file_path
stringlengths
20
202
content
stringlengths
9
3.85M
size
int64
9
3.85M
lang
stringclasses
9 values
avg_line_length
float64
3.33
100
max_line_length
int64
8
993
alphanum_fraction
float64
0.26
0.93
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_assets/omni/isaac/lab_assets/humanoid.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Mujoco Humanoid robot.""" from __future__ import annotations import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## HUMANOID_CFG = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Humanoid/humanoid_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=None, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 1.34), joint_pos={".*": 0.0}, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness={ ".*_waist.*": 20.0, ".*_upper_arm.*": 10.0, "pelvis": 10.0, ".*_lower_arm": 2.0, ".*_thigh:0": 10.0, ".*_thigh:1": 20.0, ".*_thigh:2": 10.0, ".*_shin": 5.0, ".*_foot.*": 2.0, }, damping={ ".*_waist.*": 5.0, ".*_upper_arm.*": 5.0, "pelvis": 5.0, ".*_lower_arm": 1.0, ".*_thigh:0": 5.0, ".*_thigh:1": 5.0, ".*_thigh:2": 5.0, ".*_shin": 0.1, ".*_foot.*": 1.0, }, ), }, ) """Configuration for the Mujoco Humanoid robot."""
2,132
Python
29.471428
82
0.513133
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_assets/omni/isaac/lab_assets/ant.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the Mujoco Ant robot.""" from __future__ import annotations import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## ANT_CFG = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Ant/ant_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), joint_pos={ ".*_leg": 0.0, "front_left_foot": 0.785398, # 45 degrees "front_right_foot": -0.785398, "left_back_foot": -0.785398, "right_back_foot": 0.785398, }, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness=0.0, damping=0.0, ), }, ) """Configuration for the Mujoco Ant robot."""
1,659
Python
28.642857
72
0.613623
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_assets/omni/isaac/lab_assets/quadcopter.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configuration for the quadcopters""" from __future__ import annotations import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR ## # Configuration ## CRAZYFLIE_CFG = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Crazyflie/cf2x.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), joint_pos={ ".*": 0.0, }, joint_vel={ "m1_joint": 200.0, "m2_joint": -200.0, "m3_joint": 200.0, "m4_joint": -200.0, }, ), actuators={ "dummy": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness=0.0, damping=0.0, ), }, ) """Configuration for the Crazyflie quadcopter."""
1,631
Python
27.137931
67
0.602085
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/sensors/test_tiled_camera.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True, enable_cameras=True) simulation_app = app_launcher.app """Rest everything follows.""" import copy import numpy as np import random import unittest import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils import omni.replicator.core as rep from omni.isaac.core.prims import GeometryPrim, RigidPrim from pxr import Gf, UsdGeom import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.sensors.camera import TiledCamera, TiledCameraCfg from omni.isaac.lab.utils.timer import Timer class TestTiledCamera(unittest.TestCase): """Test for USD tiled Camera sensor.""" def setUp(self): """Create a blank new stage for each test.""" self.camera_cfg = TiledCameraCfg( height=128, width=256, offset=TiledCameraCfg.OffsetCfg(pos=(0.0, 0.0, 4.0), rot=(0.0, 0.0, 1.0, 0.0), convention="ros"), prim_path="/World/Camera", update_period=0, data_types=["rgb", "depth"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5) ), ) # Create a new stage stage_utils.create_new_stage() # Simulation time-step self.dt = 0.01 # Load kit helper sim_cfg = sim_utils.SimulationCfg(dt=self.dt) self.sim: sim_utils.SimulationContext = sim_utils.SimulationContext(sim_cfg) # populate scene self._populate_scene() # load stage stage_utils.update_stage() def tearDown(self): """Stops simulator after each test.""" # close all the opened viewport from before. rep.vp_manager.destroy_hydra_textures("Replicator") # stop simulation # note: cannot use self.sim.stop() since it does one render step after stopping!! This doesn't make sense :( self.sim._timeline.stop() # clear the stage self.sim.clear_all_callbacks() self.sim.clear_instance() """ Tests """ def test_single_camera_init(self): """Test single camera initialization.""" # Create camera camera = TiledCamera(self.camera_cfg) # Check simulation parameter is set correctly self.assertTrue(self.sim.has_rtx_sensors()) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Check if camera prim is set correctly and that it is a camera prim self.assertEqual(camera._sensor_prims[0].GetPath().pathString, self.camera_cfg.prim_path) self.assertIsInstance(camera._sensor_prims[0], UsdGeom.Camera) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (1, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (1, 4)) self.assertEqual(camera.data.quat_w_world.shape, (1, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (1, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (1, 3, 3)) self.assertEqual(camera.data.image_shape, (self.camera_cfg.height, self.camera_cfg.width)) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for im_type, im_data in camera.data.output.to_dict().items(): if im_type == "rgb": self.assertEqual(im_data.shape, (1, self.camera_cfg.height, self.camera_cfg.width, 3)) else: self.assertEqual(im_data.shape, (1, self.camera_cfg.height, self.camera_cfg.width, 1)) self.assertGreater(im_data.mean().item(), 0.0) del camera def test_multi_camera_init(self): """Test multi-camera initialization.""" prim_utils.create_prim("/World/Origin_00", "Xform") prim_utils.create_prim("/World/Origin_01", "Xform") # Create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.prim_path = "/World/Origin_.*/CameraSensor" camera = TiledCamera(camera_cfg) # Check simulation parameter is set correctly self.assertTrue(self.sim.has_rtx_sensors()) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Check if camera prim is set correctly and that it is a camera prim self.assertEqual(camera._sensor_prims[1].GetPath().pathString, "/World/Origin_01/CameraSensor") self.assertIsInstance(camera._sensor_prims[0], UsdGeom.Camera) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (2, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (2, 4)) self.assertEqual(camera.data.quat_w_world.shape, (2, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (2, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (2, 3, 3)) self.assertEqual(camera.data.image_shape, (self.camera_cfg.height, self.camera_cfg.width)) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for im_type, im_data in camera.data.output.to_dict().items(): if im_type == "rgb": self.assertEqual(im_data.shape, (2, self.camera_cfg.height, self.camera_cfg.width, 3)) else: self.assertEqual(im_data.shape, (2, self.camera_cfg.height, self.camera_cfg.width, 1)) self.assertGreater(im_data[0].mean().item(), 0.0) self.assertGreater(im_data[1].mean().item(), 0.0) del camera def test_rgb_only_camera(self): """Test initialization with only RGB.""" prim_utils.create_prim("/World/Origin_00", "Xform") prim_utils.create_prim("/World/Origin_01", "Xform") # Create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.data_types = ["rgb"] camera_cfg.prim_path = "/World/Origin_.*/CameraSensor" camera = TiledCamera(camera_cfg) # Check simulation parameter is set correctly self.assertTrue(self.sim.has_rtx_sensors()) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Check if camera prim is set correctly and that it is a camera prim self.assertEqual(camera._sensor_prims[1].GetPath().pathString, "/World/Origin_01/CameraSensor") self.assertIsInstance(camera._sensor_prims[0], UsdGeom.Camera) self.assertListEqual(list(camera.data.output.keys()), ["rgb"]) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (2, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (2, 4)) self.assertEqual(camera.data.quat_w_world.shape, (2, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (2, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (2, 3, 3)) self.assertEqual(camera.data.image_shape, (self.camera_cfg.height, self.camera_cfg.width)) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for _, im_data in camera.data.output.to_dict().items(): self.assertEqual(im_data.shape, (2, self.camera_cfg.height, self.camera_cfg.width, 3)) self.assertGreater(im_data[0].mean().item(), 0.0) self.assertGreater(im_data[1].mean().item(), 0.0) del camera def test_depth_only_camera(self): """Test initialization with only depth.""" prim_utils.create_prim("/World/Origin_00", "Xform") prim_utils.create_prim("/World/Origin_01", "Xform") # Create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.data_types = ["depth"] camera_cfg.prim_path = "/World/Origin_.*/CameraSensor" camera = TiledCamera(camera_cfg) # Check simulation parameter is set correctly self.assertTrue(self.sim.has_rtx_sensors()) # Play sim self.sim.reset() # Check if camera is initialized self.assertTrue(camera._is_initialized) # Check if camera prim is set correctly and that it is a camera prim self.assertEqual(camera._sensor_prims[1].GetPath().pathString, "/World/Origin_01/CameraSensor") self.assertIsInstance(camera._sensor_prims[0], UsdGeom.Camera) self.assertListEqual(list(camera.data.output.keys()), ["depth"]) # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Check buffers that exists and have correct shapes self.assertEqual(camera.data.pos_w.shape, (2, 3)) self.assertEqual(camera.data.quat_w_ros.shape, (2, 4)) self.assertEqual(camera.data.quat_w_world.shape, (2, 4)) self.assertEqual(camera.data.quat_w_opengl.shape, (2, 4)) self.assertEqual(camera.data.intrinsic_matrices.shape, (2, 3, 3)) self.assertEqual(camera.data.image_shape, (self.camera_cfg.height, self.camera_cfg.width)) # Simulate physics for _ in range(10): # perform rendering self.sim.step() # update camera camera.update(self.dt) # check image data for _, im_data in camera.data.output.to_dict().items(): self.assertEqual(im_data.shape, (2, self.camera_cfg.height, self.camera_cfg.width, 1)) self.assertGreater(im_data[0].mean().item(), 0.0) self.assertGreater(im_data[1].mean().item(), 0.0) del camera def test_throughput(self): """Test tiled camera throughput.""" # create camera camera_cfg = copy.deepcopy(self.camera_cfg) camera_cfg.height = 480 camera_cfg.width = 640 camera = TiledCamera(camera_cfg) # Play simulator self.sim.reset() # Simulate for a few steps # note: This is a workaround to ensure that the textures are loaded. # Check "Known Issues" section in the documentation for more details. for _ in range(5): self.sim.step() # Simulate physics for _ in range(5): # perform rendering self.sim.step() # update camera with Timer(f"Time taken for updating camera with shape {camera.image_shape}"): camera.update(self.dt) # Check image data for im_type, im_data in camera.data.output.to_dict().items(): if im_type == "rgb": self.assertEqual(im_data.shape, (1, camera_cfg.height, camera_cfg.width, 3)) else: self.assertEqual(im_data.shape, (1, camera_cfg.height, camera_cfg.width, 1)) self.assertGreater(im_data.mean().item(), 0.0) del camera """ Helper functions. """ @staticmethod def _populate_scene(): """Add prims to the scene.""" # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.SphereLightCfg() cfg.func("/World/Light/GreySphere", cfg, translation=(4.5, 3.5, 10.0)) cfg.func("/World/Light/WhiteSphere", cfg, translation=(-4.5, 3.5, 10.0)) # Random objects random.seed(0) for i in range(10): # sample random position position = np.random.rand(3) - np.asarray([0.05, 0.05, -1.0]) position *= np.asarray([1.5, 1.5, 0.5]) # create prim prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) prim = prim_utils.create_prim( f"/World/Objects/Obj_{i:02d}", prim_type, translation=position, scale=(0.25, 0.25, 0.25), semantic_label=prim_type, ) # cast to geom prim geom_prim = getattr(UsdGeom, prim_type)(prim) # set random color color = Gf.Vec3f(random.random(), random.random(), random.random()) geom_prim.CreateDisplayColorAttr() geom_prim.GetDisplayColorAttr().Set([color]) # add rigid properties GeometryPrim(f"/World/Objects/Obj_{i:02d}", collision=True) RigidPrim(f"/World/Objects/Obj_{i:02d}", mass=5.0) if __name__ == "__main__": run_tests()
14,127
Python
40.069767
116
0.604799
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/envs/test_base_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # Can set this to False to see the GUI for debugging HEADLESS = True # launch omniverse app app_launcher = AppLauncher(headless=HEADLESS) simulation_app = app_launcher.app """Rest everything follows.""" import torch import unittest import omni.usd from omni.isaac.lab.envs import ManagerBasedEnv, ManagerBasedEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.utils import configclass @configclass class EmptyActionsCfg: """Action specifications for the environment.""" pass @configclass class EmptySceneCfg(InteractiveSceneCfg): """Configuration for an empty scene.""" pass def get_empty_base_env_cfg(device: str = "cuda:0", num_envs: int = 1, env_spacing: float = 1.0): """Generate base environment config based on device""" @configclass class EmptyEnvCfg(ManagerBasedEnvCfg): """Configuration for the empty test environment.""" # Scene settings scene: EmptySceneCfg = EmptySceneCfg(num_envs=num_envs, env_spacing=env_spacing) # Basic settings actions: EmptyActionsCfg = EmptyActionsCfg() def __post_init__(self): """Post initialization.""" # step settings self.decimation = 4 # env step every 4 sim steps: 200Hz / 4 = 50Hz # simulation settings self.sim.dt = 0.005 # sim step every 5ms: 200Hz # pass device down from test self.sim.device = device return EmptyEnvCfg() class TestBaseEnv(unittest.TestCase): """Test for base env class""" """ Tests """ def test_initialization(self): for device in ("cuda:0", "cpu"): with self.subTest(device=device): # create a new stage omni.usd.get_context().new_stage() # create environment env = ManagerBasedEnv(cfg=get_empty_base_env_cfg(device=device)) # check size of action manager terms self.assertEqual(env.action_manager.total_action_dim, 0) self.assertEqual(len(env.action_manager.active_terms), 0) self.assertEqual(len(env.action_manager.action_term_dim), 0) # check size of observation manager terms self.assertEqual(len(env.observation_manager.active_terms), 0) self.assertEqual(len(env.observation_manager.group_obs_dim), 0) self.assertEqual(len(env.observation_manager.group_obs_term_dim), 0) self.assertEqual(len(env.observation_manager.group_obs_concatenate), 0) # create actions of correct size (1,0) act = torch.randn_like(env.action_manager.action) # step environment to verify setup for _ in range(2): obs, ext = env.step(action=act) # close the environment env.close() if __name__ == "__main__": run_tests()
3,291
Python
30.056603
96
0.635369
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/deps/isaacsim/check_floating_base_made_fixed.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This script demonstrates how to make a floating robot fixed in Isaac Sim.""" """Launch Isaac Sim Simulator first.""" import argparse from omni.isaac.kit import SimulationApp # add argparse arguments parser = argparse.ArgumentParser( description="This script shows the issue in Isaac Sim with making a floating robot fixed." ) parser.add_argument("--headless", action="store_true", help="Run in headless mode.") parser.add_argument("--fix-base", action="store_true", help="Whether to fix the base of the robot.") # parse the arguments args_cli = parser.parse_args() # launch omniverse app simulation_app = SimulationApp({"headless": args_cli.headless}) """Rest everything follows.""" import torch import carb import omni.isaac.core.utils.nucleus as nucleus_utils import omni.isaac.core.utils.prims as prim_utils import omni.isaac.core.utils.stage as stage_utils import omni.kit.commands import omni.physx from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World from pxr import PhysxSchema, UsdPhysics # check nucleus connection if nucleus_utils.get_assets_root_path() is None: msg = ( "Unable to perform Nucleus login on Omniverse. Assets root path is not set.\n" "\tPlease check: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html#omniverse-nucleus" ) carb.log_error(msg) raise RuntimeError(msg) ISAAC_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac" """Path to the `Isaac` directory on the NVIDIA Nucleus Server.""" ISAACLAB_NUCLEUS_DIR = f"{nucleus_utils.get_assets_root_path()}/Isaac/Samples/Orbit" """Path to the `Isaac/Samples/Orbit` directory on the NVIDIA Nucleus Server.""" """ Main """ def main(): """Spawns the ANYmal robot and makes it fixed.""" # Load kit helper world = World(physics_dt=0.005, rendering_dt=0.005, backend="torch", device="cpu") # Set main camera set_camera_view([2.5, 2.5, 2.5], [0.0, 0.0, 0.0]) # Enable hydra scene-graph instancing # this is needed to visualize the scene when flatcache is enabled set_carb_setting(world._settings, "/persistent/omnihydra/useSceneGraphInstancing", True) # Spawn things into stage # Ground-plane world.scene.add_default_ground_plane(prim_path="/World/defaultGroundPlane", z_position=0.0) # Lights-1 prim_utils.create_prim("/World/Light/GreySphere", "SphereLight", translation=(4.5, 3.5, 10.0)) # Lights-2 prim_utils.create_prim("/World/Light/WhiteSphere", "SphereLight", translation=(-4.5, 3.5, 10.0)) # -- Robot # resolve asset usd_path = f"{ISAACLAB_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd" root_prim_path = "/World/Robot/base" # add asset print("Loading robot from: ", usd_path) prim_utils.create_prim( "/World/Robot", usd_path=usd_path, translation=(0.0, 0.0, 0.6), ) # create fixed joint if args_cli.fix_base: # get all necessary information stage = stage_utils.get_current_stage() root_prim = stage.GetPrimAtPath(root_prim_path) parent_prim = root_prim.GetParent() # here we assume that the root prim is a rigid body # there is no clear way to deal with situation where the root prim is not a rigid body but has articulation api # in that case, it is unclear how to get the link to the first link in the tree if not root_prim.HasAPI(UsdPhysics.RigidBodyAPI): raise RuntimeError("The root prim does not have the RigidBodyAPI applied.") # create fixed joint omni.kit.commands.execute( "CreateJointCommand", stage=stage, joint_type="Fixed", from_prim=None, to_prim=root_prim, ) # move the root to the parent if this is a rigid body # having a fixed joint on a rigid body makes physx treat it as a part of the maximal coordinate tree # if we put to joint on the parent, physx parser treats it as a fixed base articulation # get parent prim parent_prim = root_prim.GetParent() # apply api to parent UsdPhysics.ArticulationRootAPI.Apply(parent_prim) PhysxSchema.PhysxArticulationAPI.Apply(parent_prim) # copy the attributes # -- usd attributes root_usd_articulation_api = UsdPhysics.ArticulationRootAPI(root_prim) for attr_name in root_usd_articulation_api.GetSchemaAttributeNames(): attr = root_prim.GetAttribute(attr_name) parent_prim.GetAttribute(attr_name).Set(attr.Get()) # -- physx attributes root_physx_articulation_api = PhysxSchema.PhysxArticulationAPI(root_prim) for attr_name in root_physx_articulation_api.GetSchemaAttributeNames(): attr = root_prim.GetAttribute(attr_name) parent_prim.GetAttribute(attr_name).Set(attr.Get()) # remove api from root root_prim.RemoveAPI(UsdPhysics.ArticulationRootAPI) root_prim.RemoveAPI(PhysxSchema.PhysxArticulationAPI) # rename root path to parent path root_prim_path = parent_prim.GetPath().pathString # Setup robot robot_view = ArticulationView(root_prim_path, name="ANYMAL") world.scene.add(robot_view) # Play the simulator world.reset() # Now we are ready! print("[INFO]: Setup complete...") # dummy actions # actions = torch.zeros(robot.count, robot.num_actions, device=robot.device) init_root_pos_w, init_root_quat_w = robot_view.get_world_poses() # Define simulation stepping sim_dt = world.get_physics_dt() # episode counter sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # If simulation is stopped, then exit. if world.is_stopped(): break # If simulation is paused, then skip. if not world.is_playing(): world.step(render=False) continue # do reset if count % 20 == 0: # reset sim_time = 0.0 count = 0 # reset root state root_pos_w = init_root_pos_w.clone() root_pos_w[:, :2] += torch.rand_like(root_pos_w[:, :2]) * 0.5 robot_view.set_world_poses(root_pos_w, init_root_quat_w) # print if it is fixed base print("Fixed base: ", robot_view._physics_view.shared_metatype.fixed_base) print("Moving base to: ", root_pos_w[0].cpu().numpy()) print("-" * 50) # apply random joint actions actions = torch.rand_like(robot_view.get_joint_positions()) * 0.001 robot_view.set_joint_efforts(actions) # perform step world.step() # update sim-time sim_time += sim_dt count += 1 if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
7,173
Python
34.87
119
0.657187
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/performance/test_robot_load_performance.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none from __future__ import annotations from omni.isaac.lab.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app import unittest import omni from omni.isaac.cloner import GridCloner from omni.isaac.lab_assets import ANYMAL_D_CFG, CARTPOLE_CFG from omni.isaac.lab.assets import Articulation from omni.isaac.lab.sim import build_simulation_context from omni.isaac.lab.utils.timer import Timer class TestRobotLoadPerformance(unittest.TestCase): """Test robot load performance.""" """ Tests """ def test_robot_load_performance(self): """Test robot load time.""" test_configs = { "Cartpole": {"robot_cfg": CARTPOLE_CFG, "expected_load_time": 10.0}, "Anymal_D": {"robot_cfg": ANYMAL_D_CFG, "expected_load_time": 40.0}, } for test_config in test_configs.items(): for device in ("cuda:0", "cpu"): with self.subTest(test_config=test_config, device=device): with build_simulation_context(device=device) as sim: cloner = GridCloner(spacing=2) target_paths = cloner.generate_paths("/World/Robots", 4096) omni.usd.get_context().get_stage().DefinePrim(target_paths[0], "Xform") _ = cloner.clone( source_prim_path=target_paths[0], prim_paths=target_paths, replicate_physics=False, copy_from_source=True, ) with Timer(f"{test_config[0]} load time for device {device}") as timer: robot = Articulation( # noqa: F841 test_config[1]["robot_cfg"].replace(prim_path="/World/Robots_.*/Robot") ) sim.reset() elapsed_time = timer.time_elapsed self.assertLessEqual(elapsed_time, test_config[1]["expected_load_time"]) if __name__ == "__main__": run_tests()
2,349
Python
35.153846
103
0.568327
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/performance/test_kit_startup_performance.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # ignore private usage of variables warning # pyright: reportPrivateUsage=none from __future__ import annotations import time import unittest from omni.isaac.lab.app import run_tests class TestKitStartUpPerformance(unittest.TestCase): """Test kit startup performance.""" def test_kit_start_up_time(self): """Test kit start-up time.""" from omni.isaac.lab.app import AppLauncher start_time = time.time() self.app_launcher = AppLauncher(headless=True).app end_time = time.time() elapsed_time = end_time - start_time self.assertLessEqual(elapsed_time, 8.0) if __name__ == "__main__": run_tests()
797
Python
23.181817
60
0.681305
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/terrains/test_terrain_importer.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch omniverse app simulation_app = AppLauncher(headless=True).app """Rest everything follows.""" import numpy as np import torch import unittest import omni.isaac.core.utils.prims as prim_utils import omni.kit.commands from omni.isaac.cloner import GridCloner from omni.isaac.core.materials import PhysicsMaterial, PreviewSurface from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import GeometryPrim, RigidPrim, RigidPrimView import omni.isaac.lab.terrains as terrain_gen from omni.isaac.lab.sim import SimulationContext, build_simulation_context from omni.isaac.lab.terrains import TerrainImporter, TerrainImporterCfg from omni.isaac.lab.terrains.config.rough import ROUGH_TERRAINS_CFG from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR class TestTerrainImporter(unittest.TestCase): """Test the terrain importer for different ground and procedural terrains.""" def test_grid_clone_env_origins(self): """Tests that env origins are consistent when computed using the TerrainImporter and IsaacSim GridCloner.""" # iterate over different number of environments and environment spacing for device in ("cuda:0", "cpu"): for env_spacing in [1.0, 4.325, 8.0]: for num_envs in [1, 4, 125, 379, 1024]: with self.subTest(num_envs=num_envs, env_spacing=env_spacing): with build_simulation_context(device=device, auto_add_lighting=True) as sim: # create terrain importer terrain_importer_cfg = TerrainImporterCfg( num_envs=num_envs, env_spacing=env_spacing, prim_path="/World/ground", terrain_type="plane", # for flat ground, origins are in grid terrain_generator=None, ) terrain_importer = TerrainImporter(terrain_importer_cfg) # obtain env origins using terrain importer terrain_importer_origins = terrain_importer.env_origins # obtain env origins using grid cloner grid_cloner_origins = self._obtain_grid_cloner_env_origins( num_envs, env_spacing, device=sim.device ) # check if the env origins are the same torch.testing.assert_close( terrain_importer_origins, grid_cloner_origins, rtol=1e-5, atol=1e-5 ) def test_terrain_generation(self) -> None: """Generates assorted terrains and tests that the resulting mesh has the correct size.""" for device in ("cuda:0", "cpu"): with build_simulation_context(device=device, auto_add_lighting=True) as _: # Handler for terrains importing terrain_importer_cfg = terrain_gen.TerrainImporterCfg( prim_path="/World/ground", max_init_terrain_level=None, terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG.replace(curriculum=True), num_envs=1, ) terrain_importer = TerrainImporter(terrain_importer_cfg) # check mesh exists mesh = terrain_importer.meshes["terrain"] self.assertIsNotNone(mesh) # calculate expected size from config cfg = terrain_importer.cfg.terrain_generator self.assertIsNotNone(cfg) expectedSizeX = cfg.size[0] * cfg.num_rows + 2 * cfg.border_width expectedSizeY = cfg.size[1] * cfg.num_cols + 2 * cfg.border_width # get size from mesh bounds bounds = mesh.bounds actualSize = abs(bounds[1] - bounds[0]) self.assertAlmostEqual(actualSize[0], expectedSizeX) self.assertAlmostEqual(actualSize[1], expectedSizeY) def test_plane(self) -> None: """Generates a plane and tests that the resulting mesh has the correct size.""" for device in ("cuda:0", "cpu"): with build_simulation_context(device=device, auto_add_lighting=True) as _: expectedSizeX = 2.0e6 expectedSizeY = 2.0e6 # Handler for terrains importing terrain_importer_cfg = terrain_gen.TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", num_envs=1, env_spacing=1.0, ) terrain_importer = TerrainImporter(terrain_importer_cfg) # check mesh exists mesh = terrain_importer.meshes["terrain"] self.assertIsNotNone(mesh) # get size from mesh bounds bounds = mesh.bounds actualSize = abs(bounds[1] - bounds[0]) self.assertAlmostEqual(actualSize[0], expectedSizeX) self.assertAlmostEqual(actualSize[1], expectedSizeY) def test_usd(self) -> None: """Imports terrain from a usd and tests that the resulting mesh has the correct size.""" for device in ("cuda:0", "cpu"): with build_simulation_context(device=device, auto_add_lighting=True) as _: # Handler for terrains importing terrain_importer_cfg = terrain_gen.TerrainImporterCfg( prim_path="/World/ground", terrain_type="usd", usd_path=f"{ISAAC_NUCLEUS_DIR}/Environments/Terrains/rough_plane.usd", num_envs=1, env_spacing=1.0, ) terrain_importer = TerrainImporter(terrain_importer_cfg) # check mesh exists mesh = terrain_importer.meshes["terrain"] self.assertIsNotNone(mesh) # expect values from USD file expectedSizeX = 96 expectedSizeY = 96 # get size from mesh bounds bounds = mesh.bounds actualSize = abs(bounds[1] - bounds[0]) self.assertAlmostEqual(actualSize[0], expectedSizeX) self.assertAlmostEqual(actualSize[1], expectedSizeY) def test_ball_drop(self) -> None: """Generates assorted terrains and spheres. Tests that spheres fall onto terrain and do not pass through it""" for device in ("cuda:0", "cpu"): with build_simulation_context(device=device, auto_add_lighting=True) as sim: self._populate_scene(geom_sphere=False, sim=sim) ball_view = RigidPrimView("/World/envs/env_.*/ball", reset_xform_properties=False) sim.reset() # Initialize the ball views for physics simulation ball_view.initialize() # Play simulator for _ in range(500): sim.step(render=False) # Ball may have some small non-zero velocity if the roll on terrain <~.2 # If balls fall through terrain velocity is much higher ~82.0 max_velocity_z = torch.max(torch.abs(ball_view.get_linear_velocities()[:, 2])) self.assertLessEqual(max_velocity_z.item(), 0.5) def test_ball_drop_geom_sphere(self) -> None: """Generates assorted terrains and geom sepheres. Tests that spheres fall onto terrain and do not pass through it""" for device in ("cuda:0", "cpu"): with build_simulation_context(device=device, auto_add_lighting=True) as sim: self._populate_scene(geom_sphere=False, sim=sim) ball_view = RigidPrimView("/World/envs/env_.*/ball", reset_xform_properties=False) sim.reset() # Initialize the ball views for physics simulation ball_view.initialize() # Play simulator for _ in range(500): sim.step(render=False) # Ball may have some small non-zero velocity if the roll on terrain <~.2 # If balls fall through terrain velocity is much higher ~82.0 max_velocity_z = torch.max(torch.abs(ball_view.get_linear_velocities()[:, 2])) self.assertLessEqual(max_velocity_z.item(), 0.5) """ Helper functions. """ @staticmethod def _obtain_grid_cloner_env_origins(num_envs: int, env_spacing: float, device: str) -> torch.Tensor: """Obtain the env origins generated by IsaacSim GridCloner (grid_cloner.py).""" # create grid cloner cloner = GridCloner(spacing=env_spacing) cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_envs) prim_utils.define_prim("/World/envs/env_0") # clone envs using grid cloner env_origins = cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True ) # return as tensor return torch.tensor(env_origins, dtype=torch.float32, device=device) def _populate_scene(self, sim: SimulationContext, num_balls: int = 2048, geom_sphere: bool = False): """Create a scene with terrain and randomly spawned balls. The spawned balls are either USD Geom Spheres or are USD Meshes. We check against both these to make sure both USD-shape and USD-mesh collisions work as expected. """ # Handler for terrains importing terrain_importer_cfg = terrain_gen.TerrainImporterCfg( prim_path="/World/ground", max_init_terrain_level=None, terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG.replace(curriculum=True), num_envs=num_balls, ) terrain_importer = TerrainImporter(terrain_importer_cfg) # Create interface to clone the scene cloner = GridCloner(spacing=2.0) cloner.define_base_env("/World/envs") # Everything under the namespace "/World/envs/env_0" will be cloned prim_utils.define_prim(prim_path="/World/envs/env_0", prim_type="Xform") # Define the scene # -- Ball if geom_sphere: # -- Ball physics _ = DynamicSphere( prim_path="/World/envs/env_0/ball", translation=np.array([0.0, 0.0, 5.0]), mass=0.5, radius=0.25 ) else: # -- Ball geometry cube_prim_path = omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Sphere")[1] prim_utils.move_prim(cube_prim_path, "/World/envs/env_0/ball") # -- Ball physics RigidPrim(prim_path="/World/envs/env_0/ball", mass=0.5, scale=(0.5, 0.5, 0.5), translation=(0.0, 0.0, 0.5)) GeometryPrim(prim_path="/World/envs/env_0/ball", collision=True) # -- Ball material sphere_geom = GeometryPrim(prim_path="/World/envs/env_0/ball", collision=True) visual_material = PreviewSurface(prim_path="/World/Looks/ballColorMaterial", color=np.asarray([0.0, 0.0, 1.0])) physics_material = PhysicsMaterial( prim_path="/World/Looks/ballPhysicsMaterial", dynamic_friction=1.0, static_friction=0.2, restitution=0.0, ) sphere_geom.set_collision_approximation("convexHull") sphere_geom.apply_visual_material(visual_material) sphere_geom.apply_physics_material(physics_material) # Clone the scene cloner.define_base_env("/World/envs") envs_prim_paths = cloner.generate_paths("/World/envs/env", num_paths=num_balls) cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=envs_prim_paths, replicate_physics=True) physics_scene_path = sim.get_physics_context().prim_path cloner.filter_collisions( physics_scene_path, "/World/collisions", prim_paths=envs_prim_paths, global_paths=["/World/ground"] ) # Set ball positions over terrain origins # Create a view over all the balls ball_view = RigidPrimView("/World/envs/env_.*/ball", reset_xform_properties=False) # cache initial state of the balls ball_initial_positions = terrain_importer.env_origins ball_initial_positions[:, 2] += 5.0 # set initial poses # note: setting here writes to USD :) ball_view.set_world_poses(positions=ball_initial_positions) if __name__ == "__main__": run_tests()
13,060
Python
44.82807
124
0.591807
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/utils/test_math.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch import unittest from math import pi as PI """Launch Isaac Sim Simulator first. This is only needed because of warp dependency. """ from omni.isaac.lab.app import AppLauncher, run_tests # launch omniverse app in headless mode simulation_app = AppLauncher(headless=True).app import omni.isaac.lab.utils.math as math_utils class TestMathUtilities(unittest.TestCase): """Test fixture for checking math utilities in Isaac Lab.""" def test_is_identity_pose(self): """Test is_identity_pose method.""" identity_pos_one_row = torch.zeros(3) identity_rot_one_row = torch.tensor((1.0, 0.0, 0.0, 0.0)) self.assertTrue(math_utils.is_identity_pose(identity_pos_one_row, identity_rot_one_row)) identity_pos_one_row[0] = 1.0 identity_rot_one_row[1] = 1.0 self.assertFalse(math_utils.is_identity_pose(identity_pos_one_row, identity_rot_one_row)) identity_pos_multi_row = torch.zeros(3, 3) identity_rot_multi_row = torch.zeros(3, 4) identity_rot_multi_row[:, 0] = 1.0 self.assertTrue(math_utils.is_identity_pose(identity_pos_multi_row, identity_rot_multi_row)) identity_pos_multi_row[0, 0] = 1.0 identity_rot_multi_row[0, 1] = 1.0 self.assertFalse(math_utils.is_identity_pose(identity_pos_multi_row, identity_rot_multi_row)) def test_axis_angle_from_quat(self): """Test axis_angle_from_quat method.""" # Quaternions of the form (2,4) and (2,2,4) quats = [ torch.Tensor([[1.0, 0.0, 0.0, 0.0], [0.8418536, 0.142006, 0.0, 0.5206887]]), torch.Tensor([ [[1.0, 0.0, 0.0, 0.0], [0.8418536, 0.142006, 0.0, 0.5206887]], [[1.0, 0.0, 0.0, 0.0], [0.9850375, 0.0995007, 0.0995007, 0.0995007]], ]), ] # Angles of the form (2,3) and (2,2,3) angles = [ torch.Tensor([[0.0, 0.0, 0.0], [0.3, 0.0, 1.1]]), torch.Tensor([[[0.0, 0.0, 0.0], [0.3, 0.0, 1.1]], [[0.0, 0.0, 0.0], [0.2, 0.2, 0.2]]]), ] for quat, angle in zip(quats, angles): with self.subTest(quat=quat, angle=angle): torch.testing.assert_close(math_utils.axis_angle_from_quat(quat), angle) def test_axis_angle_from_quat_approximation(self): """Test the Taylor approximation from axis_angle_from_quat method. This test checks for unstable conversions where theta is very small. """ # Generate a small rotation quaternion # Small angle theta = torch.Tensor([0.0000001]) # Arbitrary normalized axis of rotation in rads, (x,y,z) axis = [-0.302286, 0.205494, -0.930803] # Generate quaternion qw = torch.cos(theta / 2) quat_vect = [qw] + [d * torch.sin(theta / 2) for d in axis] quaternion = torch.tensor(quat_vect, dtype=torch.float32) # Convert quaternion to axis-angle axis_angle_computed = math_utils.axis_angle_from_quat(quaternion) # Expected axis-angle representation axis_angle_expected = torch.tensor([theta * d for d in axis], dtype=torch.float32) # Assert that the computed values are close to the expected values torch.testing.assert_close(axis_angle_computed, axis_angle_expected) def test_quat_error_magnitude(self): """Test quat_error_magnitude method.""" # Define test cases # Each tuple contains: q1, q2, expected error test_cases = [ # No rotation (torch.Tensor([1, 0, 0, 0]), torch.Tensor([1, 0, 0, 0]), torch.Tensor([0.0])), # PI/2 rotation (torch.Tensor([1.0, 0, 0.0, 0]), torch.Tensor([0.7071068, 0.7071068, 0, 0]), torch.Tensor([PI / 2])), # PI rotation (torch.Tensor([1.0, 0, 0.0, 0]), torch.Tensor([0.0, 0.0, 1.0, 0]), torch.Tensor([PI])), ] # Test higher dimension (batched) inputs q1_list = torch.stack([t[0] for t in test_cases], dim=0) q2_list = torch.stack([t[1] for t in test_cases], dim=0) expected_diff_list = torch.stack([t[2] for t in test_cases], dim=0).flatten() test_cases += [(q1_list, q2_list, expected_diff_list)] # Iterate over test cases for q1, q2, expected_diff in test_cases: with self.subTest(q1=q1, q2=q2): # Compute the error q12_diff = math_utils.quat_error_magnitude(q1, q2) # Check that the error is close to the expected value if len(q1.shape) > 1: torch.testing.assert_close(q12_diff, expected_diff) else: self.assertAlmostEqual(q12_diff.item(), expected_diff.item(), places=5) def test_quat_unique(self): """Test quat_unique method.""" # Define test cases quats = math_utils.random_orientation(num=1024, device="cpu") # Test positive real quaternion pos_real_quats = math_utils.quat_unique(quats) # Test that the real part is positive self.assertTrue(torch.all(pos_real_quats[:, 0] > 0).item()) non_pos_indices = quats[:, 0] < 0 # Check imaginary part have sign flipped if real part is negative torch.testing.assert_close(pos_real_quats[non_pos_indices], -quats[non_pos_indices]) torch.testing.assert_close(pos_real_quats[~non_pos_indices], quats[~non_pos_indices]) def test_quat_mul_with_quat_unique(self): """Test quat_mul method with different quaternions. This test checks that the quaternion multiplication is consistent when using positive real quaternions and regular quaternions. It makes sure that the result is the same regardless of the input quaternion sign (i.e. q and -q are same quaternion in the context of rotations). """ quats_1 = math_utils.random_orientation(num=1024, device="cpu") quats_2 = math_utils.random_orientation(num=1024, device="cpu") # Make quats positive real quats_1_pos_real = math_utils.quat_unique(quats_1) quats_2_pos_real = math_utils.quat_unique(quats_2) # Option 1: Direct computation on quaternions quat_result_1 = math_utils.quat_mul(quats_1, math_utils.quat_conjugate(quats_2)) quat_result_1 = math_utils.quat_unique(quat_result_1) # Option 2: Computation on positive real quaternions quat_result_2 = math_utils.quat_mul(quats_1_pos_real, math_utils.quat_conjugate(quats_2_pos_real)) quat_result_2 = math_utils.quat_unique(quat_result_2) # Option 3: Mixed computation quat_result_3 = math_utils.quat_mul(quats_1, math_utils.quat_conjugate(quats_2_pos_real)) quat_result_3 = math_utils.quat_unique(quat_result_3) # Check that the result is close to the expected value torch.testing.assert_close(quat_result_1, quat_result_2) torch.testing.assert_close(quat_result_2, quat_result_3) torch.testing.assert_close(quat_result_3, quat_result_1) def test_quat_error_mag_with_quat_unique(self): """Test quat_error_magnitude method with positive real quaternions.""" quats_1 = math_utils.random_orientation(num=1024, device="cpu") quats_2 = math_utils.random_orientation(num=1024, device="cpu") # Make quats positive real quats_1_pos_real = math_utils.quat_unique(quats_1) quats_2_pos_real = math_utils.quat_unique(quats_2) # Compute the error error_1 = math_utils.quat_error_magnitude(quats_1, quats_2) error_2 = math_utils.quat_error_magnitude(quats_1_pos_real, quats_2_pos_real) error_3 = math_utils.quat_error_magnitude(quats_1, quats_2_pos_real) error_4 = math_utils.quat_error_magnitude(quats_1_pos_real, quats_2) # Check that the error is close to the expected value torch.testing.assert_close(error_1, error_2) torch.testing.assert_close(error_2, error_3) torch.testing.assert_close(error_3, error_4) torch.testing.assert_close(error_4, error_1) if __name__ == "__main__": run_tests()
8,261
Python
41.153061
114
0.622806
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/test/utils/test_assets.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations """Launch Isaac Sim Simulator first.""" from omni.isaac.lab.app import AppLauncher, run_tests # launch omniverse app app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import unittest import omni.isaac.lab.utils.assets as assets_utils class TestAssetsUtils(unittest.TestCase): """Test cases for the assets utility functions.""" def test_nucleus_connection(self): """Test checking the Nucleus connection.""" # check nucleus connection self.assertIsNotNone(assets_utils.NUCLEUS_ASSET_ROOT_DIR) def test_check_file_path_nucleus(self): """Test checking a file path on the Nucleus server.""" # robot file path usd_path = f"{assets_utils.ISAACLAB_NUCLEUS_DIR}/Robots/FrankaEmika/panda_instanceable.usd" # check file path self.assertEqual(assets_utils.check_file_path(usd_path), 2) def test_check_file_path_invalid(self): """Test checking an invalid file path.""" # robot file path usd_path = f"{assets_utils.ISAACLAB_NUCLEUS_DIR}/Robots/FrankaEmika/panda_xyz.usd" # check file path self.assertEqual(assets_utils.check_file_path(usd_path), 0) if __name__ == "__main__": run_tests()
1,430
Python
28.812499
99
0.68951
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/config/extension.toml
[package] # Note: Semantic Versioning is used: https://semver.org/ version = "0.17.11" # Description title = "Isaac Lab framework for Robot Learning" description="Extension providing main framework interfaces and abstractions for robot learning." readme = "docs/README.md" repository = "https://github.com/isaac-sim/IsaacLab" category = "robotics" keywords = ["kit", "robotics", "learning", "ai"] [dependencies] "omni.isaac.core" = {} "omni.replicator.core" = {} [[python.module]] name = "omni.isaac.lab"
510
TOML
24.549999
96
0.719608
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing the core framework.""" import os import toml # Conveniences to other module directories via relative paths ISAACLAB_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ISAACLAB_METADATA = toml.load(os.path.join(ISAACLAB_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ISAACLAB_METADATA["package"]["version"]
651
Python
31.599998
89
0.732719
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/sensors/camera/tiled_camera.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import math import numpy as np import torch from collections.abc import Sequence from tensordict import TensorDict from typing import TYPE_CHECKING, Any import omni.usd import warp as wp from omni.isaac.core.prims import XFormPrimView from pxr import UsdGeom from omni.isaac.lab.utils.warp.kernels import reshape_tiled_image from ..sensor_base import SensorBase from .camera import Camera if TYPE_CHECKING: from .camera_cfg import TiledCameraCfg class TiledCamera(Camera): r"""The tiled rendering camera sensor for acquiring RGB and depth data. This class wraps over the `UsdGeom Camera`_ for providing a consistent API for acquiring visual data. It ensures that the camera follows the ROS convention for the coordinate system. The following sensor types are supported: - ``"rgb"``: A rendered color image. - ``"depth"``: An image containing the distance to camera optical center. .. _USDGeom Camera: https://graphics.pixar.com/usd/docs/api/class_usd_geom_camera.html """ cfg: TiledCameraCfg """The configuration parameters.""" SUPPORTED_TYPES: set[str] = {"rgb", "depth"} """The set of sensor types that are supported.""" def __init__(self, cfg: TiledCameraCfg): """Initializes the tiled camera sensor. Args: cfg: The configuration parameters. Raises: RuntimeError: If no camera prim is found at the given path. ValueError: If the provided data types are not supported by the camera. """ super().__init__(cfg) def __del__(self): """Unsubscribes from callbacks and detach from the replicator registry.""" SensorBase.__del__(self) self._annotator.detach(self.render_product_paths) def __str__(self) -> str: """Returns: A string containing information about the instance.""" # message for class return ( f"Tiled Camera @ '{self.cfg.prim_path}': \n" f"\tdata types : {self.data.output.sorted_keys} \n" f"\tupdate period (s): {self.cfg.update_period}\n" f"\tshape : {self.image_shape}\n" f"\tnumber of sensors : {self._view.count}" ) """ Operations """ def reset(self, env_ids: Sequence[int] | None = None): if not self._is_initialized: raise RuntimeError( "TiledCamera could not be initialized. Please ensure --enable_cameras is used to enable rendering." ) # reset the timestamps SensorBase.reset(self, env_ids) if env_ids is None: env_ids = self._ALL_INDICES # Reset the frame count self._frame[env_ids] = 0 """ Implementation. """ def _initialize_impl(self): """Initializes the sensor handles and internal buffers. This function creates handles and registers the provided data types with the replicator registry to be able to access the data from the sensor. It also initializes the internal buffers to store the data. Raises: RuntimeError: If the number of camera prims in the view does not match the number of environments. RuntimeError: If replicator was not found. """ try: import omni.replicator.core as rep except ModuleNotFoundError: raise RuntimeError( "Replicator was not found for rendering. Please use --enable_cameras to enable rendering." ) # Initialize parent class SensorBase._initialize_impl(self) # Create a view for the sensor self._view = XFormPrimView(self.cfg.prim_path, reset_xform_properties=False) self._view.initialize() # Check that sizes are correct if self._view.count != self._num_envs: raise RuntimeError( f"Number of camera prims in the view ({self._view.count}) does not match" f" the number of environments ({self._num_envs})." ) # Create all env_ids buffer self._ALL_INDICES = torch.arange(self._view.count, device=self._device, dtype=torch.long) # Create frame count buffer self._frame = torch.zeros(self._view.count, device=self._device, dtype=torch.long) # Obtain current stage stage = omni.usd.get_context().get_stage() # Convert all encapsulated prims to Camera for cam_prim_path in self._view.prim_paths: # Get camera prim cam_prim = stage.GetPrimAtPath(cam_prim_path) # Check if prim is a camera if not cam_prim.IsA(UsdGeom.Camera): raise RuntimeError(f"Prim at path '{cam_prim_path}' is not a Camera.") # Add to list sensor_prim = UsdGeom.Camera(cam_prim) self._sensor_prims.append(sensor_prim) rep.orchestrator._orchestrator._is_started = True sensor = rep.create.tiled_sensor( cameras=self._view.prim_paths, camera_resolution=[self.image_shape[1], self.image_shape[0]], tiled_resolution=self._tiled_image_shape(), output_types=self.cfg.data_types, ) render_prod_path = rep.create.render_product(camera=sensor, resolution=self._tiled_image_shape()) if not isinstance(render_prod_path, str): render_prod_path = render_prod_path.path self._render_product_paths = [render_prod_path] self._annotator = rep.AnnotatorRegistry.get_annotator("RtxSensorGpu", device=self.device, do_array_copy=False) self._annotator.attach(self._render_product_paths) # Create internal buffers self._create_buffers() def _create_annotator_data(self): raise RuntimeError("Annotator data is not available for the tiled camera sensor.") def _process_annotator_output(self, name: str, output: Any) -> tuple[torch.tensor, dict | None]: raise RuntimeError("Annotator data is not available for the tiled camera sensor.") def _update_buffers_impl(self, env_ids: Sequence[int]): # Increment frame count self._frame[env_ids] += 1 # Extract the flattened image buffer tiled_data_buffer = self._annotator.get_data() if isinstance(tiled_data_buffer, np.ndarray): tiled_data_buffer = wp.array(tiled_data_buffer, device=self.device) else: tiled_data_buffer = tiled_data_buffer.to(device=self.device) # The offset is needed when the buffer contains rgb and depth (the buffer has RGB data first and then depth) offset = self._data.output["rgb"].numel() if "rgb" in self.cfg.data_types else 0 for data_type in self.cfg.data_types: wp.launch( kernel=reshape_tiled_image, dim=(self._view.count, self.cfg.height, self.cfg.width), inputs=[ tiled_data_buffer, wp.from_torch(self._data.output[data_type]), # zero-copy alias *list(self._data.output[data_type].shape[1:]), # height, width, num_channels self._tiling_grid_shape()[0], # num_tiles_x offset if data_type == "depth" else 0, ], device=self.device, ) """ Private Helpers """ def _tiled_image_shape(self) -> tuple[int, int]: """A tuple containing the dimension of the tiled image.""" cols, rows = self._tiling_grid_shape() return (self.cfg.width * cols, self.cfg.height * rows) def _tiling_grid_shape(self) -> tuple[int, int]: """A tuple containing the tiling grid dimension.""" cols = round(math.sqrt(self._view.count)) rows = math.ceil(self._view.count / cols) return (cols, rows) def _check_supported_data_types(self, cfg: TiledCameraCfg): """Checks if the data types are supported by the camera.""" if not set(cfg.data_types).issubset(TiledCamera.SUPPORTED_TYPES): raise ValueError( f"The TiledCamera class only supports the following types {TiledCamera.SUPPORTED_TYPES} but the" f" following where provided: {cfg.data_types}" ) def _create_buffers(self): """Create buffers for storing data.""" # create the data object # -- pose of the cameras self._data.pos_w = torch.zeros((self._view.count, 3), device=self._device) self._data.quat_w_world = torch.zeros((self._view.count, 4), device=self._device) self._update_poses(self._ALL_INDICES) # -- intrinsic matrix self._data.intrinsic_matrices = torch.zeros((self._view.count, 3, 3), device=self._device) self._update_intrinsic_matrices(self._ALL_INDICES) self._data.image_shape = self.image_shape # -- output data data_dict = dict() if "rgb" in self.cfg.data_types: data_dict["rgb"] = torch.zeros( (self._view.count, self.cfg.height, self.cfg.width, 3), device=self.device ).contiguous() if "depth" in self.cfg.data_types: data_dict["depth"] = torch.zeros( (self._view.count, self.cfg.height, self.cfg.width, 1), device=self.device ).contiguous() self._data.output = TensorDict(data_dict, batch_size=self._view.count, device=self.device) """ Internal simulation callbacks. """ def _invalidate_initialize_callback(self, event): """Invalidates the scene elements.""" # call parent super()._invalidate_initialize_callback(event) # set all existing views to None to invalidate them self._view = None
9,888
Python
38.875
118
0.620044
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/sensors/camera/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module for camera wrapper around USD camera prim.""" from .camera import Camera from .camera_cfg import CameraCfg, TiledCameraCfg from .camera_data import CameraData from .tiled_camera import TiledCamera from .utils import * # noqa: F401, F403
380
Python
28.30769
60
0.765789
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/sensors/contact_sensor/contact_sensor_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.markers import VisualizationMarkersCfg from omni.isaac.lab.markers.config import CONTACT_SENSOR_MARKER_CFG from omni.isaac.lab.utils import configclass from ..sensor_base_cfg import SensorBaseCfg from .contact_sensor import ContactSensor @configclass class ContactSensorCfg(SensorBaseCfg): """Configuration for the contact sensor.""" class_type: type = ContactSensor track_pose: bool = False """Whether to track the pose of the sensor's origin. Defaults to False.""" track_air_time: bool = False """Whether to track the air/contact time of the bodies (time between contacts). Defaults to False.""" force_threshold: float = 1.0 """The threshold on the norm of the contact force that determines whether two bodies are in collision or not. This value is only used for tracking the mode duration (the time in contact or in air), if :attr:`track_air_time` is True. """ filter_prim_paths_expr: list[str] = list() """The list of primitive paths (or expressions) to filter contacts with. Defaults to an empty list, in which case no filtering is applied. The contact sensor allows reporting contacts between the primitive specified with :attr:`prim_path` and other primitives in the scene. For instance, in a scene containing a robot, a ground plane and an object, you can obtain individual contact reports of the base of the robot with the ground plane and the object. .. note:: The expression in the list can contain the environment namespace regex ``{ENV_REGEX_NS}`` which will be replaced with the environment namespace. Example: ``{ENV_REGEX_NS}/Object`` will be replaced with ``/World/envs/env_.*/Object``. """ visualizer_cfg: VisualizationMarkersCfg = CONTACT_SENSOR_MARKER_CFG.replace(prim_path="/Visuals/ContactSensor") """The configuration object for the visualization markers. Defaults to CONTACT_SENSOR_MARKER_CFG. .. note:: This attribute is only used when debug visualization is enabled. """
2,183
Python
38.70909
117
0.726981
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-package for environment definitions. Environments define the interface between the agent and the simulation. In the simplest case, the environment provides the agent with the current observations and executes the actions provided by the agent. However, the environment can also provide additional information such as the current reward, done flag, and information about the current episode. Based on these, there are two types of environments: * :class:`ManagerBasedEnv`: The manager-based workflow base environment which only provides the agent with the current observations and executes the actions provided by the agent. * :class:`ManagerBasedRLEnv`: The manager-based workflow RL task environment which besides the functionality of the base environment also provides additional Markov Decision Process (MDP) related information such as the current reward, done flag, and information. In addition, RL task environments can use the direct workflow implementation: * :class:`DirectRLEnv`: The direct workflow RL task environment which provides implementations for implementing scene setup, computing dones, performing resets, and computing reward and observation. """ from . import mdp, ui from .base_env_cfg import ManagerBasedEnvCfg, ViewerCfg from .direct_rl_env import DirectRLEnv from .manager_based_env import ManagerBasedEnv from .manager_based_rl_env import ManagerBasedRLEnv from .rl_env_cfg import DirectRLEnvCfg, ManagerBasedRLEnvCfg from .types import VecEnvObs, VecEnvStepReturn
1,648
Python
41.28205
94
0.808252
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/direct_rl_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import builtins import gymnasium as gym import inspect import math import numpy as np import torch import weakref from abc import abstractmethod from collections.abc import Sequence from typing import Any, ClassVar import omni.isaac.core.utils.torch as torch_utils import omni.kit.app from omni.isaac.version import get_version from omni.isaac.lab.envs.types import VecEnvObs, VecEnvStepReturn from omni.isaac.lab.managers import EventManager from omni.isaac.lab.scene import InteractiveScene from omni.isaac.lab.sim import SimulationContext from omni.isaac.lab.utils.noise import NoiseModel from omni.isaac.lab.utils.timer import Timer from .rl_env_cfg import DirectRLEnvCfg from .ui import ViewportCameraController class DirectRLEnv(gym.Env): """The superclass for the direct workflow reinforcement learning-based environments. This class implements the core functionality for reinforcement learning-based environments. It is designed to be used with any RL library. The class is designed to be used with vectorized environments, i.e., the environment is expected to be run in parallel with multiple sub-environments. While the environment itself is implemented as a vectorized environment, we do not inherit from :class:`gym.vector.VectorEnv`. This is mainly because the class adds various methods (for wait and asynchronous updates) which are not required. Additionally, each RL library typically has its own definition for a vectorized environment. Thus, to reduce complexity, we directly use the :class:`gym.Env` over here and leave it up to library-defined wrappers to take care of wrapping this environment for their agents. Note: For vectorized environments, it is recommended to **only** call the :meth:`reset` method once before the first call to :meth:`step`, i.e. after the environment is created. After that, the :meth:`step` function handles the reset of terminated sub-environments. This is because the simulator does not support resetting individual sub-environments in a vectorized environment. """ is_vector_env: ClassVar[bool] = True """Whether the environment is a vectorized environment.""" metadata: ClassVar[dict[str, Any]] = { "render_modes": [None, "human", "rgb_array"], "isaac_sim_version": get_version(), } """Metadata for the environment.""" def __init__(self, cfg: DirectRLEnvCfg, render_mode: str | None = None, **kwargs): """Initialize the environment. Args: cfg: The configuration object for the environment. Raises: RuntimeError: If a simulation context already exists. The environment must always create one since it configures the simulation context and controls the simulation. """ # store inputs to class self.cfg = cfg # store the render mode self.render_mode = render_mode # initialize internal variables self._is_closed = False # create a simulation context to control the simulator if SimulationContext.instance() is None: self.sim: SimulationContext = SimulationContext(self.cfg.sim) else: raise RuntimeError("Simulation context already exists. Cannot create a new one.") # print useful information print("[INFO]: Base environment:") print(f"\tEnvironment device : {self.device}") print(f"\tPhysics step-size : {self.physics_dt}") print(f"\tRendering step-size : {self.physics_dt * self.cfg.sim.substeps}") print(f"\tEnvironment step-size : {self.step_dt}") print(f"\tPhysics GPU pipeline : {self.cfg.sim.use_gpu_pipeline}") print(f"\tPhysics GPU simulation: {self.cfg.sim.physx.use_gpu}") # generate scene with Timer("[INFO]: Time taken for scene creation"): self.scene = InteractiveScene(self.cfg.scene) self._setup_scene() print("[INFO]: Scene manager: ", self.scene) # set up camera viewport controller # viewport is not available in other rendering modes so the function will throw a warning # FIXME: This needs to be fixed in the future when we unify the UI functionalities even for # non-rendering modes. if self.sim.render_mode >= self.sim.RenderMode.PARTIAL_RENDERING: self.viewport_camera_controller = ViewportCameraController(self, self.cfg.viewer) else: self.viewport_camera_controller = None # play the simulator to activate physics handles # note: this activates the physics simulation view that exposes TensorAPIs # note: when started in extension mode, first call sim.reset_async() and then initialize the managers if builtins.ISAAC_LAUNCHED_FROM_TERMINAL is False: print("[INFO]: Starting the simulation. This may take a few seconds. Please wait...") with Timer("[INFO]: Time taken for simulation start"): self.sim.reset() # -- event manager used for randomization if self.cfg.events: self.event_manager = EventManager(self.cfg.events, self) print("[INFO] Event Manager: ", self.event_manager) # make sure torch is running on the correct device if "cuda" in self.device: torch.cuda.set_device(self.device) # check if debug visualization is has been implemented by the environment source_code = inspect.getsource(self._set_debug_vis_impl) self.has_debug_vis_implementation = "NotImplementedError" not in source_code self._debug_vis_handle = None # extend UI elements # we need to do this here after all the managers are initialized # this is because they dictate the sensors and commands right now if self.sim.has_gui() and self.cfg.ui_window_class_type is not None: self._window = self.cfg.ui_window_class_type(self, window_name="IsaacLab") else: # if no window, then we don't need to store the window self._window = None # allocate dictionary to store metrics self.extras = {} # initialize data and constants # -- counter for curriculum self.common_step_counter = 0 # -- init buffers self.episode_length_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) self.reset_terminated = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool) self.reset_time_outs = torch.zeros_like(self.reset_terminated) self.reset_buf = torch.zeros(self.num_envs, dtype=torch.bool, device=self.sim.device) self.actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.sim.device) # setup the action and observation spaces for Gym self._configure_gym_env_spaces() # -- noise cfg for adding action and observation noise if self.cfg.action_noise_model: self._action_noise_model: NoiseModel = self.cfg.action_noise_model.class_type( self.num_envs, self.cfg.action_noise_model, self.device ) if self.cfg.observation_noise_model: self._observation_noise_model: NoiseModel = self.cfg.observation_noise_model.class_type( self.num_envs, self.cfg.observation_noise_model, self.device ) # perform events at the start of the simulation if self.cfg.events: if "startup" in self.event_manager.available_modes: self.event_manager.apply(mode="startup") # print the environment information print("[INFO]: Completed setting up the environment...") def __del__(self): """Cleanup for the environment.""" self.close() """ Properties. """ @property def num_envs(self) -> int: """The number of instances of the environment that are running.""" return self.scene.num_envs @property def physics_dt(self) -> float: """The physics time-step (in s). This is the lowest time-decimation at which the simulation is happening. """ return self.cfg.sim.dt @property def step_dt(self) -> float: """The environment stepping time-step (in s). This is the time-step at which the environment steps forward. """ return self.cfg.sim.dt * self.cfg.decimation @property def device(self): """The device on which the environment is running.""" return self.sim.device @property def max_episode_length_s(self) -> float: """Maximum episode length in seconds.""" return self.cfg.episode_length_s @property def max_episode_length(self): """The maximum episode length in steps adjusted from s.""" return math.ceil(self.max_episode_length_s / (self.cfg.sim.dt * self.cfg.decimation)) """ Operations. """ def reset(self, seed: int | None = None, options: dict[str, Any] | None = None) -> tuple[VecEnvObs, dict]: """Resets all the environments and returns observations. Args: seed: The seed to use for randomization. Defaults to None, in which case the seed is not set. options: Additional information to specify how the environment is reset. Defaults to None. Note: This argument is used for compatibility with Gymnasium environment definition. Returns: A tuple containing the observations and extras. """ # set the seed if seed is not None: self.seed(seed) # reset state of scene indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) self._reset_idx(indices) obs = self._get_observations() # return observations return obs, self.extras def step(self, action: torch.Tensor) -> VecEnvStepReturn: """Execute one time-step of the environment's dynamics. The environment steps forward at a fixed time-step, while the physics simulation is decimated at a lower time-step. This is to ensure that the simulation is stable. These two time-steps can be configured independently using the :attr:`DirectRLEnvCfg.decimation` (number of simulation steps per environment step) and the :attr:`DirectRLEnvCfg.physics_dt` (physics time-step). Based on these parameters, the environment time-step is computed as the product of the two. Args: action: The actions to apply on the environment. Shape is (num_envs, action_dim). Returns: A tuple containing the observations and extras. """ # add action noise if self.cfg.action_noise_model: action = self._action_noise_model.apply(action.clone()) # process actions self._pre_physics_step(action) # perform physics stepping for _ in range(self.cfg.decimation): # set actions into buffers self._apply_action() # set actions into simulator self.scene.write_data_to_sim() # simulate self.sim.step(render=False) # update buffers at sim dt self.scene.update(dt=self.physics_dt) # perform rendering if gui is enabled if self.sim.has_gui() or self.sim.has_rtx_sensors(): self.sim.render() # post-step: # -- update env counters (used for curriculum generation) self.episode_length_buf += 1 # step in current episode (per env) self.common_step_counter += 1 # total step (common for all envs) self.reset_terminated[:], self.reset_time_outs[:] = self._get_dones() self.reset_buf = self.reset_terminated | self.reset_time_outs self.reward_buf = self._get_rewards() # -- reset envs that terminated/timed-out and log the episode information reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self._reset_idx(reset_env_ids) # post-step: step interval event if self.cfg.events: if "interval" in self.event_manager.available_modes: self.event_manager.apply(mode="interval", dt=self.step_dt) # update observations self.obs_buf = self._get_observations() # add observation noise if self.cfg.observation_noise_model: self.obs_buf["policy"] = self._observation_noise_model.apply(self.obs_buf["policy"]) # return observations, rewards, resets and extras return self.obs_buf, self.reward_buf, self.reset_terminated, self.reset_time_outs, self.extras @staticmethod def seed(seed: int = -1) -> int: """Set the seed for the environment. Args: seed: The seed for random generator. Defaults to -1. Returns: The seed used for random generator. """ # set seed for replicator try: import omni.replicator.core as rep rep.set_global_seed(seed) except ModuleNotFoundError: pass # set seed for torch and other libraries return torch_utils.set_seed(seed) def render(self, recompute: bool = False) -> np.ndarray | None: """Run rendering without stepping through the physics. By convention, if mode is: - **human**: Render to the current display and return nothing. Usually for human consumption. - **rgb_array**: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video. Args: recompute: Whether to force a render even if the simulator has already rendered the scene. Defaults to False. Returns: The rendered image as a numpy array if mode is "rgb_array". Otherwise, returns None. Raises: RuntimeError: If mode is set to "rgb_data" and simulation render mode does not support it. In this case, the simulation render mode must be set to ``RenderMode.PARTIAL_RENDERING`` or ``RenderMode.FULL_RENDERING``. NotImplementedError: If an unsupported rendering mode is specified. """ # run a rendering step of the simulator # if we have rtx sensors, we do not need to render again sin if not self.sim.has_rtx_sensors() and not recompute: self.sim.render() # decide the rendering mode if self.render_mode == "human" or self.render_mode is None: return None elif self.render_mode == "rgb_array": # check that if any render could have happened if self.sim.render_mode.value < self.sim.RenderMode.PARTIAL_RENDERING.value: raise RuntimeError( f"Cannot render '{self.render_mode}' when the simulation render mode is" f" '{self.sim.render_mode.name}'. Please set the simulation render mode to:" f"'{self.sim.RenderMode.PARTIAL_RENDERING.name}' or '{self.sim.RenderMode.FULL_RENDERING.name}'." " If running headless, make sure --enable_cameras is set." ) # create the annotator if it does not exist if not hasattr(self, "_rgb_annotator"): import omni.replicator.core as rep # create render product self._render_product = rep.create.render_product( self.cfg.viewer.cam_prim_path, self.cfg.viewer.resolution ) # create rgb annotator -- used to read data from the render product self._rgb_annotator = rep.AnnotatorRegistry.get_annotator("rgb", device="cpu") self._rgb_annotator.attach([self._render_product]) # obtain the rgb data rgb_data = self._rgb_annotator.get_data() # convert to numpy array rgb_data = np.frombuffer(rgb_data, dtype=np.uint8).reshape(*rgb_data.shape) # return the rgb data # note: initially the renerer is warming up and returns empty data if rgb_data.size == 0: return np.zeros((self.cfg.viewer.resolution[1], self.cfg.viewer.resolution[0], 3), dtype=np.uint8) else: return rgb_data[:, :, :3] else: raise NotImplementedError( f"Render mode '{self.render_mode}' is not supported. Please use: {self.metadata['render_modes']}." ) def close(self): """Cleanup for the environment.""" if not self._is_closed: if self.cfg.events: del self.event_manager del self.scene if self.viewport_camera_controller is not None: del self.viewport_camera_controller # clear callbacks and instance self.sim.clear_all_callbacks() self.sim.clear_instance() # destroy the window if self._window is not None: self._window = None # update closing status self._is_closed = True def set_debug_vis(self, debug_vis: bool) -> bool: """Toggles the environment debug visualization. Args: debug_vis: Whether to visualize the environment debug visualization. Returns: Whether the debug visualization was successfully set. False if the environment does not support debug visualization. """ # check if debug visualization is supported if not self.has_debug_vis_implementation: return False # toggle debug visualization objects self._set_debug_vis_impl(debug_vis) # toggle debug visualization handles if debug_vis: # create a subscriber for the post update event if it doesn't exist if self._debug_vis_handle is None: app_interface = omni.kit.app.get_app_interface() self._debug_vis_handle = app_interface.get_post_update_event_stream().create_subscription_to_pop( lambda event, obj=weakref.proxy(self): obj._debug_vis_callback(event) ) else: # remove the subscriber if it exists if self._debug_vis_handle is not None: self._debug_vis_handle.unsubscribe() self._debug_vis_handle = None # return success return True """ Helper functions. """ def _configure_gym_env_spaces(self): """Configure the action and observation spaces for the Gym environment.""" # observation space (unbounded since we don't impose any limits) self.num_actions = self.cfg.num_actions self.num_observations = self.cfg.num_observations self.num_states = self.cfg.num_states # set up spaces self.single_observation_space = gym.spaces.Dict() self.single_observation_space["policy"] = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(self.num_observations,) ) self.single_action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.num_actions,)) # batch the spaces for vectorized environments self.observation_space = gym.vector.utils.batch_space(self.single_observation_space["policy"], self.num_envs) self.action_space = gym.vector.utils.batch_space(self.single_action_space, self.num_envs) if self.num_states > 0: self.single_observation_space["critic"] = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.num_states,)) self.state_space = gym.vector.utils.batch_space(self.single_observation_space["critic"], self.num_envs) def _reset_idx(self, env_ids: Sequence[int]): """Reset environments based on specified indices. Args: env_ids: List of environment ids which must be reset """ self.scene.reset(env_ids) # apply events such as randomizations for environments that need a reset if self.cfg.events: if "reset" in self.event_manager.available_modes: self.event_manager.apply(env_ids=env_ids, mode="reset") if self.cfg.action_noise_model: self._action_noise_model.reset(env_ids) if self.cfg.observation_noise_model: self._observation_noise_model.reset(env_ids) # reset the episode length buffer self.episode_length_buf[env_ids] = 0 # this can be done through configs as well def _setup_scene(self): pass def _set_debug_vis_impl(self, debug_vis: bool): """Set debug visualization into visualization objects. This function is responsible for creating the visualization objects if they don't exist and input ``debug_vis`` is True. If the visualization objects exist, the function should set their visibility into the stage. """ raise NotImplementedError(f"Debug visualization is not implemented for {self.__class__.__name__}.") @abstractmethod def _pre_physics_step(self, actions: torch.Tensor): return NotImplementedError @abstractmethod def _apply_action(self): return NotImplementedError @abstractmethod def _get_observations(self) -> VecEnvObs: return NotImplementedError def _get_states(self) -> VecEnvObs | None: return None @abstractmethod def _get_rewards(self) -> torch.Tensor: return NotImplementedError @abstractmethod def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: return NotImplementedError
21,989
Python
40.885714
120
0.636682
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/types.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import Dict VecEnvObs = Dict[str, torch.Tensor | Dict[str, torch.Tensor]] """Observation returned by the environment. The observations are stored in a dictionary. The keys are the group to which the observations belong. This is useful for various setups such as reinforcement learning with asymmetric actor-critic or multi-agent learning. For non-learning paradigms, this may include observations for different components of a system. Within each group, the observations can be stored either as a dictionary with keys as the names of each observation term in the group, or a single tensor obtained from concatenating all the observation terms. For example, for asymmetric actor-critic, the observation for the actor and the critic can be accessed using the keys ``"policy"`` and ``"critic"`` respectively. Note: By default, most learning frameworks deal with default and privileged observations in different ways. This handling must be taken care of by the wrapper around the :class:`ManagerBasedRLEnv` instance. For included frameworks (RSL-RL, RL-Games, skrl), the observations must have the key "policy". In case, the key "critic" is also present, then the critic observations are taken from the "critic" group. Otherwise, they are the same as the "policy" group. """ VecEnvStepReturn = tuple[VecEnvObs, torch.Tensor, torch.Tensor, torch.Tensor, Dict] """The environment signals processed at the end of each step. The tuple contains batched information for each sub-environment. The information is stored in the following order: 1. **Observations**: The observations from the environment. 2. **Rewards**: The rewards from the environment. 3. **Terminated Dones**: Whether the environment reached a terminal state, such as task success or robot falling etc. 4. **Timeout Dones**: Whether the environment reached a timeout state, such as end of max episode length. 5. **Extras**: A dictionary containing additional information from the environment. """
2,171
Python
47.266666
117
0.77614
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/rl_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.noise.noise_cfg import NoiseModelCfg from .base_env_cfg import ManagerBasedEnvCfg, ViewerCfg from .ui import BaseEnvWindow, ManagerBasedRLEnvWindow @configclass class ManagerBasedRLEnvCfg(ManagerBasedEnvCfg): """Configuration for a reinforcement learning environment with the manager-based workflow.""" # ui settings ui_window_class_type: type | None = ManagerBasedRLEnvWindow # general settings is_finite_horizon: bool = False """Whether the learning task is treated as a finite or infinite horizon problem for the agent. Defaults to False, which means the task is treated as an infinite horizon problem. This flag handles the subtleties of finite and infinite horizon tasks: * **Finite horizon**: no penalty or bootstrapping value is required by the the agent for running out of time. However, the environment still needs to terminate the episode after the time limit is reached. * **Infinite horizon**: the agent needs to bootstrap the value of the state at the end of the episode. This is done by sending a time-limit (or truncated) done signal to the agent, which triggers this bootstrapping calculation. If True, then the environment is treated as a finite horizon problem and no time-out (or truncated) done signal is sent to the agent. If False, then the environment is treated as an infinite horizon problem and a time-out (or truncated) done signal is sent to the agent. Note: The base :class:`ManagerBasedRLEnv` class does not use this flag directly. It is used by the environment wrappers to determine what type of done signal to send to the corresponding learning agent. """ episode_length_s: float = MISSING """Duration of an episode (in seconds). Based on the decimation rate and physics time step, the episode length is calculated as: .. code-block:: python episode_length_steps = ceil(episode_length_s / (decimation_rate * physics_time_step)) For example, if the decimation rate is 10, the physics time step is 0.01, and the episode length is 10 seconds, then the episode length in steps is 100. """ # environment settings rewards: object = MISSING """Reward settings. Please refer to the :class:`omni.isaac.lab.managers.RewardManager` class for more details. """ terminations: object = MISSING """Termination settings. Please refer to the :class:`omni.isaac.lab.managers.TerminationManager` class for more details. """ curriculum: object = MISSING """Curriculum settings. Please refer to the :class:`omni.isaac.lab.managers.CurriculumManager` class for more details. """ commands: object = MISSING """Command settings. Please refer to the :class:`omni.isaac.lab.managers.CommandManager` class for more details. """ @configclass class DirectRLEnvCfg(ManagerBasedEnvCfg): """Configuration for a reinforcement learning environment with the direct workflow.""" # simulation settings viewer: ViewerCfg = ViewerCfg() """Viewer configuration. Default is ViewerCfg().""" sim: SimulationCfg = SimulationCfg() """Physics simulation configuration. Default is SimulationCfg().""" # ui settings ui_window_class_type: type | None = BaseEnvWindow """The class type of the UI window. Default is None. If None, then no UI window is created. Note: If you want to make your own UI window, you can create a class that inherits from from :class:`omni.isaac.lab.envs.ui.base_env_window.BaseEnvWindow`. Then, you can set this attribute to your class type. """ # general settings decimation: int = MISSING """Number of control action updates @ sim dt per policy dt. For instance, if the simulation dt is 0.01s and the policy dt is 0.1s, then the decimation is 10. This means that the control action is updated every 10 simulation steps. """ # environment settings scene: InteractiveSceneCfg = MISSING """Scene settings. Please refer to the :class:`omni.isaac.lab.scene.InteractiveSceneCfg` class for more details. """ # general settings is_finite_horizon: bool = False """Whether the learning task is treated as a finite or infinite horizon problem for the agent. Defaults to False, which means the task is treated as an infinite horizon problem. This flag handles the subtleties of finite and infinite horizon tasks: * **Finite horizon**: no penalty or bootstrapping value is required by the the agent for running out of time. However, the environment still needs to terminate the episode after the time limit is reached. * **Infinite horizon**: the agent needs to bootstrap the value of the state at the end of the episode. This is done by sending a time-limit (or truncated) done signal to the agent, which triggers this bootstrapping calculation. If True, then the environment is treated as a finite horizon problem and no time-out (or truncated) done signal is sent to the agent. If False, then the environment is treated as an infinite horizon problem and a time-out (or truncated) done signal is sent to the agent. Note: The base :class:`ManagerBasedRLEnv` class does not use this flag directly. It is used by the environment wrappers to determine what type of done signal to send to the corresponding learning agent. """ episode_length_s: float = MISSING """Duration of an episode (in seconds). Based on the decimation rate and physics time step, the episode length is calculated as: .. code-block:: python episode_length_steps = ceil(episode_length_s / (decimation_rate * physics_time_step)) For example, if the decimation rate is 10, the physics time step is 0.01, and the episode length is 10 seconds, then the episode length in steps is 100. """ num_observations: int = MISSING """The size of the observation for each environment.""" num_states: int = 0 """The size of the state-space for each environment. Default is 0. This is used for asymmetric actor-critic and defines the observation space for the critic. """ num_actions: int = MISSING """The size of the action space for each environment.""" events: object = None """Settings for specifying domain randomization terms during training. Please refer to the :class:`omni.isaac.lab.managers.EventManager` class for more details. """ action_noise_model: NoiseModelCfg | None = None """Settings for adding noise to the action buffer. Please refer to the :class:`omni.isaac.lab.utils.noise.NoiseModel` class for more details. """ observation_noise_model: NoiseModelCfg | None = None """Settings for adding noise to the observation buffer. Please refer to the :class:`omni.isaac.lab.utils.noise.NoiseModel` class for more details. """
7,302
Python
38.475675
115
0.718022
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/ui/manager_based_rl_env_window.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from typing import TYPE_CHECKING from .base_env_window import BaseEnvWindow if TYPE_CHECKING: from ..manager_based_rl_env import ManagerBasedRLEnv class ManagerBasedRLEnvWindow(BaseEnvWindow): """Window manager for the RL environment. On top of the basic environment window, this class adds controls for the RL environment. This includes visualization of the command manager. """ def __init__(self, env: ManagerBasedRLEnv, window_name: str = "IsaacLab"): """Initialize the window. Args: env: The environment object. window_name: The name of the window. Defaults to "IsaacLab". """ # initialize base window super().__init__(env, window_name) # add custom UI elements with self.ui_window_elements["main_vstack"]: with self.ui_window_elements["debug_frame"]: with self.ui_window_elements["debug_vstack"]: self._create_debug_vis_ui_element("commands", self.env.command_manager) self._create_debug_vis_ui_element("actions", self.env.action_manager)
1,287
Python
32.02564
92
0.660451
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to enable different events. Events include anything related to altering the simulation state. This includes changing the physics materials, applying external forces, and resetting the state of the asset. The functions can be passed to the :class:`omni.isaac.lab.managers.EventTermCfg` object to enable the event introduced by the function. """ from __future__ import annotations import torch import warnings from typing import TYPE_CHECKING, Literal import carb import omni.isaac.lab.sim as sim_utils import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.actuators import ImplicitActuator from omni.isaac.lab.assets import Articulation, RigidObject from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedEnv def randomize_rigid_body_material( env: ManagerBasedEnv, env_ids: torch.Tensor | None, static_friction_range: tuple[float, float], dynamic_friction_range: tuple[float, float], restitution_range: tuple[float, float], num_buckets: int, asset_cfg: SceneEntityCfg, ): """Randomize the physics materials on all geometries of the asset. This function creates a set of physics materials with random static friction, dynamic friction, and restitution values. The number of materials is specified by ``num_buckets``. The materials are generated by sampling uniform random values from the given ranges. The material properties are then assigned to the geometries of the asset. The assignment is done by creating a random integer tensor of shape (num_instances, max_num_shapes) where ``num_instances`` is the number of assets spawned and ``max_num_shapes`` is the maximum number of shapes in the asset (over all bodies). The integer values are used as indices to select the material properties from the material buckets. .. attention:: This function uses CPU tensors to assign the material properties. It is recommended to use this function only during the initialization of the environment. Otherwise, it may lead to a significant performance overhead. .. note:: PhysX only allows 64000 unique physics materials in the scene. If the number of materials exceeds this limit, the simulation will crash. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] if not isinstance(asset, (RigidObject, Articulation)): raise ValueError( f"Randomization term 'randomize_rigid_body_material' not supported for asset: '{asset_cfg.name}'" f" with type: '{type(asset)}'." ) # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device="cpu") else: env_ids = env_ids.cpu() # retrieve material buffer materials = asset.root_physx_view.get_material_properties() # sample material properties from the given ranges material_samples = torch.zeros(materials[env_ids].shape) material_samples[..., 0].uniform_(*static_friction_range) material_samples[..., 1].uniform_(*dynamic_friction_range) material_samples[..., 2].uniform_(*restitution_range) # create uniform range tensor for bucketing lo = torch.tensor([static_friction_range[0], dynamic_friction_range[0], restitution_range[0]], device="cpu") hi = torch.tensor([static_friction_range[1], dynamic_friction_range[1], restitution_range[1]], device="cpu") # to avoid 64k material limit in physx, we bucket materials by binning randomized material properties # into buckets based on the number of buckets specified for d in range(3): buckets = torch.tensor([(hi[d] - lo[d]) * i / num_buckets + lo[d] for i in range(num_buckets)], device="cpu") material_samples[..., d] = buckets[torch.searchsorted(buckets, material_samples[..., d].contiguous()) - 1] # update material buffer with new samples if isinstance(asset, Articulation) and asset_cfg.body_ids != slice(None): # obtain number of shapes per body (needed for indexing the material properties correctly) # note: this is a workaround since the Articulation does not provide a direct way to obtain the number of shapes # per body. We use the physics simulation view to obtain the number of shapes per body. num_shapes_per_body = [] for link_path in asset.root_physx_view.link_paths[0]: link_physx_view = asset._physics_sim_view.create_rigid_body_view(link_path) # type: ignore num_shapes_per_body.append(link_physx_view.max_shapes) # sample material properties from the given ranges for body_id in asset_cfg.body_ids: # start index of shape start_idx = sum(num_shapes_per_body[:body_id]) # end index of shape end_idx = start_idx + num_shapes_per_body[body_id] # assign the new materials # material ids are of shape: num_env_ids x num_shapes # material_buckets are of shape: num_buckets x 3 materials[env_ids, start_idx:end_idx] = material_samples[:, start_idx:end_idx] else: materials[env_ids] = material_samples # apply to simulation asset.root_physx_view.set_material_properties(materials, env_ids) def add_body_mass( env: ManagerBasedEnv, env_ids: torch.Tensor | None, mass_distribution_params: tuple[float, float], asset_cfg: SceneEntityCfg, ): """Randomize the mass of the bodies by adding a random value sampled from the given range. .. tip:: This function uses CPU tensors to assign the body masses. It is recommended to use this function only during the initialization of the environment. .. deprecated:: v0.4 This function is deprecated. Please use :func:`randomize_rigid_body_mass` with ``operation="add"`` instead. """ msg = "Event term 'add_body_mass' is deprecated. Please use 'randomize_rigid_body_mass' with operation='add'." warnings.warn(msg, DeprecationWarning) carb.log_warn(msg) # call the new function randomize_rigid_body_mass( env, env_ids, asset_cfg, mass_distribution_params, operation="add", distribution="uniform" ) def randomize_rigid_body_mass( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, mass_distribution_params: tuple[float, float], operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the mass of the bodies by adding, scaling, or setting random values. This function allows randomizing the mass of the bodies of the asset. The function samples random values from the given distribution parameters and adds, scales, or sets the values into the physics simulation based on the operation. .. tip:: This function uses CPU tensors to assign the body masses. It is recommended to use this function only during the initialization of the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device="cpu") else: env_ids = env_ids.cpu() # resolve body indices if asset_cfg.body_ids == slice(None): body_ids = torch.arange(asset.num_bodies, dtype=torch.int, device="cpu") else: body_ids = torch.tensor(asset_cfg.body_ids, dtype=torch.int, device="cpu") # get the current masses of the bodies (num_assets, num_bodies) masses = asset.root_physx_view.get_masses() # apply randomization on default values masses[env_ids[:, None], body_ids] = asset.data.default_mass[env_ids[:, None], body_ids].clone() # sample from the given range # note: we modify the masses in-place for all environments # however, the setter takes care that only the masses of the specified environments are modified masses = _randomize_prop_by_op( masses, mass_distribution_params, env_ids, body_ids, operation=operation, distribution=distribution ) # set the mass into the physics simulation asset.root_physx_view.set_masses(masses, env_ids) def randomize_physics_scene_gravity( env: ManagerBasedEnv, env_ids: torch.Tensor | None, gravity_distribution_params: tuple[list[float], list[float]], operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize gravity by adding, scaling, or setting random values. This function allows randomizing gravity of the physics scene. The function samples random values from the given distribution parameters and adds, scales, or sets the values into the physics simulation based on the operation. .. attention:: This function applied the same gravity for all the environments. .. tip:: This function uses CPU tensors to assign gravity. """ # get the current gravity gravity = torch.tensor(env.sim.cfg.gravity, device="cpu").unsqueeze(0) dist_param_0 = torch.tensor(gravity_distribution_params[0], device="cpu") dist_param_1 = torch.tensor(gravity_distribution_params[1], device="cpu") gravity = _randomize_prop_by_op( gravity, (dist_param_0, dist_param_1), None, slice(None), operation=operation, distribution=distribution, )[0] # set the gravity into the physics simulation sim_utils.SimulationContext.instance().physics_sim_view.set_gravity(carb.Float3(gravity[0], gravity[1], gravity[2])) def randomize_actuator_gains( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, stiffness_distribution_params: tuple[float, float] | None = None, damping_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the actuator gains in an articulation by adding, scaling, or setting random values. This function allows randomizing the actuator stiffness and damping gains. The function samples random values from the given distribution parameters and applies the operation to the joint properties. It then sets the values into the actuator models. If the distribution parameters are not provided for a particular property, the function does not modify the property. .. tip:: For implicit actuators, this function uses CPU tensors to assign the actuator gains into the simulation. In such cases, it is recommended to use this function only during the initialization of the environment. Raises: NotImplementedError: If the joint indices are in explicit motor mode. This operation is currently not supported for explicit actuator models. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve joint indices if asset_cfg.joint_ids == slice(None): joint_ids_list = range(asset.num_joints) joint_ids = slice(None) # for optimization purposes else: joint_ids_list = asset_cfg.joint_ids joint_ids = torch.tensor(asset_cfg.joint_ids, dtype=torch.int, device=asset.device) # check if none of the joint indices are in explicit motor mode for joint_index in joint_ids_list: for act_name, actuator in asset.actuators.items(): # if joint indices are a slice (i.e., all joints are captured) or the joint index is in the actuator if actuator.joint_indices == slice(None) or joint_index in actuator.joint_indices: if not isinstance(actuator, ImplicitActuator): raise NotImplementedError( "Event term 'randomize_actuator_stiffness_and_damping' is performed on asset" f" '{asset_cfg.name}' on the joint '{asset.joint_names[joint_index]}' ('{joint_index}') which" f" uses an explicit actuator model '{act_name}<{actuator.__class__.__name__}>'. This operation" " is currently not supported for explicit actuator models." ) # sample joint properties from the given ranges and set into the physics simulation # -- stiffness if stiffness_distribution_params is not None: stiffness = asset.data.default_joint_stiffness.to(asset.device).clone() stiffness = _randomize_prop_by_op( stiffness, stiffness_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_stiffness_to_sim(stiffness, joint_ids=joint_ids, env_ids=env_ids) # -- damping if damping_distribution_params is not None: damping = asset.data.default_joint_damping.to(asset.device).clone() damping = _randomize_prop_by_op( damping, damping_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_damping_to_sim(damping, joint_ids=joint_ids, env_ids=env_ids) def randomize_joint_parameters( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, friction_distribution_params: tuple[float, float] | None = None, armature_distribution_params: tuple[float, float] | None = None, lower_limit_distribution_params: tuple[float, float] | None = None, upper_limit_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the joint parameters of an articulation by adding, scaling, or setting random values. This function allows randomizing the joint parameters of the asset. These correspond to the physics engine joint properties that affect the joint behavior. The function samples random values from the given distribution parameters and applies the operation to the joint properties. It then sets the values into the physics simulation. If the distribution parameters are not provided for a particular property, the function does not modify the property. .. tip:: This function uses CPU tensors to assign the joint properties. It is recommended to use this function only during the initialization of the environment. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve joint indices if asset_cfg.joint_ids == slice(None): joint_ids = slice(None) # for optimization purposes else: joint_ids = torch.tensor(asset_cfg.joint_ids, dtype=torch.int, device=asset.device) # sample joint properties from the given ranges and set into the physics simulation # -- friction if friction_distribution_params is not None: friction = asset.data.default_joint_friction.to(asset.device).clone() friction = _randomize_prop_by_op( friction, friction_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_friction_to_sim(friction, joint_ids=joint_ids, env_ids=env_ids) # -- armature if armature_distribution_params is not None: armature = asset.data.default_joint_armature.to(asset.device).clone() armature = _randomize_prop_by_op( armature, armature_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution )[env_ids][:, joint_ids] asset.write_joint_armature_to_sim(armature, joint_ids=joint_ids, env_ids=env_ids) # -- dof limits if lower_limit_distribution_params is not None or upper_limit_distribution_params is not None: dof_limits = asset.data.default_joint_limits.to(asset.device).clone() if lower_limit_distribution_params is not None: lower_limits = dof_limits[..., 0] lower_limits = _randomize_prop_by_op( lower_limits, lower_limit_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution, )[env_ids][:, joint_ids] dof_limits[env_ids[:, None], joint_ids, 0] = lower_limits if upper_limit_distribution_params is not None: upper_limits = dof_limits[..., 1] upper_limits = _randomize_prop_by_op( upper_limits, upper_limit_distribution_params, env_ids, joint_ids, operation=operation, distribution=distribution, )[env_ids][:, joint_ids] dof_limits[env_ids[:, None], joint_ids, 1] = upper_limits if (dof_limits[env_ids[:, None], joint_ids, 0] > dof_limits[env_ids[:, None], joint_ids, 1]).any(): raise ValueError( "Randomization term 'randomize_joint_parameters' is setting lower joint limits that are greater than" " upper joint limits." ) asset.write_joint_limits_to_sim(dof_limits[env_ids][:, joint_ids], joint_ids=joint_ids, env_ids=env_ids) def randomize_fixed_tendon_parameters( env: ManagerBasedEnv, env_ids: torch.Tensor | None, asset_cfg: SceneEntityCfg, stiffness_distribution_params: tuple[float, float] | None = None, damping_distribution_params: tuple[float, float] | None = None, limit_stiffness_distribution_params: tuple[float, float] | None = None, lower_limit_distribution_params: tuple[float, float] | None = None, upper_limit_distribution_params: tuple[float, float] | None = None, rest_length_distribution_params: tuple[float, float] | None = None, offset_distribution_params: tuple[float, float] | None = None, operation: Literal["add", "scale", "abs"] = "abs", distribution: Literal["uniform", "log_uniform", "gaussian"] = "uniform", ): """Randomize the fixed tendon parameters of an articulation by adding, scaling, or setting random values. This function allows randomizing the fixed tendon parameters of the asset. These correspond to the physics engine tendon properties that affect the joint behavior. The function samples random values from the given distribution parameters and applies the operation to the tendon properties. It then sets the values into the physics simulation. If the distribution parameters are not provided for a particular property, the function does not modify the property. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve joint indices if asset_cfg.fixed_tendon_ids == slice(None): fixed_tendon_ids = slice(None) # for optimization purposes else: fixed_tendon_ids = torch.tensor(asset_cfg.fixed_tendon_ids, dtype=torch.int, device=asset.device) # sample tendon properties from the given ranges and set into the physics simulation # -- stiffness if stiffness_distribution_params is not None: stiffness = asset.data.default_fixed_tendon_stiffness.clone() stiffness = _randomize_prop_by_op( stiffness, stiffness_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_stiffness(stiffness, fixed_tendon_ids, env_ids) # -- damping if damping_distribution_params is not None: damping = asset.data.default_fixed_tendon_damping.clone() damping = _randomize_prop_by_op( damping, damping_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_damping(damping, fixed_tendon_ids, env_ids) # -- limit stiffness if limit_stiffness_distribution_params is not None: limit_stiffness = asset.data.default_fixed_tendon_limit_stiffness.clone() limit_stiffness = _randomize_prop_by_op( limit_stiffness, limit_stiffness_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_limit_stiffness(limit_stiffness, fixed_tendon_ids, env_ids) # -- limits if lower_limit_distribution_params is not None or upper_limit_distribution_params is not None: limit = asset.data.default_fixed_tendon_limit.clone() # -- lower limit if lower_limit_distribution_params is not None: lower_limit = limit[..., 0] lower_limit = _randomize_prop_by_op( lower_limit, lower_limit_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] limit[env_ids[:, None], fixed_tendon_ids, 0] = lower_limit # -- upper limit if upper_limit_distribution_params is not None: upper_limit = limit[..., 1] upper_limit = _randomize_prop_by_op( upper_limit, upper_limit_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] limit[env_ids[:, None], fixed_tendon_ids, 1] = upper_limit if (limit[env_ids[:, None], fixed_tendon_ids, 0] > limit[env_ids[:, None], fixed_tendon_ids, 1]).any(): raise ValueError( "Randomization term 'randomize_fixed_tendon_parameters' is setting lower tendon limits that are greater" " than upper tendon limits." ) asset.set_fixed_tendon_limit(limit, fixed_tendon_ids, env_ids) # -- rest length if rest_length_distribution_params is not None: rest_length = asset.data.default_fixed_tendon_rest_length.clone() rest_length = _randomize_prop_by_op( rest_length, rest_length_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_rest_length(rest_length, fixed_tendon_ids, env_ids) # -- offset if offset_distribution_params is not None: offset = asset.data.default_fixed_tendon_offset.clone() offset = _randomize_prop_by_op( offset, offset_distribution_params, env_ids, fixed_tendon_ids, operation=operation, distribution=distribution, )[env_ids][:, fixed_tendon_ids] asset.set_fixed_tendon_offset(offset, fixed_tendon_ids, env_ids) asset.write_fixed_tendon_properties_to_sim(fixed_tendon_ids, env_ids) def apply_external_force_torque( env: ManagerBasedEnv, env_ids: torch.Tensor, force_range: tuple[float, float], torque_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Randomize the external forces and torques applied to the bodies. This function creates a set of random forces and torques sampled from the given ranges. The number of forces and torques is equal to the number of bodies times the number of environments. The forces and torques are applied to the bodies by calling ``asset.set_external_force_and_torque``. The forces and torques are only applied when ``asset.write_data_to_sim()`` is called in the environment. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # resolve environment ids if env_ids is None: env_ids = torch.arange(env.scene.num_envs, device=asset.device) # resolve number of bodies num_bodies = len(asset_cfg.body_ids) if isinstance(asset_cfg.body_ids, list) else asset.num_bodies # sample random forces and torques size = (len(env_ids), num_bodies, 3) forces = math_utils.sample_uniform(*force_range, size, asset.device) torques = math_utils.sample_uniform(*torque_range, size, asset.device) # set the forces and torques into the buffers # note: these are only applied when you call: `asset.write_data_to_sim()` asset.set_external_force_and_torque(forces, torques, env_ids=env_ids, body_ids=asset_cfg.body_ids) def push_by_setting_velocity( env: ManagerBasedEnv, env_ids: torch.Tensor, velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Push the asset by setting the root velocity to a random value within the given ranges. This creates an effect similar to pushing the asset with a random impulse that changes the asset's velocity. It samples the root velocity from the given ranges and sets the velocity into the physics simulation. The function takes a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # velocities vel_w = asset.data.root_vel_w[env_ids] # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) vel_w[:] = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], vel_w.shape, device=asset.device) # set the velocities into the physics simulation asset.write_root_velocity_to_sim(vel_w, env_ids=env_ids) def reset_root_state_uniform( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root state to a random position and velocity uniformly within the given ranges. This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation from the given ranges and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of pose and velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a key, the position or velocity is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples[:, 0:3] orientations = math_utils.quat_from_euler_xyz(rand_samples[:, 3], rand_samples[:, 4], rand_samples[:, 5]) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_root_state_with_random_orientation( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root position and velocities sampled randomly within the given ranges and the asset root orientation sampled randomly from the SO(3). This function randomizes the root position and velocity of the asset. * It samples the root position from the given ranges and adds them to the default root position, before setting them into the physics simulation. * It samples the root orientation uniformly from the SO(3) and sets them into the physics simulation. * It samples the root velocity from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation: * :attr:`pose_range` - a dictionary of position ranges for each axis. The keys of the dictionary are ``x``, ``y``, and ``z``. The orientation is sampled uniformly from the SO(3). * :attr:`velocity_range` - a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a particular key, the position is set to zero for that axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] # get default root state root_states = asset.data.default_root_state[env_ids].clone() # poses range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) positions = root_states[:, 0:3] + env.scene.env_origins[env_ids] + rand_samples orientations = math_utils.random_orientation(len(env_ids), device=asset.device) # velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = root_states[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_root_state_from_terrain( env: ManagerBasedEnv, env_ids: torch.Tensor, pose_range: dict[str, tuple[float, float]], velocity_range: dict[str, tuple[float, float]], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the asset root state by sampling a random valid pose from the terrain. This function samples a random valid pose(based on flat patches) from the terrain and sets the root state of the asset to this position. The function also samples random velocities from the given ranges and sets them into the physics simulation. The function takes a dictionary of position and velocity ranges for each axis and rotation: * :attr:`pose_range` - a dictionary of pose ranges for each axis. The keys of the dictionary are ``roll``, ``pitch``, and ``yaw``. The position is sampled from the flat patches of the terrain. * :attr:`velocity_range` - a dictionary of velocity ranges for each axis and rotation. The keys of the dictionary are ``x``, ``y``, ``z``, ``roll``, ``pitch``, and ``yaw``. The values are tuples of the form ``(min, max)``. If the dictionary does not contain a particular key, the position is set to zero for that axis. Note: The function expects the terrain to have valid flat patches under the key "init_pos". The flat patches are used to sample the random pose for the robot. Raises: ValueError: If the terrain does not have valid flat patches under the key "init_pos". """ # access the used quantities (to enable type-hinting) asset: RigidObject | Articulation = env.scene[asset_cfg.name] terrain: TerrainImporter = env.scene.terrain # obtain all flat patches corresponding to the valid poses valid_positions: torch.Tensor = terrain.flat_patches.get("init_pos") if valid_positions is None: raise ValueError( "The event term 'reset_root_state_from_terrain' requires valid flat patches under 'init_pos'." f" Found: {list(terrain.flat_patches.keys())}" ) # sample random valid poses ids = torch.randint(0, valid_positions.shape[2], size=(len(env_ids),), device=env.device) positions = valid_positions[terrain.terrain_levels[env_ids], terrain.terrain_types[env_ids], ids] positions += asset.data.default_root_state[env_ids, :3] # sample random orientations range_list = [pose_range.get(key, (0.0, 0.0)) for key in ["roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 3), device=asset.device) # convert to quaternions orientations = math_utils.quat_from_euler_xyz(rand_samples[:, 0], rand_samples[:, 1], rand_samples[:, 2]) # sample random velocities range_list = [velocity_range.get(key, (0.0, 0.0)) for key in ["x", "y", "z", "roll", "pitch", "yaw"]] ranges = torch.tensor(range_list, device=asset.device) rand_samples = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (len(env_ids), 6), device=asset.device) velocities = asset.data.default_root_state[:, 7:13] + rand_samples # set into the physics simulation asset.write_root_pose_to_sim(torch.cat([positions, orientations], dim=-1), env_ids=env_ids) asset.write_root_velocity_to_sim(velocities, env_ids=env_ids) def reset_joints_by_scale( env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints by scaling the default position and velocity by the given ranges. This function samples random values from the given ranges and scales the default joint positions and velocities by these values. The scaled values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # scale these values randomly joint_pos *= math_utils.sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel *= math_utils.sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # clamp joint vel to limits joint_vel_limits = asset.data.soft_joint_vel_limits[env_ids] joint_vel = joint_vel.clamp_(-joint_vel_limits, joint_vel_limits) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) def reset_joints_by_offset( env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: tuple[float, float], velocity_range: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ): """Reset the robot joints with offsets around the default position and velocity by the given ranges. This function samples random values from the given ranges and biases the default joint positions and velocities by these values. The biased values are then set into the physics simulation. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # get default joint state joint_pos = asset.data.default_joint_pos[env_ids].clone() joint_vel = asset.data.default_joint_vel[env_ids].clone() # bias these values randomly joint_pos += math_utils.sample_uniform(*position_range, joint_pos.shape, joint_pos.device) joint_vel += math_utils.sample_uniform(*velocity_range, joint_vel.shape, joint_vel.device) # clamp joint pos to limits joint_pos_limits = asset.data.soft_joint_pos_limits[env_ids] joint_pos = joint_pos.clamp_(joint_pos_limits[..., 0], joint_pos_limits[..., 1]) # clamp joint vel to limits joint_vel_limits = asset.data.soft_joint_vel_limits[env_ids] joint_vel = joint_vel.clamp_(-joint_vel_limits, joint_vel_limits) # set into the physics simulation asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) def reset_scene_to_default(env: ManagerBasedEnv, env_ids: torch.Tensor): """Reset the scene to the default state specified in the scene configuration.""" # rigid bodies for rigid_object in env.scene.rigid_objects.values(): # obtain default and deal with the offset for env origins default_root_state = rigid_object.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation rigid_object.write_root_state_to_sim(default_root_state, env_ids=env_ids) # articulations for articulation_asset in env.scene.articulations.values(): # obtain default and deal with the offset for env origins default_root_state = articulation_asset.data.default_root_state[env_ids].clone() default_root_state[:, 0:3] += env.scene.env_origins[env_ids] # set into the physics simulation articulation_asset.write_root_state_to_sim(default_root_state, env_ids=env_ids) # obtain default joint positions default_joint_pos = articulation_asset.data.default_joint_pos[env_ids].clone() default_joint_vel = articulation_asset.data.default_joint_vel[env_ids].clone() # set into the physics simulation articulation_asset.write_joint_state_to_sim(default_joint_pos, default_joint_vel, env_ids=env_ids) """ Internal helper functions. """ def _randomize_prop_by_op( data: torch.Tensor, distribution_parameters: tuple[float, float], dim_0_ids: torch.Tensor | None, dim_1_ids: torch.Tensor | slice, operation: Literal["add", "scale", "abs"], distribution: Literal["uniform", "log_uniform", "gaussian"], ) -> torch.Tensor: """Perform data randomization based on the given operation and distribution. Args: data: The data tensor to be randomized. Shape is (dim_0, dim_1). distribution_parameters: The parameters for the distribution to sample values from. dim_0_ids: The indices of the first dimension to randomize. dim_1_ids: The indices of the second dimension to randomize. operation: The operation to perform on the data. Options: 'add', 'scale', 'abs'. distribution: The distribution to sample the random values from. Options: 'uniform', 'log_uniform'. Returns: The data tensor after randomization. Shape is (dim_0, dim_1). Raises: NotImplementedError: If the operation or distribution is not supported. """ # resolve shape # -- dim 0 if dim_0_ids is None: n_dim_0 = data.shape[0] dim_0_ids = slice(None) else: n_dim_0 = len(dim_0_ids) dim_0_ids = dim_0_ids[:, None] # -- dim 1 if isinstance(dim_1_ids, slice): n_dim_1 = data.shape[1] else: n_dim_1 = len(dim_1_ids) # resolve the distribution if distribution == "uniform": dist_fn = math_utils.sample_uniform elif distribution == "log_uniform": dist_fn = math_utils.sample_log_uniform elif distribution == "gaussian": dist_fn = math_utils.sample_gaussian else: raise NotImplementedError( f"Unknown distribution: '{distribution}' for joint properties randomization." " Please use 'uniform', 'log_uniform', 'gaussian'." ) # perform the operation if operation == "add": data[dim_0_ids, dim_1_ids] += dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) elif operation == "scale": data[dim_0_ids, dim_1_ids] *= dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) elif operation == "abs": data[dim_0_ids, dim_1_ids] = dist_fn(*distribution_parameters, (n_dim_0, n_dim_1), device=data.device) else: raise NotImplementedError( f"Unknown operation: '{operation}' for property randomization. Please use 'add', 'scale', or 'abs'." ) return data
42,465
Python
45.975664
129
0.676086
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/terminations.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Common functions that can be used to activate certain terminations. The functions can be passed to the :class:`omni.isaac.lab.managers.TerminationTermCfg` object to enable the termination introduced by the function. """ from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.lab.assets import Articulation, RigidObject from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.sensors import ContactSensor if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv from omni.isaac.lab.managers.command_manager import CommandTerm """ MDP terminations. """ def time_out(env: ManagerBasedRLEnv) -> torch.Tensor: """Terminate the episode when the episode length exceeds the maximum episode length.""" return env.episode_length_buf >= env.max_episode_length def command_resample(env: ManagerBasedRLEnv, command_name: str, num_resamples: int = 1) -> torch.Tensor: """Terminate the episode based on the total number of times commands have been re-sampled. This makes the maximum episode length fluid in nature as it depends on how the commands are sampled. It is useful in situations where delayed rewards are used :cite:`rudin2022advanced`. """ command: CommandTerm = env.command_manager.get_term(command_name) return torch.logical_and((command.time_left <= env.step_dt), (command.command_counter == num_resamples)) """ Root terminations. """ def bad_orientation( env: ManagerBasedRLEnv, limit_angle: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's orientation is too far from the desired orientation limits. This is computed by checking the angle between the projected gravity vector and the z-axis. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return torch.acos(-asset.data.projected_gravity_b[:, 2]).abs() > limit_angle def root_height_below_minimum( env: ManagerBasedRLEnv, minimum_height: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's root height is below the minimum height. Note: This is currently only supported for flat terrains, i.e. the minimum height is in the world frame. """ # extract the used quantities (to enable type-hinting) asset: RigidObject = env.scene[asset_cfg.name] return asset.data.root_pos_w[:, 2] < minimum_height """ Joint terminations. """ def joint_pos_out_of_limit(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Terminate when the asset's joint positions are outside of the soft joint limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute any violations out_of_upper_limits = torch.any(asset.data.joint_pos > asset.data.soft_joint_pos_limits[..., 1], dim=1) out_of_lower_limits = torch.any(asset.data.joint_pos < asset.data.soft_joint_pos_limits[..., 0], dim=1) return torch.logical_or(out_of_upper_limits[:, asset_cfg.joint_ids], out_of_lower_limits[:, asset_cfg.joint_ids]) def joint_pos_out_of_manual_limit( env: ManagerBasedRLEnv, bounds: tuple[float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's joint positions are outside of the configured bounds. Note: This function is similar to :func:`joint_pos_out_of_limit` but allows the user to specify the bounds manually. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] if asset_cfg.joint_ids is None: asset_cfg.joint_ids = slice(None) # compute any violations out_of_upper_limits = torch.any(asset.data.joint_pos[:, asset_cfg.joint_ids] > bounds[1], dim=1) out_of_lower_limits = torch.any(asset.data.joint_pos[:, asset_cfg.joint_ids] < bounds[0], dim=1) return torch.logical_or(out_of_upper_limits, out_of_lower_limits) def joint_vel_out_of_limit(env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Terminate when the asset's joint velocities are outside of the soft joint limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute any violations limits = asset.data.soft_joint_vel_limits return torch.any(torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids]) > limits[:, asset_cfg.joint_ids], dim=1) def joint_vel_out_of_manual_limit( env: ManagerBasedRLEnv, max_velocity: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when the asset's joint velocities are outside the provided limits.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute any violations return torch.any(torch.abs(asset.data.joint_vel[:, asset_cfg.joint_ids]) > max_velocity, dim=1) def joint_effort_out_of_limit( env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Terminate when effort applied on the asset's joints are outside of the soft joint limits. In the actuators, the applied torque are the efforts applied on the joints. These are computed by clipping the computed torques to the joint limits. Hence, we check if the computed torques are equal to the applied torques. """ # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # check if any joint effort is out of limit out_of_limits = torch.isclose( asset.data.computed_torque[:, asset_cfg.joint_ids], asset.data.applied_torque[:, asset_cfg.joint_ids] ) return torch.any(out_of_limits, dim=1) """ Contact sensor. """ def illegal_contact(env: ManagerBasedRLEnv, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Terminate when the contact force on the sensor exceeds the force threshold.""" # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] net_contact_forces = contact_sensor.data.net_forces_w_history # check if any contact force exceeds the threshold return torch.any( torch.max(torch.norm(net_contact_forces[:, :, sensor_cfg.body_ids], dim=-1), dim=1)[0] > threshold, dim=1 )
6,680
Python
41.018868
120
0.722754
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/actions/joint_actions_to_limits.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING import carb import omni.isaac.lab.utils.math as math_utils import omni.isaac.lab.utils.string as string_utils from omni.isaac.lab.assets.articulation import Articulation from omni.isaac.lab.managers.action_manager import ActionTerm if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedEnv from . import actions_cfg class JointPositionToLimitsAction(ActionTerm): """Joint position action term that scales the input actions to the joint limits and applies them to the articulation's joints. This class is similar to the :class:`JointPositionAction` class. However, it performs additional re-scaling of input actions to the actuator joint position limits. While processing the actions, it performs the following operations: 1. Apply scaling to the raw actions based on :attr:`actions_cfg.JointPositionToLimitsActionCfg.scale`. 2. Clip the scaled actions to the range [-1, 1] and re-scale them to the joint limits if :attr:`actions_cfg.JointPositionToLimitsActionCfg.rescale_to_limits` is set to True. The processed actions are then sent as position commands to the articulation's joints. """ cfg: actions_cfg.JointPositionToLimitsActionCfg """The configuration of the action term.""" _asset: Articulation """The articulation asset on which the action term is applied.""" _scale: torch.Tensor | float """The scaling factor applied to the input action.""" def __init__(self, cfg: actions_cfg.JointPositionToLimitsActionCfg, env: ManagerBasedEnv): # initialize the action term super().__init__(cfg, env) # resolve the joints over which the action term is applied self._joint_ids, self._joint_names = self._asset.find_joints(self.cfg.joint_names) self._num_joints = len(self._joint_ids) # log the resolved joint names for debugging carb.log_info( f"Resolved joint names for the action term {self.__class__.__name__}:" f" {self._joint_names} [{self._joint_ids}]" ) # Avoid indexing across all joints for efficiency if self._num_joints == self._asset.num_joints: self._joint_ids = slice(None) # create tensors for raw and processed actions self._raw_actions = torch.zeros(self.num_envs, self.action_dim, device=self.device) self._processed_actions = torch.zeros_like(self.raw_actions) # parse scale if isinstance(cfg.scale, (float, int)): self._scale = float(cfg.scale) elif isinstance(cfg.scale, dict): self._scale = torch.ones(self.num_envs, self.action_dim, device=self.device) # resolve the dictionary config index_list, _, value_list = string_utils.resolve_matching_names_values(self.cfg.scale, self._joint_names) self._scale[:, index_list] = torch.tensor(value_list, device=self.device) else: raise ValueError(f"Unsupported scale type: {type(cfg.scale)}. Supported types are float and dict.") """ Properties. """ @property def action_dim(self) -> int: return self._num_joints @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self._processed_actions """ Operations. """ def process_actions(self, actions: torch.Tensor): # store the raw actions self._raw_actions[:] = actions # apply affine transformations self._processed_actions = self._raw_actions * self._scale # rescale the position targets if configured # this is useful when the input actions are in the range [-1, 1] if self.cfg.rescale_to_limits: # clip to [-1, 1] actions = self._processed_actions.clamp(-1.0, 1.0) # rescale within the joint limits actions = math_utils.unscale_transform( actions, self._asset.data.soft_joint_pos_limits[:, self._joint_ids, 0], self._asset.data.soft_joint_pos_limits[:, self._joint_ids, 1], ) self._processed_actions[:] = actions[:] def apply_actions(self): # set position targets self._asset.set_joint_position_target(self.processed_actions, joint_ids=self._joint_ids) def reset(self, env_ids: Sequence[int] | None = None) -> None: self._raw_actions[env_ids] = 0.0 class EMAJointPositionToLimitsAction(JointPositionToLimitsAction): r"""Joint action term that applies exponential moving average (EMA) over the processed actions as the articulation's joints position commands. Exponential moving average (EMA) is a type of moving average that gives more weight to the most recent data points. This action term applies the processed actions as moving average position action commands. The moving average is computed as: .. math:: \text{applied action} = \alpha \times \text{processed actions} + (1 - \alpha) \times \text{previous applied action} where :math:`\alpha` is the weight for the moving average, :math:`\text{processed actions}` are the processed actions, and :math:`\text{previous action}` is the previous action that was applied to the articulation's joints. In the trivial case where the weight is 1.0, the action term behaves exactly like the :class:`JointPositionToLimitsAction` class. On reset, the previous action is initialized to the current joint positions of the articulation's joints. """ cfg: actions_cfg.EMAJointPositionToLimitsActionCfg """The configuration of the action term.""" def __init__(self, cfg: actions_cfg.EMAJointPositionToLimitsActionCfg, env: ManagerBasedEnv): # initialize the action term super().__init__(cfg, env) # parse and save the moving average weight if isinstance(cfg.alpha, float): # check that the weight is in the valid range if not 0.0 <= cfg.alpha <= 1.0: raise ValueError(f"Moving average weight must be in the range [0, 1]. Got {cfg.alpha}.") self._alpha = cfg.alpha elif isinstance(cfg.alpha, dict): self._alpha = torch.ones((env.num_envs, self.action_dim), device=self.device) # resolve the dictionary config index_list, names_list, value_list = string_utils.resolve_matching_names_values( cfg.alpha, self._joint_names ) # check that the weights are in the valid range for name, value in zip(names_list, value_list): if not 0.0 <= value <= 1.0: raise ValueError( f"Moving average weight must be in the range [0, 1]. Got {value} for joint {name}." ) self._alpha[:, index_list] = torch.tensor(value_list, device=self.device) else: raise ValueError( f"Unsupported moving average weight type: {type(cfg.alpha)}. Supported types are float and dict." ) # initialize the previous targets self._prev_applied_actions = torch.zeros_like(self.processed_actions) def reset(self, env_ids: Sequence[int] | None = None) -> None: # check if specific environment ids are provided if env_ids is None: env_ids = slice(None) super().reset(env_ids) # reset history to current joint positions self._prev_applied_actions[env_ids, :] = self._asset.data.joint_pos[env_ids, self._joint_ids] def process_actions(self, actions: torch.Tensor): # apply affine transformations super().process_actions(actions) # set position targets as moving average ema_actions = self._alpha * self._processed_actions ema_actions += (1.0 - self._alpha) * self._prev_applied_actions # clamp the targets self._processed_actions[:] = torch.clamp( ema_actions, self._asset.data.soft_joint_pos_limits[:, self._joint_ids, 0], self._asset.data.soft_joint_pos_limits[:, self._joint_ids, 1], ) # update previous targets self._prev_applied_actions[:] = self._processed_actions[:]
8,538
Python
40.857843
123
0.651792
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/sim/converters/mesh_converter.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import asyncio import os import omni import omni.kit.commands import omni.usd from omni.isaac.core.utils.extensions import enable_extension from pxr import Usd, UsdGeom, UsdPhysics, UsdUtils from omni.isaac.lab.sim.converters.asset_converter_base import AssetConverterBase from omni.isaac.lab.sim.converters.mesh_converter_cfg import MeshConverterCfg from omni.isaac.lab.sim.schemas import schemas from omni.isaac.lab.sim.utils import export_prim_to_file class MeshConverter(AssetConverterBase): """Converter for a mesh file in OBJ / STL / FBX format to a USD file. This class wraps around the `omni.kit.asset_converter`_ extension to provide a lazy implementation for mesh to USD conversion. It stores the output USD file in an instanceable format since that is what is typically used in all learning related applications. To make the asset instanceable, we must follow a certain structure dictated by how USD scene-graph instancing and physics work. The rigid body component must be added to each instance and not the referenced asset (i.e. the prototype prim itself). This is because the rigid body component defines properties that are specific to each instance and cannot be shared under the referenced asset. For more information, please check the `documentation <https://docs.omniverse.nvidia.com/extensions/latest/ext_physics/rigid-bodies.html#instancing-rigid-bodies>`_. Due to the above, we follow the following structure: * ``{prim_path}`` - The root prim that is an Xform with the rigid body and mass APIs if configured. * ``{prim_path}/geometry`` - The prim that contains the mesh and optionally the materials if configured. If instancing is enabled, this prim will be an instanceable reference to the prototype prim. .. _omni.kit.asset_converter: https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-converter.html .. caution:: When converting STL files, Z-up convention is assumed, even though this is not the default for many CAD export programs. Asset orientation convention can either be modified directly in the CAD program's export process or an offset can be added within the config in Isaac Lab. """ cfg: MeshConverterCfg """The configuration instance for mesh to USD conversion.""" def __init__(self, cfg: MeshConverterCfg): """Initializes the class. Args: cfg: The configuration instance for mesh to USD conversion. """ super().__init__(cfg=cfg) """ Implementation specific methods. """ def _convert_asset(self, cfg: MeshConverterCfg): """Generate USD from OBJ, STL or FBX. It stores the asset in the following format: /file_name (default prim) |- /geometry <- Made instanceable if requested |- /Looks |- /mesh Args: cfg: The configuration for conversion of mesh to USD. Raises: RuntimeError: If the conversion using the Omniverse asset converter fails. """ # resolve mesh name and format mesh_file_basename, mesh_file_format = os.path.basename(cfg.asset_path).split(".") mesh_file_format = mesh_file_format.lower() # Convert USD asyncio.get_event_loop().run_until_complete( self._convert_mesh_to_usd( in_file=cfg.asset_path, out_file=self.usd_path, prim_path=f"/{mesh_file_basename}" ) ) # Open converted USD stage # note: This opens a new stage and does not use the stage created earlier by the user # create a new stage stage = Usd.Stage.Open(self.usd_path) # add USD to stage cache stage_id = UsdUtils.StageCache.Get().Insert(stage) # Get the default prim (which is the root prim) -- "/{mesh_file_basename}" xform_prim = stage.GetDefaultPrim() geom_prim = stage.GetPrimAtPath(f"/{mesh_file_basename}/geometry") # Move all meshes to underneath new Xform for child_mesh_prim in geom_prim.GetChildren(): if child_mesh_prim.GetTypeName() == "Mesh": # Apply collider properties to mesh if cfg.collision_props is not None: # -- Collision approximation to mesh # TODO: https://github.com/isaac-orbit/orbit/issues/163 Move this to a new Schema mesh_collision_api = UsdPhysics.MeshCollisionAPI.Apply(child_mesh_prim) mesh_collision_api.GetApproximationAttr().Set(cfg.collision_approximation) # -- Collider properties such as offset, scale, etc. schemas.define_collision_properties( prim_path=child_mesh_prim.GetPath(), cfg=cfg.collision_props, stage=stage ) # Delete the old Xform and make the new Xform the default prim stage.SetDefaultPrim(xform_prim) # Handle instanceable # Create a new Xform prim that will be the prototype prim if cfg.make_instanceable: # Export Xform to a file so we can reference it from all instances export_prim_to_file( path=os.path.join(self.usd_dir, self.usd_instanceable_meshes_path), source_prim_path=geom_prim.GetPath(), stage=stage, ) # Delete the original prim that will now be a reference geom_prim_path = geom_prim.GetPath().pathString omni.kit.commands.execute("DeletePrims", paths=[geom_prim_path], stage=stage) # Update references to exported Xform and make it instanceable geom_undef_prim = stage.DefinePrim(geom_prim_path) geom_undef_prim.GetReferences().AddReference(self.usd_instanceable_meshes_path, primPath=geom_prim_path) geom_undef_prim.SetInstanceable(True) # Apply mass and rigid body properties after everything else # Properties are applied to the top level prim to avoid the case where all instances of this # asset unintentionally share the same rigid body properties # apply mass properties if cfg.mass_props is not None: schemas.define_mass_properties(prim_path=xform_prim.GetPath(), cfg=cfg.mass_props, stage=stage) # apply rigid body properties if cfg.rigid_props is not None: schemas.define_rigid_body_properties(prim_path=xform_prim.GetPath(), cfg=cfg.rigid_props, stage=stage) # Save changes to USD stage stage.Save() if stage_id is not None: UsdUtils.StageCache.Get().Erase(stage_id) """ Helper methods. """ @staticmethod async def _convert_mesh_to_usd( in_file: str, out_file: str, prim_path: str = "/World", load_materials: bool = True ) -> bool: """Convert mesh from supported file types to USD. This function uses the Omniverse Asset Converter extension to convert a mesh file to USD. It is an asynchronous function and should be called using `asyncio.get_event_loop().run_until_complete()`. The converted asset is stored in the USD format in the specified output file. The USD file has Y-up axis and is scaled to meters. The asset hierarchy is arranged as follows: .. code-block:: none prim_path (default prim) |- /geometry/Looks |- /geometry/mesh Args: in_file: The file to convert. out_file: The path to store the output file. prim_path: The prim path of the mesh. load_materials: Set to True to enable attaching materials defined in the input file to the generated USD mesh. Defaults to True. Returns: True if the conversion succeeds. """ enable_extension("omni.kit.asset_converter") enable_extension("omni.usd.metrics.assembler") import omni.kit.asset_converter import omni.usd from omni.metrics.assembler.core import get_metrics_assembler_interface # Create converter context converter_context = omni.kit.asset_converter.AssetConverterContext() # Set up converter settings # Don't import/export materials converter_context.ignore_materials = not load_materials converter_context.ignore_animations = True converter_context.ignore_camera = True converter_context.ignore_light = True # Merge all meshes into one converter_context.merge_all_meshes = True # Sets world units to meters, this will also scale asset if it's centimeters model. # This does not work right now :(, so we need to scale the mesh manually converter_context.use_meter_as_world_unit = True converter_context.baking_scales = True # Uses double precision for all transform ops. converter_context.use_double_precision_to_usd_transform_op = True # Create converter task instance = omni.kit.asset_converter.get_instance() out_file_non_metric = out_file.replace(".usd", "_non_metric.usd") task = instance.create_converter_task(in_file, out_file_non_metric, None, converter_context) # Start conversion task and wait for it to finish success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break temp_stage = Usd.Stage.CreateInMemory() UsdGeom.SetStageUpAxis(temp_stage, UsdGeom.Tokens.z) UsdGeom.SetStageMetersPerUnit(temp_stage, 1.0) UsdPhysics.SetStageKilogramsPerUnit(temp_stage, 1.0) base_prim = temp_stage.DefinePrim(prim_path, "Xform") prim = temp_stage.DefinePrim(f"{prim_path}/geometry", "Xform") prim.GetReferences().AddReference(out_file_non_metric) cache = UsdUtils.StageCache.Get() cache.Insert(temp_stage) stage_id = cache.GetId(temp_stage).ToLongInt() get_metrics_assembler_interface().resolve_stage(stage_id) temp_stage.SetDefaultPrim(base_prim) temp_stage.Export(out_file) return success
10,403
Python
44.038961
164
0.657118
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/utils/noise/noise_model.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING if TYPE_CHECKING: from . import noise_cfg def constant_noise(data: torch.Tensor, cfg: noise_cfg.ConstantNoiseCfg) -> torch.Tensor: """Constant noise.""" if cfg.operation == "add": return data + cfg.bias elif cfg.operation == "scale": return data * cfg.bias elif cfg.operation == "abs": return torch.zeros_like(data) + cfg.bias else: raise ValueError(f"Unknown operation in noise: {cfg.operation}") def uniform_noise(data: torch.Tensor, cfg: noise_cfg.UniformNoiseCfg) -> torch.Tensor: """Uniform noise.""" if cfg.operation == "add": return data + torch.rand_like(data) * (cfg.n_max - cfg.n_min) + cfg.n_min elif cfg.operation == "scale": return data * (torch.rand_like(data) * (cfg.n_max - cfg.n_min) + cfg.n_min) elif cfg.operation == "abs": return torch.rand_like(data) * (cfg.n_max - cfg.n_min) + cfg.n_min else: raise ValueError(f"Unknown operation in noise: {cfg.operation}") def gaussian_noise(data: torch.Tensor, cfg: noise_cfg.GaussianNoiseCfg) -> torch.Tensor: """Gaussian noise.""" if cfg.operation == "add": return data + cfg.mean + cfg.std * torch.randn_like(data) elif cfg.operation == "scale": return data * (cfg.mean + cfg.std * torch.randn_like(data)) elif cfg.operation == "abs": return cfg.mean + cfg.std * torch.randn_like(data) else: raise ValueError(f"Unknown operation in noise: {cfg.operation}") class NoiseModel: """Base class for noise models.""" def __init__(self, num_envs: int, noise_model_cfg: noise_cfg.NoiseModelCfg): """Initialize the noise model. Args: num_envs: The number of environments. noise_model_cfg: The noise configuration to use. """ self._num_envs = num_envs self._noise_model_cfg = noise_model_cfg def apply(self, data: torch.Tensor) -> torch.Tensor: r"""Apply the noise to the data. Args: data: The data to apply the noise to, which is a tensor of shape (num_envs, \*data_shape). """ return self._noise_model_cfg.noise_cfg.func(data, self._noise_model_cfg.noise_cfg) def reset(self, env_ids: Sequence[int]): """Reset the noise model. This method can be implemented by derived classes to reset the noise model. This is useful when implementing temporal noise models such as random walk. Args: env_ids: The environment ids to reset the noise model for. """ pass class NoiseModelWithAdditiveBias(NoiseModel): """Noise model with an additive bias. The bias term is sampled from a the specified distribution on reset. """ def __init__(self, num_envs: int, noise_model_cfg: noise_cfg.NoiseModelWithAdditiveBiasCfg, device: str): super().__init__(num_envs, noise_model_cfg) self._device = device self._bias_noise_cfg = noise_model_cfg.bias_noise_cfg self._bias = torch.zeros((num_envs, 1), device=self._device) def apply(self, data: torch.Tensor) -> torch.Tensor: r"""Apply the noise + bias. Args: data: The data to apply the noise to, which is a tensor of shape (num_envs, \*data_shape). """ return super().apply(data) + self._bias def reset(self, env_ids: Sequence[int]): """Reset the noise model. This method resets the bias term for the specified environments. Args: env_ids: The environment ids to reset the noise model for. """ self._bias[env_ids] = self._bias_noise_cfg.func(self._bias[env_ids], self._bias_noise_cfg)
3,932
Python
33.2
109
0.631994
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/utils/noise/noise_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from collections.abc import Callable from dataclasses import MISSING from typing import Literal from omni.isaac.lab.utils import configclass from . import noise_model @configclass class NoiseCfg: """Base configuration for a noise term.""" func: Callable[[torch.Tensor, NoiseCfg], torch.Tensor] = MISSING """The function to be called for applying the noise. Note: The shape of the input and output tensors must be the same. """ operation: Literal["add", "scale", "abs"] = "add" """The operation to apply the noise on the data. Defaults to "add".""" @configclass class ConstantNoiseCfg(NoiseCfg): """Configuration for an additive constant noise term.""" func = noise_model.constant_noise bias: torch.Tensor | float = 0.0 """The bias to add. Defaults to 0.0.""" # Backward compatibility ConstantBiasNoiseCfg = ConstantNoiseCfg @configclass class UniformNoiseCfg(NoiseCfg): """Configuration for a additive uniform noise term.""" func = noise_model.uniform_noise n_min: torch.Tensor | float = -1.0 """The minimum value of the noise. Defaults to -1.0.""" n_max: torch.Tensor | float = 1.0 """The maximum value of the noise. Defaults to 1.0.""" # Backward compatibility AdditiveUniformNoiseCfg = UniformNoiseCfg @configclass class GaussianNoiseCfg(NoiseCfg): """Configuration for an additive gaussian noise term.""" func = noise_model.gaussian_noise mean: torch.Tensor | float = 0.0 """The mean of the noise. Defaults to 0.0.""" std: torch.Tensor | float = 1.0 """The standard deviation of the noise. Defaults to 1.0.""" # Backward compatibility AdditiveGaussianNoiseCfg = GaussianNoiseCfg @configclass class NoiseModelCfg: """Configuration for a noise model.""" class_type: type = noise_model.NoiseModel """The class type of the noise model.""" noise_cfg: NoiseCfg = MISSING """The noise configuration to use.""" @configclass class NoiseModelWithAdditiveBiasCfg(NoiseModelCfg): """Configuration for an additive gaussian noise with bias model.""" class_type: type = noise_model.NoiseModelWithAdditiveBias bias_noise_cfg: NoiseCfg = MISSING
2,373
Python
23.729166
74
0.707122
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab/omni/isaac/lab/assets/articulation/articulation_data.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch from dataclasses import dataclass from ..rigid_object import RigidObjectData @dataclass class ArticulationData(RigidObjectData): """Data container for an articulation.""" ## # Properties. ## joint_names: list[str] = None """Joint names in the order parsed by the simulation view.""" ## # Default states. ## default_joint_pos: torch.Tensor = None """Default joint positions of all joints. Shape is (num_instances, num_joints).""" default_joint_vel: torch.Tensor = None """Default joint velocities of all joints. Shape is (num_instances, num_joints).""" ## # Joint states <- From simulation. ## joint_pos: torch.Tensor = None """Joint positions of all joints. Shape is (num_instances, num_joints).""" joint_vel: torch.Tensor = None """Joint velocities of all joints. Shape is (num_instances, num_joints).""" joint_acc: torch.Tensor = None """Joint acceleration of all joints. Shape is (num_instances, num_joints).""" ## # Joint commands -- Set into simulation. ## joint_pos_target: torch.Tensor = None """Joint position targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_vel_target: torch.Tensor = None """Joint velocity targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ joint_effort_target: torch.Tensor = None """Joint effort targets commanded by the user. Shape is (num_instances, num_joints). For an implicit actuator model, the targets are directly set into the simulation. For an explicit actuator model, the targets are used to compute the joint torques (see :attr:`applied_torque`), which are then set into the simulation. """ ## # Joint properties. ## joint_stiffness: torch.Tensor = None """Joint stiffness provided to simulation. Shape is (num_instances, num_joints).""" joint_damping: torch.Tensor = None """Joint damping provided to simulation. Shape is (num_instances, num_joints).""" joint_armature: torch.Tensor = None """Joint armature provided to simulation. Shape is (num_instances, num_joints).""" joint_friction: torch.Tensor = None """Joint friction provided to simulation. Shape is (num_instances, num_joints).""" joint_limits: torch.Tensor = None """Joint limits provided to simulation. Shape is (num_instances, num_joints, 2).""" ## # Default joint properties ## default_joint_stiffness: torch.Tensor = None """Default joint stiffness of all joints. Shape is (num_instances, num_joints).""" default_joint_damping: torch.Tensor = None """Default joint damping of all joints. Shape is (num_instances, num_joints).""" default_joint_armature: torch.Tensor = None """Default joint armature of all joints. Shape is (num_instances, num_joints).""" default_joint_friction: torch.Tensor = None """Default joint friction of all joints. Shape is (num_instances, num_joints).""" default_joint_limits: torch.Tensor = None """Default joint limits of all joints. Shape is (num_instances, num_joints, 2).""" ## # Joint commands -- Explicit actuators. ## computed_torque: torch.Tensor = None """Joint torques computed from the actuator model (before clipping). Shape is (num_instances, num_joints). This quantity is the raw torque output from the actuator mode, before any clipping is applied. It is exposed for users who want to inspect the computations inside the actuator model. For instance, to penalize the learning agent for a difference between the computed and applied torques. Note: The torques are zero for implicit actuator models. """ applied_torque: torch.Tensor = None """Joint torques applied from the actuator model (after clipping). Shape is (num_instances, num_joints). These torques are set into the simulation, after clipping the :attr:`computed_torque` based on the actuator model. Note: The torques are zero for implicit actuator models. """ ## # Fixed tendon properties. ## fixed_tendon_stiffness: torch.Tensor = None """Fixed tendon stiffness provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_damping: torch.Tensor = None """Fixed tendon damping provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_limit_stiffness: torch.Tensor = None """Fixed tendon limit stiffness provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_rest_length: torch.Tensor = None """Fixed tendon rest length provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_offset: torch.Tensor = None """Fixed tendon offset provided to simulation. Shape is (num_instances, num_fixed_tendons).""" fixed_tendon_limit: torch.Tensor = None """Fixed tendon limits provided to simulation. Shape is (num_instances, num_fixed_tendons, 2).""" ## # Default fixed tendon properties ## default_fixed_tendon_stiffness: torch.Tensor = None """Default tendon stiffness of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_damping: torch.Tensor = None """Default tendon damping of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_limit_stiffness: torch.Tensor = None """Default tendon limit stiffness of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_rest_length: torch.Tensor = None """Default tendon rest length of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_offset: torch.Tensor = None """Default tendon offset of all tendons. Shape is (num_instances, num_fixed_tendons).""" default_fixed_tendon_limit: torch.Tensor = None """Default tendon limits of all tendons. Shape is (num_instances, num_fixed_tendons, 2).""" ## # Other Data. ## soft_joint_pos_limits: torch.Tensor = None """Joint positions limits for all joints. Shape is (num_instances, num_joints, 2).""" soft_joint_vel_limits: torch.Tensor = None """Joint velocity limits for all joints. Shape is (num_instances, num_joints).""" gear_ratio: torch.Tensor = None """Gear ratio for relating motor torques to applied Joint torques. Shape is (num_instances, num_joints)."""
7,088
Python
36.115183
115
0.693567
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/config/extension.toml
[package] # Note: Semantic Versioning is used: https://semver.org/ version = "0.7.5" # Description title = "Isaac Lab Environments" description="Extension containing suite of environments for robot learning." readme = "docs/README.md" repository = "https://github.com/isaac-sim/IsaacLab" category = "robotics" keywords = ["robotics", "rl", "il", "learning"] [dependencies] "omni.isaac.lab" = {} "omni.isaac.lab_assets" = {} "omni.isaac.core" = {} "omni.isaac.gym" = {} "omni.replicator.isaac" = {} [[python.module]] name = "omni.isaac.lab_tasks"
551
TOML
22.999999
76
0.69147
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/ant_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.lab_assets.ant import ANT_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.direct.locomotion.locomotion_env import LocomotionEnv @configclass class AntEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = ANT_CFG.replace(prim_path="/World/envs/env_.*/Robot") joint_gears: list = [15, 15, 15, 15, 15, 15, 15, 15] # env episode_length_s = 15.0 decimation = 2 action_scale = 0.5 num_actions = 8 num_observations = 36 num_states = 0 heading_weight: float = 0.5 up_weight: float = 0.1 energy_cost_scale: float = 0.05 actions_cost_scale: float = 0.005 alive_reward_scale: float = 0.5 dof_vel_scale: float = 0.2 death_cost: float = -2.0 termination_height: float = 0.31 angular_velocity_scale: float = 1.0 contact_force_scale: float = 0.1 class AntEnv(LocomotionEnv): cfg: AntEnvCfg def __init__(self, cfg: AntEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs)
2,110
Python
27.527027
108
0.674408
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment. """ import gymnasium as gym from . import agents from .ant_env import AntEnv, AntEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Ant-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.ant:AntEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AntEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AntPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
707
Python
22.599999
79
0.666195
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/quadcopter_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.envs.ui import BaseEnvWindow from omni.isaac.lab.markers import VisualizationMarkers from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.math import subtract_frame_transforms ## # Pre-defined configs ## from omni.isaac.lab_assets import CRAZYFLIE_CFG # isort: skip from omni.isaac.lab.markers import CUBOID_MARKER_CFG # isort: skip class QuadcopterEnvWindow(BaseEnvWindow): """Window manager for the Quadcopter environment.""" def __init__(self, env: QuadcopterEnv, window_name: str = "IsaacLab"): """Initialize the window. Args: env: The environment object. window_name: The name of the window. Defaults to "IsaacLab". """ # initialize base window super().__init__(env, window_name) # add custom UI elements with self.ui_window_elements["main_vstack"]: with self.ui_window_elements["debug_frame"]: with self.ui_window_elements["debug_vstack"]: # add command manager visualization self._create_debug_vis_ui_element("targets", self.env) @configclass class QuadcopterEnvCfg(DirectRLEnvCfg): ui_window_class_type = QuadcopterEnvWindow # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 100, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=2.5, replicate_physics=True) # robot robot: ArticulationCfg = CRAZYFLIE_CFG.replace(prim_path="/World/envs/env_.*/Robot") thrust_to_weight = 1.9 moment_scale = 0.01 # env episode_length_s = 10.0 decimation = 2 num_actions = 4 num_observations = 12 num_states = 0 debug_vis = True # reward scales lin_vel_reward_scale = -0.05 ang_vel_reward_scale = -0.01 distance_to_goal_reward_scale = 15.0 class QuadcopterEnv(DirectRLEnv): cfg: QuadcopterEnvCfg def __init__(self, cfg: QuadcopterEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) # Total thrust and moment applied to the base of the quadcopter self._actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) self._thrust = torch.zeros(self.num_envs, 1, 3, device=self.device) self._moment = torch.zeros(self.num_envs, 1, 3, device=self.device) # Goal position self._desired_pos_w = torch.zeros(self.num_envs, 3, device=self.device) # Logging self._episode_sums = { key: torch.zeros(self.num_envs, dtype=torch.float, device=self.device) for key in [ "lin_vel", "ang_vel", "distance_to_goal", ] } # Get specific body indices self._body_id = self._robot.find_bodies("body")[0] self._robot_mass = self._robot.root_physx_view.get_masses()[0].sum() self._gravity_magnitude = torch.tensor(self.sim.cfg.gravity, device=self.device).norm() self._robot_weight = (self._robot_mass * self._gravity_magnitude).item() # add handle for debug visualization (this is set to a valid handle inside set_debug_vis) self.set_debug_vis(self.cfg.debug_vis) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self.scene.articulations["robot"] = self._robot self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self._actions = actions.clone().clamp(-1.0, 1.0) self._thrust[:, 0, 2] = self.cfg.thrust_to_weight * self._robot_weight * (self._actions[:, 0] + 1.0) / 2.0 self._moment[:, 0, :] = self.cfg.moment_scale * self._actions[:, 1:] def _apply_action(self): self._robot.set_external_force_and_torque(self._thrust, self._moment, body_ids=self._body_id) def _get_observations(self) -> dict: desired_pos_b, _ = subtract_frame_transforms( self._robot.data.root_state_w[:, :3], self._robot.data.root_state_w[:, 3:7], self._desired_pos_w ) obs = torch.cat( [ self._robot.data.root_lin_vel_b, self._robot.data.root_ang_vel_b, self._robot.data.projected_gravity_b, desired_pos_b, ], dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: lin_vel = torch.sum(torch.square(self._robot.data.root_lin_vel_b), dim=1) ang_vel = torch.sum(torch.square(self._robot.data.root_ang_vel_b), dim=1) distance_to_goal = torch.linalg.norm(self._desired_pos_w - self._robot.data.root_pos_w, dim=1) distance_to_goal_mapped = 1 - torch.tanh(distance_to_goal / 0.8) rewards = { "lin_vel": lin_vel * self.cfg.lin_vel_reward_scale * self.step_dt, "ang_vel": ang_vel * self.cfg.ang_vel_reward_scale * self.step_dt, "distance_to_goal": distance_to_goal_mapped * self.cfg.distance_to_goal_reward_scale * self.step_dt, } reward = torch.sum(torch.stack(list(rewards.values())), dim=0) # Logging for key, value in rewards.items(): self._episode_sums[key] += value return reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: time_out = self.episode_length_buf >= self.max_episode_length - 1 died = torch.logical_or(self._robot.data.root_pos_w[:, 2] < 0.1, self._robot.data.root_pos_w[:, 2] > 2.0) return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self._robot._ALL_INDICES # Logging final_distance_to_goal = torch.linalg.norm( self._desired_pos_w[env_ids] - self._robot.data.root_pos_w[env_ids], dim=1 ).mean() extras = dict() for key in self._episode_sums.keys(): episodic_sum_avg = torch.mean(self._episode_sums[key][env_ids]) extras["Episode Reward/" + key] = episodic_sum_avg / self.max_episode_length_s self._episode_sums[key][env_ids] = 0.0 self.extras["log"] = dict() self.extras["log"].update(extras) extras = dict() extras["Episode Termination/died"] = torch.count_nonzero(self.reset_terminated[env_ids]).item() extras["Episode Termination/time_out"] = torch.count_nonzero(self.reset_time_outs[env_ids]).item() extras["Metrics/final_distance_to_goal"] = final_distance_to_goal.item() self.extras["log"].update(extras) self._robot.reset(env_ids) super()._reset_idx(env_ids) if len(env_ids) == self.num_envs: # Spread out the resets to avoid spikes in training when many environments reset at a similar time self.episode_length_buf = torch.randint_like(self.episode_length_buf, high=int(self.max_episode_length)) self._actions[env_ids] = 0.0 # Sample new commands self._desired_pos_w[env_ids, :2] = torch.zeros_like(self._desired_pos_w[env_ids, :2]).uniform_(-2.0, 2.0) self._desired_pos_w[env_ids, :2] += self._terrain.env_origins[env_ids, :2] self._desired_pos_w[env_ids, 2] = torch.zeros_like(self._desired_pos_w[env_ids, 2]).uniform_(0.5, 1.5) # Reset robot state joint_pos = self._robot.data.default_joint_pos[env_ids] joint_vel = self._robot.data.default_joint_vel[env_ids] default_root_state = self._robot.data.default_root_state[env_ids] default_root_state[:, :3] += self._terrain.env_origins[env_ids] self._robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) def _set_debug_vis_impl(self, debug_vis: bool): # create markers if necessary for the first tome if debug_vis: if not hasattr(self, "goal_pos_visualizer"): marker_cfg = CUBOID_MARKER_CFG.copy() marker_cfg.markers["cuboid"].size = (0.05, 0.05, 0.05) # -- goal pose marker_cfg.prim_path = "/Visuals/Command/goal_position" self.goal_pos_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.goal_pos_visualizer.set_visibility(True) else: if hasattr(self, "goal_pos_visualizer"): self.goal_pos_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # update the markers self.goal_pos_visualizer.visualize(self._desired_pos_w)
10,494
Python
41.148594
116
0.621307
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Quacopter environment. """ import gymnasium as gym from . import agents from .quadcopter_env import QuadcopterEnv, QuadcopterEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Quadcopter-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.quadcopter:QuadcopterEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": QuadcopterEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.QuadcopterPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
758
Python
24.299999
79
0.689974
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_camera_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import gymnasium as gym import math import numpy as np import torch from collections.abc import Sequence from omni.isaac.lab_assets.cartpole import CARTPOLE_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg, ViewerCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sensors import TiledCamera, TiledCameraCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.sim.spawners.from_files import GroundPlaneCfg, spawn_ground_plane from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.math import sample_uniform @configclass class CartpoleRGBCameraEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) # robot robot_cfg: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="/World/envs/env_.*/Robot") cart_dof_name = "slider_to_cart" pole_dof_name = "cart_to_pole" # camera tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["rgb"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) # change viewer settings viewer = ViewerCfg(eye=(20.0, 20.0, 20.0)) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=256, env_spacing=20.0, replicate_physics=True) # env decimation = 2 episode_length_s = 5.0 action_scale = 100.0 # [N] num_actions = 1 num_channels = 3 num_observations = num_channels * tiled_camera.height * tiled_camera.width num_states = 0 # reset max_cart_pos = 3.0 # the cart is reset if it exceeds that position [m] initial_pole_angle_range = [-0.125, 0.125] # the range in which the pole angle is sampled from on reset [rad] # reward scales rew_scale_alive = 1.0 rew_scale_terminated = -2.0 rew_scale_pole_pos = -1.0 rew_scale_cart_vel = -0.01 rew_scale_pole_vel = -0.005 class CartpoleDepthCameraEnvCfg(CartpoleRGBCameraEnvCfg): # camera tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["depth"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) # env num_channels = 1 num_observations = num_channels * tiled_camera.height * tiled_camera.width class CartpoleCameraEnv(DirectRLEnv): cfg: CartpoleRGBCameraEnvCfg | CartpoleDepthCameraEnvCfg def __init__( self, cfg: CartpoleRGBCameraEnvCfg | CartpoleDepthCameraEnvCfg, render_mode: str | None = None, **kwargs ): super().__init__(cfg, render_mode, **kwargs) self._cart_dof_idx, _ = self._cartpole.find_joints(self.cfg.cart_dof_name) self._pole_dof_idx, _ = self._cartpole.find_joints(self.cfg.pole_dof_name) self.action_scale = self.cfg.action_scale self.joint_pos = self._cartpole.data.joint_pos self.joint_vel = self._cartpole.data.joint_vel if len(self.cfg.tiled_camera.data_types) != 1: raise ValueError( "The Cartpole camera environment only supports one image type at a time but the following were" f" provided: {self.cfg.tiled_camera.data_types}" ) def close(self): """Cleanup for the environment.""" super().close() def _configure_gym_env_spaces(self): """Configure the action and observation spaces for the Gym environment.""" # observation space (unbounded since we don't impose any limits) self.num_actions = self.cfg.num_actions self.num_observations = self.cfg.num_observations self.num_states = self.cfg.num_states # set up spaces self.single_observation_space = gym.spaces.Dict() self.single_observation_space["policy"] = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(self.cfg.tiled_camera.height, self.cfg.tiled_camera.width, self.cfg.num_channels), ) if self.num_states > 0: self.single_observation_space["critic"] = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(self.cfg.tiled_camera.height, self.cfg.tiled_camera.width, self.cfg.num_channels), ) self.single_action_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.num_actions,)) # batch the spaces for vectorized environments self.observation_space = gym.vector.utils.batch_space(self.single_observation_space, self.num_envs) self.action_space = gym.vector.utils.batch_space(self.single_action_space, self.num_envs) # RL specifics self.actions = torch.zeros(self.num_envs, self.num_actions, device=self.sim.device) def _setup_scene(self): """Setup the scene with the cartpole and camera.""" self._cartpole = Articulation(self.cfg.robot_cfg) self._tiled_camera = TiledCamera(self.cfg.tiled_camera) # add ground plane spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg(size=(500, 500))) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[]) # add articultion and sensors to scene self.scene.articulations["cartpole"] = self._cartpole self.scene.sensors["tiled_camera"] = self._tiled_camera # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor) -> None: self.actions = self.action_scale * actions.clone() def _apply_action(self) -> None: self._cartpole.set_joint_effort_target(self.actions, joint_ids=self._cart_dof_idx) def _get_observations(self) -> dict: data_type = "rgb" if "rgb" in self.cfg.tiled_camera.data_types else "depth" observations = {"policy": self._tiled_camera.data.output[data_type].clone()} return observations def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.cfg.rew_scale_alive, self.cfg.rew_scale_terminated, self.cfg.rew_scale_pole_pos, self.cfg.rew_scale_cart_vel, self.cfg.rew_scale_pole_vel, self.joint_pos[:, self._pole_dof_idx[0]], self.joint_vel[:, self._pole_dof_idx[0]], self.joint_pos[:, self._cart_dof_idx[0]], self.joint_vel[:, self._cart_dof_idx[0]], self.reset_terminated, ) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self.joint_pos = self._cartpole.data.joint_pos self.joint_vel = self._cartpole.data.joint_vel time_out = self.episode_length_buf >= self.max_episode_length - 1 out_of_bounds = torch.any(torch.abs(self.joint_pos[:, self._cart_dof_idx]) > self.cfg.max_cart_pos, dim=1) out_of_bounds = out_of_bounds | torch.any(torch.abs(self.joint_pos[:, self._pole_dof_idx]) > math.pi / 2, dim=1) return out_of_bounds, time_out def _reset_idx(self, env_ids: Sequence[int] | None): if env_ids is None: env_ids = self._cartpole._ALL_INDICES super()._reset_idx(env_ids) joint_pos = self._cartpole.data.default_joint_pos[env_ids] joint_pos[:, self._pole_dof_idx] += sample_uniform( self.cfg.initial_pole_angle_range[0] * math.pi, self.cfg.initial_pole_angle_range[1] * math.pi, joint_pos[:, self._pole_dof_idx].shape, joint_pos.device, ) joint_vel = self._cartpole.data.default_joint_vel[env_ids] default_root_state = self._cartpole.data.default_root_state[env_ids] default_root_state[:, :3] += self.scene.env_origins[env_ids] self.joint_pos[env_ids] = joint_pos self.joint_vel[env_ids] = joint_vel self._cartpole.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._cartpole.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._cartpole.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) @torch.jit.script def compute_rewards( rew_scale_alive: float, rew_scale_terminated: float, rew_scale_pole_pos: float, rew_scale_cart_vel: float, rew_scale_pole_vel: float, pole_pos: torch.Tensor, pole_vel: torch.Tensor, cart_pos: torch.Tensor, cart_vel: torch.Tensor, reset_terminated: torch.Tensor, ): rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) rew_termination = rew_scale_terminated * reset_terminated.float() rew_pole_pos = rew_scale_pole_pos * torch.sum(torch.square(pole_pos).unsqueeze(dim=1), dim=-1) rew_cart_vel = rew_scale_cart_vel * torch.sum(torch.abs(cart_vel).unsqueeze(dim=1), dim=-1) rew_pole_vel = rew_scale_pole_vel * torch.sum(torch.abs(pole_vel).unsqueeze(dim=1), dim=-1) total_reward = rew_alive + rew_termination + rew_pole_pos + rew_cart_vel + rew_pole_vel return total_reward
9,829
Python
38.959349
120
0.64676
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .cartpole_camera_env import CartpoleCameraEnv, CartpoleDepthCameraEnvCfg, CartpoleRGBCameraEnvCfg from .cartpole_env import CartpoleEnv, CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Cartpole-RGB-Camera-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleCameraEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleRGBCameraEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_camera_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Cartpole-Depth-Camera-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.cartpole:CartpoleCameraEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleDepthCameraEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_camera_ppo_cfg.yaml", }, )
1,588
Python
29.557692
102
0.688287
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/humanoid_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from omni.isaac.lab_assets import HUMANOID_CFG import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab_tasks.direct.locomotion.locomotion_env import LocomotionEnv @configclass class HumanoidEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg(dt=1 / 120) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = HUMANOID_CFG.replace(prim_path="/World/envs/env_.*/Robot") joint_gears: list = [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ] # env episode_length_s = 15.0 decimation = 2 action_scale = 1.0 num_actions = 21 num_observations = 75 num_states = 0 heading_weight: float = 0.5 up_weight: float = 0.1 energy_cost_scale: float = 0.05 actions_cost_scale: float = 0.01 alive_reward_scale: float = 2.0 dof_vel_scale: float = 0.1 death_cost: float = -1.0 termination_height: float = 0.8 angular_velocity_scale: float = 0.25 contact_force_scale: float = 0.01 class HumanoidEnv(LocomotionEnv): cfg: HumanoidEnvCfg def __init__(self, cfg: HumanoidEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs)
2,796
Python
28.135416
108
0.631617
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .shadow_hand_env import ShadowHandEnv from .shadow_hand_env_cfg import ShadowHandEnvCfg, ShadowHandOpenAIEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Shadow-Hand-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.ShadowHandPPORunnerCfg, }, ) gym.register( id="Isaac-Shadow-Hand-OpenAI-FF-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandOpenAIEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_ff_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.ShadowHandAsymFFPPORunnerCfg, }, ) gym.register( id="Isaac-Shadow-Hand-OpenAI-LSTM-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.shadow_hand:ShadowHandEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ShadowHandOpenAIEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_lstm_cfg.yaml", }, )
1,496
Python
28.352941
85
0.691176
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import numpy as np import torch from collections.abc import Sequence import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, RigidObject from omni.isaac.lab.envs import DirectRLEnv from omni.isaac.lab.markers import VisualizationMarkers from omni.isaac.lab.sim.spawners.from_files import GroundPlaneCfg, spawn_ground_plane from omni.isaac.lab.utils.math import quat_conjugate, quat_from_angle_axis, quat_mul, sample_uniform, saturate from .shadow_hand_env_cfg import ShadowHandEnvCfg class ShadowHandEnv(DirectRLEnv): cfg: ShadowHandEnvCfg def __init__(self, cfg: ShadowHandEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) self.num_hand_dofs = self.hand.num_joints # buffers for position targets self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) # list of actuated joints self.actuated_dof_indices = list() for joint_name in cfg.actuated_joint_names: self.actuated_dof_indices.append(self.hand.joint_names.index(joint_name)) self.actuated_dof_indices.sort() # finger bodies self.finger_bodies = list() for body_name in self.cfg.fingertip_body_names: self.finger_bodies.append(self.hand.body_names.index(body_name)) self.finger_bodies.sort() self.num_fingertips = len(self.finger_bodies) # joint limits joint_pos_limits = self.hand.root_physx_view.get_dof_limits().to(self.device) self.hand_dof_lower_limits = joint_pos_limits[..., 0] self.hand_dof_upper_limits = joint_pos_limits[..., 1] # track goal resets self.reset_goal_buf = torch.zeros(self.num_envs, dtype=torch.bool, device=self.device) # used to compare object position self.in_hand_pos = self.object.data.default_root_state[:, 0:3].clone() self.in_hand_pos[:, 2] -= 0.04 # default goal positions self.goal_rot = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.goal_rot[:, 0] = 1.0 self.goal_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.goal_pos[:, :] = torch.tensor([-0.2, -0.45, 0.68], device=self.device) # initialize goal marker self.goal_markers = VisualizationMarkers(self.cfg.goal_object_cfg) # track successes self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) # unit tensors self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) def _setup_scene(self): # add hand, in-hand object, and goal object self.hand = Articulation(self.cfg.robot_cfg) self.object = RigidObject(self.cfg.object_cfg) # add ground plane spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg()) # clone and replicate (no need to filter for this environment) self.scene.clone_environments(copy_from_source=False) # add articultion to scene - we must register to scene to randomize with EventManager self.scene.articulations["robot"] = self.hand self.scene.rigid_objects["object"] = self.object # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor) -> None: self.actions = actions.clone() def _apply_action(self) -> None: self.cur_targets[:, self.actuated_dof_indices] = scale( self.actions, self.hand_dof_lower_limits[:, self.actuated_dof_indices], self.hand_dof_upper_limits[:, self.actuated_dof_indices], ) self.cur_targets[:, self.actuated_dof_indices] = ( self.cfg.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.cfg.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] ) self.cur_targets[:, self.actuated_dof_indices] = saturate( self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[:, self.actuated_dof_indices], self.hand_dof_upper_limits[:, self.actuated_dof_indices], ) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self.hand.set_joint_position_target( self.cur_targets[:, self.actuated_dof_indices], joint_ids=self.actuated_dof_indices ) def _get_observations(self) -> dict: if self.cfg.asymmetric_obs: self.fingertip_force_sensors = self.hand.root_physx_view.get_link_incoming_joint_force()[ :, self.finger_bodies ] if self.cfg.obs_type == "openai": obs = self.compute_reduced_observations() elif self.cfg.obs_type == "full": obs = self.compute_full_observations() else: print("Unknown observations type!") if self.cfg.asymmetric_obs: states = self.compute_full_state() observations = {"policy": obs} if self.cfg.asymmetric_obs: observations = {"policy": obs, "critic": states} return observations def _get_rewards(self) -> torch.Tensor: ( total_reward, self.reset_goal_buf, self.successes[:], self.consecutive_successes[:], ) = compute_rewards( self.reset_buf, self.reset_goal_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.in_hand_pos, self.goal_rot, self.cfg.dist_reward_scale, self.cfg.rot_reward_scale, self.cfg.rot_eps, self.actions, self.cfg.action_penalty_scale, self.cfg.success_tolerance, self.cfg.reach_goal_bonus, self.cfg.fall_dist, self.cfg.fall_penalty, self.cfg.av_factor, ) if "log" not in self.extras: self.extras["log"] = dict() self.extras["log"]["consecutive_successes"] = self.consecutive_successes.mean() # reset goals if the goal has been reached goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) if len(goal_env_ids) > 0: self._reset_target_pose(goal_env_ids) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self._compute_intermediate_values() # reset when cube has fallen goal_dist = torch.norm(self.object_pos - self.in_hand_pos, p=2, dim=-1) out_of_reach = goal_dist >= self.cfg.fall_dist if self.cfg.max_consecutive_success > 0: # Reset progress (episode length buf) on goal envs if max_consecutive_success > 0 rot_dist = rotation_distance(self.object_rot, self.goal_rot) self.episode_length_buf = torch.where( torch.abs(rot_dist) <= self.cfg.success_tolerance, torch.zeros_like(self.episode_length_buf), self.episode_length_buf, ) max_success_reached = self.successes >= self.cfg.max_consecutive_success time_out = self.episode_length_buf >= self.max_episode_length - 1 if self.cfg.max_consecutive_success > 0: time_out = time_out | max_success_reached return out_of_reach, time_out def _reset_idx(self, env_ids: Sequence[int] | None): if env_ids is None: env_ids = self.hand._ALL_INDICES # resets articulation and rigid body attributes super()._reset_idx(env_ids) # reset goals self._reset_target_pose(env_ids) # reset object object_default_state = self.object.data.default_root_state.clone()[env_ids] pos_noise = sample_uniform(-1.0, 1.0, (len(env_ids), 3), device=self.device) # global object positions object_default_state[:, 0:3] = ( object_default_state[:, 0:3] + self.cfg.reset_position_noise * pos_noise + self.scene.env_origins[env_ids] ) rot_noise = sample_uniform(-1.0, 1.0, (len(env_ids), 2), device=self.device) # noise for X and Y rotation object_default_state[:, 3:7] = randomize_rotation( rot_noise[:, 0], rot_noise[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) object_default_state[:, 7:] = torch.zeros_like(self.object.data.default_root_state[env_ids, 7:]) self.object.write_root_state_to_sim(object_default_state, env_ids) # reset hand delta_max = self.hand_dof_upper_limits[env_ids] - self.hand.data.default_joint_pos[env_ids] delta_min = self.hand_dof_lower_limits[env_ids] - self.hand.data.default_joint_pos[env_ids] dof_pos_noise = sample_uniform(-1.0, 1.0, (len(env_ids), self.num_hand_dofs), device=self.device) rand_delta = delta_min + (delta_max - delta_min) * 0.5 * dof_pos_noise dof_pos = self.hand.data.default_joint_pos[env_ids] + self.cfg.reset_dof_pos_noise * rand_delta dof_vel_noise = sample_uniform(-1.0, 1.0, (len(env_ids), self.num_hand_dofs), device=self.device) dof_vel = self.hand.data.default_joint_vel[env_ids] + self.cfg.reset_dof_vel_noise * dof_vel_noise self.prev_targets[env_ids] = dof_pos self.cur_targets[env_ids] = dof_pos self.hand_dof_targets[env_ids] = dof_pos self.hand.set_joint_position_target(dof_pos, env_ids=env_ids) self.hand.write_joint_state_to_sim(dof_pos, dof_vel, env_ids=env_ids) self.successes[env_ids] = 0 self._compute_intermediate_values() def _reset_target_pose(self, env_ids): # reset goal rotation rand_floats = sample_uniform(-1.0, 1.0, (len(env_ids), 2), device=self.device) new_rot = randomize_rotation( rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) # update goal pose and markers self.goal_rot[env_ids] = new_rot goal_pos = self.goal_pos + self.scene.env_origins self.goal_markers.visualize(goal_pos, self.goal_rot) self.reset_goal_buf[env_ids] = 0 def _compute_intermediate_values(self): # data for hand self.fingertip_pos = self.hand.data.body_pos_w[:, self.finger_bodies] self.fingertip_rot = self.hand.data.body_quat_w[:, self.finger_bodies] self.fingertip_pos -= self.scene.env_origins.repeat((1, self.num_fingertips)).reshape( self.num_envs, self.num_fingertips, 3 ) self.fingertip_velocities = self.hand.data.body_vel_w[:, self.finger_bodies] self.hand_dof_pos = self.hand.data.joint_pos self.hand_dof_vel = self.hand.data.joint_vel # data for object self.object_pos = self.object.data.root_pos_w - self.scene.env_origins self.object_rot = self.object.data.root_quat_w self.object_velocities = self.object.data.root_vel_w self.object_linvel = self.object.data.root_lin_vel_w self.object_angvel = self.object.data.root_ang_vel_w def compute_reduced_observations(self): # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation obs = torch.cat( ( self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 0:15 self.object_pos, # 15:18 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 18:22 self.actions, # 22:42 ), dim=-1, ) return obs def compute_full_observations(self): obs = torch.cat( ( # hand unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits), # 0:24 self.cfg.vel_obs_scale * self.hand_dof_vel, # 24:48 # object self.object_pos, # 48:51 self.object_rot, # 51:55 self.object_linvel, # 55:58 self.cfg.vel_obs_scale * self.object_angvel, # 58:61 # goal self.in_hand_pos, # 61:64 self.goal_rot, # 64:68 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 68:72 # fingertips self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 72:87 self.fingertip_rot.view(self.num_envs, self.num_fingertips * 4), # 87:107 self.fingertip_velocities.view(self.num_envs, self.num_fingertips * 6), # 107:137 # actions self.actions, # 137:157 ), dim=-1, ) return obs def compute_full_state(self): states = torch.cat( ( # hand unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits), # 0:24 self.cfg.vel_obs_scale * self.hand_dof_vel, # 24:48 # object self.object_pos, # 48:51 self.object_rot, # 51:55 self.object_linvel, # 55:58 self.cfg.vel_obs_scale * self.object_angvel, # 58:61 # goal self.in_hand_pos, # 61:64 self.goal_rot, # 64:68 quat_mul(self.object_rot, quat_conjugate(self.goal_rot)), # 68:72 # fingertips self.fingertip_pos.view(self.num_envs, self.num_fingertips * 3), # 72:87 self.fingertip_rot.view(self.num_envs, self.num_fingertips * 4), # 87:107 self.fingertip_velocities.view(self.num_envs, self.num_fingertips * 6), # 107:137 self.cfg.force_torque_obs_scale * self.fingertip_force_sensors.view(self.num_envs, self.num_fingertips * 6), # 137:167 # actions self.actions, # 167:187 ), dim=-1, ) return states @torch.jit.script def scale(x, lower, upper): return 0.5 * (x + 1.0) * (upper - lower) + lower @torch.jit.script def unscale(x, lower, upper): return (2.0 * x - upper - lower) / (upper - lower) @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul( quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor) ) @torch.jit.script def rotation_distance(object_rot, target_rot): # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) return 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention @torch.jit.script def compute_rewards( reset_buf: torch.Tensor, reset_goal_buf: torch.Tensor, successes: torch.Tensor, consecutive_successes: torch.Tensor, max_episode_length: float, object_pos: torch.Tensor, object_rot: torch.Tensor, target_pos: torch.Tensor, target_rot: torch.Tensor, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions: torch.Tensor, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, av_factor: float, ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) rot_dist = rotation_distance(object_rot, target_rot) dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions**2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threshold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where( num_resets > 0, av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes, consecutive_successes, ) return reward, goal_resets, successes, cons_successes
18,039
Python
40.953488
120
0.613615
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab_assets.shadow_hand import SHADOW_HAND_CFG import omni.isaac.lab.envs.mdp as mdp import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg, RigidObjectCfg from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.markers import VisualizationMarkersCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import PhysxCfg, SimulationCfg from omni.isaac.lab.sim.spawners.materials.physics_materials_cfg import RigidBodyMaterialCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.lab.utils.noise import GaussianNoiseCfg, NoiseModelWithAdditiveBiasCfg @configclass class EventCfg: """Configuration for randomization.""" # -- robot robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) robot_joint_limits = EventTerm( func=mdp.randomize_joint_parameters, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "lower_limit_distribution_params": (0.00, 0.01), "upper_limit_distribution_params": (0.00, 0.01), "operation": "add", "distribution": "gaussian", }, ) robot_tendon_properties = EventTerm( func=mdp.randomize_fixed_tendon_parameters, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", fixed_tendon_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) # -- object object_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("object", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) object_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="reset", params={ "asset_cfg": SceneEntityCfg("object"), "mass_distribution_params": (0.5, 1.5), "operation": "scale", "distribution": "uniform", }, ) # -- scene reset_gravity = EventTerm( func=mdp.randomize_physics_scene_gravity, mode="interval", is_global_time=True, interval_range_s=(36.0, 36.0), # time_s = num_steps * (decimation * dt) params={ "gravity_distribution_params": ([0.0, 0.0, 0.0], [0.0, 0.0, 0.4]), "operation": "add", "distribution": "gaussian", }, ) @configclass class ShadowHandEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 120, physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, ), ) # robot robot_cfg: ArticulationCfg = SHADOW_HAND_CFG.replace(prim_path="/World/envs/env_.*/Robot").replace( init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), rot=(1.0, 0.0, 0.0, 0.0), joint_pos={".*": 0.0}, ) ) actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] fingertip_body_names = [ "robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal", ] # in-hand object object_cfg: RigidObjectCfg = RigidObjectCfg( prim_path="/World/envs/env_.*/object", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( kinematic_enabled=False, disable_gravity=False, enable_gyroscopic_forces=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0025, max_depenetration_velocity=1000.0, ), mass_props=sim_utils.MassPropertiesCfg(density=567.0), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, -0.39, 0.6), rot=(1.0, 0.0, 0.0, 0.0)), ) # goal object goal_object_cfg: VisualizationMarkersCfg = VisualizationMarkersCfg( prim_path="/Visuals/goal_marker", markers={ "goal": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(1.0, 1.0, 1.0), ) }, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=8192, env_spacing=0.75, replicate_physics=True) # env decimation = 2 episode_length_s = 10.0 num_actions = 20 num_observations = 157 # (full) num_states = 0 asymmetric_obs = False obs_type = "full" # reset reset_position_noise = 0.01 # range of position at reset reset_dof_pos_noise = 0.2 # range of dof pos at reset reset_dof_vel_noise = 0.0 # range of dof vel at reset # reward scales dist_reward_scale = -10.0 rot_reward_scale = 1.0 rot_eps = 0.1 action_penalty_scale = -0.0002 reach_goal_bonus = 250 fall_penalty = 0 fall_dist = 0.24 vel_obs_scale = 0.2 success_tolerance = 0.1 max_consecutive_success = 0 av_factor = 0.1 act_moving_average = 1.0 force_torque_obs_scale = 10.0 @configclass class ShadowHandOpenAIEnvCfg(ShadowHandEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 60, physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, gpu_max_rigid_contact_count=2**23, gpu_max_rigid_patch_count=2**23, ), ) # env decimation = 3 episode_length_s = 8.0 num_actions = 20 num_observations = 42 num_states = 187 asymmetric_obs = True obs_type = "openai" # reset reset_position_noise = 0.01 # range of position at reset reset_dof_pos_noise = 0.2 # range of dof pos at reset reset_dof_vel_noise = 0.0 # range of dof vel at reset # reward scales dist_reward_scale = -10.0 rot_reward_scale = 1.0 rot_eps = 0.1 action_penalty_scale = -0.0002 reach_goal_bonus = 250 fall_penalty = -50 fall_dist = 0.24 vel_obs_scale = 0.2 success_tolerance = 0.4 max_consecutive_success = 50 av_factor = 0.1 act_moving_average = 0.3 force_torque_obs_scale = 10.0 # domain randomization config events: EventCfg = EventCfg() # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset action_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.05, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.015, operation="abs"), ) # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset observation_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.002, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.0001, operation="abs"), )
9,087
Python
32.167883
109
0.592165
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/franka_cabinet_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.transformations import tf_combine, tf_inverse, tf_vector from pxr import UsdGeom import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.actuators.actuator_cfg import ImplicitActuatorCfg from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.lab.utils.math import sample_uniform @configclass class FrankaCabinetEnvCfg(DirectRLEnvCfg): # env episode_length_s = 8.3333 # 500 timesteps decimation = 2 num_actions = 9 num_observations = 23 num_states = 0 action_scale = 7.5 dof_velocity_scale = 0.1 # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 120, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=3.0, replicate_physics=True) # robot robot = ArticulationCfg( prim_path="/World/envs/env_.*/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Franka/franka_instanceable.usd", activate_contact_sensors=False, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=5.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=12, solver_velocity_iteration_count=1 ), ), init_state=ArticulationCfg.InitialStateCfg( joint_pos={ "panda_joint1": 1.157, "panda_joint2": -1.066, "panda_joint3": -0.155, "panda_joint4": -2.239, "panda_joint5": -1.841, "panda_joint6": 1.003, "panda_joint7": 0.469, "panda_finger_joint.*": 0.035, }, pos=(1.0, 0.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), ), actuators={ "panda_shoulder": ImplicitActuatorCfg( joint_names_expr=["panda_joint[1-4]"], effort_limit=87.0, velocity_limit=2.175, stiffness=80.0, damping=4.0, ), "panda_forearm": ImplicitActuatorCfg( joint_names_expr=["panda_joint[5-7]"], effort_limit=12.0, velocity_limit=2.61, stiffness=80.0, damping=4.0, ), "panda_hand": ImplicitActuatorCfg( joint_names_expr=["panda_finger_joint.*"], effort_limit=200.0, velocity_limit=0.2, stiffness=2e3, damping=1e2, ), }, ) # cabinet cabinet = ArticulationCfg( prim_path="/World/envs/env_.*/Cabinet", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd", activate_contact_sensors=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0, 0.4), rot=(0.1, 0.0, 0.0, 0.0), joint_pos={ "door_left_joint": 0.0, "door_right_joint": 0.0, "drawer_bottom_joint": 0.0, "drawer_top_joint": 0.0, }, ), actuators={ "drawers": ImplicitActuatorCfg( joint_names_expr=["drawer_top_joint", "drawer_bottom_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=1.0, ), "doors": ImplicitActuatorCfg( joint_names_expr=["door_left_joint", "door_right_joint"], effort_limit=87.0, velocity_limit=100.0, stiffness=10.0, damping=2.5, ), }, ) # ground plane terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) # reward scales dist_reward_scale = 2.0 rot_reward_scale = 0.5 around_handle_reward_scale = 0.0 open_reward_scale = 7.5 action_penalty_scale = 0.01 finger_dist_reward_scale = 0.0 finger_close_reward_scale = 10.0 class FrankaCabinetEnv(DirectRLEnv): # pre-physics step calls # |-- _pre_physics_step(action) # |-- _apply_action() # post-physics step calls # |-- _get_dones() # |-- _get_rewards() # |-- _reset_idx(env_ids) # |-- _get_observations() cfg: FrankaCabinetEnvCfg def __init__(self, cfg: FrankaCabinetEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) def get_env_local_pose(env_pos: torch.Tensor, xformable: UsdGeom.Xformable, device: torch.device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device) self.dt = self.cfg.sim.dt * self.cfg.decimation # create auxiliary variables for computing applied action, observations and rewards self.robot_dof_lower_limits = self._robot.data.soft_joint_pos_limits[0, :, 0].to(device=self.device) self.robot_dof_upper_limits = self._robot.data.soft_joint_pos_limits[0, :, 1].to(device=self.device) self.robot_dof_speed_scales = torch.ones_like(self.robot_dof_lower_limits) self.robot_dof_speed_scales[self._robot.find_joints("panda_finger_joint1")[0]] = 0.1 self.robot_dof_speed_scales[self._robot.find_joints("panda_finger_joint2")[0]] = 0.1 self.robot_dof_targets = torch.zeros((self.num_envs, self._robot.num_joints), device=self.device) stage = get_current_stage() hand_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_link7")), self.device, ) lfinger_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_leftfinger")), self.device, ) rfinger_pose = get_env_local_pose( self.scene.env_origins[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/Robot/panda_rightfinger")), self.device, ) finger_pose = torch.zeros(7, device=self.device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3]) robot_local_grasp_pose_rot, robot_local_pose_pos = tf_combine( hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3] ) robot_local_pose_pos += torch.tensor([0, 0.04, 0], device=self.device) self.robot_local_grasp_pos = robot_local_pose_pos.repeat((self.num_envs, 1)) self.robot_local_grasp_rot = robot_local_grasp_pose_rot.repeat((self.num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self.device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self.num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self.num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self.device, dtype=torch.float32).repeat( (self.num_envs, 1) ) self.hand_link_idx = self._robot.find_bodies("panda_link7")[0][0] self.left_finger_link_idx = self._robot.find_bodies("panda_leftfinger")[0][0] self.right_finger_link_idx = self._robot.find_bodies("panda_rightfinger")[0][0] self.drawer_link_idx = self._cabinet.find_bodies("drawer_top")[0][0] self.robot_grasp_rot = torch.zeros((self.num_envs, 4), device=self.device) self.robot_grasp_pos = torch.zeros((self.num_envs, 3), device=self.device) self.drawer_grasp_rot = torch.zeros((self.num_envs, 4), device=self.device) self.drawer_grasp_pos = torch.zeros((self.num_envs, 3), device=self.device) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self._cabinet = Articulation(self.cfg.cabinet) self.scene.articulations["robot"] = self._robot self.scene.articulations["cabinet"] = self._cabinet self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) # pre-physics step calls def _pre_physics_step(self, actions: torch.Tensor): self.actions = actions.clone().clamp(-1.0, 1.0) targets = self.robot_dof_targets + self.robot_dof_speed_scales * self.dt * self.actions * self.cfg.action_scale self.robot_dof_targets[:] = torch.clamp(targets, self.robot_dof_lower_limits, self.robot_dof_upper_limits) def _apply_action(self): self._robot.set_joint_position_target(self.robot_dof_targets) # post-physics step calls def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: terminated = self._cabinet.data.joint_pos[:, 3] > 0.39 truncated = self.episode_length_buf >= self.max_episode_length - 1 return terminated, truncated def _get_rewards(self) -> torch.Tensor: # Refresh the intermediate values after the physics steps self._compute_intermediate_values() robot_left_finger_pos = self._robot.data.body_pos_w[:, self.left_finger_link_idx] robot_right_finger_pos = self._robot.data.body_pos_w[:, self.right_finger_link_idx] return self._compute_rewards( self.actions, self._cabinet.data.joint_pos, self.robot_grasp_pos, self.drawer_grasp_pos, self.robot_grasp_rot, self.drawer_grasp_rot, robot_left_finger_pos, robot_right_finger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self.num_envs, self.cfg.dist_reward_scale, self.cfg.rot_reward_scale, self.cfg.around_handle_reward_scale, self.cfg.open_reward_scale, self.cfg.finger_dist_reward_scale, self.cfg.action_penalty_scale, self._robot.data.joint_pos, self.cfg.finger_close_reward_scale, ) def _reset_idx(self, env_ids: torch.Tensor | None): super()._reset_idx(env_ids) # robot state joint_pos = self._robot.data.default_joint_pos[env_ids] + sample_uniform( -0.125, 0.125, (len(env_ids), self._robot.num_joints), self.device, ) joint_pos = torch.clamp(joint_pos, self.robot_dof_lower_limits, self.robot_dof_upper_limits) joint_vel = torch.zeros_like(joint_pos) self._robot.set_joint_position_target(joint_pos, env_ids=env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids) # cabinet state zeros = torch.zeros((len(env_ids), self._cabinet.num_joints), device=self.device) self._cabinet.write_joint_state_to_sim(zeros, zeros, env_ids=env_ids) # Need to refresh the intermediate values so that _get_observations() can use the latest values self._compute_intermediate_values(env_ids) def _get_observations(self) -> dict: dof_pos_scaled = ( 2.0 * (self._robot.data.joint_pos - self.robot_dof_lower_limits) / (self.robot_dof_upper_limits - self.robot_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.robot_grasp_pos obs = torch.cat( ( dof_pos_scaled, self._robot.data.joint_vel * self.cfg.dof_velocity_scale, to_target, self._cabinet.data.joint_pos[:, 3].unsqueeze(-1), self._cabinet.data.joint_vel[:, 3].unsqueeze(-1), ), dim=-1, ) return {"policy": torch.clamp(obs, -5.0, 5.0)} # auxiliary methods def _compute_intermediate_values(self, env_ids: torch.Tensor | None = None): if env_ids is None: env_ids = self._robot._ALL_INDICES hand_pos = self._robot.data.body_pos_w[env_ids, self.hand_link_idx] hand_rot = self._robot.data.body_quat_w[env_ids, self.hand_link_idx] drawer_pos = self._cabinet.data.body_pos_w[env_ids, self.drawer_link_idx] drawer_rot = self._cabinet.data.body_quat_w[env_ids, self.drawer_link_idx] ( self.robot_grasp_rot[env_ids], self.robot_grasp_pos[env_ids], self.drawer_grasp_rot[env_ids], self.drawer_grasp_pos[env_ids], ) = self._compute_grasp_transforms( hand_rot, hand_pos, self.robot_local_grasp_rot[env_ids], self.robot_local_grasp_pos[env_ids], drawer_rot, drawer_pos, self.drawer_local_grasp_rot[env_ids], self.drawer_local_grasp_pos[env_ids], ) def _compute_rewards( self, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, joint_positions, finger_close_reward_scale, ): # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d**2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = ( torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of forward axis for gripper dot2 = ( torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward ), around_handle_reward, ) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward, ), finger_dist_reward, ) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where( d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward ) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions**2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = ( dist_reward_scale * dist_reward + rot_reward_scale * rot_reward + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale ) self.extras["log"] = { "dist_reward": (dist_reward_scale * dist_reward).mean(), "rot_reward": (rot_reward_scale * rot_reward).mean(), "around_handle_reward": (around_handle_reward_scale * around_handle_reward).mean(), "open_reward": (open_reward_scale * open_reward).mean(), "finger_dist_reward": (finger_dist_reward_scale * finger_dist_reward).mean(), "action_penalty": (action_penalty_scale * action_penalty).mean(), "finger_close_reward": (finger_close_reward * finger_close_reward_scale).mean(), } # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) return rewards def _compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos
20,965
Python
39.087954
119
0.587455
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/franka_cabinet/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Franka-Cabinet environment. """ import gymnasium as gym from . import agents from .franka_cabinet_env import FrankaCabinetEnv, FrankaCabinetEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Franka-Cabinet-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.franka_cabinet:FrankaCabinetEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": FrankaCabinetEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.FrankaCabinetPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
789
Python
26.241378
82
0.698352
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/locomotion/locomotion_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.core.utils.torch as torch_utils from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) class LocomotionEnv(DirectRLEnv): cfg: DirectRLEnvCfg def __init__(self, cfg: DirectRLEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) self.action_scale = self.cfg.action_scale self.joint_gears = torch.tensor(self.cfg.joint_gears, dtype=torch.float32, device=self.sim.device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self.sim.device) self._joint_dof_idx, _ = self.robot.find_joints(".*") self.potentials = torch.zeros(self.num_envs, dtype=torch.float32, device=self.sim.device) self.prev_potentials = torch.zeros_like(self.potentials) self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self.sim.device).repeat( (self.num_envs, 1) ) self.targets += self.scene.env_origins self.start_rotation = torch.tensor([1, 0, 0, 0], device=self.sim.device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self.sim.device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self.sim.device).repeat( (self.num_envs, 1) ) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() def _setup_scene(self): self.robot = Articulation(self.cfg.robot) # add ground plane self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self.terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add articultion to scene self.scene.articulations["robot"] = self.robot # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self.actions = actions.clone() def _apply_action(self): forces = self.action_scale * self.joint_gears * self.actions self.robot.set_joint_effort_target(forces, joint_ids=self._joint_dof_idx) def _compute_intermediate_values(self): self.torso_position, self.torso_rotation = self.robot.data.root_pos_w, self.robot.data.root_quat_w self.velocity, self.ang_velocity = self.robot.data.root_lin_vel_w, self.robot.data.root_ang_vel_w self.dof_pos, self.dof_vel = self.robot.data.joint_pos, self.robot.data.joint_vel ( self.up_proj, self.heading_proj, self.up_vec, self.heading_vec, self.vel_loc, self.angvel_loc, self.roll, self.pitch, self.yaw, self.angle_to_target, self.dof_pos_scaled, self.prev_potentials, self.potentials, ) = compute_intermediate_values( self.targets, self.torso_position, self.torso_rotation, self.velocity, self.ang_velocity, self.dof_pos, self.robot.data.soft_joint_pos_limits[0, :, 0], self.robot.data.soft_joint_pos_limits[0, :, 1], self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.potentials, self.prev_potentials, self.cfg.sim.dt, ) def _get_observations(self) -> dict: obs = torch.cat( ( self.torso_position[:, 2].view(-1, 1), self.vel_loc, self.angvel_loc * self.cfg.angular_velocity_scale, normalize_angle(self.yaw).unsqueeze(-1), normalize_angle(self.roll).unsqueeze(-1), normalize_angle(self.angle_to_target).unsqueeze(-1), self.up_proj.unsqueeze(-1), self.heading_proj.unsqueeze(-1), self.dof_pos_scaled, self.dof_vel * self.cfg.dof_vel_scale, self.actions, ), dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.actions, self.reset_terminated, self.cfg.up_weight, self.cfg.heading_weight, self.heading_proj, self.up_proj, self.dof_vel, self.dof_pos_scaled, self.potentials, self.prev_potentials, self.cfg.actions_cost_scale, self.cfg.energy_cost_scale, self.cfg.dof_vel_scale, self.cfg.death_cost, self.cfg.alive_reward_scale, self.motor_effort_ratio, ) return total_reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: self._compute_intermediate_values() time_out = self.episode_length_buf >= self.max_episode_length - 1 died = self.torso_position[:, 2] < self.cfg.termination_height return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self.robot._ALL_INDICES self.robot.reset(env_ids) super()._reset_idx(env_ids) joint_pos = self.robot.data.default_joint_pos[env_ids] joint_vel = self.robot.data.default_joint_vel[env_ids] default_root_state = self.robot.data.default_root_state[env_ids] default_root_state[:, :3] += self.scene.env_origins[env_ids] self.robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self.robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self.robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) to_target = self.targets[env_ids] - default_root_state[:, :3] to_target[:, 2] = 0.0 self.potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.cfg.sim.dt self._compute_intermediate_values() @torch.jit.script def compute_rewards( actions: torch.Tensor, reset_terminated: torch.Tensor, up_weight: float, heading_weight: float, heading_proj: torch.Tensor, up_proj: torch.Tensor, dof_vel: torch.Tensor, dof_pos_scaled: torch.Tensor, potentials: torch.Tensor, prev_potentials: torch.Tensor, actions_cost_scale: float, energy_cost_scale: float, dof_vel_scale: float, death_cost: float, alive_reward_scale: float, motor_effort_ratio: torch.Tensor, ): heading_weight_tensor = torch.ones_like(heading_proj) * heading_weight heading_reward = torch.where(heading_proj > 0.8, heading_weight_tensor, heading_weight * heading_proj / 0.8) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(up_proj > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions**2, dim=-1) electricity_cost = torch.sum( torch.abs(actions * dof_vel * dof_vel_scale) * motor_effort_ratio.unsqueeze(0), dim=-1, ) # dof at limit cost dof_at_limit_cost = torch.sum(dof_pos_scaled > 0.98, dim=-1) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where(reset_terminated, torch.ones_like(total_reward) * death_cost, total_reward) return total_reward @torch.jit.script def compute_intermediate_values( targets: torch.Tensor, torso_position: torch.Tensor, torso_rotation: torch.Tensor, velocity: torch.Tensor, ang_velocity: torch.Tensor, dof_pos: torch.Tensor, dof_lower_limits: torch.Tensor, dof_upper_limits: torch.Tensor, inv_start_rot: torch.Tensor, basis_vec0: torch.Tensor, basis_vec1: torch.Tensor, potentials: torch.Tensor, prev_potentials: torch.Tensor, dt: float, ): to_target = targets - torso_position to_target[:, 2] = 0.0 torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = torch_utils.maths.unscale(dof_pos, dof_lower_limits, dof_upper_limits) to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials[:] = potentials potentials = -torch.norm(to_target, p=2, dim=-1) / dt return ( up_proj, heading_proj, up_vec, heading_vec, vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target, dof_pos_scaled, prev_potentials, potentials, )
10,072
Python
35.103943
117
0.615469
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment. """ import gymnasium as gym from . import agents from .anymal_c_env import AnymalCEnv, AnymalCFlatEnvCfg, AnymalCRoughEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-C-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.anymal_c:AnymalCEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AnymalCFlatEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_flat_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AnymalCFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-C-Direct-v0", entry_point="omni.isaac.lab_tasks.direct.anymal_c:AnymalCEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": AnymalCRoughEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_rough_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AnymalCRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,279
Python
29.47619
85
0.679437
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/anymal_c_env.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation, ArticulationCfg from omni.isaac.lab.envs import DirectRLEnv, DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sensors import ContactSensor, ContactSensorCfg, RayCaster, RayCasterCfg, patterns from omni.isaac.lab.sim import SimulationCfg from omni.isaac.lab.terrains import TerrainImporterCfg from omni.isaac.lab.utils import configclass ## # Pre-defined configs ## from omni.isaac.lab_assets.anymal import ANYMAL_C_CFG # isort: skip from omni.isaac.lab.terrains.config.rough import ROUGH_TERRAINS_CFG # isort: skip @configclass class AnymalCFlatEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg( dt=1 / 200, disable_contact_processing=True, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # scene scene: InteractiveSceneCfg = InteractiveSceneCfg(num_envs=4096, env_spacing=4.0, replicate_physics=True) # robot robot: ArticulationCfg = ANYMAL_C_CFG.replace(prim_path="/World/envs/env_.*/Robot") contact_sensor: ContactSensorCfg = ContactSensorCfg( prim_path="/World/envs/env_.*/Robot/.*", history_length=3, update_period=0.005, track_air_time=True ) # env episode_length_s = 20.0 decimation = 4 action_scale = 0.5 num_actions = 12 num_observations = 48 num_states = 0 # reward scales lin_vel_reward_scale = 1.0 yaw_rate_reward_scale = 0.5 z_vel_reward_scale = -2.0 ang_vel_reward_scale = -0.05 joint_torque_reward_scale = -2.5e-5 joint_accel_reward_scale = -2.5e-7 action_rate_reward_scale = -0.01 feet_air_time_reward_scale = 0.5 undersired_contact_reward_scale = -1.0 flat_orientation_reward_scale = -5.0 @configclass class AnymalCRoughEnvCfg(AnymalCFlatEnvCfg): # env num_observations = 235 terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="generator", terrain_generator=ROUGH_TERRAINS_CFG, max_init_terrain_level=9, collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), visual_material=sim_utils.MdlFileCfg( mdl_path="{NVIDIA_NUCLEUS_DIR}/Materials/Base/Architecture/Shingles_01.mdl", project_uvw=True, ), debug_vis=False, ) # we add a height scanner for perceptive locomotion height_scanner = RayCasterCfg( prim_path="/World/envs/env_.*/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 20.0)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=False, mesh_prim_paths=["/World/ground"], ) # reward scales (override from flat config) flat_orientation_reward_scale = 0.0 class AnymalCEnv(DirectRLEnv): cfg: AnymalCFlatEnvCfg | AnymalCRoughEnvCfg def __init__(self, cfg: AnymalCFlatEnvCfg | AnymalCRoughEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) # Joint position command (deviation from default joint positions) self._actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) self._previous_actions = torch.zeros(self.num_envs, self.cfg.num_actions, device=self.device) # X/Y linear velocity and yaw angular velocity commands self._commands = torch.zeros(self.num_envs, 3, device=self.device) # Logging self._episode_sums = { key: torch.zeros(self.num_envs, dtype=torch.float, device=self.device) for key in [ "track_lin_vel_xy_exp", "track_ang_vel_z_exp", "lin_vel_z_l2", "ang_vel_xy_l2", "dof_torques_l2", "dof_acc_l2", "action_rate_l2", "feet_air_time", "undesired_contacts", "flat_orientation_l2", ] } # Get specific body indices self._base_id, _ = self._contact_sensor.find_bodies("base") self._feet_ids, _ = self._contact_sensor.find_bodies(".*FOOT") self._underisred_contact_body_ids, _ = self._contact_sensor.find_bodies(".*THIGH") # Randomize robot friction env_ids = self._robot._ALL_INDICES mat_props = self._robot.root_physx_view.get_material_properties() mat_props[:, :, :2].uniform_(0.6, 0.8) self._robot.root_physx_view.set_material_properties(mat_props, env_ids.cpu()) # Randomize base mass base_id, _ = self._robot.find_bodies("base") masses = self._robot.root_physx_view.get_masses() masses[:, base_id] += torch.zeros_like(masses[:, base_id]).uniform_(-5.0, 5.0) self._robot.root_physx_view.set_masses(masses, env_ids.cpu()) def _setup_scene(self): self._robot = Articulation(self.cfg.robot) self.scene.articulations["robot"] = self._robot self._contact_sensor = ContactSensor(self.cfg.contact_sensor) self.scene.sensors["contact_sensor"] = self._contact_sensor if isinstance(self.cfg, AnymalCRoughEnvCfg): # we add a height scanner for perceptive locomotion self._height_scanner = RayCaster(self.cfg.height_scanner) self.scene.sensors["height_scanner"] = self._height_scanner self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) # clone, filter, and replicate self.scene.clone_environments(copy_from_source=False) self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) # add lights light_cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75)) light_cfg.func("/World/Light", light_cfg) def _pre_physics_step(self, actions: torch.Tensor): self._actions = actions.clone() self._processed_actions = self.cfg.action_scale * self._actions + self._robot.data.default_joint_pos def _apply_action(self): self._robot.set_joint_position_target(self._processed_actions) def _get_observations(self) -> dict: self._previous_actions = self._actions.clone() height_data = None if isinstance(self.cfg, AnymalCRoughEnvCfg): height_data = ( self._height_scanner.data.pos_w[:, 2].unsqueeze(1) - self._height_scanner.data.ray_hits_w[..., 2] - 0.5 ).clip(-1.0, 1.0) obs = torch.cat( [ tensor for tensor in ( self._robot.data.root_lin_vel_b, self._robot.data.root_ang_vel_b, self._robot.data.projected_gravity_b, self._commands, self._robot.data.joint_pos - self._robot.data.default_joint_pos, self._robot.data.joint_vel, height_data, self._actions, ) if tensor is not None ], dim=-1, ) observations = {"policy": obs} return observations def _get_rewards(self) -> torch.Tensor: # linear velocity tracking lin_vel_error = torch.sum(torch.square(self._commands[:, :2] - self._robot.data.root_lin_vel_b[:, :2]), dim=1) lin_vel_error_mapped = torch.exp(-lin_vel_error / 0.25) # yaw rate tracking yaw_rate_error = torch.square(self._commands[:, 2] - self._robot.data.root_ang_vel_b[:, 2]) yaw_rate_error_mapped = torch.exp(-yaw_rate_error / 0.25) # z velocity tracking z_vel_error = torch.square(self._robot.data.root_lin_vel_b[:, 2]) # angular velocity x/y ang_vel_error = torch.sum(torch.square(self._robot.data.root_ang_vel_b[:, :2]), dim=1) # joint torques joint_torques = torch.sum(torch.square(self._robot.data.applied_torque), dim=1) # joint acceleration joint_accel = torch.sum(torch.square(self._robot.data.joint_acc), dim=1) # action rate action_rate = torch.sum(torch.square(self._actions - self._previous_actions), dim=1) # feet air time first_contact = self._contact_sensor.compute_first_contact(self.step_dt)[:, self._feet_ids] last_air_time = self._contact_sensor.data.last_air_time[:, self._feet_ids] air_time = torch.sum((last_air_time - 0.5) * first_contact, dim=1) * ( torch.norm(self._commands[:, :2], dim=1) > 0.1 ) # undersired contacts net_contact_forces = self._contact_sensor.data.net_forces_w_history is_contact = ( torch.max(torch.norm(net_contact_forces[:, :, self._underisred_contact_body_ids], dim=-1), dim=1)[0] > 1.0 ) contacts = torch.sum(is_contact, dim=1) # flat orientation flat_orientation = torch.sum(torch.square(self._robot.data.projected_gravity_b[:, :2]), dim=1) rewards = { "track_lin_vel_xy_exp": lin_vel_error_mapped * self.cfg.lin_vel_reward_scale * self.step_dt, "track_ang_vel_z_exp": yaw_rate_error_mapped * self.cfg.yaw_rate_reward_scale * self.step_dt, "lin_vel_z_l2": z_vel_error * self.cfg.z_vel_reward_scale * self.step_dt, "ang_vel_xy_l2": ang_vel_error * self.cfg.ang_vel_reward_scale * self.step_dt, "dof_torques_l2": joint_torques * self.cfg.joint_torque_reward_scale * self.step_dt, "dof_acc_l2": joint_accel * self.cfg.joint_accel_reward_scale * self.step_dt, "action_rate_l2": action_rate * self.cfg.action_rate_reward_scale * self.step_dt, "feet_air_time": air_time * self.cfg.feet_air_time_reward_scale * self.step_dt, "undesired_contacts": contacts * self.cfg.undersired_contact_reward_scale * self.step_dt, "flat_orientation_l2": flat_orientation * self.cfg.flat_orientation_reward_scale * self.step_dt, } reward = torch.sum(torch.stack(list(rewards.values())), dim=0) # Logging for key, value in rewards.items(): self._episode_sums[key] += value return reward def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: time_out = self.episode_length_buf >= self.max_episode_length - 1 net_contact_forces = self._contact_sensor.data.net_forces_w_history died = torch.any(torch.max(torch.norm(net_contact_forces[:, :, self._base_id], dim=-1), dim=1)[0] > 1.0, dim=1) return died, time_out def _reset_idx(self, env_ids: torch.Tensor | None): if env_ids is None or len(env_ids) == self.num_envs: env_ids = self._robot._ALL_INDICES self._robot.reset(env_ids) super()._reset_idx(env_ids) if len(env_ids) == self.num_envs: # Spread out the resets to avoid spikes in training when many environments reset at a similar time self.episode_length_buf[:] = torch.randint_like(self.episode_length_buf, high=int(self.max_episode_length)) self._actions[env_ids] = 0.0 self._previous_actions[env_ids] = 0.0 # Sample new commands self._commands[env_ids] = torch.zeros_like(self._commands[env_ids]).uniform_(-1.0, 1.0) # Reset robot state joint_pos = self._robot.data.default_joint_pos[env_ids] joint_vel = self._robot.data.default_joint_vel[env_ids] default_root_state = self._robot.data.default_root_state[env_ids] default_root_state[:, :3] += self._terrain.env_origins[env_ids] self._robot.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self._robot.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) self._robot.write_joint_state_to_sim(joint_pos, joint_vel, None, env_ids) # Logging extras = dict() for key in self._episode_sums.keys(): episodic_sum_avg = torch.mean(self._episode_sums[key][env_ids]) extras["Episode Reward/" + key] = episodic_sum_avg / self.max_episode_length_s self._episode_sums[key][env_ids] = 0.0 self.extras["log"] = dict() self.extras["log"].update(extras) extras = dict() extras["Episode Termination/base_contact"] = torch.count_nonzero(self.reset_terminated[env_ids]).item() extras["Episode Termination/time_out"] = torch.count_nonzero(self.reset_time_outs[env_ids]).item() self.extras["log"].update(extras)
13,576
Python
42.938511
119
0.617045
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/inhand_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.lab.envs import ManagerBasedRLEnvCfg from omni.isaac.lab.managers import EventTermCfg as EventTerm from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim.simulation_cfg import PhysxCfg, SimulationCfg from omni.isaac.lab.sim.spawners.materials.physics_materials_cfg import RigidBodyMaterialCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.lab.utils.noise import AdditiveGaussianNoiseCfg as Gnoise import omni.isaac.lab_tasks.manager_based.manipulation.inhand.mdp as mdp ## # Scene definition ## @configclass class InHandObjectSceneCfg(InteractiveSceneCfg): """Configuration for a scene with an object and a dexterous hand.""" # robots robot: ArticulationCfg = MISSING # objects object: RigidObjectCfg = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/object", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( kinematic_enabled=False, disable_gravity=False, enable_gyroscopic_forces=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0025, max_depenetration_velocity=1000.0, ), mass_props=sim_utils.MassPropertiesCfg(density=400.0), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, -0.19, 0.56), rot=(1.0, 0.0, 0.0, 0.0)), ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.95, 0.95, 0.95), intensity=1000.0), ) dome_light = AssetBaseCfg( prim_path="/World/domeLight", spawn=sim_utils.DomeLightCfg(color=(0.02, 0.02, 0.02), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" object_pose = mdp.InHandReOrientationCommandCfg( asset_name="object", init_pos_offset=(0.0, 0.0, -0.04), update_goal_on_success=True, orientation_success_threshold=0.1, make_quat_unique=False, marker_pos_offset=(-0.2, -0.06, 0.08), debug_vis=True, ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.EMAJointPositionToLimitsActionCfg( asset_name="robot", joint_names=[".*"], alpha=0.95, rescale_to_limits=True, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class KinematicObsGroupCfg(ObsGroup): """Observations with full-kinematic state information. This does not include acceleration or force information. """ # observation terms (order preserved) # -- robot terms joint_pos = ObsTerm(func=mdp.joint_pos_limit_normalized, noise=Gnoise(std=0.005)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, scale=0.2, noise=Gnoise(std=0.01)) # -- object terms object_pos = ObsTerm( func=mdp.root_pos_w, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")} ) object_quat = ObsTerm( func=mdp.root_quat_w, params={"asset_cfg": SceneEntityCfg("object"), "make_quat_unique": False} ) object_lin_vel = ObsTerm( func=mdp.root_lin_vel_w, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")} ) object_ang_vel = ObsTerm( func=mdp.root_ang_vel_w, scale=0.2, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")}, ) # -- command terms goal_pose = ObsTerm(func=mdp.generated_commands, params={"command_name": "object_pose"}) goal_quat_diff = ObsTerm( func=mdp.goal_quat_diff, params={"asset_cfg": SceneEntityCfg("object"), "command_name": "object_pose", "make_quat_unique": False}, ) # -- action terms last_action = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True @configclass class NoVelocityKinematicObsGroupCfg(KinematicObsGroupCfg): """Observations with partial kinematic state information. In contrast to the full-kinematic state group, this group does not include velocity information about the robot joints and the object root frame. This is useful for tasks where velocity information is not available or has a lot of noise. """ def __post_init__(self): # call parent post init super().__post_init__() # set unused terms to None self.joint_vel = None self.object_lin_vel = None self.object_ang_vel = None # observation groups policy: KinematicObsGroupCfg = KinematicObsGroupCfg() @configclass class EventCfg: """Configuration for randomization.""" # startup # -- robot robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (0.7, 1.3), "restitution_range": (0.0, 0.0), "num_buckets": 250, }, ) robot_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "mass_distribution_params": (0.95, 1.05), "operation": "scale", }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_distribution_params": (0.3, 3.0), # default: 3.0 "damping_distribution_params": (0.75, 1.5), # default: 0.1 "operation": "scale", "distribution": "log_uniform", }, ) # -- object object_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("object", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (0.7, 1.3), "restitution_range": (0.0, 0.0), "num_buckets": 250, }, ) object_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("object"), "mass_distribution_params": (0.4, 1.6), "operation": "scale", }, ) # reset reset_object = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": [-0.01, 0.01], "y": [-0.01, 0.01], "z": [-0.01, 0.01]}, "velocity_range": {}, "asset_cfg": SceneEntityCfg("object", body_names=".*"), }, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_within_limits_range, mode="reset", params={ "position_range": {".*": [0.2, 0.2]}, "velocity_range": {".*": [0.0, 0.0]}, "use_default_offset": True, "operation": "scale", }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task # track_pos_l2 = RewTerm( # func=mdp.track_pos_l2, # weight=-10.0, # params={"object_cfg": SceneEntityCfg("object"), "command_name": "object_pose"}, # ) track_orientation_inv_l2 = RewTerm( func=mdp.track_orientation_inv_l2, weight=1.0, params={"object_cfg": SceneEntityCfg("object"), "rot_eps": 0.1, "command_name": "object_pose"}, ) success_bonus = RewTerm( func=mdp.success_bonus, weight=250.0, params={"object_cfg": SceneEntityCfg("object"), "command_name": "object_pose"}, ) # -- penalties joint_vel_l2 = RewTerm(func=mdp.joint_vel_l2, weight=-2.5e-5) action_l2 = RewTerm(func=mdp.action_l2, weight=-0.0001) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) # -- optional penalties (these are disabled by default) # object_away_penalty = RewTerm( # func=mdp.is_terminated_term, # weight=-0.0, # params={"term_keys": "object_out_of_reach"}, # ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) max_consecutive_success = DoneTerm( func=mdp.max_consecutive_success, params={"num_success": 50, "command_name": "object_pose"} ) object_out_of_reach = DoneTerm(func=mdp.object_away_from_robot, params={"threshold": 0.3}) # object_out_of_reach = DoneTerm( # func=mdp.object_away_from_goal, params={"threshold": 0.24, "command_name": "object_pose"} # ) ## # Environment configuration ## @configclass class InHandObjectEnvCfg(ManagerBasedRLEnvCfg): """Configuration for the in hand reorientation environment.""" # Scene settings scene: InHandObjectSceneCfg = InHandObjectSceneCfg(num_envs=8192, env_spacing=0.6) # Simulation settings sim: SimulationCfg = SimulationCfg( physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, gpu_max_rigid_contact_count=2**20, gpu_max_rigid_patch_count=2**23, ), ) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 1.0 / 120.0 # change viewer settings self.viewer.eye = (2.0, 2.0, 2.0)
11,188
Python
31.33815
117
0.610207
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """In-hand object reorientation environment. These environments are based on the `dexterous cube manipulation`_ environments provided in IsaacGymEnvs repository from NVIDIA. However, they contain certain modifications and additional features. .. _dexterous cube manipulation: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/isaacgymenvs/tasks/allegro_hand.py """
504
Python
32.666664
126
0.797619
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/rewards.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.assets import RigidObject from omni.isaac.lab.envs import ManagerBasedRLEnv from omni.isaac.lab.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def success_bonus( env: ManagerBasedRLEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object") ) -> torch.Tensor: """Bonus reward for successfully reaching the goal. The object is considered to have reached the goal when the object orientation is within the threshold. The reward is 1.0 if the object has reached the goal, otherwise 0.0. Args: env: The environment object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal orientation goal_quat_w = command_term.command[:, 3:7] # obtain the threshold for the orientation error threshold = command_term.cfg.orientation_success_threshold # calculate the orientation error dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w) return dtheta <= threshold def track_pos_l2( env: ManagerBasedRLEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object") ) -> torch.Tensor: """Reward for tracking the object position using the L2 norm. The reward is the distance between the object position and the goal position. Args: env: The environment object. command_term: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal position goal_pos_e = command_term.command[:, 0:3] # obtain the object position in the environment frame object_pos_e = asset.data.root_pos_w - env.scene.env_origins return torch.norm(goal_pos_e - object_pos_e, p=2, dim=-1) def track_orientation_inv_l2( env: ManagerBasedRLEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object"), rot_eps: float = 1e-3, ) -> torch.Tensor: """Reward for tracking the object orientation using the inverse of the orientation error. The reward is the inverse of the orientation error between the object orientation and the goal orientation. Args: env: The environment object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". rot_eps: The threshold for the orientation error. Default is 1e-3. """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal orientation goal_quat_w = command_term.command[:, 3:7] # calculate the orientation error dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w) return 1.0 / (dtheta + rot_eps)
3,660
Python
36.742268
111
0.721858
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/events.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" from __future__ import annotations import torch from typing import TYPE_CHECKING, Literal from omni.isaac.lab.assets import Articulation from omni.isaac.lab.managers import EventTermCfg, ManagerTermBase, SceneEntityCfg from omni.isaac.lab.utils.math import sample_uniform if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedEnv class reset_joints_within_limits_range(ManagerTermBase): """Reset an articulation's joints to a random position in the given limit ranges. This function samples random values for the joint position and velocities from the given limit ranges. The values are then set into the physics simulation. The parameters to the function are: * :attr:`position_range` - a dictionary of position ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`velocity_range` - a dictionary of velocity ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`use_default_offset` - a boolean flag to indicate if the ranges are offset by the default joint state. Defaults to False. * :attr:`asset_cfg` - the configuration of the asset to reset. Defaults to the entity named "robot" in the scene. * :attr:`operation` - whether the ranges are scaled values of the joint limits, or absolute limits. Defaults to "abs". The dictionary values are a tuple of the form ``(a, b)``. Based on the operation, these values are interpreted differently: * If the operation is "abs", the values are the absolute minimum and maximum values for the joint, i.e. the joint range becomes ``[a, b]``. * If the operation is "scale", the values are the scaling factors for the joint limits, i.e. the joint range becomes ``[a * min_joint_limit, b * max_joint_limit]``. If the ``a`` or the ``b`` value is ``None``, the joint limits are used instead. Note: If the dictionary does not contain a key, the joint position or joint velocity is set to the default value for that joint. """ def __init__(self, cfg: EventTermCfg, env: ManagerBasedEnv): # initialize the base class super().__init__(cfg, env) # check if the cfg has the required parameters if "position_range" not in cfg.params or "velocity_range" not in cfg.params: raise ValueError( "The term 'reset_joints_within_range' requires parameters: 'position_range' and 'velocity_range'." f" Received: {list(cfg.params.keys())}." ) # parse the parameters asset_cfg: SceneEntityCfg = cfg.params.get("asset_cfg", SceneEntityCfg("robot")) use_default_offset = cfg.params.get("use_default_offset", False) operation = cfg.params.get("operation", "abs") # check if the operation is valid if operation not in ["abs", "scale"]: raise ValueError( f"For event 'reset_joints_within_limits_range', unknown operation: '{operation}'." " Please use 'abs' or 'scale'." ) # extract the used quantities (to enable type-hinting) self._asset: Articulation = env.scene[asset_cfg.name] default_joint_pos = self._asset.data.default_joint_pos[0] default_joint_vel = self._asset.data.default_joint_vel[0] # create buffers to store the joint position range self._pos_ranges = self._asset.data.soft_joint_pos_limits[0].clone() # parse joint position ranges pos_joint_ids = [] for joint_name, joint_range in cfg.params["position_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] pos_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if operation == "abs": if joint_range[0] is not None: self._pos_ranges[joint_ids, 0] = joint_range[0] if joint_range[1] is not None: self._pos_ranges[joint_ids, 1] = joint_range[1] elif operation == "scale": if joint_range[0] is not None: self._pos_ranges[joint_ids, 0] *= joint_range[0] if joint_range[1] is not None: self._pos_ranges[joint_ids, 1] *= joint_range[1] else: raise ValueError( f"Unknown operation: '{operation}' for joint position ranges. Please use 'abs' or 'scale'." ) # add the default offset if use_default_offset: self._pos_ranges[joint_ids] += default_joint_pos[joint_ids].unsqueeze(1) # store the joint pos ids (used later to sample the joint positions) self._pos_joint_ids = torch.tensor(pos_joint_ids, device=self._pos_ranges.device) self._pos_ranges = self._pos_ranges[self._pos_joint_ids] # create buffers to store the joint velocity range self._vel_ranges = torch.stack( [-self._asset.data.soft_joint_vel_limits[0], self._asset.data.soft_joint_vel_limits[0]], dim=1 ) # parse joint velocity ranges vel_joint_ids = [] for joint_name, joint_range in cfg.params["velocity_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] vel_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if operation == "abs": if joint_range[0] is not None: self._vel_ranges[joint_ids, 0] = joint_range[0] if joint_range[1] is not None: self._vel_ranges[joint_ids, 1] = joint_range[1] elif operation == "scale": if joint_range[0] is not None: self._vel_ranges[joint_ids, 0] = joint_range[0] * self._vel_ranges[joint_ids, 0] if joint_range[1] is not None: self._vel_ranges[joint_ids, 1] = joint_range[1] * self._vel_ranges[joint_ids, 1] else: raise ValueError( f"Unknown operation: '{operation}' for joint velocity ranges. Please use 'abs' or 'scale'." ) # add the default offset if use_default_offset: self._vel_ranges[joint_ids] += default_joint_vel[joint_ids].unsqueeze(1) # store the joint vel ids (used later to sample the joint positions) self._vel_joint_ids = torch.tensor(vel_joint_ids, device=self._vel_ranges.device) self._vel_ranges = self._vel_ranges[self._vel_joint_ids] def __call__( self, env: ManagerBasedEnv, env_ids: torch.Tensor, position_range: dict[str, tuple[float | None, float | None]], velocity_range: dict[str, tuple[float | None, float | None]], use_default_offset: bool = False, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), operation: Literal["abs", "scale"] = "abs", ): # get default joint state joint_pos = self._asset.data.default_joint_pos[env_ids].clone() joint_vel = self._asset.data.default_joint_vel[env_ids].clone() # sample random joint positions for each joint if len(self._pos_joint_ids) > 0: joint_pos_shape = (len(env_ids), len(self._pos_joint_ids)) joint_pos[:, self._pos_joint_ids] = sample_uniform( self._pos_ranges[:, 0], self._pos_ranges[:, 1], joint_pos_shape, device=joint_pos.device ) # clip the joint positions to the joint limits joint_pos_limits = self._asset.data.soft_joint_pos_limits[0, self._pos_joint_ids] joint_pos = joint_pos.clamp(joint_pos_limits[:, 0], joint_pos_limits[:, 1]) # sample random joint velocities for each joint if len(self._vel_joint_ids) > 0: joint_vel_shape = (len(env_ids), len(self._vel_joint_ids)) joint_vel[:, self._vel_joint_ids] = sample_uniform( self._vel_ranges[:, 0], self._vel_ranges[:, 1], joint_vel_shape, device=joint_vel.device ) # clip the joint velocities to the joint limits joint_vel_limits = self._asset.data.soft_joint_vel_limits[0, self._vel_joint_ids] joint_vel = joint_vel.clamp(-joint_vel_limits, joint_vel_limits) # set into the physics simulation self._asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids)
8,840
Python
46.789189
118
0.61448
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/terminations.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING from omni.isaac.lab.envs import ManagerBasedRLEnv from omni.isaac.lab.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def max_consecutive_success(env: ManagerBasedRLEnv, num_success: int, command_name: str) -> torch.Tensor: """Check if the task has been completed consecutively for a certain number of times. Args: env: The environment object. num_success: Threshold for the number of consecutive successes required. command_name: The command term to be used for extracting the goal. """ command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) return command_term.metrics["consecutive_success"] >= num_success def object_away_from_goal( env: ManagerBasedRLEnv, threshold: float, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Check if object has gone far from the goal. The object is considered to be out-of-reach if the distance between the goal and the object is greater than the threshold. Args: env: The environment object. threshold: The threshold for the distance between the robot and the object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) asset = env.scene[object_cfg.name] # object pos asset_pos_e = asset.data.root_pos_w - env.scene.env_origins goal_pos_e = command_term.command[:, :3] return torch.norm(asset_pos_e - goal_pos_e, p=2, dim=1) > threshold def object_away_from_robot( env: ManagerBasedRLEnv, threshold: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Check if object has gone far from the robot. The object is considered to be out-of-reach if the distance between the robot and the object is greater than the threshold. Args: env: The environment object. threshold: The threshold for the distance between the robot and the object. asset_cfg: The configuration for the robot entity. Default is "robot". object_cfg: The configuration for the object entity. Default is "object". """ # extract useful elements robot = env.scene[asset_cfg.name] object = env.scene[object_cfg.name] # compute distance dist = torch.norm(robot.data.root_pos_w - object.data.root_pos_w, dim=1) return dist > threshold
2,952
Python
34.154761
107
0.711721
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/observations.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.assets import RigidObject from omni.isaac.lab.envs import ManagerBasedRLEnv from omni.isaac.lab.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def goal_quat_diff( env: ManagerBasedRLEnv, asset_cfg: SceneEntityCfg, command_name: str, make_quat_unique: bool ) -> torch.Tensor: """Goal orientation relative to the asset's root frame. The quaternion is represented as (w, x, y, z). The real part is always positive. """ # extract useful elements asset: RigidObject = env.scene[asset_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the orientations goal_quat_w = command_term.command[:, 3:7] asset_quat_w = asset.data.root_quat_w # compute quaternion difference quat = math_utils.quat_mul(asset_quat_w, math_utils.quat_conjugate(goal_quat_w)) # make sure the quaternion real-part is always positive return math_utils.quat_unique(quat) if make_quat_unique else quat
1,353
Python
33.717948
96
0.747228
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/commands/commands_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.managers import CommandTermCfg from omni.isaac.lab.markers import VisualizationMarkersCfg from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAAC_NUCLEUS_DIR from .orientation_command import InHandReOrientationCommand @configclass class InHandReOrientationCommandCfg(CommandTermCfg): """Configuration for the uniform 3D orientation command term. Please refer to the :class:`InHandReOrientationCommand` class for more details. """ class_type: type = InHandReOrientationCommand resampling_time_range: tuple[float, float] = (1e6, 1e6) # no resampling based on time asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" init_pos_offset: tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset of the asset from its default position. This is used to account for the offset typically present in the object's default position so that the object is spawned at a height above the robot's palm. When the position command is generated, the object's default position is used as the reference and the offset specified is added to it to get the desired position of the object. """ make_quat_unique: bool = MISSING """Whether to make the quaternion unique or not. If True, the quaternion is made unique by ensuring the real part is positive. """ orientation_success_threshold: float = MISSING """Threshold for the orientation error to consider the goal orientation to be reached.""" update_goal_on_success: bool = MISSING """Whether to update the goal orientation when the goal orientation is reached.""" marker_pos_offset: tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset of the marker from the object's desired position. This is useful to position the marker at a height above the object's desired position. Otherwise, the marker may occlude the object in the visualization. """ visualizer_cfg: VisualizationMarkersCfg = VisualizationMarkersCfg( prim_path="/Visuals/Command/goal_marker", markers={ "goal": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(1.0, 1.0, 1.0), ), }, ) """Configuration for the visualization markers. Default is a cube marker."""
2,649
Python
37.970588
97
0.717252
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/mdp/commands/orientation_command.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for 3D orientation goals for objects.""" from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.assets import RigidObject from omni.isaac.lab.managers import CommandTerm from omni.isaac.lab.markers.visualization_markers import VisualizationMarkers if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv from .commands_cfg import InHandReOrientationCommandCfg class InHandReOrientationCommand(CommandTerm): """Command term that generates 3D pose commands for in-hand manipulation task. This command term generates 3D orientation commands for the object. The orientation commands are sampled uniformly from the 3D orientation space. The position commands are the default root state of the object. The constant position commands is to encourage that the object does not move during the task. For instance, the object should not fall off the robot's palm. Unlike typical command terms, where the goals are resampled based on time, this command term does not resample the goals based on time. Instead, the goals are resampled when the object reaches the goal orientation. The goal orientation is considered to be reached when the orientation error is below a certain threshold. """ cfg: InHandReOrientationCommandCfg """Configuration for the command term.""" def __init__(self, cfg: InHandReOrientationCommandCfg, env: ManagerBasedRLEnv): """Initialize the command term class. Args: cfg: The configuration parameters for the command term. env: The environment object. """ # initialize the base class super().__init__(cfg, env) # object self.object: RigidObject = env.scene[cfg.asset_name] # create buffers to store the command # -- command: (x, y, z) init_pos_offset = torch.tensor(cfg.init_pos_offset, dtype=torch.float, device=self.device) self.pos_command_e = self.object.data.default_root_state[:, :3] + init_pos_offset self.pos_command_w = self.pos_command_e + self._env.scene.env_origins # -- orientation: (w, x, y, z) self.quat_command_w = torch.zeros(self.num_envs, 4, device=self.device) self.quat_command_w[:, 0] = 1.0 # set the scalar component to 1.0 # -- unit vectors self._X_UNIT_VEC = torch.tensor([1.0, 0, 0], device=self.device).repeat((self.num_envs, 1)) self._Y_UNIT_VEC = torch.tensor([0, 1.0, 0], device=self.device).repeat((self.num_envs, 1)) self._Z_UNIT_VEC = torch.tensor([0, 0, 1.0], device=self.device).repeat((self.num_envs, 1)) # -- metrics self.metrics["orientation_error"] = torch.zeros(self.num_envs, device=self.device) self.metrics["position_error"] = torch.zeros(self.num_envs, device=self.device) self.metrics["consecutive_success"] = torch.zeros(self.num_envs, device=self.device) def __str__(self) -> str: msg = "InHandManipulationCommandGenerator:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired goal pose in the environment frame. Shape is (num_envs, 7).""" return torch.cat((self.pos_command_e, self.quat_command_w), dim=-1) """ Implementation specific functions. """ def _update_metrics(self): # logs data # -- compute the orientation error self.metrics["orientation_error"] = math_utils.quat_error_magnitude( self.object.data.root_quat_w, self.quat_command_w ) # -- compute the position error self.metrics["position_error"] = torch.norm(self.object.data.root_pos_w - self.pos_command_w, dim=1) # -- compute the number of consecutive successes successes = self.metrics["orientation_error"] < self.cfg.orientation_success_threshold self.metrics["consecutive_success"] += successes.float() def _resample_command(self, env_ids: Sequence[int]): # sample new orientation targets rand_floats = 2.0 * torch.rand((len(env_ids), 2), device=self.device) - 1.0 # rotate randomly about x-axis and then y-axis quat = math_utils.quat_mul( math_utils.quat_from_angle_axis(rand_floats[:, 0] * torch.pi, self._X_UNIT_VEC[env_ids]), math_utils.quat_from_angle_axis(rand_floats[:, 1] * torch.pi, self._Y_UNIT_VEC[env_ids]), ) # make sure the quaternion real-part is always positive self.quat_command_w[env_ids] = math_utils.quat_unique(quat) if self.cfg.make_quat_unique else quat def _update_command(self): # update the command if goal is reached if self.cfg.update_goal_on_success: # compute the goal resets goal_resets = self.metrics["orientation_error"] < self.cfg.orientation_success_threshold goal_reset_ids = goal_resets.nonzero(as_tuple=False).squeeze(-1) # resample the goals self._resample(goal_reset_ids) def _set_debug_vis_impl(self, debug_vis: TYPE_CHECKING): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first time if not hasattr(self, "goal_marker_visualizer"): self.goal_marker_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg) # set visibility self.goal_marker_visualizer.set_visibility(True) else: if hasattr(self, "goal_marker_visualizer"): self.goal_marker_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # add an offset to the marker position to visualize the goal marker_pos = self.pos_command_w + torch.tensor(self.cfg.marker_pos_offset, device=self.device) marker_quat = self.quat_command_w # visualize the goal marker self.goal_marker_visualizer.visualize(translations=marker_pos, orientations=marker_quat)
6,403
Python
43.165517
108
0.668437
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/config/allegro_hand/allegro_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.utils import configclass import omni.isaac.lab_tasks.manager_based.manipulation.inhand.inhand_env_cfg as inhand_env_cfg ## # Pre-defined configs ## from omni.isaac.lab_assets import ALLEGRO_HAND_CFG # isort: skip @configclass class AllegroCubeEnvCfg(inhand_env_cfg.InHandObjectEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to allegro hand self.scene.robot = ALLEGRO_HAND_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AllegroCubeEnvCfg_PLAY(AllegroCubeEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 # disable randomization for play self.observations.policy.enable_corruption = False # remove termination due to timeouts self.terminations.time_out = None ## # Environment configuration with no velocity observations. ## @configclass class AllegroCubeNoVelObsEnvCfg(AllegroCubeEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch observation group to no velocity group self.observations.policy = inhand_env_cfg.ObservationsCfg.NoVelocityKinematicObsGroupCfg() @configclass class AllegroCubeNoVelObsEnvCfg_PLAY(AllegroCubeNoVelObsEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 # disable randomization for play self.observations.policy.enable_corruption = False # remove termination due to timeouts self.terminations.time_out = None
1,882
Python
27.96923
98
0.684378
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/config/allegro_hand/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, allegro_env_cfg ## # Register Gym environments. ## ## # Full kinematic state observations. ## gym.register( id="Isaac-Repose-Cube-Allegro-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubePPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Repose-Cube-Allegro-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubePPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, ) ## # Kinematic state observations without velocity information. ## gym.register( id="Isaac-Repose-Cube-Allegro-NoVelObs-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeNoVelObsEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubeNoVelObsPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Repose-Cube-Allegro-NoVelObs-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeNoVelObsEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubeNoVelObsPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, )
2,240
Python
31.47826
84
0.671429
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/cabinet/config/franka/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, ik_abs_env_cfg, ik_rel_env_cfg, joint_pos_env_cfg ## # Register Gym environments. ## ## # Joint Position Control ## gym.register( id="Isaac-Open-Drawer-Franka-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCabinetEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CabinetPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", }, disable_env_checker=True, ) gym.register( id="Isaac-Open-Drawer-Franka-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", kwargs={ "env_cfg_entry_point": joint_pos_env_cfg.FrankaCabinetEnvCfg_PLAY, }, disable_env_checker=True, ) ## # Inverse Kinematics - Absolute Pose Control ## gym.register( id="Isaac-Open-Drawer-Franka-IK-Abs-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", kwargs={ "env_cfg_entry_point": ik_abs_env_cfg.FrankaCabinetEnvCfg, }, disable_env_checker=True, ) ## # Inverse Kinematics - Relative Pose Control ## gym.register( id="Isaac-Open-Drawer-Franka-IK-Rel-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", kwargs={ "env_cfg_entry_point": ik_rel_env_cfg.FrankaCabinetEnvCfg, }, disable_env_checker=True, )
1,568
Python
23.138461
79
0.672194
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/mdp/rewards.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.sensors import ContactSensor from omni.isaac.lab.utils.math import quat_rotate_inverse, yaw_quat if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv def feet_air_time( env: ManagerBasedRLEnv, command_name: str, sensor_cfg: SceneEntityCfg, threshold: float ) -> torch.Tensor: """Reward long steps taken by the feet using L2-kernel. This function rewards the agent for taking steps that are longer than a threshold. This helps ensure that the robot lifts its feet off the ground and takes steps. The reward is computed as the sum of the time for which the feet are in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ # extract the used quantities (to enable type-hinting) contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward first_contact = contact_sensor.compute_first_contact(env.step_dt)[:, sensor_cfg.body_ids] last_air_time = contact_sensor.data.last_air_time[:, sensor_cfg.body_ids] reward = torch.sum((last_air_time - threshold) * first_contact, dim=1) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_air_time_positive_biped(env, command_name: str, threshold: float, sensor_cfg: SceneEntityCfg) -> torch.Tensor: """Reward long steps taken by the feet for bipeds. This function rewards the agent for taking steps up to a specified threshold and also keep one foot at a time in the air. If the commands are small (i.e. the agent is not supposed to take a step), then the reward is zero. """ contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] # compute the reward air_time = contact_sensor.data.current_air_time[:, sensor_cfg.body_ids] contact_time = contact_sensor.data.current_contact_time[:, sensor_cfg.body_ids] in_contact = contact_time > 0.0 in_mode_time = torch.where(in_contact, contact_time, air_time) single_stance = torch.sum(in_contact.int(), dim=1) == 1 reward = torch.min(torch.where(single_stance.unsqueeze(-1), in_mode_time, 0.0), dim=1)[0] reward = torch.clamp(reward, max=threshold) # no reward for zero command reward *= torch.norm(env.command_manager.get_command(command_name)[:, :2], dim=1) > 0.1 return reward def feet_slide(env, sensor_cfg: SceneEntityCfg, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: # Penalize feet sliding contact_sensor: ContactSensor = env.scene.sensors[sensor_cfg.name] contacts = contact_sensor.data.net_forces_w_history[:, :, sensor_cfg.body_ids, :].norm(dim=-1).max(dim=1)[0] > 1.0 asset = env.scene[asset_cfg.name] body_vel = asset.data.body_lin_vel_w[:, asset_cfg.body_ids, :2] reward = torch.sum(body_vel.norm(dim=-1) * contacts, dim=1) return reward def track_lin_vel_xy_yaw_frame_exp( env, std: float, command_name: str, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward tracking of linear velocity commands (xy axes) in the gravity aligned robot frame using exponential kernel.""" # extract the used quantities (to enable type-hinting) asset = env.scene[asset_cfg.name] vel_yaw = quat_rotate_inverse(yaw_quat(asset.data.root_quat_w), asset.data.root_lin_vel_w[:, :3]) lin_vel_error = torch.sum( torch.square(env.command_manager.get_command(command_name)[:, :2] - vel_yaw[:, :2]), dim=1 ) return torch.exp(-lin_vel_error / std**2) def track_ang_vel_z_world_exp( env, command_name: str, std: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward tracking of angular velocity commands (yaw) in world frame using exponential kernel.""" # extract the used quantities (to enable type-hinting) asset = env.scene[asset_cfg.name] ang_vel_error = torch.square(env.command_manager.get_command(command_name)[:, 2] - asset.data.root_ang_vel_w[:, 2]) return torch.exp(-ang_vel_error / std**2)
4,373
Python
45.531914
124
0.70638
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go1/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-Go1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo1RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,836
Python
31.22807
80
0.679739
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/h1/rough_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.utils import configclass import omni.isaac.lab_tasks.manager_based.locomotion.velocity.mdp as mdp from omni.isaac.lab_tasks.manager_based.locomotion.velocity.velocity_env_cfg import ( LocomotionVelocityRoughEnvCfg, RewardsCfg, ) ## # Pre-defined configs ## from omni.isaac.lab_assets import H1_MINIMAL_CFG # isort: skip @configclass class H1Rewards(RewardsCfg): termination_penalty = RewTerm(func=mdp.is_terminated, weight=-200.0) lin_vel_z_l2 = None track_lin_vel_xy_exp = RewTerm( func=mdp.track_lin_vel_xy_yaw_frame_exp, weight=1.0, params={"command_name": "base_velocity", "std": 0.5}, ) track_ang_vel_z_exp = RewTerm( func=mdp.track_ang_vel_z_world_exp, weight=1.0, params={"command_name": "base_velocity", "std": 0.5} ) feet_air_time = RewTerm( func=mdp.feet_air_time_positive_biped, weight=0.25, params={ "command_name": "base_velocity", "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*ankle_link"), "threshold": 0.4, }, ) feet_slide = RewTerm( func=mdp.feet_slide, weight=-0.25, params={ "sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*ankle_link"), "asset_cfg": SceneEntityCfg("robot", body_names=".*ankle_link"), }, ) # Penalize ankle joint limits dof_pos_limits = RewTerm( func=mdp.joint_pos_limits, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names=".*_ankle")} ) # Penalize deviation from default of the joints that are not essential for locomotion joint_deviation_hip = RewTerm( func=mdp.joint_deviation_l1, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", joint_names=[".*_hip_yaw", ".*_hip_roll"])}, ) joint_deviation_arms = RewTerm( func=mdp.joint_deviation_l1, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", joint_names=[".*_shoulder_.*", ".*_elbow"])}, ) joint_deviation_torso = RewTerm( func=mdp.joint_deviation_l1, weight=-0.1, params={"asset_cfg": SceneEntityCfg("robot", joint_names="torso")} ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names=".*torso_link"), "threshold": 1.0}, ) @configclass class H1RoughEnvCfg(LocomotionVelocityRoughEnvCfg): rewards: H1Rewards = H1Rewards() terminations: TerminationsCfg = TerminationsCfg() def __post_init__(self): # post init of parent super().__post_init__() # Scene self.scene.robot = H1_MINIMAL_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") self.scene.height_scanner.prim_path = "{ENV_REGEX_NS}/Robot/torso_link" # Randomization self.events.push_robot = None self.events.add_base_mass = None self.events.reset_robot_joints.params["position_range"] = (1.0, 1.0) self.events.base_external_force_torque.params["asset_cfg"].body_names = [".*torso_link"] self.events.reset_base.params = { "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, } # Terminations self.terminations.base_contact.params["sensor_cfg"].body_names = [".*torso_link"] # Rewards self.rewards.undesired_contacts = None self.rewards.flat_orientation_l2.weight = -1.0 self.rewards.dof_torques_l2.weight = 0.0 self.rewards.action_rate_l2.weight = -0.005 self.rewards.dof_acc_l2.weight = -1.25e-7 # Commands self.commands.base_velocity.ranges.lin_vel_x = (0.0, 1.0) self.commands.base_velocity.ranges.lin_vel_y = (0.0, 0.0) self.commands.base_velocity.ranges.ang_vel_z = (-1.0, 1.0) @configclass class H1RoughEnvCfg_PLAY(H1RoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 self.episode_length_s = 40.0 # spawn the robot randomly in the grid (instead of their terrain levels) self.scene.terrain.max_init_terrain_level = None # reduce the number of terrains to save memory if self.scene.terrain.terrain_generator is not None: self.scene.terrain.terrain_generator.num_rows = 5 self.scene.terrain.terrain_generator.num_cols = 5 self.scene.terrain.terrain_generator.curriculum = False self.commands.base_velocity.ranges.lin_vel_x = (1.0, 1.0) self.commands.base_velocity.ranges.lin_vel_y = (0.0, 0.0) self.commands.base_velocity.ranges.ang_vel_z = (-1.0, 1.0) self.commands.base_velocity.ranges.heading = (0.0, 0.0) # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.events.base_external_force_torque = None self.events.push_robot = None
5,774
Python
36.258064
117
0.616903
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/h1/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Rough-H1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.H1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.H1RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Rough-H1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.H1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.H1RoughPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-H1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.H1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.H1FlatPPORunnerCfg, }, ) gym.register( id="Isaac-Velocity-Flat-H1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.H1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.H1FlatPPORunnerCfg, }, )
1,430
Python
24.105263
72
0.675524
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/cassie/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Cassie-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.CassieFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Cassie-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.CassieFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Cassie-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.CassieRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Cassie-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.CassieRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.CassieRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,784
Python
30.315789
77
0.672646
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_d/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Anymal-D-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Anymal-D-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Anymal-D-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,800
Python
30.596491
77
0.673333
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go2/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-Go2-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo2FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-Go2-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeGo2FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go2-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo2RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-Go2-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeGo2RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeGo2RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,836
Python
31.22807
80
0.679739
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_a1/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Velocity-Flat-Unitree-A1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeA1FlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Flat-Unitree-A1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.UnitreeA1FlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1FlatPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_flat_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-A1-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeA1RoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Velocity-Rough-Unitree-A1-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.UnitreeA1RoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.UnitreeA1RoughPPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_rough_ppo_cfg.yaml", }, )
1,824
Python
31.017543
79
0.677632
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/navigation/mdp/rewards.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv def position_command_error_tanh(env: ManagerBasedRLEnv, std: float, command_name: str) -> torch.Tensor: """Reward position tracking with tanh kernel.""" command = env.command_manager.get_command(command_name) des_pos_b = command[:, :3] distance = torch.norm(des_pos_b, dim=1) return 1 - torch.tanh(distance / std) def heading_command_error_abs(env: ManagerBasedRLEnv, command_name: str) -> torch.Tensor: """Penalize tracking orientation error.""" command = env.command_manager.get_command(command_name) heading_b = command[:, 3] return heading_b.abs()
874
Python
30.249999
103
0.718535
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/navigation/mdp/pre_trained_policy_action.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from dataclasses import MISSING from typing import TYPE_CHECKING import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.assets import Articulation from omni.isaac.lab.managers import ActionTerm, ActionTermCfg, ObservationGroupCfg, ObservationManager from omni.isaac.lab.markers import VisualizationMarkers from omni.isaac.lab.markers.config import BLUE_ARROW_X_MARKER_CFG, GREEN_ARROW_X_MARKER_CFG from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import check_file_path, read_file if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedRLEnv class PreTrainedPolicyAction(ActionTerm): r"""Pre-trained policy action term. This action term infers a pre-trained policy and applies the corresponding low-level actions to the robot. The raw actions correspond to the commands for the pre-trained policy. """ cfg: PreTrainedPolicyActionCfg """The configuration of the action term.""" def __init__(self, cfg: PreTrainedPolicyActionCfg, env: ManagerBasedRLEnv) -> None: # initialize the action term super().__init__(cfg, env) self.robot: Articulation = env.scene[cfg.asset_name] # load policy if not check_file_path(cfg.policy_path): raise FileNotFoundError(f"Policy file '{cfg.policy_path}' does not exist.") file_bytes = read_file(cfg.policy_path) self.policy = torch.jit.load(file_bytes).to(env.device).eval() self._raw_actions = torch.zeros(self.num_envs, self.action_dim, device=self.device) # prepare low level actions self._low_level_action_term: ActionTerm = cfg.low_level_actions.class_type(cfg.low_level_actions, env) self.low_level_actions = torch.zeros(self.num_envs, self._low_level_action_term.action_dim, device=self.device) # remap some of the low level observations to internal observations cfg.low_level_observations.actions.func = lambda dummy_env: self.low_level_actions cfg.low_level_observations.actions.params = dict() cfg.low_level_observations.velocity_commands.func = lambda dummy_env: self._raw_actions cfg.low_level_observations.velocity_commands.params = dict() # add the low level observations to the observation manager self._low_level_obs_manager = ObservationManager({"ll_policy": cfg.low_level_observations}, env) self._counter = 0 """ Properties. """ @property def action_dim(self) -> int: return 3 @property def raw_actions(self) -> torch.Tensor: return self._raw_actions @property def processed_actions(self) -> torch.Tensor: return self.raw_actions """ Operations. """ def process_actions(self, actions: torch.Tensor): self._raw_actions[:] = actions def apply_actions(self): if self._counter % self.cfg.low_level_decimation == 0: low_level_obs = self._low_level_obs_manager.compute_group("ll_policy") self.low_level_actions[:] = self.policy(low_level_obs) self._low_level_action_term.process_actions(self.low_level_actions) self._counter = 0 self._low_level_action_term.apply_actions() self._counter += 1 """ Debug visualization. """ def _set_debug_vis_impl(self, debug_vis: bool): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first tome if not hasattr(self, "base_vel_goal_visualizer"): # -- goal marker_cfg = GREEN_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Actions/velocity_goal" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_goal_visualizer = VisualizationMarkers(marker_cfg) # -- current marker_cfg = BLUE_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Actions/velocity_current" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.base_vel_goal_visualizer.set_visibility(True) self.base_vel_visualizer.set_visibility(True) else: if hasattr(self, "base_vel_goal_visualizer"): self.base_vel_goal_visualizer.set_visibility(False) self.base_vel_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # get marker location # -- base state base_pos_w = self.robot.data.root_pos_w.clone() base_pos_w[:, 2] += 0.5 # -- resolve the scales and quaternions vel_des_arrow_scale, vel_des_arrow_quat = self._resolve_xy_velocity_to_arrow(self.raw_actions[:, :2]) vel_arrow_scale, vel_arrow_quat = self._resolve_xy_velocity_to_arrow(self.robot.data.root_lin_vel_b[:, :2]) # display markers self.base_vel_goal_visualizer.visualize(base_pos_w, vel_des_arrow_quat, vel_des_arrow_scale) self.base_vel_visualizer.visualize(base_pos_w, vel_arrow_quat, vel_arrow_scale) """ Internal helpers. """ def _resolve_xy_velocity_to_arrow(self, xy_velocity: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: """Converts the XY base velocity command to arrow direction rotation.""" # obtain default scale of the marker default_scale = self.base_vel_goal_visualizer.cfg.markers["arrow"].scale # arrow-scale arrow_scale = torch.tensor(default_scale, device=self.device).repeat(xy_velocity.shape[0], 1) arrow_scale[:, 0] *= torch.linalg.norm(xy_velocity, dim=1) * 3.0 # arrow-direction heading_angle = torch.atan2(xy_velocity[:, 1], xy_velocity[:, 0]) zeros = torch.zeros_like(heading_angle) arrow_quat = math_utils.quat_from_euler_xyz(zeros, zeros, heading_angle) # convert everything back from base to world frame base_quat_w = self.robot.data.root_quat_w arrow_quat = math_utils.quat_mul(base_quat_w, arrow_quat) return arrow_scale, arrow_quat @configclass class PreTrainedPolicyActionCfg(ActionTermCfg): """Configuration for pre-trained policy action term. See :class:`PreTrainedPolicyAction` for more details. """ class_type: type[ActionTerm] = PreTrainedPolicyAction """ Class of the action term.""" asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" policy_path: str = MISSING """Path to the low level policy (.pt files).""" low_level_decimation: int = 4 """Decimation factor for the low level action term.""" low_level_actions: ActionTermCfg = MISSING """Low level action configuration.""" low_level_observations: ObservationGroupCfg = MISSING """Low level observation configuration.""" debug_vis: bool = True """Whether to visualize debug information. Defaults to False."""
7,301
Python
39.793296
119
0.661005
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/navigation/config/anymal_c/navigation_env_cfg.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math from omni.isaac.lab.envs import ManagerBasedRLEnvCfg from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm from omni.isaac.lab.managers import RandomizationTermCfg as RandTerm from omni.isaac.lab.managers import RewardTermCfg as RewTerm from omni.isaac.lab.managers import SceneEntityCfg from omni.isaac.lab.managers import TerminationTermCfg as DoneTerm from omni.isaac.lab.utils import configclass from omni.isaac.lab.utils.assets import ISAACLAB_NUCLEUS_DIR import omni.isaac.lab_tasks.manager_based.navigation.mdp as mdp from omni.isaac.lab_tasks.manager_based.locomotion.velocity.config.anymal_c.flat_env_cfg import AnymalCFlatEnvCfg LOW_LEVEL_ENV_CFG = AnymalCFlatEnvCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = RandTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": (-0.5, 0.5), "y": (-0.5, 0.5), "yaw": (-3.14, 3.14)}, "velocity_range": { "x": (-0.0, 0.0), "y": (-0.0, 0.0), "z": (-0.0, 0.0), "roll": (-0.0, 0.0), "pitch": (-0.0, 0.0), "yaw": (-0.0, 0.0), }, }, ) @configclass class ActionsCfg: """Action terms for the MDP.""" pre_trained_policy_action: mdp.PreTrainedPolicyActionCfg = mdp.PreTrainedPolicyActionCfg( asset_name="robot", policy_path=f"{ISAACLAB_NUCLEUS_DIR}/Policies/ANYmal-C/Blind/policy.pt", low_level_decimation=4, low_level_actions=LOW_LEVEL_ENV_CFG.actions.joint_pos, low_level_observations=LOW_LEVEL_ENV_CFG.observations.policy, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) projected_gravity = ObsTerm(func=mdp.projected_gravity) pose_command = ObsTerm(func=mdp.generated_commands, params={"command_name": "pose_command"}) # observation groups policy: PolicyCfg = PolicyCfg() @configclass class RewardsCfg: """Reward terms for the MDP.""" termination_penalty = RewTerm(func=mdp.is_terminated, weight=-400.0) position_tracking = RewTerm( func=mdp.position_command_error_tanh, weight=0.5, params={"std": 2.0, "command_name": "pose_command"}, ) position_tracking_fine_grained = RewTerm( func=mdp.position_command_error_tanh, weight=0.5, params={"std": 0.2, "command_name": "pose_command"}, ) orientation_tracking = RewTerm( func=mdp.heading_command_error_abs, weight=-0.2, params={"command_name": "pose_command"}, ) @configclass class CommandsCfg: """Command terms for the MDP.""" pose_command = mdp.UniformPose2dCommandCfg( asset_name="robot", simple_heading=False, resampling_time_range=(8.0, 8.0), debug_vis=True, ranges=mdp.UniformPose2dCommandCfg.Ranges(pos_x=(-3.0, 3.0), pos_y=(-3.0, 3.0), heading=(-math.pi, math.pi)), ) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class NavigationEnvCfg(ManagerBasedRLEnvCfg): scene: SceneEntityCfg = LOW_LEVEL_ENV_CFG.scene commands: CommandsCfg = CommandsCfg() actions: ActionsCfg = ActionsCfg() observations: ObservationsCfg = ObservationsCfg() rewards: RewardsCfg = RewardsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() terminations: TerminationsCfg = TerminationsCfg() def __post_init__(self): """Post initialization.""" self.sim.dt = LOW_LEVEL_ENV_CFG.sim.dt self.decimation = LOW_LEVEL_ENV_CFG.decimation * 10 self.episode_length_s = self.commands.pose_command.resampling_time_range[1] if self.scene.height_scanner is not None: self.scene.height_scanner.update_period = ( self.actions.pre_trained_policy_action.low_level_decimation * self.sim.dt ) if self.scene.contact_forces is not None: self.scene.contact_forces.update_period = self.sim.dt class NavigationEnvCfg_PLAY(NavigationEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False
5,169
Python
30.333333
117
0.651964
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/navigation/config/anymal_c/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, navigation_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Navigation-Flat-Anymal-C-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": navigation_env_cfg.NavigationEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.NavigationEnvPPORunnerCfg, }, ) gym.register( id="Isaac-Navigation-Flat-Anymal-C-Play-v0", entry_point="omni.isaac.lab.envs:ManagerBasedRLEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": navigation_env_cfg.NavigationEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.NavigationEnvPPORunnerCfg, }, )
869
Python
25.363636
78
0.700806
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/utils/wrappers/rsl_rl/__init__.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Wrappers and utilities to configure an :class:`ManagerBasedRLEnv` for RSL-RL library.""" from .exporter import export_policy_as_jit, export_policy_as_onnx from .rl_cfg import RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg from .vecenv_wrapper import RslRlVecEnvWrapper
422
Python
37.454542
91
0.798578
isaac-sim/IsaacLab/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/utils/wrappers/rsl_rl/exporter.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import copy import os import torch def export_policy_as_jit(actor_critic: object, normalizer: object | None, path: str, filename="policy.pt"): """Export policy into a Torch JIT file. Args: actor_critic: The actor-critic torch module. normalizer: The empirical normalizer module. If None, Identity is used. path: The path to the saving directory. filename: The name of exported JIT file. Defaults to "policy.pt". """ policy_exporter = _TorchPolicyExporter(actor_critic, normalizer) policy_exporter.export(path, filename) def export_policy_as_onnx( actor_critic: object, path: str, normalizer: object | None = None, filename="policy.onnx", verbose=False ): """Export policy into a Torch ONNX file. Args: actor_critic: The actor-critic torch module. normalizer: The empirical normalizer module. If None, Identity is used. path: The path to the saving directory. filename: The name of exported ONNX file. Defaults to "policy.onnx". verbose: Whether to print the model summary. Defaults to False. """ if not os.path.exists(path): os.makedirs(path, exist_ok=True) policy_exporter = _OnnxPolicyExporter(actor_critic, normalizer, verbose) policy_exporter.export(path, filename) """ Helper Classes - Private. """ class _TorchPolicyExporter(torch.nn.Module): """Exporter of actor-critic into JIT file.""" def __init__(self, actor_critic, normalizer=None): super().__init__() self.actor = copy.deepcopy(actor_critic.actor) self.is_recurrent = actor_critic.is_recurrent if self.is_recurrent: self.rnn = copy.deepcopy(actor_critic.memory_a.rnn) self.rnn.cpu() self.register_buffer("hidden_state", torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size)) self.register_buffer("cell_state", torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size)) self.forward = self.forward_lstm self.reset = self.reset_memory # copy normalizer if exists if normalizer: self.normalizer = copy.deepcopy(normalizer) else: self.normalizer = torch.nn.Identity() def forward_lstm(self, x): x = self.normalizer(x) x, (h, c) = self.rnn(x.unsqueeze(0), (self.hidden_state, self.cell_state)) self.hidden_state[:] = h self.cell_state[:] = c x = x.squeeze(0) return self.actor(x) def forward(self, x): return self.actor(self.normalizer(x)) @torch.jit.export def reset(self): pass def reset_memory(self): self.hidden_state[:] = 0.0 self.cell_state[:] = 0.0 def export(self, path, filename): os.makedirs(path, exist_ok=True) path = os.path.join(path, filename) self.to("cpu") traced_script_module = torch.jit.script(self) traced_script_module.save(path) class _OnnxPolicyExporter(torch.nn.Module): """Exporter of actor-critic into ONNX file.""" def __init__(self, actor_critic, normalizer=None, verbose=False): super().__init__() self.verbose = verbose self.actor = copy.deepcopy(actor_critic.actor) self.is_recurrent = actor_critic.is_recurrent if self.is_recurrent: self.rnn = copy.deepcopy(actor_critic.memory_a.rnn) self.rnn.cpu() self.forward = self.forward_lstm # copy normalizer if exists if normalizer: self.normalizer = copy.deepcopy(normalizer) else: self.normalizer = torch.nn.Identity() def forward_lstm(self, x_in, h_in, c_in): x_in = self.normalizer(x_in) x, (h, c) = self.rnn(x_in.unsqueeze(0), (h_in, c_in)) x = x.squeeze(0) return self.actor(x), h, c def forward(self, x): return self.actor(self.normalizer(x)) def export(self, path, filename): self.to("cpu") if self.is_recurrent: obs = torch.zeros(1, self.rnn.input_size) h_in = torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size) c_in = torch.zeros(self.rnn.num_layers, 1, self.rnn.hidden_size) actions, h_out, c_out = self(obs, h_in, c_in) torch.onnx.export( self, (obs, h_in, c_in), os.path.join(path, filename), export_params=True, opset_version=11, verbose=self.verbose, input_names=["obs", "h_in", "c_in"], output_names=["actions", "h_out", "c_out"], dynamic_axes={}, ) else: obs = torch.zeros(1, self.actor[0].in_features) torch.onnx.export( self, obs, os.path.join(path, filename), export_params=True, opset_version=11, verbose=self.verbose, input_names=["obs"], output_names=["actions"], dynamic_axes={}, )
5,237
Python
33.460526
108
0.586786
isaac-sim/IsaacLab/source/standalone/demos/quadcopter.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to simulate a quadcopter. """ """Launch Isaac Sim Simulator first.""" import argparse import torch from omni.isaac.lab.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to simulate a quadcopter.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation from omni.isaac.lab.sim import SimulationContext ## # Pre-defined configs ## from omni.isaac.lab_assets import CRAZYFLIE_CFG # isort:skip def main(): """Main function.""" # Load kit helper sim = SimulationContext( sim_utils.SimulationCfg(device="cpu", use_gpu_pipeline=False, dt=0.005, physx=sim_utils.PhysxCfg(use_gpu=False)) ) # Set main camera sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0]) # Spawn things into stage # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) # Robots robot_cfg = CRAZYFLIE_CFG robot_cfg.spawn.func("/World/Crazyflie/Robot_1", robot_cfg.spawn, translation=(1.5, 0.5, 0.42)) # create handles for the robots robot = Articulation(robot_cfg.replace(prim_path="/World/Crazyflie/Robot.*")) # Play the simulator sim.reset() # Fetch relevant parameters to make the quadcopter hover in place prop_body_ids = robot.find_bodies("m.*_prop")[0] robot_mass = robot.root_physx_view.get_masses().sum() gravity = torch.tensor(sim.cfg.gravity, device=sim.device).norm() # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 2000 == 0: # reset counters sim_time = 0.0 count = 0 # reset dof state joint_pos, joint_vel = robot.data.default_joint_pos, robot.data.default_joint_vel robot.write_joint_state_to_sim(joint_pos, joint_vel) robot.write_root_pose_to_sim(robot.data.default_root_state[:, :7]) robot.write_root_velocity_to_sim(robot.data.default_root_state[:, 7:]) robot.reset() # reset command print(">>>>>>>> Reset!") # apply action to the robot (make the robot float in place) forces = torch.zeros(1, 4, 3, device=sim.device) torques = torch.zeros_like(forces) forces[..., 2] = robot_mass * gravity / 4.0 robot.set_external_force_and_torque(forces, torques, body_ids=prop_body_ids) robot.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers robot.update(sim_dt) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
3,456
Python
28.801724
120
0.643519
isaac-sim/IsaacLab/source/standalone/demos/bipeds.py
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ This script demonstrates how to simulate a bipedal robot. """ """Launch Isaac Sim Simulator first.""" import argparse import torch from omni.isaac.lab.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="This script demonstrates how to simulate a bipedal robot.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli = parser.parse_args() # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.assets import Articulation from omni.isaac.lab.sim import SimulationContext ## # Pre-defined configs ## from omni.isaac.lab_assets.cassie import CASSIE_CFG # isort:skip from omni.isaac.lab_assets import H1_CFG # isort:skip def main(): """Main function.""" # Load kit helper sim = SimulationContext( sim_utils.SimulationCfg(device="cpu", use_gpu_pipeline=False, dt=0.01, physx=sim_utils.PhysxCfg(use_gpu=False)) ) # Set main camera sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0]) # Spawn things into stage # Ground-plane cfg = sim_utils.GroundPlaneCfg() cfg.func("/World/defaultGroundPlane", cfg) # Lights cfg = sim_utils.DistantLightCfg(intensity=3000.0, color=(0.75, 0.75, 0.75)) cfg.func("/World/Light", cfg) origins = torch.tensor([ [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], ]) # Robots cassie = Articulation(CASSIE_CFG.replace(prim_path="/World/Cassie")) h1 = Articulation(H1_CFG.replace(prim_path="/World/H1")) robots = [cassie, h1] # Play the simulator sim.reset() # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping sim_dt = sim.get_physics_dt() sim_time = 0.0 count = 0 # Simulate physics while simulation_app.is_running(): # reset if count % 200 == 0: # reset counters sim_time = 0.0 count = 0 for index, robot in enumerate(robots): # reset dof state joint_pos, joint_vel = robot.data.default_joint_pos, robot.data.default_joint_vel robot.write_joint_state_to_sim(joint_pos, joint_vel) root_state = robot.data.default_root_state.clone() root_state[:, :3] += origins[index] robot.write_root_state_to_sim(root_state) robot.reset() # reset command print(">>>>>>>> Reset!") # apply action to the robot for robot in robots: robot.set_joint_position_target(robot.data.default_joint_pos.clone()) robot.write_data_to_sim() # perform step sim.step() # update sim-time sim_time += sim_dt count += 1 # update buffers for robot in robots: robot.update(sim_dt) if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()
3,225
Python
27.052174
119
0.620465
isaac-sim/IsaacLab/docker/x11.yaml
services: isaac-lab-base: environment: - DISPLAY - TERM - QT_X11_NO_MITSHM=1 - XAUTHORITY=${__ISAACLAB_TMP_XAUTH} volumes: - type: bind source: ${__ISAACLAB_TMP_XAUTH} target: ${__ISAACLAB_TMP_XAUTH} - type: bind source: /tmp/.X11-unix target: /tmp/.X11-unix - type: bind source: /etc/localtime target: /etc/localtime read_only: true isaac-lab-ros2: environment: - DISPLAY - TERM - QT_X11_NO_MITSHM=1 - XAUTHORITY=${__ISAACLAB_TMP_XAUTH} volumes: - type: bind source: ${__ISAACLAB_TMP_XAUTH} target: ${__ISAACLAB_TMP_XAUTH} - type: bind source: /tmp/.X11-unix target: /tmp/.X11-unix - type: bind source: /etc/localtime target: /etc/localtime read_only: true
835
YAML
21.594594
42
0.558084
isaac-sim/IsaacLab/docs/source/how-to/add_own_library.rst
Adding your own learning library ================================ Isaac Lab comes pre-integrated with a number of libraries (such as RSL-RL, RL-Games, SKRL, Stable Baselines, etc.). However, you may want to integrate your own library with Isaac Lab or use a different version of the libraries than the one installed by Isaac Lab. This is possible as long as the library is available as Python package that supports the Python version used by the underlying simulator. For instance, if you are using Isaac Sim 2023.1.1, you need to ensure that the library is available for Python 3.10. Using a different version of a library -------------------------------------- If you want to use a different version of a library than the one installed by Isaac Lab, you can install the library by building it from source or using a different version of the library available on PyPI. For instance, if you want to use your own modified version of the `rsl-rl`_ library, you can follow these steps: 1. Follow the instructions for installing Isaac Lab. This will install the default version of the ``rsl-rl`` library. 2. Clone the ``rsl-rl`` library from the GitHub repository: .. code-block:: bash git clone [email protected]:leggedrobotics/rsl_rl.git 3. Install the library in your Python environment: .. code-block:: bash # Assuming you are in the root directory of the Isaac Lab repository cd IsaacLab # Note: If you are using a virtual environment, make sure to activate it before running the following command ./isaaclab.sh -p -m pip install -e /path/to/rsl_rl In this case, the ``rsl-rl`` library will be installed in the Python environment used by Isaac Lab. You can now use the ``rsl-rl`` library in your experiments. To check the library version and other details, you can use the following command: .. code-block:: bash ./isaaclab.sh -p -m pip show rsl-rl This should now show the location of the ``rsl-rl`` library as the directory where you cloned the library. For instance, if you cloned the library to ``/home/user/git/rsl_rl``, the output of the above command should be: .. code-block:: bash Name: rsl_rl Version: 2.0.2 Summary: Fast and simple RL algorithms implemented in pytorch Home-page: https://github.com/leggedrobotics/rsl_rl Author: ETH Zurich, NVIDIA CORPORATION Author-email: License: BSD-3 Location: /home/user/git/rsl_rl Requires: torch, torchvision, numpy, GitPython, onnx Required-by: Integrating a new library ------------------------- Adding a new library to Isaac Lab is similar to using a different version of a library. You can install the library in your Python environment and use it in your experiments. However, if you want to integrate the library with Isaac Lab, you can will first need to make a wrapper for the library, as explained in :ref:`how-to-env-wrappers`. The following steps can be followed to integrate a new library with Isaac Lab: 1. Add your library as an extra-dependency in the ``setup.py`` for the extension ``omni.isaac.lab_tasks``. This will ensure that the library is installed when you install Isaac Lab or it will complain if the library is not installed or available. 2. Install your library in the Python environment used by Isaac Lab. You can do this by following the steps mentioned in the previous section. 3. Create a wrapper for the library. You can check the module :mod:`omni.isaac.lab_tasks.utils.wrappers` for examples of wrappers for different libraries. You can create a new wrapper for your library and add it to the module. You can also create a new module for the wrapper if you prefer. 4. Create workflow scripts for your library to train and evaluate agents. You can check the existing workflow scripts in the ``source/standalone/workflows`` directory for examples. You can create new workflow scripts for your library and add them to the directory. Optionally, you can also add some tests and documentation for the wrapper. This will help ensure that the wrapper works as expected and can guide users on how to use the wrapper. * Add some tests to ensure that the wrapper works as expected and remains compatible with the library. These tests can be added to the ``source/extensions/omni.isaac.lab_tasks/test/wrappers`` directory. * Add some documentation for the wrapper. You can add the API documentation to the ``docs/source/api/lab_tasks/omni.isaac.lab_tasks.utils.wrappers.rst`` file. .. _rsl-rl: https://github.com/leggedrobotics/rsl_rl
4,511
reStructuredText
48.043478
119
0.747949
isaac-sim/IsaacLab/docs/source/how-to/make_fixed_prim.rst
Making a physics prim fixed in the simulation ============================================= .. currentmodule:: omni.isaac.lab When a USD prim has physics schemas applied on it, it is affected by physics simulation. This means that the prim can move, rotate, and collide with other prims in the simulation world. However, there are cases where it is desirable to make certain prims static in the simulation world, i.e. the prim should still participate in collisions but its position and orientation should not change. The following sections describe how to spawn a prim with physics schemas and make it static in the simulation world. Static colliders ---------------- Static colliders are prims that are not affected by physics but can collide with other prims in the simulation world. These don't have any rigid body properties applied on them. However, this also means that they can't be accessed using the physics tensor API (i.e., through the :class:`assets.RigidObject` class). For instance, to spawn a cone static in the simulation world, the following code can be used: .. code-block:: python import omni.isaac.lab.sim as sim_utils cone_spawn_cfg = sim_utils.ConeCfg( radius=0.15, height=0.5, collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ) cone_spawn_cfg.func( "/World/Cone", cone_spawn_cfg, translation=(0.0, 0.0, 2.0), orientation=(0.5, 0.0, 0.5, 0.0) ) Rigid object ------------ Rigid objects (i.e. object only has a single body) can be made static by setting the parameter :attr:`sim.schemas.RigidBodyPropertiesCfg.kinematic_enabled` as True. This will make the object kinematic and it will not be affected by physics. For instance, to spawn a cone static in the simulation world but with rigid body schema on it, the following code can be used: .. code-block:: python import omni.isaac.lab.sim as sim_utils cone_spawn_cfg = sim_utils.ConeCfg( radius=0.15, height=0.5, rigid_props=sim_utils.RigidBodyPropertiesCfg(kinematic_enabled=True), mass_props=sim_utils.MassPropertiesCfg(mass=1.0), collision_props=sim_utils.CollisionPropertiesCfg(), visual_material=sim_utils.PreviewSurfaceCfg(diffuse_color=(0.0, 1.0, 0.0)), ) cone_spawn_cfg.func( "/World/Cone", cone_spawn_cfg, translation=(0.0, 0.0, 2.0), orientation=(0.5, 0.0, 0.5, 0.0) ) Articulation ------------ Fixing the root of an articulation requires having a fixed joint to the root rigid body link of the articulation. This can be achieved by setting the parameter :attr:`sim.schemas.ArticulationRootPropertiesCfg.fix_root_link` as True. Based on the value of this parameter, the following cases are possible: * If set to :obj:`None`, the root link is not modified. * If the articulation already has a fixed root link, this flag will enable or disable the fixed joint. * If the articulation does not have a fixed root link, this flag will create a fixed joint between the world frame and the root link. The joint is created with the name "FixedJoint" under the root link. For instance, to spawn an ANYmal robot and make it static in the simulation world, the following code can be used: .. code-block:: python import omni.isaac.lab.sim as sim_utils from omni.isaac.lab.utils.assets import ISAACLAB_NUCLEUS_DIR anymal_spawn_cfg = sim_utils.UsdFileCfg( usd_path=f"{ISAACLAB_NUCLEUS_DIR}/Robots/ANYbotics/ANYmal-C/anymal_c.usd", activate_contact_sensors=True, rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, retain_accelerations=False, linear_damping=0.0, angular_damping=0.0, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=1.0, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0, fix_root_link=True, ), ) anymal_spawn_cfg.func( "/World/ANYmal", anymal_spawn_cfg, translation=(0.0, 0.0, 0.8), orientation=(1.0, 0.0, 0.0, 0.0) ) This will create a fixed joint between the world frame and the root link of the ANYmal robot at the prim path ``"/World/ANYmal/base/FixedJoint"`` since the root link is at the path ``"/World/ANYmal/base"``. Further notes ------------- Given the flexibility of USD asset designing the following possible scenarios are usually encountered: 1. **Articulation root schema on the rigid body prim without a fixed joint**: This is the most common and recommended scenario for floating-base articulations. The root prim has both the rigid body and the articulation root properties. In this case, the articulation root is parsed as a floating-base with the root prim of the articulation ``Link0Xform``. .. code-block:: text ArticulationXform └── Link0Xform (RigidBody and ArticulationRoot schema) 2. **Articulation root schema on the parent prim with a fixed joint**: This is the expected arrangement for fixed-base articulations. The root prim has only the rigid body properties and the articulation root properties are applied to its parent prim. In this case, the articulation root is parsed as a fixed-base with the root prim of the articulation ``Link0Xform``. .. code-block:: text ArticulationXform (ArticulationRoot schema) └── Link0Xform (RigidBody schema) └── FixedJoint (connecting the world frame and Link0Xform) 3. **Articulation root schema on the parent prim without a fixed joint**: This is a scenario where the root prim has only the rigid body properties and the articulation root properties are applied to its parent prim. However, the fixed joint is not created between the world frame and the root link. In this case, the articulation is parsed as a floating-base system. However, the PhysX parser uses its own heuristic (such as alphabetical order) to determine the root prim of the articulation. It may select the root prim at ``Link0Xform`` or choose another prim as the root prim. .. code-block:: text ArticulationXform (ArticulationRoot schema) └── Link0Xform (RigidBody schema) 4. **Articulation root schema on the rigid body prim with a fixed joint**: While this is a valid scenario, it is not recommended as it may lead to unexpected behavior. In this case, the articulation is still parsed as a floating-base system. However, the fixed joint, created between the world frame and the root link, is considered as a part of the maximal coordinate tree. This is different from PhysX considering the articulation as a fixed-base system. Hence, the simulation may not behave as expected. .. code-block:: text ArticulationXform └── Link0Xform (RigidBody and ArticulationRoot schema) └── FixedJoint (connecting the world frame and Link0Xform) For floating base articulations, the root prim usually has both the rigid body and the articulation root properties. However, directly connecting this prim to the world frame will cause the simulation to consider the fixed joint as a part of the maximal coordinate tree. This is different from PhysX considering the articulation as a fixed-base system. Internally, when the parameter :attr:`sim.schemas.ArticulationRootPropertiesCfg.fix_root_link` is set to True and the articulation is detected as a floating-base system, the fixed joint is created between the world frame the root rigid body link of the articulation. However, to make the PhysX parser consider the articulation as a fixed-base system, the articulation root properties are removed from the root rigid body prim and applied to its parent prim instead. .. note:: In future release of Isaac Sim, an explicit flag will be added to the articulation root schema from PhysX to toggle between fixed-base and floating-base systems. This will resolve the need of the above workaround.
8,205
reStructuredText
44.588889
117
0.724802
isaac-sim/IsaacLab/docs/source/tutorials/03_envs/create_direct_rl_env.rst
.. _tutorial-create-oige-rl-env: Creating a Direct Workflow RL Environment ========================================= .. currentmodule:: omni.isaac.lab In addition to the :class:`envs.ManagerBasedRLEnv` class, which encourages the use of configuration classes for more modular environments, the :class:`~omni.isaac.lab.envs.DirectRLEnv` class allows for more direct control in the scripting of environment. Instead of using Manager classes for defining rewards and observations, the direct workflow tasks implement the full reward and observation functions directly in the task script. This allows for more control in the implementation of the methods, such as using pytorch jit features, and provides a less abstracted framework that makes it easier to find the various pieces of code. In this tutorial, we will configure the cartpole environment using the direct workflow implementation to create a task for balancing the pole upright. We will learn how to specify the task using by implementing functions for scene creation, actions, resets, rewards and observations. The Code ~~~~~~~~ For this tutorial, we use the cartpole environment defined in ``omni.isaac.lab_tasks.direct.cartpole`` module. .. dropdown:: Code for cartpole_env.py :icon: code .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :linenos: The Code Explained ~~~~~~~~~~~~~~~~~~ Similar to the manager-based environments, a configuration class is defined for the task to hold settings for the simulation parameters, the scene, the actors, and the task. With the direct workflow implementation, the :class:`envs.DirectRLEnvCfg` class is used as the base class for configurations. Since the direct workflow implementation does not use Action and Observation managers, the task config should define the number of actions and observations for the environment. .. code-block:: python @configclass class CartpoleEnvCfg(DirectRLEnvCfg): ... num_actions = 1 num_observations = 4 num_states = 0 The config class can also be used to define task-specific attributes, such as scaling for reward terms and thresholds for reset conditions. .. code-block:: python @configclass class CartpoleEnvCfg(DirectRLEnvCfg): ... # reset max_cart_pos = 3.0 initial_pole_angle_range = [-0.25, 0.25] # reward scales rew_scale_alive = 1.0 rew_scale_terminated = -2.0 rew_scale_pole_pos = -1.0 rew_scale_cart_vel = -0.01 rew_scale_pole_vel = -0.005 When creating a new environment, the code should define a new class that inherits from :class:`~omni.isaac.lab.envs.DirectRLEnv`. .. code-block:: python class CartpoleEnv(DirectRLEnv): cfg: CartpoleEnvCfg def __init__(self, cfg: CartpoleEnvCfg, render_mode: str | None = None, **kwargs): super().__init__(cfg, render_mode, **kwargs) The class can also hold class variables that are accessible by all functions in the class, including functions for applying actions, computing resets, rewards, and observations. Scene Creation -------------- In contrast to manager-based environments where the scene creation is taken care of by the framework, the direct workflow implementation provides flexibility for users to implement their own scene creation function. This includes adding actors into the stage, cloning the environments, filtering collisions between the environments, adding the actors into the scene, and adding any additional props to the scene, such as ground plane and lights. These operations should be implemented in the ``_setup_scene(self)`` method. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._setup_scene Defining Rewards ---------------- Reward function should be defined in the ``_get_rewards(self)`` API, which returns the reward buffer as a return value. Within this function, the task is free to implement the logic of the reward function. In this example, we implement a Pytorch jitted function that computes the various components of the reward function. .. code-block:: python def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.cfg.rew_scale_alive, self.cfg.rew_scale_terminated, self.cfg.rew_scale_pole_pos, self.cfg.rew_scale_cart_vel, self.cfg.rew_scale_pole_vel, self.joint_pos[:, self._pole_dof_idx[0]], self.joint_vel[:, self._pole_dof_idx[0]], self.joint_pos[:, self._cart_dof_idx[0]], self.joint_vel[:, self._cart_dof_idx[0]], self.reset_terminated, ) return total_reward @torch.jit.script def compute_rewards( rew_scale_alive: float, rew_scale_terminated: float, rew_scale_pole_pos: float, rew_scale_cart_vel: float, rew_scale_pole_vel: float, pole_pos: torch.Tensor, pole_vel: torch.Tensor, cart_pos: torch.Tensor, cart_vel: torch.Tensor, reset_terminated: torch.Tensor, ): rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) rew_termination = rew_scale_terminated * reset_terminated.float() rew_pole_pos = rew_scale_pole_pos * torch.sum(torch.square(pole_pos), dim=-1) rew_cart_vel = rew_scale_cart_vel * torch.sum(torch.abs(cart_vel), dim=-1) rew_pole_vel = rew_scale_pole_vel * torch.sum(torch.abs(pole_vel), dim=-1) total_reward = rew_alive + rew_termination + rew_pole_pos + rew_cart_vel + rew_pole_vel return total_reward Defining Observations --------------------- The observation buffer should be computed in the ``_get_observations(self)`` function, which constructs the observation buffer for the environment. At the end of this API, a dictionary should be returned that contains ``policy`` as the key, and the full observation buffer as the value. For asymmetric policies, the dictionary should also include the key ``critic`` and the states buffer as the value. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._get_observations Computing Dones and Performing Resets ------------------------------------- Populating the ``dones`` buffer should be done in the ``_get_dones(self)`` method. This method is free to implement logic that computes which environments would need to be reset and which environments have reached the episode length limit. Both results should be returned by the ``_get_dones(self)`` function, in the form of a tuple of boolean tensors. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._get_dones Once the indices for environments requiring reset have been computed, the ``_reset_idx(self, env_ids)`` function performs the reset operations on those environments. Within this function, new states for the environments requiring reset should be set directly into simulation. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._reset_idx Applying Actions ---------------- There are two APIs that are designed for working with actions. The ``_pre_physics_step(self, actions)`` takes in actions from the policy as an argument and is called once per RL step, prior to taking any physics steps. This function can be used to process the actions buffer from the policy and cache the data in a class variable for the environment. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._pre_physics_step The ``_apply_action(self)`` API is called ``decimation`` number of times for each RL step, prior to taking each physics step. This provides more flexibility for environments where actions should be applied for each physics step. .. literalinclude:: ../../../../source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py :language: python :pyobject: CartpoleEnv._apply_action The Code Execution ~~~~~~~~~~~~~~~~~~ To run training for the direct workflow Cartpole environment, we can use the following command: .. code-block:: bash ./isaaclab.sh -p source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-Direct-v0 All direct workflow tasks have the suffix ``-Direct`` added to the task name to differentiate the implementation style. Domain Randomization ~~~~~~~~~~~~~~~~~~~~ In the direct workflow, domain randomization configuration uses the :class:`~omni.isaac.lab.utils.configclass` module to specify a configuration class consisting of :class:`~managers.EventTermCfg` variables. Below is an example of a configuration class for domain randomization: .. code-block:: python @configclass class EventCfg: robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) reset_gravity = EventTerm( func=mdp.randomize_physics_scene_gravity, mode="interval", is_global_time=True, interval_range_s=(36.0, 36.0), # time_s = num_steps * (decimation * dt) params={ "gravity_distribution_params": ([0.0, 0.0, 0.0], [0.0, 0.0, 0.4]), "operation": "add", "distribution": "gaussian", }, ) Each ``EventTerm`` object is of the :class:`~managers.EventTermCfg` class and takes in a ``func`` parameter for specifying the function to call during randomization, a ``mode`` parameter, which can be ``startup``, ``reset`` or ``interval``. THe ``params`` dictionary should provide the necessary arguments to the function that is specified in the ``func`` parameter. Functions specified as ``func`` for the ``EventTerm`` can be found in the :class:`~envs.mdp.events` module. Note that as part of the ``"asset_cfg": SceneEntityCfg("robot", body_names=".*")`` parameter, the name of the actor ``"robot"`` is provided, along with the body or joint names specified as a regex expression, which will be the actors and bodies/joints that will have randomization applied. Once the ``configclass`` for the randomization terms have been set up, the class must be added to the base config class for the task and be assigned to the variable ``events``. .. code-block:: python @configclass class MyTaskConfig: events: EventCfg = EventCfg() Action and Observation Noise ---------------------------- Actions and observation noise can also be added using the :class:`~utils.configclass` module. Action and observation noise configs must be added to the main task config using the ``action_noise_model`` and ``observation_noise_model`` variables: .. code-block:: python @configclass class MyTaskConfig: # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset action_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.05, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.015, operation="abs"), ) # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset observation_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.002, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.0001, operation="abs"), ) :class:`~.utils.noise.NoiseModelWithAdditiveBiasCfg` can be used to sample both uncorrelated noise per step as well as correlated noise that is re-sampled at reset time. The ``noise_cfg`` term specifies the Gaussian distribution that will be sampled at each step for all environments. This noise will be added to the corresponding actions and observations buffers at every step. The ``bias_noise_cfg`` term specifies the Gaussian distribution for the correlated noise that will be sampled at reset time for the environments being reset. The same noise will be applied each step for the remaining of the episode for the environments and resampled at the next reset. If only per-step noise is desired, :class:`~utils.noise.GaussianNoiseCfg` can be used to specify an additive Gaussian distribution that adds the sampled noise to the input buffer. .. code-block:: python @configclass class MyTaskConfig: action_noise_model: GaussianNoiseCfg = GaussianNoiseCfg(mean=0.0, std=0.05, operation="add") In this tutorial, we learnt how to create a direct workflow task environment for reinforcement learning. We do this by extending the base environment to include the scene setup, actions, dones, reset, reward and observaion functions. While it is possible to manually create an instance of :class:`~omni.isaac.lab.envs.DirectRLEnv` class for a desired task, this is not scalable as it requires specialized scripts for each task. Thus, we exploit the :meth:`gymnasium.make` function to create the environment with the gym interface. We will learn how to do this in the next tutorial.
14,115
reStructuredText
41.137313
129
0.71045
isaac-sim/IsaacLab/docs/source/tutorials/03_envs/index.rst
Designing an Environment ======================== The following tutorials introduce the concept of manager-based environments: :class:`~omni.isaac.lab.envs.ManagerBasedEnv` and its derivative :class:`~omni.isaac.lab.envs.ManagerBasedRLEnv`, as well as the direct workflow base class :class:`~omni.isaac.lab.envs.DirectRLEnv`. These environments bring-in together different aspects of the framework to create a simulation environment for agent interaction. .. toctree:: :maxdepth: 1 :titlesonly: create_base_env create_rl_env create_direct_rl_env register_rl_env_gym run_rl_training
613
reStructuredText
33.111109
122
0.735726
isaac-sim/IsaacLab/docs/source/tutorials/04_sensors/index.rst
Integrating Sensors =================== The following tutorial shows you how to integrate sensors into the simulation environment. The tutorials introduce the :class:`~omni.isaac.lab.sensors.SensorBase` class and its derivatives such as :class:`~omni.isaac.lab.sensors.Camera` and :class:`~omni.isaac.lab.sensors.RayCaster`. .. toctree:: :maxdepth: 1 :titlesonly: add_sensors_on_robot
400
reStructuredText
29.846152
95
0.725
isaac-sim/IsaacLab/docs/source/setup/template.rst
Building your Own Project ========================= Traditionally, building new projects that utilize Isaac Lab's features required creating your own extensions within the Isaac Lab repository. However, this approach can obscure project visibility and complicate updates from one version of Isaac Lab to another. To circumvent these challenges, we now provide a pre-configured and customizable `extension template <https://github.com/isaac-sim/IsaacLab.ext_template>`_ for creating projects in an isolated environment. This template serves three distinct use cases: * **Project Template**: Provides essential access to Isaac Sim and Isaac Lab's features, making it ideal for projects that require a standalone environment. * **Python Package**: Facilitates integration with Isaac Sim's native or virtual Python environment, allowing for the creation of Python packages that can be shared and reused across multiple projects. * **Omniverse Extension**: Supports direct integration into Omniverse extension workflow. .. note:: We recommend using the extension template for new projects, as it provides a more streamlined and efficient workflow. Additionally it ensures that your project remains up-to-date with the latest features and improvements in Isaac Lab. To get started, please follow the instructions in the `extension template repository <https://github.com/isaac-sim/IsaacLab.ext_template>`_.
1,418
reStructuredText
53.576921
140
0.79055
isaac-sim/IsaacLab/docs/source/setup/installation/pip_installation.rst
Installation using Isaac Sim pip ================================ Installing Isaac Sim -------------------- .. note:: Installing Isaac Sim from pip is currently an experimental feature. If errors occur, please report them to the `Isaac Sim Forums <https://docs.omniverse.nvidia.com/isaacsim/latest/common/feedback.html>`_ and install Isaac Sim from pre-built binaries. - To use the pip installation approach for Isaac Sim, we recommend first creating a virtual environment. Ensure that the python version of the virtual environment is **Python 3.10**. .. tabs:: .. tab:: Conda .. code-block:: bash conda create -n isaaclab python=3.10 conda activate isaaclab .. tab:: Virtual environment (venv) .. code-block:: bash python3.10 -m venv isaaclab # on Linux source isaaclab/bin/activate # on Windows isaaclab\Scripts\activate - Next, install a CUDA-enabled PyTorch 2.2.2 build based on the CUDA version available on your system. .. tabs:: .. tab:: CUDA 11 .. code-block:: bash pip install torch==2.2.2 --index-url https://download.pytorch.org/whl/cu118 .. tab:: CUDA 12 .. code-block:: bash pip install torch==2.2.2 --index-url https://download.pytorch.org/whl/cu121 - Then, install the Isaac Sim packages necessary for running Isaac Lab: .. code-block:: bash pip install isaacsim-rl isaacsim-replicator --index-url https://pypi.nvidia.com/ Installing Isaac Lab -------------------- Cloning Isaac Lab ~~~~~~~~~~~~~~~~~ .. note:: We recommend making a `fork <https://github.com/isaac-sim/IsaacLab/fork>`_ of the Isaac Lab repository to contribute to the project but this is not mandatory to use the framework. If you make a fork, please replace ``isaac-sim`` with your username in the following instructions. Clone the Isaac Lab repository into your workspace: .. code:: bash # Option 1: With SSH git clone [email protected]:isaac-sim/IsaacLab.git # Option 2: With HTTPS git clone https://github.com/isaac-sim/IsaacLab.git .. note:: We provide a helper executable `isaaclab.sh <https://github.com/isaac-sim/IsaacLab/blob/main/isaaclab.sh>`_ that provides utilities to manage extensions: .. tabs:: .. tab:: Linux .. code:: text ./isaaclab.sh --help usage: isaaclab.sh [-h] [-i] [-f] [-p] [-s] [-t] [-o] [-v] [-d] [-c] -- Utility to manage Isaac Lab. optional arguments: -h, --help Display the help content. -i, --install [LIB] Install the extensions inside Isaac Lab and learning frameworks (rl_games, rsl_rl, sb3, skrl) as extra dependencies. Default is 'all'. -f, --format Run pre-commit to format the code and check lints. -p, --python Run the python executable provided by Isaac Sim or virtual environment (if active). -s, --sim Run the simulator executable (isaac-sim.sh) provided by Isaac Sim. -t, --test Run all python unittest tests. -o, --docker Run the docker container helper script (docker/container.sh). -v, --vscode Generate the VSCode settings file from template. -d, --docs Build the documentation from source using sphinx. -c, --conda [NAME] Create the conda environment for Isaac Lab. Default name is 'isaaclab'. .. tab:: Windows .. code:: text isaaclab.bat --help usage: isaaclab.bat [-h] [-i] [-f] [-p] [-s] [-v] [-d] [-c] -- Utility to manage Isaac Lab. optional arguments: -h, --help Display the help content. -i, --install [LIB] Install the extensions inside Isaac Lab and learning frameworks (rl_games, rsl_rl, sb3, skrl) as extra dependencies. Default is 'all'. -f, --format Run pre-commit to format the code and check lints. -p, --python Run the python executable provided by Isaac Sim or virtual environment (if active). -s, --sim Run the simulator executable (isaac-sim.bat) provided by Isaac Sim. -t, --test Run all python unittest tests. -v, --vscode Generate the VSCode settings file from template. -d, --docs Build the documentation from source using sphinx. -c, --conda [NAME] Create the conda environment for Isaac Lab. Default name is 'isaaclab'. Installation ~~~~~~~~~~~~ - Install dependencies using ``apt`` (on Ubuntu): .. code:: bash sudo apt install cmake build-essential - Run the install command that iterates over all the extensions in ``source/extensions`` directory and installs them using pip (with ``--editable`` flag): .. tabs:: .. tab:: Linux .. code:: bash ./isaaclab.sh --install # or "./isaaclab.sh -i" .. tab:: Windows .. code:: bash isaaclab.bat --install :: or "isaaclab.bat -i" .. note:: By default, this will install all the learning frameworks. If you want to install only a specific framework, you can pass the name of the framework as an argument. For example, to install only the ``rl_games`` framework, you can run .. tabs:: .. tab:: Linux .. code:: bash ./isaaclab.sh --install rl_games .. tab:: Windows .. code:: bash isaaclab.bat --install rl_games :: or "isaaclab.bat -i" The valid options are ``rl_games``, ``rsl_rl``, ``sb3``, ``skrl``, ``robomimic``, ``none``.
5,768
reStructuredText
31.965714
170
0.596047
isaac-sim/IsaacLab/docs/source/setup/installation/cloud_installation.rst
Running Isaac Lab in the Cloud ============================== Isaac Lab can be run in various cloud infrastructures with the use of `Isaac Automator <https://github.com/isaac-sim/IsaacAutomator>`__. Isaac Automator allows for quick deployment of Isaac Sim and Isaac Lab onto the public clouds (AWS, GCP, Azure, and Alibaba Cloud are currently supported). The result is a fully configured remote desktop cloud workstation, which can be used for development and testing of Isaac Lab within minutes and on a budget. Isaac Automator supports variety of GPU instances and stop-start functionality to save on cloud costs and a variety of tools to aid the workflow (like uploading and downloading data, autorun, deployment management, etc). Installing Isaac Automator -------------------------- To use Isaac Automator, first clone the repo: .. code-block:: bash git clone https://github.com/isaac-sim/IsaacAutomator.git Isaac Automator requires having ``docker`` pre-installed on the system. * To install Docker, please follow the instructions for your operating system on the `Docker website`_. * Follow the post-installation steps for Docker on the `post-installation steps`_ page. These steps allow you to run Docker without using ``sudo``. Isaac Automator also requires obtaining a NGC API key. * Get access to the `Isaac Sim container`_ by joining the NVIDIA Developer Program credentials. * Generate your `NGC API key`_ to access locked container images from NVIDIA GPU Cloud (NGC). * This step requires you to create an NGC account if you do not already have one. * Once you have your generated API key, you need to log in to NGC from the terminal. .. code:: bash docker login nvcr.io * For the username, enter ``$oauthtoken`` exactly as shown. It is a special username that is used to authenticate with NGC. .. code:: text Username: $oauthtoken Password: <Your NGC API Key> Running Isaac Automator ----------------------- To run Isaac Automator, first build the Isaac Automator container: .. code-block:: bash ./build Next, run the deployed script for your preferred cloud: .. code-block:: bash # AWS ./deploy-aws # Azure ./deploy-azure # GCP ./deploy-gcp # Alibaba Cloud ./deploy-alicloud Follow the prompts for entering information regarding the environment setup and credentials. Once successful, instructions for connecting to the cloud instance will be available in the terminal. Connections can be made using SSH, noVCN, or NoMachine. For details on the credentials and setup required for each cloud, please visit the `Isaac Automator <https://github.com/isaac-sim/IsaacAutomator?tab=readme-ov-file#deploying-isaac-sim>`__ page for more instructions. Running Isaac Lab on the Cloud ------------------------------ Once connected to the cloud instance, the desktop will have an icon showing ``isaaclab.sh``. Launch the ``isaaclab.sh`` executable, which will open a new Terminal. Within the terminal, Isaac Lab commands can be executed in the same way as running locally. For example: .. code-block:: bash ./isaaclab.sh -p source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 Destroying a Development ------------------------- To save costs, deployments can be destroyed when not being used. This can be done from within the Automator container, which can be entered with command ``./run``. To destroy a deployment, run: .. code:: bash ./destroy <deployment-name> .. _`Docker website`: https://docs.docker.com/desktop/install/linux-install/ .. _`post-installation steps`: https://docs.docker.com/engine/install/linux-postinstall/ .. _`Isaac Sim container`: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/isaac-sim .. _`NGC API key`: https://docs.nvidia.com/ngc/gpu-cloud/ngc-user-guide/index.html#generating-api-key
3,871
reStructuredText
34.522935
378
0.726427
isaac-sim/IsaacLab/docs/source/setup/installation/binaries_installation.rst
Installation using Isaac Sim Binaries ===================================== Installing Isaac Sim -------------------- Downloading pre-built binaries ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Please follow the Isaac Sim `documentation <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html>`__ to install the latest Isaac Sim release. To check the minimum system requirements,refer to the documentation `here <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html>`__. .. note:: We have tested Isaac Lab with Isaac Sim 4.0 release on Ubuntu 20.04LTS with NVIDIA driver 525.147. .. tabs:: .. tab:: Linux On Linux systems, by default, Isaac Sim is installed in the directory ``${HOME}/.local/share/ov/pkg/isaac_sim-*``, with ``*`` corresponding to the Isaac Sim version. .. tab:: Windows On Windows systems, by default,Isaac Sim is installed in the directory ``C:\Users\user\AppData\Local\ov\pkg\isaac_sim-*``, with ``*`` corresponding to the Isaac Sim version. Installing Isaac Lab -------------------- Cloning Isaac Lab ~~~~~~~~~~~~~~~~~ .. note:: We recommend making a `fork <https://github.com/isaac-sim/IsaacLab/fork>`_ of the Isaac Lab repository to contribute to the project but this is not mandatory to use the framework. If you make a fork, please replace ``isaac-sim`` with your username in the following instructions. Clone the Isaac Lab repository into your workspace: .. code:: bash # Option 1: With SSH git clone [email protected]:isaac-sim/IsaacLab.git # Option 2: With HTTPS git clone https://github.com/isaac-sim/IsaacLab.git .. note:: We provide a helper executable `isaaclab.sh <https://github.com/isaac-sim/IsaacLab/blob/main/isaaclab.sh>`_ that provides utilities to manage extensions: .. tabs:: .. tab:: Linux .. code:: text ./isaaclab.sh --help usage: isaaclab.sh [-h] [-i] [-f] [-p] [-s] [-t] [-o] [-v] [-d] [-c] -- Utility to manage Isaac Lab. optional arguments: -h, --help Display the help content. -i, --install [LIB] Install the extensions inside Isaac Lab and learning frameworks (rl-games, rsl-rl, sb3, skrl) as extra dependencies. Default is 'all'. -f, --format Run pre-commit to format the code and check lints. -p, --python Run the python executable provided by Isaac Sim or virtual environment (if active). -s, --sim Run the simulator executable (isaac-sim.sh) provided by Isaac Sim. -t, --test Run all python unittest tests. -o, --docker Run the docker container helper script (docker/container.sh). -v, --vscode Generate the VSCode settings file from template. -d, --docs Build the documentation from source using sphinx. -c, --conda [NAME] Create the conda environment for Isaac Lab. Default name is 'isaaclab'. .. tab:: Windows .. code:: text isaaclab.bat --help usage: isaaclab.bat [-h] [-i] [-f] [-p] [-s] [-v] [-d] [-c] -- Utility to manage Isaac Lab. optional arguments: -h, --help Display the help content. -i, --install [LIB] Install the extensions inside Isaac Lab and learning frameworks (rl-games, rsl-rl, sb3, skrl) as extra dependencies. Default is 'all'. -f, --format Run pre-commit to format the code and check lints. -p, --python Run the python executable provided by Isaac Sim or virtual environment (if active). -s, --sim Run the simulator executable (isaac-sim.bat) provided by Isaac Sim. -t, --test Run all python unittest tests. -v, --vscode Generate the VSCode settings file from template. -d, --docs Build the documentation from source using sphinx. -c, --conda [NAME] Create the conda environment for Isaac Lab. Default name is 'isaaclab'. Creating the Isaac Sim Symbolic Link ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Set up a symbolic link between the installed Isaac Sim root folder and ``_isaac_sim`` in the Isaac Lab directory. This makes it convenient to index the python modules and look for extensions shipped with Isaac Sim. .. tabs:: .. tab:: Linux .. code:: bash # enter the cloned repository cd IsaacLab # create a symbolic link ln -s path_to_isaac_sim _isaac_sim # For example: ln -s /home/nvidia/.local/share/ov/pkg/isaac-sim-4.0.0 _isaac_sim .. tab:: Windows .. code:: batch :: enter the cloned repository cd IsaacLab :: create a symbolic link - requires launching Command Prompt with Administrator access mklink /D _isaac_sim path_to_isaac_sim # For example: mklink /D _isaac_sim C:/Users/nvidia/AppData/Local/ov/pkg/isaac-sim-4.0.0 Setting up the conda environment (optional) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. attention:: This step is optional. If you are using the bundled python with Isaac Sim, you can skip this step. The executable ``isaaclab.sh`` automatically fetches the python bundled with Isaac Sim, using ``./isaaclab.sh -p`` command (unless inside a virtual environment). This executable behaves like a python executable, and can be used to run any python script or module with the simulator. For more information, please refer to the `documentation <https://docs.omniverse.nvidia.com/isaacsim/latest/manual_standalone_python.html#isaac-sim-python-environment>`__. Although using a virtual environment is optional, we recommend using ``conda``. To install ``conda``, please follow the instructions `here <https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html>`__. In case you want to use ``conda`` to create a virtual environment, you can use the following command: .. tabs:: .. tab:: Linux .. code:: bash # Option 1: Default name for conda environment is 'isaaclab' ./isaaclab.sh --conda # or "./isaaclab.sh -c" # Option 2: Custom name for conda environment ./isaaclab.sh --conda my_env # or "./isaaclab.sh -c my_env" .. tab:: Windows .. code:: batch :: Option 1: Default name for conda environment is 'isaaclab' isaaclab.bat --conda :: or "isaaclab.bat -c" :: Option 2: Custom name for conda environment isaaclab.bat --conda my_env :: or "isaaclab.bat -c my_env" If you are using ``conda`` to create a virtual environment, make sure to activate the environment before running any scripts. For example: .. code:: bash conda activate isaaclab # or "conda activate my_env" Once you are in the virtual environment, you do not need to use ``./isaaclab.sh -p`` / ``isaaclab.bat -p`` to run python scripts. You can use the default python executable in your environment by running ``python`` or ``python3``. However, for the rest of the documentation, we will assume that you are using ``./isaaclab.sh -p`` / ``isaaclab.bat -p`` to run python scripts. This command is equivalent to running ``python`` or ``python3`` in your virtual environment. Installation ~~~~~~~~~~~~ - Install dependencies using ``apt`` (on Ubuntu): .. code:: bash sudo apt install cmake build-essential - Run the install command that iterates over all the extensions in ``source/extensions`` directory and installs them using pip (with ``--editable`` flag): .. tabs:: .. tab:: Linux .. code:: bash ./isaaclab.sh --install # or "./isaaclab.sh -i" .. tab:: Windows .. code:: bash isaaclab.bat --install :: or "isaaclab.bat -i" .. note:: By default, this will install all the learning frameworks. If you want to install only a specific framework, you can pass the name of the framework as an argument. For example, to install only the ``rl_games`` framework, you can run .. tabs:: .. tab:: Linux .. code:: bash ./isaaclab.sh --install rl_games .. tab:: Windows .. code:: bash isaaclab.bat --install rl_games :: or "isaaclab.bat -i" The valid options are ``rl_games``, ``rsl_rl``, ``sb3``, ``skrl``, ``robomimic``, ``none``.
8,488
reStructuredText
35.748918
170
0.627003
isaac-sim/IsaacLab/docs/source/setup/installation/verifying_installation.rst
Verifying the Installation ========================== Verifying the Isaac Sim installation ------------------------------------ Isaac Sim installed from pip ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - Make sure that your virtual environment is activated (if applicable) - Check that the simulator runs as expected: .. code:: bash # note: you can pass the argument "--help" to see all arguments possible. isaacsim By default, this will launch an empty mini Kit window. - To run with a specific experience file, run: .. code:: bash # experience files can be absolute path, or relative path searched in isaacsim/apps or omni/apps isaacsim omni.isaac.sim.python.kit .. attention:: When running Isaac Sim for the first time, all dependent extensions will be pulled from the registry. This process can take upwards of 10 minutes and is required on the first run of each experience file. Once the extensions are pulled, consecutive runs using the same experience file will use the cached extensions. In addition, the first run will prompt users to accept the Nvidia Omniverse License Agreement. To accept the EULA, reply ``Yes`` when prompted with the below message: .. code:: bash By installing or using Isaac Sim, I agree to the terms of NVIDIA OMNIVERSE LICENSE AGREEMENT (EULA) in https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html Do you accept the EULA? (Yes/No): Yes If the simulator does not run or crashes while following the above instructions, it means that something is incorrectly configured. To debug and troubleshoot, please check Isaac Sim `documentation <https://docs.omniverse.nvidia.com/dev-guide/latest/linux-troubleshooting.html>`__ and the `forums <https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_sim_forums.html>`__. Isaac Sim installed from binaries ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To avoid the overhead of finding and locating the Isaac Sim installation directory every time, we recommend exporting the following environment variables to your terminal for the remaining of the installation instructions: .. tabs:: .. tab:: Linux .. code:: bash # Isaac Sim root directory export ISAACSIM_PATH="${HOME}/.local/share/ov/pkg/isaac-sim-4.0.0" # Isaac Sim python executable export ISAACSIM_PYTHON_EXE="${ISAACSIM_PATH}/python.sh" .. tab:: Windows .. code:: batch :: Isaac Sim root directory set ISAACSIM_PATH="C:\Users\user\AppData\Local\ov\pkg\isaac-sim-4.0.0" :: Isaac Sim python executable set ISAACSIM_PYTHON_EXE="%ISAACSIM_PATH%\python.bat" For more information on common paths, please check the Isaac Sim `documentation <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_faq.html#common-path-locations>`__. - Check that the simulator runs as expected: .. tabs:: .. tab:: Linux .. code:: bash # note: you can pass the argument "--help" to see all arguments possible. ${ISAACSIM_PATH}/isaac-sim.sh .. tab:: Windows .. code:: batch :: note: you can pass the argument "--help" to see all arguments possible. %ISAACSIM_PATH%\isaac-sim.bat - Check that the simulator runs from a standalone python script: .. tabs:: .. tab:: Linux .. code:: bash # checks that python path is set correctly ${ISAACSIM_PYTHON_EXE} -c "print('Isaac Sim configuration is now complete.')" # checks that Isaac Sim can be launched from python ${ISAACSIM_PYTHON_EXE} ${ISAACSIM_PATH}/standalone_examples/api/omni.isaac.core/add_cubes.py .. tab:: Windows .. code:: batch :: checks that python path is set correctly %ISAACSIM_PYTHON_EXE% -c "print('Isaac Sim configuration is now complete.')" :: checks that Isaac Sim can be launched from python %ISAACSIM_PYTHON_EXE% %ISAACSIM_PATH%\standalone_examples\api\omni.isaac.core\add_cubes.py .. attention:: If you have been using a previous version of Isaac Sim, you need to run the following command for the *first* time after installation to remove all the old user data and cached variables: .. tabs:: .. tab:: Linux .. code:: bash ${ISAACSIM_PATH}/isaac-sim.sh --reset-user .. tab:: Windows .. code:: batch %ISAACSIM_PATH%\isaac-sim.bat --reset-user If the simulator does not run or crashes while following the above instructions, it means that something is incorrectly configured. To debug and troubleshoot, please check Isaac Sim `documentation <https://docs.omniverse.nvidia.com/dev-guide/latest/linux-troubleshooting.html>`__ and the `forums <https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_sim_forums.html>`__. Verifying the Isaac Lab installation ------------------------------------ To verify that the installation was successful, run the following command from the top of the repository: .. tabs:: .. tab:: Linux .. code:: bash # Option 1: Using the isaaclab.sh executable # note: this works for both the bundled python and the virtual environment ./isaaclab.sh -p source/standalone/tutorials/00_sim/create_empty.py # Option 2: Using python in your virtual environment python source/standalone/tutorials/00_sim/create_empty.py .. tab:: Windows .. code:: batch :: Option 1: Using the isaaclab.bat executable :: note: this works for both the bundled python and the virtual environment isaaclab.bat -p source\standalone\tutorials\00_sim\create_empty.py :: Option 2: Using python in your virtual environment python source\standalone\tutorials\00_sim\create_empty.py The above command should launch the simulator and display a window with a black ground plane. You can exit the script by pressing ``Ctrl+C`` on your terminal. On Windows machines, please terminate the process from Command Prompt using ``Ctrl+Break`` or ``Ctrl+fn+B``. If you see this, then the installation was successful! |:tada:|
6,221
reStructuredText
30.744898
122
0.675133
isaac-sim/IsaacLab/docs/source/setup/installation/index.rst
Installation Guide =================== .. image:: https://img.shields.io/badge/IsaacSim-4.0-silver.svg :target: https://developer.nvidia.com/isaac-sim :alt: IsaacSim 4.0 .. image:: https://img.shields.io/badge/python-3.10-blue.svg :target: https://www.python.org/downloads/release/python-31013/ :alt: Python 3.10 .. image:: https://img.shields.io/badge/platform-linux--64-orange.svg :target: https://releases.ubuntu.com/20.04/ :alt: Ubuntu 20.04 .. image:: https://img.shields.io/badge/platform-windows--64-orange.svg :target: https://www.microsoft.com/en-ca/windows/windows-11 :alt: Windows 11 .. caution:: We have dropped support for Isaac Sim versions 2023.1.0 and below. We recommend using the latest Isaac Sim 4.0 release to benefit from the latest features and improvements. For more information, please refer to the `Isaac Sim release notes <https://docs.omniverse.nvidia.com/isaacsim/latest/release_notes.html>`__. .. note:: We recommend system requirements with at least 32GB RAM and 16GB VRAM for Isaac Lab. For the full list of system requirements for Isaac Sim, please refer to the `Isaac Sim system requirements <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html#system-requirements>`_. As an experimental feature in Isaac Sim 4.0 release, Isaac Sim can also be installed through pip. This simplifies the installation process by avoiding the need to download the Omniverse Launcher and installing Isaac Sim through the launcher. Therefore, there are two ways to install Isaac Lab: .. toctree:: :maxdepth: 2 Installation using Isaac Sim pip (experimental) <pip_installation> binaries_installation verifying_installation cloud_installation
1,762
reStructuredText
37.326086
140
0.737798
isaac-sim/IsaacLab/docs/source/api/index.rst
API Reference ============= This page gives an overview of all the modules and classes in the Isaac Lab extensions. omni.isaac.lab extension ------------------------ The following modules are available in the ``omni.isaac.lab`` extension: .. currentmodule:: omni.isaac.lab .. autosummary:: :toctree: lab app actuators assets controllers devices envs managers markers scene sensors sim terrains utils .. toctree:: :hidden: lab/omni.isaac.lab.envs.mdp lab/omni.isaac.lab.envs.ui lab/omni.isaac.lab.sensors.patterns lab/omni.isaac.lab.sim.converters lab/omni.isaac.lab.sim.schemas lab/omni.isaac.lab.sim.spawners omni.isaac.lab_tasks extension -------------------------------- The following modules are available in the ``omni.isaac.lab_tasks`` extension: .. currentmodule:: omni.isaac.lab_tasks .. autosummary:: :toctree: lab_tasks utils .. toctree:: :hidden: lab_tasks/omni.isaac.lab_tasks.utils.wrappers lab_tasks/omni.isaac.lab_tasks.utils.data_collector
1,050
reStructuredText
17.120689
87
0.664762
isaac-sim/IsaacLab/docs/source/api/lab/omni.isaac.lab.utils.rst
omni.isaac.lab.utils ==================== .. automodule:: omni.isaac.lab.utils .. Rubric:: Submodules .. autosummary:: io array assets dict math noise string timer warp .. Rubric:: Functions .. autosummary:: configclass Configuration class ~~~~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.configclass :members: :show-inheritance: IO operations ~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.io :members: :imported-members: :show-inheritance: Array operations ~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.array :members: :show-inheritance: Asset operations ~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.assets :members: :show-inheritance: Dictionary operations ~~~~~~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.dict :members: :show-inheritance: Math operations ~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.math :members: :inherited-members: :show-inheritance: Noise operations ~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.noise :members: :imported-members: :inherited-members: :show-inheritance: :exclude-members: __init__, func String operations ~~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.string :members: :show-inheritance: Timer operations ~~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.timer :members: :show-inheritance: Warp operations ~~~~~~~~~~~~~~~ .. automodule:: omni.isaac.lab.utils.warp :members: :imported-members: :show-inheritance:
1,598
reStructuredText
14.831683
48
0.590738
isaac-sim/IsaacLab/docs/source/api/lab/omni.isaac.lab.envs.rst
omni.isaac.lab.envs =================== .. automodule:: omni.isaac.lab.envs .. rubric:: Submodules .. autosummary:: mdp ui .. rubric:: Classes .. autosummary:: ManagerBasedEnv ManagerBasedEnvCfg ViewerCfg ManagerBasedRLEnv ManagerBasedRLEnvCfg DirectRLEnv DirectRLEnvCfg Manager Based Environment ------------------------- .. autoclass:: ManagerBasedEnv :members: .. autoclass:: ManagerBasedEnvCfg :members: :exclude-members: __init__, class_type .. autoclass:: ViewerCfg :members: :exclude-members: __init__ Manager Based RL Environment ---------------------------- .. autoclass:: ManagerBasedRLEnv :members: :inherited-members: :show-inheritance: .. autoclass:: ManagerBasedRLEnvCfg :members: :inherited-members: :show-inheritance: :exclude-members: __init__, class_type Direct RL Environment --------------------- .. autoclass:: DirectRLEnv :members: :inherited-members: :show-inheritance: .. autoclass:: DirectRLEnvCfg :members: :inherited-members: :show-inheritance: :exclude-members: __init__, class_type
1,149
reStructuredText
16.424242
42
0.616188
isaac-sim/IsaacLab/docs/source/features/multi_gpu.rst
Multi-GPU and Multi-Node Training ================================= .. currentmodule:: omni.isaac.lab Isaac Lab supports multi-GPU and multi-node reinforcement learning on Linux. Multi-GPU Training ------------------ For complex reinforcement learning environments, it may be desirable to scale up training across multiple GPUs. This is possible in Isaac Lab with the ``rl_games`` RL library through the use of the `PyTorch distributed <https://pytorch.org/docs/stable/distributed.html>`_ framework. In this workflow, ``torch.distributed`` is used to launch multiple processes of training, where the number of processes must be equal to or less than the number of GPUs available. Each process runs on a dedicated GPU and launches its own instance of Isaac Sim and the Isaac Lab environment. Each process collects its own rollouts during the training process and has its own copy of the policy network. During training, gradients are aggregated across the processes and broadcasted back to the process at the end of the epoch. .. image:: ../_static/multigpu.png :align: center :alt: Multi-GPU training paradigm To train with multiple GPUs, use the following command, where ``--proc_per_node`` represents the number of available GPUs: .. code-block:: shell python -m torch.distributed.run --nnodes=1 --nproc_per_node=2 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed Due to limitations of NCCL on Windows, this feature is currently supported on Linux only. Multi-Node Training ------------------- To scale up training beyond multiple GPUs on a single machine, it is also possible to train across multiple nodes. To train across multiple nodes/machines, it is required to launch an individual process on each node. For the master node, use the following command, where ``--proc_per_node`` represents the number of available GPUs, and ``--nnodes`` represents the number of nodes: .. code-block:: shell python -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=0 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=localhost:5555 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed Note that the port (``5555``) can be replaced with any other available port. For non-master nodes, use the following command, replacing ``--node_rank`` with the index of each machine: .. code-block:: shell python -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=1 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=ip_of_master_machine:5555 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed For more details on multi-node training with PyTorch, please visit the `PyTorch documentation <https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html>`_. As mentioned in the PyTorch documentation, "multinode training is bottlenecked by inter-node communication latencies". When this latency is high, it is possible multi-node training will perform worse than running on a single node instance. Due to limitations of NCCL on Windows, this feature is currently supported on Linux only.
3,178
reStructuredText
52.881355
407
0.758024
isaac-sim/IsaacLab/docs/source/features/workflows.rst
.. _feature-workflows: Task Design Workflows ===================== .. currentmodule:: omni.isaac.lab Reinforcement learning environments can be implemented using two different workflows: Manager-based and Direct. This page outlines the two workflows, explaining their benefits and usecases. In addition, multi-GPU and multi-node reinforcement learning support is explained, along with the tiled rendering API, which can be used for efficient vectorized rendering across environments. Manager-Based Environments -------------------------- Manager-based environments promote modular implementations of reinforcement learning tasks through the use of Managers. Each component of the task, such as rewards, observations, termination can all be specified as individual configuration classes that are then passed to the corresponding manager classes. Each manager is responsible for parsing the configurations and processing the contents specified in each config class. The manager implementations are taken care of by the base class :class:`envs.ManagerBasedRLEnv`. With this approach, it is simple to switch implementations of some components in the task while leaving the remaining of the code intact. This is desirable when collaborating with others on implementing a reinforcement learning environment, where contributors may choose to use different combinations of configurations for the reinforcement learning components of the task. A class definition of a manager-based environment consists of defining a task configuration class that inherits from :class:`envs.ManagerBasedRLEnvCfg`. This class should contain variables assigned to various configuration classes for each of the components of the RL task, such as the ``ObservationCfg`` or ``RewardCfg``. The entry point of the environment becomes the base class :class:`envs.ManagerBasedRLEnv`, which will process the main task config and iterate through the individual configuration classes that are defined in the task config class. An example of implementing the reward function for the Cartpole task using the manager-based implementation is as follow: .. code-block:: python @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Constant running reward alive = RewTerm(func=mdp.is_alive, weight=1.0) # (2) Failure penalty terminating = RewTerm(func=mdp.is_terminated, weight=-2.0) # (3) Primary task: keep pole upright pole_pos = RewTerm( func=mdp.joint_pos_target_l2, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "target": 0.0}, ) # (4) Shaping tasks: lower cart velocity cart_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"])}, ) # (5) Shaping tasks: lower pole angular velocity pole_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.005, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"])}, ) .. seealso:: We provide a more detailed tutorial for setting up a RL environment using the manager-based workflow at `Creating a manager-based RL Environment <../tutorials/03_envs/create_rl_env.html>`_. Direct Environments ------------------- The direct-style environment more closely aligns with traditional implementations of reinforcement learning environments, where a single script implements the reward function, observation function, resets, and all other components of the environment. This approach does not use the Manager classes. Instead, users are left with the freedom to implement the APIs from the base class :class:`envs.DirectRLEnv`. For users migrating from the IsaacGymEnvs or OmniIsaacGymEnvs framework, this workflow will have a closer implementation to the previous frameworks. When defining an environment following the direct-style implementation, a task configuration class inheriting from :class:`envs.DirectRLEnvCfg` is used for defining task environment configuration variables, such as the number of observations and actions. Adding configuration classes for the managers are not required and will not be processed by the base class. In addition to the configuration class, the logic of the task should be defined in a new task class that inherits from the base class :class:`envs.DirectRLEnv`. This class will then implement the main task logics, including setting up the scene, processing the actions, computing resets, rewards, and observations. This approach may bring more performance benefits for the environment, as it allows implementing large chunks of logic with optimized frameworks such as `PyTorch Jit <https://pytorch.org/docs/stable/jit.html>`_ or `Warp <https://github.com/NVIDIA/warp>`_. This may be important when scaling up training for large and complex environments. Additionally, data may be cached in class variables and reused in multiple APIs for the class. This method provides more transparency in the implementations of the environments, as logic is defined within the task class instead of abstracted with the use the Managers. An example of implementing the reward function for the Cartpole task using the Direct-style implementation is as follow: .. code-block:: python def _get_rewards(self) -> torch.Tensor: total_reward = compute_rewards( self.cfg.rew_scale_alive, self.cfg.rew_scale_terminated, self.cfg.rew_scale_pole_pos, self.cfg.rew_scale_cart_vel, self.cfg.rew_scale_pole_vel, self.joint_pos[:, self._pole_dof_idx[0]], self.joint_vel[:, self._pole_dof_idx[0]], self.joint_pos[:, self._cart_dof_idx[0]], self.joint_vel[:, self._cart_dof_idx[0]], self.reset_terminated, ) return total_reward @torch.jit.script def compute_rewards( rew_scale_alive: float, rew_scale_terminated: float, rew_scale_pole_pos: float, rew_scale_cart_vel: float, rew_scale_pole_vel: float, pole_pos: torch.Tensor, pole_vel: torch.Tensor, cart_pos: torch.Tensor, cart_vel: torch.Tensor, reset_terminated: torch.Tensor, ): rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) rew_termination = rew_scale_terminated * reset_terminated.float() rew_pole_pos = rew_scale_pole_pos * torch.sum(torch.square(pole_pos), dim=-1) rew_cart_vel = rew_scale_cart_vel * torch.sum(torch.abs(cart_vel), dim=-1) rew_pole_vel = rew_scale_pole_vel * torch.sum(torch.abs(pole_vel), dim=-1) total_reward = rew_alive + rew_termination + rew_pole_pos + rew_cart_vel + rew_pole_vel return total_reward .. seealso:: We provide a more detailed tutorial for setting up a RL environment using the direct workflow at `Creating a Direct Workflow RL Environment <../tutorials/03_envs/create_direct_rl_env.html>`_. Multi-GPU Training ------------------ For complex reinforcement learning environments, it may be desirable to scale up training across multiple GPUs. This is possible in Isaac Lab with the ``rl_games`` RL library through the use of the `PyTorch distributed <https://pytorch.org/docs/stable/distributed.html>`_ framework. In this workflow, ``torch.distributed`` is used to launch multiple processes of training, where the number of processes must be equal to or less than the number of GPUs available. Each process runs on a dedicated GPU and launches its own instance of Isaac Sim and the Isaac Lab environment. Each process collects its own rollouts during the training process and has its own copy of the policy network. During training, gradients are aggregated across the processes and broadcasted back to the process at the end of the epoch. .. image:: ../_static/multigpu.png :align: center :alt: Multi-GPU training paradigm To train with multiple GPUs, use the following command, where ``--proc_per_node`` represents the number of available GPUs: .. code-block:: shell python -m torch.distributed.run --nnodes=1 --nproc_per_node=2 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed Multi-Node Training ------------------- To scale up training beyond multiple GPUs on a single machine, it is also possible to train across multiple nodes. To train across multiple nodes/machines, it is required to launch an individual process on each node. For the master node, use the following command, where ``--proc_per_node`` represents the number of available GPUs, and ``--nnodes`` represents the number of nodes: .. code-block:: shell python -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=0 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=localhost:5555 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed Note that the port (``5555``) can be replaced with any other available port. For non-master nodes, use the following command, replacing ``--node_rank`` with the index of each machine: .. code-block:: shell python -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=1 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=ip_of_master_machine:5555 source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --distributed For more details on multi-node training with PyTorch, please visit the `PyTorch documentation <https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html>`_. As mentioned in the PyTorch documentation, "multinode training is bottlenecked by inter-node communication latencies". When this latency is high, it is possible multi-node training will perform worse than running on a single node instance. Tiled Rendering --------------- Tiled rendering APIs provide a vectorized interface for collecting data from camera sensors. This is useful for reinforcement learning environments requiring vision in the loop. Tiled rendering works by concatenating camera outputs from multiple cameras and rending one single large image instead of multiple smaller images that would have been produced by each individual camera. This reduces the amount of time required for rendering and provides a more efficient API for working with vision data. Isaac Lab provides tiled rendering APIs for RGB and depth data through the :class:`~sensors.TiledCamera` class. Configurations for the tiled rendering APIs can be defined through the :class:`~sensors.TiledCameraCfg` class, specifying parameters such as the regex expression for all camera paths, the transform for the cameras, the desired data type, the type of cameras to add to the scene, and the camera resolution. .. code-block:: python tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["rgb"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) To access the tiled rendering interface, a :class:`~sensors.TiledCamera` object can be created and used to retrieve data from the cameras. .. code-block:: python tiled_camera = TiledCamera(cfg.tiled_camera) data_type = "rgb" data = tiled_camera.data.output[data_type] The returned data will be transformed into the shape (num_cameras, height, width, num_channels), which can be used directly as observation for reinforcement learning. When working with rendering, make sure to add the ``--enable_cameras`` argument when launching the environment. For example: .. code-block:: shell python source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-RGB-Camera-Direct-v0 --headless --enable_cameras
12,063
reStructuredText
49.476987
407
0.735555
isaac-sim/IsaacLab/docs/source/features/tiled_rendering.rst
Tiled Rendering and Recording ============================= .. currentmodule:: omni.isaac.lab Tiled Rendering --------------- .. note:: This feature is only available from Isaac Sim version 4.0.0. Tiled rendering APIs provide a vectorized interface for collecting data from camera sensors. This is useful for reinforcement learning environments requiring vision in the loop. Tiled rendering works by concatenating camera outputs from multiple cameras and rendering one single large image instead of multiple smaller images that would have been produced by each individual camera. This reduces the amount of time required for rendering and provides a more efficient API for working with vision data. Isaac Lab provides tiled rendering APIs for RGB and depth data through the :class:`~sensors.TiledCamera` class. Configurations for the tiled rendering APIs can be defined through the :class:`~sensors.TiledCameraCfg` class, specifying parameters such as the regex expression for all camera paths, the transform for the cameras, the desired data type, the type of cameras to add to the scene, and the camera resolution. .. code-block:: python tiled_camera: TiledCameraCfg = TiledCameraCfg( prim_path="/World/envs/env_.*/Camera", offset=TiledCameraCfg.OffsetCfg(pos=(-7.0, 0.0, 3.0), rot=(0.9945, 0.0, 0.1045, 0.0), convention="world"), data_types=["rgb"], spawn=sim_utils.PinholeCameraCfg( focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 20.0) ), width=80, height=80, ) To access the tiled rendering interface, a :class:`~sensors.TiledCamera` object can be created and used to retrieve data from the cameras. .. code-block:: python tiled_camera = TiledCamera(cfg.tiled_camera) data_type = "rgb" data = tiled_camera.data.output[data_type] The returned data will be transformed into the shape (num_cameras, height, width, num_channels), which can be used directly as observation for reinforcement learning. When working with rendering, make sure to add the ``--enable_cameras`` argument when launching the environment. For example: .. code-block:: shell python source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-RGB-Camera-Direct-v0 --headless --enable_cameras Recording during training ------------------------- Isaac Lab supports recording video clips during training using the `gymnasium.wrappers.RecordVideo <https://gymnasium.farama.org/main/_modules/gymnasium/wrappers/record_video/>`_ class. This feature can be enabled by using the following command line arguments with the training script: * ``--video`` - enables video recording during training * ``--video_length`` - length of each recorded video (in steps) * ``--video_interval`` - interval between each video recording (in steps) Make sure to also add the ``--enable_cameras`` argument when running headless. Note that enabling recording is equivalent to enabling rendering during training, which will slow down both startup and runtime performance. Example usage: .. code-block:: shell python source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-v0 --headless --enable_cameras --video --video_length 100 --video_interval 500 Recorded videos will be saved in the same directory as the training checkpoints, under ``IsaacLab/logs/<rl_workflow>/<task>/<run>/videos``.
3,424
reStructuredText
41.28395
185
0.740362
isaac-sim/IsaacLab/docs/source/features/environments.rst
Environments ============ The following lists comprises of all the RL tasks implementations that are available in Isaac Lab. While we try to keep this list up-to-date, you can always get the latest list of environments by running the following command: .. code-block:: bash ./isaaclab.sh -p source/standalone/environments/list_envs.py We are actively working on adding more environments to the list. If you have any environments that you would like to add to Isaac Lab, please feel free to open a pull request! Classic ------- Classic environments that are based on IsaacGymEnvs implementation of MuJoCo-style environments. .. table:: :widths: 33 37 30 +------------------+-----------------------------+-------------------------------------------------------------------------+ | World | Environment ID | Description | +==================+=============================+=========================================================================+ | |humanoid| | | |humanoid-link| | Move towards a direction with the MuJoCo humanoid robot | | | | |humanoid-direct-link| | | +------------------+-----------------------------+-------------------------------------------------------------------------+ | |ant| | | |ant-link| | Move towards a direction with the MuJoCo ant robot | | | | |ant-direct-link| | | +------------------+-----------------------------+-------------------------------------------------------------------------+ | |cartpole| | | |cartpole-link| | Move the cart to keep the pole upwards in the classic cartpole control | | | | |cartpole-direct-link| | | | | | |cartpole-camera-rgb-link|| | | | | |cartpole-camera-dpt-link|| | +------------------+-----------------------------+-------------------------------------------------------------------------+ .. |humanoid| image:: ../_static/tasks/classic/humanoid.jpg .. |ant| image:: ../_static/tasks/classic/ant.jpg .. |cartpole| image:: ../_static/tasks/classic/cartpole.jpg .. |humanoid-link| replace:: `Isaac-Humanoid-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/humanoid/humanoid_env_cfg.py>`__ .. |ant-link| replace:: `Isaac-Ant-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/ant/ant_env_cfg.py>`__ .. |cartpole-link| replace:: `Isaac-Cartpole-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/classic/cartpole/cartpole_env_cfg.py>`__ .. |humanoid-direct-link| replace:: `Isaac-Humanoid-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/humanoid/humanoid_env.py>`__ .. |ant-direct-link| replace:: `Isaac-Ant-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/ant/ant_env.py>`__ .. |cartpole-direct-link| replace:: `Isaac-Cartpole-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_env.py>`__ .. |cartpole-camera-rgb-link| replace:: `Isaac-Cartpole-RGB-Camera-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_camera_env.py>`__ .. |cartpole-camera-dpt-link| replace:: `Isaac-Cartpole-Depth-Camera-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/cartpole/cartpole_camera_env.py>`__ Manipulation ------------ Environments based on fixed-arm manipulation tasks. For many of these tasks, we include configurations with different arm action spaces. For example, for the reach environment: * |lift-cube-link|: Franka arm with joint position control * |lift-cube-ik-abs-link|: Franka arm with absolute IK control * |lift-cube-ik-rel-link|: Franka arm with relative IK control .. table:: :widths: 33 37 30 +----------------+---------------------------+-----------------------------------------------------------------------------+ | World | Environment ID | Description | +================+===========================+=============================================================================+ | |reach-franka| | |reach-franka-link| | Move the end-effector to a sampled target pose with the Franka robot | +----------------+---------------------------+-----------------------------------------------------------------------------+ | |reach-ur10| | |reach-ur10-link| | Move the end-effector to a sampled target pose with the UR10 robot | +----------------+---------------------------+-----------------------------------------------------------------------------+ | |lift-cube| | |lift-cube-link| | Pick a cube and bring it to a sampled target position with the Franka robot | +----------------+---------------------------+-----------------------------------------------------------------------------+ | |cabi-franka| | |cabi-franka-link| | Grasp the handle of a cabinet's drawer and open it with the Franka robot | +----------------+---------------------------+-----------------------------------------------------------------------------+ | |cube-allegro| | |cube-allegro-link| | In-hand reorientation of a cube using Allegro hand | +----------------+---------------------------+-----------------------------------------------------------------------------+ | |cube-shadow| | | |cube-shadow-link| | In-hand reorientation of a cube using Shadow hand | | | | |cube-shadow-ff-link| | | | | | |cube-shadow-lstm-link| | | +----------------+---------------------------+-----------------------------------------------------------------------------+ .. |reach-franka| image:: ../_static/tasks/manipulation/franka_reach.jpg .. |reach-ur10| image:: ../_static/tasks/manipulation/ur10_reach.jpg .. |lift-cube| image:: ../_static/tasks/manipulation/franka_lift.jpg .. |cabi-franka| image:: ../_static/tasks/manipulation/franka_open_drawer.jpg .. |cube-allegro| image:: ../_static/tasks/manipulation/allegro_cube.jpg .. |cube-shadow| image:: ../_static/tasks/manipulation/shadow_cube.jpg .. |reach-franka-link| replace:: `Isaac-Reach-Franka-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/reach/config/franka/joint_pos_env_cfg.py>`__ .. |reach-ur10-link| replace:: `Isaac-Reach-UR10-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/reach/config/ur_10/joint_pos_env_cfg.py>`__ .. |lift-cube-link| replace:: `Isaac-Lift-Cube-Franka-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/lift/config/franka/joint_pos_env_cfg.py>`__ .. |lift-cube-ik-abs-link| replace:: `Isaac-Lift-Cube-Franka-IK-Abs-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/lift/config/franka/ik_abs_env_cfg.py>`__ .. |lift-cube-ik-rel-link| replace:: `Isaac-Lift-Cube-Franka-IK-Rel-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/lift/config/franka/ik_rel_env_cfg.py>`__ .. |cabi-franka-link| replace:: `Isaac-Open-Drawer-Franka-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/cabinet/config/franka/joint_pos_env_cfg.py>`__ .. |cube-allegro-link| replace:: `Isaac-Repose-Cube-Allegro-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/manipulation/inhand/config/allegro_hand/allegro_env_cfg.py>`__ .. |cube-shadow-link| replace:: `Isaac-Shadow-Hand-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env.py>`__ .. |cube-shadow-ff-link| replace:: `Isaac-Shadow-Hand-OpenAI-FF-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env.py>`__ .. |cube-shadow-lstm-link| replace:: `Isaac-Shadow-Hand-OpenAI-LSTM-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/shadow_hand/shadow_hand_env.py>`__ Locomotion ---------- Environments based on legged locomotion tasks. .. table:: :widths: 33 37 30 +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | World | Environment ID | Description | +==============================+==============================================+=========================================================================+ | |velocity-flat-anymal-b| | |velocity-flat-anymal-b-link| | Track a velocity command on flat terrain with the Anymal B robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-anymal-b| | |velocity-rough-anymal-b-link| | Track a velocity command on rough terrain with the Anymal B robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-anymal-c| | | |velocity-flat-anymal-c-link| | Track a velocity command on flat terrain with the Anymal C robot | | | | |velocity-flat-anymal-c-direct-link| | | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-anymal-c| | | |velocity-rough-anymal-c-link| | Track a velocity command on rough terrain with the Anymal C robot | | | | |velocity-rough-anymal-c-direct-link| | | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-anymal-d| | |velocity-flat-anymal-d-link| | Track a velocity command on flat terrain with the Anymal D robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-anymal-d| | |velocity-rough-anymal-d-link| | Track a velocity command on rough terrain with the Anymal D robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-unitree-a1| | |velocity-flat-unitree-a1-link| | Track a velocity command on flat terrain with the Unitree A1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-unitree-a1| | |velocity-rough-unitree-a1-link| | Track a velocity command on rough terrain with the Unitree A1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-unitree-go1| | |velocity-flat-unitree-go1-link| | Track a velocity command on flat terrain with the Unitree Go1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-unitree-go1| | |velocity-rough-unitree-go1-link| | Track a velocity command on rough terrain with the Unitree Go1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-unitree-go2| | |velocity-flat-unitree-go2-link| | Track a velocity command on flat terrain with the Unitree Go2 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-unitree-go2| | |velocity-rough-unitree-go2-link| | Track a velocity command on rough terrain with the Unitree Go2 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-flat-h1| | |velocity-flat-h1-link| | Track a velocity command on flat terrain with the Unitree H1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ | |velocity-rough-h1| | |velocity-rough-h1-link| | Track a velocity command on rough terrain with the Unitree H1 robot | +------------------------------+----------------------------------------------+-------------------------------------------------------------------------+ .. |velocity-flat-anymal-b-link| replace:: `Isaac-Velocity-Flat-Anymal-B-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_b/flat_env_cfg.py>`__ .. |velocity-rough-anymal-b-link| replace:: `Isaac-Velocity-Rough-Anymal-B-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_b/rough_env_cfg.py>`__ .. |velocity-flat-anymal-c-link| replace:: `Isaac-Velocity-Flat-Anymal-C-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_c/flat_env_cfg.py>`__ .. |velocity-rough-anymal-c-link| replace:: `Isaac-Velocity-Rough-Anymal-C-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_c/rough_env_cfg.py>`__ .. |velocity-flat-anymal-c-direct-link| replace:: `Isaac-Velocity-Flat-Anymal-C-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/anymal_c_env.py>`__ .. |velocity-rough-anymal-c-direct-link| replace:: `Isaac-Velocity-Rough-Anymal-C-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/anymal_c/anymal_c_env.py>`__ .. |velocity-flat-anymal-d-link| replace:: `Isaac-Velocity-Flat-Anymal-D-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_d/flat_env_cfg.py>`__ .. |velocity-rough-anymal-d-link| replace:: `Isaac-Velocity-Rough-Anymal-D-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/anymal_d/rough_env_cfg.py>`__ .. |velocity-flat-unitree-a1-link| replace:: `Isaac-Velocity-Flat-Unitree-A1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_a1/flat_env_cfg.py>`__ .. |velocity-rough-unitree-a1-link| replace:: `Isaac-Velocity-Rough-Unitree-A1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_a1/rough_env_cfg.py>`__ .. |velocity-flat-unitree-go1-link| replace:: `Isaac-Velocity-Flat-Unitree-Go1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go1/flat_env_cfg.py>`__ .. |velocity-rough-unitree-go1-link| replace:: `Isaac-Velocity-Rough-Unitree-Go1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go1/rough_env_cfg.py>`__ .. |velocity-flat-unitree-go2-link| replace:: `Isaac-Velocity-Flat-Unitree-Go2-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go2/flat_env_cfg.py>`__ .. |velocity-rough-unitree-go2-link| replace:: `Isaac-Velocity-Rough-Unitree-Go2-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/unitree_go2/rough_env_cfg.py>`__ .. |velocity-flat-h1-link| replace:: `Isaac-Velocity-Flat-H1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/h1/flat_env_cfg.py>`__ .. |velocity-rough-h1-link| replace:: `Isaac-Velocity-Rough-H1-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/locomotion/velocity/config/h1/rough_env_cfg.py>`__ .. |velocity-flat-anymal-b| image:: ../_static/tasks/locomotion/anymal_b_flat.jpg .. |velocity-rough-anymal-b| image:: ../_static/tasks/locomotion/anymal_b_rough.jpg .. |velocity-flat-anymal-c| image:: ../_static/tasks/locomotion/anymal_c_flat.jpg .. |velocity-rough-anymal-c| image:: ../_static/tasks/locomotion/anymal_c_rough.jpg .. |velocity-flat-anymal-d| image:: ../_static/tasks/locomotion/anymal_d_flat.jpg .. |velocity-rough-anymal-d| image:: ../_static/tasks/locomotion/anymal_d_rough.jpg .. |velocity-flat-unitree-a1| image:: ../_static/tasks/locomotion/a1_flat.jpg .. |velocity-rough-unitree-a1| image:: ../_static/tasks/locomotion/a1_rough.jpg .. |velocity-flat-unitree-go1| image:: ../_static/tasks/locomotion/go1_flat.jpg .. |velocity-rough-unitree-go1| image:: ../_static/tasks/locomotion/go1_rough.jpg .. |velocity-flat-unitree-go2| image:: ../_static/tasks/locomotion/go2_flat.jpg .. |velocity-rough-unitree-go2| image:: ../_static/tasks/locomotion/go2_rough.jpg .. |velocity-flat-h1| image:: ../_static/tasks/locomotion/h1_flat.jpg .. |velocity-rough-h1| image:: ../_static/tasks/locomotion/h1_rough.jpg Navigation ---------- .. table:: :widths: 33 37 30 +----------------+---------------------+-----------------------------------------------------------------------------+ | World | Environment ID | Description | +================+=====================+=============================================================================+ | |anymal_c_nav| | |anymal_c_nav-link| | Navigate towards a target x-y position and heading with the ANYmal C robot. | +----------------+---------------------+-----------------------------------------------------------------------------+ .. |anymal_c_nav-link| replace:: `Isaac-Navigation-Flat-Anymal-C-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based/navigation/config/anymal_c/navigation_env_cfg.py>`__ .. |anymal_c_nav| image:: ../_static/tasks/navigation/anymal_c_nav.jpg Others ------ .. table:: :widths: 33 37 30 +----------------+---------------------+-----------------------------------------------------------------------------+ | World | Environment ID | Description | +================+=====================+=============================================================================+ | |quadcopter| | |quadcopter-link| | Fly and hover the Crazyflie copter at a goal point by applying thrust. | +----------------+---------------------+-----------------------------------------------------------------------------+ .. |quadcopter-link| replace:: `Isaac-Quadcopter-Direct-v0 <https://github.com/isaac-sim/IsaacLab/blob/main/source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct/quadcopter/quadcopter_env.py>`__ .. |quadcopter| image:: ../_static/tasks/others/quadcopter.jpg
22,201
reStructuredText
99.461538
266
0.516553
isaac-sim/IsaacLab/docs/source/refs/changelog.rst
Extensions Changelog ==================== All notable changes to this project are documented in this file. The format is based on `Keep a Changelog <https://keepachangelog.com/en/1.0.0/>`__ and this project adheres to `Semantic Versioning <https://semver.org/spec/v2.0.0.html>`__. For a broader information about the changes in the framework, please refer to the `release notes <https://github.com/isaac-sim/IsaacLab/releases/>`__. Each extension has its own changelog. The changelog for each extension is located in the ``docs`` directory of the extension. The changelog for each extension is also included in this changelog to make it easier to find the changelog for a specific extension. omni.isaac.lab -------------- Extension containing the core framework of Isaac Lab. .. include:: ../../../source/extensions/omni.isaac.lab/docs/CHANGELOG.rst :start-line: 3 omni.isaac.lab_assets --------------------- Extension for configurations of various assets and sensors for Isaac Lab. .. include:: ../../../source/extensions/omni.isaac.lab_assets/docs/CHANGELOG.rst :start-line: 3 omni.isaac.lab_tasks -------------------- Extension containing the environments built using Isaac Lab. .. include:: ../../../source/extensions/omni.isaac.lab_tasks/docs/CHANGELOG.rst :start-line: 3
1,299
reStructuredText
32.333333
89
0.712086
isaac-sim/IsaacLab/docs/source/migration/migrating_from_omniisaacgymenvs.rst
.. _migrating-from-omniisaacgymenvs: Migrating from OmniIsaacGymEnvs =============================== .. currentmodule:: omni.isaac.lab OmniIsaacGymEnvs was a reinforcement learning framework using the Isaac Sim platform. Features from OmniIsaacGymEnvs have been integrated into the Isaac Lab framework. We have updated OmniIsaacGymEnvs to Isaac Sim version 4.0.0 to support the migration process to Isaac Lab. Moving forward, OmniIsaacGymEnvs will be deprecated and future development will continue in Isaac Lab. Task Config Setup ~~~~~~~~~~~~~~~~~ In OmniIsaacGymEnvs, task config files were defined in ``.yaml`` format. With Isaac Lab, configs are now specified using a specialized Python class :class:`~omni.isaac.lab.utils.configclass`. The :class:`~omni.isaac.lab.utils.configclass` module provides a wrapper on top of Python's ``dataclasses`` module. Each environment should specify its own config class annotated by ``@configclass`` that inherits from :class:`~envs.DirectRLEnvCfg`, which can include simulation parameters, environment scene parameters, robot parameters, and task-specific parameters. Below is an example skeleton of a task config class: .. code-block:: python from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg @configclass class MyEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg() # robot robot_cfg: ArticulationCfg = ArticulationCfg() # scene scene: InteractiveSceneCfg = InteractiveSceneCfg() # env decimation = 2 episode_length_s = 5.0 num_actions = 1 num_observations = 4 num_states = 0 # task-specific parameters ... Simulation Config ----------------- Simulation related parameters are defined as part of the :class:`~omni.isaac.lab.sim.SimulationCfg` class, which is a :class:`~omni.isaac.lab.utils.configclass` module that holds simulation parameters such as ``dt``, ``device``, and ``gravity``. Each task config must have a variable named ``sim`` defined that holds the type :class:`~omni.isaac.lab.sim.SimulationCfg`. Simulation parameters for articulations and rigid bodies such as ``num_position_iterations``, ``num_velocity_iterations``, ``contact_offset``, ``rest_offset``, ``bounce_threshold_velocity``, ``max_depenetration_velocity`` can all be specified on a per-actor basis in the config class for each individual articulation and rigid body. When running simulation on the GPU, buffers in PhysX require pre-allocation for computing and storing information such as contacts, collisions and aggregate pairs. These buffers may need to be adjusted depending on the complexity of the environment, the number of expected contacts and collisions, and the number of actors in the environment. The :class:`~omni.isaac.lab.sim.PhysxCfg` class provides access for setting the GPU buffer dimensions. +--------------------------------------------------------------+-------------------------------------------------------------------+ | | | |.. code-block:: yaml |.. code-block:: python | | | | | # OmniIsaacGymEnvs | # IsaacLab | | sim: | sim: SimulationCfg = SimulationCfg( | | dt: 0.0083 # 1/120 s | dt=1 / 120, | | use_gpu_pipeline: ${eq:${...pipeline},"gpu"} | use_gpu_pipeline=True, | | use_fabric: True | use_fabric=True, | | enable_scene_query_support: False | enable_scene_query_support=False, | | disable_contact_processing: False | disable_contact_processing=False, | | gravity: [0.0, 0.0, -9.81] | gravity=(0.0, 0.0, -9.81), | | | | | default_physics_material: | physics_material=RigidBodyMaterialCfg( | | static_friction: 1.0 | static_friction=1.0, | | dynamic_friction: 1.0 | dynamic_friction=1.0, | | restitution: 0.0 | restitution=0.0 | | | ) | | physx: | physx: PhysxCfg = PhysxCfg( | | worker_thread_count: ${....num_threads} | # worker_thread_count is no longer needed | | solver_type: ${....solver_type} | solver_type=1, | | use_gpu: ${contains:"cuda",${....sim_device}} | use_gpu=True, | | solver_position_iteration_count: 4 | max_position_iteration_count=4, | | solver_velocity_iteration_count: 0 | max_velocity_iteration_count=0, | | contact_offset: 0.02 | # moved to actor config | | rest_offset: 0.001 | # moved to actor config | | bounce_threshold_velocity: 0.2 | bounce_threshold_velocity=0.2, | | friction_offset_threshold: 0.04 | friction_offset_threshold=0.04, | | friction_correlation_distance: 0.025 | friction_correlation_distance=0.025, | | enable_sleeping: True | # enable_sleeping is no longer needed | | enable_stabilization: True | enable_stabilization=True, | | max_depenetration_velocity: 100.0 | # moved to RigidBodyPropertiesCfg | | | | | gpu_max_rigid_contact_count: 524288 | gpu_max_rigid_contact_count=2**23, | | gpu_max_rigid_patch_count: 81920 | gpu_max_rigid_patch_count=5 * 2**15, | | gpu_found_lost_pairs_capacity: 1024 | gpu_found_lost_pairs_capacity=2**21, | | gpu_found_lost_aggregate_pairs_capacity: 262144 | gpu_found_lost_aggregate_pairs_capacity=2**25, | | gpu_total_aggregate_pairs_capacity: 1024 | gpu_total_aggregate_pairs_capacity=2**21, | | gpu_heap_capacity: 67108864 | gpu_heap_capacity=2**26, | | gpu_temp_buffer_capacity: 16777216 | gpu_temp_buffer_capacity=2**24, | | gpu_max_num_partitions: 8 | gpu_max_num_partitions=8, | | gpu_max_soft_body_contacts: 1048576 | gpu_max_soft_body_contacts=2**20, | | gpu_max_particle_contacts: 1048576 | gpu_max_particle_contacts=2**20, | | | ) | | | ) | +--------------------------------------------------------------+-------------------------------------------------------------------+ Parameters such as ``add_ground_plane`` and ``add_distant_light`` are now part of the task logic when creating the scene. ``enable_cameras`` is now a command line argument ``--enable_cameras`` that can be passed directly to the training script. Scene Config ------------ The :class:`~omni.isaac.lab.scene.InteractiveSceneCfg` class can be used to specify parameters related to the scene, such as the number of environments and the spacing between environments. Each task config must have a variable named ``scene`` defined that holds the type :class:`~omni.isaac.lab.scene.InteractiveSceneCfg`. +--------------------------------------------------------------+-------------------------------------------------------------------+ | | | |.. code-block:: yaml |.. code-block:: python | | | | | # OmniIsaacGymEnvs | # IsaacLab | | env: | scene: InteractiveSceneCfg = InteractiveSceneCfg( | | numEnvs: ${resolve_default:512,${...num_envs}} | num_envs=512, | | envSpacing: 4.0 | env_spacing=4.0) | +--------------------------------------------------------------+-------------------------------------------------------------------+ Task Config ----------- Each environment should specify its own config class that holds task specific parameters, such as the dimensions of the observation and action buffers. Reward term scaling parameters can also be specified in the config class. In Isaac Lab, the ``controlFrequencyInv`` parameter has been renamed to ``decimation``, which must be specified as a parameter in the config class. In addition, the maximum episode length parameter (now ``episode_length_s``) is in seconds instead of steps as it was in OmniIsaacGymEnvs. To convert between step count to seconds, use the equation: ``episode_length_s = dt * decimation * num_steps``. The following parameters must be set for each environment config: .. code-block:: python decimation = 2 episode_length_s = 5.0 num_actions = 1 num_observations = 4 num_states = 0 RL Config Setup ~~~~~~~~~~~~~~~ RL config files for the rl_games library can continue to be defined in ``.yaml`` files in Isaac Lab. Most of the content of the config file can be copied directly from OmniIsaacGymEnvs. Note that in Isaac Lab, we do not use hydra to resolve relative paths in config files. Please replace any relative paths such as ``${....device}`` with the actual values of the parameters. Additionally, the observation and action clip ranges have been moved to the RL config file. For any ``clipObservations`` and ``clipActions`` parameters that were defined in the IsaacGymEnvs task config file, they should be moved to the RL config file in Isaac Lab. +--------------------------+----------------------------+ | | | | IsaacGymEnvs Task Config | Isaac Lab RL Config | +--------------------------+----------------------------+ |.. code-block:: yaml |.. code-block:: yaml | | | | | # OmniIsaacGymEnvs | # IsaacLab | | env: | params: | | clipObservations: 5.0 | env: | | clipActions: 1.0 | clip_observations: 5.0 | | | clip_actions: 1.0 | +--------------------------+----------------------------+ Environment Creation ~~~~~~~~~~~~~~~~~~~~ In OmniIsaacGymEnvs, environment creation generally happened in the ``set_up_scene()`` API, which involved creating the initial environment, cloning the environment, filtering collisions, adding the ground plane and lights, and creating the ``View`` classes for the actors. Similar functionality is performed in Isaac Lab in the ``_setup_scene()`` API. The main difference is that the base class ``_setup_scene()`` no longer performs operations for cloning the environment and adding ground plane and lights. Instead, these operations should now be implemented in individual tasks' ``_setup_scene`` implementations to provide more flexibility around the scene setup process. Also note that by defining an ``Articulation`` or ``RigidObject`` object, the actors will be added to the scene by parsing the ``spawn`` parameter in the actor config and a ``View`` class will automatically be created for the actor. This avoids the need to separately define an ``ArticulationView`` or ``RigidPrimView`` object for the actors. +------------------------------------------------------------------------------+------------------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------------------+------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def set_up_scene(self, scene) -> None: | def _setup_scene(self): | | self.get_cartpole() | self.cartpole = Articulation(self.cfg.robot_cfg) | | super().set_up_scene(scene) | # add ground plane | | | spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg() | | self._cartpoles = ArticulationView( | # clone, filter, and replicate | | prim_paths_expr="/World/envs/.*/Cartpole", | self.scene.clone_environments(copy_from_source=False) | | name="cartpole_view", reset_xform_properties=False | self.scene.filter_collisions(global_prim_paths=[]) | | ) | # add articultion to scene | | scene.add(self._cartpoles) | self.scene.articulations["cartpole"] = self.cartpole | | | # add lights | | | light_cfg = sim_utils.DomeLightCfg(intensity=2000.0) | | | light_cfg.func("/World/Light", light_cfg) | +------------------------------------------------------------------------------+------------------------------------------------------------------------+ Ground Plane ------------ In addition to the above example, more sophisticated ground planes can be defined using the :class:`~terrains.TerrainImporterCfg` class. .. code-block:: python from omni.isaac.lab.terrains import TerrainImporterCfg terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) The terrain can then be added to the scene in ``_setup_scene(self)`` by referencing the ``TerrainImporterCfg`` object: .. code-block::python def _setup_scene(self): ... self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) Actors ------ In Isaac Lab, each Articulation and Rigid Body actor can have its own config class. The :class:`~omni.isaac.lab.assets.ArticulationCfg` can be used to define parameters for articulation actors, including file path, simulation parameters, actuator properties, and initial states. .. code-block::python from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg CARTPOLE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAACLAB_NUCLEUS_DIR}/Robots/Classic/Cartpole/cartpole.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=100.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 2.0), joint_pos={"slider_to_cart": 0.0, "cart_to_pole": 0.0} ), actuators={ "cart_actuator": ImplicitActuatorCfg( joint_names_expr=["slider_to_cart"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=10.0, ), "pole_actuator": ImplicitActuatorCfg( joint_names_expr=["cart_to_pole"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=0.0 ), }, ) Within the :class:`~assets.ArticulationCfg`, the ``spawn`` attribute can be used to add the robot to the scene by specifying the path to the robot file. In addition, :class:`~omni.isaac.lab.sim.schemas.RigidBodyPropertiesCfg` can be used to specify simulation properties for the rigid bodies in the articulation. Similarly, :class:`~omni.isaac.lab.sim.schemas.ArticulationRootPropertiesCfg` can be used to specify simulation properties for the articulation. Joint and dof properties are now specified as part of the ``actuators`` dictionary using :class:`~actuators.ImplicitActuatorCfg`. Joints and dofs with the same properties can be grouped into regex expressions or provided as a list of names or expressions. Actors are added to the scene by simply calling ``self.cartpole = Articulation(self.cfg.robot_cfg)``, where ``self.cfg.robot_cfg`` is an :class:`~assets.ArticulationCfg` object. Once initialized, they should also be added to the :class:`~scene.InteractiveScene` by calling ``self.scene.articulations["cartpole"] = self.cartpole`` so that the :class:`~scene.InteractiveScene` can traverse through actors in the scene for writing values to the simulation and resetting. Accessing States from Simulation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ APIs for accessing physics states in Isaac Lab require the creation of an :class:`~assets.Articulation` or :class:`~assets.RigidObject` object. Multiple objects can be initialized for different articulations or rigid bodies in the scene by defining corresponding :class:`~assets.ArticulationCfg` or :class:`~assets.RigidObjectCfg` config, as outlined in the section above. This replaces the previously used ``ArticulationView`` and ``RigidPrimView`` classes used in OmniIsaacGymEnvs. However, functionality between the classes are similar: +------------------------------------------------------------------+-----------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------+-----------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | dof_pos = self._cartpoles.get_joint_positions(clone=False) | self.joint_pos = self._robot.data.joint_pos | | dof_vel = self._cartpoles.get_joint_velocities(clone=False) | self.joint_vel = self._robot.data.joint_vel | +------------------------------------------------------------------+-----------------------------------------------------------------+ In Isaac Lab, :class:`~assets.Articulation` and :class:`~assets.RigidObject` classes both have a ``data`` class. The data classes (:class:`~assets.ArticulationData` and :class:`~assets.RigidObjectData`) contain buffers that hold the states for the articulation and rigid objects and provide a more performant way of retrieving states from the actors. Apart from some renamings of APIs, setting states for actors can also be performed similarly between OmniIsaacGymEnvs and Isaac Lab. +---------------------------------------------------------------------------+---------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +---------------------------------------------------------------------------+---------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | indices = env_ids.to(dtype=torch.int32) | self._robot.write_joint_state_to_sim(joint_pos, joint_vel, | | self._cartpoles.set_joint_positions(dof_pos, indices=indices) | joint_ids, env_ids) | | self._cartpoles.set_joint_velocities(dof_vel, indices=indices) | | +---------------------------------------------------------------------------+---------------------------------------------------------------+ In Isaac Lab, ``root_pose`` and ``root_velocity`` have been combined into single buffers and no longer split between ``root_position``, ``root_orientation``, ``root_linear_velocity`` and ``root_angular_velocity``. .. code-block::python self.cartpole.write_root_pose_to_sim(default_root_state[:, :7], env_ids) self.cartpole.write_root_velocity_to_sim(default_root_state[:, 7:], env_ids) Creating a New Environment ~~~~~~~~~~~~~~~~~~~~~~~~~~ Each environment in Isaac Lab should be in its own directory following this structure: .. code-block:: none my_environment/ - agents/ - __init__.py - rl_games_ppo_cfg.py - __init__.py my_env.py * ``my_environment`` is the root directory of the task. * ``my_environment/agents`` is the directory containing all RL config files for the task. Isaac Lab supports multiple RL libraries that can each have its own individual config file. * ``my_environment/__init__.py`` is the main file that registers the environment with the Gymnasium interface. This allows the training and inferencing scripts to find the task by its name. The content of this file should be as follow: .. code-block:: python import gymnasium as gym from . import agents from .cartpole_env import CartpoleEnv, CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-Direct-v0", entry_point="omni.isaac.lab_tasks.direct_workflow.cartpole:CartpoleEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml" }, ) * ``my_environment/my_env.py`` is the main python script that implements the task logic and task config class for the environment. Task Logic ~~~~~~~~~~ The ``post_reset`` API in OmniIsaacGymEnvs is no longer required in Isaac Lab. Everything that was previously done in ``post_reset`` can be done in the ``__init__`` method after executing the base class's ``__init__``. At this point, simulation has already started. In OmniIsaacGymEnvs, due to limitations of the GPU APIs, resets could not be performed based on states of the current step. Instead, resets have to be performed at the beginning of the next time step. This restriction has been eliminated in Isaac Lab, and thus, tasks follow the correct workflow of applying actions, stepping simulation, collecting states, computing dones, calculating rewards, performing resets, and finally computing observations. This workflow is done automatically by the framework such that a ``post_physics_step`` API is not required in the task. However, individual tasks can override the ``step()`` API to control the workflow. In Isaac Lab, we also separate the ``pre_physics_step`` API for processing actions from the policy with the ``apply_action`` API, which sets the actions into the simulation. This provides more flexibility in controlling when actions should be written to simulation when ``decimation`` is used. ``pre_physics_step`` will be called once per step before stepping simulation. ``apply_actions`` will be called ``decimation`` number of times for each RL step, once before each simulation step call. The ordering of the calls are as follow: +----------------------------------+----------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +----------------------------------+----------------------------------+ |.. code-block:: none |.. code-block:: none | | | | | pre_physics_step | pre_physics_step | | |-- reset_idx() | |-- _pre_physics_step(action)| | |-- apply_action | |-- _apply_action() | | | | | post_physics_step | post_physics_step | | |-- get_observations() | |-- _get_dones() | | |-- calculate_metrics() | |-- _get_rewards() | | |-- is_done() | |-- _reset_idx() | | | |-- _get_observations() | +----------------------------------+----------------------------------+ With this approach, resets are performed based on actions from the current step instead of the previous step. Observations will also be computed with the correct states after resets. We have also performed some renamings of APIs: * ``set_up_scene(self, scene)`` --> ``_setup_scene(self)`` * ``post_reset(self)`` --> ``__init__(...)`` * ``pre_physics_step(self, actions)`` --> ``_pre_physics_step(self, actions)`` and ``_apply_action(self)`` * ``reset_idx(self, env_ids)`` --> ``_reset_idx(self, env_ids)`` * ``get_observations(self)`` --> ``_get_observations(self)`` - ``_get_observations()`` should now return a dictionary ``{"policy": obs}`` * ``calculate_metrics(self)`` --> ``_get_rewards(self)`` - ``_get_rewards()`` should now return the reward buffer * ``is_done(self)`` --> ``_get_dones(self)`` - ``_get_dones()`` should now return 2 buffers: ``reset`` and ``time_out`` buffers Putting It All Together ~~~~~~~~~~~~~~~~~~~~~~~ The Cartpole environment is shown here in completion to fully show the comparison between the OmniIsaacGymEnvs implementation and the Isaac Lab implementation. Task Config ----------- Task config in Isaac Lab can be split into the main task configuration class and individual config objects for the actors. +-----------------------------------------------------------------+-----------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +-----------------------------------------------------------------+-----------------------------------------------------------------+ |.. code-block:: yaml |.. code-block:: python | | | | | # used to create the object | @configclass | | | class CartpoleEnvCfg(DirectRLEnvCfg): | | name: Cartpole | | | | # simulation | | physics_engine: ${..physics_engine} | sim: SimulationCfg = SimulationCfg(dt=1 / 120) | | | # robot | | # if given, will override the device setting in gym. | robot_cfg: ArticulationCfg = CARTPOLE_CFG.replace( | | env: | prim_path="/World/envs/env_.*/Robot") | | | cart_dof_name = "slider_to_cart" | | numEnvs: ${resolve_default:512,${...num_envs}} | pole_dof_name = "cart_to_pole" | | envSpacing: 4.0 | # scene | | resetDist: 3.0 | scene: InteractiveSceneCfg = InteractiveSceneCfg( | | maxEffort: 400.0 | num_envs=4096, env_spacing=4.0, replicate_physics=True) | | | # env | | clipObservations: 5.0 | decimation = 2 | | clipActions: 1.0 | episode_length_s = 5.0 | | controlFrequencyInv: 2 # 60 Hz | action_scale = 100.0 # [N] | | | num_actions = 1 | | sim: | num_observations = 4 | | | num_states = 0 | | dt: 0.0083 # 1/120 s | # reset | | use_gpu_pipeline: ${eq:${...pipeline},"gpu"} | max_cart_pos = 3.0 | | gravity: [0.0, 0.0, -9.81] | initial_pole_angle_range = [-0.25, 0.25] | | add_ground_plane: True | # reward scales | | add_distant_light: False | rew_scale_alive = 1.0 | | use_fabric: True | rew_scale_terminated = -2.0 | | enable_scene_query_support: False | rew_scale_pole_pos = -1.0 | | disable_contact_processing: False | rew_scale_cart_vel = -0.01 | | | rew_scale_pole_vel = -0.005 | | enable_cameras: False | | | | | | default_physics_material: | CARTPOLE_CFG = ArticulationCfg( | | static_friction: 1.0 | spawn=sim_utils.UsdFileCfg( | | dynamic_friction: 1.0 | usd_path=f"{ISAACLAB_NUCLEUS_DIR}/.../cartpole.usd", | | restitution: 0.0 | rigid_props=sim_utils.RigidBodyPropertiesCfg( | | | rigid_body_enabled=True, | | physx: | max_linear_velocity=1000.0, | | worker_thread_count: ${....num_threads} | max_angular_velocity=1000.0, | | solver_type: ${....solver_type} | max_depenetration_velocity=100.0, | | use_gpu: ${eq:${....sim_device},"gpu"} # set to False to... | enable_gyroscopic_forces=True, | | solver_position_iteration_count: 4 | ), | | solver_velocity_iteration_count: 0 | articulation_props=sim_utils.ArticulationRootPropertiesCfg( | | contact_offset: 0.02 | enabled_self_collisions=False, | | rest_offset: 0.001 | solver_position_iteration_count=4, | | bounce_threshold_velocity: 0.2 | solver_velocity_iteration_count=0, | | friction_offset_threshold: 0.04 | sleep_threshold=0.005, | | friction_correlation_distance: 0.025 | stabilization_threshold=0.001, | | enable_sleeping: True | ), | | enable_stabilization: True | ), | | max_depenetration_velocity: 100.0 | init_state=ArticulationCfg.InitialStateCfg( | | | pos=(0.0, 0.0, 2.0), | | # GPU buffers | joint_pos={"slider_to_cart": 0.0, "cart_to_pole": 0.0} | | gpu_max_rigid_contact_count: 524288 | ), | | gpu_max_rigid_patch_count: 81920 | actuators={ | | gpu_found_lost_pairs_capacity: 1024 | "cart_actuator": ImplicitActuatorCfg( | | gpu_found_lost_aggregate_pairs_capacity: 262144 | joint_names_expr=["slider_to_cart"], | | gpu_total_aggregate_pairs_capacity: 1024 | effort_limit=400.0, | | gpu_max_soft_body_contacts: 1048576 | velocity_limit=100.0, | | gpu_max_particle_contacts: 1048576 | stiffness=0.0, | | gpu_heap_capacity: 67108864 | damping=10.0, | | gpu_temp_buffer_capacity: 16777216 | ), | | gpu_max_num_partitions: 8 | "pole_actuator": ImplicitActuatorCfg( | | | joint_names_expr=["cart_to_pole"], effort_limit=400.0, | | Cartpole: | velocity_limit=100.0, stiffness=0.0, damping=0.0 | | override_usd_defaults: False | ), | | enable_self_collisions: False | }, | | enable_gyroscopic_forces: True | ) | | solver_position_iteration_count: 4 | | | solver_velocity_iteration_count: 0 | | | sleep_threshold: 0.005 | | | stabilization_threshold: 0.001 | | | density: -1 | | | max_depenetration_velocity: 100.0 | | | contact_offset: 0.02 | | | rest_offset: 0.001 | | +-----------------------------------------------------------------+-----------------------------------------------------------------+ Task Setup ---------- The ``post_reset`` API in OmniIsaacGymEnvs is no longer required in Isaac Lab. Everything that was previously done in ``post_reset`` can be done in the ``__init__`` method after executing the base class's ``__init__``. At this point, simulation has already started. +-------------------------------------------------------------------------+-------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +-------------------------------------------------------------------------+-------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | class CartpoleTask(RLTask): | class CartpoleEnv(DirectRLEnv): | | | cfg: CartpoleEnvCfg | | def __init__(self, name, sim_config, env, offset=None) -> None: | def __init__(self, cfg: CartpoleEnvCfg, | | | render_mode: str | None = None, **kwargs): | | self.update_config(sim_config) | super().__init__(cfg, render_mode, **kwargs) | | self._max_episode_length = 500 | | | | | | self._num_observations = 4 | self._cart_dof_idx, _ = self.cartpole.find_joints( | | self._num_actions = 1 | self.cfg.cart_dof_name) | | | self._pole_dof_idx, _ = self.cartpole.find_joints( | | RLTask.__init__(self, name, env) | self.cfg.pole_dof_name) | | | self.action_scale=self.cfg.action_scale | | def update_config(self, sim_config): | | | self._sim_config = sim_config | self.joint_pos = self.cartpole.data.joint_pos | | self._cfg = sim_config.config | self.joint_vel = self.cartpole.data.joint_vel | | self._task_cfg = sim_config. | | | task_config | | | | | | self._num_envs = self._task_cfg["env"]["numEnvs"] | | | self._env_spacing = self._task_cfg["env"]["envSpacing"] | | | self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) | | | | | | self._reset_dist = self._task_cfg["env"]["resetDist"] | | | self._max_push_effort = self._task_cfg["env"]["maxEffort"] | | | | | | | | | def post_reset(self): | | | self._cart_dof_idx = self._cartpoles.get_dof_index( | | | "cartJoint") | | | self._pole_dof_idx = self._cartpoles.get_dof_index( | | | "poleJoint") | | | # randomize all envs | | | indices = torch.arange( | | | self._cartpoles.count, dtype=torch.int64, | | | device=self._device) | | | self.reset_idx(indices) | | +-------------------------------------------------------------------------+-------------------------------------------------------------+ Scene Setup ----------- ``set_up_scene`` in OmniIsaacGymEnvs has been replaced by ``_setup_scene``. In Isaac Lab, cloning and collision filtering have been provided as APIs for the task class to call when necessary. Similarly, adding ground plane and lights should also be taken care of in the task class. Adding actors to the scene has been replaced by ``self.scene.articulations["cartpole"] = self.cartpole``. +-----------------------------------------------------------+----------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +-----------------------------------------------------------+----------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def set_up_scene(self, scene) -> None: | def _setup_scene(self): | | | self.cartpole = Articulation(self.cfg.robot_cfg) | | self.get_cartpole() | # add ground plane | | super().set_up_scene(scene) | spawn_ground_plane(prim_path="/World/ground", | | self._cartpoles = ArticulationView( | cfg=GroundPlaneCfg()) | | prim_paths_expr="/World/envs/.*/Cartpole", | # clone, filter, and replicate | | name="cartpole_view", | self.scene.clone_environments( | | reset_xform_properties=False | copy_from_source=False) | | ) | self.scene.filter_collisions( | | scene.add(self._cartpoles) | global_prim_paths=[]) | | return | # add articultion to scene | | | self.scene.articulations["cartpole"] = self.cartpole | | def get_cartpole(self): | | | cartpole = Cartpole( | # add lights | | prim_path=self.default_zero_env_path+"/Cartpole", | light_cfg = sim_utils.DomeLightCfg( | | name="Cartpole", | intensity=2000.0, color=(0.75, 0.75, 0.75)) | | translation=self._cartpole_positions | light_cfg.func("/World/Light", light_cfg) | | ) | | | # applies articulation settings from the | | | # task configuration yaml file | | | self._sim_config.apply_articulation_settings( | | | "Cartpole", get_prim_at_path(cartpole.prim_path), | | | self._sim_config.parse_actor_config("Cartpole") | | | ) | | +-----------------------------------------------------------+----------------------------------------------------------+ Pre-Physics Step ---------------- Note that resets are no longer performed in the ``pre_physics_step`` API. In addition, the separation of ``_pre_physics_step`` and ``_apply_action`` allow for more flexibility in processing the action buffer and setting actions into simulation. +------------------------------------------------------------------+-------------------------------------------------------------+ | OmniIsaacGymEnvs | IsaacLab | +------------------------------------------------------------------+-------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def pre_physics_step(self, actions) -> None: | def _pre_physics_step(self, | | if not self.world.is_playing(): | actions: torch.Tensor) -> None: | | return | self.actions = self.action_scale * actions | | | | | reset_env_ids = self.reset_buf.nonzero( | def _apply_action(self) -> None: | | as_tuple=False).squeeze(-1) | self.cartpole.set_joint_effort_target( | | if len(reset_env_ids) > 0: | self.actions, joint_ids=self._cart_dof_idx) | | self.reset_idx(reset_env_ids) | | | | | | actions = actions.to(self._device) | | | | | | forces = torch.zeros((self._cartpoles.count, | | | self._cartpoles.num_dof), | | | dtype=torch.float32, device=self._device) | | | forces[:, self._cart_dof_idx] = | | | self._max_push_effort * actions[:, 0] | | | | | | indices = torch.arange(self._cartpoles.count, | | | dtype=torch.int32, device=self._device) | | | self._cartpoles.set_joint_efforts( | | | forces, indices=indices) | | +------------------------------------------------------------------+-------------------------------------------------------------+ Dones and Resets ---------------- In Isaac Lab, ``dones`` are computed in the ``_get_dones()`` method and should return two variables: ``resets`` and ``time_out``. ``_reset_idx()`` is also called after stepping simulation instead of before, as it was done in OmniIsaacGymEnvs. ``progress_buf`` has been renamed to ``episode_length_buf`` in Isaac Lab and bookkeeping is now done automatically by the framework. Task implementations should no longer increment and reset the ``episode_length_buf`` buffer. +------------------------------------------------------------------+--------------------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------+--------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def is_done(self) -> None: | def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: | | resets = torch.where( | self.joint_pos = self.cartpole.data.joint_pos | | torch.abs(self.cart_pos) > self._reset_dist, 1, 0) | self.joint_vel = self.cartpole.data.joint_vel | | resets = torch.where( | | | torch.abs(self.pole_pos) > math.pi / 2, 1, resets) | time_out = self.episode_length_buf >= self.max_episode_length - 1 | | resets = torch.where( | out_of_bounds = torch.any(torch.abs( | | self.progress_buf >= self._max_episode_length, 1, resets) | self.joint_pos[:, self._pole_dof_idx] > self.cfg.max_cart_pos), | | self.reset_buf[:] = resets | dim=1) | | | out_of_bounds = out_of_bounds | torch.any( | | | torch.abs(self.joint_pos[:, self._pole_dof_idx]) > math.pi / 2, | | | dim=1) | | | return out_of_bounds, time_out | | | | | def reset_idx(self, env_ids): | def _reset_idx(self, env_ids: Sequence[int] | None): | | num_resets = len(env_ids) | if env_ids is None: | | | env_ids = self.cartpole._ALL_INDICES | | # randomize DOF positions | super()._reset_idx(env_ids) | | dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), | | | device=self._device) | joint_pos = self.cartpole.data.default_joint_pos[env_ids] | | dof_pos[:, self._cart_dof_idx] = 1.0 * ( | joint_pos[:, self._pole_dof_idx] += sample_uniform( | | 1.0 - 2.0 * torch.rand(num_resets, device=self._device)) | self.cfg.initial_pole_angle_range[0] * math.pi, | | dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * ( | self.cfg.initial_pole_angle_range[1] * math.pi, | | 1.0 - 2.0 * torch.rand(num_resets, device=self._device)) | joint_pos[:, self._pole_dof_idx].shape, | | | joint_pos.device, | | # randomize DOF velocities | ) | | dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), | joint_vel = self.cartpole.data.default_joint_vel[env_ids] | | device=self._device) | | | dof_vel[:, self._cart_dof_idx] = 0.5 * ( | default_root_state = self.cartpole.data.default_root_state[env_ids] | | 1.0 - 2.0 * torch.rand(num_resets, device=self._device)) | default_root_state[:, :3] += self.scene.env_origins[env_ids] | | dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * ( | | | 1.0 - 2.0 * torch.rand(num_resets, device=self._device)) | self.joint_pos[env_ids] = joint_pos | | | self.joint_vel[env_ids] = joint_vel | | # apply resets | | | indices = env_ids.to(dtype=torch.int32) | self.cartpole.write_root_pose_to_sim( | | self._cartpoles.set_joint_positions(dof_pos, indices=indices) | default_root_state[:, :7], env_ids) | | self._cartpoles.set_joint_velocities(dof_vel, indices=indices) | self.cartpole.write_root_velocity_to_sim( | | | default_root_state[:, 7:], env_ids) | | # bookkeeping | self.cartpole.write_joint_state_to_sim( | | self.reset_buf[env_ids] = 0 | joint_pos, joint_vel, None, env_ids) | | self.progress_buf[env_ids] = 0 | | | | | | | | +------------------------------------------------------------------+--------------------------------------------------------------------------+ Rewards ------- In Isaac Lab, rewards are implemented in the ``_get_rewards`` API and should return the reward buffer instead of assigning it directly to ``self.rew_buf``. Computation in the reward function can also be performed using pytorch jit through defining functions with the ``@torch.jit.script`` annotation. +-------------------------------------------------------+-----------------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +-------------------------------------------------------+-----------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def calculate_metrics(self) -> None: | def _get_rewards(self) -> torch.Tensor: | | reward = (1.0 - self.pole_pos * self.pole_pos | total_reward = compute_rewards( | | - 0.01 * torch.abs(self.cart_vel) - 0.005 | self.cfg.rew_scale_alive, | | * torch.abs(self.pole_vel)) | self.cfg.rew_scale_terminated, | | reward = torch.where( | self.cfg.rew_scale_pole_pos, | | torch.abs(self.cart_pos) > self._reset_dist, | self.cfg.rew_scale_cart_vel, | | torch.ones_like(reward) * -2.0, reward) | self.cfg.rew_scale_pole_vel, | | reward = torch.where( | self.joint_pos[:, self._pole_dof_idx[0]], | | torch.abs(self.pole_pos) > np.pi / 2, | self.joint_vel[:, self._pole_dof_idx[0]], | | torch.ones_like(reward) * -2.0, reward) | self.joint_pos[:, self._cart_dof_idx[0]], | | | self.joint_vel[:, self._cart_dof_idx[0]], | | self.rew_buf[:] = reward | self.reset_terminated, | | | ) | | | return total_reward | | | | | | @torch.jit.script | | | def compute_rewards( | | | rew_scale_alive: float, | | | rew_scale_terminated: float, | | | rew_scale_pole_pos: float, | | | rew_scale_cart_vel: float, | | | rew_scale_pole_vel: float, | | | pole_pos: torch.Tensor, | | | pole_vel: torch.Tensor, | | | cart_pos: torch.Tensor, | | | cart_vel: torch.Tensor, | | | reset_terminated: torch.Tensor, | | | ): | | | rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) | | | rew_termination = rew_scale_terminated * reset_terminated.float() | | | rew_pole_pos = rew_scale_pole_pos * torch.sum( | | | torch.square(pole_pos), dim=-1) | | | rew_cart_vel = rew_scale_cart_vel * torch.sum( | | | torch.abs(cart_vel), dim=-1) | | | rew_pole_vel = rew_scale_pole_vel * torch.sum( | | | torch.abs(pole_vel), dim=-1) | | | total_reward = (rew_alive + rew_termination | | | + rew_pole_pos + rew_cart_vel + rew_pole_vel) | | | return total_reward | +-------------------------------------------------------+-----------------------------------------------------------------------+ Observations ------------ In Isaac Lab, the ``_get_observations()`` API must return a dictionary with the key ``policy`` that has the observation buffer as the value. When working with asymmetric actor-critic states, the states for the critic should have the key ``critic`` and be returned with the observation buffer in the same dictionary. +------------------------------------------------------------------+-------------------------------------------------------------+ | OmniIsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------+-------------------------------------------------------------+ |.. code-block:: python |.. code-block:: | | | | | def get_observations(self) -> dict: | def _get_observations(self) -> dict: | | dof_pos = self._cartpoles.get_joint_positions(clone=False) | obs = torch.cat( | | dof_vel = self._cartpoles.get_joint_velocities(clone=False) | ( | | | self.joint_pos[:, self._pole_dof_idx[0]], | | self.cart_pos = dof_pos[:, self._cart_dof_idx] | self.joint_vel[:, self._pole_dof_idx[0]], | | self.cart_vel = dof_vel[:, self._cart_dof_idx] | self.joint_pos[:, self._cart_dof_idx[0]], | | self.pole_pos = dof_pos[:, self._pole_dof_idx] | self.joint_vel[:, self._cart_dof_idx[0]], | | self.pole_vel = dof_vel[:, self._pole_dof_idx] | ), | | self.obs_buf[:, 0] = self.cart_pos | dim=-1, | | self.obs_buf[:, 1] = self.cart_vel | ) | | self.obs_buf[:, 2] = self.pole_pos | observations = {"policy": obs} | | self.obs_buf[:, 3] = self.pole_vel | return observations | | | | | observations = {self._cartpoles.name: | | | {"obs_buf": self.obs_buf}} | | | return observations | | +------------------------------------------------------------------+-------------------------------------------------------------+ Domain Randomization ~~~~~~~~~~~~~~~~~~~~ In OmniIsaacGymEnvs, domain randomization was specified through the task ``.yaml`` config file. In Isaac Lab, the domain randomization configuration uses the :class:`~omni.isaac.lab.utils.configclass` module to specify a configuration class consisting of :class:`~managers.EventTermCfg` variables. Below is an example of a configuration class for domain randomization: .. code-block:: python @configclass class EventCfg: robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (1.0, 1.0), "restitution_range": (1.0, 1.0), "num_buckets": 250, }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_distribution_params": (0.75, 1.5), "damping_distribution_params": (0.3, 3.0), "operation": "scale", "distribution": "log_uniform", }, ) reset_gravity = EventTerm( func=mdp.randomize_physics_scene_gravity, mode="interval", is_global_time=True, interval_range_s=(36.0, 36.0), # time_s = num_steps * (decimation * dt) params={ "gravity_distribution_params": ([0.0, 0.0, 0.0], [0.0, 0.0, 0.4]), "operation": "add", "distribution": "gaussian", }, ) Each ``EventTerm`` object is of the :class:`~managers.EventTermCfg` class and takes in a ``func`` parameter for specifying the function to call during randomization, a ``mode`` parameter, which can be ``startup``, ``reset`` or ``interval``. THe ``params`` dictionary should provide the necessary arguments to the function that is specified in the ``func`` parameter. Functions specified as ``func`` for the ``EventTerm`` can be found in the :class:`~envs.mdp.events` module. Note that as part of the ``"asset_cfg": SceneEntityCfg("robot", body_names=".*")`` parameter, the name of the actor ``"robot"`` is provided, along with the body or joint names specified as a regex expression, which will be the actors and bodies/joints that will have randomization applied. One difference with OmniIsaacGymEnvs is that ``interval`` randomization is now specified as seconds instead of steps. When ``mode="interval"``, the ``interval_range_s`` parameter must also be provided, which specifies the range of seconds for which randomization should be applied. This range will then be randomized to determine a specific time in seconds when the next randomization will occur for the term. To convert between steps to seconds, use the equation ``time_s = num_steps * (decimation * dt)``. Similar to OmniIsaacGymEnvs, randomization APIs are available for randomizing articulation properties, such as joint stiffness and damping, joint limits, rigid body materials, fixed tendon properties, as well as rigid body properties, such as mass and rigid body materials. Randomization of the physics scene gravity is also supported. Note that randomization of scale is current not supported in Isaac Lab. To randomize scale, please set up the scene in a way where each environment holds the actor at a different scale. Once the ``configclass`` for the randomization terms have been set up, the class must be added to the base config class for the task and be assigned to the variable ``events``. .. code-block:: python @configclass class MyTaskConfig: events: EventCfg = EventCfg() Action and Observation Noise ---------------------------- Actions and observation noise can also be added using the :class:`~utils.configclass` module. Action and observation noise configs must be added to the main task config using the ``action_noise_model`` and ``observation_noise_model`` variables: .. code-block:: python @configclass class MyTaskConfig: # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset action_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.05, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.015, operation="abs"), ) # at every time-step add gaussian noise + bias. The bias is a gaussian sampled at reset observation_noise_model: NoiseModelWithAdditiveBiasCfg = NoiseModelWithAdditiveBiasCfg( noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.002, operation="add"), bias_noise_cfg=GaussianNoiseCfg(mean=0.0, std=0.0001, operation="abs"), ) :class:`~.utils.noise.NoiseModelWithAdditiveBiasCfg` can be used to sample both uncorrelated noise per step as well as correlated noise that is re-sampled at reset time. The ``noise_cfg`` term specifies the Gaussian distribution that will be sampled at each step for all environments. This noise will be added to the corresponding actions and observations buffers at every step. The ``bias_noise_cfg`` term specifies the Gaussian distribution for the correlated noise that will be sampled at reset time for the environments being reset. The same noise will be applied each step for the remaining of the episode for the environments and resampled at the next reset. This replaces the following setup in OmniIsaacGymEnvs: .. code-block:: yaml domain_randomization: randomize: True randomization_params: observations: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, .0001] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0, .002] actions: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, 0.015] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0., 0.05] Launching Training ~~~~~~~~~~~~~~~~~~ To launch a training in Isaac Lab, use the command: .. code-block:: bash python source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-Direct-v0 --headless Launching Inferencing ~~~~~~~~~~~~~~~~~~~~~ To launch inferencing in Isaac Lab, use the command: .. code-block:: bash python source/standalone/workflows/rl_games/play.py --task=Isaac-Cartpole-Direct-v0 --num_envs=25 --checkpoint=<path/to/checkpoint>
78,349
reStructuredText
79.194473
235
0.381932
isaac-sim/IsaacLab/docs/source/migration/migrating_from_isaacgymenvs.rst
.. _migrating-from-isaacgymenvs: Migrating from IsaacGymEnvs and Isaac Gym Preview Release ========================================================= .. currentmodule:: omni.isaac.lab IsaacGymEnvs was a reinforcement learning framework designed for the Isaac Gym Preview Release. As both IsaacGymEnvs and the Isaac Gym Preview Release are now deprecated, the following guide walks through the key differences between IsaacGymEnvs and Isaac Lab, as well as differences in APIs between Isaac Gym Preview Release and Isaac Sim. Task Config Setup ~~~~~~~~~~~~~~~~~ In IsaacGymEnvs, task config files were defined in ``.yaml`` format. With Isaac Lab, configs are now specified using a specialized Python class :class:`~omni.isaac.lab.utils.configclass`. The :class:`~omni.isaac.lab.utils.configclass` module provides a wrapper on top of Python's ``dataclasses`` module. Each environment should specify its own config class annotated by ``@configclass`` that inherits from :class:`~envs.DirectRLEnvCfg`, which can include simulation parameters, environment scene parameters, robot parameters, and task-specific parameters. Below is an example skeleton of a task config class: .. code-block:: python from omni.isaac.lab.envs import DirectRLEnvCfg from omni.isaac.lab.scene import InteractiveSceneCfg from omni.isaac.lab.sim import SimulationCfg @configclass class MyEnvCfg(DirectRLEnvCfg): # simulation sim: SimulationCfg = SimulationCfg() # robot robot_cfg: ArticulationCfg = ArticulationCfg() # scene scene: InteractiveSceneCfg = InteractiveSceneCfg() # env decimation = 2 episode_length_s = 5.0 num_actions = 1 num_observations = 4 num_states = 0 # task-specific parameters ... Simulation Config ----------------- Simulation related parameters are defined as part of the :class:`~omni.isaac.lab.sim.SimulationCfg` class, which is a :class:`~omni.isaac.lab.utils.configclass` module that holds simulation parameters such as ``dt``, ``device``, and ``gravity``. Each task config must have a variable named ``sim`` defined that holds the type :class:`~omni.isaac.lab.sim.SimulationCfg`. In Isaac Lab, the use of ``substeps`` has been replaced by a combination of the simulation ``dt`` and the ``decimation`` parameters. For example, in IsaacGymEnvs, having ``dt=1/60`` and ``substeps=2`` is equivalent to taking 2 simulation steps with ``dt=1/120``, but running the task step at ``1/60`` seconds. The ``decimation`` parameter is a task parameter that controls the number of simulation steps to take for each task (or RL) step, replacing the ``controlFrequencyInv`` parameter in IsaacGymEnvs. Thus, the same setup in Isaac Lab will become ``dt=1/120`` and ``decimation=2``. In Isaac Sim, physx simulation parameters such as ``num_position_iterations``, ``num_velocity_iterations``, ``contact_offset``, ``rest_offset``, ``bounce_threshold_velocity``, ``max_depenetration_velocity`` can all be specified on a per-actor basis. These parameters have been moved from the physx simulation config to each individual articulation and rigid body config. When running simulation on the GPU, buffers in PhysX require pre-allocation for computing and storing information such as contacts, collisions and aggregate pairs. These buffers may need to be adjusted depending on the complexity of the environment, the number of expected contacts and collisions, and the number of actors in the environment. The :class:`~omni.isaac.lab.sim.PhysxCfg` class provides access for setting the GPU buffer dimensions. +--------------------------------------------------------------+-------------------------------------------------------------------+ | | | |.. code-block:: yaml |.. code-block:: python | | | | | # IsaacGymEnvs | # IsaacLab | | sim: | sim: SimulationCfg = SimulationCfg( | | dt: 0.0166 # 1/60 s | dt=1 / 120, | | substeps: 2 | # decimation will be set in the task config | | up_axis: "z" | # up axis will always be Z in isaac sim | | use_gpu_pipeline: ${eq:${...pipeline},"gpu"} | use_gpu_pipeline=True, | | gravity: [0.0, 0.0, -9.81] | gravity=(0.0, 0.0, -9.81), | | physx: | physx: PhysxCfg = PhysxCfg( | | num_threads: ${....num_threads} | # num_threads is no longer needed | | solver_type: ${....solver_type} | solver_type=1, | | use_gpu: ${contains:"cuda",${....sim_device}} | use_gpu=True, | | num_position_iterations: 4 | max_position_iteration_count=4, | | num_velocity_iterations: 0 | max_velocity_iteration_count=0, | | contact_offset: 0.02 | # moved to actor config | | rest_offset: 0.001 | # moved to actor config | | bounce_threshold_velocity: 0.2 | bounce_threshold_velocity=0.2, | | max_depenetration_velocity: 100.0 | # moved to actor config | | default_buffer_size_multiplier: 2.0 | # default_buffer_size_multiplier is no longer needed | | max_gpu_contact_pairs: 1048576 # 1024*1024 | gpu_max_rigid_contact_count=2**23 | | num_subscenes: ${....num_subscenes} | # num_subscenes is no longer needed | | contact_collection: 0 | # contact_collection is no longer needed | | | )) | +--------------------------------------------------------------+-------------------------------------------------------------------+ Scene Config ------------ The :class:`~omni.isaac.lab.scene.InteractiveSceneCfg` class can be used to specify parameters related to the scene, such as the number of environments and the spacing between environments. Each task config must have a variable named ``scene`` defined that holds the type :class:`~omni.isaac.lab.scene.InteractiveSceneCfg`. +--------------------------------------------------------------+-------------------------------------------------------------------+ | | | |.. code-block:: yaml |.. code-block:: python | | | | | # IsaacGymEnvs | # IsaacLab | | env: | scene: InteractiveSceneCfg = InteractiveSceneCfg( | | numEnvs: ${resolve_default:512,${...num_envs}} | num_envs=512, | | envSpacing: 4.0 | env_spacing=4.0) | +--------------------------------------------------------------+-------------------------------------------------------------------+ Task Config ----------- Each environment should specify its own config class that holds task specific parameters, such as the dimensions of the observation and action buffers. Reward term scaling parameters can also be specified in the config class. The following parameters must be set for each environment config: .. code-block:: python decimation = 2 episode_length_s = 5.0 num_actions = 1 num_observations = 4 num_states = 0 Note that the maximum episode length parameter (now ``episode_length_s``) is in seconds instead of steps as it was in IsaacGymEnvs. To convert between step count to seconds, use the equation: ``episode_length_s = dt * decimation * num_steps`` RL Config Setup ~~~~~~~~~~~~~~~ RL config files for the rl_games library can continue to be defined in ``.yaml`` files in Isaac Lab. Most of the content of the config file can be copied directly from IsaacGymEnvs. Note that in Isaac Lab, we do not use hydra to resolve relative paths in config files. Please replace any relative paths such as ``${....device}`` with the actual values of the parameters. Additionally, the observation and action clip ranges have been moved to the RL config file. For any ``clipObservations`` and ``clipActions`` parameters that were defined in the IsaacGymEnvs task config file, they should be moved to the RL config file in Isaac Lab. +--------------------------+----------------------------+ | | | | IsaacGymEnvs Task Config | Isaac Lab RL Config | +--------------------------+----------------------------+ |.. code-block:: yaml |.. code-block:: yaml | | | | | # IsaacGymEnvs | # IsaacLab | | env: | params: | | clipObservations: 5.0 | env: | | clipActions: 1.0 | clip_observations: 5.0 | | | clip_actions: 1.0 | +--------------------------+----------------------------+ Environment Creation ~~~~~~~~~~~~~~~~~~~~ In IsaacGymEnvs, environment creation generally included four components: creating the sim object with ``create_sim()``, creating the ground plane, importing the assets from MJCF or URDF files, and finally creating the environments by looping through each environment and adding actors into the environments. Isaac Lab no longer requires calling the ``create_sim()`` method to retrieve the sim object. Instead, the simulation context is retrieved automatically by the framework. It is also no longer required to use the ``sim`` as an argument for the simulation APIs. In replacement of ``create_sim()``, tasks can implement the ``_setup_scene()`` method in Isaac Lab. This method can be used for adding actors into the scene, adding ground plane, cloning the actors, and adding any other optional objects into the scene, such as lights. +------------------------------------------------------------------------------+------------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------------------+------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def create_sim(self): | def _setup_scene(self): | | # set the up axis to be z-up | self.cartpole = Articulation(self.cfg.robot_cfg) | | self.up_axis = self.cfg["sim"]["up_axis"] | # add ground plane | | | spawn_ground_plane(prim_path="/World/ground", cfg=GroundPlaneCfg() | | self.sim = super().create_sim(self.device_id, self.graphics_device_id, | # clone, filter, and replicate | | self.physics_engine, self.sim_params) | self.scene.clone_environments(copy_from_source=False) | | self._create_ground_plane() | self.scene.filter_collisions(global_prim_paths=[]) | | self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], | # add articultion to scene | | int(np.sqrt(self.num_envs))) | self.scene.articulations["cartpole"] = self.cartpole | | | # add lights | | | light_cfg = sim_utils.DomeLightCfg(intensity=2000.0) | | | light_cfg.func("/World/Light", light_cfg) | +------------------------------------------------------------------------------+------------------------------------------------------------------------+ Ground Plane ------------ In Isaac Lab, most of the environment creation process has been simplified into configs with the :class:`~omni.isaac.lab.utils.configclass` module. The ground plane can be defined using the :class:`~terrains.TerrainImporterCfg` class. .. code-block:: python from omni.isaac.lab.terrains import TerrainImporterCfg terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), ) The terrain can then be added to the scene in ``_setup_scene(self)`` by referencing the ``TerrainImporterCfg`` object: .. code-block::python def _setup_scene(self): ... self.cfg.terrain.num_envs = self.scene.cfg.num_envs self.cfg.terrain.env_spacing = self.scene.cfg.env_spacing self._terrain = self.cfg.terrain.class_type(self.cfg.terrain) Actors ------ Isaac Lab and Isaac Sim both use the `USD (Universal Scene Description) <https://github.com/PixarAnimationStudios/OpenUSD>`_ library for describing the scene. Assets defined in MJCF and URDF formats can be imported to USD using importer tools described in the `Importing a New Asset <../../how-to/import_new_asset.rst>`_ tutorial. Each Articulation and Rigid Body actor can also have its own config class. The :class:`~omni.isaac.lab.assets.ArticulationCfg` can be used to define parameters for articulation actors, including file path, simulation parameters, actuator properties, and initial states. .. code-block::python from omni.isaac.lab.actuators import ImplicitActuatorCfg from omni.isaac.lab.assets import ArticulationCfg CARTPOLE_CFG = ArticulationCfg( spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAACLAB_NUCLEUS_DIR}/Robots/Classic/Cartpole/cartpole.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( rigid_body_enabled=True, max_linear_velocity=1000.0, max_angular_velocity=1000.0, max_depenetration_velocity=100.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 2.0), joint_pos={"slider_to_cart": 0.0, "cart_to_pole": 0.0} ), actuators={ "cart_actuator": ImplicitActuatorCfg( joint_names_expr=["slider_to_cart"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=10.0, ), "pole_actuator": ImplicitActuatorCfg( joint_names_expr=["cart_to_pole"], effort_limit=400.0, velocity_limit=100.0, stiffness=0.0, damping=0.0 ), }, ) Within the :class:`~assets.ArticulationCfg`, the ``spawn`` attribute can be used to add the robot to the scene by specifying the path to the robot file. In addition, :class:`~omni.isaac.lab.sim.schemas.RigidBodyPropertiesCfg` can be used to specify simulation properties for the rigid bodies in the articulation. Similarly, :class:`~omni.isaac.lab.sim.schemas.ArticulationRootPropertiesCfg` can be used to specify simulation properties for the articulation. Joint and dof properties are now specified as part of the ``actuators`` dictionary using :class:`~actuators.ImplicitActuatorCfg`. Joints and dofs with the same properties can be grouped into regex expressions or provided as a list of names or expressions. Actors are added to the scene by simply calling ``self.cartpole = Articulation(self.cfg.robot_cfg)``, where ``self.cfg.robot_cfg`` is an :class:`~assets.ArticulationCfg` object. Once initialized, they should also be added to the :class:`~scene.InteractiveScene` by calling ``self.scene.articulations["cartpole"] = self.cartpole`` so that the :class:`~scene.InteractiveScene` can traverse through actors in the scene for writing values to the simulation and resetting. Simulation Parameters for Actors """""""""""""""""""""""""""""""" Some simulation parameters related to Rigid Bodies and Articulations may have different default values between Isaac Gym Preview Release and Isaac Sim. It may be helpful to double check the USD assets to ensure that the default values are applicable for the asset. For instance, the following parameters in the ``RigidBodyAPI`` could be different between Isaac Gym Preview Release and Isaac Sim: .. list-table:: :widths: 50 50 50 :header-rows: 1 * - RigidBodyAPI Parameter - Default Value in Isaac Sim - Default Value in Isaac Gym Preview Release * - Linear Damping - 0.00 - 0.00 * - Angular Damping - 0.05 - 0.0 * - Max Linear Velocity - inf - 1000 * - Max Angular Velocity - 5729.58008 (degree/s) - 64.0 (rad/s) * - Max Contact Impulse - inf - 1e32 Articulation parameters for the ``JointAPI`` and ``DriveAPI`` could be altered as well. Note that the Isaac Sim UI assumes the unit of angle to be degrees. It is particularly worth noting that the ``Damping`` and ``Stiffness`` parameters in the ``DriveAPI`` have the unit of ``1/deg`` in the Isaac Sim UI but ``1/rad`` in Isaac Gym Preview Release. .. list-table:: :widths: 50 50 50 :header-rows: 1 * - Joint Parameter - Default Value in Isaac Sim - Default Value in Isaac Gym Preview Releases * - Maximum Joint Velocity - 1000000.0 (deg) - 100.0 (rad) Cloner ------ Isaac Sim introduced a concept of ``Cloner``, which is a class designed for replication during the scene creation process. In IsaacGymEnvs, scenes had to be created by looping through the number of environments. Within each iteration, actors were added to each environment and their handles had to be cached. Isaac Lab eliminates the need for looping through the environments by using the ``Cloner`` APIs. The scene creation process is as follow: #. Construct a single environment (what the scene would look like if number of environments = 1) #. Call ``clone_environments()`` to replicate the single environment #. Call ``filter_collisions()`` to filter out collision between environments (if required) .. code-block:: python # construct a single environment with the Cartpole robot self.cartpole = Articulation(self.cfg.robot_cfg) # clone the environment self.scene.clone_environments(copy_from_source=False) # filter collisions self.scene.filter_collisions(global_prim_paths=[self.cfg.terrain.prim_path]) Accessing States from Simulation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ APIs for accessing physics states in Isaac Lab require the creation of an :class:`~assets.Articulation` or :class:`~assets.RigidObject` object. Multiple objects can be initialized for different articulations or rigid bodies in the scene by defining corresponding :class:`~assets.ArticulationCfg` or :class:`~assets.RigidObjectCfg` config as outlined in the section above. This approach eliminates the need of retrieving body handles to slice states for specific bodies in the scene. .. code-block:: python self._robot = Articulation(self.cfg.robot) self._cabinet = Articulation(self.cfg.cabinet) self._object = RigidObject(self.cfg.object_cfg) We have also removed ``acquire`` and ``refresh`` APIs in Isaac Lab. Physics states can be directly applied or retrieved using APIs defined for the articulations and rigid objects. APIs provided in Isaac Lab no longer require explicit wrapping and un-wrapping of underlying buffers. APIs can now work with tensors directly for reading and writing data. +------------------------------------------------------------------+-----------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------+-----------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) | self.joint_pos = self._robot.data.joint_pos | | self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) | self.joint_vel = self._robot.data.joint_vel | | self.gym.refresh_dof_state_tensor(self.sim) | | +------------------------------------------------------------------+-----------------------------------------------------------------+ Note some naming differences between APIs in Isaac Gym Preview Release and Isaac Lab. Most ``dof`` related APIs have been named to ``joint`` in Isaac Lab. APIs in Isaac Lab also no longer follow the explicit ``_tensors`` or ``_tensor_indexed`` suffixes in naming. Indexed versions of APIs now happen implicitly through the optional ``indices`` parameter. Most APIs in Isaac Lab also provide the option to specify an ``indices`` parameter, which can be used when reading or writing data for a subset of environments. Note that when setting states with the ``indices`` parameter, the shape of the states buffer should match with the dimension of the ``indices`` list. +---------------------------------------------------------------------------+---------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +---------------------------------------------------------------------------+---------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | env_ids_int32 = env_ids.to(dtype=torch.int32) | self._robot.write_joint_state_to_sim(joint_pos, joint_vel, | | self.gym.set_dof_state_tensor_indexed(self.sim, | joint_ids, env_ids) | | gymtorch.unwrap_tensor(self.dof_state), | | | gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | | +---------------------------------------------------------------------------+---------------------------------------------------------------+ Quaternion Convention --------------------- Isaac Lab and Isaac Sim both adopt ``wxyz`` as the quaternion convention. However, the quaternion convention used in Isaac Gym Preview Release was ``xyzw``. Remember to switch all quaternions to use the ``xyzw`` convention when working indexing rotation data. Similarly, please ensure all quaternions are in ``wxyz`` before passing them to Isaac Lab APIs. Articulation Joint Order ------------------------ Physics simulation in Isaac Sim and Isaac Lab assumes a breadth-first ordering for the joints in a given kinematic tree. However, Isaac Gym Preview Release assumed a depth-first ordering for joints in the kinematic tree. This means that indexing joints based on their ordering may be different in IsaacGymEnvs and Isaac Lab. In Isaac Lab, the list of joint names can be retrieved with ``Articulation.data.joint_names``, which will also correspond to the ordering of the joints in the Articulation. Creating a New Environment ~~~~~~~~~~~~~~~~~~~~~~~~~~ Each environment in Isaac Lab should be in its own directory following this structure: .. code-block:: none my_environment/ - agents/ - __init__.py - rl_games_ppo_cfg.py - __init__.py my_env.py * ``my_environment`` is the root directory of the task. * ``my_environment/agents`` is the directory containing all RL config files for the task. Isaac Lab supports multiple RL libraries that can each have its own individual config file. * ``my_environment/__init__.py`` is the main file that registers the environment with the Gymnasium interface. This allows the training and inferencing scripts to find the task by its name. The content of this file should be as follow: .. code-block:: python import gymnasium as gym from . import agents from .cartpole_env import CartpoleEnv, CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-Direct-v0", entry_point="omni.isaac.lab_tasks.direct_workflow.cartpole:CartpoleEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml" }, ) * ``my_environment/my_env.py`` is the main python script that implements the task logic and task config class for the environment. Task Logic ~~~~~~~~~~ In Isaac Lab, the ``post_physics_step`` function has been moved to the framework in the base class. Tasks are not required to implement this method, but can choose to override it if a different workflow is desired. By default, Isaac Lab follows the following flow in logic: +----------------------------------+----------------------------------+ | IsaacGymEnvs | Isaac Lab | +----------------------------------+----------------------------------+ |.. code-block:: none |.. code-block:: none | | | | | pre_physics_step | pre_physics_step | | |-- apply_action | |-- _pre_physics_step(action)| | | |-- _apply_action() | | | | | post_physics_step | post_physics_step | | |-- reset_idx() | |-- _get_dones() | | |-- compute_observation() | |-- _get_rewards() | | |-- compute_reward() | |-- _reset_idx() | | | |-- _get_observations() | +----------------------------------+----------------------------------+ In Isaac Lab, we also separate the ``pre_physics_step`` API for processing actions from the policy with the ``apply_action`` API, which sets the actions into the simulation. This provides more flexibility in controlling when actions should be written to simulation when ``decimation`` is used. ``pre_physics_step`` will be called once per step before stepping simulation. ``apply_actions`` will be called ``decimation`` number of times for each RL step, once before each simulation step call. With this approach, resets are performed based on actions from the current step instead of the previous step. Observations will also be computed with the correct states after resets. We have also performed some renamings of APIs: * ``create_sim(self)`` --> ``_setup_scene(self)`` * ``pre_physics_step(self, actions)`` --> ``_pre_physics_step(self, actions)`` and ``_apply_action(self)`` * ``reset_idx(self, env_ids)`` --> ``_reset_idx(self, env_ids)`` * ``compute_observations(self)`` --> ``_get_observations(self)`` - ``_get_observations()`` should now return a dictionary ``{"policy": obs}`` * ``compute_reward(self)`` --> ``_get_rewards(self)`` - ``_get_rewards()`` should now return the reward buffer * ``post_physics_step(self)`` --> moved to the base class * In addition, Isaac Lab requires the implementation of ``_is_done(self)``, which should return two buffers: the ``reset`` buffer and the ``time_out`` buffer. Putting It All Together ~~~~~~~~~~~~~~~~~~~~~~~ The Cartpole environment is shown here in completion to fully show the comparison between the IsaacGymEnvs implementation and the Isaac Lab implementation. Task Config ----------- +--------------------------------------------------------+---------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +--------------------------------------------------------+---------------------------------------------------------------------+ |.. code-block:: yaml |.. code-block:: python | | | | | # used to create the object | @configclass | | name: Cartpole | class CartpoleEnvCfg(DirectRLEnvCfg): | | | | | physics_engine: ${..physics_engine} | # simulation | | | sim: SimulationCfg = SimulationCfg(dt=1 / 120) | | # if given, will override the device setting in gym. | # robot | | env: | robot_cfg: ArticulationCfg = CARTPOLE_CFG.replace( | | numEnvs: ${resolve_default:512,${...num_envs}} | prim_path="/World/envs/env_.*/Robot") | | envSpacing: 4.0 | cart_dof_name = "slider_to_cart" | | resetDist: 3.0 | pole_dof_name = "cart_to_pole" | | maxEffort: 400.0 | # scene | | | scene: InteractiveSceneCfg = InteractiveSceneCfg( | | clipObservations: 5.0 | num_envs=4096, env_spacing=4.0, replicate_physics=True) | | clipActions: 1.0 | # env | | | decimation = 2 | | asset: | episode_length_s = 5.0 | | assetRoot: "../../assets" | action_scale = 100.0 # [N] | | assetFileName: "urdf/cartpole.urdf" | num_actions = 1 | | | num_observations = 4 | | enableCameraSensors: False | num_states = 0 | | | # reset | | sim: | max_cart_pos = 3.0 | | dt: 0.0166 # 1/60 s | initial_pole_angle_range = [-0.25, 0.25] | | substeps: 2 | # reward scales | | up_axis: "z" | rew_scale_alive = 1.0 | | use_gpu_pipeline: ${eq:${...pipeline},"gpu"} | rew_scale_terminated = -2.0 | | gravity: [0.0, 0.0, -9.81] | rew_scale_pole_pos = -1.0 | | physx: | rew_scale_cart_vel = -0.01 | | num_threads: ${....num_threads} | rew_scale_pole_vel = -0.005 | | solver_type: ${....solver_type} | | | use_gpu: ${contains:"cuda",${....sim_device}} | | | num_position_iterations: 4 | | | num_velocity_iterations: 0 | | | contact_offset: 0.02 | | | rest_offset: 0.001 | | | bounce_threshold_velocity: 0.2 | | | max_depenetration_velocity: 100.0 | | | default_buffer_size_multiplier: 2.0 | | | max_gpu_contact_pairs: 1048576 # 1024*1024 | | | num_subscenes: ${....num_subscenes} | | | contact_collection: 0 | | +--------------------------------------------------------+---------------------------------------------------------------------+ Task Setup ---------- Isaac Lab no longer requires pre-initialization of buffers through the ``acquire_*`` APIs that were used in IsaacGymEnvs. It is also no longer necessary to ``wrap`` and ``unwrap`` tensors. +-------------------------------------------------------------------------+-------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +-------------------------------------------------------------------------+-------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | class Cartpole(VecTask): | class CartpoleEnv(DirectRLEnv): | | | cfg: CartpoleEnvCfg | | def __init__(self, cfg, rl_device, sim_device, graphics_device_id, | def __init__(self, cfg: CartpoleEnvCfg, | | headless, virtual_screen_capture, force_render): | render_mode: str | None = None, **kwargs): | | self.cfg = cfg | | | | super().__init__(cfg, render_mode, **kwargs) | | self.reset_dist = self.cfg["env"]["resetDist"] | | | | self._cart_dof_idx, _ = self.cartpole.find_joints( | | self.max_push_effort = self.cfg["env"]["maxEffort"] | self.cfg.cart_dof_name) | | self.max_episode_length = 500 | self._pole_dof_idx, _ = self.cartpole.find_joints( | | | self.cfg.pole_dof_name) | | self.cfg["env"]["numObservations"] = 4 | self.action_scale = self.cfg.action_scale | | self.cfg["env"]["numActions"] = 1 | | | | self.joint_pos = self.cartpole.data.joint_pos | | super().__init__(config=self.cfg, | self.joint_vel = self.cartpole.data.joint_vel | | rl_device=rl_device, sim_device=sim_device, | | | graphics_device_id=graphics_device_id, headless=headless, | | | virtual_screen_capture=virtual_screen_capture, | | | force_render=force_render) | | | | | | dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) | | | self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) | | | self.dof_pos = self.dof_state.view( | | | self.num_envs, self.num_dof, 2)[..., 0] | | | self.dof_vel = self.dof_state.view( | | | self.num_envs, self.num_dof, 2)[..., 1] | | +-------------------------------------------------------------------------+-------------------------------------------------------------+ Scene Setup ----------- Scene setup is now done through the ``Cloner`` API and by specifying actor attributes in config objects. This eliminates the need to loop through the number of environments to set up the environments and avoids the need to set simulation parameters for actors in the task implementation. +------------------------------------------------------------------------+---------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +------------------------------------------------------------------------+---------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def create_sim(self): | def _setup_scene(self): | | # set the up axis to be z-up given that assets are y-up by default | self.cartpole = Articulation(self.cfg.robot_cfg) | | self.up_axis = self.cfg["sim"]["up_axis"] | # add ground plane | | | spawn_ground_plane(prim_path="/World/ground", | | self.sim = super().create_sim(self.device_id, | cfg=GroundPlaneCfg()) | | self.graphics_device_id, self.physics_engine, | # clone, filter, and replicate | | self.sim_params) | self.scene.clone_environments( | | self._create_ground_plane() | copy_from_source=False) | | self._create_envs(self.num_envs, | self.scene.filter_collisions( | | self.cfg["env"]['envSpacing'], | global_prim_paths=[]) | | int(np.sqrt(self.num_envs))) | # add articultion to scene | | | self.scene.articulations["cartpole"] = self.cartpole | | def _create_ground_plane(self): | # add lights | | plane_params = gymapi.PlaneParams() | light_cfg = sim_utils.DomeLightCfg( | | # set the normal force to be z dimension | intensity=2000.0, color=(0.75, 0.75, 0.75)) | | plane_params.normal = (gymapi.Vec3(0.0, 0.0, 1.0) | light_cfg.func("/World/Light", light_cfg) | | if self.up_axis == 'z' | | | else gymapi.Vec3(0.0, 1.0, 0.0)) | CARTPOLE_CFG = ArticulationCfg( | | self.gym.add_ground(self.sim, plane_params) | spawn=sim_utils.UsdFileCfg( | | | usd_path=f"{ISAACLAB_NUCLEUS_DIR}/.../cartpole.usd", | | def _create_envs(self, num_envs, spacing, num_per_row): | rigid_props=sim_utils.RigidBodyPropertiesCfg( | | # define plane on which environments are initialized | rigid_body_enabled=True, | | lower = (gymapi.Vec3(0.5 * -spacing, -spacing, 0.0) | max_linear_velocity=1000.0, | | if self.up_axis == 'z' | max_angular_velocity=1000.0, | | else gymapi.Vec3(0.5 * -spacing, 0.0, -spacing)) | max_depenetration_velocity=100.0, | | upper = gymapi.Vec3(0.5 * spacing, spacing, spacing) | enable_gyroscopic_forces=True, | | | ), | | asset_root = os.path.join(os.path.dirname( | articulation_props=sim_utils.ArticulationRootPropertiesCfg( | | os.path.abspath(__file__)), "../../assets") | enabled_self_collisions=False, | | asset_file = "urdf/cartpole.urdf" | solver_position_iteration_count=4, | | | solver_velocity_iteration_count=0, | | if "asset" in self.cfg["env"]: | sleep_threshold=0.005, | | asset_root = os.path.join(os.path.dirname( | stabilization_threshold=0.001, | | os.path.abspath(__file__)), | ), | | self.cfg["env"]["asset"].get("assetRoot", asset_root)) | ), | | asset_file = self.cfg["env"]["asset"].get( | init_state=ArticulationCfg.InitialStateCfg( | | "assetFileName", asset_file) | pos=(0.0, 0.0, 2.0), | | | joint_pos={"slider_to_cart": 0.0, "cart_to_pole": 0.0} | | asset_path = os.path.join(asset_root, asset_file) | ), | | asset_root = os.path.dirname(asset_path) | actuators={ | | asset_file = os.path.basename(asset_path) | "cart_actuator": ImplicitActuatorCfg( | | | joint_names_expr=["slider_to_cart"], | | asset_options = gymapi.AssetOptions() | effort_limit=400.0, | | asset_options.fix_base_link = True | velocity_limit=100.0, | | cartpole_asset = self.gym.load_asset(self.sim, | stiffness=0.0, | | asset_root, asset_file, asset_options) | damping=10.0, | | self.num_dof = self.gym.get_asset_dof_count( | ), | | cartpole_asset) | "pole_actuator": ImplicitActuatorCfg( | | | joint_names_expr=["cart_to_pole"], effort_limit=400.0, | | pose = gymapi.Transform() | velocity_limit=100.0, stiffness=0.0, damping=0.0 | | if self.up_axis == 'z': | ), | | pose.p.z = 2.0 | }, | | pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0) | ) | | else: | | | pose.p.y = 2.0 | | | pose.r = gymapi.Quat( | | | -np.sqrt(2)/2, 0.0, 0.0, np.sqrt(2)/2) | | | | | | self.cartpole_handles = [] | | | self.envs = [] | | | for i in range(self.num_envs): | | | # create env instance | | | env_ptr = self.gym.create_env( | | | self.sim, lower, upper, num_per_row | | | ) | | | cartpole_handle = self.gym.create_actor( | | | env_ptr, cartpole_asset, pose, | | | "cartpole", i, 1, 0) | | | | | | dof_props = self.gym.get_actor_dof_properties( | | | env_ptr, cartpole_handle) | | | dof_props['driveMode'][0] = gymapi.DOF_MODE_EFFORT | | | dof_props['driveMode'][1] = gymapi.DOF_MODE_NONE | | | dof_props['stiffness'][:] = 0.0 | | | dof_props['damping'][:] = 0.0 | | | self.gym.set_actor_dof_properties(env_ptr, c | | | artpole_handle, dof_props) | | | | | | self.envs.append(env_ptr) | | | self.cartpole_handles.append(cartpole_handle) | | +------------------------------------------------------------------------+---------------------------------------------------------------------+ Pre and Post Physics Step ------------------------- In IsaacGymEnvs, due to limitations of the GPU APIs, observations had stale data when environments had to perform resets. This restriction has been eliminated in Isaac Lab, and thus, tasks follow the correct workflow of applying actions, stepping simulation, collecting states, computing dones, calculating rewards, performing resets, and finally computing observations. This workflow is done automatically by the framework such that a ``post_physics_step`` API is not required in the task. However, individual tasks can override the ``step()`` API to control the workflow. +------------------------------------------------------------------+-------------------------------------------------------------+ | IsaacGymEnvs | IsaacLab | +------------------------------------------------------------------+-------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def pre_physics_step(self, actions): | def _pre_physics_step(self, actions: torch.Tensor) -> None: | | actions_tensor = torch.zeros( | self.actions = self.action_scale * actions | | self.num_envs * self.num_dof, | | | device=self.device, dtype=torch.float) | def _apply_action(self) -> None: | | actions_tensor[::self.num_dof] = actions.to( | self.cartpole.set_joint_effort_target( | | self.device).squeeze() * self.max_push_effort | self.actions, joint_ids=self._cart_dof_idx) | | forces = gymtorch.unwrap_tensor(actions_tensor) | | | self.gym.set_dof_actuation_force_tensor( | | | self.sim, forces) | | | | | | def post_physics_step(self): | | | self.progress_buf += 1 | | | | | | env_ids = self.reset_buf.nonzero( | | | as_tuple=False).squeeze(-1) | | | if len(env_ids) > 0: | | | self.reset_idx(env_ids) | | | | | | self.compute_observations() | | | self.compute_reward() | | +------------------------------------------------------------------+-------------------------------------------------------------+ Dones and Resets ---------------- In Isaac Lab, ``dones`` are computed in the ``_get_dones()`` method and should return two variables: ``resets`` and ``time_out``. Tracking of the ``progress_buf`` has been moved to the base class and is now automatically incremented and reset by the framework. The ``progress_buf`` variable has also been renamed to ``episode_length_buf``. +-----------------------------------------------------------------------+---------------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +-----------------------------------------------------------------------+---------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def reset_idx(self, env_ids): | def _get_dones(self) -> tuple[torch.Tensor, torch.Tensor]: | | positions = 0.2 * (torch.rand((len(env_ids), self.num_dof), | self.joint_pos = self.cartpole.data.joint_pos | | device=self.device) - 0.5) | self.joint_vel = self.cartpole.data.joint_vel | | velocities = 0.5 * (torch.rand((len(env_ids), self.num_dof), | | | device=self.device) - 0.5) | time_out = self.episode_length_buf >= self.max_episode_length - 1 | | | out_of_bounds = torch.any(torch.abs( | | self.dof_pos[env_ids, :] = positions[:] | self.joint_pos[:, self._pole_dof_idx] > self.cfg.max_cart_pos), | | self.dof_vel[env_ids, :] = velocities[:] | dim=1) | | | out_of_bounds = out_of_bounds | torch.any( | | env_ids_int32 = env_ids.to(dtype=torch.int32) | torch.abs(self.joint_pos[:, self._pole_dof_idx]) > math.pi / 2, | | self.gym.set_dof_state_tensor_indexed(self.sim, | dim=1) | | gymtorch.unwrap_tensor(self.dof_state), | return out_of_bounds, time_out | | gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) | | | self.reset_buf[env_ids] = 0 | def _reset_idx(self, env_ids: Sequence[int] | None): | | self.progress_buf[env_ids] = 0 | if env_ids is None: | | | env_ids = self.cartpole._ALL_INDICES | | | super()._reset_idx(env_ids) | | | | | | joint_pos = self.cartpole.data.default_joint_pos[env_ids] | | | joint_pos[:, self._pole_dof_idx] += sample_uniform( | | | self.cfg.initial_pole_angle_range[0] * math.pi, | | | self.cfg.initial_pole_angle_range[1] * math.pi, | | | joint_pos[:, self._pole_dof_idx].shape, | | | joint_pos.device, | | | ) | | | joint_vel = self.cartpole.data.default_joint_vel[env_ids] | | | | | | default_root_state = self.cartpole.data.default_root_state[env_ids] | | | default_root_state[:, :3] += self.scene.env_origins[env_ids] | | | | | | self.joint_pos[env_ids] = joint_pos | | | | | | self.cartpole.write_root_pose_to_sim( | | | default_root_state[:, :7], env_ids) | | | self.cartpole.write_root_velocity_to_sim( | | | default_root_state[:, 7:], env_ids) | | | self.cartpole.write_joint_state_to_sim( | | | joint_pos, joint_vel, None, env_ids) | +-----------------------------------------------------------------------+---------------------------------------------------------------------------+ Observations ------------ In Isaac Lab, the ``_get_observations()`` API should now return a dictionary containing the ``policy`` key with the observation buffer as the value. For asymmetric policies, the dictionary should also include a ``critic`` key that holds the state buffer. +--------------------------------------------------------------------------+---------------------------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +--------------------------------------------------------------------------+---------------------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def compute_observations(self, env_ids=None): | def _get_observations(self) -> dict: | | if env_ids is None: | obs = torch.cat( | | env_ids = np.arange(self.num_envs) | ( | | | self.joint_pos[:, self._pole_dof_idx[0]], | | self.gym.refresh_dof_state_tensor(self.sim) | self.joint_vel[:, self._pole_dof_idx[0]], | | | self.joint_pos[:, self._cart_dof_idx[0]], | | self.obs_buf[env_ids, 0] = self.dof_pos[env_ids, 0] | self.joint_vel[:, self._cart_dof_idx[0]], | | self.obs_buf[env_ids, 1] = self.dof_vel[env_ids, 0] | ), | | self.obs_buf[env_ids, 2] = self.dof_pos[env_ids, 1] | dim=-1, | | self.obs_buf[env_ids, 3] = self.dof_vel[env_ids, 1] | ) | | | observations = {"policy": obs} | | return self.obs_buf | return observations | +--------------------------------------------------------------------------+---------------------------------------------------------------------------------------+ Rewards ------- In Isaac Lab, the reward method ``_get_rewards`` should return the reward buffer as a return value. Similar to IsaacGymEnvs, computations in the reward function can also be performed using pytorch jit by adding the ``@torch.jit.script`` annotation. +--------------------------------------------------------------------------+----------------------------------------------------------------------------------------+ | IsaacGymEnvs | Isaac Lab | +--------------------------------------------------------------------------+----------------------------------------------------------------------------------------+ |.. code-block:: python |.. code-block:: python | | | | | def compute_reward(self): | def _get_rewards(self) -> torch.Tensor: | | # retrieve environment observations from buffer | total_reward = compute_rewards( | | pole_angle = self.obs_buf[:, 2] | self.cfg.rew_scale_alive, | | pole_vel = self.obs_buf[:, 3] | self.cfg.rew_scale_terminated, | | cart_vel = self.obs_buf[:, 1] | self.cfg.rew_scale_pole_pos, | | cart_pos = self.obs_buf[:, 0] | self.cfg.rew_scale_cart_vel, | | | self.cfg.rew_scale_pole_vel, | | self.rew_buf[:], self.reset_buf[:] = compute_cartpole_reward( | self.joint_pos[:, self._pole_dof_idx[0]], | | pole_angle, pole_vel, cart_vel, cart_pos, | self.joint_vel[:, self._pole_dof_idx[0]], | | self.reset_dist, self.reset_buf, | self.joint_pos[:, self._cart_dof_idx[0]], | | self.progress_buf, self.max_episode_length | self.joint_vel[:, self._cart_dof_idx[0]], | | ) | self.reset_terminated, | | | ) | | @torch.jit.script | return total_reward | | def compute_cartpole_reward(pole_angle, pole_vel, | | | cart_vel, cart_pos, | @torch.jit.script | | reset_dist, reset_buf, | def compute_rewards( | | progress_buf, max_episode_length): | rew_scale_alive: float, | | | rew_scale_terminated: float, | | reward = (1.0 - pole_angle * pole_angle - | rew_scale_pole_pos: float, | | 0.01 * torch.abs(cart_vel) - | rew_scale_cart_vel: float, | | 0.005 * torch.abs(pole_vel)) | rew_scale_pole_vel: float, | | | pole_pos: torch.Tensor, | | # adjust reward for reset agents | pole_vel: torch.Tensor, | | reward = torch.where(torch.abs(cart_pos) > reset_dist, | cart_pos: torch.Tensor, | | torch.ones_like(reward) * -2.0, reward) | cart_vel: torch.Tensor, | | reward = torch.where(torch.abs(pole_angle) > np.pi / 2, | reset_terminated: torch.Tensor, | | torch.ones_like(reward) * -2.0, reward) | ): | | | rew_alive = rew_scale_alive * (1.0 - reset_terminated.float()) | | reset = torch.where(torch.abs(cart_pos) > reset_dist, | rew_termination = rew_scale_terminated * reset_terminated.float() | | torch.ones_like(reset_buf), reset_buf) | rew_pole_pos = rew_scale_pole_pos * torch.sum( | | reset = torch.where(torch.abs(pole_angle) > np.pi / 2, | torch.square(pole_pos), dim=-1) | | torch.ones_like(reset_buf), reset_buf) | rew_cart_vel = rew_scale_cart_vel * torch.sum( | | reset = torch.where(progress_buf >= max_episode_length - 1, | torch.abs(cart_vel), dim=-1) | | torch.ones_like(reset_buf), reset) | rew_pole_vel = rew_scale_pole_vel * torch.sum( | | | torch.abs(pole_vel), dim=-1) | | | total_reward = (rew_alive + rew_termination | | | + rew_pole_pos + rew_cart_vel + rew_pole_vel) | | | return total_reward | +--------------------------------------------------------------------------+----------------------------------------------------------------------------------------+ Launching Training ~~~~~~~~~~~~~~~~~~ To launch a training in Isaac Lab, use the command: .. code-block:: bash python source/standalone/workflows/rl_games/train.py --task=Isaac-Cartpole-Direct-v0 --headless Launching Inferencing ~~~~~~~~~~~~~~~~~~~~~ To launch inferencing in Isaac Lab, use the command: .. code-block:: bash python source/standalone/workflows/rl_games/play.py --task=Isaac-Cartpole-Direct-v0 --num_envs=25 --checkpoint=<path/to/checkpoint>
77,191
reStructuredText
83.919692
330
0.35898
isaac-sim/IsaacLab/docs/source/migration/index.rst
Migration Guides ================ The following guides show the migration process from previous frameworks that are now deprecated, including IsaacGymEnvs, OmniIsaacGymEnvs, and Orbit. .. toctree:: :maxdepth: 1 :titlesonly: migrating_from_isaacgymenvs migrating_from_omniisaacgymenvs migrating_from_orbit
329
reStructuredText
20.999999
97
0.732523
isaac-sim/IsaacLab/docs/source/migration/migrating_from_orbit.rst
.. _migrating-from-orbit: Migrating from Orbit ==================== .. currentmodule:: omni.isaac.lab Since Orbit was used as basis for Isaac Lab, migrating from Orbit to Isaac Lab is straightforward. The following sections describe the changes that need to be made to your code to migrate from Orbit to Isaac Lab. Updates to scripts ~~~~~~~~~~~~~~~~~~ The script ``orbit.sh`` has been renamed to ``isaaclab.sh``. Updates to extensions ~~~~~~~~~~~~~~~~~~~~~ The extensions ``omni.isaac.orbit``, ``omni.isaac.orbit_tasks``, and ``omni.isaac.orbit_assets`` have been renamed to ``omni.isaac.lab``, ``omni.isaac.lab_tasks``, and ``omni.isaac.lab_assets``, respectively. Thus, the new folder structure looks like this: - ``source/extensions/omni.isaac.lab/omni/isaac/lab`` - ``source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks`` - ``source/extensions/omni.isaac.lab_assets/omni/isaac/lab_assets`` The high level imports have to be updated as well: +-------------------------------------+-----------------------------------+ | Orbit | Isaac Lab | +=====================================+===================================+ | ``from omni.isaac.orbit...`` | ``from omni.isaac.lab...`` | +-------------------------------------+-----------------------------------+ | ``from omni.isaac.orbit_tasks...`` | ``from omni.isaac.lab_tasks...`` | +-------------------------------------+-----------------------------------+ | ``from omni.isaac.orbit_assets...`` | ``from omni.isaac.lab_assets...`` | +-------------------------------------+-----------------------------------+ Updates to class names ~~~~~~~~~~~~~~~~~~~~~~ In Isaac Lab, we introduced the concept of task design workflows (see :ref:`feature-workflows`). The Orbit code is using the manager-based workflow and the environment specific class names have been updated to reflect this change: +------------------------+---------------------------------------------------------+ | Orbit | Isaac Lab | +========================+=========================================================+ | ``BaseEnv`` | :class:`omni.isaac.lab.envs.ManagerBasedEnv` | +------------------------+---------------------------------------------------------+ | ``BaseEnvCfg`` | :class:`omni.isaac.lab.envs.ManagerBasedEnvCfg` | +------------------------+---------------------------------------------------------+ | ``RLTaskEnv`` | :class:`omni.isaac.lab.envs.ManagerBasedRLEnv` | +------------------------+---------------------------------------------------------+ | ``RLTaskEnvCfg`` | :class:`omni.isaac.lab.envs.ManagerBasedRLEnvCfg` | +------------------------+---------------------------------------------------------+ | ``RLTaskEnvWindow`` | :class:`omni.isaac.lab.envs.ui.ManagerBasedRLEnvWindow` | +------------------------+---------------------------------------------------------+ Updates to the tasks folder structure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To support the manager-based and direct workflows, we have added two folders in the tasks extension: - ``source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/manager_based`` - ``source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/direct`` The tasks from Orbit can now be found under the ``manager_based`` folder. This change must also be reflected in the imports for your tasks. For example, .. code-block:: python from omni.isaac.orbit_tasks.locomotion.velocity.velocity_env_cfg ... should now be .. code-block:: python from omni.isaac.lab_tasks.manager_based.locomotion.velocity.velocity_env_cfg ... Other Breaking changes ~~~~~~~~~~~~~~~~~~~~~~ Offscreen rendering ------------------- The input argument ``--offscreen_render`` given to :class:`omni.isaac.lab.app.AppLauncher` and the environment variable ``OFFSCREEN_RENDER`` have been renamed to ``--enable_cameras`` and ``ENABLE_CAMERAS`` respectively. Event term distribution configuration ------------------------------------- Some of the event functions in `events.py <https://github.com/isaac-sim/IsaacLab/blob/isaac-lab/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py>`_ accepted a ``distribution`` parameter and a ``range`` to sample from. In an effort to support arbitrary distributions, we have renamed the input argument ``AAA_range`` to ``AAA_distribution_params`` for these functions. Therefore, event term configurations whose functions have a ``distribution`` argument should be updated. For example, .. code-block:: python :emphasize-lines: 6 add_base_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_range": (-5.0, 5.0), "operation": "add", }, ) should now be .. code-block:: python :emphasize-lines: 6 add_base_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names="base"), "mass_distribution_params": (-5.0, 5.0), "operation": "add", }, )
5,268
reStructuredText
40.164062
165
0.527335
michaltakac/nerf-toy-car-aerodynamics/README.md
# Toy car simulator Example project for Ozaj.tech. This simulator mainly showcases the capabilities of parametrized AI-based physics simulator for simulating aerodynamics of a car, leveraging scientific deep learning methods (physics-informed neural networks and Fourier neural operators).
293
Markdown
47.999992
239
0.832765
michaltakac/nerf-toy-car-aerodynamics/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "Toy car aerodynamics example" description="Project commisioned for Faculty of materials, metallurgy and recyclation (FMMR) at Technical university of Košice." # Path (relative to the root) or content of readme markdown file for UI. readme = "README.md" changelog = "docs/CHANGELOG.md" preview_image = "data/toy-car.png" icon = "data/icon.png" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Simulation" # Keywords for the extension keywords = ["modulus", "toy-car", "STL geometry", "scenario"] # Use omni.ui to build simple UI [dependencies] "modulus_ext.core" = {version="22.9.0"} "modulus_ext.ui" = {version="2.0.0"} "hpcvis.vtkm_bridge.core" = {version="1.0.2-alpha-03"} # Main python module this extension provides". [[python.module]] name = "toy-car"
988
TOML
28.088234
128
0.726721
michaltakac/nerf-toy-car-aerodynamics/config/extension.gen.toml
[package] [package.target] python = ["cp37"] [package.publish] date = 1662766157 kitVersion = "103.5+release.6600.0a006a6d.tc"
127
TOML
17.285712
45
0.732283
michaltakac/nerf-toy-car-aerodynamics/docs/CHANGELOG.md
# Toy car aerodynamics example ## [1.0.0] - 2022-10-14 Initial version, working with Modulus 22.09
100
Markdown
19.199996
43
0.72
michaltakac/nerf-toy-car-aerodynamics/toy-car/toy_car_runner.py
import sys, os import torch import modulus from sympy import Symbol, Eq, Abs, tanh import numpy as np import logging from typing import List, Dict, Union from pathlib import Path from modulus.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.models.fully_connected import FullyConnectedArch from modulus.domain.inferencer import ( OVVoxelInferencer, ) from modulus_ext.ui.scenario import ModulusOVProgressBar from modulus.key import Key from modulus.key import Key from modulus.eq.pdes.navier_stokes import NavierStokes from modulus.eq.pdes.basic import NormalDotVec from modulus.geometry.tessellation import Tessellation from .constants import bounds from .src.geometry import ToyCarDomain class ModulusToyCarRunner(object): """Toy car simulator inference runner for OV scenario Args: cfg (ModulusConfig): Parsed Modulus config """ def __init__( self, cfg: ModulusConfig, progress_bar: ModulusOVProgressBar, mask_value: float = -100, ): logging.getLogger().addHandler(logging.StreamHandler()) ############################## # Nondimensionalization Params ############################## # fluid params # Water at 20°C (https://wiki.anton-paar.com/en/water/) # https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity self.nu = 1.787e-06 # m2 * s-1 self.inlet_vel = Symbol("inlet_velocity") self.rho = 1 self.scale = 1.0 self.cfg = cfg self.progress_bar = progress_bar self._eco = False self._inferencer = None self.bounds = bounds self.mask_value = mask_value @property def eco(self): return self._eco @eco.setter def eco(self, value: bool): self._eco = value if self._inferencer: self._inferencer.eco = value def load_inferencer(self, checkpoint_dir: Union[str, None] = None): """Create Modulus Toy Car simulator inferencer object. This can take time since it will initialize the model Parameters ---------- checkpoint_dir : Union[str, None], optional Directory to modulus checkpoint """ # make list of nodes to unroll graph on ns = NavierStokes(nu=self.nu * self.scale, rho=self.rho, dim=3, time=False) normal_dot_vel = NormalDotVec(["u", "v", "w"]) self.progress_bar.value = 0.025 equation_nodes = ( ns.make_nodes() + normal_dot_vel.make_nodes() ) # determine inputs outputs of the network input_keys = [Key("x"), Key("y"), Key("z")] input_keys += [Key("inlet_velocity")] output_keys = [Key("u"), Key("v"), Key("w"), Key("p")] # select the network and the specific configs flow_net = FullyConnectedArch( input_keys=input_keys, output_keys=output_keys, ) self.flow_nodes = equation_nodes + [ flow_net.make_node(name="flow_network", jit=self.cfg.jit) ] invar_keys = [ Key.from_str("x"), Key.from_str("y"), Key.from_str("z"), Key.from_str("inlet_velocity"), ] outvar_keys = [ Key.from_str("u"), Key.from_str("v"), Key.from_str("w"), Key.from_str("p"), ] self._inferencer = OVVoxelInferencer( nodes=self.flow_nodes, input_keys=invar_keys, output_keys=outvar_keys, mask_value=self.mask_value, requires_grad=False, eco=False, progress_bar=self.progress_bar, ) # Load checkpointed model if checkpoint_dir is not None: absolute_checkpoint_dir = Path(__file__).parent / checkpoint_dir if absolute_checkpoint_dir.resolve().is_dir(): self._inferencer.load_models(absolute_checkpoint_dir.resolve()) else: print("Could not find checkpointed model") # Set eco self._inferencer.eco = self.eco def load_geometry(self): # normalize meshes def normalize_mesh(mesh, center, scale): mesh = mesh.translate([-c for c in center]) mesh = mesh.scale(scale) return mesh stl_path = Path(self.data_path) / Path("stl_files") self.car_mesh = Tessellation.from_stl( Path(stl_path) / Path("toy_bmw.stl"), airtight=True ) center = (0, 0, 0) scale = 1.0 self.car_mesh = normalize_mesh(self.car_mesh, center, scale) def run_inference( self, inlet_velocity: float, resolution: List[int] = [256, 256, 256], ) -> Dict[str, np.array]: """Runs inference for toy car simulator Args: resolution (List[int], optional): Voxel resolution. Defaults to [256, 256, 256]. Returns: Dict[str, np.array]: Predicted output variables """ self.progress_bar.value = 0 if self._inferencer is None: print("Loading toy car inferencer") self.load_inferencer(checkpoint_dir="./checkpoints") self.progress_bar.value = 0.05 print("Loading toy car geometry") self.load_geometry() self.progress_bar.value = 0.1 # Eco mode settings if self._inferencer.eco: batch_size = 512 memory_fraction = 0.1 else: vram_gb = torch.cuda.get_device_properties(0).total_memory / 10**9 batch_size = int((vram_gb // 6) * 16 * 1024) memory_fraction = 1.0 mask_fn = ( lambda x, y, z: self.car_mesh.sdf({"x": x, "y": y, "z": z}, {})["sdf"] < 0 ) sp_array = np.ones((np.prod(resolution), 1)) specific_params = { "inlet_velocity": inlet_velocity * sp_array, } # Set up the voxel sample domain self._inferencer.setup_voxel_domain( bounds=self.bounds, npoints=resolution, invar=specific_params, batch_size=batch_size, mask_fn=mask_fn, ) self.progress_bar.value = 0.2 # Perform inference invar, predvar = self._inferencer.query(memory_fraction) # TODO: Remove should be changed to inside inferencer self.progress_bar._prev_step = 0.0 self.progress_bar.value = 0.9 return predvar @property def data_path(self): data_dir = Path(os.path.dirname(__file__)) / Path("../data") return str(data_dir)
6,706
Python
30.050926
92
0.567253