text
stringlengths 2
806k
| meta
dict |
---|---|
The following description is provided to assist the understanding of the reader. None of the information provided or references cited is admitted to be prior art.
A memory device stores content data and outputs the stored content data when requested. In one implementation, an external controller provides an external clock signal (e.g., read enable (RE) clock signal) to the memory device for data read operations. In return, the memory device outputs, to the controller, output data including the stored content data along with a DQS strobe signal generated based on the RE clock signal. The time after which a DQS strobe signal (also referred to herein as a “DQS strobe”) is generated once an edge (e.g., rising edge) of a valid RE clock signal (e.g., rising edge of RE Clock signal) is received is referred to as a data access time tDQSRE. The data access time within a data access time tDQSRE range (also referred to as “a data access time range” or “tDQSRE range” herein) enables a successful memory read operation.
In one approach, the data access time tDQSRE is calibrated by comparing the RE clock signal and the DQS strobe, and sequentially modifying the DQS strobe. For example, the DQS strobe may be modified to be synchronous to a modified RE clock signal generated by adding delay to the RE clock signal. The delay may be sequentially increased for multiple cycles of the RE clock signal until the data access time tDQSRE is within the data access time tDQSRE range. However, sequentially calibrating the DQS strobe for multiple RE clock cycles may take a while, and accordingly the data throughput may be decreased due to the extended calibration. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to machines for molding glass, and more particularly to a device for driving a first and second holder mounted displaceably on a glass molding machine in a reciprocating manner.
In known devices of this type (U.S. Pat. No. 3,066,505 A, U.S. Pat. No. 3,021,644 A, U.S. Pat. No. 2,748,536 A and U.S. Pat. No. 1,974,841 A) the journals are each attached to a carriage which can be displaced in a linear manner in a longitudinal plane of the glass molding machine. In both of the first two US patent documents listed above, a rack on the carriage is in engagement with a pinion which is connected to another pinion via a shaft. The other pinion is in engagement with another rack which can be driven in a reciprocating manner by the common drive. In U.S. Pat. No. 2,748,536 A the carriage is driven by a piston-cylinder unit and in U.S. Pat. No. 1,974,841 A it is driven by a driving roller running on a curved track. Due to undesirable tolerances, these devices are expensive, liable to failure and insufficiently precise in their movements.
In the case of a device which is known per se (U.S. Pat. No. 1,911,119 A, FIGS. 3, 8 and 19) the two holders can pivot about a common perpendicular column of the machine. A joint bar is articulated at an articulation point of each holder in the proximity of a mold toot half. The other end of the joint bar is articulated in each case to a crank pin of a crank. The crank is attached to a respective shaft mounted on the machine. The two shafts are rotationally driven in a reciprocating manner by means of a common double-acting piston-cylinder unit via a lever mechanism.
A similar device is known per se from the German patent document 1 704 112, FIGS. 2 to 5. The two shafts in this case, however, are rotationally driven in a reciprocating manner by a common pneumatic rotating cylinder via a spur wheel reducing gear.
It is the object of the invention to improve and simplify the reciprocating driving of the holders.
The above object is achieved by the features of the invention which provides, in one form, a device for driving a first and second holder mounted displaceably on a glass molding machine in a reciprocating manner. Each of the first and second holders has at least one mold tool half, the mold tool half of the first holder and the mold tool half of said second holder cooperating together to form a mold tool for production of a hollow glass object. The first holder has a first articulation point. A first joint bar is articulated to the first holder at the first articulation point and has a second articulation point. A second joint bar is articulated to the first joint bar at the second articulation point which is disposed at a distance from the first articulation point, the second joint bar being articulated to the glass molding machine at a third articulation point which is disposed at a distance from the first articulation point and the second articulation point. A rod is articulated at the second articulation point. A first crank is provided for moving the first holder and a second crank for moving the second holder, the rod being articulated to the first crank at a crank pin which is at a distance from the second articulation point and which is movable in a reciprocating manner. The device also includes first and second toothed wheels, the first crank being connected coaxially to the first toothed wheel and the second crank being connected coaxially to the second toothed wheel. The toothed wheels are rotationally driven by a drive in opposite directions from one another to drive the first and second cranks.
During the process of molding hollow glass objects, forces are generated inside the mold tools, both in the preform molds of the preform mold station and also in the finishing molds of the finishing mold station, which urge the opening of the closed mold tools. Any such opening is undesirable as the molten glass can be pressed into the parting lines of the mold sections as they part from one another. Numerous additional devices are known in the prior art with which the closed mold tools can be forcibly held closed during the molding processes. Such additional devices for holding the tools closed are superfluous in the case of the present invention. With the invention the closed-holding function of the drive is supported by the lever mechanism by which the whole mechanism between the drive and the holders becomes desirably non-linear. The lever mechanisms cause the closed-holding force to be increased when the holders, and therefore the mold tools, are in the closed position. The movement of the holders can be achieved in a known manner either by pivoting or by linear displacement. By means of both toothed wheels and the drive it is possible to form the device in a generally simple, cost-effective and space-saving manner and for the device still to produce extremely precise opening and closing movements for the holders.
Additional features can provide other advantages. For example, the toothed wheels can be formed as a first and a second worm wheel which is in engagement with a common worm that can be rotationally driven in a reciprocating manner by the drive. Additionally, the worm wheels can be in engagement with diametrically opposite sides of the worm. Moreover, the worm can have a longitudinal axis that is disposed in a longitudinal plane of the device. Such features each provide a compact and stable embodiment of the device.
In another embodiment, the toothed wheels can be formed as mutually engaged spur wheels, and a shaft of one of the spur wheels can be rotationally driven in a reciprocating manner by the drive. In accordance with such features, a particularly simple and functionally reliable toothed wheel mechanism is produced. The spur wheels can be toothed in any suitable way, for example with straight or inclined toothing.
In the invention, the drive can comprise an electric servomotor. This permits a very precise programmable control of the closing and opening movements of the holders. To achieve sufficient closed-holding forces the torque of the electric servomotor can remain switched through during the molding processes. Furthermore, the drive can comprise a gear mechanism connected downstream of the electric servomotor. According to this feature, the mechanism can be arranged according to the respective requirements. For example, a reducing gear and/or, for reasons of space, an angular gear may be used. | {
"pile_set_name": "USPTO Backgrounds"
} |
In most circumstances, the operator of a vehicle such as an automobile, truck, and the like has adequate visibility for the safe operation of the vehicle. Furthermore, the operator's visibility is enhanced through the well known use of rearview and sideview mirrors. Despite this, however, there are situations when a driver's visibility is limited or eliminated entirely. For example, when a driver is maneuvering a vehicle into a parking space on the side of the road between two other vehicles, the driver is often required to perform one or more iterations of backing up and pulling forward between the two vehicles without contacting either vehicle. The driver, however, generally cannot see that portion of the driver's vehicle that might make such contact. In addition, difficulty is often encountered when the operator of a vehicle is pulling forward towards an obstacle such as when driving into a garage, and the driver has no line of sight to that region of the vehicle that will make contact with the obstacle. This is especially true when, for example, a truck is backing up to a loading dock for the purpose of unloading the truck's contents.
In an attempt to solve problems of this nature, vehicular collision avoidance systems have been developed and are now relatively common. Such systems may include an apparatus for determining the distance between a vehicle and an obstacle in the vehicle's path and apparatus for displaying that distance or at least alerting the operator of an impending collision. For example, U.S. Pat. No. 4,903,004 issued Feb. 20, 1990, and entitled “All-Weather Digital Distance Measuring and Signaling System” describes a distance measuring and signaling system for a vehicle specifically intended for accurately measuring distances from obstructions, such as those behind a truck as it is being backed up. An array of transducer devices having independent sending and receiving capabilities are mounted on a support frame, such as a rear bumper. A pulsed signal emanating from a transistor amplifier circuit is timed as it is converted to an ultrasonic wave signal by each transducer device, is simultaneously emitted and received by the transducer devices, and is returned as a pulsed signal. This signal is returned after bouncing back from an obstruction, and the time of the return is converted into a distance value by digital converter circuitry. The digital converter circuitry in turn sends the signal to a digital display device. U.S. Pat. No. 4,674,073 issued Jun. 16, 1987, and entitled “Reflective Object Detecting Apparatus” describes an apparatus wherein a plurality of ultrasonic transmitting elements and ultrasonic receiving elements are provided and are electrically switched in a sequential manner to allow the existence of an obstacle to be detected. The distance to the object and a particular region at which it is detected is displayed. The ultrasonic transmitting elements and the ultrasonic receiving elements are alternately disposed in a linear array.
Unfortunately, known systems of the type described above generally require the operator to divert his attention from performing functions critical to the safe operation of the vehicle in order to look at the display.
In view of the above, it would be desirable to provide a distance detection and display system which avoids the above described disadvantage by providing a distance display that is easily viewed by an operator of a vehicle so as not to distract the driver from more important driving operations. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
This disclosure relates generally to data processing systems, and more specifically, to a configurable pipeline based on an error detection mode.
2. Related Art
Error correction code (ECC) and parity are commonly used to provide error detection and/or error correction for memories. Typically, ECC supports a higher level of error detection at a reduced performance as compared to using parity. Furthermore, certain users of a particular memory place a higher emphasis on error detection than others and are willing to sacrifice some performance to obtain a certain level of safety certification. Other users are not as stringent with respect to error detection and are therefore not willing to sacrifice performance for additional error detection capabilities. Furthermore, different error detection and/or error correction schemes affect execution timing within a processor instruction pipeline differently. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to hair styling aids and more specifically to a device for haircutting by vacuum suction and to a method of vacuum suction haircutting.
2. Description of the Prior Art
Haircutting is of course a well known art. However, it is also well known that the style of the haircut varies with the haircutter. Thus, some cuts are too short, some are too long, some are too irregular from person to person and even on the same person. | {
"pile_set_name": "USPTO Backgrounds"
} |
During flight, undesirable electrical energy can build up in aircraft fuel tanks. This can be in the form of static electricity or electrical energies induced in the tank due to a lightning strike. If this energy is allowed to build to a great enough level then there exists a significant risk of an ignition event occurring in which the aircraft fuel, in particular fuel vapour, in the fuel tanks will ignite. It is thus desirable to limit the amount of electrical energy that is able to exist within the tank.
Fuel tanks of the prior art made of metal typically offer a certain amount of protection from lightning by virtue of the tank acting as a Faraday cage. However, composite fuel tanks do not afford such inherent protection. Such a disadvantage of composite fuel tanks can, to a limited extent, be mitigated by means of having a metallic mesh embedded within the composite structure. However, such measures provide little protection in the case of larger composite fuel tanks, where in-tank conductive components increase the risk of an ignition event resulting from lightning.
Fuel tank safety has over recent years been recognised as being particularly important in maintaining aircraft safety. Various regulations have been laid down by the relevant official bodies governing aircraft design. For example, the FAA (the US Federal Aviation Administration) has set various criteria for fuel tank design in aircraft in Special Federal Aviation Regulation (SFAR) No. 88. It is of course highly desirable for any modifications or improvements of fuel tank design to be compatible with (SFAR) No. 88 and/or any similar regulations in other countries or which supersede (SFAR) No. 88.
Due to the potentially catastrophic consequences, should an ignition event occur in an aircraft fuel tank, whatever means used for reducing the level of the risk on the level of electrical energy within the tank should ideally be highly reliable. It is desirable for example that these means should preferably be of a safety-critical nature. For example, the means should preferably be in the form of a fail-safe system.
One safety system of a fuel tank of the prior art simply comprises one or more discrete discharge paths from the fuel tank to the aircraft ground, in the form of grounding straps mechanically bonded to the tank and to the aircraft structure. Such straps are required to be routinely manually visually inspected to ensure that the local bonding points maintain good conductive contact. Such manual checks can only be performed when the aircraft is stationary and grounded and are not especially reliable.
The present invention seeks to provide a fuel tank with improved safety features and/or a fuel tank, which mitigates one or more of the problems or disadvantageous features of the prior art mentioned above and/or meets one or more of the above-mentioned criteria that it would be desirable to satisfy. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to semiconductor devices having increased electron and hole mobilities provided by strain-inducing materials, and selective etch methods for forming such semiconductor devices.
The continued miniaturization of silicon metal oxide semiconductor field effect transistors (MOSFETs) has driven the worldwide semiconductor industry. Various showstoppers to continued scaling have been predicated for decades, but a history of innovation has sustained Moore's Law in spite of many challenges. However, there are growing signs today that metal oxide semiconductor transistors are beginning to reach their traditional scaling limits. Since it has become increasingly difficult to improve MOSFETs and therefore complementary metal oxide semiconductor (CMOS) performance through continued scaling, methods for improving performance without scaling have become critical. One approach for doing this is to increase carrier (electron and/or hole) mobilities. | {
"pile_set_name": "USPTO Backgrounds"
} |
The catalytic hydrodesulfurization and hydrofining of hydrocarbon fractions is well known at this stage of the refining art. A great variety of catalysts and processing inovations have also been proposed for use. The primary requisites of the prior art catalysts are that they exhibit a high degree of activity for the hydrogenation reaction to be accomplished so that decomposition of the sulfur compounds in the charge as well as decomposition of nitrogen and/or oxygen compounds will be accomplished. It is also desirable in many of these hydrogenation reactions to minimize the scisson of carbon to carbon bonds resulting in the production of undesired light gases. It is also desirable in some hydrogenation processes to summarize the hydrogenation of some desired constituents comprising the feed being processed. It is known that most of the transitional metal oxides and sulfides which are not poisoned by sulfur, possess desired hydrodesulfurization activity. Some of the best known catalysts suitable for this purpose are cobalt molybdate supported on alumina, nickel-tungsten sulfide on various supports such as alumina and silica-alumina, molybdenum on alumina as well as some vanadium-alumina catalysts alone or promoted with magnesia.
Hydrogenation processes are subject to effecting olefin saturation which not only consumes hydrogen but lowers the octane number of resulting product such as gasoline product. At the present time it is desirable to reduce process economies and in the case of gasoline production it is desirable to maintain process derived gasoline product octane values in conjunction with providing an acceptable sulfur level in the product. This has become increasingly important with the environmental demands for high octane unleaded gasolines satisfying the requirements of the day and near future. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
In general, the disclosed embodiments relate to devices and methods for the introduction and subsequent evaluation of therapeutic agents to biological tissue, and in particular to the simultaneous introduction of a plurality of agents to the tissue in vivo.
2. Description of the Related Art
Numerous cancer-related therapeutics are under phase I or phase II clinical trial and evaluations at any particular time; however, most of them will fail to advance. In fact, it is estimated that more than 90% of cancer-related therapeutics will fail phase I or II clinical trial evaluation. The failure rate in phase III trials is almost 50%, and the cost of new drug development from discovery through phase trials is between $0.8 billion and $1.7 billion and can take between eight and ten years.
In addition, many patients fail to respond even to standard drugs that have been shown to be efficacious. For reasons that are not currently well understood or easily evaluated, individual patients may not respond to standard drug therapy. One significant challenge in the field of oncology is to exclude drug selection for individual patients having cell autonomous resistance to a candidate drug to reduce the risk of unnecessary side effects. A related problem is that excessive systemic concentrations are required for many oncology drug candidates in efforts to achieve a desired concentration at a tumor site, an issue compounded by poor drug penetration in many under-vascularized tumors (Tunggal et al., 1999 Clin. Canc. Res. 5:1583).
Clearly there is a need in the art for improved devices and methods for testing and delivering cancer therapies, including improved methodologies for performing efficient pre-clinical and clinical studies of candidate oncology medicines, and for identifying therapeutics having increased likelihood of benefiting individual subjects. The present invention addresses these and similar needs, and offers other related advantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technical Field
Embodiments of the subject matter disclosed herein generally relate to marine seismic sources able to mitigate ghost effect, more specifically, to devices reducing up-going signals that would otherwise cause ghost signals, which interfere with down-going primary signals.
Discussion of the Background
Exploring sedimentary rock formations under the seafloor of the world's oceans and other water bodies is an ongoing process driven by (yet not limited to) seeking gas and oil reservoirs. Variations of seismic signals' propagation velocity from one formation layer to another cause the signals to be reflected, refracted and/or transmitted. Seismic receivers detect time-dependent pressure variations related to the signals traveling through the explored formations. Seismic data (i.e., detected time-dependent pressure variations) provides information about the structure of the explored formation.
Schematically, a marine seismic data acquisition system includes at least one source and one or more receivers. In the marine environment, a source may include plural individual source elements, such as air-guns or vibrators. The source is activated to generate seismic signals (i.e., time-varying pressure propagating in all directions). The receivers may be housed by streamers towed or placed on the seafloor. The sources and/or the receivers are operated to probe formations under the seafloor in a surveyed area.
The seismic signals propagating downward from the source toward the seafloor are known as primary signals. Some of the seismic signals propagating upward from the source to the water surface are reflected at the water-air interface. These reflected signals, known as ghost signals, are phase-shifted about 180°. As is well known, any signal can be expressed as a sum of waves of different frequencies. Having the same source, the ghost and primary signals have similar frequency spectra. The ghost signals are delayed in time (due to the additional path traveled to and from the water surface) and interfere with the primary signals. The resulting interference signals penetrate the seafloor. Some of the waves of the primary and of the ghost signals interfere constructively, but other waves interfere destructively, yielding so-called notches in the spectra of the interference signals. These notches cause loss of information about the explored formation.
Various data acquisition and processing methods try to mitigate the above-described ghosting phenomenon. The methods may require using additional streamers, firing the individual sources following a certain sequence, having individual sources placed at different depths in the water, and/or using time-consuming mathematical algorithms to take into consideration the ghost effect during data processing. However, all these methods result in an undesirable cost increase.
U.S. Pat. No. 8,561,754 (the content of which is incorporated in its entirety herein by reference) describes a source including a coverage (reflection) plate located between individual source elements of a source sub-array and the water surface. The coverage plate reflects less energy than the water-air surface, thus boosting the energy in the low-frequency band of interest. This solution presents the challenge that such a plate made of cement or steel is heavy (e.g., 500-1,000 kg), requiring additional towing energy.
Accordingly, it would be desirable to develop other devices and methods able to mitigate the ghost effect on the signal penetrating the seafloor into the explored formation. | {
"pile_set_name": "USPTO Backgrounds"
} |
When conducting business activities, companies create and process data. Such data can be used as a basis for making decisions. Business Intelligence (BI) collates and prepares enterprise data. By analyzing the data using BI tools, insights that support a decision-making process within a company may be obtained. Among other things, BI enables the creation of reports about business processes and their results and analysis and interpretation data about customers, suppliers, internal activities, and others.
In business software systems, information is often modeled using multidimensional objects that store one or more dimensions of one or more types of information. Such multidimensional objects may be classified in one or more types according to one or more characteristics or parameters the objects possess. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an automatic surveying system which can electrically read a scale indicated on a graduated face of a level rod, a staff, or a rod, etc., mainly used for leveling.
2. Description of the Related Art
For a leveling operation, various kinds of levels are known, such as a digital level or an electronic level which electrically reads a scale of a level rod. In a digital level, a special-purpose staff coated with special codes is incorporated in a measuring system, so that an image of the special codes formed on the staff is picked-up by a collimating telescope and an electronic image pickup device. Image data of the picked-up image is analyzed by an analyzing device such as a micro computer to measure and indicate a level or distance.
However, in a conventional digital level, if a general-purpose staff (available on the market) is used, it is impossible to analyze or distinguish the scale or numbers indicated on the general-purpose staff. Therefore, the level or distance cannot be automatically read using a staff other than the special-purpose staff. If the special-purpose staff is used, visual survey through an eyepiece of the collimating telescope of the digital level cannot be carried out. | {
"pile_set_name": "USPTO Backgrounds"
} |
Natural language text has been a fundamental means of representing human knowledge and understanding. In an increasingly digital world, there is an exponential growth in readily accessible text. The web contains vast repositories of unstructured text. Many a times, finding relevant information is challenging. Information extraction (IE) is a task of automatically extracting structured information from unstructured and/or semi-structured text. The extracted information may be used in a variety of semantic web applications such as authoring ontologies via web ontology language (OWL), modeling information using resource description framework (RDF), question answering (QA), and so forth.
IE systems typically extract a set of subject-verb-object (SVO) triples for use in knowledge gathering and integration. Thus, the knowledge is represented in the triples format. In most of the cases, the extracting the set of triples involves processing natural language texts by means of natural language processing (NLP). The processing includes extracting tokens (i.e., words or phrases), identifying part of speech (PoS) for each tokens, and chunking PoS tokens. Chunking is typically used in shallow parsing of text and groups PoS tokens into sequences of syntactically related words. These include groups of noun phrase, verb phrase, adjective phrase, and so forth. As will be appreciated, the availability of a larger set of NLP tools such as OpenNLP has made it possible to PoS tag and chunk vasts amount of unstructured text available on the Internet. Additionally, projects like ClueWeb, OpenIE, and Wikipedia provide a corpus of text data which may be used for ontological engineering. A knowledge graph representing an unstructured text source may provide additional logical and inference functionality. Further, it should be noted that the PoS tag data provides better language inference and understanding as compared to a bag of words approach of web scale unstructured data.
There are various IE techniques to extract SVO triples from the unstructured data. For example, DBpedia extractor is employed to generate a set of triples from Wikipedia using annotated field information in Wikipedia. Further, ClauseIE system uses a dependency parser to output a set of word triples. Further, OpenIE system (e.g., REVERB, R2A2, etc.) uses PoS tagger and chunker model followed by rules based engine to output a set of word triples. The OpenNLP chunker model is used to chunk noun phrase (NP), verb phrase (VP) and prepositional phrases (PP) from the PoS tagged text received from the PoS tagger. The chunker data (i.e., chunked text) is then fed to a rule-based relationship extractor and a rule-based argument extractor that employ a set of rules to extract a set of triples. The extracted triples consist of left and right argument phrases from the input sentence and a relation phrase (predicate) from the input sentence, and is in the format (argument 1; relation; argument 2). The relation phrases expresses a relation between the argument phrases. The REVERB uses shallow syntactic processing to identify relation phrases that begin with a verb and occur between the argument phrases.
Thus, the current techniques employs PoS data, chunker data, and parser data as input, and a set of heuristics to determine a set of triples, thereby resulting in an additional overhead on extraction efficiency. Additionally, a rule based engine is typically employed when there is a lack of labeled data. The rule based systems have the drawback that they are designed around the set of heuristics. Further, the set of rules have to be developed and updated manually. | {
"pile_set_name": "USPTO Backgrounds"
} |
The recent product diversification of cosmetics, health and sanitary materials, drugs, and the like have caused an unprecedentedly high demand for development of flavor and/or fragrance substances which are to be used for cosmetics, flavors and/or fragrances for health and sanitary materials, and further flavors and/or fragrances for drugs and which are high in diffusibility, unique in odor quality, highly preferred, high in fixation ability, good in stability, and high in safety. Especially, numerous compounds with musky odor have been developed so far (for example, GOUSEI KOURYOU, KAGAKU TO SHOUHIN CHISHIKI (Synthetic Flavors and/or Fragrances, Chemistry and Product Knowledge)<enlarged and revised edition> (authored by Indo Motoichi), The Chemical Daily Co., Ltd., pp. 391 to 419, the enlarged and revised edition being published on Mar. 22, 2005). These compounds have been developed for the reason that natural musk flavors and/or fragrances are difficult to obtain from the viewpoint of animal protection, and for the purpose of meeting the shifting trend of odor.
Compounds having musky odor reported so far include macrocyclic musks (muscone, civetone, ethylene brassylate, etc.), nitro-musks (Musk xylol, Musk ambrette, Musk ketone, etc.), polycyclic musks (tetralin musk, indane musk, isocoumarin musk, etc.), alicyclic musks (see, for example, Published Japanese Translation of PCT International Application No. 2004-535412, Japanese Patent Application Publication No. 2004-285357, Published Japanese Translation of PCT International Application No. 2006-508153, Published Japanese Translation of PCT International Application No. 2006-508175, Published Japanese Translation of PCT International Application No. 2007-536285, and Japanese Patent Application Publication No. 2011-37761), and the like.
Meanwhile, some compounds having a cyclopropane ring are known to be useful as raw materials for compound flavors and/or fragrances. For example, [(1S*,2R*)-1-methyl-2-[(R*)-5-methyl-4-hexen-2-yl]cyclopropyl]methanol has a rose-like odor with a floral note similar to those of citrus and 3-methyl-5-phenyl-1-pentanol (International Patent Application Publication No. WO2012/160189). In addition, 1-methyl-2-[[(1R)-2,2,3-trimethylcyclopentyl]methyl]cyclopropyl]methanol has an sandalwood-like odor with a natural nuance (United States Patent Application Publication No. 2010/069508) In addition, (1S*,2S*)-2-((R*)-1-phenylethyl)cyclopropylmethanol and the like are known as compounds having a cyclopropane ring and a benzene ring, although the odors thereof are not described (Synthesis (1999), No. 6, pp. 1063-1075). | {
"pile_set_name": "USPTO Backgrounds"
} |
As wireless access terminals and wireless communication networks continue to evolve, there are now several concurrently deployed radio access technologies (RATs). In many instances, individual RATs may also have multiple concurrently deployed versions. Newer RATs and newer RAT versions generally offer benefits, such as faster data transfer, compared to prior RATs and prior RAT versions. Many modern access terminals have a multi-mode capability, and can connect to a network using multiple RATs and/or multiple versions of one or more RATs. Likewise, many radio access networks support multiple RATs and/or multiple versions of one or more RATs. As such, when an access terminal establishes a session with a radio access network, the access terminal and radio access network can negotiate a session personality defining one or more RAT versions (e.g., one or more particular RATs and/or one or more particular versions thereof) to use during the session.
Wireless operators typically have roaming agreements with operators in different countries to enable accessibility of voice, data and other supplementary services for their subscribers when they travel internationally. Roaming agreements can be between operators that use the same underlying RAT or between operators using different underlying RATs. For example, a Third Generation Partnership Project 2 (3GPP2) (CDMA2000 and HRPD) operator using CDMA2000 and/or High Rate Packet Data (HRPD) RATs can have roaming relationships with other 3GPP2 operators and/or with a Third Generation Partnership Project (3GPP) operator that can use Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), and/or Long Term Evolution (LTE) RATs.
Cross technology agreements often require that an access terminal support multiple technologies. Terminals that support multiple technologies are referred to as multi-mode devices. However, a multi-mode device is typically not inherently entitled to service in any country to which a user travels. Instead, a roaming agreement between the operator of the terminal's home network and the operator of the roaming access network is typically required.
If the roaming access network and an access terminal negotiate a session personality allowing use of a RAT version that is not covered in the roaming agreement between the operator of the roaming access network and the operator of the home network of the access terminal, several problems can result. For example, in some instances, if a RAT version that is not covered by the roaming agreement is a preferred RAT version that is supported by both the access terminal and the roaming access network, the access terminal may become stuck in a loop in which the access terminal and roaming access network may negotiate to use the RAT version in a session and then experience session failure due to lack of support for the RAT version in the roaming agreement. As another example, in some instances, if an access terminal and roaming access network negotiate a session personality in which a first RAT version, which is not covered by the roaming agreement, and which provides faster data rates than a second RAT version that is covered by the roaming agreement, the roaming access network may essentially give away additional bandwidth and/or other services for which the roaming access network may not be compensated by the home network. | {
"pile_set_name": "USPTO Backgrounds"
} |
In semiconductor packaging, an integrated circuit (IC) may be placed on a package. Discrete inductors may be placed next to the die on the package and electrically connected to the IC. Inductors may provide various functions, such as, for example, energy storage, selective filtering, and noise reduction. In general, the performance of an inductor may improve with increased inductance (L), increased Q factor (inductor reactance over resistance), and reduced resistance (R). | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is concerned with moving means for use in a glassware manufacturing machine for moving an operative member such as a funnel, a baffle or a blowhead.
In a glassware manufacturing machine of the so-called "individual section" type, it is necessary to move operative members between out-of-the-way positions thereof out of alignment with an opening of a cavity of a mould of the machine and operative positions thereof in which the operative member is in alignment with the opening of the cavity and in close proximity thereto. For example, each section of the machine comprises a blank mould in which parisons are formed from gobs of molten glass by either a pressing or a blowing operation and it is necessary to move a funnel into alignment with the mould opening so that the funnel can guide a gob into the mould cavity. The funnel is then moved to an out-of-the-way position thereof to allow a baffle to close the mould cavity opening. The baffle is moved in a similar manner to the funnel in relation to the blank mould and a blowhead through which air is blown into the mould is moved in a similar manner but in relation to a finish mould of the section in which parisons transferred to the finish mould from the blank mould are blown into articles of glassware.
Conventional moving means for moving the funnel, baffle and blowhead of a machine of the individual section type operates in a similar manner in each case. The moving means comprises a vertically-disposed piston and cylinder assembly having a piston with two integral piston rods. One piston rod extends vertically-upwards providing a vertically-extending shaft on which a support for the operative member is mounted for movement with the shaft. The other piston rod extends vertically downwards and carries a cam follower which engages a cam track shaped so that, during part of the movement of the piston along the cylinder, it is caused to turn so that the first-mentioned piston rod turns about a vertical longitudinal axis thereof. The support for the operative member comprises an arm which extends horizontally and on which the operative member is mounted and clamping means by which the support is clamped to the vertically-extending shaft so that the support moves with the shaft. The arrangement is, thus, such that movement of the piston causes the upwardly-extending piston rod to move vertically and to turn about its longitudinal axis so that the operative member makes a movement which has a rotary component about a vertical axis and a linear component in a vertical direction, the linear component moves the operative member towards or away from the opening of the mould cavity while the rotary component moves it into or out of alignment with the opening.
The vertically-extending shaft of the moving means for an operative member of a conventional machine is cylindrical and the clamping means acts to force two semi-circular gripping surfaces arranged on opposite sides of the shaft into gripping engagement with the shaft. This arrangement enables the support to be clamped to the shaft in any orientation but this is undesirable as the arm must extend away from the shaft in precisely the correct orientation if the operative member is to align correctly with the mould cavity opening. Thus, when an operative member has to be changed either because of wear or because the machine is being changed to manufacture a different article, considerable time is spent in correctly orientating the support relative to the shaft before clamping it thereto. This time causes lost production of considerable proportions especially when it is recalled that, in each section, this problem occurs with the baffle, the blowhead and the funnel. A typical machine has 6 sections so that the problem occurs 18 times when a job change is made and machines with 8 or 10 sections are not uncommon.
It is an object of the present invention to provide moving means of the type described in which the support can be more rapidly orientated relative to the shaft than in the conventional moving means described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to field effect transistors (FETs), and in particular, to such transistors formed in wide bandgap semiconductor materials. Further, this invention relates to monolithic and hybrid integrated circuits comprising low-voltage control circuitry and to power switches built using the above transistors.
2. Background of the Technology
Wide bandgap semiconductor materials (with EG>2 eV) such as silicon carbide (SiC) or Group III nitride compound semiconductors (e.g., gallium nitride or GaN) are very attractive for use in high-power, high-temperature, and/or radiation resistant electronics. Monolithic or hybrid integration of a power
transistor and control circuitry in a single or multi-chip wide bandgap power semiconductor module is highly desirable for such applications in order to improve the efficiency and reliability of the system.
SiC smart power technology has been a topic of discussion in recent years, but has experienced limited scientific investigation. Proposed solutions have been met with skepticism relating to the operation of both the power switch and control circuitry.
Because of the fundamental differences in material properties and processing technologies, traditional Si or GaAs integrated circuit (IC) technologies such as Complementary Metal-Oxide-Semiconductor (CMOS) or Direct Coupled FET Logic (DCFL) cannot in most cases be easily transferred to wide bandgap semiconductors. Several attempts at fabricating SiC NMOS and CMOS digital and analog ICs have been reported in the last decade (e.g., [1], [2]). A monolithic CMOS integrated device in SiC and method of fabricating the same is disclosed in U.S. Pat. No. 6,344,663, [3]. Moreover, recent development in SiC Lateral DMOS Field-Effect Transistors (LDMOSFETs) (e.g., [4]-[5]) theoretically allow for the monolithic integration of MOSFET-based control circuitry and power switches for use in Smart Power electronics. Various issues, however, limit the use of MOSFET-based SiC integrated circuits in the applications where high-temperature and/or radiation tolerance is required. The first such issue is on-state insulator reliability as a result of a much smaller conduction band offset of SiC to SiO2 as compared to that of silicon. This issue becomes even more significant at high temperatures and in extreme radiation environments. Other issues include: low inversion channel mobility due to high interface state density at the SiC/SiO2 interface and high fixed charge density in the insulator; and significant threshold voltage shift with temperature due to ionization of interface states.
Another transistor candidate for use in SiC Smart Power electronics, a SiC bipolar junction transistor (BJT), also suffers from interface-related issues such as high recombination velocity on the surface between the emitter and the base resulting in low current gain and high control losses.
Another transistor candidate for use in SiC Smart Power electronics is a Metal Semiconductor Field-Effect Transistor (MESFET). Despite the fact the SiC MESFET monolithic microwave integrated circuits (MMICs) received significant development in the last decade (e.g., [6]), there have been few published attempts to build SiC MESFET logic and analog circuits (e.g., [7]).
An alternative to the MOSFET and MESFET approaches is the use of lateral JFET-based integrated circuits implemented in either complementary (n-type and p-type channels as disclosed in U.S. Pat. No. 6,503,782 [8]) or enhanced-depletion (n-type channels) forms. SiC JFETs have proven to be radiation tolerant while demonstrating very insignificant threshold voltage shift with temperature. Encouraging results in the development of high-temperature normally-on power vertical junction field-effect transistors (VJFETs) have been published in recent years (e.g., [9]). However, despite their excellent current-conduction and voltage-blocking capabilities, a major deficiency of these transistors is that they are “normally-on” devices. On the system level, this often requires an additional (negative) supply voltage and short circuit protection.
Several attempts to build normally-off SiC high-voltage VJFET switches have been reported recently. Typically, these devices comprise both lateral and vertical channel regions (e.g., [10]-[12]). These devices, however, exhibit a drastic contradiction between the device blocking capabilities and the specific on-resistance. For example, a VJFET with a 75 μm, 7×1014 cm−3 n-type drift region was able to block above 5.5 kV at zero gate-to-source voltage [13]. At the same time, this device demonstrated a specific on-resistance (Rsp-on) of more then 200 mΩ*cm3. The intrinsic resistance of its drift layer estimated from its thickness and doping was slightly above 60 mΩ*cm3, with the remainder of the on-resistance was contributed by the channel regions.
In order to reduce the specific on-resistance of SiC power VJFETs, these devices can be driven in bipolar mode by applying high positive gate-to-source voltage. For example, the device discussed above and disclosed in [13] demonstrated an Rsp-on of 66.7 mΩ*cm3 when a gate-to-source bias of 5 V was applied [14]. This approach, however, can lead to significant power losses due to high gate current.
Another approach is to use special circuits and methods for controlling normally-on devices so that they can be operated in normally-off mode. A cascode connection of a low-voltage control JFET with a high-voltage JFET wherein the drain of the control JFET is connected to the source of the high-voltage device and the gate of high-voltage JFET is connected to the source of the control JFET has been disclosed in U.S. Pat. No. 3,767,946 [15]. A compound field-effect transistor monolithically implementing such a cascode connection has also been disclosed in U.S. Pat. No. 4,107,725 [16]. Similar types of cascode circuits, where low-voltage normally-off devices control high-voltage normally-on devices are disclosed in U.S. Pat. No. 4,663,547 [17]. More recently, a normally-on SiC VJFET controlled by an Si MOSFET in the above configuration has been reported by several groups (e.g., [18]). This integrated power switch has demonstrated excellent voltage-blocking and current-conducting capabilities, as well as high switching speed. However, the use of silicon MOSFETs for the control of power in normally-on SiC VJFETs significantly limits both the temperature range and the radiation tolerance of the cascode. Accordingly, there is still a need for wide bandgap normally-off power switching device in general, and in particular, for such a power switch integrated with control circuitry built in wide bandgap semiconductors. | {
"pile_set_name": "USPTO Backgrounds"
} |
Turbochargers are a type of forced induction system for internal combustion engines which use the exhaust flow, entering the turbine housing from the engine exhaust manifold, to drive a turbine wheel, which is located in the turbine housing. To control the energy to the turbine wheel, and thus the boost output of the turbocharger, which, in turn, affects the power output of the engine, a variable geometry configuration of the turbine stage is used to control said turbine energy. In the case of a VTG, an actuator is used to control the turbine power.
While the highest exhaust temperature of a gasoline engine is up to 1050° C., the exhaust temperature of a large Diesel engine is typically up to 760° C. With increasing demands for improved emissions, engine combustion chamber temperatures not only run hotter, but aerodynamic demands, such as lower hood lines and lower engine compartment airflow, combine to produce an increasingly thermally hostile environment for engine components, internal and external.
With the requirement for ever tighter emissions, electronic controls have replaced more thermally accepting control-force mediums such as vacuum, hydraulic and air pressure. Electronics used in automotive applications are not particularly tolerant of temperatures above 100° C. Printed Circuit Boards (PCBs) have to be specially manufactured to even meet the 100° C. threshold. Of the components within a VTG actuator enclosure, gears, shafts, electric motors and sensors, the PCBs are the most intolerant of excess temperature.
On VTG or wastegate electronically controlled turbochargers, the actuator has to be located in close proximity to the turbocharger because the actuator mechanically controls valves or vanes in the turbine stage of the turbocharger. This close proximity is driven by the requirement of the article being driven (vanes or valves) and is exacerbated by the requirement for a tight envelope surrounding the engine.
Electronic components are often air or water-cooled to protect the thermally sensitive components. Sometimes they are mounted remotely such as on the cabin firewall or even under the front seats of the vehicle in the quest for a more thermally and vibration friendly environment. Turbocharger electronic actuators however must be mounted either on, or close to, the turbine housing. Sometimes the turbocharger itself incorporates a water-cooled bearing housing which lessens the electronic actuator ambient thermal issues. The electronic VTG actuator, which is associated with the subject of this invention, is typically mounted directly to the turbine housing so that the controls can be assembled, daturned, and validated at the factory where the turbocharger is assembled, to neutralize manufacturing variances.
A typical electronic actuator (10) is shown in FIGS. 1 and 2 mounted directly to a typical turbocharger housing (1) via a cast iron casting bracket (2) which is part of the turbine housing assembly. A signal from an engine controller unit (ECU) commands rotation of an actuator shaft (11) which rotates an actuator drive arm (12). Connected by a pin, bolt, or stud (14) to the actuator drive arm (12) is a linkage. The linkage, depicted in FIG. 6, typically has a shaft (16) mechanically attached to a pair of rod-ends which are free to rotate a few degrees about the control linkage centerline, but are constrained longitudinally. This arrangement ensures centerline forces on the shaft, which minimizes bending loads on the linkage The pin, bolt or stud (14) is mechanically attached to a bore (9) in the ball (8). The ball (8) is constrained but free to rotate in the head (3) of the rod-end.
In FIG. 6, the driving rod-end (15f) (hereinafter “f” refers to female connector and “m” refers to male connector) is attached to the actuator end of the shaft (16), and the driven rod-end (7f) is attached to the VTG end of the shaft (16). The driven rod-end (7f) is connected by a pin, bolt or stud (6) to the driven arm (4) of the VTG. The driven arm is connected such that any rotation of the driven arm (4) is transferred to a shaft in the VTG upon which the driven arm is attached. All movement commanded by the engine ECU to the VTG actuator (10) results in movement of the driving arm, connecting linkage and driven arm to the shaft in the VTG, which moves the VTG vanes to control the exhaust flow to a turbine wheel.
The inventor discovered, while performing unrelated testing, that a Diesel engine, at the test condition, had an exhaust temperature of 650° C., which produced a turbine housing outer skin temperature in excess of 435° C. The VTG vanes are wetted by the exhaust flow so they see the exhaust temperature (which, for the engine being tested had a design a maximum of 760° C.) directly impinging on the surfaces of the vanes. Some heat energy is lost in conduction through the internal linkages to the VTG shaft. The VTG shaft is however mechanically connected to the VTG driven arm (4) with a large contact surface area such that thermal transference via conductance is, unfortunately, efficient. The tests showed that the driven rod end (7f) (VTG end rod-end) on the linkage had a temperature of 150° C. The rod-ends (15 and 7) and shafts (16) are typically steel with a bronze or plastic bearing surface in the ball joint so that much of the heat from the VTG shaft is transferred by conductance via the drive pin (14) and actuator drive arm (12) to the actuator shaft (11). The tests indicated that a temperature of 150° C. at the VTG driven arm (4) resulted in a temperature of 121.5° C. at the actuator drive arm (12), with the standard linkage.
A failure in the electronics in the actuator is a failure of the turbocharger. To protect the sensitive electronics in the actuator (10), many methods are employed: Some VTG installations have water cooled actuators, which is a relatively complex, potentially unreliable, and expensive solution. Some VTG installations have water cooled bearing housings, which is a relatively common, albeit expensive solution, but which does improve the thermal conditions inside and around the turbo. Some VTG installations have actuators cooled by forced air circulation and shielding, which is difficult to execute, and the shielding is difficult to maintain Some VTG installations have the actuator removed relatively far from the VTG and connected to the VTG via a long connecting rod. This causes problems in actuator shaft stiffness and damping VTG casting issues due to the length of the bracket design of the casting envelope, and, above all, moving the actuator away from the VTG is architecturally challenging.
A typical control linkage configuration is determined by the diameter of the drive pin (14), or bore in the ball joint, which typically is paired with a male (24), or female (25) thread in the barrel or neck of the rod-end. For example, the control linkage, depicted in FIG. 6 has a 6 mm drive pin (14) and a shaft (16) 6 mm in diameter. This can cause durability problems because, while the rod end itself is capable of transmitting static centerline loads, the control linkage shaft can bend, or vibrate in resonance with an excitation from the engine. Either of these problems can cause premature wear-out of the ball joints in the rod end.
So it is clear that there is a need for a cost-effective solution for retarding heat energy transfer from the turbine housing through the control linkage to the actuator in such a manner that it does not compromise the design and durability of the engine or components. It would be desirable to cure at the same time the problem of control linkage shaft bending or vibration. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a device for determining coordinates of a point of an object in a reference system of coordinates and the orientation of the object in the space in a measuring position assumed by the object, said object being adapted to be moved from a start position having known coordinates and orientation to said measuring position, the device comprising means adapted to detect parameters associated with said movement and members adapted to calculate said coordinates and orientation of the object in the measuring position from information from the detecting means about said parameters and about the start position, and a method according to the preamble of the appended independent method claim.
The invention relates in particular, but not exclusively, to such devices used for programming of robots, such as welding robots or robots for spray application of paint, which for example xe2x80x9cworkxe2x80x9d with vehicle bodies. This particular field of use of such a device will hereinafter be described for illuminating the problem upon which the present invention is based.
The object of the device is usually constituted by a hand tool being moved by hand by a person between different positions along a work piece, such as a vehicle body, for storing the coordinates and the direction of a tool of the robot in these positions. The control unit for the robot interpolates successively the different positions stored for obtaining a movement of path of the tool of the robot.
Said known coordinates in one position, such as a start position, are usually obtained by the fact that one or more cameras are watching different optical points of the object placed in this position, and the real coordinates and orientation of the object in said start position are determined through the information so obtained from the camera or the cameras. However, it is sometimes necessary to move the object to parts along the path of movement of the tool of the robot, which are hidden by for example the object with which the robot shall xe2x80x9cworkxe2x80x9d, such as a vehicle body. This if for example the case with different positions being located inside or in any corner of the vehicle body. The object is in such cases moved as mentioned from the start position to the measuring position hidden at the same time as parameters associated with the movement are detected and said calculation of coordinates and orientation of the object in the measuring position may then be carried out from information from the detecting means about these parameters and about the start position.
Until now this has been made by using the robot itself for storing such positions and by measuring the rotation of the different robot arms about their axes. However, this is a very cumbersome and cost demanding way for calculating coordinates and orientation in said measuring position.
It is already known through for example DE 19626459-A1 and BE-1010211-A6 how an object may be moved in the way mentioned above for storing the movement of path of a robot between different positions.
The object of the present invention is to provide a device and a method of the type defined in the introduction, which enables a considerably easier determination of coordinates and orientation of a said measuring position than has been possible before.
This object is according to the invention obtained by the fact that in such a device said means comprise accelerometers arranged on the object and adapted to detect accelerations and retardations of the object during said movement, and that the calculating member is adapted to calculate said coordinates and orientation of the object in the measuring position on the basis of information from the accelerometers.
The coordinates and the orientation of the object in said measuring position may hereby be determined with a high accuracy through very simple means.
According to a preferred embodiment of the invention said means comprise six accelerometers, three adapted to detect acceleration and retardation for rotation in three planes being orthogonal with respect to each other and three adapted for detection of acceleration and retardation of the object in the direction of the perpendicular to one of said planes each. By arranging six such accelerometers all the components of the movement of the object at the movement between the start position and the measuring position may be reliably detected.
According to another preferred embodiment of the invention the object is intended to be moved from said measuring position to a third position having known coordinates and orientation of the object, the accelerometers are adapted to detect accelerations and retardations during this movement, the calculating member is adapted to calculate the coordinates and the orientation of the object in said third position from information from the accelerometers, a member is adapted to compare the values of the coordinates and orientation so calculated with the real ones, and the calculating member is adapted to calculate new coordinates and orientation for the object in said measuring position from the acceleration and retardation data detected during the first movement possibly corrected in accordance with deviations of coordinates and orientation established at said comparison. It is through this comparison possible to increase the accuracy further when determining the coordinates and the orientation of the object in said measuring position, thanks to the compensating for possible errors in the measuring of the accelerometers made possible here.
According to another preferred embodiment of the invention the device comprises a member adapted to measure the time needed for the movement of the object between the start position and the measuring position and between the measuring position and the third position and the calculating member is adapted to carry out an application of a weight factor on the correction as a consequence of said deviations depending upon the relations between the times needed for the two movements. The compensation may in this way get even better and the reliability of the values calculated for the coordinates and the orientation in the measuring position may be increased further.
According to another preferred embodiment of the invention the object is adapted to be moved between different positions along a path of movement desired for a part of a robot for storing coordinates and orientation of said part of the robot in these positions. A movement of path for a robot may by this be stored in a rapid and efficient way and with a high accuracy also for positions not allowing optical registration of the position of such an object. It is then advantageous that the calculating member is adapted to calculate coordinates for a centre point of a tool of a robot in said measuring position, in which this centre point for example in the case of a robot for spray application of paint corresponds to the desired centre hit point for the paint beam of the nozzle. In the case of a robot for spot welding the measuring position corresponds to the desired position for the tip of the welding electrode of the robot.
Another preferred embodiment of the invention is exactly related to that said object is adapted to be moved to bear against an object, which a robot is intended to treat while assuming said measuring position, which makes it easy to rapidly and with accuracy obtain exactly the measuring position asked for.
According to another preferred embodiment of the invention one or more cameras are arranged to watch the object and members are arranged to calculate said known coordinates and orientation on the basis of information from the camera or the cameras, and said measuring position is located outside the field of view for said camera or cameras. The device according to the invention is in exactly such a case of particular use, i.e. when an optical determination of different positions of the object is to be carried out and some of these positions are hidden and by that do not allow any optical determination.
The invention also relates to methods for determining coordinates of the point of an object in a reference system of coordinates and the orientation of the object in the space in a measuring position assumed by the object according to the appended method claims.
The advantages of these methods appear with no doubt from the discussion above of the device according to the invention and the preferred embodiments thereof.
Further advantages as well as advantageous features of the invention appear from the following description and the other dependent claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
In this process, the tubular film material is usually pulled over the piece item stack without any tension. Afterwards, heat is applied onto the film material, wherein molecular orientations within the film material relax and the film is put in close contact with the contour of the piece item stack. However, the tubular film can equally be stretched elastically to an excessive size and put itself elastically in contact with the contour of the piece item stack during fitting without a separate heat input being required. The device according to the invention and the respective method according to the invention are therefore suitable both for shrinking the tubular film as well as for stretching of said tubular film.
During change of the tubular film stock in the device, the lagging end of the consumed tubular film stock is connected to the leading end of the new tubular film stock. Connected to form a unit in this way, the films of the new and the old tubular film stock are conveyed and fed in the direction onto the cutting device. Said cutting device is operated in the previously known method in a way that the connection area between the leading and the lagging end is separated by the cutting device. Then, it falls into an input area for the piece item stack due to gravity. This separated length section will then have the leading and the lagging end. These two ends are pulled by conveyer rollers of the conveyor device prior to separation with the cutting device so that the new film material does not have to be inserted there. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention relates to a bar-code, and more particularly to a two-dimensional bar code, a method for encoding data into a two-dimensional bar code symbol, and a method for decoding the two-dimensional bar code symbol into a predetermined set of data.
2. Description of Related Arts
A conventional two-dimensional bar code usually has three portions: characteristic pattern portion, format information portion and data codewords portion. The characteristic pattern portion directs image recognition algorithms to recognize and orient the bar code symbol. The format information portion stores some parameters related to the symbol format and data error correction. The data codewords portion stores data encoded after error correction. The bar code symbol cannot be recognized if its characteristic pattern portion and format information portion are damaged to some extent. In the bar code symbol these two portions are vulnerable areas that reduce the reliability of the two-dimensional bar code.
Referring to FIG. 1 of the drawings, a two dimensional bar code ‘PDF417’ is illustrated. Those bars and spaces of varying widths at both left and right ends of the symbol are its characteristic pattern portions 10, and the regions close to the characteristic pattern portions 10 are its format information portions 20. If the characteristic pattern portions 10 and the format information portions 20 are damaged to a certain extent, the symbol cannot be identified properly.
Referring to FIG. 2 of the drawings, another two-dimensional bar code ‘QR’ is illustrated. Its characteristic pattern portions 30 are at the top left corner, at the top right corner and at the bottom left corner. In the vicinity of the characteristic pattern portions 30, there are three small regions marked out with dashed lines which are the format information portions 40. If the characteristic pattern portions 30 and the format information portions 40 are damaged to a certain extent, the symbol cannot be recognized properly.
From past experience, one skilled in the art would obviously come to a conclusion that a major drawback of the above-mentioned conventional two-dimensional bar codes is that their characteristic pattern portion and format information portion are incapable of distinctively and individually identifiable, vulnerable and generally have little resistance of anti-deformation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Secondary bobbins of this kind are known, for example from European Patent Application EP-A 0 375 502.
In internal combustion engines with controlled ignition, the combustion of the gaseous mixture in the cylinder is induced by the spark that is produced between the electrodes of a spark plug.
In order to produce this spark, the terminals of the spark plug are connected to the ends of the secondary (high-voltage) winding of a transformer, such as an ignition coil, whose primary winding is connected to a voltage source by way of a switch, such as a transistor.
With this switch closed, an electric current circulates in the primary winding. If at a given moment the switch is then opened, an abrupt overvoltage occurs in the primary winding, which by induction generates a voltage spike within the secondary winding. Once this voltage reaches a sufficient value, the spark is produced, causing the combustible mixture to ignite.
The voltage at the terminals of the secondary winding may be as high as several tens of thousands of volts. The aforementioned fins, by defining separate winding compartments, make it possible to limit the risk of a spark developing between two turns of this winding. In fact, the voltage between the starting turn and the ending turn of the same compartment is limited to several thousand volts, in the typical case where the number of compartments is on the order of about 10.
Nevertheless, the beginning and end of a compartment is formed by a slot in which each of the fins define this compartment, and so the voltage between two turns located facing one another on either side of this slot in two adjacent compartments still remains on the order of several thousand volts, so that the risks that a spark may develop are nevertheless not completely averted.
The aforementioned document proposes to overcome this disadvantage by providing insulating compartments between the winding compartments in such a way as to increase the distance between the turns of two successive winding compartments.
Such an arrangement nevertheless has the disadvantage of increasing the axial size of the secondary bobbin, and consequently of the ignition coil that includes it. | {
"pile_set_name": "USPTO Backgrounds"
} |
Data transmitting and receiving systems and methods are increasingly used to transmit increasing amounts of data at increasingly higher speeds. In data transmitting/receiving systems and methods, it may be desirable to encode (or code) the data to facilitate transmission and to later decode the encoded data that is received. One type of coding that is widely used is DC balance coding. As is well known to those having skill in the art, DC balance coding is a technique for coding data to provide enough state changes for reasonable clock recovery while achieving DC balance and bounded disparity among adjacent data symbols.
One widely used form of DC balance coding is referred to as “8B/10B coding”. As the scheme name suggests, in 8B/10B encoding, eight bits of data are transmitted as a 10-bit entity, often called a symbol or character. The least significant five bits of data are encoded into a 6-bit group, and the most significant three bits are encoded into a 4-bit group. These code groups are concatenated together to form the 10-bit symbol that is transmitted. Because 8B/10B encoding uses 10-bit symbols to encode 8-bit words, each of the 256 possible 8-bit words can be encoded in two different ways, one the bitwise inverse of the other. Using these alternative encodings, the scheme is able to effect long term DC balance. The 8B/10B encoding may be used in IEEE 1394b, Gigabit Ethernet, audio storage devices such as digital audio tape, and other widely used interfaces/devices.
8B/10B DC balance encoding is described in U.S. Pat. No. 4,486,739 to Franaszek et al., entitled “Byte Oriented DC Balanced (0,4) 8B/10B Partitioned Block Transmission Code”. As stated in the Abstract of the Franaszek et al. patent, a binary DC balanced code and an encoder circuit for effecting same is described, which translates an eight bit byte of information into ten binary digits for transmission over electromagnetic or optical transmission lines subject to timing and low frequency constraints. The significance of this code is that it combines a low circuit count for implementation with excellent performance near the theoretical limits, when measured with the commonly accepted criteria. The 8B/10B coder is partitioned into a 5B/6B plus a 3B/4B coder. The input code points are assigned to the output code points so the number of bit changes required for translation is minimized and can be grouped into a few classes.
Another example of 8B/10B encoding is described in U.S. Pat. No. 5,387,911 to Gleichert et al., entitled “Method and Apparatus for Transmitting and Receiving Both 8B/10B Code and 10B/12B Code in a Switchable 8B/10B Transmitter and Receiver”. As stated in the Abstract of Gleichert et al., a method and apparatus are provided for using a modified 8B/10B system for transmitting 10-bit wide data packets in 12-bit code in which 5B/6B encoder/decoders separate the 10-bit wide data into two 5-bit nibbles. Unique special codes are provided which are not capable of aliasing with other 12-bit code words to provide reliable byte boundaries.
FIG. 1 is a reproduction of FIG. 1 of U.S. Pat. No. 5,387,911 to Gleichert et al. As stated in Gleichert et al., at the top of Column 6, FIG. 1 is a block diagram of a prior art 8B wide architecture of both an 8B/10B transmitter 1 and receiver 2. A latch 4 and encoder 5 of transmitter 1 are configured to accept only 8-bit wide raw data and the encoder 5 was configured to convert the 8-bit raw data into 10-bit parallel code, which is then converted to serial data in shifter 7 and sent over transmission link 8 to the receiver 2. The receiver is also constrained to 8-bit architecture after the decoding of the 10-bit code in decoder 11.
FIG. 2A is a circuit diagram of a conventional data transmitting/receiving system, also referred to as an interface system 10, which includes a transmitter unit 20 and a receiver unit 30. Data bits DQ1 . . . DQN are applied to drivers D1-DN, to drive a plurality of signal or transmission lines Line1-LineN. At the receiver unit 30, a plurality of input buffers A1-AN may include termination resistors R1-RN that may be connected to a power supply voltage VDD. A reference voltage may also be applied to the input buffers A1-AN. The reference voltage may be generated by one or more resistors that are tied between the power supply voltage VDD and a ground voltage VSS, or using other conventional techniques. Internal power supply voltages and ground voltages are designated in FIG. 2A by VDDQ and VSSQ, respectively.
As also shown in FIG. 2A, parasitic inductances L1-L4 may exist in the interface system 10. These and/or other parasitic inductances may create Simultaneous Switching Noise (SSN) by creating a current path, as shown by the dotted line labeled IDQ ‘0’ in FIG. 2A, when transmitting a logic level ZERO. Thus, as shown in FIG. 2A, the drivers D1-DN are inverters. When the data is ONE, there may be no parasitic current path created. However, when the data is ZERO, a current path IDQ ‘0’ is created through the transmission lines Line1-LineN. According to the data level, the total current consumption of the drivers may thereby vary, which can create SSN. The parasitic inductances L1-L4 cause the noise (jitter) and may reduce the voltage margin and/or time margin of the data signal. The noise may also degrade the data frequency and/or system performance. SSN may also be created in an interface 10′ of FIG. 2B when the terminating resistors R1-RN of the receiver unit 30′ are tied to ground (VSS), when the data is ONE, as shown by the dotted line IDQ ‘1’. Since the SSN may be caused by parasitic inductors, the SSN may also be referred to as L(di/dt) Noise.
DC balance coding can reduce the above-described SSN. In particular, as shown in FIG. 3A, a large current variation in VSSQ may be caused during data transmission of 8-bit parallel data that is not DC balance coded. For example, as shown in FIG. 3A, data words D1-D4 of data bits DQ1-DQ8 are serially transmitted in what may also be referred to as a read/write operation. As between any two adjacent words, the difference in data bits may be up to eight (a transition from all ZEROs to all ONEs, or vice versa), as shown by the current variations of 8IDQ in FIG. 3A. These current variations can create large SSN or L(di/dt) Noise as shown in FIG. 3A. It will be understood by those having skill in the art that, in FIG. 3A, the terminology XIDQ, where X=0 . . . 8, indicates the numbers of ZEROs or ONEs in the 8-bit word. Thus, 3IDQ indicates three ZEROs and five ONEs (or vice versa), and 810Q indicates eight ZEROs and no ONEs (or vice versa).
FIG. 3B illustrates DC balance coding using 8B/10B coding schemes, wherein the minimum number of ONEs in a given word is 4, and the maximum number of ONEs in a given word is 6. Thus, as shown in FIG. 3B, an 8B/10B DC balance coded word includes 10 bits, where the number of ONEs is 4, 5 or 6, and the corresponding number of ZEROs is 6, 5 or 4. By reducing the current variation between adjacent words of 8B/10B DC balance coded data, L(di/dt) noise or SSN may be reduced.
Accordingly, DC balance encoding, such as 8B/10B DC balance encoding, can reduce simultaneous switching noise that is caused by parasitic inductances, to thereby allow high speed transmission. Nonetheless, as transmission speeds continue to increase, it may be desirable to further reduce simultaneous switching noise, even when using DC balance coding systems and methods, such as 8B/10B DC balance coding systems and methods. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a game machine, and more particularly, to a position sensor for sensing the position of a self-propelled member employed in a racing game machine or the like. Further, the present invention enables not only simplification of a position sensor which senses the every-changing position of a self-propelled member on a traveling field (i.e., a two-dimensional plane) for controlling trackless travel of the self-propelled member through feedback, but also simplification of computation processing for sensing position information.
A game machine for causing miniatures to travel in cooperation with traveling of self-propelled members includes a racing game machine for causing miniatures to race with each other, a play game machine for causing a miniature to perform various actions, and the like. Of the game machines, some employ a self-propelled member as a miniature; some employ a two-storied structure; and some guide a miniature through use of a self-propelled member. In terms of a travel control method, some game systems control a self-propelled member which is essentially to travel in a trackless manner, through feedback (as described in; e.g., Japanese Patent No. 2861978), and some game systems control a member which is essentially to travel while tracking down a guide line, so as not to deviate from the guide line through feedback (as described in; e.g., Japanese Patent Publication No. 11-244517A).
A game machine which causes a self-propelled member to travel in a trackless manner controls a traveling path of a self-propelled member and an every-changing travel speed of the same in accordance with a program through feedback. The every-changing position of the self-propelled member on a traveling field (two-dimensional plane) is detected, and the traveling path and speed of the self-propelled member are feedback-controlled on the basis of position information.
There are various techniques for controlling trackless travel of a member in a game machine. The outline of a typical position sensor for effecting feedback control is shown in FIG. 1. In the position sensor shown in FIG. 1, X-position sensing lines 2a and Y-position sensing lines 2b are densely provided within the traveling field 1. The X-position sensing lines 2a are connected to an X-position retriever 3a, and the Y-position sensing lines 2b are connected to a Y-position retriever 3b. In this way, a self-propelled member travels over the traveling field 1 within which the X-position sensing lines 2a and the Y-position sensing lines 2b are arranged. The self-propelled member emits a unique signal from its transmitter. The position sensing lines 2a and 2b receive the unique signal and send the thus-received signal to the X-axis and Y-position retrievers 3a and 3b. The received signal is further transmitted to a position detector 4, where the X-coordinate position and Y-coordinate position of the self-propelled member are detected by the position detector 4. The position detecting signal is transmitted to a microcomputer 5. Since the self-propelled member emits a unique signal at predetermined time intervals, the traveling position of the self-propelled member is detected every time the unique signal is emitted.
In the case of a game machine which senses the position of a self-propelled member through use of the position sensing lines 2a and 2b, since the position sensing lines 2a and 2b are arranged within the traveling field 1 densely, manufacturing costs of the game machine are expensive. Laborious operations are required for laying sensing lines within a traveling field. Further, there may arise a case where malfunction may arise for reasons of an open circuit or connection failures. In this case, a plurality of position sensing lines located in the vicinity of one self-propelled member receive signals output from the self-propelled member. Hence, the position sensing lines closest to the self-propelled member are discriminated by the position retrievers 3a and 3b so that the traveling position of the self-propelled member is detected from the signal received by the closest position sensing lines. For this reason, information processing required for effecting position detecting operation is not simple. As mentioned above, this related position sensor is complicated in both hardware and software.
The present invention is aimed at simplifying a sensor for detecting the travel position of a self-propelled member in a game machine and putting considerable thought into a position sensor by utilization of a recent sophisticated information processing and reading technique such that information about the position of a self-propelled member on a traveling field can be read directly.
In order to achieve the above object, according to the present invention, there is provided a game machine, comprising:
a traveling plane, on which a plurality of two-dimensional bar codes are arranged;
a self-propelled member, which travels on the traveling plane so as to trace a programmed traveling path;
a bar code reader, provided in the self-propelled member, for reading information provided with each two-dimensional bar code; and
a position information processor, which detects a travel position of the self-propelled member in accordance with the information read by the bar code reader, and controls a movement of the self-propelled member in accordance with the detected travel position.
A two-dimensional bar code itself has hitherto been known, and a minute two-dimensional bar code which represents predetermined position information through use of a code are arranged in a matrix pattern systematically. Regardless of the direction of a two-dimensional bar code relative to the scanning direction of a two-dimensional bar code reader, code information can be read momentarily without fail. Further, the thus-read code information per se represents the position of the self-propelled member. Hence, information processing required for reading positional information is simple.
Since the printed two-dimensional bar code is scanned by the bar code reader, thereby reading code information representing positional information, a position sensor mechanism can be made considerably simple. Still further, since a read precision of this system is very high, there are substantially no position information read errors. Consequently, costs incurred for manufacturing a position sensor are considerably curtailed in terms of hardware and software.
Preferably, a sheet member on which the two-dimensional bar codes are printed is placed on the traveling field.
In this configuration, an operation required for providing the bar codes is also very simple.
Preferably, the bar code reader reads the information in response to an instruction which is intermittently issued from the position information processor.
Alternatively, it is preferable that the bar code reader reads the information in response to an instruction which is periodically issued from a timer provided with the self-propelled member.
The position information processor may be provided inside or outside of the self-propelled member.
Preferably, the two-dimensional bar codes, each having a substantially square shape, are arranged with a fixed interval which is about twice a side constituting the square.
Since space is interposed between two-dimensional bar codes, occurrence of a failure to read code information can be avoided.
Preferably, each two-dimensional bar code is covered with a transparent resin sheet having a wrinkled surface.
In this configuration, the bar code is protected from friction which arises between drive wheels of the self-propelled member and the bar codes. Hence, abrasion of and damage to the bar code images are surely prevented. Further, the wrinkled sheet surface has a high frictional coefficient. Hence, slippage of wheels of a self-propelled member can be diminished, thereby improving the precision of travel control operation.
If a material of the resin sheet has a high frictional coefficient, the surface may not be wrinkled. Alternatively, the surface frictional coefficient of the resin sheet can be increased by roughening such as satin finishing.
Here, the two-dimensional bar codes may be printed on a lower surface of the resin sheet.
Preferably, a pair of bar code readers are provided in a front lower portion and a rear lower portion of the self-propelled member, respectively.
In this configuration, since code information about two two-dimensional bar codes can be read simultaneously through use of the pair of bar code readers, the orientation of the self-propelled member can be readily detected on the basis of the thus-detected two code information items. Consequently, control of a traveling path, including an operation for turning a self-propelled member at a target point on a scheduled traveling path, becomes simple.
Here, it is preferable that the two-dimensional bar codes are arranged with a fixed interval which is smaller than a distance between the pair of bar code readers.
Preferably, each two-dimensional bar code indicates a position where the bar code situates on the traveling field, which is represented by an X-coordinate position and a Y-coordinate position.
In this configuration, information processing required for detecting the position of the self-propelled member can be made simple. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinct variety of fresh-market peach designated ‘Rich Joy’ and botanically known as Prunus persica (L.) Batsch. This new peach tree is adapted to a Southeastern subtropical climate with high chill in winters. ‘Rich Joy’ variety resulted from a hand-pollinated cross between ‘Flameprince’ (unpatented) yellow peach, which was used as the seed parent, and BY87P0943 (unpatented, an advanced selection) yellow peach, which was used as the pollen parent. ‘Rich Joy’ variety was obtained by hybridizing and propagated by grafting on ‘Guardian’® rootstock trees. Its unique fruit characteristics and desired ripening season make it worthy for commercial fresh fruit production. Clonal plants were asexually propagated from the original ‘Rich Joy’ tree by grafting in Byron, Ga. These asexually propagated plants, along with all characteristics of the tree and the fruit, remained true-to-type to the original ‘Rich Joy’ tree. There are no known effects of the standard rootstock on the scion cultivar characteristics.
‘Rich Joy’, produces firm, freestone, melting, yellow-flesh fruit with normal acidity, rich flavor, good eating quality, attractive blush, and long shelf life on trees and after harvesting, ripening in July in Byron, Ga. ‘Rich Joy’ is a promising candidate for commercial success in that it has large and attractive fruit with long on-tree life and shelf life after harvesting.
Byron, Ga. is under a subtropical climate. Winters are short, mild and with little snow; summers are long, hot and humid. The average January low temperature is about 1.2° Celsius and the average July high temperature is about 33.2° Celsius. The hours with temperatures below 7° Celsius vary often between 600 and 1200 hours per year. There are about 67 rainy days per year. Average annual precipitation (rainfall) is 1182.88 millimeter (46.57 inch) with great monthly and yearly variabilities and frequent thunderstorms in summers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Aisle runners are utilized to provide a decorative walkway at events such as weddings, red carpet events, proms, church affairs, business affairs, school affairs, and community events. While aisle runners visually enhance the environment in which they are placed, the installation of the aisle runners can often be quite difficult. Ensuring that the aisle runner is laid down in a straight, flat manner can often be a daunting task, especially if the material of the aisle runner is heavy. Rarely is the placement of an aisle runner a smooth transition. Often times the aisle runner becomes twisted and tangled, becoming a distraction. An ill placed aisle runner can be visually displeasing and in turn provide the opposite effect intended. Furthermore, the typical aisle runner is difficult to roll up and store when it is no longer needed. It is particularly difficult to ensure that the aisle runner rolls up in a perfect cylindrical fashion, which in turn makes it more difficult to properly align the aisle runner the next time it is used.
Therefore it is an object of the present invention to provide an automated aisle runner that allows an aisle runner to be automatically extended from or retracted into an automated control unit. The present invention ensures that the aisle runner is placed down in a straight, smooth manner. The aisle runner has a runner body that is disposed about a runner roller rotatably mounted within a housing. The motor can be actuated in both directions in order to spin the runner roller and in turn extend or retract the aisle runner. A guide assembly is also provided to assist in the extension and retraction of the aisle runner, ensuring the aisle runner is properly placed and properly stored. Furthermore, the present invention includes a plurality of lights and a speaker that provide enhanced visual and audial effects respectively. The plurality of lights and the speaker are controlled by a microcontroller, wherein a user can determine the color and pattern of the plurality of lights and the audio files that are played through the speaker. | {
"pile_set_name": "USPTO Backgrounds"
} |
With Kepler-type erect image viewfinders using a porro-prism, it is known to enhance image magnification by splitting the porro-prism into two prisms and providing the image-forming plane of the objective lens between the two prisms. With this arrangement, an eyepiece having a short focal length can be used to view the image on the image-forming plane, whereby the image magnification can be enhanced. However, the viewfinders using this split porro-prism arrangement have a problem in that compensating for field curvature is difficult. A field flattener used to compensate for field curvature works effectively if the flattener is positioned near the image-forming plane. However, this positioning of the flattener is impossible if the image-forming plane is provided between the first and second prisms.
To solve this problem, an improved Kepler-type viewfinder using a split porro-prism has been proposed, in which the incident surface of the first prism has optical attributes so as to serve as a field flattener (as described in Unexamined Published Japanese Utility Model Application No. 226616/1988). However, this viewfinder still has problems of how to further enhance the image magnification and how to shorten the overall length of the finder (e.g., in the longitudinal direction).
According to the analysis conducted by the present inventors, there are several reasons for these difficulties. First, in the system described in Unexamined Published Japanese Utility Model Application No. 226616/1988, the emergent surface of the first prism and the incident surface of the second prism are both flat. Hence, the two prisms cannot be spaced apart practically. If the prisms were to be spaced apart, the size of the second prism would have to be increased sufficiently to admit all of the divergent light rays from the first prism, and thus achieving an adequate increase in the image magnification would be difficult even if the focal length of the eyepiece was increased. Another reason for the above-described difficulties is that the optical path length cannot be increased in a lateral direction, and thus shortening the longitudinal length of the viewfinder is difficult.
In view of the above-described problems of the conventional systems, an object of the present invention is to provide a Kepler-type erect image viewfinder which enhances image magnification and satisfactorily compensates for field curvature, and which also has an overall length smaller than that of the conventional systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Near-eye displays may be included in a wearable display, such as a head-mounted display (HMD) device. An HMD device provides image content in a near-eye display close to one or both eyes of a wearer. To generate the image content on such a display, a computer processing system may be used. Such displays may occupy a wearer's entire field of view, or only occupy a portion of the wearer's field of view. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some metal-insulator-semiconductor (MIS) devices include a gate located in a trench that extends downward from the surface of a semiconductor substrate (e.g., silicon). The current flow in such devices is primarily vertical and, as a result, the cells can be more densely packed. All else being equal, this increases the current carrying capability and reduces the on-resistance of the device. Devices included in the general category of MIS devices include metal-oxide-semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), and MOS-gated thyristors.
Trench MOSFETs, for example, can be fabricated with a high transconductance (gm,max) and low specific on resistance (Ron), which are important for optimal linear signal amplification and switching. One of the most important issues for high frequency operation, however, is reduction of the MOSFET internal capacitances. The internal capacitances include the gate-to-drain capacitance (Cgd), which is also called the feedback capacitance (Crss), the input capacitance (Ciss), and the output capacitance (Coss).
FIG. 1 is a cross-sectional view of a conventional n-type trench MOSFET 10. In MOSFET 10, an n-type epitaxial (“N-epi”) layer 13, which is usually grown on an N+ substrate (not shown), is the drain. N-epi layer 13 may be a lightly doped layer, that is, an N− layer. A p-type body region 12 separates N-epi layer 13 from N+ source regions 11. Current flows vertically through a channel (denoted by the dashed lines) along the sidewall of a trench 19. The sidewall and bottom of trench 19 are lined with a thin gate insulator 15 (e.g., silicon dioxide). Trench 19 is filled with a conductive material, such as doped polysilicon, which forms a gate 14. Trench 19, including gate 14 therein, is covered with an insulating layer 16, which may be borophosphosilicate glass (BPSG). Electrical contact to source regions 11 and body region 12 is made with a conductive layer 17, which is typically made of a metal or metal alloy. Gate 14 is contacted in the third dimension, outside of the plane of FIG. 1.
A significant disadvantage of MOSFET 10 is a large overlap region 18 formed between gate 14 and N-epi layer 13, which subjects a portion of thin gate insulator 15 to the drain operating voltage. The large overlap limits the drain voltage rating of MOSFET 10, presents long term reliability issues for thin gate insulator 15, and greatly increases the gate-to-drain capacitance, Cgd, of MOSFET 10. In a trench structure, Cgd is larger than in conventional lateral devices, limiting the switching speed of MOSFET 10 and thus its use in high frequency applications.
One possible method to address this disadvantage is described in the above-referenced application Ser. No. 09/591,179 and is illustrated in FIG. 2. FIG. 2 is a cross-sectional view of a trench MOSFET 20 with an undoped polysilicon plug 22 near the bottom of trench 19. MOSFET 20 is similar to MOSFET 10 of FIG. 1, except for polysilicon plug 22, which is isolated from the bottom of trench 19 by oxide layer 21 and from gate 14 by oxide layer 23. The sandwich of oxide layer 21, polysilicon plug 22, and oxide layer 23 serves to increase the distance between gate 14 and N-epi layer 13, thereby decreasing Cgd.
In some situations, however, it may be preferable to have a material even more insulating than undoped polysilicon in the bottom of trench 19 to minimize Cgd for high frequency applications.
One possible method to address this issue is described in the above-referenced application Ser. No. 09/927,320 and is illustrated in FIG. 3. FIG. 3 is a cross-sectional view of a trench MOSFET 30 with a thick insulating layer 31 near the bottom of trench 19. MOSFET 30 is similar to MOSFET 10 of FIG. 1 and MOSFET 20 of FIG. 2. In MOSFET 30, however, only the sidewall of trench 19 is lined with thin gate insulator 15 (e.g., silicon dioxide). Unlike MOSFET 10 of FIG. 1, a thick insulating layer 31 (e.g., silicon dioxide) lines the bottom of trench 19 of MOSFET 30 of FIG. 3. Thick insulating layer 31 separates gate 14 from N-epi layer 13. This circumvents the problems that occur when only thin gate insulator 15 separates gate 14 from N-epi layer 13 (the drain) as in FIG. 1. Thick insulating layer 31 provides a more effective insulator than is achievable with polysilicon plug 22 as shown in FIG. 2. Thick insulating layer 31 decreases the gate-to-drain capacitance, Cgd, of MOSFET 30 compared to MOSFET 20 of FIG. 2.
The solution of FIG. 3 has a thin gate oxide region 24 between body region 12 and thick insulating layer 31. This is because the bottom interface of body region 12 and the top edge of thick insulating layer 31 are not self-aligned. If body region 12 extends past the top edge of thick insulating layer 31, MOSFET 30 could have a high on-resistance, Ron, and a high threshold voltage. Since such alignment is difficult to control in manufacturing, sufficient process margin can lead to significant gate-to-drain overlap in thin gate oxide regions 24. Thin gate region 24 also exists in MOSFET 20 of FIG. 2, between body region 12 and polysilicon plug 22. Thus, Cgd can still be a problem for high frequency applications. Accordingly, a trench MOSFET with decreased gate-to-drain capacitance, Cgd, and better high frequency performance is desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention relates to a pyrometallurgical smelting method of copper, and more particularly to an improvement of a method for charging the carbonaceous material into a flash smelting furnace which is utilized for the pyrometallurgical smelting of copper.
In the smelting operation of copper, a portion of Fe in the charged materials undergoes over-oxidation to form magnetite (Fe.sub.3 O.sub.4) in the slag. This Fe.sub.3 O.sub.4 deposits on the bottom or sidewall of the flash smelting furnace and acts as the protecting layer on the refractories of the furnace but, on the other hand, decreases the furnace's inner capacity. When the amount of Fe.sub.3 O.sub.4 so formed becomes such that excessive growth of the coating is incurred, the coating may finally clog a tap hole for the slag and matte, so that the tapping operation is made difficult. In addition, a semi-molten solid layer, i.e., the so-called intermediate layer, is formed between the slag and matte layers in the furnace, thereby impeding separation of the slag and matte layers from one another. Furthermore, since the viscosity of the slag is increased by Fe.sub.3 O.sub.4, the amount of copper suspended in the slag, and hence the waste amount of copper, increases. Various troubles as described above are incurred when magnetite is formed in a large amount. It is therefore important in the light of achieving effective and stable smelting operation of copper to suppress the amount of Fe.sub.3 O.sub.4 to a very low level.
2. Description of Related Arts
It is a known process in the flash smelting of copper to blow powder coke with or without finely particulated coal together with copper concentrate and heavy oil into a flash smelting furnace so as to decrease the copper loss in the tapped slag and also to minimize fuel consumption (Japanese Unexamined Patent Publication No. 58-221,241). According to descriptions of this publication, since the metallurgical reactions suddenly occur in the oxidizing atmosphere of the flash-smelting furnace, a large amount of Fe.sub.3 O.sub.4, which is a peroxide of iron, is formed and contained in the slag. The unburnt powder coke, which covers the slag, is therefore, caused to react with the magnetite and reduces it. The copper loss in the slag is decreased along with reduction of magnetite.
In addition, according to Japanese Unexamined Patent Publication No. 58-221,241 mentioned above, there are descriptions about the following preferred methods: the powder coke is added in the reaction shaft of a flash smelting furnace in such a manner that the entire surface of melt in the settler is uniformly covered with the unburnt powder coke; regarding the grain size of coke, since the degree of reduction of magnetite decreases when the grain size is ultra-fine, grain size is preferably from 16 mesh (1 mm) to 325 mesh (44 .mu.m); and the carbonaceous material should have a high content of volatile matters.
Saganoseki Smelter, which belongs to the present Assignee, used, in a flash-smelting furnace, powder coke having the following distribution of grain sizes and attained from 2 to 4% of magnetite level in the slag. Also, consideration was given to the fact that the unburnt coke, which floats on the slag surface, reduces a portion of the magnetite ("Non-ferrous Smelting and Energy Saving" (1985) edited by Research Committee Concerning Non-ferrous Smelting Techniques and Energy. This Committee is organized under Japan Society for Mining and carried out research into the use of powder coke in a flash smelting furnace.
TABLE 1 ______________________________________ Kind of powder coke A B C ______________________________________ Distribu- over 10 mm 0 0 0 tion of 5-10 mm 6 6 5 grains 3-5 mm 4 5 9 1-3 mm 16 25 21 0.15-1 mm 42 50 55 under 0.15 mm 32 14 10 total 100 100 100 Components Free carbon 85 85 85 (%) Volatile 1 1 2 matters Ash and 14 14 13 others Heat value 6,800 6,800 7,000 (kcal/kg) ______________________________________
As described hereinabove, the process that is widely used at present in the copper smelting operation with the use of a flash-smelting furnace is to charge powder coke, finely particulated coal, finely particulated coke and the like into a reaction shaft for the purpose of reducing Fe.sub.3 O.sub.4 and preventing troubles arising from the excessive formation of Fe.sub.3 O.sub.4 described above. More specifically, although heavy oil, powder coke, finely particulated coal and the like have heretofore been charged into the reaction shaft of a flash-smelting furnace and burnt as a measure for heat compensation, a portion of the powder coke and finely particulated powder is not burnt in a reaction shaft and enters the melt formed at the bottom of the reaction shaft. Fe.sub.3 O.sub.4 in the slag is then reduced by the unburnt coke. In other words, the powder coke and the like are added in the reaction shaft as a measure for heat compensation and also as an effective measure for reducing Fe.sub.3 O.sub.4.
In a pyrometallurgical smelting method of copper with the addition of carbonaceous material, when the carbonaceous material is inadequately charged so as to result in the excessive reduction of magnetite, the coating on the furnace is diminished and the refractories are subjected to strong erosion. This causes such various drawbacks as: leak of melt from the furnace, formation of a metallic layer in the furnace, intrusion of metal into the masonry joints between bricks in the furnace bottom and hence causing upheaving of the bricks; partition of impurities into the metallic layer thereby lowering their distribution into the slag layer; and, transportation of the unburnt carbonaceous material upward to the waste-heat boiler where it is burnt, which seriously impedes the boiler operation.
As is explained in Japanese Unexamined Patent Publication No. 58-221,241 and the technical report by the smelter of the assignee, when the surface of the slag bath is covered by the unburnt powder coke, the amount of which is excessive from the view point of the intended purpose, it stagnates on the slag bath and drastically lowers the equilibrium partial pressure of oxygen. The thus formed highly reducing atmosphere in the furnace incurs in most cases such troubles as: disappearance of the coating on the furnace refractories and hence causing their erosion; upheaving of bricks due to intrusion of metal into bottom bricks; and decrease in the degree of impurity removal into the slag phase. The unburnt carbonaceous material generated in a large amount is transported together with gas into the waste-gas boiler and is later burnt there. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to electronic lock mechanisms, and more particularly, to an electronic lock which may be unlocked through use of a card-key containing a digital code formed by series of infrared light transmissive portions and infrared light non-transmissive portions
2. Description of the Prior Art
Conventional mechanical combination locks suffer from several inherent problems which limit their usefulness. Most importantly, the particular combination and sequence of numbers required to open the combination lock is oftentimes discernable by unauthorized personnel. By merely listening to the sounds generated by the mechanical combination lock during rotation thereof, the numerical combination required to unlock the combination lock may be determined.
More recently, electronic and computer-controlled combination locks have been disclosed However, the electronic locks of the prior art suffer from a high failure rate because such prior art locks are affected by changes in humidity and magnetic fields In other instances, electronic lock mechanisms of the prior art are also not secure as the key mechanisms utilized to unlock the electronic locks are easily reproducible, thereby again providing unauthorized personnel the ability to unlock the electronic locks.
It is therefore an object of the present invention to provide an electronic lock mechanism which overcomes the problems associated with prior art lock mechanisms.
It is a further object of the present invention to provide an electronic lock mechanism which may be unlocked through use of a card-key containing a digital code formed by series of infrared light transmissive portions and infrared light non-transmissive portions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an apparatus for controlling the operation of a hydraulic machine of the type having a plurality of runners mounted on a common shaft and movable flow-rate adjusting vanes provided around respective runners. More particularly, the invention is concerned with an apparatus for controlling the operation of a hydraulic machine of the type mentioned above in such a manner as to control the opening of the flow-rate adjusting vanes to provide a constant output of the machine.
Generally, hydraulic machines are intended for utilization of potential energy and kinetic energy of water or to send the water to a place demanding the water supply. Typical examples of such hydraulic machines are water wheels in hydraulic power station and pumps.
Pumping-up power stations are becoming popular in order to meet the peak of demand for electric power. The head of the pumping-up water stations built in recent years is becoming greater, which in turn gives a rise to a demand for multi-stage turbines. The multi-stage pump turbine consists of a plurality of pump turbines, i.e. a plurality of runners mounted on a common shaft and movable flow-rate adjusting vanes (referred to as guide vanes, hereinunder) disposed around respective runners.
The plurality of runners of the multi-stage pump turbine are so designed as to share equal or proportional parts of the total head or lift. Thus such multi-stage pump turbine is designed such that a flow rate-head (or lift) characteristics at each stage are equal to one another or are related to one another in predetermined ratios.
In the operation of the multi-stage pump turbine, it is necessary that the guide vanes of all stages are controlled in synchronism such that each runner shares an equal or a proportional part of the total head.
The conventional apparatus for controlling the operation of this multi-stage pump turbine includes two governors when the number of stages is two, and three governors when the number of stages is three, in contrast to the controlling apparatus for a single-stage machine which requires only one governor. In this conventional control apparatus having a plurality of governors, the respective governors separately receive the revolving speed signal from a generator motor connected to the multi-stage pump. As a matter of fact, however, a slight fluctuation in performances of the governors is inevitable mainly for the reasons related to the production. It is, therefore, extremely difficult to attain a perfect synchronization of opening and closing operation of guide vanes of all stages. The use of a plurality of governors for a single multi-stage pump turbine raises the production cost and, in addition, impractically complicates the control system due to an increase of the number of the controlled elements, to deteriorate the reliability seriously.
On the other hand, it has been attempted to control the guide vanes of all stages by a single governor. This attempt, however, cannot make the stages share proportional parts of total head while it can be suitably applied to the control in which the stages share equal parts of the total head. | {
"pile_set_name": "USPTO Backgrounds"
} |
Printing devices are used to produce desired images, such as text and graphics, on various types of media. Due to the wide scope of applications for which printing is sought and the versatility of printing technology, printing devices are prevalent in modern offices and homes.
In some cases, printing devices may be designed to print to a variety of different types of print media, thus enhancing the versatility and utility of the devices. Many such printing devices include automatic media feeder devices that store different types of print media (i.e. different sizes and/or compositions) in separate trays. Additionally, some automatic media feeder devices may store one type of media in multiple trays, particularly when that particular type of media is used more often by the printing device than other types of media.
When such a printing device begins a printing job, it typically designates a piece of media from those available in the feeder device and requests the feeder device to provide the selected media type. The feeder device can then transport the requested piece of print media to the printing device using a print medium feed mechanism which may include, for example, motorized rollers, belts, and/or suction.
Some printing devices are coupled to several concatenated feeder devices to allow access to greater amounts of media storage and/or more types of print media. In a system of concatenated feeder devices, print media may be transported through more than one of the feeder devices before being received by the printing device.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a color cathode-ray tube, and relates, more particularly, to a color cathode-ray tube with an increased holding strength of a curved surface of a shadow mask to reduce deviation of beam landing.
In general, a color cathode-ray tube has a vacuum envelope which includes a substantially rectangular panel having an effective portion formed of a curved surface and a skirt portion provided on the periphery of the effective portion, and a funnel connected to the skirt portion. On the inner surface of the effective portion of the panel is formed a phosphor screen consisting of black non-light emitting substance layers and three-color phosphor layers buried in gap of the black non-light emitting substance layers. Inside the panel is disposed a substantially rectangular shadow mask facing the phosphor screen. Within a neck of the funnel is disposed an electron gun for emitting three electron beams. Inside a large diameter portion of the funnel, there is disposed an inner shield fitted to a mask frame of the shadow mask.
In the color cathode-ray tube, three electron beams emitted from the electron gun are deflected by a magnetic field generated from a deflector mounted on the outside of the funnel, and scan the phosphor screen both horizontally and vertically through the shadow mask, to thereby display a color image.
The shadow mask is for selecting three electron beams emitted from the electron gun to the three-color phosphor layers, and has a substantially rectangular mask main body and a substantially rectangular mask frame fitted to the periphery of the mask main body. The mask main body has a curved effective surface formed with a large number of electron-beam passage apertures and opposing the phosphor screen, a non-aperture portion surrounding the outer periphery of this effective surface, and a skirt portion formed in a bent at almost a right angle with respect to the outer periphery of the non-aperture portion. The mask frame is fitted to the skirt portion of the mask main body. The shadow mask is detachably supported on the panel by engaging wedge-shaped elastic supporting member fixed to the corners of the mask frame with stud pin provided at the corners of the skirt portion of the panel, respectively.
Generally, in order to achieve an image display on the phosphor screen of a color cathode-ray tube without a deviation of color purity, it is necessary to select electron beams so that three electron beams that pass through the electron-beam passage apertures formed on the mask main body of the shadow mask make a correct landing onto the three-color phosphor layers. For this purpose, it is necessary to dispose the shadow mask at a predetermined position with respect to the panel. Particularly, it is necessary to keep the distance (q value) between the inner surface of the effective portion of the panel and the inner surface of the mask main body within a predetermined permissible range of values.
In recent years, a color cathode-ray tube has been desired that the panel is formed in a shape as close to a flat surface as possible by enlarging a radius of curvature of the outer surface of the effective portion of the panel in order to improve visibility. In this case, it is necessary to make larger that radius of curvature of the inner surface of the effective portion, from the viewpoint of the visibility and the strength of the vacuum envelope against the atmospheric pressure. Along with an increase in the radius of curvature of the inner surface of the effective portion, it also becomes necessary to increase the radius of curvature of the effective surface of the mask main body in order to obtain suitable beam landing.
However, the increasing of the radius of curvature of the effective surface of the mask main body lowers the strength for holding the curved surface (hereinafter, referred as a curved surface holding strength) of the shadow mask, and easily causes local deformation of the shadow mask in the process of manufacturing the shadow mask and thermal deformation of the shadow mask in the process of manufacturing a color cathode-ray tube, resulting in a deviation of beam landing which leads to an occurrence of deterioration of color purity. Further, when the color cathode-ray tube is built into a TV set, sound generated from the speaker oscillates the shadow mask, which leads to an easy occurrence of deterioration of color purity.
As a measure for improving the curved surface holding strength of the shadow mask, there has been proposed a technique for providing reinforcing beads on the effective surface of the mask main body in Jpn. Pat. Appln. KOKAI Publication No. 7-161306. However, when reinforcing beads are provided on the effective surface having a large radius of curvature in an attempt to obtain a sufficient curved surface holding strength, stepped portions formed as a result causes a local deviation of the distance between the inner surface of the effective portion of the panel and the effective surface of the mask main body from a permissible range of values for the distance. Accordingly, an image of the stepped portions appear on the screen and this extremely deteriorates the picture quality. To avoid this problem, the limit of the height of the stepped portions formed by the reinforcing beads is usually about 0.1 to 0.2 mm. However, the provision of reinforcing beads of this height on the shadow mask having a large radius of curvature of the effective surface can not sufficiently increase the curved surface holding strength.
The present invention has been contrived in consideration of the above problems, and its object is to provide a color cathode-ray tube which reduces deviation of beam landing and deterioration of color purity by increasing the curved surface holding strength of the shadow mask.
In order to achieve the above object, a color cathode-ray tube according to the present invention comprises: a vacuum envelope including a panel having a substantially rectangular effective portion, a funnel connected to the panel, and a phosphor screen formed on an inner surface of the effective portion of the panel;
a shadow mask disposed to face the phosphor screen within the vacuum envelope, the shadow mask including a substantially rectangular mask main body having a curved effective surface formed with a large number of electron-beam passage apertures and facing the phosphor screen, a non-aperture portion surrounding an outer periphery of the effective surface, and a skirt portion formed in a bent on an outer periphery of the non-aperture portion; and a substantially rectangular mask frame attached to the skirt portion of the mask main body; and
an electron gun arranged within a neck of the funnel, for emitting electron beams to the phosphor screen through the shadow mask.
The mask main body has a long axis extending in a horizontal direction and crossing with a tube axis, and a short axis extending in a vertical direction and crossing with both the tube axis and the long axis, and
the effective surface, or the effective surface and the non-aperture portion of the mask main body are formed in a curved surface having a radius of curvature in the short axis direction, and at each long side of the mask main body, an end portion of the short axis of the effective surface or the non-aperture portion is recessed from any other adjacent part, in a direction to leave from the phosphor screen along the tubular axis.
Further, according to the color cathode-ray tube relating to the present invention, the effective surface, or the effective surface and the non-aperture portion of the mask main body are formed in a curved surface having a radius of curvature in the short axis direction, and at each long side of the mask main body, at least one portion at an intermediate part in the long axis direction of the effective surface or the non-aperture portion is recessed from any other adjacent part, in a direction to leave from the phosphor screen along the tubular axis.
Further, according to the color cathode-ray tube relating to the present invention, the effective surface, or the effective surface and the non-aperture portion of the mask main body are formed in a curved surface having a radius curvature in the short axis direction, and at each long side of the mask main body, at least a part of the effective surface and the non-aperture portion at the vicinity of the short axis is recessed from any other part adjacent in the long axis direction, in a direction to leave from the phosphor screen along the tubular axis.
According to the color cathode-ray tube having the above-described structure, the provision of a recess on each of the long sides of the effective surface or the non-aperture portion of the mask main body makes it possible to maintain high-level strength for holding the curved surface of the effective surface of the mask main body even in the case where the radius of curvature of the effective surface of the mask main body has been increased along an increase in the radius of curvature of the external surface of the effective portion of the panel. Therefore, it is possible to provide a color cathode-ray tube which can minimize an occurrence of deterioration of color purity by restricting local deformation of a shadow mask in the process of manufacturing the shadow mask, thermal deformation of the shadow mask in the process of manufacturing the color cathode-ray tube, or oscillation due to the sound from the speaker when the color cathode-ray tube has been built into a TV set. Particularly, when the present invention is applied to a color cathode-ray tube having an aspect ratio of 16 to 9, the curved-surface holding strength can be increased in good balance over the whole surface of the mask main body. Thus, it is possible to structure a color cathode-ray tube capable of providing satisfactory picture quality by minimizing an occurrence of howling of color purity.
When a recess is provided at the shadow mask, it is very important that the q value does not shift from the permissible range and the image of the recess, which deteriorates the image quality, is not produced on the screen.
Thus, at these portions near the short axis ends (those portions near the long sides), the radius of curvature of the mask main body in the short axis direction has a sufficient value for maintaining the curved surface holding strength, and at the other portion of the mask main body, the radius of curvature is larger than those at the short axis end portions, so that it is possible to delete an influence of the recess at a main region of the effective portion.
Moreover, it is preferable that the radius of curvature of the mask main body at the long axis end portions (short sides) in the short axis direction is larger than the radius of curvature near the short axis so that the shadow mask is seen a substantially flat in order to improve visibility. The radius of curvature of the main body at the long axis end portions in the short axis direction may be more large and may be infinity.
Particularly, in a color cathode-ray tube having an aspect ratio of 16 to 9, since the long sides are longer than normal cathode-ray tubes, it is effective that the radius of curvature of the mask main body in the short axis direction is suitably selected so as to form a recess at each long side (short axis end), and it is more preferable that the short sides are flat. | {
"pile_set_name": "USPTO Backgrounds"
} |
Today, a steam turbine using steam at a temperature of about 600° C. has been put into practical use in view of improving the turbine efficiency. In addition, it is now being studied and developed to raise the steam temperature to 650° C. or more in order to improve the turbine efficiency.
Since the above steam turbine uses the steam of high temperature, it is necessary to use a heat-resistant alloy resistive to that temperature. But, such a heat-resistant alloy is used in a limited range because it is expensive, and it is difficult to produce large-size parts.
For example, a steam inlet pipe such as an inlet sleeve where high temperature steam flows is made of a Ni-base alloy or the like having excellent heat resistance, and seal rings contacted to the steam inlet pipe and casings contacted to the seal rings are formed of CrMoV steel or 12Cr steel.
As described above, the main steam of high temperature flows through the inlet sleeve, and heat is conducted to the casings via the seal rings which are contacted to the inlet sleeve. Therefore, the temperatures of the seal rings and the casings are raised as the main steam increases to a high temperature, and it is necessary to take measures against heat when a conventional material is used to configure the seal rings and the casings. | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject matter described herein relates to an MRI apparatus and an RF pulse generating circuits. More specifically, the subject matter described herein relates to an MRI apparatus that can reduce noise introduced when generating RF pulses and an RF pulse generating circuit used to generate RF pulses in the MRI apparatus.
A high precision is required for RF pulse frequency. Therefore, a direct digital synthesizer (hereinafter referred to as a DDS) is used to generate RF pulses in a digital signal form (hereinafter referred to as digital RF pulse signals) and these pulses are converted into RF pulses in an analog signal form (hereinafter referred to as analog RF pulse signals) through a digital-analog converter (hereinafter referred to as a D/A converter). Hereinafter, “RF pulses” mean those that are transmitted from an RF coil.
When RF pulses are transmitted from an RF coil to which analog RF pulse signals have been applied, magnetic resonance signals are generated from a subject positioned in a magnetic field. The magnetic resonance signals are received by the RF coil and converted into magnetic resonance signals in a digital form (hereinafter referred to as digital magnetic resonance signals) through an analog-digital converter (hereinafter referred to as an A/D converter). Hereinafter, the magnetic resonance signals that have been received by the RF coil, but have not yet been converted into digital magnetic resonance signals by the A/D converter are referred to as analog magnetic resonance signals. “Magnetic resonance signals” plainly mentioned herein mean those generated from the subject and received by the RF coil.
When noise is superimposed on analog magnetic resonance signals, the noise appears as an artifact in an image reconstructed by the MRI apparatus and degrades the image quality. However, the receiving sensitivity of the RF coil must be as high as possible in order to receive faint magnetic resonance signals. This results in that noise is easily superimposed on analog magnetic resonance signals. Hence, to reduce noise impact, various means are taken. For example, a method for preventing image quality degradation resulting from superimposing of noise induced by a clock signal in a digital circuit on analog magnetic resonance signals is proposed (see, for example, Japanese Unexamined Patent Publication No. Hei 5(1993)-7570).
However, if it is possible to prevent noise that may be superimposed on analog magnetic resonance signals, this is most desirable.
Since RF pulses are transmitted to excite magnetic resonance signals, the frequency of the RF pulses is equal to the frequency of the magnetic resonance signals. Consequently, noise that is superimposed on analog magnetic resonance signals may be generated from a wiring path through which analog RF pulse signals are sent to the RF coil. To prevent this, measures for preventing noise generation, such as impedance matching, are taken for the wiring path for sending analog RF pulse signals after being converted by the D/A converter.
However, weak noise that is superimposed on analog magnetic resonance signals is also generated from a digital bus through which digital RF pulse signals are sent to the D/A converter. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application includes a microfiche computer code appendix including twentyone microfiche with a total of 1,422 frames.
1. Field of the Invention
The present invention relates to military vehicles. In particular, this invention relates to a military vehicle having a cooperative control network with distributed I/O interfacing. In a particularly preferred aspect, this invention relates to a military vehicle having a control system that is capable of reconfiguring itself in response to a failure mode of operation. The present invention also relates to a method of controlling electrical devices on a military vehicle.
2. Description of Related Art
A diverse array of military vehicles exist that are used in combat and non-combat scenarios. Such vehicles include vehicles that are found only in military settings, such as tanks, as well as vehicles that are military adaptations of widely used civilian vehicles, such as dump trucks, water pump trucks, wrecker trucks (for towing other vehicles), telephone trucks (for digging holes for telephone poles), and so on. Depending on the type of military vehicle and its intended military application, it is often desirable for the military vehicle to be able to withstand a severe amount of punishment and yet still remain operational, for example, when the vehicle has been damaged by enemy fire, nearby explosions, and so on.
Currently, control systems that are used for military vehicles vary widely depending among other things on the task that the vehicle is designed to perform. At one end of the spectrum are military vehicles that have almost entirely mechanical control systems with very little if any on-board computing capacity. At the other end of the spectrum are military vehicles that include highly complex, autonomously operating vehicle subsystems that communicate over a standard automotive communication bus such as SAE J1708 or J1939. While the latter approach is advantageous to the extent that additional functionality is provided, it can be disadvantageous to the extent that increased complexity creates additional opportunity for failure in the event that the vehicle is damaged in combat. Additionally, even in these systems, an extensive amount of hardwiring is used to interconnect discrete I/O devices, thereby limiting the robustness and flexibility of the control system that is provided.
There is an ongoing need for improved military vehicle control systems that are intelligent and robust. There is also an ongoing need for improved military vehicle control systems that are intelligent and robust and that can continue to operate at a maximum level of effectiveness when the vehicle is damaged by enemy fire, nearby explosions, and so on. The present invention provides a military vehicle control system that meets these needs.
According to a first aspect of the invention, the invention provides a military vehicle comprising a vehicle power distribution and control system that includes a plurality of input and output devices and a plurality of microprocessor-based interface modules that collect data from the plurality of input devices and that distribute power to the plurality of output devices. The interface modules are distributed throughout the vehicle and are locally placed with respect to the plurality of input and output devices. Preferably, the plurality of interface modules are physically and functionally interchangeable with each other, and are each substantially identically programmed, such that each interface module includes substantially the same basic input/output system firmware, substantially the same operating system, and substantially the same application programs. Further, each of the plurality of interface modules preferably stores I/O status information acquired by each of the remaining ones of the plurality of interface modules from respective ones of the plurality of input devices.
According to another aspect of the invention, the invention provides a military vehicle comprising a power distribution and control system that includes a power source, a power transmission link, a plurality of input devices, a plurality of output devices, a communication network, a plurality of microprocessor-based interface modules, and a microprocessor-based control unit. The plurality of interface modules are coupled to the power source by way of the power transmission link and are interconnected to each other by way of the communication network. Additionally, the plurality of interface modules are also coupled to the plurality of input devices and to the plurality of output devices by way of respective dedicated communication links.
The plurality of interface modules include a first microprocessor-based interface module that is coupled to a first subset of the plurality of input devices and to a first subset of the plurality of output devices, and a second microprocessor-based interface module that is coupled to a second subset of the plurality of input devices and to a second subset of the plurality of output devices. The microprocessor-based control unit includes a control program that is executable by a microprocessor of the control unit to control the plurality of output devices based on input status information from the plurality of input devices.
The plurality of interface modules, the plurality of input devices, and the plurality of output devices are distributed throughout the military vehicle. Each respective interface module is locally disposed with respect to the respective input and output devices to which the respective interface module is coupled so as to permit distributed data collection from the plurality of input devices and distributed power distribution to the plurality of output devices.
Preferably, the microprocessor-based control unit is an additional interface module, and in particular is a master interface module. Additionally, the plurality of interface modules are each capable of serving as replacement master interface modules. The control system can therefore be made dynamically reconfigurable, such that the control system is capable of responding to a failure of the master interface module by designating another interface module as a new master interface module.
In another preferred aspect, the plurality of interface modules are physically and functionally interchangeable units. The plurality of interface modules each have a mastership rank that is defined by a physical location on the communication network where the plurality of interface modules are connected to the communication network, such that exchanging the location of two of the interface modules on the communication network causes the two interface modules to exchange mastership ranks.
In yet another preferred aspect, the military vehicle is a multipurpose modular vehicle and comprises a chassis and a variant module. The variant module is mounted on the chassis, and the chassis and the variant module cooperate to provide the military vehicle with a first type of functionality. The variant module is removable and replaceable with other variant modules to form other military vehicles with other different types of functionality. Preferably, the plurality of interface modules are physically and functionally interchangeable with interface modules utilized by the other variant modules.
Other objects, features, and advantages of the present invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many modifications and changes within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a liquid discharging method and a liquid discharging apparatus and particularly those using a liquid discharging head including a discharge port for discharging a liquid and an individual liquid chamber which communicates with the discharge port and discharges the liquid from the discharge port according to volume variation. The invention is applicable to an apparatus for performing a recording operation on a recording medium such as a paper sheet, cloth, leather, non-woven, or an OHP plastic film, an apparatus for performing a patterning or processing operation on a medium (receptor) such as a substrate, plate material, or a solid material by attaching the liquid thereto, and a coating apparatus.
2. Description of the Related Art
There is a known liquid discharging head in which a diaphragm contacting a liquid in an individual liquid chamber is provided, the diaphragm is displaced by a piezoelectric film which is deformed according to application of a voltage, and then the volume of the individual liquid chamber is increased or decreased so as to eject an ink by a change of pressure caused thereby.
In such a liquid discharging head having the above-described configuration, the discharged liquid extends in a column shape and separates halfway. Accordingly, a separated liquid droplet reaches a liquid receptor such as a recording medium. At this time, a subsidiary liquid droplet called a satellite may be generated, in addition to the intended liquid droplet (main droplet) to reach the receptor. Generally, the satellite is smaller than the main droplet, and the speed of the satellite is slower than that of the main droplet. Accordingly, the satellite may be deposited at a position deviated from the main droplet in the liquid receptor such as the recording medium, which may cause deterioration of recording quality and patterning precision. Additionally, the satellite may float in the form of a mist, and may be attached to an discharge port formation surface of the liquid discharging head, by which a direction of the liquid to be subsequently discharged may be diffracted or attached to the inside of the apparatus, which may cause contamination of the apparatus.
In order to solve such a problem, in the past, there have been proposed various technologies of preventing the satellite from being generated.
For example, Japanese Patent Application Laid-Open No. H05-057888 (EP A1 0531173) discloses a method for restricting the satellite from being generated in the configuration including a piezoelectric element which is deformed according to application of a voltage so as to increase or decrease the volume of the individual liquid chamber (ink chamber). In such a method, in order to decrease the volume of the individual liquid chamber, a braking pulse is instantaneously applied to the piezoelectric element after a driving voltage to the piezoelectric element has reached a peak level so that inertia of both the piezoelectric element and the ink contained in the ink chamber is immediately canceled to abruptly stop the ink discharge. A driving voltage waveform shown in FIG. 1A of Japanese Patent Application Laid-Open No. H05-057888 (EP A1 0531173) has an abrupt region.
Additionally, a method of driving a piezoelectric vibrator is disclosed in Japanese Patent Application Laid-Open No. H07-076087 (U.S. Pat. No. 5,453,767). In such a method, the piezoelectric vibrator is driven so that the volume of the individual liquid chamber is increased, the volume is decreased at a first changing speed, and the volume is decreased at a second changing speed faster than the first changing speed. Accordingly, a speed difference between the front end and the rear end of the liquid column (ink column) is decreased to thereby form a spherical ink droplet.
In the method disclosed in Japanese Patent Application Laid-Open No. H05-057888 (EP A1 0531173), the braking pulse is instantaneously applied to the piezoelectric element after the driving voltage to the piezoelectric element has reached the peak level. As shown in FIG. 1A, it is appropriate to consider that the braking pulse is instantaneously applied to the piezoelectric element at the time of reaching the peak level. However, there is no detailed description about how the peak level is set and how the abrupt gradient of each region of the driving voltage waveform is estimated. Additionally, the ink discharging operation at the time of application of the driving voltage having such a waveform is not described in detail with reference to the drawings. Specifically, it is not clear how the satellite is prevented from being generated.
Meanwhile, in the method disclosed in Japanese Patent Application Laid-Open No. H07-076087 (U.S. Pat. No. 5,453,767), the speed difference between the front end and the rear end of the ink droplet is decreased compared with a conventional example, but the speed of the front end is still faster than that of the rear end. Accordingly, it can be easily expected that a plurality of satellites are generated based on the ratio between the thickness and the length of the liquid column shown in FIG. 7VIII of Japanese Patent Application Laid-Open No. H07-076087 (U.S. Pat. No. 5,453,767). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Example embodiments relate to a semiconductor memory device, and more particularly, to a semiconductor memory device having a sense amplifier capable of ensuring a sensing margin during a read operation.
2. Description of Related Art
Semiconductor memory devices have a plurality of memory cells, and store data in the memory cells or read data stored in the memory cells. Semiconductor memory devices use sense amplifiers to read data stored in memory cells.
When a word line is enabled during a read operation, data stored in memory cells connected with the enabled word line may be transferred to the corresponding bit line (or inverted bit line), and the voltage level of the bit line (or inverted bit line) may be changed. An inverted bit line (or bit line) disposed adjacent to the bit line (or inverted bit line) may be kept at a desired or alternatively predetermined precharge voltage level. A sense amplifier may sense and may amplify a voltage difference between the bit line (or inverted bit line) and the adjacent inverted bit line (or bit line). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the field of corn breeding. In particular, the invention relates to corn seed and plants of the hybrid variety designated CH162504, and derivatives and tissue cultures thereof.
2. Description of Related Art
The goal of field crop breeding is to combine various desirable traits in a single variety/hybrid. Such desirable traits include greater yield, better stalks, better roots, resistance to insecticides, herbicides, pests, and disease, tolerance to heat and drought, reduced time to crop maturity, better agronomic quality, higher nutritional value, and uniformity in germination times, stand establishment, growth rate, maturity, and fruit size.
Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant. A plant cross-pollinates if pollen comes to it from a flower on a different plant.
Corn plants (Zea mays L.) can be bred by both self-pollination and cross-pollination. Both types of pollination involve the corn plant's flowers. Corn has separate male and female flowers on the same plant, located on the tassel and the ear, respectively. Natural pollination occurs in corn when wind blows pollen from the tassels to the silks that protrude from the tops of the ear shoot.
Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant. A cross between two such homozygous plants produces a uniform population of hybrid plants that are heterozygous for many gene loci. Conversely, a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable.
The development of uniform corn plant hybrids requires the development of homozygous inbred plants, the crossing of these inbred plants, and the evaluation of the crosses. Pedigree breeding and recurrent selection are examples of breeding methods used to develop hybrid parent plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more inbred plants or various other broad-based sources into breeding pools from which new inbred plants are developed by selfing and selection of desired phenotypes. The new inbreds are crossed with other inbred plants and the hybrids from these crosses are evaluated to determine which of those have commercial potential.
North American farmers plant tens of millions of acres of corn at the present time and there are extensive national and international commercial corn breeding programs. A continuing goal of these corn breeding programs is to develop corn hybrids that are based on stable inbred plants and have one or more desirable characteristics. To accomplish this goal, the corn breeder must select and develop superior inbred parental plants. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and improved method of, and apparatus for, detonating a projectile in the proximity or vicinity of a target.
In its more particular aspects, the present invention specifically relates to a new and improved method of, and apparatus for, detonating a projectile in the proximity or vicinity of a target and which method and apparatus employ sensor means located in the projectile for determining a plurality of encountering velocity values of the projectile and the target.
In a proximity detonator, such as known, for example, from German Patent No. 2,527,368, granted May 13, 1982, the detonation angle of a proximity switch is adjusted or selected as a function of the encountering velocity between the projectile and the target at a sensor installation of the projectile. Such selection takes account of the main direction of action associated with the projectile fragments.
It is one disadvantage of this known construction that, in addition to the aforementioned sensor means for determining the plurality of encountering velocity values, the sensor for effecting the detonation at a desired detonation angle must be incorporated into the projectile.
Sensors for use with proximity detonators and for response at a predetermined detonation angle are known, for example, from U.S. Pat. No. 3,046,892, granted July 31, 1962, and U.S. Pat. No. 3,242,339, granted Mar. 22, 1966.
It is one disadvantage of such known sensors that these sensors are independent of the encountering velocity of the projectile and the target. In most cases, the sensors are adjusted for a fixed detonation angle. As a result, the fragments of the projectile may fly past the target without producing a target hit. | {
"pile_set_name": "USPTO Backgrounds"
} |
Support materials may be formed over semiconductor material and utilized for fabrication of integrated circuit components.
A typical support material is silicon dioxide. The silicon dioxide may be undoped, or may be doped with one or more of phosphorus, boron and fluorine (for instance, the silicon dioxide may be in the form of borophosphosilicate glass).
One method of utilizing support material is to form capacitors for dynamic random access memory (DRAM). Openings may be formed in the support material, and then one or more structures may be fabricated by depositing material within the openings. For example, container-shaped capacitor storage nodes may be formed by depositing a layer of titanium nitride to partially fill openings in a support material. Subsequently, the support material may be removed, and then capacitor dielectric and capacitor plate material may be deposited within and around the storage nodes to form capacitor constructions.
Silicon dioxide may have several disadvantages as a support material. For instance, patterning of silicon dioxide may be complicated due to a dry etch of silicon dioxide having a large physical component (that is, it may be more like physical sputtering than like a chemical etch). The sputtering nature may create difficulty in obtaining a straight profile since the etch may exhibit a lateral component that can lead to a tapered profile.
It is desired to develop new methods of utilizing support materials for fabrication of microelectronic structures. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a printhead, head cartridge, and printing apparatus. Particularly, the present invention relates to an inkjet printhead having many printing elements, a head cartridge, and a printing apparatus using any of them.
2. Description of the Related Art
A printhead with an array or arrays of printing elements has conventionally been known. On a printhead of this type, several or several tens of driving integrated circuits capable of concurrently driving N printing elements as one block are formed on the same substrate. Print data are aligned and input in correspondence with the respective printing elements, and can be printed on a print medium such as print paper. Printing apparatuses with printheads of this type can print at high densities and high speeds, and thus are widely used as printers in today's business offices, for other paperwork tasks, and for personal use. Even now, printing apparatuses are developed and improved for further cost reduction, higher resolution, and the like.
A printhead mounted in the inkjet printing apparatus (to be referred to as a printing apparatus hereinafter) is configured by arraying, as printing elements, electrothermal transducers (to be also called heaters hereinafter) for generating discharge energy necessary to discharge ink from nozzles. As a known method for this printhead, printing elements are divided into a plurality of blocks, and the blocks are temporarily driven sequentially or distributedly because large power is necessary to drive printing elements.
Especially for a printing element which prints by discharging ink using heat, if one printing element is continuously driven, heat is accumulated, and the print density may change. The printing element is also influenced by heat of an adjacent printing element. If the printing apparatus concurrently drives adjacent printing elements, nozzles are interfered with mutual pressures generated in ink discharge. The pressure interference (crosstalk) may change the print density. Hence, an idle time for dissipating heat or avoiding crosstalk is desirably set after driving the printing element.
To solve this problem, there is known distributed driving of distributedly driving printing elements to be concurrently driven in the array direction of the printing elements. According to this driving method, adjacent printing elements are not concurrently driven. By setting an idle time, the influence of an adjacent printing element can be eliminated.
FIG. 7 is a diagram showing the arrangement of a printhead which performs time-divisional driving.
In a specific example shown in FIG. 7, an enable signal which is input from a terminal 5a to enable driving a printing element is commonly supplied to all printing elements 1. In FIG. 7, reference numeral 3a denotes a terminal to apply a power supply voltage VH to the printing element as a voltage for driving a heater; and 4a, a ground (GND) terminal.
In a conventional printhead shown in FIG. 7, print data and a clock signal are respectively input from terminals 8a and 8b, and the print data is stored in a shift register 8. A latch signal is input from a terminal 7a, and the print data is latched by a latch circuit 7. By aligning print data in correspondence with printing elements, the printing elements of each block can be energized in accordance with the print data for the period of the latch signal.
Further in this arrangement, a block control signal is input from a terminal 6a and supplied to a decoder circuit 6. The decoder circuit 6 generates a block selection signal for selecting a block of four printing elements on the basis of the input block control signal. An AND circuit 5 receives the print signal from the latch circuit 7, the block selection signal from the decoder circuit 6, and the enable signal. When the logical value of these signals is “1”, the AND circuit 5 outputs a driving signal to a driver (transistor) 2, driving a corresponding printing element.
Time-divisional driving can be achieved by sequentially activating a block selection signal and supplying an enable signal from the terminal 5a in correspondence with each block within the period of each latch signal.
The printhead is configured to deal with various kinds of driving control by shortening the rise/fall time of a driving signal pulse so as to realize high-resolution control within the period of a latch signal.
This technique is disclosed in, e.g., the U.S. Pat. No. 6,116,714.
However, when the conventional printhead is to achieve high print speed, high-resolution color printing, and downsizing, the arrangeable wiring width on the printhead substrate becomes narrow, and the number of concurrently driven printing elements increases. Due to these factors, the print current flowing into the wiring causes the following problem.
This problem is a malfunction of a driving control circuit by switching noise occurred due to a great change of an electric current flowing into a wiring when a pulse-like driving signal rises and falls in concurrent driving. Since the driving signal is controlled temporarily at high resolution, as described above, a driver incorporated in the printhead must be turned on/off quickly. Assuming that the rise/fall time t of the driver is 100 nsec, the self-inductance L of the wiring is 100 nH, and the current I flowing at this time is 1 A, an induced voltage V generated at this time is given byV=L·dI/dt=100×10−9×1/100×10−9=1 V
From this, the induced voltage as high as 1 V is generated as noise.
This noise level greatly affects a logic gate circuit formed from a CMOS, TTL, or the like. Especially for a CMOS circuit whose logic voltage is 3.3 V or less, this induced voltage value almost reaches the threshold level. The switching noise may cause a fatal influence on the printhead operation on a head substrate prepared by integrating, on the same substrate, a printing element driver for switching a large current, and a logic gate circuit formed from a CMOS, TTL, or the like.
The print speed and print resolution are increased by increasing the number of printing elements of the printhead. As the number of printing elements increases, the number of time-divisionally driven blocks and the number of concurrently drivable printing elements may also increase. However, in view of increasing the print speed, the increase of the number of blocks is restricted. This naturally leads to increasing the number of concurrently drivable printing elements. This means that the instantaneous change of the current value becomes large and the noise level becomes high.
The problem of switching noise has conventionally been known, and several countermeasures against this problem have been proposed.
For example, input of a driving signal pulse to printing elements to be concurrently driven is delayed stepwise. According to this method, considering the level and occurrence time of switching noise, delay elements are properly inserted into driving signal lines to delay stepwise, by more than the occurrence time, a timing when the driving signal pulse is applied. This method can suppress occurrence of switching noise. However, according to this method, if the number of concurrently driven printing elements increases, the total delay time becomes long. This results in causing restriction on assigning the driving signal pulse width permissible time during which all printing elements are driven within the printhead printing period (i.e., time for giving a chance to drive all printing elements).
As another method, the rise time of the driving signal pulse and the instantaneous current value are specified, and wiring lines and terminals are dielectrically isolated to adjust the print current to the specified value or less. Even according to this method, the increase in print current by the increase in the number of concurrently driven printing elements cannot be satisfactorily coped with by the dielectric isolation of wiring lines and terminals. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an electronic control apparatus for use with an internal combustion engine using a digital computer, and more particularly to an engine speed sensing device wherein crank angle pulses are counted by a counter for a set time interval and the crank angle pulse count is read into a central processing unit of the computer to control, for example, the respective amounts of intake air and fuel supplied, spark timing and so forth.
In a conventional electronic control apparatus, a time interval set by the central processing unit (CPU) is counted by clock pulses. Angle pulses produced by a crank sensor each time the crankshaft rotates through a predetermined angle are counted by a counter during the time interval, and are latched at the end of the time interval. Then the latched count of angle pulses is read by the CPU after a subsequent time interval also set by the CPU. In other words, the timing at which the latched count of angle pulses are read into the CPU does not coincide with the end of the corresponding set time interval. Thus, the presence of this difference between the end of each set time interval and the time the latched count of angle pulses is read ensures some imprecision in the crank angle pulse count used to determine engine speed. Thus, if the engine speed greatly changes between the end of the immediately preceding time interval and the time of reading of the latched count of angle pulses, the latest data read into the CPU will not accurately reflect actual conditions, so that precise, high-speed control of the amounts of intake air and fuel supplied and so forth cannot be ensured. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an angiotensin converting enzyme inhibitor comprising a composition containing peptide obtained by digesting fish meat with thermolysin enzyme, which can be useful for medical supplies, foods, health foods, specified foods for health care and the like.
Angiotensin converting enzyme is an enzyme which is chiefly present in the lung, vascular endothelial cells and renal proximal tubules and acts on angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu (SEQ. ID. NO. 1)) to cleave a dipeptide (His9-Leu10) off its C-terminus to give rise to angiotensin II which has potent pressor activity. Futhermore, this enzyme decomposes bradykinin, a physiological hypotensive substance, to inactivate it and, as such, is intimately involved in the pressor system. It has been considered that inhibition of angiotensin converting enzyme would lower the blood pressure and is, therefore, clinically useful for the prevention and treatment of hypertension.
Recently, since captopril, a proline derivative, was synthesized and found to have hypotensive activity, much research has been undertaken for synthesizing a variety of angiotensin converting enzyme inhibitors and it has also been attempted to isolate such substances from natural resources.
This is because natural type angiotensin converting enzyme inhibitors available from foods or food materials may be expected to be of value as antihypertensive agents of low toxicity and high safety.
The present inventor has already disclosed a novel peptide which contains Leu-Lys-Pro backbone in Japanese Unexamined Patent Application Publication No. 69397/1992. In Japanese Unexamined Patent Application Publication No. 144696/1992, there is disclosed the method of producing a composition having an angiotensin converting enzyme inhibitor which is obtained by hydrolyzing a protein with a thermolysin. Furthermore, in Japanese Unexamined Patent Application Publication No. 244979/1993, there is disclosed a method of producing a composition having an angiotensin converting enzyme inhibitors which is obtained by hydrolyzing the residue mainly comprising water-insoluble protein with a protease after heat-treating meat in water of not less than 50° C. to exclude water-soluble protein by extraction.
However, though an inhibiting activity of novel peptides disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 69397/1992 is very strong, it takes much effort and higher cost to separate the peptide in practice. Also, though a composition having relatively high inhibitory activity is obtained by those methods disclosed in Japanese Unexamined Patent Application Publication No. 144696/1992 and Japanese Unexamined Patent Application Publication No. 244979/1993, a taken amount of the composition is slightly increased in order to obtain effect. Therefore, it is desired that a taken amount be further reduced in order to take the composition readily every day. Furthermore, if dried bonito is used as protein, the above compositions are still open to improvements in an aftertaste though peptide-specific bitterness is reduced. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a vehicle radio, and more particularly to an automated connection for a vehicle radio.
2. Description of Related Art
A radio for a vehicle such as an automobile includes at least one cable assembly for electrical internal connection between an object and the radio. Typically, these cable assemblies are mated by hand or manually by a person for interconnection within the radio. However, this is not suitable for use in an automated assembly environment.
It is, therefore, an object of the present invention to provide a connection for use in an automated assembly environment.
It is another object of the present invention to provide an automated connection which eliminates any manual alignment or mating by a person. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a need to identify new sources of chemical energy and methods for its conversion into alternative transportation fuels, driven by many concerns including environmental, health, safety issues, and the inevitable future scarcity of petroleum-based fuel supplies. The number of internal combustion engine fueled vehicles worldwide continues to grow, particularly in the midrange of developing countries. The worldwide vehicle population outside the U.S., which mainly uses diesel fuel, is growing faster than inside the U.S. This situation may change as more fuel-efficient vehicles, using hybrid and/or diesel engine technologies, are introduced to reduce both fuel consumption and overall emissions. Since the resources for the production of petroleum-based fuels are being depleted, dependency on petroleum will become a major problem unless non-petroleum alternative fuels, in particular clean-burning synthetic diesel fuels, are developed. Moreover, normal combustion of petroleum-based fuels in conventional engines can cause serious environmental pollution unless strict methods of exhaust emission control are used. A clean burning synthetic diesel fuel can help reduce the emissions from diesel engines.
The production of clean-burning transportation fuels requires either the reformulation of existing petroleum-based fuels or the discovery of new methods for power production or fuel synthesis from unused materials. There are many sources available, derived from either renewable organic or waste carbonaceous materials. Utilizing carbonaceous waste to produce synthetic fuels is an economically viable method since the input feed stock is already considered of little value, discarded as waste, and disposal is often polluting.
Liquid transportation fuels have inherent advantages over gaseous fuels, having higher energy densities than gaseous fuels at the same pressure and temperature. Liquid fuels can be stored at atmospheric or low pressures whereas to achieve liquid fuel energy densities, a gaseous fuel would have to be stored in a tank on a vehicle at high pressures that can be a safety concern in the case of leaks or sudden rupture. The distribution of liquid fuels is much easier than gaseous fuels, using simple pumps and pipelines. The liquid fueling infrastructure of the existing transportation sector ensures easy integration into the existing market of any production of clean-burning synthetic liquid transportation fuels.
The availability of clean-burning liquid transportation fuels is a national priority. Producing synthesis gas (which is a mixture of hydrogen and carbon monoxide) cleanly and efficiently from carbonaceous sources, that can be subjected to a Fischer-Tropsch type process to produce clean and valuable synthetic gasoline and diesel fuels, will benefit both the transportation sector and the health of society. A Fischer-Tropsch type process or reactor, which is defined herein to include respectively a Fischer-Tropsch process or reactor, is any process or reactor that uses synthesis gas to produce a liquid fuel. Similarly, a Fischer-Tropsch type liquid fuel is a fuel produced by such a process or reactor. A Fischer-Tropsch type process allows for the application of current state-of-art engine exhaust after-treatment methods for NOx reduction, removal of toxic particulates present in diesel engine exhaust, and the reduction of normal combustion product pollutants, currently accomplished by catalysts that are poisoned quickly by any sulfur present, as is the case in ordinary stocks of petroleum derived diesel fuel, reducing the catalyst efficiency. Typically, Fischer-Tropsch type liquid fuels, produced from biomass derived synthesis gas, are sulfur-free, aromatic free, and in the case of synthetic diesel fuel have an ultrahigh cetane value.
Biomass material is the most commonly processed carbonaceous waste feed stock used to produce renewable fuels. Biomass feed stocks can be converted to produce electricity, heat, valuable chemicals or fuels. California tops the nation in the use and development of several biomass utilization technologies. For example, in just the Riverside County, California area, it is estimated that about 4000 tons of waste wood are disposed of per day. According to other estimates, over 100,000 tons of biomass per day are dumped into landfills in the Riverside County collection area. This waste comprises about 30% waste paper or cardboard, 40% organic (green and food) waste, and 30% combinations of wood, paper, plastic and metal waste. The carbonaceous components of this waste material have chemical energy that could be used to reduce the need for other energy sources if it can be converted into a clean-burning fuel. These waste sources of carbonaceous material are not the only sources available. While many existing carbonaceous waste materials, such as paper, can be sorted, reused and recycled, for other materials, the waste producer would not need to pay a tipping fee, if the waste were to be delivered directly to a conversion facility. A tipping fee, presently at $30-$35 per ton, is usually charged by the waste management agency to offset disposal costs. Consequently not only can disposal costs be reduced by transporting the waste to a waste-to-synthetic fuels processing plant, but additional waste would be made available because of the lowered cost of disposal.
The burning of wood in a wood stove is a simple example of using biomass to produce heat energy. Unfortunately, open burning of biomass waste to obtain energy and heat is not a clean and efficient method to utilize the calorific value. Today, many new ways of utilizing carbonaceous waste are being discovered. For example, one way is to produce synthetic liquid transportation fuels, and another way is to produce energetic gas for conversion into electricity.
Using fuels from renewable biomass sources can actually decrease the net accumulation of greenhouse gases, such as carbon dioxide, while providing clean, efficient energy for transportation. One of the principal benefits of co-production of synthetic liquid fuels from biomass sources is that it can provide a storable transportation fuel while reducing the effects of greenhouse gases contributing to global warming. In the future, these co-production processes could provide clean-burning fuels for a renewable fuel economy that could be sustained continuously.
A number of processes exist to convert coal and other carbonaceous materials to clean-burning transportation fuels, but they tend to be too expensive to compete on the market with petroleum-based fuels, or they produce volatile fuels, such as methanol and ethanol that have vapor pressure values too high for use in high pollution areas, such as the Southern California air-basin, without legislative exemption from clean air regulations. An example of the latter process is the Hynol Methanol Process, which uses hydro-gasification and steam reformer reactors to synthesize methanol using a co-feed of solid carbonaceous materials and natural gas, and which has a demonstrated carbon conversion efficiency of >85% in bench-scale demonstrations.
Of particular interest to the present invention are processes developed more recently in which a slurry of carbonaceous material is fed into a hydro-gasifier reactor. One such process was developed in our laboratories to produce synthesis gas in which a slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions to generate rich producer gas. This is fed along with steam into a steam pyrolytic reformer under conditions to generate synthesis gas. This process is described in detail in Norbeck et al. U.S. patent application Ser. No. 10/503,435 (published as US 2005/0256212), entitled: “Production Of Synthetic Transportation Fuels From Carbonaceous Material Using Self-Sustained Hydro-Gasification.”
In a further version of the process, using a steam hydro-gasification reactor (SHR) the carbonaceous material is heated simultaneously in the presence of both hydrogen and steam to undergo steam pyrolysis and hydro-gasification in a single step. This process is described in detail in Norbeck et al. U.S. patent application Ser. No. 10/911,348 (published as US 2005/0032920), entitled: “Steam Pyrolysis As A Process to Enhance The Hydro-Gasification of Carbonaceous Material.” The disclosures of U.S. patent application Ser. Nos. 10/503,435 and 10/911,348 are incorporated herein by reference.
All of these processes require the formation of a slurry of biomass that can be fed to the hydro-gasification reactor. To enhance the efficiency of the chemical conversions taking place in these processes, it is desirable to have a low water to carbon ratio, therefore a high energy density, slurry, which also makes the slurry more pumpable. High solids content coal/water slurries have successfully been used in coal gasifiers in the feeding systems of pressurized reactors. A significant difference between coal/water slurries and biomass/water slurries is that coal slurries contain up to 70% solids by weight compared to about 20% solids by weight in biomass slurries. Comparing carbon content, coal slurries contain up to about 50% carbon by weight compared to about 8-10% carbon by weight in biomass slurries. The polymeric structure if cell walls of the biomass mainly consists of cellulose, hemicellulose and lignin. All of these components contain hydroxyl groups. These hydroxyl groups play a key role in the interaction between water and biomass, in which the water molecules are absorbed to form a hydrogen bond. This high hyrgroscopicity of biomass is generally why biomass slurries are not readily produced with a high carbon content.
A number of processes have been developed to produce high carbon content slurries for use as the feedstock for a hydro-gasifier. JGC Corporation in Japan developed the Biomass Slurry Fuel process, which, however must be carried out at semi-critical conditions, with a temperature of 310° C. and at a pressure of 2200 psi. The process converts high water content biomass into an aqueous slurry having a solids content of about 70%, which is the same level as a coal/water slurry. However, it has to be carried out under high energy conditions.
Texaco researchers developed a hydrothermal pretreatment process for municipal sewage sludge that involves heating the slurry to 350° C. followed by a two stage flash evaporation, again requiring high energy conditions.
Traditionally, thermal treatment of wood is a well known technology in the lumber industry to enhance the structural property of wood, but not to prepare a slurry. It decreases hygroscopicity and increases the durability of lumber for construction. Polymeric chains are cleaved in thermal treatment, and accessible hydroxyl groups are reduced leading to a limited interaction with water compared to untreated wood
Aqueous liquifications of biomass samples have been carried out in an autoclave in the reaction temperature range of about 277-377° C. at about 725-2900 psi, to obtain heavy oils rather than slurries, exemplified by the liquification of spruce wood powder at about 377° C. to obtain a 49% liquid yield of heavy oil. See A. Demirbas, “Thermochemical Conversion of Biomass to Liquid Products in the Aqueous Medium”, Energy Sources, 27:1235-1243, 2005.
Our previous work (U.S. patent application Ser. No. 11/489,299) disclosed novel methods that enabled the production of a stable biomass slurry containing up to 60% solids by weight, so as to provide 20-40% carbon by weight in the slurry. However, it was not appreciated at that time the optimal conditions required for using such biomass slurries in hydrogasfication processes, such as the optimum viscosity of the slurry to be delivered/pumped. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a temperature sensor control apparatus which energizes a temperature sensor whose electric resistance varies in accordance with a temperature.
Heretofore, there is used a temperature sensor control apparatus arranged to energize a temperature sensor whose resistance varies in accordance with a temperature, at a temperature detection of a measured fluid such as exhaust gas by using the temperature sensor.
The temperature sensor control apparatus includes reference resistance elements connected in series with the temperature sensor. The temperature sensor control apparatus senses a voltage value divided by the resistances with respect to an impressed voltage (that is, an electric potential of a connection point between the temperature sensor and the reference resistance element), and determines a resistance value of the temperature sensor in accordance with the electric potential of the connection point. This temperature sensor control apparatus determines the temperature based on temperature-resistance characteristic of the temperature sensor.
The temperature sensor has a characteristic having a region in which an amount of variation of the resistance value is small with respect to an amount of variation of the temperature, and a region in which an amount of variation of the resistance value is increased with respect to an amount of variation of the temperature. Accordingly, the amount of variation of the resistance value is not constant in all the temperature region. In the region in which the amount of the variation in the resistance value is small with respect to the amount of the variation in the temperature, the sensed voltage value divided by the resistance tends to vary for the noise, so that the detection error tends to occur in this region.
For solving the above mentioned problem, a published Japanese patent application No. H5-45231 and a published Japanese patent application No. 2002-310807 disclose temperature sensor control apparatuses devised to decrease the resistance value of the reference resistance elements relatively with respect to the temperature sensor by switching the reference resistance elements connected in series with the temperature sensor. Accordingly, it is possible to decrease the influence of the noise. | {
"pile_set_name": "USPTO Backgrounds"
} |
Online systems, platforms, and services, such as social networks and communication platforms, typically require each user of the online system to generate a profile identifying the respective user, for example, by specifying a name and providing an image of the user. Other registered users of the online system, as well as unregistered public viewers exploring the online system, may access the profiles of registered users and view the respective details. However, this may be undesirable since sensitive data may be retrieved by a large group of viewers without any control by the owner of the identity data. Thus, a user of an online system may withhold identity details as a precaution. Another problem arises if a user in a social network predominantly used by his friends generates a detailed profile with characteristics related to leisure activities which, however, may be inappropriate if the profile is being viewed by colleagues, business associates, or other viewers which are not necessarily friends of the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to high-power lasers, especially lasers using a gaseous, excitable medium, having an unstable optical resonator composed of fully reflective mirrors of cylindrical curvature.
High-power lasers, such as carbon dioxide high-power lasers, are known, which are equipped with semitransparent resonator mirrors. The semitransparent mirror materials used, such as zinc selenide for example, tend to deform under the action of the radiation. Such deformation leads to output fluctuations and to an alteration of the radiation profile of the laser and thus to inconsistent operating results.
For this reason, unstable optical resonators are used in high-power lasers. Fully reflective mirrors are used. The laser beam leaves the unstable optical resonator through a free opening. Conventional unstable optical resonators are equipped with circular mirrors of spherical curvature. The output laser beam in this case has an annular cross section.
In many cases, in transverse-flow gas lasers for example, the rotational symmetry of the mirrors is simply no adequate match for the excitation chamber of the laser. Here the use of unstable optical resonators with rectangular cylinder mirrors becomes desirable. The laser beam is in this case discharged at an offset from the axis and presents a solid, rectangular profile.
In this known system using an unstable optical resonator, the resonator behaves in the plane perpendicular to the plane of curvature of the cylinder surfaces (this plane of curvature is called an unstable plane) like a planar Fabry-Perot resonator, resulting in a high laser threshold and extreme delicacy of adjustment.
To avoid this, a proposal was made in "Appl. Optics, Vol. 20, No. 20, pp. 3547-3552, Oct. 15, 1981" for the use of toroidal mirrors instead of the cylindrical mirrors, one of the two mirrors having an additional concave curvature in the plane perpendicular to the unstable plane. The making of toroidal mirrors, however, is extraordinarily difficult and expensive.
It is the object of the invention to create a high-power laser having an unstable optical resonator, which will make optimum use of an excitation chamber of approximately rectangular cross section. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
Character toys have been used with containers. The bottom surface of such character toys have had an opening or cavity that fits on the cap of the container. The character toy is placed on the cap of the container and sold as a combination. In these toys, the character can only be used on the cap or alone, but not secured in any other fashion to the container.
It would be desirable if the character toy and the container could be associated with each other in a different way and, thus, used as a toy combination. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to computer systems and more particularly to clock control techniques for microprocessors. The invention also relates to the measurement of propagation delays within microprocessors.
2. Description of the Relevant Art
Microprocessors or central processing units (referred to herein as "processors" or "CPU's") are typically capable of operating at much higher frequencies than the frequency at which they are actually set to operate. That is, since a processor in a computer system must allow for a worst case scenario of operating conditions, the processor is typically set to operate at a frequency lower than its actual maximum operating frequency during normal conditions. In general, unfavorable operating conditions of the processor chip may cause an increase in the time required for a particular signal to propagate through a designated portion of the microprocessor circuitry. Therefore, in order to maintain proper operation of the computer system at all times, manufacturers rate a particular processor for certain predetermined worst case conditions, and specify the maximum operating frequency based on these worst case conditions.
Thus, for example, a 33 MHz rated processor may potentially be operable at a higher frequency, such as 49.5 MHz, during favorable operating conditions. The processor, however, will not be driven at 49.5 MHz in practice because the operating conditions may not always be favorable. If the processor were driven at 49.5 MHz, failures could occur during the periods of less favorable operating conditions.
Exemplary parameters that can affect the propagation delays associated with a processor include temperature, supply voltage levels, and manufacturing variations. FIGS. 1A-1C are graphs which illustrate general relationships between these parameters and propagation delay. Referring first to FIG. 1A, as the temperature of a processor increases, the propagation delays associated with the internal circuitry of that processor also typically increase. As illustrated in FIG. 1B, supply voltage levels can also affect propagation delays associated with a processor. Generally speaking, the lower the supply voltage to the processor, the greater the propagation delays. Processing variations may also impact propagation delays, as depicted in FIG. 1C. The maximum rated frequency of a processor is typically set to ensure operability when all delay-affecting parameters reach their worst case condition concurrently.
With computing speed and performance a premium in today's market, a need exists for a processor that is configured to operate at an optimal frequency based on the current operating conditions of the processor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Data centers are often composed of multiple racks of servers. The server racks are configured with power supply units that can safely supply up to a maximum amount of power to the servers in the rack. If one of the power supply units fail, the maximum amount of power that can be safely supplied by the power supply units may decrease. If the servers draw more than the maximum amount of power that can be safely supplied by the working power supply units, the working power supply units may fail and/or the servers in the rack may be damaged. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various powered floor cleaning machines are known in the art, including those in which the operator is standing on the floor and walking behind the machine (“walk-behind” machines), those in which the operator is sitting on the machine (“ride-on” machines), and those in which the operator is standing on the machine (“stand-on” machines). A
Some machines provide wet scrubbing of a floor surface, usually with a squeegee assembly, such as one that includes a vacuum system for picking up soiled water resulting from the wet scrubbing process.
A well-known problem for powered floor cleaners is the pick-up of debris in front of and at the side of the cleaning path of the cleaner. Some commercial machines address this problem with so-called presweepers in various configurations. A unit with cylindrical brushes sweeps the cleaning path in front of the machine and collects the dirt in a bin. Other commercial machines use a side brush that sweeps debris from the side of the cleaning path. Such devices unfortunately increase the overall footprint of the machines. This can considerably reduce maneuverability, reduce the effective reach of wet cleaning in corners, require higher energy consumption thus reducing machine autonomy by requiring more frequent battery recharging, and/or generate dust due to high rotational speed. These devices tend to complicate the cleaning system and add expense. Another method to address this issue is a manual sweeping process before the wet-cleaning process is begun. This can be time-consuming, and therefore is often neglected. Missing the pre-sweeping process can lead to streaking of the floor surface as debris is caught under the squeegee. Suction performance can be reduced, resulting in impairment of or even blockage of the suction system. | {
"pile_set_name": "USPTO Backgrounds"
} |
In general, request-centric systems (RCSs), such as file systems and database systems, serve workloads that can include external workloads and/or internal workloads. An external workload is generated by one or more external clients (e.g., applications that provide input/output (I/O) requests to a storage system). An internal workload is generated by the system itself (e.g., the system restores a destroyed replica and the replica recovery process generates an internal I/O workload).
The owners of a RCS can enable users to set quality of service (QoS) goals. In some examples, the QoS goals can include performance goals (e.g., throughput rate, response time, etc.), durability, high availability goals and/or other system-specific technical and business goals. In some examples, goals are expressed in the form of service level agreements (SLAs). In some examples, the goals are associated with penalties that can be applied when one or more goals are not met. Consequently, the owner of a RCS has incentives to maintain QoS goals. On the other hand, the owners of a RCS want to keep the total cost of ownership (TCO) as low as possible. Accordingly, managing a RCS can be performed with the goal of optimizing TCO subject to maintaining QoS goals. Owners may seek to achieve other goals. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a position sensing device having a light reflecting amplification structure and a method manufacturing the position sensing device. In particular, the present invention relates to a position encoded liquid crystal display (PELCD) sensing device having a light reflecting amplification structure disposed therein, wherein the light reflecting amplification structure amplifies and increases the intensity of light reflection of the PELCD so that the detection of display position sensing code(s) can be improved.
2. Related Art
Flat panel displays have become very popular in the electronic industry. Flat panel displays are generally provided in electronic products such as notebook computers, display monitors for personal computers, and especially handheld devices such as PDAs. Some flat panel displays are position sensible liquid crystal display (PSLCD) devices whereby the PSLCD can sense the position of stylus when the stylus is in direct contact with the display panel. However, the PSLCD devices of the related art contain complex structures requiring additional control circuitries; and are thick in size and heavy in weight.
In order to overcome the above mentioned disadvantages, there is a need to have a flat screen display device that can employ a position encoded liquid crystal display (PELCD) sensing device having a light reflecting amplification structure disposed therein so that the PELCD sensing device can increase and amplify the reflection of light to detect code information. | {
"pile_set_name": "USPTO Backgrounds"
} |
This new invention relates to a new and distinct variety of hardy, bush type plant of the Mini-Flora rose class. This variety was developed by myself, Wendy R. White, under controlled conditions in a greenhouse in Rowley, Mass., by crossing the following two rose cultivars: an unnamed and unintroduced seedling from this same breeding program as seed parent ‘SAVapam’ as pollen parent.The new plant was selected as a seedling in the mid-winter of 2003. In the fall of 2003, it was shipped to Arroyo Grande, Calif. where it was grown in a plastic covered greenhouse for 6 years, before being moved outside in December of 2008. In April of 2009, it was shipped to Ipswich, Mass. where it continues growing outside in a large 5 gallon plastic bucket.
The idyllic goals of this breeding program were to create unique diminutive roses with the qualities of disease resistance, hardiness, and having fragrant, hybrid-tea form blooms, born in abundance from late spring through late fall. The cultivar chosen as seed parent was a rose of the miniature class and had very fragrant flowers, born in abundance. The cultivar chosen as pollen parent is a Mini-Flora rose with moderate fragrance and is known for its vigor, hardiness and excellent disease resistance. The resulting new cultivar is a prolific bloomer and has a strong fragrance, similar to that of its seed parent, and is a Mini-Flora rose with vigor, hardiness and disease resistance almost as good as its pollen parent.
Comparison between the new invention and its parents is shown in Table 2.
New Invention -Seed Parent -Pollen Parent -‘SAVorockies’Seedling‘SAVapam’Of the Mini-FloraOf the miniatureOf the Mini-Florarose classrose classrose classFlowers of apricot-Lavender-pinkFlowers of various shadespink with russet tones;colored flowers.of a pink blend: includinggradually losing allshell-pink, Orient-yellow tonality.pink and salmon-pink.32-36 petals15-18 petals27-32 petalsStrong fragranceStrong fragranceModerate fragranceHeight of 22 toHeight of 15 toHeight of 26 to 34 inches18 inches32 inches.Petals age somePetals age consider-Petals dropbefore eventuallyably and drop afterfrom the fading bloom,dropping cleanlyan extended periodpromptly and cleanlyof time | {
"pile_set_name": "USPTO Backgrounds"
} |
Circulators generally contain two basic parts:
i/ a microwave circuit comprising an arrangement of conductors and ferrite blocks, and PA1 ii/ a magnetic circuit providing a magnetic biasing field applied to the ferrite blocks that act as a non-reciprocal media for propagating radio frequency signals throughout the device. PA1 i) forming an integral conductor arrangement consisting of a plurality of strips extending outwardly from a base portion having an opening therein; PA1 ii) folding the arrangement to define a first compartment to accommodate a ferrite block; and PA1 iii) folding the strips inwardly without a ferrite block being inserted into the first comartment to form an arrangement of spaced apart overlaying crossing strips.
An ideal three port circulator transmits power (as shown diagrammatically in FIG. 1) between any two ports in a forward direction only, i.e. from port 1 to port 2, from port 2 to port 3, from port 3 to port 1. In the reverse direction (from port 1 to port 3, from port 3 to port 2 and from port 2 to port 1) no power can be transmitted (i.e. port 3 is isolated from port 1, port 2 from port 3, and port 1 from port 2).
A circulator can be converted to an isolator by connecting a matched load to one of the ports. For example, if port 3 is terminated with a matched load, a drive signal is applied to input port 1 and an antenna is connected to output port 2, then any power reflected from the antenna is directed to the terminated port 3 and dissipated in the load.
A typical prior art strip line lumped element circulator is shown in FIGS. 2 and 3. Conductors 4 connected to terminal ports are sandwiched between ferrite discs 5 and 6 which in turn are located in the gap between magnets 7 and 8. Permanent magnets 7 and 8 are supposed to magnetise ferrite disks 5 and 6 and provide a dc biasing magnetic field in the ferrite disks 5,6 that is necessary for signal circulation between terminal ports. The direction of circulation is determined by the orientation of the applied dc magnetic field and may be reversed by reversing the polarity of the magnets 7,8.
In such prior devices conductors 4a, 4b, and 4c form a multi-layered construction where individual strips are interwoven and their intersections are insulated during assembly. The conductor ends (9a, 9b, 9c) are connected to terminal ports of the circulator and the other ends (10a, 10b, 10c) are attached to a common ground plane.
The pattern of interwoven conductors 4 may be fabricated in two different ways. One approach is based on interweaving and joining separated insulated strip conductors. The other technique employs the technology of multi-layered metal and dielectric deposition on the surface of a ferrite disk. The former method is time consuming and the resulting conductor assemblies may have inconsistent topology. The latter procedure exploits thin film technology and is typically useful in fabrication of low power microwave integrated devices. Increasing power handling capacity may result in a substantial rise in manufacturing cost. Another problem encountered by both fabricating methods is the quality of the connections between conductor ends (10a, 10b, 10c) and the common ground plane, the inconsistent joints causing increased losses and degradation of overall circulator performance.
Homogeneity of the biasing magnetic field inside the ferrite disks is normally desirable for optimum circulator performance. Non-uniformity of the biasing magnetic field associated with the shape of magnets and ferrite blocks may substantially degrade insertion losses and isolation between the circulator ports. The crucial problem of optimising distribution of the biasing magnetic field has been extensively explored and addressed in numerous publications and patents.
In particular, to generate a uniform magnetic field inside ferrite disks it has been proposed to attach ferrite semi-spheres either side of the ferrite discs (see E. F. Schloemann. "Circulators for Microwave and Millimeter-Wave Integrated Circuits". Proceedings of IEEE, vol. 76, No. 2, February 1988, pp 188-200). Semi-spherical ferrite segments surrounding the ferrite disks neutralise the demagnetising effect of the disk-shaped ferrites on distribution of the internal biasing magnetic field. They help to preserve uniformity of the internal magnetic field when the system is exposed to a uniform external magnetic field. However, such an arrangement is bulky and only employs the central part of the magnetic system due to tight requirements of homogeneity in the external magnetic field. Ferrite semi-spherical segments are also expensive to produce and, due to the very poor thermal conductivity of ferrite, they impede heat transfer from the ferrite disks. The latter problem may result in substantial degradation of circulator performance with increasing power and/or varying temperature.
DE 2950632 discloses the use of frustoconical ferrites in a junction circulator. This is said to reduce noise and intermodulations by minimising the effect of irregularities in the biasing magnetic field nearby the edge of the ferrite. This, however, requires special fabrication techniques, thus increasing cost. This also increases the thickness of ferrite used, thus impeding heat transfer.
Further, in prior art circulators the ferrite was considered simply as part of the microwave circuit not affecting the DC magnetic circuit. This often resulted in difficulties of thermal stabilisation and the need for complex temperature controlling devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
Male urinary incontinence usually occurs after trauma or surgery, such as severe pelvic fractures combined with urethral external sphincter injury, etc. However, the most common male urinary incontinence occurs after surgery, such as transurethral resection of prostate, radical prostatectomy, radical resection of bladder, urethral stricture incision, prostate radiotherapy, and congenital malformation and absence of urethral sphincter, and so on.
Transurethral resection of prostate is a standard surgery for treatment of benign prostatic hyperplasia in elderly patients. If the surgical resection technique is not properly mastered or controlled and the urethral sphincter is injured, then real urinary incontinence may occur so that one cannot control the urine and the urine flows out of the urethra automatically. For radical prostatectomy, urinary incontinence may occur when sphincter injury occurs due to huge tumor invasion or resection scope. Radical resection of bladder includes removal of prostate gland. Again, urinary incontinence may occur when sphincter injury occurs due to huge tumor invasion or resection scope.
Urinary incontinence causes great inconvenience to patients. The patients need to wear diapers for a long period of time and cannot leave the house. It has a great impact on the psychological and physiological sides of the patients. It is also an important source of medical disputes and tension between doctors and patients. For young urinary incontinence patients, they would almost lose their courage to work, and would affect their sexual life and even lead to family rupture.
Male urinary incontinence is a worldwide problem in the surgical field. Existing surgical method and equipment cannot completely solve the problem, and the medical costs and complications are very obvious. Severe pelvic fractures combined with urethral external sphincter injury, and a variety of surgeries involving the urethral sphincter are likely to lead to male urinary incontinence. At present, medical treatment of male incontinence and rehabilitation method include (1) anus-lifting exercise and training for recovery of the function of sphincter; (2) male artificial urethral sling implantation; (3) using a penis clamp to completely and closely clamp the entire distal end of the penis; (4) artificial urethral sphincter implantation; (5) reconstructing sphincter with bladder mucosa, and ligament suspension surgery; (6) bladder neck hardening agent injection.
Device and method such as a classic penis clamp where the whole penis is completely clamped (as shown in FIG. 1), and artificial urethral sphincter implantation (complicated device implanted in the human body, complicated surgical operation, high costs, as shown in FIG. 2) have significant defects. It cannot really solve urinary incontinence and can only reach a certain degree of relief. The existing methods for treatment of male urinary incontinence are complicated and have complications, or the structure of the device is complicated, leaving the body prone to infection and rejection.
(1) Anus-lifting exercise and training, and pelvic base biofeedback electrical nerve stimulation: Researches have confirmed that these methods belong to the scope of physiotherapy rehabilitation training. Real urinary incontinence cannot be completely healed by merely muscle training.(2) Male artificial urethral sling implantation: An artificial material in the form of a patch is implanted in the human body in order to suspend the male urethral bulb and treat urinary incontinence caused by sphincter injury. This method cannot achieve significant urine control for severe real urinary incontinence. The degree of tightness of the sling implantation may lead to complete out of control of urine, or urine cannot be discharged. The implantation of a foreign material in the body may lead to tissue inflammation and possible reject reaction, and is therefore potentially dangerous.(3) Penile clip: Its working principle is similar to an elastic rubber band. It ties up the entire penis, including corpus spongiosum, corpus cavernosum, skin, nerves, and blood vessels to close the urinary tract and prevent leakage of urine. The tightening band can be released to allow urine to flow out. The penile clip tightly clamps the entire penis, including the basic structure of the penis, such as blood vessels, nerves, fascia, etc. for a long time, and is only released to restore blood flow and feel during urination. This technique can easily lead to disorder of blood circulation at the distal end of the penis, which may lead to numbness of the penis, penile erectile dysfunction, and even tissue necrosis at the distal end of the penis. Long clamping of the entire penis can also lead to complete loss of sexual intercourse ability.(4) Artificial urethral sphincter implantation: Artificial urethral sphincter implantation is considered to be the gold standard for treatment of urinary incontinence after prostatectomy. However, even experienced doctors still have a failure rate of more than 35%. Furthermore, the method requires the entire device to be implanted in the body by surgery. The surgical process is difficult to master and promote, and is high in medical costs. Foreign object implantation in human body has high chance of infection and rejection.(5) Reconstruct sphincter with bladder mucosa, and ligament suspension surgery: It has poor surgical results. Urine control is not ideal, and surgical trauma is large.(6) Bladder neck hardening agent injection: Surgical trauma is not large, but the effect of urine control is poor. Side effects of injection of hardening agent into the human body include local inflammation, tissue necrosis, etc.
The above-mentioned surgical treatments of male urinary incontinence obviously cannot be very effective in solving real male urinary incontinence. The surgical procedures are complex, and surgical trauma is large. These limit the treatment effect on male urinary incontinence patients. They cannot achieve a simple and effective solution to thoroughly solve the problem of male urinary incontinence. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to a personal audio equipment provided with an air vent unit and a noise cancellation function, and in particular to a personal audio equipment provided with an air vent unit and a noise cancellation function wherein an air vent unit is provided at a central portion of an earphone or a personal audio equipment, by means of which a user is able to easily hear an external sound even during the wearing thereof, and an external sound inputted via other vent portions except for a horn sound or an alarming sound can be cancelled using a noise cancellation function when a user is on the phone or is listening to a music using the earphone, thus preventing any accidents.
In case of a conventional personal audio equipment, the structure of an earphone or an audio equipment is changing focusing on the sealing of an earhole so as to prevent the input of external sound, etc. As described in the sealing type earphone of the Korean patent application number 10-2002-0016565, the structure of the earphone has been advanced up to a new structure which is able to maximize the blocking of an external sound input in such a way to seal the earhole when the earphone is inserted therein while enhancing a sound transfer function of the audio equipment. In case of a user who frequently is on the phone using a Bluetooth, an earphone, etc., the earphone remains blocked even when the user is not on the phone or is not listening to the music, so the user is not able to hear any external sound, for which any accident may occur. Any water or moisture which is naturally discharged to the outside via the earphone may not be discharged due to the sealing type personal audio equipment and may gather inside the earhole, which may result in the growth of bacteria having a bad effect on the health of the ears. In the summer, such phenomenon may cause the use to feel uncomfortable.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a magnetic detection apparatus for use in a rotary encoder, a linear encoder, etc.
There has been well known a rotary encoder for detecting a rotation angle of a rotation axis, in which the rotation angle is detected by reading magnetic signals previously recorded in the form of a magnetization pattern having a constant bit length on a magnetic record medium applied on a circular plate or a cylinder coupled with the rotation axis by means of a magnetic sensor including a magnetoresistive (MR) element. However, when the rotation angle of a motor is detected by the conventional rotary encoder, there occurs drawbacks that the S/N ratio of a detection signal supplied from the magnetic sensor is decreased and an erroneous operation is effected due to an external magnetic field, because a large amount of the external magnetic field leaks from a permanent magnet or an armature of the motor.
In order to eliminate the drawbacks mentioned above, there has been proposed, in Japanese Patent Laid-Open Publication No. 162,556/79, an angle detector comprising a magnetic shielding member made of high permeable magnetic material for surrounding a circular plate including a magnetic record medium and coupled with an output axis of the motor, a magnetic sensor arranged opposite to the circular plate and driving circuit and signal processing circuit connected to the sensor. However, it is not possible to shield the angle detector completely from the external magnetic field. Moreover, in order to remove the influence of the external magnetic field, it may be further considered that only the external magnetic field is detected by a separate magnetic sensor and the thus detected signal and the output signal derived from the magnetic recording medium are electrically calculated. However, in this case, since a magnetic-resistance characteristic of the MR element consisting of the magnetic sensor is not linear, the output signal of the separate magnetic sensor due to the external magnetic field does not correspond to a part of the output signal of the other sensor due to the external magnetic field, and thus it is not possible to perform a highly accurate compensation. Moreover, the dynamic range of the MR element could not be used effectively for detecting the magnetic pattern, particularly under the large external magnetic field.
In the rotary encoder mentioned above, it is possible to detect the magnetic signals by a single MR element so as to obtain the displacement amount. However, since the output voltage is small and drifts due to the temperature variation, it is general to derive the output voltage from a circuit wherein more than two MR elements are differentially connected. For example, in Japanese Patent Laid-Open Publication No. 115,257/79, is disclosed an angle detector wherein two MR elements are arranged by a distance which is an integral number of a pitch of the magnetization pattern on the magnetic recording medium and an output difference therebetween is derived from a differential amplifier. Moreover, an angle detector of this type shown in FIG. 1 is described in a Japanese magazine, "Nikkei Electronics", page 88 published on June 22, 1981. As shown in FIG. 1, two groups of magnetic sensors each having four MR elements A.sub.1 to A.sub.4 and B.sub.1 to B.sub.4 are arranged. Then, MR elements in one group are arranged apart by a half of a pitch P of a magnetization pattern recorded on a magnetic recording medium M, and MR elements in the other group are arranged apart by P/4 with respect to the MR elements in the other group. Further, as shown in FIG. 2, the four MR elements of each groups are connected as a bridge circuit, and a difference between output voltages generated at diagonal points of each bridge circuit are derived from respective differential amplifiers DA.sub.1 and DA.sub.2. In this magnetic detector, it is possible to detect not only a displacement amount, but also a displacement direction. Moreover, it is possible to make an output amplitude large and to remove the effect of the drift. However, in the conventional angle detector, it is necessary to arrange more than two MR elements apart from each other in a displacement direction D, i.e. in an arranging direction of the magnetization pattern by an interval which is equal to an integer multiple of the pitch P of the magnetization pattern or to a reciprocal thereof. Therefore, when use is made of various magnetization patterns having different pitches, it is necessary to prepare various magnetic sensors having MR elements which are arranged apart by predetermined intervals corresponding to the various pitches of the magnetization patterns. Therefore, there occurs a drawback that the freedom of design is limited to a great extent. Moreover, in case of arranging the magnetic recording medium on the cylinder side surface, if a plurality of MR elements are arranged on a plane substrate, the distances between each MR element and the magnetic recording medium are not equal. Therefore, the output signal of each MR element is fluctuated due to the distance variation, and thus the differential output includes an error.
In order to eliminate the drawbacks mentioned above, there has been proposed in Japanese Patent Laid-Open Publication No. 35,011/81 an angle detector wherein a width of each MR element is varied, but it is a very cumbersome task to manufacture the MR elements each having a different width. Moreover, if the distance between the MR element and the magnetic recording medium is varied as mentioned above, it is necessary to arrange the MR elements each having a different width corresponding to such distance. In addition, if more than two MR elements are arranged in the direction of the magnetization pattern recorded on the magnetic recording medium, a dimension of the magnetic sensor is made large and thus the detection apparatus is liable to be large in size correspondingly. | {
"pile_set_name": "USPTO Backgrounds"
} |
Non-contact temperature measurement instruments allow a user to measure the temperature of a surface of an object or portion of an object without touching the object. One common type of non-contact temperature measurement device is an infrared thermometer. Infrared thermometers determine the temperature of an object by measuring the infrared radiation emitted by the object. The amount of infrared radiation that is emitted at particular wavelengths is correlated with the temperature of the object. If the amount of infrared energy emitted by the object and its emissivity are known, then the object's temperature can be determined without contacting the object. The optical system of an infrared thermometer collects the infrared energy from a measurement spot and focuses it upon a detector. The detector then converts the energy to an electrical signal that can be displayed in units of temperature. Many infrared thermometers allow a user to ascertain the temperature of a spot on an object by aiming the thermometer at the object.
As discussed above, many infrared thermometers work by using a known relationship between thermal radiation and emissivity. The emissivity of a material is the ratio of energy radiated by a particular material to energy radiated by a blackbody at the same temperature. Emissivity is a measure of a material's ability to radiate absorbed energy. A true blackbody has an emissivity of one, while all real objects have an emissivity that is less than one. The output signal of the detector of an infrared thermometer is related to the thermal radiation, j*, of the target object through the Stefan-Boltzmann law:j*=εσT4 The constant of proportionality, σ, is the Stefan-Boltzmann constant, and ε is the emissivity of the object. An infrared thermometer measures the thermal radiation j* of the object. Thus, if the emissivity of the target object is known, the Stefan-Boltzmann law can be used to calculate an approximate temperature, T, of a spot on the surface of the object. | {
"pile_set_name": "USPTO Backgrounds"
} |
Progress in understanding the intricate development of the human nervous system and elucidating the mechanisms of mental disorders in patients has been greatly limited by restricted access to functional human brain tissue. While studies in rodents have provided important insights into the fundamental principles of neural development, we know little about the cellular processes responsible for the massive expansion of the cerebral cortex in primates, nor many of its human specific features. In recent years, a paradigm shift has been achieved in the field with the introduction of cellular reprogramming—a process during which terminally differentiated somatic cells can be converted into pluripotent stem cells, named human induced pluripotent stem cells (hiPSC). These hiPSCs can be generated from any individual and, importantly, can be directed to differentiate in vitro into all germ layer derivatives, including neural cells.
While the methods and efficiency of generating hiPSCs have been significantly improved and standardized across laboratories, the methods for deriving specific neuronal cell types and glia remain challenging. Over the past decade, improvements in neural specification and differentiation protocols of pluripotent stem cells in monolayer have led to the generation of a variety of cell types. Nonetheless, two-dimensional (2D) methods are unlikely to recapitulate the cytoarchitecture of the developing three-dimensional (3D) nervous system or the complexity and functionality of in vivo neural networks and circuits. Moreover, these methods are laborious and costly, have limited efficiency and give rise to relatively immature neurons.
Rodent and human in vitro corticogenesis often appears incomplete and because synaptogenesis requires the presence of glial cells, studying synaptic function in hiPSC-derived neurons requires co-culture with astrocytes. This is currently achieved by separately differentiating neurons and glia and subsequently co-culturing them, or by plating hiPSC-derived neurons on a monolayer of rodent astrocytes. These needs have spawned 3D approaches for generating organoid cultures containing mixed ectodermal derivatives. Although these methods recapitulate many aspects of corticogenesis and display a level of self-organization beyond what is possible in 2D cultures, there are several limitations including the need for: (1) controlled specification and generation of neural cell types; (2) cortical lamination and the generation of equal proportions of superficial and deep layer neurons; (3) generation of non-reactive astrocytes; (4) robust synaptogenesis and spontaneous synaptic activity; (5) organization of a functional neural network that can be perturbed and probed using intact preparations; and (6) reproducibility between hiPSC lines/clones and within and across differentiations.
Pharmaceutical drug discovery, a multi-billion dollar industry, involves the identification and validation of therapeutic targets, as well as the identification and optimization of lead compounds. The explosion in numbers of potential new targets and chemical entities resulting from genomics and combinatorial chemistry approaches over the past few years has placed enormous pressure on screening programs. The rewards for identification of a useful drug are enormous, but the percentages of hits from any screening program are generally very low. Desirable compound screening methods solve this problem by both allowing for a high throughput so that many individual compounds can be tested; and by providing biologically relevant information so that there is a good correlation between the information generated by the screening assay and the pharmaceutical effectiveness of the compound.
Some of the more important features for pharmaceutical effectiveness are specificity for the targeted cell or disease, a lack of toxicity at relevant dosages, and specific activity of the compound against its molecular target. The present invention addresses this issue.
Publications.
Methods to reprogram primate differentiated somatic cells to a pluripotent state include differentiated somatic cell nuclear transfer, differentiated somatic cell fusion with pluripotent stem cells and direct reprogramming to produce induced pluripotent stem cells (iPS cells) (Takahashi K, et al. (2007) Cell 131:861-872; Park I H, et al. (2008) Nature 451:141-146; Yu J, et al. (2007) Science 318:1917-1920; Kim D, et al. (2009) Cell Stem Cell 4:472-476; Soldner F, et al. (2009) Cell. 136:964-977; Huangfu D, et al. (2008) Nature Biotechnology 26:1269-1275; Li W, et al. (2009) Cell Stem Cell 4:16-19).
Foot-print free derivation of astrocytes is described by Mormone et al. (2014) Stem Cells and Development. Induction of neural cells from pluripotent cells is described by Yuan et al. (2013) Stem Cell Research and Therapy 4:73. | {
"pile_set_name": "USPTO Backgrounds"
} |
Barn or gutter cleaners are well known in the art. A barn cleaner of the type to which the present invention applies includes a gutter system that runs through the barn area as, for example, along animal stalls. A scraper chain conveyor is received in and runs through the gutter system. Animal refuse, straw and other debris are scraped and washed from the stalls and deposited conveniently into the adjacent gutter. The scraper chain conveyor is activated periodically and the flights or paddles of the scraper chain convey the refuse and debris through the gutter system and out of the barn up along an inclined chute for delivery into a holding bin, manure pit, compost pile, or the like.
Barn cleaner chains have previously included coupled hook links. Each hook link includes a hook portion and a link portion. The hook portion of one hook link is extended through the longitudinal slot of the link portion of an adjacent hook link. The closed end of the hook is then brought into engagement with the link portion forming the end of the slot to complete the assembly. Multiple hook links combined in this fashion form the chain.
One problem with chains formed from hook links is a tendency to uncouple, particularly during slackening and snaking on the return run down the inclined chute back to the barn. Often, before such an uncoupling is discovered, an entire chain is disassembled and has even unloaded one or several hook links and paddle assemblies from the conveyor into the spreader or manure pit. It should be appreciated that the hook links and paddle assemblies are difficult, if not impossible to retrieve under these circumstances. Additionally, it is very time consuming to have to reconnect each of the hook links and again install the chain in the gutter for operation.
Several attempts have been made in the art to address and solve this uncoupling problem. In U.S. Pat. No. 2,853,887 to Johnson, each hook link is provided with a removable lock pin that is driven into a seated position between the end of the hook and the hook link body to close the throat of the hook and retain the hook links in the coupled state. When properly seated, the pin is effective in theory to prevent the uncoupling of adjacent hook links. It, however, should be appreciated that hook links and paddle assemblies constructed in this manner are, due to being subject to rough treatment during service, prone to being accidentally uncoupled due to the lock pin being knocked loose and lost. Further, removal of the lock pin each time a hook link is to be disconnected can be particularly tedious and time consuming. On the other hand, under some severe service conditions the lock pins can become rusted or frozen in position and made difficult, and sometimes impossible, to remove. For these and other reasons, hook links with separate locking pins have achieved only limited success in the market place.
Another approach to solving the uncoupling problem is found in U.S. Pat. No. 2,785,578 to Nold. Nold discloses a conveyor chain formed from a series of alternating substantially oval links and double hook links. Each oval link includes a portion of reduced cross-sectional area that slips through the throat of the hook for connection to the double hook link and formation of the chain. By eliminating the separate lock pin seated in the throat of the hook the Nold chain does not suffer the same disadvantages but is simply more prone to being accidentally uncoupled.
Specifically, the Nold chain is prone to uncoupling during incidental slackening of the chain that often takes place during conveyor operation, especially on the return run. Since each oval link receives a hook of a double hook link at each end, the reduced cross-sectional portion of the link (that allows coupling and uncoupling) is positioned adjacent one of the hooks. As the chain slackens, the hook, adjacent the reduced cross-sectional portion, can easily slide along the link until the throat engages the reduced portion. At this point simple movement of the hook in a straight line, such as may be caused by gravity or the taking up of the slack on the chain, causes the hook of the double hook link to uncouple from the oval link.
In addition to the shortcomings of the hook link design, the prior art barn cleaners have not been designed so as to allow replacement of a paddle and/or wear shoe independently of the hook link. Furthermore, for still further economy with respect to replacement parts, it would be desirable to have the paddle and wear shoe interchangeable for clockwise (CW) and counterclockwise (CCW) conveyor operation.
From the above it is clear that a need exists for an improved hook link and combined hook link with paddle assembly as, for example, used on barn or gutter cleaners. | {
"pile_set_name": "USPTO Backgrounds"
} |
Most systems for recognizing speech employ some means of reducing the data in raw speech. Thus the speech is reduced to representations that include less than all of the data that would be included in a straight digitization of the speech signal. However, such representations must contain most if not all of the data needed to identify the meaning intended by the speaker.
In development, or "training", of the speech-recognition system, the task is to identify the patterns in the reduced-data representations that are characteristic of speech elements such as words or phrases. The sounds made by different speakers uttering the same words or phrases are different, and thus the speech-recognition system must assign the same words or phrases to patterns derived from these different sounds. There are other sources of ambiguity in the patterns, such as noise and the inaccuracy of the modeling process, which may also alter the speech signal representations. Accordingly, routines are used to assign likelihoods to various mathematical combinations of the reduced-data representations of the speech, and various hypotheses are tested, to determine which one of a number of possible speech elements is most likely the one currently being spoken, and thus represented by a particular data pattern.
The processes for performing these operations tend to be computation-intensive. The likelihoods must be determined for various data combinations and large numbers of speech elements. Thus the limitation on computation imposed by requirements of, for instance, real-time operation of the system limit the sensitivity of the pattern-recognition algorithm that can be employed.
It is accordingly an object of the present invention to increase the computational time that can be dedicated to recognition of a given pattern but to do so without increasing the time required for the total speech-recognition process.
It is a further object of the invention to process together signal segments corresponding to a longer time period, that is, use a larger signal "window," without substantially increasing the computational burden and without decreasing the resolution of the signal data. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various types of electronic devices are used for communication and entertainment purposes. These devices include computers, tablets, audio players, video players, smart phones, two-way radios, and GPS receivers. These devices often include touch screens, keyboards, scroll wheels, switches, or other interactive controls. Due to the sensitive nature and high cost of these electronic devices, it is desirable to protect these devices from physical damage that can result from everyday usage. | {
"pile_set_name": "USPTO Backgrounds"
} |
This section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present invention. The following discussion is intended to provide information to facilitate a better understanding of the present invention. Accordingly, it should be understood that statements in the following discussion are to be read in this light, and not as admissions of prior art.
Ubiquity of machine-to-machine (M2M) applications prevents maintaining many wireless devices in the always connected state due to the great number of connection resources needed, and the resulting denial of such resources to other devices to do otherwise.
Applications of these devices need short round-trip delay (RTD), e.g., approximately 100 ms or less; such applications include, but are not limited to, traffic control, gaming, location tracking, real-time machinery control, etc.
Setting up the full wireless connection will take longer than the required response time as they do not need long connected time or transfer a large amount of data, but connect quickly and may connect frequently.
In fact, most such applications complete within a single 3-way handshake of datagrams and the connection resource should immediately be freed. The device can send a connection close message to the wireless network, immediately after it has sent its acknowledgement of receiving the response from the remote server. Alternatively, the network can also send a connection close message to the wireless device, after a few seconds of inactivity between the device and the network (as it is currently done normally).
Actual wireless connections (depicted in FIG. 1) are a specialized technical term and a limited resource within a wireless network. An almost unlimited number of devices can be in the Idle State, i.e., listening to the network activities and network broadcast system information infrequently, but otherwise take no action. A larger number of devices may be in the Dormant State that occupies some resources such as shared or dedicated periodic transmission resources. Note, the Dormant State may also be variously named as Hold State, Suspended State, Cell_FACH State, etc. in different wireless technology, but they are commonly characterized by the fact that the wireless device and the wireless network already allocates the over-the-air and terrestrial network resources, but typically not a dedicated physical wireless connection. There can be a finite and relatively small number of devices in the connected State, where the device possesses full over-the-air and terrestrial network resources. In this state, the device can transmit data immediately to the network and vice versa.
This invention reduces the round-trip delay (RTD) of datagram exchanges between the wireless device and the remote server to approximately one hundred milliseconds or less.
If the device is initially in the Idle State, the reduction may be a few hundred milliseconds. If in the Hold State, the reduction is smaller, and may be tens of milliseconds to 100 milliseconds. The device sends the datagram over the (common) access channel (ACH) piggy-backed on the initial connection setup request. As the connection setup procedure requires, the device and the wireless network are already in a state to listen to the transmission of the wireless network throughout the connection setup process. The wireless network transmits the server response immediately over the (common) control channel (CCH), again piggy-backed on the traffic channel assignment (TCA) message, and thus avoiding any wait-time for the completion of the connection setup for the initial datagram exchange.
Examples of Supported Applications: Traffic Light Control
In certain jurisdictions, public transport vehicles are assigned privileges such that, for example, when a bus approaches a junction, an on-site traffic control device senses the approaching bus. The device sends a message to the remote traffic control server under the management of the said jurisdiction to signal that a bus is near the junction. Part of the privileges affords that the bus should proceed without stopping. The remote traffic control server is programmed such that it responds with an instruction, as encapsulated in a datagram, to turn the light in the direction of the bus Green and similarly lights in other directions Red. The bus does not stop or only needs to slow briefly, and can cross the junction with privilege ahead of other traffic. From the time the on-site traffic control device sends the message to the time that the instruction in response is received, the round trip delay (RTD) is required to be within tens of milliseconds, and with reliability of 95%.
There are four existing solutions for delivering machine-to-machine datagram exchanges:
Waiting for Connection Setup Completion: The wireless device initiates a connection setup with the wireless network, and waits for the connection to be fully set up to deliver the response from the remote server. This is shown in FIG. 2. (Note, in this method, we assume that the device can send the initial datagram over the ACH as uplink Data-over-Signaling, which is the more optimistic case by this method, and more efficient than waiting until the connection setup to deliver the datagram.)
The connection setup can take an additional 100 to 500 milliseconds, depending on the wireless technology, before the response can be delivered to the wireless device.
Base Station (BTS) Quick Connect: A variant of the first method is as illustrated in FIG. 3; once the device sends a connection request (which may or may not be together with uplink Data-over-Signaling), the connection is setup immediately at the BTS without involving a radio network controller (RNC), and thus eliminating the delays incurred over the backhaul network between the BTS and the central offices where the RNC is located. This has the benefit of expediting connection setup, but actual data exchange still has to wait until the completion of the connection setup.
Downlink Data-over-Signaling: The datagram exchange between the wireless device and the remote server can all be accomplished by sending the initial datagram from the device as a uplink Data-over-Signaling (DoS) message, which is encapsulated in a signaling message over common wireless channels, and the response from the server over downlink DoS on the common control channel (CCH), and without needing the setup of a connection between the device and the wireless network.
This solution is suboptimal as the downlink DoS message fails to exploit the reciprocity of the datagram exchange, and may involve sending the downlink DoS to the whole paging area of the device. Additionally sending these datagrams over the downlink DoS is a potential waste of common signaling resources as a large number of these, and over a large paging area, may be needed.
Wireless Technology Optimization: The wireless technology may be optimized in several ways to improve connection setup speed, and the wait-time for the initial datagram to begin transmission. For example, the device may be held in a more advanced state than Dormant State, e.g., a shared-dedicated state, whereby it can immediately send the datagram over the allocated resources with minimal contention or loss of reliability. Another example is to enhance the time-division multiplexing timing characteristics of the system such that each exchange in the connection setup process is faster.
This solution is possible for new wireless technologies, e.g., 3GPP Long-Term Evolution (LTE), but it is limited in existing wireless technologies, e.g., CDMA HRPD (or HRPD) and 3GPP UMTS, because such solutions typically entail significant system redesigns and additional changes have to be incorporated into the fundamental physical layer characteristics of the system. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to the field of molecular imaging. More specifically, the invention relates to fluorescence optical tomography using patterned illumination.
2. Background of the Invention
Molecular imaging is a rapidly advancing research area with the potential of providing early diagnosis and identification of the human diseases. Optical fluorescence tomography is a novel molecular imaging modality that attempts to recover the spatial distribution of light emitting fluorophores inside a highly scattering medium, such as biological tissue, from measurements made on the surface of the medium. This technique offers many advantages including non-invasiveness and the ability to construct 3D images from 2D measurements. The quantification of a non-uniform quantum yield distribution or fluorophore absorption is of major interest in molecular imaging of biological tissue, especially for cancer applications.
Fluorescence optical tomography is typically performed in a model-based framework, wherein a photon transport model is used to generate predicted surface fluorescence measurements for a given fluorescence absorption map in the interior of a medium. More specifically, the interior image is reconstructed by solving an optimization problem by minimizing the difference between observed surface measurements and surface measurements predicted from a physical model. Because photon propagation in a biological medium is diffuse, the image reconstruction problem can be ill-posed. In other words, very different fluorophore distributions can cause similar surface fluorescence measurement profiles. Thus, the quality and information content of the surface fluorescent measurements is crucial to the recovery of a true and accurate interior image.
Prior research has focused on using multiple fiber optics for delivering excitation light and taking fluorescence measurements at different locations on the tissue boundary. However, fiber optics based tomography systems suffer from sparse measurement data, and inadequate excitation light penetration into the tissue interior. This is because only a finite number of optical fibers can be employed without increasing the data acquisition time. In an attempt to solve this problem, area illumination and detection has been investigated. While area-illumination provides enhanced excitation light penetration, the tomography analysis is complex because of the increased ill-posedness introduced by the availability of only the reflectance measurements.
Consequently, there is a need for a method and system of fluorescence optical tomography which can generate dense data sets and enhanced excitation light penetration. Additional needs include reasonable data acquisition time and computationally efficient solutions to the image reconstruction problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
Respiration rate refers to the number of breathing cycles per minute. It is one of the important vital signs and frequently measured during the diagnosis and treatment of many pulmonary dysfunctions. Typically, in healthy adults the respiration rate ranges from 5 to 35 breaths per minute. The deviation of respiration rate from this usual range is indicative of pulmonary diseases like asthma, chronic obstructive pulmonary disease, tuberculosis, respiratory-tract infection, etc. Further, abnormally high respiration rate is an indication of pneumonia in children or tissue hypoxia associated to sleep apnea. Such pulmonary diseases cause about 18% of human deaths in the world. Often irregularities in respiration rate are also indicative of cardiac malfunctioning. Respiration rate is routinely measured for clinical diagnosis in many primary health care centers. Besides, measurement of respiration rate in an intensive care unit (ICU) directly ascertains whether the patient is breathing or not. Moreover, measurement of respiration rate can also be used for the analysis of human emotions such as anger or stress.
There exist a number of techniques for respiration rate measurement, including spirometry, impedance pneumography and plethysmography. However, these methods employ the use of contact based probes in the forms of leads or straps. Such contact-based methods are often prohibitive in many situations. They not only cause discomfort or irritation, particularly to sensitive skins, often patients change their normal breathing pattern during the monitoring with such contact-based methods. It can also be difficult to use such methods in neonates ICU or home monitoring. Further, during gated radiography it is not possible to use contact based measurements as they directly interfere with the radiography. Due to these reasons, non-contact RR measurement is becoming an emerging and immensely important problem in bio-medical engineering community.
Accordingly, what is needed in this art are sophisticated systems and methods for determining a respiration rate from a video of a subject breathing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to solid phytase compositions which have been stabilized with a lactic acid source such as Corn Steep Liquor (CSL), and methods of producing the same.
2. Description of Related Art
The addition of phytase to animal feed to eliminate the anti-nutritional effects of phytic acid is well described, see, e.g., WO 98/28408 and WO 98/28409.
The stabilization of liquid phytase formulations with urea, glycerol or sorbitol is disclosed in WO 93/16175.
Salt-stabilized solid phytase compositions are disclosed in EP 0 758 018 A1.
Plant seeds, cereal grains and legumes are usual components of animal feed. Some of those seeds contain phytic acid, and often also endogenous phytase enzymes.
According to investigations performed by the applicant, endogenous phytase activity in animal feed is at a very low level of around 0.5 units/g.
According to e.g., the two above first-cited WO-references, when supplementary phytase has been added to feed, the phytase activity in the feed is in the range of 0.01-20 units/g. | {
"pile_set_name": "USPTO Backgrounds"
} |
Non-volatile memories, such as flash EPROM (erasable programmable read-only memory) devices have developed into a popular source of memory in a wide range of digital applications. Flash memory devices typically allow for high memory densities, high reliability, and low power consumption. These characteristics have made flash memory very popular for low power applications, such as embedded memory circuits. Common uses of non-volatile memory include portable computers, personal digital assistant (PDA) devices, digital cameras, cellular telephones, TV boxes, routers, copy machines, and any number of other consumer products. In these devices, both program code and system data, such as configuration parameters and other code, are often stored in flash memory, because of the compact storage and relative ease of software upgradeability.
Non-volatile memories, such as flash memories are also often used in these systems to store modular and upgradeable information, such as basic input/output system (BIOS) code, so pieces of the platform may be updated without having to frequently replace components in the system. The two common types of flash memory include NOR and NAND flash memory, which refers to the types of transistors and memory array physical organization used in the device. Both types of flash memory store information in an array of transistors, which are referred to as cells. Traditionally, each cell stores 1-bit of information per cell; however, multi-bit cells are also currently used to store multiple bits per cell of a flash device.
Typically, flash devices are organized into blocks or clusters of a plurality of cells to store data. Flash memory is usually erased on a block-level. However, in some instances flash is potentially written to in smaller sizes of data, as compared to blocks, which are generally referred to as fragments. Files are typically broken into fragments and stored in different blocks, where each fragments is a logical piece of the file. The fragments are organized and accessible through a table, and are generally linked together by a table either stored in flash or in RAM. Once the data in a fragment is updated, the updated data is written to a new location in Flash and the old location is marked invalid.
When the file system is full, i.e. the file system contains both valid and invalid fragments, or when no action is being taken, reclaim or garbage collection is performed. Here, all the valid data from a block is copied into another block, such as a spare block, while the current block is deleted. Sometimes, data is kept in the file system at a block-level, which potentially creates difficulties similar to those discussed below.
As files are often broken up by fragments and stored linked though out a flash device, memory within the device is potentially inefficiently used. When data does not fill up a block of memory, the rest of the block is usually not utilized, as a fragment of data by the construct of current file systems is required to be aligned with blocks of data.
Some flash devices include file system architectures to handle (1) a read and write style architecture and (2) a read only style architecture. Most file systems fall into the first category and are setup for read/write capability. Read and write architectures potentially incur overhead when performing reads to ensure write capability to the same memory locations. For example, garbage collection, as discussed above, sets aside some amount of memory to perform memory management, which is potentially not required in a read only portion of memory. Alternatively, current read only file system architectures, which may include a read/write file system modified to be read-only, are sometimes utilized to protect data from external parties. When a read/write architecture is modified to include a read only portion, the read access limitations potentially still exist as the file system architecture is setup to also handle writes. Moreover, some current file system align data to fragments, which may be any size, such as 1024 bytes, to optimize tables used to track the location of data. Attempts to align data with different sizes to a fragment often leads to inefficient storage and access time. Furthermore, these file system architectures usually support compression at a file granularity. As a result, in certain cases a full file remains uncompressed if it is frequently accessed, even though, only a small portion of the file is being accessed. Alternatively, a whole file is sometimes uncompressed upon an access to only a portion of the file, instead of uncompressing only the portion being accessed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an esterase having the excellent thermostable property which can be utilized for ester hydrolysis reaction, ester synthesis reaction, ester interchange reaction and the like and its gene.
2. Description of the Related Art
Esterase is an enzyme which hydrolyzes an ester linkage and has ability to catalyze ester synthesis and ester interchange reaction, and has been recently utilized in organic synthesis reaction for manufacturing medicaments, pesticides or intermediates thereof.
It is desirable that the esterase, which is industrially utilized, has high stability to temperature, pH, solvent, pressure and the like. Inter alia, where the esterase has high thermostability, the reaction temperature can be elevated, enabling the reaction rate to be enhanced and an inactivation of the enzyme to be reduced. Accordingly, there is desired the esterase having the excellent thermostability for shortening the reaction time and promoting the reaction efficiency.
Under these circumstances, the present inventors studied hard using the technique of introducing mutation into gene by site-directed mutagenesis and, as a result, found that mutant esterase having the amino acid sequence where the particular amino acid in the wild-type amino acid sequence is substituted shows the excellent thernostability, which resulted in completion of the present invention.
That is, the present invention provides:
1. an esterase (hereinafter referred to as xe2x80x9cthe present esterasexe2x80x9d) which is characterized in that it has at least a partial amino acid sequence necessary for expressing the thermostable esterase activity among the amino acid sequence shown by SEQ ID NO:2 having any one of the following amino acid substitutions:
(1) amino acid substitution where 325th amino acid in the amino acid sequence shown by SEQ ID: No. 1 is substituted with isoleucine,
(2) amino acid substitution where 240th amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with alanine and 288th amino acid is substituted with alanine,
(3) amino acid substitution where 43rd amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with serine,
2. an esterase which is characterized in that it has at least a partial amino acid sequence necessary for expressing the thermostable esterase activity among the amino acid sequence shown by SEQ ID NO:2 having amino acid substitution where 325th amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with isoleucine,
3. an esterase which is characterized in that it has at least a partial amino acid sequence necessary for expressing the thermostable esterase activity among the amino acid sequence shown by SEQ ID NO:2 having amino acid substitution where 240th amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with alanine, and 288th amino acid is substituted with alanine,
4. an esterase which is characterized in that it has at least a partial amino acid sequence necessary for expressing the thermostable esterase activity among the amino acid sequence shown by SEQ ID NO:2 having amino acid substitution where 43rd amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with serine,
5. a gene which is characterized in that it encodes the esterase of the above 1 to 4,
6. a plasmid which is characterized in that it contains the gene of the above 5,
7. a microorganism which is characterized in that it contains the plasmid of the above 6,
8. a process for producing an esterase which is characterized by comprising culturing the microorganism of the above 4 and, thereby, allowing the microorganism to produce an esterase having at least a partial amino acid sequence necessary for expressing the thermostable esterase activity among the amino acid sequence shown by SEQ ID NO:2 having any one of the following amino acid substitutions:
(1) amino acid substitution where 325th amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with isoleucine,
(2) amino acid substitution where 240th amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with alanine and 288th amino acid is substituted with alanine,
(3) amino acid substitution where 43rd amino acid in the amino acid sequence shown by SEQ ID NO:2 is substituted with serine.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word xe2x80x9ccomprisexe2x80x9d, and variations such as xe2x80x9ccomprisesxe2x80x9d and xe2x80x9ccomprisingxe2x80x9d, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a capsule medical apparatus that is introduced into a subject and has a local injection function. The local injection function is for injecting a liquid, e.g., a drug solution, into a desired region inside the subject.
2. Description of the Related Art
In conventional endoscopy technology, capsule medical apparatuses that are introduced into organs of a subject and capture images of the inside of the organs (hereinafter, “in-vivo images”) have been proposed. Such capsule medical apparatuses have imaging and wireless transmission functions therein. The capsule medical apparatus is swallowed by a subject, e.g., a patient, and sequentially captures in-vivo images of the subject while moving through the digestive tracts due to peristalsis or the like. Each time the capsule medical apparatus captures an in-vivo image of the subject, the capsule medical apparatus wirelessly transmits the in-vivo image in sequence to a receiving apparatus, which is located outside the subject. The capsule medical apparatus introduced into the subject is later excreted.
Some capsule medical apparatuses have been proposed that have not only the above functions but also a local injection function for injecting a drug solution into an internal region of a subject (e.g., Japanese Patent Application Laid-Open Nos. 2006-43115 and 2004-41709). The capsule medical apparatus disclosed in Japanese Patent Application Laid-Open Nos. 2006-43115 and 2004-41709 punctures an internal region of a subject with an injection needle and injects a drug solution into the internal region using the injection needle that punctures the internal region. Then, the capsule medical apparatus pulls out the injection needle that punctures the internal region and stores the injection needle in the capsule medical apparatus.
A method for injecting medicines into tissue has been proposed (e.g. Japanese translation No. 2003-530897 of PCT international application). In this method, an injecting apparatus injects a drug solution into tissue and then pulls out an injection needle from the tissue. The injection apparatus cauterizes and hardens a region of the tissue where the injection has been performed, i.e., an injection region, by high frequency cauterization or laser heating to seal the site of the injection in the injection region. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many people enjoy writing in journals. Some people like to share their journals with others. The Internet enables the sharing of online journals through a tool generally known as electronic logging. Electronic logging is sometimes referred to as web logging or blogging. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates to registration of images in printing systems. It finds particular application in connection with a registration system for a multicolor printing system which compensates for belt stretch associated with an intermediate image transfer belt.
To provide accurate printing of images, multicolor digital marking systems need to maintain adequate color to color registration. In systems that utilize an elongate image receiving surface, such as a paper web or a belt, the receiving surface reaches a first marking station where a marking material of a first color is applied to the surface, e.g., by firing ink jets, exposing an image on a photoconductive material, or applying toner particles to a selectively imaged photoconductive member. The receiving surface then moves on to a second marking station, where an image or marking material of a second color is applied, and so forth, depending on the number of colors. The timing of the actuation of the second marking station is controlled as a function of the speed of the image receiving surface so that the images applied by the two marking stations are registered one on top of the other to form a composite, multicolor image. A high degree of process direction alignment can be achieved by implementing what is generally known as reflex printing, where the speed or position of the image receiving surface is measured with an encoder at a certain location and then the images are timed accordingly. For example, an encoder is associated with a drive nip roller. The rotational speed of the roller is used to calculate the speed of the image receiving surface passing through the nip. The time for actuating the first, second, and subsequent marking stations is then calculated, based on their respective distances from the drive nip roller and the determined speed of the image receiving surface.
In the case of an electrophotographic printer, an encoder may be placed on the photoreceptor belt to measure the exact speed of the belt at each instant of time. The timing from this signal can then be used to time the firing of the laser raster output scanner (ROS) or light emitting diode (LED) bar so that an even spacing of lines is imaged on the photoreceptor, thus compensating for any variability in the photoreceptor speed from a set speed. In a multicolor system, the timing from the encoder can also be used to determine the exact time to fire successive color images to obtain good color on color registration, again compensating for any photoreceptor speed variations.
An implicit assumption of such reflex printing systems is that the belt or web is infinitely stiff (i.e., it does not stretch or change length) such that the encoder measurement of the web or belt velocity enables an exact prediction of correct registration. In situations where the belt or web exhibits any sizeable amount of stretch or deformation, reflex printing techniques may still be subject to misregistration errors. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to bipolar electric coagulating and dissecting tweezers used for hemostasis and dissection in the case of a surgical operation, mainly in the case of a cranial-nerve surgical operation.
In the case of a surgical operation, particularly a blood vessel operation in a neurosurgery, a pair of bipolar electric coagulating and dissecting tweezers has been used so far which comprise two arms provided with bipolar electrodes insulated each other and connected to a high-frequency generator and energized so that bipolar electric coagulating and dissecting portions at the front ends of the arms are normally kept open and in which an insulating film is formed except the bipolar electric coagulating and dissecting portions at the front ends of the arms. Therefore, it is possible to coagulate or dissect a living tissue by holding the living tissue by the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers and supplying a high-frequency current.
A perfusion tube is set to the inside of either of the arms of the tweezers and a physiological saline solution or other liquid is discharged to lower the temperature produced at the time of coagulation and dissection due to the supplied high frequency. Therefore, the perfusion tube minimizes the damage of the living tissue. Moreover, the perfusion tube prevents coagulation and dissection performances from deteriorating due to the fact that the cauterized living tissue attaches to the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers.
However, in the case of actual surgical operations, particularly in the case of the surgical operations of a meningioma and a cerebral deformation (AVM) in the cranial-nerve surgical operation, the coagulating operation is frequently continued for a relatively long time and moreover, the opening of the perfusion tube at its front end is set nearby the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers. Therefore, the opening of the perfusion tube at its front end is clogged with the tissue cauterized by the tweezers during the coagulating and dissecting operation and perfusate is easily discharged and moreover, the perfusate becomes drips midway and the drips intermittently fall. Thereby, the perfusate is not constantly supplied to the bipolar electric coagulating and dissecting portions at the front end of the arms of the tweezers and thus, a state occurs in which the cauterized tissue easily attaches to the portions. Therefore, if the state occurs, a surgical operation is interrupted and an assistant wipes the cauterized tissue. However, because the opening of the perfusion tube at its front end is formed like a hole, the cauterized tissue enters the hole and thus, it cannot easily be removed. Therefore, the discharge rate of the perfusate is slowly decreased in approx. 30 min and thus, a plurality of pairs of tweezers must previously be prepared to perform the surgical operation while frequently replacing tweezers.
Moreover, in the case of a surgical operation for approaching a deep portion of a brain, it may be necessary to secure a visual field through a small gap between the both arms of a pair of tweezers. However, because the opening of a perfusion tube at its front end is formed like a hole and the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers are flat, drips are formed due to the surface tension of the perfusate and interrupt the visual field of the small gap. Moreover, because the drips are produced nearby the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers holding the living tissue to perform the coagulating operation, the bipolar electric coagulating and dissecting portions at the front ends of the both arms of the tweezers contact the perfusate drips. Because the perfusate mainly uses a physiological saline solution having a conductivity, a high-frequency current is short-circuited due to the physiological saline solution serving as a medium and thus, a high-frequency current for preventing a living tissue from being coagulated or dissected is supplied to the bipolar electric coagulating and dissecting portions at the front ends of the arms of the tweezers.
Moreover, the perfusion tube is frequently clogged due to crystallization of common salt under a standby state because the inside diameter of the opening of the perfusion tube at its front end is as small as 0.60 mm and thereby, a state frequently occurs in which no perfusate is discharged during a surgical operation.
Therefore, because the above various troubles occur, problems occur that a surgical operation time must be increased and a large load is applied to not only a patient but also a surgical operator.
It is an object of the present invention to provide a pair of bipolar electric coagulating and dissecting tweezers capable of preventing a perfusion tube from being clogged and securing a sufficient visual field of a surgical operator and moreover capable of stably and effectively supplying a high-frequency current mainly in a cranial-nerve surgical operation using a microscope. | {
"pile_set_name": "USPTO Backgrounds"
} |
5-Azacytidine, 4-amino-1-β-D-ribofuranosyl-1,3,5-triazin-2(1H)-one, a compound having the chemical structure,
is an antineoplastic drug exhibiting activity against, e.g., leukemia, lymphoma and various solid tumours. 5-Azacytidine acts also as an inhibitor of DNA methyltransferase and was approved for the treatment of myelodispactic syndromes, a family of bone-marrow disorders. It is being marketed under the name Vidaza by Pharmion.
Crystallization of 5-azacytidine providing a methanol solvate of 5-azacytidine and crystallization of 5-azacytidine hydrate were described by Pískala and {hacek over (S)}orm (Nucleic acid chemistry, Improved and new synthetic procedures, methods and techniques, Part one, L. B. Townsend and R. S. Tipson, Eds., Wiley Inc., New York, 1978, pp. 435-441).
U.S. Pat. No. 6,943,249 (“'249”) claims in claim 1 preparation of form I by recrystallization of 5-azacytidine from a solvent mixture comprising at least one primary solvent and at least one co-solvent selected from the group consisting C2-C5 alcohols, aliphatic ketones, and alkyl cyanides, by cooling said solvent mixture from a temperature selected to allow said 5-azacytidine to dissolve completely to about ambient temperature, and isolating the recrystallized 5-azacytidine. The US '249 patent also claims in claim 11 a method for preparing Form I comprising recrystallizing 5-azacytidine from a solvent mixture comprising at least one primary solvent and at least one co-solvent selected from the group consisting C3-C5 alcohols and alkyl cyanides, by cooling said solvent mixture from a temperature selected to allow said 5-azacytidine to dissolve completely to about −20° C., and isolating the recrystallized 5-azacytidine″ also leads to form I of 5-azacytidine. All of the examples of the '249 patent use DMSO as a solvent to which a co-solvent is added. The '249 patent also describes form I having the most prominent 2 theta angles at 12.182, 13.024, 14.399, 16.470, 18.627, 19.049, 20.182, 21.329, 23.033, 23.872, 26.863, 27.1735, 29.277, 29.591, 30.369, and 32.072.
U.S. Pat. No. 6,887,855 discloses eight polymorphic forms of 5-azacytidine, denominated Forms I-VIII, for which Forms I-III are reported to be in the prior art. The characterization of each of these forms in U.S. Pat. No. 6,887,855 is incorporated herein by reference.
U.S. Pat. No. 6,887,855 (“'855”) discloses the synthesis and isolation of Form I, where the obtained form I is reported to be characterized by the same most prominent two theta angles as described in the '249 patent and by FIG. 1. The '855 patent discloses also a mixture of 5-azacytidine form I and a form identified by the most prominent two theta angles at 13.5, 17.6, and 22.3 degrees two-theta, denominated form II.
U.S. Pat. No. 6,887,855 also reports additional crystalline forms of 5-azacytidine, denominated Form IV having the most prominent 2 theta angles at 5.704, 11.571, 12.563, 14.070, 15.943, 16.993, 18.066, 20.377, 20.729, 21.484, 21.803, 22.452, 22.709, 23.646, 24.068, 25.346, 25.346, 26.900, 27.991, 28.527, 28.723, 30.124, 30.673, 31.059, 35.059, 38.195 and 38.403; Form V having the most prominent 2 theta angles at 11.018, 12.351, 13.176, 13.747, 14.548, 15.542, 16.556, 17.978, 18.549, 19.202, 19.819, 20.329, 21.518, 21.970, 22.521, 23.179, 24.018, 24.569, 27.224, 28.469, 29.041, 29.429, 30.924, 31.133 and 37.938; Form VI, a mixture of form I and a crystalline form which exhibits distinctive peaks at 5.8, 11.5, 12.8, 22.4, and 26.6 degrees two-theta, denominated Form VII; a crystalline form having the most prominent two theta angles at 6.599, 10.660, 12.600, 13.358, 15.849, 17.275, 20.243, 20.851, 21.770, 22.649, 25.554, 25.740, 29.293, 32.148, 35.074, and 38.306 degrees two-theta, denominated Form VIII; as well as an amorphous form, processes for preparation thereof, and conversion of form I to the crystalline form having most prominent diffractions on PXRD at two theta values at 6.566, 11.983, 13.089, 15.138, 17.446, 20.762, 21.049, 22.776, 24.363, 25.743, 26.305, 28.741, 31.393, 32.806, 33.043, 33.536, 36.371, 39.157, and 41.643 degrees two-theta, denominated Form III, and to amorphous form.
According to U.S. Pat. No. 7,078,518 (a divisional of the '855 patent), 5-azacytidine Forms IV, V, VI, and mixtures of form I and VII, are prepared by recrystallization processes that include dissolving 5-azacytidine in dimethylsulfoxide, and at least one co solvent is added to the solution of 5-azacytidine facilitating the crystallization; wherein the co solvents is toluene, methanol or chloroform.
The present invention relates to the solid-state physical properties of 5-azacytidine as well as to processes for preparation thereof.
These properties can be influenced by controlling the conditions under which 5-azacytidine is obtained in solid form. Solid-state physical properties include, for example, the flowability of the milled solid. Flowability affects the ease with which the material is handled during processing into a pharmaceutical product. When particles of the powdered compound do not flow past each other easily, a formulation specialist must take that fact into account in developing a tablet or capsule formulation, which may necessitate the use of glidants such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate.
Another important solid-state property of a pharmaceutical compound is its rate of dissolution in aqueous fluid. The rate of dissolution of an active ingredient in a patient's stomach fluid can have therapeutic consequences since it imposes an upper limit on the rate at which an orally-administered active ingredient can reach the patient's bloodstream. The rate of dissolution is also a consideration in formulating syrups, elixirs and other liquid medicaments. The solid-state form of a compound may also affect its behavior on compaction and its storage stability.
These practical physical characteristics are influenced by the conformation and orientation of molecules in the unit cell, which defines a particular polymorphic form of a substance that can be identified unequivocally by X-ray spectroscopy. The polymorphic form may give rise to thermal behavior different from that of the amorphous material or another polymorphic form. Thermal behavior is measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and can be used to distinguish some polymorphic forms from others. A particular polymorphic form may also give rise to distinct spectroscopic properties that may be detectable by solid-state 13C NMR spectrometry and infrared spectroscopy.
The present invention also relates to solvates of 5-azacytidine. When a substance crystallizes out of solution, it may trap molecules of solvent at regular intervals in the crystal lattice. Solvation also affects utilitarian physical properties of the solid-state like flowability and dissolution rate.
One of the most important physical properties of a pharmaceutical compound, which can form polymorphs or solvates, is its solubility in aqueous solution, particularly the solubility in gastric juices of a patient. Other important properties relate to the ease of processing the form into pharmaceutical dosages, as the tendency of a powdered or granulated form to flow and the surface properties that determine whether crystals of the form will adhere to each other when compacted into a tablet.
The discovery of new polymorphic forms and solvates of a pharmaceutically useful compound provides a new opportunity to improve the performance characteristics of a pharmaceutical product. It enlarges the repertoire of materials that a formulation scientist has available for designing, for example, a pharmaceutical dosage form of a drug with a targeted release profile or other desired characteristic. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a knee bolster system and more particularly to an extendable and retractable knee bolster system, including its control logic, with an impact pre-sensing system for an automotive vehicle.
The fixed fore-aft location of a knee bolster may constrain how far the lower portion of the instrument panel can be placed forward and away from the knees of an occupant. This constraint can limit comfort for the occupant. The position of current fixed-in place knee bolster systems is also a constraint on interior spaciousness. It is known that utilization of inflatable knee bolster systems brings the location of the lower portion of the instrument panel rearward when preferred. However, such crash triggered inflatable knee bolster systems do not typically retract automatically, and could require complete replacement after actuation. Such replacement is expensive, a cost borne by the consumer.
In accordance with the present invention, there is provided an extendable and retractable knee bolster system generally positioned in the lower portion of the instrument panel of a vehicle at knee height to an occupant. The knee bolster system has at least one and preferably two telescoping mechanisms secured to a bolster pad. The telescoping mechanism has an outer tube securing rigidly to the vehicle structure at a base end. The outer tube concentrically supports an inner tube capable of linear telescoping movement. The inner tube has a leading end secured to the bolster pad and a trailing portion engaged to a shuttle which operatively connects to a drive device via a rotating screw disposed concentrically within the inner and outer tubes.
The drive device rotates the screw which is engaged threadably to the shuttle. The shuttle thereby moves or extends the inner tube through a free end of the outer tube. The shuttle comprises part of a plowing mechanism which can help dissipate the energy. Preferably, the plowing mechanism has at least one axially extending groove defined by an outer cylindrical surface of the inner tube and facing an inner cylindrical surface of the outer tube. The groove has a trailing deep end and a leading shallow end. A sphere resides in the deep end and is restricted there during normal extending and retracting motions of the knee bolster pad by a plurality of radially extending fingers engaged to the shuttle. During an impact on the bolster pad, the sphere is thrust into the shallow end and plows into the inner surface of the outer tube causing deformation of the outer tube. The kinetic energy from the impact upon the bolster pad is absorbed into the telescoping mechanism. Examples of ways in which this energy could be absorbed are plowing of the balls and deformation of the tubes.
Preferably, the knee bolster system is actuated or controlled by a microprocessor which electrically communicates primarily with a plurality of risk sensors and a plurality of imminent impact sensors, and secondarily with a plurality of impact occurrence sensors. By using the outputs of risk sensors and imminent impact sensors as the primary means of triggering deployment, deployment times in the tenths of a second for the extendable/retractable knee bolster invented here rather than thousandths of a second required for impact triggered systems that have been proposed by others are tolerable in some applications. If a fully robust pre-impact sensor is not available, the bolster will automatically extend to the current mandated bolster location if the occupant is unbelted and the car placed in gear. The knee bolster pad will automatically retract if the ignition is off or the transmission is not in gear. In addition, the bolster pad will automatically retract if output signals or setpoints which caused the initial extension are cleared.
An advantage of the present invention is that through the use of continuous monitoring and forecasting, the knee bolster is able to be stored further from the occupant in so doing permitting a more spacious vehicle interior.
Another advantage of the present invention is the automatic retraction capability thereby minimizing maintenance costs.
An additional advantage of this invention is the enhancement of vehicle entry and egress, since the bolster is stowed when the vehicle is not in gear. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pergolide is an ergoline derivative which exhibits potent dopaminergic agonist activity and also decreases plasma prolactin concentrations. The compound is thus useful in treating physiological manifestations associated with hyperprolactinemia. Chemically, pergolide is D-6-n-propyl-8.beta.-methylmercaptomethylergoline.
Pergolide is known to decompose upon exposure to light (apparently to a sulfoxide species) thus making it necessary to handle the compound and store the ultimate dosage form in light-controlled environments so as to avoid a demonstrable drop in potency of the therapeutic agent. In order to retard this drop in potency, certain stabilizing agents have been incorporated into pharmaceutical compositions containing pergolide which surprisingly reduce the decomposition of this compound when exposed to light. | {
"pile_set_name": "USPTO Backgrounds"
} |
A problem to be coped with in such a device is how to ensure the processing of fibrous materials made from various sorts of textile fibers having different degrees of contamination. The fact that the pneumatic conditions are practically constant in the region of cleaning aperture is disadvantageous from the viewpoint of separation of impurities from materials of different types and contamination degrees and causes relatively considerable losses, due to fiber fly-off into the impurity withdrawing duct, in an effort to ensure the maximum impurity withdrawal.
According to U.S. Pat. No. 3,884,028 to Stahlecker et al for Apparatus for Removing Impurities from Fibers (the complete disclosure of which is incorporated herein by reference), it is known to provide air flow regulating means in the air supply duct which, however, is designed only for controlling or regulating the air amount flowing through said duct. This air regulating means is situated at the inlet of the air supply duct for adjusting the intensity of air flow sucked in from the ambient atmosphere. Thus, any throttling of air in this region results in an undesirable modification of air flow character in the region of the cleaning aperture and further on has unwanted effects on the air flow in the impurity withdrawing duct as well as in the air supply duct. In this way larger amounts of fibers fly off into the impurity withdrawal duct and accumulate in their transporting channels, which finally negatively influences the yarn quality.
It is an object of the present invention to eliminate the drawbacks of prior art as hereinabove referred to and to provide a device for separating impurities from variously contaminated fibrous materials made of different types of textile fibers.
Other co-assigned U.S. Patents disclosing related technology which could be helpful in understanding the present invention are: U.S. Pat. Nos. 4,429,552 (Open-end Spinning Machine); 4,495,762 (Apparatus for Separating Fibers in Open-end Spinning Units); and 4,499,718 (Apparatus for Separating Impurities from Open-end Spinning Units). The complete disclosures of these U.S. Patents is also incorporated herein by reference. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to vehicle or traffic speed controls and more particularly to an improved speed bump device.
Speed bumps are frequently embedded in roadways, such as in access lanes to and from residential and school areas, parking lots and the like so as to discourage or prevent the use of vehicles at high speed. Most such speed bumps are merely spaced rubber, steel, asphalt or concrete bars or the like placed on the road surface and, accordingly, are subject to wear. Moreover, they do not retract, so that even slow moving vehicles are jolted by passing over the bumps.
Certain other speed bumps have been devised which have bumps that can be retracted or raised, as needed, either by a tool or by a remotely operated hydraulic ram. Another mechanism, which is disclosed by U.S. Pat. No. 4,974,991, is a speed bump which automatically lowers when contacted by a vehicle wheel traveling at a lower than prescribed speed. Unfortunately, the design disclosed by the '991 patent for the automatic speed bump requires the presence of a rectangular hole in the roadway. While such a hole would generally not be a hazard to most automobiles, it could pose a significant hazard to others who use roadways, i.e., pedestrians and bicyclists. In addition, such a depression in a roadway will necessarily collect debris and standing water which would likely challenge the mechanical integrity of the automatic speed bump. Accordingly, there remains a need for an improved speed bump which can selectively allow slow moving vehicles to pass thereover smoothly without a bump while causing rapidly moving vehicles to suffer a bump. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a fuel injection system for injection of fuel into an internal combustion engine, in particular for direct injection of fuel into the combustion chamber(s) of the internal combustion engine.
A fuel injection system is described in German Published Patent Application No. 197 25 076. It has a ring-shaped seal support for a sealing connection between a fuel injector and a respective connecting piece of a fuel distributor line, this seal support cooperating with a first sealing element for sealing the seal support with respect to an end face of an inlet section of the fuel injector and cooperating with a second sealing element for sealing the seal support with respect to the connecting piece of the fuel distributor line. A bushing insertable into a fuel inlet orifice of the inlet section passes through the ring-shaped seal support, so that the seal support is movably secured in the radial direction between an upstream collar of the bushing and the inlet section of the fuel injector.
One feature of the arrangement described in the aforementioned publication is that due to the total of two sealing elements, there are two components which may be subject to defects and may result in leakage in particular. The two sealing elements are installed one above the other and therefore may require vertical space. Since the sealing elements may not lie in direct contact with one another and sufficient material may be required to be available to fill out the ring grooves, the additional vertical space required for the seal support may not be insignificant. Another feature of the arrangement described in the aforementioned publication is that radial mobility of the seal support may be ensured only if it has a certain axial play and is not pressed by the bushing against the inlet section. Consequently, during installation the bushing may be required to be inserted into the fuel inlet orifice to a precisely defined depth and the bushing as well as the fuel inlet orifice in the fuel injector may be required to be manufactured to a very high precision.
A fuel injector which has an inlet section and is insertable into a receiving bore and is sealed by an O-ring on this inlet section with respect to a connecting piece of a fuel distributor line is described in Japanese Published Patent Application No. 08-312503. The O-ring is in sealing contact with an inside wall of the connecting piece.
One feature of this fuel injector may be that the deviations which may occur in the fuel injector relative to the fuel distributor line due to manufacturing tolerances may be compensated only by asymmetrical pinching of the O-ring inasmuch as the axes of the connecting piece of the fuel distributor line and the fuel injector are shifted relative to one another. This may result in leakage even with relatively minor pinching of the O-ring.
A fuel injection system according to the present invention may provide that deviations in the axial position of the connecting piece of the fuel distributor line and the fuel injector relative to one another may be compensated reliably. This may prevent unwanted warping of the fuel injector relative to the fuel distributor line. This may yield in particular a smaller vertical space required in comparison with the conventional seals, which may allow tolerances to be compensated. In an example embodiment, the inner sleeve and the outer sleeve may be connected by spiral springs.
Pressure equalizing bores may be provided in the outer sleeve to connect the fuel chamber to a clearance volume formed between the sealing edges of the sealing arrangement and the outer sleeve. The sealing arrangement may thus be acted upon by the pressure of the fuel over a larger extent of its cross section and the contact pressure of the sealing edges may be increased.
The seal support may be secured by a locking ring on the guide section of the fuel injector with its inner sleeve against the end face of the inlet section. A gap may remain between the end face of the inlet section and the outer sleeve of the seal support due to the elasticity of the sealing element even when acted upon by fuel under pressure. Even when the inner sleeve is pressed by the locking ring against the end face due to the manufacturing tolerances, the outer ring having the sealing element may retain its functionality.
In an example embodiment, the guide section is formed by a hollow screw which may be screwed into a threaded bore of the fuel injector and may hold the seal support against the fuel injector.
The outer ring may have an upstream peripheral conical chamfer arranged on the outside radially. This may facilitate insertion of the seal support into the connecting piece. | {
"pile_set_name": "USPTO Backgrounds"
} |
Topical personal care compositions must be formulated at a skin-tolerant pH range, but many of the cosmetically beneficial compounds have very low solubility at that pH, their solubility being substantially higher at a very alkaline or very acidic pH, outside of the pH range tolerated by skin. Some examples of such compounds are salicylic acid, fumaric acid, azelaic acid, sorbic acid, uric acid, alginic acid, amino acids and other zwitterionic compounds such as for example tyrosine, isoleucine, tryptophan, phenylalanine. One of such compounds, for example, is cystine. This is unfortunate because cystine can serve as a building block for glutathione production in the body. Glutathione (GSH) is a tripeptide that consists of glutamate, cysteine, and glycine. It is present in all mammalian tissues. It is the main anti-oxidant in the living body: it protects cells from oxidation by quenching reactive oxygen species. GSH is believed to play a significant role in protecting cells against the cytotoxic effects of ionizing radiation, heat, certain chemicals, and significantly, solar UV radiation (Tyrell et al., Photochem. Photobiol. 47: 405-412, 1988; Meister, J. Biol. Chem. 263: 205-217, 1988; Meister, Science 200:471-477, 1985). While true in all areas of the body, this is particularly important in the skin, which is so greatly exposed to the damaging effects of radiation, particularly UV radiation, and environmental pollutants. Decrease in the intracellular concentration of glutathione in skin is associated with cell damage, inflammation, skin darkening, discoloration, spots or freckles caused by exposure to ultraviolet radiation, physiological aging, and the like. It is, therefore, highly desirable to enhance the generation of glutathione in skin.
A logical approach would seem to be to provide cells with an exogenous source of GSH (e.g. through ingestion or topical delivery). Unfortunately, GSH is not bioavailable when administered exogenously, i.e. where localized extracellularly, it is broken down into its constituent amino acids (glutamate, cysteine, and glycine) for cellular uptake and synthesis of the GSH tripeptide. Thus, GSH is not directly transported into the cells and therefore does not itself result in an intracellular increase of glutathione. Biosynthesis of GSH occurs in the cell in a tightly regulated manner. The quantity of glutathione in cells depends to a large degree on the availability of cysteine in the cells. Cysteine, a composite amino acid of GSH, may increase cellular levels of GSH, but exposed sulfhydryl group of cysteine renders it unstable and reactive and also causes strong unpleasant odor. Unlike cysteine, cystine can be administered safely; cystine is transported into the cell and converted to cysteine within the cell, the cysteine then being available for intracellular GSH production.
Topical compositions containing various amino acids and other skin care actives have been described, see e.g. Tanojo U.S. Pat. No. 7,300,649B2, Laboratoire Filorga product, Schlachter WO 00/03689, Ermolin et al. US2011183040, Garlen et al. U.S. Pat. No. 4,707,354, Muller et al. U.S. Pat. No. 8,361,446, Hermann et al. U.S. Pat. No. 8,241,681. Compositions for potentiating intracellular glutathione production have been described. See e.g. Chiba et al. U.S. Pat. No. 7,740,831, Crum et al (USRE37934, USRE42645, WO2016/033183, and US20050271726); Mammone U.S. Pat. No. 6,149,925, and Perricone US 20060063718.
Cystine is normally derived from the diet. Delivery of cystine from topical compositions, however, is challenging due to its extremely low solubility in biologically acceptable vehicle at a skin-tolerant pH range. The solubility of cystine in water is 0.112 mg/ml at 25° C.; cystine is more soluble in aqueous solutions with pH less than 2 or pH above 8. Efforts have been made to increase L-Cystine solubility. See e.g. Erich Königsberger, Zhonghua Wang, Lan-Chi Königsberger Solubility of L-Cystine in NaCl and Artificial Urine Solution; Monatshefte für Chemie, January 2000, Volume 131, Issue 1, pp 39-45; Hsieng-Cheng TsengHsieng-Cheng Tseng et. al, Solubilities of amino acids in water at various pH values under 298.15 K, Fluid Phase Equilibria 285(1):90-95⋅October 2009; F. Apruzzese, et. al Protonation equilibria and solubility of L-Cystine, Talanta, 56, 459-469, 2002; C. Bretti, et. al Solubility and activity coefficients of acidic and basic noneelectrolytes in aqueous salt solutions. J. Chem. Eng. Data, 50, 1761-1767, 2005; Michael D. Ward, Jeffrey D. Rimer, U.S. Pat. No. 8,450,089; Michael D. Ward, Zina Zhou, U.S. Pat. No. 8,916,609; Hara, et. al U.S. Pat. No. 5,316,767; Longqin Hu, US 2014/0187546.
The present invention is based in part on a surprising finding that compounds, such as cystine, may be solubilized in topical personal care compositions at a skin tolerant pH range, at substantially the same level as cystine's solubility at high or low pH. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a foldable children's tricycle, and more particularly to a foldable children's tricycle that can be fixed when expanding or folding.
2. Description of the Prior Art
A conventional children's tricycle generally comprises a tricycle front, a pair of handlebars, a pair of pedals and a front wheel. When a child sits on the tricycle and steps on the pedals, with both hands holding the handlebars, the front wheel will move forward. In addition, at a appropriate position of the tricycle front is backwardly connected a bone lever, at a central position of the bone lever is fixed a seat, at a rear end of the bone lever is fixed a connecting rod by welding, and a pair of rear wheels are pivoted to both sides of the connecting rod, so that the child can sit on the seat and step on the pedals, so as to make the front wheel and the rear wheels move forward, thus reaching child riding tricycle purpose. However, such a tricycle is large and can not be folded, causing inconvenient to carry and take up space, which will increase the transportation cost.
U.S. Pat. No. 6,152,473 discloses a folding collapsible baby tricycle, which comprises a bone lever pivotally assembled with a support rod at a front end thereof and pivotally provided with a connecting rod at a rear end thereof, the support rod and the connecting rod are pivoted to a link rod, respectively, such a tricycle is foldable, so it is convenient to carry and can reduce the transportation cost. However, such a tricycle can not be fixed when expanding or folding, so the structure is not stable, causing the danger of riding, and the tricycle can easily be expanded by external malfunction after being folded, so it is inconvenient to carry.
The present invention has arisen to mitigate and/or obviate the afore-described disadvantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to an apparatus for treating a traveling textile material, either filaments or other strand-like material in tows, warps, or single filaments, and, more particularly, to an apparatus for heating traveling textile material to a heat-set or draw point localization temperature in a pressurized saturated or superheated steam atmosphere, such as preliminary to a texturizing or crimping operation, or otherwise to help stabilize the draw point conditions in a synthetic fiber draw process.
In a typical conventional apparatus for drawing, annealing and texturizing textile material, a heating apparatus is provided through which the strand is directed to travel preliminarily to elevate the temperature of the strand to a predetermined draw point or heat-set temperature. Typically, such strands are stretched with a localized draw point for uniform stretching to increase the tenacity of the fabric. After stretching, the strands undergo annealing or heat setting to stabilize the fibers after the draw point to set the fibers and reduce shrinkage to improve fiber uniformity and reliability.
One of the more common heating apparatus utilized for this purpose is a contact heater wherein the strand travels over a heating plate or heated rolls whose temperature are controlled to approximate the desired heat-set temperature. The temperature to which the strand is heated is a function not only of the temperature of the heating plate or roll itself, but also the time spent by a strand portion within the heater, which is determined by the traveling speed of the strand and the length of the heating plate, or the contact length of the rolls.
In recent years, the textile industry has increasingly demanded draw-texturizing/crimping equipment capable of operating at ever higher strand traveling speeds, which objective has been addressed in basically two ways. First, draw-texturizing/crimping equipment has been offered with heating apparatus of increasing lengths so as to prolong fabric Contact with the heaters and, in turn, sufficient heating to a desired heat-set temperature at increased strand traveling speeds. Secondly, draw-texturizing/crimping equipment has become available utilizing heaters which generate a considerably higher strand-heating temperature than the desired heat-set temperature so as to accomplish sufficient strand heating within a shorter strand traveling distance while the strand travels at an increased rate of speed. In a typical conventional apparatus for drawing and heatsetting textile strands, the strands are heated by hot air, steam at atmospheric pressure, heated rolls or hot plates.
Disadvantages exist in all types of heating apparatus, particularly the hot plate and roll annealer because of their space requirements, high cost, difficulty of surface cleaning from oligomers and finish oils and melting at machine stops. Problems also exist with hot air ovens and atmospheric steam ducts due to their ineffective heat transfer capabilities which typically result in very large machines.
In texturizing equipment utilizing shorter length heaters operable at more elevated temperatures, often in the range of up to 600.degree. C., substantially greater energy must be generated to accomplish heating to such elevated temperatures, thereby correspondingly increasing the cost of equipment operation. Further, a greater risk exists in operating such equipment that the cross section of the textile material can be rendered non-uniform by crystallizing the outermost portions of the strand to a greater degree than the strand core. In addition, due to periodic stoppages of the equipment, further damage to the material may occur by melting caused by prolonged contact with the heater. Therefore, it is critical in such equipment that the temperature of the heater and the traveling speed of the strand be closely monitored and carefully controlled to minimize these risks.
Similar disadvantages exist in conventional commercial equipment for heat-setting carpet yarns, wherein the objective is to stabilize the yarn bulk, to return the yarn to a fully relaxed state by relieving inner molecular tension within the yarn structure, and to increase its crystalinity for better and more uniform die pickup. For this purpose, commercial yarn heat-setting equipment typically accomplish heat setting by directing the yarn to travel in a low tensioned state through a dry heat atmosphere or in a steam atmosphere at ambient pressure or a slightly elevated pressure. However, since the steam atmosphere generated in such equipment is typically at a temperature below a desired heat-setting temperature and since heat transfer from a dry heat atmosphere to a traveling strand is relatively inefficient, such conventional heat-setting equipment must be of a relatively significant length to achieve a sufficient dwell time of the traveling carpet yarn within the heater to obtain the desired heat-setting results. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electronic devices are under development as multimedia devices for providing various services such as voice and video call functions, information input and output functions, and data transmission and reception.
If a video is captured by using a camera equipped in the electronic device, a user can edit the video after completing the video capture.
As described above, the video captured in the electronic device is edited after the capture is complete. Since it takes a long time to edit the video, the user of the electronic device experiences an inconvenience.
The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
As described in commonly owned U.S. Pat. Nos. 4,900,074 and 5,476,294, a motor-vehicle door latch normally has a housing, a pivotal lock fork on the housing engageable with a door bolt and pivotal between a locked position engaged around the bolt and retaining it on the housing and an unlocked position permitting the door bolt to move into and out of the housing, a release pawl engageable with the fork and displaceable between a holding position retaining the fork in the locked position and a freeing position out of engagement with the fork and permitting the fork to move into the unlocked position, and a lever mechanism connected to the release pawl and movable between an actuated position displacing the pawl into the freeing position and an unactuated position with the pawl in the holding position Inside and outside handles operable from inside and outside the vehicle are connected to the lever mechanism to operate it and unlatch the door. Inside and outside lock elements are also connected to this mechanism to prevent at least the outside handle from operating the lever mechanism.
To prevent a door, normally a rear-seat door, from being accidentally opened, normally by a child, it has become standard to provide a so-called child-safety or -cutout system. This is typically embodied as an element that is exposed at the edge of the door when the door is open and that can be moved manually between an on and off position. In the on position the inside door handle is no longer operational.
Such a mechanism works in either of two ways: It can simply block actuation of the inside handle by putting some element in the movement path. Thus the inside handle cannot be moved at all. Alternately it can decouple the inside handle from the latch mechanism so that, even though the inside handle can be actuated, such actuation will have no effect.
The problem with this arrangement is that the vehicle operator frequently forgets to enable or disable the child-safety feature, leaving it off when children are being transported or leaving it on so adult passengers have to be let out of the back seat. The fact that the latches must be individually and manually set is the main reason this feature is not used more, and attempts to operate it via a power-lock system or the like have not proven practical or inexpensive enough to warrant broad use. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally, photographic processing of a silver halide color phonographic material comprises a color developing step and a silver removing (desilvering) step. Silver formed by development is oxidizing with a bleaching agent and then dissolved with a fixing agent.
A ferric (III) ion complex salt (e.g., an aminopolycarboxylic acid-iron (III) complex salt) is usually used as the bleaching agent and a thiosulfate is usually used as a fixing agent.
Also, processing of a black and white photographic material comprises a development step and a step of removing unexposed silver halide. Unlike processing of a color photographic material, the black and white photographic material is fixed after development without being bleached. In this case, as the fixing agent, a thiosulfate is usually also used.
Recently, with the development of low replenishing techniques, a more stable liquid composition has been desired for each processing bath. As to a fix bath, since the thiosulfate generally contained therein tends to be deteriorated by oxidation, sulfurized and precipitated; a sulfite is usually added to the fix bath as a preservative for preventing the occurrence of the oxidation. However, with the further development of low replenishing techniques, there is yet a further need for improvement of the stability of each processing liquid. However, such improvement is not attained by an increase in the addition amount of sulfite due to the solubility limit of the sulfite. Furthermore, when the sulfite is oxidized, Glauber's salt is precipitated.
On the other hand, from the view point of promoting rapid photographic processing, the development of a compound having a fixing property superior to thiosulfate has been desired.
In view of the above, there is a need in the art for the development of a fixing agent having excellent stability to oxidation and an excellent fixing property in place of thiosulfate; however such a compound having the above described properties has not hitherto been known. | {
"pile_set_name": "USPTO Backgrounds"
} |
With an increasing use of digital cameras, along with the digitization of existing photograph collections, it is not uncommon for a personal image collection to contain many thousands of images.
The high number of images usually renders their classification in smaller sub-sets necessary to avoid a fastidious browsing. A classification can typically be based on textual annotation of the images, on labels or tags in the form of metadata added to images, or any other form of static classification requiring user explicit input. Such classifications however suffer from drawbacks. One drawback is that a classification corresponding to the taste of a given user of the collection of images, at the current moment in time, does not necessarily correspond to the taste of other possible users or the same user at another time, or different context of use. Another drawback is that many images/photographs may remain unlabelled or unclassified, since a classification requiring user input usually appears as a fastidious task.
To save the user from the classification efforts, some retrieval systems rely on objective image content analysis rather than existing image labels or tags. Data on image content likely to be used for classification or image retrieval may result from so called low level analysis or high level analysis of the image. A low level analysis comprises, for example, colours analysis, spatial frequency analysis, texture analysis, or histograms analysis, etc. High level analysis rather involves algorithms to derive information from the semantic content of the images. As an example of high level analysis, processing engines may be used to identify in an image semantic content such as human faces, skin, animals, sky, water, sea, grass etc.
The semantic content as well as some other low level features mentioned above may in turn be used separately or in combination to calculate a similarity between images and finally to classify the images based on their similarity.
As an illustration of existing classification and image searching methods, U.S. Publication No. 2006/0050933; U.S. Pat. Nos. 7,043,474 and 6,922,699 may be referred to. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a refrigerating cycle system suitable for an automotive air conditioner, which includes a hot-gas bypass for introducing gaseous refrigerant (hot gas), discharged from a compressor, directly into an evaporator while bypassing a condenser at a heating state so that the gaseous refrigerant radiates heat in the evaporator.
2. Description of the Related Art
In a conventional automotive air conditioner, hot water (engine cooling water) is circulated in a heat exchanger for heating at a winter season heating state, and air is heated by exchanging heat with the hot water in the heat exchanger. In this sytem, there is a case where hot water does not have a temperature sufficient for raising the temperature of air, which is to be blown into a compartment, up to a desired level. This results in insufficient heating capacity.
To solve this problem, JP-A-5-223357 proposes a refrigerating cycle system using a hot-gas bypass so as to enhance the heating capacity. Specifically, a hot-gas bypass passage is provided so that gaseous refrigerant (hot gas) that is discharged from a compresser pypasses a condenser and directly communicates with an evaporator, and a decompressing part is provided in the hot-gas bypass passage. Accordingly, even when a hot water temperature is lower than a specific temperature as in an engine starting state, gaseous refrigerant can be directly introduced into the evaporator after being decompressed by the decompressing part in the hot-gas bypass passage so that heat is radiated from gaseous refrigerant toward air in the evaporator.
In the system described above, an amount of work of compression in the compressor is ideally transformed into a radiation amount (heating capacity) in the evaporator. Therefore, a heat loss amount (radiation amount) radiated toward an outside through a pipe that defines therein the hot-gas bypass passage directly lessens the heating capacity. Especially, in a winter season, there arises a large difference between a temperature of gaseous refrigerant immediately after discharged from the compressor, which can, for instance, be 70.degree. C. at a discharge pressure of 20 kgf/cm.sup.2, and an outside air temperature, which can, for instance, be -20.degree. C. Therefore, the longer the pipe length of the hot-gas bypass passage in which refrigerant flows before decompression becomes, the more the heat loss amount of gaseous refrigerant in the hot-gas bypass passage is increased.
In addition, when refrigerant has a temperature of 70.degree. C. and a pressure of 20 kgf/cm.sup.2 immediately after discharged from the compressor, under a condition with an outside air temperature of -20.degree. C., the refrigerant can have the temperature of 40.degree. C. and a pressure of 2 kgf/cm.sup.2 after decompressed by the decompressing part in the hot-gas bypass passage and have a temperature of -10.degree. C. and a pressure of 1 kgf/cm.sup.2 at the outlet side of the evaporator.
To the contrary, because the condenser is exposed to an ambient atmosphere with a temperature of -20.degree. C., a temperature of refrigerant is cooled down to -20.degree. C. to be equal to the ambient temperature, within the condenser, and accordingly refrigerant is transformed into a liquid state with a saturation pressure (0.5 kgf/cm.sup.2 G) that corresponds to the temperature. Therefore, refrigerant immediately after decompressed by the decompressing part in the hot-gas bypass passage has a high temperature and a high pressure as compared to those of refrigerant within the condenser. Consequently, refrigerant tends to flow from the hot-gas bypass passage into the condenser.
To solve this problem, in the above-described system, a check valve is disposed on an outlet side of a receiver that is disposed on the outlet side of the condenser. However, in an automotive air conditioner, the condenser and the receiver are usually installed in an engine room fore most portion (ahead of a radiator). Therefore, when the check valve is provided adjacently to the receiver, it is necessary to provide a relatively long pipe for connecting a confluence point between the evaporator and the hot-gas bypass passage outlet portion and the check valve. As a result, liquid refrigerant gathers within the pipe between the confluence point and the check valve. This causes shortage of a refrigerant amount circulating when the hot-gas bypass passage is opened, resulting in deterioration of the heating capacity and an abnormal increase in temperature of gaseous refrigerant discharged from the compressor. In addition, the check valve along the refrigerant pipe requires an exclusive joint, resulting in increased cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to the extension of a metallic pair connection via a digital transport path.
2. Description of the Related Art
The traditional telecommunication system was comprised of a twisted pair of copper wires which ran from the central office of a telephone company at a particular location to the individual subscriber's home or office. With the advent of digital transmission systems, such as fiber optic networks, the central offices were themselves connected by fiber optic cables, and later, digitally coupled to remote terminals which were placed closer to subscriber drops so that the higher bandwidth digital transmission system could be extended closer to the subscriber's home. More recently, the wire pairs between the central office and remote terminals are being replaced by high bandwidth fiber optic transmission systems. The metallic pair connections are still the dominant means of interconnecting a subscriber's home or office with the remote terminal and its digital link to the central office.
Under certain circumstances, it is necessary to require the digital transmission system to emulate a true metallic pair connection extending between the central office and the remote terminal. One of the most important reasons is to allow test equipment, positioned in the central office, to remotely test subscriber connections extending from the remote terminal.
A number of different schemes have been implemented in order to allow for testing or connection of metallic pairs across the digital transmission system.
FIG. 1A shows a first prior art alternative for testing subscriber lines at the remote end of one type of digital transmission system, a Digital Loop Carrier (DLC) system. As shown in FIG. 1, a typical DLC system includes the Central Office Terminal (COT) and a central office switch at the central office end of the digital transmission system connection. At the remote end of the connection, a digital loop carrier Remote Terminal (RT) is coupled by, for example, a fiber link or high frequency cable to the COT, and to subscriber lines comprising a plurality of metallic pairs (which, for historical reasons, are referred to as "Tip" and "Ring" connections). The central office switch at the CO end is coupled to a pair gain test controller (PGTC) unit, manufactured by Lucent Technologies, Inc. (formerly AT&T Technologies, Inc.), a well-known apparatus for testing the customer's cable pair extension or drop beyond the transmission system's remote terminal (RT).
The PGTC acts as an interface between the DLC systems and loop testing systems. The PGTC allows the use of conventional cable pair loop testing methods on the subscriber lines beyond the remote terminal, provides for testing of a customer's carrier channel equipment, including both transmission performance and signalling performance, and provides compatibility with automated test systems, such as the Mechanized Loop Testing (MLT) system (also manufactured by Lucent Technologies, Inc.). The PGTC therefore minimizes the loop testing equipment needed per carrier system. In operation, the PGTC will be coupled to a test system such as MLT, which is itself controlled by, for example, a Loop Maintenance Operations System (LMOS).
In FIG. 1A, a physical metallic bypass pair 12 is coupled between the central office terminal and remote terminal. The metallic bypass pair is coupled through the central office terminal to the tester trunk of the PGTC unit, and may be switched at the central office and remote terminal to connect with any of the subscriber lines at the remote unit. The advantage of the metallic bypass pair is that no additional test equipment, beyond the PGTC, is required to conduct testing at the remote end. However, the metallic bypass pair is not available with the fiber optic plant; that is, a separate line must be run from the COT to the RT. Secondly, when using the PGTC, one is limited to testing of "Plain Old Telephone Service" (POTS) lines only.
Other types of "special" service lines may also be provided by the telecommunication system. Such special services may comprise, for example, special rate tariff lines, data lines, and PBX lines. Test systems used for special services testing are different from the POTS test systems. The tests applied to special services circuits are more extensive and have separate databases from those used for POTS testing.
A second alternative to remote testing of subscriber lines is shown in FIG. 1B. In FIG. 1B, a Remote Measurement Unit (RMU) is utilized. In this system, an RMU conducts all testing at the remote end. The remote terminal of the digital loop carrier includes a test bus, and a talk and control path which are coupled to the RMU. The RMU is controlled by the LMOS via a dial-up connection. Although the DC bypass pair is eliminated in this embodiment, this system is rather slow, requiring a proprietary LMOS interface, and only allows for POTS testing.
A third alternative is the use of metallic channel emulation equipment, coupled at the central office to similar emulation equipment situated at the remote terminals. This equipment emulates a metallic pair connection between the test systems coupled to bypass pairs in the central office and corresponding bypass pairs at remote terminal over the DLC. One such emulation unit is the Tollgrade MCU 4496 metallic channel unit manufactured by Tollgrade Communications, Inc., Wilmington, Del. The essential principles of the metallic channel unit are described in U.S. Pat. No. 5,457,743 entitled "Metallic Channel Unit Network," Inventor Frederick Kiko, which is a continuation-in-part of U.S. Pat. No. 5,202,919, entitled "Metallic Channel Unit Network," inventor Frederick J. Kiko.
A block level representation of this test system architecture is shown in FIG. 1C. As shown therein, the MCU unit is coupled to the PGTC by the Channel Test Unit (CTU) which gives Tip and Ring connections to the metallic channel unit. A corresponding MCU is provided at the remote end of the digital loop carrier and the Tip and Ring connections at the remote end of the system are emulated at the central office end. Hence, the emulated wire pair connection causes a load appearing at the remote end of the system to be connected via a wire pair to the central office end of the system and vice versa.
One disadvantage of the metallic channel unit is that it is specific to the particular digital loop carrier which is being utilized. Each type of DLC has its own proprietary interface for the metallic channel unit. This requires the telephone company to maintain an inventory of multiple types of MCU's. For example, in the MCU 4496 product information sheet (Issue 3B, list 1), the version of the MCU for the AT&T SLC96 DLC is described. In each case, the MCU unit must be integrated into the COT as well as the RT, as illustrated in FIG. 1C. Another disadvantage is that the MCU requires two DS0 digital channels to link the CO end with the remote end.
Another difficulty with the MCU is in the metallic emulation function. FIG. 2 is a reproduction of FIG. 2 of U.S. Pat. No. 5,457,743 (the '743 patent) which shows an equivalent circuit of the MCU. As shown in that patent, the two ends of the tip line connection are essentially identical in their implementation. The practical difficulty in implementing this system is in balancing the opposite sides of the circuit to make the system appear as a piece of cable with very high DC impedance to ground. This requires extremely accurate gain matching on both sides of the digital loop carrier (the remote end and the central office end). The '743 patent solution therefore requires great precision or careful adjustment of each unit in order for the emulation function system to work properly.
A further disadvantage of the MCU is that it is limited to testing of POTS systems; no provision for testing of special services is made.
As the need exists to test special service lines also, alternatives for meeting this need have been developed. An alternative for testing special services connections is the special services Remote Test Unit (RTU) shown in FIG. 3. A separate RTU and Test System Controller (TSC) are provided for the special services line at the remote end of the system. However, such systems are commercially unattractive because an RTU/TSC must be placed at each remote site where special services are to be implemented. This requires additional cost, and space at the remote terminal site, and the test equipment may be limited to testing special services only. | {
"pile_set_name": "USPTO Backgrounds"
} |
Network Address Translation (NAT) technology allows a gateway or router device to use a particular set of Internet protocol (IP) addresses for internal private message traffic and a different set of IP addresses for external public message traffic. To this end, administrative entities map the private addresses to public addresses and further map a particular port on the router's public interface to a specific device in the private network. This mapping technique is known as port address translation.
For example, to enable an “outbound session”, wherein a source device in a private network tries to communicate with a destination device that is outside of the private network, a router device typically allocates a Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) source port for use during the outbound session. The router then replaces the source IP address for each source packet (from a device within the private network) with the IP address of the external or Internet adapter on the gateway device, and replaces the source TCP or UDP port number of the packet with the allocated source port number. In this manner, the gateway device dynamically maps the IP address and source port of the source device to a different IP address and source port (port/address translation).
In the above example, if the destination device sends a response to the router, the port/address mapping that was created during the outbound session is used to restore the source's originating IP address and originating port number. The router then forwards the resulting packets to the correct device in the private network. External devices are unable to initiate connections with devices behind the routing device. In this manner, NAT provides a type of firewall by hiding internal IP addresses from the external devices.
A substantial amount of administrative effort is typically required both to facilitate peer-to-peer connections for devices that reside behind a NAT firewall, and to enable inbound communication sessions. An inbound communication session is where a source device that is not behind the firewall initiates communication with a specific resource that is behind the firewall. This means that a network administrator must typically configure a static NAT route, or static address/port mapping at the router to identify a protected resource's address and gateway port by which the resource can be accessed during an inbound session.
Just as routes to network devices that are behind a NAT gateway are dynamically and/or statically configured, the devices themselves are often dynamically and/or statically configured with network addresses, configuration data, other data, and the like. To illustrate this, consider that a Dynamic Host Configuration Protocol (DHCP) server such as a digital subscriber link (DSL) modem, a cable modem, and/or the like, may assign IP addresses as well as configuration data and other data to devices (“DHCP clients”) in a network. Unless a network address is permanently assigned to a specific network device, the DHCP server places an administrator-defined time limit on the address assignment, called a lease. (Permanent address assignment is generally referred to as a reservation).
The lease is the length of time that a DHCP server specifies that a client device can use and assigned IP address. The lease ensures that network addresses are not wasted because network addresses are typically a limited resource. Halfway through the lease period, to maintain the validity of its assigned IP address, a DHCP client must typically request a lease renewal, whereupon the DHCP server may extend the lease.
There are any number of reasons why the DHCP client device may not request lease renewal such as if the client device is malfunctioning, if it has been moved to another network segment, if the device has been retired, and/or the like. If the DHCP client does not request renewal of the lease, it expires. Upon lease expiration, the device's assigned IP address is returned to an address pool for reassignment to a different device.
DHCP network address management can cause a number of significant problems in a NAT protected network. One problem, for example, is that by expiring and reassigning network addresses, the security of the private network may be compromised. To illustrate this, consider that a NAT gateway is maintaining a particular address/port mapping to enable peer-to-peer communication between a protected resource behind the NAT firewall and a device that is on the other side of the firewall. The lease on the protected resource's network address expires, meaning that the address can no longer be used to access the protected resource.
At this point, the NAT route that is mapped at the gateway to the protected device is invalid. If the DHCP server reassigns the expired address to a different device (e.g., a payroll server, a client file server, and/or the like) before a network administrator has had an opportunity to update routing table(s) at the gateway to reflect the invalidated route, the invalid route may be used by a device that is not behind the firewall to gain unauthorized and potentially damaging access to the different device.
The following described systems, apparatus, and procedures address these and other problems of existing techniques to configure and manage device routes in networks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure relates to a semiconductor package, and more particularly, to a semiconductor package including an antenna.
2. Discussion of Related Art
A portable electronic device includes a semiconductor package. The semiconductor package may include an antenna for performing wireless communication between semiconductor packages. Electro static can damage the semiconductor package having the antenna. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a conduit system for conveying a fluid (e.g. a liquid), the system comprising a plurality of conduit elements (i.e. of large or small diameter) wherein adjacent conduit elements may be connected together by a coupling means in flexible yet fluid tight fashion. The present invention also relates to such a coupling means. This coupling means may provide a fluid-tight (e.g. liquid-tight) joint despite variations of temperature to which the conduit elements may be subjected. The coupling means may, for example, be conveniently used for joining conduit elements for the transport of a liquid such as water; the system may in particular be used for feeding water to the turbines of hydro-electric plants.
In industrial applications where large diameter conduit systems are involved, (such as for the delivery and/or removal of water with respect to hydro-electric power plants), the known practice for connecting and sealing pipe or conduit element ends to each other has been to weld the elements together. The welding technique for joining adjacent ends of large diameter conduit elements has a number of drawbacks. Welding is a labour intensive process requiting the attention of a skilled artisan and is thus inherently relatively expensive to carry out. A large diameter conduit system for a hydroelectric installation is normally assembled in the field, where welding may not be an easy task; welding may, for example, pose a fire hazard during installation. Conduit elements which are connected together by joints which consist solely of a "weld", cannot be easily dismantled for replacement and/or repair. Additionally, welded joints are more or less rigid such that relatively complicated means (e.g. a plurality of expansion joints) must be provided to allow for stress relief in the conduit system due to expansion/contraction of the conduit material in response to temperature changes, due to shifting of the conduit support, etc . . .
Similar problems, such as those related to stress relief, may also be encountered with respect to the connection or coupling of conduit elements (i.e. of large or small diameter) in other fields of activity (e.g. for water maim for the delivery of water for home or industrial purposes, oil pipelines for transporting (crude) oil, etc.). Accordingly, it would be advantageous to have a coupling means whereby conduit elements (e.g. of large or small diameter) may be connected or interlocked in a simple, economical manner, which interlocking may be carried out by relatively unskilled workmen with relatively simple tools.
It would further be advantageous to have coupling means which may provide a pipe coupling or joint which will provide a flexible yet fluid-tight seal between two adjacent ends of pipe or conduit elements. It would, thus, in particular, be advantageous to have a conduit system comprising conduit elements (e.g. of large or small diameter) wherein provision is made for expansion and contraction of the pipe materials while maintaining a fluid tight seal between coupled conduit elements.
It would be particulary advantageous to have a large diameter conduit system of the above sort for directing water to and/or from turbine(s) of a hydroelectric generating plant. | {
"pile_set_name": "USPTO Backgrounds"
} |
Automatic Teller Machines (ATMs) provide bank customers with the ability to deposit cash or a checks into a bank account and to withdraw cash from the bank account. In some situations, an ATM can be loaded on a truck. For example, if severe weather has caused power outages, road blockages, or other damage that make it difficult for people to access their bank accounts, an ATM can be driven to the site of the severe weather to provide the bank customers with basic access to cash. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to backhoes and more particularly to a mechanism for controlling the engine speed for the operation of a rear mounted backhoe on a vehicle such as a tractor.
2. Background of the Invention
Conventional rear mounted backhoes on vehicles such as tractors are operated through means of a hydraulic control valve with a hand lever that directs the flow of oil to a working cylinder. During the operation of all known conventional backhoes, the engine throttle is in a fixed position, generally with a control that is located on the steering wheel column. The engine throttle is used by reaching back from the backhoe operator station and adjusting the throttle at the desired setting.
Conventional hand throttles are disadvantageous in that an operator must take his eyes off of the backhoe when viewing the hand throttle to adjust its setting. The conventional hand throttles do not permit an operator to change the engine speed without moving a foot to a foot pedal or taking a hand off of one of the backhoe hydraulic control levers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to content transfer technology capable of reducing the amount of usage fees to be paid for the connection bandwidth required by a first storage for connecting to a communication network by reducing the data transfer volume from the first storage to a second storage when the first storage requests the second storage to back up contents via the communication network.
In recent years, the data size of contents is increasing pursuant to the improvement in quality of video contents such as TV programs and movies being broadcast. Even households are now able to purchase and use large-capacity storages of several TB inexpensively, and record large volumes of video contents and accumulate such contents in a home storage.
Japanese Patent Laid-Open Publication No. 2005-31804 discloses a system connecting an online storage in a content storage service site that accumulates contents uploaded by users from domestic music servers, home servers, TVs and so on, and a billing and settlement service provider that offers billing and settlement service in collaboration with a download site via the Internet.
In addition, Japanese Patent Laid-Open Publication No. 2004-192602 discloses technology of automatically recovering lost data by using data that is backed up in a portal server when a home server malfunctions. This is achieved through performing data backup by periodically transferring data that is updated and accumulated in the home server, which controls and manages a home network connected to a plurality of household electrical appliances, to the portal server connected via the Internet.
Meanwhile, an online storage service is becoming popular as a new type of online service. This service is a storage capacity rental service that can be used via the Internet, and is provided for a fee or free of charge. For instance, by copying the domestic contents to an online storage, such contents can be backed up. Since the contents on the home storage side can be deleted by migrating such contents to the online storage, it is also possible to increase the unused storage capacity on the home storage side.
A domestic home storage is connected to the Internet by using a line that the user subscribed to the telecommunications carrier. The broadbandization of these lines now enables users to use a broad bandwidth of several Mbps to several ten Mbps. Nevertheless, although the data download speed of the domestic line connected to the Internet is fast, the speed of uploading data to an online server is slow. This is because the primary objective of using the Internet in homes was to download contents.
When backing up the video contents that are accumulated daily in the home storage in an online storage via the Internet, there is a problem in that the recorded data cannot be all backed up since the bandwidth of the uploading side of the line is narrow. For example, if 20 GB of video contents are once recorded and such contents are to be backed up using a line having an upload speed of 1.5 Mbps, it would take 30 hours to fully back up the foregoing video contents, and the system would fail since the backup cannot be completed in a single day.
Conventionally, technology for overcoming this problem depended on compressing the transmitted data or sending only critical data. | {
"pile_set_name": "USPTO Backgrounds"
} |
Video recording devices are being adopted by law enforcement agencies and other organizations to provide factual visual, audio, and metadata (such as date, time, latitude, longitude, temperature, and other metadata about the video, audio, and situation being captured) evidence of encounters with citizens and situations within view of the video recording device. Early implementations of video recording devices were generally similar to GoPro and other consumer-oriented body-mounted recording devices. Such devices include manual on and/or off buttons to start and stop recording, are affixed or in some way attached to a user, and have a limited amount of video, audio, and/or metadata storage capacity. With specific reference to a law enforcement application, the data generally is captured and stored over the course of a shift. At the end of the shift the stored data is uploaded to a centralized video management system.
In some cases recording devices rely upon the user to operate a mechanical slide switch that physically covers the video camera lens when the device is manually switched to the “off” position. To turn the recording device on, a wearer or user must slide the switch to the “on” position. Other recording device examples depend upon the user to press one or more mechanical control buttons exposed on the front of the device to start recording, stop recording, mute audio, or otherwise manually control the operation of the video recording device. Such system control buttons are often small and front-mounted, facing away from the wearer's point of view. As a result, the wearer must look down at the video recording device on their chest to ensure the correct button has been depressed, and/or to see that a status indicator light is illuminated.
Operating mechanical buttons may require the user to stop looking at a citizen, situation, or other potential threat in order to operate the video recording device. In the case of a law enforcement officer, looking away from one or more citizens involved in a situation can raise the risk of a situation turning into an incident, or worse yet result in law enforcement officer injury or death. The ideal case, and goal, is to avoid a situation turning into an incident. Therefore, there would preferably be no recording device control action that requires the user to take their eyes off an existing situation to reliably operate the device.
Recording devices, often also referred to as video recording devices, also have mechanical buttons that are dedicated to the basic functions of turning the device on or off. It would be useful to be able to query the status of a video recording device for information such as fault codes, remaining video recording time, and remaining battery life. However, such additional status query capability would require additional buttons, or complicated sequences of button presses, that would be confusing and complicated for a user to operate reliably. The user would like the ability to validate that the video recording device has adequate remaining battery or recording capacity before responding to a situation, without operating a complicated sequence of control button presses, or removing the device from the front of a shirt or other clothing to look at a control screen or connect the unit via USB, WiFi, BlueTooth, Zigbee, or other wired or wireless data connection to another device where status information can be obtained.
Mechanical exposed buttons on a video recording device have great potential to be distracting and/or confusing to a highly stressed user. A user who is pre-occupied with a situation that could rapidly escalate into an incident, or when an incident is already in progress upon arriving on scene, does not then also need the added stress of trying to operate mechanical control buttons. If there are exposed mechanical control buttons, there is the greater risk that the wrong button might be pressed at the wrong time. A recording may have been accidentally started earlier by an accidental press, or from the pressure of a seat belt across the chest pressing on control buttons on the front of an externally-mounted device, and a user may then activate the recording Start/Stop function, wrongly believing that the recording function had been activated when, in fact, it had been stopped. A video recording may not be started, or the user might inadvertently turn off the video recording or mute the audio recording just when it was needed most during an incident.
Exposed buttons and/or status indicator lights on the front, sides, top, or bottom of a recording device are plainly visible to a citizen facing the user. Therefore it is also possible for a citizen to be tempted to reach out and operate a control button to stop a recording or otherwise interfere with the operation of the device. An average citizen armed with a knife who is located within 21 feet of a police officer (the so-called “21 Foot Rule”) can charge and reach the officer before the officer would have time to react, bring a weapon to bear, and attempt to neutralize the threat. A citizen located within 21 feet of an officer could also charge, reach out, and attempt to press a front-mounted video recording device control button. A situation where there was more than one citizen located within 21 feet of a police officer would magnify this risk. A citizen acting on a temptation to attempt to turn off a video recording device would certainly turn a situation into an incident, which is to be avoided if at all possible. If the situation did devolve into an incident, the user might become involved in a struggle with one or more citizens, and an exposed control button might get accidently pressed through fist blows or other bodily contact. This could stop the recording during middle of the incident. A video recording device with no exposed control buttons on the front, sides, top, or bottom of the device would minimize the temptations and risks presented by exposed control buttons. As a result, the wearer of the video recording device needs a way to control the device without having mechanical buttons exposed that a citizen could attempt to operate.
One alternative includes exposed manual control buttons on the back of the video recording device, which are not in view of the citizen. These buttons, however, would be difficult to operate. A user of a video recording device does not want to remove the device to operate controls to start or stop video recording, mute the device, or execute other commands. Exposed control buttons on the back of the video recording device would also be subject to accidental button presses through the device getting pressed by a seat belt or other forces that could accidentally press the device into the wearer's body. Exposed manual control buttons on the back of a video recording device would present great risk of device control commands being accidentally executed.
As a result, a recording device should not have any exposed mechanical control buttons that can be accidentally pressed by the wearer, come into contact with surfaces that accidentally operate a control button, or can be operated by a citizen involved in a situation or incident. The preferred device should reliably capture video, audio, and/or metadata. The preferred video recording device should not stop recording, be muted, or otherwise be inadvertently switched into an operating state when not consciously intended by the device user. Yet a user of a video recording device needs a way to positively control the device and get positive confirmation feedback of command execution without having to look at the video recording device, or press any exposed buttons.
Another problem with prior video recording devices is that they are generally manually assigned to a user (a police officer, etc.) through a video recording device serial number. The video recording device can also be associated with a person through a manual data entry process and that the device serial number or other ID number is entered into a database (such as a central control assignment database) that logically associates the device to a law enforcement officer or other wearer. However, there is often no validation or verification process or other technology to insure that the person who has physical possession of the video recording device is actually the same person the device is associated with in a central control assignment database. For example, Officer B could pick up and put on a video recording device that had been associated in a device assignment database to Officer A. As a result, video recorded by the device might be attributed to Officer A, when in fact the video recording captured by the recording device was actually captured by Officer B. Or it could be that the actual wearer of the device at the time the video was recorded might never be known with absolute certainty. There is a need for at least a one-factor authentication method that positively associates a video recording device to a specific person, or to another equipment item that is assigned to the specific person.
Law enforcement agencies and other organizations frequently provide or require officers, first responders, organization members or other persons associated therewith to wear a uniform. In the case of police officers, it is well known that officers typically wear a uniform that is recognized to evoke a sense of authority. In that environment, the integrity of the uniform must be maintained. Moreover, a police officer's uniform is already used to carry and support various gear. For example, a duty belt is used to secure a holster, a firearm, a tactical light, an oleoresin capsicum (“OC” or pepper) spray canister, walkie-talkie, ammunition and other gear. In addition, as stated above, more and more officers are being asked or required to carry a recording device or other electronic devices. As a further example, it is known to provide officers with a combination radio microphone/speaker device that maybe attached to the uniform, typically a uniform shirt. Sometimes used in conjunction with an in-car video system, the microphone/speaker device may be attached to the uniform by means of a clip, a pin, or some other attachment device that positions the microphone/speaker device in a position to be readily grasped and used by the officer. Alternatively, the microphone/speaker device may be secured by a strap that can be attached to the epaulette or shoulder yoke strap of the uniform. One known device that allows for a combination microphone/speaker device to be attached to a uniform is referred to by the trademark “Walkieclip.” With such devices, a mounting strap is secured to a button on the epaulette or the epaulette itself so as to hang down the front of the uniform shirt. The mounting strap receives or accepts a clip or like attachment device on the back-side of the microphone/speaker device (or pin on the back of a holder for the device) so as to position the microphone/speaker at or near the breast pocket of the officer's uniform shirt.
Similarly, it is known to provide a clip or pin that can be used to attach a video recording device to an officer's clothing. For example, a spring loaded clip attachment is known. Such an attachment device receives the video recording device on one side, and includes a spring-loaded clip on the other side. The clip (or pin) allows the officer to attach the camera directly to the front of his or her uniform shirt. Alternatively, it is known to provide a lanyard or like device that can be placed about the officer's neck to hold and support the video recording device. In that and the clip or pin methods of attachment, the video recording device's position may be disrupted, rendering it possibly useless or ineffective. If on a lanyard, the device's position may be altered simply by running. To be useful, the camera or video recording device would preferably be directed to the officer's front in a direction that would allow the camera to record or otherwise capture essentially what the officer is seeing.
There are disadvantages to attaching a video recording device to a uniform by such means. As noted, the device can be dislodged or detached from the uniform either intentionally by, for example, another party that seeks to interrupt recording, or unintentionally by sudden or violent movement of the officer. If the video recording device is dislodged, either the recording device or the uniform, or both, may be damaged. Even if not completely removed from the uniform, the video recording device can be inadvertently repositioned so that the camera is directed away from a desired field of view. In many instances, it is preferable to maintain the position of the camera in a substantially forward direction so as to capture what the officer is seeing or confronting. Even so, especially in a stressful situation, an officer may turn quickly to view an incident or in response to a stimulus. When attached to a uniform by a spring clip or pin, or if on a lanyard, the video recording device may not turn or rotate in tandem with the officer. Rather, as a result of its own weight, the device may lag behind the officer and may not capture an event that the officer witnessed. The gravitational or “G” force of a rapid turn may be strong enough to detach the video recording device from the officer's uniform, causing the video recording device to go flying off in some unknown direction and location, and most likely not ending up in a position on the ground where the incident is within the recording field of view.
Still further, as stated above, an officer or other first responder in a high stress situation has little time or need to be concerned with proper placement, orientation and the workings of a camera or video recording device. For example, it would be difficult for an officer to manually activate a camera or other video recording device if he or she must respond quickly to a given circumstance. Rather, the officer's or first responder's first (and proper) focus is on the incident being addressed. It would be helpful to the officer or other first responder for the video recording device to be carried and secured in an effective and operative position so that the user need not be concerned with the device's attachment, orientation, or operation in a stressful or physically demanding situation. And, it would be potentially helpful to the officer or other person to maintain the video recording device in an operative position which maintaining both the structural integrity and appearance of the uniform so as to maintain the sense of authority and goodwill that is intended to be provided by the uniform in the first place.
To the Applicant's knowledge, until now, the focus on placing or securing recording devices to a uniform has been on attaching the device to the outside of a uniform. While this has proven effective in certain circumstances, there would be advantages to modifying a uniform itself to receive and support the device in an operative position. Moreover, it would be helpful if the position of the video recording device, and especially the camera of such a device, was maintained so as to best capture events that are being witnessed or experienced by the user. For example, repeated use of a microphone/speaker device does not necessarily result in a consistent position of the device. That may be acceptable for an audio only device, but it would be difficult to accept or even unacceptable for a video recorder or other camera. It would be useful for the video recording device to consistently be placed in a secure position that allows for device to record, consistently, legal quality video data that can be authenticated and otherwise maintained for use in a courtroom environment. It would be helpful to have an established, respectable position for the video recording device that allows for the capture of such data in a consistent and reliable manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to hinges, especially piano type hinges which are used to mount a swinging door to a fixed door frame. Such doors may be made of any suitable material, such as wood, plastic, or metal, and the hinges may be made of any appropriate material, including plastic or metal, such as aluminum, steel or brass.
More particularly, the invention is in a magnetic device for monitoring the opening and closing of a door as it swings to and from a closed position in a fixed door frame to which the door is mounted. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.