot_uniform', # recurrent_initializer='glorot_uniform', # bias_initializer='zeros') # self.lstm = tf.keras.layers.RNN(cell, # return_state = True, # return_sequences=True, # stateful=False) # lstm_out, hidden_state, cell_state = self.lstm(input_layer) # # # self.lstm1 = layers.LSTM(lstm_units, return_sequences=True, return_state=True) # self.dense = layers.Dense(num_output) # # def get_zero_initial_state(self, inputs): # return [tf.zeros((batch_size, lstm_nodes)), tf.zeros((batch_size, lstm_nodes))] # def __call__(self, inputs, states = None): # if states is None: # self.lstm.get_initial_state = self.get_zero_initial_state # def call(self, inputs, states=None, return_state = False, training=False): # x = inputs # if states is None: states = self.lstm1.get_initial_state(x) # state shape = (2, batch_size, lstm_units) # print(x.shape) # print(len(states)) # print(states[0].shape) # x, sequence, states = self.lstm1(x, initial_state=states, training=training) # x = self.dense(x, training=training) # # if return_state: return x, states # else: return x # @tf.function # def train_step(self, inputs): # inputs, labels = inputs # with tf.GradientTape() as tape: # predictions = self(inputs, training=True) # loss = self.loss(labels, predictions) # grads = tape.gradient(loss, model.trainable_variables) # self.optimizer.apply_gradients(zip(grads, model.trainable_variables)) # # return {'loss': loss} # model = SimpleLSTM(lstm_units=8, num_output=1) # model.build(input_shape=(None, 1, 3)) # model.summary() optimizer = tf.optimizers.Adam(learning_rate=0.0025) loss_fn = keras.losses.MeanSquaredError() # Instantiate a loss function. # train_mse_metric = keras.metrics.MeanSquaredError() scores = [] gradBuffer = model.trainable_variables for ix, grad in enumerate(gradBuffer): gradBuffer[ix] = grad * 0 for e in range(n_episodes): # print("\nStart of episodes %d" % (e,)) # Reset the environment world.reset() lstm_layer.reset_states(states=[np.zeros((batch_size, lstm_nodes)), np.zeros((batch_size, lstm_nodes))]) previous_states = None # reset LSTM's internal state render_counter = 0 ep_memory = [] ep_score = 0 done = False previous = {'robot_position': None, 'robot_rotation': None, 'fall_rotation': None} present = {'robot_position': None, 'robot_rotation': None, 'fall_rotation': None} while not done: previous['robot_position'], previous['robot_rotation'] = robot.get_world_pose() previous['fall_rotation'] = q2falling(previous['robot_rotation']) reading = imu_interface.get_sensor_readings(_sensor_handle) if reading.shape[0] == 0:# no valid data in buffer -> init observation wih zeros observations = np.array([0, 0, 0]) else: # IMU will return [???, acc_x, acc_y, acc_z, gyr_x, gyr_y, gyr_z] observations = np.array([reading[-1]["lin_acc_y"], # Use only lastest data in buffer reading[-1]["lin_acc_z"], reading[-1]["ang_vel_x"]]) ## convert omniverse unit to sensor_read unit world_sensor = omni_unit2_sensor_unit(observations) key_gen = np.load('/home/teera/.local/share/ov/pkg/isaac_sim-2021.2.1/exts/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/mu_cov_bike.npz') noi_accy,noi_accz,noi_ang_vel_x = np.random.default_rng().multivariate_normal(world_sensor, key_gen["cov"], 1).T ## convert sensor_read unit to omniverse unit noisy_sensor = np.array([noi_accy,noi_accz,noi_ang_vel_x]) sim_observations = sensor_unit2_omni_unit(noisy_sensor) ## Scale accel from (-1000, 1000) -> (0, 1) for NN inputs ## Scale gyro from (-4.36, 4.36) -> (0, 1) for NN inputs (4.36 rad = 250 deg) # print(observations) # time.sleep(1) sim_observations[0] = (sim_observations[0] / 2000) + 0.5 sim_observations[1] = (sim_observations[1] / 2000) + 0.5 sim_observations[2] = (sim_observations[2] / 8.72) + 0.5 sim_observations = np.array(sim_observations, dtype=np.float32).reshape((batch_size, num_timesteps, input_dim)) # add extra dimension for batch_size=1 with tf.GradientTape() as tape: # forward pass h_state, c_state, logits = model(sim_observations) # required input_shape=(None, 1, 3) # logits, previous_states = model.call(inputs=observations, states=previous_states, return_state=True, training=True) a_dist = logits.numpy() ## Choose random action with p = action dist # print("A_DIST") # print(a_dist) # a = np.random.choice(a_dist[0], p=a_dist[0]) # a = np.argmax(a_dist == a) a = a_dist + 0.1*((np.random.rand(*a_dist.shape))-0.5) # random with uniform distribution (.shape will return tuple so unpack with *) loss = loss_fn([a], logits) # loss = previous['fall_rotation'] ## EXECUTE ACTION ## from omni.isaac.core.utils.types import ArticulationAction # print("LOGITS") # print(logits) robot.apply_wheel_actions(ArticulationAction(joint_efforts=[a*100*0.607, 0, 0])) world.step(render=True) present['robot_position'], present['robot_rotation'] = robot.get_world_pose() present['fall_rotation'] = q2falling(present['robot_rotation']) reward = previous['fall_rotation'] - present['fall_rotation'] # calculate reward from movement toward center ## Check for stop event ## exceed_time_limit = world.current_time_step_index >= _max_episode_length robot_fall = True if previous['fall_rotation'] > 25 / 180 * math.pi else False done = exceed_time_limit or robot_fall ep_score += reward # if done: reward-= 10 # small trick to make training faster grads = tape.gradient(loss, model.trainable_weights) ep_memory.append([grads, reward]) scores.append(ep_score) # Discount the rewards ep_memory = np.array(ep_memory) ep_memory[:, 1] = discount_rewards(ep_memory[:, 1]) for grads, reward in ep_memory: for ix, grad in enumerate(grads): gradBuffer[ix] += grad * reward if e % _update_every == 0: optimizer.apply_gradients(zip(gradBuffer, model.trainable_variables)) for ix, grad in enumerate(gradBuffer): gradBuffer[ix] = grad * 0 if e % 100 == 0: print("Episode {} Score {}".format(e, np.mean(scores[-100:])))
10,253
Python
40.853061
159
0.619233
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/train_obike_drqn.py
import carb from omni.isaac.kit import SimulationApp from omni.isaac.imu_sensor import _imu_sensor import numpy as np import math import time import tensorflow as tf def q2falling(q): q[0] = 1 if q[0] > 1 else q[0] try: if q[1] == 0 and q[2] == 0 and q[3] == 0: return 0 return 2*math.acos(q[0])*math.sqrt((q[1]**2 + q[2]**2)/(q[1]**2 + q[2]**2 + q[3]**2)) except: print(q) return 0 def q2falling(q): q[0] = 1 if q[0] > 1 else q[0] try: if q[1] == 0 and q[2] == 0 and q[3] == 0: return 0 return 2*math.acos(q[0])*math.sqrt((q[1]**2 + q[2]**2)/(q[1]**2 + q[2]**2 + q[3]**2)) except: print(q) return 0 ## Specify simulation parameters ## _physics_dt = 1/1000 _rendering_dt = 1/30 _max_episode_length = 60/_physics_dt # 60 second after reset _iteration_count = 0 _display_every_iter = 1 _update_every = 1 _explore_every = 5 _headless = False simulation_app = SimulationApp({"headless": _headless, "anti_aliasing": 0}) ## Setup World ## from omni.isaac.core import World from obike_old import Obike # from omni.isaac.core.objects import DynamicSphere world = World(physics_dt=_physics_dt, rendering_dt=_rendering_dt, stage_units_in_meters=0.01) world.scene.add_default_ground_plane() robot = world.scene.add( Obike( prim_path="/obike", name="obike_mk0", position=np.array([0, 0.0, 1.435]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) ## Setup IMU ## imu_interface = _imu_sensor.acquire_imu_sensor_interface() props = _imu_sensor.SensorProperties() props.position = carb.Float3(0, 0, 10) # translate from /obike/chassic to above motor (cm.) props.orientation = carb.Float4(1, 0, 0, 0) # (x, y, z, w) props.sensorPeriod = 1 / 500 # 2ms _sensor_handle = imu_interface.add_sensor_on_body("/obike/chassic", props) ## Create LSTM Model ## import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers
1,996
Python
29.257575
93
0.623747
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/train_obike_td3.py
import tensorflow as tf import numpy as np import math import time def q2falling(q): q[0] = 1 if q[0] > 1 else q[0] try: if q[1] == 0 and q[2] == 0 and q[3] == 0: return 0 return 2*math.acos(q[0])*math.sqrt((q[1]**2 + q[2]**2)/(q[1]**2 + q[2]**2 + q[3]**2)) except: print(q) return 0 import carb from omni.isaac.kit import SimulationApp from omni.isaac.imu_sensor import _imu_sensor print(tf.config.list_physical_devices('GPU')) state_low = [-100, -100, -10] state_high = [100, 100, 10] action_low = [-1] action_high = [1] ## Specify simulation parameters ## _physics_dt = 1/100 _rendering_dt = 1/30 _max_episode_length = 60/_physics_dt # 60 second after reset _iteration_count = 0 _display_every_iter = 1 _update_every = 1 _explore_every = 5 _headless = False simulation_app = SimulationApp({"headless": _headless, "anti_aliasing": 0}) ## Setup World ## from omni.isaac.core import World from obike_old import Obike # from omni.isaac.core.objects import DynamicSphere world = World(physics_dt=_physics_dt, rendering_dt=_rendering_dt, stage_units_in_meters=0.01) world.scene.add_default_ground_plane() robot = world.scene.add( Obike( prim_path="/obike", name="obike_mk0", position=np.array([0, 0.0, 1.435]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) ## Setup IMU ## imu_interface = _imu_sensor.acquire_imu_sensor_interface() props = _imu_sensor.SensorProperties() props.position = carb.Float3(0, 0, 10) # translate from /obike/chassic to above motor (cm.) props.orientation = carb.Float4(1, 0, 0, 0) # (x, y, z, w) props.sensorPeriod = 1 / 500 # 2ms _sensor_handle = imu_interface.add_sensor_on_body("/obike/chassic", props) from td3 import RBuffer, Critic, Actor, Agent with tf.device('GPU:0'): # tf.random.set_seed(336699) agent = Agent(n_action=1, n_state=3, action_low=action_low, action_high=action_high) episods = 20000 ep_reward = [] total_avgr = [] target = False for s in range(episods): if target == True: break total_reward = 0 world.reset() done = False previous = {'robot_position': None, 'robot_rotation': None, 'fall_rotation': None, "lin_acc_y": None, "lin_acc_z": None, "ang_vel_x": None} present = {'robot_position': None, 'robot_rotation': None, 'fall_rotation': None, "lin_acc_y": None, "lin_acc_z": None, "ang_vel_x": None} while not done: if previous['robot_position'] is None: # initial state robot_position, _ = robot.get_world_pose() previous = {'robot_position': robot_position[0], 'robot_rotation': robot_position[1], 'fall_rotation': robot_position[2], "lin_acc_y": 0, "lin_acc_z": 0, "ang_vel_x": 0} state = np.array([previous["lin_acc_y"], previous["lin_acc_z"], previous["ang_vel_x"]], dtype=np.float32) ## Scale accel from (-1000, 1000) -> (0, 1) for NN inputs ## Scale gyro from (-4.36, 4.36) -> (0, 1) for NN inputs (4.36 rad = 250 deg) # print(observations) # time.sleep(1) # observations[0] = (state[0] / 2000) + 0.5 # observations[1] = (state[1] / 2000) + 0.5 # observations[2] = (state[2] / 8.72) + 0.5 action = agent.act(state) # print(action) ## EXECUTE ACTION ## from omni.isaac.core.utils.types import ArticulationAction robot.apply_wheel_actions(ArticulationAction(joint_efforts=[action * 100 * 0.607, 0, 0])) world.step(render=True) reading = imu_interface.get_sensor_readings(_sensor_handle) if reading.shape[0] == 0: # no valid data in buffer -> init observation wih zeros observations = np.array([0, 0, 0], dtype=np.float32) print("Warning! no data in IMU buffer") else: # IMU will return [???, acc_x, acc_y, acc_z, gyr_x, gyr_y, gyr_z] present["lin_acc_y"], present["lin_acc_z"], present["ang_vel_x"] = reading[-1]["lin_acc_y"], reading[-1]["lin_acc_z"], reading[-1]["ang_vel_x"] next_state = np.array([present["lin_acc_y"], present["lin_acc_z"], present["ang_vel_x"]]) present['robot_position'], present['robot_rotation'] = robot.get_world_pose() present['fall_rotation'] = q2falling(present['robot_rotation']) reward = 1 # reward = previous['fall_rotation'] - present['fall_rotation'] # calculate reward from movement toward center ## Check for stop event ## exceed_time_limit = world.current_time_step_index >= _max_episode_length robot_fall = True if present['fall_rotation'] > 50 / 180 * math.pi else False done = exceed_time_limit or robot_fall agent.savexp(state, next_state, action, done, reward) agent.train() ## UPDATE STATE ## previous = present.copy() total_reward += reward if done: ep_reward.append(total_reward) avg_reward = np.mean(ep_reward[-100:]) total_avgr.append(avg_reward) print("total reward after {} steps is {} and avg reward is {}".format(s, total_reward, avg_reward)) if avg_reward == 200: target = True
5,653
Python
40.270073
159
0.558995
teerameth/omni.isaac.fiborobotlab/omni/isaac/fiborobotlab/obike/scripts/import_obike.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni import omni.kit.commands import asyncio import math import weakref import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription from omni.isaac.isaac_sensor import _isaac_sensor from .common import set_drive_parameters from pxr import UsdLux, Sdf, Gf, UsdPhysics from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder EXTENSION_NAME = "Import O-Bike" class Extension(omni.ext.IExt): def on_startup(self, ext_id: str): ext_manager = omni.kit.app.get_app().get_extension_manager() self._ext_id = ext_id self._extension_path = ext_manager.get_extension_path(ext_id) self._menu_items = [ MenuItemDescription( name="Import Robots", sub_menu=[ MenuItemDescription(name="O-Bike URDF", onclick_fn=lambda a=weakref.proxy(self): a._menu_callback()) ], ) ] add_menu_items(self._menu_items, "Isaac Examples") self._build_ui() def _build_ui(self): self._window = omni.ui.Window( EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): title = "Import a O-Bike Robot via URDF" doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html" overview = "This Example shows you import an NVIDIA O-Bike robot via URDF.\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) frame = ui.CollapsableFrame( title="Command Panel", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5): dict = { "label": "Load Robot", "type": "button", "text": "Load", "tooltip": "Load a O-Bike Robot into the Scene", "on_clicked_fn": self._on_load_robot, } btn_builder(**dict) dict = { "label": "Configure Drives", "type": "button", "text": "Configure", "tooltip": "Configure Joint Drives", "on_clicked_fn": self._on_config_robot, } btn_builder(**dict) dict = { "label": "Spin Robot", "type": "button", "text": "move", "tooltip": "Spin the Robot in Place", "on_clicked_fn": self._on_config_drives, } btn_builder(**dict) def on_shutdown(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None def _menu_callback(self): self._window.visible = not self._window.visible def _on_load_robot(self): load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) asyncio.ensure_future(self._load_obike(load_stage)) async def _load_obike(self, task): done, pending = await asyncio.wait({task}) if task in done: status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = True import_config.import_inertia_tensor = False # import_config.distance_scale = 100 import_config.fix_base = False # Attact wheel to /groundPlane import_config.make_default_prim = True import_config.create_physics_scene = True omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=self._extension_path + "/data/urdf/robots/obike/urdf/obike.urdf", import_config=import_config, ) viewport = omni.kit.viewport_legacy.get_default_viewport_window() viewport.set_camera_position("/OmniverseKit_Persp", -51, 63, 25, True) viewport.set_camera_target("/OmniverseKit_Persp", 220, -218, -160, True) stage = omni.usd.get_context().get_stage() scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) result, plane_path = omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, 0), color=Gf.Vec3f(0.5), ) # make sure the ground plane is under root prim and not robot omni.kit.commands.execute( "MovePrimCommand", path_from=plane_path, path_to="/groundPlane", keep_world_transform=True ) distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) def _on_config_robot(self): stage = omni.usd.get_context().get_stage() # make front wheel spin freely prim_path = "/obike/chassic/front_wheel_joint" prim = stage.GetPrimAtPath(prim_path) omni.kit.commands.execute( "UnapplyAPISchemaCommand", api=UsdPhysics.DriveAPI, prim=prim, api_prefix="drive", multiple_api_token="angular", ) ## Attact IMU sensor ## self._is = _isaac_sensor.acquire_imu_sensor_interface() self.body_path = "/obike/chassic" result, sensor = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path="/sensor", parent=self.body_path, sensor_period=1 / 500.0, offset=Gf.Vec3d(0, 0, 10), orientation=Gf.Quatd(1, 0, 0, 0), visualize=True, ) def _on_config_drives(self): # self._on_config_robot() # make sure drives are configured first stage = omni.usd.get_context().get_stage() # set each axis to spin at a rate of 1 rad/s axle_steering = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/obike/chassic/front_wheel_arm_joint"), "angular") axle_rear_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/obike/chassic/rear_wheel_joint"), "angular") axle_reaction_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/obike/chassic/reaction_wheel_joint"), "angular") # omega = velocity2omega(0, 0.1, 0) # print(omega) set_drive_parameters(axle_steering, "position", math.degrees(3), 0, math.radians(1e7)) set_drive_parameters(axle_rear_wheel, "velocity", math.degrees(-10), 0, math.radians(1e7)) set_drive_parameters(axle_reaction_wheel, "velocity", math.degrees(4), 0, math.radians(1e7))
8,065
Python
42.6
150
0.566646
teerameth/omni.isaac.fiborobotlab/data/urdf/robots/hanumanURDFv1/config/joint_names_hanumanURDFv1.yaml
controller_joint_names: ['', 'JR1', 'JR2', 'JR3', 'JR4', 'JR5', 'JR6', 'JL1', 'JL2', 'JL3', 'JL4', 'JL5', 'JL6', 'JAR1', 'JAR2', 'JAR3', 'JAL1', 'JAL2', 'JAL3', 'JH1', 'JH2', ]
177
YAML
87.999956
176
0.485876
AkaneFoundation/Omni/README.md
# Omni ![GitHub](https://img.shields.io/github/license/AkaneFoundation/Omni?style=flat-square&logoColor=white&labelColor=black&color=white) ![GitHub tag (with filter)](https://img.shields.io/github/v/tag/AkaneFoundation/Omni?style=flat-square&logoColor=white&labelColor=black&color=white) [![Static Badge](https://img.shields.io/badge/Telegram-Content?style=flat-square&logo=telegram&logoColor=black&color=white)](https://t.me/AkaneDev) ## Features - Up-to-date material 3 design - Lightweight, no spyware or bloat - Compass with latitude & longitude - Gradienter (WIP) - Barometer (WIP) - Coin flipper (WIP) - Ruler (WIP) - Strength-adjustable flashlight (WIP) ## Installation You can download the latest stable version of the app from [GitHub releases](https://github.com/AkaneFoundation/Omni/releases/latest). ## Building To build this app, you will need the latest beta version of [Android Studio](https://developer.android.com/studio) and fast network environment. ## License This project is licensed under the GNU General Public License v3.0 - see the [LICENSE](https://github.com/AkaneFoundation/Omni/blob/master/LICENSE) file for details. ## Notice - For bug reporting: [Telegram](https://t.me/AkaneDev)
1,217
Markdown
44.111109
165
0.771569
AkaneFoundation/Omni/app/src/main/res/values/strings.xml
<resources> <string name="app_name">Omni</string> <string name="north">N</string> <string name="northeast">NE</string> <string name="northwest">NW</string> <string name="south">S</string> <string name="southeast">SE</string> <string name="southwest">SW</string> <string name="west">W</string> <string name="east">E</string> <string name="direction_1" translatable="false">0</string> <string name="direction_2" translatable="false">30</string> <string name="direction_3" translatable="false">60</string> <string name="direction_4" translatable="false">90</string> <string name="direction_5" translatable="false">120</string> <string name="direction_6" translatable="false">150</string> <string name="direction_7" translatable="false">180</string> <string name="direction_8" translatable="false">210</string> <string name="direction_9" translatable="false">240</string> <string name="direction_10" translatable="false">270</string> <string name="direction_11" translatable="false">300</string> <string name="direction_12" translatable="false">330</string> <string name="degree_format" translatable="false">" %1$s°"</string> <string name="longitude_desc">N</string> <string name="latitude_desc">E</string> <string name="unknown_location">Unknown location</string> <string name="perm_dialog_title">Location</string> <string name="decline">No</string> <string name="accept">Yes</string> <string name="perm_dialog_text">Omni requires your location data in order to display latitude and longitude. That may requires communications with your location provider\'s server. If you select \"no\", you still can use the basic functionalities of omni compass.</string> <string name="position_default_text" translatable="false">__.____°</string> <string name="settings">Settings</string> <string name="settings_app_name">App name</string> <string name="author" translatable="false">123Duo3, AkaneTan</string> <string name="settings_author_name">Author</string> <string name="version">Version</string> <string name="settings_unknown_version">Unknown version</string> <string name="warning_dialog_title">Warning</string> <string name="warning_dialog_text">It looks like your device doesn\'t have an available rotation vector sensor. The compass feature of Omni will be disabled. However, you still can use the location feature.</string> <string name="dismiss">Dismiss</string> <string name="delimiter">,\ </string> <string name="location_format">%1$s%2$s%3$s%4$s%5$s%6$s%7$s%8$s%9$s</string> </resources>
2,651
XML
60.674417
276
0.701622
AkaneFoundation/Omni/app/src/main/res/values/theme_overlays.xml
<resources> <style name="ThemeOverlay.AppTheme.MediumContrast" parent="Theme.Material3.Light.NoActionBar"> <item name="colorPrimary">@color/md_theme_primary_mediumContrast</item> <item name="colorOnPrimary">@color/md_theme_onPrimary_mediumContrast</item> <item name="colorPrimaryContainer">@color/md_theme_primaryContainer_mediumContrast</item> <item name="colorOnPrimaryContainer">@color/md_theme_onPrimaryContainer_mediumContrast</item> <item name="colorSecondary">@color/md_theme_secondary_mediumContrast</item> <item name="colorOnSecondary">@color/md_theme_onSecondary_mediumContrast</item> <item name="colorSecondaryContainer">@color/md_theme_secondaryContainer_mediumContrast</item> <item name="colorOnSecondaryContainer">@color/md_theme_onSecondaryContainer_mediumContrast</item> <item name="colorTertiary">@color/md_theme_tertiary_mediumContrast</item> <item name="colorOnTertiary">@color/md_theme_onTertiary_mediumContrast</item> <item name="colorTertiaryContainer">@color/md_theme_tertiaryContainer_mediumContrast</item> <item name="colorOnTertiaryContainer">@color/md_theme_onTertiaryContainer_mediumContrast</item> <item name="colorError">@color/md_theme_error_mediumContrast</item> <item name="colorOnError">@color/md_theme_onError_mediumContrast</item> <item name="colorErrorContainer">@color/md_theme_errorContainer_mediumContrast</item> <item name="colorOnErrorContainer">@color/md_theme_onErrorContainer_mediumContrast</item> <item name="android:colorBackground">@color/md_theme_background_mediumContrast</item> <item name="colorOnBackground">@color/md_theme_onBackground_mediumContrast</item> <item name="colorSurface">@color/md_theme_surface_mediumContrast</item> <item name="colorOnSurface">@color/md_theme_onSurface_mediumContrast</item> <item name="colorSurfaceVariant">@color/md_theme_surfaceVariant_mediumContrast</item> <item name="colorOnSurfaceVariant">@color/md_theme_onSurfaceVariant_mediumContrast</item> <item name="colorOutline">@color/md_theme_outline_mediumContrast</item> <item name="colorOutlineVariant">@color/md_theme_outlineVariant_mediumContrast</item> <item name="colorSurfaceInverse">@color/md_theme_inverseSurface_mediumContrast</item> <item name="colorOnSurfaceInverse">@color/md_theme_inverseOnSurface_mediumContrast</item> <item name="colorPrimaryInverse">@color/md_theme_inversePrimary_mediumContrast</item> <item name="colorPrimaryFixed">@color/md_theme_primaryFixed_mediumContrast</item> <item name="colorOnPrimaryFixed">@color/md_theme_onPrimaryFixed_mediumContrast</item> <item name="colorPrimaryFixedDim">@color/md_theme_primaryFixedDim_mediumContrast</item> <item name="colorOnPrimaryFixedVariant">@color/md_theme_onPrimaryFixedVariant_mediumContrast</item> <item name="colorSecondaryFixed">@color/md_theme_secondaryFixed_mediumContrast</item> <item name="colorOnSecondaryFixed">@color/md_theme_onSecondaryFixed_mediumContrast</item> <item name="colorSecondaryFixedDim">@color/md_theme_secondaryFixedDim_mediumContrast</item> <item name="colorOnSecondaryFixedVariant">@color/md_theme_onSecondaryFixedVariant_mediumContrast</item> <item name="colorTertiaryFixed">@color/md_theme_tertiaryFixed_mediumContrast</item> <item name="colorOnTertiaryFixed">@color/md_theme_onTertiaryFixed_mediumContrast</item> <item name="colorTertiaryFixedDim">@color/md_theme_tertiaryFixedDim_mediumContrast</item> <item name="colorOnTertiaryFixedVariant">@color/md_theme_onTertiaryFixedVariant_mediumContrast</item> <item name="colorSurfaceDim">@color/md_theme_surfaceDim_mediumContrast</item> <item name="colorSurfaceBright">@color/md_theme_surfaceBright_mediumContrast</item> <item name="colorSurfaceContainerLowest">@color/md_theme_surfaceContainerLowest_mediumContrast</item> <item name="colorSurfaceContainerLow">@color/md_theme_surfaceContainerLow_mediumContrast</item> <item name="colorSurfaceContainer">@color/md_theme_surfaceContainer_mediumContrast</item> <item name="colorSurfaceContainerHigh">@color/md_theme_surfaceContainerHigh_mediumContrast</item> <item name="colorSurfaceContainerHighest">@color/md_theme_surfaceContainerHighest_mediumContrast</item> </style> <style name="ThemeOverlay.AppTheme.HighContrast" parent="Theme.Material3.Light.NoActionBar"> <item name="colorPrimary">@color/md_theme_primary_highContrast</item> <item name="colorOnPrimary">@color/md_theme_onPrimary_highContrast</item> <item name="colorPrimaryContainer">@color/md_theme_primaryContainer_highContrast</item> <item name="colorOnPrimaryContainer">@color/md_theme_onPrimaryContainer_highContrast</item> <item name="colorSecondary">@color/md_theme_secondary_highContrast</item> <item name="colorOnSecondary">@color/md_theme_onSecondary_highContrast</item> <item name="colorSecondaryContainer">@color/md_theme_secondaryContainer_highContrast</item> <item name="colorOnSecondaryContainer">@color/md_theme_onSecondaryContainer_highContrast</item> <item name="colorTertiary">@color/md_theme_tertiary_highContrast</item> <item name="colorOnTertiary">@color/md_theme_onTertiary_highContrast</item> <item name="colorTertiaryContainer">@color/md_theme_tertiaryContainer_highContrast</item> <item name="colorOnTertiaryContainer">@color/md_theme_onTertiaryContainer_highContrast</item> <item name="colorError">@color/md_theme_error_highContrast</item> <item name="colorOnError">@color/md_theme_onError_highContrast</item> <item name="colorErrorContainer">@color/md_theme_errorContainer_highContrast</item> <item name="colorOnErrorContainer">@color/md_theme_onErrorContainer_highContrast</item> <item name="android:colorBackground">@color/md_theme_background_highContrast</item> <item name="colorOnBackground">@color/md_theme_onBackground_highContrast</item> <item name="colorSurface">@color/md_theme_surface_highContrast</item> <item name="colorOnSurface">@color/md_theme_onSurface_highContrast</item> <item name="colorSurfaceVariant">@color/md_theme_surfaceVariant_highContrast</item> <item name="colorOnSurfaceVariant">@color/md_theme_onSurfaceVariant_highContrast</item> <item name="colorOutline">@color/md_theme_outline_highContrast</item> <item name="colorOutlineVariant">@color/md_theme_outlineVariant_highContrast</item> <item name="colorSurfaceInverse">@color/md_theme_inverseSurface_highContrast</item> <item name="colorOnSurfaceInverse">@color/md_theme_inverseOnSurface_highContrast</item> <item name="colorPrimaryInverse">@color/md_theme_inversePrimary_highContrast</item> <item name="colorPrimaryFixed">@color/md_theme_primaryFixed_highContrast</item> <item name="colorOnPrimaryFixed">@color/md_theme_onPrimaryFixed_highContrast</item> <item name="colorPrimaryFixedDim">@color/md_theme_primaryFixedDim_highContrast</item> <item name="colorOnPrimaryFixedVariant">@color/md_theme_onPrimaryFixedVariant_highContrast</item> <item name="colorSecondaryFixed">@color/md_theme_secondaryFixed_highContrast</item> <item name="colorOnSecondaryFixed">@color/md_theme_onSecondaryFixed_highContrast</item> <item name="colorSecondaryFixedDim">@color/md_theme_secondaryFixedDim_highContrast</item> <item name="colorOnSecondaryFixedVariant">@color/md_theme_onSecondaryFixedVariant_highContrast</item> <item name="colorTertiaryFixed">@color/md_theme_tertiaryFixed_highContrast</item> <item name="colorOnTertiaryFixed">@color/md_theme_onTertiaryFixed_highContrast</item> <item name="colorTertiaryFixedDim">@color/md_theme_tertiaryFixedDim_highContrast</item> <item name="colorOnTertiaryFixedVariant">@color/md_theme_onTertiaryFixedVariant_highContrast</item> <item name="colorSurfaceDim">@color/md_theme_surfaceDim_highContrast</item> <item name="colorSurfaceBright">@color/md_theme_surfaceBright_highContrast</item> <item name="colorSurfaceContainerLowest">@color/md_theme_surfaceContainerLowest_highContrast</item> <item name="colorSurfaceContainerLow">@color/md_theme_surfaceContainerLow_highContrast</item> <item name="colorSurfaceContainer">@color/md_theme_surfaceContainer_highContrast</item> <item name="colorSurfaceContainerHigh">@color/md_theme_surfaceContainerHigh_highContrast</item> <item name="colorSurfaceContainerHighest">@color/md_theme_surfaceContainerHighest_highContrast</item> </style> </resources>
8,875
XML
88.656565
111
0.754254
AkaneFoundation/Omni/app/src/main/res/values/themes.xml
<resources xmlns:tools="http://schemas.android.com/tools"> <!-- Base application theme. --> <style name="Base.Theme.Omni" parent="Theme.Material3.DynamicColors.DayNight.NoActionBar"> <item name="android:forceDarkAllowed" tools:targetApi="q">false</item> <item name="android:windowLayoutInDisplayCutoutMode" tools:targetApi="o_mr1">shortEdges</item> <item name="fontFamily">@font/hankengrotesk</item> <item name="android:fontFamily">@font/hankengrotesk</item> <item name="viewInflaterClass">uk.akane.omni.logic.ui.ViewCompatInflater</item> <!-- Work around b/331383944: PreferenceFragmentCompat permanently mutates activity theme (enables vertical scrollbars) --> <item name="android:scrollbars">none</item> <item name="materialAlertDialogTheme">@style/ThemeOverlay.App.MaterialAlertDialog</item> </style> <style name="PreV31.Theme.Omni" parent="Base.Theme.Omni"> <item name="colorPrimary">@color/md_theme_primary</item> <item name="colorOnPrimary">@color/md_theme_onPrimary</item> <item name="colorPrimaryContainer">@color/md_theme_primaryContainer</item> <item name="colorOnPrimaryContainer">@color/md_theme_onPrimaryContainer</item> <item name="colorSecondary">@color/md_theme_secondary</item> <item name="colorOnSecondary">@color/md_theme_onSecondary</item> <item name="colorSecondaryContainer">@color/md_theme_secondaryContainer</item> <item name="colorOnSecondaryContainer">@color/md_theme_onSecondaryContainer</item> <item name="colorTertiary">@color/md_theme_tertiary</item> <item name="colorOnTertiary">@color/md_theme_onTertiary</item> <item name="colorTertiaryContainer">@color/md_theme_tertiaryContainer</item> <item name="colorOnTertiaryContainer">@color/md_theme_onTertiaryContainer</item> <item name="colorError">@color/md_theme_error</item> <item name="colorOnError">@color/md_theme_onError</item> <item name="colorErrorContainer">@color/md_theme_errorContainer</item> <item name="colorOnErrorContainer">@color/md_theme_onErrorContainer</item> <item name="android:colorBackground">@color/md_theme_background</item> <item name="colorOnBackground">@color/md_theme_onBackground</item> <item name="colorSurface">@color/md_theme_surface</item> <item name="colorOnSurface">@color/md_theme_onSurface</item> <item name="colorSurfaceVariant">@color/md_theme_surfaceVariant</item> <item name="colorOnSurfaceVariant">@color/md_theme_onSurfaceVariant</item> <item name="colorOutline">@color/md_theme_outline</item> <item name="colorOutlineVariant">@color/md_theme_outlineVariant</item> <item name="colorSurfaceInverse">@color/md_theme_inverseSurface</item> <item name="colorOnSurfaceInverse">@color/md_theme_inverseOnSurface</item> <item name="colorPrimaryInverse">@color/md_theme_inversePrimary</item> <item name="colorPrimaryFixed">@color/md_theme_primaryFixed</item> <item name="colorOnPrimaryFixed">@color/md_theme_onPrimaryFixed</item> <item name="colorPrimaryFixedDim">@color/md_theme_primaryFixedDim</item> <item name="colorOnPrimaryFixedVariant">@color/md_theme_onPrimaryFixedVariant</item> <item name="colorSecondaryFixed">@color/md_theme_secondaryFixed</item> <item name="colorOnSecondaryFixed">@color/md_theme_onSecondaryFixed</item> <item name="colorSecondaryFixedDim">@color/md_theme_secondaryFixedDim</item> <item name="colorOnSecondaryFixedVariant">@color/md_theme_onSecondaryFixedVariant</item> <item name="colorTertiaryFixed">@color/md_theme_tertiaryFixed</item> <item name="colorOnTertiaryFixed">@color/md_theme_onTertiaryFixed</item> <item name="colorTertiaryFixedDim">@color/md_theme_tertiaryFixedDim</item> <item name="colorOnTertiaryFixedVariant">@color/md_theme_onTertiaryFixedVariant</item> <item name="colorSurfaceDim">@color/md_theme_surfaceDim</item> <item name="colorSurfaceBright">@color/md_theme_surfaceBright</item> <item name="colorSurfaceContainerLowest">@color/md_theme_surfaceContainerLowest</item> <item name="colorSurfaceContainerLow">@color/md_theme_surfaceContainerLow</item> <item name="colorSurfaceContainer">@color/md_theme_surfaceContainer</item> <item name="colorSurfaceContainerHigh">@color/md_theme_surfaceContainerHigh</item> <item name="colorSurfaceContainerHighest">@color/md_theme_surfaceContainerHighest</item> <item name="materialAlertDialogTheme">@style/ThemeOverlay.App.MaterialAlertDialog</item> </style> <style name="ThemeOverlay.App.MaterialAlertDialog" parent="ThemeOverlay.Material3.MaterialAlertDialog.Centered"> <item name="fontFamily">sans-serif</item> <item name="android:fontFamily">sans-serif</item> <item name="materialAlertDialogTitleTextStyle">@style/MaterialAlertDialog.App.Title.Text</item> <item name="materialAlertDialogBodyTextStyle">@style/MaterialAlertDialog.App.Body.Text</item> <item name="materialAlertDialogTitleIconStyle">@style/MaterialAlertDialog.App.Icon</item> <item name="buttonBarPositiveButtonStyle">@style/Widget.App.Button</item> <item name="buttonBarNegativeButtonStyle">@style/Widget.App.Button</item> </style> <style name="MaterialAlertDialog.App.Title.Text" parent="MaterialAlertDialog.Material3.Title.Text.CenterStacked"> <item name="android:textSize">24sp</item> </style> <style name="MaterialAlertDialog.App.Body.Text" parent="MaterialAlertDialog.Material3.Body.Text"> <item name="android:textSize">15sp</item> </style> <style name="MaterialAlertDialog.App.Icon" parent="MaterialAlertDialog.Material3.Title.Icon.CenterStacked"> <item name="android:layout_height">32dp</item> <item name="android:layout_width">32dp</item> <item name="android:layout_marginTop">12dp</item> </style> <style name="Widget.App.Button" parent="Widget.Material3.Button.TextButton.Dialog"> <item name="android:textFontWeight">600</item> </style> <style name="CompassTextAppearance"> <item name="android:textSize">22sp</item> <item name="android:textColor">?colorOutline</item> <item name="android:textFontWeight">500</item> </style> <style name="Base.Night.Theme.Splash" parent="Theme.SplashScreen"> <item name="postSplashScreenTheme">@style/Theme.Omni</item> </style> <style name="Base.Day.Theme.Splash" parent="Base.Night.Theme.Splash"> <item name="android:windowLightStatusBar">true</item> <item name="android:windowLightNavigationBar" tools:targetApi="o_mr1">true</item> </style> <style name="PreV31Day.Theme.Splash" parent="Base.Day.Theme.Splash"> <item name="windowSplashScreenAnimatedIcon">@drawable/ic_launcher_foreground</item> <item name="windowSplashScreenIconBackgroundColor">@color/ic_launcher_background</item> </style> <style name="PreV31Night.Theme.Splash" parent="Base.Night.Theme.Splash"> <item name="windowSplashScreenAnimatedIcon">@drawable/ic_launcher_foreground</item> <item name="windowSplashScreenIconBackgroundColor">@color/ic_launcher_background</item> </style> <style name="Day.Theme.Splash" parent="PreV31Day.Theme.Splash" /> <style name="Night.Theme.Splash" parent="PreV31Night.Theme.Splash" /> <style name="Theme.Omni" parent="PreV31.Theme.Omni" /> </resources>
7,611
XML
62.966386
131
0.718959
AkaneFoundation/Omni/app/src/main/res/values/colors.xml
<resources> <color name="md_theme_primary">#2E6A44</color> <color name="md_theme_onPrimary">#FFFFFF</color> <color name="md_theme_primaryContainer">#B1F1C1</color> <color name="md_theme_onPrimaryContainer">#00210E</color> <color name="md_theme_secondary">#4F6353</color> <color name="md_theme_onSecondary">#FFFFFF</color> <color name="md_theme_secondaryContainer">#D2E8D4</color> <color name="md_theme_onSecondaryContainer">#0D1F13</color> <color name="md_theme_tertiary">#3A646F</color> <color name="md_theme_onTertiary">#FFFFFF</color> <color name="md_theme_tertiaryContainer">#BEEAF6</color> <color name="md_theme_onTertiaryContainer">#001F26</color> <color name="md_theme_error">#BA1A1A</color> <color name="md_theme_onError">#FFFFFF</color> <color name="md_theme_errorContainer">#FFDAD6</color> <color name="md_theme_onErrorContainer">#410002</color> <color name="md_theme_background">#F6FBF3</color> <color name="md_theme_onBackground">#181D18</color> <color name="md_theme_surface">#F6FBF3</color> <color name="md_theme_onSurface">#181D18</color> <color name="md_theme_surfaceVariant">#DDE5DB</color> <color name="md_theme_onSurfaceVariant">#414942</color> <color name="md_theme_outline">#717971</color> <color name="md_theme_outlineVariant">#C1C9BF</color> <color name="md_theme_scrim">#000000</color> <color name="md_theme_inverseSurface">#2C322D</color> <color name="md_theme_inverseOnSurface">#EDF2EB</color> <color name="md_theme_inversePrimary">#96D5A6</color> <color name="md_theme_primaryFixed">#B1F1C1</color> <color name="md_theme_onPrimaryFixed">#00210E</color> <color name="md_theme_primaryFixedDim">#96D5A6</color> <color name="md_theme_onPrimaryFixedVariant">#12512E</color> <color name="md_theme_secondaryFixed">#D2E8D4</color> <color name="md_theme_onSecondaryFixed">#0D1F13</color> <color name="md_theme_secondaryFixedDim">#B6CCB8</color> <color name="md_theme_onSecondaryFixedVariant">#384B3C</color> <color name="md_theme_tertiaryFixed">#BEEAF6</color> <color name="md_theme_onTertiaryFixed">#001F26</color> <color name="md_theme_tertiaryFixedDim">#A2CEDA</color> <color name="md_theme_onTertiaryFixedVariant">#214C57</color> <color name="md_theme_surfaceDim">#D7DBD4</color> <color name="md_theme_surfaceBright">#F6FBF3</color> <color name="md_theme_surfaceContainerLowest">#FFFFFF</color> <color name="md_theme_surfaceContainerLow">#F0F5ED</color> <color name="md_theme_surfaceContainer">#EBEFE8</color> <color name="md_theme_surfaceContainerHigh">#E5EAE2</color> <color name="md_theme_surfaceContainerHighest">#DFE4DC</color> <color name="md_theme_primary_mediumContrast">#0C4D2A</color> <color name="md_theme_onPrimary_mediumContrast">#FFFFFF</color> <color name="md_theme_primaryContainer_mediumContrast">#458158</color> <color name="md_theme_onPrimaryContainer_mediumContrast">#FFFFFF</color> <color name="md_theme_secondary_mediumContrast">#344738</color> <color name="md_theme_onSecondary_mediumContrast">#FFFFFF</color> <color name="md_theme_secondaryContainer_mediumContrast">#657A69</color> <color name="md_theme_onSecondaryContainer_mediumContrast">#FFFFFF</color> <color name="md_theme_tertiary_mediumContrast">#1C4853</color> <color name="md_theme_onTertiary_mediumContrast">#FFFFFF</color> <color name="md_theme_tertiaryContainer_mediumContrast">#517B86</color> <color name="md_theme_onTertiaryContainer_mediumContrast">#FFFFFF</color> <color name="md_theme_error_mediumContrast">#8C0009</color> <color name="md_theme_onError_mediumContrast">#FFFFFF</color> <color name="md_theme_errorContainer_mediumContrast">#DA342E</color> <color name="md_theme_onErrorContainer_mediumContrast">#FFFFFF</color> <color name="md_theme_background_mediumContrast">#F6FBF3</color> <color name="md_theme_onBackground_mediumContrast">#181D18</color> <color name="md_theme_surface_mediumContrast">#F6FBF3</color> <color name="md_theme_onSurface_mediumContrast">#181D18</color> <color name="md_theme_surfaceVariant_mediumContrast">#DDE5DB</color> <color name="md_theme_onSurfaceVariant_mediumContrast">#3D453E</color> <color name="md_theme_outline_mediumContrast">#596159</color> <color name="md_theme_outlineVariant_mediumContrast">#757D75</color> <color name="md_theme_scrim_mediumContrast">#000000</color> <color name="md_theme_inverseSurface_mediumContrast">#2C322D</color> <color name="md_theme_inverseOnSurface_mediumContrast">#EDF2EB</color> <color name="md_theme_inversePrimary_mediumContrast">#96D5A6</color> <color name="md_theme_primaryFixed_mediumContrast">#458158</color> <color name="md_theme_onPrimaryFixed_mediumContrast">#FFFFFF</color> <color name="md_theme_primaryFixedDim_mediumContrast">#2C6741</color> <color name="md_theme_onPrimaryFixedVariant_mediumContrast">#FFFFFF</color> <color name="md_theme_secondaryFixed_mediumContrast">#657A69</color> <color name="md_theme_onSecondaryFixed_mediumContrast">#FFFFFF</color> <color name="md_theme_secondaryFixedDim_mediumContrast">#4D6151</color> <color name="md_theme_onSecondaryFixedVariant_mediumContrast">#FFFFFF</color> <color name="md_theme_tertiaryFixed_mediumContrast">#517B86</color> <color name="md_theme_onTertiaryFixed_mediumContrast">#FFFFFF</color> <color name="md_theme_tertiaryFixedDim_mediumContrast">#38626D</color> <color name="md_theme_onTertiaryFixedVariant_mediumContrast">#FFFFFF</color> <color name="md_theme_surfaceDim_mediumContrast">#D7DBD4</color> <color name="md_theme_surfaceBright_mediumContrast">#F6FBF3</color> <color name="md_theme_surfaceContainerLowest_mediumContrast">#FFFFFF</color> <color name="md_theme_surfaceContainerLow_mediumContrast">#F0F5ED</color> <color name="md_theme_surfaceContainer_mediumContrast">#EBEFE8</color> <color name="md_theme_surfaceContainerHigh_mediumContrast">#E5EAE2</color> <color name="md_theme_surfaceContainerHighest_mediumContrast">#DFE4DC</color> <color name="md_theme_primary_highContrast">#002912</color> <color name="md_theme_onPrimary_highContrast">#FFFFFF</color> <color name="md_theme_primaryContainer_highContrast">#0C4D2A</color> <color name="md_theme_onPrimaryContainer_highContrast">#FFFFFF</color> <color name="md_theme_secondary_highContrast">#142619</color> <color name="md_theme_onSecondary_highContrast">#FFFFFF</color> <color name="md_theme_secondaryContainer_highContrast">#344738</color> <color name="md_theme_onSecondaryContainer_highContrast">#FFFFFF</color> <color name="md_theme_tertiary_highContrast">#00262E</color> <color name="md_theme_onTertiary_highContrast">#FFFFFF</color> <color name="md_theme_tertiaryContainer_highContrast">#1C4853</color> <color name="md_theme_onTertiaryContainer_highContrast">#FFFFFF</color> <color name="md_theme_error_highContrast">#4E0002</color> <color name="md_theme_onError_highContrast">#FFFFFF</color> <color name="md_theme_errorContainer_highContrast">#8C0009</color> <color name="md_theme_onErrorContainer_highContrast">#FFFFFF</color> <color name="md_theme_background_highContrast">#F6FBF3</color> <color name="md_theme_onBackground_highContrast">#181D18</color> <color name="md_theme_surface_highContrast">#F6FBF3</color> <color name="md_theme_onSurface_highContrast">#000000</color> <color name="md_theme_surfaceVariant_highContrast">#DDE5DB</color> <color name="md_theme_onSurfaceVariant_highContrast">#1E261F</color> <color name="md_theme_outline_highContrast">#3D453E</color> <color name="md_theme_outlineVariant_highContrast">#3D453E</color> <color name="md_theme_scrim_highContrast">#000000</color> <color name="md_theme_inverseSurface_highContrast">#2C322D</color> <color name="md_theme_inverseOnSurface_highContrast">#FFFFFF</color> <color name="md_theme_inversePrimary_highContrast">#BBFBCA</color> <color name="md_theme_primaryFixed_highContrast">#0C4D2A</color> <color name="md_theme_onPrimaryFixed_highContrast">#FFFFFF</color> <color name="md_theme_primaryFixedDim_highContrast">#003519</color> <color name="md_theme_onPrimaryFixedVariant_highContrast">#FFFFFF</color> <color name="md_theme_secondaryFixed_highContrast">#344738</color> <color name="md_theme_onSecondaryFixed_highContrast">#FFFFFF</color> <color name="md_theme_secondaryFixedDim_highContrast">#1E3123</color> <color name="md_theme_onSecondaryFixedVariant_highContrast">#FFFFFF</color> <color name="md_theme_tertiaryFixed_highContrast">#1C4853</color> <color name="md_theme_onTertiaryFixed_highContrast">#FFFFFF</color> <color name="md_theme_tertiaryFixedDim_highContrast">#00323B</color> <color name="md_theme_onTertiaryFixedVariant_highContrast">#FFFFFF</color> <color name="md_theme_surfaceDim_highContrast">#D7DBD4</color> <color name="md_theme_surfaceBright_highContrast">#F6FBF3</color> <color name="md_theme_surfaceContainerLowest_highContrast">#FFFFFF</color> <color name="md_theme_surfaceContainerLow_highContrast">#F0F5ED</color> <color name="md_theme_surfaceContainer_highContrast">#EBEFE8</color> <color name="md_theme_surfaceContainerHigh_highContrast">#E5EAE2</color> <color name="md_theme_surfaceContainerHighest_highContrast">#DFE4DC</color> </resources>
9,534
XML
65.215277
81
0.73799
AkaneFoundation/Omni/app/src/main/res/values-v31/themes.xml
<resources> <style name="Day.Theme.Splash" parent="Base.Day.Theme.Splash" /> <style name="Night.Theme.Splash" parent="Base.Night.Theme.Splash" /> <style name="Theme.Omni" parent="Base.Theme.Omni" /> </resources>
223
XML
43.799991
72
0.686099
AkaneFoundation/Omni/app/src/main/res/values-night/colors.xml
<resources> <color name="md_theme_primary">#96D5A6</color> <color name="md_theme_onPrimary">#00391C</color> <color name="md_theme_primaryContainer">#12512E</color> <color name="md_theme_onPrimaryContainer">#B1F1C1</color> <color name="md_theme_secondary">#B6CCB8</color> <color name="md_theme_onSecondary">#223527</color> <color name="md_theme_secondaryContainer">#384B3C</color> <color name="md_theme_onSecondaryContainer">#D2E8D4</color> <color name="md_theme_tertiary">#A2CEDA</color> <color name="md_theme_onTertiary">#023640</color> <color name="md_theme_tertiaryContainer">#214C57</color> <color name="md_theme_onTertiaryContainer">#BEEAF6</color> <color name="md_theme_error">#FFB4AB</color> <color name="md_theme_onError">#690005</color> <color name="md_theme_errorContainer">#93000A</color> <color name="md_theme_onErrorContainer">#FFDAD6</color> <color name="md_theme_background">#101510</color> <color name="md_theme_onBackground">#DFE4DC</color> <color name="md_theme_surface">#101510</color> <color name="md_theme_onSurface">#DFE4DC</color> <color name="md_theme_surfaceVariant">#414942</color> <color name="md_theme_onSurfaceVariant">#C1C9BF</color> <color name="md_theme_outline">#8B938A</color> <color name="md_theme_outlineVariant">#414942</color> <color name="md_theme_scrim">#000000</color> <color name="md_theme_inverseSurface">#DFE4DC</color> <color name="md_theme_inverseOnSurface">#2C322D</color> <color name="md_theme_inversePrimary">#2E6A44</color> <color name="md_theme_primaryFixed">#B1F1C1</color> <color name="md_theme_onPrimaryFixed">#00210E</color> <color name="md_theme_primaryFixedDim">#96D5A6</color> <color name="md_theme_onPrimaryFixedVariant">#12512E</color> <color name="md_theme_secondaryFixed">#D2E8D4</color> <color name="md_theme_onSecondaryFixed">#0D1F13</color> <color name="md_theme_secondaryFixedDim">#B6CCB8</color> <color name="md_theme_onSecondaryFixedVariant">#384B3C</color> <color name="md_theme_tertiaryFixed">#BEEAF6</color> <color name="md_theme_onTertiaryFixed">#001F26</color> <color name="md_theme_tertiaryFixedDim">#A2CEDA</color> <color name="md_theme_onTertiaryFixedVariant">#214C57</color> <color name="md_theme_surfaceDim">#101510</color> <color name="md_theme_surfaceBright">#353A35</color> <color name="md_theme_surfaceContainerLowest">#0A0F0B</color> <color name="md_theme_surfaceContainerLow">#181D18</color> <color name="md_theme_surfaceContainer">#1C211C</color> <color name="md_theme_surfaceContainerHigh">#262B26</color> <color name="md_theme_surfaceContainerHighest">#313631</color> <color name="md_theme_primary_mediumContrast">#9AD9AA</color> <color name="md_theme_onPrimary_mediumContrast">#001B0A</color> <color name="md_theme_primaryContainer_mediumContrast">#619E73</color> <color name="md_theme_onPrimaryContainer_mediumContrast">#000000</color> <color name="md_theme_secondary_mediumContrast">#BAD0BD</color> <color name="md_theme_onSecondary_mediumContrast">#081A0E</color> <color name="md_theme_secondaryContainer_mediumContrast">#819684</color> <color name="md_theme_onSecondaryContainer_mediumContrast">#000000</color> <color name="md_theme_tertiary_mediumContrast">#A6D2DE</color> <color name="md_theme_onTertiary_mediumContrast">#00191F</color> <color name="md_theme_tertiaryContainer_mediumContrast">#6D97A3</color> <color name="md_theme_onTertiaryContainer_mediumContrast">#000000</color> <color name="md_theme_error_mediumContrast">#FFBAB1</color> <color name="md_theme_onError_mediumContrast">#370001</color> <color name="md_theme_errorContainer_mediumContrast">#FF5449</color> <color name="md_theme_onErrorContainer_mediumContrast">#000000</color> <color name="md_theme_background_mediumContrast">#101510</color> <color name="md_theme_onBackground_mediumContrast">#DFE4DC</color> <color name="md_theme_surface_mediumContrast">#101510</color> <color name="md_theme_onSurface_mediumContrast">#F7FCF4</color> <color name="md_theme_surfaceVariant_mediumContrast">#414942</color> <color name="md_theme_onSurfaceVariant_mediumContrast">#C5CDC3</color> <color name="md_theme_outline_mediumContrast">#9DA59C</color> <color name="md_theme_outlineVariant_mediumContrast">#7D857D</color> <color name="md_theme_scrim_mediumContrast">#000000</color> <color name="md_theme_inverseSurface_mediumContrast">#DFE4DC</color> <color name="md_theme_inverseOnSurface_mediumContrast">#262B27</color> <color name="md_theme_inversePrimary_mediumContrast">#14522F</color> <color name="md_theme_primaryFixed_mediumContrast">#B1F1C1</color> <color name="md_theme_onPrimaryFixed_mediumContrast">#001507</color> <color name="md_theme_primaryFixedDim_mediumContrast">#96D5A6</color> <color name="md_theme_onPrimaryFixedVariant_mediumContrast">#003F20</color> <color name="md_theme_secondaryFixed_mediumContrast">#D2E8D4</color> <color name="md_theme_onSecondaryFixed_mediumContrast">#041509</color> <color name="md_theme_secondaryFixedDim_mediumContrast">#B6CCB8</color> <color name="md_theme_onSecondaryFixedVariant_mediumContrast">#283A2C</color> <color name="md_theme_tertiaryFixed_mediumContrast">#BEEAF6</color> <color name="md_theme_onTertiaryFixed_mediumContrast">#001419</color> <color name="md_theme_tertiaryFixedDim_mediumContrast">#A2CEDA</color> <color name="md_theme_onTertiaryFixedVariant_mediumContrast">#0B3C46</color> <color name="md_theme_surfaceDim_mediumContrast">#101510</color> <color name="md_theme_surfaceBright_mediumContrast">#353A35</color> <color name="md_theme_surfaceContainerLowest_mediumContrast">#0A0F0B</color> <color name="md_theme_surfaceContainerLow_mediumContrast">#181D18</color> <color name="md_theme_surfaceContainer_mediumContrast">#1C211C</color> <color name="md_theme_surfaceContainerHigh_mediumContrast">#262B26</color> <color name="md_theme_surfaceContainerHighest_mediumContrast">#313631</color> <color name="md_theme_primary_highContrast">#EFFFEF</color> <color name="md_theme_onPrimary_highContrast">#000000</color> <color name="md_theme_primaryContainer_highContrast">#9AD9AA</color> <color name="md_theme_onPrimaryContainer_highContrast">#000000</color> <color name="md_theme_secondary_highContrast">#EFFFEF</color> <color name="md_theme_onSecondary_highContrast">#000000</color> <color name="md_theme_secondaryContainer_highContrast">#BAD0BD</color> <color name="md_theme_onSecondaryContainer_highContrast">#000000</color> <color name="md_theme_tertiary_highContrast">#F4FCFF</color> <color name="md_theme_onTertiary_highContrast">#000000</color> <color name="md_theme_tertiaryContainer_highContrast">#A6D2DE</color> <color name="md_theme_onTertiaryContainer_highContrast">#000000</color> <color name="md_theme_error_highContrast">#FFF9F9</color> <color name="md_theme_onError_highContrast">#000000</color> <color name="md_theme_errorContainer_highContrast">#FFBAB1</color> <color name="md_theme_onErrorContainer_highContrast">#000000</color> <color name="md_theme_background_highContrast">#101510</color> <color name="md_theme_onBackground_highContrast">#DFE4DC</color> <color name="md_theme_surface_highContrast">#101510</color> <color name="md_theme_onSurface_highContrast">#FFFFFF</color> <color name="md_theme_surfaceVariant_highContrast">#414942</color> <color name="md_theme_onSurfaceVariant_highContrast">#F5FDF3</color> <color name="md_theme_outline_highContrast">#C5CDC3</color> <color name="md_theme_outlineVariant_highContrast">#C5CDC3</color> <color name="md_theme_scrim_highContrast">#000000</color> <color name="md_theme_inverseSurface_highContrast">#DFE4DC</color> <color name="md_theme_inverseOnSurface_highContrast">#000000</color> <color name="md_theme_inversePrimary_highContrast">#003218</color> <color name="md_theme_primaryFixed_highContrast">#B6F6C5</color> <color name="md_theme_onPrimaryFixed_highContrast">#000000</color> <color name="md_theme_primaryFixedDim_highContrast">#9AD9AA</color> <color name="md_theme_onPrimaryFixedVariant_highContrast">#001B0A</color> <color name="md_theme_secondaryFixed_highContrast">#D6EDD8</color> <color name="md_theme_onSecondaryFixed_highContrast">#000000</color> <color name="md_theme_secondaryFixedDim_highContrast">#BAD0BD</color> <color name="md_theme_onSecondaryFixedVariant_highContrast">#081A0E</color> <color name="md_theme_tertiaryFixed_highContrast">#C2EEFB</color> <color name="md_theme_onTertiaryFixed_highContrast">#000000</color> <color name="md_theme_tertiaryFixedDim_highContrast">#A6D2DE</color> <color name="md_theme_onTertiaryFixedVariant_highContrast">#00191F</color> <color name="md_theme_surfaceDim_highContrast">#101510</color> <color name="md_theme_surfaceBright_highContrast">#353A35</color> <color name="md_theme_surfaceContainerLowest_highContrast">#0A0F0B</color> <color name="md_theme_surfaceContainerLow_highContrast">#181D18</color> <color name="md_theme_surfaceContainer_highContrast">#1C211C</color> <color name="md_theme_surfaceContainerHigh_highContrast">#262B26</color> <color name="md_theme_surfaceContainerHighest_highContrast">#313631</color> </resources>
9,534
XML
65.215277
81
0.73799
AkaneFoundation/Omni/app/src/main/res/drawable/ic_star_shape.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="396.96dp" android:height="396.96dp" android:viewportWidth="396.96" android:viewportHeight="396.96"> <path android:fillColor="#FF000000" android:pathData="M247.09,28.82l21.68,39.64c13.79,25.21 34.52,45.95 59.74,59.74l39.64,21.68c38.43,21.02 38.43,76.2 0,97.22l-39.64,21.68c-25.21,13.79 -45.95,34.52 -59.74,59.74l-21.68,39.64c-21.02,38.43 -76.2,38.43 -97.22,0l-21.68,-39.64c-13.79,-25.21 -34.52,-45.95 -59.74,-59.74l-39.64,-21.68c-38.43,-21.02 -38.43,-76.2 0,-97.22l39.64,-21.68c25.21,-13.79 45.95,-34.52 59.74,-59.74l21.68,-39.64c21.02,-38.43 76.2,-38.43 97.22,0Z" android:strokeWidth="0"/> </vector>
718
XML
64.363631
433
0.664345
AkaneFoundation/Omni/app/src/main/res/drawable/location_indicator.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="37dp" android:height="32dp" android:viewportWidth="37" android:viewportHeight="32"> <path android:pathData="M25.328,27.819C22.209,32.927 14.791,32.927 11.672,27.819L2.116,12.169C-1.14,6.838 2.697,0 8.943,0L28.057,0C34.303,0 38.14,6.838 34.884,12.169L25.328,27.819Z" android:fillColor="#000000" /> </vector>
419
XML
40.999996
181
0.694511
AkaneFoundation/Omni/app/src/main/res/drawable/ic_close.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorOnSurface"> <path android:fillColor="@android:color/white" android:pathData="M256,760L200,704L424,480L200,256L256,200L480,424L704,200L760,256L536,480L760,704L704,760L480,536L256,760Z"/> </vector>
422
XML
37.454542
132
0.736967
AkaneFoundation/Omni/app/src/main/res/drawable/ic_arrow_back.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal" android:autoMirrored="true"> <path android:fillColor="@android:color/white" android:pathData="M313,520L537,744L480,800L160,480L480,160L537,216L313,440L800,440L800,520L313,520Z"/> </vector>
434
XML
35.249997
108
0.730415
AkaneFoundation/Omni/app/src/main/res/drawable/ic_warning.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal"> <path android:fillColor="@android:color/white" android:pathData="M40,840L480,80L920,840L40,840ZM178,760L782,760L480,240L178,760ZM480,720Q497,720 508.5,708.5Q520,697 520,680Q520,663 508.5,651.5Q497,640 480,640Q463,640 451.5,651.5Q440,663 440,680Q440,697 451.5,708.5Q463,720 480,720ZM440,600L520,600L520,400L440,400L440,600ZM480,500L480,500L480,500L480,500Z"/> </vector>
611
XML
54.636359
317
0.757774
AkaneFoundation/Omni/app/src/main/res/drawable/ic_conversion_path.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal"> <path android:fillColor="@android:color/white" android:pathData="M760,840Q721,840 690,817.5Q659,795 647,760L440,760Q374,760 327,713Q280,666 280,600Q280,534 327,487Q374,440 440,440L520,440Q553,440 576.5,416.5Q600,393 600,360Q600,327 576.5,303.5Q553,280 520,280L313,280Q300,315 269.5,337.5Q239,360 200,360Q150,360 115,325Q80,290 80,240Q80,190 115,155Q150,120 200,120Q239,120 269.5,142.5Q300,165 313,200L520,200Q586,200 633,247Q680,294 680,360Q680,426 633,473Q586,520 520,520L440,520Q407,520 383.5,543.5Q360,567 360,600Q360,633 383.5,656.5Q407,680 440,680L647,680Q660,645 690.5,622.5Q721,600 760,600Q810,600 845,635Q880,670 880,720Q880,770 845,805Q810,840 760,840ZM200,280Q217,280 228.5,268.5Q240,257 240,240Q240,223 228.5,211.5Q217,200 200,200Q183,200 171.5,211.5Q160,223 160,240Q160,257 171.5,268.5Q183,280 200,280Z"/> </vector>
1,070
XML
96.363628
776
0.76729
AkaneFoundation/Omni/app/src/main/res/drawable/ic_explorer.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal"> <path android:fillColor="@android:color/white" android:pathData="M260,700L560,560L700,260L400,400L260,700ZM480,520Q463,520 451.5,508.5Q440,497 440,480Q440,463 451.5,451.5Q463,440 480,440Q497,440 508.5,451.5Q520,463 520,480Q520,497 508.5,508.5Q497,520 480,520ZM480,880Q397,880 324,848.5Q251,817 197,763Q143,709 111.5,636Q80,563 80,480Q80,397 111.5,324Q143,251 197,197Q251,143 324,111.5Q397,80 480,80Q563,80 636,111.5Q709,143 763,197Q817,251 848.5,324Q880,397 880,480Q880,563 848.5,636Q817,709 763,763Q709,817 636,848.5Q563,880 480,880ZM480,800Q614,800 707,707Q800,614 800,480Q800,346 707,253Q614,160 480,160Q346,160 253,253Q160,346 160,480Q160,614 253,707Q346,800 480,800ZM480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Q480,480 480,480Z"/> </vector>
1,064
XML
95.818173
770
0.771617
AkaneFoundation/Omni/app/src/main/res/drawable/ic_grid_view.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal"> <path android:fillColor="@android:color/white" android:pathData="M120,440L120,120L440,120L440,440L120,440ZM120,840L120,520L440,520L440,840L120,840ZM520,440L520,120L840,120L840,440L520,440ZM520,840L520,520L840,520L840,840L520,840ZM200,360L360,360L360,200L200,200L200,360ZM600,360L760,360L760,200L600,200L600,360ZM600,760L760,760L760,600L600,600L600,760ZM200,760L360,760L360,600L200,600L200,760ZM600,360L600,360L600,360L600,360L600,360ZM600,600L600,600L600,600L600,600L600,600ZM360,600L360,600L360,600L360,600L360,600ZM360,360L360,360L360,360L360,360L360,360Z"/> </vector>
813
XML
72.999993
519
0.805658
AkaneFoundation/Omni/app/src/main/res/drawable/ic_location_on.xml
<vector xmlns:android="http://schemas.android.com/apk/res/android" android:width="24dp" android:height="24dp" android:viewportWidth="960" android:viewportHeight="960" android:tint="?attr/colorControlNormal"> <path android:fillColor="@android:color/white" android:pathData="M480,480Q513,480 536.5,456.5Q560,433 560,400Q560,367 536.5,343.5Q513,320 480,320Q447,320 423.5,343.5Q400,367 400,400Q400,433 423.5,456.5Q447,480 480,480ZM480,774Q602,662 661,570.5Q720,479 720,408Q720,299 650.5,229.5Q581,160 480,160Q379,160 309.5,229.5Q240,299 240,408Q240,479 299,570.5Q358,662 480,774ZM480,880Q319,743 239.5,625.5Q160,508 160,408Q160,258 256.5,169Q353,80 480,80Q607,80 703.5,169Q800,258 800,408Q800,508 720.5,625.5Q641,743 480,880ZM480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Q480,400 480,400Z"/> </vector>
906
XML
81.454538
612
0.759382
AkaneFoundation/Omni/gradle/libs.versions.toml
[versions] agp = "8.4.1" kotlin = "1.9.0" coreKtx = "1.13.1" junit = "4.13.2" junitVersion = "1.1.5" espressoCore = "3.5.1" appcompat = "1.6.1" material = "1.12.0" activity = "1.9.0" constraintlayout = "2.1.4" preferenceKtx = "1.2.1" coreSplashscreen = "1.0.1" [libraries] androidx-core-ktx = { group = "androidx.core", name = "core-ktx", version.ref = "coreKtx" } androidx-preference-ktx = { module = "androidx.preference:preference-ktx", version.ref = "preferenceKtx" } junit = { group = "junit", name = "junit", version.ref = "junit" } androidx-junit = { group = "androidx.test.ext", name = "junit", version.ref = "junitVersion" } androidx-espresso-core = { group = "androidx.test.espresso", name = "espresso-core", version.ref = "espressoCore" } androidx-appcompat = { group = "androidx.appcompat", name = "appcompat", version.ref = "appcompat" } material = { group = "com.google.android.material", name = "material", version.ref = "material" } androidx-activity = { group = "androidx.activity", name = "activity", version.ref = "activity" } androidx-constraintlayout = { group = "androidx.constraintlayout", name = "constraintlayout", version.ref = "constraintlayout" } androidx-core-splashscreen = { group = "androidx.core", name = "core-splashscreen", version.ref = "coreSplashscreen" } [plugins] android-application = { id = "com.android.application", version.ref = "agp" } jetbrains-kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
1,476
TOML
46.64516
128
0.687669
move-ai/omniverse-public-asset-library/README.md
# omniverse-public-asset-library Omniverse extension which allows to import free animations that have been captured by the move.ai team # Overview This extension is designed to let you test animations processed by the Move.ai team. All of the animations are free to use allowing you to check the quality of our data. We will continue to add new animations, stay tuned! # How to use - Set your `Assets Path` to where you'd like to store animations - Click `Update Preview` - It will take some time to update animation previews. When it's done you'll be able to import animations simply by clicking a `Import animation` button - Activate `Skeleton Joint` extension to be able to view skeleton animations in the viewport More info [here](https://docs.move.ai/nvidia-omniverse-extension)
790
Markdown
42.944442
169
0.78481
move-ai/omniverse-public-asset-library/moveai/assets/extension/extension.py
from ctypes import alignment import omni.ext from .window import MoveaiAssetsMarketlaceWindow class MoveaiAssetsMarketlace(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[moveai.assets] Move.ai Public Asset Library startup") self._window = MoveaiAssetsMarketlaceWindow(ext_id) def on_shutdown(self): if self._window is not None: self._window.destroy() self._window = None print("[moveai.assets] Move.ai Public Asset Library shutdown")
679
Python
36.777776
119
0.702504
move-ai/omniverse-public-asset-library/moveai/assets/extension/utils.py
from urllib import request import json import cv2 import random import carb import omni.kit.asset_converter import omni.kit.commands import omni.usd from PIL import Image from pathlib import Path def get_data(url: str): f = request.urlopen(url) data_json = json.loads(f.read()) return data_json def get_random_frame(videofile: str): vidcap = cv2.VideoCapture(videofile) # get total number of frames total_frames = vidcap.get(cv2.CAP_PROP_FRAME_COUNT) random_frame_number = random.randint(60, total_frames) # set frame position vidcap.set(cv2.CAP_PROP_POS_FRAMES, random_frame_number) success, image = vidcap.read() if success: suffix = Path(videofile).suffix img_path = f"{videofile.split(suffix)[0]}.jpg" cv2.imwrite(img_path, image) return img_path # Progress of processing. def progress_callback(current_step: int, total: int): # Show progress print(f"{current_step} of {total}") # Convert asset file(obj/fbx/glTF, etc) to usd. async def convert_asset_to_usd(input_asset: str, output_usd: str): # Input options are defaults. converter_context = omni.kit.asset_converter.AssetConverterContext() converter_context.ignore_materials = False converter_context.ignore_camera = False converter_context.ignore_animations = False converter_context.ignore_light = False converter_context.export_preview_surface = False converter_context.use_meter_as_world_unit = False converter_context.create_world_as_default_root_prim = True converter_context.embed_textures = True converter_context.convert_fbx_to_y_up = False converter_context.convert_fbx_to_z_up = False converter_context.merge_all_meshes = False converter_context.use_double_precision_to_usd_transform_op = False converter_context.ignore_pivots = False converter_context.keep_all_materials = True converter_context.smooth_normals = True instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(input_asset, output_usd, progress_callback, converter_context) # Wait for completion. success = await task.wait_until_finished() if not success: carb.log_error(task.get_status(), task.get_detailed_error()) else: print("converting done") def download_file(url: str, download_path: Path): request.urlretrieve(url, download_path) def import_file_to_scene(usd_path: Path): stage = omni.usd.get_context().get_stage() if not stage: return name = usd_path.stem prim_path = omni.usd.get_stage_next_free_path(stage, "/" + name, True) omni.kit.commands.execute( "CreateReferenceCommand", path_to=prim_path, asset_path=str(usd_path), usd_context=omni.usd.get_context() ) def get_img_size(img_path: Path): im = Image.open(img_path) width, height = im.size return width, height def download_motion(asset_path: Path, name: str, file_type: str = "fbx"): from .window import MoveaiAssetsMarketlaceWindow download_dir = asset_path / "anim_files" / file_type download_dir.mkdir(parents=True, exist_ok=True) download_path = download_dir / f"{name}.{file_type}" for motion in MoveaiAssetsMarketlaceWindow.data["motions"]: if name == motion["title"]: download_file(motion["files"][f"{file_type}_url"], download_path) import_file_to_scene(download_path) return
3,448
Python
31.847619
113
0.697506
move-ai/omniverse-public-asset-library/moveai/assets/extension/window.py
from functools import partial import omni.ui as ui import omni.kit from urllib import request from pathlib import Path from .utils import get_data, get_random_frame, get_img_size, download_motion import webbrowser IMG_SIZE_DEVISOR = 2 class MoveaiAssetsMarketlaceWindow(ui.Window): data = get_data("https://molibapi.move.ai/motions") def __init__(self, ext_id): super().__init__("Move.ai Public Asset Library", width=500, height=600, visible=True) self.frame.set_build_fn(self._build_ui) self.deferred_dock_in("Content", ui.DockPolicy.CURRENT_WINDOW_IS_ACTIVE) self.asset_path_default: str = ( omni.kit.app.get_app().get_extension_manager().get_extension_path(ext_id) + "/data" ) self.asset_path_current: str = None def _set_path_current(self, path: str): self.asset_path_current = path def _build_ui(self): self.image_preview_width: int = None self.image_preview_height: int = None with self.frame: # Assets path and get previews button with ui.VStack(): with ui.CollapsableFrame("Settings", height=0): with ui.VStack(): with ui.HStack(height=20): ui.Spacer(width=3) ui.Label("Assets Path", width=70, height=0) self.asset_field = ui.StringField(name="asset_path") if not self.asset_path_current: self.asset_field.model.set_value(self.asset_path_default) else: self.asset_field.model.set_value(self.asset_path_current) self.asset_field.model.add_value_changed_fn( lambda m: self._set_path_current(m.get_value_as_string()) ) ui.Button("Update Preview", width=0, height=0, clicked_fn=lambda: self._build_ui()) # Grid with previews and import buttons with ui.CollapsableFrame("Preview"): self.get_preview() with ui.HStack(height=20, style={"Button":{"background_color": "0xFFFF7E09"}}): ui.Button("Join iPhone beta", width=0, height=0, clicked_fn=partial( webbrowser.open, "https://www.move.ai/mobile-device" )) def get_preview(self): self.asset_path = Path(self.asset_field.model.get_value_as_string()) previews_path = self.asset_path / "previews" previews_path.mkdir(parents=True, exist_ok=True) with ui.HStack(): with ui.ScrollingFrame( horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ): self.asset_grid = ui.VGrid(style={"margin": 3}) with self.asset_grid: for motion in self.data["motions"]: preview_path = previews_path / f"{motion['title']}.mp4" preview = request.urlretrieve(motion["files"]["preview_url"], preview_path) img_preview = get_random_frame(str(preview_path)) if not self.image_preview_width: self.image_preview_width, self.image_preview_height = get_img_size(img_preview) self.asset_grid.column_width = self.image_preview_width / IMG_SIZE_DEVISOR with ui.VStack(): image = ui.Image( img_preview, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, alignment=ui.Alignment.CENTER, height=self.image_preview_height / IMG_SIZE_DEVISOR, ) with ui.HStack(): ui.Label(motion["title"], alignment=ui.Alignment.LEFT) button = ui.Button( text="Import motion", name=motion["title"], alignment=ui.Alignment.RIGHT, width=0, height=0, asset_path=self.asset_path, clicked_fn=partial( download_motion, Path(self.asset_field.model.get_value_as_string()), motion["title"], ), )
4,930
Python
42.637168
107
0.48357
move-ai/omniverse-public-asset-library/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "Move.ai Public Asset Library" description="Move.ai Public Asset Library" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" icon = "data/icon.jpeg" preview_image = "data/preview.png" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Animation" # Keywords for the extension keywords = ["kit", "animation", "move"] feature = true # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} "omni.kit.asset_converter" = {} # Main python module this extension provides, it will be publicly available as "import moveai.assets". [[python.module]] name = "moveai.assets.extension" [python.pipapi] # # List of additional directories with pip achives to be passed into pip using ``--find-links`` arg. # # Relative paths are relative to extension root. Tokens can be used. # archiveDirs = ["path/to/pip_archive"] # Commands passed to pip install before extension gets enabled. Can also contain flags, like `--upgrade`, `--no--index`, etc. # Refer to: https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format requirements = [ "opencv-python" ] # Allow going to online index if package can't be found locally (not recommended) use_online_index = true # Use this to specify a list of additional repositories if your pip package is hosted somewhere other # than the default repo(s) configured in pip. Will pass these to pip with "--extra-index-url" argument # repositories = ["https://my.additional.pip_repo.com/"] # [settings]
1,733
TOML
31.716981
125
0.735141
cadop/siborg-simulate-walk/README.md
# Python Extension [siborg.simulate.walk] This is a simple extension that lets users select characters and assign them a goal xform to follow (while doing a walk animation). It was initially done as a test, and the code may be useful to others. Since this was created a few days after the Beta release of the people plugin, its very likely to break soon. Please open an issue or make a PR on github if you find problems in the future. ![Preview](preview.png)
466
Markdown
50.888883
262
0.770386
cadop/siborg-simulate-walk/exts/siborg.simulate.walk/siborg/simulate/walk/cust_go.py
from omni.anim.people.scripts.commands.goto import GoTo class CustomGo(GoTo): def __init__(self, character, command, navigation_manager): super().__init__(character, command, navigation_manager) def update_path(self, new_command): ''' update the path on the goto command by generating a new one check that the current position was broadcast Note: This is NOT related to the navigation_manager update_path ''' self.navigation_manager.generate_goto_path(new_command)
533
Python
34.599998
71
0.681051
cadop/siborg-simulate-walk/exts/siborg.simulate.walk/siborg/simulate/walk/extension.py
import omni.ext import omni.ui as ui import omni.usd import os import omni.kit.commands from pxr import Sdf class SiborgSimulateWalkExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[siborg.simulate.walk] siborg simulate walk startup") self._window = ui.Window("Walk to Goal Behavior", width=300, height=100) self.stage = omni.usd.get_context().get_stage() with self._window.frame: with ui.VStack(): def add_walk_to_prim(): # Could also Create/Get/Set Attribute # self._person_prim.SetCustomDataByKey("target_goal", (0,0,0,0)) # Get the selections from the stage self._usd_context = omni.usd.get_context() self._selection = self._usd_context.get_selection() selected_paths = self._selection.get_selected_prim_paths() # Get them as prims prims = [self.stage.GetPrimAtPath(x) for x in selected_paths] dir_path = os.path.dirname(os.path.realpath(__file__)) behavior_script = os.path.join(dir_path, 'cust_behavior.py') for prim_path in selected_paths: add_animation_graph(prim_path) for prim in prims: add_behavior_script(prim, behavior_script) ui.Button("Add Walk", clicked_fn=add_walk_to_prim) def on_shutdown(self): print("[siborg.simulate.walk] siborg simulate walk shutdown") def add_animation_graph(prim_path): omni.kit.commands.execute('ApplyAnimationGraphAPICommand', paths=[Sdf.Path(prim_path)], animation_graph_path=Sdf.Path('/World/Biped_Setup/CharacterAnimation/AnimationGraph')) def add_behavior_script(prim, script): omni.kit.commands.execute('ApplyScriptingAPICommand', paths=[Sdf.Path(prim.GetPath())]) omni.kit.commands.execute('RefreshScriptingPropertyWindowCommand') attr = prim.GetAttribute("omni:scripting:scripts") val = attr.Get() if val: scripts = list(val) scripts.append(scripts) attr.Set(scripts) else: attr.Set([script])
2,250
Python
34.730158
94
0.599556
cadop/siborg-simulate-walk/exts/siborg.simulate.walk/siborg/simulate/walk/cust_behavior.py
from __future__ import annotations from pxr import Gf, UsdGeom, Usd, Sdf import omni.usd from omni.anim.people.scripts.character_behavior import CharacterBehavior from .cust_go import CustomGo as GoTo class CustomBehavior(CharacterBehavior): def __init__(self, prim_path: Sdf.Path): super().__init__(prim_path) def on_init(self): super().on_init() # This could be simply in renew_character_state, but this is easier to follow self.assign_goal() def assign_goal(self): # # Create an xform newpath = self.prim_path.AppendPath('Goal') # check if there is already a Goal (and if there is, # whoever added better have a transform) prim: Usd.Prim = self.stage.GetPrimAtPath(newpath) # Need to set all of these to make transforms work can't just use translate if not prim: xform_faster = UsdGeom.Xform.Define(self.stage, newpath) prim_trans = xform_faster.AddTranslateOp() prim_trans.Set(Gf.Vec3f(0.0, 0.0, 0.0)) prim_rot = xform_faster.AddOrientOp() prim_rot.Set(Gf.Quatf(0.0, 0.0, 0.0, 1.0)) prim_scale = xform_faster.AddScaleOp() prim_scale.Set(Gf.Vec3f(1.0, 1.0, 1.0)) self.goal_prim = self.stage.GetPrimAtPath(newpath) def on_play(self): # Make sure we have a goal (incase someone deleted it after creating character) super().on_play() self.assign_goal() def get_command(self, command): if command[0] == "GoTo": return GoTo(self.character, command, self.navigation_manager) # We don't really need this right now, but just a reminder of other possible commands return super().get_command(command) # def read_commands_from_file(self): # ''' Overwritten method to skip the file reading part ''' # # The command parser creates this format, so we just use it for now # return [['GoTo', '0', '0', '0', '0']] def get_simulation_commands(self): ''' Overwritten method to skip the file reading part ''' # The command parser creates this format, so we just use it for now return [['GoTo', '0', '0', '0', '0']] def on_update(self, current_time: float, delta_time: float): """ Called on every update. Initializes character at start, publishes character positions and executes character commands. :param float current_time: current time in seconds. :param float delta_time: time elapsed since last update. """ if self.character is None: if not self.init_character(): return # Make sure we have an active goal if not self.goal_prim.IsValid(): # This should only happen if goal prim was deleted during Play # The existing goal will still be in memory and animation continues there return if self.avoidanceOn: self.navigation_manager.publish_character_positions(delta_time, 0.5) if self.commands: if self.current_command: # First get where the character currently is # Get the current goal attribute goal_position = omni.usd.get_world_transform_matrix(self.goal_prim).ExtractTranslation() new_goal = (goal_position[0], goal_position[1], goal_position[2], 0) # Two options to try `query_navmesh_path` and `validate_navmesh_point` # For now, we pre-query the path to check if it will work, and if not, just skip trying to update cur_pos = self.navigation_manager.character_manager.get_character_current_pos(self.prim_path.pathString) test_path = self.navigation_manager.navigation_interface.query_navmesh_path(cur_pos, new_goal) # If there is no path, don't go there if test_path is None: return self.current_command.update_path(new_goal) self.execute_command(self.commands, delta_time)
4,105
Python
37.018518
120
0.61827
cadop/ov_dhart/README.md
# DHART for Omniverse If you have feature requests or need help with generating graphs, running algorithms, etc. please visit the main repo https://github.com/cadop/dhart. This repo is only for the omniverse extension part.
229
Markdown
37.333327
203
0.781659
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/usd_utils.py
import numpy as np from pxr import UsdGeom, Gf, Usd def traverse_instanced_children(prim): """Get every Prim child beneath `prim`, even if `prim` is instanced. Important: If `prim` is instanced, any child that this function yields will be an instance proxy. Args: prim (`pxr.Usd.Prim`): Some Prim to check for children. Yields: `pxr.Usd.Prim`: The children of `prim`. """ for child in prim.GetFilteredChildren(Usd.TraverseInstanceProxies()): yield child for subchild in traverse_instanced_children(child): yield subchild def parent_and_children_as_mesh(parent_prim): if parent_prim.IsA(UsdGeom.Mesh): points, faces = get_mesh(parent_prim) return points, faces found_meshes = [] for x in traverse_instanced_children(parent_prim): if x.IsA(UsdGeom.Mesh): found_meshes.append(x) # children = parent_prim.GetAllChildren() # children = [child.GetPrimPath() for child in children] # points, faces = get_mesh(children) points, faces = get_mesh(found_meshes) return points, faces def children_as_mesh(stage, parent_prim): children = parent_prim.GetAllChildren() children = [child.GetPrimPath() for child in children] points, faces = get_mesh(stage, children) return points, faces def get_all_stage_mesh(stage): found_meshes = [] # Traverse the scene graph and print the paths of prims, including instance proxies for x in Usd.PrimRange(stage.GetPseudoRoot(), Usd.TraverseInstanceProxies()): if x.IsA(UsdGeom.Mesh): found_meshes.append(x) points, faces = get_mesh(found_meshes) return points, faces def get_mesh(objs): points, faces = [],[] for obj in objs: f_offset = len(points) f, p = meshconvert(obj) if len(p) == 0: continue points.extend(p) faces.extend(f+f_offset) return points, faces def meshconvert(prim): # Create an XformCache object to efficiently compute world transforms xform_cache = UsdGeom.XformCache() # Get the mesh schema mesh = UsdGeom.Mesh(prim) # Get verts and triangles tris = mesh.GetFaceVertexIndicesAttr().Get() if not tris: return [], [] tris_cnt = mesh.GetFaceVertexCountsAttr().Get() # Get the vertices in local space points_attr = mesh.GetPointsAttr() local_points = points_attr.Get() # Convert the VtVec3fArray to a NumPy array points_np = np.array(local_points, dtype=np.float64) # Add a fourth component (with value 1.0) to make the points homogeneous num_points = len(local_points) ones = np.ones((num_points, 1), dtype=np.float64) points_np = np.hstack((points_np, ones)) # Compute the world transform for this prim world_transform = xform_cache.GetLocalToWorldTransform(prim) # Convert the GfMatrix to a NumPy array matrix_np = np.array(world_transform, dtype=np.float64).reshape((4, 4)) # Transform all vertices to world space using matrix multiplication world_points = np.dot(points_np, matrix_np) tri_list = convert_to_triangle_mesh(tris, tris_cnt) # tri_list = tri_list.flatten() world_points = world_points[:,:3] return tri_list, world_points def convert_to_triangle_mesh(FaceVertexIndices, FaceVertexCounts): """ Convert a list of vertices and a list of faces into a triangle mesh. A list of triangle faces, where each face is a list of indices of the vertices that form the face. """ # Parse the face vertex indices into individual face lists based on the face vertex counts. faces = [] start = 0 for count in FaceVertexCounts: end = start + count face = FaceVertexIndices[start:end] faces.append(face) start = end # Convert all faces to triangles triangle_faces = [] for face in faces: if len(face) < 3: newface = [] # Invalid face elif len(face) == 3: newface = [face] # Already a triangle else: # Fan triangulation: pick the first vertex and connect it to all other vertices v0 = face[0] newface = [[v0, face[i], face[i + 1]] for i in range(1, len(face) - 1)] triangle_faces.extend(newface) return np.array(triangle_faces)
4,394
Python
28.3
102
0.643605
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/extension.py
import omni.ext import omni.ui as ui from . import core from . import render from . import window # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class DhartExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[ov_dhart] DHART is startingup") # Initialize DHART class and event subscription self.initialize() # Setup GUI self.show_window() def show_window(self): self._window = window.populate_window(self.DI, render) def initialize(self): ''' Initialization and any setup needed ''' self.DI = core.DhartInterface() # ### Subscribe to events # self._usd_context = omni.usd.get_context() # self._selection = self._usd_context.get_selection() # self._events = self._usd_context.get_stage_event_stream() # self._stage_event_sub = self._events.create_subscription_to_pop(self._on_stage_event, # name='my stage update' # ) def _on_stage_event(self, event): ''' subscription to an event on the stage ''' # When a selection is changed, call our function if event.type == int(omni.usd.StageEventType.SELECTION_CHANGED): self._on_selection_changed() def _on_selection_changed(self): ''' where we do stuff on the event that notified us a stage selection changed ''' # Gets the selected prim paths selection = self._selection.get_selected_prim_paths() stage = self._usd_context.get_stage() # Empty list to be filled of selection prims prim_selections = [] # Check if there is a valid selection and stage if selection and stage: # Make a list of the selection prims for selected_path in selection: prim = stage.GetPrimAtPath(selected_path) prim_selections.append(prim) if prim_selections: core.DhartInterface.active_selection = prim_selections print(f'Set DI to {prim_selections}') def on_shutdown(self): print("[ov_dhart] DHART is shutting down")
2,650
Python
36.871428
119
0.604906
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/__init__.py
from .extension import * import os def package_dir(): ''' Helper to get directory of this pacckage ''' return os.path.dirname(os.path.realpath(__file__))
163
Python
22.428568
54
0.680982
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/core.py
from pxr import Usd, UsdGeom, UsdPhysics, UsdShade, Sdf, Gf, Tf, PhysxSchema, Vt try: from omni.usd.utils import get_world_transform_matrix except: from omni.usd import get_world_transform_matrix import omni.physx import numpy as np from scipy.interpolate import splprep, splev import dhart import dhart.geometry import dhart.raytracer import dhart.graphgenerator from dhart import pathfinding from dhart.visibilitygraph import VisibilityGraphAllToAll from dhart.visibilitygraph import VisibilityGraphUndirectedAllToAll from dhart.visibilitygraph import VisibilityGraphGroupToGroup from dhart.spatialstructures.cost_algorithms import CalculateEnergyExpenditure, CostAlgorithmKeys from dhart.spatialstructures import Graph, Direction from . import usd_utils import time class DhartInterface(): # Global class variable active_selection = None def __init__(self): # BVH for DHART self.bvh = None self.vis_bvh = None # Separate BVH for storing opaque objects self.VG = None self.VG_group = None self.graph = None # Selected Starting Location self.start_prim = None self.node_size = 15 self.path_size = 20 # Set 0 start self.start_point = [0,0,0] # Set max nodes self.max_nodes = 400 self.grid_spacing = [20,20] self.height = 80 self.upstep = 30 self.downstep = 30 self.upslope = 20 self.downslope = 20 self.targ_vis_path = '/World/TargetNodes' self.path_start_path = '/World/StartPath' self.path_end_path = '/World/EndPath' # Track self.gui_start = [] self.gui_end = [] def set_as_start(self): ''' Sets the DhartInterface.active_selection to the start prim ''' self.start_point = self.get_selected_as_point() self.gui_start[0].model.set_value(self.start_point[0]) self.gui_start[1].model.set_value(self.start_point[1]) self.gui_start[2].model.set_value(self.start_point[2]) def set_as_end(self): ''' Sets the DhartInterface.active_selection to the end prim ''' self.end_point = self.get_selected_as_point() self.gui_end[0].model.set_value(self.end_point[0]) self.gui_end[1].model.set_value(self.end_point[1]) self.gui_end[2].model.set_value(self.end_point[2]) def get_selected_as_point(self): ''' Sets the DhartInterface.active_selection to the start prim ''' # Get the current active selection of the stage self.stage = omni.usd.get_context().get_stage() # Get the selections from the stage self._usd_context = omni.usd.get_context() self._selection = self._usd_context.get_selection() selected_paths = self._selection.get_selected_prim_paths() # Expects a list, so take first selection prim = [self.stage.GetPrimAtPath(x) for x in selected_paths][0] # try: # selected_point = get_world_transform_matrix(prim).ExtractTranslation() # except: # selected_point = omni.usd.get_world_transform_matrix(prim).ExtractTranslation() selected_point = get_world_transform_matrix(prim).ExtractTranslation() return selected_point def modify_start(self,x=None,y=None,z=None): if x: self.start_point[0] = x if y: self.start_point[1] = y if z: self.start_point[2] = z print(f'START IS: {self.start_point}') def modify_end(self,x=None,y=None,z=None): if x: self.end_point[0] = x if y: self.end_point[1] = y if z: self.end_point[2] = z print(f'END IS: {self.end_point}') def set_as_bvh(self): # Set the graph bvh self.set_bvh(vis=False) def set_as_vis_bvh(self): # Set the visibility-based bvh self.set_bvh(vis=True) def set_bvh(self, vis=False): # Get the current active selection of the stage self.stage = omni.usd.get_context().get_stage() # Get the selections from the stage self._usd_context = omni.usd.get_context() self._selection = self._usd_context.get_selection() selected_paths = self._selection.get_selected_prim_paths() # Expects a list, so take first selection prims = [self.stage.GetPrimAtPath(x) for x in selected_paths] # Record if a BVH was generated made_bvh = False for prim in prims: MI = self.convert_to_mesh(prim) if MI is None: print("BVH FAILED") continue if not made_bvh: if vis: self.vis_bvh = dhart.raytracer.EmbreeBVH(MI) print(f'VIS BVH is: {self.vis_bvh}') else: self.bvh = dhart.raytracer.EmbreeBVH(MI) # self.bvh = dhart.raytracer.EmbreeBVH(MI, use_precise=True) print(f'BVH is: {self.bvh}') made_bvh = True else: if vis: self.vis_bvh.AddMesh(MI) print('Added to VIS BVH') else: self.bvh.AddMesh(MI) print('Added to BVH') # for prim in prims: # prim_type = prim.GetTypeName() # # Only add if its a mesh # if prim_type == 'Mesh': # MI = self.convert_to_mesh_old(prim) # # MI = self.convert_to_mesh(prim) # if MI is None: # print("BVH FAILED") # continue # if not made_bvh: # if vis: # self.vis_bvh = dhart.raytracer.EmbreeBVH(MI) # print(f'VIS BVH is: {self.vis_bvh}') # else: # self.bvh = dhart.raytracer.EmbreeBVH(MI) # print(f'BVH is: {self.bvh}') # made_bvh = True # else: # if vis: # self.vis_bvh.AddMesh(MI) # print('Added to VIS BVH') # else: # self.bvh.AddMesh(MI) # print('Added to BVH') def set_max_nodes(self, m): self.max_nodes = m def set_spacing(self, xy): self.grid_spacing = [xy,xy] def set_height(self, z): self.height = z def set_upstep(self, u): self.upstep = u def set_upslope(self, us): self.upslope = us def set_downstep(self, d): self.downstep = d def set_downslope(self, ds): self.downslope = ds def set_nodesize(self, s): self.node_size = s def set_pathsize(self, s): self.path_size = s def generate_graph(self): ''' use dhart to generate a graph ''' if not self.bvh: print("No BVH") return self.scene_setup() spacing = (self.grid_spacing[0], self.grid_spacing[1], self.height) max_nodes = self.max_nodes self.graph = dhart.graphgenerator.GenerateGraph(self.bvh, self.start_point, spacing, max_nodes, up_step = self.upstep, down_step = self.downstep, up_slope = self.upslope, down_slope=self.downslope, cores=-1) if self.graph: self.graph.CompressToCSR() self.nodes = self.graph.getNodes().array[['x','y','z']] print(f'Got {len(self.nodes)} Nodes') else: print("FAILED") return self.create_geompoints(self.nodes.tolist()) def get_to_nodes(self): parent_prim = self.stage.GetPrimAtPath(self.targ_vis_path) children = parent_prim.GetAllChildren() b_nodes = [] for child in children: t = get_world_transform_matrix(child).ExtractTranslation() b_nodes.append(np.asarray(t)) return b_nodes def visibility_graph_groups(self): start_t = time.time() nodes_a = self.nodes # Define points as the graph nodes nodes_b = self.get_to_nodes() self.VG_group = VisibilityGraphGroupToGroup(self.vis_bvh, nodes_a, nodes_b, self.height) # Calculate the visibility graph if self.VG_group is None: print('VG Failed') return # visibility_graph = VG.CompressToCSR() # Convert to a CSR (matrix) scores = self.VG_group.AggregateEdgeCosts(2, True) # Aggregate the visibility graph scores scores = scores[:-len(nodes_b)] # remove b nodes print(f'VG group time = {time.time()-start_t}') # add scores to node attributes attr = "vg_group" ids = self.graph.getNodes().array['id'] str_scores = [str(1.0/(x+0.01)) for x in scores] # we need scores to be a string for dhart. was to encode any type of node data self.graph.add_node_attributes(attr, ids, str_scores) self.score_vg(scores) def visibility_graph(self): start_t = time.time() points = self.graph.getNodes() # Define points as the graph nodes self.VG = VisibilityGraphUndirectedAllToAll(self.vis_bvh, points, self.height) # Calculate the visibility graph # VG = VisibilityGraphAllToAll(self.bvh, points, self.height) # Calculate the visibility graph scores = self.VG.AggregateEdgeCosts(2, True) # Aggregate the visibility graph scores print(f'VG time = {time.time()-start_t}') # add scores to node attributes attr = "vg_all" ids = self.graph.getNodes().array['id'] str_scores = [str(x) for x in scores] # we need scores to be a string for dhart. was to encode any type of node data self.graph.add_node_attributes(attr, ids, str_scores) self.score_vg(scores) def reset_endpoints(self): s_prim = self.stage.GetPrimAtPath(self.path_start_path) self.start_point = get_world_transform_matrix(s_prim).ExtractTranslation() e_prim = self.stage.GetPrimAtPath(self.path_end_path) self.end_point = get_world_transform_matrix(e_prim).ExtractTranslation() def get_path(self): ''' Get the shortest path by distance ''' # DHART requires passing the desired nodes (not the positions) # So, we will allow users to select an arbitrary position and get the closest node ids to it #### !!!! This was screwing up the graph generation because the start point was a bunch of decimals self.reset_endpoints() self.start_point = [int(x) for x in self.start_point] p_desired = np.array([self.start_point, self.end_point]) closest_nodes = self.graph.get_closest_nodes(p_desired) # nodes = self.graph.getNodes() # matching_items = nodes[np.isin(nodes['id'], closest_nodes)] # print(f'Start/End Nodes {matching_items}') # self.show_nodes(matching_items[['x','y','z']].tolist()) path = pathfinding.DijkstraShortestPath(self.graph, closest_nodes[0], closest_nodes[1]) # print(f'Path Nodes: {path}') if path is None: print("No PATH Found") return path_xyz = np.take(self.nodes[['x','y','z']], path['id']) print(len(path_xyz.tolist())) path_list = path_xyz.tolist() path_nodes = self.smooth_path(path_list) self.create_curve(path_nodes) # self.show_nodes(path_xyz.tolist()) def smooth_path(self, input_points): ''' Interpolate the path and smooth the verts to be shown ''' def interpolate_curve(points, num_points=100): """Interpolate the curve to produce a denser set of points.""" tck, u = splprep([[p[0] for p in points], [p[1] for p in points], [p[2] for p in points]], s=0) u_new = np.linspace(0, 1, num_points) x_new, y_new, z_new = splev(u_new, tck) return list(zip(x_new, y_new, z_new)) # Re-define the moving_average function as provided by you def moving_average(points, window_size=3): """Smoothen the curve using a moving average.""" if window_size < 3: return points # Too small window, just return original points extended_points = points[:window_size-1] + points + points[-(window_size-1):] smoothed_points = [] for i in range(len(points)): window = extended_points[i:i+window_size] avg_x = sum(pt[0] for pt in window) / window_size avg_y = sum(pt[1] for pt in window) / window_size avg_z = sum(pt[2] for pt in window) / window_size smoothed_points.append((avg_x, avg_y, avg_z)) return smoothed_points # Smooth the original input points smoothed_points = moving_average(input_points, window_size=4) # Interpolate the smoothed curve to produce a denser set of points interpolated_points = interpolate_curve(smoothed_points, num_points=500) # Smooth the denser set of points smoothed_interpolated_points = moving_average(interpolated_points, window_size=6) return smoothed_interpolated_points def show_nodes(self, nodes): stage = omni.usd.get_context().get_stage() prim = UsdGeom.Points.Define(stage, "/World/Graph/Closest") prim.CreatePointsAttr(nodes) width_attr = prim.CreateWidthsAttr() width_attr.Set([self.node_size*2]) # prim.CreateDisplayColorAttr() # For RTX renderers, this only works for UsdGeom.Tokens.constant color_primvar = prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.constant) color_primvar.Set([(0,0,1)]) def get_energy_path(self): # Get the key energy_cost_key = CostAlgorithmKeys.ENERGY_EXPENDITURE CalculateEnergyExpenditure(self.graph) self.reset_endpoints() p_desired = np.array([self.start_point, self.end_point]) closest_nodes = self.graph.get_closest_nodes(p_desired) # Call the shortest path again, with the optional cost type energy_path = pathfinding.DijkstraShortestPath(self.graph, closest_nodes[0], closest_nodes[1], energy_cost_key) path_xyz = np.take(self.nodes[['x','y','z']], energy_path['id']) self.create_curve(path_xyz.tolist()) # As the cost array is numpy, simple operations to sum the total cost can be calculated path_sum = np.sum(energy_path['cost_to_next']) print('Total path cost: ', path_sum) def get_visibility_path(self): # make sure visibility graph was made # get node ids and attrs of vg self.reset_endpoints() # assign new node attrs for visibility csr = self.graph.CompressToCSR() # Get attribute scores from the graph # out_attrs = self.graph.get_node_attributes(attr) self.graph.attrs_to_costs("vg_group", "vg_group_cost", Direction.INCOMING) # self.graph.GetEdgeCost(1, 2, "vg_group_cost") # get custom path based on vg p_desired = np.array([self.start_point, self.end_point]) closest_nodes = self.graph.get_closest_nodes(p_desired) # Call the shortest path again, with the optional cost type visibility_path = pathfinding.DijkstraShortestPath(self.graph, closest_nodes[0], closest_nodes[1], 'vg_group_cost') path_xyz = np.take(self.nodes[['x','y','z']], visibility_path['id']) self.create_curve(path_xyz.tolist()) def get_vg_path(self): # make sure visibility graph was made # get node ids and attrs of vg self.reset_endpoints() # assign new node attrs for visibility csr = self.graph.CompressToCSR() # Get attribute scores from the graph # out_attrs = self.graph.get_node_attributes(attr) self.graph.attrs_to_costs("vg_all", "vg_all_cost", Direction.INCOMING) # self.graph.GetEdgeCost(1, 2, "vg_group_cost") # get custom path based on vg p_desired = np.array([self.start_point, self.end_point]) closest_nodes = self.graph.get_closest_nodes(p_desired) # Call the shortest path again, with the optional cost type visibility_path = DijkstraShortestPath(self.graph, closest_nodes[0], closest_nodes[1], 'vg_all_cost') path_xyz = np.take(self.nodes[['x','y','z']], visibility_path['id']) self.create_curve(path_xyz.tolist()) def scene_setup(self): # Get stage. self.stage = omni.usd.get_context().get_stage() def score_vg(self, scores): scores = np.asarray(scores) colors = calc_colors(scores) self.create_colored_geompoints(self.nodes.tolist(), colors) def create_colored_geompoints(self, nodes, colors=None): stage = omni.usd.get_context().get_stage() prim = UsdGeom.Points.Define(stage, "/World/Graph/VGPoints") prim.CreatePointsAttr(nodes) width_attr = prim.CreateWidthsAttr() width_attr.Set([self.node_size]) color_primvar = prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.vertex) color_primvar.Set(colors) def create_geompoints(self, nodes): stage = omni.usd.get_context().get_stage() prim = UsdGeom.Points.Define(stage, "/World/Graph/Points") prim.CreatePointsAttr(nodes) width_attr = prim.CreateWidthsAttr() width_attr.Set([self.node_size]) color_primvar = prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.constant) color_primvar.Set([(1,0,0)]) def create_curve(self, nodes): '''Create and draw a BasisCurve on the stage following the nodes''' stage = omni.usd.get_context().get_stage() prim = UsdGeom.BasisCurves.Define(stage, "/World/Path") prim.CreatePointsAttr(nodes) # Set the number of curve verts to be the same as the number of points we have curve_verts = prim.CreateCurveVertexCountsAttr() curve_verts.Set([len(nodes)]) # Set the curve type to linear so that each node is connected to the next type_attr = prim.CreateTypeAttr() type_attr.Set('linear') type_attr = prim.GetTypeAttr().Get() # Set the width of the curve width_attr = prim.CreateWidthsAttr() # width_attr = prim.CreateWidthsAttr(UsdGeom.Tokens.varying) width_attr.Set([self.path_size for x in range(len(nodes))]) color_primvar = prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.constant) color_primvar.Set([(0,1,0)]) return def convert_to_mesh(self,prim): vert_list, tri_list = usd_utils.parent_and_children_as_mesh(prim) # vert_list, tri_list = usd_utils.get_mesh([prim]) tri_list = np.array(tri_list).flatten() vert_list = np.array(vert_list).flatten() try: MI = dhart.geometry.MeshInfo(tri_list, vert_list, "testmesh", 0) return MI except: print(prim) return None def convert_to_mesh_old(self, prim): ''' convert a prim to BVH ''' # Get mesh name (prim name) m = UsdGeom.Mesh(prim) # Get verts and triangles tris = m.GetFaceVertexIndicesAttr().Get() tris_cnt = m.GetFaceVertexCountsAttr().Get() verts = m.GetPointsAttr().Get() tri_list = np.array(tris) vert_list = np.array(verts) xform = UsdGeom.Xformable(prim) time = Usd.TimeCode.Default() # The time at which we compute the bounding box world_transform: Gf.Matrix4d = xform.ComputeLocalToWorldTransform(time) translation: Gf.Vec3d = world_transform.ExtractTranslation() rotation: Gf.Rotation = world_transform.ExtractRotationMatrix() scale: Gf.Vec3d = Gf.Vec3d(*(v.GetLength() for v in world_transform.ExtractRotationMatrix())) vert_rotated = np.dot(vert_list, rotation) # Rotate points vert_translated = vert_rotated + translation vert_scaled = vert_translated vert_scaled[:,0] *= scale[0] vert_scaled[:,1] *= scale[1] vert_scaled[:,2] *= scale[2] vert_list = vert_scaled vert_list = vert_translated.flatten() # Check if the face counts are 4, if so, reshape and turn to triangles if tris_cnt[0] == 4: quad_list = tri_list.reshape(-1,4) tri_list = quad_to_tri(quad_list) tri_list = tri_list.flatten() try: MI = dhart.geometry.MeshInfo(tri_list, vert_list, "testmesh", 0) return MI except: print(prim) return None def quad_to_tri(a): idx = np.flatnonzero(a[:,-1] == 0) out0 = np.empty((a.shape[0],2,3),dtype=a.dtype) out0[:,0,1:] = a[:,1:-1] out0[:,1,1:] = a[:,2:] out0[...,0] = a[:,0,None] out0.shape = (-1,3) mask = np.ones(out0.shape[0],dtype=bool) mask[idx*2+1] = 0 return out0[mask] def calc_colors(scores): filtered_scores = [score for score in scores if score>=0] max_v = max(filtered_scores) min_v = min(filtered_scores) print('maxmin') print(max_v) print(min_v) print('') if (max_v == 0): print("Max is zero!") exit() elif(max_v - min_v == 0): print("All values are the same!") return [colorbar(1.0)] * len(scores) return [ colorbar((point-min_v)/(max_v-min_v)) if point >= 0 else None for point in scores ] def colorbar(val): r = min(max(0, 1.5-abs(1-4*(val-0.5))),1) g = min(max(0, 1.5-abs(1-4*(val-0.25))),1) b = min(max(0, 1.5-abs(1-4*val)),1) return np.asarray([r,g,b], dtype=float)
22,274
Python
34.07874
135
0.582203
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/render.py
from pxr import Sdf, Usd, UsdGeom import omni def create_perspective_camera(stage: Usd.Stage, prim_path: str="/World/MyPerspCam") -> UsdGeom.Camera: camera_path = Sdf.Path(prim_path) usd_camera: UsdGeom.Camera = UsdGeom.Camera.Define(stage, camera_path) usd_camera.CreateProjectionAttr().Set(UsdGeom.Tokens.perspective) return usd_camera def assign_camera(): ''' insert actiongraph to stage (if not already there) and make a camera ''' stage = omni.usd.get_context().get_stage() cam_path = "/World/FlyCam" camera = create_perspective_camera(stage, cam_path)
596
Python
30.421051
102
0.713087
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/ext_with_layout.py
import os import omni.ext import omni.ui as ui from omni.kit.quicklayout import QuickLayout from . import core # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class DhartExtension2(): # class DhartExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. MENU_PATH = "Analysis/DHART" _instance = None def on_startup(self, ext_id): print("[omni.dhart] MyExtension startup") # Add a window menu item so we can easily find the package self._window = None try: self._menu = omni.kit.ui.get_editor_menu().add_item( DhartExtension.MENU_PATH, self.show_window, toggle=True, value=True ) except Exception as e: self._menu = None self.initialize() ### Subscribe to events self._usd_context = omni.usd.get_context() self._selection = self._usd_context.get_selection() self._events = self._usd_context.get_stage_event_stream() self._stage_event_sub = self._events.create_subscription_to_pop(self._on_stage_event, name='my stage update' ) DhartExtension._instance = self def _visiblity_changed_fn(self, visible): if self._menu: omni.kit.ui.get_editor_menu().set_value(DhartExtension.MENU_PATH, visible) def show_window(self, menu, value): print('Passed Class instantiation') if value: # self._clean_up_window() self.initialize() self._window = ui.Window("DHART", width=300, height=300) with self._window.frame: with ui.VStack(): ui.Label("Some Label") ui.Button("Generate BVH", clicked_fn=lambda: self.DI.convert_mesh()) ui.Button("Generate Graph", clicked_fn=lambda: self.DI.graph()) with ui.HStack(): ui.Label("timesteps: ") dt = ui.IntField(height=20) dt.model.set_value(60) dt.model.add_value_changed_fn(lambda m: self.Sim.set_sim_steps(m.get_value_as_int())) # Just for fun, does it automatically with ui.HStack(): # with ui.HStack(width=100): workspace_filename = omni.dhart.package_dir() workspace_filename = os.path.join(workspace_filename, 'layout.json') print(workspace_filename) ui.Button("Save Layout", clicked_fn=lambda: QuickLayout.save_file(workspace_filename)) ui.Button("Load Layout", clicked_fn=lambda: QuickLayout.load_file(workspace_filename)) # Load workspace layout workspace_filename = omni.dhart.package_dir() workspace_filename = os.path.join(workspace_filename, 'layout.json') QuickLayout.load_file(workspace_filename) if self._menu: print("Setting menu") omni.kit.ui.get_editor_menu().set_value(DhartExtension.MENU_PATH, True) else: print("Couldn't setup ") def initialize(self): ''' Initializer for setting up the class reference to our other functions ''' self.DI = core.DhartInterface() def _on_stage_event(self, event): ''' subscription to an event on the stage ''' # When a selection is changed, call our function if event.type == int(omni.usd.StageEventType.SELECTION_CHANGED): self._on_selection_changed() def _on_selection_changed(self): ''' where we do stuff on the event that notified us a stage selection changed ''' # Gets the selected prim paths selection = self._selection.get_selected_prim_paths() stage = self._usd_context.get_stage() print(f'== selection changed with {len(selection)} items') prim_selections = [] # Empty list to be filled of selection prims # Check if there is a valid selection and stage if selection and stage: # Make a list of the selection prims for selected_path in selection: print(f' item {selected_path}:') prim = stage.GetPrimAtPath(selected_path) prim_type = prim.GetTypeName() print(prim_type) if prim_type == 'Mesh': prim_selections.append(prim) # Call our meshinfo conversion if we have data in selection if prim_selections: self.DI.set_active_mesh(prim_selections) def on_shutdown(self): print("[omni.dhart] MyExtension shutdown") # Save current scene layout workspace_filename = omni.dhart.package_dir() workspace_filename = os.path.join(workspace_filename, 'layout.json') QuickLayout.save_file(workspace_filename) try: self._window = None self._stage_event_sub = None # Set the dhart interface instance to None self.DI = None except: pass self._menu = None # Run some extra cleanup for the window self._clean_up_window() # set this class to none as the last thing we do so it can be newly instantiated later DhartExtension._instance = None # print('Cleaned up') def _clean_up_window(self): ''' make sure we cleanup the window ''' if self._window is not None: self._window.destroy() self._window = None
6,041
Python
38.233766
119
0.577057
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/ui.py
### Place object to set starting point ### Click to select start point ### Grid spacing, meshes to use, etc.
117
Python
9.727272
38
0.65812
cadop/ov_dhart/exts/siborg.analysis.dhart/siborg/analysis/dhart/window.py
import omni.ui as ui def populate_window(DI, render): _window = ui.Window("DHART", width=600, height=600) with _window.frame: with ui.VStack(): with ui.HStack(height=5): ui.Button("Set Start Position", clicked_fn=lambda: DI.set_as_start(), height=5) # start_pos = ui.MultiIntField(0,0,0) with ui.HStack(): x = ui.IntField(height=5) x.model.add_value_changed_fn(lambda m : DI.modify_start(x=m.get_value_as_int())) y = ui.IntField(height=5) y.model.add_value_changed_fn(lambda m : DI.modify_start(y=m.get_value_as_int())) z = ui.IntField(height=5) z.model.add_value_changed_fn(lambda m : DI.modify_start(z=m.get_value_as_int())) DI.gui_start = [x,y,z] with ui.HStack(height=5): ui.Button("Set End Position", clicked_fn=lambda: DI.set_as_end(),height=5) # end_pos = ui.MultiIntField(0,0,0) with ui.HStack(): x = ui.IntField(height=5) x.model.add_value_changed_fn(lambda m : DI.modify_end(x=m.get_value_as_int())) y = ui.IntField(height=5) y.model.add_value_changed_fn(lambda m : DI.modify_end(y=m.get_value_as_int())) z = ui.IntField(height=5) z.model.add_value_changed_fn(lambda m : DI.modify_end(z=m.get_value_as_int())) DI.gui_end = [x,y,z] with ui.HStack(height=5): ui.Label(" Max Nodes: ") max_nodes = ui.IntField(height=5) max_nodes.model.add_value_changed_fn(lambda m : DI.set_max_nodes(m.get_value_as_int())) max_nodes.model.set_value(DI.max_nodes) with ui.VStack(height=5): with ui.HStack(height=5): ui.Label(" Grid Spacing: ") grid_spacing = ui.FloatField(height=5) grid_spacing.model.add_value_changed_fn(lambda m : DI.set_spacing(m.get_value_as_float())) grid_spacing.model.set_value(DI.grid_spacing[0]) ui.Label(" Height Spacing: ") height_space = ui.FloatField(height=5) height_space.model.add_value_changed_fn(lambda m : DI.set_height(m.get_value_as_float())) height_space.model.set_value(DI.height) with ui.HStack(height=5): ui.Label(" Upstep: ") upstep = ui.FloatField(height=5) upstep.model.add_value_changed_fn(lambda m : DI.set_upstep(m.get_value_as_float())) upstep.model.set_value(DI.upstep) ui.Label(" Upslope: ") upslope = ui.FloatField(height=5) upslope.model.add_value_changed_fn(lambda m : DI.set_upslope(m.get_value_as_float())) upslope.model.set_value(DI.upslope) with ui.HStack(height=5): ui.Label(" Downstep: ") downstep = ui.FloatField(height=5) downstep.model.add_value_changed_fn(lambda m : DI.set_downstep(m.get_value_as_float())) downstep.model.set_value(DI.downstep) ui.Label(" Downslope: ") downslope = ui.FloatField(height=5) downslope.model.add_value_changed_fn(lambda m : DI.set_downslope(m.get_value_as_float())) downslope.model.set_value(DI.downslope) with ui.HStack(height=5): ui.Label(" Node Size: ") node_size = ui.FloatField(height=5) node_size.model.add_value_changed_fn(lambda m : DI.set_nodesize(m.get_value_as_float())) node_size.model.set_value(DI.node_size) ui.Label(" Path Size: ") path_size = ui.FloatField(height=5) path_size.model.add_value_changed_fn(lambda m : DI.set_pathsize(m.get_value_as_float())) path_size.model.set_value(DI.path_size) with ui.HStack(height=5): ui.Button("Set Mesh for BVH", clicked_fn=lambda: DI.set_as_bvh(), height=50) ui.Button("Set Mesh for Visibility BVH", clicked_fn=lambda: DI.set_as_vis_bvh(), height=50) ui.Button("Generate Graph", clicked_fn=lambda: DI.generate_graph(), height=50) with ui.HStack(height=5): ui.Button("Visibility Graph", clicked_fn=lambda: DI.visibility_graph(), height=50) ui.Button("Visibility Graph to Points", clicked_fn=lambda: DI.visibility_graph_groups(), height=50) with ui.HStack(height=5): ui.Button("Find Path", clicked_fn=lambda: DI.get_path(), height=50) ui.Button("Find Energy Path", clicked_fn=lambda: DI.get_energy_path(), height=50) ui.Button("Find Visibility Path", clicked_fn=lambda: DI.get_visibility_path(), height=50) ui.Button("Find VG Path", clicked_fn=lambda: DI.get_vg_path(), height=50) ui.Button("Set Camera on Path", clicked_fn=lambda: render.assign_camera(), height=30) return _window
5,499
Python
50.401869
115
0.519549
cadop/ov_dhart/exts/siborg.analysis.dhart/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "0.0.4" preview_image = "preview.jpg" # The title and description fields are primarily for displaying extension info in UI title = "DHART for Omniverse" description="An omniverse extension for DHART using the python API." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" icon = "icon.jpg" # URL of the extension source repository. repository = "github.com/cadop/ov_dhart" # One of categories for UI. category = "Analysis" # Keywords for the extension keywords = ["kit", "design","robotics"] # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} "omni.physx" = {} # Main python module this extension provides, it will be publicly available as "import SiBoRG.analysis.dhart". [[python.module]] name = "siborg.analysis.dhart" [python.pipapi] use_online_index = true # Use this to specify a list of additional repositories if your pip package is hosted somewhere other # than the default repo(s) configured in pip. Will pass these to pip with "--extra-index-url" argument # repositories = ["https://test.pypi.org/simple/"] requirements = ["dhart"]
1,196
TOML
26.837209
110
0.735786
cadop/curvedistribute/README.md
# curvedistribute
20
Markdown
5.999998
17
0.75
cadop/curvedistribute/exts/siborg.create.curvedistribute/siborg/create/curvedistribute/extension.py
import omni.ext import omni.ui as ui from omni.ui import color as cl from pxr import Usd, UsdGeom, Gf, Sdf import numpy as np from scipy.interpolate import BSpline import omni.usd from . import utils from .core import CurveManager, GeomCreator AXIS = ["+X", "+Y", "+Z", "-X", "-Y", "-Z"] # taken from motion path CURVES = ["Bezier", "BSpline"] # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class SiborgCreateCurvedistributeExtension(omni.ext.IExt): def __init__(self, delegate=None, **kwargs): super().__init__(**kwargs) # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[siborg.create.curvedistribute] siborg create curvedistribute startup") #Models self._source_prim_model = ui.SimpleStringModel() self._source_curve_model = ui.SimpleStringModel() self._use_instance_model = ui.SimpleBoolModel() #Defaults self._count = 0 self._source_prim_model.as_string = "" self._source_curve_model.as_string = "" self._sampling_resolution = 0 self._use_instance_model = False self._use_orient_model = False self._forward_axis = [1,0,0] self._curve_type = utils.CURVE.Bezier #Grab Prim in Stage on Selection def _get_prim(): self._source_prim_model.as_string = ", ".join(utils.get_selection()) def _get_curve(): self._source_curve_model.as_string = ", ".join(utils.get_selection()) self._window = ui.Window("Distribute Along Curve", width=280, height=390) with self._window.frame: with ui.VStack(height=10, width=260, spacing=10): select_button_style ={"Button":{"background_color": cl.cyan, "border_color": cl.white, "border_width": 2.0, "padding": 4, "margin_height": 1, "border_radius": 10, "margin_width":2}, "Button.Label":{"color": cl.black}, "Button:hovered":{"background_color": cl("#E5F1FB")}} ui.Spacer() ui.Label("Select Curve From Stage", tooltip="Select a BasisCurves type") with ui.HStack(): ui.StringField(height=2, model=self._source_curve_model) ui.Button("S", width=20, height=20, style=select_button_style, clicked_fn=_get_curve) ui.Spacer() ui.Label("Get Prims From Stage", width=65, tooltip="Select multiple prims to distribute in sequence") with ui.HStack(): ui.StringField(height=2, model=self._source_prim_model) ui.Button("S", width=20, height=20, style=select_button_style, clicked_fn=_get_prim) ui.Spacer() with ui.HStack(): ui.Label("Copies", tooltip="Number of copies to distribute. Endpoints are included in the count.") x = ui.IntField(height=5) x.model.add_value_changed_fn(lambda m, self=self: setattr(self, '_count', m.get_value_as_int())) x.model.set_value(3) ui.Label(" Subsamples", tooltip="A sampling parameter, don't touch if you don't understand") x = ui.IntField(height=5) x.model.add_value_changed_fn(lambda m, self=self: setattr(self, '_sampling_resolution', m.get_value_as_int())) x.model.set_value(1000) with ui.HStack(): # ui.StringField(height=2, model=self._source_prim_model) # ui.Button("S", width=20, height=20, style=select_button_style, clicked_fn=_get_prim) ui.Label(" Use instances ", width=65, tooltip="Select to use instances when copying a prim") instancer = ui.CheckBox(width=30) instancer.model.add_value_changed_fn(lambda m : setattr(self, '_use_instance_model', m.get_value_as_bool())) instancer.model.set_value(False) ui.Label(" Follow Orientation ", width=65) instancer = ui.CheckBox(width=30) instancer.model.add_value_changed_fn(lambda m : setattr(self, '_use_orient_model', m.get_value_as_bool())) instancer.model.set_value(False) with ui.HStack(): ui.Label("Spline Type", name="label", width=160, tooltip="Type of curve to use for interpolating control points") ui.Spacer(width=13) widget = ui.ComboBox(0, *CURVES).model widget.add_item_changed_fn(lambda m, i: setattr(self, '_curve_type', m.get_item_value_model().get_value_as_int() ) ) with ui.HStack(): ui.Label("Forward Axis", name="label", width=160, tooltip="Forward axis of target Object") ui.Spacer(width=13) widget = ui.ComboBox(0, *AXIS).model widget.add_item_changed_fn(lambda m, i: setattr(self, '_forward_axis', utils.index_to_axis(m.get_item_value_model().get_value_as_int()) ) ) with ui.VStack(): distribute_button_style = {"Button":{"background_color": cl.cyan, "border_color": cl.white, "border_width": 2.0, "padding": 10, "margin_height": 10, "border_radius": 10, "margin_width":5}, "Button.Label":{"color": cl.black}, "Button:hovered":{"background_color": cl("#E5F1FB")}} ui.Button("Distribute", clicked_fn=lambda: GeomCreator.duplicate(self._count, self._sampling_resolution, self._source_curve_model, self._source_prim_model, self._use_instance_model, self._use_orient_model, self._forward_axis, self._curve_type), style=distribute_button_style) def on_shutdown(self): print("[siborg.create.curvedistribute] siborg create curvedistribute shutdown")
8,448
Python
54.585526
136
0.4375
cadop/curvedistribute/exts/siborg.create.curvedistribute/siborg/create/curvedistribute/core.py
from pxr import Usd, UsdGeom, Gf, Sdf, Vt import numpy as np from scipy.interpolate import BSpline, CubicSpline import omni.usd from scipy.interpolate import splprep, splev from . import utils class CurveManager(): def __init__(self): pass @classmethod def cubic_bezier(cls, p0, p1, p2, p3, t): '''Calculate position on a cubic Bezier curve given four control points.''' return ((1 - t)**3) * p0 + 3 * ((1 - t)**2) * t * p1 + 3 * (1 - t) * t**2 * p2 + t**3 * p3 @classmethod def create_bezier(cls, control_points, sampling_resolution): '''Create a continuous cubic Bezier curve from a list of control points.''' curve_points = [] t = np.linspace(0, 1, sampling_resolution) # defaulted to 100 for i in range(0, len(control_points) - 3, 3): # Step strides 3, bezier continous shared handles with neighbors p0, p1, p2, p3 = control_points[i], control_points[i + 1], control_points[i + 2], control_points[i + 3] bezier_segment = np.array([CurveManager.cubic_bezier(p0, p1, p2, p3, t_) for t_ in t]) curve_points.extend(bezier_segment) return curve_points @classmethod def create_bspline(cls, control_points, sampling_resolution): '''Create a continuous cubic Bezier curve from a list of control points.''' # Create a BSpline object k = 3 # degree of the spline t = np.linspace(0, 1, len(control_points) - k + 1, endpoint=True) t = np.append(np.zeros(k), t) t = np.append(t, np.ones(k)) spl = BSpline(t, control_points, k) #### If not using evenly distributed points, can just return this # tnew = np.linspace(0, 1, num_points) # interpolated_points = spl(tnew) # return interpolated_points # Calculate the total arc length of the spline fine_t = np.linspace(0, 1, sampling_resolution) curve_points = spl(fine_t) return curve_points @classmethod def interpcurve(cls, stage, curve_path, num_points, sampling_resolution, curve_type=utils.CURVE.Bspline): '''Interpolates a bezier curve based on the input points on the usd''' # Get the curve prim and points that define it curveprim = stage.GetPrimAtPath(curve_path) points = curveprim.GetAttribute('points').Get() control_points = np.array(points) if sampling_resolution == 0: sampling_resolution = num_points if curve_type == utils.CURVE.Bezier: fine_points = CurveManager.create_bezier(control_points, sampling_resolution) elif curve_type == utils.CURVE.Bspline: fine_points = CurveManager.create_bspline(control_points, sampling_resolution) else: print("CURVE TYPE NOT IMPLEMENTED") return distances = np.sqrt(np.sum(np.diff(fine_points, axis=0)**2, axis=1)) total_length = np.sum(distances) # Calculate the length of each segment segment_length = total_length / (num_points - 1) # Create an array of target lengths target_lengths = np.array([i * segment_length for i in range(num_points)]) # Find the points at the target lengths spaced_points = [control_points[0]] # Start with the first control point point_dirs = [fine_points[1]- fine_points[0]] # Store the direction for each point current_length = 0 j = 1 # Start from the second target length for i in range(1, len(fine_points)): segment_length = distances[i-1] # Create strides to find when the next point should be accepted while j < num_points - 1 and current_length + segment_length >= target_lengths[j]: # Assign points point = fine_points[i] spaced_points.append(point) # Get directions direction = fine_points[i + 1] - point # Normalize the direction vector direction /= np.linalg.norm(direction) point_dirs.append(direction) j += 1 current_length += segment_length # End with the last control point spaced_points.append(control_points[-1]) last_dir = control_points[-1] - control_points[-2] last_dir /= np.linalg.norm(last_dir) point_dirs.append(last_dir) return np.array(spaced_points), np.array(point_dirs) @classmethod def copy_to_points(cls, stage, target_points, target_dirs, ref_prims, path_to, _forward_axis, make_instance=False, rand_order=False, use_orient=False, follow_curve=False): ''' path_to: str, prefix to the prim path. automatically appends Copy TODO: rand_order =True, use randomness to determine which prim to place TODO: follow_curve=True, set rotation axis to match curve (different than orientation when curve is 3d) ''' # Define a path for the new scope prim scope_name = 'Copies' scope_path = f"/World/{scope_name}" # Create the scope prim at the specified path scope_prim = UsdGeom.Scope.Define(stage, scope_path) # Get index of prims that are not None and keep track prim_set = [p for p in ref_prims if p != None] # print(prim_set) # print(f'isntance? : {make_instance}') new_prims = [] if make_instance: # Mark the original prims as instanceable if it has no children (like for a mesh) for prim_path in prim_set: # print(f'{prim_path=}') original_prim = stage.GetPrimAtPath(prim_path) # print(f'{original_prim=}') # If this prim is not wrapped in an xform if not original_prim.GetChildren(): ref_prim = original_prim ref_prim_suffix = str(ref_prim.GetPath()).split('/')[-1] # Create a new xform inside the scope primpath_to = f"{scope_prim.GetPath()}/{ref_prim_suffix}_Source" new_prim_xform_wrapper = stage.DefinePrim(primpath_to, "Xform") # Make this new xform instanceable new_prim_xform_wrapper.SetInstanceable(True) # print(f'xform wrap path {new_prim_xform_wrapper}') new_ref_prim = f"{new_prim_xform_wrapper.GetPath()}/{ref_prim_suffix}" # Duplicate the prim and put it under a new xform omni.usd.duplicate_prim(stage, ref_prim.GetPath(), new_ref_prim) xform = UsdGeom.Xformable(new_prim_xform_wrapper) # Get the list of xformOps xform_ops = xform.GetOrderedXformOps() # Check if translate op exists has_translate_op = any(op.GetOpType() == UsdGeom.XformOp.TypeTranslate for op in xform_ops) if not has_translate_op: xform.AddTranslateOp() has_Orient_op = any(op.GetOpType() == UsdGeom.XformOp.TypeOrient for op in xform_ops) if not has_Orient_op: xform.AddOrientOp() ref_prim= str(new_prim_xform_wrapper.GetPath()) original_prim = stage.GetPrimAtPath(ref_prim) # print("finished the xform wrapper") original_prim.SetInstanceable(True) new_prims.append(original_prim) prim_set = new_prims num_prims = len(prim_set) cur_idx = 0 # Place the prims for i, target_point in enumerate(target_points): ref_prim = prim_set[cur_idx] if make_instance: prim_type = ref_prim.GetTypeName() ref_prim_suffix = str(ref_prim.GetPath()).split('/')[-1] primpath_to = f"{scope_prim.GetPath()}/{ref_prim_suffix}_{i}" # Create a new prim and add a reference to the original prim instance_prim = stage.DefinePrim(primpath_to, prim_type) references = instance_prim.GetReferences() references.AddInternalReference(ref_prim.GetPath()) # Move prim to desired location cur_prim = instance_prim else: # Directly duplicate the prim ref_prim_suffix = str(ref_prim).split('/')[-1] primpath_to = f"{scope_prim.GetPath()}/{ref_prim_suffix}_{i}" omni.usd.duplicate_prim(stage, ref_prim, primpath_to) new_prim = stage.GetPrimAtPath(primpath_to) cur_prim = new_prim # Move prim to desired location target_pos = Gf.Vec3d(tuple(target_point)) cur_prim.GetAttribute('xformOp:translate').Set(target_pos) if use_orient: # Make the forward vector face desired direction target_direction = tuple(target_dirs[i]) # Ensure the target direction is a normalized Gf.Vec3f target_direction = Gf.Vec3f(target_direction).GetNormalized() target_direction = np.asarray(target_direction) # Forward vector, assuming -Z is forward; change as per your convention forward_vector = np.array(_forward_axis) # Compute the cross product (rotation axis) rotation_axis = np.cross(forward_vector, target_direction) # Compute the dot product and then the angle dot_product = np.dot(forward_vector, target_direction) rotation_angle = np.arccos(np.clip(dot_product, -1.0, 1.0)) # Clipping for numerical stability rot_ax = Vt.Vec3fArray.FromNumpy(rotation_axis)[0] # Create a rotation quaternion rotation_quat = Gf.Quatf(rotation_angle, rot_ax).GetNormalized() # @TODO fix stupid hack # Apply the rotation try: cur_prim.GetAttribute('xformOp:orient').Set(Gf.Quatd(rotation_quat)) except: cur_prim.GetAttribute('xformOp:orient').Set(Gf.Quatf(rotation_quat)) if cur_idx < num_prims-1: cur_idx +=1 else: cur_idx = 0 class GeomCreator(): def __init__(self): pass @classmethod def duplicate(cls, _count, _sampling_resolution, _source_curve_model, _source_prim_model, _use_instance, _use_orient, _forward_axis, _curve_type): ''' ## All of these should work (assuming the named prim is there) # ref_prims = ['/World/Cube'] # ref_prims = ['/World/Cube', None] # ref_prims = ['/World/Cube', '/World/Cone'] ''' stage = omni.usd.get_context().get_stage() curve_path = _source_curve_model.as_string ref_prims = [_source_prim_model.as_string] ref_prims = _source_prim_model.as_string.replace(' ','').split(',') # _use_instance = _use_instance.as_bool path_to = f'/Copy' sampling_resolution = _sampling_resolution num_points = _count # Default to 3x the number of points to distribute? Actually might be handled already by interp num_samples = _count # TODO: make this setting for the resolution to sample the curve defined by user interpolated_points, target_dirs = CurveManager.interpcurve(stage, curve_path, num_samples, sampling_resolution, _curve_type) indices = np.linspace(0, len(interpolated_points) - 1, num_points, dtype=int) target_points = interpolated_points[indices] CurveManager.copy_to_points(stage, target_points, target_dirs, ref_prims, path_to, _forward_axis, make_instance=_use_instance, use_orient=_use_orient)
12,324
Python
43.334532
133
0.566375
cadop/curvedistribute/exts/siborg.create.curvedistribute/siborg/create/curvedistribute/utils.py
import omni.usd from typing import List from pxr import Sdf from enum import IntEnum class CURVE(IntEnum): Bezier = 0 Bspline = 1 Linear = 2 def get_selection() -> List[str]: """Get the list of currently selected prims""" return omni.usd.get_context().get_selection().get_selected_prim_paths() def index_to_axis(idx): # AXIS = ["+X", "+Y", "+Z", "-X", "-Y", "-Z"] # taken from motion path xp = [1,0,0] yp = [0,1,0] zp = [0,0,1] xn = [-1,0,0] yn = [0,-1,0] zn = [0,0,-1] axis_vecs = [xp,yp,zp,xn,yn,zn] return axis_vecs[idx]
598
Python
21.185184
75
0.556856
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/omni/kit/imageseq/config.py
import codecs import pickle from typing import List from pxr import Sdf, Usd class Config: path_glob: str expanded_glob: List[str] ppi: int gap_pct: float curve_pct: float images_per_row: int def set_config_metadata(prim: Usd.Prim, config: Config) -> None: if not prim.IsValid(): return config_str = codecs.encode(pickle.dumps(config), 'base64') attribute: Usd.Attribute= prim.GetAttribute("imageseq:config") if not attribute.IsValid(): attribute = prim.CreateAttribute("imageseq:config", Sdf.ValueTypeNames.String) attribute.Set(config_str) def get_config_metadata(prim: Usd.Prim) -> Config: if not prim.IsValid(): raise Exception("programming error") attribute: Usd.Attribute = prim.GetAttribute("imageseq:config") if not attribute.IsValid(): return None config_str = attribute.Get() config_bytes = codecs.decode(config_str.encode(), 'base64') config = pickle.loads(config_bytes) return config
1,006
Python
26.972221
86
0.685885
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/omni/kit/imageseq/extension.py
import asyncio from functools import partial import omni.ext import omni.kit.app import omni.kit.ui import omni.ui import omni.usd from .window import KitImageSequenceWindow class KitImageSequenceExtension(omni.ext.IExt): WINDOW_NAME = "Image Sequence Importer" MENU_PATH = f"Window/{WINDOW_NAME}" def on_startup(self): # The ability to show up the window if the system requires it. We use it # in QuickLayout. self._window = None omni.ui.Workspace.set_show_window_fn(KitImageSequenceExtension.WINDOW_NAME, partial(self.show_window, None)) # Put the new menu editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: self._menu = editor_menu.add_item( KitImageSequenceExtension.MENU_PATH, self.show_window, toggle=True, value=True ) # Show the window. It will call `self.show_window` omni.ui.Workspace.show_window(KitImageSequenceExtension.WINDOW_NAME) def on_shutdown(self): if self._window: self._window.destroy() self._window = None editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: editor_menu.remove_item(KitImageSequenceExtension.MENU_PATH) self._menu = None # Deregister the function that shows the window from omni.ui omni.ui.Workspace.set_show_window_fn(KitImageSequenceExtension.WINDOW_NAME, None) def _set_menu(self, value): """Set the menu to create this window on and off""" editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: editor_menu.set_value(KitImageSequenceExtension.MENU_PATH, value) async def _destroy_window_async(self): # wait one frame, this is due to the one frame defer # in Window::_moveToMainOSWindow() await omni.kit.app.get_app().next_update_async() if self._window: self._window.destroy() self._window = None def _visibility_changed_fn(self, visible): # Called when the user pressed "X" self._set_menu(visible) if not visible: # Destroy the window, since we are creating new window # in show_window asyncio.ensure_future(self._destroy_window_async()) def show_window(self, menu, value): if value: self._window = KitImageSequenceWindow(KitImageSequenceExtension.WINDOW_NAME, width=300, height=365) self._window.set_visibility_changed_fn(self._visibility_changed_fn) elif self._window: self._window.visible = False
2,611
Python
34.780821
116
0.644964
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/omni/kit/imageseq/core.py
import math from pathlib import Path from typing import Dict, List import carb from PIL import Image from pxr import Gf, Kind, Sdf, Usd, UsdGeom, UsdShade from .config import Config, set_config_metadata def create_textured_quad_prim( stage: Usd.Stage, prim_path: Sdf.Path, translate: Gf.Vec3d, scale: Gf.Vec3d, rotate: Gf.Vec3d, image_path: str ) -> Usd.Prim: prim: UsdGeom.Xform = UsdGeom.Xform.Define(stage, prim_path) Usd.ModelAPI(prim).SetKind(Kind.Tokens.subcomponent) translate_op: UsdGeom.XformOp = prim.AddTranslateOp() rotate_op: UsdGeom.XformOp = prim.AddRotateXYZOp() scale_op: UsdGeom.XformOp = prim.AddScaleOp() translate_op.Set(translate) rotate_op.Set(rotate) scale_op.Set(Gf.Vec3d(1, 1, 1)) mesh = create_quad_mesh(stage, scale, prim_path.AppendChild("ImageSequenceMesh")) material = create_texture_material(stage, prim_path.AppendChild("ImageSequenceMaterial"), image_path) UsdShade.MaterialBindingAPI(mesh).Bind(material) return prim def create_quad_mesh(stage: Usd.Stage, scale: Gf.Vec3d, prim_path: Sdf.Path) -> UsdGeom.Mesh: # See https://graphics.pixar.com/usd/dev/tut_simple_shading.html#adding-a-mesh-billboard mesh: UsdGeom.Mesh = UsdGeom.Mesh.Define(stage, prim_path) translate_op: UsdGeom.XformOp = mesh.AddTranslateOp() rotate_op: UsdGeom.XformOp = mesh.AddRotateXYZOp() scale_op: UsdGeom.XformOp = mesh.AddScaleOp() translate_op.Set(Gf.Vec3d(0, 0, 0)) rotate_op.Set(Gf.Vec3d(0, 0, 0)) scale_op.Set(scale) mesh.CreatePointsAttr([(-0.5, -0.5, 0.0), (0.5, -0.5, 0.0), (0.5, 0.5, 0.0), (-0.5, 0.5, 0.0)]) mesh.CreateFaceVertexCountsAttr([4]) mesh.CreateFaceVertexIndicesAttr([0, 1, 2, 3]) mesh.CreateExtentAttr([(-0.5, 0.0, -0.5), (0.5, 0.0, 0.5)]) texCoords = mesh.CreatePrimvar("st", Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.varying) texCoords.Set([(0, 0), (1, 0), (1, 1), (0, 1)]) return mesh def create_texture_material(stage: Usd.Stage, material_prim_path: Sdf.Path, image_path: str) -> UsdShade.Material: # See https://graphics.pixar.com/usd/dev/tut_simple_shading.html#adding-a-mesh-billboard shader_prim_path = material_prim_path.AppendChild("ImageSequenceShader") material: UsdShade.Material = UsdShade.Material.Define(stage, material_prim_path) shader: UsdShade.Shader = UsdShade.Shader.Define(stage, shader_prim_path) shader.CreateImplementationSourceAttr(UsdShade.Tokens.sourceAsset) shader.SetSourceAsset("OmniPBR.mdl", "mdl") shader.SetSourceAssetSubIdentifier("OmniPBR", "mdl") material.CreateSurfaceOutput("mdl").ConnectToSource(shader.ConnectableAPI(), "out") shader_prim: Usd.Prim = stage.GetPrimAtPath(shader_prim_path) shader_prim.CreateAttribute("inputs:diffuse_texture", Sdf.ValueTypeNames.Asset).Set(image_path) shader_prim.CreateAttribute("inputs:emissive_color_texture", Sdf.ValueTypeNames.Asset).Set(image_path) shader_prim.CreateAttribute("inputs:reflection_roughness_constant", Sdf.ValueTypeNames.Float).Set(1.0) shader_prim.CreateAttribute("inputs:metallic_constant", Sdf.ValueTypeNames.Float).Set(0.0) return material class Transform: translate: Gf.Vec2d = Gf.Vec3d(0, 0, 0) scale: Gf.Vec2d = Gf.Vec3d(1, 1, 1) rotate: Gf.Vec2d = Gf.Vec3d(0, 0, 0) def calculate_transforms(config: Config) -> Dict[str, Transform]: INCHES_TO_CM = 1.54 images: List[Image.Image] = [Image.open(image_path_str) for image_path_str in config.expanded_glob] image_count = len(images) if image_count == 0: return {} # Calculate the largest image width in cm max_image_width_px = max([image.size[0] for image in images]) max_image_width_in = max_image_width_px / config.ppi max_image_width_cm = max_image_width_in * INCHES_TO_CM # Calculate the largest image height in cm max_image_height_px = max([image.size[1] for image in images]) max_image_height_in = max_image_height_px / config.ppi max_image_height_cm = max_image_height_in * INCHES_TO_CM # Calculate the number of images per row images_per_row = image_count if config.images_per_row < 1 else config.images_per_row # Calculate the total number of rows total_rows = math.ceil(image_count / images_per_row) #print(f"Images per row: {images_per_row}, Total Rows: {total_rows}") image_gap_cm = config.gap_pct * max_image_width_cm # Calculate total extents total_width_cm = max(max_image_width_cm * (images_per_row - 1) + image_gap_cm * max(images_per_row - 1, 0), 0) total_height_cm = (total_rows - 1) * max_image_height_cm + image_gap_cm * max(total_rows - 1, 0) #print(f"Total Width: {total_width_cm}, Total Height: {total_height_cm}") # max_height_px = max([image.size[1] for image in images]) left_most_cm = -0.5 * total_width_cm top_most_cm = 0.5 * total_height_cm left_current_cm = left_most_cm top_current_cm = top_most_cm transforms: Dict[str, Transform] = {} seen = 0 for count, image in enumerate(images): if seen > images_per_row - 1: left_current_cm = left_most_cm top_current_cm -= max_image_height_cm + image_gap_cm seen = 0 image_width_px = image.size[0] image_height_px = image.size[1] image_width_in = image_width_px / config.ppi image_height_in = image_height_px / config.ppi image_width_cm = image_width_in * INCHES_TO_CM image_height_cm = image_height_in * INCHES_TO_CM transform = Transform() transform.scale = Gf.Vec3d(image_width_cm, image_height_cm, 1) # Lerp between the line and the arc positioning t = (left_current_cm - left_most_cm) / total_width_cm if total_width_cm > 0 else 0 turns = 0.5 * math.tau phase = (1.0 - t) * turns + 0.25 * math.tau amp = 0.5 * total_width_cm x = left_current_cm * (1.0 - config.curve_pct) + (config.curve_pct) * amp * math.sin(phase) z = 0 + config.curve_pct * amp * math.cos(phase) transform.translate = Gf.Vec3d(x, top_current_cm, z) angle = -config.curve_pct * math.degrees(-phase + 0.5 * math.tau) # print(t, phase, angle) transform.rotate = Gf.Vec3d(0, angle, 0) transforms[image.filename] = transform left_current_cm += max_image_width_cm + image_gap_cm seen += 1 return transforms def create_image_sequence_group_prim(stage: Usd.Stage, root_prim_path: Sdf.Path, config: Config) -> Usd.Prim: # Create the root prim prim: Usd.Prim = stage.GetPrimAtPath(root_prim_path) if not prim.IsValid(): xform: UsdGeom.Xform = UsdGeom.Xform.Define(stage, root_prim_path) Usd.ModelAPI(xform).SetKind(Kind.Tokens.component) translate_op: UsdGeom.XformOp = xform.AddTranslateOp() rotate_op: UsdGeom.XformOp = xform.AddRotateXYZOp() scale_op: UsdGeom.XformOp = xform.AddScaleOp() translate_op.Set(Gf.Vec3d(0, 0, 0)) rotate_op.Set(Gf.Vec3d(0, 0, 0)) scale_op.Set(Gf.Vec3d(1, 1, 1)) # Persist the config data in the top-level USD prim prim: Usd.Prim = stage.GetPrimAtPath(root_prim_path) set_config_metadata(prim, config) # Create a child prim for each image transforms = calculate_transforms(config) for asset_path in config.expanded_glob: image_path = Path(asset_path) transform: Transform = transforms[asset_path] # Create the prim image_prim_path = root_prim_path.AppendChild(make_safe_prim_name(image_path.stem)) create_textured_quad_prim( stage=stage, prim_path=image_prim_path, translate=transform.translate, scale=transform.scale, rotate=transform.rotate, image_path=asset_path, ) return prim def update_image_sequence_prims(stage: Usd.Stage, root_prim_path: Sdf.Path, config: Config) -> None: if stage is None: carb.log_warn("Unexpected: stage is none") return top_prim: Usd.Prim = stage.GetPrimAtPath(root_prim_path) if not top_prim.IsValid(): carb.log_warn("Unexpected: prim is invalid") return set_config_metadata(top_prim, config) transforms = calculate_transforms(config) # Create a child prim for each image for image in config.expanded_glob: image_path = Path(image) transform: Transform = transforms[image] image_prim_path: Sdf.Path = root_prim_path.AppendChild(make_safe_prim_name(image_path.stem)) mesh_prim_path: Sdf.Path = image_prim_path.AppendChild("ImageSequenceMesh") image_prim: Usd.Prim = stage.GetPrimAtPath(image_prim_path) mesh_prim: Usd.Prim = stage.GetPrimAtPath(mesh_prim_path) if not image_prim.IsValid(): carb.log_warn(f"Unexpected: {image_prim_path} is invalid") return if not mesh_prim.IsValid(): carb.log_warn(f"Unexpected: {mesh_prim_path} is invalid") return image_prim.GetAttribute("xformOp:translate").Set(transform.translate) mesh_prim.GetAttribute("xformOp:scale").Set(transform.scale) image_prim.GetAttribute("xformOp:rotateXYZ").Set(transform.rotate) return def make_safe_prim_name(name: str, replace: str = "_") -> str: for c in ["-", ".", "?"]: name = name.replace(c, replace) return name
9,377
Python
44.086538
114
0.666098
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/omni/kit/imageseq/window.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["KitImageSequenceWindow"] import os from glob import glob import carb import omni.ui from pxr import Usd from .config import * from .core import * class KitImageSequenceWindow(omni.ui.Window): """ Extension window """ def __init__(self, title: str, delegate=None, **kwargs): super().__init__(title, **kwargs) # Set the function that is called to build widgets when the window is # visible self._asset_path_model = omni.ui.SimpleStringModel("") self._ppi_model = omni.ui.SimpleIntModel(100) self._gap_model = omni.ui.SimpleFloatModel(0.1) self._curve_model = omni.ui.SimpleFloatModel(0.0) self._images_per_row_model = omni.ui.SimpleIntModel(1) self._image_sequence_is_selected = omni.ui.SimpleBoolModel(False) self._asset_path_model.add_end_edit_fn(lambda _: self._on_asset_path_change()) self._ppi_model.add_value_changed_fn(lambda _: self._on_change()) self._gap_model.add_value_changed_fn(lambda _: self._on_change()) self._curve_model.add_value_changed_fn(lambda _: self._on_change()) self._images_per_row_model.add_value_changed_fn(lambda _: self._on_change()) self._image_sequence_is_selected.add_value_changed_fn(lambda _: self._on_image_seq_selection_change()) self.frame.set_build_fn(self._build_fn) stage_event_stream = omni.usd.get_context().get_stage_event_stream() self._stage_event_sub = stage_event_stream.create_subscription_to_pop(self._on_stage_event, name="kit-imageseq-event-stream") def destroy(self): super().destroy() self._stage_event_sub.unsubscribe() def _on_stage_event(self, event): stage: Usd.Stage = omni.usd.get_context().get_stage() if stage is None: return SELECTION_CHANGED = int(omni.usd.StageEventType.SELECTION_CHANGED) if event.type == SELECTION_CHANGED: self._image_sequence_is_selected.set_value(False) selection: omni.usd.Selection = omni.usd.get_context().get_selection() paths = selection.get_selected_prim_paths() if len(paths) == 0: return first_path = paths[0] first_prim: Usd.Prim = stage.GetPrimAtPath(first_path) if not first_prim.IsValid(): return # Populate the UI Model with the config values config = get_config_metadata(first_prim) if config is None: return self._selected_prim_path = first_path self._set_models_from_config(config) def _config_from_models(self) -> Config: config = Config() config.path_glob = self._asset_path_model.get_value_as_string() config.expanded_glob = glob(config.path_glob) config.expanded_glob.sort() config.ppi = self._ppi_model.get_value_as_int() config.gap_pct = self._gap_model.get_value_as_float() config.curve_pct = self._curve_model.get_value_as_float() config.images_per_row = self._images_per_row_model.get_value_as_int() return config def _set_models_from_config(self, config: Config) -> None: self._asset_path_model.set_value(config.path_glob) self._ppi_model.set_value(config.ppi) self._gap_model.set_value(config.gap_pct) self._curve_model.set_value(config.curve_pct) self._images_per_row_model.set_min(0) self._images_per_row_model.set_max(len(config.expanded_glob)) self._images_per_row_model.set_value(config.images_per_row) self._image_sequence_is_selected.set_value(True) def _on_image_seq_selection_change(self) -> None: self._frame.visible = self._image_sequence_is_selected.get_value_as_bool() def _on_create_new_image_sequence(self) -> None: stage: Usd.Stage = omni.usd.get_context().get_stage() # root_prim: Usd.Prim = stage.GetDefaultPrim() root_prim_path: Sdf.Path = root_prim.GetPath() root_image_seq_prim_path = root_prim_path.AppendChild("ImageSequences") image_seq_count = 0 root_image_seq_prim: Usd.Prim = stage.GetPrimAtPath(root_image_seq_prim_path) if root_image_seq_prim.IsValid(): image_seq_count = len(root_image_seq_prim.GetChildren()) while True: image_seq_prim_path = root_image_seq_prim_path.AppendChild(f"ImageSequence{image_seq_count}") if not stage.GetPrimAtPath(image_seq_prim_path).IsValid(): break else: image_seq_count += 1 # Default config config = Config() config.path_glob = "" config.expanded_glob = [] config.ppi = 300 config.gap_pct = 0.0 config.curve_pct = 0.0 config.images_per_row = 0 prim = create_image_sequence_group_prim(stage, image_seq_prim_path, config) # Select the created prim selected_prim_path = str(prim.GetPath()) selection: omni.usd.Selection = omni.usd.get_context().get_selection() selection.set_selected_prim_paths([selected_prim_path], True) self._selected_prim_path = selected_prim_path return def _on_asset_path_change(self) -> None: # Validate user input config = self._config_from_models() if len(config.expanded_glob) == 0: carb.log_error(f"No assets found for {config.path_glob}") for asset_path in config.expanded_glob: if not os.path.exists(asset_path): carb.log_error(f"Specified asset {asset_path} does not exist") return stage: Usd.Stage = omni.usd.get_context().get_stage() prim_path = Sdf.Path(self._selected_prim_path) prim: Usd.Prim = stage.GetPrimAtPath(prim_path) if prim.IsValid(): children = prim.GetChildren() for child in children: child: Usd.Prim stage.RemovePrim(child.GetPath()) prim: Usd.Prim = create_image_sequence_group_prim(stage, prim_path, config) selection: omni.usd.Selection = omni.usd.get_context().get_selection() selection.set_selected_prim_paths([str(prim.GetPath())], True) self._set_models_from_config(config) return def _on_change(self): selected_prim_path = self._selected_prim_path config = self._config_from_models() stage = omni.usd.get_context().get_stage() update_image_sequence_prims(stage, Sdf.Path(selected_prim_path), config) def _build_fn(self): with omni.ui.VStack(): with omni.ui.VStack(height=20): with omni.ui.HStack(): omni.ui.Button("Create New Image Sequence", width=40, clicked_fn=self._on_create_new_image_sequence) self._frame = omni.ui.Frame(visible=self._image_sequence_is_selected.get_value_as_bool()) with self._frame: with omni.ui.VStack(height=20): with omni.ui.HStack(): omni.ui.Label( "Asset Path", tooltip="Absolute path to an image asset or a glob like C:\dir\*.png" ) omni.ui.StringField(self._asset_path_model) omni.ui.Spacer(height=2) with omni.ui.HStack(): omni.ui.Label("PPI", tooltip="Desired pixels per inch") omni.ui.IntField(self._ppi_model) omni.ui.Spacer(height=2) with omni.ui.HStack(): omni.ui.Label("Gap", tooltip="In units of percentage of the max image width") omni.ui.FloatSlider(self._gap_model, min=0.0, max=1.0) omni.ui.Spacer(height=2) with omni.ui.HStack(): omni.ui.Label("Curve", tooltip="0.0 -> straight line, 1.0 -> circle") omni.ui.FloatSlider(self._curve_model, min=0.0, max=1.0) omni.ui.Spacer(height=2) with omni.ui.HStack(): omni.ui.Label("Images Per Row", tooltip="Images per row") omni.ui.IntSlider(self._images_per_row_model, min=1) omni.ui.Spacer(height=2)
8,794
Python
44.569948
133
0.602343
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [0.0.1] - 2022-10-27 - Initial release
139
Markdown
14.555554
80
0.669065
jshrake-nvidia/kit-image-sequence/exts/omni.kit.imageseq/docs/README.md
# Image Sequence Importer Omniverse Kit extension to import and layout image sequences.
88
Markdown
28.666657
61
0.829545
alankent/ordinary-consolidator/README.md
# Omniverse Extension to Consolidate vertices on a mesh This extension lets you pick a mesh in an OpenUSD scene that may not be using `interpolation = "FaceVerying"` and it generates a new mesh deduplicating vertices. This is necessary to make Audio2Face happy. https://youtu.be/vv7vp3O_mh8?si=dHCA3kH3WVFwxXLC
314
Markdown
33.999996
68
0.799363
alankent/ordinary-consolidator/exts/ordinary.consolidator/ordinary/consolidator/extension.py
import omni.ext import omni.ui as ui from pxr import Usd, Sdf, Gf, UsdGeom, UsdShade from .MeshMaker import MeshMaker # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OrdinaryMeshConsolidatorExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): self._window = ui.Window("Mesh Consolidator", width=300, height=300) with self._window.frame: # TODO: Clean up the UI... one day. with ui.VStack(): def on_click(): self.consolidate_prim() with ui.HStack(): ui.Button("Consolidate", clicked_fn=on_click) # The main body of the clean up code for VRoid Studio characters. def consolidate_prim(self): ctx = omni.usd.get_context() stage = ctx.get_stage() selections = ctx.get_selection().get_selected_prim_paths() # Patch the skeleton structure, if not done already. Add "Root" to the joint list. for prim_path in selections: mesh_prim = stage.GetPrimAtPath(prim_path) if mesh_prim and mesh_prim.IsA(UsdGeom.Mesh): mesh: UsdGeom.Mesh = UsdGeom.Mesh(mesh_prim) self.perform_consolidation(stage, mesh, prim_path + "_consolidated") def perform_consolidation(self, stage: Usd.Stage, old_mesh: UsdGeom.Mesh, new_mesh_path): faceVertexIndices = old_mesh.GetFaceVertexIndicesAttr().Get() faceVertexCounts = old_mesh.GetFaceVertexCountsAttr().Get() points = old_mesh.GetPointsAttr().Get() normals = old_mesh.GetNormalsAttr().Get() normalsInterpolation = UsdGeom.Primvar(old_mesh.GetNormalsAttr()).GetInterpolation() stAttr = old_mesh.GetPrim().GetAttribute('primvars:st0') stInterpolation = UsdGeom.Primvar(stAttr).GetInterpolation() st = stAttr.Get() material = UsdShade.MaterialBindingAPI(old_mesh.GetPrim()).GetDirectBindingRel().GetTargets() new_mesh = MeshMaker(stage, material) # Assumes faceVertexCounts are all '3' for face_index in range(len(faceVertexIndices) // 3): pi1 = faceVertexIndices[face_index * 3 + 0] pi2 = faceVertexIndices[face_index * 3 + 1] pi3 = faceVertexIndices[face_index * 3 + 2] p1 = points[pi1] p2 = points[pi2] p3 = points[pi3] if normalsInterpolation == UsdGeom.Tokens.faceVarying: n1 = normals[face_index * 3 + 0] n2 = normals[face_index * 3 + 1] n3 = normals[face_index * 3 + 2] else: n1 = normals[pi1] n2 = normals[pi2] n3 = normals[pi3] if stInterpolation == UsdGeom.Tokens.faceVarying: st1 = st[face_index * 3 + 0] st2 = st[face_index * 3 + 1] st3 = st[face_index * 3 + 2] else: st1 = st[pi1] st2 = st[pi2] st3 = st[pi3] new_mesh.add_face(p1, p2, p3, n1, n2, n3, st1, st2, st3) new_mesh.create_at_path(new_mesh_path)
3,506
Python
37.538461
119
0.599544
alankent/ordinary-consolidator/exts/ordinary.consolidator/ordinary/consolidator/MeshMaker.py
from pxr import Usd, Sdf, Gf, UsdGeom, UsdShade, UsdSkel # This class creates a new Mesh by adding faces one at a time. # When don, you ask it to create a new Mesh prim. class MeshMaker: def __init__(self, stage: Usd.Stage, material): self.stage = stage self.material = material self.faceVertexCounts = [] self.faceVertexIndices = [] self.normals = [] self.st = [] self.points = [] # Create a Mesh prim at the given prim path. def create_at_path(self, prim_path) -> UsdGeom.Mesh: # https://stackoverflow.com/questions/74462822/python-for-usd-map-a-texture-on-a-cube-so-every-face-have-the-same-image mesh: UsdGeom.Mesh = UsdGeom.Mesh.Define(self.stage, prim_path) mesh.CreateSubdivisionSchemeAttr().Set(UsdGeom.Tokens.none) mesh.CreatePointsAttr(self.points) mesh.CreateExtentAttr(UsdGeom.PointBased(mesh).ComputeExtent(mesh.GetPointsAttr().Get())) mesh.CreateNormalsAttr(self.normals) mesh.SetNormalsInterpolation(UsdGeom.Tokens.faceVarying) mesh.CreateFaceVertexCountsAttr(self.faceVertexCounts) mesh.CreateFaceVertexIndicesAttr(self.faceVertexIndices) UsdGeom.PrimvarsAPI(mesh.GetPrim()).CreatePrimvar('st', Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.faceVarying).Set(self.st) UsdShade.MaterialBindingAPI(mesh).GetDirectBindingRel().SetTargets(self.material) return mesh # Add a new face (3 points with normals and mappings to part of the texture) def add_face(self, p1, p2, p3, normal1, normal2, normal3, st1, st2, st3): self.faceVertexCounts.append(3) self.faceVertexIndices.append(self.add_point(p1)) self.faceVertexIndices.append(self.add_point(p2)) self.faceVertexIndices.append(self.add_point(p3)) self.normals.append(normal1) self.normals.append(normal2) self.normals.append(normal3) self.st.append(st1) self.st.append(st2) self.st.append(st3) # Given a point, find an existing points array entry and return its index, otherwise add another point # and return the index of the new point. def add_point(self, point): for i in range(0, len(self.points)): if self.points[i] == point: return i self.points.append(point) return len(self.points) - 1
2,396
Python
41.052631
140
0.674457
alankent/ordinary-windy-blendshapes/README.md
# Create Blend Shapes for Windy Scenes This project is designed for foliage such as grass, flowers, or trees so it can sway in the wind in NVIDIA Omniverse. It is designed for models that are static (unmoving). It is a work in progress, but sharing where up to. I will probably potter along with this in my spare time. It works by creating blend shapes the move points in the mesh by an amount proportional (with a bit of a curve) to the height of the point off the ground. So points at (or below) ground level do not move. Points half way up move a bit, points at the top move the most. To use it, * Create a new empty stage for your model, click the first "create skeleton" button which will define SkelRoot, Skeleton, and SkelAnimation prims. * Add a reference to your model from under SkelRoot. It must be under this prim for it to animate. * Click the second button which will create a blendshape for each mesh in the model. ## Plans * Have 2 blend shapes for the model bending east and south. I want to create an animation graph that has two variables controlling the strength of the two blendshapes. * I want to create an action graph that given wind direction, strength, sway speed etc animations the east and south weights (with negative values for west and north) so the foliage can sway in a specified direction * I also want a central "wind" script that updates all of the individual models, so you can set the wind direction and strength centrally and everything in the stage will get updated * I want to add another blendshape for a slight ripple, to make leaves flutter. This would be applied to selected meshes (leaves, not trunks or branches). # Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "ordinary.windy.blendshapes" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
3,719
Markdown
45.499999
258
0.767948
alankent/ordinary-windy-blendshapes/exts/ordinary.windy.blendshapes/ordinary/windy/blendshapes/extension.py
import omni.ext import omni.ui as ui from pxr import Usd, Sdf, Gf, UsdGeom, UsdSkel # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OrdinaryWindyBlendshapesExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[ordinary.windy.blendshapes] ordinary windy blendshapes startup") self._window = ui.Window("Ordinary Windy Blendshapes", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("Instructions\n\n" + "- Create a new stage\n" + "- Click 'Create Skeleton'\n" + "- Drop your model under SkelRoot\n" + "- Click 'Add Blend Shapes'\n" + "- Save and reload the file (to flush the skeleton cache)") def on_create_skeleton(): self.create_skeleton() def on_add_blend_shapes(): self.add_blend_shapes() with ui.HStack(): ui.Button("Create Skeleton", clicked_fn=on_create_skeleton) ui.Button("Add Blend Shapes", clicked_fn=on_add_blend_shapes) def on_shutdown(self): print("[ordinary.windy.blendshapes] ordinary windy blendshapes shutdown") def create_skeleton(self): ctx = omni.usd.get_context() stage: Usd.Stage = ctx.get_stage() root: Usd.Prim = stage.GetDefaultPrim() # Create a skeleton under which the user will have to add a reference to the model. skel_root: UsdSkel.Root = UsdSkel.Root.Define(stage, root.GetPath().AppendChild("SkelRoot")) skeleton: UsdSkel.Skeleton = UsdSkel.Skeleton.Define(stage, skel_root.GetPath().AppendChild("Skeleton")) UsdSkel.BindingAPI.Apply(skeleton.GetPrim()) skeleton.CreateBindTransformsAttr().Set([]) skeleton.CreateRestTransformsAttr().Set([]) skeleton.CreateJointsAttr().Set([]) skeleton.CreateJointNamesAttr().Set([]) # Add a SkelAnimation referring to the blend shapes to simplify animation. default_wind_anim = self.add_skel_animation(stage, skeleton, "defaultWindAnimation", [0, 0, 0, 0]) self.add_skel_animation(stage, skeleton, "noWindAnimation", [0, 0, 0, 0]) self.add_skel_animation(stage, skeleton, "eastWindAnimation", [1, 0, 0, 0]) self.add_skel_animation(stage, skeleton, "westWindAnimation", [0, 1, 0, 0]) self.add_skel_animation(stage, skeleton, "southWindAnimation", [0, 0, 1, 0]) self.add_skel_animation(stage, skeleton, "northWindAnimation", [0, 0, 0, 1]) self.add_skel_animation(stage, skeleton, "testWindAnimation", { 0: [0, 0, 0, 0], 10: [0.2, 0, 0.2, 0], 25: [1, 0, 1, 0], 40: [0.2, 0, 0.2, 0], 50: [0, 0, 0, 0], 60: [0, 0.2, 0, 0.2], 75: [0, 1, 0, 1], 90: [0, 0.2, 0, 0.2], 100: [0, 0, 0, 0], }) # Point the skeleton to the no wind animation. skel_binding: UsdSkel.BindingAPI = UsdSkel.BindingAPI(skeleton) skel_binding.CreateAnimationSourceRel().SetTargets([default_wind_anim.GetPath()]) def add_skel_animation(self, stage: Usd.Stage, skeleton: UsdSkel.Skeleton, animation_name, weights): print(animation_name) print(skeleton.GetPath().name) skel_animation: UsdSkel.Animation = UsdSkel.Animation.Define(stage, skeleton.GetPath().AppendChild(animation_name)) skel_animation.CreateBlendShapesAttr().Set(["eastWindBlendShape", "westWindBlendShape", "southWindBlendShape", "northWindBlendShape"]) skel_animation.CreateJointsAttr().Set([]) skel_animation.CreateRotationsAttr().Set([]) skel_animation.CreateScalesAttr().Set([]) skel_animation.CreateTranslationsAttr().Set([]) x: Usd.Prim = None UsdSkel.Animation.GetBlendShapeWeightsAttr if type(weights) is dict: attr = skel_animation.CreateBlendShapeWeightsAttr() skel_animation.GetBlendShapeWeightsAttr for time, value in weights.items(): attr.Set(time=time, value=value) else: skel_animation.CreateBlendShapeWeightsAttr().Set(weights) return skel_animation def add_blend_shapes(self): ctx = omni.usd.get_context() stage: Usd.Stage = ctx.get_stage() root: Usd.Prim = stage.GetDefaultPrim() skel_root = root.GetChild("SkelRoot") if not skel_root.IsValid(): print("SkelRoot not found - did you create the skeleton first?") return skeleton = skel_root.GetChild("Skeleton") if not skeleton.IsValid(): print("Skeleton not found - did you create the skeleton first?") return # Cannot use Traverse unfortunately, as it is not restricted to under a specific prim. #for prim in stage.Traverse(): # if prim.IsA(UsdGeom.Mesh): # print("Mesh: " + prim.GetPath().pathString) self.look_for_meshes(stage, root, skeleton) def look_for_meshes(self, stage, prim, skeleton): if prim.IsA(UsdGeom.Mesh): self.add_blend_shapes_for_mesh(stage, prim, skeleton) for child_prim in prim.GetChildren(): self.look_for_meshes(stage, child_prim, skeleton) def add_blend_shapes_for_mesh(self, stage: Usd.Stage, meshPrim, skeleton): # Work out which way is up for the model. up = "Y" units_resolve_attr = meshPrim.GetParent().GetAttribute("xformOp:rotateX:unitsResolve") if units_resolve_attr: units_resolve = units_resolve_attr.Get() if units_resolve == 0: pass elif units_resolve == -90: up = "Z" else: print("I don't know what up is!") # Create child blend shapes for +X (east) and +Z (south) mesh = UsdGeom.Mesh(meshPrim) east_blend_shape = self.add_blendshape_in_one_direction(stage, up, mesh, "eastWindBlendShape", 1, 0) west_blend_shape = self.add_blendshape_in_one_direction(stage, up, mesh, "westWindBlendShape", -1, 0) south_blend_shape = self.add_blendshape_in_one_direction(stage, up, mesh, "southWindBlendShape", 0, 1) north_blend_shape = self.add_blendshape_in_one_direction(stage, up, mesh, "northWindBlendShape", 0, -1) # TODO: Add a blend shape for fluttering leaves # Add skel:blendShapes property to list the blendshape names. # https://openusd.org/dev/api/class_usd_skel_binding_a_p_i.html binding: UsdSkel.BindingAPI = UsdSkel.BindingAPI(meshPrim) binding.CreateBlendShapesAttr().Set(["eastWindBlendShape", "westWindBlendShape", "southWindBlendShape", "northWindBlendShape"]) binding.CreateBlendShapeTargetsRel().SetTargets([east_blend_shape.GetPath(), west_blend_shape.GetPath(), south_blend_shape.GetPath(), north_blend_shape.GetPath()]) UsdSkel.BindingAPI.Apply(meshPrim) binding.CreateSkeletonRel().SetTargets([skeleton.GetPath()]) def add_blendshape_in_one_direction(self, stage: Usd.Stage, up, mesh: UsdGeom.Mesh, blend_shape_name, east_scale, south_scale): # Work out how many points in blendshape we need. # We specify all points (0..n), normal offsets are all zero. Point offsets are the most complex. mesh_points = mesh.GetPointsAttr().Get() num_points = len(mesh_points) point_indices = range(0, num_points) normal_offsets = [(0, 0, 0) for i in point_indices] # To work out how far to bend the object, we need to know its height. height = 0 offsets = [] # TODO: I don't really like this - probably a smarter way to do it by computing a base vector # then rotating it appropriately. But just get it going for now by duplicating the code. if up == "Y": for x, y, z in mesh_points: if y > height: height = y for x, y, z in mesh_points: if y <= 0: offsets.append((0, 0, 0)) else: horizontal_delta = self.compute_horizontal_delta(height, y) vertical_delta = self.compute_vertical_delta(height, y) offsets.append((horizontal_delta * east_scale, vertical_delta, horizontal_delta * south_scale)) if up == "Z": for x, y, z in mesh_points: if z > height: height = z for x, y, z in mesh_points: if z <= 0: offsets.append((0, 0, 0)) else: horizontal_delta = self.compute_horizontal_delta(height, z) vertical_delta = self.compute_vertical_delta(height, z) offsets.append((horizontal_delta * east_scale, horizontal_delta * south_scale, vertical_delta)) # Create the blendshape! https://openusd.org/dev/api/class_usd_skel_blend_shape.html blend_shape: UsdSkel.BlendShape = UsdSkel.BlendShape.Define(stage, mesh.GetPath().AppendChild(blend_shape_name)) blend_shape.CreatePointIndicesAttr().Set(point_indices) blend_shape.CreateOffsetsAttr().Set(offsets) blend_shape.CreateNormalOffsetsAttr().Set(normal_offsets) return blend_shape def compute_horizontal_delta(self, max, value): # Scale to 0 to 1 fraction, square it for a curve, then scale to up to sway at most 1/4 height. return ((value / max) ** 2) * max / 8 def compute_vertical_delta(self, max, value): # When leaning reduce the height a bit so it does not look like its stretching too much. # TODO: Would have to do a few inbetweens to do a nice curve, and it jumps badly at the top, so just skip it for now. return 0 #return -abs(self.compute_horizontal_delta(max, value) / 2)
10,500
Python
48.533019
171
0.609048
alankent/ordinary-depthmap-projection/exts/ordinary.depthmap.projection/ordinary/depthmap/projection/extension.py
from typing import List, Tuple, Callable, Dict from functools import partial import os import math import carb.settings import carb.windowing import omni.appwindow from carb import log_warn, events import omni.ext import omni.ui as ui #from omni.kit.window.file_importer import get_file_importer from omni.kit.window.filepicker import FilePickerDialog, UI_READY_EVENT from omni.kit.widget.filebrowser import FileBrowserItem from pxr import Usd, UsdShade, UsdGeom, Sdf, Gf import omni.usd import numpy as np from PIL import Image DEFAULT_FILE_EXTENSION_TYPES = [ ("*.png, *.jpg", "Image Files"), ("*.*", "All files"), ] def default_filter_handler(filename: str, filter_postfix: str, filter_ext: str) -> bool: if not filename: return True # Show only files whose names end with: *<postfix>.<ext> if filter_ext: # split comma separated string into a list: filter_exts = filter_ext.split(",") if isinstance(filter_ext, str) else filter_ext filter_exts = [x.replace(" ", "") for x in filter_exts] filter_exts = [x for x in filter_exts if x] # check if the file extension matches anything in the list: if not ( "*.*" in filter_exts or any(filename.endswith(f.replace("*", "")) for f in filter_exts) ): # match failed: return False if filter_postfix: # strip extension and check postfix: filename = os.path.splitext(filename)[0] return filename.endswith(filter_postfix) return True def on_filter_item(filter_fn: Callable[[str], bool], dialog: FilePickerDialog, item: FileBrowserItem, show_only_folders: bool = False) -> bool: if item and not item.is_folder: # OM-96626: Add show_only_folders option to file importer if show_only_folders: return False if filter_fn: return filter_fn(item.path or '', dialog.get_file_postfix(), dialog.get_file_extension()) return True def _save_default_settings(default_settings: Dict): settings = carb.settings.get_settings() default_settings_path = settings.get_as_string("/exts/omni.kit.window.file_importer/appSettings") settings.set_string(f"{default_settings_path}/directory", default_settings['directory'] or "") def on_import(import_fn: Callable[[str, str, List[str]], None], dialog: FilePickerDialog, filename: str, dirname: str, hide_window_on_import: bool = True): _save_default_settings({'directory': dirname}) selections = dialog.get_current_selections() or [] if hide_window_on_import: dialog.hide() if import_fn: import_fn(filename, dirname, selections=selections) # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OrdinaryDepthmapProjectionExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[ordinary.depthmap.projection] ordinary depthmap projection startup") self.stage = omni.usd.get_context().get_stage() self._window = ui.Window("Ordinary Depth Map Projection", width=300, height=300) with self._window.frame: with ui.VStack(): with ui.HStack(): def on_texture_click(): def import_handler(filename, dirname, selections = []): self.texture_filename = os.path.join(dirname, filename) self.texture_label.text = self.texture_filename self.texture_dialog = FilePickerDialog( 'Select texture file', apply_button_label = 'Open', click_apply_handler = import_handler, file_extension_options = DEFAULT_FILE_EXTENSION_TYPES ) self.texture_dialog.set_item_filter_fn(partial(on_filter_item, default_filter_handler, self.texture_dialog, show_only_folders=False)) self.texture_dialog.set_click_apply_handler(partial(on_import, import_handler, self.texture_dialog, hide_window_on_import=True)) #self.texture_dialog._widget.file_bar.enable_apply_button(enable=show_only_folders) self.texture_dialog.show() self.texture_dialog._widget.file_bar.focus_filename_input() ui.Button("Select Texture File", width=150, clicked_fn=on_texture_click) self.texture_filename = '' self.texture_label = ui.Label(self.texture_filename) with ui.HStack(): def on_depthmap_click(): def import_handler(filename, dirname, selections = []): self.depthmap_filename = os.path.join(dirname, filename) self.depthmap_label.text = self.depthmap_filename self.depthmap_dialog = FilePickerDialog( 'Select depthmap file', apply_button_label = 'Open', click_apply_handler = import_handler, file_extension_options = DEFAULT_FILE_EXTENSION_TYPES ) self.depthmap_dialog.set_item_filter_fn(partial(on_filter_item, default_filter_handler, self.depthmap_dialog, show_only_folders=False)) self.depthmap_dialog.set_click_apply_handler(partial(on_import, import_handler, self.depthmap_dialog, hide_window_on_import=True)) #self.depthmap_dialog._widget.file_bar.enable_apply_button(enable=show_only_folders) self.depthmap_dialog.show() ui.Button("Select Depth Map File", width=150, clicked_fn=on_depthmap_click) self.depthmap_filename = '' self.depthmap_label = ui.Label(self.depthmap_filename) with ui.HStack(): def on_generate_click(): self.generate_new_mesh() ui.Button("Generate", clicked_fn=on_generate_click) def generate_new_mesh(self): print("GENERATE", self.texture_filename, self.depthmap_filename) # Create the mesh xform = UsdGeom.Xform.Define(self.stage, "/my_plane") mesh = UsdGeom.Mesh.Define(self.stage, xform.GetPath().AppendChild("mesh")) mesh.CreateSubdivisionSchemeAttr().Set(UsdGeom.Tokens.none) texture_image = Image.open(self.texture_filename) texture_width, texture_height = texture_image.size mesh_width = texture_width // 16 mesh_height = texture_height // 16 depthmap_image = Image.open(self.depthmap_filename) # datatype is optional, but can be useful for type conversion depthmap_data = np.asarray(depthmap_image, dtype=np.uint8) depthmap_height, depthmap_width, depthmap_colors = depthmap_data.shape points = [] normals = [] st = [] normal = (0, 1, 0) vertex_counts = [] vertex_indicies = [] def clamp(value, min_value, max_value): return max(min(int(value), max_value), min_value) for y in range(mesh_height + 1): for x in range(mesh_width + 1): dmx = clamp(x / mesh_width * depthmap_width, 0, depthmap_width - 1) dmy = clamp((mesh_height - y) / mesh_height * depthmap_height, 0, depthmap_height - 1) distance = depthmap_data[dmy, dmx, 0] / 256 * mesh_height points.append(Gf.Vec3f(x - mesh_width/2, y - mesh_height/2, distance)) for y in range(mesh_height): for x in range(mesh_width): vertex_counts.append(3) vertex_indicies.append(y * (mesh_width + 1) + x) # LL vertex_indicies.append(y * (mesh_width + 1) + x + 1) # LR vertex_indicies.append((y + 1) * (mesh_width + 1) + x) # UL st.append((x / mesh_width, y / mesh_height)) # LL st.append(((x + 1) / mesh_width, y / mesh_height)) # LR st.append((x / mesh_width, (y + 1) / mesh_height)) # UL normals.append(normal) normals.append(normal) normals.append(normal) vertex_counts.append(3) vertex_indicies.append(y * (mesh_width + 1) + x + 1) # LR vertex_indicies.append((y + 1) * (mesh_width + 1) + x + 1) # UR vertex_indicies.append((y + 1) * (mesh_width + 1) + x) # UL st.append(((x + 1) / mesh_width, y / mesh_height)) # LR st.append(((x + 1) / mesh_width, (y + 1) / mesh_height)) # UR st.append((x / mesh_width, (y + 1) / mesh_height)) # UL normals.append(normal) normals.append(normal) normals.append(normal) mesh.CreatePointsAttr(points) mesh.CreateExtentAttr(UsdGeom.PointBased(mesh).ComputeExtent(mesh.GetPointsAttr().Get())) mesh.CreateFaceVertexCountsAttr(vertex_counts) mesh.CreateFaceVertexIndicesAttr(vertex_indicies) mesh.CreateNormalsAttr(normals) mesh.SetNormalsInterpolation(UsdGeom.Tokens.faceVarying) primvar_api = UsdGeom.PrimvarsAPI(mesh.GetPrim()) primvar_api.CreatePrimvar('st', Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.faceVarying).Set(st) # Apply texture to the plane material = UsdShade.Material.Define(self.stage, xform.GetPath().AppendChild("material")) shader = UsdShade.Shader.Define(self.stage, material.GetPath().AppendChild("texture_shader")) shader.CreateIdAttr("UsdPreviewSurface") shader.CreateInput("diffuseColor", Sdf.ValueTypeNames.Color3f).Set((1.0, 1.0, 1.0)) shader.CreateInput("roughness", Sdf.ValueTypeNames.Float).Set(0.5) shader.CreateInput("metallic", Sdf.ValueTypeNames.Float).Set(0.0) diffuse_tx = UsdShade.Shader.Define(self.stage, material.GetPath().AppendChild("DiffuseColorTx")) diffuse_tx.CreateIdAttr('UsdUVTexture') diffuse_tx.CreateInput('file', Sdf.ValueTypeNames.Asset).Set(self.texture_filename) diffuse_tx.CreateOutput('rgb', Sdf.ValueTypeNames.Float3) shader.CreateInput("diffuseColor", Sdf.ValueTypeNames.Color3f).ConnectToSource(diffuse_tx.ConnectableAPI(), 'rgb') material.CreateSurfaceOutput().ConnectToSource(shader.ConnectableAPI(), "surface") #stInput = shader.CreateInput("st", Sdf.ValueTypeNames.TexCoord2fArray) # Create a texture and connect it to the shader's diffuse color #diffuseTexture = UsdShade.TextureInput(shader.CreateInput("diffuseColor", Sdf.ValueTypeNames.Color3f)) #diffuseTexture.SetTextureFile(texture_filename) #stInput.ConnectToSource(diffuseTexture.GetOutput()) #material.CreateSurfaceOutput().ConnectToSource(shader.GetOutput("surface")) #shader.CreateIdAttr("UsdUVTexture") #shader.CreateInput("file", Sdf.ValueTypeNames.Asset).Set(self.texture_filename) #st_input = material.CreateInput("st", Sdf.ValueTypeNames.TexCoord2fArray) #shader_output = shader.CreateOutput("rgb", Sdf.ValueTypeNames.Float3) #st_input.ConnectToSource(shader_output) #shader_connection = material.CreateShaderIdAttr().ConnectToSource(shader.GetIdAttr()) material_binding = UsdShade.MaterialBindingAPI(mesh.GetPrim()) material_binding.Bind(material) def on_shutdown(self): print("[ordinary.depthmap.projection] ordinary depthmap projection shutdown")
12,030
Python
44.57197
159
0.621031
alankent/ordinary-vrm-clean/README.md
# VRM Importer for NVIDIA Omniverse This repository is a work in progress, but making it available in its current messy form regardless. I hope to clean this up and improve it over the coming months. ## What is NVIDIA Omniverse You can download NVIDIA Omniverse for free if you have a NVIDIA GPU. You can create 3D scenes using USD (Universal Scene Description) originally from Pixar, now open source (https://openusd.org/). Omniverse uses USD as its native file format. ## What is this repo? This repo contains a Omniverse Kit extension. Almost all the Omniverse tools are built using Kit, their framework for app building. See [README-ext.md](./README-ext.md) for more information. This extension is not in a good or final place, but I got it to do something so sharing with the world in case anyone else wants to give it a go. ## The UI looks like the default template extension UI Well spotted. I have put no effort into the UI at this stage. I just wanted to get it to do something. So there is a button called "Clean" which runs the code and "Dump" which walks the current Stage and prints out the length of all properties that hold arrays. (I was use the latter to work out the lengths of all the point mesh details as part of my learnings.) ## So how do I use it? I grab a `.vrm` file exported from [VRoid Studio](https://vroid.com/en/studio), rename it to `.glb`, open in Omniverse USD Composer (formerly "Create"), right click and "Convert to USD". I then open the USD file and click the "Clean" button. It restructures things in the currently opened character USD file. [VRM](https://github.com/vrm-c) files are in GLB format (the binary form of glTF) but follow some additional standards to help with interchange in VR apps (like VR Chat and some VTuber software like [VSeeFace](https://vseeface.icu). Ultimately, I could imagine this extension becoming a `.vrm` file importer extension for Omniverse. One day... ## Why is it necessary? Using the above approach to import a GLB file has worked the best but still suffers from problems in Omniverse: * The root bone is lost during the GLB import process, making animation clips not work correctly * [Audio2Face](https://www.nvidia.com/en-us/omniverse/apps/audio2face/) does not like the meshes VRoid Studio generates * Need to add hair physics (not started) * Need to add cloth physics for clothes, like skirts (not started) ## Why am I doing this? I tell people I am trying to create an animated cartoon series to publish on YouTube. What really happens is I get distracted geeking out on technology. * I created a few episodes originally with 2D animation in Adobe Character Animator. * I then created a few episodes using Unity as the rendering pipeline (HDRP). * I am now exploring NVIDIA Omniverse for rendering. I am trying to stick to free tools so others can give it a go and see if they like it before investing money into commercial tools. ## When can I learn more? I blog at [extra-ordinary.tv/blog](https://extra-ordinary.tv/blog/) * [First Steps for VRoid Studio characters in NVIDIA Omniverse](https://extra-ordinary.tv/2023/05/28/2902/) * [VRoid Studio, meet NVIDIA Omniverse](https://extra-ordinary.tv/2023/05/10/vroid-studio-meet-nvidia-omniverse/)
3,249
Markdown
42.918918
119
0.768544
alankent/ordinary-vrm-clean/exts/ordinary/ordinary/extension.py
# Made using: https://youtu.be/eGxV_PGNpOg # Lessons learned # - work out your package name first (it affects directory structure) # - DeletePrims references Sdf which is not imported for you import omni.ext import omni.ui as ui import omni.kit.commands from pxr import Usd, Sdf, Gf, UsdGeom from .ExtractMeshes import ExtractMeshes # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[ordinary] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OrdinaryExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): self._window = ui.Window("VRM Import Cleanup v1", width=300, height=300) with self._window.frame: # TODO: Clean up the UI... one day. with ui.VStack(): label = ui.Label("") def on_click(): self.clean_up_prim() label.text = "clicked" def on_dump(): label.text = "empty" # Debugging: Print hierarchy of all prims in stage, all attributes of prims that are arrays self.dump_stage() label.text = "dump" with ui.HStack(): ui.Button("Clean", clicked_fn=on_click) ui.Button("Dump", clicked_fn=on_dump) def on_shutdown(self): print("[ordinary] ordinary shutdown") # The main body of the clean up code for VRoid Studio characters. def clean_up_prim(self): # VRoid Studio dependent code. This code has hard coded path names used by VRoid Studio characters. # If needed, could clean this up to make more generic. # But I am also hoping NVIDIA fix their GLB import code, so trying to minimize my effort. # The problem is the bone structure is it picks one level too deep for the bone hierarchy. # /World/Root/J_Bip_C_Hips0/Skeleton/J_Bip_C_Hips/... should have been one node higher, so Root was # included under Skeleton. Without this, it thinks the Hips are the root bone (at height zero). # To work around the problem, I go through all the joint lists and insert "Root/" at the start # of the joint paths. ctx = omni.usd.get_context() stage = ctx.get_stage() # TODO: May have a go at this again, moving everything up so its Root/Skeleton without the hips. # root_prim = stage.GetPrimAtPath('/World/Root') # root_prim.SetTypeName('SkelRoot') # Move Skeleton directly under Root layer # self.move_if_necessary(stage, '/World/Root/J_Bip_C_Hips0/Skeleton', '/World/Root/Skeleton') # Move meshes directly under Root layer, next to Skeleton # self.move_if_necessary(stage, '/World/Root/J_Bip_C_Hips0/Face_baked', '/World/Root/Face_baked') # self.move_if_necessary(stage, '/World/Root/J_Bip_C_Hips0/Body_baked', '/World/Root/Body_baked') # self.move_if_necessary(stage, '/World/Root/J_Bip_C_Hips0/Hair001_baked', '/World/Root/Hair001_baked') # Patch the skeleton structure, if not done already. Add "Root" to the joint list. skeleton_prim = stage.GetPrimAtPath('/World/Root/J_Bip_C_Hips0/Skeleton') if skeleton_prim: self.add_parent_to_skeleton_joint_list(skeleton_prim, 'Root') for child in stage.GetPrimAtPath('/World/Root/J_Bip_C_Hips0').GetChildren(): if child.IsA(UsdGeom.Mesh): self.add_parent_to_mesh_joint_list(child, 'Root') # self.split_disconnected_meshes(stage, child) if child.GetName().startswith("Face_"): e = ExtractMeshes(stage) e.extract_face_meshes(child) if child.GetName().startswith("Hair"): e = ExtractMeshes(stage) e.extract_hair_meshes(child) if child.GetName().startswith("Body_"): e = ExtractMeshes(stage) e.extract_body_meshes(child) # Delete the dangling node (was old SkelRoot) # self.delete_if_no_children(stage, '/World/Root/J_Bip_C_Hips0') # Delete old skeleton if present. if stage.GetPrimAtPath('/World/Root/J_Bip_C_Hips0/Skeleton/J_Bip_C_Hips'): omni.kit.commands.execute('DeletePrims', paths=[Sdf.Path('/World/Root/J_Bip_C_Hips0/Skeleton/J_Bip_C_Hips')]) # If a prim exists at the source path, move it to the target path. # Returns true if moved, false otherwise. def move_if_necessary(self, stage, source_path, target_path): if stage.GetPrimAtPath(source_path): omni.kit.commands.execute( 'MovePrim', path_from=source_path, path_to=target_path, keep_world_transform=False, destructive=False) return True return False # Delete the prim at the specified path if it exists and has no children. # Returns true if deleted, false otherwise. def delete_if_no_children(self, stage, path): prim = stage.GetPrimAtPath(path) if prim: if not prim.GetChildren(): omni.kit.commands.execute( 'DeletePrims', paths=[Sdf.Path(path)], destructive=False) return True return False def add_parent_to_skeleton_joint_list(self, skeleton_prim: Usd.Prim, parent_name): """ A skeleton has 3 attributes: - uniform matrix4d[] bindTransforms = [( (1, 0, -0, 0), ...] - uniform token[] joints = ["J_Bip_C_Hips", ...] - uniform matrix4d[] restTransforms = [( (1, 0, -0, 0), ...] In Omniverse Code etc, you can hover over the names in the "Raw USD Property" panel to get more documentation on the above properties. We need to insert the new parent at the front of the three lists, and prepend the name to the join paths. """ # Get the attributes joints: Usd.Attribute = skeleton_prim.GetAttribute('joints') bindTransforms: Usd.Attribute = skeleton_prim.GetAttribute('bindTransforms') restTransforms: Usd.Attribute = skeleton_prim.GetAttribute('restTransforms') # If first join is the parent name already, nothing to do. if joints.Get()[0] == parent_name: return False # TODO: I use raw USD functions here, but there is also omni.kit.commands.execute("ChangeProperty",...) # if want undo... # https://docs.omniverse.nvidia.com/prod_kit/prod_kit/programmer_ref/usd/properties/set-attribute.html#omniverse-kit-commands joints.Set([parent_name] + [parent_name + '/' + jp for jp in joints.Get()]) # Insert unity matrix at the start for the root node we added. # ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) unity_matrix = Gf.Matrix4d(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) if bindTransforms.IsValid(): bindTransforms.Set([unity_matrix] + [x for x in bindTransforms.Get()]) if restTransforms.IsValid(): restTransforms.Set([unity_matrix] + [x for x in restTransforms.Get()]) # The meshes have paths to bones as well - add "Root" to their paths as well. def add_parent_to_mesh_joint_list(self, mesh_prim, parent_name): if mesh_prim: joints: Usd.Attribute = mesh_prim.GetAttribute('skel:joints') # Don't touch empty string. Don't add if already added. First value might be empty string. if not joints.Get()[1].startswith(parent_name): joints.Set([jp if jp == "" else parent_name + '/' + jp for jp in joints.Get()]) return True return False # Going to delete this - ended up creating a separate class for this. It got tricky. #def split_disconnected_meshes(self, stage: Usd.Stage, mesh_prim: UsdGeom.Mesh): # """ # Look for child GeomSubset prims and see if they have discontiguous meshes. # Audio2Face cannot work with such meshes, so we need to split them into separate # GeomSubset prims. # """ # mesh_indices = mesh_prim.GetAttribute('faceVertexIndices') # for child in mesh_prim.GetChildren(): # if child.IsA(UsdGeom.Subset): # subset_prim: UsdGeom.Subset = child # subset_indices = child.GetAttribute('indices').Get() # split = self.split_subset(mesh_indices, subset_indices) # if len(split) > 1: # print("Create new meshes for " + subset_prim) # i = 0 # for split_subset in split: # subset_path = subset_prim.GetPath() + "_" + i # new_prim: UsdGeom.Subset = stage.DefinePrim(subset_path, usdType=UsdGeom.Subset) # new_prim.CreateElementTypeAttr().Set(subset_prim.GetElementTypeAttr().Get()) # new_prim.CreateFamilyNameAttr().Set(subset_prim.GetFamilyNameAttr().Get()) # new_prim.CreateIndicesAttr().Set(split_subset) # material_binding: UsdShade.MaterialBindingAPI = UsdShade.MaterialBindingAPI(new_prim) # binding_targets = material_binding.GetMaterialBindSubsets() # material_binding.CreateMaterialBindSubset().Set(UsdShade.MaterialBindingAPI(subset_prim).GetMaterialBindingTargets()) # i += 1 # #def split_subset(self, mesh_indices, subset_indices): # """ # Given an array of mesh face vertex indicies (multiply them by 3 to get the points index) # and an array of subset indices into the mesh indicies array, return an array of # disconnected submeshes. # """ # Traverse the tree of prims, printing out selected attribute information. # Useful for debugging. def dump_stage(self): ctx = omni.usd.get_context() stage = ctx.get_stage() for prim in stage.Traverse(): for attr in prim.GetAttributes(): try: if len(attr.Get()) >= 50: print(attr.GetPath(), len(attr.Get())) except Exception: pass
10,842
Python
47.40625
142
0.606069
alankent/ordinary-vrm-clean/exts/ordinary/ordinary/MeshMaker.py
from pxr import Usd, Sdf, Gf, UsdGeom, UsdShade, UsdSkel # This class creates a new Mesh by adding faces one at a time. # When don, you ask it to create a new Mesh prim. class MeshMaker: def __init__(self, stage: Usd.Stage, material, skeleton, skelJoints): self.stage = stage self.material = material self.faceVertexCounts = [] self.faceVertexIndices = [] self.normals = [] self.st = [] self.points = [] self.skeleton = skeleton self.skelJoints = skelJoints self.skelJointIndices = [] self.skelJointWeights = [] # Create a Mesh prim at the given prim path. def create_at_path(self, prim_path) -> UsdGeom.Mesh: # https://stackoverflow.com/questions/74462822/python-for-usd-map-a-texture-on-a-cube-so-every-face-have-the-same-image mesh: UsdGeom.Mesh = UsdGeom.Mesh.Define(self.stage, prim_path) mesh.CreateSubdivisionSchemeAttr().Set(UsdGeom.Tokens.none) mesh.CreatePointsAttr(self.points) mesh.CreateExtentAttr(UsdGeom.PointBased(mesh).ComputeExtent(mesh.GetPointsAttr().Get())) mesh.CreateNormalsAttr(self.normals) mesh.SetNormalsInterpolation(UsdGeom.Tokens.faceVarying) mesh.CreateFaceVertexCountsAttr(self.faceVertexCounts) mesh.CreateFaceVertexIndicesAttr(self.faceVertexIndices) mesh.CreatePrimvar('st', Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.faceVarying).Set(self.st) ba: UsdSkel.BindingAPI = UsdSkel.BindingAPI(mesh) ba.Apply(mesh.GetPrim()) ba.CreateGeomBindTransformAttr(Gf.Matrix4d(1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1)) ba.CreateSkeletonRel().SetTargets(self.skeleton) ba.CreateJointsAttr(self.skelJoints) ba.CreateJointIndicesPrimvar(False, elementSize=4).Set(self.skelJointIndices) ba.CreateJointWeightsPrimvar(False, elementSize=4).Set(self.skelJointWeights) UsdShade.MaterialBindingAPI(mesh).GetDirectBindingRel().SetTargets(self.material) return mesh # Add a new face (3 points with normals and mappings to part of the texture) def add_face(self, points, jointIndices, jointWeights, pi1, pi2, pi3, normal1, normal2, normal3, st1, st2, st3): self.faceVertexCounts.append(3) self.faceVertexIndices.append(self.new_index_of_point(points, jointIndices, jointWeights, pi1)) self.faceVertexIndices.append(self.new_index_of_point(points, jointIndices, jointWeights, pi2)) self.faceVertexIndices.append(self.new_index_of_point(points, jointIndices, jointWeights, pi3)) self.normals.append(normal1) self.normals.append(normal2) self.normals.append(normal3) self.st.append(st1) self.st.append(st2) self.st.append(st3) # Given a point, find an existing points array entry and return its index, otherwise add another point # and return the index of the new point. # If adding a new point, also copy across the skeleton joint index and joint weight from the old point. # TODO: This could be optimized with a lookup table of point->index. def new_index_of_point(self, points, jointIndices, jointWeights, point_index): point = points[point_index] for i in range(0, len(self.points)): if self.points[i] == point: return i self.points.append(point) # Copy across the old joint information. This assumes element_size = 4. self.skelJointIndices.append(jointIndices[point_index * 4]) self.skelJointIndices.append(jointIndices[point_index * 4 + 1]) self.skelJointIndices.append(jointIndices[point_index * 4 + 2]) self.skelJointIndices.append(jointIndices[point_index * 4 + 3]) self.skelJointWeights.append(jointWeights[point_index * 4]) self.skelJointWeights.append(jointWeights[point_index * 4 + 1]) self.skelJointWeights.append(jointWeights[point_index * 4 + 2]) self.skelJointWeights.append(jointWeights[point_index * 4 + 3]) return len(self.points) - 1
4,081
Python
50.024999
127
0.688312
alankent/ordinary-vrm-clean/exts/ordinary/ordinary/ExtractMeshes.py
import typing import omni.ext import omni.ui as ui import omni.kit.commands from pxr import Usd, Sdf, Gf, UsdGeom, UsdShade, UsdSkel from .MeshMaker import MeshMaker import math # Good resource https://github.com/NVIDIA-Omniverse/USD-Tutorials-And-Examples/blob/main/ColaboratoryNotebooks/usd_introduction.ipynb # Also https://docs.omniverse.nvidia.com/prod_kit/prod_kit/programmer_ref/usd/transforms/get-world-transforms.html #def get_world_translate(prim: Usd.Prim) -> Gf.Vec3d: # """ # Get the local transformation of a prim using Xformable. # See https://graphics.pixar.com/usd/release/api/class_usd_geom_xformable.html # Args: # prim: The prim to calculate the world transformation. # Returns: # - Translation vector. # """ # xform = UsdGeom.Xformable(prim) # time = Usd.TimeCode.Default() # The time at which we compute the bounding box # world_transform: Gf.Matrix4d = xform.ComputeLocalToWorldTransform(time) # translation: Gf.Vec3d = world_transform.ExtractTranslation() # return translation class ExtractMeshes: def __init__(self, stage: Usd.Stage): self.stage = stage self.segment_map = None # Return true if this Mesh is the Face mesh we want to convert. # Names are like "Face_baked" and "Face__merged__Clone_". #def mesh_is_face_mesh(mesh: UsdGeom.Mesh): # name: str = mesh.GetName() # if name.startswith("Face_"): # return True # else: # return False def extract_face_meshes(self, mesh: UsdGeom.Mesh): # Run through the children sub-meshes # "F00_000_00_FaceMouth_00_FACE" -- Needs splitting into upper teeth, lower teeth, mouth cavity, toungue # "F00_000_00_EyeWhite_00_EYE" # "F00_000_00_FaceEyeline_00_FACE" # "F00_000_00_FaceEyelash_00_FACE" # "F00_000_00_FaceBrow_00_FACE" # "F00_000_00_EyeIris_00_EYE" # "F00_000_00_EyeHighlight_00_EYE" -- Drop? Gone in new version. # "F00_000_00_Face_00_SKIN" or "N00_000_00_Face_00_SKIN__Instance_" # "F00_000_00_Face_00_SKIN_1" # "F00_000_00_EyeExtra_01_EYE" -- Drop? Gone in new version. for child in mesh.GetChildren(): if child.IsA(UsdGeom.Subset): name: str = child.GetName() if "_Face_" in name and "SKIN" in name: self.extract_face_skin(mesh, child) elif "_FaceMouth_" in name: self.extract_mouth(mesh, child) elif "_FaceEyeline_" in name: self.extract_eyeline(mesh, child) elif "_FaceEyelash_" in name: self.extract_eyelash(mesh, child) elif "_FaceBrow_" in name: self.extract_eyebrow(mesh, child) elif "_EyeWhite_" in name: self.extract_eyewhites(mesh, child) elif "_EyeIris" in name: self.extract_irises(mesh, child) def extract_hair_meshes(self, old_mesh: UsdGeom.Mesh): # Run through the children sub-meshes and copy them to their own Mesh n = 0 for child in old_mesh.GetChildren(): if child.IsA(UsdGeom.Subset): material = UsdShade.MaterialBindingAPI(child).GetDirectBindingRel().GetTargets() skeleton = UsdSkel.BindingAPI(old_mesh).GetSkeletonRel().GetTargets() skelJoints = UsdSkel.BindingAPI(old_mesh).GetJointsAttr().Get() new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, child) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild('hair_' + str(n))) n += 1 def extract_body_meshes(self, old_mesh: UsdGeom.Mesh): # Run through the children sub-meshes and copy them to their own Mesh n = 0 for child in old_mesh.GetChildren(): if child.IsA(UsdGeom.Subset): material = UsdShade.MaterialBindingAPI(child).GetDirectBindingRel().GetTargets() skeleton = UsdSkel.BindingAPI(old_mesh).GetSkeletonRel().GetTargets() skelJoints = UsdSkel.BindingAPI(old_mesh).GetJointsAttr().Get() new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, child) name: str = child.GetName() if "_Body_" in name: new_name = 'bodyskin' elif "_Tops_" in name: new_name = 'clothes_upper' elif "_Bottoms_" in name: new_name = 'clothes_lower' elif "_Shoes_" in name: new_name = 'shoes' else: new_name = 'body_' + str(n) n += 1 new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild(new_name)) # Copy the whole mesh across for the face. # The original mesh in VRoid points that are not used in any face. def extract_face_skin(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.make_mesh_from_subset(old_mesh, old_subset, 'face_skin') # Extract multiple meshes from the mouth: upper teeth (needs joining), lower teeth (needs joining), # tounge, and mouth cavity. def extract_mouth(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): # This one is the most tricky case. There is one "subset" for the mouth, which includes upper # and lower teeth, as well as the mouth cavity. We need upper and lower teeth in their own # meshes for Audio2Face to work. # So, we segment the mesh, ignoring points that are not actually used by faces (there are lot!). # The first two connected meshes are for the inside and outside of the teeth. # The next two are the lower teeth. # Then there is a single connected mesh for the mouth cavity. # Finally there are another two meshes for the top and bottom of the tongue. num_segments = self.segment_mesh(old_mesh, old_subset) if num_segments == 7: material = UsdShade.MaterialBindingAPI(old_subset).GetDirectBindingRel().GetTargets() skeleton = UsdSkel.BindingAPI(old_mesh).GetSkeletonRel().GetTargets() skelJoints = UsdSkel.BindingAPI(old_mesh).GetJointsAttr().Get() # 0 = inner upper teeth, 1 = outer upper teeth new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset, 0, 1) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild('upper_teeth')) # 2 = inner lower teeth, 3 = outer lower teeth new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset, 2, 3) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild('lower_teeth')) # 4 = mouth cavity new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset, 4, 4) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild('mouth_cavity')) # 5 = upper tongue, 6 = lower tongue new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset, 5, 6) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild('tongue')) self.clear_segment_map() # Eyeline we could split into left and right eyes, but we don't need to. # It uses a separate mesh with its own material. def extract_eyeline(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.make_mesh_from_subset(old_mesh, old_subset, 'eyeline') # Eyelash we could split into left and right eyes, but we don't need to. # It uses a separate mesh with its own material. def extract_eyelash(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.make_mesh_from_subset(old_mesh, old_subset, 'eyelash') # Eyebrows we could split into left and right eyes, but we don't need to. # It uses a separate mesh with its own material. def extract_eyebrow(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.make_mesh_from_subset(old_mesh, old_subset, 'eyebrow') # Eyewhites are interesting. Rather than be a sphere or similar, there is actually a gap # behind the irises, which causes shadows. Might want to adjust these one day, but they # stop from being able to look inside the head when the eyes move (the whites do not move). def extract_eyewhites(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.make_mesh_from_subset(old_mesh, old_subset, 'eyewhites') # We need to extract the left and right eye irises. There is lots of other points and things # that are not actually used, so we want to toss them. def extract_irises(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): self.segment_mesh(old_mesh, old_subset) eyes = ["left_eye", "right_eye"] for i in range(len(eyes)): material = UsdShade.MaterialBindingAPI(old_subset).GetDirectBindingRel().GetTargets() skeleton = UsdSkel.BindingAPI(old_mesh).GetSkeletonRel().GetTargets() skelJoints = UsdSkel.BindingAPI(old_mesh).GetJointsAttr().Get() new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset, i, i) # We do a bit more work because eyes need to rotate. So we insert an Xform about the # Mesh for the two eyes. Its a bit behind the eyes, moved a bit towards the center of the head # as the front of the characters is more rounded than a real head. # We use the size of the iris to estimate how far behind the iris the pivot point needs to go. pivot_prim_path = old_mesh.GetPath().GetParentPath().AppendChild(eyes[i] + "_pivot") xformPrim = UsdGeom.Xform.Define(self.stage, pivot_prim_path) eye_mesh: UsdGeom.Mesh = new_mesh.create_at_path(pivot_prim_path.AppendChild(eyes[i])) extent = eye_mesh.GetExtentAttr().Get() (x1,y1,z1) = extent[0] (x2,y2,z2) = extent[1] (dx,dy,dz) = ((x1+x2)/4.0, (y1+y2)/2.0, z2 - (y2-y1) * 2.0) UsdGeom.XformCommonAPI(xformPrim).SetTranslate((dx, dy, dz)) UsdGeom.XformCommonAPI(eye_mesh).SetTranslate((-dx, -dy, -dz)) self.clear_segment_map() # Create a new mesh from the given submesh (copy it all to a new Mesh) def make_mesh_from_subset(self, old_mesh, old_subset, prim_name): material = UsdShade.MaterialBindingAPI(old_subset).GetDirectBindingRel().GetTargets() skeleton = UsdSkel.BindingAPI(old_mesh).GetSkeletonRel().GetTargets() skelJoints = UsdSkel.BindingAPI(old_mesh).GetJointsAttr().Get() new_mesh = MeshMaker(self.stage, material, skeleton, skelJoints) self.copy_subset(new_mesh, old_mesh, old_subset) new_mesh.create_at_path(old_mesh.GetPath().GetParentPath().AppendChild(prim_name)) # A GeomSubset holds an array of indicies of which faces are used by this subset. # But we need it in a separate Mesh for Audio2Face to be happy. # So we run down the list of referenced faces, and add them to a completely new Mesh. # This drops lots of unused points and cleans up the model. def copy_subset(self, new_mesh: MeshMaker, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset, segment1=None, segment2=None): faceVertexIndices = old_mesh.GetAttribute('faceVertexIndices').Get() points = old_mesh.GetAttribute('points').Get() # GetPointsAttr().Get() normals = old_mesh.GetAttribute('normals').Get() # GetNormalsAttr().Get() st = old_mesh.GetAttribute('primvars:st').Get() jointIndices = old_mesh.GetAttribute('primvars:skel:jointIndices').Get() jointWeights = old_mesh.GetAttribute('primvars:skel:jointWeights').Get() for face_index in old_subset.GetAttribute('indices').Get(): # GetIndicesAttr().Get(): if self.segment_map is None or self.segment_map[face_index] == segment1 or self.segment_map[face_index] == segment2: # This is hard coded for VRoid Studio in that it assumes each face is a triangle with 3 points. # Pull the details of each triangle on the surface and add it to a new mesh, building it up from scratch. pi1 = faceVertexIndices[face_index * 3] pi2 = faceVertexIndices[face_index * 3 + 1] pi3 = faceVertexIndices[face_index * 3 + 2] n1 = normals[face_index * 3] n2 = normals[face_index * 3 + 1] n3 = normals[face_index * 3 + 2] st1 = st[face_index * 3] st2 = st[face_index * 3 + 1] st3 = st[face_index * 3 + 2] new_mesh.add_face(points, jointIndices, jointWeights, pi1, pi2, pi3, n1, n2, n3, st1, st2, st3) # Clear the segment map. def clear_segment_map(self): self.segment_map = None # Create a segment map by running through all the faces (and their verticies), then any other face # that shares a point with the same mesh is also considered to be part of the same segment. def segment_mesh(self, old_mesh: UsdGeom.Mesh, old_subset: UsdGeom.Subset): # Work out some commonly used attributes. faceVertexIndices = old_mesh.GetAttribute('faceVertexIndices').Get() subset_indices = old_subset.GetAttribute('indices').Get() num_faces = math.ceil(len(faceVertexIndices) / 3) self.segment_map = [None] * num_faces segment = 0 # Loop until we fail to find a face that has not been marked with a segment number. while True: i = 0 while i < len(subset_indices) and self.segment_map[subset_indices[i]] is not None: i += 1 if i == len(subset_indices): # Nothing found, so we are all done! break first_face = i # Rather than adding the 3D coordinates, we add the index to the array of "points". # If anything reuses the same index, then its in the same continuous mesh. seen = set() seen.add(faceVertexIndices[subset_indices[i] * 3]) seen.add(faceVertexIndices[subset_indices[i] * 3 + 1]) seen.add(faceVertexIndices[subset_indices[i] * 3 + 2]) self.segment_map[i] = segment # We have no guarantee on the order of faces, so we do a pass from front to end. # If a face was added to the current segment, we retry until we fail to find anything. found_one = True while found_one: found_one = False i = first_face while i < len(subset_indices): face = subset_indices[i] if self.segment_map[face] is None: if faceVertexIndices[face * 3] in seen or faceVertexIndices[face * 3 + 1] in seen or faceVertexIndices[face * 3 + 2] in seen: # One of the 3 points of the current Face shares a vertex with the current mesh, # so add all 3 points as belonging to the mesh and mark that we did find at least one more. seen.add(faceVertexIndices[face * 3]) seen.add(faceVertexIndices[face * 3 + 1]) seen.add(faceVertexIndices[face * 3 + 2]) self.segment_map[face] = segment found_one = True i += 1 segment += 1 return segment
16,123
Python
52.926421
149
0.616076
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/docs/CHANGELOG.md
[no changelog]
15
Markdown
6.999997
14
0.733333
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/docs/README.md
# Fabricator Extension
23
Markdown
10.999995
22
0.826087
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/auth_service.py
import requests class AuthService: SIGN_IN_URL = 'https://gateway.vmod.com/library/customers/sign_in' AUTHENTICATE_URL = 'https://gateway.vmod.com/library/customers/me' WORKSPACES_URL = 'https://gateway.vmod.com/library/members/all_workspaces' def __init__(self): self.access_token = None def sign_in(self, email: str, password: str) -> None: try: response = requests.post(AuthService.SIGN_IN_URL, json = { "email": email, "password": password }) response.raise_for_status() self.access_token = response.json()['token'] except: raise Exception('Invalid credentials') def is_authenticated(self) -> bool: try: response = requests.get(AuthService.AUTHENTICATE_URL, headers = { 'Authorization': f'Bearer {self.access_token}' }) response.raise_for_status() return True except: return False def get_workspaces(self): try: response = requests.get(AuthService.WORKSPACES_URL, headers = { 'Authorization': f'Bearer {self.access_token}' }) response.raise_for_status() return list(map(lambda x: { "id": x["workspace"]["id"], "name": x["workspace"]["name"] }, filter(lambda x: x["status"] == "active", response.json()))) except: raise Exception('Invalid workspaces')
1,403
Python
41.545453
162
0.601568
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/extension.py
import omni.ext import omni.ui as ui from .auth_service import AuthService from .fabricator_service import FabricatorService from .file_service import FileService # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print(f"[fabricator.extension] some_public_function was called with {x}") return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class FabricatorExtension(omni.ext.IExt): DEFAULT_WIDTH = 600 PER_PAGE = 15 # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[fabricator.extension] fabricator extensiohn startup") self._window = ui.Window("Fabricator", width=FabricatorExtension.DEFAULT_WIDTH) self.file_service = FileService() self.file_service.create_dir() self.auth_service = AuthService() self.signin_email_input = None self.signin_password_input = None self._signin_error_msg = None self.workspaces = [] self.current_workspace_idx = 0 self.workspace_combobox = None self.fabricator_service = FabricatorService() self.page_search_input = None self.page = 1 self.max_page = 1 self.render_signin_page() def on_shutdown(self): print("[fabricator.extension] fabricator extensiohn shutdown") self.file_service.remove_dir() def current_workspace_id(self): return self.workspaces[self.current_workspace_idx]["id"] def render_signin_page(self): def signin_btn_clicked(): email = self.signin_email_input.model.get_value_as_string() password = self.signin_password_input.model.get_value_as_string() try: self.auth_service.sign_in(email, password) self.fabricator_service.set_access_token(self.auth_service.access_token) self.workspaces = self.auth_service.get_workspaces() self.render_assets_page() except Exception as e: print(f"[fabricator.extension] {e}") self._signin_error_msg = "Invalid Email or Password" self.render_signin_page() with self._window.frame: with ui.VStack(width=FabricatorExtension.DEFAULT_WIDTH, spacing=10): ui.Label("Sign In", alignment=ui.Alignment.CENTER, height=80, style={"font_size": 40}) ui.Label("with your VMOD account", alignment=ui.Alignment.CENTER_TOP, height=10) ui.Label("If you don't have an account, create one at visit vmod.xyz", alignment=ui.Alignment.CENTER_TOP, height=40) if self._signin_error_msg is not None: ui.Label(self._signin_error_msg, alignment=ui.Alignment.CENTER, height=10, style={"color": "red"}) ui.Label("Email:", alignment=ui.Alignment.CENTER_BOTTOM, height=10) self.signin_email_input = ui.StringField(placeholder="Email", height=20, style={"margin_width": 40}) ui.Label("Password:", alignment=ui.Alignment.CENTER_BOTTOM, height=10) self.signin_password_input = ui.StringField(password_mode=True, height=20, style={"margin_width": 40}) ui.Button("Sign In", height=80, style={"margin_width": 100, "margin_height": 20}, clicked_fn=signin_btn_clicked) def workspace_selector_component(self): self.workspace_combobox = ui.ComboBox(self.current_workspace_idx, *list(map(lambda ws: ws["name"], self.workspaces)), height=10).model def workspace_changed(model, item): self.current_workspace_idx = model.get_item_value_model().as_int self.page = 1 self.render_assets_page() self.workspace_combobox.add_item_changed_fn(workspace_changed) def render_assets_page(self): try: print(f"[fabricator.extension] render_assets_page") assets, count = self.fabricator_service.load_assets(self.current_workspace_id(), self.page, FabricatorExtension.PER_PAGE) self.max_page = count with self._window.frame: with ui.VStack(spacing=10, width=FabricatorExtension.DEFAULT_WIDTH, height=400): self.workspace_selector_component() with ui.VGrid(column_width=100, row_height=120, column_count=5, row_count=3): for asset in assets: file_path = self.file_service.save_file(f'{asset["code"]}.usda', asset["asset_url"]) self.asset_component(asset, file_path) self.page_search_component() except Exception as e: print(f"[fabricator.extension] {e}") self.render_signin_page() def library_page(self): with self._window.frame: with ui.VStack(spacing=10, width=FabricatorExtension.DEFAULT_WIDTH, height=400): self.gnb_component() ui.Label("library!!") def asset_component(self, asset, file_path): def drag_fn(asset): asset_name = asset["code"] image_url = asset["thumbnail_url"] asset_url = asset["asset_url"] with ui.VStack(): ui.Image(image_url, width=100, height=100) return file_path with ui.VStack(): asset_name = asset["code"] image_url = asset["thumbnail_url"] ui.ImageWithProvider(image_url, width=100, height=100, style={"margin_width": 5}, drag_fn=lambda: drag_fn(asset)) ui.Label(asset_name, alignment=ui.Alignment.CENTER_TOP, width=100, height=20, style={"font_size": 15}, elided_text=True) def page_search_component(self): curr_page = self.page def search_btn_handler(): m = self.page_search_input.model search_page = m.get_value_as_int() # if search_page == curr_page: # return if search_page < 1 or search_page > self.max_page: print("[fabricator.extension] Invalid search range") m.set_value(curr_page) return self.page = search_page self.render_assets_page() WIDTH = 100 HEIGHT = 20 with ui.Placer(offset_x=FabricatorExtension.DEFAULT_WIDTH / 2 - WIDTH / 2): with ui.HStack(width=WIDTH, height=HEIGHT): self.page_search_input = ui.IntField() self.page_search_input.model.set_value(curr_page) ui.Label(f" / {self.max_page}") ui.Button("search", clicked_fn=search_btn_handler)
7,073
Python
42.937888
142
0.61346
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/file_service.py
import os, requests, shutil, uuid from io import BytesIO from PIL import Image from pathlib import Path class FileService: image_ext = "png" model_ext = "usdz" def __init__(self) -> None: self.dir_path = (Path.home() / 'temp').as_posix() def create_dir(self): if not os.path.exists(self.dir_path): os.makedirs(self.dir_path) def remove_dir(self): if os.path.exists(self.dir_path): shutil.rmtree(self.dir_path) def save_file(self, file_name: str, url: str) -> str: file_path = os.path.join(self.dir_path, f'{file_name}') if os.path.exists(file_path): return file_path binary_data = requests.get(url).content with open(file_path, 'wb') as file_object: file_object.write(binary_data) return file_path
848
Python
27.299999
63
0.596698
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/mock_auth_service.py
class MockAuthService: def __init__(self): self.access_token = None def sign_in(self, email, password) -> None: return "mock_token" def is_authenticated(self) -> bool: return True def get_workspaces(self): return [{ "id": 1, "name": "workspace1" }, { "id": 2, "name": "workspace2" }]
346
Python
27.916664
85
0.552023
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/mock_fabricator_service.py
from pathlib import Path import json import math class MockFabricatorService: mock_data_path = Path(__file__).parent / 'mock.json' mock2_data_path = Path(__file__).parent / 'mock2.json' def __init__(self): self.data = [] self.data2 = [] with open(MockFabricatorService.mock_data_path, 'r') as file: self.data = json.load(file) with open(MockFabricatorService.mock2_data_path, 'r') as file: self.data2 = json.load(file) def set_access_token(self, access_token): self.access_token = access_token def load_assets(self, workspace_id, page, limit): data = self.data if (workspace_id == 1) else self.data2 assets = data[((page - 1) * limit):(page * limit)] count = math.ceil(len(data) / limit) return [assets, count]
843
Python
28.103447
70
0.60261
swatchoncompany/fabricator-omniverse-extension/exts/fabricator.extension/fabricator/extension/fabricator_service.py
import requests import math class FabricatorService: ASSETS_URL = 'https://gateway.vmod.com/library/texture_generations/omniverse/list' def set_access_token(self, access_token): self.access_token = access_token def load_assets(self, workspace_id, page, limit): headers = { 'Authorization': f'Bearer {self.access_token}', 'current-workspace-id': workspace_id } if page < 1: page = 1 offset = (page - 1) * limit try: response = requests.get(f'{FabricatorService.ASSETS_URL}?offset={offset}&limit={limit}', headers = headers) response.raise_for_status() body = response.json() count = max(math.ceil(body['count'] / limit), 1) return [list(map(lambda d: { 'id': d['id'], 'code': d['code'], 'asset_url': d['usdaUrl'], 'thumbnail_url': d['thumbnail']['blackSmallUrl']}, body['data'])), count] except: raise Exception('Invalid credentials')
982
Python
39.958332
175
0.606925
aniketrajnish/Omniverse-Shakespeare-Project/exts/makra.omniverse.shakespeare.project/makra/omniverse/shakespeare/project/extension.py
import os import omni.ext import omni.ui as ui from omni.kit.window.file_importer import get_file_importer from .gemini import gemini from .convai import convai class ShakespeareProjectExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[Shakespeare Project] Startup") self.initUI() def initUI(self): self._window = ui.Window("Shakespeare Project", width=400, height=300) with self._window.frame: with ui.VStack(): self.selectImgBtn = ui.Button("Select Image", clicked_fn=self.selectImage, width=100, height=30) ui.Spacer(height=10) self.imgWidget = ui.Image(width=320, height=180, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT) def selectImage(self): fileImporter = get_file_importer() fileImporter.show_window( title="Import File", import_handler=self.onFileSelected, file_extension_types=[ ("jpg", "JPEG image"), ("jpeg", "JPEG image"), ("png", "PNG image"), ("webp", "WebP image"), ("heic", "HEIC image"), ("heif", "HEIF image") ], import_button_label="Select" ) def onFileSelected(self, filename, dirname, selections): if selections: filepath = os.path.join(dirname, selections[0]) print(f"Selected file: {filepath}") self.processImage(filepath) convai.appendToCharBackstory(self.geminiResponse) def processImage(self, imgPath): self.imgWidget.source_url = f"file:///{imgPath.replace(os.sep, '/')}" self.geminiResponse = gemini.getGeminiResponse(imgPath) print(f"Gemini Response: {self.geminiResponse}") def on_shutdown(self): print("[Shakespeare Project] Shutdown") if self._window: self._window.destroy()
1,935
Python
35.528301
112
0.595349
aniketrajnish/Omniverse-Shakespeare-Project/exts/makra.omniverse.shakespeare.project/makra/omniverse/shakespeare/project/convai/convai.py
import os import requests import json import configparser def loadConvaiConfig(): configPath = os.path.join(os.path.dirname(__file__), 'convai.env') if not os.path.exists(configPath): raise FileNotFoundError("Convai configuration file not found.") config = configparser.ConfigParser() config.read(configPath) try: convaiConfig = { 'apiKey': config.get('CONVAI', 'API_KEY'), 'characterId': config.get('CONVAI', 'CHARACTER_ID'), 'channel': config.get('CONVAI', 'CHANNEL'), 'actions': config.get('CONVAI', 'ACTIONS'), 'sessionId': config.get('CONVAI', 'SESSION_ID'), 'baseBackstory' : config.get('CONVAI', 'BASE_BACKSTORY').replace("\\n", "\n") } except configparser.NoOptionError as e: raise KeyError(f"Missing configuration key in convai.env: {e}") return convaiConfig # def fetchCurrCharBackstory(): # config = loadConvaiConfig() # url = "https://api.convai.com/character/get" # payload = json.dumps({ # "charID": config['characterId'] # }) # headers = { # 'CONVAI-API-KEY': config['apiKey'], # 'Content-Type': 'application/json' # } # response = requests.post(url, headers=headers, data=payload) # if response.status_code == 200: # data = response.json() # return data.get('backstory', "No backstory found.") # else: # print(f"Failed to fetch character details: {response.status_code} - {response.text}") # return None def updateCharBackstory(newBackstory): config = loadConvaiConfig() url = "https://api.convai.com/character/update" payload = json.dumps({ "charID": config['characterId'], "backstory": newBackstory }) headers = { 'CONVAI-API-KEY': config['apiKey'], 'Content-Type': 'application/json' } response = requests.post(url, headers=headers, data=payload) if response.status_code == 200: print("Character updated successfully.") else: print(f"Failed to update character: {response.status_code} - {response.text}") def appendToCharBackstory(backstoryUpdate): config = loadConvaiConfig() currBackstory = config['baseBackstory'] if currBackstory: newBackstory = f"{currBackstory}\n{backstoryUpdate}" updateCharBackstory(newBackstory)
2,409
Python
33.428571
95
0.62308
aniketrajnish/Omniverse-Shakespeare-Project/exts/makra.omniverse.shakespeare.project/makra/omniverse/shakespeare/project/gemini/helpers.py
import os import json from pathlib import Path def loadConfig(file): try: with open(file, 'r') as f: return json.load(f) except FileNotFoundError: raise Exception(f"Could not find config file: {file}") except json.JSONDecodeError: raise Exception(f"Could not parse config file: {file}") def currPath(): return os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) def determineMimeType(fileName): ext = fileName.split(".")[-1].lower() if ext == 'jpg': return 'image/jpeg' supportedExts = ["jpg", "jpeg", "png", "webp", "heic", "heif"] if ext not in supportedExts: raise Exception(f"Unsupported file extension: {ext}") else: return f"image/{ext}"
777
Python
25.827585
81
0.616474
aniketrajnish/Omniverse-Shakespeare-Project/exts/makra.omniverse.shakespeare.project/makra/omniverse/shakespeare/project/gemini/image.py
import base64 class ImageHandler: @staticmethod def encodeImg(imgPath): with open(imgPath, "rb") as imgFile: return base64.b64encode(imgFile.read()).decode("utf-8")
193
Python
26.714282
67
0.663212
aniketrajnish/Omniverse-Shakespeare-Project/exts/makra.omniverse.shakespeare.project/makra/omniverse/shakespeare/project/gemini/gemini.py
import requests import json import os import configparser from . import image from . import helpers def loadGeminiConfig(): configPath = os.path.join(helpers.currPath(), 'gemini.env') if not os.path.exists(configPath): raise FileNotFoundError("Gemini configuration file not found.") config = configparser.ConfigParser() config.read(configPath) try: geminiConfig = { 'baseUrl': config.get('GEMINI', 'BASE_URL'), 'apiKey': config.get('GEMINI', 'API_KEY'), 'model': config.get('GEMINI', 'MODEL'), 'prompt': config.get('GEMINI', 'PROMPT') } except configparser.NoOptionError as e: raise KeyError(f"Missing configuration key in gemini.env: {e}") return geminiConfig def getGeminiResponse(imgPath): geminiConfig = loadGeminiConfig() url = f"{geminiConfig['baseUrl']}/{geminiConfig['model']}:generateContent?key={geminiConfig['apiKey']}" base64Img = image.ImageHandler.encodeImg(imgPath) headers = { "Content-Type": "application/json" } data = json.dumps({ "contents": [ { "parts": [ {"text": geminiConfig["prompt"]}, { "inline_data": { "mime_type": helpers.determineMimeType(imgPath), "data": base64Img } } ] } ] }) try: response = requests.post(url, headers=headers, data=data) if response.status_code != 200: return f"Error: {response.status_code} - {response.text}" result = response.json() return result["candidates"][0]["content"]["parts"][0]["text"] except requests.exceptions.RequestException as e: return f"Request failed: {str(e)}"
1,910
Python
28.859375
107
0.551309
NVIDIA/warp/build_lib.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # This script is an 'offline' build of the core warp runtime libraries # designed to be executed as part of CI / developer workflows, not # as part of the user runtime (since it requires CUDA toolkit, etc) import sys if sys.version_info < (3, 7): raise Exception("Warp requires Python 3.7 minimum") import argparse import glob import os import shutil from warp.build_dll import build_dll, find_host_compiler, set_msvc_env, verbose_cmd from warp.context import export_builtins parser = argparse.ArgumentParser(description="Warp build script") parser.add_argument("--msvc_path", type=str, help="Path to MSVC compiler (optional if already on PATH)") parser.add_argument("--sdk_path", type=str, help="Path to WinSDK (optional if already on PATH)") parser.add_argument("--cuda_path", type=str, help="Path to CUDA SDK") parser.add_argument( "--mode", type=str, default="release", help="Build configuration, default 'release'", choices=["release", "debug"], ) # Note argparse.BooleanOptionalAction can be used here when Python 3.9+ becomes the minimum supported version parser.add_argument("--verbose", action="store_true", help="Verbose building output, default enabled") parser.add_argument("--no_verbose", dest="verbose", action="store_false") parser.set_defaults(verbose=True) parser.add_argument( "--verify_fp", action="store_true", help="Verify kernel inputs and outputs are finite after each launch, default disabled", ) parser.add_argument("--no_verify_fp", dest="verify_fp", action="store_false") parser.set_defaults(verify_fp=False) parser.add_argument("--fast_math", action="store_true", help="Enable fast math on library, default disabled") parser.add_argument("--no_fast_math", dest="fast_math", action="store_false") parser.set_defaults(fast_math=False) parser.add_argument("--quick", action="store_true", help="Only generate PTX code, disable CUTLASS ops") parser.add_argument("--build_llvm", action="store_true", help="Build Clang/LLVM compiler from source, default disabled") parser.add_argument("--no_build_llvm", dest="build_llvm", action="store_false") parser.set_defaults(build_llvm=False) parser.add_argument( "--llvm_source_path", type=str, help="Path to the LLVM project source code (optional, repo cloned if not set)" ) parser.add_argument("--debug_llvm", action="store_true", help="Enable LLVM compiler code debugging, default disabled") parser.add_argument("--no_debug_llvm", dest="debug_llvm", action="store_false") parser.set_defaults(debug_llvm=False) parser.add_argument("--standalone", action="store_true", help="Use standalone LLVM-based JIT compiler, default enabled") parser.add_argument("--no_standalone", dest="standalone", action="store_false") parser.set_defaults(standalone=True) args = parser.parse_args() # set build output path off this file base_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.join(base_path, "warp") print(args) verbose_cmd = args.verbose def find_cuda_sdk(): # check environment variables for env in ["WARP_CUDA_PATH", "CUDA_HOME", "CUDA_PATH"]: cuda_sdk = os.environ.get(env) if cuda_sdk is not None: print(f"Using CUDA Toolkit path '{cuda_sdk}' provided through the '{env}' environment variable") return cuda_sdk # use which/where to locate the nvcc compiler program nvcc = shutil.which("nvcc") if nvcc is not None: cuda_sdk = os.path.dirname(os.path.dirname(nvcc)) # strip the executable name and bin folder print(f"Using CUDA Toolkit path '{cuda_sdk}' found through 'which nvcc'") return cuda_sdk # check default paths if os.name == "nt": cuda_paths = glob.glob("C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*.*") if len(cuda_paths) >= 1: cuda_sdk = cuda_paths[0] print(f"Using CUDA Toolkit path '{cuda_sdk}' found at default path") return cuda_sdk else: usr_local_cuda = "/usr/local/cuda" if os.path.exists(usr_local_cuda): cuda_sdk = usr_local_cuda print(f"Using CUDA Toolkit path '{cuda_sdk}' found at default path") return cuda_sdk return None # setup CUDA Toolkit path if sys.platform == "darwin": args.cuda_path = None else: if not args.cuda_path: args.cuda_path = find_cuda_sdk() # setup MSVC and WinSDK paths if os.name == "nt": if args.msvc_path or args.sdk_path: # user provided MSVC and Windows SDK assert args.msvc_path and args.sdk_path, "--msvc_path and --sdk_path must be used together." args.host_compiler = set_msvc_env(msvc_path=args.msvc_path, sdk_path=args.sdk_path) else: # attempt to find MSVC in environment (will set vcvars) args.host_compiler = find_host_compiler() if not args.host_compiler: print("Warp build error: Could not find MSVC compiler") sys.exit(1) # return platform specific shared library name def lib_name(name): if sys.platform == "win32": return f"{name}.dll" elif sys.platform == "darwin": return f"lib{name}.dylib" else: return f"{name}.so" def generate_exports_header_file(): """Generates warp/native/exports.h, which lets built-in functions be callable from outside kernels""" # set build output path off this file export_path = os.path.join(base_path, "warp", "native", "exports.h") try: with open(export_path, "w") as f: export_builtins(f) print(f"Finished writing {export_path}") except FileNotFoundError: print(f"Error: The file '{export_path}' was not found.") except PermissionError: print(f"Error: Permission denied. Unable to write to '{export_path}'.") except OSError as e: print(f"Error: An OS-related error occurred: {e}") except Exception as e: print(f"An unexpected error occurred: {e}") try: # Generate warp/native/export.h generate_exports_header_file() # build warp.dll cpp_sources = [ "native/warp.cpp", "native/crt.cpp", "native/error.cpp", "native/cuda_util.cpp", "native/mesh.cpp", "native/hashgrid.cpp", "native/reduce.cpp", "native/runlength_encode.cpp", "native/sort.cpp", "native/sparse.cpp", "native/volume.cpp", "native/marching.cpp", "native/cutlass_gemm.cpp", ] warp_cpp_paths = [os.path.join(build_path, cpp) for cpp in cpp_sources] if args.cuda_path is None: print("Warning: CUDA toolchain not found, building without CUDA support") warp_cu_path = None else: warp_cu_path = os.path.join(build_path, "native/warp.cu") warp_dll_path = os.path.join(build_path, f"bin/{lib_name('warp')}") build_dll(args, dll_path=warp_dll_path, cpp_paths=warp_cpp_paths, cu_path=warp_cu_path) # build warp-clang.dll if args.standalone: import build_llvm if args.build_llvm: build_llvm.build_from_source(args) build_llvm.build_warp_clang(args, lib_name("warp-clang")) except Exception as e: # output build error print(f"Warp build error: {e}") # report error sys.exit(1)
7,690
Python
34.118721
120
0.673602
NVIDIA/warp/build_llvm.py
import os import subprocess import sys from warp.build_dll import * # set build output path off this file base_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.join(base_path, "warp") llvm_project_path = os.path.join(base_path, "external/llvm-project") llvm_build_path = os.path.join(llvm_project_path, "out/build/") llvm_install_path = os.path.join(llvm_project_path, "out/install/") # Fetch prebuilt Clang/LLVM libraries def fetch_prebuilt_libraries(arch): if os.name == "nt": packman = "tools\\packman\\packman.cmd" packages = {"x86_64": "15.0.7-windows-x86_64-ptx-vs142"} else: packman = "./tools/packman/packman" if sys.platform == "darwin": packages = { "aarch64": "15.0.7-darwin-aarch64-macos11", "x86_64": "15.0.7-darwin-x86_64-macos11", } else: packages = { "aarch64": "15.0.7-linux-aarch64-gcc7.5", "x86_64": "18.1.3-linux-x86_64-gcc9.4", } subprocess.check_call( [ packman, "install", "-l", f"./_build/host-deps/llvm-project/release-{arch}", "clang+llvm-warp", packages[arch], ] ) def build_from_source_for_arch(args, arch, llvm_source): # Check out the LLVM project Git repository, unless it already exists if not os.path.exists(llvm_source): # Install dependencies subprocess.check_call([sys.executable, "-m", "pip", "install", "gitpython"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "cmake"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "ninja"]) from git import Repo repo_url = "https://github.com/llvm/llvm-project.git" print(f"Cloning LLVM project from {repo_url}...") shallow_clone = True # https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/ version = "18.1.3" if shallow_clone: repo = Repo.clone_from( repo_url, to_path=llvm_source, single_branch=True, branch=f"llvmorg-{version}", depth=1, ) else: repo = Repo.clone_from(repo_url, to_path=llvm_source) repo.git.checkout(f"tags/llvmorg-{version}", "-b", f"llvm-{version}") print(f"Using LLVM project source from {llvm_source}") # CMake supports Debug, Release, RelWithDebInfo, and MinSizeRel builds if args.mode == "release": msvc_runtime = "MultiThreaded" # prefer smaller size over aggressive speed cmake_build_type = "MinSizeRel" else: msvc_runtime = "MultiThreadedDebug" # When args.mode == "debug" we build a Debug version of warp.dll but # we generally don't want warp-clang.dll to be a slow Debug version. if args.debug_llvm: cmake_build_type = "Debug" else: # The GDB/LLDB debugger observes the __jit_debug_register_code symbol # defined by the LLVM JIT, for which it needs debug info. cmake_build_type = "RelWithDebInfo" # Location of cmake and ninja installed through pip (see build.bat / build.sh) python_bin = "python/Scripts" if sys.platform == "win32" else "python/bin" os.environ["PATH"] = os.path.join(base_path, "_build/target-deps/" + python_bin) + os.pathsep + os.environ["PATH"] if arch == "aarch64": target_backend = "AArch64" else: target_backend = "X86" if sys.platform == "darwin": host_triple = f"{arch}-apple-macos11" osx_architectures = arch # build one architecture only abi_version = "" elif os.name == "nt": host_triple = f"{arch}-pc-windows" osx_architectures = "" abi_version = "" else: host_triple = f"{arch}-pc-linux" osx_architectures = "" abi_version = "-fabi-version=13" # GCC 8.2+ llvm_path = os.path.join(llvm_source, "llvm") build_path = os.path.join(llvm_build_path, f"{args.mode}-{arch}") install_path = os.path.join(llvm_install_path, f"{args.mode}-{arch}") # Build LLVM and Clang # fmt: off cmake_gen = [ "cmake", "-S", llvm_path, "-B", build_path, "-G", "Ninja", "-D", f"CMAKE_BUILD_TYPE={cmake_build_type}", "-D", f"CMAKE_MSVC_RUNTIME_LIBRARY={msvc_runtime}", "-D", f"LLVM_TARGETS_TO_BUILD={target_backend};NVPTX", "-D", "LLVM_ENABLE_PROJECTS=clang", "-D", "LLVM_ENABLE_ZLIB=FALSE", "-D", "LLVM_ENABLE_ZSTD=FALSE", "-D", "LLVM_ENABLE_TERMINFO=FALSE", "-D", "LLVM_BUILD_LLVM_C_DYLIB=FALSE", "-D", "LLVM_BUILD_RUNTIME=FALSE", "-D", "LLVM_BUILD_RUNTIMES=FALSE", "-D", "LLVM_BUILD_TOOLS=FALSE", "-D", "LLVM_BUILD_UTILS=FALSE", "-D", "LLVM_INCLUDE_BENCHMARKS=FALSE", "-D", "LLVM_INCLUDE_DOCS=FALSE", "-D", "LLVM_INCLUDE_EXAMPLES=FALSE", "-D", "LLVM_INCLUDE_RUNTIMES=FALSE", "-D", "LLVM_INCLUDE_TESTS=FALSE", "-D", "LLVM_INCLUDE_TOOLS=TRUE", # Needed by Clang "-D", "LLVM_INCLUDE_UTILS=FALSE", "-D", f"CMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 {abi_version}", # The pre-C++11 ABI is still the default on the CentOS 7 toolchain "-D", f"CMAKE_INSTALL_PREFIX={install_path}", "-D", f"LLVM_HOST_TRIPLE={host_triple}", "-D", f"CMAKE_OSX_ARCHITECTURES={osx_architectures}", # Disable unused tools and features "-D", "CLANG_BUILD_TOOLS=FALSE", "-D", "LLVM_ENABLE_PLUGINS=FALSE", "-D", "CLANG_PLUGIN_SUPPORT=FALSE", "-D", "CLANG_ENABLE_ARCMT=FALSE", "-D", "CLANG_ENABLE_STATIC_ANALYZER=FALSE", "-D", "CLANG_TOOLING_BUILD_AST_INTROSPECTION=FALSE", "-D", "CLANG_TOOL_AMDGPU_ARCH_BUILD=FALSE", "-D", "CLANG_TOOL_APINOTES_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_ARCMT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_CHECK_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_DIFF_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_EXTDEF_MAPPING_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FORMAT_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FORMAT_VS_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_FUZZER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_IMPORT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_LINKER_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_NVLINK_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_BUNDLER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_PACKAGER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_WRAPPER_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_REFACTOR_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_RENAME_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_REPL_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_SCAN_DEPS_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_SHLIB_BUILD=FALSE", "-D", "CLANG_TOOL_C_ARCMT_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_C_INDEX_TEST_BUILD=FALSE", "-D", "CLANG_TOOL_DIAGTOOL_BUILD=FALSE", "-D", "CLANG_TOOL_DRIVER_BUILD=FALSE", "-D", "CLANG_TOOL_LIBCLANG_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_BUILD_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_BUILD_PY_BUILD=FALSE", "-D", "CLANG_TOOL_CLANG_OFFLOAD_BUNDLER_BUILD=FALSE", "-D", "CLANG_TOOL_SCAN_VIEW_BUILD=FALSE", "-D", "LLVM_ENABLE_BINDINGS=FALSE", "-D", "LLVM_ENABLE_OCAMLDOC=FALSE", "-D", "LLVM_TOOL_BUGPOINT_BUILD=FALSE", "-D", "LLVM_TOOL_BUGPOINT_PASSES_BUILD=FALSE", "-D", "LLVM_TOOL_CLANG_BUILD=FALSE", "-D", "LLVM_TOOL_DSYMUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_DXIL_DIS_BUILD=FALSE", "-D", "LLVM_TOOL_GOLD_BUILD=FALSE", "-D", "LLVM_TOOL_LLC_BUILD=FALSE", "-D", "LLVM_TOOL_LLDB_BUILD=FALSE", "-D", "LLVM_TOOL_LLI_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AR_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_AS_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_BCANALYZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CAT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CFI_VERIFY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CONFIG_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_COV_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CVTRES_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXFILT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_CXXMAP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_C_TEST_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DEBUGINFOD_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DEBUGINFOD_FIND_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DIS_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DLANG_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWARFDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWARFUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_DWP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_EXEGESIS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_EXTRACT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_GO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_GSYMUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_IFS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ISEL_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ITANIUM_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_JITLINK_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_JITLISTENER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LIBTOOL_DARWIN_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LINK_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LIPO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LTO2_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_LTO_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MCA_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_ASSEMBLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MC_DISASSEMBLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MICROSOFT_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_ML_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MODEXTRACT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_MT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_NM_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OBJCOPY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OBJDUMP_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OPT_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_OPT_REPORT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PDBUTIL_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PROFDATA_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_PROFGEN_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RC_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_READOBJ_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_REDUCE_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_REMARK_SIZE_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RTDYLD_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_RUST_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SHLIB_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SIM_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SIZE_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SPECIAL_CASE_LIST_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SPLIT_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_STRESS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_STRINGS_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_SYMBOLIZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_TAPI_DIFF_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_TLI_CHECKER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_UNDNAME_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_XRAY_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_YAML_NUMERIC_PARSER_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LLVM_YAML_PARSER_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_LTO_BUILD=FALSE", "-D", "LLVM_TOOL_OBJ2YAML_BUILD=FALSE", "-D", "LLVM_TOOL_OPT_BUILD=FALSE", "-D", "LLVM_TOOL_OPT_VIEWER_BUILD=FALSE", "-D", "LLVM_TOOL_REMARKS_SHLIB_BUILD=FALSE", "-D", "LLVM_TOOL_SANCOV_BUILD=FALSE", "-D", "LLVM_TOOL_SANSTATS_BUILD=FALSE", "-D", "LLVM_TOOL_SPLIT_FILE_BUILD=FALSE", "-D", "LLVM_TOOL_VERIFY_USELISTORDER_BUILD=FALSE", "-D", "LLVM_TOOL_VFABI_DEMANGLE_FUZZER_BUILD=FALSE", "-D", "LLVM_TOOL_XCODE_TOOLCHAIN_BUILD=FALSE", "-D", "LLVM_TOOL_YAML2OBJ_BUILD=FALSE", ] # fmt: on subprocess.check_call(cmake_gen, stderr=subprocess.STDOUT) cmake_build = ["cmake", "--build", build_path] subprocess.check_call(cmake_build, stderr=subprocess.STDOUT) cmake_install = ["cmake", "--install", build_path] subprocess.check_call(cmake_install, stderr=subprocess.STDOUT) def build_from_source(args): print("Building Clang/LLVM from source...") if args.llvm_source_path is not None: llvm_source = args.llvm_source_path else: llvm_source = llvm_project_path # build for the machine's architecture build_from_source_for_arch(args, machine_architecture(), llvm_source) # for Apple systems also cross-compile for building a universal binary if sys.platform == "darwin": if machine_architecture() == "x86_64": build_from_source_for_arch(args, "aarch64", llvm_source) else: build_from_source_for_arch(args, "x86_64", llvm_source) # build warp-clang.dll def build_warp_clang_for_arch(args, lib_name, arch): try: cpp_sources = [ "native/clang/clang.cpp", "native/crt.cpp", ] clang_cpp_paths = [os.path.join(build_path, cpp) for cpp in cpp_sources] clang_dll_path = os.path.join(build_path, f"bin/{lib_name}") if args.build_llvm: # obtain Clang and LLVM libraries from the local build install_path = os.path.join(llvm_install_path, f"{args.mode}-{arch}") libpath = os.path.join(install_path, "lib") else: # obtain Clang and LLVM libraries from packman fetch_prebuilt_libraries(arch) libpath = os.path.join(base_path, f"_build/host-deps/llvm-project/release-{arch}/lib") libs = [] for _, _, libraries in os.walk(libpath): libs.extend(libraries) break # just the top level contains library files if os.name == "nt": libs.append("Version.lib") libs.append("Ws2_32.lib") libs.append(f'/LIBPATH:"{libpath}"') else: libs = [f"-l{lib[3:-2]}" for lib in libs if os.path.splitext(lib)[1] == ".a"] if sys.platform == "darwin": libs += libs # prevents unresolved symbols due to link order else: libs.insert(0, "-Wl,--start-group") libs.append("-Wl,--end-group") libs.append(f"-L{libpath}") libs.append("-lpthread") libs.append("-ldl") if sys.platform != "darwin": libs.append("-lrt") build_dll_for_arch( args, dll_path=clang_dll_path, cpp_paths=clang_cpp_paths, cu_path=None, libs=libs, arch=arch, mode=args.mode if args.build_llvm else "release", ) except Exception as e: # output build error print(f"Warp Clang/LLVM build error: {e}") # report error sys.exit(1) def build_warp_clang(args, lib_name): if sys.platform == "darwin": # create a universal binary by combining x86-64 and AArch64 builds build_warp_clang_for_arch(args, lib_name + "-x86_64", "x86_64") build_warp_clang_for_arch(args, lib_name + "-aarch64", "aarch64") dylib_path = os.path.join(build_path, f"bin/{lib_name}") run_cmd(f"lipo -create -output {dylib_path} {dylib_path}-x86_64 {dylib_path}-aarch64") os.remove(f"{dylib_path}-x86_64") os.remove(f"{dylib_path}-aarch64") else: build_warp_clang_for_arch(args, lib_name, machine_architecture())
16,081
Python
40.989556
142
0.577763
NVIDIA/warp/PACKAGING.md
# Release Instructions ## Versioning Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle): - Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone). - Increments in Y are for regular releases with a new set of features. - Increments in Z are for bug fixes. In principle there are no new features. Can be omitted if 0 or not relevant. This is similar to [Semantic Versioning](https://semver.org/) but less strict around backward compatibility. Like with Python, some breaking changes can be present between minor versions if well documented and gradually introduced. Note that prior to 0.11.0 this schema was not strictly adhered to. ## Repositories Development happens internally on a GitLab repository (part of the Omniverse group), while releases are made public on GitHub. This document uses the following Git remote names: - **omniverse**: `git remote add omniverse https://gitlab-master.nvidia.com/omniverse/warp.git` - **github**: `git remote add github https://github.com/NVIDIA/warp.git` Currently, all feature branches get merged into the `main` branch of the **omniverse** repo and then GitLab push-mirrors the changes over to GitHub (nominally within five minutes). This mirroring process also pushes all tags (only tags beginning with `v` are allowed to be created) and branches beginning with `release-`. The status of push mirroring can be checked under **Settings** :arrow_right: **Repository** on GitLab. ## GitLab Release Branch 1) Create a branch in your fork repository from which a merge-request will be opened to bump the version string and create the public-facing changelogs for the release. 2) Search & replace the current version string from `VERSION.md`. We want to keep the Omniverse extensions' version in sync with the library so update the strings found in the `exts` folder as well. The version string currently appears in the following two files, but there could be more in the future: - `omni.warp/config/extension.toml` - `omni.warp.core/config/extension.toml` Be sure *not* to update previous strings in `CHANGELOG.md`. 3) Update `CHANGELOG.md` from Git history (since the last release branch). Only list user-facing changes. The entire development team should all be helping to keep this file up-to-date, so verify that all changes users should know about are included. The changelogs from the Omniverse extensions found in `exts` are kept in sync with the one from the library, so update them all at the same time and list any change made to the extensions. 4) Open a MR on GitLab to merge this branch into `main`. Send a message in `#omni-warp-dev` to the `@warp-team` asking for a review of the merge request's changes. 5) Merge the branch into `main` after waiting a reasonable amount of time for the team to review and approve the MR. 6) For new `X.Y` versions, create a release branch (note `.Z` maintenance versions remain on the same branch): `git checkout -b release-X.Y [<start-point>]` If branching from an older revision or reusing a branch, make sure to cherry-pick the version and changelog update. 7) Make any release-specific changes (e.g. disable/remove features not ready yet). 8) :warning: Keep in mind that branches pushed to the **omniverse** repository beginning with `release-` are automatically mirrored to GitLab. :warning: Push the new release branch to **omniverse** when it is in a state ready for CI testing. 9) Check that the last revision on the release branch passes GitLab CI tests. A pipeline should have been automatically created after pushing the branch in the previous step: <https://gitlab-master.nvidia.com/omniverse/warp/-/pipelines> Fix issues until all tests pass. Cherry-pick fixes for `main` where applicable. ## Creating a GitHub Release Package 1) Wait for the (latest) packages to appear in: <https://gitlab-master.nvidia.com/omniverse/warp/-/packages/> 2) Download the `.whl` files for each supported platform and move them into an empty folder. 3) Run tests for at least one platform: - Run `python -m pip install warp_lang-<version>-<platform-tag>.whl` - Run `python -m warp.tests` Check that the correct version number gets printed. 4) If tests fail, make fixes on `release-X.Y` and where necessary cherry-pick to `main` before repeating from step (1). 5) Tag the release with `vX.Y.Z` on `release-X.Y` and push to `omniverse`. Both the tag and the release branch will be automatically mirrored to GitLab. It is safest to push *just* the new tag using `git push omniverse vX.Y.Z`. In case of a mistake, a tag already pushed to `omniverse` can be deleted from the GitLab UI. The bad tag must also be deleted from the GitHub UI if it was mirrored there. 6) Create a new release on [GitHub](https://github.com/NVIDIA/warp) with a tag and title of `vX.Y.Z` and upload the `.whl` artifacts as attachments. Use the changelog updates as the description. ## Upload a PyPI Release First time: - Create a [PyPI](https://pypi.org/) account. - [Create a Token](https://pypi.org/manage/account/#api-tokens) for uploading to the `warp-lang` project (store it somewhere safe). - Get an admin (<[email protected]>) to give you write access to the project. Per release: Run `python -m twine upload *` from the `.whl` packages folder (on Windows make sure to use `cmd` shell; Git Bash doesn't work). - username: `__token__` - password: `(your token string from PyPI)` ## Publishing the Omniverse Extensions 1) Ensure that the version strings and `CHANGELOG.md` files in the `exts` folder are in sync with the ones from the library. 2) Wait for the (latest) packages to appear in: <https://gitlab-master.nvidia.com/omniverse/warp/-/packages/> 3) Download `kit-extensions.zip` to your computer. 4) Extract it to a clean folder and check the extensions inside of Kit: - Run `omni.create.sh --ext-folder /path/to/artifacts/exts --enable omni.warp-X.Y.Z --enable omni.warp.core-X.Y.Z` - Ensure that the example scenes are working as expected - Run test suites for both extensions 5) If tests fail, make fixes on `release-X.Y` and where necessary cherry-pick to `main` before repeating from step (2). 6) If all tests passed: - `kit --ext-folder /path/to/artifacts/exts --publish omni-warp.core-X.Y.Z` - `kit --ext-folder /path/to/artifacts/exts --publish omni-warp-X.Y.Z` 7) Ensure that the release is tagged with `vX.Y.Z` on both `omniverse/release-X.Y` and `github/release-X.Y`. ## Automated processes The following is just for your information. These steps should run automatically by CI/CD pipelines, but can be replicated manually if needed: ### Building the documentation The contents of <https://nvidia.github.io/warp/> is generated by a GitHub pipeline which runs `python build_docs.py` (prerequisites: `pip install docs/requirements.txt`). ### Building pip wheels The GitLab pipeline's `create pypi wheels` Job (part of the `package` Stage) combines artifacts from each platform build, moving the contents of `warp/bin` to platform- and architecture-specific subfolders; e.g. `warp/bin/linux-x86_64` and `warp/bin/linux-aarch64` both contain `warp.so` and `warp-clang.so` files. Pip wheels are then built using: ```bash python -m build --wheel -C--build-option=-Pwindows-x86_64 python -m build --wheel -C--build-option=-Plinux-x86_64 python -m build --wheel -C--build-option=-Plinux-aarch64 python -m build --wheel -C--build-option=-Pmacos-universal ``` Selecting the correct library files for each wheel happens in [`setup.py`](setup.py).
7,743
Markdown
44.552941
194
0.74816
NVIDIA/warp/pyproject.toml
[build-system] requires = ["setuptools>=61", "build", "wheel"] build-backend = "setuptools.build_meta" [project] name = "warp-lang" requires-python = ">=3.7" # 3.9 recommended authors = [{ name = "NVIDIA", email = "[email protected]" }] description = "A Python framework for high-performance simulation and graphics programming" license = { text = "NVIDIA Software License" } classifiers = [ "Programming Language :: Python :: 3.7", # Deprecated "Programming Language :: Python :: 3.8", # Deprecated "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: Other/Proprietary License", "Operating System :: OS Independent", ] dependencies = ["numpy"] dynamic = ["version", "readme"] [project.urls] GitHub = "https://github.com/NVIDIA/warp" Documentation = "https://nvidia.github.io/warp" Changelog = "https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md" [project.optional-dependencies] dev = ["pre-commit", "ruff", "nvtx", "furo", "sphinx-copybutton", "coverage[toml]"] extras = ['usd-core', 'matplotlib', 'pyglet'] [tool.setuptools.packages.find] include = ["warp*"] [tool.setuptools.dynamic] version = { attr = "warp.config.version" } readme = { file = ["README.md"], content-type = "text/markdown" } [tool.ruff] cache-dir = ".cache/ruff" line-length = 120 indent-width = 4 extend-exclude = [ "warp/native/cutlass/", "warp/thirdparty/appdirs.py", "warp/thirdparty/dlpack.py", "tools", "stubs.py", ] [tool.ruff.lint] select = [ "E", # pycodestyle errors "I", # isort "F", # pyflakes "W", # pycodestyle warnings "B", # flake8-bugbear "C4", # flake8-comprehensions ] ignore = [ "E501", # Many lines are over 120 characters already "E741", # Warp often uses l as a variable name "F403", # Allow wildcard imports "F405", # Related to use of wildcard imports "F811", # Warp often uses overloads ] [tool.ruff.lint.per-file-ignores] "__init__.py" = ["F401"] "warp/tests/*.py" = ["F841"] [tool.ruff.lint.pydocstyle] convention = "google" [tool.ruff.format] quote-style = "double" indent-style = "space" skip-magic-trailing-comma = false line-ending = "auto" docstring-code-format = true [tool.coverage.run] source = ["warp", "warp.sim", "warp.render"] disable_warnings = [ "module-not-measured", "module-not-imported", "no-data-collected", "couldnt-parse", ] [tool.coverage.report] exclude_lines = [ "pragma: no cover", "@wp", "@warp", "if 0:", "if __name__ == .__main__.:", ] omit = [ "*/warp/thirdparty/*", "*/warp/examples/*", "*/warp/tests/*", "*/warp/fem/*", "appdirs.py", "render_opengl.py", "build_dll.py", "config.py", "stubs.py", ]
2,800
TOML
24.463636
91
0.633571