text
stringlengths
2
806k
meta
dict
The present invention, relating generally to an agricultural baler for forming cylindrical bales of crop material, commonly referred to as a round baler, is directed to an improved tailgate latching apparatus. More particularly, this invention is directed toward an improved round baler tailgate latching apparatus that reduces the likelihood malfunction or damage during tailgate latching and unlatching operations. For many years agricultural balers have been used to consolidate and package crop material so as to facilitate the storage and handling of the crop material for later use. Usually, a mower-conditioner cuts and conditions the crop material for windrow drying in the sun. When the cut crop material is properly dried, a baler is pulled along the windrows to pick up the crop material and form it into conveniently sized and shaped round bales. More specifically, the windrow pickup of the baler gathers the cut and windrowed crop material and lifts it into the baling chamber. In a round baler, the baling chamber consists of a pair of opposing sidewalls with a series of belts that rotate and compress the crop material into a cylindrical shape. When the bale has achieved a desired size and density, the operator wraps the bale to ensure that the bale maintains its shape and density. The operator then raises the tailgate of the baler and ejects the bale onto the ground. The tailgate is then closed and the cycle repeated as necessary and desired to manage the field of cut crop material. The utilization of rolls in combination with belts is shown by way of example in the round baler of U.S. Pat. No. 4,870,812, by Richard E. Jennings, et al., which is incorporated in its entirety herein by reference. It is common practice to use a latching assembly to maintain a round baler tailgate in the closed position during bale formation in the chamber. Prior art latching mechanisms experienced, under certain crop conditions, excessive stress on the tailgate pivot pins when the hydraulic cylinder, employed to hold the latch in place during operation, exerts a force on the latch pin. This stress is applied as a rotational force on the tailgate pivot pins. Concurrently, a lateral force is incumbent on the tailgate during bale formation as the package of crop material expands within the chamber. Thus, the latch pin, which is being forced downwardly, transmits a downward force to the entire tailgate, which in turn produces the deleterious rotational force mentioned above, while at the same time a lateral force is being applied to the pivot pins, all of which could cause stress and ultimate fatigue if left uncorrected. An improved latching mechanism designed to improve tailgate latching performance is disclosed in U.S. Pat. No. 7,520,215, by John H. Merritt, the descriptive portions of which are incorporated herein by reference. The Merritt reference discloses an adjustable tailgate latching mechanism for a round baler utilizing a movable arcuate hook-like latch catching structure attached to the latching mechanism that enables proper alignment of the tailgate latch to be established and maintained. Latching and unlatching movement of the mechanism is synchronized with and controlled by movement of the tailgate lift cylinder. Experience with the improved tailgate latch mechanism shows that the latches remained prone to bending upon tailgate closure. Excessive variation in the relative position of elements of the latching mechanisms of the tailgate latches become problematic when latch movement in both the latching and the unlatching direction is synchronized with and controlled by the tailgate lift cylinder. As a result, the tailgate may be prevented from securely latching in a closed position for baling, opening to discharge a completed bale, or be subjected to excessive stresses. Correcting the misalignment is typically performed by grinding portions of the latching mechanism to obtain the proper fit or re-mounting tailgate latch pins to correct the misalignment. Such actions require significant effort. Furthermore, if misalignment in the tailgate latching mechanism occurs as a result of wear in the baler, correcting the problem generally means that the baler must be removed from operation, a correction that is rarely convenient to perform. It would be a great advantage to provide a more durable tailgate latch mechanism for a round baler that features latching that is independent of the tailgate lift cylinders during tailgate closure, but requires hydraulic pressure in the lift cylinders to release the latching mechanism and allow tailgate opening overcomes the above-identified problems and disadvantages.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an image reading apparatus that reads an original image with a CCD line image sensor and outputs image data to a utility instrument, for example, an image forming apparatus such as a digital copier, a facsimile, etc., after converting to and correcting a digital signal. In particular, the present invention relates to an image reading and forming apparatus capable of correcting the image data in accordance with density adjusting data obtained by comparing a density of a reference white plate with that of a reference original even when the density of the reference white plate varies. 2. Discussion of the Background Art In a current digital copier, a CCD sensor reads an image when an optical unit is moved in a sub scanning direction perpendicular to a main scanning direction while an original image receives exposure from a light source, namely, an original surface is read. An analog image signal is obtained from the original and is then converted to a digital signal. The digital signal is then corrected in various manners. There exists a so-called shading correction that is a process for eliminating unevenness (existing in a widthwise direction of a photo acceptance unit) and for making an output from each element of the photo acceptance unit substantially the same. Such widthwise unevenness is generally caused by one of unevenness of sensitivity of each element in a CCD line image sensor and that of an amount of a transmission light through an imaging lens toward the CCD. Unevenness and degradation of an illumination optical unit can also be a cause thereof. The shading correction process illuminates a reference white plate 101 (see FIG. 1) arranged in the vicinity of an original document setting and reading section prior to an actual reading of the original, and then reads a reflected light from the reference white plate. The shading correction process then obtains white level reference data to be used in a shading correction process for respective pixels. Then, a prescribed correction calculation is performed. Specifically, data read from the original is corrected by the correction data and also receives shading correction. To precisely perform shading correction, a density of the reference white plate should be normalized within a standard original reading density range even if there exists density unevenness among reference white plates. Specifically, when unevenness of a density inherently existing in a reference white plate attached to an apparatus or caused by a time elapse is large, image data indicating a density is affected. As a result, a density varies even after the shading process is performed. To resolve such a problem, the density unevenness of a reference white plate is normalized by setting a different reference potential to the A/D converter (which generally performs A/D conversion based upon a reference potential). Specifically, even if unevenness exits, outputs after the A/D conversion are adjusted to be constant (i.e., adjusted within a standard original reading density range). FIG. 7 illustrates an exemplary background circuit employing a system for adjusting density unevenness caused when a conventional reference white plate is used. As shown, an analog image signal read by a one-dimensional line state CCD 201 is processed by all of wave-fairing, sample holding, and amplifying signal processing circuits 202, and is then converted into digital data by the A/D converter 203. Subsequently, the digital data is input to the shading correction circuit 207. Different reference voltages Ref1 202 and Ref2 205 are used and applied to the A/D converter 203 respectively when the reference white plate and an original are read. Specifically, a reference original is used so as to define a readable density limit as a standard that is referred to when unevenness existing in a reference white plate is adjusted and its output is normalized. A prescribed reference potential is obtained by adjustment of an adjustment device (not shown) so that an output generated when the density uneven reference white plate is read at the prescribed reference potential substantially equals that obtained when a reference original is read at Ref1. Then, such a prescribed reference potential is used as a reference potential “Ref2” of the A/D conversion when an original is actually read. Thus, different reference potentials Ref1 and Ref2 are prepared respectively when the reference white plate and original are read, and a selector 206 is required so as to alternately set one of these potentials to the A/D converter 203 when respective reading operations are performed. However, because different reference potentials and a device for changing and selecting one of such potentials are required, a circuit is complex, parts vary, and noise is generated. In addition, the costs of the device increase (e.g., expensive parts are required when highly precise adjustment is performed).
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The invention relates to a method and device for measuring a temperature when testing an electronic component. The component parameters must be determined when testing an electronic component. However, the majority of the component parameters are temperature-dependent. Particular significance is given to the temperature that prevails at the location of the electronic component that is relevant for the respective component parameter. This temperature is termed junction temperature. In the case of integrated modules, this is a temperature in a specific region of the substrate in which the electronic circuits relevant for determining the component parameters are situated. The junction temperature cannot be measured straightaway, because it is difficult to mount a temperature sensor at the relevant point of the chip, particularly after the chip has been inserted in a housing, and in addition, the component parameters are frequently determined from a plurality of regions on the chip. It is impracticable as a rule to mount sensors on all of these regions. The respective component parameter is a function of a chip temperature at the regions on the chip that are decisive for the respective component parameter. In measurement methods known to date, the chip is exposed to an ambient temperature and it is assumed using an approximation that the temperature at the relevant regions on the chip corresponds to the ambient temperature. However, during operation of the integrated circuit heat is generated on the chip. The result is to increase the temperature in the active regions in comparison with the ambient temperature. Particularly in the case of consecutive measurements, the integrated circuit remains essentially continuously in use, and so the temperature on the chip rises in a non-negligible way in comparison with the ambient temperature. A further disadvantage is that the degree of heating of the chip cannot be determined. It is accordingly an object of the invention to provide a device and a method for measuring the junction temperature in an electronic component which overcome the above-mentioned disadvantages of the prior art devices and methods of this general type. With the foregoing and other objects in view there is provided, in accordance with the invention, a method for measuring a temperature in an integrated semiconductor component, that includes steps of: obtaining an internal signal by applying a periodic test signal to a signal path that is internally configured in the semiconductor component; ensuring that there is a relationship, selected from the group consisting of a frequency relationship and a phase relationship, between the periodic test signal and a periodic external signal; measuring a phase shift between the internal signal and the external signal; and using the phase shift to determine an average temperature in a component region determined by the signal path. In accordance with the method for measuring a temperature in an electronic component, a periodic test signal is led via a signal path inside the component in order to obtain an internal signal. There is a frequency and/or phase relationship between the periodic test signal and a periodic external signal. A phase shift is measured between an internal signal and an external signal. The temperature averaged over the component region selected by the signal path is determined from the phase shift. The temperature is preferably a junction temperature of the relevant component region. The invention is based on the finding that because of switching speeds of the gates, the signal propagation times in the component interior are a function of the temperature prevailing there. The invention uses this dependence in order to measure the junction temperature when testing electronic components. This is advantageous, in particular, because of the fact that the junction temperature is difficult to measure from the outside and differs from the ambient temperature by a not exactly quantifiable value because of heat that is developed inside the electronic component. The method now advantageously renders it possible to determine a mean junction temperature of the regions through which an internal signal is led. The internal signal is advantageously led through the component via a signal path such that it substantially traverses the region or regions relevant for determining the component parameters. It is frequently sensible to use a functional signal path, which is already present in any case in the chip, as the signal path so that additional chip area is not required for an additional signal path. An average value is determined from the phase shift between the external signal and the internal signal, in order to average therefrom fluctuations in the phase shift because of jitter effects or other ones. An averaged value for the junction temperature can be determined in this way over the selected chip region. With the foregoing and other objects in view there is provided, in accordance with the invention, a combination including: an integrated semiconductor component having an internally configured signal path obtaining an internal periodic signal from a periodic test signal applied thereto; and a device for measuring a temperature in the semiconductor component. The device includes a phase-sensitive element having a first input receiving an external periodic signal and a second input receiving the internal periodic signal from the semiconductor component. The phase-sensitive element has an output providing a variable corresponding to a time-averaged phase shift between the external periodic signal and the internal periodic signal from the semiconductor component. The time-averaged phase shift corresponds to an average temperature of a component region determined by the signal path in the electronic component. A frequency relationship or a phase relationship exists between the periodic test signal and the external periodic signal. In accordance with an added mode of the invention, the phase-sensitive element is preferably for measuring a junction temperature in an electronic component. The first input of the phase-sensitive element is connected to an external periodic signal, and the second input is connected to an internal periodic signal. The internal signal is in this case a periodic test signal led via a signal path inside the component. There is a frequency and/or phase relationship between the periodic test signal and a periodic external signal. The phase-sensitive element outputs, at an output, a variable that corresponds to the time-averaged phase shift between an external signal and a signal inside the component. The time-averaged phase shift corresponds to a temperature that is averaged over a component region selected by the signal path in the electronic component. The time-averaged phase shift corresponds to a junction temperature, averaged over the signal path, in the electronic component. The device has the advantage that it renders it possible to measure the junction temperature in an electronic component in a simple way. Whereas previously, the junction temperature has been derived from the ambient temperature to which the electronic component is exposed, the device enables the junction temperature to be determined essentially exactly at the instant of a measurement of a component temperature. Particularly in the case when measuring a plurality of parameters of an electronic component, the electronic component is connected to the supply voltage for a lengthy period. The result is that the electronic component is heated entirely or partially in comparison with the ambient temperature. That is to say, it is now possible when measuring a plurality of electronic component parameters within a short time after applying a supply voltage to the electronic component, to make the assumption that the junction temperature corresponds to the ambient temperature. In the case of directly consecutive measurements of component parameters, the component parameters measured later are therefore measured at a junction temperature differing from the ambient temperature. The inventive device now permits the junction temperature to be determined exactly at any time, that is to say even after a lengthy application of the supply voltage to the electronic component. Moreover, it is advantageous that the junction temperature can be determined in a simple way when testing the integrated circuit simply by measuring an electric variable. The electric variable can be measured using the testing device without the need to provide an additional measuring circuit. The internal signal is advantageously formed in this case from the external signal, and so the internal and external signals have the same frequency, and a defined phase relationship arises. In this case, the internal signal is preferably led via a signal path through the electronic component. The average junction temperature is determined as a result from the individual junction temperature of the regions through which the signal path runs. When the internal signal is derived from the external signal, it is particularly advantageous that the synchronization of the internal signal with respect to the external signal is eliminated. It is advantageous to tune the measurement in order to be able to determine the junction temperature more exactly. For this purpose, the phase shift is measured at a predetermined temperature. The predetermined temperature acts on the switched-off component until the latter has continuously assumed the predetermined temperature. The phase shift is preferably measured immediately after the application of the supply voltage to the electronic component so that it is possible to assume a junction temperature that corresponds substantially to the ambient temperature. This yields the respective phase shift at the predetermined temperature. By applying known physical laws, or else by interpolation (after a measurement of one or more further phase shifts at one or more further temperatures), it is possible to determine a functional relationship that permits the junction temperature to be determined for each measured phase shift. In accordance with an added feature of the invention, it is provided that the internal and the external signals are led via a phase detector for the purpose of measuring the phase shift. The phase detector is designed in its simplest form as an exclusive-OR circuit. A periodically pulsed signal is yielded at the output of the phase detector in accordance with the phase shift. The length of time of the periodic pulse (for example duration of the high level) corresponds to the magnitude of the phase shift. In order to determine a mean value of the phase shift, this periodically pulsed signal is preferably low-pass filtered in order to obtain an output signal with an essentially uniform value. Using the magnitude of the output signal, the mean phase shift, and thus the averaged junction temperature can be read out. This embodiment has the advantage that it can be of simple design. In accordance with an additional feature of the invention, the phase-sensitive element is integrated into the electronic component. The electronic component is capable of outputting an electric variable or else a digital variable as a function of the measured phase shift. It is advantageously possible in this way to determine the junction temperature in the interior of the electronic component by measuring an electric variable at an output of the electronic component. There is then no further need for an additional external circuit. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a method and device for measuring a temperature in an electronic component, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Various types of target systems have been designed over the years and offer the shooter of pellet shooting air and CO.sub.2 rifles some variety of target types and sizes and a number of different target reset features. These target reset features enable the shooter to return the target to a normal upright position once it has been hit by a pellet or projectile. These prior art target systems are not, generally speaking, easily, rapidly, and reliably resettable from a location remote from the target. In addition, these prior art target systems do not offer the shooter a wide variety of target options in an apparatus which is readily collapsible, portable, economical in construction, and multipurpose in function.
{ "pile_set_name": "USPTO Backgrounds" }
A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that instance, a patterning device, which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC. This pattern can be transferred onto a target portion (e.g. comprising part of, one, or several dies) on a substrate (e.g. a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. Known lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at one time, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate. It has been proposed to immerse the substrate in the lithographic projection apparatus in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. The point of this is to enable imaging of smaller features since the exposure radiation will have a shorter wavelength in the liquid. (The effect of the liquid may also be regarded as increasing the effective NA of the system and also increasing the depth of focus.) Other immersion liquids have been proposed, including water with solid particles (e.g. quartz) suspended therein. However, submersing the substrate or substrate and substrate table in a bath of liquid (see, for example, U.S. Pat. No. 4,509,852, hereby incorporated in its entirety by reference) means that there is a large body of liquid that must be accelerated during a scanning exposure. This requires additional or more powerful motors and turbulence in the liquid may lead to undesirable and unpredictable effects. One of the solutions proposed is for a liquid supply system to provide liquid on only a localized area of the substrate and in between the final element of the projection system and the substrate (the substrate generally has a larger surface area than the final element of the projection system). One way which has been proposed to arrange for this is disclosed in PCT patent application WO 99/49504, hereby incorporated in its entirety by reference. As illustrated in FIGS. 2 and 3, liquid is supplied by at least one inlet IN onto the substrate, preferably along the direction of movement of the substrate relative to the final element, and is removed by at least one outlet OUT after having passed under the projection system. That is, as the substrate is scanned beneath the element in a −X direction, liquid is supplied at the +X side of the element and taken up at the −X side. FIG. 2 shows the arrangement schematically in which liquid is supplied via inlet IN and is taken up on the other side of the element by outlet OUT which is connected to a low pressure source. In the illustration of FIG. 2 the liquid is supplied along the direction of movement of the substrate relative to the final element, though this does not need to be the case. Various orientations and numbers of in- and out-lets positioned around the final element are possible, one example is illustrated in FIG. 3 in which four sets of an inlet with an outlet on either side are provided in a regular pattern around the final element.
{ "pile_set_name": "USPTO Backgrounds" }
The techniques of multicarrier transmission have many advantages, especially in the context of wired or non-wired multipath channels. Thus, OFDM type modulations are particularly well suited to countering the effects of fading in multipath channels. However, these OFDM modulations have the drawback of generating a signal with poor frequency localization. Alternative solutions have then been proposed, leading to multicarrier modulation techniques in which the signal is shaped by filters (for a discretized signal) or functions (for a continuous signal) known as prototype filters, enabling better frequency localization through properties of orthogonality. These are for example OFDM/OQAM or BFDM/OQAM type modulations, conventionally used for radiofrequency communications as described especially in the patent application WO 2008/007019 published 17 Jan. 2008 on behalf of the present Applicant. It may be recalled that the OFDM/OQAM signal can be represented in discrete form, as follows: s ⁡ [ k ] = ∑ m = 0 M - 1 ⁢ ∑ n ∈ ℤ ⁢ a m , n ⁢ g ⁡ [ k - nN ] ⁢ ⅇ j ⁢ ⁢ 2 ⁢ π M ⁢ m ⁡ ( k - ⁢ D 2 ) ⁢ ⅇ j ⁢ ⁢ ϕ m , n ︸ g m , n ⁡ [ k ] , with: am,n being a real value data element to be transmitted on a carrier m at the instant n; M the number of carrier frequencies; g the prototype filter used by the modulator; D=Lg−1, with Lg being the length of the prototype filter g: N=M/2 being a discrete temporal shift; φm,n being a phase term chosen so as to achieve a real part/imaginary part alternation enabling orthogonality or more generally bi-orthogonality, for example equal to π 2 ⁢ ( n + m ) + ϕ 0 ,  with φ0 chosen arbitrarily; and j2=−1. However, one drawback of these OFDM/OQAM or BFDM/OQAM modulation techniques is that the condition of orthogonality or of bi-orthogonality is achieved only for real values of the data elements to be transmitted. Now, the fact of having available only an orthogonality of translated values in the real sense makes the process of channel estimation more difficult. Indeed, to estimate the complex gain of the channel on a given carrier, it is appropriate to obtain the complex projection of the signal received on said carrier. Now, the fact that there is no guard interval and that the orthogonality is only real according to this type of modulation implies the presence of intrinsic intra-carrier or inter-carrier interference even on an ideal channel. Indeed, the imaginary part of the projection of the signal received on the basis of the translated values of the prototype filter is not zero. This is expressed by a disturbing term which gets added to the demodulated signal and which must be taken into account for the estimation of the channel. In concrete terms, if the data element am,n is sent at the frequency/time location (m,n), it can be shown that the following signal is obtained at reception without taking account of the noise:ym,n(c)≈Hm,n(c)(am,n+jam,n(i)),where Hm,n(c) designates the channel coefficient and et am,n(i) designates the residual interference that persists around the symbol of index n and each carrier of the index m. The approaches of estimation by preamble considered hitherto seek to optimize the structure of the preamble by producing either a preamble that can be used to cancel interference at reception as described in the patent application WO 02/25883 published on 28 Mar. 2002 or, on the contrary, a preamble that increases the power of this interference in reception as described in the patent application WO 2008/007019 mentioned here above. This second approach, also called the IAM or Interference Approximation Method gives better results for the channel estimation. Indeed, for a given transmission power, the gain anticipated by this IAM approach increases in proportion to the imaginary interference generated for each data element transmitted. The increase in interference is therefore beneficial up to a certain point. According to this second approach and as described in the patent application WO 2008/007019 mentioned here above, the receiver uses an approximation of the residual interference am,n(i). For example, if we consider a neighborhood sized 3×3, denoted as Ω*1,1, around a frequency-time position (m0, n0), in excluding the position (m0, n0), the imaginary component am,n(i) can be approximated by: a m 0 , n 0 ( i ) ≈ ∑ ( p , q ) ∈ Ω 1 , 1 * ⁢ a m 0 + p , n 0 + q ⁢ 〈 g 〉 m 0 + p , n 0 + q m 0 , n 0 where gm0+p,n0+qm0,n0) is equal to the scalar product of gm0,n0 by gm0,n0 by gm0+p,n0+q. In the presence of noise η, this leads to a channel estimation given by: H ^ m 0 , n 0 ( c ) = H m 0 , n 0 ( c ) + η m 0 , n 0 ( a m 0 , n 0 + j ⁢ ⁢ a m 0 , n 0 ( i ) ) . In order to amplify or boost the power of the preamble received, particular preamble structures have been proposed, such as the one known as IAM1 in C. Lélé, P. Siohan, R. Legouable, and J.-P. Javaudin, “Preamble-based channel estimation techniques for OFDM/OQAM over the powerline” (ISPLC 2007, March 2007). For example, the sequence illustrated in FIG. 1 comprises: a preamble IAM1 formed by three preamble symbols referenced pm,0, pm,1 and pm,2, with m being the index for the carrier frequencies and 0, 1, 2 being the temporal index, each preamble symbol comprising M pilots for which the value and location at transmission are known to at least one receiver designed to carry out a reception of the multicarrier signal; and data symbols. The structure of the preamble IAM1 is such that:pm,0=pm,2=0,p4k,1=p4k+1,1=1, andp4k+2,1=p4k+3,1=−1,with k=0, . . . , M/4−1 and M is the number of carriers per multicarrier symbol. Consequently, the pilot received at the mth frequency and for the symbol pm,1 with a temporal index 1 interference-ridden (also called a “pseudo-pilot”) can be written as:bm,1≈pm,1+j(2pm+1,1gm+1,1m,1)where gm+1,1m,1 corresponds to the scalar product of the filters gm+1,1[k] and gm,1[k]. In denoting |gm+1,1m,1|=β0, then the power of the pseudo-pilot can be expressed in the following form:E[|bm,12|]=2σa2(1+4β02),where σa2 corresponds to the variance of the data elements am,n. Other preamble structures of a same length (three preamble symbols i.e. 3M pilots) have also been proposed, leading to even more favorable expressions for the power of the pseudo-pilot as proposed in the document C. Lélé, P. Siohan, and R. Legouable, “2 db better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation” (ICC 2008, May 2008). It can be observed that in all these cases, the quality of the channel is directly related to parameter β0. Thus, the best results (i.e. the highest values of the parameter β0 are obtained with orthogonal filters that are well localized in time and frequency. Thus, the classically used prototype filters use the IOTA (Isotropic Orthogonal Transform Algorithm) function, discretized and truncated to a length 4M, or the prototype filter of length M called the TFL (Time Frequency Localization) filter optimized for a defined criterion, for a signal with real values, by a time/frequency localization parameter: ξ = 1 4 ⁢ π ⁢ m 2 ⁢ M 2 ,where m2 and M2 are respectively the second-order moments in time and frequency defined in the document by M. I. Doroslova{hacek over (c)}ki, “Product of second moments in time and frequency for discrete time signals and the uncertainty limit” (Signal Processing, vol. 67), such that: m 2 ⁡ ( x ) = 1  x  2 ⁢ ∑ k ∈ ℤ ⁢ ( k - 1 2 - T ⁡ ( x ) ) 2 ⁡ [ x ⁡ [ k ] + x ⁡ [ k - 1 ] 2 ] 2 ⁢ ⁢ M 2 ⁡ ( x ) = 1 ( 2 ⁢ π ) 2 ⁢  x  2 ⁢ ∑ k ∈ ℤ ⁢ [ x ⁡ [ k ] - x ⁡ [ k - 1 ] ] 2 ⁢ ⁢ with ⁢ : ⁢ ⁢ T ⁡ ( x ) = ∑ k ∈ ℤ ⁢ ( k - 1 2 ) ⁡ [ x ⁡ [ k ] + x ⁡ [ k - 1 ] ] 2 ∑ k ∈ ℤ ⁢ [ x ⁡ [ k ] + x ⁡ [ k - 1 ] ] 2 . It can be noted that the time-frequency localization ξ of a discrete signal has an upper limit ξ≦1. All these techniques permit to obtain preamble structures that increase the power of the “pseudo-pilot” and therefore increase the level of interference produced at reception. The carriers of the preamble are then shaped by using orthogonal or bi-orthogonal prototype filters classically used in OFDM/OQAM or BFDM/OQAM modulations respectively. Unfortunately, one drawback of this approach of estimation by preamble aimed at producing a preamble that increases the power of the interference at reception is that it does not guarantee, for a given preamble structure, that a “pseudo-pilot” of maximum energy will be obtained. Furthermore, the fact of having available orthogonality in the real sense makes the channel estimation process more difficult. There is therefore a need for a novel technique for transmitting and/or receiving a multicarrier signal comprising a preamble that has undergone an OFDM/OQAM or BFDM/OQAM type modulation that can be used to remedy at least some of these drawbacks and especially accurately estimate the transmission channel.
{ "pile_set_name": "USPTO Backgrounds" }
Acute heart failure syndromes (AHFS) are serious conditions resulting in millions of hospitalizations each year. Well documented in the literature are causal links between declining renal function or myocardial injury during AHFS hospitalization and poor prognosis. Heart failure resulting from myocardial ischemic insult or tachycardia precipitates complex alterations in autonomic tone, neurohormonal activation, and the inflammatory metabolic state. These changes in autonomic tone are typically manifested by increased heart rate and a reduction in heart rate variability. In the setting of an acute exacerbation of heart failure, the dramatically elevated heart rate is frequently accompanied by hypotension. The critical role of treating the autonomic nervous system dysfunction observed in HF has long been recognized (with inotropic agents and beta-blockers). Recently, specific neuromodulation of the parasympathetic cardiac nerve inputs has shown significant therapeutic benefit. Cleland J G, Bristow M R, Erdmann E, Remme W J, Swedberg K, Waagstein F. Beta-blocking agents in heart failure. Should they be used and how? Eur Heart J 1996; 17:1629-39; De Ferrari G M, Crijns H J, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011; 32:847-55. However, in the case of AHFS associated with congestive symptoms and reduced blood pressure (BP), the negative inotropic effects of lone parasympathetic intervention or beta-blockade can severely limit their utility. In the face of hypotension, sympathetic tone must be maintained in order to assure adequate left ventricular (LV) contractility. Anand I S, Fisher L D, Chiang Y T, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003; 107:1278-83. Animal studies have demonstrated positive inotropic effects (increased LV pressure and cardiac output without change in systemic vascular resistance) when selectively stimulating certain cardiac efferent sympathetic nerves. Zarse M, Plisiene J, Mischke K, et al. Selective increase of cardiac neuronal sympathetic tone: a catheter-based access to modulate left ventricular contractility. J Am Coll Cardiol 2005; 46:1354-9; Meyer C, Rana O R, Saygili E, et al. Augmentation of left ventricular contractility by cardiac sympathetic neural stimulation. Circulation 2010; 121:1286-94.
{ "pile_set_name": "USPTO Backgrounds" }
An interlaced video is a succession of approximately 50 or 60 fields per second with each of the fields carries only the alternating rows displayed in each frame of the video. FIG. 1 shows an interlaced video clip with panning. Interlaced video is often derived from motion picture film materials photographed in a 24 or 30 frames-per-second progressive manner for display on cathode ray tube (CRT) type of displays. Interlacing is generally performed to achieve bandwidth reduction, but results in a reduced picture display quality. However, since the reduction in picture display quality from interlacing is not very noticeable on CRT displays, interlacing has been used as an elementary compression technique for CRT displays. As most of today's digital television displays require progressive video inputs video materials in the interlaced format need to be converted to a progressive video format in order to be properly displayed on the digital TV displays. This process is referred to as deinterlacing. One typical deinterlacing technique is known as field combination (or weaving) which simply combines the appropriate fields together to restore the original images in the case where one original frame is used to generate two fields. To weave the correct fields together, the deinterlacer detects cadence of the interlaced video. Cadence generally refers to a pattern of successive fields that correspond to the frames of the original video (i.e., conversion pattern). If the cadence cannot be properly detected, the deinterlacer will not be able to properly weave the correct fields together and may discard video data erroneously. The detection of cadence may be complex and difficult. For example, motion picture film is typically progressive and is based on 24 frame-per-second sequence while the NTSC format for TV broadcast is 60 fields per second. To convert a motion picture film into an interlaced video in NTSC format, a 3:2 pull-down repeating cadence is used to generate three fields from one film frame and two fields from the next film frame. In addition, sometimes every twelfth field is dropped to accelerate the film and fit the film within a given time slot. This loss results in a 3:2:3:2:2 repeating cadence. Moreover, although the 3:2 repeating cadence is the most common format, other repeating cadences (e.g., 2:2, 2:3:3:2, and 3:3) may also be used to interlace the progressive original film. Furthermore, it is possible that an interlaced video may have one portion of the video interlaced with a 3:2 cadence while having another portion of the interlaced video converted with a different cadence (e.g., 2:2 or 3:3). It is also possible that an interlaced video does not have any cadence. False detection of cadence may occur when two fields that were not generated consecutively are weaved together. 2:2 cadence is another common format. This often originates where film destined for television broadcast in phase alternating line (PAL) or sequentiel couleur a memoire (SECAM) formats is photographed at 25 frames per second and is broadcast at 50 fields per second, where each frame is the progenitor of an odd and even field. 2:2 cadence is also common for television broadcast in National Television System Committee (NTSC) format where a show has been photographed at 30 frames per second and then broadcast at 60 fields per second.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to virtual shopping, and more particularly to an electronic shopping system and method for virtual shopping on a network using electronic catalogue data defined by the method. 2. Description of the Related Art Recently, on-line shopping has become increasingly popular at virtual shops realized on a network, such as the Internet. Shoppers can use product catalogues that electronically provide product information on the network (hereinafter referred to as electronic catalogues), including product numbers, which allows the unique designation of each product. Product ordering is managed based on these product numbers. In one system, electronic catalogue data that is less subject to change, such as a format or an outline of the electronic catalogue, is stored in a web server constituting the electronic catalogue, and data requested or required by a browser that is frequently subject to chance, such as information on products that consumers want to see in the electronic catalogue, is held in a database in a server. The electronic catalogue in this system is dynamically produced, and is displayed with the less-frequently altered information stored in a web server, combined with frequently altered data directly taken in from a database as requested by a browser. In the system described above, product information for the electronic catalogue is manually registered in a database. In an electronic shopping system, products to be handled are given unique product numbers. Therefore, minor changes that are quite frequently made in products (such as, for example, changes to diversify products in color) continually increase the number of available products, which increases the difficulty of managing the products. An electronic catalogue of items, such as travel packages and shoes, which have a great variety, contain pricing and descriptive data that is often common for many of the items. However, there does not exist an electronic catalogue system utilizing this duplication of data that is particular to an electronic catalogue. Therefore, an employee must manually register and maintain the current electronic catalogue of products with many varieties, which requires a fairly high degree of labor. Furthermore, even a conventional mail order service involving a great deal of manual work sometimes suffers from human mistakes, leading to, for example, a situation where a product ordered is different from the product delivered. Current electronic shopping systems have not been immune to such problems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to managing secure elements and more particularly to systems, methods, and computer program products for performing content management operations. 2. Related Art A service provider (SP) is a company, organization, entity, or the like, that provides services to customers or consumers. Examples of service providers include account-issuing entities such as merchants, card associations, banks, marketing companies, and transit authorities. A service may be an activity, capability, functionality, work, or use that is permitted or provided by a service provider such as a payment service, a gift, offer or loyalty service, transit pass service, and the like. In a mobile environment that involves contactless transactions between a mobile device and a service provider, information relating to the accounts and applications issued by the service providers must be downloaded onto mobile devices in order to enable them to perform the contactless transactions. A trusted service manager (TSM) is typically an independent entity serving mobile network operators (MNOs) and account-issuing service providers by provisioning applications, such as contactless applications associated with the service providers, to mobile devices. Typical TSMs can distribute and manage the contactless applications remotely because they have access to secure elements (SEs) in a near field communication (NFC) enabled mobile device. Security-critical applications, such as those involving payment and account credentials, require secure hardware storage and a secure execution environment. On mobile devices, this is usually handled by the secure element. The secure element is a platform onto which applications can be installed, personalized and managed. It consists of hardware, software, interfaces, and protocols that enable the secure storage of credentials and execution of applications for payment, authentication, and other services. A secure element may be implemented in different form factors such as a Universal Integrated Circuit Card (UICC), an embedded secure element, or NFC enablers such as a separate chip or secure device, which can be inserted into a slot on the mobile device. Typically a UICC is in the form of a subscriber identity module (SIM), which is controlled by the MNOs. An embedded secure element gives service providers the option to embed the secure element into the phone itself. One way in which secure element form factors are implemented is defined in, for example, GlobalPlatform Card Specification Versions 2.1.1 and 2.2 (hereinafter “Global Platform”). A secure element may include one or more security domains (SDs), each of which includes a collection of data, such as packages, applets, applications, and the like, that trust a common entity (i.e., are authenticated or managed using a common security key or token). Security domains may be associated with service providers and may include service provider applets or applications such as loyalty, couponing, and credit card, and transit applications or applets. Traditionally, service provider systems include a TSM to interconnect with a secure element on a mobile device to create a security domain on the secure element and install, provision and manage applets and applications on the secure element. Service providers must be able to provide their services to a large number of customers with different mobile devices, equipped with different secure elements, and being serviced by a variety of MNOs. As explained above, secure elements may be implemented in numerous form factors, and may contain a variety of security domains, applets and applications, all potentially configured in an extremely large number of ways. As a result, service providers are faced with the overwhelming task of providing adaptable services and solutions to a large, and often growing and changing, combination of mobile devices, MNOs, networks, secure elements and security domains. For example, in order for a service provider to securely install a payment applet onto a customer's secure element on a mobile device, the service provider must first determine a large amount of information in order to send to and process a request on a secure element. For example, service providers using the prior art must obtain secure element information (e.g., identifiers, type, profile identifier, certification level and expiration), MNO information (e.g., type), security domain information (e.g., identifier, privileges, master key index), and the like. This information may exist in a variety of different sources (e.g., security domain, secure element, mobile device, MNO) and therefore, it is a laborious task for a service provider to retrieve, and check for parity, all of this information, requiring extensive processing. One technical challenge in the installation, management, and provisioning of applications on secure elements is due to the limitations in typical TSMs, namely that they do not function as central intermediaries capable of processing communications between a large variety of service providers, MNOs, mobile devices, networks, secure elements and security domains. There is a need, therefore, for an improved system such as a central TSM, particularly tailored for interfacing between service providers (including service provider TSMs) and secure elements, and for managing secure elements. From the perspective of a service provider, what matters is that they can easily and securely communicate (i.e., request personalization, service activation, processing of scripts, etc.) with an intended customer's secure element, regardless of the customer's mobile device, secure element, MNO, or mobile network. From the perspective of the customer, what matters is that the service of the service provider can be activated on and used with the customer's secure element, regardless of the customer's mobile device, secure element, MNO, or mobile network.
{ "pile_set_name": "USPTO Backgrounds" }
This patent document relates to systems, devices, and techniques for data communications in a passive optical network. In one aspect, this document relates to power saving in an optical network unit (ONU) of a passive optical network (PON). A PON is an optical network architecture based on point-to-multipoint (P2MP) topology in which a single optical fiber and multiple passive branching points are used to provide data communication services. A PON system can facilitate user access with a service provider communication facility to access telecommunication, information, entertainment, and other resources of the Internet. A PON system can include a central node, called an optical line terminal (OLT), which can be in connection with a single or multiple user nodes called ONUs via a passive optical distribution network (ODN). An OLT can be located at the access provider's communication facility (e.g., central office). An ONU can be located at or near the access user's premises. An ONU typically draws electrical power from the user's premises power supply network and may employ battery backup to support communication services in case of power outage. Better power management techniques can help improve battery life of an ONU.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method for distributing audiovisual sequences. In order to protect an audiovisual sequence against hacking, it is known to tattoo the audiovisual sequence in a visible or invisible way, so as to identify the holder of a pirated copy. It is also known to encipher the audiovisual sequence during a transmission in order to prevent the illegal playing of the sequence. Of course, it is possible to combine the two protection methods by enciphering the audiovisual sequence at the level of an enciphering module on the transmitting side and by tattooing the sequence after the deciphering at the level of a tattooing module on the receiving side. However, such a method would not prevent a fraudor from retrieving the sequence at the output of the deciphering module prior to the passage thereof at the tattooing module. Such a fraudor could then freely use the non tattooed audiovisual sequence if he or she could decipher the sequence. In order to solve this general problem, a method is known for distributing a marked audiovisual sequence from a nominal audiovisual sequence to a receiving item of equipment, said nominal audiovisual sequence having a nominal content, the method including steps wherein: a first modified flow having a modified content different from the nominal content is generated, and a second marked complementary flow including marked complementary digital information is generated; said first modified flow and said marked complementary information are transmitted to the receiving item of equipment so as to allow the restoration of said marked audiovisual sequence at the receiving item of equipment. Such a method is known from the application WO 2004/062281. In one embodiment of this application, the complementary flow includes marking instructions intended to insert an invisible and customized mark into the marked audiovisual sequence. In a preferred embodiment of the application WO 2004/062281, these instructions more particularly make it possible to reverse the LSB of some visual coefficients, such as the DC coefficients. The absence or not of a reversion on an LSB will make it possible to determine the first mark inserted into the audiovisual sequence during an identification step. With such instructions being inserted into the complementary flow, a fraudor could not have access to the audiovisual content prior to the application of the marking instructions and thus prior to the insertion of the first customized mark. However, this type of method cannot be used in combination with known tattooing or marking devices. As a matter of fact, in the above-mentioned application, the elements contained in the marked complementary information enabling the marking of said audiovisual sequence contain instructions which are specific to the marking operation: reversion of the LSB of some visual coefficients. Marking instructions are thus predefined so that it is not possible to mark the audiovisual sequence using a standard marking device thus generating a priori unknown marking information. Following the above-mentioned document, a problem that the invention intends to solve is thus to facilitate the marking of the audiovisual sequence. Another problem which the invention intends to remedy consists in allowing the marking of an audiovisual sequence while allowing the utilization of any type of marking device or without knowing the marking information beforehand. Such problems are solved by the invention which relates to a method such as described hereabove, wherein the step during which the second mark complementary flow is generated, includes steps wherein: an operation of marking of said nominal audiovisual sequence is carried out so as to determine a marked audiovisual sequence having a marked content; a difference between the marked content, on the one hand, and said modified content or said nominal content, on the other hand, is determined; said marked complementary digital information depending on said difference. Thus, according to the invention, using the difference between, on the one hand, the marked content and the modified content or the nominal content, on the other hand, it is possible to determine what mark has been applied to the nominal audiovisual sequence during the marking operation, while transmitting data enabling the restoration of the marked audiovisual sequence in a secure way. Thus, it is possible to transmit one securely marked audiovisual sequence without knowing a priori the marking information and thus from any tattooing device. According to one embodiment of the invention, the step consisting in determining a difference between said nominal content and said modified content includes steps wherein: a second modified complementary flow comprising complementary digital information capable of allowing the restoration of the nominal content from the modified content is generated, at least a piece of marking information is determined as a function of the bit differences between the marked content and the nominal content; said marked complementary digital information are determined as a function of said complementary information and said marking information.This embodiment has the advantage of being implemented on a known protection module. In this embodiment, said marking information, said complementary information and said marked complementary information can have an identical format. This more particularly makes it possible to make the transmission method even safer. Besides, in one embodiment, the step consisting in generating said second marked complementary flow includes steps wherein: a second modified complementary flow comprising complementary digital information capable of allowing the restoration of the nominal content from the modified content is generated, marking information are determined so as to enable the restoration of said marked audiovisual sequence from said nominal audiovisual sequence, said marking information being determined further to the operation of marking said nominal audiovisual sequence; said marked complementary digital information are determined as a function of said complementary information and said marking information, wherein said marking information, said complementary information and said marked complementary information have an identical format.According to another embodiment of the invention, the step consisting in determining a difference between said marked content and said modified content includes steps wherein: said marked content and said modified content are compared at the bit level so as to determine said difference.This more particularly makes it possible to easily obtain the difference between the marked content and the modified content. In order to obtain a marked audiovisual sequence which is also customized, said marked complementary information may include a customization identifier. This customization identifier can include a single identifier of said receiving item of equipment and/or a single identifier of a user of said receiving item of equipment, and/or a single identifier of said marking operation. This makes it a customization of the marked content possible as a function of the selected identifier and by possibly using an identifier database. The marking according to the invention can thus include a tattooing and a customization. In order to improve the protection of the audiovisual sequence against possible fraudors, said marked complementary digital information can include information relating to digital rights associated with the nominal audiovisual sequence. Said marked complementary information include a tattoo so that said marked content is visually and aurally identical to the nominal content, so that possible fraudors will not be able to detect the marking and so that an authorized user will not be disturbed in the consumption of said marked audiovisual sequence. Said nominal audiovisual sequence has a nominal format wherein said modified content has a format identical with said nominal format, so that a user can have access to some information of the nominal audiovisual sequence without being able to consume this sequence in a satisfactory way without a particular authorization. The invention also relates to a system for distributing a marked audiovisual sequence from a nominal audiovisual sequence to a receiving item of equipment, said nominal audiovisual sequence having a nominal content, the system including: means capable of generating a first modified flow having a modified content different from the nominal content, and means capable of generating a second marked complementary flow including marked complementary digital information; means capable of transmitting to the receiving item of equipment said first modified flow and the marked complementary information, so as to allow the restoration of said marked audiovisual sequence at the level of the receiving item of equipment;the system being characterised in that the means for generating a second marked complementary flow include: means capable of carrying out an operation of marking said nominal audiovisual sequence so as to determine the marked audiovisual sequence having a marked content; means capable of determining a difference between, on the one hand, said marked content and on the other hand, said modified content or said nominal content; means capable of generating said marked complementary digital information as a function of said difference. In the Figures, identical references refer to similar technical elements except otherwise indicated hereinunder.
{ "pile_set_name": "USPTO Backgrounds" }
The delivery of therapy and the collection of patient data from bedside equipment, laboratory equipment and institutional information systems has become more integrated with the advent of more capable and reliable computer networks, faster and larger storage media, and the miniaturization of computer processors and memory. This technology has resulted in the inclusion of computer processors or microprocessors and memory in a wide variety of medical equipment. Inclusion of communications capability allows the processors and memory in the medical equipment to be tied into ward, department and institution wide networks. These networks allow for the exchange of information between various institutional information systems and individual medical devices. The devices may be therapy delivery devices, such as infusion pumps, or they may be vital signs measurement and data collection devices, including both bedside monitors and laboratory equipment. As the complexity of therapeutic medication delivery has increased, one problem that has arisen is that there are more opportunities for error. Many different systems have been proposed to address the frequency of the medication error, such as the system described in U.S. Patent Publication No. 2002/0169636 entitled “System and Method for Managing Patient Care” by Eggers, the subject matter of which is intended to be, and is, incorporated into and is a part of the subject matter of this provisional patent application. One problem that occurs with systems having many client medical devices is that it is necessary to ensure that the memory of the various devices on the system are updated frequently enough so that the devices have access to up-to-date patient information, therapeutic information, rule sets and patient specific medication guidelines. Until recently, it has been necessary for servers to poll each device connected to a network to determine if the device was connected to the network, and to then send the device any updated information. Such polling is resource and time intensive, and may decrease the efficiency and speed of the entire network. This problem is particularly difficult where the medical devices utilize a media other than a hard wired network, such as a wireless network, or the internet. In these systems, individual medical devices may call the server through an access point of the wireless network, or over the internet, using either a dial-up, cable, DSL or wireless connection. In such systems, there is a potential security problem in that the networks are essentially wide open to requests for communication that come from an external source. The system must determine whether the communication request is coming from a secure medical device, or some un-secure source which should be prevented from establishing communication with the server. Another problem that occurs in a busy medical institution is that as new systems are brought on line, they must compete for scarce space within the institution. Until recently, however, while technology has existed to allow medical devices to be operated in a remote and/or mobile fashion, capable of being moved throughout an institution, and then connecting to an institution's network using wired or wireless access points, the servers connected to the network commonly had to be permanently located in one area of the institution. Even where the servers could be moved, such movement typically required shutting down the system, disconnecting the server from the network, and then reconnecting the server at the new location. Such relocation typically requires relocation and reconfiguration of other network resources, such as hard wiring or optical cabling and routers. In an increasing number of clinical settings, it is becoming desirable to network multiple medical devices, such as infusion pumps and vital signs monitors, so that they may be remotely monitored by clinic personnel. For example, pharmacists, nurses, physicians, biomedical technicians, and others may have a need to be able to monitor the status of medical infusion pumps or monitors in the clinics. Each may have a different reason for monitoring the medical devices, yet all may need to see their status. To reduce patient disturbance and to increase efficiency for the various clinic personnel, it would be desirable for all infusion pumps to be operatively connected through some type of network, either hard wired or wireless. The present invention fulfills these and other needs.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This application is directed toward a two-piece track system for use in building construction, particularly for use in the interior and/or exterior wall of a building. 2. Description of the Related Art Two-piece track systems for use in building construction are generally well known, as are two-piece track systems for use in the exterior and/or interior wall of a building that can allow for independent environmental movement of the tracks relative to one another. Two-piece track systems generally resemble both an outer U-shaped (or some other similar shaped) elongated tube, or track, and an inner U-shaped (or some other similar shaped) elongated tube, or track. Typically, the inner track is designed to receive or cover the ends of wall studs, and the outer track is designed to receive the inner track. Header tracks, including slotted tracks, are commonly used in the construction industry, including in the exterior walls of buildings. They generally resemble a U-shaped (or some other similarly shaped) elongated channel capable of receiving or covering the ends of wall studs and holding the wall studs in place. The slotted tracks generally have a web and at least one flange. Typically, the track includes a pair of flanges, which extend in the same direction from opposing edges of the web. Along the flanges of the slotted tracks generally is a plurality of slots. When the wall studs are placed into a slotted track, the plurality of slots accommodate fasteners to permit attachment of the wall studs to the slotted track. The slots allow the wall studs to move generally orthogonally relative to the track. In two-piece track systems, independent movement of the tracks is sometimes desirable. The inner track is generally not confined in all directions, and thus is able to move independently from the outer track. Often times in use, the inner track is able to generally slide alongside the outer track in a horizontal or longitudinal direction relative to the outer track. In those areas of the world where earthquakes are common, this longitudinal or horizontal movement is important. If the inner track were not allowed to move freely in a generally longitudinal or horizontal direction, the stability of the wall and the building might be compromised. Furthermore, if the wall studs are rigidly attached to the slotted track and not allowed to move freely in at least one direction, the stability of the wall and the building might be compromised. With the plurality of slots, the wall studs are free to move. Also along the flanges of the slotted tracks generally are areas for attachment of exterior sheathing elements. However, in many current slotted tracks, the slots take up the majority of the flanges of the track, leaving little room for attachment of exterior sheathing elements. For example, angle-shaped sheet metal tracks are commonly used on the outsides of wall studs. Each of these angle-shaped sheet metal tracks has a top web portion and one extending flange portion. The extending flange portion normally has a plurality of slots, but the slots extend nearly to the intersection of the flange and web. Because of this, there is little room for attachment of exterior sheathing elements to the flange of the slotted track. In building construction it is not uncommon to have pieces of sheathing, or façade, attached to the outside of the building. These pieces of sheathing generally extend vertically alongside and down the exterior portion of the tracks and wall studs. The pieces of sheathing are attached to the tracks and/or wall studs by some connection means such as a screw or screws. In current two-piece track systems, the outer track's greatest width is larger than the inner track's greatest width. This creates an uneven outer surface for attachment of the sheathing. As a result, often sheathing elements flare out at their ends to accommodate for the uneven surface created by the different track widths. Also, it is often difficult to keep the inner track from pulling or slipping away relative to the outer track during the installation procedure. In current two-piece track systems, screws are used to temporarily hold the outer and inner tracks in place during construction. If these screws are not removed after the wall is framed, the inner track will not be able to move as is desired. It is also desirable or even mandatory to provide fire block arrangements at one or more linear wall gaps, which may be present between the top, bottom or sides of a wall and the adjacent structure. The fire block arrangements often involve the time-consuming process of inserting by hand a fire resistant material into the wall gap and then applying a flexible sealing layer to hold the fire resistant material in place. More recently, heat-expandable intumescent fire block materials have been integrated into the top or bottom track of the stud wall assembly.
{ "pile_set_name": "USPTO Backgrounds" }
Optical fiber networks are growing in importance as a medium for both short-haul and long-haul communications. One category of optical fiber networks consists of dense wavelength-division multiplexed (DWDM) optical networks. In a DWDM network, each optical fiber carries data in each of many distinct wavelength channels. With present technology, it is feasible for each fiber to carry eighty or more such channels. At the various nodes of the network, wavelength-selective optical elements are used to combine traffic from disparate sources onto a single fiber, and from a single fiber, to distribute traffic for disparate destinations into distinct fibers. After a connection between a given source node and a given destination node has been established, the connection will typically traverse a route through zero, one, or plural intermediate nodes and through the optical fiber links connecting the source, intermediate, and destination nodes. The number of possible alternative routes for calls between a given source-destination pair depends upon the number of intermediate nodes, and upon the connectivity of the network; i.e., on the number of links converging on or diverging from each node. If the network is highly connected and the number of intermediate nodes is permitted to be large, e.g. on the order of ten or more, the number of alternative routes for a given call can be quite large. In particular, flexibility in the routing, as well as the re-routing, of calls is afforded by the use of an optical element known as an Optical Cross-Connect (OXC). An OXC, which is typically deployed at an intermediate node, is used to pass transmissions between incoming and outgoing optical fibers. Through the use of an OXC, any one of a plurality of incoming fibers can be connected to any one of a plurality of outgoing optical fibers. If the OXC is used in tandem with wavelength converters, a given message can not only be switched from fiber to fiber, but also from one wavelength channel to another. In one known OXC arrangement, for example, incoming transmissions from one or more fibers are wavelength demultiplexed into single-wavelength-channel signals, each on a separate input fiber. Then, wavelength converters are used to place each single-wavelength-channel signal onto a common working wavelength for the OXC. The OXC then couples each of the single-wavelength-channel signals, at the working wavelength, into a respective output fiber. Then, wavelength converters are used to place each signal on a respective output wavelength channel, which is not necessarily the channel on which that signal arrived. Finally, the output signals are wavelength multiplexed onto communication fibers for further transmission through the network. Although many alternative routes may be available for calls between a given source node and a given destination node (to be referred to jointly as a “source-destination (S-D) pair”), it is often advantageous to limit the routing to only one or only a few of the possible routes. Route sets are often chosen, for example, on the basis of hop count or link count; i.e., the total number of links. To keep total accrued delay within reasonable limits, it is often desirable to limit route sets to those routes having the lowest link counts. The term “network design” as used herein means the layout of the physical elements of a network, such as the fibers and OXCs, together with the prescribed route sets that avail themselves of those physical elements in order to meet a pre-specified set of connections or calls. A design may be static or dynamic. If dynamic, the design may be subject to periodic revision. The physical layout might be revised, for example, at periods measured in months or years. The route sets, on the other hand, could be revised on periods of, e.g., a week, day, hour, or even smaller unit of time. A network design is economically efficient if it accommodates substantially all of the traffic demand, but does not, on average, have a substantial amount of unused capacity. To promote economic efficiency, it is advantageous when planning an initial or revised network design to consider the physical layout and the route sets together, in view of measured or anticipated demands. There is still a need for computationally tractable design procedures that take such an approach to achieving economic efficiency.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to an air dryer system for use in a compressed air system. More particularly, the invention relates to a trailer air dryer system having a purge arrangement that is responsive to actuation of a parking brake. 2. Discussion of the Art The assignee of the present application commonly owns related U.S. Application, Ser. No. 09/399,285, Filed Sep. 17, 1999, directed to a trailer air dryer. The trailer air dryer protects air operated devices associated with a trailer (for example, an air braking system, an air suspension system, or still other systems that use compressed air associated with the trailer) by removing moisture and contaminants from the air before it reaches these devices. A preferred trailer air dryer is shown and described in that application, the details of which are incorporated herein by reference, although not deemed necessary to a full and complete understanding of the present invention. The trailer air dryer employs a desiccant material or drying agent through which the air passes to remove entrained moisture and thereby limit problems associated therewith. The moisture is adsorbed by the desiccant and removed from the compressed air before it is communicated to the air tank or storage reservoir. In addition, foreign particles and contamination are also removed by the trailer air dryer so that a filtered, relatively dry air is sent to the air tank. In the device shown and described in the commonly owned pending application, moisture is adsorbed during wet air consumption and previously captured moisture is periodically released in a non-cyclic fashion when the incoming air is dry. Thus, the trailer air dryer system relies on ambient dry air to regenerate the desiccant in a non-cyclic fashion. Without a cyclic purging, the dryer acts as a buffer holding water vapor when the trailer is receiving wet air and periodically passing along some of the entrained moisture when the trailer is receiving dry air. Ultimately, the water vapor trapped during wet operation is passed through the air brake system during dry operation. If the trailer air dryer is completely saturated, it will unfortunately pass wet air as if there were no air dryer in the system. Accordingly, a need exists to periodically purge the trailer air dryer in an effort to decrease the prospects for moist air being conveyed to the braking system. The present invention solves the noted problems and others and provides a purge system for a trailer air dryer that reduces or eliminates the disadvantages of the existing trailer air dryer. According to the invention, an air dryer system includes a valve in operative communication with a supply end of a trailer air dryer. An air reservoir is in communication with a delivery end of the trailer air dryer. When the valve communicates with atmosphere or ambient in response to a park brake application, a purge flow from the air reservoir and through the trailer air dryer to the valve is established. According to another aspect of the invention, a restricting orifice limits the purge flow through the trailer air dryer to extend the purge time and maximize removal of moisture from the trailer air dryer. According to another aspect of the invention, the air reservoir is separate from an air tank associated with the trailer. According to yet another aspect of the invention, a check valve is associated with the restricting orifice and precludes air flow into the air reservoir and permits purge flow from the reservoir to a preselected pressure level. Still another aspect of the invention relates to a method of purging a trailer air dryer by opening a valve port to atmosphere in response to a park brake application and directing a purge flow from the air source through the trailer air dryer. A primary benefit of the present invention is the ability to eliminate or reduce disadvantages associated with moisture in the existing trailer air dryer design. Still another benefit resides in the ability to maintain all of the performance advantages of the existing trailer air dryer. Yet another benefit of the invention is associated with the ease in which the existing trailer air dryer can be modified to incorporate the purge system. Still other advantages and benefits of the invention will become apparent to those skilled in the art upon a reading and understanding of the following detailed description.
{ "pile_set_name": "USPTO Backgrounds" }
Prolyl oligopeptidase (EC, 3.4.21.26), also known as prolyl endopeptidase, is the only serine protease that catalyses the hydrolysis of peptides at the C-terminal side of L-proline residues. It is widely distributed in mammals and can be purified from various organs, including the brain. The enzyme plays an important role in the breakdown of proline-containing neuropeptides related to learning and memory functions (Wilk, S., Life Sci., 33, 2149–2157 (1983); O'Leary, R. M., O'Connor, B., J. Neurochem., 65, 953–963 (1995)). Compounds capable of inhibiting prolyl oligopeptidase are effective for preventing experimental amnesia induced by scopolamine in rats, inferring that prolyl oligopeptidase inhibitors have functions in the fixation of memory (Yoshimoto, T., Kado, K., Matsubara, F., Koryama, N., Kaneto, H., Tsuru, D., J. Pharmacobio-Dyn., 10, 730–735 (1987)). In recent years it has been found that β-amyloid protein shows neurotoxic action in in vitro and in vivo experiments and that it plays an important role in the onset of Alzheimer's disease. In view of the hypothesis that substance P can suppress neurotoxic action of β-amyloid protein (Kowall, N. W., Beal, M. F., Busciglio, J., Duffy, L. K., Yankner, B. A., Proc. Natl. Acad. Sci. USA, 88, 7247–7251 (1991)), it is speculated that prolyl oligopeptidase inhibitors that inhibit also metabolism of substance P can make an effective drug for the treatment of Alzheimer's disease.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a novel crystalline form of 7-ethyl-10-hydroxycamptothecin, corresponding pharmaceutical compositions, methods of preparation and/or use thereof to treat anti-viral and/or cancer-related diseases. 2. Description of the Related Art Irinotecan is a chemotherapy drug that is given as a treatment for certain types of cancer. It is most commonly used to treat bowel cancer. When administered to a patient, irinotecan metabolizes to a more active metabolite, 7-ethyl-10-hydroxycamptothecin, also known as SN38. SN38 itself is currently being studied as a chemotherapy drug, and has the following chemical structure. There is a need for developing an improved form of SN38, which is more suitable for pharmaceutical use.
{ "pile_set_name": "USPTO Backgrounds" }
Vehicles and home entertainment systems commonly use audio cassette tapes for recording and playback of music and other audio recordings. Cassette tape cartridges vary widely in quality of material and design. The best cassette tape cartridges are made from impact and heat resistant materials which are durable and provide thousands of hours of quality playback. However, many manufacturers use inferior cassette tape cartridges due to their low cost. "Bargain" cassettes may not comply with minimum standards for cassette design, testing and manufacturing. If a cassette is not manufactured to precise tolerances, it will not maintain uniform rolling friction of internal parts and may result in improper tape guidance. In severe cases, this may result in tape spilling into the transport mechanism and wrapping around the capstan. A condition commonly referred to as "tape eating" occurs when tape spills from the cassette and wraps onto the capstan, pinch roller or other parts of the cassette player. "Tape eating" occurs relatively frequently in home and vehicle cassette tape players. Three principal factors are associated with "tape eating": (i) the cassette take-up hub may not rotate freely; (ii) the tape may be loosely wound on the tape reels or separated from the tape pack; (iii) the cassette may have thin tape commonly used in long-playing C-120 cassettes. When take-up hub rotation is impaired, tape pulled by the capstan from the supply reel does not wind onto the take-up hub. Tape then spills into the tape transport mechanism and wraps onto the capstan or pinch roller. The cause of impaired take-up reel rotation is generally related to one of the following conditions and cassette cartridge defects: the hub may be dislodged out of position and jammed as a result of the cassette being dropped. PA1 the cassette shell may be made from low-grade plastic which warps upon exposure to high temperatures. PA1 improper sonic welding of a cassette may cause misalignment between the two shell halves which reduces internal dimensional tolerances. PA1 inadequate internal support between the two half shells of the cassette may result in shell deformation when placed in a tape player. Step formations in the tape pack may cause excessive friction, especially when repeated changes in play and fast forward or rewind modes occur in cassettes having poor internal tape guidance. "Tape eating" caused by loose tape is more frequently encountered with vehicle cassette tape players than in home tape players due to the extreme conditions in which the tapes are used and stored. When the cassette tapes are stored in the vehicle outside their protective case, vehicle vibrations can be transferred to the cassette and loosen the tape. Upon insertion, the tape may spill into the mechanism, at which time the tape can wrap onto the capstan. "Tape eating" caused by the use of thin tape, like C-120 and C-90 tapes, can result from an initial formation of a small loop in the tape caused by the tape following the curvature of the capstan upon initial insertion. If a cassette tape cartridge does not have ramps or tape strippers required by the industry standard, a portion of the tape will be able to follow the capstan rotation, catch under the pinch roller, and subsequently wrap around the capstan. It is estimated that a significant percentage of all cassette system failures in vehicle warranty claims are in some way related to defective or improperly stored cassette cartridges. Cassette system failures are costly to equipment manufacturers, particularly during the warranty period. When a consumer returns a vehicle to the dealer for repair, it is frequently necessary to entirely remove and disassemble the tape player from the vehicle for service leading to consumer dissatisfaction. Several attempts have been made to prevent "tape eating" in the prior art. One example is disclosed in Taraborrelli U.S. Pat. No. 4,348,702 which describes a device for preventing tape windup on the capstan of a tape deck. The Taraborrelli device incorporates a rotation-sensing switch and switch wiper mounted on the bottom of a take-up spindle. The rotation sensing switch only allows rotation when the take-up spindle rotates in a proper direction. If the take-up spindle changes direction due to tape windup on the capstan, a tab on a rotation-sensing switch engages a vertical edge at the bottom of the take-up spindle and stops the sensor switch from rotating. When the rotation-sensing switch stops, the rotation-sensing circuit disables the drive mechanism to prevent additional tape windup on the capstan. However, the rotation sensing switch is not sensitive enough to detect the tape windup as soon as it happens and additional tape may wind up during the time the switch moves to engage the vertical edge. Another approach is disclosed Tarpley, Jr. et al U.S. Pat. No. 4,597,547 which describes a logic circuit for detecting reverse rotation of a take-up reel in a tape transport mechanism wherein three motion sensing switches are added to a tape player adjacent the take-up reel to detect a sequence of switch actuation according to the sequence of A-B-C. Subsequent switch activation sequences are then monitored by a logic circuit which can sense and react to an improper switching sequence. The switches and logic circuit are additional elements which must be added to a cassette tape player, thereby increasing cost. Additionally, there is no way to adjust the sensitivity of the motion sensing switches to compensate for changes in the rotational velocity of the take-up reel, making early detection difficult. In Tarpley, Jr. U.S. Pat. No. 4,632,333 another circuit sensing improper rotation of a take-up reel is disclosed wherein three switches are provided on the cassette player adjacent to the take-up reel. The sensing circuit outputs a pulse each time the sensor switches are actuated. Monostable multivibrators receive the pulses and provide output signals into a gate which responds by providing a control signal to a sensor switch. Improper rotation of the take-up reel interrupts this control signal, causing the sensor switch to respond by stopping or reversing the tape deck mechanism. The need for switches and monostable multivibrators in a special sensing circuit again increase the cost of the cassette tape deck equipped with such a system. The present invention is directed to overcome the above disadvantages noted in conjunction with prior art systems and to provide a new system which surpasses the prior art in efficiency and simplicity.
{ "pile_set_name": "USPTO Backgrounds" }
In a data processing system, data and system control structures may be shared between several programs running on a single central processing complex (CPC), or shared between several CPC's using a shared facility. Commands are communicated over a link to the shared facility through channel apparatus. The channel expects a response to the request from the shared facility resulting from execution of the command. If a response is not received within some predetermined time, or the channel detects signal errors on the link, it will notify the program of the error condition. At this point the program must recover the failed command and free resources that are held for the command. If the command is still in execution at the shared facility after the error is presented, the program is faced with significant difficulties in completing the recovery action. The shared facility provides a program controlled command execution processor which accesses the shared control and data structures. The shared storage is comprised of system storage for system-wide or global control structures, and storage for CPC-program created data and list structures. All of these structures can be shared among programs in one CPC, or among plural CPC's. Commands are received over a plurality of links. Link buffers are provided to receive commands and/or data, and store responses for transfer over the link to a CPC and/or program. When the shared facility interconnects a plurality of CPC's, a system complex (Sysplex) is created to form a single system image from all of the autonomous CPC's. Consider the situation where a program has obtained a lock to serialize a shared data item X. After the serialization has been obtained, the program attempts to update the contents of X in the shared facility by issuing a command to write X to the shared storage and store new values for X in its existing location. However, an error is presented to the program while the command is still executing. Recovery for the command releases the serialization to make the data available for other programs. A second program running on a different CPC obtains the serialization for X. Once serialization is obtained, the program assumes that it will have a consistent and unchanging view of the data item X. The program may wish to read X, update X, or even delete X. In each case, the continuing execution of the previously failed command may cause problems. For instance, two successive reads of X may see different values if a store occurs between the read operations. The program would see this as an error since it owns the serialization for the data. Another problem would occur if the program attempted an update of X by reading X, updating X in main storage and then writing X back to the shared facility. A subsequent store by the previous command could cause the update to be lost. Finally, if the second program chose to delete X, re-execution of the failed command may restore an old version of X after the delete had occurred. In each case, correct actions by the second program would be construed as errors. It is therefore very important that a function and system be provided in the shared facility that maintains consistency of data or control structures. A program that initiates an action in the shared facility must be able to determine whether a command was received, received and completed, or received but aborted. The program must eventually receive the results of the action, or determine that the action must be requested again.
{ "pile_set_name": "USPTO Backgrounds" }
Magnetic resonance imaging (MRI) is a medical imaging modality that can create images of the inside of a human body without using X-rays or other ionizing radiation. MRI uses a powerful magnet to create a strong, uniform, static magnetic field (i.e., the “main magnetic field”). When a human body, or part of a human body, is placed in the main magnetic field, the nuclear spins that are associated with the hydrogen nuclei in tissue water become polarized. This means that the magnetic moments that are associated with these spins become preferentially aligned along the direction of the main magnetic field, resulting in a small net tissue magnetization along that axis (the “z-axis,” by convention). A MRI system also comprises components called gradient coils that produce smaller amplitude, spatially varying magnetic fields when current is applied to them. Typically, gradient coils are designed to produce a magnetic field component that is aligned along the z axis (i.e., the “longitudinal axis”), and that varies linearly in amplitude with position along one of the x, y, or z axes. The effect of a gradient coil is to create a small ramp on the magnetic field strength, and concomitantly on the resonance frequency of the nuclear spins, along a single axis. Three gradient coils with orthogonal axes are used to “spatially encode” the MR signal by creating a signature resonance frequency at each location in the body. Radio frequency (RF) coils are used to create pulses of RF energy at or near the resonance frequency of the hydrogen nuclei. These coils are used to add energy to the nuclear spin system in a controlled fashion. As the nuclear spins then relax back to their rest energy state, they give up energy in the form of an RF signal. This signal is detected by the MRI system and is transformed into an image using a computer and known reconstruction algorithms. One type of magnet assembly for an MRI system is cylindrical and annular in shape and includes, among other elements, a superconducting magnet, a gradient coil assembly and an RF body coil assembly. The RF body coil assembly can be mounted on the outside of a patient bore tube and mounted inside the gradient coil assembly. The gradient coil assembly is disposed around the RF body coil assembly in a spaced-apart coaxial relationship and the gradient coil assembly circumferentially surrounds the RF body coil assembly. The gradient coil assembly is mounted inside the superconducting magnet and circumferentially surrounded by the superconducting magnet. Interconnections for supply and return of electricity, control signals, coolant and the like are typically routed from a “service end” of the MRI scanner around the cylindrical magnet assembly, while a patient table and other patient-directed aspects are placed at another end, the “patient end,” of the MRI scanner. The gradient coil assembly used in an MRI system may be a shielded gradient coil assembly that consists of inner and outer gradient coil assemblies bonded together with a material such as epoxy resin. The inner gradient coil assembly or winding and the outer gradient coil assembly or winding are disposed in concentric arrangement with respect to a common axis. Typically, the inner gradient coil assembly includes inner (or main) X-, Y- and Z-gradient coils and the outer gradient coil assembly includes the respective outer (or shielding) X-, Y- and Z-gradient coils. In order to improve gradient coil performance as well as to reduce the radial space used in the magnet assembly, combined (or integrated) gradient coil/RF coil designs have been developed (for example, as described in U.S. Pat. No. 6,930,482, entitled “Time-Variable Magnetic Fields Generator For A Magnetic Resonance Apparatus,” issued on Aug. 16, 2005, naming Oliver Heid and Markus Vester as inventors). Such designs allow the main gradient coils to be brought closer radially to the imaging region, which can improve gradient performance. In an integrated gradient coil/RF coil configuration, a main (or inner) gradient coil assembly and RF coil are combined into a single unit by splitting the main gradient coil (i.e., the X, Y- and Z-main gradient coils of the main (or inner) gradient coil assembly) into two portions thereby creating a gap along the length of the cylindrical main gradient coil. An RF resonator (e.g., an RF coil) is positioned in the gap between the two portions of the main gradient coil. A birdcage type RF coil can be created by bridging the gap with rungs spanned by capacitors. For a combined (or integrated) gradient coil/RF coil configuration, each portion of the split main gradient coil (X, Y and Z main coils) requires electrical connections (or leads). In addition, cooling lines have to be connected to and routed through the gradient coil/RF coil assembly. The coolant and lead connections are complicated by the need to deliver coolant and current to each of the separate portions of the main X, Y and Z gradient coils. Accordingly, there is a need for robust electrical and hydraulic connections for the each portion of the split main gradient coil that maintain or improve performance limits.
{ "pile_set_name": "USPTO Backgrounds" }
In the prior art, a fuser or fixation unit usually fixes a toner image on an image-transfer sheet of paper by fusing rollers that have been heated. In the above fuser, since toner is not completely fixed on the transfer sheet, some toner remains on the fusing rollers. This remaining toner is also so called residual toner. The residual toner is collected from the fusing rollers by cleaning rollers via pressure rollers. An image-transfer sheet is soiled by the residual toner in a prior art fuser. As described above, a portion of toner on the image-transfer paper becomes unfixed, and the residual toner is attached to a fuser separation pawl that separates the transfer paper from the fuser rollers. As the residual toner increases beyond a certain amount on the fuser separation pawl, aggregated toner falls from the fuser separation pawl and smears the transfer paper. Thus, the fuser separation pawl needs to be maintained. While the fuser separation pawl is periodically cleaned or replaced, the image forming device is not available. For the above prior art problems, prior art techniques had attempted to minimize the undesirable effects. Japanese Patent Publication 2000-75750 discloses a cleaning blade for removing adherents such as toner from the cleaning rollers as well as a ceramic heater for heating the cleaning blade beyond a melting temperature of the residual toner. The ceramic heater adds structural complexities and requires additional costs. In relation to the prior art cleaning technologies of a fuser, Japanese Patent Publication Hei 7-104602 also discloses techniques for increasing the cleaning efficiency for the cleaning material in the fusing rollers in an image forming device and for uniformly applying oil. Although the cleaning rollers are located on the transfer paper outlet side of the fusing rollers, the residual toner that has been cleaned by the cleaning rollers falls off onto the transfer sheet for undesirable effects. It remains desirable to maintain the fuser rollers substantially free from residual toner without significant structural modifications to the fuser or fixing unit.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates in general to spinal systems and in particular to a spinal stabilization apparatus and method utilizing sacroiliac constructs. To stabilize a spinal system including a spinal column, the extent of displacement between adjacent vertebrae in the spinal column may be reduced, and/or each pair of adjacent vertebrae may be maintained in a desired spatial relationship. In some cases, rods may be provided that are adapted to extend within the vicinity of the spinal system (including, in some instances, the sacrum and/or adjacent portions of the iliac bones), and connectors may be provided that connect one or more of the rods to one or more of the vertebrae in the spinal system and/or to iliac structures on the pelvis. The rods and connectors may assist in providing immobilization and/or stabilization to the spinal system, and/or may serve as an adjunct to fusion of one or more portions of the spinal system. An example of a system for reducing displacement of a vertebra, in which a rod is employed, is disclosed in U.S. Pat. No. 6,248,107 to Foley et al., the disclosure of which is incorporated by reference. For spinal stabilization systems that include one or more rods connected to screws or other fasteners attaching the stabilization system to the pelvis, the ability to securely fasten at least a portion of the system to one or more portions of the sacroiliac region may be desired and/or required in order to more prevent the construct from pulling out of or fracturing a pelvic or sacral structure, among other desires and/or requirements. In addition, the ability to utilize bone graft or other bone-growth promotion agents to securely fasten at least a portion of the system to one or more portions of the sacroiliac region may also be desired and/or required. For example, a bone graft “cage” assembly may be ideally suited for anchoring a sacroiliac terminal structure in the bony structures of the ala. As used herein, it is understood that the term “coronal plane” includes any plane of section in the anatomical position that generally passes vertically through the human body and is generally perpendicular to both the median (or sagittal) plane and the horizontal (or axial or transverse) plane, generally dividing the human body into anterior and posterior sections, and further includes any plane of section in the anatomical position that generally passes vertically through the human body, is generally perpendicular to the horizontal (or axial or transverse) plane, and is generally angularly oriented from the median (or sagittal) plane at an angle of orientation ranging from greater than zero degrees up to and including ninety degrees. Furthermore, as used herein, it is understood that the term “sagittal plane” includes any plane of section in the anatomical position that generally passes vertically through the human body in the prone position and is generally perpendicular to both the coronal plane and the horizontal (or axial or transverse) plane, generally dividing the human body into left and right sections, and further includes any plane of section in the anatomical position that generally passes vertically through the human body in the prone position, is generally perpendicular to the horizontal (or axial or transverse) plane, and is generally angularly oriented from the coronal plane at an angle of orientation ranging from greater than zero degrees up to and including ninety degrees.
{ "pile_set_name": "USPTO Backgrounds" }
Eccentric rocking type reduction gears include a crank shaft. The crank shaft includes an eccentric cylindrical cam in order to perform eccentric rocking on an external gear. In general, the crank shaft is utilized as an input shaft, and rotates at a fast speed. Hence, fluctuating load acts on a bearing that supports the crank shaft due to centrifugal force produced inherently to the unbalanced shape of the eccentric cylindrical cam. For example, according to a reduction gear disclosed in Patent Document 1, in order to reduce such fluctuating load, the eccentric cylindrical cam is formed with a balancer weight. This suppresses the unbalance originating from the weight of the eccentric cylindrical cam. Moreover, there are reduction gears that include two external gears. According to the reduction gears of this type, a crank shaft is provided with two eccentric cylindrical cams to support the two external gears, respectively. The respective eccentric cylindrical cams are disposed around the axial line of the crank shaft with respective phases shifted by 180 degrees from each other. This structure cancels translational force. As explained above, according to the reduction gear of Patent Document 1, the balancer weight is formed inwardly of the eccentric cylindrical cam. This balancer weight eliminates the unbalance around the axial line of the crank shaft. However, the unbalance around the axial line orthogonal to the axial line of the crank shaft still remains unaddressed. Accordingly, couple is produced around the axial line orthogonal to the axial line of the crank shaft due to centrifugal force. According to the reduction gears having the two external gears, the two eccentric cylindrical cams are disposed around the axial line of the crank shaft with respective phases being shifted by 180 degrees from each other. According to such a structure, the unbalance around the axial line of the crank shaft can be also addressed. However, the unbalance around the axial line orthogonal to the axial line of the crank shaft still remains unaddressed. Hence, couple is still produced around the axial line orthogonal to the axial line of the crank shaft. The couple around the axial line orthogonal to the axial line of the crank shaft also applies fluctuating load to the bearing supporting the crank shaft. This often results in the shortage of the lifetime of the bearing. Moreover, the eccentric rocking type reduction gear is likely to generate vibration.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an alarmed lock, suitable for installation in either doorways or automobiles, which contains: a dual bolt system requiring correct sequential acitvation or deactivation to prevent alarm; protection against disarming by a potential intruder; an integral power source for sounding the alarm. Two bolts locks are generally characterized by separate key requirements, by electrically coded controls by rotating combination controls, or by a combination of the above. Rice (U.S. Pat. No. 4,772,877) proposed a method for indicating the security situation on safes using the properties of rotating combination locks, Peterson (U.S. Pat. No. 3,890,608) proposed a method for opening a door using a combination of electrical control an sensing from a remote location, Humphrey (U.S. Pat. No. 4,663,611) proposed a built-in alarm for flexible loops wherein continuity is assured by the physical construction of the lock (joined in a closed-loop arrangement), and Kletzmaier has proposed (U.S. Pat. No. 4,563,886) using two bolts wherein one is manually activated while the other is electrically actuated. Hsu (U.S. Pat. No. 4,726,206) proposed an alarmed lock whose alarming purpose was to control access to the keyed cylinder.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a portable computer and a method of controlling the same. 2. Background of the Related Art In general, portable computers are smaller and lighter than desktop computers to easily carry the portable computers. FIG. 1 illustrates a related art portable computer. A related art portable computer 10 includes a main body unit 11 and a display unit 12. The main body unit 11 and the display unit 12 are hinged on each other by a hinge unit 13 so that the display unit 12 can be opened or closed with respect to the main body unit 11. Various parts such as a main substrate and a hard disk drive are provided in a space formed in the main body unit 11. A keyboard 14 that is an input device is provided on top of the main body unit 11 and a plurality of keys are arranged in rows and columns in the keyboard 14. A bay 15 into which and from which a bay device (such as a CD-ROM drive and a DVD-ROM drive) is attached and detached is formed on the side of the main body unit 11. A display module 16 is included in the display unit 12. The display module 16 is generally formed of a liquid crystal panel. A signal connection between the main body unit 11 and the display unit 12 is performed by signal connection lines in the hinge unit 13. FIG. 2 illustrates the structure of the main body unit of the related art portable computer. As illustrated in FIG. 2, the main body unit of the portable computer includes a central processing unit (CPU) 20, a video controller 21, a north bridge 22, a main memory 23, an input and output (I/O) controller 24, a south bridge 25, a hard disk drive (HDD) 26, a bay device 27, and a keyboard (KBD) controller 28. In the related art portable computer, the HDD 26 and the bay device 27 are connected to the south bridge 25. The bay device 27 is attached to and detached from the bay 15. In the related art portable computer, like in a desktop computer, the HDD 26 and the bay device 27 are connected to the south bridge 25 using an integrated drive electronic (IDE) interface method. In the IDE interface method, two channels, that is, a primary channel and a secondary channel are provided. FIG. 3 illustrates that the HDD 26 and the bay device 27 are connected to each other through two IDE channels. The two IDE channels are comprised of the primary channel P-Ch and the secondary channel S-Ch. The IDE controller 251 of the south bridge 25 is connected to the HDD 26 that is a main memory device after the primary channel is set as a master. The IDE controller 251 is connected to the bay device 27 such as the CD-ROM drive and the DVD-ROM drive after the secondary channel is set as a master. As illustrated in FIG. 1, the bay device 27 is attached to and detached from the bay 15 and can be swapped so that various bay devices 27 are attached to and detached from the bay 15. The bay 15 in which the bay device 27 that can be swapped is attached is referred to as a swap bay and the bay device 27 using the swap bay is referred to as a swap bay device. The bay device 27 must be set as the master so that the bay device 27 can be swapped. In this way, the related art portable computer in which the bay device 27 can be swapped supports the two IDE channels. As described above, the related art portable computer and method of controlling the same have various disadvantages. For example, developers of chip sets for the portable computers strive for improved performance and effective power consumption. However, in the case of a system that supports only the primary channel, the bay device cannot be swapped. The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The invention relates to a device for directing individually supplied sheets onto a depositing surface. The directing device includes a sheet feeding means for moving a sheet along a path of movement, which extends transversely to the vertical, onto a depositing surface which is downwardly inclined in opposition to the sheet feeding direction. It also includes a directing element associated with the exit area of the sheet feeding means, that is deflected by the leading edge of a sheet from the path of movement thereof and that forces the trailing end of the sheet downwards when such end has been disengaged by the sheet feeding means. 2. Background Art In known devices of this type, a first arm of a two-armed pivotally mounted hold-down element senses the sheets transported before they leave the sheet feeding means. The first arm rests on the sheet. A second arm of the hold-down element is arranged above the path of movement of the sheets and behind the area where the sheets leave the sheet feeding means. As soon as a sheet has passed the first arm of the hold-down element, the hold-down element is pivoted under the action of gravity such that its second arm depresses the trailing end of a sheet. As such, a successive sheet can be placed on a stack of deposited sheets without its movement being obstructed.
{ "pile_set_name": "USPTO Backgrounds" }
Conventionally, in semiconductor light emitting elements, in particular light emitting diodes (LEDs), the light output can be increased by providing a reflective film that includes silver or the like as an electrode to prevent the absorption of light emitting from the light emitting layer. Also, a protective film comprising an insulating material and a metallic material is formed using a sputtering method, a vapor deposition method or the like to prevent a reduction in the light-reflecting action due to migration or discoloration or the like of this reflective film (JP2003-168823-A, etc.). Conventional semiconductor light emitting elements can reduce migration, discoloration or the like by a protective film comprising a metallic material, but it is still not possible to inhibit migration or discoloration or the like. Consequently, there is a problem in that a reduction in output is unavoidable. In other words, because the protective film material is supplied to the wafer isotropically using the sputtering method or vapor deposition method, the structure of the semiconductor layer itself or the like becomes an obstacle, for example, in the side and corner portions of an electrode that includes a reflective film, and it is not possible to form the protective film uniformly. For this reason, it is necessary to increase the thickness of the protective film to prevent migration or discoloration of the reflective film. Thus, there is a problem that such a thick protective film becomes the walls to absorb the light emitted from the light emitting element, which leads to a decrease in light output.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, the elderly represent the most rapidly growing segment of society. This growth in the aged population has placed a substantial burden on health care and social support systems because of the increase in the incidence of chronic, degenerative illness such as senile dementia. Approximately 4 millions individuals over the age of 65 in the United States (or 15% of the population) has some degree of dementia, Two thirds of them(over 2.5 millions) are affected severely, remain home sitting and relying on family and community resources for their care. Approximately 55% of all case of dementia are known as Alzheimer's disease. The Alzheimer's disease patient gradually loses verbal communication skills, as evidenced by decreased ability to relate words to objects and impaired comprehension of their verbal output. Recent research efforts provide some information about the underlying pathophysiology of this illness of dementia. And of several causal theories, the major plausible hypothesis are based on the fact that differentiation, growth, and degeneration of neuron are closely related to hyper- and hypoactivity of neurotransmitters and nerve growth factor. The amino acid L-glutamate is the most important fast excitatory neurotransmitter in neuronal circuits in the mammalian central nervous system(CNS). Almost all CNS neurons can be excited by L-glutamate, acting on a variety of different ligand-gated ion channel cell surface receptors. These are classified into two main categories, those for which the synthetic glutamate analogue N-methyl-D-aspartate is a potent excitant (NMDA receptors) and those on which NMDA is not active (non-NMDA). It is known that NMDA receptors, widely distributed in brain and spinal cord, are cell surface protein complex that is involved in excitatory synaptic transmission and the regulation of neuronal growth. An unusual feature of the NMDA is that it is in-operative when target cells are in a resting state, as under such conditions of negative intracellular membrane potential the ion channel associated with the NMDA receptor is fully blocked by Mg.sub.2+ ions. This block is voltage dependant, however, is removed if the target cell is partially depolarized by activation of non-NMDA receptors or other excitatory inputs. Thus, the NMDA receptor mechanism has a "conditional" feature, making it potentially an important "logic gate" in CNS circuits, especially relevant in processes of learning and memory. The NMDA receptor has another unusual feature, as excessive activation of the receptor can lead to over-excitation of the target neurons to the point of cell death, probably caused by an excess accumulation of intracellular Ca.sup.2+. Much research has focused on the role of NMDA receptors in such "excitotoxic" cell death in recent years. Direct treatment of glutamate in vitro to cultured neuronal cells results in rapid cellular swelling followed by delayed toxicity over the subsequent 24 hours. This excitotoxicity has been shown to be Ca.sup.2+ dependent. Following neuronal trauma a large Ca.sup.2+ influx into the neuron through gated ion channel, such as glutamate receptors, initiates a cascade of biochemical events that disrupt normal cellular processes and can feedback to accelerate the release of glutamate and excitotoxicity. Among these events are activation of proteases and lipases, breakdown of neuronal membranes and formation of free radical, and ultimately, cell death [J. W. Mcdold, M. V. Johnson, Brain Res, Reviews 15, 41 (1990)]. A great deal of evidence has been accumulated that it plays a key role in neurodegeneration and stroke related brain cell death. Thus, NMDA antagonists are proposed to have a number of clinical indications including ischemia and epilepsy. They may also be useful in the prevention of chronic neurodegenerative disorders such as Alzheimer's disease, Huntington's disease and Parkinsonism [G.Johnson, Annu. Rep. Med. Chem. 24, 41 (1989); G. Johnson and C. F. Bigge, ibid. 26, 11 (1991); and Werling et al., J. Pharmacol. Exp. Ther. 255, 40(1990)]. It is also believed to be central to the concept of long term potentiation (LTP), which is the persistent strengthening of neuronal connections that underlie learning and memory. Recent report suggested that the specific glycine site ligands, 1-aminocyclopropanecarboxylic acid methyl ester, D-cycloserine and R-(+)-3-amino-1-hydroxy-pyrrolidin-2-one(HA-966) have, respectively, been proposed to be useful for promoting memory and learning in cognitive and psychiatric disorders [Bliss, T. V. P, Collingride, G. L., Nature 345, 347(1990); GB 2231048A (1990)]. NMDA receptor antagonists have also been shown to possess analgesic, antidepressant antischizophrenic and anxiolytic effects as indicated in recent reports [Dickenson, A. H. and Aydar, E., Neuroscience Lett. 121, 263(1990); R. Trullas and P. Skolnick, Eur. J. Pharmacol. 185, 1(1990); J. H. Kehne, et al., Eur. J. Pharmacol. 193, 283 (1991) and P. H. Hutson, et al., Br. J. Pharmacol. 103, 2037(1991)]. The crucial role of NMDA receptor in synaptic plasticity has been emphasized by recent developments in the understanding of the physiological functions and structural details of the subunits on the receptor. The NMDA receptor comprises a ligand gated ion channel which is subject to complex allosteric modulation at several different sites. Currently there are at least five pharmacologically distinct sites through which compounds can alter the activity of this receptor [Kumar K. N., et al., Nature 354, 70-73(1991); Nakanishi, S., et al., Nature 354, 31-37(1991); Monyer, H., et al., Science 256, 1217-1221(1992)]. They include (a) a transmitter binding site, which binds L-glutamate; (b) an allosteric modulator site, which binds glycine; (c) a site within the channel that binds phencyclidine and related compounds; (d) Mg.sup.2+ bing site; and (e) an inhibitory divalent cation site Zn.sup.2+ [Lynch, D. R., et al., Mol. pharmacol. 45, 540-545 (1994); Kuryatov, A., et al., Neuron 12, 1291-1300 (1994); Nakanishi, S., Science 256, 1217-1221 (1992)]. The NMDA receptor is activated by co-agonists glutamate and glycine. The associated Ca.sup.2+ permeable channel is blocked physiologically by Mg.sup.2+ in voltage dependent manner, and Zn.sup.2+, which may have its own regulatory site, also decreases synaptic activity of the NMDA receptor [Lynch, D. R., et al., Mol. pharmacol. 45, 540-545(1994); Kuryatov, A. et al., Neuron 12, 1291-1300 (1994); Nakanishi, S., Science 256, 1217-1221(1992)]. Under the above circumstances, the pharmacological interest has so far been focused primarily on the NMDA receptor, and a number of potent and selective agonists and antagonists dependent on each distinct binding sites have been found as candidates for therapeutically useful agents during the last two decades. Of them, the most promising approach for regulating the NMDA receptor activity has involved in development of allosteric modulators of glycine binding site. The stimulatory action of glycine on the NMDA receptor was studied by Johnson and Ascher who showed that the magnitude of the electrophysiological response of cultured neurons to applied NMDA is greatly reduced or absent if glycine is rigorously excluded from the external medium. Thus, the glycine site on the NMDA receptor was discovered in 1987 by them. The glycine site on the NMDA receptor is clearly distinguishable from the previously described glycine receptor, a glycine- gated chloride ion channel which is important in inhibitory synaptic transmission in spinal cord and brainstem. The latter receptor is blocked by low concentrations of the convulsant alkaloid strychinine, whereas the glycine/NMDA site is strychinine-insensitive. Since the discovery of glycine site, there has been a rapid development of potent pharmacological agents that interact selectively with this site. A kinetic studies was suggested that the glycine- and glutamate-recognition sites exists in the same protein, and there is a negative allosteric coupling between the glycine- and glutamate-recognition sites and the binding of an agonist at glutamate-recognition site reduces the affinity of glycine for its recognition site. Similar studies also indicate that antagonist binding at glutamate recognition site is enhanced by some, but not all, glycine site antagonists and vice versa [Beneveniste, M., et al. J. Physiol. 428, 333 (1990); Leser, R. A.; Tong, G. and Jahr, C. E., J. Neurosci. 13, 1088 (1993); Clements, J. D.; Westbrook, G. L., Neuron. 7, 605 (1991)]. Recent in vivo microdialysis studies have demonstrated that in the rat focal ischemia model, there is a large increase in glutamate release in the ischemic brain region with no significant increase in glycine release [Globus, M. Y. T, et al., J. Neurochern. 57, 470-478 (1991)]. Thus theoretically, glycine antagonists should be able to diminish excessive excitation known to exist during glutamate excitotoxicity and should be very powerful neuroprotective agents, because they can prevent the opening of NMDA channels by glutamate non-competitively and therefore do not have to overcome the large concentrations of endogenous glutamate that are released in the ischemic brain region unlike competitive NMDA antagonists, i.e. modulation of the glycine site antagonists may result rather than complete inhibition of receptor function. This modulatory action might be more physiological than receptor blockage (compare with channel blockers), and thus glycine antagonists should have less propensity for side effects. That glycine antagonists may indeed be devoid of PCP-like behavioral side effects has been suggested by recent studies in which available glycine antagonists were injected directly into the brains of rodents without resulting in PCP-like behaviors [Tricklebank, M. D., et al., Eur. J. Pharmacol. 167, 127 (1989); Koek, W., et al., J. Pharmacol. Exp. Ther. 245, 969 (1989); Willets and Balster, Neuropharmacology 27, 1249 (1988)]. Such possible advantageous pharmaceutical profile of glycine site antagonists including a larger window between the desired and untoward effects of NMDA receptor blockade than other types of NMDA antagonists as well as the structural advantages of its ligands for BBB penetration makes it an attractive target for potential therapeutically useful new CNS acting drug particularly in treatment of neurological disorders. Recent successes in identifying orally glycine receptor antagonists were reported several classes of 4-hydroxyquinolin-2(1H)-one derivatives as selective noncompetitive antagonists of NMDA receptors possessing potent in vivo activity [McOuaid, L. A., et al., J. Med. Chem. 35, 3423 (1992); Leeson, P. D. , et al. J. Med. Chem. 36, 3386 (1993); Kulagowski, J. J., et al., J. Med. Chem. 37, 1402 (1994); Cai, S. X., et al., J. Med. Chem. 39, 4682 (1996), and 39, 3248 (1996); EP 489,458; EP 459,561; EP 685,466 A1; WO 94/20470; WO 93/10783; EP 685,466 A1; and EP 481,676 A1]. Those have been appeared in literatures and are generally declaimed as therapeutically useful agents to prevent or treat neurodegenerative disorders, convulsion and schizophrenia. Glycine-site antagonists have emerged on drugs acting on CNS because they have offered wide therapeutic window between the desired neuroprotective effects and adverse events such as behavioral stimulation that have been observed with competitive glutamate antagonists or channel blockers. The followings are glycine-site antagonists which have been already developed. 2-Carboxyindole acrylamide developed by Glaxo Well-come; ##STR2## Quinoxaline-2,3-dione developed by Ciba-Geigy; ##STR3## Tricyclic quinoxalinedione developed by Ciba-Geigy; ##STR4## Pyridazino quinolinedione developed by Zeneca; ##STR5## Heterocyclic compound developed by Pfizer, ##STR6## Heterocyclic compound developed by Ciba-Geigy; ##STR7## Various compounds including above examples have been developed, but the compound, which has good CNS penetration and high solubility, has not been developed as glycine-site NMDA receptor antagonist having a large affinity for the receptor. We have now found a novel class of quinolinic sulfide derivatives which are potent and specific antagonists at the strychnine insensitive glycine binding site on the NMDA receptor complex with an pharmacological advantageous profile. They may be useful in treatment or prevention of neurodegenerative disorders. Particularly, the compounds included in the present invention are especially useful for minimizing damage of the central nervous system arising as a consequence of ischemic or hypoxic condition such as stroke, hypoglycemia, cerebral ischemia, cardiac arrest, and physical trauma. They are also useful in prevention of chronic neurodegenerative disorders including epilepsy, Alzheimer's disease, Huntington's disease and Parkinsonism. By virtue of their NMDA receptor antagonist properties, the present compounds may also use as anticonvulsant, analgesic, antidepressant, anxiolytic, and antischizophrenic agent.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a golf swing training and muscle exercising apparatus which is adjustable to enable a variety of users of various heights and strengths to simulate the movements of a proper golf swing. The apparatus also exercises the muscles of a golfer when swing movements are performed. The present invention is an improvement over U.S. Pat. No. 5,050,874 issued to Robert E. Fitch and U.S. Pat. No. 5,284,464 issued to George P. Lee, III et al. In U.S. Pat. No. 5,284,464 a golf swing training and exercising apparatus is disclosed including a base platform, an upright housing having a rotating parabolic arm connected between a simulated golf grip and a resistance source mounted in the housing, which enables a golfer to execute a simulated golf swing by rotating the arm against the resistance. The structure includes a linkage which permits rotation of the swing arm in either a back swing or down swing direction against the resistance. Further, this patent discloses a limited tension adjustment apparatus in the form of a tension arm designed to be located within a series of slots. However, this adjustment is limited whereby a swing training and exercising apparatus designed for a strong man could not be used by a woman or a child or for that matter, a man with reduced strength. The present invention provides a golf swing training and exercise apparatus for simulating a proper golf swing path and for exercising the golf swing muscles and includes a base, a housing connected to said base and extending upwardly therefrom, a primary resistance system and a linkage system supported in the housing, the linkage system being operably connected to the resistance system, a swing arm having a proximal end rotatably attached to the linkage system and a grip on a distal end thereof, the linkage system being movable in either a clockwise or counterclockwise direction against said primary resistance system and a secondary resistance means removably attached to said apparatus to operate in conjunction with said primary resistance system. The present invention further provides an improved variable tension swing training and exercising apparatus which provides a wide range of adjustable resistance via a primary resistance system which works in conjunction with a secondary removable resistance system to accommodate a number of golfers, having a wide range of physical characteristics and strength, including women and children as well as men having well developed muscles and superior strength associated therewith. The improvement of the present invention uses a secondary resistance which adds tension to the primary resistance for increasing the overall resistance for well developed users. Preselected resistive force bands are connected between a movable force band rod and a fixed force band rod. The fixed force band rod is connected toward a lower end of the housing and also serves as a mount for an internal spring. The movable force band rod extends through a pair of slots in the apparatus housing and is accessible outside the housing. The movable force band rod is mounted on an internal rod carriage block and is connected to the rotatable swing arm through the sprocket, chain and rod connector. Selected force bands are attached between the fixed and movable force band rods to provide a selected resistance for a particular golfer using the apparatus. In use, a golfer selects a force band having a particular resistance. The ends of the force bands are provided with suitable connectors whereby one end of the force band is placed on the fixed force band rod and the other end of the force band is placed on the movable force band rod. Once a force band resistance is selected for a particular golfer using the apparatus, it is attached between the fixed and movable force band rods. Then the golfer may use the swing training and exercising apparatus either in a simulated back swing or down swing mode by rotating the parabolic swing arm in either a back swing or down swing direction in accordance with a specific exercise being performed. Rotation of the parabolic swing arm, in turn, rotates the shaft and sprocket to extend the movable rod against the resistance. An object of the present invention is to provide a swing training and exercise apparatus using a primary resistance system and an adjustable secondary resistance to accommodate a number of golfers having a wide range of physical characteristics and strengths. It an object of the present invention to provide a swing training and exercise apparatus wherein the secondary resistance means is connected between a fixed support extending from said housing and a movable support connected to the linkage system and extending from the housing. It is another object of the present invention to provide an apparatus wherein said secondary resistance means is mounted on the exterior of the housing. It is another object of the present invention to provide an apparatus wherein the secondary resistance means is a resilient band having a predetermined resistance when stretched. It is still another object of the present invention to provide an apparatus wherein the secondary resistance means is a plurality of resilient bands each having a predetermined resistance when stretched. Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which taken in conjunction with the annexed drawings, discloses a preferred, but non-limiting, embodiment of the subject invention.
{ "pile_set_name": "USPTO Backgrounds" }
Methods for estimating the distribution density of input values over a range of input values are used, for instance, in classifying samples. The histogram density-estimation method is a nonparametric method for estimating the distribution density of input values over a range of input values. Such a method can be illustrated with an example related to determining the distribution of various dark gray values for a series of workpieces, such as for purposes of quality control. The gray values of a series of workpieces are measured and assigned to a scale of gray values. In assessing the color quality of the workpieces, the criterion of interest is the distribution density over the entire range of gray values, as opposed to the exact gray values of the individual workpieces. In determining the distribution density of measured gray values of a series of workpieces over a range of input values, the range of gray values is divided up into partitions, or grades of gray values, and each measured gray value is assigned to that partition within which it falls. Dividing the range of input values into partitions and defining the size of the partitions is referred to as quantization. Measured gray values assigned to each partition are counted and divided by the size of the partition and the entire number of measured gray values. In this manner, an average density is determined for each partition and is treated as an estimated density value. This is carried out for all partitions in the range of input values, so that an estimation of the distribution density of the input values is made over the range of input values. The smaller the partitions, the more closely the distribution density of the histogram represents the actual distribution of the measured gray values. As the partitions are made smaller, however, more partitions are needed, the number of random samples needed to formulate statistically significant estimation values increases, and the cost of computing the distribution density increases. In a known histogram method for estimating density, the range of input values is divided up into partitions of a constant size. See, e.g., K. E. Willard, "Nonparametric Probability Density Estimation: Improvements to the Histogram for Laboratory Data", Computers And Biomedical Research, 25, 1992, pp. 17-28. In this method, however, the specified number of partitions is not optimally adapted to the distribution of input values over the entire range of input values, so that the estimation of distribution density that is made is inaccurate. In another known histogram method for estimating density, the size of the partitions is optimized with the aid of computational methods, on the condition that the size be the same for all partitions and that the number of partitions be freely selectable to obtain the most precise possible estimation of distribution density. See, e.g., D. Freedman, "On the Histogram as a Density Estimator: L.sub.2 Theory", Journal of Probability Theory and Related Fields 57, 1981, pp. 453-476. This method, however, entails a high degree of complexity and does not achieve optimal quantization for distributions of input values with abrupt value fluctuations.
{ "pile_set_name": "USPTO Backgrounds" }
Aircraft auxiliary power units (APU) commonly provide pressurized air and controlled speed shaft power to the aircraft systems as an alternative to extracting this energy from the main engine compressor flow and accessory gearboxes. The APU is often used to power systems when the main engines are shut down. Known ground-based APUs typically include added weight and complexity which may not be compatible with use in aircraft applications.
{ "pile_set_name": "USPTO Backgrounds" }
The equipment used in the food processing industry varies by segment with the leading segments comprising meat and poultry, beverages, snack foods, vegetables, and dairy. While the equipment varies from segment to segment, the moving parts such as bearings, gears, and slide mechanisms are similar and often require lubrication. The lubricants most often used include hydraulic, refrigeration, compressor and gear oils, as well as all-purpose greases. These food industry oils must meet more stringent standards than other industry lubricants. Due to the importance of ensuring and maintaining safeguards and standards of quality for food products, the food industry must comply with the rules and regulations set forth by the United States Department of Agriculture (USDA). The Food Safety inspection Service (FSIS) of the USDA is responsible for all programs involving the inspection, grading, and standardization of meat, poultry, eggs, dairy products, fruits, and vegetables. These programs are mandatory, and inspection of non-food compounds used in federally inspected plants is required. The FSIS is custodian of the official list of authorized compounds for use in federally inspected plants. The official list (see page 11-1, List of Proprietary Substances and Non-food Compounds, Miscellaneous Publication Number 1419 (1989) by the Food Safety and Inspection Service, United States Department of Agriculture) states that lubricants and other substances that are susceptible to incidental food contact are considered indirect food additives under USDA regulations. Therefore, these lubricants, classified as either H-1 or H-2, are required to be approved by the USDA before being used in food processing plants. The most stringent classification, H-1, is for lubricants approved for incidental food contact. The H-2 classification, is for uses where there is no possibility of food contact, assures that no known poisons or carcinogens are used in the lubricant. One embodiment of the present invention pertains to an H-1 approved lubricating oil. The terms “H-1 approved oil” and “food grade” will be used interchangeably for the purpose of this application. Although the USDA is no longer approving new ingredients and compositions, the H-1 classification is still recognized by the world food industry. NSF is now listing and approving the food grade classification. In addition to meeting the requirements for safety set by federal regulatory agencies, the product must be an effective lubricant. Lubricating oils for food processing plants should lubricate machine parts, resist viscosity change, resist oxidation, protect against rusting and corrosion, provide wear protection, prevent foaming and resist the formation of sludge while in service. The product should also perform effectively at various lubrication regimes ranging from hydrodynamic thick film regimes to boundary thin film regimes. The oxidation, thermal, and hydrolytic stability characteristics of a lubricating oil help predict how effectively an oil will maintain its lubricating properties over time and resist sludge formation. Hydrocarbon oils are partially oxidized when contacted with oxygen at elevated temperatures for prolonged periods of time. The oxidation process produces acidic bodies within the lubricating oil. These acidic bodies are corrosive to metals often present in food processing equipment, and, when in contact with both the oil and the air, are effective oxidation catalysts that further increase the rate of oxidation. Oxidation products contribute to the formation of sludges that can clog valves, plug filters, and result in overall breakdown of the viscosity characteristics of the lubricant. Under some circumstances, sludge formation can result in pluggage, complete loss of oil system flow, and failure or damage to machinery. The thermal and hydrolytic stability characteristics of lubricating oil reflect primarily on the stability of the lubricating base oil properties and the oil additive package. The stability criteria monitor sludge formation, viscosity change, acidity change, and the corrosion tendencies of the oil. Hydrolytic stability assesses these characteristics in the presence of water. Inferior stability characteristics result in lubricating oil that loses lubricating properties over time and precipitates sludge. Although such lubricants have been designed to be non-toxic as a food source contaminant, their lubricating properties are often less effective compared to conventional lubricants e.g., lubricants having ingredients not approved for direct food contact. The lubrication industry has, to some degree, overcome this problem by incorporating specialty additives into the lubricant compositions. For example, the inclusion of performance additives has been used to enhance antiwear properties, oxidation inhibition, rust/corrosion inhibition, metal passivation, extreme pressure, friction modification, foam inhibition, and lubricity. Such chemistries are described in the following patents: U.S. Pat. No. 5,538,654 (Lawate, et al.); U.S. Pat. No. 4,062,785 (Nibert); U.S. Pat. No. 4,828,727 (McAninch); U.S. Pat. Nos. 5,338,471 and 5,413,725 (Lai). A drawback to the food-grade-lubricants described in the above patents relates to oxidation resistance, pour point characteristics, limited formulating capability for viscosity breadth, and limited viscosity protection. The lubricants often have poor rheology characteristics when subjected to prolonged heat and mechanical stress. Therefore, there remains a need for a food-grade-lubricant that exhibits excellent hydrolytic stability, corrosion resistance, and anti-wear, with substantial improvements in oxidation resistance, pour point, viscosity index, viscosity breadth formulating capability, and viscosity stability when subjected to the thermal and mechanical stresses.
{ "pile_set_name": "USPTO Backgrounds" }
Digital information has become extremely important in all aspects of commerce, education, government, entertainment and management. In many of these applications, the ability to ensure the privacy, integrity and authenticity of the information is critical. As a result, several digital security mechanisms have been developed to improve security. One standardized approach to today's digital security is referred to as the Public Key Infrastructure (PKI). PKI provides for use of digital certificates to authenticate the identity of a certificate holder, or to authenticate other information. A certificate authority (CA) issues a certificate to a certificate holder and the holder can then provide the certificate to a third party as an attestation by the CA that the holder who is named in the certificate is in fact the person, entity, machine, email address user, etc., that is set forth in the certificate. And that a public key in the certificate is, in fact, the holder's public key. People, devices, processes or other entities dealing with the certificate holder can rely upon the certificate in accordance with the CA's certification practice statement. A certificate is typically created by the CA digitally signing, with its own private key, identifying information submitted to the CA along with the public key of the holder who seeks the certificate. A certificate usually has a limited period of validity, and can be revoked earlier in the event of compromise of the corresponding private key of the certificate holder, or other revocable event. Typically, a PKI certificate includes a collection of information to which a digital signature is attached. A CA that a community of certificate users trusts attaches its digital signature and issues the certificates to various users and/or devices within a system. Network-enabled devices are generally provisioned at the factory with identity data so that they may communicate with other network-enabled devices in a secure manner using an identity data system. The identity data typically includes a public and private key pair and a digital certificate. Illustrative examples of networked-enabled devices include, without limitation, PCs, mobile phones, routers, media players, set-top boxes and the like. The identity data may be provisioned in network-enabled devices before or after they are deployed in the field. For instance, the identity data may be incorporated into the device at the time of manufacture. For example, a large scale upgrade may occur when a network operator wants to replace their Digital Rights Management (DRM) system or when they want to support other security applications that require the network-enabled devices to be provisioned with new types of identity after the devices have been deployed. This can be a difficult and cumbersome process because it is often performed manually and therefore can require the devices to be returned to a service center. One particular issue that arises when upgrading or updating identity data concerns the manner in which new identity data is securely delivered to the network-enabled devices.
{ "pile_set_name": "USPTO Backgrounds" }
Communication systems are known to support wireless and wire lined communications between wireless and/or wire lined communication devices. Such communication systems range from national and/or international cellular telephone systems, to the Internet, and to point-to-point in-home wireless networks. Each type of communication system is constructed, and hence operates, in accordance with one or more communication standards. For instance, wireless communication systems may operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), and/or variations thereof. Depending on the type of wireless communication system, a wireless communication device, such as a cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, et cetera communicates directly or indirectly with other wireless communication devices. For direct communications (also known as point-to-point communications), the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of radio frequency (RF) carriers of the wireless communication system) and communicate over that channel(s). For indirect wireless communications, each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel. To complete a communication connection between the wireless communication devices, the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other wide area network. Cellular wireless communication systems support wireless communication services in many populated areas of the world. While cellular wireless communication systems were initially constructed to service voice communications, they are now called upon to support data communications as well. The demand for data communication services has exploded with the acceptance and widespread use of the Internet. While data communications have historically been serviced via wired connections, cellular wireless users now demand that their wireless units also support data communications. Many wireless subscribers now expect to be able to “surf” the Internet, access their email, and perform other data communication activities using their cellular phones, wireless personal data assistants, wirelessly linked notebook computers, and/or other wireless devices. The demand for wireless communication system data communications continues to increase with time. Thus, existing wireless communication systems are currently being created/modified to service these burgeoning data communication demands. Cellular wireless networks include a “network infrastructure” that wirelessly communicates with wireless terminals within a respective service coverage area. The network infrastructure typically includes a plurality of base stations dispersed throughout the service coverage area, each of which supports wireless communications within a respective cell (or set of sectors). The base stations couple to base station controllers (BSCs), with each BSC serving a plurality of base stations. Each BSC couples to a mobile switching center (MSC). Each BSC also typically directly or indirectly couples to the Internet. In operation, each base station communicates with a plurality of wireless terminals operating in its cell/sectors. A BSC coupled to the base station routes voice communications between the MSC and the serving base station. The MSC routes the voice communication to another MSC or to the PSTN. BSCs route data communications between a servicing base station and a packet data network that may include or couple to the Internet. Transmissions from base stations to wireless terminals are referred to as “forward link” transmissions while transmissions from wireless terminals to base stations are referred to as “reverse link” transmissions. Direct or indirect communications may experience be received via multiple pathways. Multiple pathways often result in the deflection of a wireless communications signals off obstacles that can cause interference during reception. Multipath fading occurs when a wireless communications signal is received by an antenna and later the same signal is received again, reflected from an obstacle. This can result from both retransmission and different transmission paths. Under certain conditions, two or more of the signals can interfere with each other and create “fading” (a loss of signal) in the communications link. Fading may occur when signals are retransmitted or received by multiple antennas. Thus, multipath fading may be observed within both wireless and wire-line communications. As the amount of data contained within wireless and wire-line communications increase and the power of the transmitted signal is reduced, the techniques chosen to combat the multipath fading can vary. To a wireless communication device operating in a receive mode, co-channel and adjacent channel signals may appear as colored noise. In order to better receive the information intended for the wireless communication device, the wireless communication device must attempt to cancel these interference signals. Prior techniques for canceling such interference included channel equalization for received symbols. However, existing channel equalization techniques fail to typically remove co-channel and adjacent channel noise sufficiently. Previously, least mean square (LMS) algorithms have been employed to avoid matrix inversion when trying to find the optimum solution to mitigate inter-symbol interference (ISI) or inter-chip interference (ICI). On CDMA downlink, there is strong ICI due to multipaths. To date, adaptive LMS algorithms have been applied to reduce ICI without multipath channel matrix inversion. However, this method produces a biased signal which is not desirable. Thus, a need exists for improvements in interference cancellation.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to electronic circuits. More particularly, the present invention relates to a signal conditioning circuit for determining the resistance of resistive sensors, including thermistors. There are types of resistors that have a resistance characteristic that varies with respect to changes to a certain property. The resistance can then be used to measure that property. For example, a thermistor has a resistance that varies with temperature. Thus, the thermistor can be used to measure temperature by measuring the resistance of the thermistor. There are other types of resistors available that are sensitive to different variables, such as pressure or light. One prior art system for measuring a resistance is illustrated in circuit 100 of FIG. 1. Circuit 100 features an excitation circuit and an amplifier section. The excitation circuit is configured to excite a resistive sensor and a reference resistor, while the amplifier is configured to output a result that is proportional to the difference in resistance between the reference resistance and the resistance of the sensor. The excitation circuit comprises a voltage source 102, a resistor 110 and a resistor 112, a set resistor (or reference resistor) 114, and a resistive sensor, e.g., a thermistor 116. Resistors 110 and 112 may be identical in configuration, i.e., matched resistors, such that known biases are applied to set resistor 114 and thermistor 116. This bias of set resistor 114 creates a voltage that is propagated to an input terminal 125 of instrumentation amplifier 120. The current flowing across thermistor 116 creates a voltage that propagates to an input terminal 123 of instrumentation amplifier 120. The amplification section comprises an instrumentation amplifier 120. Instrumentation amplifier 120 is typically configured as a differential amplifier that amplifies the difference in voltage between the voltage at input terminal 123 and the voltage at input terminal 125 and generates a signal at the output terminal 124 of instrumentation amplifier 120. This voltage difference is proportional to the difference in resistance between thermistor 116 and set resistor 114. A typical instrumentation amplifier may have a gain of approximately 100. Set resistor 114 has a known resistance, while the temperature/resistance characteristics of thermistor 116 and the gain of instrumentation amplifier 120 are also known. Due to these known characteristics, the temperature being sensed by thermistor 116 can be calculated. However, a significant drawback of circuit 100 is that it is important for resistors 110 and 112 to be matched to provide a known bias, often requiring expensive precision resistors to be included. An alternative layout for a prior art circuit 400 of measuring a resistance is shown in FIG. 4, where the excitation of set resistor 414 and thermistor 416 is accomplished through the use of current sources 410 and 412, i.e., voltage source 102, and resistors 110 and 112 are replaced with current sources 410 and 412. However, there may be difficulty in matching current sources 410 and 412 to provide known, equal currents. The measurement of temperature can be important in a variety of applications. For example, one use of thermistors is in the field of optical networking. An optical network system may use lasers to transmit light through a fiber optic cable. The lasers are typically kept at a predetermined temperature, in order to have the laser transmit light of a predetermined wavelength. One method that can be used to control the temperature is to use a thermoelectric cooler and a thermistor mounted on the laser diode. The thermistor will change in resistance when there is a change in temperature. The thermistor may be coupled to the thermoelectric cooler in such a way that the amount of cooling increases when the temperature becomes too high and decreases when the temperature lowers to a desired level. However, prior art measurements systems for such applications can be quite complex. There is a desire for a simpler and more compact system and method for testing and/or measuring the resistance in resistive sensors. In addition, to determine the difference between a set resistor and a thermistor or other resistive sensor, it would be desirable to have the currents exciting the set resistor and the resistive sensor be as closely matched as possible, i.e., to minimize the difference in excitation sources, without requiring precision resistors, matched resistors, or the difficult matching of current sources. The method and circuit according to the present invention addresses many of the shortcomings of the prior art. In accordance with one aspect of the present invention, a circuit is provided that can facilitate accurate resistance measurements. In accordance with an exemplary embodiment of the present invention, a self-contained signal conditioning circuit can be provided that contains a mechanism for testing and/or measuring resistance in a resistive sensor by connecting the resistive sensor and a reference resistor, e.g., a set resistor, to the self-contained signal conditioning circuit. Such a signal conditioning circuit may contain an amplification stage coupled to the set resistor, with a similarly configured amplification stage coupled to the resistive sensor. The current being supplied to the set resistor and to the resistive sensor can be monitored and the difference between the amount of current being supplied to the set resistor and the amount of current being supplied to the resistive sensor can be sensed. This difference in current is proportional to the difference in resistance between the set resistor and the resistive sensor. This difference in current may be converted to a voltage signal, if so desired.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a cable assembly, and particularly to a cable assembly with a block such that the cable is well arranged by the block. When a plurality of cable assemblies are mounted to a panel, the blocks define an open channel together with the connector housing thereby the cables can be well organized within the open channel. 2. Description of Prior Art Conventionally, a cable assembly includes a connector with a cable attached thereto. The cable is attached to the connector from a rear end of the connector. When a plurality of cable assemblies are mounted on a panel in-row, organization of the cable become an issue. Since the cable extends rearward, it can either shift to left or right. As such, it creates an issue in organizing the cables extend from the connectors. A conventional cable connector, as disclosed in U.S. Pat. No. 5,785,555 and in U.S. patent application Ser. No. 2001/0023146 A1, is configured with a straight cable exit, in which a cable extends straight outwards from a back face of the cable connector. Obviously, such cable connectors can only be arranged side by side and a lot of space at the back of the connectors is occupied due to the rearwardly extending cables. Cable connector structures, such as that shown in U.S. patent application Ser. No. 2001/0046798 A1, require that the cable connectors be positioned vertically side by side, if adequate space for adjacent cable connectors is to be provided for, since the cables exit along a direction perpendicular to the mating face of the connectors. Als o, such cable connector structures bring a problem of cables organization and simultaneously waste a lot of space at a side thereof. U.S. Pat. No. 4,789,358 describes yet another type of cable connector, which has an angled cable exit and an external cable extending upwardly and rearwardly from the angled cable exit. Similarly, the external cables of such cable connectors cannot be well organized and such configurations also waste a lot of connection space at the back thereof. All the above cable connectors have a same issue in that none of the cable exits effectively save the connection space and well organizes the corresponding cables so that none of the cable connectors allows an increase in density of cable connectors as arranged on a panel of an electronic device, while avoiding interference with neighboring cables. This problem is getting more important as the needs for higher density applications. Hence, an improved cable assembly is required to overcome the disadvantages of the prior art. A first object of the present invention is to provide an improved cable assembly for mounting onto a panel, the cable assembly having a block to organize an outwardly extending cable. A second object of the present invention is to provide a cable assembly, wherein multiple such cable connectors are arranged together only occupying a limited space. A third object of the present invention is to provide a cable assembly, wherein the cables can be well organized when a plurality of such cable assembly are arranged on panels. A cable assembly in accordance with the present invention includes a cable connector and an external cable terminated with the cable connector. The cable connector is mountable on a side of a panel for mating with a board mountable connector which is secured to an opposite side of the panel and is terminated onto an electronic card. The cable connector includes a dielectric housing having a main body and a projecting portion projecting outwards from a side of the main body. The main body defines a receiving space therein for receiving an end of a corresponding cable. The projecting portion forms a guiding face, which is slanted relative to the panel, and defines a cable exit channel on an outside of the dielectric housing between the guiding face and an outer side of the main body. An opening is defined through a bottom side of the projecting portion, through which the end of the cable is insertable into the receiving space of the dielectric housing. The cable connector has a plurality of terminals fixed in the dielectric housing, each being connected to a wire of the cable. When plural cable connectors are assembled side by side and each has a cable extending therefrom, the cable which protrudes from the projecting portion of its associated cable connector is received in the cable exit channel of an adjacent cable connector, and extends along the guiding face of the adjacent cable connector. Therefore, the plurality of cables terminated by different cable connectors do not interfere with each other. Furthermore, the cable connector has a central axis xe2x80x9cAxe2x80x9d normal to the panel, which defines an acute angle xcex1 with a central axis xe2x80x9cBxe2x80x9d of the associated cable attached thereto and is offset from the central axis xe2x80x9cBxe2x80x9d a predetermined distance xe2x80x9cDxe2x80x9d (FIGS. 4 and 5). Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Static micro-mixers are key elements in micro-reaction technology. Static micro-mixers use the principle of multi-lamination, in order in this way to achieve rapid mixing of fluid phases by means of diffusion. A geometric configuration of alternately arranged lamellae makes it possible to ensure good mixing in the microscopic range. Multi-lamination mixers made of structured and periodically stacked thin plates are already extensively described in the literature; examples of this will be found in German patents DE 44 16 343, DE 195 40 292 and the German patent application DE 199 28 123. In addition, as opposed to the multi-lamination mixers, which comprise structured and periodically stacked thin plates, the German patent application DE 199 27 554 describes a micro-mixer for mixing two or more educts, the micro-mixer having mixing cells. Each of these mixing cells has a feed chamber which is adjoined by at least two groups of channel fingers which engage in the manner of a comb between the channel fingers in order to form mixing regions. Above the mixing region there are outlet slots, which extend at right angles to the channel fingers and through which the product emerges. As a result of the parallel connection in two spatial directions, a considerably higher throughput is possible.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an improved shrouding apparatus for protecting a molten metal pouring stream from atmospheric reoxidation. In the continuous casting of molten metals such as steel, molten metal from a ladle is teemed into an intermediate pouring vessel called a tundish positioned above a continuous casting mold. The tundish has a pouring nozzle in its bottom wall. When continuously casting billets, a caster will often have as many as six billet strands issuing from six molds, thus the tundish will require six pouring nozzles. Atmospheric reoxidation of the steel stream flowing between the tundish and the mold will cause the accumulation and entrapment of undesirable oxide inclusions in each cast billet. Inclusions trapped in the billet render the product cleanliness unacceptable for quality steel grades. To alleviate the problem of reoxidation, various types of shrouds have been developed and used in the continuous casting of steels. Bailey British Patent Specification No. 371,880, Lyman U.S. Pat. No. 3,572,422 and Pollard U.S. Pat. No. 3,908,734 teach shrouding of molten metal pouring streams with inert or reducing gas. Some types of shroud are manufactured from refractory materials and termed "refractory pouring tubes" since they project downward from the bottom of the tundish to beneath the surface of the metal in the mold as shown by Mills, et al U.S. Pat. No. 3,517,726. Alternatively, bellows-type shrouds exist which are attached to both the tundish and the mold, affording a completely enclosed pouring chamber which allows vertical oscillation of the mold. However, neither the stream characteristics nor the metal in the mold can be observed through this bellows-type shroud. Additionally, the bellows-type shroud affords no access to the nozzle. Still other shrouds exist which are mounted on the mold and extends upwards to the tundish. One such shroud is a split cylinder, half of which is removable to provide access to the pouring nozzle as shown in Holmes U.S. Pat. No. 3,439,735. Although a split shroud affords access to the tundish nozzle, most of the prior art shrouds, including the split shrouds are fixed systems which are not readily removable to accomodate other apparatus beneath the pouring stream such as a launder which, when required, diverts the pouring stream away from the mold. Also, the fixed shroud systems do not allow nozzle cleaning by an oxygen torch during casting nor insertion of a chill plug to stop the flow of the molten metal. The Pollard patent teaches that the shroud tube must be open at both ends, to afford two-directional gas flow and to allow rapid removal of the shroud from the operating position. Contrary to the teachings of the Pollard patent, we have determined experimentally that a shroud must be tightly held against the tundish or pouring vessel to prevent entrainment of oxygen from air into the shroud and reoxidation of the steel stream. When a shroud is open at the top, hot air rising off the mold is drawn upwardly through the shroud, exiting at the top, reducing the effectiveness of the inert gas introduced to the interior of the shroud and causing considerable reoxidation of the steel in the pouring stream. When the diameter of a shroud closely approximates the diameter of the pouring stream, the quality of the seal between the shroud tube and the pouring vessel is not as critical as it is when the shroud tube has a diameter in excess of three times the diameter of the pouring stream. However, larger diameter shroud tubes on the order of four inch diameter have more desirable operating characteristics than small diameter tubes, say, of 21/2 inch diameter or less. In smaller diameter tubes, splash and spatter from the pouring stream impinges against the inside of the tube causing a buildup of solid steel. In some instances this buildup becomes so severe that it shuts off the pouring stream. In other instances, the buildup is washed out of the tube by action of the pouring stream and into the mold where it can rupture the solidifying shell causing molten steel to "break-out" and necessitating casting of that strand to be terminated. Experimental data shows that the larger diameter tubes require the seal between the shroud tube and the tundish to be as tight as possible to prevent air leakage into the shroud tube from the surrounding atmosphere. Japanese researchers have determined that the oxygen content of shrouding gas must be maintained at less than 0.8% to prevent the continuous formation of oxide inclusions from reoxidation of the steel stream. In our experimental work, which involved the accurate measurement of shroud and mold environment oxygen concentrations, we determined: first, that a shroud sealed to the tundish has a significantly lower oxygen concentration in the shroud than one with a gap between the top of the shroud and the bottom of the tundish; and second, that as the gap between the bottom of the shroud and the top of the mold is decreased, the oxygen concentration in both the shroud and in the mold decreases significantly. Therefore, the shroud tube should extend as far as possible downwardly toward the mold, yet allow space between the shroud and mold for viewing the liquid level in the mold. Heretofore, there has been no convenient mechanism for placing a shroud against a tundish and for removing it when necessary in order to divert the pouring stream from the mold. The invented shroud apparatus is readily positionable tightly against the pouring nozzle of a molten metal pouring stream from a bottom-pour vessel, yet is easily and quickly removed to accomodate other apparatus such as a launder beneath the stream.
{ "pile_set_name": "USPTO Backgrounds" }
There are several ways that semiconductor wafer containers are stored in a semiconductor fabrication facility (“fab”). Large centralized stockers can store the containers of wafers until they are needed for processing, receiving the containers from a transport system known as an Automated Material Handling System (“AMHS”) at an input port. In general, an AMHS is any computer controlled system in a factory that moves work pieces between work stations, and between work stations and storage locations. In a fab, an AMHS will move containers of wafers and empty containers between process equipment, metrology equipment and stockers. When processing is required for the wafers, they are retrieved in their container from their storage shelf by a robotic mechanism (“stacker robot”), delivered to an output port on the stocker, picked up by the AMHS, and delivered to the desired processing station. The stacker robot typically requires a large space between the walls of stationary storage shelves. The space is needed to allow for operating clearance and motion of the stacker robot and its container payload. There may also be one or more ports where human operators can manually deliver and retrieve containers from the stocker. To better distribute the storage of containers, smaller stockers may be located in processing bays of the fab where the containers can be stored closer to their next processing station, reducing delivery time and travel distance for the containers when they are requested for the next processing operation. Also, distributing the smaller stockers reduces the problem of AMHS traffic congestion at the large stockers and the throughput limitations of the single stacker robot at the large stocker, however the distribution and use of smaller stockers has its limitations. A smaller stocker still has the elements of a large stocker, including the stacker robot and its operating clearance space, controls, and input/output ports. This duplication makes the small, distributed stockers more costly than the large stockers for the same overall number of storage locations. Some fabs are structured with parallel aisles (“bays”) of semiconductor processing, measuring or handling equipment (“tools”). If multiple small stockers were placed in each bay adjacent to the tools there would also be an increase in the floor space used for the fab's storage requirements due to the decreased storage density of a small stocker and access clearance required around the stocker and tool. Floor space is very valuable in a fab because it is used for processing tools that manufacture products, therefore it is desirable to minimize the use of floor space for storage functions. Therefore, there is a need for container storage systems that are simple and inexpensive, using minimal floor space, while providing high density container storage close to processing tools.
{ "pile_set_name": "USPTO Backgrounds" }
An RE-based bulk oxide superconductor produced by the so-called “melt” method, that is, a rare-earth-based oxide superconductor where RE2BaCuO5 (211) phases are finely dispersed in a single crystal-like REBa2Cu3O7-x (here, “RE” is one or more rare earth elements including Y), has a larger magnetic flux pinning force compared with other oxide superconductors. In particular, it has a high critical current density even at a high temperature near the liquid nitrogen temperature (77K), so utilization for bulk magnets, magnetic levitation systems, current leads, and various other fields of application can be expected. To such a bulk material, fine amounts of Pt, Rh, Ce, etc. are added to thereby refine the RE2BaCuO5 phases to about 1 μm. For example, the melt method such as the QMG (Quench and Melt Growth) method disclosed, in PLTs 1, 2, 3, etc. is a technique which once raises the temperature to a temperature region where the RE2BaCuO5 phases or RE4Ba2Cu2O10 phases and a liquid phase mainly comprised of B—Cu—O can be copresent, cools to right above the peritectic temperature where REBa2Cu3O7-x (123) is formed, and gradually cools from that temperature to cause crystal growth, controls the nucleation and crystal orientation, and obtains a large-sized bulk material comprised of single crystal grains. Further, by adding Ag to a shaped article including REBa2Cu3O7-x, RE2BaCuO5, and other materials, a bulk material in which several μm to several hundred μm of Ag particles are dispersed is obtained. A material to which Ag is added is superior in machineability with less chipping due to machining compared with a material to which it is not added. Further, near the boiling point (77K) of liquid nitrogen, in a Y-based material or Gd-based material, the critical current tends to become larger. The seeding method using a seed crystal with a high peritectic temperature to cause crystal growth disclosed in PLT 2 uses a RE2Ba2Cu3O7-x single crystal-like sample with a higher melting point (peritectic temperature) than the RE1Ba2Cu3O7-x-based oxide superconductor which the seed crystal tries to produce. This method of production of a single crystal bulk heats the starting precursor of the RE1Ba2Cu3O7-x-based oxide superconductor to an intermediate temperature between the peritectic temperature of RE1Ba2Cu3O7-x and the peritectic temperature of RE2Ba2Cu3O7-x whereby the RE1Ba2Cu3O7-x breaks down resulting in a RE12BaCuO5 phase or RE14Ba2Cu2O20 phase and a liquid phase mainly comprised of Ba—Cu—O in a copresent state and brings one surface of the RE2Ba2Cu3O7-x crystal in contact with the precursor. After this, this is cooled to the peritectic temperature of RE1Ba2Cu3O7-x to cause the formation of RE1Ba2Cu3O7-x and then is gradually cooled near the peritectic temperature to thereby grow crystal at the same orientation as the crystal orientation of the contact surface of the RE2Ba2Cu3O7-x. To disperse Ag in a single crystal-like bulk, Ag is usually added in about 10 to 20 mass %. NPLT 1 discloses Y-based materials in which 3, 5, 7, 10, 15, 20 mass % of Ag are added and shows the presence of any crystal growth, structures, etc. at those conditions at various temperatures. If the amount of addition of Ag, that is, the amount of addition of Ag20 to the sample weight, is 5 mass % or less, it is known that, conditional on a structure being obtained where Ag particles do not precipitate at 970° C. or less, the Ag grains change in shape to disk shapes or spherical shapes.
{ "pile_set_name": "USPTO Backgrounds" }
An indicator system for a vehicle is shown in FIG. 11. This system includes an indicator unit having an open-circuit detecting function. A partial voltage of a voltage VB of a battery 100 divided by resistors R60, R70 and a zener diode ZD1 is determined as a threshold voltage Vth for the open-circuit detection. A shunt resistor R80 is connected between the battery 100 and incandescent lamps 101, 102 that are arranged at the front end and the rear end of the vehicle. A comparator 103 is provided for comparing a voltage drop VR80 at the shunt resistor R80 with the threshold voltage Vth. When an open-circuit is present, that is, a disconnection is present, in at least one of the incandescent lamps 101, 102, a current flowing through the shunt resistor R80 is reduced. As a result, the voltage drop VR80 at the shunt resistor R80, namely, a voltage at a point between the shunt resistor R80 and the incandescent lamps 101, 102, becomes smaller. An output level of the comparator 103 varies when the incandescent lamp 101, 102 becomes open. Therefore, an open circuit in the incandescent lamp 101, 102 is detected based on the variation in the output level of the comparator 103. Light emitting diodes (LEDs) have better power saving performance than incandescent lamps. Therefore, application of LEDs to indicator systems for vehicles has been examined in the recent years. One of such systems is proposed in JP-A-2002-76439. A single LED cannot provide sufficient brightness for direction indication. Thus, multiple LEDs are arranged in lines and used for each indicator to provide desired brightness. Open-circuit detection can be performed in this system in the same manner as the indicator system shown in FIG. 11. However, a voltage drop at each LED varies from LED to LED and the voltage drop VR80 at the resistor R80 varies due to a variation in voltage drops at the LEDs. A relationship between the battery voltage VB and the voltage drop VR80 under normal conditions is shown in FIG. 10. The variation in the voltage drop VR80 due to the variation in the LED is also shown in FIG. 10. A middle of a range of the variation in the voltage drop VR80 is determined based on an average voltage drop of LEDs and indicated with line L10. When the voltage drop at the LED 110 is smaller than the average, a battery voltage-voltage drop characteristic curve shifts from line L10 to the left side of the graph. The battery voltage-voltage drop characteristic curve shifts from line L10 to the right side of the graph when the voltage drop at the LED 110 is larger than the average. The characteristic curve shifts between the maximum line and the minimum line. The maximum line and the minimum line indicate the battery voltage-voltage drop characteristic in conditions that the voltage drop at the LED 110 is the largest and the smallest, respectively. A relationship between the battery voltage VB and the voltage drop VR80 under abnormal conditions is also shown in FIG. 12. A middle of a range of the variation in the voltage drop VR80 is determined based on an average voltage drop of LEDs and indicated with line L20. A battery voltage-voltage drop characteristic curve shifts in the same manner as the normal conditions. The maximum line and the minimum line are also provided for this case. If the voltage drop at the LED 110 is larger than the average and the battery voltage VB is low, the characteristic curve shifts more to the right than line L10. As a result, an open circuit is improperly determined even when it does not actually exist. If the voltage drop is smaller than the average and the battery voltage VB is low, the characteristic curve shifts more to the left than line L10. As a result, an open circuit is not determined even when is actually exist. Namely, improper open-circuit determination occurs in an area indicated with shade in the graph.
{ "pile_set_name": "USPTO Backgrounds" }
There has been a growth in demand for packet switched wireless data services due to the growth in internet applications. A typical channel over which these data services are delivered is a radio channel. Radio channels are available in an increasing number of frequency bands. A frequency band of particular interest is the IMT-2000 frequency band (at a frequency of about 2 GHz). This frequency band is used for delivery of data services using wideband code division multiple access (W-CDMA) techniques. Two W-CDMA techniques that may be used in this frequency band are frequency division duplex (FDD) techniques and time division duplex (TDD) techniques. A strategy that is useful when packet data services are transmitted across a fading radio channel is to exploit multi-user diversity. Multi-user diversity may be employed when there are multiple users that are all requesting service concurrently. If the transmitter knows the channel conditions that are being experienced by the receivers that it is serving, it may schedule those users that are experiencing favorable channel conditions in preference to those experiencing unfavorable channel conditions. Furthermore, the scheduler may wish to use less error correction coding or transmit using a higher order modulation when transmitting to users with the better channel conditions (such techniques will increase the instantaneous throughput to those users). In the 3rd Generation Partnership Project (3GPP) communication systems utilizing packet data services and employing High Speed Downlink Packet Access (HSDPA), the transmitter is referred to as a Node-B (i.e. a ‘base station’) and the receiver is the user equipment (UE) (often referred to as a ‘remote station’ or ‘subscriber equipment’). The HSDPA system that is specified by 3GPP exploits multi-user diversity in several ways: The amount of error correcting, coding and modulation applied may be varied between transmissions (for example when applying adaptive modulation and coding (AMC)). A scheduling function is located in the Node-B. This network element has a shorter round trip delay to the UE than the RNC (Radio Network Controller), which is where the scheduling function is classically located. The Node-B may attempt to always choose users to schedule that are experiencing favorable channel conditions. The UE reports channel quality directly to the Node-B, allowing the Node-B to make scheduling decisions based on channel quality. 3GPP have specified HSDPA both for the FDD (Frequency Division Duplex) and for the TDD (Time Division Duplex) modes of operation. In both modes of operation, there is a mechanism by which channel quality estimates are fed back from the UE to the Node-B. In current specifications of HSDPA, notably with respect to a format of medium access control (MAC) layer protocol data units (PDUs), only MAC-hs (high speed) Service Data Units (SDUs) from a single priority queue of a UE can be multiplexed onto one MAC-hs PDU. As illustrated in FIG. 1, a single MAC-hs PDU 120 may be sent to a user equipment (UE), per transmission time interval (TTI). The single MAC-hs PDU contains a MAC-hs header 125, followed by MAC-hs payload 130 (comprising one or more MAC-d PDUs, where a MAC-d pdu is the same as a MAC-hs SDU, but where MAC-d layer is located above the MAC-hs layer in the 3GPP architecture) and finally optional padding 135, if the sum of the above data does not fit a valid MAC-hs PDU size (where the permitted size values are defined in 3GPP TS 25.321, known as ‘k’ values). Further, in 100 a size of a single MAC-hs PDU is signaled 115 in the high-speed shared control channel (HS-SCCH) 105. As a consequence of only being able to transmit a single MAC-hs PDU 120 to a UE, only a single priority level of data can be carried. However, in the MAC-hs logic entity at the network (UMTS Radio Access Network (UTRAN)) side of the communication link, more than one priority queue may belong to the same UE. In effect, this means that if one UE is scheduled to transmit in a TTI, only MAC-hs SDUs from one of the priority queues of the UE can be sent in one MAC-hs PDU. This is the case even though downlink resources in this TTI may allow for transmitting more MAC-hs SDUs than those that are waiting for transmission in any one of the priority queues of this UE. It has been proposed by Huawei in a document titled ‘Concatenated MAC-hs PDU’ in 3GPP TSG-RAN-WG2 meeting #51 in Denver, USA, Nov. 13-17, 2006, to concatenate MAC-hs PDUs in the manner illustrated in FIG. 2. As shown in FIG. 2, a concatenated MAC-hs PDU 250 includes multiple MAC-hs PDUs 205, 225, 230 built from different priority queues of the same UE. The format of each MAC-hs PDU follows current specifications, except that there is no padding field since the MAC-hs PDU size is not constrained by the ‘k’ values; it comprises a MAC-hs header 210 followed by multiple MAC-hs SDUs 215, 220. Since possible padding may be needed for the concatenated PDU, an optional pointer field 240 with typical length of ‘8’ bits or ‘12’ bits is used to indicate the beginning of the padding field 235. A fixed PF (Pointer Flag) 245 with one bit length is located at the end of the concatenated MAC-hs PDU 250, and is used as an indicator to show if the pointer field 240 is present (for example if PF=‘1’) or not (for example PF=‘0’). There are a number of drawbacks associated with the concatenated PDU proposal outlined above, including: Existing MAC-hs software developed according to 3GPP cannot be re-used: The individual MAC-hs PDU structure differs from the existing 3GPP structure A Concatenated MAC-hs PDU has a new structure that is also handled by MAC-hs. Therefore, a desire exists for HSDPA communication wherein one or more of the abovementioned disadvantage(s) may be alleviated.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The invention relates generally to microwave antennas that may be used in therapeutic or ablative tissue treatment applications. More particularly, the invention relates to devices and methods for regulating, maintaining, and/or controlling a temperature of microwave antennas used in such applications. 2. Background of the Related Art Many procedures and devices employing microwave technology are well known for their applicability in the treatment, coagulation, and targeted ablation of tissue. During such procedures, the antenna of a microwave probe of the monopole, dipole, or helical variety, as is conventional in the art, is typically advanced into the patient either laparoscopically or percutaneously until the target tissue is reached. Following the introduction of the microwave probe, during the transmission of microwave energy to the target tissue, the outer surface of the antenna may sometimes reach unnecessarily high temperatures due to ohmic heating. When exposed to such temperatures, the treatment site, as well as the surrounding tissue, may be unnecessarily and unintentionally effected. The present disclosure contemplates curtailing such tissue effects by providing improved microwave tissue treatment devices, cooling systems, and methods. To prevent such unnecessarily high temperatures, several different cooling methodologies are conventionally employed.
{ "pile_set_name": "USPTO Backgrounds" }
Traditional leg curl exercise machines include a stationary platform or frame for supporting the user's upper torso while the user performs prone leg curl exercises. These traditional leg curl exercise machines support the upper torso in a relatively fixed position while the user's lower legs move in an arcuate path from an exercise starting position to an exercise ending position (and often back to the exercise start position). Because the traditional leg curl exercise machine supports the user's upper torso in a relatively fixed position, the movement associated with the user's lower body often results in excessive arching of the lower back, particularly when the user's lower legs are in the exercise ending position. Excessive arching of the lower back can lead to lower back pain, strain, or other associated injury. Consequently, a need exists for a leg curl exercise machine that maintains the user's body in a more ergonomically sound position throughout the exercise motion. The embodiments of the present invention solve this problem by providing a leg curl exercise machine that includes a moving support platform or frame to support the user's upper torso. The moving support platform or frame may include a linkage assembly that allows the moving support platform or frame to tilt as the user performs a prone leg curl exercise. Other advantages of the present invention will become apparent to one skilled in the art.
{ "pile_set_name": "USPTO Backgrounds" }
Obstructive sleep apnea (OSA) is common sleep disorder suffered by a large number of people. When a person who suffers from OSA has an event, the airway collapses and is blocked, primarily during inspiration. The airway may remain blocked for a few seconds to more than one minute while the person struggles to breath. The person may wake or may move to change his or her sleep position to until the blockage is opened. Severe snoring is frequently a precursor to OSA. During severe snoring, the airflow to the patient's lungs may be restricted, but not totally blocked. One treatment for OSA is the application of a continuous positive airway pressure (CPAP) to the patient's respiratory system. This is most frequently accomplished by the patient wearing a nasal mask during sleep which is connected to a source of pressurized air. When a sufficient air pressure is applied to the nasal mask, the patient's airways become sufficiently inflated and remain open for unrestricted breathing. While evaluating a patient for CPAP treatment, a clinician determines the lowest effective pressure needed for keeping the patient's airway open during sleep. Various types of CPAP apparatus are well known in the art. The basic CPAP apparatus has a blower which is connected through a pressurized air hose to a nasal mask. The CPAP apparatus is adjusted to provide the lowest effective pressure to the patient for preventing abnormal sleep events. More sophisticated CPAP apparatus includes features such as a ramp delay which applies a reduced pressure to the nasal mask for a period while the patient falls asleep, and then gradually increases the pressure to a programmed level. The CPAP apparatus also may vary the applied pressure to gradually increase the applied pressure in response to sensed sleep events, and to gradually decrease the applied pressure when no sleep events are sensed. In a bi-level form of CPAP apparatus, an effective therapeutic pressure is applied to the nasal mask when the patient begins to inhale and the pressure is reduced when the patient begins to exhale. Bi-level apparatus can increase the comfort of CPAP therapy by reducing the work of exhaling against the therapeutic pressure, particularly for patients who require a high therapeutic pressure. Some patients do not comply with the prescribed CPAP treatment due to mask discomfort where it contacts the face, especially at the bridge of the nose. There has been significant work by CPAP equipment manufacturers to improve mask comfort, since the mask must be worn whenever the patient is sleeping. To be effective, the mask requires a comfortable seal which will adjust to a wide differences in facial configurations of different patients. The seal also must adjust to facial changes when a user changes sleep positions. A number of different seal configurations have been used in the past. These include flexible membranes which can conform to the face and the bridge of the nose, foam filled seals, inflated seals, and seals filled with a gel type material. Each type of seal has positive and negative features. The mask is secured to the patient with headgear which typically is in the form of straps which extend around the head. Preferably, the headgear is designed so that it is easily adjusted by the patient and is easily attached to the patient. The patient should be able to remove the mask during the night and to easily reattach the mask, for example, if the patient needs to go to the toilet. However, many mask/headgear configurations are not easy for the patient to attach and remove.
{ "pile_set_name": "USPTO Backgrounds" }
The traditional stethoscope is ubiquitously used in the chain of medical care. However, in isolation it is only capable of assessing respiration and heart rate; blood pressure measurements are possible when the stethoscope is used in conjunction with a sphygmomanometer. A traditional stethoscope head contains a diaphragm that mechanically amplifies audio signals in the 0.01 Hz to 3 kHz range. For medical use, operators fix the head of the stethoscope adjacent to the phenomenon being observed (e.g. against the chest to measure respiration). The diaphragm transmits the sound coupled into the stethoscope head from the features (such as the heart or lungs) into a set of ear pieces. The operator then interprets this sound and manually records this measurement. Studies have shown that these measurements have a strong dependence on the level of training for the operators, as well as the audio environment in which the measurements are taken. Electronic stethoscopes have attempted to address the limitations of traditional stethoscopes in loud environments, such as the emergency department. They convert the mechanical vibrations incident on the diaphragm into electronic signals that can be readily amplified and transmitted to the earpiece worn by the operator. However, the human operator is still required to interpret the audio signals to deduce physiometric parameters such as heart rate and respiration rate. In contrast, ultrasound imaging equipment has been developed to automate some of this data collection and interpretation. For example, ultrasound imagers can extract adult or fetal heart rate from recorded images or Doppler ultrasound. These imagers measure high frequency echoes that penetrate and reflect off of tissues within a body. A number of strategies have been developed to modulate the frequency of the sound to perform tomography using these ultrasound instruments. For example, high frequencies generate higher resolution images at shallower depths (e.g. subcutaneous tissue, lungs, vasculature) and lower frequencies generate lower resolution images at deeper depths (e.g. visceral organs). Ultrasound is used for a variety of diagnostic imaging purposes including examination and monitoring of infection, trauma, bowel obstruction, cardiac disorder, pregnancy staging, and fetal health. Though its versatility would make the ultrasound a particularly effective tool for use in point-of-care medicine, in the developing world, in wilderness expeditions, and in spaceflight, the typically high cost, power-requirements, and size of ultrasound equipment have prevented its adoption for many scenarios. Furthermore, unlike stethoscopes, current ultrasound imagers require substantial training to use, yet still suffer from substantial inter-operator variability. These limitations have allowed ultrasound to augment, but not replace, stethoscopes.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method for controlling computer network security. Firewalls and intrusion detection systems are devices that are used to protect a computer network from unauthorized or disruptive users. A firewall can be used to secure a local area network from users outside the local area network. A firewall checks, routes, and frequently labels all messages sent to or from users outside the local area network. An intrusion detection system (IDS) can be used to recognize suspicious patterns of behavior in a communication system. Examples of an intrusion detection system include a network intrusion detection system (NIDS) and a host intrusion detection system (HIDS). A NIDS can be used to examine information being communicated within a network to recognize suspicious patterns of behavior. A HIDS can be used to examine information being communicated through a particular host computer within a network to recognize suspicious patterns of behavior. Information obtained by the intrusion detection system (IDS) can be used to block unauthorized or disruptive users from accessing the network. Either a firewall or an intrusion detection system can create log records that record incoming and outgoing events into or out of a network. Log records can include events such as security violations, bandwidth usage, email usage, and employee access to the Internet. Typically, these log records are reviewed by network security administrators in order to detect attempted security breaches or to find trends in traffic patterns. Since the number of log records is typically quite large, query languages are often used to analyze the log records to detect attempted security intrusions. Query languages can also be used to analyze the log records and generate reports summarizing these log records for the network administrator. These reports can be used by the network administrator to respond to a recognized network security intrusion. Query language instructions operating on log records can also be used to generate alerts for the network administrator. Since the number of log records can be quite large, the network security solutions utilizing query language instructions to analyze the log records can be slow. Query language based solutions can be slow when all the log records are analyzed every time a new query is received.
{ "pile_set_name": "USPTO Backgrounds" }
Continued emphasis in the semiconductor industry on producing smaller processor integrated circuits (I/C's) by making all of the circuits smaller and denser is ever driving increasing power requirements. The increased power consumption results in more heat generated by the I/C as it is operating and the need to control/stabilize I/C temperature during the test and burn-in processes. Generally, the I/C is contacted by a heat sink to control temperature during burn in. High performance heat sinks are well known in the prior art. They are typically liquid cooled and may also incorporate additional control features, such as temperature sensors, heaters, thermoelectric devices and fluid control valves. The shape and size of the liquid cooling passages are optimized for heat transfer. The heat sink is a part of the burn-in oven. The state of the art of heat sink design is such that the biggest limitation to temperature control is transferring the heat from the IC to the heat sink. The thermal interface between the I/C and heat sink must be high performance and temporary so the heat sink can be removed from the I/C after test. Known thermal interface methods are: (1) minimum tolerance surface flatness of heat exchanger and coplanarity between an I/C and heat exchanger (which still results in a microscopic air gap between the I/C/heat exchanger surfaces); (2) continuous injection of an inert gas (example—helium) to fill the air gap between the I/C heat exchanger surfaces; (3) placing a compliant material (example—Egraf) with high thermal conductivity on the heat exchanger surface that contacts the I/C to enable thermal control of the I/C under test and burn-in conditions; (4) remote/external dispense of a liquid (with a higher viscosity than water) for maximum effective heat transfer applications. Methods 1, 2 and 3 do not provide the level of thermal transfer that can be accomplished with method 4 required for current/future generations of processor I/C's. Method 4 does support current/future power dissipation requirements but the external/remote liquid dispense method leaves the end-user with the liquid in a static condition and prone to liquid breakdown and residual build-up which lessens liquid thermal performance and power dissipation significantly below that required, resulting in inadequate test or false fails. The breakdown of liquid and residual build-up affects thermal performance and reliability of the test or burn-in (B/I) tooling, resulting in more frequent tool cleaning and heat exchanger replacement, driving significant increase in cost of ownership (COO). The contamination on the I/C backside is a paramount concern as (a) if it is not detected and removed, the contamination adversely affects long term reliability of the thermal solution incorporated into the final I/C package assembly, resulting in premature I/C failure; (b) increased COO to implement an inspection/detection process resulting in yield loss if contamination removal is not possible, and (c) increased COO to develop/implement an inspect/detect/contamination removal process, resulting in revenue/profit impact. This is all explained in some detail in patent application Ser. No. 11/330,922, filed Jan. 12, 2006, entitled “Enhanced Thermo-Oxidative Stability Thermal Interface Compositions and Use Thereof in Microelectronics Assembly”, which is incorporated herein by reference. Thus, it is desired that an improved technique for burn-in of electronic devices, such as chips, be developed that overcomes these defects.
{ "pile_set_name": "USPTO Backgrounds" }
From the standpoint of production engineering, sheathed-element glow plugs which are used in an internal combustion engine have a predefined tolerance of the temperature to be set at the sheathed-element glow plug for a nominal voltage. Thus, for example, for a ceramic sheathed-element glow plug, given a nominal voltage of 7 volts with which the sheathed-element glow plug is activated, a temperature of 1,200° C. is indicated as glow temperature, which allows a tolerance of +/−50 K. This means that the maximum temperature of the sheathed-element glow plug is not allowed to exceed 1,250° C. If control units which activate the sheathed-element glow plugs in the internal combustion engine are applied, then it there can be deviations with respect to the desired temperature of 1,200° C., for example. Since the control unit is unable to react to changing tolerances during operation of the sheathed-element glow plugs in the internal combustion engine, the maximum sheathed-element glow plug temperature of 1,200° C. is predefined definitively in the control unit. German Published Patent Application No. 10 2008 040 971 describes a method and a device for regulating the temperature of sheathed-element glow plugs in an internal combustion engine, in which during a reference operation of the internal combustion engine, a mathematical correlation is formed between measured temperatures and measured resistances of at least one sheathed-element glow plug, the resistances being obtained from an actually applied voltage and an actual current flow at this sheathed-element glow plug, and this mathematical correlation being adapted dynamically over the entire service life of the plug and being utilized in the overall operation of the internal combustion engine. In this method, for improved application quality, the changing operating conditions of the internal combustion engine are taken into account. This hampers the application of the control unit for the installed sheathed-element glow plug, since great tolerances are considered during use of the sheathed-element glow plug in the internal combustion engine.
{ "pile_set_name": "USPTO Backgrounds" }
Motion transmitting remote control assemblies of the type for transmitting motion in a curved path are commonly used in many automotive actuating applications. For example, such motion transmitting remote controls are used as automatic transmission controls. The assembly generally includes a core element supported within a guide, the core element having a portion extending therefrom to provide a variably extending length. A terminal member is mounted on the end of the core element for operatively connecting the core element to a control member. A common type of control member presently used in the automotive industry includes a body portion having a ball pin extending therefrom. Various configurations of terminal members have been utilized to interconnect the ball pin to the core element. The U.S. Pat. No. 3,787,127 to Cutler, issued Jan. 22, 1974 is an example of a ball and socket joint including a plurality of flexible fingers for retaining a ball pin therein. The U.S. Pat. No. 4,111,570 to Morel, issued Sept. 5, 1978 discloses a ball and socket joint cage including a cap member for locking a ball pin within a pocket of the terminal member. The locking means fixes flexible fingers defining the socket joint cage about a ball pin. The U.S. Pat. Nos. 2,096,567 to Peo, issued on Oct. 19, 1937 and 4,163,617 to Nemoto, issued Aug. 7, 1979 are other examples of ball joints including various means for retaining a ball pin within the ball joint pocket. The copending patent application Ser. No. 392,515 to Frankhouse et al and assigned to the assignee of the instant application, discloses a novel ball joint configuration for a terminal member of a motion transmitting remote control assembly. The application discloses a motion transmitting remote control assembly including a terminal member having an opening therethrough and having containing means for containing the body portion of a control member therein and for absorbing the applied forces as the terminal member is moved along a line of force and retaining means for retaining the ball pin of the control member therein. The retaining means includes at least one flexible finger extending from the containing means defining a portion of the opening through the terminal member. As the opening through the terminal member extends completely therethrough, a problem has arisen wherein the user of the terminal member may insert the ball pin through the wrong end of the opening thereby providing a less than effective connection between the core element and the control member. In view of this problem, the instant invention provides means for preventing upside down installation of a ball pin into an opening in the terminal member. The improvement further aids terminal removal and retention.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to tone detection in general and, more particularly, to independent hysteresis apparatus for monitoring call progress tones utilized in telephone systems. In certain telephone systems, there is employed a technique called Call Progress Tone Monitoring which is useful for applications such as outcalling and supervised transfers. Call Progress Tone monitoring is employed where the disposition of a call is used to determine the next course of action in the telephone system. Thus in such a system, a machine mimics the human's ability to discriminate between different call progress tones by detecting their distinctive tones and/or cadences. As one can understand, in telephone systems such tones are widely employed. Most familiar common signalling and control signals are dial tone, ring back and busy tones. These signals and their frequencies as well as the periods of on and off are well established although they can vary from system to system in regard to frequency, cadence and so on. As indicated in the above-noted copending application, to differentiate between different tones, one can provide a time representation of the call progress tone by transforming the analog signal into a frequency domain representation. Due to the nature of such tones, it becomes difficult to discriminate tones which are extremely close in frequency. As one will understand, tones employed in telephone systems all are accommodated within a bandwidth from about 0 to 4,000 Hz. It is within this bandwidth that such tones are employed and hence many tones are relatively close together in frequency. In this manner they become extremely difficult to reliably detect. Furthermore, when one desires to detect such tone signals on a telephone line or on a communication channel, there is a problem of identifying the tone or signal in the presence of noise. As indicated, the various tones which are desired for detection may be separated by as little as 30 Hz. One requires expensive and complicated filters to discriminate in regard to such close frequency differences and conventional filters can mistake one tone for the other tone during different time periods. In this manner the invention to be described herein employs a hysteresis technique to essentially enable one to accurately identify a tone by eliminating interference due to noise while also serving to discriminate between tones which are very close in frequency. As is also well known in basic tone detection or signalling tones as employed in telephony, one may have tones which consist of two or three frequencies. For example, in certain PBX systems as well as in other telephone systems, dial tone may be represented as two frequencies, mainly 350 Hz plus 440 Hz. A signal referred to as "ring back" is a telephony signal which occurs for two seconds on and four seconds off and may be the combination of 440 Hz plus 480 Hz. As one can ascertain, such tone detection systems must discriminate between these frequencies which as above indicated may also be extremely close together. If one refers to the above-noted copending application, further examples of suitable tones are given. Thus prior art techniques which employed, for example, filters, and so on suffered in the sense that the tones could not be discriminated against accurately in the presence of noise and often a tone which was close to another tone in frequency would be confused with each other. In this manner there is described a hysteresis apparatus which smooths out the frequency detection process to assist in the identification of a particular tone. The hysteresis apparatus as described enables one to adjust the sensitivity of the system to the noise associated with individual tones even in the same application as in monitoring the same telephone line or communications path.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, the demand for rechargeable batteries have been rapidly increasing as electronic products become portable. On the other hand, nickel-hydrogen rechargeable batteries have been improved as batteries for unpollutive electric vehicles, for which expanded future demand has attracted attention. In this way, the expanded demand for nickel-hydrogen rechargeable batteries is expected in future since the nickel-hydrogen rechargeable batteries are superior in characteristics to the conventional nickel-cadmium batteries as well as causing fewer environmental problems. However, a method of recovering reusable metals from used nickel-hydrogen rechargeable batteries has not yet been established. This is because the recovery through the conventional chemical processing costs more than the employment of new raw materials. Therefore, development of a method of recovering reusable metals from demand-expanding nickel-hydrogen rechargeable batteries is desired for environmental reasons as well. It is an object of the present invention to provide a method of recovering reusable metals from nickel-hydrogen rechargeable batteries, wherein reusable metals can be recovered from nickel-hydrogen rechargeable batteries efficiently with low cost, and effectively as well in the aspects of recycling and environment.
{ "pile_set_name": "USPTO Backgrounds" }
Liquid extraction surface analysis (“LESA”) is a known technique whereby samples are extracted from a surface into a small liquid junction for further analysis by an Electrospray ionisation (“ESI”) ion source. Liquid extraction surface analysis has been used for imaging of tissue sections at fairly modest spatial resolution. According to a known arrangement a crystallised Matrix Assisted Laser Desorption Ionisation matrix is provided and desorbed ions or particles are ionised or further ionised by an Electrospray ionisation ion source. US2014/0070088 (Otsuka) discloses an Electrospray ionisation device. It is desired to provide an improved ion source and an improved method of ionising a sample.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an impact type printer having a plurality of print wires or hammers. Impact printers are well known in the prior art. As an example, a wire dot matrix printer, a typical impact printer has a plurality of solenoid-driven wires mounted within a movable print head which traverses a paper. During movement of the print head across the paper, selected solenoids are energized and drive the corresponding print wires to impact an inked ribbon and ultimately the paper to form dot-column patterns at closely spaced intervals across the print line. The print head utilizes seven or nine solenoid driven print wires and successively forms five or seven dot column patterns so as to form alphanumeric patterns. Nowadays wire dot matrix printers are very popular because of their superior characteristics such as simplicity of the mechanism, high speed of solenoid operation, high reliability, and ability to make at the same time. Due to the popularization of readily usable computer systems, dot matrix printers functioning as output apparatus for such computer systems are required to have at least 16 print wires so as to print not only alphanumeric characters but also chinese characters and graphic patterns.
{ "pile_set_name": "USPTO Backgrounds" }
Mobile computing is becoming increasingly pervasive, and will approach ubiquity in wireless devices (e.g., notebook computers, smart phones, personal digital assistants (PDAs), etc.) over the next decade. One consistent trend in this mobile computing space is the fact that such platforms increasingly communicate over a variety of wireless protocols. Common protocols in use today for wireless data transfer include EV-DO, IEEE 802.11a/big, ZigBee® (registered trademark of ZIGBEE ALLIANCE of California), Bluetooth® (registered trademark of BLUETOOTH SIG, INC. of Delaware), and many other related protocols. By their very nature, differentials do exist, and will continue to exist, between the speed, or bandwidth, with which mobile devices can communicate with each other, vis-à-vis communications speeds with the broader network where a device's target data may reside. It is often the case that a wireless device will have a relatively fast wireless connection to other local devices and a relatively slow wireless connection to the broader network (e.g., the Internet). For example, local wireless connections, provided by protocols such as IEEE 802.11a, 802.11b, 802.11g, 802.15.1 (e.g., Bluetooth®), and 802.15.4 (e.g., Zigbee®) provide fast data transfer rates of about 3 to 54 megabits per second (Mbps). However, such transfer protocols often have a limited maximum transmission range of about 30 to 300 ft. On the other hand, wireless telephony protocols (e.g., EV-DO, CDMA, EDGE, GPRS, etc.) have relatively large maximum transmission ranges on the order of miles, but only provide data transfer rates of about 10 kilobits per second (kbps) to 1 Mbps. Thus, while a user of a mobile device may enjoy relatively fast data transfer amongst local devices, the user is often limited to a slow wireless connection to the outside world (e.g., the Internet). However, unless mechanisms exist to motivate network nodes (and their owners) to lend their excess bandwidth at any given moment, it may be difficult for borrowers to obtain the bandwidth needed for any given download. Accordingly, there exists a need in the art to overcome the deficiencies and limitations described hereinabove.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to simplifying the process of customizing the configurations of many different types of computers to simplify their maintenance and repair. In particular, it relates to automatically transforming uniform configuration data into different forms to compensate for different computer configurations. 2. Description of the Related Art As the number of personal computers and servers used throughout business enterprises has increased, and as the price of the hardware and software has decreased, the cost of setting up and maintaining a large array of networked computers has come to be dominated by cost of servicing the computers and keeping them all operating. In the past, this was done by manual intervention, with service personnel visiting each computer or with the computers being brought in for repair. But the cost of providing such manual service is high, and the difficulties of providing trained staff members able to cope with any problem that might arise on any given computer has also grown. Additionally, the time it takes for service personnel to visit a site greatly increases the time during which a given computer may be out of service due to some problem. Accordingly, attempts have been made in the past to automate some or all of the tasks relating to computer maintenance and repair. With respect to personal computers, a first approach has been to make available to the user, on the computer itself and also within service sites maintained on the Internet, knowledge data bases containing detailed documentary descriptions of the programs, and also self-help tools. Thus, for example, one may learn from a centralized database that new software drivers for hardware accessories are available, and these may be downloaded and automatically installed on personal computers. Likewise, software patch analyzers are available which can trace a problem to software defects and which can suggest the downloading of more recent versions of the software that may cure those problems. An even more sophisticated approach to PC maintenance is provided by the ServiceNet platform developed by Motive Communications, Incorporated. ServiceNet is designed around a self-help paradigm in which a person using a desktop computer notices a problem and then manually opens a “trouble ticket” that is transmitted to a support provider. The PC operator uses a web interface to report the problem to a program called Chorus Client, which is an incident escalator. The incident escalator first may try to run prewritten diagnostic scripts or provide “self-help” tools. It may then “isolate” the incident, running scripts to gather configuration data, and then combining the user's problem description and the configuration data with contact information identifying the user of the computer and including such things as name, e-mail address, and telephone number. It may also gather host information from the PC. These are transmitted to an incident receiver which parses the information and passes it on to a central analysis server where a program called Duet, in combination with a program called Insight, enable the provision of “online” assistance by a service engineer to review the problem in the context of the user's computer as configured and to provide assistance. The configuration data must be installed on every computer in an enterprise that is subject to this type of maintenance and support. It identifies, among other possible things, the name and e-mail address, etc., of the one who is to be contacted when a computer needs support. It can also identify the name, etc. of a system as well as critical network parameters, such as proxy hosts. One difficulty is that computers differ. They may be running differing operating systems, for example. Such differences necessitate configuration data to be represented differently or to be stored in different files.
{ "pile_set_name": "USPTO Backgrounds" }
Capacitors are one type of component which is commonly used in the fabrication of integrated circuits, for example in DRAM circuitry. A typical capacitor is comprised of two conductive electrodes separated by a non-conducting dielectric region. As integrated circuitry density has increased, there is a continuing challenge to maintain sufficiently high storage capacitance despite typical decreasing capacitor area. The increase in density of integrated circuitry has typically resulted in greater reduction in the horizontal dimension of capacitors as compared the vertical dimension. In many instances, the vertical dimension of capacitors has increased. One manner of forming capacitors is to initially form an insulative material within which a capacitor storage node electrode is formed. For example, an array of capacitor electrode openings for individual capacitors is typically fabricated in such insulative capacitor electrode-forming material, with a typical insulative electrode-forming material being silicon dioxide doped with one or both of phosphorus and boron. The capacitor electrode openings are typically formed by etching. However, it can be difficult to etch the capacitor electrode openings within the insulative material, particularly where the openings are deep. Further and regardless, it is often desirable to etch away most if not all of the capacitor electrode-forming material after individual capacitor electrodes have been formed within the openings. Such enables outer sidewall surfaces of the electrodes to provide increased area, and thereby increased capacitance for the capacitors being formed. However, the capacitor electrodes formed in deep openings are typically correspondingly much taller than they are wide. This can lead to toppling of the capacitor electrodes either during the etch to expose the outer sidewall surfaces, during transport of the substrate, and/or during deposition of the capacitor dielectric layer or outer capacitor electrode layer. Our U.S. Pat. No. 6,667,502 teaches provision of a brace or retaining structure intended to alleviate such toppling. While the invention was motivated in addressing the above identified issues, it is in no way so limited. The invention is only limited by the accompanying claims as literally worded, without interpretative or other limiting reference to the specification, and in accordance with the doctrine of equivalents.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to a method and apparatus for collecting and/or distributing liquids and gas. 2. Background of the Invention Various liquid and gas collection and distribution devices such as sprinklers, seep hose systems and drip systems are well known in the landscaping industry. However, currently available systems suffer from and are subject to a variety of drawbacks resulting in high cost, maintenance, installation time, and often result in excessively wet or dry spots in the terrain intended to be irrigated. For example, sprinklers systems arc typically comprised of a series of irrigation pipes or hoses which are connected to one or more sprinkler "heads." Irrigation substances such as water, fertilizer, insecticide, etc. are then pumped through the piping and sprinkler head for distribution over a desired area. However, though sprinklers generally provide adequate irrigation, they tend to suffer from their exposed nature, inherent inefficiencies, and high maintenance costs. For example, because the sprinkler heads typically are exposed to the environment, they are at an increased risk to vandalism and damage from landscaping devices such as lawn mowers, tractors, plows, and the like. Additionally, because the sprinklers are so exposed, "natural" elements such as ultra violet rays from the sun, rain, snow and ice cause the sprinklers to degrade more rapidly. Finally, as the sprinklers typically consist of several mechanical components, they generally require a substantial amount of maintenance. Seeping hose systems suffer from similar problems. The systems generally consist of permeable tubing which is connected to a water (or other fluid) source. The hose is then placed on the surface (or, alternatively, just under the surface) of the land to be irrigated. To operate the system, the tubing is unrolled, arranged along the ground and connected to the fluid source. As the fluid flows through the tubing, the permeable nature of the tubing allows the fluid to "seep" through the walls of the tubing, thus irrigating the area adjacent to the tubing. However, like the sprinkler system, the seeping system suffers from several problems. For example, it is typically difficult to be certain the seeping system is sufficiently irrigating the desired area and, similarly, to know whether the water or other fluid is being evenly distributed, thus further creating unevenness in irrigation. In addition, the tubing generally does not perform well on uneven areas of land. When the tubing is placed on "hilly" or rolling terrain, no means are available to provide sheer-resistance to hillsides before plant life roots take hold of the ground. Lastly, the complexity of the seeping tube system creates inherently large installation costs and installation time. Alternative irrigation systems have therefore developed. For example of the device disclosed in U.S. Pat. No. 4,887,386, issued to Ronald G. Minshul on Dec. 19, 1989 is one such irrigation device. The patent discloses a panel-like system for collecting and/or distributing fluids and gases. The device comprises, generally, rigid panels through which gases and fluids may flow which are connected to a framework of piping. However, the device disclosed in the patent suffers from its inherent rigidity and complicated framework. Because the panels are rigid, they fail to conform to uneven and/or sloped terrain, and the complex network of framing again results in increased installation time, cost and maintenance time. Another example of an alternative irrigation system is a knitted, fabric mulch irrigation system disclosed in U.S. Pat. No. 3,888,418, and issued to Robert T. Seith on Jun. 10, 1975. This system generally comprises a fabric "netting" used to prevent erosion, control weeds, enrich the soil and irrigate the land. This device also suffers from drawbacks similar to those set forth above. Again, the complexity of the device increases manufacturing costs. Additionally, the size of the knitted fabric is typically limited to the size of the vehicle on which the device is delivered. Still further, the fabric is inflexible in the longitudinal and lateral directions making the device ill-suited to uneven and/or sloping terrain. Finally, the device must have an irrigation tube or pipe connected at each wale in order to produce even distribution of the irrigation fluid, thus increasing the time and costs of installation and maintenance. Accordingly, there is a need for a fluid/gas irrigation and/or collection device which allows adaptability to uneven or sloping terrain, has even collection and distribution characteristics, is easy to ship and store, and has low maintenance, cost and installation times. Additionally, it is desirable that the device be simple to repair and/or integrate with existing systems.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a device to measure individual or grouped cell voltages to monitor fuel cell performance for diagnostic or control purposes. More particularly, the present invention involves a device to make attachments to individual cells or groups of cells of a fuel cell stack which measures the voltage of these individual cells or groups of cells and uses these measurements, the change in these measurements, or the time response of these measurements to report on the performance of the fuel cell stack and to control fuel cell system parameters or isolate poorly performing cell groups based on this performance data. The present invention also provides a method to measure a plurality of voltages at a plurality of points around the perimeter of cells or cell groups to realize a non-invasion measurement of disproportionate current density distribution across the surface of these cells. The present invention further extends to an associated device in communication with the said measuring device to modulate fuel cell stack current to allow dynamic performance measurements of individual or grouped cells. Generally speaking a fuel cell is a device that uses an electrochemical process to generate electrical power utilizing the reaction of hydrogen and oxygen. A typical fuel cell is comprised of a multitude of individual fuel cells electrically connected in series to provided a practical voltage output, a voltage equal to the sum of all the individual fuel cells. This arrangement of a multitude of individual cells is referred to as a xe2x80x9cfuel cell stackxe2x80x9d and each individual cell a xe2x80x9ccell.xe2x80x9d A fuel cell stack typically consists of 10 to 100 cells to realize a total output voltage that is practical for use as an electrical power generation device. A typical fuel cell system can comprise a fuel cell stack, control or regulating devices for either or both of the reactant fluids (oxygen or air and hydrogen), control or regulating devices for humidification of either or both of the reactant fluids (oxygen or air and hydrogen), control or regulating devices for the cooling fluids (water or air), and a electronic controller to monitor fuel cell stack parameters and adjust control and regulating parameters accordingly. Since the output voltage of the fuel cell stack equals the sum of all of the individual cells electrically connected in series, the overall performance of the fuel cell stack is an average of the performance of each individual cell. Furthermore, since all these individual cells are electrically connected in series a failure of one individual cell could possibly compromise the performance of the entire fuel cell stack. Therefore to insure the overall performance of the fuel cell stack it is important to monitor the performance of individual cells or groups of cells. Additionally it is desirable to measure any variation in current density across the plane of cells. A disproportionate current density distribution will manifest itself as differences in cell voltage as measured at different points around the perimeter of a cell. The present invention can allow for voltage measurements to be made at two or more points of the outside perimeter and interpreting these voltage differences and displaying such in a manner to provide an effective determination of a disproportionate current density and hence an operational problem. It is common for existing control devices to monitor fuel cell stack performance based on the sum of all the cells, but since this voltage is much greater than that of individual cells and the cell voltages have some degree of uncertainty it is impossible to monitor the performance of individual cells and determine performance degradations of individual cells. It is also desirable for the control system to isolate individual cells or cell groups that are performing poorly and whose performance has not been corrected by control means. Accordingly, what is needed is a new and useful device and method for measuring individual or grouped cell voltages to monitor fuel cell stack performance for diagnostic or control purposes. The prior art includes U.S. Pat. No. 6,281,684 to James which is directed to a method and apparatus for measuring cell voltages of a fuel cell stack using different ground references. The apparatus includes scanning units coupled to a fuel cell stack to measure and indicate a voltage of each selected fuel cell in response to a selection signal. U.S. Pat. No. 6,281,684 to James also discloses a method for measuring cell voltages of a fuel cell stack which similarly includes scanning units coupled to a fuel cell stack. U.S. Pat. No. 5,170,124 to Blair discloses a method and apparatus for the measurement and comparison of fuel cell performance indicators, such as voltage, in groups of cells connected in series. The citation of any reference herein should not be construed as an admission that such reference is available as xe2x80x9cPrior Artxe2x80x9d to the instant application. There is provided, in accordance with the present invention, a new, useful, and unobvious device for measuring individual or grouped cell voltages to monitor fuel cell performance for diagnostic or control purposes. Such a device allows performance data to be collected on each individual cell or on groups of cells of the fuel cell stack for stack performance analysis and fuel cell system control. Broadly, the present invention extends to a device for measuring individual or grouped cell voltages to monitor fuel cell performance for diagnostic or control purposes, wherein the device comprises a contact arrangement which is associated with the fuel cell stack, which makes electrical connections to individual cells of the fuel cell stack and measures the voltages of said individual cells or cell groups. A device of the invention also comprises a monitor and/or controller, which uses these measurements to report on the performance of the fuel cell stack and to control fuel cell system parameters, based on this performance data. The present invention further extends to an associated device in communication with the said measuring device and in electrical connection with the said fuel cell stack to modulate fuel cell stack current to allow dynamic performance measurements of individual or grouped cells, such as current voltage relationships, voltage transient response, and voltage frequency response. The present invention further extends to performing said measurements at a multitude of points around the perimeter of individual cells or cell groups. Thus providing a non-invasive method to determine a disproportionate current density distribution across the plane of an individual cell or cell group. The present invention further extends to associated apparatus in communication with the said measuring device and in electrical connection with individual cells or cell groups in that the said measuring device can instruct said associated apparatus to electrically isolate individual cells or cell groups which could compromise the performance of the entire fuel cell stack. The present invention finds application in numerous types of fuel cells including, but certainly not limited to PEM (proton exchange membrane), Phosphoric Acid, and Molten Carbonate. The present invention also finds application in numerous applications of fuel cells including, but certainly not limited to vehicular power, residential cogeneration, power generation, UPS (uninterruptible power supply), backup power, battery replacement, battery charging, and portable power. These and other objects of the present invention will be better appreciated and understood by those skilled in the art by reference to the following drawings and Detailed Description.
{ "pile_set_name": "USPTO Backgrounds" }
The incidence of diabetes mellitus is increasing rapidly in developed countries due to increasing obesity, inactive lifestyles, and an aging population. Estimates by the World Health Organization have shown the current global prevalence of diabetes is 3% (194 million people) and is expected to increase in prevalence to 6.3% by 2025. As the incidence of diabetes increases, a corresponding increase in diabetes monitoring and care will be needed. The goal of any type of diabetes care is to keep blood glucose levels as normal as possible. Complications of diabetes may be more prevalent if blood glucose is not controlled. Some examples of complications are high blood pressure, stroke, eye disease/blindness, kidney disease, heart disease, food disease and amputations, complications of pregnancy, skin and dental disease. Those who suffer from diabetes must control blood glucose levels on a daily, and sometimes hourly, basis. Insulin is only effective if injected directly into the bloodstream where it may be used by the body to neutralize the effects of excessive blood sugar accumulation. Those who suffer from diabetes and their caregivers must become adept at determining the diabetic's blood glucose level, calculating the correct dosage of insulin required to help return the level to a normal range, loading a syringe with the calculated dosage, and administering the calculated dose through the use of the loaded syringe. To determine the amount of insulin that is required, a user or caregiver must typically use a glucose monitoring system (aka glucose meter). To test glucose levels with a typical meter, blood is placed on a disposable test strip and placed in the meter. The test strips are coated with suitable chemicals, such as glucose oxidase, dehydrogenase, or hexokinase that combine with glucose in the blood. The meter measures how much glucose is present based on the reactions with these chemicals. Upon receiving the glucose reading, the user or caregiver may determine the amount of insulin required by the user by calculating the dosage required to modify the glucose level to a level in the normal range. The user or caregiver may then load that dose of insulin into a syringe and inject the user. A concern in the use of a simple glucose meter is that there is no current device that is capable of giving a glucose reading and calculating the insulin dosage from that reading in a single device. An additional concern is that a user or caregiver may have difficulty seeing the markings on a syringe barrel and, subsequently, have difficulty determining when the appropriate dose has been drawn into the syringe barrel. A final concern is that the user, whether it is the diabetic or a caregiver, may be distracted and draw an inaccurate amount of the compound into the syringe barrel through simple inattention to the markings on the barrel. Therefore, new approaches are needed to improve the functionality and convenience of glucose meters.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates generally to infant blankets, wraps and buntings and, more particularly, to wraps used for keeping an infant bundled and warm while it is being carried about in a intemperate environment. 2. Description of Related Art Many types devices for wrapping infants are currently in use. The devices are used both to keep an infant warm to provide a certain level of confinement which reduces the risk of injury to an infant by making it easier to handle and carry. The simplest type of infant wrap is a rectangular blanket sized for wrapping an infant. Typically, the infant is placed on the open blanket face up, and the lower portion of the blanket is folded over the infant""s legs and lower body. The side portions of the blanket are overlappingly folded sideways over the infant. Clips or large safety pins may be used to fasten the folds of the blanket together. Another type of infant wrap is an adaptation of the xe2x80x9cmummyxe2x80x9d sleeping bag. U.S. Des. Pat. No. D269,475 discloses such an article. To use such a wrap, the infant is slid into the bag, feet first, or, if the bag is equipped with a longitudinal zipper, the bag is wrapped around the infant and the zipper is closed. Still another type of infant wrap might be considered a combination of the first two. U.S. Pat. No. 5,046,204 discloses a wrap comprising a sheet of fabric which incorporates a hood, a pair of overlapping side flaps, and a pair of booties, or stocking feet. Hook and loop fasteners are used to secure the flaps. This particular wrap confines the infant, as it is wrapped with its arms folded on its abdomen. What is needed is an infant wrap which does not confine the arms and legs of the infant, that requires no potentially dangerous safety pins to hold the wrapped portions together, and which provides enhanced flexibility with regard to different conditions of ambient temperature. In accordance with the present invention, an infant wrap is provided that includes a quadrangular, generally bilaterally symmetrical sheet of fabric material, the sheet having a generally rectangular central region for covering the back side of an infant""s torso. Connected to and continuous with the central region are overlapping upper and lower flaps attached to first and second opposing sides, respectively, of the central region, and overlapping right and left side flaps attached to third and fourth opposing sides, respectively, of the central region. The right and left side flaps wrap around the sides of the infant""s torso and also provide a covering for the front side thereof. The upper flap wraps over the infant""s shoulders, while the lower flap wraps under the infant""s crotch. The upper and lower flaps overlap and also help to cover the front of the infant""s torso. The sheet further includes a head aperture centered on said sheet""s axis of symmetry at the junction of the upper flap and the central region, a pair of leg apertures equally spaced from the axis of symmetry, both feet apertures positioned on the junction of the lower flap and the central region, a pair of arm apertures equally spaced from the axis of symmetry, one arm aperture positioned at the junction of each side flap with the central region, and a sleeve formed from fabric material, attached at one end thereof, to each leg and arm aperture. Each sleeve may incorporate a half cuff, which may be turned inside out in order to cover the sleeve opening. The overlapping flap portions may be equipped with hook and loop fasteners so that the overlapping flap portions may be secured to one another. In order to wrap an infant with the invention, an infant""s legs are placed through the leg apertures, and its head is placed through the head aperture on the same side of the sheet. Each of the infant""s arms is placed through an arm aperture. The lower flap and the upper flap are then folded over on one another on the front of the infant""s torso and secured to each other using the hook and loop fasteners which are sewn to the flaps. The side flaps are, likewise, then folded over on one another and secured to each other using the hoop and loop fasteners provided. In warmer weather, the infant""s feet and hands may be exposed at the ends of the sleeves, one of which is attached to each of the leg and arm apertures. Each sleeve is equipped with a half cuff, which may be turned inside out, thereby covering the end of the sleeve and protecting the infant""s extremities in more inclement weather.
{ "pile_set_name": "USPTO Backgrounds" }
U.S. Pat. No. 5,301,051 by Geller discloses a covert communication system that uses ultraviolet light as a medium for communication. Suitable wavelengths are chosen by examining atmospheric penetration, attenuation by clouds, presence of interfering sources, and ease of generation and detection. It is well known that atmospheric gases such as ozone and oxygen strongly absorb light in the spectral range between 200 and 280 nm. It is called “solar blind” region of spectrum. It is beneficial to create a free-space communication link operating in this range since solar radiation will not interfere with the data transmission. Non-line of sight communication is based on the light scattering in atmosphere and detecting of at least some portion of the scattered light. Raleigh theory indicates a strong wavelength dependence of the scattering (˜λ−4) which means that blue light is scattered much more than red light. It is advantageous to use blue or UV light in NLOS communications since more light can be collected. An optical communications transceiver of U.S. Pat. No. 6,137,609 comprises a transmitter that sends out the same information simultaneously in two channels with different wavelengths and a receiver for detecting and comparing the received data. Additional reliability of the communications is achieved by the transmission doubling. Traditionally photomultipliers are used for UV light detection. Recently developed low noise high sensitive avalanche photodiodes are compatible with the photomultiplier in their characteristics while providing setup compactness. US patent application No. 20050098844, which addresses manufacturing of such detectors, is incorporated herein by reference. There is still a need for improved communications system architecture to enhance detector sensitivity, information capacity and overall system reliability of non-line of sight UV optical communications.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to a checkout system, and more particularly to an apparatus and method for operating convertible checkout system which has a customer side and a personnel side. In the retail industry, the largest expenditures are typically the cost of the goods sold followed closely by the cost of labor expended. With particular regard to the retail grocery or supermarket industry, the impetus to reduce labor costs has focused on reducing or eliminating the amount of time required to handle and/or process the items or goods to be purchased by a customer. To this end, there have been a number of self-service checkout systems developed which attempt to substantially eliminate the need for a checkout clerk. A self-service checkout system is operated by a customer without the aid of a checkout clerk. Hence, during operation of a self-service checkout system, the customer scans individual items for purchase across a scanner and then places the scanned items into a grocery bag, if desired. The customer then pays for his or her purchases either at the self-service checkout system if so equipped, or at a central payment area which is staffed by a store employee. Thus, a self-service checkout system permits a customer to select, itemize, and in some cases pay for his or her purchases without the assistance of the retailer""s personnel. It should be appreciated that a given retailer may have a number of reservations in regard to implementation of self-service checkout systems into the retailer""s operation. For example, certain self-service checkout systems which have heretofore been designed are more expensive relative to assisted checkout systems (i.e. retail checkout systems which are operated by an employee of the retailer such as a checkout clerk). The higher cost associated with a self-service checkout system is typically due to the fact that the system itself must perform functions that would normally be performed by the checkout clerk operating the checkout system thereby increasing the number of components associated with the self-service checkout system. For instance, in the case of a self-service checkout system, the system must provide security from improprieties such as theft. Moreover, in certain self-service checkout systems, the checkout system itself must collect payment from the customer for his or her items for purchase. It is the cost of the hardware and software necessary to provide such functions to the self-service checkout system which in certain cases cause the cost of the system to typically exceed the cost of an assisted checkout system. Moreover, a number of retailers fear that the retailer""s customers may not embrace the idea of using self-service checkout systems to checkout their items for purchase thereby potentially causing the systems to go unused in the retailer""s store. In such a situation, the retailer would have expended a relatively substantial sum of money for a checkout system which is not being utilized thereby increasing costs associated with the retailer""s operation. Yet further, it is generally recognized that a well-trained checkout clerk is capable of completing a checkout transaction in a more timely manner relative to an untrained customer. Accordingly, during periods of peak demand within the retailer""s store, it is desirable for the retailer to operate a relatively large number of assisted checkout systems in order to expedite the checkout process thereby preventing customers from undesirably being forced to wait in long checkout queues. However, during periods of lesser demand within the retailer""s store, it is desirable for the retailer to operate a relatively large number of self-service checkout systems in order to reduce the number of employees (i.e. checkout clerks) that the retailer must have present in the store. Hence, a compromise must be made between the number of assisted checkout systems and the number of self-service checkout systems which are installed in the retailer""s store. What is needed therefore is a checkout system which overcomes one or more of the above-mentioned drawbacks. What is particularly needed is a low-cost, easy-to-operate checkout system that may be operated as either an assisted checkout system or a self-service checkout system. What is further needed is a checkout system that may be operated as either an assisted checkout system or a self-service checkout system that can be quickly and easily converted between the two types of systems. In accordance with a first embodiment of the present invention, there is provided a method of operating a checkout terminal having (i) a customer side, and (ii) a personnel side which is opposite the customer side. The method includes the step of operating the checkout terminal so as to perform an assisted checkout transaction in which retail personnel enters a first item for purchase of a first customer into the checkout terminal during a first time period. During the step of operating the checkout terminal so as to perform the assisted checkout transaction (i) the retail personnel is positioned on the personnel side of the checkout terminal, and (ii) the first customer is positioned on the customer side of the checkout terminal. The method also includes the step of operating the checkout terminal so as to perform a self-service checkout transaction in which a second customer enters a second item for purchase of the second customer into the checkout terminal during a second time period. During the step of operating the checkout terminal so as to perform the self-service checkout transaction the second customer is positioned on the customer side of the checkout terminal. In accordance with a second embodiment of the present invention, there is provided a checkout terminal. The checkout terminal includes a terminal base having (i) a customer side, and (ii) a personnel side which is opposite the customer side. The checkout terminal also includes a code entry device secured to the terminal base. The code entry device is operable in (a) an assisted mode of operation in which a first item for purchase is entered with the code entry device by retail personnel, and (b) a self-service mode of operation in which a second item for purchase is entered with the code entry device by a customer. During operation of the code entry device in the personnel mode of operation (a) the retail personnel is positioned on the personnel side of the terminal base, and (b) the customer is positioned on the customer side of the terminal base. During operation of the code entry device in the self-service mode of operation the customer is positioned on the customer side of the terminal base. It is therefore an object of the present invention to provide a new and useful checkout system. It is moreover an object of the present invention to provide an improved checkout system. It is a further object of the present invention to provide a new and useful method of operating a checkout system. It is also an object of the present invention to provide an improved method of operating a checkout system. It is yet another object of the present invention to provide a low-cost, easy-to-operate checkout system that may be operated as either an assisted checkout system or a self-service checkout system. It is moreover an object of the present invention to provide a checkout system that may be operated as either an assisted checkout system or a self-service checkout system that can be quickly and easily converted between the two types of systems. The above and other objects, features, and advantages of the present invention will become apparent from the following description and the attached drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Computerized systems commonly known as virtual personal assistants (“VPAs”) can interact with computing device users in a conversational manner to provide access to electronic information and services. To do this, the VPA needs to be able to correctly interpret conversational user input, execute a task on the user's behalf, determine an appropriate response to the input, and present system output in a way that the user can readily understand and appreciate as being responsive to the input. A complex assortment of software components work together to accomplish these functions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an injection-locked laser, an interferometer, an exposure apparatus, and a device manufacturing method. 2. Description of the Related Art FIG. 7 is a view showing the schematic arrangement of a conventional injection-locked laser (see J. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser”, App. Opt., 24, 940 (1985)). The injection-locked laser shown in FIG. 7 adopts an injection locking method of minimizing the buildup time. A pulse oscillator O for generating pulse light is, generally, of a ring type to avoid any influence of spectral hole burning. A PZT mount 4 mounts an output coupler of the pulse oscillator O. A PZT controller (PZT amplifier) 5 accurately drives the PZT mount 4. A laser gain medium 3 can employ, for example, a Ti:sapphire crystal. An excitation light source 2 made of, for example, Nd:YAG can be used to excite the crystal by irradiating the crystal with a light beam so that the crystal absorbs the light beam. A seed laser 1 is an injection light source for injection locking and uses a single longitudinal mode light source having a sufficiently narrow full width at half maximum. Seed laser light output from the seed laser 1 is injected into the pulse oscillator O so that it matches the transverse mode of the pulse oscillator O. The seed laser 1 can use, for example, an external oscillator type semiconductor laser. The injection locking means locking the wavelength of narrow-band laser light injected into the oscillator with the optical path length of the oscillator. Photons of the injected narrow-band laser light play the part of evoking stimulated emission for initial pulse oscillation. This facilitates pulse oscillation while concentrating excitation energy in a narrow band. When the optical path length of the pulse oscillator O is an integer multiple of the oscillation wavelength of the seed laser 1, the efficiency of injection locking is highest and the buildup time is shortest. Under other conditions, the buildup time is long because the oscillator generates a loss with respect to the seed laser 1. The buildup time means the time from pump laser emission until pulse light oscillation. The above-described principle is used for oscillator control based on the buildup time. To detect the buildup time, an excitation light source photodetector 32 and pulse light photodetector 33 are inserted near the oscillator. The outputs from the photodetectors 32 and 33 are sent to a control circuit 34. The control circuit 34 calculates the buildup time based on the signals output from the two photodetectors 32 and 33, generates an error signal based on a change in buildup time, and executes PID filtering for feeding back the error signal. The filtered signal is sent to the PZT controller 5. The PZT controller 5 drives the PZT mount 4 based on this signal so as to control injection locking. Unfortunately, the conventional control method using the buildup time may generate a control error when a factor (e.g., pump laser intensity jitter or pointing jitter) other than the oscillator length changes the buildup time. Still worse, noise is likely to mix in a processing circuit for calculating the buildup time based on the output from the laser. This makes it difficult to generate an error signal with high SN. This produces a locking control error, resulting in laser characteristic deterioration such as intensity or wavelength jitter.
{ "pile_set_name": "USPTO Backgrounds" }
The PCT international application with the same applicant of this invention has the Publication Number CN101103157A. It published a lavatory non-water flushing device with the flushing pump. The device includes a human body detective device, a circuit control device, a lavatory pan, a crushing and centrifugal device, an upper flushing liquid flushing pump, a flushing liquid collecting box, a stool collecting box, a automatic deodorant liquid adding device. The crushing and centrifugal device includes a crushing cutter head and a centrifugal blade wheel, which are fixed on the same peripheral axis, and a motor for driving the rotating axis. The crushing and centrifugal device is fixed at the valley of the lavatory pan for collecting the stool. The upper flushing liquid flushing pump is fixed at the inside or outside of the flushing liquid collecting box for the purpose of pumping the upper flushing liquid out. The outlet of the upper flushing pump of the flushing liquid is connected with the fore part of the lavatory pan through a pipe. The invention, characterized in, consists of an electric control four-port valve. One entrance of it is connected with the outlet of the side wall of the back valley of the lavatory pan for collecting stool. The three outlets are respectively connected with the middle part of the lavatory pan, the stool collecting box and the flushing liquid collecting box through a stool crushing pipe, a stool collecting pipe and a urine collecting pipe. With a four-way valve, the said device replaced the electric control valve of the stool crushing pipe, the electric control valve of the stool collecting pipe and the electric control valve of the urine collecting pipe of the lavatory flushing device, which is published in the PCT application (Publication Number WO02/26764) with the same applicant of the invention. The above device controls the crushed stool and urine liquid in the stool crushing pipe, stool collecting pipe and the urine collecting pipe respectively. It cancels the four-way joint. This not only simplifies the structure and saves the cost, but also resolves the problem of wrong flow direction of the retained liquid thoroughly. And it avoids the stool plasm flowing into the flushing liquid collecting box and the limited clean urine liquid discharges through the stool collecting pipe. This is advantaged to improve the flushing effect. But the above device still has these disadvantages: It makes the structure of the device complicated by using the stool and urine identifying software program to determine the stool or urine by calculating the length of time that the users entering the lavatory. And it also can make mistakes, such as considering the urine as stool and this will waste the flushing liquid. When flushing the stool and urine, the crushing and centrifugal device should be started, and this makes the structure of the device complicated and makes the crushing and centrifuging procedure very dirty. If the hard property drops into it accidentally, the crushing and centrifugal device will be destroyed.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a sprayable solution for applying a layer of PFA resin to various articles. Heretofore, PFA (perfluoroalkoxy) resin has been processed by conventional thermoplastic techniques including extrusion, injection molding, transfer molding, and blow molding. The material has also been applied electrostatically. However, heretofore, PFA resin has not been sprayable. Thus, coatings of the material could not be applied via the highly desired technique of spraying. Fluorinated ethylene propylene copolymer (FEP), a thermoplastic having similar properties to PFA, has also been applied by conventional thermoplastic techniques such as extrusion, transfer molding, blow molding, and injection molding. Moreover, FEP is available in an aqueous dispersion and can be sprayed from spraying apparatus to form coatings on various articles. The aqueous dispersion solution of FEP contains by weight, 55 percent of water, 18 percent of xylene, 12 percent of glycerine, 8 percent of FEP, and 7 percent of a surface-treating agent, such as an alkyl phenol ethylene oxide condensate product having from 12 to 15 moles of ethylene oxide.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a printer of the automatically iterchangeable character wheel type having a plurality of character wheels and effecting printing while automatically interchanging the character wheels as desired. 2. Related Background Art There have heretofore been printers having a plurality of character members each provided with a plurality of characters and effecting printing while automatically interchanging the character members. They are disclosed, for example, in U. S. Pat. No. 4,357,115, U.S. Pat. No. 4,281,938, U.S. Pat. No. 4,026,403 and Japanese Laid-Open Patent Application No. 39464/1983. However, from the viewpoint of high-speed printing, these printers could not always be said to be sufficient. So, in order to solve this problem, the applicant has proposed in Japanese Patent Application No. 177754/1985 (U.S. application Ser. No. 896,056 filed Aug. 13, 1986) a printer which carriers a plurality of disc-like character wheels and in which a desired character wheel may be automatically mounted by a wheel interchanging mechanism provided on a carriage. The present invention may be said to be an improvement in such printer.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The subject matter of this application relates to probe microscopy. More particularly, the subject matter of this application relates to methods and devices for probe and force microscopes with sensors having improved sensitivity. 2. Description of the Prior Art Conventional atomic force microscope (AFM) and its variations have been used to probe a wide range of physical and biological processes, including mechanical properties of single molecules, electric and magnetic fields of single atoms and electrons. Moreover, cantilever based structures inspired by the AFM have been a significant driver for nanotechnology resulting in chemical sensor arrays, various forms of lithography tools with high resolution, and terabit level data storage systems. Despite the current rate of success, the AFM needs to be improved in terms of speed, sensitivity, and an ability to generate quantitative data on the chemical and mechanical properties of the sample. For example, when measuring molecular dynamics at room temperature, the molecular forces need to be measured in a time scale that is less than the time of the thermal fluctuations to break the bonds. This requires a high speed system with sub-nanoNewton and sub-nanometer sensitivity. Current cantilever-based structures for AFM probes and their respective actuation methodologies lack speed and sensitivity and have hindered progress in the aforementioned areas. Imaging systems based on small cantilevers have been developed to increase the speed of AFMs, but this approach has not yet found wide use due to demanding constraints on optical detection and bulky actuators. Several methods have been developed for quantitative elasticity measurements, but the trade-off between force resolution, measurement speed, and cantilever stiffness has been problematic especially for samples with high compliance and high adhesion. Cantilever deflection signals measured during tapping mode imaging have been inverted to obtain elasticity information with smaller impact forces, but complicated dynamic response of the cantilever increases the noise level and prevents calculation of the interaction forces. Arrays of AFM cantilevers with integrated piezoelectric actuators have been developed for parallel lithography, but complex fabrication methods have limited their use. Most of the scanning probe microscopy techniques, including tapping mode imaging and force spectroscopy, rely on measurement of the deflection of a microcantilever with a sharp tip. Therefore, the resulting force data depend on the dynamic properties of the cantilever, which shapes the frequency response. This can be quite limiting, as mechanical structures like cantilevers are resonant vibrating structures and they provide information mostly only around these resonances. For example, in tapping mode imaging it is nearly impossible to recover all the information about the tip-sample interaction force, since the transient force applied at each tap cannot be observed as a clean time signal. Moreover, conventional methods of imaging with scanning probes can be time consuming while others are often destructive because they require static tip-sample contact. Dynamic operation of AFM, such as the tapping-mode, greatly reduces shear forces during the scan. However, the only free variable in this mode, the phase, is related to the energy dissipation and it is difficult to interpret. Further, the inverse problem of gathering the time-domain interaction forces from the tapping signal is not easily solvable due to complex dynamics of the AFM cantilever. Harmonic imaging is useful to analyze the sample elastic properties, but this method recovers only a small part of the tip-sample interaction force frequency spectrum. Thus, there is a need to overcome these and other problems of the prior art associated with probe microscopy.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to magnetic data storage systems, and more particularly but not by limitation to a magnetic read element shield used in such systems. Magnetoresistive (MR) read heads are typically formed of various layers deposited upon a substrate. MR read heads utilize a MR element positioned between a top and a bottom shield to read magnetically-encoded information from a magnetic medium, such as a disc, by detecting magnetic flux stored on the magnetic medium. The read element may be an anisotropic magnetoresistive (AMR) element, a giant magnetoresistive (GMR) stack or other suitable type of transducer. An AMR element is typically fabricated from iron, nickel, or cobalt-based soft ferromagnetic alloys; whereas a GMR stack is a multi-layered structure generally having two separate layers formed from iron, nickel or cobalt-based soft ferromagnetic alloys separated by a spacer layer formed from non-magnetic materials, such as copper, silver, or gold. During a read operation, the top and bottom shields ensure that the read element reads only the information stored directly beneath it on a specific track of the magnetic medium or disc by absorbing any stray magnetic fields emanating from adjacent tracks and transitions. Accordingly, the shields are formed of materials having relatively high permeability, low magnetostriction and low coercivity. In the magnetic recording industry, the drive towards increased recording density has led to the requirement for magnetic storage media having narrower data recording tracks, lower track pitch, i.e., more tracks per inch, and greater linear recording density along the data tracks. Greater linear recording density has led to a reduction in shield-to-shield spacing in the heads and reduced head-media spacing (HMS). At very low HMS, temperature-dependent mechanical distortions, such as thermal pole tip recession (TPTR), become more significant. TPTR effectively alters the HMS. TPTR is greater when the thermal coefficient of expansion (TCE) of the shield is substantially different form the TCE of materials used to form the substrate and insulation layers of the head. Prior art top and bottom shields are each typically formed of a single layer of a magnetic material such as Permalloy or the like. Permalloy possesses favorable magnetic properties, such as relatively high permeability, low magnetostriction and low coercivity. However, Permalloy has a TCE of about 12xc3x9710xe2x88x926 per degree Centigrade (or Celsius) that is substantially higher than the TCE of Al2O3. TiC (about 8xc3x9710xe2x88x926 per degree Centigrade), which is typically used as a substrate material. Therefore, the TPTR of such prior art heads is usually high. Embodiments of the present invention provide solutions to these and other problems, and offer other advantages over the prior art. A magnetic head for reading information from a magnetic medium is provided. The magnetic head includes a substrate, having a substrate thermal coefficient of expansion, and a read element positioned above the substrate. The head also includes a shield, positioned above the substrate and adjacent the read element, which has a shield thermal coefficient of expansion that substantially matches the substrate thermal coefficient of expansion. The shield absorbs stray magnetic fields from the magnetic medium, which emanate from stored data that is adjacent to a data element that is directly beneath, and being currently read by, the magnetoresistive read element. Other features and benefits that characterize embodiments of the present invention will be apparent upon reading the following detailed description and review of the associated drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Semiconductor workpieces are often implanted with dopant species to create a desired conductivity. For example, solar cells may be implanted with a dopant species to create an emitter region. This implant may be done using a variety of different mechanisms. In one embodiment, an ion source is used. In an effort to improve process efficiency and lower cost, in some embodiments, the ions extracted from the ion source are accelerated directly toward the workpiece, without any mass analysis. In other words, the ions that are generated in the ion source are accelerated and implanted directly into the workpiece. A mass analyzer is used to remove undesired species from the ion beam. Removal of the mass analyzer implies that all ions extracted from the ion source will be implanted in the workpiece. Consequently, undesired ions, which may also be generated within the ion source, are then implanted in the workpiece. This phenomenon may be most pronounced when the source gas is a halogen-based compound, such as a fluoride. Fluorine ions and neutrals (metastable or excited) may react with the inner surfaces of the ion source, releasing unwanted ions, such as silicon, oxygen, carbon, and aluminum and heavy metals present as impurity elements. Additionally, halogen ions may also be implanted into the workpiece. Therefore, an apparatus and a method which improves beam quality, particular for embodiments in which halogen based source gasses are employed, would be beneficial.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to electrical circuit components. More particularly, the present invention relates to a surface mountable polymeric positive temperature coefficient (PPTC) device including a weld plate to which a conductor strap interconnect, e.g. an interconnect suitable for battery packs, may be resistance welded, for example. 2. Introduction to the Invention It is known to provide an electrical cell or battery protection circuit comprising a printed circuit board and a PPTC device, which is surface-mounted to the printed circuit board. An electrical circuit formed on the printed circuit board including the PPTC device functions to regulate within a safe limit the current flow from and/or to the electrical cell or battery. In this prior arrangement an interconnect strap from the cell or battery was typically connected to a foil electrode of the PPTC device by soldering. One example of this prior approach is disclosed in International Publication No. WO99/60637 (K.K.Raychem). Another example is shown in a commonly assigned U.S. patent application Ser. No. 09/923,598, published on Feb. 6, 2003, as patent application Publication No. US2003/0026053. The disclosures of these publications are expressly incorporated herein by reference. One drawback of the prior approach such as that disclosed in the referenced publication is that the interconnect strap from the battery was soldered to the foil electrode of the PPTC device. In some cases, the interconnect strap was connected yet again to the printed circuit board. In such devices those battery/cell interconnect straps tended to shift position or become detached when the PPTC device was heated and soldered, e.g. by reflow techniques, to the printed circuit board. In order to maintain the battery/cell interconnect strap in place during reflow operations, it was found necessary to employ a high temperature adhesive material or to provide a high temperature polymeric overmold structure to hold the strap in place. While it would be desirable to be able to weld a battery/cell interconnect strap or battery/cell electrode directly to the PPTC device, resistance spot welding techniques practiced by users of PPTC devices must generate sufficient local heating to melt the metal and thereby fuse the strap to an underlying electrode layer of the device. Heretofore, the high temperatures required for effective welding, on the order of 1500° C. to 1600° C., have resulted in irreversible damage, or destruction of physical properties and electrical characteristics, of the PPTC material. Thus, a hitherto unsolved need has remained for a surface mountable PPTC device to which a battery/cell electrode strap could be attached by welding.
{ "pile_set_name": "USPTO Backgrounds" }
Understanding the pathways that maintain proper glucose homeostasis is a central focus of discovery efforts for treatments of Type 2 diabetes which now affects over 20 million Americans, with levels increasing at 6% a year (Stein et al. (2004) J. Clin. Endocrinol. Metab. 89:2522-2525). Proper glucose homeostasis requires a balance between glucose uptake by skeletal muscle and adipose tissue, and production by the liver. Type 2 diabetic patients lose this balance due to a reduction of glucose uptake during the fed state, as well as improper fasting gluconeogenesis by the liver. During the fasted state, glucagon secretion by the pancreas and resulting cAMP mediated signaling through CREB, as well as glucocorticoid release, result in gluconeogenic gene transcription. In the fed state this transcriptional program is suppressed by insulin signaling due to repression of the nuclear hormone receptor co-activator PGC-1α, which is necessary for CREB mediated transcription. Phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) are two rate-limiting enzymes for gluconeogenesis that are transcriptionally regulated by glucagon and insulin, and are widely used as markers for gluconeogenesis (Sutherland et al. (1996) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351,:91-199). Due to the important role of dysregulated gluconeogenesis in the pathology of Type 2 diabetes, further insight into the mechanisms of repression of these genes by insulin independent mechanisms could lead to treatments of insulin resistant individuals (Wu et al. (2005) Curr. Drug Targets Immune Endocr. Metabol. Disord. 5:51-59). Activation of AMPK (AMP activated kinase) is one insulin independent means of gluconeogenesis repression. AMPK has been termed a “master switch” of cellular energy status, being highly conserved from simple eukaryotes to humans. In mammalian systems it is activated in multiple organs during conditions that cause a low ATP/AMP ratio. These include exercise and starvation on the whole body level as well as many cellular stresses such as glucose deprivation, oxidative stress, ischemia, and exposure to metabolic poisons that inhibit ATP synthesis (Hardie et al. (2003) FEBS Lett. 546:113-120; Hardie (2004) J. Cell Sci. 117:5479-5487). When activated, AMPK switches on ATP generating processes and switches off those that consume ATP. In vivo and in vitro there is much evidence indicating that AMPK activation inhibits gluconeogenesis (Foretz et al. (1998) J. Biol. Chem. 273:14767-14771). Treatment of rat hepatoma cells or primary hepatocytes with the AMPK activator AICAR inhibits expression G6P and PEPCK (Lochhead et al. (2000) Diabetes 49:896-903). In vivo, activation of AMPK in the livers of fasted mice has been shown to reduce glucose production (Vincent et al. (1996) Diabetologia 39:1148-1155) and gluconeogenic gene expression (Foretz et al. (2005) Diabetes 54:1331-1339). Additionally, AMPK has been suggested to mediate the beneficial and detrimental effects of adiponectin and resistin, respectively, on hepatic glucose output. Recently this has been supported by the finding that genetic deletion of the AMPK alpha2 isoform in the mouse liver leads to glucose intolerance and hyperglycemia in the fasted state, which could be reversed by insulin. Yet, these animals were resistant to regulation of glucose production by the AMPK activators leptin and adiponectin (Andreelli et al. (2006) Endocrinology, en.2005-0898). AMPK achieves its downstream effects by immediate direct phosphorylation of enzyme substrates as well as long-term effects on gene expression. For example, AMPK phosphorylates and inactivates acetyl CoA carboxylase, resulting in a suppression of the conversion of acetyl CoA to malonyl CoA. The lower levels of malonyl CoA allows entry of fatty acids into the mitochondria and their subsequent oxidation (Winder et al. (1997) J. Appl. Physiol. 82:219-225; Munday et al. (1988) Eur. J. Biochem. 175:331-338). Other direct targets that can be phosphorylated by AMPK include glycogen synthase, IRS-1, and HMG-CoA reductase (Jorgensen et al. (2004) Diabetes 53:3074-3081; Jakobsen et al. (2001) J. Biol. Chem. 276:46912-46916; Clarke et al. (1990) EMBO J. 9:2439-2446). AMPK's effects on transcription, and their role in mediating the physiological effects of AMPK activation are much less well understood, although it has been shown that AMPK activation decreases HNF4 expression levels leading to repression of its target genes including HNF-1alpha, GLUT2, and L-type pyruvate kinase (Hong et al. (2003) J. Biol. Chem. 278:27495-27501).
{ "pile_set_name": "USPTO Backgrounds" }
Discrete track media (DTM) has been proposed to increase the recording areal density of magnetic hard disk drives. As shown in the FIG. 1 plan view of a DTM structure 100, a thin film magnetic recording layer is patterned to provide discrete magnetic data tracks 102 separated by trenches 104.
{ "pile_set_name": "USPTO Backgrounds" }
Devices utilizing hollow probe aspiration are useful for removing and/or obtaining samples of tissue in minimally invasive percutaneous procedures, for biopsy or other purposes, such as therapeutic tissue removal purposes. It may be desirable to provide additional and alternative designs for an instrument including a hollow probe that allows for effective and efficient sample cutting and removal, minimal trauma to tissue and to the patient in the tissue removal procedure, and of relatively simple design, manufacture and use. A variety of such devices have been developed and used, but to the best of the inventors' knowledge, no one prior to the inventors has created or used the invention described in the appended claims.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to aromatic compounds, their production processes and their compositions for the control of insect pests. 2. Description of the Prior Art It is described in U.S. Pat. Nos. 3,987,102, 4,094,989 and 4,153,731 that certain aromatic compounds are useful as insecticides and acaricides. But, their insecticidal and acaricidal activities are still not satisfactory.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention concerns the field of fluorinated hydrocarbons, and more particularly relates to novel compositions containing fluorinated hydrocarbons and oxygenated solvents. These novel compositions can be used in particular in all solvent applications of HCFC 141b (hydrochlorofluorocarbon 141b), in particular in various operations for treating solid surfaces, such as the cleaning, degreasing, defluxing or drying of solid surfaces. 1,1-dichloro-1-fluoroethane (known as HCFC 141B) is widely used in industry for the cleaning and degreasing of a very wide variety of solid surfaces (metallic, glass, plastic or composite components) where an absence, or at least the lowest possible residual content, of impurities, in particular of organic nature, is required. Mention may be made of its use for the degreasing of heavy metal components and for the cleaning of high-quality, high-precision mechanical components in the most varied of industries, such as aeronautics, aerospace, electronics, mechanics, the goldsmith trade, the cutlery industry, the manufacture of timepieces, medical prosthesis. Mention may also be made of its use in the field of printed circuit manufacture, for removing residues of the substances used to improve the quality of soldered joints (known as solder flux), this removal operation being referred to as “defluxing”. Besides its thermal and chemical stability, its non-flammability, its low toxicity and its low boiling point (which preserves thermally fragile components), HCFC 141b is found to be particularly effective in these applications due to its low surface tension (18.4 mN/m) and its relatively high solvent power (Kauri-butanol index KBI=51). These latter two chemical properties allow it to have a good ability to dissolve greasy smears, and most particularly those present on complex components comprising holes, recesses or fluting, as may be found in the fields of precision mechanics, the manufacture of timepieces or the cutlery industry, for example. However, due to its action on the ozone layer, which is not zero (ozone degradation potential ODP=0.11), HCFC 141b is subject to considerable regulations which are increasingly aimed at eliminating it. Thus, the European regulation regarding substances harmful to the ozone layer (no. 2037/2000) has prohibited the use of HCFCs such as HCFC 141b in solvent applications since 1 Jan. 2002, except for the fields of aeronautics and aerospace, where the ban takes effect from 2008 on European soil. Substitution solutions aimed at replacing HCFC 141b in the abovementioned applications have been proposed, in particular the use of HFC (hydrofluorocarbons) and/or of HFE (hydrofluoro ethers). HFCs and HFEs have no action on the ozone layer (ODP zero or negligible with respect to the regulations in force). Among the most well-known and most commonly used HFCs, mention may be made, for example, of 1,1,1,3,3-pentafluorobutane (365 mfc), 1,1,1,2,3,4,4,5,5,5-decafluoropentane (4310 mee), 1,1,1,2-tetrafluoroethane (134 a), pentafluoroethane (125), 1,1,1-trifluoroethane (143 a), difluoromethane (32), 1,1-difluoroethane (152 a), 1-fluoroethane (161), 1,1,1,2,3,3,3-heptafluoropropane (227 ea), 1,1,1,3,3,pentafluoropropane (245 fa), octafluoropropane (218), (perfluorobutyl)ethylene (C4H9CH═CH2), 1,1,2,2,3,4,5-heptafluorocyclopentane (C5H3F7), perfluorohexylethylene (C6F13CHCH2), tridecafluorohexane (C6F13H) and perfluoro(methylmorpholine) (PF 5052) and also their mixtures which may contribute to improving certain properties, such as non-flammability, for example. Among the most well-known and most commonly used HFEs, mention may be made, for example, of methylheptafluoropropyl ether (C3F7OCH3), methylnonafluorobutyl ether (C4F9OCH3), ethylnonafluorobutyl ether (C4F9OC2H5) and perfluoropyran (C5F10O), and also their mixtures. HFCs and HFEs exhibit physicochemical properties comparable to those of HCFC 141b: good thermal and chemical stability, low toxicity, low boiling point, low surface tension. However, their solvent power does not reach that of HCFC 141b. The Kauri-butanol indices (KBIs) are respectively 9 and 10 for HFC 4310 mee and HFE C4F9OCH3, compared to 51 for HCFC 141b. As a result of this, the effectiveness of these compounds in applications for treating solid surfaces is clearly less than that of HCFC 141b.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a system and a method for recording video signals on a helical head recording apparatus. In conventional magnetic recording systems, a spinning rotary disc includes a plurality of magnetic recording heads at spaced intervals for recording information on lines traversing a magnetic recording tape passing across the rotary disc. Typically, the rotary head spins at approximately 14,400 rpm and has positioned on its periphery four magnetic heads spaced at 90.degree. intervals. Each transverse line is recorded by one head and switching between the heads occurs near an end of each transverse line. The information recorded on each transverse line of the tape is sufficient for about 16 to 17 horizontal lines of video display. As is known, the interlaced video display includes two fields each with 262.5 horizontal lines such that 16 recorded lines are required to produce each field of the video display. Although this requires switching between magnetic recording heads 16 times, the high quality of the electronics associated with the relatively expensive studio equipment permits switching with relatively imperceptible distortion on the reproduced display. Further, there is sufficient recorded video information on each transverse line so that switching between heads can occur near the end of each line which switching will occur off of the video display of the television receiver. As a result, switching between heads does not produce perceptible visual distortion. With the introduction of portable equipment typically used for on-site news gathering, small portable cameras are employed with less expensive tape recording machines and the problem of head switching line distortion is prevelant. Typically, the recorder employed with the mini-cams employs a cylindrical recording drum with a pair of spaced magnetic recording heads. Instead of the magnetic recording tape passing parallel to the axis of rotation of the drum, the tape is passed around the periphery of the drum at a small angle to the perpendicular of the axis of rotation. As a result, the path of the tape is generally helical, producing a diagonal line of recorded signal or video information. Typically, there is sufficient recorded information on each of the diagonal lines to produce one entire field or 2621/2 horizontal lines of video information. The switching between the pair of magnetic heads typically employed in such recording systems occurs near the end of each diagonal line of recorded material just before the occurrence of the vertical synchronization signals. The switching point appears as a line distortion at the bottom of the displayed video picture on a television receiver. Such distortion may include horizontal misalignment of displayed information below the switching point in addition to a horizontal line of poor quality video information across the displayed picture at the switching point. Each recorded diagonal line also includes a vertical blanking interval during which there is no video information for display but instead camera generated synchronization pulses are present and recorded. The vertical synchronization signals occurring near the beginning of the blanking interval are particularly critical because incorrect synchronization signals during this period adversely affects reproduction and locking of the displayed video signal. Thus, head switching occurring during the vertical synchronization signals can distort the entire video presentation by the television receiver. To avoid synchronization problems, the portable cameras are designed such that the head switching point is not positioned in the vertical blanking interval but instead is retained in the displayed video portion of the signal leading to the still objectional line of distortion. It is desirable, therefore, to delete the line distortion which occurs in helical scan recorders of the type employed for recording video information from portable cameras to retain the advantages of a small and portable helical recording system but without interfering with vertical synchronization. One method proposed to achieve this goal is represented in my co-pending patent application entitled TELEVISION CAMERA AND BLANKING SYSTEM, filed on Nov. 14, 1977, Ser. No. 851,105 (now abandoned). In this system, each of the cameras are modified to include an electrical circuit for compressing the vertical blanking interval such that additional video or signal information is recorded and the portion of the video signal including the switching point is not subsequently displayed by the television receiver. Although this system effectively eliminates the objectional line distortion without affecting vertical synchronization, it requires modification of each of the cameras and many cameras can be used with each tape recorder.
{ "pile_set_name": "USPTO Backgrounds" }
In a communication system a communication network is provided, which can link together two communication terminals so that the terminals can send information to each other in a call or other communication event. Information may include voice, text, images or video. One such communication system is a peer to peer communication system, in which a plurality of end users can be connected for communication purposes via a communications structure such as the internet. The communications structure is substantially decentralised with regard to communication route switching therein for connecting the end users. That is, the end users can establish their own communication routes through the structure based on exchange of one or more authorisation certificates (user identity certificates—UIC) to acquire access to the structure. The structure includes an administration arrangement issuing the certificates to the end users. Such a communication system is described in WO 2005/009019. Peer-to-peer telecommunications are beneficial to the user as they are often of significantly lower cost than traditional telephony networks, such as fixed line or mobile networks. This may particularly be the case for long distance calls. These systems may utilise voice over internet protocol (“VoIP”) over an existing network (e.g. the Internet) to provide these services, although alternative protocols can also be used. In a communication system, such as a peer to peer system, client software is installed on end user devices such as personal computers (PCs) to allow the end users to communicate via the communications network. The user interface of the client software can be controlled by the client to display user facilities and to indicate events occurring, such as an incoming call. The inventors of the present invention have identified that it may not always be possible for the client to display information on the end user device when required, for example when receiving an incoming call. This may be due to a different application running on the device which cannot be interrupted or the user interface of the device, such as the monitor of a PC being switched off. It also may not be possible for the client to display information due to the constraints of the operating system of the device, such as mobile game playing consoles. This prevents the user from using the communication system. It is therefore an aim of embodiments of the invention to address at least one of the above identified problems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a pressure vessel for a toilet, particularly to one that able to guide pressured water into a drain valve so as to open it for flushing the toilet. 2. Description of the Prior Art Commonly, a conventional vessel used for a toilet to carry out flushing is based on gravity force and water level drop, which, actually, are not strong enough to flush down, always needing more water to clean up the toilet, causing a waste of water. In order to be more economic, a pressure vessel has been invented to overcome such a disadvantage. The pressure vessel is mainly installed with an airtight vessel inside it, provided with a drain valve. When water flows into the airtight vessel, air in the airtight vessel is to be compressed to store up some pressure energy that is to strongly enhance extra force, plus the gravity force and the water level drop, to obtain more complete and cleaner flushing when the piston of the drain valve is raised up to keep a water exit opened for releasing the pressurized water in the pressure vessel, able to achieve a good flushing effect with even less water. Such a pressure vessel is disclosed in a U.S. Pat. No. 4,233,698 that includes an airtight vessel, an air and water entry device, a drain valve, a controlling valve and a water entry valve for supplying a pressure for the drain valve. The conventional pressure vessel has still disadvantages as described below. 1. The moment when the drain valve is opened, water in the drain valve to be rushed down is still too less to carry out flushing. 2. If water in the drain valve is to be dropped down for washing, a pressing device on the top has to be pressed down to enable the drain valve to open. In practice, it needs a considerable force to press down the pressing device initially because a strong rebounding force possessed by a compressed spring in the drain valve must be surpassed, inconvenient for operation. Next, another pressure auxiliary double flushing system disclosed in a U.S. patent No. 2004/0194200 can, though, solve the disadvantages mentioned above, it has a very complicated structure, difficult for assembly and having a high cost. Relatively, it has a higher possibility of breakdown. Also, the pressure vessel of the pressure auxiliary double washing system is to be filled with water until the water exit of the drain valve is completely sealed by a piston in the pressure vessel pressed down by the pressured water rushing into the drain valve. So, it is to take a longer time, about 10 seconds, than a regular pressure vessel for refilling the vessel, having to wait a while for next use. In addition, because the pressure auxiliary double washing system is operated via releasing the pressured water from the drain valve to enforce the piston to move up and disclose the water exit for water to flush down, therefore, the drain valve is as well to move upwards mistakenly to release water if a pressure releasing tube communicated with the drain valve is damaged or leaking, possible to cause a waste of water source.
{ "pile_set_name": "USPTO Backgrounds" }
Semiconductor fabrication involves deposition, patterning and removal of various layers of materials on semiconductor wafers. Frequently, after deposition of a layer, it is necessary to planarize the deposited layer using chemical mechanical polishing (CMP). CMP involves abrasion of the layer with a polishing pad, in the presence of a slurry. Following the completion of the CMP, the slurry debris and contaminants must be removed to avoid contamination of integrated circuit layers. The scribe lines between integrated circuit dies are susceptible to such infiltration. U.S. Pat. No. 6,214,441 (the '441 patent) is incorporated by reference herein in its entirety. The '441 patent describes a method for sealing the circumferential edge of the wafer using a wafer edge exposure unit. A photosensitive material is applied to the wafer, and the edge of the wafer is exposed in a wafer edge exposure (WEE) unit. An edge sealing ring is thus formed, preventing infiltration of contaminants in the scribe lines. U.S. Pat. No. 5,996,628 (the '628 patent) also discusses application of a WEE unit in a photo process for removing dielectric material from the circumferential edge of the wafer. By removing the edge material, damage to the dielectric layer and propagation of cracks to the wafer interior during handling is prevented. In a typical configuration, a WEE has an irradiation system including a first light source, a lens for focusing the light, and a mask to limit the light to a small region. The WEE includes a movable rotating chuck for passing the circumference of the wafer under the first light source. The WEE further includes a notch searching unit that includes a second light source and an optical sensor, such as a charge coupled device (CCD) sensor or a CMOS imaging sensor. When a single notch at the wafer's perimeter passes between the second light source and sensor of the notch searching unit, the beginning of a full wafer rotation is noted. When the single notch is again detected by the optical sensor, the wafer has rotated through a complete rotation, and the entire circumferential edge of the wafer has been exposed to the irradiating system light source. For a given photosensitive material, each part of the wafer edge is given a minimum dose of irradiating light to develop the photosensitive material. For a given light source of fixed intensity, the amount of time needed to expose the entire wafer edge is proportional to the circumference of the wafer. A 50% increase in wafer diameter (e.g., from 300 mm to 450 mm) results in a 50% increase in exposure time. Additionally, the notch searching unit may rotate the wafer by nearly a full rotation to locate the notch. So a 50% increase in wafer diameter also results in about a 50% increase in the notch location time. The increased delay in the WEE can reduce the duty cycle of downstream tools, reducing fabrication facility (“fab”) yield and profitability.
{ "pile_set_name": "USPTO Backgrounds" }
As disclosed in W. Davies et al., Journal of the Chemical Society, 1951, pp. 2595-2598, it is known that 2-chloropropionitrile can be prepared by adding thionyl chloride to a mixture of lactonitrile and pyridine. To date, this has been the best method of producing 2-chloroacetonitriles on a large scale, even though it has led to the formation of a very thick slurry and has produced an isolated yield of only 50% after two distillations. It would obviously be desirable to find a way of improving this technique so as to improve processing and provide higher yields of 2-chloroacetonitriles.
{ "pile_set_name": "USPTO Backgrounds" }
Flash memory is an electronic non-volatile computer storage medium that can be electrically erased and reprogrammed. Flash cells are used in a wide variety of commercial and military electronic devices and equipment. In flash memory cells, over erase associated with stacked gate structures is eliminated by the use of a split gate structure.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a retractor reel for a vehicle safety belt, and more particularly to a retractor reel for a vehicle safety belt adapted to be used in a motor car. Many different retractor reels have been proposed previously for use with vehicle safety belts mounted in motor cars. In a typical prior proposed device the safety belt is automatically wound onto a shaft when the belt is not in use. The shaft is rotatably supported by appropriate bearings. Usually such a device incorporates a locking arrangement which prevents the belt withdrawn from the reel under certain circumstances, for example when the vehicle is subjected to a sudden deceleration, and/or when the belt is subjected to a force tending to withdraw the belt rapidly from the reel. It has been proposed previously to utilize locking pins to effect the appropriate locking of the rotatable shaft in such a retractor reel. For example, U.S. Pat. No. 3,430,885 discloses an arrangement in which a plurality of locking pins are provided, which are arranged to extend radially of the rotatable shaft. The pins are kept in a retracted non-locking position by means of a permanent magnet located in the centre of the shaft. The locking pins are movable in a radial direction, and are thus adapted to be moved to an extended or locking position by the centrifugal force experienced by the pins when the belt is rapidly withdrawn from the reel. It will be appreciated that this locking mechanism is only actuated when the belt is rapidly withdrawn, and is, thus, only "belt sensitive". The mechanism is not "vehicle sensitive" in that locking is not effected as a direct consequence of the vehicle being subjected to rapid deceleration. This is clearly a disadvantage. Also, in the embodiment described in U.S. Pat. No. 3,430,885, the described shaft is difficult to manufacture. U.S. Pat. No. 2,953,315 describes a retractor reel having two pins which are located in alignment, one on each side of the axis of a shaft, and which can move radially relative to the shaft. The pins are adapted to be moved as a consequence of relative movement between the rotatable shaft and an inertia body which is rotatably mounted on the shaft. This mechanism is only "belt sensitive" but can be adapted so as to provide a locking effect in response to deceleration of a vehicle, i.e. so that the locking mechanism is "vehicle sensitive" as well as "belt sensitive". However, this mechanism is very complicated to manufacture. The locking mechanisms described in the above mentioned Patent Specifications all have a complicated shaft design because the force that may be exerted on a vehicle safety belt when the reel is locked under emergency conditions may be very high, and this force has to be transferred from the belt of the safety belt to the locking means through the shaft. Thus the shaft must be able to withstand the appropriate force without failing. The problem of transferring the force from the belt to the locking means can be solved in a relatively easy way by providing a separate locking means capable of engaging one or two notched wheels attached to one or both ends of the shaft. However, if this solution is adopted other problems arise, for example the problem of providing a reliable control of separate locking means which engage two notched wheels.
{ "pile_set_name": "USPTO Backgrounds" }
Expandable nuts or so-called grommets of a plastic material have become known in most varied designs. Commonly, they are snappingly inserted into the opening of a sheet-like support by means of a shank. The shank has snapping means to retain the grommet in the opening. Furthermore, the grommet has a flange-like head which sealingly comes to bear against the side of the support that faces it when the shank has been snappingly seated in the opening. The head frequently has a flange-shaped portion of another plastic material which is softer than that of the shank and has a better sealing effect. The shank has an inner axial receiving bore into which a member having a male thread can be screwed to fix another member to the support. The receiving holes in the support member frequently are of a square shape. Accordingly, the shank is also of a square shape in cross-section. In this context, it has also become known to provide shoulders at the outside of the shank at least on diagonally opposed sides close to the head. The shank and the receiving opening are profiled and dimensioned so as to allow to rotate the shank about a certain angle. As a result, the surface of the shoulders gets under the support member on the side opposing the head so that it is no longer possible to draw the shank out of the opening. At this stage, the surface portions above the shoulders cooperate with the edge of the opening to clampingly retain the grommet in the rotated position in the receiving opening. Naturally, the sheet of the support member is with tolerances. In addition, the support members are of different thicknesses which depend on their application. The distance between the shoulder and the underside of the head cannot be prevented from being larger than the thickness of the support member. This can cause the grommet, when under a load, to come loose from the support member. Besides, this endangers the water tightness, safe function, and freedom from rattling, which are required particularly for the manufacture of automobiles.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to a pattern dimension measuring system and a pattern dimension measuring method. More specifically, the invention relates to a system and method for measuring the dimensions of a pattern formed on the surface of a sample, while moving a stage, on which the sample is mounted. 2. Description of the Prior Art In recent years, pattern dimension measuring systems are widely utilized for measuring the dimensions of a pattern formed on the surface of a semiconductor device, such as a very large scale integration (VLSI). Referring to the accompanying drawings, a conventional pattern dimension measuring system will be described below. Furthermore, in the following drawings, the same reference numbers are assigned to the same portions, and the descriptions thereof are suitably omitted. FIG. 1 is a schematic block diagram showing an example of a conventional pattern dimension measuring system. In this figure, a pattern dimension measuring system 110 comprises an electron beam lens-column 111, a vacuum sample chamber 2 and a host computer 104. The electron beam lens-column 111 includes an electron gun part 11 and an electron lens system, and has a resolving power of about 5 nm corresponding to the scale down of semiconductor devices. The electron gun part 11 is designed to irradiate a sample 5 with electron beam 96. The electron lens system has a condenser lens 21, a deflecting lens 102 and an objective lens 103. The electron lens system is designed to control the trajectory and focal length of the electron beam 96 so that the electron beam 96 focuses on the sample 5. The vacuum sample chamber 2 houses an X-Y stage 3, a sample conveyance system 12 and a secondary electron detector 31 in vacuum atmosphere. The sample conveyance system 12 is designed to convey a sample 5, such as a semiconductor wafer, to the X-Y stage 3. The X-Y stage 3 is designed to support the conveyed wafer 5 (sample) on the upper surface thereof, and to move in an optional direction on the X-Y plane with a high stopping accuracy of about 1 xcexcm on the basis of a control signal supplied from a stage control part 113. The secondary electron detector 31 is designed to detect secondary electrons, reflected electrons and back scattered electrons (which will be hereinafter referred to as xe2x80x9csecondary electrons and so forthxe2x80x9d), which are emitted from the surface of the sample 5 irradiated with the electron beam 96, to supply the detected results to an image data processing part 132. The image data processing part 132 is designed to receive the detected results of the secondary electron detector 31 to supply image data, which form a SEM image by a predetermined data processing, to the host computer 104. The host computer 104 has a pattern dimension calculating part 16 for calculating the dimensions of a target pattern on the basis of the image data, which are fed from the image data processing part 132, to suitably store the calculated results in a memory 14. Referring to FIG. 2, an example of a sequence for measuring the dimensions of a pattern, which is formed on the surface of the wafer 5 using the pattern dimension measuring system 110 shown in FIG. 1, will be described below. FIG. 2 is a schematic diagram showing the moving direction of the X-Y stage 3. In this example, the stage 3 is designed to move from a measurement start position Ps to a measurement end position Pe while drawing a locus shown by the dotted line in FIG. 2. First, by the sample conveyance system 12, the wafer 5 is conveyed into the vacuum sample chamber 2 to be mounted on the upper surface of the X-Y stage 3. Then, global alignment marks {circle around (1)} and {circle around (2)}, which are formed on the surface of the wafer 5 at substantially center and peripheral portion thereof, respectively, are used to carry out the global alignment to calculate a correlation between a pattern layout coordinate system and a stage coordinate system on the wafer 5. Then, the stage 3 is moved so that the position of a target pattern to be measured, e.g., the vicinity of pattern {circle around (3)} shown in FIG. 2, is a position irradiated with the electron beam 96, and stopped at this position. Then, the exciting current of the objective lens 103 is controlled so that the edges of the target pattern are within a beam focal depth by the automatic focus. Then, while the stage 3 is moved again in the direction of the dotted line arrow in FIG. 2, the electron beam 96 is scanned on the pattern {circle around (3)} to detect secondary electrons and so forth, which are emitted from the surface of the wafer 5, by unit of the secondary electron detector 31. The detected signal is data-processed by the image data processing part 132 to be inputted to the host computer 104 as an image signal constituting a SEM image. The host computer 104 detects the target pattern {circle around (3)} existing in the SEM image by the pattern recognition processing. The pattern dimension calculating part 16 in the host computer 104 detects the bottom edges of the detected target pattern {circle around (3)} on the basis of the optimum measuring algorithm to measure the dimensions of the pattern. Moreover, if the next target pattern ({circle around (4)}-{circle around (7)}) exists, the X-Y stage 3 is moved again toward the next target pattern to be stopped again in the vicinity thereof, and then, the above described operations are repeated. Such a series of operations are controlled by the host computer 104 in accordance with a sequence which is set by a recipe file stored in the memory 14 of the pattern dimension measuring system or the like. However, in the above described sequence, the measurement of the dimensions is carried out by repeating the movement and stopping of the X-Y stage 3 any number of times, so that it takes a lot of processing time in the case of a multipoint measurement for measuring the dimensions of patterns at a large number of measuring places. FIGS. 3A and 3B are graphs for explaining the throughput, of the pattern dimension measuring system shown in FIG. 1, and show the variation in stage traveling speed. It can be also understood from FIGS. 3A and 3B that the stage 3 is stopped in front of the global alignment mark and the pattern to be measured for focusing (AF) and pattern recognition (PM). Particularly in recent years, the need for multipoint measurement is enhanced (a) at the initial stage of the development of process devices, (b) in the evaluation of the lens aberration of an aligner and in the evaluation of a wafer for making exposure conditions, and (c) due to the increase of the number of measured points as the increase of the diameter of the wafer. However hand, the throughput in the above described sequence is 30 wafers/hour to 40 wafers/hour, so that there is a problem in that it takes several hours to carry out a multipoint measurement even with a full automatic measurement in the present circumstances. It is a first object of the present invention to provide a pattern dimension measuring system with a high throughput. It is a second object of the present invention to provide a pattern dimension measuring method with a high throughput. According to the first aspect of the present invention, there is provided; a pattern dimension measuring system comprising: a movable stage for mounting a sample on the upper surface thereof, the sample having a pattern to be measured formed thereon; a first control unit for moving the stage; an electron beam irradiation unit for irradiating the sample with an electron beam; an electron beam deflecting/scanning unit for deflecting and scanning the electron beam in a region on the sample, the region including a first portion normally scanned with the electron beam along and around an outgoing beam axis, and a second portion outside the first portion, the second portion being scanned with the electron beam deflected apart from and in parallel to the outgoing beam axis and; a stage coordinate detecting unit for detecting X-Y coordinates of the stage; a secondary electron detecting unit for detecting a secondary electron and a deflected electron which are emitted from the sample by an irradiation with the electron beam and for outputting an image signal which forms an electron image, the electron image representing a shape of the surface of the sample; a pattern dimension calculating unit for obtaining a dimension of the pattern to be measured by recognizing side edges thereof using the image signal and by calculating the dimension thereof; and a second control unit for controlling the first control unit so that the stage continuously moves without stopping and for controlling the electron beam deflecting/scanning unit using the detected result of the stage coordinate detecting unit so that the electron beam is scanned while a scanning start position thereof moves in synchronism with movement of the stage. According to the present invention, due to a continuous movement of the stage in measurement, it is possible to measure the dimensions of a pattern on a sample with a high throughput. In a preferred embodiment of the pattern dimension measuring system according to the invention, the pattern dimension measuring system further comprises a focal length measuring unit for detecting a focal length of the electron beam deflecting/scanning unit, and, the second control unit receives the detected result of the focal length measuring unit and optimizes the focal length of the electron beam deflecting/scanning unit on the basis thereof while the stage moves continuously at a constant velocity. It is preferable that the electron beam deflecting/scanning unit scans each frame to which the pattern to be measured is divided, the frame being defined by the maximum deflection width thereof, and that any one of a continuous scanning mode, in which the plurality of frames are continuously scanned, and a frame accumulating mode, in which the same frame is scanned a plurality of time to output the optimum pattern dimensions, is able to be selected. The region on the sample preferably further includes a third portion where the image signal is to be acquired and a fourth portion where an irradiation with the electron beam is to be stopped, and the second control unit preferably supplies a control signal to the first control unit so that the stage moves at a first velocity in a third portion of the region and moves at a second velocity which is higher than the first velocity in a fourth portion of the region. Furthermore, the second control unit sets the second velocity on the basis of a correlation between a distance between the patterns to be measured and on the basis of a processing time required for recognizing a pattern by the pattern dimension calculating unit. In another preferred embodiment of the invention, the pattern dimension measuring system further comprises image processing unit for processing the image signal so that the electron image is a mirror image with respect to the central axis-in X or Y directions in accordance with a variation in-moving direction of the stage. According to the second aspect of the invention, there is provided; a pattern dimension measuring method using a pattern dimension measuring system comprising: a movable stage for mounting thereon a sample, on which a pattern to be measured is formed; a stage coordinate detecting unit for detecting X-Y coordinates of the stage; a electron beam irradiation unit for irradiating the sample with an electron beam; an electron beam deflecting/scanning unit for deflecting and scanning the electron beam on the sample; a focal length measuring unit for detecting a focal length of the electron beam deflecting/scanning unit; a secondary electron detecting unit for detecting a secondary electron and a deflected electron which are emitted from the sample by the irradiation with the electron beam and for outputting an image signal which forms an electron image; and a pattern dimension calculating unit for calculating a dimension of the pattern by recognizing side edges of the pattern using the image signal and by calculating the dimension of the pattern, the pattern dimension measuring method comprising: a first step of calculating a correlation between a coordinate system of the stage and a pattern layout coordinate system; a second step of detecting the position of a pattern to be measured on the basis of the correlation while the stage moves-continuously without stopping; a third step of detecting the variation in distance between the sample and the electron beam irradiation unit due to movement of the stage, and optimizing the focal length of the electron beam deflecting/scanning unit before the pattern to be measured reaches an area in which the electron beam can be scanned; a fourth step of acquiring an electron image of the pattern to be measured, by deflecting the electron beam in synchronism with the movement of the stage, and by scanning the electron beam in a region including a region, the region including a first portion normally scanned with the electron beam along and around an outgoing beam axis, and a second portion outside the first portion, the second portion being scanned with the electron beam deflected apart from and in parallel to the outgoing beam axis; and a fifth step of recognizing the pattern to be measured, using the electron image, and calculating the dimensions thereof by a predetermined algorithm. According to a pattern dimension measuring method of the present invention, the detection of the position of a pattern to be measured and the adaptation of the focus of electron beam is processed in real time even during the movement of a stage, so that it is not required to stop the stage before incorporating a SEM image. Therefore, it is possible to measure the dimensions of a pattern while moving the stage at a constant velocity. In addition, since the scanning range of the electron beam can be enlarged to a range where all of beam trajectories are away from the outgoing beam axis, it is possible to scan electron beam on a pattern to be measured, in synchronism with the constant velocity movement of the stage. Thus, it is possible to further increase the traveling speed of the stage, so that it is possible to improve the throughput in the pattern dimension measurement. On the other hand, when the traveling speed of the stage remains being relatively low, it is possible to scan electron beam on the same pattern to be measured, several times. Thus, it is possible to further enhance the accuracy of the dimension measurement. In a preferred embodiment of the invention, the pattern includes a reference pattern serving as a reference of the detection of the pattern to be measured, the correlation includes a relationship between a position of the reference pattern and a positions of the pattern to be measured, and the second step includes a step of detecting the position of the reference pattern on the basis of the correlation, and detecting the position of the pattern to be measured on the basis of the detected position of the reference pattern and the relationship between the detected position of the reference pattern and the position of the pattern to be measured. Furthermore, the fourth step may include a step of dividing the pattern to be measured to a plurality of frames, the frame being defined by the maximum deflection width of the electron beam deflecting/scanning unit, and continuously scanning the plurality of frames (a continuous scanning step) or alternatively, scanning the same frame a plurality of times and outputting an optimum pattern dimension (a frame integrating step). Thus, when a continuous scanning procedure is selected, it is possible to improve the throughput in the pattern dimension measurement. On the other hand, when a frame accumulating procedure is selected, it is possible to improve S/N. In the above mentioned pattern dimension measuring method, the region on the sample may include a third portion where the image signal is to be acquired and a fourth portion where no electron beam is to be irradiated, and the stage may be moved at a first constant velocity in the third region on the sample and at a second constant velocity which is higher than the first constant velocity in the fourth portion of the region after an irradiation of the electron beam is stopped and before an irradiation with the electron beam is restarted. Thus, it is possible to enhance the throughput in the dimension measurement. The second velocity may be set on the basis of a correlation between a distance between the patterns to be measured and on the basis of a processing time required for recognizing a pattern by the pattern dimension calculating unit. Thus, in accordance with the specification of a measuring system, to which a pattern dimension measuring method according to the present invention is applied, it is possible to complete a dimension measurement processing until the acquisition of the electron image of the next pattern to be measured is started after the acquisition of the electron image of a certain pattern to be measured. The fourth step may include a step of processing the image signal so that the electron image is a mirror image with respect to the central axis in X or Y directions in accordance with a variation in moving direction of the stage. Thus, it is possible to reduce the time required to carry out the above described pattern recognition and dimension calculating processing, and it is possible to further improve the throughput in the dimension measurement. The second step may be a step of detecting a position of the pattern to be measured, at a first measuring magnification, and the fourth step may be a step of acquiring the electron image at a second measuring magnification which is greater than the first measuring magnification.
{ "pile_set_name": "USPTO Backgrounds" }
In general, a lithographic printing plate has a surface composed of an oleophilic image area and a hydrophilic non-image area. Lithographic printing is a printing method comprising supplying alternately dampening water and oily ink on the surface of lithographic printing plate, making the hydrophilic non-image area a dampening water-receptive area (ink unreceptive area) and depositing the oily ink only to the oleophilic image area by utilizing the nature of the dampening water and oily ink to repel with each other, and then transferring the ink to a printing material, for example, paper. In order to produce the lithographic printing plate, a lithographic printing plate precursor (PS plate) comprising a hydrophilic support having provided thereon an oleophilic photosensitive layer (image-recording layer) has heretofore been broadly used. Ordinarily, a lithographic printing plate is obtained by conducting plate making by a method of exposing the lithographic printing plate precursor through an original, for example, a lith film, and then treating the exposed lithographic printing plate precursor to remove the photosensitive layer in the unnecessary non-image area by dissolving with a an alkaline developer or an organic solvent thereby revealing a surface of the hydrophilic support to form the non-image area while leaving the photosensitive layer in the image area. In the hitherto known plate-making process of lithographic printing plate precursor, after the exposure, the step of removing the unnecessary photosensitive layer by dissolving, for example, with a developer is required. However, it is one of the subjects to simplify such an additional wet treatment described above. As one means for the simplification, it has been desired to conduct the development with a nearly neutral aqueous solution or simply with water. On the other hand, digitalized technique of electronically processing, accumulating and outputting image information using a computer has been popularized in recent years, and various new image outputting systems responding to the digitalized technique have been put into practical use. Correspondingly, attention has been drawn to a computer-to-plate technique of carrying the digitalized image information on highly converging radiation, for example, laser light and conducting scanning exposure of a lithographic printing plate precursor with the light thereby directly preparing a lithographic printing plate without using a lith film. Thus, it is one of the important technical subjects to obtain a lithographic printing plate precursor adaptable to the technique described above. Based on the background described above, adaptation of plate making operation to both simplification and digitalization has been demanded strongly more and more than ever before. In response to such a demand, for instance, it is described in JP-A 2002-365789 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”) that by incorporating a compound having an ethylene oxide chain into an image-forming layer of a lithographic printing plate precursor comprising a hydrophilic support and the image-forming layer containing a hydrophobic precursor, a hydrophilic resin and a light to heat converting agent, the lithographic printing plate precursor enables printing after conducting exposure and wet development processing using as a developer, water or an appropriate aqueous solution, besides on-machine development. Also, a processing method of lithographic printing plate precursor is described in U.S. Patent Publication No. 2004/0013968 which comprises preparing a lithographic printing plate precursor comprising (i) a hydrophilic support and (ii) an oleophilic heat-sensitive layer which contains a radical-polymerizable ethylenically unsaturated monomer, a radical polymerization initiator and an infrared absorbing dye, is hardened with infrared laser exposure and is developable with an aqueous developer containing 60% by weight or more of water and having pH of 2.0 to 10.0, exposing imagewise the lithographic printing plate precursor with an infrared laser, and removing the unhardened region of the heat-sensitive layer with the aqueous developer. However, hitherto known methods for preparation of a lithographic printing plate including development with an aqueous near-neutral solution have problems in that the developing property is poor, in that the photosensitive layer remains in the non-image area, in that satin occurs in the non-image area of a printed material and in that unevenness occurs in the image area of a printed material.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a process for immobilizing microorganisms, and more particularly to an immobilization process for preparing microbial beads by using calcium alginate, polyethylene glycol (PEG) and polyethylene imide (PEI). Studies on immobilization of microorganisms confirmed the gaining of highest biomass in smallest unit volume, and the buffering and protective effects against external environmental impact. The immobilization techniques of microorganisms afford a great deal of potential of improving the wastewater treatment. The immobilization methods of microorganisms in which various natural or synthetic polymeric substances are used to bring about the immobilization of the activated microorganisms, have received a great deal of attention in recent decades, and achieved some success in the industrial application, as exemplified by their applications in the production of biochemical products such as high fructose syrup, 6-APA, L-amino acid, etc. The immobilization methods of microorganisms include generally two types, namely, the adhesion type natural immobilization methods, and the entrapment type artificial immobilization methods. In the entrapment type artificial immobilization methods, calcium alginate is most commonly used in preparing the immobilized microbial beads. Other commonly used substances for preparing the immobilized microbial beads include polyethylene glycol (PEG), polyvinyl alcohol (PVA), K-carrageenan, aga, gelatin, etc. However, polymeric substances are toxic and expensive, and their low mechanical strength make them difficult to form beads of spherical shape. It is, therefore, important that we are in need of developing a new and inexpensive immobilization material which is not toxic to microorganisms and has a strong gel strength so as to ensure that the bead formation is successful. PEI (polyethylene imide), PEG (polyethylene glycol and calcium alginate are non-toxic to microorganisms. When mixed well, the mixture of PEI, PEG and calcium alginate has advantages that it is non-toxic to both human being and microorganisms, and that it is provided with a mechanical strength sufficiently strong enough to ensure the success of bead formations, and further it can be used in industry and produced in quantity economically. Therefore, the mixture of PEI, PEG and calcium alginate is an ideal material for use in immobilizing microorganisms. Various patented methods of immobilizing microorganisms by PVA have been disclosed in recent years, as exemplified by the exemplified by the Japanese patent applications Kokai 57-14129 (1982) and 61-139385 (1986) in which the entrapment methods are characterized that the gelations of the mixture containing the PVA aqueous solution and the microorganisms are carried out by the methods associated with the freezing and thawing technique. Another Japanese patent application Kokai 1-454372 (1989) discloses a method, in which the mixture of the PVA aqueous solution and the microorganisms is exposed to the ultraviolet radiation so as to form a photocrosslinking gelation. Another gelation technique is shown in U.S. Pat. No. 5,290,693, in which PVA, boric acid and phosphate are used for immobilizing microorganisms. The prior art described above have the following shortcomings. In the first place, they are time-consuming and complicated, thereby resulting in a substantial increase in the expenditure for large-scale production facilities without increasing the productivity. Secondly, an environment in which cryogenic temperature, vacuum and boric acid are present is antagonistic to the living microorganisms intended to be immobilized. In the third place, their high density structure affect the delivery of gas and substances, thereby causing the gelations not suitable for a long term use.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a vehicle surrounding area imaging system that determines whether or not to display an image or image of a side of one's own automobile. 2. Background Information Conventionally, technology that displays images of the rear side of one's own automobile is known. One example of such conventional technology is disclosed in Japanese Laid-Open Patent Publication No. 2000-238594. In this technology, a determination is made as to whether or not one's own automobile has entered into a region that requires an image display, that requires a display of an applicable image, (for example, an intersection) based on the driving actions of a driver. When the determination is made that one's own automobile has entered into the region that requires an image display, the technology photographs the rear side of one's own automobile to acquire an image of the rear side of the automobile and then displays the acquired image in a monitor inside the automobile cabin. This makes it possible for the driver of one's own automobile to view the image and verify the conditions at the rear sides of one's own automobile. In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved vehicle surrounding area imaging system. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to a method for using Complete-1-Distinguishability for FSM equivalence checking. More particularly, the subject invention pertains to a methodology that simplifies the problem of FSM verification, and considers the case where the specification FSM has a Complete-1-Distinguishability (C-1-D) property, i.e. all state pairs are 1-distinguishable. The main idea is that if each state of the specification FSM can be distinguished from all others by an input sequence of length 1, then the only equivalence class of the implementation FSM which is possibly equivalent to it, can be easily found by using a mapping induced by 1-equivalence between the states of the two FSMs. 2. Discussion of the Prior Art Checking the equivalence of finite state machines (FSMs) is an important problem in formal verification of hardware designs. The basic algorithm for checking the equivalence of two FSMs consists of first building a product state machine by a parallel composition of the individual machines. This product state machine has lockstep transitions on the common inputs, and it is checked that the outputs of the two machines are identical in every state pair which is reachable from the initial state pair. The reachability of the product state pair is an essential requirement in this check. Therefore, in the general case, a traversal needs to be performed on the product state space. Typically, this traversal is done symbolically by using Binary Decision Diagrams (BDDs) to represent the state transition functions (or relations) and the sets of reachable states. Research in this direction has led to numerous techniques that focus on forward traversal, backward traversal, as well as approximate traversal. As with most BDD-based techniques, their practical limitations stem from extensive memory requirements, especially when handling large machines. Though the general FSM equivalence problem requires state space traversal of the product machine, simplifications are possible by placing restrictions on the synthesis process. In particular, if the latch boundaries in the pre-synthesis specification are fixed and maintained throughout synthesis, then the resulting implementation has the same state encoding with a known correspondence of latches. In this case, it suffices to perform a combinational equivalence check on the output and next-state functions of the two machines. (The combinational checks can be restricted to reachable states in order to give an exact result.) Numerous researchers, as well as some commercial tools, have used this combinational methodology to check sequential circuits in practice.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to computer systems and, more particularly, to automated configuration and deployment of computer systems applications. 2. Description of the Related Art Modern enterprise-level computer applications are typically designed to be multi-threaded in order to take advantage of the multiple processors available on typical enterprise servers and in clustered computing environments. Multi-threaded applications may also help improve overall performance in single-processor systems, where for example an application can switch from a blocked thread to a non-blocked thread to maintain optimal execution. However, the task of tuning applications for optimal execution on multiprocessor and/or clustered systems has long been known to be a non-trivial and often expensive task. Enterprise application vendors usually have entire departments dedicated to tuning applications for marketing-related performance benchmarking. In addition, performance tuning specialists may also be deployed at customer sites, e.g., to ensure that a deployment of the enterprise application in a production environment meets desired performance goals. Many applications are developed for deployment in platform-independent virtual machine environments, such as Java™ Virtual Machines or JVMs. For example, vendors such as IBM, BEA Systems, and the like provide Java™ 2 Enterprise Edition (J2EE)-compliant application servers, at which enterprise and web applications written using platform-independent programming languages such as Java™ may be deployed. Application servers may be configurable for use in clustered environments, where for example one or more instances of a JVM is executed at each node of a cluster of computer servers. Application servers may provide built in support for commonly used services such as transactions, security, database connectivity, etc., thus allowing application developers to focus on application functionality instead of redeveloping infrastructure services. Using platform-independent application server technology, enterprise application vendors may also be able to reduce development and testing costs associated with supporting applications on different hardware and operating systems. At least in theory, applications may only have to be developed and tested on one platform, instead of, for example, being ported to multiple platforms and tested separately for each platform. However, the problem of tuning applications for performance remains complicated even in application server environments. Application performance may be sensitive to a variety of factors. In particular, the throughput and response time for service requests handled by an application may be sensitive to a number of tunable concurrency configuration parameters, such as the number of concurrent threads allocated for application use within a JVM of an application server. If the number of threads is set to too high a value, the application may incur substantial processing overhead due to frequent context switches, and may also use excessive memory. If the number of threads is set too low, the processors of the hardware platform at which the JVM is deployed may be underutilized. Current best practice guidelines provided by many vendors suggest that the optimal number of threads should be selected by observing the effect of different loads against the application using different values of the configuration parameters. Unfortunately, this typically involves expensive and time-consuming iterations of manually supervised testing. The amount of time and resources needed to identify suitable concurrency configuration parameters using such conventional techniques may be prohibitive, especially for automated provisioning environments where applications may have to be automatically migrated and deployed at different types of computing platforms.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to packaging for a catheter comprising a card received in an envelope. This card is provided with a row of retaining elements with lips formed by cuts, each of which can be pushed out of the surface of the card. The catheter is secured under these lips and inserted like this, together with the card, into the envelope, or the envelope is formed in one mechanical packaging process around the card, after which the envelope is sealed hermetically and the entire package is sterilized for future use. 2. Description of the Prior Art In prior catheter packages, when using the catheter, it will be taken out of the package by opening an envelope at one end, taking hold of the catheter and pulling it along its length from the envelope. When doing so, the catheter will be pulled along and through the retaining elements. The envelope is opened, for instance, on the side where the connecting member of the catheter is situated. When pulling the catheter from the envelope, the end of the catheter which is to be introduced into the patient will pass through all the retaining elements. This end usually has a specific curved shape which tends to get stuck in the retaining elements. As the material of which the catheter has been made, and, more particularly, of which the distal end-section is made, is soft in order to prevent trauma to a patient, damage can be caused to the catheter by the relatively sharp and hard edges of the lips when pulling it out, which can even result in uselessness of the catheter. Several examples of prior art packages are disclosed in the following U.S. Patents: ______________________________________ U.S. Pat. No. Patentee ______________________________________ 3,967,728 Gordon 5,131,537 Gonzales ______________________________________
{ "pile_set_name": "USPTO Backgrounds" }
The technology of cardiac pacemakers has developed to a high level of sophistication of system performance. The current generation of cardiac pacemakers incorporate microprocessors and related circuitry to sense and stimulate heart activity under a variety of physiological conditions. These pacemakers may be programmed to control the heart in correcting or compensating for various heart abnormalities which may be encountered in individual patients. A detailed description of modern cardiac pacemaker technology is set forth in International Application No. PCT/US85/02010, entitled STIMULATED HEART INTERVAL MEASUREMENT, ADAPTIVE PACER AND METHOD OF OPERATION, assigned to the assignee hereof. The disclosure of that application is incorporated herein by reference. A demand-type pacemaker is one that provides a stimulation pulse only when the heart fails to produce a natural depolarization on its own within a prescribed escape interval. In a dual chamber pacemaker, this is realized by placing electrodes in both the right atrium and right ventricle of the heart. These electrodes are coupled through intravenous and/or epicardial leads to sense amplifiers housed in an implanted pacemaker. Electrical activity occurring in these chambers can thus be sensed. When electrical activity is sensed, the pacemaker assumes that a depolarization or contraction of the indicated chamber has occurred. If no electrical activity is sensed within a prescribed time interval, typically referred to as an atrial or ventricular escape interval, then a pulse generator, also housed within the pacemaker housing, generates a stimulation pulse that is delivered to the indicated chamber, usually via the same lead or electrode as is used for sensing. This stimulation pulse causes or forces the desired depolarization and contraction of the indicated chamber to occur. Thus, with a demand pacer, the heart will either beat on its own (without stimulation from the pacemaker) at a rate that is at least just slightly faster than the stimulation rate defined by the escape interval, or the heart will be stimulated by the pacer at a rate controlled by the escape interval. The stimulation rate provided by the pacemaker is typically referred to as the "programmed rate." As noted, most pacemakers include a sensor circuit that looks for electrical signals from spontaneous heart activity. On detection of such activity, the pacemaker stimulation action is modified, depending upon the functional mode or type of pacemaker. For example, in the VVI mode (ventricle paced and sensed, response inhibited mode), sensing of heart activity under certain time restrictions is interpreted as normal heart activity such that the stimulating action is inhibited. The discussion thus far has followed the assumption that a pacemaker and its associated circuitry operate without malfunction. By the very nature of manmade devices, such is not always the case. Whereas electronic circuitry can be, and is, incorporated within the pacemaker itself for exercising or testing various circuit components, the status of battery power sources, and the effectiveness of various amplifiers, waveform shaping stages and the like, it is often more difficult to test the integrity of the leads and implanted electrodes to which the pacemaker is coupled for pacing operation. At the implanting of the pacemaker and electrode system, minor damage is sometimes incurred which may affect the system's electrical insulation. This type of damage may go undetected and be without present effect on the implanted system, but the condition may manifest itself after extended time in service. When a breakdown or significant degradation of the pacemaker lead insulation occurs, it can have serious or even disastrous results, depending upon whether or not the breakdown is of a catastrophic nature. Various types of lead damage may produce different types of failure or degradation. For example, an insulation defect on the stimulation electrode shunts the energy intended for the heart to some other point. A lead breakage can in some environmental situations temporarily or permanently reduce the stimulation output, sometimes drastically. Another type of detectable error relates to the failure of the electrode tip to be in proper contact with the heart wall. While the lead defects which have been mentioned thus far are more in the nature of catastrophic failures, there may also occur failures or degradation of a less drastic nature which may be intermittent or which may build up over time. In a common situation, errors often start as temporary or intermittent errors. These can be virtually impossible to discover with commonly used techniques. It is not permissible to test on a random or periodic basis for lead faults in the manner in which power lines or telephone lines, for example, may be tested as, for example, by applying an over-voltage to a suspected circuit, simply because the breakdown of insulation in pacemaker leads under such condition may produce catastrophic results in the patient. It would be desirable to be able to use the signals encountered in the normal operation of an implanted pacemaker in the process analysis to determine impending failure or serious degradation from the temporary or intermittent errors which may be detected. A system for performing such a function would be expected to monitor standard heart operation and to use detected deviations or departures from signal norm to indicate the occurrence of such. There may be various approaches to the regular monitoring of heart signals for the detection of abnormalities, some of which may relate to the circuitry employed in the implanted pacemaker system. One asserted pacemaker function analyzer for automatic evaluation and indication of the quality of performance of cardiac pacing systems is the subject of U.S. Pat. No. 4,527,567 of Fischler et al. The analyzer of that patent is said to provide a comprehensive examination of asynchronous, demand and demand-hysteresis pacemakers of all makes, including the state of the pacemaker's battery, the intactness of the electronic circuitry and of the electrodes, and the proper location of the electrodes in the heart. The manner in which this analysis is performed by the circuitry of that patent is entirely different from the operation of the lead impedance scanning system of the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to dispatch optimization in an object oriented environment and, more particularly, to a method for determining statically which body of code will be executed when a method is dispatched. 2. Background Description Object oriented programming (OOP) is the preferred environment for building user-friendly, intelligent computer software. Key elements of OOP are data encapsulation, inheritance of attributes and polymorphism (i.e., overloading of operator names). While these three key elements are common to OOP languages, most OOP languages implement the three key elements differently. In a conventional programming language, such as C or Pascal, procedures and functions are written to manipulate data and obtain solutions. In contrast, object oriented programming allows the programmer to view concepts as a variety of units or objects in a hierarchy, without worrying about the data type, repeated variable names, or function names. This allows the programmer to concentrate on the program design, rather than programming rules. The programmer can represent relationships among components, objects, tasks to be performed, and conditions to be met in a way that allows the reuse of code components and reduces the bulkiness of code and the time and effort needed to develop programs. Examples of OOP languages are Smalltalk, Object Pascal, Java, and C++, all of which are well known in the art of computer languages, compilers, and applications programming. Of these, Smalltalk may be characterized as a programming environment instead of merely a language. Smalltalk was developed in the Learning Research Group at Xerox's Palo Alto Research Center (PARC) in the early 1970s. In Smalltalk, a message is sent to an object to evaluate the object itself. Messages perform a task similar to that of function calls in conventional programming languages. The programmer does not need to be concerned with the type of data. Instead, the programmer need only be concerned with using the right message. Object Pascal, another OOP, was created by developers from Apple Computer, some of whom were involved in the development of Smalltalk at PARC, in conjunction with Niklaus Wirth, the designer of Pascal. C++ was developed by Bjarne Stroustrup at the AT&T Bell Laboratories in 1983 as an extension of C. C++ modules are compatible with C modules and can be linked freely so that existing C libraries may be used with C++ programs. The key concept of all OOP is the class, which is a user-defined type. Classes provide object oriented programming features. Further information on object oriented programming concepts may be obtained by referring to one of several standard text books, such as Object Oriented Design with Applications by Grady Booch, The Benjamin/Cummings Publishing Co., Inc. (1991). To focus this description on the instant invention, and minimize unnecessary discussion of background information known to persons skilled in the art, descriptive terms will be used where appropriate which, except where noted or where clear from the context, are familiar terms known to ones of ordinary skill in OOP. More particularly, as used herein, a class is a definition of a type of object, describing its methods and the kinds of data that can be placed in the object. During execution of the program various objects are created. When an object is created based on a class, that is called an instance of that class and the names of the individual pieces of data are called instance variables. The procedures that can be invoked on the data in an instance of a class are the methods of that class. The class definition therefore contains descriptions of both the instance variables and the methods. Further, a class such as, for example, foo, can be defined in terms of another class such as, for example, bar, by declaring that foo is like bar except that it may contain additional instance variables, additional methods, or that some of the methods have a different definition. In this way the definition of foo can be much shorter than bar's. In this case, foo is said to inherit from bar. Foo is said to be a derived class of bar. Moreover, bar is said to be a base class of foo. If baz is a derived class of foo, then baz is also a base class of bar, which is to say the derived class (and base class) relations are transitive. A class and its derived class may contain different definitions for an identically named method. For example, foo and bar may both have a method called, for example, addsub, and both have an instance variable named, for example, I, but when addsub is invoked on an instance of foo, I is increased by one, and when it is invoked on an instance of bar, I is decreased by one. The method body, also known as function body, for addsub when the instance is of type foo is the method body which increases I, and the method body for addsub when the instance is of type bar is that which decreases I by one. It is, in general, not possible to determine (either by compilers or by humans) when looking at a program which invokes a method on an instance what class that instance will be. The reason is that, as the program proceeds, the same code can be applied to instances of many different classes. Therefore, at the time the program is executing the code must determine the class of an instance and invoke the appropriate function body. This process of determining the class of an instance and invoking the appropriate function body is called method dispatch. Method dispatch consists of using both information about the class of the instance and the name of the method to determine which code should be executed next. In Smalltalk, all method dispatches are made dynamically. In other words, the actual method body that will be invoked at a particular method invocation site is determined by a combination of the class of the object and the name of the method. This may be done by following a pointer from the object to its class, and then looking up the method in the classes' method table. In contrast, C++ allows the programmer to decide whether a particular method should be dispatched statically or dynamically. Methods that are dispatched dynamically are called "virtual methods." The present invention is concerned only with virtual method invocations and, therefore, methods that are dispatched statically will not be described. Accordingly, when the following description references C++ programs, the terms "method dispatch" or "method invocation," unless otherwise qualified, shall mean "virtual method dispatch" or "virtual method invocation." Note that in the C++ literature, a virtual method dispatch is also referred to as a "virtual function call." Method dispatches are a major source of complexity when trying to optimize the programs. More particularly, there is a direct cost associated with method dispatches in the form of the extra instructions required for the dynamic dispatch, including extra memory operations, and pipeline penalties caused by branching to an unknown address. For C++ programs, these costs have been estimated as ranging from 0% of the total run time, for programs that make no significant use of method dispatch, to 6%, for programs that make moderate use of method dispatch, to 27%, for programs that make extensive use of method dispatch. There is also an indirect cost relating to inlining" which, in many cases, may be even more significant. As is known in the art, inlining is the process whereby a procedure call is replaced with a copy of the body of the called procedure. Inlining is much more important in object oriented languages than in non-object oriented languages, such as C or Fortran, because object oriented languages encourage smaller, more modularized functions, and often have a linguistic mechanism to support inlining. Studies have shown that C++ functions do in fact have significantly smaller static and dynamic instruction counts than C programs. However, when a method dispatch is dynamic, inlining cannot be performed. Another cost associated with method dispatch is compilation speed and compiled code size. The compiled code size is increased, and hence the compilation speed is decreased because, without any information about the potential targets of a method dispatch, all the possible methods must be linked into the program. This slows down linkage and causes unused methods to bloat the object file. There are methods in the relevant art directed to reducing, at least partially, the above-identified problems relating to inlining and compilation speed and compiled code size, but each has limitations in performance, or requires so large of a processing time as to be impracticable. One of these methods, which will be referred to as the Resolution by Unique Name method, is described by Brad Calder and Dirk Grunwald (hereinafter referenced as "Calder and Grunwald") in their article entitled "Reducing Indirect Function Call Overhead in C++ Programs," Conference Record of the 21st ACM Symposium on Principles of Programming Languages, Portland, Oreg., January 1994, pp. 397-408. In the referenced article, Calder and Grunwald observed that in C++ if there is only one method body defined for a given method signature in the entire program, then all dispatches for that method must be to that one method body. The method signature or function signature in a typed language like C++, Java, or Modula-3 is its name and the number and types of its arguments; for untyped languages like Smalltalk it is just the name and the number of arguments. It can be seen that if one can determine that for all dispatches from a particular point in the program a particular method body must be invoked, then that dispatch can be replaced by a direct call to the appropriate body of code without modifying the end result of the program, and hence this replacement can safely be done automatically. Calder and Grunwald have published some preliminary measurements stating that, in their selected set of particular benchmark programs, it is possible with the Resolution by Unique Name Method to replace approximately one third of the method dispatches by a direct call. Calder and Grunwald's Resolution by Unique Name Method can be summarized as being an algorithm for determining when a method dispatch can go only to a single method body, which consists of the steps of: examining the entire program; PA1 determining which methods have only one method body associated with that method signature; PA1 examining a method dispatch; and PA1 determining whether that method is one of the methods previously determined to have only one function and, if so, converting the dispatch to a direct call. There is at least one problem with the Resolution by Unique Name Method, though, which is that the replacement of a dispatch by a direct call cannot be done by a traditional compiler. The major reason is that a compiler is usually not given an entire program at a time, but only a piece of the program. The entire program is composed by a program called a linker. Hence, the Resolution by Unique Name Method is generally referred to as a link-time optimization. It is possible for Calder and Grunwald's method to be performed at other times, if it is given appropriate information. For example, if a database of information about an entire program is built first, then when a compiler is used to compile a piece of a program, it can refer to information in the built database about the rest of the program. However, if the rest of the program changes, and the information which was relied upon changes, the program may have to be recompiled using the new information. Another related method directed to resolving virtual function dispatch is called class hierarchy analysis (henceforth "CHA"), and is described by Dean, Grove and Chambers in "Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis", in the Proceedings of the Ninth European Conference on Object-Oriented Programming, Springer-Verlag, 1995. CHA uses the type information supplied only in statically typed languages, therefore, is not applicable to a dynamically-typed OOP languages such as Smalltalk. The meaning of statically-typed, which relates to OOP languages such as C++ is as follows: When a virtual function call is made in C++, it is dispatched through a pointer or a reference to an object, and that pointer has a particular type. The type is either specified explicitly, i.e., statically, by the programmer, or is statically derivable by the compiler from other type information, as shown in the example below: ______________________________________ class A {public: virtual void bar();}; class B: public A {public: void bar(); A* top;}; class C: public B {public: virtual void glorp(); }; void example (B* p) { p .fwdarw. bar(); // Call via explicit type "B" p .fwdarw. top .fwdarw. bar(); // Call via implicit type "A" ______________________________________ In either case, the compiler has statically obtainable information about the declared type of the pointer through which the dispatch is being made. The rules of the language (common to C++, Java, and Modula-3) state that a pointer whose static type is "B" can point to objects of type "B" or any of its derived types (but not its base types). Thus, if A is a base class from which B derives, and C in turn derives from B, then a pointer "p" of static type "B" can actually point to objects of types "B" or "C" at runtime, but not objects of type "A". CHA resolves a virtual function dispatch by computing this set of possible dynamic types, and then determining the virtual function that would be invoked for each of those types. In the example above, the call "p->foo()" is through a pointer of static type "B", whose possible dynamic types are "B" and "C". For dynamic type "B", the function invoked would be B::foo(); for dynamic type "C" the function invoked would also be B::foo(), since "C" does not override foo and therefore inherits its definition from "B". Since there is only one possible target function for all of the possible dynamic types that "p" can point to, the call can be resolved to "p->B::foo() ". In the second example, the pointer "p->top" is to an object of static type "A", so the possible dynamic types are "A", "B", and "C". If "p->top" points to an object of type "B" or "C", the virtual function B::foo() will be invoked, as we just described. However, if "p->top" points to an object of type "A", then A::foo() will be invoked because "A" defines its own version of the "foo" function. Since there is more than one possible target function, the call cannot be resolved by CHA. It can be seen by one of ordinary skill that the set of virtual call sites resolved by CHA is a superset of the call sites resolved by Calder and Grunwald's Unique Name method. This is because CHA starts by using the signature of the function and then uses the static type information to identify additional virtual call sites. However, since CHA relies on knowing the set of classes derived from a particular static class type, it requires knowledge of the complete class hierarchy. Therefore, like the Resolution by Unique Name Method, CHA can either be performed at link-time or at an earlier phase, provided that a program database is available which specifies the complete class hierarchy. Still another method known in the art for removing dead code is referred to as "alias analysis." A description of alias analysis can be found in several publications, including K. Cooper et al., "Fast Interprocedural Alias Analysis", Conference Record of the Sixteenth ACM Symposium on Principles of Programing, ACMPRESS, January 1989, pp. 49-59. Basically, alias analysis processes a program in a manner that keeps track of every variable identified during compilation, and keeps track of what each variable could possibly point to, and iterates repeatedly over each function call to determine, rigorously, if the call will occur during running of the program. Depending on which particular alias analysis algorithm is used, and which language it is applied to, and other program-specific parameters, this method often requires, in typical cases approximately fifty to one thousand iterative inspections of the entire program and of each function call. Accordingly, alias analysis can be impracticable for many applications.
{ "pile_set_name": "USPTO Backgrounds" }
There are yarns commonly known as raised or matted yarns currently available on the market, obtained by very laborious manufacturing processes involving a plurality of stages through the various operating machines, and in short obtained by an operation of extraction of the fibers (raising) from the processed yarn, involving hard treatment of the material, which beforehand has to undergo the traditional spinning. Moreover, the yarns thus obtained, by virtue of the very characteristics of the operating machines, have a uniform configuration, in the sense that their external characteristics are kept constant.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a shift mechanism for a change-speed gear transmission for use in automotive vehicles, and more particularly to a shift mechanism of the type which comprises a manual gearshift lever arranged to be selectively shiftable toward forward speed-ratio and reverse-ratio positions at the same gate in a gearshift pattern, a selector shaft mounted within a housing assembly of the gear transmission for both axial and rotary movement and being operatively connected to the gearshift lever to be axially moved in selecting operation of the gearshift lever toward the gate and to be rotated in shifting operation of the gearshift lever toward one of the forward speed-ratio and reverse-ratio positions, and a movable member mounted on the selector shaft for axial and rotary movement integral with the selector shaft and having a radial lever arm arranged to be selectively movable for establishing a forward speed-ratio gear train in shifting operation of the gearshift lever toward the forward speed-ratio position and for establishing a reverse-ratio gear train in shifting operation of the gearshift lever toward the reverse-ratio position. In such a shift mechanism as described above, it is afraid that the gearshift lever is erroneously shifted from its forward speed-ratio position to its reverse-ratio position across the same gate in the gearshift pattern. It is, therefore, required to prevent such an error in shifting operation of the gearshift lever toward the reverse-ratio position.
{ "pile_set_name": "USPTO Backgrounds" }
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure. Referring now to FIG. 1, a partial functional block diagram of a single port of a network device is shown. A physical layer (PHY) module 102 for the port is connected to a physical media 104. For example, the network device may be an Ethernet device, the physical media 104 may include optical fiber and the PHY module 102 may be 1000BASE-X compliant. In another example, the physical media 104 may include twisted pairs of cable while the PHY module may be 1000BASE-T compliant. The PHY module 102 includes a receiver module 110 that receives data over the physical media 104. The data received over the physical media 104 includes an embedded clock, which is recovered by a clock recovery module 112. The clock recovery module 112 provides the recovered clock (RX_CLK) to the receiver module 110. RX_CLK is also output from the PHY module 102. The receiver module 110 uses RX_CLK to latch data received over the physical media 104. The latched data is transmitted to a physical medium attachment module 114. The physical medium attachment module 114 transmits data to and receives data from a physical coding module 116. The physical coding module 116 transmits data to and receives data from a media access control (MAC) module 118 external to the PHY module 102. The PHY module 102 includes a transmitter module 120 that transmits data over the physical media 104 from the physical medium attachment module 114. The transmitter module 120 transmits data using a transmit clock, TX_CLK, received from outside the PHY module 102.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an automatic tape engaging and securing device for a cassette reel. At present, a cassette reel having a construction as shown in FIG. 1 is comparatively often used. In FIG. 1, reference numeral 1 is a reel body made of synthetic resin or the like, and on its peripheral surface 2 a recessed portion 3 is formed having the shape of a groove, and an engaging and securing element 4 is inserted into the recessed portion 3 so that a tape 5 is held or sandwiched between the recessed portion in the reel body and the securing element. Therefore, the engaging element 4 is groove-shaped with ends projecting outwardly in the form of fringes. The engagement of the tape 5 is usually carried out by pushing the engaging element 4 into the recessed portion 3 in a manual operation, so that it takes time and becomes a problem when producing cassette tapes. However, an automatic device for solving this problem is not because it is difficult to position correctly the engaging element 4 relative to the recess portion 3 and if it is forcibly pushed, there is the possibility that the reel main body 1 or the engaging element 4 may be broken.
{ "pile_set_name": "USPTO Backgrounds" }
OFDM (Orthogonal Frequency Domain Multiplex) dominates modern communication systems, like 4G/5G, WiFi, DSL (Digital Subscriber Line), UWB (Ultra Wide Band) etc., as their base modulation scheme. Apart from numerous advantages of OFDM, one problem is its proneness to the in-band narrowband RFI (Radio Frequency Interference) such as a single carrier jammer, FM (Frequency Modulation) signal, AM (Amplitude Modulation) signal, etc. This is due to the spectral leakage from FFT (Fast Fourier Transform) operation in the OFDM receiver. The leakage spreads the energy of the narrowband interfering signal over the whole bandwidth of the desired signal, which could significantly interfere all subcarriers of the OFDM system. An OFDM system can thus get easily jammed by a strong narrowband signal source. For example, it is a well-known problem that a WiFi device can get totally jammed when it gets close to a microwave oven in operation. Even in licensed spectrum bands, a wireless system like LTE (Long Term Evolution) can still suffer from intentional jammers, when someone generates deliberately strong interfering signals to jam the system around. Also, unintentional interference can occur in licensed spectrum bands e.g. from faulty equipment, local oscillator leakage, harmonics or intermodulation products from transmitters in other bands. Furthermore, in some systems, radio base stations are provided with a central digital processing unit (e.g. for baseband processing) and remote radio heads comprising antennas. The links to the remote radio heads carry RF (Radio Frequency) signals, but can be downconverted to intermediate frequency e.g. to be able to use Ethernet cabling. However, nearby strong analogue modulated signals on the same IF band, e.g. from walkie-talkie, may get a way to be coupled into the system through the cable or the cable connector and thereby interfere the downconverted RF signals received from the cable. In practice, many Ethernet cables are unshielded or insufficiently shielded, whereby RFI signals negatively affects the reception of the intended signal. In C. De Frein, M. F. Flanagan and A. D. Fagan, “OFDM Narrowband Interference Estimation using Cyclic Prefix Based Algorithm”, 11th International OFDM Workshop, Hamburg, Germany, 30-31 Aug. 2006, http://ee.ucd.ie/˜mark/papers/OFDM_Workshop_NBI.pdf, a NBI (Narrowband Interference) cancellation algorithm for a wideband OFDM receiver is presented. The NBI is modelled as a single-tone sinusoid. The information bearing component of the received signal is removed prior to the estimation of NBI. However, this solution presents great limitations in the single-tone sinusoid modelling; in reality, interference comes in a great number of waveforms.
{ "pile_set_name": "USPTO Backgrounds" }