text
stringlengths 2
806k
| meta
dict |
---|---|
A thermoplastic elastomer composition prepared by dispersing a specific rubber elastomer component as a discontinuous phase in a specific thermoplastic resin matrix, in which the composition has a good balance between air permeability resistance and flexibility (JP 8-259741 A) is known.
In addition, it is known that a thermoplastic elastomer composition having more flexibility and excellent air permeability resistance by attaining a high elastomer component ratio by setting a melt viscosity (ηm) of a thermoplastic resin component, a melt viscosity (ηd) of an elastomer component in a thermoplastic elastomer composition and a solubility parameter difference (ΔSP) between the elastomer component and the thermoplastic resin component in such a manner as to satisfy a specific relational expression, as well as a pneumatic tire using the thermoplastic elastomer composition for a gas permeation preventive layer (JP 10-25375 A) can be obtained.
Furthermore, a thermoplastic elastomer composition in which gas permeability resistance is greatly improved by the presence of a barrier resin composition having a phase structure dispersed flatly in a thermoplastic elastomer having a continuous phase of a thermoplastic resin and a dispersion phase of a rubber composition, and moreover, which has flexibility, oil resistance, cold resistance and heat resistance (JP 10-114840 A) is also known.
Furthermore, a thermoplastic elastomer composition in which an acid anhydride-modified ethylene-based modifier polymer is blended in an aliphatic polyamide resin modified with a layered silicate (JP 2000-160024 A) is also known. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the disclosure relate in general to the field of computers and similar technologies and, in particular, to software utilized in this field. More specifically, it relates to a system, method and computer usable medium for maintaining persistent links to information stored on a network.
2. Description of the Related Art
The volume and diversity of network accessible information continues to grow. Today, it is common for vast amounts of this information to be stored on the public Internet. However, the information may also be stored on a local area network (LAN), a wide area network (WAN), or a private intranet. Regardless of where it might be stored, locating the information that is needed, when it is needed, is an ongoing challenge for today's information user. In response, a number of current approaches to this issue implement software applications, generally known as “crawlers,” that systematically access and index information so that it can be subsequently retrieved. For example, if the information is stored in a Web page, its address or uniform resource locater (URL), metadata, and other search criteria within the page are processed by the crawler and added to a searchable index. The resulting indexed information can then be searched by a search engine using search criteria submitted by the user. Once users find the information they are looking for the location of the found information is typically stored as a bookmark in a browser application. Some browsers allow the user to annotate the location information to facilitate relocation of the information by the user at a later time.
Keeping track of migrated information presents significant challenges. Network-accessible information is often dynamic and it is not unusual for it to be revised, combined, reformatted, or moved. For example, there are times when information remains generally within a network domain location, but is moved to a different Web page. In other cases, the information is moved to a different Web site, a different server, or even a significantly different network address. It is even possible that some or all of the information may be deleted from its original location, resulting in a dead link. To address this issue, information site administrators will sometimes implement links at the original location that will redirect the user to a new location. However, this approach becomes impractical if the information is changed or moved on a frequent basis, as the information site could quickly become cluttered with redirection links.
Current solutions to this issue include having the crawler application re-index information sites on a periodic basis, with some information sites being re-indexed more frequently than others. Assuming the information has not been significantly changed or deleted, its new location can then be found by a user resubmitting their original search criteria, even if the original bookmark is no longer valid. These approaches presume that the information has been re-indexed since the searched-for information was last altered or moved. They also presume that the user is able to resubmit the original search criteria. If either or both of these presumptions is not true, it may be difficult, if not impossible, to relocate information that was previously located and bookmarked. As a result, users currently are unable to maintain persistent links to network-accessible information as its content is modified or its location is changed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Transcription activator-like effector nucleases (TALENs) are fusions of the FokI restriction endonuclease cleavage domain with a DNA-binding transcription activator-like effector (TALE) repeat array. TALENs can be engineered to specifically bind and cleave a desired target DNA sequence, which is useful for the manipulation of nucleic acid molecules, genes, and genomes in vitro and in vivo. Engineered TALENs are useful in the context of many applications, including, but not limited to, basic research and therapeutic applications. For example, engineered TALENs can be employed to manipulate genomes in the context of the generation of gene knockouts or knock-ins via induction of DNA breaks at a target genomic site for targeted gene knockout through non-homologous end joining (NHEJ) or targeted genomic sequence replacement through homology-directed repair (HDR) using an exogenous DNA template, respectively. TALENs are thus useful in the generation of genetically engineered cells, tissues, and organisms.
TALENs can be designed to cleave any desired target DNA sequence, including naturally occurring and synthetic sequences. However, the ability of TALENs to distinguish target sequences from closely related off-target sequences has not been studied in depth. Understanding this ability and the parameters affecting it is of importance for the design of TALENs having the desired level of specificity and also for choosing unique target sequences to be cleaved, e.g., in order to minimize the chance of undesired off-target cleavage. | {
"pile_set_name": "USPTO Backgrounds"
} |
European patent EP 1 029 390 discloses a load feeder that is composed of a contactor and a power breaker and is mounted on an intermediate support. The intermediate support is provided with a channel in which plug contacts lie, which are connected to the feeder assembly via electrical lines for supplying power. By placing the intermediate support containing the load feeder on a base support, the plug contacts make contact with mating plug contacts in said base support. Contact is made at the same time as the intermediate support is mounted on the base support.
French patent FR 25 03 450 and U.S. Pat. No. 3,093,773 disclose a mounting device having an electrical switchgear mounted thereon. The switchgear comprises plug contacts for making plug-in contact with mating plug contacts provided on the mounting device, in order to connect the switchgear to the power supply circuit. The mounting device and the switchgear are provided with locating means, which hold the switchgear in a defined parked position, without the plug contacts making contact with the mating contacts. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a thermosetting composition, and more particularly to a thermosetting composition suitable for use as coatings for outer walls of buildings, automobiles, industrial equipments, steel furnitures, household electric appliances, plastics, and the like, especially coatings required to have excellent durability.
As to thermosetting coatings which have hitherto been used, a melamine resin such as an alkyd melamine resin, an acrylic melamine resin or an epoxy melamine resin is used as a crosslinking agent. Accordingly, there cannot be solved a problem that a bad-smelling odor caused by the melamine resin remains.
On the other hand, acrylic melamine resins or alkyd melamine resins which have been generally used as a coating for automobiles are unsatisfactory in film properties such as weatherability, stain resistance, acid resistance and water repellency, so it has been required to improve the film properties.
An object of the present invention is to provide a thermosetting composition whose bad-smelling odor is reduced and which can give films with excellent film properties.
This and the other objects of the present invention will become apparent from the following description hereinafter. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a paper machine twin-wire former and a dewatering device to be used for paper layer forming therein.
2. Description of the Prior Art
In a twin-wire former as a paper layer forming device in a conventional paper machine, two wires each form a loop, stock is pinched there between, and as the stock is transferred, it is dewatered by various dewatering devices so that a fiber mat is gradually grown and a web is formed.
In FIG. 10, a construction of a typical twin-wire former is shown, and a paper layer forming device of the twin-wire former is described with reference to FIG. 10.
Stock 7 injected upwardly from a headbox 6 is pinched in a gap 5 of a wedge shape formed by two wires comprising a top wire 1 and a bottom wire 2 guided by a forming roll 4 and a breast roll 3, respectively. As the stock is transferred with the same velocity as the wires 1, 2, the gap 5 is narrowed, and as the stock if further transferred along an approximate curve R on a plurality of dewatering blades 9 arranged on a certain curvature R with intervals between one another on the side of the bottom wire 2, the stock is dewatered toward both sides by a dewatering pressure generated by the dewatering blades 9. A fiber mat is thus gradually grown and a web is formed.
Next, at a suction box 11 and a suction couch roll 12, dewatering by vacuum is performed. At the suction couch roll 12, the web 13 is transferred onto the bottom wire 2 and then is transferred to a next press part by a suction pick-up roll (not shown).
A water deflector 10 is disposed within a wire loop of the top wire 1, so that white water which accompanies the top wire 1 is discharged outside the system therefrom.
Further, in the construction of the twin-wire former shown in FIG. 10, as a countermeasure to meet various problems accompanying the dewatering being done on both sides at the same time, the employment of dewatering limiting shoes (dewatering limiting blades) of the Japanese laid-open patent application No. Hei 2(1990)-133689 as shown in FIG. 11 and a combination of dewatering limiting shoes (dewatering limiting blades) and dewatering shoes (dewatering blades) of the Japanese laid-open patent application No. Hei 4(1992)-194093 as shown in FIG. 12 have been disclosed.
FIG. 13 shows another dewatering device used for paper layer forming in the twin-wire former shown in FIG. 10. That is, FIG. 10 shows an example wherein a dewatering device in which dewatering blades 9 are disposed within one wire loop, or a loop of the bottom wire 2, is mainly used, FIG. 11 shows an example wherein a dewatering device 39 incorporating dewatering limiting blades is provided within one wire loop 32, and FIG. 12 shows an example wherein dewatering limiting blades 59 are disposed within a loop of a first wire 51 and downstream thereof both-side dewatering blades 60 are disposed within a loop of a second wire 52.
In the arrangement of the respective dewatering device shown in FIGS. 10, 11 and 12, the dewatering pressure generated between the wires is decided by the curvature R on which the dewatering blades 9, 39, 59, 60 are mainly arranged, the intervals with which the dewatering blades 9, 39, 59, 60 are disposed, the tensile force of the top wire 1, 31, 51 or of the bottom wire 2, 32, 52, and the dewatering resistance of the fiber mat layer formed between the two wire. There is no function of adjusting the dewatering pressure from the outside during operation.
So, what is shown in FIG. 13 is a dewatering device having the function of adjusting dewatering pressure. Dewatering blades 21 can adjust the pressing force given to the wires from the outside during operation and are disposed opposite to the conventional dewatering blades 9 as shown in FIG. 10 via the bottom wire 2 and the top wire 1.
In a case where the conventional shape of the dewatering blade is used in a mutually opposing dewatering device, the fiber mat layers formed between the wires receive a reaction force via the wires when the wires bend or jerk at the front edge portion of the dewatering blade. The fibers between the fiber mat layers are further moved and dispersed by the force.
But at the same time short fibers (or fine fibers) lose binding with long fibers and there is a strong possibility that the short fibers are washed off together with the water that is to be dewatered by the pressure acting on the mat layers. The yield of the short fibers on the dewatering blade side tends to become worse.
For this reason, countermeasures are taken in which the bending of the wire is made smaller or is shared by the front and rear edge portions. But in this case the fiber dispersion ability of the dewatering blades is lowered and as a result there is a disadvantage that the formation becomes worse.
Further, as the dewatering is done toward both sides, there is a large problem in that the short fibers of the central portion in the thickness direction of the paper layer move toward the outer layer portion, becoming fewer in the middle layer portion. Thus the binding between fibers becomes weaker and the strength in the thickness direction is lowered.
In order to prevent the lowering of the strength in the thickness direction, a countermeasure is taken wherein the dewatering ratio toward both sides is changed by use of the dewatering limiting blades as shown in FIGS. 11 and 12. But there is still no adjusting means to correspond to changes in paper making conditions such as changes of fiber length in the stock, paper making velocity, and alterations of grammage (basis weight).
That is, in the device shown in FIG. 11, it is possible to prevent the washing-off of short fibers, but it is difficult to enhance the dewatering pressure. For this reason there is a disadvantage in that the fiber dispersion ability within the mat layers is not enhanced. Further, in the device shown in FIG. 12, a paper in which a difference in nature between front and rear faces is small can be made by a construction in which both-side dewatering blades are disposed downstream of the dewatering limiting blades disposed immediately downstream of the stock being supplied. Reversely short fibers within the mat layers move to both sides, and there is a disadvantage in that the inner binding strength is lowered. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an apparatus for analyzing the dielectric properties of a sample by the use of parallel plate electrodes or single surface interdigitated pectinate electrodes.
It is well known that by measuring the dielectric properties of a sample as a function of temperature, valuable information can be gained concerning the physical and chemical properties of the sample. For many years such measurements have been made by placing a sample between parallel plate electrodes, applying an electrical signal to one of the electrodes (i.e. the excitation electrode) and measuring the electrical signal from the other electrode (i.e. the response electrode). The following equation is used:
C=e.sub.o e'A/d
where
C=Capacitance PA1 e.sub.o =Permittivity of Free Space (a constant) PA1 e'=Permittivity of Sample (being measured) PA1 A=Area of Parallel Plate Response Electrode PA1 d=Distance Between the Excitation and Response Electrode Plates
By measuring capacitance, the permittivity of the sample (e') can easily be calculated if the area of the parallel plate electrode and the distance between the excitation and response electrodes are known. However, a common dilemma when making these measurements is obtaining an accurate measurement of distance between the plates. This is because most measurements are made as a function of temperature, and the sample changes in dimension as the experiment progresses. However, despite this fact, prior parallel plate dielectric analyzers have usually assumed the distance between the electrodes to be the thickness of the sample at room temperature. Thus, as the material expands or contracts as a function of temperature, the measured values are in error by the factor: ##EQU1## In some instances this error is compensated by allowing for the coefficient of thermal expansion (CTE) of the material (assuming it is known with some accuracy). But this is not an accurate correction since the CTE changes as a material goes through its glass transition. The CTE also assumes zero force on the sample which is not practical when making dielectric measurements on solid samples.
All known instruments either apply a constant force to a sample initially and run the experiment in that mode (constant force), or set a plate spacing and let it remain constant during an experiment (constant distance). In the constant force mode, at elevated temperatures, when the sample melts, the two plates come together, short circuit, and the experiment is prematurely terminated. In the constant distance mode, if the sample melts, contact with the top plate is lost, and once again the experiment is prematurely terminated.
Another significant practical problem with conventional parallel plate dielectric analyzers arises because current analyzers use either steel or gold plated metallic plates. After a sample has passed its glass transition T.sub.G (point of interest), it begins to flow, and as it cools it can adhere to the highly-polished, precision-machined plates. Many times plates must be removed from the instrument to scrape samples off. The plates must then be reground to ensure parallelism for the next experiment. This can be a costly and time-consuming operation. One popular alternative is to use a thin release film (i.e. Teflon.RTM., a fluorocarbon polymer) to make sample removal easier. This film, however, influences the measurement of the dielectric properties and limits the experimental temperature to a temperature less than the melting point of the Teflon.RTM. release film. (Ceramic sensors with a gold conductor are used in single plate dielectric analyzers. See; Micromet product literature in the Information Disclosure Statement--Option S-60 dual function ceramic sensor for use in Micromet Eumetric System II microdielectrometer).
Accurate measurements of sample temperatures are also important since dielectric measurements are normally monitored as a function of temperature. In parallel plate dielectric analysis, typically a thermocouple is placed as close to the edge of the sample and plate as possible without contact, and the sample temperature is assumed to be that of the thermocouple (melting a sample on the thermocouple would require extensive clean up or disposal of the thermocouple after the experiment). Obviously, this temperature measurement is not as accurate as measuring the temperature of the sample directly. (In single plate dielectric analyzers it is known to incorporate a thermal diode in the electrode. See; Micromet product literature in the Information Disclosure Statement--Option S-1 integrated circuit dielectric sensor for use in the Micromet Eumetric System II microdielectrometer).
A parallel plate dielectric analyzer is needed which can vary the spacing between the electrodes as the sample expands, contracts, or melts in order to keep the electrodes in constant contact with the sample. As the electrode spacing is varied, the analyzer must also be able to sense the distance between them so that the dielectric calculations are accurate regardless of electrode spacing. A dielectric analyzer is needed which has electrodes which are easily replaced if their surfaces become marred. A dielectric analyzer is also needed which will give accurate temperature measurements of the sample.
Dielectric analysis using parallel plate electrodes is a powerful technique, however, it is primarily used to characterize the bulk properties of a material, in that the excitation signal is monitored through the entire thickness of the material. This constraint results in some critical limitations. Often times thick samples are of interest to be analyzed. In the parallel plate technique, the signal to noise ratio decreases as a function of increasing distance between the electrode plates. Larger plates could be uitlized to increase the area thereby increasing the signal however there does exist a practical limitation. Many times the surface of a material is to be analyzed. In polymer molding, skin effects are of interest due to faster cooling of the material's surface than its interior. The chemical and mechanical properties of the surface of the material are more indicative of its end use properties than the bulk properties. Coatings on a material surface are also of interest in dielectric analysis. Paints, adhesives, and copolymers often require analysis. A parallel plate measurement would detect the properties of the coating and its associated substrate in a bulk fashion. It is impossible to analyze surface characteristics by parallel plate analysis.
An alternate technique was developed and is commonly known which addresses the limitations of the parallel plate measurement. An interdigitated combed electrode is commonly used for obtaining dielectric measurements on surfaces of materials and fluids. Probes of this type have been used for many years as moisture detection devices. U.S. Pat. No. 3,696,360 to Gajewski, discloses an interdigited electrode for moisture sensing. In the past few years these interdigitated probe structures were adapted to measure dielectric properties of materials. See, Society for the Advancement of Material and Process Engineering Journal, Volume 19, No. 4, July/August, 1983. U.S. Pat. Nos. 4,710,550 and 4,723,908 both to Kranbuehl also disclose the use of single surface interdigitated pectinate electrodes for measurement of dielectric properties of materials. Another form of a single surface interdigitated dielectric sensor is disclosed in copending U.S. patent application Ser. No. 07/274,461 assigned to the assignee of the present invention.
In the single surface analysis technique a sample is placed on the electrode surface, an alternating electric voltage is applied to one "finger" or comb of the interdigitated fingers or combs of the electrode array, thereby inducing a current which passes through the sample and is measured at the other finger of the array. These two fingers are termed excitation and response electrodes respectively. In this fashion, the field only penetrates the surface of the material. The penetration depth of the alternating fields is approximately equal to the distance separating the fingers in the interdigitated electrode array. This technique is ideal for monitoring the dielectric characteristics of surfaces of materials as well as fluids, curing systems, adhesives, and relatively low viscosity materials.
Many limitations also arise when performing single surface dielectric analysis of materials. Most experiments require samples to be urged into contact with the electrode array by applying a constant force. As previously mentioned, the applied alternating field penetrates into the sample a finite distance. If the means to apply force to the sample penetrates this field area, accurate measurements are compromised. As with parallel plate analysis, samples are typically tested as a function of temperature. An analagous problem arises using single surface electrodes as with parallel plate electrodes. In a constant force experiment, at elevated temperatures, the sample begins to flow and the force application means drives toward the electrode array, penetrating the field area inducing severe errors into the dielectric measurement. As the temperature further increases the means for applying force to the sample eventually displaces all of the sample and rests entirely on the surface of the electrode array thereby terminating the experiment.
Due to the diversity of the two measurement technniques separate instruments have been required for single surface and parallel plate dielectric measurements until now.
A dielectric analyzer is needed which can apply and vary a force to a sample on a single surface electrode sensor and sense the distance between the electrode surface and the means for applying the force.
A dielectric analyzer is also needed which can perform dielectric analysis in both parallel plate and single surface modes within a single instrument. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a heater control method and a heater control apparatus for controlling energization of a heater which is used to activate a detection element of a gas sensor.
2. Description of the Related Art
Conventionally, a gas sensor has been known which includes a detection element including at least one cell composed of a solid electrolyte body and a pair of electrodes and which detects the concentration of a specific gas (e.g., oxygen). The detection element becomes active when its temperature rises, whereby an electromotive force is generated between the pair of electrodes in accordance with a difference in oxygen concentration between two atmospheres separated by the solid electrolyte body. The detection element is heated by the heat of exhaust gas discharged from an internal combustion engine. In addition, in order to activate the detection element quickly, a heater is provided in the gas sensor. A power supply voltage is applied to the heater. However, if the power supply voltage is too high, the temperature rise per unit time becomes large, and an excessive load (mechanical stress) acts on the detection element. As a result, the detection element may crack or suffer from other damage.
An apparatus has been known which overcomes such a drawback by energizing the heater using PWM control (where “PWM” is an abbreviation for “pulse width modulation”) (refer to, for example, Patent Document 1). In the case where an effective voltage applied or more particularly, cumulative power input to the heater is controlled by means of PWM control, a temperature rise curve representing a rise in the temperature of the heater per unit time can be brought closer to a desired temperature rise curve. Thus, a required rate of temperature rise of the heater can be achieved efficiently while reducing the load on the detection element.
[Patent Document 1] Japanese Patent Application Laid-Open (kokai) No. H9-127035. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to an optical unit that receives illumination light and emits projection light reflected from a digital micromirror device, and relates also to a projector provided with such an optical unit.
2. Description of the Related Art
A projector incorporating a conventional optical unit is disclosed in Patent Document 1 identified below. This projector includes a light source, an optical unit, a plurality of digital micromirror devices, and a projection lens. The optical unit includes a total reflection light separation prism and a cross dichroic prism. From the projection side (emergence side) toward the digital micromirror devices, the total reflection light separation prism and the cross dichroic prism are arranged in this order.
The digital micromirror device is a reflective image display element in a rectangular shape as seen in a plan view, and has an image display surface composed of a plurality of minute micromirrors. The digital micromirror device forms an image by producing projection light through intensity modulation on illumination light through ON/OFF control of the inclination of the faces of the micromirrors. Each micromirror pivots about a pivot axis of the digital micromirror device so that it has different angles of inclination in an ON state and in an OFF state.
The total reflection light separation prism is composed of two prisms; one prism has an emergence face, and the other prism has an entrance face and a total reflection face as well as a protruding portion that protrudes toward the emergence face in the emergence direction. Part of the total reflection face is provided in the protruding portion, and white illumination light that has entered the total reflection light separation prism via the entrance face is totally reflected toward the cross dichroic prism. The emergence face is disposed to face the projection lens, and the projection light produce by the digital micromirror devices is emitted toward the projection lens.
The cross dichroic prism has two mutually perpendicular dichroic coat faces; it separates the white illumination light totally reflected from the total reflection face in the total reflection light separation prism into a red, a green, and a blue component, and directs these to the digital micromirror devices respectively. The cross dichroic prism also integrates together red, green, and blue ON-light (projection light) reflected from micromirrors in the ON state in the digital micromirror devices, and emits the color-integrated ON-light toward the total reflection light separation prism. The most emergence face-side face of the cross dichroic prism is parallel to the emergence face, and is perpendicular to the optical axis of the color-integrated ON-light.
In the projector structured as descried above, the white illumination light emitted from the light source and entered the total reflection light separation prism is totally reflected on the total reflection face in it, and then exits from the total reflection light separation prism to enter the cross dichroic prism. The illumination light entered the cross dichroic prism undergoes color separation, so that the red, green, and blue components of the illumination light are emitted to the different digital micromirror devices respectively.
The red, green, and blue ON-light reflected from micromirrors in the ON state in the digital micromirror devices enters the cross dichroic prism to undergo color integration, and is emitted toward the total reflection light separation prism. The color-integrated ON-light passes through the total reflection face in the total reflection light separation prism, and then exits via the emergence face, so that it then passes through the projection lens. Thus, a color image is projected.
Patent Document 1: Japanese Patent Application published as No. 2007-25287 (pages 5 and 6; FIGS. 1 and 3).
In projectors, it is common to move the projection lens in the up-down or left-right direction to change the projection position of the projected image. That is, in projectors, it is common to shift the projection lens up and down or left and rightward. Inconveniently, in the conventional optical unit described above, the total reflection light separation prism has a protruding portion that protrudes in the emergence direction, and the projection lens is disposed to the side of the protruding portion, near it. Thus, the movement of the projection lens in the left-right direction is restricted, and the left-right shift amount of the projection lens (that is, the distance over which it can move left and rightward) is reduced. In a case where the protruding portion of the total reflection light separation prism is disposed under the projection lens, near it, the movement of the projection lens in the up-down direction is restricted, and the up-down shift amount of the projection lens (that is, the distance over which it can move up and down) is reduced. This, disadvantageously, results in diminished usability of the optical unit and the projector.
On the other hand, by moving the protruding portion (total reflection face) of the total reflection light separation prism along the most emergence-side face of the cross dichroic prism in the direction away from the projection lens, it is possible to increase the left-right or up-down shift amount of the projection lens. Inconveniently, in this case, of all the rays of the illumination light traveling toward the total reflection light separation prism, some cross dichroic prism-side rays may not reach the entrance face. Such cross dichroic prism-side rays of the illumination light can be made to reach the entrance face by changing the angle of incidence of the illumination light with respect to the entrance face, but then part of the illumination light is not totally reflected on but transmitted through the total reflection face. This reduces the amount of illumination light that is totally reflected on the total reflection face in the total reflection light separation prism, and reduces the amount of illumination light that strikes the digital micromirror devices, disadvantageously resulting in a drop in the amount of projection light. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an image forming apparatus.
2. Description of the Related Art
In recent years, it is common for color image forming apparatuses to have a function of automatically controlling image density, since there is a demand for accurate color reproducibility and tone stability. In image density control, generally, a plurality of test toner images (patches) that have been formed on an image carrier (rotation member) while changing image creation conditions are detected using an image density detector arranged in the image forming apparatus, and an optimal image creation condition is determined based on the conversion results.
At this time, with regard to toner image detection, the reflectance on the surface of the image carrier is different depending on the position on the image carrier. Therefore, in order to accurately detect density, it is necessary to obtain output indicating toner presence/absence at the same position on the image carrier, and normalize the output indicating toner presence by the output indicating toner absence. On the other hand, the circumference of the image carrier changes due to variation in components, atmosphere/environment of the image forming apparatus, and the like, and errors will occur in specifying positions on the image carrier if the circumference is treated as a fixed value. In view of this, it is necessary to dynamically measure information with regard to the circumference of the image carrier.
Japanese Patent Laid-Open No. 10-288880 proposes a method for measuring the circumference of an image carrier in an image forming apparatus that adopts an intermediate transfer method by attaching a mark to the surface of an edge portion of an intermediate transfer member (rotation member), and receiving reflected light from the mark using an optical sensor.
However, the conventional technology has problems described below. For example, in the image forming apparatus that adopts an intermediate transfer method disclosed in Japanese Patent Laid-Open No. 10-288880, the intermediate transfer member needs to be rotated to the position at which the mark is set and further rotated one full rotation from that position. Specifically, this is because the mark may not necessarily be positioned very close to the optical sensor when circumference measurement is started. In a worst-case scenario, the intermediate transfer member may need to be rotated approximately two full rotations before the circumference can be detected. In image density control, if time is spent on circumference measurement, a period (so-called downtime) in which image formation cannot be executed also increases, which impairs usability. | {
"pile_set_name": "USPTO Backgrounds"
} |
A hydraulic feed system is a hydraulically powered apparatus that is used to linearly displace a rock drill along a feed rail. The hydraulic feed system may be mounted on a wheeled frame or vehicle for transport.
A recurring problem in the mining industry is the manoeuvrability of machinery inside the narrow drifts (underground road ways) inside mines. Not only are the drifts in mines typically very narrow, but they frequently have sharp corners, making it very hard to manoeuvre large machines. This is a serious problem with so-called “jumbos”, i.e. large wheeled hydraulic feed systems that have long feed rails. The feed rails must be long enough to accommodate a rock drill, drill string, hose drum and centralizers. A traditional jumbo feed composed of a single long rail is thus exceedingly difficult to manoeuvre inside the drifts. A need therefore exists for an effective solution to this technical problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
Casual turned-down shirt collars are meant to look relaxed. The collars have a weave that is not as tight as a dress turned-down shirt collar. Casual shirt collars do not have stiffeners, such as stays. A shirt with a casual turned-down collar is sometimes known as a golf shirt, or a sport shirt.
Although causal shirt collars are meant to look relaxed, they are not supposed to be untidy. Unfortunately, after being worn and washed a few times the shirt collar tends to curl away from the body of the shirt and the collar tends to lose its shape.
This problem can also be encountered in dress shirts. Numerous solutions have been used, including collar stays (built-in or removable), buttons, snaps and ironing/starch. None of these solutions is particularly well adapted to the relaxed weave, look and fit of a casual shirt.
The invention is meant to address these and other issues with casual turned-down shirt collars. | {
"pile_set_name": "USPTO Backgrounds"
} |
As integrated circuit fabrication technology improves, manufacturers are able to integrate additional functionality onto a single silicon substrate. As the number of the functions increases, so does the number of components on a single Integrated Circuit (IC) chip. Additional components add additional signal switching, in turn, generating more heat and/or consuming more power. The additional heat may damage components on the chip by, for example, thermal expansion. Also, the additional power consumption may limit usage locations and/or usage models for such devices, e.g., especially for devices that rely on battery power to function. Hence, efficient power management can have a direct impact on efficiency, longevity, as well as usage models for electronic devices.
Moreover, current parallel graphics data processing includes systems and methods developed to perform specific operations on graphics data such as, for example, linear interpolation, tessellation, rasterization, texture mapping, depth testing, etc. Traditionally, graphics processors used fixed function computational units to process graphics data; however, more recently, portions of graphics processors have been made programmable, enabling such processors to support a wider variety of operations for processing vertex and fragment data.
To further increase performance, graphics processors typically implement processing techniques such as pipelining that attempt to process, in parallel, as much graphics data as possible throughout the different parts of the graphics pipeline. Parallel graphics processors with single instruction, multiple thread (SIMT) architectures are designed to maximize the amount of parallel processing in the graphics pipeline. In an SIMT architecture, groups of parallel threads attempt to execute program instructions synchronously together as often as possible to increase processing efficiency. A general overview of software and hardware for SIMT architectures can be found in Shane Cook, CUDA Programming, Chapter 3, pages 37-51 (2013) and/or Nicholas Wilt, CUDA Handbook, A Comprehensive Guide to GPU Programming, Sections 2.6.2 to 3.1.2 (June 2013). | {
"pile_set_name": "USPTO Backgrounds"
} |
The World Wide Web (also known as the “Web”) and the web pages within the Web are a vast source of factual information. Users may look to web pages to get answers to factual questions, such as “what is the capital of Poland” or “what is the birth date of George Washington.” Web search engines, however, may be unhelpful to users in this regard, as they generally do not provide a simple, succinct answer to factual queries such as the ones described above. Rather, Web search engines provide a list of Web pages that are determined to match the query to the user, and the user has to sort through the matching Web pages to find the answer.
Attempts that have been made to build search engines that can provide quick answers to factual questions have their own shortcomings. For example, some search engines draw their facts from a single source, such as a particular encyclopedia. This limits the types of questions that these engines can answer. For instance, a search engine based on an encyclopedia is unlikely to be able to answer many questions concerning popular culture, such as questions about movies, songs or the like, and is also unlikely to be able to answer many questions about products, services, retail and wholesale businesses and so on. If the set of sources used by such a search engine were to be expanded, however, such expansion might introduce the possibility of multiple possible answers to a factual query, some of which might be contradictory or ambiguous. Furthermore, as the universe of sources expands, information may be drawn from untrustworthy sources or sources of unknown reliability. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to screw fasteners. More particularly, it refers to screw fasteners usable in a stacked configuration for seating in a sheet rock panel with an automatic power tool.
2. Description of the Prior Art
There are many types of sheet rock or drywall screws in use, including many that are seated with the assistance of inserts. One example is shown in U.S. Pat. No. 4,601,625 wherein an insert having exterior threads and a drilling blade is driven into sheet rock with hand power. A standard sheet rock screw is then driven into the insert. The blade of the insert is deflected off when the screw is driven through the threaded insert. This screw and method of attaching a material to drywall will not assist in attaching the drywall board to its supporting structure. Furthermore, each screw must be seated manually and separately after an insert is seated.
The art also includes screw members which form the bores into which they are inserted; the ends of such screw members must be heat treated which fact adds to the expense of such screw members.
A screw and method of mounting drywall is needed which will provide for rapid insertion of screws, thereby facilitating more rapid mounting of drywall to its supporting structure of wood or metal. | {
"pile_set_name": "USPTO Backgrounds"
} |
Internet protocol (“IP”) telephony and IP multimedia networks employ several protocols to setup and manage calls and sessions. One of the most widely adopted protocols for IP-based signaling is the Session Initiation Protocol (“SIP”). SIP is used, for example, for initiating new calls and sessions, manipulating call paths, and enabling the association of services with users regardless of their point of connection in the network. These are just a few areas of application of the SIP.
The increasing use of SIP has spurred development and introduction of numerous services with SIP interfaces for user and network access. This approach makes sense as the number of SIP-capable devices proliferates in IP networks. These devices have several features and mechanisms defined to employ existing telephony features in SIP.
One such feature is call-pickup. Call-pickup is a commonly used feature in today's deployed telephony solutions, especially in office environments. As an example, consider User A and User B being in a telephony conversation and User B wants to move to another location during the conversation. Suppose it is not possible to physically move the device being used by User B to the new location, and also that User B does not want to hang up the call and fully re-originate the call for any particular reason. User B may transfer the call to a device (or server) called a “park server” that temporarily holds (or “parks”) the call allowing User B's device to disconnect without releasing the call. User B may subsequently retrieve the parked call. Therefore, User B presses a button(s) on the device that parks the call at a park server. User B then moves to the new location and retrieves the parked call by calling User A. This process of call retrieval is referred to as call-pickup.
Unfortunately, however, existing SIP-based call-pickup solutions have several drawbacks. For example, one solution requires User B to re-originate the call at the new location by sending a call-pickup origination request to User A. Therefore, in this solution, although the call will be parked in a normal fashion for User A (e.g., similar to generally accepted call park functions), User B essentially hangs up and recalls User A to park and pickup the call. One problem with this technique is that this requires advanced feature handling in a handset device so that the handset at the new location has the capability of sending detailed call-pickup origination requests. Such a feature does not exist in most of the commercially available SIP devices. Therefore, using this solution would require upgrades of most handsets in the network.
In addition, in existing solutions when picking-up the call at the new location, User B simply re-originates a call with User A, so User B must know the SIP address of User A. This may not be known if User A is calling from a payphone and does not know the phone number of the payphone or if User A is an anonymous caller, for example. Another related problem is that User A must have the capability to receive multiple calls because for a limited duration, User A will be in two calls (i.e., the call with the park server, and the call from User B from the new location). Still another related problem is that User B may incur additional charges for re-originating a call with User A from the new location. The proposed solution further assumes that from the new location, User B will have calling privileges to call User A.
Furthermore, a major problem with the proposed solution is that service providers have no control over this call-park/call-pickup feature. The park server is provided for parking the call. However, the park server is not involved in the pickup process except for being asked to disconnect the parked call because User B picks up the call by re-originating a call with User A from the new location (e.g., User B simply calls User A again from the new location). The parked call (i.e., the communication session between User A and the park server) can be dropped due to any reason (e.g., User A getting impatient and hanging up). So it is difficult for the service provider to know whether a successful call-pickup occurred. This implies that the service provider will have difficulty charging for the call-pickup feature and may have no incentive to provide this service. Therefore, the currently proposed solution is unlikely to be deployed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a micropower instrument of high accuracy to perform ratiometric measurement of milli-ohm level resistances using milliamp-level current. The invention can be used for general environmental monitoring including, but not limited to, corrosion measurement, strain measurement and other monitoring uses that rely on ratiometric comparisons of a milli-ohm sense resistance to a milli-ohm reference resistance.
2. Background of the Invention
Corrosion can lead to failures in infrastructure, machines, and mission critical systems. Such failures are expensive to repair, can lead to lost or contaminated products, can cause environmental damage, and ultimately, can even cause unsafe environments or situations for humans. Decisions regarding the future integrity of a structure or its components depend substantially upon an accurate assessment of the conditions affecting its corrosion and rate of deterioration. Only with accurate information in hand, can an owner or operator make an informed decision as to the type, cost, and urgency of repair or replacement.
Corrosion monitoring is particularly important in areas that cannot be readily inspected visually or are difficult to inspect due to the inherent structural arrangement of a particular device, machine or structure. For example, there may be cavities within vehicles that are generally not accessible because of equipment or other structures that block an opening to the cavity. Nevertheless, corrosion monitoring of such spaces is desirable, and perhaps critical.
One well-known method of monitoring corrosion is the electrical resistance technique. This technique effectively measures material loss, i.e., corrosion, by measuring a change in electrical resistance of a metallic element, which is exposed to a selected environment, with respect to a reference element that is arranged to be immune from that environment""s corrosive effects. While this technique is very popular and has found wide acceptance, the technique requires the availability of electric power. In some cases, power for the electric resistance technique is obtained from a battery. However, since it is often desirable to monitor environments for relatively long periods of time, battery life becomes an issue for these instruments. Accordingly, there is need for a micropower instrument with greatly-improved battery life and accuracy.
The present invention provides a micropower instrument of high accuracy to perform ratiometric measurement of milli-ohm level resistances using milliamp-level current. The invention can be used for general environmental monitoring including, but not limited to, corrosion measurement, strain measurement and other monitoring uses that rely on ratiometric comparisons of a milli-ohm sense resistance to a milli-ohm reference resistance. The apparatus in accordance with the present invention is an analog measurement instrument that consumes an extremely low amount of power (thereby providing longer battery life), has high precision and accuracy, and, in a preferred embodiment, operates on and measures the resistance of a sacrificial electrical resistance coupon. The instrument is able to detect and monitor resistance in the mili ohm range.
In accordance with a corrosion detection implementation of the present invention, corrosion is measured by comparing the resistance of a corroding xe2x80x9ctest couponxe2x80x9d to a protected xe2x80x9creferencexe2x80x9d coupon that was identical or nearly so at the time of manufacture. The resistances of these coupons are very low, typically on the order of a few milliohms. Because low average power consumption is a desirable feature, high-current excitation of the coupons is not an option. On the other hand, low-current excitation results in signals of microvolt magnitude. The present invention was developed in view of the fact that available commercial instruments fail, by a wide margin, to meet low-power requirements for an environmental analysis detection system that is intended to be located or positioned in places that may generally be inaccessible, or that need to be xe2x80x9con-stationxe2x80x9d for long periods of time.
Features of the present invention include, but are not limited to:
the use of AC current to excite the coupons to avoid errors due to DC offset in amplifiers and thermoelectric potentials at various connection points;
the use of a 10:1 current step-up transformer in a drive circuit to gain a tenfold increase in power efficiency in driving the very low-impedance load (the coupons);
the use of very low-noise, low-offset, high-gain instrumentation operational amplifiers in a first signal-processing stage; and
the use of ratiometric measurement by current driving the reference and sensor coupons in series, sensing and signal-processing their responsive voltages, and taking the ratio of these voltages in subsequent digital signal processing.
The present invention can also be employed as a resistive straingage. More specifically, the present invention provides an instrument that can be used to monitor straingages or other resistances that are proportional to strain. The term xe2x80x9cstraingagexe2x80x9d commonly refers to a resistive element that changes resistance with strain. Resistive straingages are routinely used for measurements of strain in structural elements or members. Such straingages have relatively high resistance to aid in ease of instrumentation, but they are relatively delicate, fragile, and require considerable care and skill to affix. They are often configured or arranged as bridges to facilitate ratiometric measurement. The ability to measure very low resistances with a micropower instrument in accordance with the present invention makes it possible to observe strain in a metal structural member (as in a sheetmetal skin) by directly measuring changes in resistance between various points in the strained member itself, obviating the need for straingages.
The features and attendant advantages of the present invention will be more fully appreciated upon a reading of the following detailed description in conjunction with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Gas turbine engine designers continuously work to improve engine efficiency, to reduce operating costs of the engine, and to reduce specific exhaust gas emissions such as NOx, CO2, CO, unburnt hydrocarbons, and particulate matter. The specific fuel consumption (SFC) of an engine is inversely proportional to the overall thermal efficiency of the engine, thus, as the SFC decreases the fuel efficiency of the engine increases. Furthermore, specific exhaust gas emissions typically decrease as the engine becomes more efficient. The thermal efficiency of the engine is a function of component efficiencies, cycle pressure ratio and turbine inlet temperature. The present invention contemplates increased thermal efficiency for a gas turbine engine by improving turbine efficiency through a new aerodynamic design of an airfoil for a second stage turbine nozzle guide vane. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2002-246684, filed on Aug. 27, 2002, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an electronic flash device for use with a camera, in particular, to a control device for use with an electronic flash device. In addition, the present invention relates to a photographing system having an electronic flash device and a camera.
2. Description of the Related Art
A discrete flash and an FP flash are known as flash systems of electronic flash devices for use with cameras. The discrete flash system flashes immediately after a shutter curtain is fully opened. On the other hand, the FP flash system repeatedly flashes, during the entire slit exposure with a shutter curtain not fully opened, at time intervals as the flashes are recognizable as flat light. The flash duration of the FP flash is longer than that of the discrete flash. Thus, the FP flash consumes much power than the discrete flash. As a result, the maximum flash intensity (referred to as 1/1 flash) of the FP flash is smaller than that of the discrete flash.
Japanese Unexamined Patent Publication Application No. HEI 5-45706 discloses a photographing system that performs the FP flash. A camera and a flash device of the photographing system share information of an object distance, an f-number of a lens, an exposure time (shutter speed), a film sensitivity, and so forth. The flash device is capable of selecting a flash duration that covers the exposure time. In addition, the flash device calculates a proper object distance at which an object is illuminated with a proper light amount based on data on a flash intensity, an f-number, a film sensitivity, and so forth that depend on a selected flash duration and displays the obtained proper object distance.
Also known is an electronic flash device that automatically switches a flash mode between the discrete flash mode and the FP flash mode depending on the exposure time and that allows the user to select one of flash intensities on display such as 1/1 flash, 1/2 flash, . . . , and 1/64 flash. Such an electronic flash device calculates a proper object distance for display in accordance with a selected flash intensity and a photographing condition such as an f-number.
In the foregoing photographing system, when a displayed proper object distance is different from an actual object distance, the user needs to adjust the system to reduce the difference for the purpose of taking a picture with a proper exposure amount. Specifically, the user needs to move or change a photographing condition such as an f-number to have the actual object distance closer to the displayed proper object distance. Thus, there has been demand for a photographing device that is able to set an appropriate photographing condition with less user""s manipulation without changing the object distance.
In the foregoing electronic flash device, if the user does not want to change the object distance, he or she should select a flash intensity and then input several f-numbers until the displayed proper object distance is close to the actual object distance. For example, if the exposure time of the camera automatically increases because the luminance of an object has decreased, the flash mode is automatically switched from the FP flash mode to the discrete flash mode. In this case, even with the device in a photographing condition in which an object is illuminated with a proper exposure amount in the FP flash mode, the user should re-set an f-number in the discrete flash mode. Thus, the user should be familiar with the settings of both of the discrete flash mode and the FP flash mode. This is because even if the discrete flash and the FP flash are both the same 1/1 flash, the flash intensity of the discrete flash is different from that of the FP flash and the expression for obtaining the proper object distance in the discrete flash is different from that in the FP flash.
More specifically, the proper object distance in the discrete flash depends on the flash intensity, the f-number, and the film sensitivity. On the other hand, the proper object distance with the FP flash depends on the exposure time in addition to these parameters. In other words, obtaining a proper photographing condition in the FP flash is more complicated than that in the discrete flash because the FP flash requires one more parameters than the discrete flash. Meanwhile, there has been another demand for an electronic flash device that the user can easily set a photographing condition for setting a proper exposure amount in the same manner regardless of a type of flash mode.
An object of the present invention is to provide a flash control device that automatically sets a photographing condition for setting a proper exposure amount and eliminates the necessity for the user to change an object distance as much as possible.
Another object of the present invention is to provide a flash control device that properly switches the flash mode between the discrete flash mode and the FP flash mode and sets a photographing condition for setting a proper exposure amount, thereby eliminating the user""s trouble in caring about the setting of the flash mode.
Another object of the present invention is to provide an electronic flash device that has the foregoing flash control device.
Another object of the present invention is to provide a photographing system that has the foregoing electronic flash device.
The present invention is a flash control device for use with an electronic flash device which has switchable flash modes as a discrete flash mode for a discrete flash and an FP flash mode for an FP flash. The flash control device comprises: a distance input part for inputting an object distance; a calculating part; and an emission control part. When the electronic flash device is in the FP flash mode, the calculating part calculates a proper flash intensity in accordance with the object distance and an f-number, a sensitivity, and an exposure time of a camera. The proper flash intensity refers to a degree of intensity necessary for illuminating an object with a proper light amount. When the electronic flash device is in the discrete flash mode, the calculating part calculates the proper flash intensity in accordance with the object distance, the f-number, and the sensitivity. The emission control part instructs the electronic flash device to flash with the proper flash intensity. The flash control device controls the flashing so that the object is illuminated with a proper exposure amount. Thus, the flash control device according to the present invention may realize an effect that even beginner-level users who are not familiar with flash settings as the discrete flash, the FP-flash, and so forth can easily set a flash intensity for setting a proper exposure amount.
According to one of the aspects of the flash control device of the present invention, when the electronic flash device is in the discrete flash mode, the calculating part calculates the proper flash intensity which is proportional to the square of the object distance and the square of the f-number and is inversely proportional to the sensitivity. When the electronic flash device is in the FP flash mode, the calculating part calculates the proper flash intensity which is proportional to the square of the object distance and the square of the f-number and is inversely proportional to the sensitivity and the exposure time.
According to another aspect of the flash control device of the present invention, when the exposure time is shorter than an X-Sync shutter speed of a shutter of the camera, the emission control part switches the flash mode of the electronic flash device to the FP flash mode. When the flash mode is switched, the calculating part calculates a new proper flash intensity without changing the object distance.
According to another aspect of the flash control device of the present invention, the calculating part determines whether or not the proper flash intensity is within a range in which the electronic flash device is emittable. When the proper flash intensity falls outside the emittable range, the calculating part calculates a modified value of at least one of the object distance, the f-number, the sensitivity, and the exposure time so as to correct the proper flash intensity to be a value in the emittable range. Modified values of the four items may be referred to as a recommended object distance, a recommended sensitivity, a recommended f-number, and a recommended exposure time, respectively.
According to another aspect of the flash control device of the present invention, when the electronic flash device is in the FP flash mode, the calculating part determines whether or not the proper flash intensity is larger than the maximum flash intensity of the FP flash. When determining that the proper flash intensity is larger than the maximum flash intensity, the calculating part instructs the camera to increase the f-number and lengthen the exposure time to a value longer than an X-Sync shutter speed of a shutter of the camera, and the emission control part switches the flash mode of the electronic flash device to the discrete flash mode. Thus, the flash control device according to the present invention may realize an effect that it is able to automatically set a suitable flash mode in which an object is illuminated with a proper exposure amount, thereby eliminating the user""s trouble in keep in mind the setting of the flash mode as the discrete flash mode or the FP flash mode.
According to another aspect of the flash control device of the present invention, when the electronic flash device is in the discrete flash mode, the calculating part determines whether or not the proper flash intensity is larger than the maximum flash intensity of the discrete flash. When determining that the proper flash intensity is larger than the maximum flash intensity, the calculating part instructs the camera to perform at least one of an operation for decreasing the exposure time and the f-number and an operation for increasing the sensitivity. Accordingly, the flash control device of the present invention may realize an effect that it can automatically set a proper photographing condition even with the proper flash intensity falling outside the emittable range, thereby eliminating the user""s trouble in changing the object distance.
According to another aspect of the flash control device of the present invention, when the electronic flash device is in the discrete flash mode, the calculating part determines whether or not the proper flash intensity is smaller than the minimum flash intensity of the discrete flash. When the determined result is affirmative, the emission control part switches the flash mode of the electronic flash device to the FP flash mode. Thus, the flash control device according to the present invention may realize an effect that it is able to select a suitable flash mode for setting a proper exposure amount, thereby eliminating the user""s trouble in keeping in mind the setting of the flash mode as the discrete flash mode or the FP flash mode.
According to another aspect of the flash control device of the present invention, when the electronic flash device is in the FP flash mode, the calculating part determines whether or not the proper flash intensity is smaller than the minimum flash intensity of the FP flash. When the determined result is affirmative, the calculating part instructs the camera to decrease the sensitivity. Thus, the flash control device of the present invention may realize an effect that it is able to set a proper photographing condition even with the proper flash intensity falling outside the emittable range, thereby eliminating the user""s trouble in changing the object distance.
According to another aspect of the flash control device of the present invention, the calculating part has an acquiring part for acquiring, as a measured distance, a distance between the object and the camera measured by the camera. The function of the acquiring part corresponds to, for example, that of the calculating part which is acquiring the measured distance from a CPU of the camera. The flash control device has a warning part for issuing a warning when the calculating part determines that the measured distance is largely different from the object distance. As an example of issuing the warning, a display part may be added thereto in order to display values of the measured distance and the object distance on the screen with blinking. Accordingly, the flash control device of the present invention may realize an effect that with user""s erroneous object distance input, it can notify him or her of the error, thereby preventing him or her from taking a picture with an exposure amount that is outside the proper range. More preferably, it may be configured that without the object distance input, the calculating part calculates the proper flash intensity according to the measured distance instead of the object distance.
According to another aspect of the flash control device of the present invention, the calculating part determines whether or not the proper flash intensity is larger than the maximum flash intensity of the electronic flash device. When the determined result is affirmative, the calculating part calculates, as a recommended object distance, the object distance which allows the proper flash intensity to be a value closest to the maximum flash intensity of the electronic flash device. The calculating part also determines whether or not the proper flash intensity is smaller than the minimum flash intensity of the electronic flash device. When the determined result is affirmative, the calculating part calculates, as the recommended object distance, the object distance which allows the proper flash intensity to be a value closest to the minimum flash intensity of the electronic flash device. The flash control device further comprises a notifying part for notifying the user of the recommended object distance. To notify the user of the recommended object distance, a display part may be disposed so as to display a value of the recommended object distance on the screen with blinking (in this case, the function of the notifying part corresponds to that of the display part that displays the value of the recommended object distance with blinking). Thus, the flash control device of the present invention may realize an effect that the user is able to know how long the object distance should be altered in order to set a proper flash intensity for setting a proper exposure amount without changing other photographing conditions. In other words, the user can shoot an object with a proper exposure amount by only changing the object distance to the recommended object distance.
According to another aspect of the flash control device of the present invention, the calculating part determines whether or not the proper flash intensity is within a range in which the electronic flash device is emittable. When the maximum flash intensity of the electronic flash device has become smaller than the proper flash intensity due to a variance in at least one of the f-number, the exposure time, and an illuminating angle of a light-emitting part of the electronic flash device, the calculating part calculates, as a recommended object distance, the object distance which allows the proper flash intensity to be a value closest to the maximum flash intensity of the electronic flash device. When the minimum flash intensity of the electronic flash device has become larger than the proper flash intensity due to a variance in at least one of the f-number, the exposure time, and the illuminating angle, the calculating part calculates as the recommended object distance the object distance which allows the proper flash intensity to be a value closest to the minimum flash intensity of the electronic flash device. The flash control device further comprises a notifying part for notifying the user of the recommended object distance.
According to another aspect of the flash control device of the present invention, the calculating part determines whether or not the proper flash intensity is within a range in which the electronic flash device is emittable. The flash control device further comprises a warning part for issuing a warning when the proper flash intensity falls outside the emittable range of the electronic flash device because at least one of the f-number, the exposure time, and an illuminating angle of a light-emitting part of the electronic flash device. More preferably, it may be configured that the calculating part calculates, as a recommended object distance, an object distance which allows a proper flash intensity to be within an emittable range. The flash control device may comprise a display part for displaying the recommended object distance with blinking (in this case, the function of the warning part corresponds to that of the display part which is to display the recommended object distance with blinking).
An electronic flash device of the present invention comprises a flash control device and a light-emitting part. The electronic flash device has switchable flash modes as a discrete flash mode and an FP flash mode. The flash control device comprises a distance input part for inputting an object distance, a calculating part, and an emission control part. When the electronic flash device is in the FP flash mode, the calculating part calculates a proper flash intensity in accordance with the object distance and an f-number, a sensitivity, and an exposure time of a camera. The proper flash intensity refers to a degree of intensity necessary for illuminating an object with a proper light amount. When the electronic flash device is in the discrete flash mode, the calculating part calculates the proper flash intensity in accordance with the object distance, the f-number, and the sensitivity. The emission control part instructs the electronic flash device to flash with the proper flash intensity. The flash control device performs flash control so as to illuminate the object with a proper exposure amount. Thus, the electronic flash device according to the present invention may realize an effect that even beginner-level users who are not familiar with the settings of the flash modes as the discrete flash mode or FP flash mode can easily set a proper flash intensity for setting a proper exposure amount.
A photographing system of the present invention has an electronic flash device that has a flash control device and a light-emitting part and that has switchable flash modes of the discrete flash mode and the FP flash mode, and a camera having an image pickup part that picks up an image of an object. The image pickup part comprises, for example, a lens, an aperture, a shutter, and an image pickup device. The flash control device comprises a distance input part for inputting an object distance, a calculating part, and an emission control part. When the electronic flash device is in the FP flash mode, the calculating part calculates a proper flash intensity according to the object distance and an f-number, a sensitivity, and an exposure time of a camera. The proper flash intensity refers to a degree of intensity necessary for illuminating an object with a proper light amount. When the electronic flash device is in the discrete flash mode, the calculating part calculates the proper flash intensity according to the object distance, the f-number, and the sensitivity. The emission control part instructs the electronic flash device to flash with the proper flash intensity. The flash control device performs flash control so as to illuminate the object with a proper exposure amount. Thus, the photographic system of the present invention may realize an effect that even beginner-level users who are not familiar with the settings of the flash modes as the discrete flash mode or FP flash mode can easily set a proper flash intensity for setting a proper exposure amount. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to novel neem bark extracts. The neem bark extracts according to the invention possess antimitotic activity in sea urchin eggs and activity against mouse L-5178Y cells and transplanted sarcoma 180 tumors.
As a result of extensive studies on pharmacological actions of constituents contained in the neem materials, it has now been found that consecutive treatments of the neem bark with two solvents of different dielectric constants result in the constituents possessing the antineoplastic activity mentioned above.
It is therefore the object of the present invention to provide neem bark extracts which are active against mouse L-5178Y cells and transplanted sarcoma 180 tumors.
2. Description of the Prior Art
It is heretofore known that neem extracts contain various pharmacologically active constituents. In fact, there are disclosed a method of producing cosmetics for the skin from the bark, leaves, flowers, fruits, branch, root epidermis or resin of neem by extracting the same with water or a hydrophilic solvent or by finely pulverizing the same (Japanese Patent Publication Nos. 28853/77, 28854/77 and 10125/78); a method of preparing from such neem materials the constituents possessing gastrointestinal and hepatic function-improving activities by extracting the same with a hydrophilic solvent and/or hot water (Japanese Patent Publication No. 10124/78); and a method of preparing from such neem materials the constituents that are effective for the therapy of dermatological and rheumatic diseases by extracting the same with a hydrophobic solvent (Japanese Patent Publication No. 13689/78). These methods are distinct from the present invention in that there are involved in order to produce the active constituents no pretreatment but direct extraction process only. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to analysis of information items and in particular to systems and methods for interactively analyzing communication chains between parties from electronic records.
With the proliferation of computing devices and communication networks such as the Internet, an ever increasing amount of information is exchanged in electronic forms such as e-mails (electronic mail messages), instant messages (IMs), electronic document memos, etc. Electronic communication forms generally provide simple and easy to use, yet powerful, mechanisms for communication of information. To take just one example, the use of e-mail provides a number of advantages over traditional communication techniques such as phone and fax-based communications, including cheaper cost, reduced delivery time, ability to handle multiple document formats, and archival capabilities.
E-mails are usually stored in databases including mail specific databases such as Microsoft Exchange or Lotus Notes. Given the critical nature of corporate data, e-mails are usually backed up regularly on to backup media. The fact that e-mails can be and are archived coupled with the fact that users tend to be more direct and forthright about information in e-mails make them excellent candidates for analysis for legal purposes.
While the potential dangers of discovery of “harmful” e-mails have caused some companies to introduce policies to destroy old e-mails and backups, most companies still maintain backups of old e-mails for at least some period of time (usually for a few years). Further, government regulations (e.g., Sarbanes-Oxley at the federal level) require may companies to maintain such e-mail backups for an extended period of time (e.g., several years).
At present, other types of electronic communications are less likely to be archived; however, companies are beginning to archive more types of communications, particularly for regulatory compliance purposes. For example, many companies have begun to archive IMs and/or voice mail messages. Companies are also adopting electronic forms of more traditional types of communications, such as internal memoranda and letters, which are often circulated in file formats such as PDF, Microsoft Word, or the like, and documents in these formats often are archived. With the growth of electronic calendar systems, teleconferencing, video conferencing, and Web conferencing, electronic records of when meetings occurred and who was in attendance may also become increasingly available in the future.
When a company is involved in a lawsuit, counsel on both sides typically search the company's records for evidence of activity that might prove liability or exculpate the company. Even in the absence of a lawsuit, corporate counsel might want to examine communication records for evidence of a crimes or other activities for which the company might be held liable or to satisfy reporting requirements as to the lack of such activity. Typically in such situations, e-mail archives and document archives are searched for particular keywords, senders and receivers, and the search results are manually reviewed by a human. For example, the lawyers involved in a lawsuit might look for critical documents and/or e-mails, then try to trace the path of the documents and/or e-mails through the system to establish when critical pieces of information became known to certain people within the company. Commonly asked questions related to communications include: Who within the company knew about a certain piece of information? When did the person know it? Who conveyed the information to the person? Through what channel? Did others receive this communication? To whom did the person convey or forward the information?
To try to help answer such questions, a number of existing search systems allow a user to extract and search e-mails. For example, some e-mail systems provide an administrator console that allows an authorized user to search a database of stored or archived e-mails by date, sender, receiver, and keywords. Some systems of this type do not have the capability to search attachments to the e-mails, where important information is often to be found. Other systems improve on the administrator console by extracting the e-mails and attachments to another repository and indexing the content there, enabling an authorized user to search both e-mail and attachments at the same time. Using systems of this kind, a user can identify all e-mails having particular keywords but must then manually review the e-mails in order to determine how information propagated through the organization, that is, to identify communication chains. Further complicating the problem is that communication chains may be direct links (e.g., an e-mail sent by user A to user B) or indirect (e.g., an e-mail sent by user A to user C, who then forwards it to user B) chains involving one or more intermediaries. A direct link can be established from a single message, but finding indirect chains generally requires correlating multiple messages.
To facilitate detection of indirect communication chains, some e-mail search systems also allow e-mails to be grouped into threads of presumptively related messages. These systems typically group messages into threads based on the subject headers and/or related-message headers that are included in most e-mail messages. For instance “Re:” and “Fw:” or similar prefixes are commonly added to subject headers to identify e-mails that reply to or forward a previous e-mail. An e-mail with a particular subject line and other e-mails whose subject lines differ only by the addition of “Re:” or “Fw:” can be grouped into a thread and organized, e.g., by time sent or time received. Related-message headers use message identifiers (e.g., serial numbers or other codes) assigned to each message, or in some systems to threads of replies and/or forwards, to identify one or more messages to which they relate. Changing the subject line when forwarding or replying to a message may defeat thread detection based on subject lines but generally does not defeat thread detection based on related-message headers.
Either of these systems, however, can be defeated (intentionally or unintentionally) if an e-mail recipient conveys the information further by some mechanism other than replying to or forwarding the received message. For instance, an e-mail recipient might compose a new e-mail message with a new subject line or pass on the information through a different channel, such as IM or voicemail. The new message will not be related to the old message in any way that a thread-based e-mail grouping system can detect. Consequently, a user who wants to reconstruct a communication chain will need to do so manually. Since message recipients often propagate received information in diverse ways, the ability of existing thread-based systems to identify communication chains is significantly compromised.
It would therefore be desirable to provide systems and methods for determining communication chains in a wider range of situations than existing systems support. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method of producing a taxane-type diterpene including taxol which is useful as a therapeutic agent for ovarian cancer, mammary cancer, lung cancer and the like.
2. Description of the Prior Art
Taxol, which is useful as a therapeutic agent for ovarian cancer, mammary cancer, lung cancer and the like, is a taxane-type diterpene identified after being isolated from Taxus brevifolia NUTT, which is a plant belonging to genus Taxus, family Taxaceae and has a complex ester group which is related to the above-mentioned pharmacological activity. Taxol can be found in all the parts of the plant body of Taxus brevifolia NUTT, but the bark has been reported to exceed all others in its content of the taxol. At present, taxol is collected from a natural or a cultivated plant body, however, the plant belonging to genus Taxus grows slowly, and it takes more than 10 years to grow to a height of 20 cm above the ground, besides the tree dies after its bark is taken off, thus it has not been easy to obtain a large amount of taxol. It would be advantageous if a taxane-type diterpene such as taxol and/or baccatin III which is a precursor of taxol, can be synthesized by the use of tissue culture, since a large amount of taxol can be easily obtained without cutting down the trees.
As a conventional method of producing taxol by utilizing cultured plant cells, a US patent was issued on a production method utilizing cultured cells of Taxus brevifolia NUTT (U.S. Pat. No. 5,019,504), however, the amount of taxol production described therein is 1-3 mg/l, and that is insufficient for the industrial production. Besides, the production of taxol by the cell culture utilizing the conventional tissue culture technique is unstable and even when a primary cell of high productivity can be obtained by selection, it is difficult to keep its content by subculturing [E. R. M. Wickremesine et al., World Congress on Cell and Tissue Culture (1992)].
On the other hand, as a prior art in the taxol production, a semisynthetic method from baccatin III, which is a precursor in biosynthesis of taxol, is disclosed in the specification of U.S. Pat. No. 5,015,744 issued to Holton et al. By the use of the plant tissue culture, a raw material for the semisynthetic process such as baccatin III can be produced, thus the plant tissue culture can be also utilized for taxol production by the above-mentioned semisynthetic process.
The object of the present invention is to provide a simple method of producing a taxane-type diterpene by plant tissue culture.
As a result of the intensive study, the present inventors found that the productivity of the taxane-type diterpene in the cultures can be improved by carrying out the culture of a cultured cell or a cultured tissue of a plant which produces the taxane-type diterpene, in the presence of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, cyclic polysaccharides, fatty acids or an imino or amino derivative of jasmonic acids, and completed the present invention.
Accordingly the present invention is a method of producing a taxane-type diterpene wherein a cell and/or a tissue of a plant which produces a taxane-type diterpene is cultured in the presence of at least one substance selected from the group consisting of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacterium, cyclic polysaccharides, fatty acids, and a compound represented by the general formula (X):
[wherein,
Y is hydrogen atom, hydroxyl group, cyano group, NR28aR28b (wherein R28a and R28b independently represent hydrogen atom, carbamoyl group, acyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or alkylsulfonyl group having 1 to 12 carbon atoms), OR29 (wherein R29 is acyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent),xe2x80x94COxe2x80x94R30 (wherein R30 represents hydrogen atom, amino group, alkylamino group having 1 to 12 carbon atoms), alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent, aminosulfonyl group or alkylsulfinyl group having 1 to 12 carbon atoms;
R1a, R1b, R1c, R1d, R1e and R1f independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent; R20, R21, R22, R23 and R24 independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent;
a side chain consisting of C1xe2x80x94C2xe2x80x94C3xe2x80x94C4xe2x80x94C5xe2x80x94C6 may contain one or more double bonds;
R25 represents hydroxyl group, OM (wherein M is alkaline metal atom, alkaline earth metal atom or NH4), NR26aR26b (wherein R26a and R26b independently represent hydrogen atom, acyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or amino acid residue), OR27 (wherein R27 represents alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or carbohydrate residue), alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent;
n is an integer of 1-7;
and in the above-mentioned five-membered ring, a double bond may be formed between the neighboring member carbon atoms],
or represented by the general formula (XI):
[wherein,
R1a, R1b, R1c, R1d, R1e, R1f and R1g independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent; R20, R21, R22, R23 and R24 independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent;
a side chain consisting of C1xe2x80x94C2xe2x80x94C3xe2x80x94C4xe2x80x94C5xe2x80x94C6 may contain one or more double bonds;
R25 represents hydroxyl group, OM (wherein M represents alkaline metal atom, alkaline earth metal atom or NH4), NR26aR26b (wherein R26a and R26b independently represent hydrogen atom, acyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or amino acid residue), OR27 (wherein R27 represents alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or carbohydrate residue), alkyl group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group or arylalkyl group having a substituent;
n is an integer of 1-7;
R31a and R31b independently represent hydrogen atom, hydroxyl group, acyl group having 1 to 12 carbon atoms, alkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, aryl group, aryl group having a substituent, arylalkyl group, arylalkyl group having a substituent or amino acid residue;
and in the above-mentioned five-membered ring, a double bond may be formed between the neighboring member carbon atoms], then the taxane-type diterpene is recovered from the resulting cultures.
The taxane-type diterpene, which is an object of the method of the present invention, is not particularly limited to any diterpene as far as it has a taxane skeleton, and the illustrative examples include taxol, 10-deacetyltaxol, 7-epitaxol, baccatin III, 10-deacetylbaccatin III, 7-epibaccatin III, cephalomannine, 10-deacetylcephalomannine, 7-epicephalomannine, baccatin VI, taxane 1a, xylosylcephalomannine, xylosyltaxol, taxol C, 10-deacetyltaxol C, taxicin I, taxicin II, taxine I, taxine II, taxagifine and the like.
Examples of the plant to be used in the present invention which produces the taxane-type diterpene are those belonging to genus Taxus, such as Taxus baccata LINN, Taxus cuspidata SIEB. et ZUCC, Taxus cuspidata SIEB. et ZUCC var. nana REHDER, Taxus brevifolia NUTT, Taxus canadensis MARSH, Taxus chinensis, and Taxus media. Among these plants, Taxus baccata LINN and Taxus media are particularly preferable.
The tissue culture of the said plant is carried out by a conventionally known process except that the culture is carried out in the presence of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacterium, cyclic polysaccharides, fatty acids, or a compound represented by the above-mentioned general formulae (X) or (XI) according to the present invention.
Coronatines to be used in the present invention have been found as chlorosis inducing substance produced by Pseudomonas bacterium, and they have activities to induce necrosis of a plant, promotion of ethylene generation or aging of a plant. They also have an activity to promote the thickening growth of the tuber of potato, just like jasmonic acid.
As bacterium which produces coronatines, Pseudomonas bacteria and Xanthomonas bacteria have been known. Illustrative examples of Pseudomonas bacteria include P. syringae (IFO 3310), P. glycinea, P. tabaci (IFO 3508, IFO 14081), P. aptata (IFO 12655), P. coronafaciens, P. phaseolicola (IFO 12656, IFO 14078), P. mori (IFO 14053, IFO 14054, IFO 14055), P. helianthi (IFO 14077) and the like. Illustrative examples of Xanthomonas bacteria include X. campestris (IFO 13303, IFO 13551), X. citri, X. cucurbitae (IFO 13552), X. phaseoli (IFO 13553, IFO 13554), X. pruni (IFO 3780, IFO 13557) and the like.
Examples of coronatines include a compound represented by the general formula (I):
or general formula (II):
[wherein, R1 represents hydroxyl group, OR2 (wherein R2 represents alkyl group having 1 to 6 carbon atoms or carbohydrate residue), OM1 (wherein M1 represents alkaline metal atom, alkaline earth metal atom or NH4), or NR3aR3b (wherein R3a and R3b represent independently hydrogen atom, acyl group having 1 to 6 carbon atoms, alkyl group having 1 to 6 carbon atoms, amino acid residue, or a group represented by the general formula (III):
(wherein R4 represents hydrogen atom, hydroxyl group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms or a group represented by the following formula:
xe2x80x94COxe2x80x94R7
(wherein
R7 represents hydroxyl group, OM2 (wherein M2 represents alkaline metal atom, alkaline earth metal atom or NH4), NR8aR8b (wherein R8a and R8b independently represent hydrogen atom, acyl group having 1 to 6 carbon atoms, alkyl group having 1 to 6 carbon atoms or amino acid residue), or OR9 (wherein R9 represents alkyl group having 1 to 6 carbon atoms or carbohydrate residue));
R5a, R5b, R6a and R6b independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 6 carbon atoms, or alkoxy group having 1 to 6 carbon atoms);
R10a, R10b, R11a, R11b, R12, R13, R14a, R14b, R15a, R15b, R16a, R16b, R17 and R19 independently represent hydrogen atom, hydroxyl group, alkyl group having 1 to 6 carbon atoms, or alkoxy group having 1 to 6 carbon atoms;
R18 represents hydrogen atom, alkyl group having 1 to 6 carbon atoms, or carbohydrate residue;
a double bond may be formed between the neighboring member carbon atoms in the five-membered ring or six-membered ring in the formula].
In the above-mentioned general formulae (I), (II) and (III), illustrative examples of alkyl group having 1 to 6 carbon atoms represented by R2, R3a, R3b, R4, R5a, R5b, R6a, R6b, R8a, R8b, R9, R10a, R10b, R11a, R11b, R12, R13, R14a, R14b, R15a, R15b, R16a, R16b, R17, R18 or R19 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, neopentyl, t-pentyl, n-hexyl and isohexyl groups.
In the above-mentioned general formulae (I), (II) and (III), examples of alkoxy group having 1 to 6 carbon atoms represented by R4, R5a, R5b, R6a, R6b, R10a, R10b, R11a, R11b, R12, R13, R14a, R14b, R15a, R15b, R16a, R16b, R17 or R19 include, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentyloxy, neopentyloxy, t-pentyloxy, n-hexyloxy and isohexyloxy groups.
When R1 or R7 is OM1 or OM2, examples of the alkaline metal atom or alkaline earth metal atom represented by M1 or M2 include sodium, potassium and calcium.
When R1 or R7 is NR3aR3b or NR8aR8b, the acyl group having 1 to 6 carbon atoms represented by R3a, R3b, R8a or R8b may have either a straight chain or a branched chain, and their examples include formyl, acetyl, propionyl, butyryl, valeryl, hexanoyl and acryloyl groups.
When R1 or R7 is NR3aR3b or NR8aR8b, examples of the amino acid residue represented by R3a, R3b, R8a or R8b include isoleucyl, valyl, glutamyl and lysyl groups.
When R1 or R7 is OR2 or OR9, an example of the carbohydrate residue represented by R2 or R9 is glucopyranosyl group.
An example of the carbohydrate residue in the above-mentioned general formula (II) represented by R18 includes glucopyranosyl group.
Preferable examples of the coronatines include coronatine (formula IV) and coronafacic acid (formula V).
Coronatine, which is a compound wherein coronafacic acid and 2-ethyl-1-aminocyclopropane-1-carboxylic acid are linked by amide bond, has the highest activity among those compounds represented by formula (I).
Coronatines to be used in the present invention have various stereoisomers (cis-trans isomers and optical isomers), and each isomer can be used alone or in the form of a mixture.
For adding coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria to the culture medium, the concentration of the coronatines in the culture medium is normally required to be 0.001-1000 xcexcM, and it is particularly preferable, according to the present invention, to control the concentration of the coronatines to be in the range of 0.01 to 100 xcexcM.
By cultivating the cells and/or tissues of the above-mentioned plant by utilizing a culture medium which contains one or more substances selected from the group consisting of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, according to the present invention, cultured cells and/or cultured tissues having higher taxane-type diterpene productivity can be obtained compared to the case wherein the substance was not added.
It has been reported that biosynthetic system involved in some secondary metabolism is activated by adding coronatines to plant cell cultures [W. Weiler et al., FEBS Letters 345:1 (1994)], however, there have been no reports on carrying out tissue culture of a plant producing a taxane-type diterpene in the presence of coronatines as a medium additive, and it has been beyond all expectations that the amount of the produced taxane-type diterpene was increased thereby.
A process to increase the productivity of taxane-type diterpene wherein a microorganism or a microorganism culture extract is used as elicitor for cultured cells of a plant belonging to genus Taxus is described in International Publication WO 93/17121 and U.S. Pat. No. 5019504. Though it is specified as elicitor in those publications, the degree of its effect is not given clearly. Besides there is no description regarding the bacteria belonging to genus Pseudomonas or genus Xanthomonas, which are the bacteria producing coronatines to be used in the present invention. Accordingly, it has been beyond all expectations that the amount of the produced taxane-type diterpene was increased by culturing cells of a plant belonging to genus Taxus in the presence of a bacterium which produces coronatines, or a culture solution or a culture extract of such bacteria.
The propagation of a bacetrium which produces coronatines is carried out with a propagation medium for general bacillus or a minimal medium.
An illustrative example of a culture solution of a bacterium which produces coronatines to be used in the present invention includes a culture solution treated by aseptic filtration after it is used for cultivating the bacteria.
Illustrative examples of a culture extract of a bacterium which produces coronatines to be used in the present invention include a culture solution which was autoclaved at 120xc2x0 C. for 15 minutes after the bacteria had been cultured therein, or an extract of the culture solution of those bacteria which was extracted with an organic solvent such as ethyl acetate under acid conditions, which was optionally further refined with Sephadex LH 20 column and the like to give a partially refined fraction containing coronatine or coronafacic acid.
It is effective to add the coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacterium, when the cultured cells are in the exponential growth phase through the stationary phase, and it is particularly preferable for the method of the present invention to add them in a transitional period from the exponential growth phase to the stationary phase. For example, when cells are transplanted in every 21 days, the 7th-16th day is the suitable time for addition of the coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacterium. As for the addition, a predetermined amount of the substance can be added at a time, or they can be successively added in a plurality of parts.
An illustrative example of a cyclic polysaccharide to be used in the present invention includes cyclodextrin, cyclofructan and derivatives thereof.
The cyclic polysaccharide having a cavity inside due to its circular structure, the opening of the cavity and the exterior side showing hydrophilic property, and the interior side of the ring showing hydrophobic property, has clathrate activity to take an oil substance in the cavity. By utilizing this property, it has many uses such as changing a substance which is scarcely soluble in water to a water soluble substance, stabilizing an unstable substance, retaining a volatile substance such as a perfume, and controlling a peculiar odor. Commercially, it has been used for such food as freeze-dried tea, or ham and sausages for controlling the peculiar odor.
Cyclodextrin is a substance in which 6 to 8 glucose units are connected in the form of a donut, and is synthesized from starch by the function of cyclodextrin synthesizing enzyme which is produced by such special microorganism as Bacillus macerans. The cyclofructan is a substance in which 6 to 8 fructose units are connected in the form of a donut, and is synthesized from inulin by the function of cyclofructan synthesizing enzyme which is produced by such special microorganism as Bacillus circulans.
Examples of cyclodextrin and a derivative thereof, which are objects of the present invention, include xcex1-cyclodextrin, xcex2cyclodextrin, xcex3-cyclodextrin, or a branched dextrin thereof and a partially methylated dextrin thereof, and all of these can be utilized. Examples of the branched cyclodextrin include glycosyl-xcex1-cyclodextrin, maltosyl-xcex1-cyclodextrin, maltotriosyl-xcex1-cyclodextrin, glycosyl-xcex2-cyclodextrin, glycosyl-xcex3-cyclodextrin, galactosyl-xcex1-cyclodextrin and the like, wherein a saccharide is bonded to the ring as a branch. As cyclofructan or a derivative thereof, a compound in which 6 to 8 fructose units are bonded by xcex22-1 fructoside bonds, a branched cyclofructan thereof, and partially methylated cyclofructan thereof can be utilized.
The concentration of the above-mentioned cyclic polysaccharides in a culture medium is preferably 0.01-50 mM, and it is more preferable, according to the present invention, to control the concentration of the cyclic polysaccharides to be in the range of 0.1 to 30 mM.
By carrying out the tissue culture of the cells and/or tissues of the above-mentioned plant by utilizing a culture medium to which cyclic polysaccharides are added according to the present invention, cultured cells or cultured tissues having higher taxane-type diterpene productivity can be obtained compared to the case wherein the substance was not added.
There have been no reports on carrying out tissue culture of a taxane-type diterpene producing plant in the presence of cyclic polysaccharides as a medium additive, and it has been beyond all expectations that the secretion of the taxane-type diterpene into the medium was promoted thereby, and the amount of the produced taxane-type diterpene was increased.
Particularly when the cyclic polysaccharide and other productivity improving substance (elicitor) are used together, the effect is heightened. Examples of such productivity improving substance include not only coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, fatty acids or a compound represented by the general formula (X) or general formula (XI) of the present invention, but also below-mentioned jasmonic acids, alkyl esters thereof, heavy metals, amines and antiethylene agents described in Japanese Patent Application No. 6-252528. It is also particularly effective to combine the use of the cyclic polysaccharides with the cultivation under the atmosphere of a low oxygen concentration described in Japanese Patent Application No. 6-146826.
Examples of fatty acids to be used in the present invention include a synthesized or natural fatty acid wherein the number of the carbon atoms in the main chain is 10-22, among them, the fatty acids having an even number of carbon atoms in its main chain are particularly preferable. These fatty acids can be saturated fatty acids or unsaturated fatty acids having one or more double bonds in its carbon chain. One or more hydrogen atoms bonded to the carbon chain may be substituted by hydrocarbon group having 1 to 6 carbon atoms, hydroxyl group, or amino group. The double bond to be contained in the above-mentioned unsaturated fatty acid can be either cis-form, trans-form or their mixture, however, a fatty acid containing the cis-form double bond is preferable.
Illustrative examples of the above-mentioned fatty acid include straight chain fatty acids such as capric acid, decenoic acid, lauric acid, dodecenoic acid, myristic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, linolic acid, a-linolenic acid, y-linolenic acid, tetraoctadecenoic acid, arachic acid, arachidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, behenic acid, and docosahexaenoic acid, hydroxy fatty acids such as ricinoleic acid, and branched fatty acids such as 14-methylpalmitic acid. Among these, oleic acid, linolic acid, linolenic acid and arachidonic acid are preferable, but particularly preferable is xcex1-linolenic acid.
Among the substituents, examples of a hydrocarbon group having 1 to 6 carbon atoms include methyl, ethyl, propyl, cyclopropyl, butyl, isobutyl, pentyl and hexyl groups.
Among the substituents, examples of amino groups include amino, monomethylamino, and dimethylamino groups.
Fatty acids to be added to the culture medium may be a fatty acid derivative represented by the following general formula (XII):
R32xe2x80x94COR33xe2x80x83xe2x80x83(XII)
[wherein
R32xe2x80x94CO represents an atomic group derived from the above-mentioned fatty acid;
R33 represents OR34 (wherein R34 represents an alkyl group having 1 to 6 carbon atoms, or a carbohydrate residue), OM (wherein M represents alkaline metal atom, alkaline earth metal atom or NH4), or NR35aR35b (wherein R35a and R35b independently represent hydrogen atom, alkyl group having 1 to 6 carbon atoms, or amino acid residue)].
In the above-mentioned general formula (XII), examples of alkyl group having 1 to 6 carbon atoms represented by R34, R35a and R35b include, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, and isohexyl groups.
When R33 is OM, examples of the alkaline metal atom or alkaline earth metal atom represented by M include, sodium, potassium and calcium.
When R33 is NR35aR35b, examples of the amino acid residue represented by R35a or R35b include glycyl, leucyl, glutamyl, lysyl, phenylalanyl, isoleucyl, tyrosyl, and tryptophyl groups.
When R33 is OR34, an example of the carbohydrate residue represented by R34 is glucopyranosyl group.
Fatty acids and/or a derivative thereof to be used in the present invention are preferably added to the culture medium to give the concentration of 0.01-1000 xcexcM, and it is particularly preferable to control the concentration to be in the range of 0.1 to 500 xcexcM from the view point of the effectiveness in improving the productivity of the taxane-type diterpene (when two or more kinds of fatty acids and/or derivatives are used in combination, the range of the concentration shown above represents the total concentration.)
According to the present invention, a natural oil containing a fatty acid or an enzymatic hydrolysate thereof can be used as well. Examples of a natural oil include vegetable oils such as rapeseed oil, soybean oil, linseed oil and safflower oil, and examples of the enzymatic hydrolysate include those of the above-mentioned vegetable oils decomposed by lipase. The concentration of the above-mentioned natural oil or the enzymatic hydrolysate thereof in the culture medium is preferably in the range of 1 to 1000 mg/l.
In addition to adding the fatty acids from outside of the system, it is also possible to add a lipid decomposing enzyme to the culture medium to partially hydrolyze the lipid such as glycerolipid constituting the said tissue and/or cell, so that the fatty acid is liberated into the medium. Examples of the lipid decomposing enzyme include lipase, phospholipase A1, phospholipase A2 and phospholipase B, and phospholipase A1, phospholipase A2 and phospholipase B having an optimal pH in an acid region are particularly preferable. According to the present invention, the preferable concentration of the above-mentioned enzyme to be added to the culture medium is 0.1-100 milligrams per liter of culture medium.
According to the present invention, the fatty acid, derivative thereof, natural oil, and lipid decomposing enzyme which satisfy the above-mentioned conditions can be used alone, or they can be combined randomly and used together.
These fatty acids or a derivative thereof, natural oil or lipid decomposing enzyme can be added to the culture medium from the initial stage of the cultivation or during the cultivation. It can be added altogether at any time during the cultivation, or they can be added in a plurality of parts.
Illustrative process of adding the above-mentioned fatty acids and natural oils to the culture medium include a process in which they are dissolved in an organic solvent such as ethanol and added, a process in which they are added together with a surfactant such as octyl-xcex2-glucoside, or a process in which they are directly added to the culture medium followed by micelle formation which is carried out by supersonic wave treatment and the like. It is also possible that they are added directly to the medium and cultivation is carried out under the oil-water separated conditions.
Imino or amino derivatives of jasmonic acids to be used in the present invention are the compounds of the general formula (X) or (XI) respectively.
In the above-mentioned general formulae (X) or (XI), examples of the alkyl group having 1 to 12 carbon atoms represented by R1a, R1b, R1c, R1d, R1e, R1f, R1g, R20, R21, R22, R23, R24, R25, R28a, R28b, R29, R26a, R26b, R27, R31a, R31b or Y include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and dodecyl groups. The alkyl group having 3 or more carbon atoms includes a cyclic alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups.
In the above-mentioned general formulae (X) or (XI), examples of the alkoxy group having 1 to 12 carbon atoms represented by R1a, R1b, R1c, R1d, R1e, R1f, R1g, R31a or R31b include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy and dodecyloxy groups. The alkoxy group having three or more carbon atoms includes an alkoxy group containing a cyclic alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups.
In the above-mentioned general formulae (X) or (XI), the acyl group having 1 to 12 carbon atoms represented by R28a, R28b, R26a, R26b, R29, R31a or R31b may have either a straight chain or a branched chain, or it can be an aromatic atomic group, and illustrative examples thereof include formyl, acetyl, propionyl, butyryl, valeryl, hexanoyl, acryloyl, capryloyl, pelargonyl, benzoyl, toluoyl, salicyloyl and cinnamoyl groups.
In the above-mentioned general formulae (X) or (XI), examples of the aryl group or aryl group having a substituent represented by R1a, R1b, R1c, R1d, R1e, R1f, R1g, R20, R21, R22, R23, R24, R25, R28a, R28b, R29, R28b, R29, R26a, R26b, R27, R27, R31a, R31a, R31b or Y include phenyl, p-methoxyphenyl, p-chlorophenyl, p-fluorophenyl and naphthyl groups.
In the above-mentioned general formulae (X) or (XI), examples of the arylalkyl group or arylalkyl group having a substituent represented by R1a, R1b, R1, R1d, R1e, R1f, R1g, R20, R21, R22, R23, R24, R25, R28a, R28b, R29, R26a, R26b, R27, R31a, R31b or Y include benzyl, p-methoxybenzyl, p-chlorobenzyl, and p-fluorobenzyl groups.
In the above-mentioned general formulae (X) or (XI), when R25 is OM, examples of the alkaline metal atom or alkaline earth metal atom represented by M include sodium, potassium and calcium.
In the above-mentioned general formula (X), examples of the alkylsulfonyl group having 1 to 12 carbon atoms represented by R28a or R28b include methylsulfonyl, ethylsulfonyl, n-propylsulfonyl and isopropylsulfonyl groups.
In the above-mentioned general formula (X), when R29 is xe2x80x94CORxe2x80x94R30, examples of the alkylamino group having 1 to 12 carbon atoms represented by R30 include methylamino, ethylamino, n-propylamino and isopropylamino groups.
In the above-mentioned general formula (X), examples of the alkylsulfinyl group having 1 to 12 carbon atoms represented by R28a or R28b include methylsulfinyl, ethylsulfinyl, n-propylsulfinyl and isopropylsulfinyl groups.
In the above-mentioned general formulae (X) or (XI), when R25 is NR26aR26b, examples of the amino acid residue represented by R26a or R26b and examples of the amino acid residue represented by R31a or R31b in the general formula (XI) include isoleucyl, tyrosyl and tryptophyl groups.
In the above-mentioned general formulae (X) or (XI), when R25 is OR27, an example of the carbohydrate residue represented by R27 is glucopyranosyl group.
In the compounds represented by the general formulae (X) or (XI), a double bond may be formed between the neighboring member carbon atoms in the five-membered ring.
Illustrative examples of the compound represented by the general formula (X) include those shown as follows;
(Compound A)
Y: xe2x80x94OH
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25: xe2x80x94OCH3
n: 1
(Compound B)
Y: xe2x80x94OCH3
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n: 1
(Compound C)
Y: xe2x80x94NH2
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n: 1
(Compound D)
Y: xe2x80x94NHCONH2
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n: 1
(Compound E)
Y:xe2x80x94NHCHO
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n=1
(Compound F)
Y:xe2x80x94NHSO2CH3
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n=1
(Compound G)
Y:xe2x80x94CN
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n=1
(Compound H)
Y:xe2x80x94SO2NH2
R1a, R1b, R1c, R1d, R1e, R1f, R20, R21, R22, R23, R24: H
A double bond is formed between C3 and C4.
R25:xe2x80x94OCH3
n=1
An illustrative example of the compound represented by the general formula (XI) is shown as follows;
(Compound I)
R1a, R1b, R1c, R1d, R1e, R1f, R1g, R20, R21, R22, R23, R24, R31a: H
R31b: OH
A double bond is formed between C3 and C4.
R25: xe2x80x94OCH3
n:1
Compounds to be used in the present invention which are represented by the general formula (X) or (XI) have various stereoisomers, and each isomer can be used alone or the isomers can be used in the form of their mixture. Among the side chains of Compounds A to H, the isopentenyl group and the methoxycarbonylmethyl group are preferably in the cis-configuration.
The compound represented by the general formulae (X) or (XI) can be easily prepared by a process such as addition reaction of jasmonic acids with an ammonia derivative (for example, see xe2x80x9cNew Experimental Chemistry Course No.14, Synthesis and Reaction of Organic Compounds [III]xe2x80x9d edited by The Chemical Society of Japan).
Illustrative examples of the ammonia derivative include hydroxylamine, phenylhydrazine, semicarbazide, O-methylhydroxylamine, O-ethylhydroxylamine, formic hydrazide, methanesulfonyl hydrazide and the like, or a salt thereof. When a salt is used, if necessary, a basic reagent can be liberated from the salt by adding sodium acetate or potassium acetate in the presence of a carbonyl derivative (jasmonic acids).
In the addition reaction, a basic nitrogen compound nucleophilically attacks the carbon in the carbonyl group, and it is preferable for the reaction solution to be controlled to have appropriate acidity.
The imino derivative of jasmonic acids obtained in such a way is further reacted with a complex hydrogen compound such as lithium aluminium hydride, sodium cyanoborohydride and sodium borohydride or a reducing agent such as borane to give an amino derivative of jasmonic acids.
The concentration of the compound represented by the general formulae (X) or (XI) in a culture medium is preferably 0.001-1000 xcexcM, and it is more preferable to control the concentration to be in the range of 0.1 to 500 xcexcM.
Promotion of the production of a specific secondary metabolite by addition of jasmonic acids to plant cell cultures is described in DE 4122208 however, there have been no reports on the production of the taxane-type diterpene. The present inventors have already found that the amount of the produced taxane-type diterpene in the resulting cultures can be increased by addition of jasmonic acids [Japanese Patent Application No. 6-104211, Japanese Patent Application No. 6-104212, Japanese Patent Application No. 7-47580], however, it has been beyond all expectations that imino or amino derivative of Jasmonic acids according to the present invention has higher production promoting effect than that of Jasmonic acids.
It is most effective to add the compound represented by the general formulae (X) or (XI) when the cultured cells are in the exponential growth phase or in the stationary phase, and it is particularly preferable for the method of the present invention to add the compound in a transitional period from the exponential growth phase to the stationary phase. For example, when cells are transplanted in every 21 days, the 7th-14th day is the suitable time for addition of the compound. The addition can be done at a time, or in a plurality of parts.
When a two-step culture is carried out by using a compound represented by the general formulae (X) or (XI), it is also possible that the cells are proliferated in a medium which is free from the compound, in the first culture step and the compound is added in the second culture step. The cells to be inoculated to the second culture step are preferably in the exponential growth phase or in the stationary phase.
According to the present invention, a cell or a tissue is cultured in a culture medium containing at least one substance selected from the group consisting of the above-mentioned coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, cyclic polysaccharides, fatty acids, and a compound represented by the general formulae (X) or (XI), then the taxane-type diterpene is recovered from the resulting cultures including cultured tissue, cultured cells and culture medium.
Examples of the medium to be used in the present invention include those known media which have been conventionally used for the plant tissue culture, such as medium of Murashige and Skoog (1962), medium of linsmaier Skoog (1965), Woody Plant Medium (1981), Gamborg""s B-5 medium and Mitsui""s M-9 medium.
A phytohormone, and if necessary a carbon source, an inorganic component, vitamins, amino acids and the like may be added as well to these media.
As the phytohormone, for example, auxins such as indoleacetic acid (IAA), naphthalenacetic acid (NAA), and 2,4-dichlorophenoxy acetic acid (2,4-D), and cytokinins such as kinetin, zeatin and dihydrozeatin can be used.
As the carbon source, a disaccharide such as sucrose, maltose and lactose, a monosaccharide such as glucose, fructose and galactose, starch or a mixture of two or more kinds of such sugar sources mixed at an appropriate ratio can be utilized.
Illustrative examples of the inorganic component include phosphorus, nitrogen, potassium, calcium, magnesium, sulfur, iron, manganese, zinc, boron, copper, molybdenum, chlorine, sodium, iodine and cobalt, and these components can be added in the form of such a compound as potassium nitrate, sodium nitrate, calcium nitrate, potassium chloride, potassium monohydrogenphosphate, potassium dihydrogenphosphate, calcium chloride, magnesium sulfate, sodium sulfate, ferrous sulfate, ferric sulfate, manganese sulfate, zinc sulfate, boric acid, copper sulfate, sodium molybdate, molybdenum trioxide, potassium iodide, cobalt chloride and the like.
Illustrative examples of the vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol and nicotinic acid.
As the amino acids, for example, glycine, phenylalanine, leucine, glutamine, cysteine and the like can be added.
Generally, the phytohormones in a concentration of about 0.01-about 10 xcexcM, the carbon source in a concentration of about 1-about 30 g/l, the inorganic component in a concentration of about 0.1 xcexc-about 100 mM, and the vitamins and the amino acids respectively in a concentration of about 0.1-about 100 mg/l are used.
According to the present invention, both a liquid medium and such a solid medium that contains agar and gelan gum normally in an amount of 0.1-1% can be used, however, usually a liquid medium is preferable.
A piece of a tissue or a cell of a root, a growing point, a leaf, a stem, a seed, a pollen, an anther and a calyx and the like of the said plant, or cultured cells which are obtained by the tissue culture thereof with the above-mentioned medium or other conventional medium can be used for the tissue culture of the present invention.
The present invention can also be applied to neoplastic cell and/or hairy-root, obtained by infecting the plant tissue with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
By carrying out the tissue culture of these tissues or cells in the presence of at least one substance selected from the group consisting of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, cyclic polysaccharides, fatty acids, and a compound represented by the general formulae (X) or (XI), according to the present invention, cultured tissues or cultured cells having higher taxane-type diterpene productivity can be obtained compared to the case wherein the compound was not added, or no treatment was given.
Taxane-type diterpene can be separated from the cultures such as cultured tissues, cultured cells and culture medium, which are obtained according to the above-mentioned process, by extraction with an organic solvent such as methanol and dichloromethane. It is also possible to recover the taxane-type diterpene continuously by allowing an appropriate adsorbing agent or an organic solvent coexist in the culture medium.
One preferable example of the tissue culture according to the present invention can be illustrated as follows.
A piece of a plant body of a plant belonging to genus Taxus, such as a root, a growing point, a leaf, a stem, a seed and the like is sterilized and placed on Woody Plant Medium solidified with gelan gum, and kept at 10-35xc2x0 C. for about 14-60 days so that a part of the tissue piece is changed to callus. By subculturing the callus thus obtained, the growing speed is gradually increased and stabilized callus can be obtained. By the stabilized callus, we refer to a callus which remains in callus state during cultivation without showing differentiation into a shoot or a root and the cells of which have uniform growing speed.
Such stabilized callus is inoculated to a liquid medium, suited for the proliferation, such as liquid Woody Plant Medium and proliferated. The growing speed is further increased in the liquid medium. According to the present invention, the stabilized callus or the cells constituting the above-mentioned callus are grown in a solid medium or a liquid medium containing at least one substance selected from the group consisting of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, cyclic polysaccharides, fatty acids, and a compound represented by the general formulae (X) or (XI).
The culture temperature for the tissue culture according to the present invention is usually about 10-about 35xc2x0 C., and preferably it is about 23-about 28xc2x0 C. due to the high growing speed. As for the culture period, 14-42 days are preferable.
When a liquid medium is used for the culture according to the present invention, the cultured cells can be separated from the culture medium after the cultivation is completed, by such a method as decantation or filtration and the desired taxane-type diterpene can be separated from the cultured cells and/or the culture medium by such a method as extraction with an organic solvent.
The method of the present invention can be used together with a culture method to be carried out in the presence of jasmonic acids, which is disclosed as taxane-type compound production promoting substance in Japanese Patent Application No.7-47580, No. 6-104211, No. 6-104212, and No. 6-104213, to heighten the effect of the present invention.
Illustrative examples of jasmonic acids include jasmonic acid, a salt thereof, an alkyl ester thereof, cucurbic acid, a salt thereof, an alkyl ester thereof, tuberonic acid, a salt thereof and an alkyl ester thereof.
Among these, particularly preferable compounds can be exemplified by jasmonic acid, methyl jasmonate, tuberonic acid, methyl tuberonate, and cucurbic acid or methyl cucurbate from the view point of their high effectiveness in improving the productivity.
Jasmonic acids which can be used in the present invention include all the stereoisomers and the mixtures thereof.
The concentration of the jasmonic acids in a culture medium is 0.01-1000 xcexcM, and it is particularly preferable to control the concentration of the jasmonic acids to be in the range of 0.1 to 500 xcexcM.
It is effective to add jasmonic acids when the cultured cells are in the exponential growth phase or in the stationary phase, and it is particularly preferable to add jasmonic acids in a transitional period from the exponential growth phase to the stationary phase. The same can be said of the timing of the treatment for increasing the amount of the endogenous jasmonic acids to be produced. For example, when cells are transplanted in every 21 days, the 7th-16th day is the suitable time for addition of the jasmonic acids or the treatment to increase the amount of the endogenous jasmonic acids to be produced. The addition of the jasmonic acids or the treatment to increase the amount of the endogenous jasmonic acid to be produced can be done at a time, or in a plurality of parts.
Furthermore, the present invention can be used together with the method disclosed in Japanese Patent Application No.6-146826 wherein the culture is carried out by controlling the oxygen concentration in a gas phase in an culture vessel to less than the oxygen concentration in the atmosphere, from the initial stage of the culture, or by controlling the dissolved oxygen concentration in a fluid medium which is in contact with the tissue or the cell to less than the saturated dissolved oxygen concentration at that temperature from the initial stage of the culture.
Here, by the initial stage of the culture, we refer to from the time when the culture was started through the 7th day after the start of the culture, and the controlling of the oxygen concentration in the gas phase in the culture vessel or the controlling of the dissolved oxygen concentration in the fluid medium which is in contact with the tissue or the cell is preferably done from the beginning of the culture. The controlling period is not particularly limited, and the controlling under the said conditions can be done in the entire culture period, or only in a part of the entire culture period, however, it is preferable to carry out the control at least for 3 days during the entire culture period.
The oxygen concentration in the gas phase in the culture vessel is required to be controlled to 4-15%, and it is particularly preferable to control it to 6-12%. The dissolved oxygen concentration in the fluid medium is required to be controlled to 1-75% of the saturated dissolved oxygen concentration at that temperature and it is particularly preferable to control it to 10-75%.
The present invention can be also used together with the method disclosed in Japanese Patent Laid-Open Publication No.7-135967, Japanese Patent Application No.6-104213, wherein the cells are separated into a plurality of layers according to the difference in their specific gravities, and the cells contained in at least one layer are cultured.
The present invention can be also used together with the method disclosed in Japanese Patent Application No.6-201150, wherein the culture is carried out in the presence of at least one substance selected from the group consisting of compounds containing a heavy metal, complex ions containing a heavy metal and heavy metal ions.
As for the heavy metals, use of a copper group metal represented by silver or an iron group metal represented by cobalt is preferable. It is preferably used in the form of a compound containing the said heavy metal, a complex ion containing the said heavy metal or in the form of the said metal ion. Particularly preferable is silver thiosulfate ion. The concentration of the heavy metal is preferably 10xe2x88x928 M-10xe2x88x922 M.
The present invention can be also used together with the method disclosed in Japanese Patent Application No.6-201151, wherein the culture is carried out in the presence of amines.
It is preferable to use at least one kind of amine selected from the group consisting of polyamines such as putrescine, spermidine, spermin, ethylene diamine, N,N-diethyl-1,3-propane diamine, diethylene triamine and a salt thereof. The concentration of the amine is preferably 10xe2x88x928 M-10xe2x88x921 M.
It is also possible to combine the method of the present invention with two or more methods disclosed in the above-mentioned prior patents.
According to the present invention, a large amount of the taxane-type diterpene can be easily obtained by the tissue culture of a plant which produces the taxane-type diterpene using a tissue culture medium containing at least one kind of substance selected from the group consisting of coronatines, a bacterium which produces the coronatines, a culture solution or a culture extract of such bacteria, cyclic polysaccharides, fatty acids or an imino or amino derivative of jasmonic acids. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Embodiments of the present invention relate generally to object-oriented databases (OODBs). More specifically, embodiments relate to memory management methods and systems in such databases.
2. Description of Related Art
In the information age, databases are a precious commodity, storing immense quantities of data for use in various applications. Latency, or time needed to access stored database data, is a crucial metric for many performance-intensive applications. Portfolio management applications, for example, are generally performance-intensive.
In-memory databases are the fastest possible databases. In such databases, which place the dataset in main memory, any piece of information is available with almost zero latency. The memory requirements of such databases increase with the size of the stored dataset. Therefore, such databases become excessively expensive from a hardware perspective when datasets are very large. In addition, computer manufacturers limit the amount of memory that can be installed in their machines, which limits the maximum size of the dataset that can be stored.
Some database systems address this memory problem by using software to cache portions of the dataset in main memory while keeping the majority in secondary memory (i.e., secondary storage), such as on disk. While this approach solves one problem, it creates another: Complex software must keep track of the location of the objects being stored, moving copies of the in-memory objects back and forth from the disk. This approach also increases complexity and latency, as software must determine where to look for the object, i.e., in memory or on disk. In addition, desired data must be copied to the application's memory space because, for data integrity and functional reasons, users cannot be allowed direct access to the database copy of the object, whether it is found in the memory cache or on the disk.
Improvements to address these issues were developed and described in U.S. Pat. No. 7,222,117, for “Segmented Global Area Database,” issued May 22, 2007, by McGrogan, which is incorporated herein in its entirety by this reference. An embodiment of that invention is sometimes referred to herein as “SAGA.”
A need exists to scale up SAGA for larger data volumes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Within manufacturing environments, the questions of deciding what products to produce (assuming the environment is capable of producing more than a single product), when to produce them, how much of each to produce and whether to accept new orders for different products must all be weighed against the realities of the various constraints imposed upon and within the environment. For example, a given manufacturing environment that is currently operating at or near its maximum capacity should probably not be weighed down with additional order commitments that require immediate response. On the other hand, a manufacturing environment that is operating with excess capacity is capable of accepting new orders, but it may not be apparent how many orders are capable of being fulfilled within a specified time frame.
The process of job order scheduling, which is at the heart of the above dilemma, typically proceeds along a product structure in order to determine which components must be produced and/or purchased and when. This process is time consuming whenever the number of unique orders grows, which is a typical situation in on-demand manufacturing environments. This problem is exacerbated by the historical fashion in which product structures have been separated into bills of material and routings.
To simplify the scheduling problem somewhat, the process is sometimes divided into two aspects: planning and scheduling. The term planning is used to identify those activities, and the relations therebetween, required to accomplish a set of goals. Scheduling then becomes the assignment of specific resources and time windows to the actions identified in the plan. Although the division of the scheduling problem into these two domains is useful, it does present certain problems because of the interdependent nature of planning and scheduling systems.
Complicating this division still further is the idea of introducing order promising. That is, given a work environment (e.g., a manufacturing environment) already burdened with a number of existing job orders, can the environment accept new orders for completion within customer-specified time constraints? Viewed differently, how can the new orders be accepted without disrupting the existing work already scheduled and yet still satisfy a guaranteed delivery time/date? This is a non-trivial complication to the scheduling dilemma because, as others have recognized, although historically price has been a principle factor in choosing a vendor, more and more customers are emphasizing timely (meaning certainly not late and perhaps not even early) delivery in making such decisions. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to methods for removing hydrophobic deposits from a substrate.
In painting processes, especially those using spray application techniques, large quantities of paint are often deposited on the walls and floors in the painting area. Upon accumulation, these deposits tend to block floor grates and exhaust stacks thereby creating a safety hazard. Thus, the floor grates and exhaust stacks must be cleaned frequently and at regular intervals.
Conventionally, cleaning of such paint deposits has been performed by various mechanical separation means such as peeling, scraping, brushing or melting the paint from the substrate or by chemical means such as alkali or solvent cleaning. However, due to expense and man hours required for mechanical separation, it is generally inefficient for cleaning large areas. On the other hand, chemical cleaning methods are generally hazardous, e.g., require working with highly caustic solutions at high temperatures, and often damage the substrate being cleaned.
In an attempt to overcome many of the problems associated with mechanical and chemical methods of paint removal, it has been a common practice to apply a primer release coating to the substrate prior to paint deposition. The primer release coating operates as an interface between the substrate and the paint and facilitates the removal of the paint therefrom. Thus, effective primer release coatings generally have high cohesive strengths, poor adhesion and are easily removed from the substrate.
Heretofore, several methods of paint removal employing such primer release coatings have been proposed. For example, due to their poor adhesion to many substrates, ethyl cellulose, cellulose acetate butyrate or a vinyl polymer such as polyvinyl butyral have been proposed as primer release coatings. See, for example, Paint Manufacture, Volume 40, No. 7, Y. M. Chandhok and S. N. Agarwal, "Strippable Coatings", pages 35-37. Unfortunately, these primer release coatings, and the paint deposited thereon, are necessarily removed from the substrate by mechanicalstripping. Thus, paint removal employing such primer release coatings is unsuited for removing paint from intricate structures such as floor grates and for cleaning large areas.
Alternatively, methods for removing paint employing water-soluble primer release coatings have been proposed. For example, U.S. Pat. No. 1,862,392 describes a method of paint removal wherein a primer release coating comprised primarily of pigment, sulphonated castor oil, glycerine, mineral oil, water and alcohol is employed. Similarly, other water-soluble materials such as an alkali metal hypophosphate have also been disclosed as primer release coatings. See U.S. Pat. No. 3,846,172. Unfortunately, removal of paint deposited on these coatings requires steam or hot water, e.g., 70.degree. to 95.degree. C. Moreover, the removal of these coatings proceeds slowly, making these methods impractical for cleaning large areas.
In view of the stated deficiencies of the known methods for removing paint from a substrate, it remains highly desirable to provide a method for effectively removing paint from a substrate using a water wash. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a wafer level LED package structure and a method for making the same, and particularly relates to a wafer level LED package structure for increasing conductive area and heat-dissipating area and a method for making the same.
2. Description of Related Art
Referring to FIG. 1, the prior art provides an LED (Light Emitting Diode) package structure including: a light-emitting body 1, a positive conductive layer P and a negative conductive layer N formed on the light-emitting body 1, a reflecting layer 2 formed on a bottom side of the light-emitting body 1 and a transparent package body 3 for covering the light-emitting body 1.
Moreover, the LED package structure is electrically disposed on a PCB (Printed Circuit Board). The positive conductive layer P and the negative conductive N are electrically connected to the PCB via two wires w. One part of light beam generated from the light-emitting body 1 is directed upward, and another part of the light beams L generated from the light-generating body 1 is projected downwards and is reflected by the reflecting layer 2 in order to generate upward projecting light.
However, the LED package structure of the prior art has the following defects:
1. Only one part of the positive conductive layer P and the negative conductive layer N is exposed, so that the LED package structure cannot provide larger conductive area for generate more lighting power and cannot provide lager heat-dissipating area for obtaining good heat-dissipating efficiency.
2. Because the light-emitting body 1 is covered by the transparent package body 3, heat generated by the light-emitting body 1 cannot be dissipated quickly due to the resistance of the transparent package body 3. Hence, the heat-dissipating efficiency of the LED package structure is bad.
3. The reflecting layer 2, the transparent package body 3 and the two wires w are necessary structures in the LED package structure of the prior art. Hence, the manufacturing cost and manufacturing time of the prior art are increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
Worm gear screw hose clamps are very well known, the clamp being tightened or loosened by rotation of the worm gear screw in the respective direction, the rotation moving the tang to increase or decrease its degree of overlap with the remainder of the metal band and hence the periphery of the clamp. Several major problems may arise with this type of clamp. Some hose materials, especially silicone rubber materials, tend to extrude through the notches on tightening the clamp about the article being clamped. Such extrusions not only damage the hose but also tend to cause the clamp to stick and be difficult to loosen again when necessary. Hose extrusion also hinders other spring compensating clamps with the clamps ability to compensate joint fluctuation during thermal cycling. Another problem is associated with thermal changes. The changes in temperature create expansion and contraction of the hose, the fitting and the clamp. A number of attempts to compensate for thermal expansion during the operation of an assembled connection as well as to compensation for the aging or cold set of the hose itself have been attempted. A further problem is to maintain a fluid-tight seal throughout the intended life of the assembly, without requiring the clamp to be re-tightened.
It would be desirable to have a worm gear screw hose clamp that provides spring compensation to help overcome the hose shrinkage and expansion during thermal cycling, provides a liner that increases the clamp unit loading, and also provides a cover for the exposed notches in the band and will prevent any hose material from extruding through the notch area. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a phase detector, more particularly, a frequency phase detector for differentiating frequencies having small phase differences, and generating a pulse in response to a first frequency leading a second frequency, the pulses driving a charge pump used in one of a phase-locked loop and a delay-locked loop.
Operating speeds of microprocessors and other digital systems are increasing in frequencies. At higher frequencies the timing delays and other uncertainties associated with the clock signal generation and distribution in a system are critical factors in a systems overall performance and reliability. System performance is optimized by carefully considering the attributes of the components used in designing the clock circuit, an important component in any synchronous digital system. A clock circuit includes clock generation and clock distribution. Clock generation takes the output of some oscillator source and manipulates it to obtain pulses with a specific frequency, duty cycle, and amplitude. These signals are then fanned out to various system components by a clock distribution network. As system speeds rise, the uncertainties of meeting setup, hold, and pulse duration requirements become critical due to a narrowing time window. Therefore, each component of a clocking circuit must be carefully designed and be high performance.
Phase-locked loop (PLL) and delay-locked loop (DLL) circuits are often used in clocking circuits. A conventional PLL, shown in FIG. 1, consists of five components including phase detector 4, charge pump 6, low pass filter 8, voltage controlled oscillator 10, and programmable frequency divider 12. As shown, phase detector 4 includes an input for receiving reference frequency 14 and a second input for receiving variable frequency 18. Phase detector 4 generates a phase difference between reference frequency 14 and variable frequency 18. The phase difference is used as an input to charge pump 6 which generates a variable voltage. The voltage passes through low pass filter 8 to remove noise and is used as an input to voltage controlled oscillator to vary the frequency. A feedback loop extends from voltage controlled oscillator 10 to programmable frequency divider 12 to phase detector 4. Programmable frequency divider 12 divides the frequency from voltage controlled oscillator 10 by hundreds or thousands of numerical values, as selected.
A traditional CMOS implementation of a phase detector, consisting of two flip flops, is shown in FIG. 2. The traditional phase detector often includes a logic NAND gate and when both inputs to the logic NAND gate are high, then the flip flop reset signal is activated, bringing the flip flop output to ground. A RS latch is also used as part of a phase detector circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to clothing hangers, and more particularly to a clothes hanger of the scissors clamping type having the ability to adjust for garment thickness.
2. Description of Related Art
Hangers for clothing are well known in the art. Such hangers are made of wood, metal wire and plastic primarily and are used in every home, clothing manufacturer, clothing retailer and hotel. Generally such hangers are constructed with a hook for placing the hanger onto a horizontal rod where it is easily placed and removed as needed. The hook portion generally extends downwardly forming two downwardly divergent edges for resting an article of clothing such as a shirt or jacket wherein the downwardly extending divergent edges extend into the arm sockets of the clothing article. Generally, such a hanger provides a horizontal bar or wire for placing a pant or other garment that is preferably stored by laying over such a bar or wire. Many options are known in such hangers such as the use of clips for hanging a pant by its leg opening from the horizontal bar or wire and the use of clamping bars for holding clothes items from falling from hangers.
The prior art teaches a wide range of clothing hangers. However, the prior art does not teach that a clamp type hanger may be additionally fitted with a clamping strap so that a clamp bar may be infinitely adjusted for applying a selected clamping force onto a garment and so that a wide range of garment thicknesses may be tightly clamped as desired. The present invention fulfills these needs and provides further related advantages as described in the following summary. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention concerns the field of electro-optical image processing, i.e., processing inclusive of pixel-by-pixel image resolving, modification and reconstruction.
In the field of optical image processing there is often need for a pixel-resolving image processor and image combiner of small physical size and functional simplicity. Pixel by pixel sized area processing and combining of images can of course be accomplished by electronic systems and computer aided electronic processing but such processing appears considerably less well known in the form of a primarily optical apparatus as disclosed in the present invention.
The present image analysis invention enables the optic combining and splitting of input images, modulating phases of split image components, and controlling the relative proportions of energy exiting an image analysis apparatus with virtually zero loss of total energy. The invention performs these functions with a compact, robust, adaptable and efficient electro-optical image splitting device and/or image combiner. The electro-optical image splitting device is particularly robust in terms of rugged construction and ability to withstand high intensity light.
The present invention is a useful component for more general optical processing systems. Since it is a device that can modify and analyze the polarization states of images, it has potential applications in image analysis, optical computers, imaging phase fluorimeters, communication, holography, and light modulation. The present invention also provides an optimal arrangement for use in the xe2x80x9cLaser Imaging and Ranging System Using Two Camerasxe2x80x9d and xe2x80x9cLaser Imaging and Ranging System Using One Cameraxe2x80x9d systems of our previous U.S. Pat. Nos. 5,157,451 and 5,162,861 and may also be used to form in-line digital holograms as are described below.
There is therefore perceived to be needed in this field a simplified optics-based image processor, a processor providing an output image modified according to a predetermined image modulation from an input image or from two input images. The present invention is believed to provide such processing.
The present invention Image Modulator and Combiner, (IMAC), is an electro-optical switching device that can combine multiple incoming images into multiple outgoing images while modulating image signals as a function of the electrical potential or optical signals applied to slant mirror modulators (SMM) and perpendicular transmitting modulators (PTM). Variation of the signals applied to these modulators provides means for rapidly re-proportioning the relative energy in the output images. The energy in the output images is equal to the energy in input images except for some transmission losses (conservation of energy).
The present invention therefore provides a simple and substantially passive dissection and recombination arrangement for processing an input optical image into an output optical image or multiple output images of related but selectively modified characteristics.
It is an object of the present invention therefore to provide simplified pixel-based optical image processing.
It is another object of the invention to provide a pixel dissecting optical image modulation apparatus.
It is another object of the invention to achieve a multiple input image and multiple output image-capable passive optical image processor.
It is another object of the invention to provide a passive optical image processor in which optical prism elements may be used or omitted.
It is another object of the invention to provide a passive optical image processor for holographic imaging.
It is another object of the invention to provide an image dissecting and processing arrangement in which both multiple modulator elements and multiple different modulator element types can be utilized.
Additional objects and features of the invention will be understood from the following description and claims and the accompanying drawings.
These and other objects of the invention are achieved by optical Image Modulator and Combiner apparatus comprising the combination of:
a polarizing optical beam splitter input member having first image component and second image component orthogonally polarizing optical output ports and having first and second optical image input ports;
first and second pixel modulated optical image modulator elements disposed in angled orientation with respect to polarized image components appearing at said first image component and second image component orthogonally polarizing beam splitter member output ports and generating pixel modulated output signal versions of optical beam splitter output signals emerging from said first image component and said second image component orthogonally polarizing optical output ports in response to input signals received at said first and second optical image input ports;
a polarized beam combiner output member having first and second image component input ports in communication with respective of said first and second pixel modulated optical image modulator elements and said pixel modulated output signal versions of optical beam splitter output signals emerging therefrom and generating a recombined image component pair of output signals. | {
"pile_set_name": "USPTO Backgrounds"
} |
Archery bows are tools which have existed since the earliest days of man. The earliest archery tools were used primarily as weapons of war and for hunting food. Typically, primitive bows consisted of a stick formed from resilient wood attached at terminal extremities by means of a string whereby the resilient stick formed a sort of "spring" which stored energy upon displacement of the bow from a neutral position to a cocked position. Upon release of the string, the stick would return to its original somewhat unstressed state and would propel an arrow carried on the string. This type of bow evolved into a "long" bow for greater power.
Recurve bows (i.e., where the limb tips arc away from the drawstring) have only been in existence for perhaps the last fifty years, and only upon the advent of lamination technology which allows a plurality of thin strips of material, such as wood, to be built up one upon the other so that more resiliency could be fabricated into the bow. As the quest for a bow having more power evolved, a tradeoff was experienced in the ability to control the bow at maximum draw. With long and recurve bows, the force increases as the degree of "draw" (i.e., the degree to which the bow has been cocked) increases.
Within the last thirty years compound bows, characterized by the utilization of cams or eccentric wheels, have been developed to create a mechanical advantage and change the traditional, linearly increasing force curve by the intercession of these mechanical elements. Compound bows, with their cams or eccentric wheels, have become complex and cumbersome instruments.
Recently, bows have been developed which incorporate the mechanical advantages associated with compound bows coupled with recurved limbs, but these bows are even more complex than the modern compound bows and, like the compound bow require cams or eccentric wheels to develop the desired draw characteristics popular with today's archers.
By and large, modem archery bows are used for hunting and target archery. There is a need for a bow which provides high performance, but which also is relatively simple in design, is easy and safe to use and maintain in proper working order to thereby provide appeal to modem archers who shoot as a form of recreation and therefore have an aversion to highly unreliable or complex bow technologies.
The following prior art reflects the state of the art of which applicant is aware and is included herewith to discharge applicant's acknowledged duty to disclose relevant prior art. It is stipulated, however, that none of these references teach singly nor render obvious when considered in any conceivable combination the nexus of the instant invention as disclosed in greater detail hereinafter and as particularly claimed.
______________________________________ INVENTOR PATENT NO. ISSUE DATE ______________________________________ Storer 3,595,213 July 27, 1971 Nishioka 3,744,473 July 10, 1973 Ketchum 3,990,425 November 9, 1976 Groves, et al. 3,993,039 November 23, 1976 Jones 4,227,509 October 14, 1980 Islas 4,287,867 September 8, 1981 Simonds, et al. 4,368,718 January 18, 1983 Simonds 4,438,753 March 27, 1984 Hayes 4,478,203 October 23, 1984 Jennings 4,561,413 December 31, 1985 Kudlacek 4,593,674 June 10, 1986 Imes 4,646,708 March 3, 1987 Humphrey 4,667,649 May 26, 1987 Chattin 4,724,820 February 16, 1988 Lester 4,781,168 November 1, 1988 Bozek 4,858,588 August 22, 1989 Colley, et al. 4,903,677 February 27, 1990 ______________________________________
Islas teaches the use of a complex cam driven compound bow.
Lester is another example of a complicated bow structure.
The other prior art listed above, but not specifically discussed, teach other devices for recurve bows and further catalog the prior art of which the applicant is aware. These references diverge even more starkly from the references specifically distinguished above. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a demisting control system of an air conditioner installed on automotive vehicles or the like.
A cooling air conditioner has been known, e.g. from Japanese Patent Publication (Kokoku) No. 60-54563, in which air temperature in a space to be cooled is compared with a predetermined cooling start temperature and a predetermined cooling stop temperature, and the operation of a compressor is controlled in an ON- and OFF-manner in accordance with the comparison results, so as to maintain the temperature and humidity in the space within respective predetermined ranges satisfying comfortable conditions. The above-described cooling air conditioner has a control system which is operable such that in order to avoid that the compressor is continuously operated for a long period of time, the compressor is kept operative ("ON" operation) for a first predetermined period of time, and then kept inoperative ("OFF" operation) for a second predetermined period of time immediately following the first predetermined period of time, and thereafter these on and off operations are repeated, to thereby secure comfortableness within the space to be cooled and reduce the power energy consumed by the air conditioner.
When the above conventional control system is employed to remove mist on a window pane of the automotive vehicle, i.e., to demist the window pane, it is necessary to set the aforesaid predetermined cooling start and stop temperatures at respective values equal to or lower than the ambient or outdoor air temperature. The reason for this is that mist occurs on the window pane when cooling operation of the air conditioner is not carried out and when, in general, the outdoor air temperature is lower than the indoor air hr compartment temperature.
Accordingly, demisting of the window pane is carried out by heating the vehicle compartment, or by increasing the heating degree, to prevent the indoor air temperature from being lowered. As a consequence, however, the indoor air temperature does not readily reach the aforesaid predetermined cooling stop temperature. In the meantime, the first predetermined period of time elapses so that the compressor is switched to the "OFF" operation. However, the first predetermined period of time must be set at such a fixed value as to obtain comfortableness of the space to be cooled or vehicle compartment at cooling operation of the air conditioner. Therefore, the operation of the air conditioner in the vicinity of the predetermined cooling start and stop temperatures set at their respective values equal to or lower than the low outdoor air temperature enough not to necessitate cooling operation causes the evaporator to freeze hard by the time the first predetermined period of time elapses, even if the predetermined cooling stop temperature is equal to or above 0 (zero) .degree. C. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. a) Field of the Invention
This invention relates to a continuously focusable microscope system which incorporates an afocal variator system.
2. b) Discussion of the Prior Art
Microscopes have been in use for centuries. In the past, where it has been desired to alter the focus of microscope systems, this has usually been accomplished over a short range by continuously or discretely changing the length of the optical system of the microscope, or in discrete ranges by changing the location or type of objective lens system in the front, or of any lens system which may be present in the rear, or both the front and rear optical lens systems, if any. Altering microscopical system focal length without utilizing the objective lens system, or changing the length of the optical system, or changing the location or type of lens system in either the front or rear optical system is not believed to be known in the prior art. Continuously focusable microscope systems are not known to applicant. "Varios" and "variators" are well known and useful optical systems. Such systems have found use primarily in zoom lens systems and in projectors, for example, to change the size of a projected image on a screen, but not to focus the image. In many instances, such vario and variator devices have been used, in combination with a front optical system or a rear optical system. In some instances they have even been used in combination with both a front optical system and a rear optical system. However, in all instances known to applicant such optical systems which incorporate vario and variator optical systems have been used to alter the size of an image, but not to focus the image, and are used and usually only function at relatively short back focal distances.
Afocal variators of the specific preferred type described in the present application have been known and in commercial use and on sale, by themselves, for at least fifteen years, for example for use in projector lenses to alter the size of a projected image on a screen. However, while afocal variator optical systems of the specific type disclosed herein, have been previously known in the art, such afocal variator optical systems are not known to have been previously used in the art to focus microscope systems.
In the known prior art, Hillman U.S. Pat. No. 2,937,570 discloses a telescope system in which the image forming lenses are moved in order to focus the system. That is, focusing is accomplished by moving objective lens and focusing lens, which are part of the telescope's "formula-specific" objective imaging system. Focusing is not accomplished or taught to be feasible by moving a portion of an afocal variator, nor by moving a portion of any other non-image forming modular optical lens system. Furthermore, this reference discloses a "formula-specific" optical system in which the lenses are all calculated and assembled to work together to form a telescope. It does not include an independent optical lens system module which is nonimage forming. It does not include a central afocal variator module which does not comprise a portion of the image-forming optics. If any of the movable lenses of any of the systems taught by Hillman were removed, the entire system would be affected, very probably to the point that the system would no longer function for its intended purpose.
In Quenderff French Patent 2,572,545 the use of a zoom lens to make enlarged pictures, and also teaches the use of various art known mechanical devices for connecting together optical modules. However, it neither teaches nor suggests the use of a central afocal variator module as a focusing element.
Therefore, while afocal variator optical systems have been previously known in the art, such afocal variator optical systems are not known to have been previously used in the art to focus microscope systems in the manner disclosed, provided and claimed by the present application. More, specifically such afocal variator optical systems have not been used at a relatively long back focus distance, as opposed to their prior art use to alter image size at a fixed focal plane. It will be seen, that while the use of varios and variators, either alone, or in combination with either a front optical system or a rear optical system are known, they are not known to have been used to provide a microscope system. More specifically, the combination in optical series of a microscope objective lens system with a first positive lens system, a first negative lens system, an afocal variator, and a positive rear optical system, all in combination with one another and with such other components as are required to provide a microscope image, allows the user of such a microscope, to continuously alter the active focal relationships of the microscope by continuously varying the afocal variator and the distance of the microscope objective lens system from the object which is undergoing examination, and all without the need to physically change the length dimension of the microscope system, and without the need to change the positions of any of the lenses outside of the afocal variator, and without the need to change the microscope objective lens. This is quite different than the use of a variator system to alter image size at a fixed focal plane, such as a zoom lens. | {
"pile_set_name": "USPTO Backgrounds"
} |
Check cashers are entities, agencies, and the like that can monitize third party checks. Some individuals lack a conventional bank account, and thus need to convert any possessed checks into cash via a check casher. The check casher charges the individual a fee or other forms of consideration for providing the check cashing service as well as for taking the risk that the check might bounce due to insufficient funds, fraud, and/or other factors.
For check cashers, the risk of default on checks is high. Until the check casher successfully retrieves the funds from the individual, the risks associated with the loss of the funds as well as returned check fees charged by the check processor are the responsibility of the check casher. Further, check defaults of the check casher increase the risk to the check processor in that unexpected check returns can unexpectedly cause the check casher to exceed a line of credit already extended to the check casher. To reduce default risk, some check cashers will “hold” the funds of a check whereby the individual is required to return to the check casher to receive the funds after the check casher believes that the risk of default has passed.
A need therefore exists for systems and methods to reduce check processing risk. More particularly, a need exists for platforms and techniques for reducing the risks associated with check default and for reducing the overall cost of the check cashing process for the check casher and/or the individual. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present subject matter generally concerns the detection of anomalies in and/or properties relating to a pneumatic tire using Doppler radar technology. More particularly, the present disclosure relates to methods and apparatus for the detection of anomalies in pneumatic tires including, but not limited to, tread separation, tread wear, uneven tread wear, tire balance and foreign body detection using Doppler Micro-Power Impulse Radar (MIR).
Tread belt separation in pneumatic tires is a known, and potentially dangerous, problem. Tires that are under-inflated, overloaded, and driven in hot climates can undergo tread belt separation. Tread belt separation may also be associated with improperly manufactured, or improperly re-manufactured, (i.e., so called, re-capped) tires. Tread belt separation can have significantly negative results on the vehicle operation should, the tread separate from a pneumatic tire while in service and at highway speeds. The present technology describes apparatus and methodology for detecting this and other conditions so that the driver can be alerted to these conditions.
Previous efforts have been made to monitor tires during use in an effort to detect actual or imminent failure and to warn drivers of such actual or imminent failure so that cautionary measures may be taken. One such effort is described in U.S. Pat. No. 5,436,612 (Aduddell) and involves the placement of plural microphones and radio transmitters at various locations on a truck. The transmitters broadcast sounds detected by the various microphones to a receiver positioned with the driver. In this way a driver could listen for any anomalous sound and, if heard, take appropriate measures.
U.S. Pat. No. 6,255,940 (Phelan et al.) describes a patch that may be installed inside a tire by attachment to the innerliner of the tire. The patch supports sensors that monitor tire temperature and pressure. A warning may be given to the vehicle driver upon sensing abnormal conditions. Another tire temperature monitoring technique is disclosed in U.S. Pat. No. 4,570,152 (Melton et al.). In this patent, a number of permanent magnets are implanted into the tire body. Excess heat generated from the running of the tire will cause variations in the magnetic field of the permanent magnets. These variations are detected and used to generate a warning to the vehicle driver.
Yet another previously known technique for monitoring tires and, in particular, used for monitoring for tread separation is taught by U.S. Pat. No. 6,028,508 (Mason). Mason '508 discloses a system employing a ranging system wherein a sensor using a transmitter and receiver combination is employed to detect the distance from the sensor to the surface of a tire being monitored. The arrangement is such that an alarm is issued if the distance from the sensor to the surface of the tire exceeded a predetermined amount.
Yet another previously know technique for monitoring pneumatic tires is taught in U.S. patent application Publication US 2002/0189336 A1 (McEwan). McEwan discloses placement of radar sensors at various positions relative to a pneumatic tire to monitor for different types of tire anomalies. McEwan, for example, discloses detection of tread loss by positioning a radar unit to illuminate a tangential portion of the tire tread such that, upon loss of tread, there would be a substantial, detectable reduction in returned radar signal. McEwan also discloses detection of foreign bodies penetrating the tire tread by positioning the radar unit to illuminate a tangential portion of the tire and examining radar return signals by comparing the average amplitude to a peak amplitude. Other tire related properties or anomalies are detected by positioning the radar unit variously, for example, side wall properties my be examined by positioning the radar unit to illuminate the side wall and speed of rotation may be examined by positioning the radar unit to illuminate, for example, spokes or openings in the wheel on which a tire may be mounted.
While various aspects and alternative features are known in the field of tire failure and protection technology, no one design has emerged that generally integrates all of the ideal features and performance characteristics as discussed herein.
An exemplary background reference in addition to those already cited in the specification includes the January/February 1996 publication by Science & Technology Review entitled “Micropower Impulse Radar.” The disclosures of all the foregoing United States patents are hereby fully incorporated into this application by reference thereto. | {
"pile_set_name": "USPTO Backgrounds"
} |
The discussion relating to the present invention will be better understood with reference to the terms that are defined generally as indicated.
Arbiter—digital circuit whose function includes arbitrating amongst multiple simultaneous read and/or write access requests from multiple processors for access to a shared memory system.
Atomic—an operation in which a block of data is fully read from or written to memory without any other intervening process reading from or writing to the same block of data.
Data block—data of a particular size that is written to or is read from a memory system. The size of a block is defined by two parameters, width and height. The width denotes the number of consecutive banks in which the block is stored. The height denotes the number of consecutive address locations or rows on a single memory module at which the block is stored.
Bank—partition of data within a DRAM module; an address and a bank number must be applied when reading or writing a DRAM module. Typical DRAM modules are comprised of multiple (four or eight) banks.
FIFO buffer—first in and first out buffer queue.
Memory system—a collection of discrete memory modules, such as DRAM and SRAM, each module having a plurality of addresses or locations in which blocks of data can be accessed. The modules may be attached to or integrated into a network processing chip or other type of processor chip. Multiple DRAM modules can be used in parallel to construct a memory system containing many banks.
Window—a number of clock cycles during which the banks of a DRAM module may be accessed. Since only one bank of a DRAM module can be accessed at a given time (the address and bank number must be applied), the banks of a module are accessed consecutively over time in order to maximize the bandwidth. For a four-bank DRAM module, for instance, the banks are accessed in the order of A B C D A B C D. One set of accesses (A B C D) is a “window”, and takes a fixed number of clock cycles, depending on the type and speed of the DRAM. A window is typically between 10 and 12 clock cycles in duration.
A network processor incorporates multiple general purpose processors and specialized logic. The memory systems that are generally used with network processors are comprised of memory modules which often include SRAM and DRAM. Each memory module has a plurality of memory addresses and, in the case of DRAM modules, data that is for a given address is partitioned into multiple banks. When a DRAM module is accessed, a memory address and a bank number must be supplied. In many cases, a block of data being accessed by one of the general purpose processors cannot fit into a single memory location or bank within a memory module, thereby necessitating the allocation of the data into different memory locations within the same module or in another module. Some of these locations can be in DRAM memory whereas others may, for example, be located in SRAM memory.
As noted above in the definitions, since only one bank can be accessed at a time in a given DRAM, bandwidth to and from the DRAMs is improved by accessing the banks consecutively in a Time-Division Multiplexed (TDM) fashion. In the case of four-bank DRAM modules, banks A, B, C and D can be accessed during one TDM window. It should be noted that during the TDM window, the address associated with each bank is independent. So, in a given window, one could read address 0 of bank A and address 5 of bank B. In addition, each window is designated as a “preferred read” or a “preferred write” window, meaning that bank accesses within the window are all read accesses or all write accesses (not mixed). If the banks were accessed randomly, rather than in a TDM fashion, the bandwidth would be reduced due to the insertion of additional cycles between accesses to meet the timing requirements of the DRAM module(s). Similarly, if read and write operations were mixed within a window, the DRAM timing requirements necessitate insertion of additional cycles between read and write accesses, thereby reducing bandwidth. It should be noted that it is not required that every bank be accessed during every window. For example, if banks A, C and D need to be read during a certain window, they will be accessed, but bank B will remain idle.
In a network processing environment, multiple processors may be independently accessing the memory module(s) attached to a network processing chip. The memory system contains routing information which the general purpose processor uses to determine how to route information. Periodically, one of the general purpose processors updates this routing information by writing a block of data to the memory system. Since these processors operate independently, it is imperative that the digital circuits of the arbiter (see above definition) preclude one processor from writing to a given block of memory while another processor is attempting to read all or part of the same memory block. Otherwise, the processor attempting read access could get partially updated routing information.
The problem is exacerbated by the fact that the data block may be spread across multiple banks of a DRAM module, and across multiple addresses (rows) in the module. The same challenges are present in any system in which multiple processors attempt to independently access data blocks which are stored in a memory system comprised of multiple modules, DRAM and/or SRAM. Thus, an “atomic” operation means that a block of data is completely read from or written to a memory system without any other process writing or reading any portion of the same data block at the same time. Two common methods of achieving atomic operations are as follows. In some multi-processor systems, semaphores are used to lock very large areas of memory, referred to as “pages”. Pages may contain hundreds or even thousands of data blocks. Therefore, when a page is locked by one processor, access by any other processor to any data block within the page is prohibited, even if logic blocks being requested by the two processors are different. This method has a definite latency penalty.
A second method of achieving atomic operations is to allow all of the read or write accesses required to service a particular processor's request for a data block without allowing any other read or write operations to occur. This method degrades bandwidth to and from the memory system, since a data block may not include all banks of a DRAM module. For example, if a data block spans banks A, B and C, and a second data block spans banks B, C and D, this method would require reading or writing the first data block completely, then reading or writing the second data block completely.
FIG. 1 shows examples of various sizes of data blocks and how they are mapped to the addresses and banks of a four-bank DRAM module. As noted above in the definitions, each data block has a unique size defined by its height and width. Because different types of information may be stored in the memory system, data blocks are different sizes. Some data blocks are limited to one bank and one address, while other data blocks span several banks and several addresses. A data block having a width greater than 1 must be stored in multiple banks within a DRAM module. Similarly, if the data block has a height greater than 1, it occupies more than one address within a bank.
Data block 106 is stored in a DRAM memory module 110. It has a height of 3 and a width of 1; thus, it occupies three consecutive memory addresses 1, 2 and 3. In addition, only bank A is included in this data block. Data block 107 is stored in memory module 112; it has a height of 2 and a width of 4. It occupies two consecutive memory addresses 12 and 13, and spans all memory banks (A, B, C and D). | {
"pile_set_name": "USPTO Backgrounds"
} |
I. Field of Invention
The present invention relates to devices which control the amount of air available to a diesel engine.
II. Description of the Prior Art
It is well known that the speed of a diesel engine, that is the number of revolutions per minute, can be controlled by adjusting the amount of fuel injected into that engine and adjusting the timing of that fuel injection. However, if some control over the amount of air entering into the air suction passage of such a diesel engine is not maintained, the diesel engine is subject to violent vibrations and objectionable noises due to the existence of an excess amount of sucked air. Such vibration and noise is especially prevalent when a diesel engine is idling or operating under low load conditions. Such vibrations and noise are uncomfortable to the driver and passengers.
Prior art devices are known which employ a throttle valve to control the volume of air flow in an air suction passage of an engine. Such prior art throttle valves operate so as to restrict the flow of air through the air suction passage when the engine is in a low load condition. Throttle valve arrangements are known which employ a passage external to the air suction passage to by-pass the throttle valve. The amount of air flow through such a external passage is controlled by an air flow controlling means. However, the construction of an effective external passage has in the past been complex and, therefore, expensive.
It is, accordingly, an object of the present invention to provide a new and improved air suction device for a diesel engine which reduces vibration and noise due to excessive amounts of air flowing through the air suction passage of the engine.
It is another object of the present invention to provide a new and novel air suction device for a diesel engine which selectively restricts air flow through an air suction passage but yet is simple and inexpensive to construct.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
In many situations, wireless cellular communication may get hindered due to reasons such as natural or man-made obstructions, network congestion, and so on. For example, due to poor penetration of radio signals inside concrete buildings, users present in the building may not be able to communicate, with the help of wireless cellular communication networks. However this is not desirable, especially during the time of emergencies. For example, when a fire rescue operation is ongoing in a building, wireless communication between the first responders is of utmost importance to save lives. In another example, at the edge of a cell, the received signal strengths can be much lower than for the users within the cell. Hence the user may be unable to make calls or avail other services.
Relay functionality was introduced in 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) specification as part of LTE-Advanced (LTE-A), Release 10 standards, however the 3GPP relay node is a dedicated relay node, which is required to support the eNodeB functionality as well as a subset of UE functionality. The eNodeB functionality in the relay node is needed in order to support the connecting UEs and the UE functionality is required to connect the relay node to an eNodeB thus making it (relay node) a fairly complex node in terms of functionality. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a semiconductor device and an image processing method suitable for, for example, an automotive navigation system and the like.
In vehicle-mounted information terminals such as automotive navigation apparatuses (hereinafter also referred to simply as “car-navigation”), it has been desired to cope with higher-quality multimedia and to exhibit higher quality graphics performance. As a result, semiconductor devices that are mounted in vehicle-mounted information terminals, such as the SoC (System on Chip), need to have higher-performance image processing functions, and therefore various researches and developments have been in progress. Japanese Unexamined Patent Application Publication No. 2002-204347, Japanese Unexamined Patent Application Publications No. 2005-11520, and Japanese Patent No. 2827258 disclose techniques relating to image processing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a rocket engine.
2. Background of the Invention
During operation, a rocket combustion chamber or a rocket engine nozzle is subjected to very high stresses, for example in the form of a very high temperature on its inside (on the order of magnitude of 980° F.) and a very low temperature on its outside (on the order of magnitude of −370° F.). As a result of this high thermal load, stringent requirements are placed upon the choice of material, design and manufacture of the outlet nozzle. At a minimum, the need for effective cooling of the combustion chamber or the outlet nozzle must be considered.
It is a problem to construct cooled wall structures that are capable of containing and accelerating the hot exhaust gas, and also be reliable through a large number of operational cycles. Known designs do not have a sufficiently long service life required to withstand a large number of operational cycles. These known systems generate large thermal stresses, including large pressure drops, or present difficulties when needing repair.
When applying the expander engine cycle, there is a secondary problem. The expander engine cycle uses the cooling medium to drive the turbines in the fuel and oxidator turbo pumps; that is, energy from the expansion of the heated cooling medium is used for driving the turbines. The efficiency of the rocket engine is a function of the combustion pressure. To reach high pressure experience in the expander cycle, efficient heat transfer from the exhaust gas to the cooling medium is required. Increase in the heat load in the combustion chamber due to surface roughness or fins may impair the service life of the engine since the intensity of the heat load is very high in the combustion chamber. Still further, a longer combustion chamber increases the length of the engine and the rocket. A commensurate increase in the size of the nozzle gives rise to larger nozzles and longer rocket structures, each of which increases the weight of the vehicle.
There are several different known methods for manufacturing a rocket nozzle with cooling channels. According to one of these methods, the nozzle has a brazed tube wall. The tubes have a varying cross-sectional width to provide the contour of the nozzle when assembled. The variation in cross section is given by variation of the circumference and by variation of the form of the cross section. The brazed joints restrict the deformation of tubes in the thermal expansion and pressure cycle. The stresses in the tubes are increased in the arc of the joints. The joints themselves are weak points that may break and are difficult to repair. The brazed tube wall provides a larger “wet” contact surface for the rocket flame than a sandwich wall or a constant tube section wall. However, even larger wet surfaces are desirable.
According to another known method, a sandwich wall is made by milling channels in sheet metal and joining a thinner sheet metal to seal the channels. The inner and outer walls are continuous shells. In the thermal cycle, the walls are in compressive and tension strain. This type of wall structure is not well suited to sustain the tension loads normal in the service life of a rocket nozzle. The sandwich wall features no increase in surface area to enhance heat transfer.
According to still another known method, the nozzle wall is manufactured with constant section tubes. The tubes are helically wound and welded together to form the nozzle contour. The increase in surface area is small. The tubes have an angle relative to exhaust gas flowing through the nozzle. This helps to increase the heat transfer. However, at the same time the exhaust flow is rotated and a reactive roll momentum influences the flight of the rocket. The constant section tubes result in a large pressure drop that is not favorable for convectively cooled engines. The large pressure drop is negative for the expander cycle type engine. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a solar battery module frame body.
2. Background of the Invention
A conventional solar battery module can be mounted directly on a roofboard without through a roofing. As shown in FIG. 10, of frame bodies of two solar battery modules which are adjacent in a flowing direction and a vertical direction, a joint portion 62 formed on a ridge-side frame body 61 of an eaves-side solar battery module is connected to a roofboard 31, and a ridge-side fitting portion 64 formed on a ridge-side frame body 61 of an eaves-side solar battery module is fitted into an eaves-side fitting portion 63 formed on an eaves-side frame body 60 of a ridge-side solar battery module. This conventional solar battery module is disclosed in the Japanese Patent Application Laid-open No. 2000-297509.
However, the conventional solar battery module is integrally provided with joint portions 62 for mounting a frame body thereof on the roofboard 31. Therefore, a position where rafters which support the roofboard 31 at predetermined intervals and a position of the joint portion 62 of the solar battery module are not aligned with each other in some cases, and there are problems that the joint portion 62 is not fixed to the rafter and that the fixing strength of the solar battery module is deteriorated.
The eaves-side frame body 60 and the ridge-side frame body 61 of the solar battery module have different shapes, complicated machining operation is required for forming the joint portion 62, and they increase the cost.
Hence, to solve the problem of the conventional solar battery module, it is an object of the present invention to provide a solar battery module frame body capable of sliding a fixing member, and capable of reducing the number of parts of the frame body of the solar battery module, thereby reducing cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of oxides in electronics and optoelectronics is well known, namely their applications as a passive element, as a transparent conductive electrode [1], or just as an anti-reflecting layer in different optoelectronic or optical devices [2], including their deposition at room temperature [3,4]. However, their application as an active semiconductor material is due to the initial work by H. Hosono [5], thereafter being confirmed in the production of devices, namely thin film transistors, at low or high temperatures [6,7,8] and their transport properties have been explored, namely concerning amorphous oxides [9]. Moreover, the use of active semiconductor oxides has been witnessed in the production of heterojunctions, namely in light emitting diodes [10], and other electroluminescent applications [11], with the use of p-type oxides for applications in active matrices or for producing CMOs-type devices or other type of logical devices, actuated at high or low voltage, being less well known. There are a few works, however, related to the use of OCu2 produced at high temperature (above 500° C. and always polycrystalline), as channel region in TFT [12], quite distinct from the structure presented in the present invention. Published recent works are also known concerning p-type channel TFT based on SnO also produced at high temperatures (above 500° C. and always polycrystalline) [13], totally different from the system now proposed.
The use of compounds of the (OCu—Cu1-2) and [(OSnz+(Sn1-2)w types, in their different electronic configurations, is known for applications such as electrical conductors, usually in the form of binary oxides, as referred to in the patent request US2006152138, whose application domain does not include the objects of invention of the present request.
The same happens with the patent application WO2005081055, that relates to the fabrication of stacked double layers of transparent conductive oxides (TCO) based on alumina-doped zinc oxide (AZO) or gallium-doped zinc oxide (GZO) or both (AGZO), or even a coating of indium and tin oxide (ITO), to be used in LCD or OLED flat panel displays or plasma displays, also including solar cells or other electronic devices, such as conductive electrodes, completely apart from the object of the present invention.
The patent JP2003324206 relates to the production of p-n junctions for photovoltaic applications wherein the p-type oxide is based on Copper-Aluminium, Copper-Gallium, Copper-Indium, and Copper-Strontium alloys, and the n-type oxide is selected from the tin, Indium, Titanium, and Zinc oxides or Gallium Nitride, which materials and compounds or alloys are totally different from the objects of creation of the present invention, in terms of materials and their applications, which focus on TFT or CMOS-type active devices and derivations thereof.
The patent US2002028571 refers to new zinc oxide alloys incorporating hydrogen and gallium, obtained by co-pulverization and processed at low temperatures, intended for transparent conducting electronic applications, thereby not involving either of the objects of creation and use of the present invention.
The patent JP2000045063 refers to the formation of indium-based transparent conductive oxides containing tin, zinc, or gallium, with thicknesses between 50 nm and 500 nm, to be deposited onto polymer substrates, such as electrical contacts, which is not the object of the present invention.
The patent WO2004/038757 (J. Wager/Oregon State University) concerns the use of oxide materials, such as zinc oxide (ZnO), tin dioxide (SnO2), or indium oxide (In2O3) as an n-type active semiconductor in the fabrication of the TFT channel, not covering any of the objects claimed in the present invention.
The patent US2003/0218221A1 corresponds to the United States patent WO2004/038757 and is, therefore, completely different from the object of the present invention. The inventors of this patent claim the possibility of using additives for the ZnO and SnO2 films from the periodic table of elements, such as Al, In, Ga, Bi, B, La, Sc, Y, Lu, Er, Ho, the films being processed at temperatures in the range of 100 to 500 centigrade degrees.
The patent US2005/0017244A1 claims the use of n-type oxides based on zinc oxide and tin dioxide, either doped or not, for producing the TFT channel region, the process temperature not being mentioned. Neither of these claims collides with the objects of the present invention.
The patent US2005/0199959 A1 (J. Wager and Oregon State University, OSU) refers to the use of n-type zinc and indium oxides and their alloys as active semiconductor in the production of electronic devices, including the production of the TFT channel region, completely different from the objects of the present invention.
The patent US2006/0079034 A1 (J. Wager and OSU) refers to the passivation of electronic circuits using SiOx, SiNx, SiOxNy, GeOxTaOx, SiOxCy, YOx, Mgx, and other materials, outside the object of the present invention.
The patent WO2005/088726 A1, (H. Osono) refers to the production of TFTs based on n-type amorphous oxides with a free carrier concentration of 1018/cm3 or lower, this value being controlled through the oxygen partial pressure used during the fabrication process. The materials on which the oxides are based involve Ga—In—Zn; In—Ga—Zn1-x—Mgx, or Ga—Zn—Sn, using ceramic targets and process temperatures around 1000° C., using fabrication techniques such as pulsed laser deposition, PLD. In addition to the above mentioned oxides, the authors also claim the following compositions of metal oxides, either doped or not with impurities: InxGa1-x (0≦x≦1), InxZn1-x (0.2≦x≦1), InxSn1-x (0.8≦x≦1), Inx(Zn,Sn)1-x (0.15≦x≦1) or [(Sn1-xM4x)O2]a. [(In1-yM3y)2°3] b. [(Zn1-zM2z)O]c. [0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, 0≦b≦1, 0≦c≦1], being considered as impurities the following elements to be incorporated: Pentavalent impurities M5: V, Nb, Ta. Tetravalent impurities M4: Si, Ge, Zr; Trivalent impurities M3: B, Al, Ga, Y; Divalent impurities M2: Mg and Ca.
This patent partially relates to the same type of electronic devices, such as TFT, simply referring to n-type devices whose charge transport is controlled by electrons, thereby not considering p-type devices whose transport is controlled by holes.
The patent JP2006165527A, also by H. Osono, corresponds to an update of the previous patent, being also claimed the low temperature fabrication of these devices and thus, like the previous patent, it does not collide with the object of the present invention.
The pending patent PCT/PT2007/000008 concerns the use of p-type and n-type multicomponent oxides based on copper, nickel, and Gallium-Tin-Zinc-Copper-Titanium, not included in the object of the present invention.
In addition, several scientific papers concerning devices based on zinc oxide [7], zinc-doped indium oxide [8], tin-doped zinc [13], Gallium-Zinc-Indium-Oxygen multicomponent oxides [5,14] are known.
As far as patents related to p-type oxides are concerned, the majority refers to p-type oxides of zinc oxide, such as the cases of the patent applications or patents WO2009120024 and KR20090024767; the patent applications or patents KR20080086335 and US2008118769, related to the zinc oxide production method; the patent applications or patents CN1913174 and US2006233969, related to the patent application US2006233969, also concerning p-type zinc oxides and their possible combinations with semi-conductive compounds of the II-VI groups, not related to the objects of the present invention.
The pending patent CN101355031 refers to the method for the preparation of CuCrO2 p-type transparent oxides, not related to the objects of the present invention.
The pending patent CN101308109 refers to p-type delafossite based on Copper-Iron-Oxygen, either doped or not, for application in ozone sensors and fabrication methods involved, not included in the objects of the present invention.
The patent CN101260507 refers to the sintering process of ceramic targets of p-type semiconductors based on copper-doped nickel oxide, processed at very high temperatures, and the preparation method thereof, not included in the objects of the present invention.
The patent application or patent H01L27/02B2 refers to the fabrication of layers involved in the production and method for Metal-Oxide-Semiconductor Complementary devices in order to form, for example, the p-type metal oxide transistor, with the formation of active zones in the semi-conducting layer through the opening of appropriate windows where the base material, which is zinc oxide, is annealed, in order to render it p-type, the entire process being conducted at high temperatures, not related to the objects of the present invention in terms of methods, materials and process temperatures.
The pending patent KR20080064592 refers to the composition of p-type transparent oxides, quite dissimilar from the materials that are object of the present invention.
The pending patent CN201038163 refers to semiconductor tubes based on metal oxides for application in high voltage p-type grid devices, quite dissimilar from the objects of the present invention.
The pending patents EP1240941, JP03047966, JP405074653, JP06326104 refer to the catalytic preparation of p-type copper and aluminum semiconductor oxides, these materials being quite dissimilar form the ones that are object of the present invention.
The pending patent KR20070105002 refers to p-type metal oxides and fabrication methods thereof, not coincident with the methods and materials that are object of the present invention.
The pending patent CN2938408 refers to p-type metal oxides for applications in high voltage semi-conductive devices, not related to the objects of the present invention.
The pending patent KR20020028476 refers to the fabrication method of p-type semiconductor oxides which does not include the production methods of the non-stoichiometric monoxides of the present invention, both having in common the fact of using high dielectric constant dielectrics.
The pending patent KR20020002065 refers to the fabrication method of p-type oxide-based transistors, involving processes and materials dissimilar from the objects of the present invention.
The pending patent WO2006012444 refers to p-type metal oxide semiconductor field effect transistors (PMOSFET) in enhancement mode operation in which the active layer is the p-type semiconductor oxide, based on SRAM-type cells, while the patent G11C11/412 also refers to the same type of device, quite dissimilar from the objects of the present invention.
The pending patent US2005151164 refers to field effect transistors based on p-type metal oxides in enhancement mode operation whose structure includes a tensile strained thin layer (first thickness) disposed over the substrate between which another compressed layer is disposed (second thickness), whose thicknesses allow controlling the mobility and type of charge carriers, quite distant from the operating objects of the present invention.
The pending patent CN1487594 refers to semiconductor metal oxides in the form of p-type nanotubes or tubes for applications in high voltage devices, dissimilar from the objects of the present invention.
The pending patent US2003057495 and other related patents refer to copper-aluminum p-type semiconductor oxides, processed at high temperatures, for essentially passive applications, bearing nothing in common with the objects of the present invention.
The pending patent JP2001322814 refers to p-type oxides and fabrication method thereof not included in the materials and process conditions that are object of the present invention.
The pending patent TW428235 refers to the fabrication method of p-type oxides, dissimilar from the ones of the present invention.
The pending patent JP11162971 refers to the fabrication method and production of p-type oxides, not involving the materials that are object of the present invention.
Materials related to the present invention are the SnO oxides processed at high temperatures (around 575° C.) [1, 2], not including metal Sn embedded in their structure, with the consequence that the material cannot be processed at quite lower temperatures, in amorphous or polycrystalline structures, because the material is always polycrystalline in reference 13. On the other hand, the initial target can be a metallic, which is not the case in the previously cited reference.
The other known result closer to one of the objects of the present invention is the use of copper monoxide, processed at a temperature above 600° C., for the TFT channel layer [12] but not exhibiting the presence of any Cu metal cation, neither the room temperature processing of structures, presenting amorphous or polycrystalline structures. In addition, the use of NiO as p-type material in the production of p-n junctions is known [3], also processed at very high temperatures, but nothing is known about their use in bulk structures containing Sn and Ni alloys or metal elements as p-type channel in the fabrication of TFT. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to the field of joining tables in database queries, and more particularly, to the joining of fields that are similar in document-oriented databases.
Join operations on relational databases are useful to extract the required data that spreads across multiple normalized databases. To perform join operation, a common attribute or field is selected in the databases of interest and used to create a virtual table with desired field values from the joined databases. Unlike relational databases, non-relational database join operations generally do not share standard database schema definitions. Non-relational databases, known as document-oriented or ‘NoSQL’ databases have database schemas characterized as ‘dynamic’ and are often nested or hierarchically defined. NoSQL queries often only access fields that have the related document schema as joining data tables is established using exact matching of common field names between documents. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are many occasions when, in casting reinforced concrete members, one length of reinforcing steel has to be connected at its end to another length to form a continuous member. To ensure the integrity of the finished member, it is essential that the tensile strength of the interconnection is at least as great as the tensile strength of the reinforcement.
Various interconnectors have been used in the past. For example, hollow threaded interconnection members have been provided, and ends of a reinforcing bar have been correspondingly threaded. In another prior example, rather than using a threaded interconnection, an interconnecting sleeve has been crimped to an end of one section of a reinforcing bar and connected by a thread to a second section. Where this has proved disadvantageous, the second section of the bar has been fixed within the connector by an epoxy resin adhesive. In other applications, one length of reinforcing steel has been welded to another.
Prior arrangements of this nature have suffered from disadvantages, not only from cost considerations, but also from difficulty of connection and time taken to connect. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present embodiments relate to a medical imaging device.
In medical imaging examinations that use a long scanning time, such as, for example, magnetic resonance examinations, SPECT examinations, PET examinations, etc., a patient movement may lead to artifacts in the medical slice images. A correction of this patient movement in the detected medical data may at least reduce these artifacts. | {
"pile_set_name": "USPTO Backgrounds"
} |
So-called “embedded-die” technologies, where one or more semiconductor chips are surrounded with a plastic package by techniques such as molding-in, laminating-in or building-up of the plastic layer by layer, have numerous advantages over conventional technologies, where the semiconductor chip is applied to a substrate via contacts such as solder balls and is subsequently surrounded with a plastic package.
The “embedded-die” technologies therefore allow, for example, smaller and lighter devices and make the solid connection of a number of chips in a single package and a higher density of electrical connections possible.
Moreover, the “embedded-die” technologies offer advantages in production. A method is known for producing a semiconductor device with semiconductor chips molded into a plastic molding compound to form a composite panel or a blank, the active upper sides of the semiconductor chips forming a coplanar surface area with the upper side of the composite panel, while their edges and the rear side are covered by the plastic package molding compound. A wiring structure with interconnects that are separated from one another by dielectric layers can be applied particularly well and precisely to the coplanar surface area, without warping due to different materials with different coefficients of thermal expansion.
In the case of such a composite panel or a blank, it is imperative that, for example before the photolithographic processes, a determination of the orientation is carried out. For this purpose, laser markings are usually applied to the plastic packages. Applying these laser markings, however, requires a separate process step and consequently takes a considerable amount of time and incurs additional costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
The fabrication of some devices often requires capping layers for surface protection and pattern delineation. Such surface layers are useful during fabrication as well as on completed devices. Requirements for such films differ widely depending on the particular fabrication procedure, material, etc. Usually, adherence, stability (particularly toward moisture), and effectiveness as a diffusion barrier are of principal importance. Also, stability, adherence, etc., at high temperatures are desirable where high temperatures are used during fabrication of the device or on subsequent use of the device. In addition, with some applications and fabrication procedures, it might be advantageous for the protective layer to be at least partially transparent to radiation including radiation in the infrared, visible, ultraviolet, X-ray and gamma ray regions. Also, stress conditions imposed by the glass layer are critical to the use of various glass layers particularly where heat treatment of semiconducting compounds containing dopants is involved.
Optical devices are becoming of increasing importance principally because of the development of optical communications systems and certain types of display systems. Because of these developments, various optical devices including semiconductor optical devices are becoming increasingly important so that economic and effective techniques for manufacturing such devices are in great demand. Coatings that are suitable for use on optical devices including semiconductor optical devices are highly desirable. Such coatings should be stable, unaffected by ordinary atmosphere substances such as moisture, chemicals, etc., adherent and be able to withstand temperatures used to fabricate the devices or in the use of the devices. In many devices, the coating should also be transparent at various parts of the radiation spectrum. Where the coating is used to encapsulate optical devices, it should be transparent to the part of the radiation spectrum where they operate. Exemplary optical devices are light emitting diodes, lasers and optical detectors. Coatings are often used as barrier layers in annealing procedures and various other heat-treatment procedures. Here, the layers should prevent diffusion of semiconductor material out through the glass layers of diffusion of doping material out through the layer or into the semiconductor material either through or from the glass layer. Often, the thermal expansion properites of the glass layer also plays an important role in the heat-treatment procedure.
It should be remarked that the term "optical" is used in a broad sense and is not limited to visible radiation. The term optical radiation refers to any useful radiation and includes infrared radiation, untraviolet radiation, X-ray and gamma ray radiation, etc.
In the fabrication of some devices it is advantageous to have protective layers that are transparent to radiation. For example, it might be advantageous to observe the surface under the protective layer during device fabrication or at various steps during device fabrication.
Typical semiconductor optical devices have been described in a variety of references including Light Emitting Diodes by A. A. Bergh and P. J. Dean, Clarenden Press, 1976, and Injection Electroluminescent Devices by C. H. Gooch, John Wiley and Sons, New York, 1973; and Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer, Academic Press, 1966, Vol. 2, Physics of III-V Compounds. Such devices include semiconductor lasers, opto-isolators, light emitting diodes, light detectors, solar cells, etc.
A particularly rapid development has been occurring in the last few years in semiconductor optical devices. Much of this development is related to improving lifetime performance of semiconductor lasers, improving the performance of avalanche photodetectors and related semiconductor optical devices. Other developments are related to the extension of interest toward lower optical frequencies (principally in the infrared region) where some optical systems (i.e., optical communication systems) exhibit superior performance. Also, a greater variety of materials are being considered for these devices so as to improve performance. Often, these materials require surface protection either during fabrication of the device or when the completed device is being used. Also of increasing importance is the fabrication of other (non-optical) III-V semiconductor devices as well as all types of II-VI semiconductor devices. More efficient, cheaper, faster fabrication of these devices is also highly desirable.
Sample preparation of glasses for use as targets in particle bombardment deposition procedures has been described in a number of publications. For borosilicate glass, such a procedure has been described by I. Camlibel et al in U.S. Pat. No. 4,374,391, issued Feb. 15, 1983. | {
"pile_set_name": "USPTO Backgrounds"
} |
Protease-activated receptors (PARs) are a family of G protein-coupled receptors activated by the proteolytic cleavage of their N-terminal extracellular domain, exposing a new amino terminal sequence that functions as a tethered ligand to activate the receptors. (Zania et. al., J Pharmacol Exp Ther. 2006 July; 318(1):246-54). Four different PARs have been identified as PAR1, PAR2, PAR3 and PAR4, responding to a group of serine proteases. Modulation of PAR1-mediated signaling activities has several therapeutic applications. Interest in PAR-1 was initiated from its involvement in thrombin-induced activation of platelets. Subsequently, PAR-1 activation was found to mediate several processes in vascular biology, inflammation, malignancy, and tissue remodeling in normal development. Inhibition of PAR1 is helpful for treating thrombotic and vascular proliferative disorders as well as for inhibiting progression of cancers. PAR1 has been shown to be involved in a variety of primary human cancers including those of breast, colon, prostate, ovary and melanoma. (Zania et. al., 246-54; Wilson et. al., Cancer Res 2009, 69(7), 3188-3194; Gao et. al., Biol. Chem. 2010, 391, 803-812; Trivedi et. al., Cell 2009, 137(2), 332-343; Borensztajn et. al., Thrombosis Research 2009, 124, 219-225; Day et. al., J Thorac Cardiovasc Surg. 2006, 131, 21-7; Cunningham et. al., J. Exp. Med. 2000, 191, 455-62; Niessen et. al., Nature, 2008, 452, 654-658; Bar-Shavit et. al., US 20090215683; Perez et. al., US 20090176803; Hirano et. al., US 20100063048; Mackman et. al., US 20090022729; Teng et. al., US 20020004518).
Platelets are key mediators of thrombosis. Drugs that interfere with platelet activation substantially improve survival in arterial thrombotic disease. (Dowal et. al., Current Vascular Pharmacology, 2010, 8, 140-154). In the case of thrombus formation, the activation of platelets is initiated through the thrombin receptor pathway. The SFLLRN peptide activates platelets through PAR1. Upon activation, the platelets undergo many changes induced by multiple signaling cascades. One downstream effect of activation is the secretion of granules, which then potentiates platelet functions in controlling bleeding. Granule secretion also contributes to the growth of thrombi.
Several categories of antiplatelet agents are presently under development including those directed at platelet adhesion proteins, those directed at signaling proteins, and those directed at ligand binding sites on GPCRs. Another strategy for developing improved antiplatelet reagents directed at GPCRs is to develop drugs that act via mechanisms other than competitive antagonism at the ligand binding site. Allosteric modulators can bind GPCRs outside of the ligand binding site and induce a conformational change in the receptor. Pharmacological properties of such modulators suggest that they may have favorable therapeutic indices and increased specificity compared with competitive antagonists. In addition, reagents that target intracellular loops of GPCRs have been developed and may prove to be useful reagents for modulating GPCR signaling. (Dowal et al.).
Nishida et al. discloses morpholine compounds as factor IXa inhibitors and for the treatment of blood coagulation. (WO 2010/065717). Bauer et al. discloses a series of menthol substituted antithrombotic agents. (WO 2003/080564). Folkes et al. discloses a group of inhibitors of plasminogen activator inhibitor-1 for the treatment of thrombotic disorders. (GB 2372986, 2002). Beight et al., discloses dibenzoylbenzediamines as antithrombotic agents. (WO 1999/00127).
Jeffrey et al., discloses benzamide derivatives as allosteric modulators for the treatment of neurological and psychiatric disorders. (WO 2008/151184 A1). Zhou et al. discloses the use of a group of diaminophenyl derivatives for the treatment of pain, anxiety, depression, cocaine addiction and fragile X-syndrome. (Bioorg Med Chem Lett. 2009, 19(23):6502-6). Platelets represent a good cellular target for pharmacological manipulation via allosteric modulation. One of the problems in developing an antiplatelet agent is achieving a potent antiplatelet effect while avoiding hemorrhagic complications. Development of allosteric modulators of platelet function could limit bleeding complications associated with many current antiplatelet agents. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to an apparatus, specifically a circuit, that performs a three-wire ratiometric to two-wire excitation conversion.
2. Description of the Prior Art
Thermometry has many applications that cross a wide variety of technical disciplines including, but not limited to, temperature measurement, control and compensation. In one application, a thermistor type cardiac catheter is used to measure blood temperature for thermodilution studies. A saline or dextrose solution, having a known volume and temperature, is injected into the blood stream through one of the catheter lumens. The solution mixes with the blood and is diluted as it is carried downstream past a thermistor located at the surface of another catheter lumen. At the thermistor location, the temperature of the blood-injectate mixture is measured over a period of time. The cardiac output (efficiency) is computed from the temperature-time response data. Such temperature measurement depends, at least in part, on a resistance-temperature characteristic of the thermistor, also known as the beta characteristic.
The Association for the Advancement of Medical Instrumentation (AAMI) provides standards for the operation of electronic devices in medical equipment. These standards help to ensure the safety of the patient. For example, a catheter used to measure the temperature of blood inside a blood vessel will have more stringent operational parameters than a catheter used to monitor the body temperature rectally.
There are various types of catheters and connectors for the catheters. A first type of catheter that is used for cardiac thermodilution studies has a three-wire connector and a ratiometric response. This catheter operates under tight tolerances to ensure the safety of the patient. The current is kept to less than 50 microamperes and the voltage is kept to less than 800 millivolts. This catheter is very reliable and accurate, and is available at a low cost.
A second type of catheter that can be used for measuring body temperature, for example, rectally, has a two wire connector and a resistive response. The operational characteristics for the second type of catheter are not as stringent as for the first type of catheter. Therefore, this catheter cannot be used for cardiac thermodilution studies. Moreover, the second type of catheter may cost more than the first type of catheter.
In addition, the thermistors used in the first and second types of catheters may have different resistance-temperature characteristics. Over any specified temperature range for which the slope of a given material system curve may be considered to be constant, the resistance of a thermistor at any temperature within the specified range may be expressed as: R T = R TO xe2x80x83 exp xe2x80x83 [ β ( T o - T ) T xe2x80x83 T o ] ,
where RT is the resistance at an absolute temperature T expressed in kelvins (xc2x0 C.+273.15); xcex2 is the xe2x80x9cbetaxe2x80x9d or xe2x80x9cmaterial constantxe2x80x9d, and represents the slope of the thermistor""s resistance-temperature characteristic (in kelvins) over the specified temperature range; and, RTO is the resistance at a specified reference temperature, To that is also expressed in kelvins. Typically thermistor manufacturers provide beta information for their devices.
Monitors that attach to the second type of catheter provide a two-wire connector and expect a resistive response, and not a three wire connector with a ratiometric response. In addition, these monitors are designed for a specific resistance-temperature characteristic provided by a particular two-wire catheter. Therefore, catheters having a three-wire connector cannot be used with such monitors because of the differences in the connector and resistance-temperature characteristic. This increases cost and inconvenience because medical service providers need to have different types of catheters for the different monitors and measurements.
Therefore, there is a need for an apparatus that allows the three-wire catheter with the ratiometric response to be used with monitors having two-wire connectors and expecting a resistive response. This apparatus should also provide a two-wire response signal having a particular resistance-temperature characteristic over a predetermined temperature range.
The present invention satisfies this need by providing an impedance converter module that allows a 3-wire device with a ratiometric response to be used with a 2-wire monitor expecting a resistive response. An impedance converter module has a phase reversal circuit to receive a 2-wire excitation signal at first and second terminals, and to provide a polarized excitation signal with a predetermined polarity based on the 2-wire excitation signal. A series current path has a sense resistor connected in series with a variable impedance source. The polarized excitation signal is applied across the series current path. An output-voltage-sense circuit provides an output-voltage-sense signal based on a voltage across the series current path. A current mirror provides a drive signal to a ratiometric device based on current flowing through the series current path. Differential amplifiers receive a ratiometric response signal from the ratiometric device, and output measurement signals based on the ratiometric signal. A summing node combines the measurement signals to provide a single-ended ratiometric signal. The variable impedance source is controlled to provide a two-wire response signal at the 2-wire terminals based on the single-ended ratiometric signal and the output-voltage-sense signal.
In this way, the impedance converter module allows a device having a ratiometric response to be used with a monitor expecting a resistive response. The three-wire ratiometric signal from the device is converted to a two-wire output signal that has a desired output resistance over a predetermined range. | {
"pile_set_name": "USPTO Backgrounds"
} |
Construction projects often require that the earth be excavated to define a cut surface that is vertical or nearly vertical. Depending upon the characteristics of the earth at the point where the cut surface is formed, a wall system may be used to stabilize the earth at the cut surface. The wall system used to stabilize the earth is often referred to as a mechanically stabilized earthen (MSE) wall.
A mechanically stabilized earthen wall typically comprises a structural wall designed to remain upright to stabilize the earth at the cut surface. The structural wall may comprise stacked wall components such as stones, concrete blocks, or concrete panels or may be formed of a solid wall structure such as a cast-in-place concrete wall.
Depending on factors such as the height of the structural wall, the material forming the earth at the cut surface, and the loads to which the structural wall may be subjected, an anchoring system may be formed to further stabilize the structural wall. The anchoring system is typically connected to the structural wall and extends back into the earth to inhibit movement of the structural wall relative to the earth.
The need thus exists for improved anchoring systems and methods for mechanically stabilized earthen walls. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a dispensing apparatus for a liquid crystal display panel, and more particularly, to a complex dispensing apparatus capable of simplifying fabrication processes by forming of silver paste and sealant with one complex line and a dispensing method for a liquid crystal display panel using the same.
2. Discussion of the Related Art
In the recent information oriented society, importance of visual display devices has increased. Requirements for better display devices having low power consumption, thin thickness, light weight and high picture quality have to be satisfied. Because the characteristics of LCD (liquid crystal display) devices satisfy all those conditions and are suitable for mass-production, various new LCD products have been rapidly developed. LCD devices have become the core industry gradually replacing the conventional CRT (cathode ray tube) devices.
In general, the liquid crystal display devices display a picture by adjusting a light transmittance ratio of liquid crystal cells by respectively supplying a data signal according to picture information to the liquid crystal cells arranged as a matrix form.
Generally, the liquid crystal display devices include a liquid crystal display panel having a driving circuit unit in order to output pictures, a backlight unit installed at the lower portion of the liquid crystal display panel to emit light to the liquid crystal display panel, and a chassis, etc. for combining and supporting the backlight unit and the liquid crystal display panel.
Hereinafter, the liquid crystal display panel will be described in detail with reference to FIG. 1.
FIG. 1 is a schematic plan view illustrating a structure of a related art liquid crystal display panel.
In FIG. 1, the liquid crystal display panel largely includes of an array substrate 20 having a driving circuit unit (not shown), a color filter substrate 30, and a liquid crystal layer (not shown) formed between the array substrate 20 and the color filter substrate 30.
Herein, on the array substrate 20, a plurality of gate lines 21 and data lines 22 are arranged lengthwise and breadthwise, respectively, on the substrate 20 to define a plurality of pixel regions. In addition, a TFT (thin film transistor) (not shown) is formed at each crossing of a gate line 21 and a data line 22, and a pixel electrode (not shown) is formed at each pixel region.
In addition, a certain portion (consisting of a shorter side and a longer side) of the array substrate 20 extends beyond the respective sides of the color filter substrate 30 to allow for the formation of the driving circuit unit for driving the liquid crystal display panel. In particular, a gate pad unit 24 is formed at the extended shorter side of the array substrate 20, and a data pad unit 23 is formed at the extended longer side of the array substrate 20.
Herein, the gate pad unit 24 supplies a scanning signal from a gate driving circuit unit (not shown) to the gate line 21 of each pixel region as a picture display region 25, and the data pad unit 23 supplies picture information from a data driving circuit (not shown) to the data line 22 of each pixel region.
In the meantime, a color filter (not shown) for implementing color and a common electrode (not shown) as an opposed electrode of the pixel electrode formed on the array substrate 20 is formed in the picture display region of the color filter substrate 30.
A cell gap is formed between the array substrate 20 and the color filter substrate 30 using a spacer (not shown) to separate the substrates uniformly, and they are attached by a seal pattern 40 formed at the edge of the picture display region 25. Accordingly, a unit liquid crystal display panel is obtained. The two substrates 20, 30 are attached using an alignment key (not shown) formed at the array substrate 20 or the color filter substrate 30.
In order to fabricate the above-mentioned liquid crystal display panel, in particular, in order to attach the array substrate to the color filter substrate, a process for forming a seal pattern on the edge of the picture display region is required, and a general seal pattern forming method will be described in detail with reference to accompanying drawings.
First, FIGS. 2A and 2B are exemplary views illustrating forming a seal pattern by a general screen-printing method.
As depicted in FIGS. 2A and 2B, a screen mask 50 is patterned to expose a plurality of seal patterns 40A-40C forming regions selectively and a rubber squeegee 55 is used for forming the plurality of seal patterns 40A-40C simultaneously by selectively supplying a sealant 70 to the substrate 10 through the screen mask 50.
The plurality of seal patterns 40A-40C formed on the substrate 10 provide a gap in which a liquid crystal layer (not shown) is formed and prevent liquid crystal from being leaked from picture display regions 25A-25C.
Accordingly, the plural seal patterns 40A-40C are formed along the edge of the picture display regions 25A-25C, and liquid crystal injection holes 45A-45C are formed at a side of the seal patterns 40A-45A respectively.
The above-mentioned screen-printing method includes forming a plurality of seal patterns 40A-40C on the substrate 10 by coating sealant 70 onto the screen mask 50 on which the plurality of seal patterns forming regions are patterned and printing the seal patterns 40A-40C by applying the rubber squeegee 55 and drying the seal patterns 40A-40C for leveling by evaporating a solvent contained in the plurality of seal patterns 40A-40C.
Because of the convenient processing advantage, the screen-printing method is generally used. However, forming the plurality of seal patterns 40A-40C by coating the sealant 70 on the entire surface of the screen mask 50 and printing it with the rubber squeegee 55 causes a large amount of sealant 70 to be consumed.
In addition, the contact of the screen mask 50 and the substrate 10 may cause an alignment layer (not shown) formed on the substrate 10 to have a rubbing defect, and accordingly picture quality of the liquid crystal display devices may be reduced.
Accordingly, in order to solve the problem of the screen-printing method, a seal dispensing method has been presented.
FIG. 3 is an exemplary view illustrating forming a seal pattern by a related art seal dispensing method. In FIG. 3, a sealant is discharged by applying a uniform pressure to a plurality of syringes (180A-180C) arranged fixed at a support rod 185 while a table 115 on which a substrate 110 is loaded is moved front and rear (and right and left). Thus, a plurality of seal patterns 140A-140C are formed along the edge of picture display regions 125A-125C of the substrate 110.
In the seal dispensing method, by selectively supplying a sealant only to the edge of the picture display regions 125A-125C of the substrate 110, the amount of the sealant consumed can be reduced. In addition, because the plurality of syringes 180A-180C do not contact the picture display regions 125A-125C of the substrate 110, rubbing inferiority of an alignment layer (not shown) can be prevented. Accordingly, picture quality of a liquid crystal display can be improved.
However, the seal dispensing method cannot efficiently accommodate substrates having increased area or picture display regions having different areas (125A-125C) formed on the substrate 110, which may result from a change in the model or type of a liquid crystal display panel being manufactured.
In more detail, a recent trend to liquid crystal display panel having a large area, the area of the substrate 110 for fabricating a large-sized liquid crystal display panel is increased. Accordingly forming positions of the seal patterns 140A-140C are changed on the substrate 110. In the above-mentioned seal dispensing method, when forming positions of the seal patterns 140-140C are changed, the dispensing apparatus has to be reconstructed by disassembling and reassembling the support rod 185 and the syringes 180A-180C.
When a model of the liquid crystal display panel is changed, an area of the picture display regions 125A-125C formed on the substrate 110 is changed, and accordingly positions of the seal patterns formed at the edge of the picture display region 125A-125C are changed. In the seal dispensing method, when positions of the seal patterns 140A-140C are changed, by disassembling and re-assembling the support rod 185 and the syringes 108A-180C, the dispensing apparatus has to be reconstructed.
Accordingly, man-power is required, a time required for processing is increased, and, accordingly, productivity may be lowered.
In the meantime, either before or after the seal dispensing step, a silver dot is formed on the array substrate or the color filter substrate. Hereinafter, the silver dot will be described with reference to accompanying drawings.
FIG. 4 is a schematic sectional view illustrating the edge of the liquid crystal display panel in FIG. 1.
In FIG. 4, an array substrate 120 and a color filter substrate 130 face each other and are attached so as to have a certain gap by a spacer 155 and a seal pattern 140, and a liquid crystal layer 160 is formed in the gap between the array substrate 120 and the color filter substrate 130.
Herein, not shown in FIG. 4, a gate line to which a scanning signal is applied through a gate pad unit and a data line to which picture information is applied through a data pad unit are arranged so as to cross each other in a picture display region of the array substrate 120, and a TFT (thin film transistor) for switching a liquid crystal cell and a pixel electrode contacted to the TFT are formed in the crossing region.
In addition, a color filter (not shown) divided-coated by cell regions by a black matrix (not shown) and a common electrode 138 for driving a liquid crystal layer 160 with a pixel electrode formed on the array substrate 120 are formed in a picture display region of the color filter substrate 130.
Herein, a common voltage wiring 139 for applying a common voltage to a common electrode 138 on the color filter substrate 130 is formed on the array substrate 120, and the common voltage wiring 139 and the common electrode 138 are electrically connected through a silver dot 190 formed on the array substrate 120 or the color filter substrate 130.
In the meantime, because the silver dot and the seal pattern are formed in different processing steps by using different dispensing apparatus, a time required for the entire processing is increased, and accordingly productivity may be lowered.
In particular, in case of performing the general processing even in fabrication of liquid crystal display devices not requiring the silver dot forming process (for example, IPS (in-plane switching) liquid crystal display devices), efficiency related to facility usage and fabrication time may be lowered. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an improved structure for wire outlet covers, more particularly, to an improved structure for a wire outlet cover adapted for network wiring.
2. Description of Related Art
As shown in FIG. 1, a perspective view illustrating a conventional wire outlet cover, the outlet end 81 of an wire outlet cover body 8 extends to outside of a carton 4, where a stop ring (not shown) of the body 8 stands and stops at interior of the carton 4. A collar 9 rotates, after passing through the outlet end 81 of the body 8, such that a T-arm 810 extending from the outlet end 81 can be stopped by a stop block 91 of the collar 9, and that the carton 4, at its sidewall, can be secured between the stop ring of the body 8 and the collar 9. However, for the conventional wire outlet cover, where the body 8 relates to a straight tube of circular section, the body 8 has a smaller bore for wire outgoing. This will cause a twist 31 of wire when outward introducing of a network wire 3, or even a winding of wire around an inlet of the wire outlet cover. As such, if a user pulls the network wire 3, with some extent of force, from outside of the carton 4, the network wire 3 would be bent, making damage to transmission property of the network wire 3.
As such, an improved structure for a wire outlet cover becomes a demand for consumers such that the wire outlet cover can have a smooth network wire outgoing without twist of, and damage to the transmission property of, the network wire. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the field of angioplasty. In particular, the present invention relates to a balloon catheter which permits prolonged inflation of the balloon within a blood vessel, such as a coronary artery, without blocking blood flow by utilizing passive perfusion.
Angioplasty has gained wide acceptance as an efficient, effective and alternative method of treating constrictions caused by undesirous tissue growth or lesions on the inner walls of the blood vessels. Such tissue growth or lesions cause a narrowing of the blood vessels called a "stenosis" which severely restricts or limits the flow of blood. In the most widely used form of angioplasty, a dilatation catheter, which has an inflatable balloon at its distal end, is guided through the vascular system. With the aid of fluoroscopy, a physician is able to position the balloon across the stenosis. The balloon is then inflated by applying fluid pressure through an inflation lumen of the catheter to the balloon. Inflation of the balloon stretches the artery and presses the stenosis-causing lesion into the artery wall to remove the constriction and re-establish acceptable blood flow through the artery.
One disadvantage of many balloon catheters of the prior art is the complete occlusion of the blood vessel that results while the balloon is inflated. Prolonged complete blockage of a blood vessel poses serious risk of damage to the tissue, downstream from the occlusion, which is deprived of oxygenated blood. This consequence poses a severe limitation on the length of time the balloon can remain expanded within an artery to effectively treat the stenosis. Longer inflation times increase the probability that the artery will remain open after the catheter is removed.
Various methods for providing passive perfusion of blood through or past the inflated balloon are found in the following prior art references: Guiset U.S. Pat. No. 4,183,102; Baran et al. U.S. Pat. No. 4,423,725; Sahota U.S. Pat. No. 4,581,017; Hershenson U.S. Pat. No. 4,585,000; Horzewski et al. U.S. Pat. No. 4,771,777; Mueller et al. U.S. Pat. No. 4,790,315; Songer et al. U.S. Pat. No. 4,892,519; Goldberger U.S. Pat. No. 4,909,252; Sogard et al. U.S. Pat. No. 4,944,745; Sahota U.S. Pat. No. 4,983,167 and European patent application 0 246 998; Boussignac et al. U.S. Pat. No. 5,000,734; Patel U.S. Pat. No. 5,000,743; and Bonzel U.S. Pat. No. 5,002,531.
A disadvantage of prior tubular-shaped, perfusion balloon catheters is the additional manufacturing steps necessary to connect outer and inner skins of the balloon to create a perfusion passage between the up-stream side of the balloon and the down-stream side of the balloon. Another disadvantage is the risk of interrupted integrity of the balloon at the seams created by the connection of outer and inner skins. Additionally, tubular-shaped balloons of the prior art are relatively stiff due to the seams and internal support structures. There is still a need in the field, therefore, for a balloon catheter with good flexibility and a perfusion cavity which, when inflated within an artery, permits good arterial blood flow, and yet is capable of being manufactured with relative ease and minimal cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the fabrication of semiconductor integrated circuits, and more specifically to a method for forming interconnect and contacts to lower conducting layers, and the structures formed thereby.
2. Description of the Prior Art
In scaling down the dimensions of semiconductor integrated circuit structures, a severe limitation is encountered regarding the alignment of contact patterns and interconnections. Misalignment of the interconnect lead pattern with respect to the contact pattern can drastically reduce the actual contact area, which greatly increases contact resistance. In order to compensate for possible misalignment, the dimensions of the interconnect lines are typically enlarged at the contact location to ensure complete overlap with the contact opening even in the case of maximum misalignment. This reduces device density on the circuit.
Polycrystalline silicon is typically used for the lower levels of interconnect. Polycrystalline silicon is relatively stable during later high temperature processing steps, and bonds well to underlying layers. However, the use of polycrystalline silicon does have some drawbacks. Even if it is heavily doped with impurities, the resistivity of polycrystalline silicon is usually too high to be useful as a conductive interconnetion layer. This problem is usually overcome by forming a refractory metal silicide layer over the polycrystalline silicon. This silicide layer has a relatively low resistivity, and becomes the primary path for current flow through the interconnect layer.
Although interconnection resistance is reduced by silicidation of the polycrystalline silicon interconnect, processing complexities are increased due to the requirement of etching both the silicide layer and the underlying polycrystalline silicon when defining the interconnect signal leads. Such etching of the two layer film is, in general, more difficult than etching a single film type such as polycrystalline silicon.
Another problem with the standard approach to interconnect silicidation is that the actual contact between the interconnect layer and the underlying substrate or lower interconnect layer is made only by the polycrystalline silicon in the upper interconnect layer. Thus, the resistivity of the polycrystalline silicon increases the resistance of the contact. In addition, a thin layer of oxide tends to grow on the exposed silicon in the bottom of the contact opening before the overlying polycrystalline silicon layer is deposited. When a metal is deposited directly in a contact, recombination of the oxygen with the metal tends to minimize the contact resistance. Unlike the deposition of a metal in a contact, deposition of the overlying polycrystalline silicon layer does not tend to remove this thin oxide layer. Thus, contact resistances tend to be higher than resistances caused by the remaining portions of the interconnect layer.
An additional problem that must be considered when depositing polycrystalline silicon over a contact is that a rectifying P-N junction is formed if the conductivity types of the two conductive layers are not the same. In some instances this junction may not be harmful, but in most cases a true ohmic contact is required. In CMOS circuits, wherein a single interconnect lead must make contact to both P-type and N-type substrates, additional measures must be undertaken to ensure that no rectifying junctions are formed. For example, one approach is to dope the interconnect layer with both P-type and N-type impurities, with the appropriate types being located near the appropriate contacts, and strapping the entire interconnect layer with a metal silicide layer. This causes the junction, formed only in the interconnect layer, to be shorted by the silicide layer, but introduces additional complexity and mask steps into the production process.
It would be desirable to provide a technique for forming integrated circuits which addresses the various problems described above. It would be desirable to provide a method and structure which minimizes interconnect resistance, contact resistance, and alignment considerations. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a ventilation control system for an elongated ceiling vent in a building, more particularly such a system including a vent door having a construction enabling a plurality of doors to be abutted together to enable the ventilation system to control virtually any length of ceiling vent opening.
Ventilation systems for farm buildings, factories and other work places may have an elongated ceiling vent opening to provide communication between the interior of the building and the ambient atmosphere to provide proper ventilation for the building. The known systems also include some type of door or damper to open or close the vent opening to regulate flow of air through the vent opening and, hence, the ventilation of the building.
In farm buildings, such as layer houses, the ventilation must be accurately controlled to provide the proper atmosphere within the building to maximize the egg production. Layer houses typically may be between 200 and 600 feet in length and have a plurality of vent openings in the ceiling each running the length of the building. The ceiling vent openings along with the associated doors or dampers are usually located in relatively inaccessible locations in the upper ceiling of the building. Thus, it is desirable for such a ventilation control system utilized in these surroundings to demonstrate reliable performance, since maintenance is difficult and time consuming. The location puts a premium on the reliability of such systems, since they are usually inaccessible for routine maintenance.
The known ventilation control systems include metal doors pivotally attached to the building structure adjacent to the ceiling vent opening and connected to an actuating system to move the doors between opened and closed positions. Due to the significant length of the ceiling vent openings, the weight of the metal doors requires a substantial connection to the building structure and requires a powerful actuator to move the door between the opened and closed positions. While such doors are well known, they have not proven to be entirely successful. The metal doors and the pivot attachments will corrode and rust over time, rendering them inoperative.
Another known system slidably attaches the door to inclined supports on each side of the door. To move the door between the opened and closed position, the actuator pulls the door along the inclined supports. Quite obviously, the friction generated between the doors and the inclined supports will increase over time, given the difficulty of providing routine lubrication and maintenance to the ventilation system. Again, this known type of ventilation control has not proven to be entirely reliable.
Thus, it is believed that a ventilation control system including lightweight doors fabricated from non-corroding and non-rusting materials would provide a significant benefit to the users of such ventilation control systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various kinds of X-ray microscopes are known which differ more or less with respect to the following: the optical configuration with respect to the beam source used, the optics for focussing the X-ray beam on the specimen to be investigated and the optics for imaging the specimen on the X-ray detector used to provide the image.
X-ray microscopes are described, for example, wherein mirror optics are used for imaging the specimen on the detector such as a Wolter optic which images the specimen with a grazing incidence of the X-radiation. The quality of the microscopic image generated with such microscopes is however not especially good since considerable imaging errors are associated with the mirror optics. In mirror optics operating with grazing incidence, the image error associated therewith is the so-called angle-tangent error. These image errors limit in principle the possible resolution which can be obtained with the microscope and is pregiven by the aperture of the optics.
X-ray microscopes are known wherein so-called zone plates are utilized for focussing the X-radiation on the specimen as well as for imaging the specimen on the detector. These zone plates make it possible (similar to very thin lenses) to provide an imaging of the object or specimen which is free of image faults and therefore of high resolution. However, the zone plates have a significantly less efficiency than mirror optics. The efficiency in practice lies between 5% and 15%, that is, a maximum of only 15% of the X-radiation impinging on the zone plate is utilized for imaging.
An overview of the various X-ray microscopes is provided in the text of D. Rudolph et al entitled "X-Ray Microscopy", Volume 43 (1984) and published by Springer.
Starting on page 192 of this text, an X-ray microscope is described wherein the condenser as well as the objective are configured as zone plates. The zone plate used as the condenser not only focusses the X-radiation on the object but also functions as a monochromator and separates the monochromatic radiation required for the high resolution imaging from the more or less expanded wavelength range supplied by the X-ray source. This takes place simply by a suitable pin-hole diaphragm on the optical axis which effects the condition that only one of the monochromatic images passes through the diaphragm with the image arising on the optical axis as a consequence of the wavelength dependency of the focal width of the zone plate.
The X-ray microscope described above is relatively light attenuating with the above-mentioned low efficiency because of the use of zone plates so that long exposure times result which can lead to motional blurring during exposure when taking recordings of living cells. For this reason, one is dependent upon the most intensive X-radiation sources.
For the reasons given above, synchroton radiation from electron storage rings is used almost exclusively. However, this brings with it the disadvantage that the X-ray microscope is not self-contained, that is, the user is tied to the few electron storage rings with respect to the measuring time which is available.
So-called plasma focus sources are also known as X-radiation sources. Such X-ray sources are described for example in U.S. Pat. No. 4,596,030 and do not however continuously supply X-radiation; instead, they supply short X-ray pulses which are followed by a relatively long dead time during which the capacitors of the X-radiation sources must be recharged. The X-radiation contained in one pulse is in many cases inadequate. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a washer nozzle used for cleaning a glass surface of, for example, a windshield, a head lamp or a mirror of a motor vehicle with a washing agent in order to remove stains such as dust, mud and so on.
2. Description of the Prior Art
Heretofore, there has been used a washer nozzle shown in FIG. 4 and FIG. 5, for example.
A washer nozzle 100 shown in the figures is provided with an outlet 103a for a washing agent in a nozzle holder 103 having a nearly hemispherical shape and forming a part of a nozzle case 102, and is provided with an inlet 104a for the washing agent in a cylindrical part 104 having pipe-like shape, forming another part of the nozzle case 102 and extending downwardly from the nozzle holder 103 in FIG. 4.
A nozzle body 101 formed with a jet 101a, is retained in the outlet 103a of the nozzle holder 103.
The cylindrical part 104 is provided with clicks 104b and 104c for engaging respectively to a nozzle fitting part 50a which is an opening cut through a vehicle panel 50 at positions opposed each other in FIG. 4.
The nozzle fitting part 50a is formed from a circular hole 50b having an inner diameter slightly larger than the outer diameter of the cylindrical part 104 and a rectangular hole 50c extending in the left and right directions from the circular hole 50b in FIG. 5.
A rubber damper sheet 105 is fitted on the lower surface of the nozzle holder 103 around the cylindrical part 104 in FIG. 4, and the washer nozzle 100 is fixed to the vehicle panel 50 at a state in which the nozzle holder 103 stands out on the upper side of the vehicle panel 50 by forcing the cylindrical part 104 into the nozzle fitting part 50a from upward to downward in FIG. 4 and engaging the respective clicks 104b and 104c with respective end walls 50d of the rectangular hole 50c.
The cylindrical part 104 is connected with a feed pipe for feeding the washing agent in a communicating state with the inlet 104a, so that the washing agent fed through the feed pipe is sprayed toward a washing surface (not shown) from the jet 101a of the nozzle body 101 through the inlet 104a and the outlet 103a.
Although the abovementioned conventional washer nozzle 100 is bound by respective clicks 104b and 104c so as not to move in the left and right directions, it is not restricted in the upper and lower directions in FIG. 5 because the washer nozzle 100 is fixed to the vehicle panel 50 by engaging the clicks 104b and 104c provided to the cylindrical part 104 to the respective end walls 50d of the rectangular hole 50c at the nozzle fitting part 50a. Therefore, there is the possibility that the washer nozzle 100 shifts in the upper or lower direction in FIG. 5, and there is a problem since it is impossible to spray the washing agent in the required direction. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent high-speed, high-density signal transmission between electronic devices or between circuit boards, a customary transmission technique through electric wirings has began to reveal limitations in realization of high speed and high density signal transmission, because mutual interference between signals and electromagnetic noise from surroundings constitute barriers. In order to overcome such limitations, a technology for optically connecting between electronic devices or between circuit boards, a so-called optical interconnection, is being examined. A flexible optical waveguide having satisfactory flexibility has been considered to be suitable as an optical path, because this can be easily connected with a device or substrate (board) and has satisfactory handleability.
Customary flexible optical waveguides have employed epoxy compounds. Such epoxy compounds, however, show poor polymerization reactivity (curability), high skin irritancy, and high toxicity and thereby have disadvantages in handleability and safety, although they give cured objects which excel in chemical resistance and adhesion. Independently, there has been an attempt to adopt polyimides to flexible optical waveguides, but the attempt has proved as being limited, because the polyimides should be prepared at high temperatures; they are significantly restricted in solvents when they are handled as polymers to form polymer solutions; and they are very expensive.
Japanese Unexamined Patent Application Publication (JP-A) No. H10-25262 and Japanese Unexamined Patent Application Publication (JP-A) No. 2003-73321 disclose some alicyclic vinyl ether compounds as polymerizable compounds. These compounds show low skin irritation potential and thereby have improved safety, but are still insufficient in thermal stability and optical transparency and need improvements.
Japanese Unexamined Patent Application Publication (JP-A) No. H10-316670 discloses a vinyl ether compound having an oxetane ring in the molecule. This compound, however, is not always satisfactory, because the compound, when having a long glycol chain, gives a cured object having flexibility but showing insufficient thermal stability and optical transparency; and the compound, when having a short glycol chain, gives a cured object having insufficient flexibility. Japanese Unexamined Patent Application Publication (JP-A) No. H07-233112 and Japanese Unexamined Patent Application Publication (JP-A) No. H11-171967 disclose vinyl ether compounds each including, in the molecule, an alicyclic epoxy group composed of a cyclohexane ring and an oxirane ring bonded to each other. The compounds, however, show poor flexibility and are difficult to be adopted to flexible optical waveguides and other uses where flexibility is required, although they excel in thermal stability, optical transparency, and curing rate.
Japanese Unexamined Patent Application Publication (JP-A) No. 2008-266308 discloses a vinyl ether compound containing an oxetane ring. This compound, however, has poor flexibility and is hardly applicable to flexible optical waveguides and other fields where flexibility is required, although the compound excels in thermal stability, optical transparency, and curing rate. Japanese Unexamined Patent Application Publication (JP-A) No. 2006-232988 discloses an example in which a cyclic ether compound containing a vinyl ether structure is added with an epoxidized polybutadiene having hydroxyl groups at both terminals. The resulting compound is, however, inferior in thermal stability and optical transparency to vinyl ethers further having a reactive cyclic ether in the same molecule, because the compound has only vinyl ether as a reactive group. | {
"pile_set_name": "USPTO Backgrounds"
} |
When coated abrasives are made from conventional binders such as hide glue, varnish or phenolic resins, the manufacturing process can be both energy-intensive and time-consuming. For example, the widely-used phenolic binders must be dried at high temperatures for long times (e.g., at least about 2 hours at 90.degree. C. (195.degree. F.) for cure of phenolic size coatings). In an effort to reduce energy consumption and increase throughput, coated abrasive manufacturers have investigated electron-beam ("E-beam")-curable binders and photochemically-curable binders, e.g., as described in recently-issued U.S. Pat. Nos. 4,642,126 and 4,652,274.
A general shortcoming of radiation curing as applied to coated abrasive manufacture lies in the inherent difficulty of curing behind an abrasive grain in highly-filled or thick-section coated abrasive products. As a result, the abrasive grains may be poorly adhered on the backing, with concomitant poor product performance. Combinations of E-beam cure and thermally-initiated cure have been employed to overcome this shortcoming; however, such an approach still represents a compromise solution that can require considerable time and energy for completion of a thermal cure cycle.
Aryliodonium salts have been previously described for use as photoinitiators in addition-polymerizable compositions. References relating to such compositions include U.S. Pat. Nos. 3,729,313, 3,741,769, 3,808,006, 4,228,232, 4,250,053 and 4,428,807; H. J. Timpe and H. Baumann, Wiss. Z. Tech. Hochsch. Leuna-Merseburg, 26, 439 (1984); H. Baumann, B. Strehmel, H. J. Timpe and U. Lammel, J. Prakt. Chem, 326 (3), 415 (1984); and H. Baumann, U. Oertel and H. J Timpe, Euro Polym. J., 22 (4), 313 (April 3, 1986).
Mono- and di-ketones have also previously been described for use as photoinitiators in addition-polymerizable compositions. References relating to such compositions include U.S. Pat. Nos. 3,427,161, 3,756,827, 3,759,807 and 4,071,424; U.K. Pat. Specification No. 1,304,112; European Published Pat. Appl. No. 150,952 and Chem. Abs. 95:225704U. | {
"pile_set_name": "USPTO Backgrounds"
} |
A Computed Tomography (CT) device is to perform CT scan on a subject, such as a human body, with scanning rays, such as X-rays. Due to different densities of a subject, such as a human body, the scanning rays, such as x-rays, may have different penetration rates. A CT image may be reconstructed by receiving the scanning rays penetrating through the subject, converting the scanning rays into electric signals and then processing the electric signals with a computer.
NEUSOFT MEDICAL SYSTEMS CO., LTD. (NMS), founded in 1998 with its world headquarters in China, is a leading supplier of medical equipment, medical IT solutions, and healthcare services. NMS supplies medical equipment with a wide portfolio, including CT, Magnetic Resonance Imaging (MRI), digital X-ray machine, ultrasound, Positron Emission Tomography (PET), Linear Accelerator (LINAC), and biochemistry analyser. Currently, NMS' products are exported to over 60 countries and regions around the globe, serving more than 5,000 renowned customers. NMS's latest successful developments, such as 128 Multi-Slice CT Scanner System, Superconducting MRI, LINAC, and PET products, have led China to become a global high-end medical equipment producer. As an integrated supplier with extensive experience in large medical equipment, NMS has been committed to the study of avoiding secondary potential harm caused by excessive X-ray irradiation to the subject during the CT scanning process. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method of manufacturing an electric resistor suitable for use as a heating element.
Although various types of electric resistors have been proposed some of them are advantageous for certain application but not suitable for other applications and the types of the resistors are determined in accordance with their applications. For example, electric resistors used as heating elements in electric blankets are desired to have different lengths and resistance values dependent upon size, that is the length and width of the blanket. Further, as the blanket is frequently folded or bent, it is desirable that the resistor used therein should be flexible and thin. Such resistors should also be reliable, heat resistant, and able to be manufactured readily at low cost.
Ffor this reason, certain heating elements are made of metal ribbons. However, in order to obtain a heating element of a predetermined dimension it is necessary to use a metal ribbon of a considerable length thereby complicating the manufacturing steps. Further, in order to prepare products of different configuration and electrical capacity it is necessary to prepare metal wires or riibbons of different diameter and length.
A heating element in which fine metal wires are arranged in a mesh and embedded in a plastic sheet has also been developed. In such construction weft or wrap metal wires are used for heating and since the operating voltage is applied across parallely disposed wires there is a limit for voltage control. Moreover, when the spacing between adjacent metal wires is decreased for the purpose of making uniform the temperature distribution, the number of the metal wires is increased. Then, to assure the same power consumption or the rated power capacity it is necessary to reduce the diameter of the metal wire. Accordingly, it is necessary to prepare metal wires of different diameter for the purpose of manufacturing heating elements of different ratings.
Even when a number of wires of different diameters are prepared it is difficult to manufacture products of the desired dimension, size, thickness, configuration and electric capacity. In addition, it is difficult to obtain desired resistance values which vary over a wide range depending upon the application of the product. In other words, with the conventional resistance elements it is difficult to obtain products of any desired configuration and power rating unless an elaborate manufacturing facility is installed. The same problem exists in resistors utilized for other purpose than heating.
Terminals for connecting the resistors to other circuit components have been secured to the opposite ends of the resistors by mechanical means or welding. However, such methods are not only troublesome but also cannot eliminate the contact resistance between the resistors and the terminal fittings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that evokes a variety of cellular responses by stimulation of five members of the endothelial cell differentiation gene (EDG) receptor family. The EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (Gα) subunits and beta-gamma (Gβγ) dimers. Ultimately, this S1P-driven signaling results in cell survival, increased cell migration and, often, mitogenesis. The recent development of agonists targeting S1P receptors has provided insight regarding the role of this signaling system in physiologic homeostasis. For example, the immunomodulator, FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]propane 1,3-diol), that following phosphorylation, is an agonist at 4 of 5 S1P receptors, revealed that affecting S1P receptor activity influences lymphocyte trafficking. Further, S1P type 1 receptor (S1P1) antagonists cause leakage of the lung capillary endothelium, which suggests that S1P may be involved in maintaining the integrity of the endothelial barrier in some tissue beds. S1P type 4 receptors (S1P4) are expressed mainly in leukocytes, and specifically S1P4 mediates immunosuppressive effects of S1P by inhibiting proliferation and secretion of effector cytokines, while enhancing secretion of the suppressive cytokine IL-10. See, for example, Wang, W. et. al., (2005) FASEB J. 19(12): 1731-3, which is incorporated by reference in its entirety. S1P type 5 receptors (S1P5) are exclusively expressed in oligodendrocytes and oligodendrocyte precursor cells (OPCs) and are vital for cell migration. Stimulation of S1P5 inhibits OPC migration, which normally migrate considerable distances during brain development. See, for example, Novgorodov, A. et al., (2007) FASEB J, 21: 1503-1514, which is incorporated by reference in its entirety.
S1P has been demonstrated to induce many cellular processes, including those that result in platelet aggregation, cell proliferation, cell morphology, tumor-cell invasion, endothelial cell chemotaxis and angiogenesis. For these reasons, S1P receptors are good targets for therapeutic applications such as wound healing, tumor growth inhibition, and autoimmune diseases.
Sphingosine-1-phosphate signals cells in part via a set of G protein-coupled receptors named S1P1, S1P2, S1P3, S1P4, and S1P5 (formerly EDG1, EDG5, EDG3, EDG6 and EDG8). The EDG receptors are G-protein coupled receptors (GPCRs) and on stimulation propagate second messenger signals via activation of heterotrimeric G-protein alpha (Gα) subunits and beta-gamma (Gβγ) dimers. These receptors share 50-55% amino acid sequence identity and cluster with three other receptors (LPA1, LPA2, and LPA3 (formerly EDG2, EDG4 and EDG7) for the structurally related lysophosphatidic acid (LPA).
A conformational shift is induced in the G-Protein Coupled Receptor (GPCR) when the ligand binds to that receptor, causing GDP to be replaced by GTP on the α-subunit of the associated G-proteins and subsequent release of the G-proteins into the cytoplasm. The α-subunit then dissociates from the βγ-subunit and each subunit can then associate with effector proteins, which activate second messengers leading to a cellular response. Eventually the GTP on the G-proteins is hydrolyzed to GDP and the subunits of the G-proteins reassociate with each other and then with the receptor. Amplification plays a major role in the general GPCR pathway. The binding of one ligand to one receptor leads to the activation of many G-proteins, each capable of associating with many effector proteins leading to an amplified cellular response. Generally, compounds can switch from antagonists to agonist depending on what G protein is downstream of the receptor. When Gq is downstream a compound targeting the S1P4 receptor can act as an antagonist. It is possible that with a different G protein (Gi) downstream an agonist compound may be an agonist.
S1P receptors make good drug targets because individual receptors are both tissue and response specific. Tissue specificity of the S1P receptors is desirable because development of an agonist or antagonist selective for one receptor localizes the cellular response to tissues containing that receptor, limiting unwanted side effects. Response specificity of the S1P receptors is also of importance because it allows for the development of agonists or antagonists that initiate or suppress certain cellular responses without affecting other responses. For example, the response specificity of the S1P receptors could allow for an S1P mimetic that initiates platelet aggregation without affecting cell morphology.
Sphingosine-1-phosphate is formed as a metabolite of sphingosine in its reaction with sphingosine kinase and is stored in abundance in the aggregates of platelets where high levels of sphingosine kinase exist and sphingosine lyase is lacking. S1P is released during platelet aggregation, accumulates in serum, and is also found in malignant ascites. Reversible biodegradation of S1P most likely proceeds via hydrolysis by ectophosphohydrolases, specifically the sphingosine 1-phosphate phosphohydrolases. Irreversible degradation of S1P is catalyzed by S1P lyase yielding ethanolamine phosphate and hexadecenal. | {
"pile_set_name": "USPTO Backgrounds"
} |
Researches are positively conducted, mainly in the medical field, on imaging apparatuses that irradiate a subject with light from a light source, such as a laser, so that the light propagates in the subject and obtain information in the subject. As a type of such an imaging technique, photoacoustic tomography (PAT) has been proposed. PAT is a technique for visualizing information regarding optical properties in a living body (i.e., a subject) by irradiating the living body serving as the subject with pulsed light emitted from a light source, receiving an acoustic wave generated from a biological tissue having absorbed the light propagated and diffused in the living body, and analyzing the received acoustic wave. With this technique, biological information, such as a distribution of optical property values (hereinafter, referred to as an optical property value distribution) in the living body, particularly, a distribution of optical energy absorption densities (hereinafter, referred to as an optical energy absorption density distribution), can be obtained.
In PAT, an initial sound pressure P0 of an acoustic wave generated from a light absorber existing in a subject can be represented by the following expression.P0=Γ·μa·Φ Expression 1,where Γ denotes a Grüneisen coefficient, which is a result of dividing the product of a thermal coefficient of volume expansion or isobaric volume expansion coefficient (β) and a square of speed of light (c) by specific heat at constant pressure (Cp). It is known that the Grüneisen coefficient Γ is substantially constant for a specific subject. μa denotes an optical absorption coefficient of the absorber, whereas Φ denotes a light quantity in a local region (i.e., a quantity of light that the absorber is irradiated with and also called the “optical fluence”).
A change in sound pressure P representing the magnitude of the acoustic wave propagating in the subject is measured with respect to time and a distribution of the initial sound pressures (hereinafter, referred to as an initial sound pressure distribution) is calculated from the measurement result. A distribution of the product of μa and Φ, i.e., the optical energy absorption density distribution, can be obtained by dividing the calculated initial sound pressure distribution by the Grüneisen coefficient Γ.
As indicated by Expression 1, in order to obtain the distribution of the optical absorption coefficients μa (hereinafter, referred to as an optical absorption coefficient distribution) from the distribution of the initial sound pressures P0 (hereinafter, referred to as an initial sound pressure distribution), a distribution of the light quantities Φ (hereinafter, referred to as a light quantity distribution) in the subject has to be determined. Given that the light propagates in the subject like a plane wave when a region sufficiently large enough for thickness of the subject is irradiated with light of a uniform quantity, the light quantity distribution Φ in the subject can be represented by the following expression.Φ=Φ0·exp(−μeff·d) Expression 2,where μeff denotes an average effective attenuation coefficient of the subject, whereas Φ0 denotes a light quantity incoming from a light source to the subject (i.e., a light quantity on a surface of the subject). d denotes a distance between a region of the subject surface irradiated with the light emitted from the light source (i.e., a light irradiated region) and a light absorber existing in the subject. According to PTL1, a living body is irradiated with uniform light under a plurality of conditions and the average effective attenuation coefficient μeff of the subject is calculated. The light quantity distribution Φ in the subject is then calculated based on Expression 2. The light absorption coefficient distribution μa in the subject can be determined based on Expression 1 using the light quantity distribution Φ. | {
"pile_set_name": "USPTO Backgrounds"
} |
Lateral chromatic aberration is a color artifact that degrades image sharpness and color quality. Lateral chromatic aberration is a phenomenon that occurs when a scene is imaged by an optical system. For example, a lens of an optical system refracts different wavelengths differently from one another. Under these circumstances, one color component of an object in the scene, is projected onto an electronic sensor at a different magnification than another color component of the object. The mismatch of magnification between the color components causes distortions such as fringes around the borders or boundaries of the depiction of the object in the image.
Inasmuch as chromatic aberration is caused by different wavelengths of light being projected at different magnifications, one proposal for the correction of the image degradation is to scale or adjust the image formed by each wavelength by a respective corrective magnification. For example, in digital photography, the wavelengths are grouped into three color channels, red, green and blue (RGB). Each of the separate color channels is spatially magnified by a correction factor until the aberrations are eliminated. In some commercially available digital editing applications a user is able to manually adjust channel magnifications until the resulting image is pleasing to the eye.
An automated method for calculating magnification correction factors utilizes a photograph of a known black and white grid. From the image projected from the grid, a comparison can be made to determine various shifts in the image resulting from channel magnifications. From the shift information, calculations of magnification factors can be executed and used to calibrate the optical system for correct image projection during future use. Some camera equipment, such as television camera implement an automatic chromatic aberration correction system that compares edge features in each of the color channels, and attempts to line up the edges using an error signal generated from the comparison. | {
"pile_set_name": "USPTO Backgrounds"
} |
The Present Disclosure relates, generally, to a multiple contact connector, and, more particularly, to a multiple contact connector that is small and that is able to suppress a reduction in the impedance value at the time of high-speed transmission.
When transmitting data via signal lines, the value of the impedance at the connecting portion of a connector, that connects between a signal line and a device has an effect on the transmission speed. In particular, if the impedance of the connecting portion on the signal receiving side does not match that of the device side when performing high-speed transmissions, then the high-frequency component of the transmitted signal will be reflected, potentially rendering increases in transmission speed impossible.
On the other hand, for a variety of reasons, such as increasing the quantity of data transmitted simultaneously, there are cases where multiple signal lines are connected in parallel. In such cases, a connector of a type wherein a large number of signal lines are connected all at once is used. In such a connector, a large number of contacts electrically independent of each other are arrayed in a housing fabricated from an insulating material, and connected together with a mate housing, to connect a large number of contacts simultaneously. In the Present Disclosure below, a connector of this type shall be termed a “multiple contact connector.”
In Japanese Patent Application No. 2005-332231, the content of which is incorporated herein in its entirety, there is a description of a multiple contact connector having a ground contact and a low-speed transmission signal contact that are pressed into a housing. In a press fitting portion of the contact, a part is provided that protrudes symmetrically on both sides of a metal terminal, where the contact is secured within the housing through the protruding parts pressing against the inner surface of a contact receptacle portion of the housing (see FIGS. 15-6). | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a reel for winding in hose or electric cable lines without rotating connections for the fluid or electric circuits involved.
In the adaption of hydraulically actuated attachments on fork lift trucks, for example, it is often necessary to use some sort of hydraulic hose take up device to accommodate the movements of the fork carriage. Generally, this is accomplished with a standard hydraulic hose reel which is composed of a reel with an internal clock type spring for the winding action. The hoses are connected to the reel through the hub with hydraulic rotary fittings. Such rotary fittings are a constant maintenance problem because of leakage. Also, the conventional reel unit has to be completely disassembled if a breakage should occur in the spring.
Reels without rotary connections heretofore proposed have been too complicated and expensive for the present purpose. There is a need for a more practical form of construction.
Objects of the invention are therefore to provide an improved reel for hose or electric cable lines without rotating connections, to provide a reel of the type described of more practical and economical construction, to provide an actuating spring for such a reel which is externally mounted for easy replacement or repair and to provide a reversible reel which is adapted for either left hand or right hand mounting on equipment where it is used. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a need for a universally accepted sanitation method and apparatus for cleaning and disinfecting objects, such as knives and other culinary tools and utensils at for example, a culinary workstation that can comply with various Federal, state, and local standards governing the restaurant and food service or other applicable industry.
Currently, most culinary tool and utensils are cleaned by wiping them with a cloth that has been immersed in a disinfecting solution. As a result, there is a potential problem with food safety when a soiled rag is left in the disinfecting solution and is then used to wipe clean the culinary tools and utensils that are then used to prepare food. In addition, there is a potential safety hazard to culinary or other personnel, when a person wipes a tool or utensil clean with a wet towel, which increases his chances of a serious cut or abrasion from sharp surface(s). The most common disability claim in the food service industry is cuts, resulting in lost time and productivity and in higher worker's compensation rates. Finally, there is a cost concern due to the need for frequent changing of laundry service side towels for wet wiping culinary tools and utensils and for towels needed for drying such tools and utensils. Although single-use towels may also be used, this is a moderately expensive alternative.
In addition, while the focus of this application is on the cleaning and sanitizing of culinary instruments at a culinary workstation in restaurant or other food service location, it is believed that the apparatus and method of the invention are usable in other environments where tools, utensils, and implements need to be safely and efficiently cleaned and disinfected without danger to the user. Such environments may include home culinary and baking use, and medical and dental implement cleaning, as well as in barber, pedicure, manicure and cosmetical shops and offices for cleaning hand implements for treatment of the hair, skin and/or body. These hand implements generally comprise brushes, scissors, combs, pinzers, knives, etc., as well as special devices for tattooing of the skin.
U.S. Pat. No. 4,872,235 to Nielsen attempts to address the problem of increased risk of infection from contaminated implements in medical and dental applications by the use of a receptacle with mechanical cleaning means (e.g. brushes, lamellas or foam pads) disposed below the liquid surface in the receptacle to avoid inadvertent spattering of contaminated substances. However, the apparatus described in Nielsen simply cleans debris from contaminated implements, which are then sterilized in an autoclave, and does not provide a means for wiping excess fluid from the implements so that they may be immediately reused. Likewise, U.S. Pat. No. 5,652,993 to Kreyer describes a knife cleaner for cleaning opposing surfaces of a knife or other elongated objects between two opposably mounted brush means. However, Kreyer does not provide an apparatus that can quickly and easily be disassembled and cleaned and sanitized.
Thus, there remains a need in the art for an improved apparatus that can be used to safely clean tools, utensils, and other objects in various environments and that can quickly and easily be disassembled for cleaning and/or disinfecting.
The present invention attempts to solve these and other problems of the prior art by the use of an apparatus that can safely and efficiently clean objects, such as culinary tools and utensils. The issue of health code violations can be resolved by providing an apparatus that can quickly and easily be disassembled and run through a high temperature dishwasher to be sanitized. Additional health code violations can be addressed by the use of a disposable wiping elements (e.g., brushes or sponges) mounted for quick and easy attachment, that can be replaced on a daily (or more frequent) basis. The health and safety of the culinary worker may be better protected because the hazard of wiping a sharp knife blade clean with a towel is eliminated by use of the present invention.
The apparatus and process of the invention also allows for the use of pre-portioned packets of sanitizing powder concentrate, which ensures the proper ratio of sanitizing solution to water and avoids waste from incorrectly measuring or spilling the sanitizing powder concentrate. Additional cost savings that may be realized by the replacement of expensive side towels and single use towels with the apparatus of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a radio receiver, for example, to a microwave band radio receiver for receiving signals derived from broadcast waves which have been radio-transmitted in the microwave band.
Generally, a radio receiver includes a mixer which generates an intermediate frequency signal (hereinafter, referred to as IF signal) from a received radio modulation signal (hereinafter, referred to as RF signal) and a local oscillation signal (hereinafter, referred to as LO signal) generated in the receiver.
As for electric power of an LO signal to be inputted to the mixer and operating bias of the mixer, appropriate values points are chosen so that successful IF signal can be obtained by demodulation in terms of conversion gain, noise characteristics, low distortion or the like. The electric power of the LO signal is constant and, generally, large enough as compared with the electric power of the RF signal. Accordingly, the operating bias current of the mixer has a value dependent on the power of the LO signal, and hardly not on the power of the received RF signal, thus being a generally constant value.
In recent years, there have been energetically developed radio receivers using frequency bands of 10 GHz or higher microwave and milli-wave bands, and such radio receiver and radio reception method as shown below have been proposed (see, e.g., JP 2003-258655 A).
FIG. 10 shows the construction and frequency arrangement of a proposed radio receiver 900. The radio receiver 900 receives a radio multiplexed signal 930 transmitted from transmitter with an antenna 901. This radio multiplexed signal is formed from combination of a first local oscillation signal 930c (frequency: fLO1) and a first radio modulation signal 930a. This first radio modulation signal 930a, in which a first local oscillation signal 930c and a first intermediate frequency signal 932a (IF1 signal, frequency: fIF1) are multiplied, has a frequency of fLO1+fIF1.
The received radio multiplexed signal 930 has its unwanted waves eliminated by a filter 902, and amplified by an amplifier 903. Then, with the use of a mixer 905, the amplified radio signal and a second local oscillation signal (frequency: fLO2) generated from a local oscillator 904 inside the receiver are multiplied and down-converted, by which a first-local-oscillation-signal component signal 931c (frequency: fLO1−fLO2) and a first-radio-modulation-signal component signal 931a (frequency: fLO1+fIF1−fLO2) are generated.
Next, the signals, after the amplification by an amplifier 906, are divided by a divider 907, one being amplified by an amplifier 910 via a filter 908 allowing only the first-local-oscillation-signal component signal 931c and then inputted to a mixer 911, and the other being inputted to the mixer 911 via a filter 909 that allows only the first-radio-modulation-signal component signal 931a to pass through.
In the mixer 911, the first-local-oscillation-signal component signal 931c and the first-radio-modulation-signal component signal 931a are multiplied and down-converted, by which the IF1 signal 932a is demodulated. This is expressed by the following equation:(fLO1+fIF1−fLO2)−(fLO1−fLO2)=fIF1
In this method, it is described that since frequency fluctuations and phase noise of the first local oscillation signal and the second local oscillation signal are canceled during the demodulation of the IF1 signal, there is no need for any high-performance oscillator so that the manufacturing cost can be reduced. Further, it is also described that since the first-local-oscillation-signal component signal 931c is amplified by the amplifier 910, a signal of sufficiently high level as an LO power can be fed to the mixer 911, so that the demodulation sensitivity can be enhanced.
However, with the above-described radio system, the LO power to be inputted to the mixer changes in proportion to the received power of the radio multiplexed signal 930. The LO power is small when the received power is small, while conversely the LO power is large when the received power is large. Therefore, with the use of a conventional mixer, the operating bias current of the mixer would largely change due to the received power of the radio multiplexed signal 930. As a result, in the case of transmission of digital terrestrial broadcasting or BS/CS television broadcasting waves, when the transmission distance is shortened so that the received power is enlarged, there would be some cases where the operating state of the mixer (operating bias) is changed, causing the reception C/N (carrier to noise ratio) to deteriorate or the mixer to be broken due to occurrence of a large current.
Moreover, when the operating bias of the mixer is so set as to prevent occurrence of the such troubles as described above even with a large received power, it would occur that the mixer does not operate when the received power is small, resulting in a small output of the mixer. In this case, the reception C/N could not be ensured and the transmission distance could not be elongated.
Consequently, with such a radio system, the dynamic range of the mixer would be narrowed so that stable reception C/N characteristics or image characteristics could not be obtained over a wide range of transmission distance in the radio system. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Use
The present invention relates to control units and more particularly to a microprogrammable control unit which provides for increased processing efficiency.
2. Prior Art
In general, a substantial number of central processing units (CPU's) employ microprogrammed control units for executing program instructions. In order to reduce the size of the control store and to increase processing efficiency, a number of control units have employed two control stores. Examples of such systems are disclosed in U.S. Pat. Nos. 3,949,372, 3,953,833 and 4,001,788. While such systems provide such advantages essentially all of the processing of an instruction proceeds under microprogram control. Moreover, normally separate sequences of microinstruction or additional microinstructions are required for processing different program instructions specifying load and store operations involving different program visible registers or program instructions involving updating register operations.
It is a primary object of the present invention to provide a microprogrammable control unit which has reduced storage requirements.
It is a further object of the present invention to provide a two control store microprogrammable control unit which provides for increased processing efficiency. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many consumers reduce the total cost of electrical energy by reducing the total energy usages of electrical loads, such as lighting loads. For example, lighting loads are often controlled in response to occupancy and vacancy sensors, which detect occupancy and/or vacancy conditions in a space, to save energy. Typically, the lighting loads are turned on when the space is occupied and turned off when the space is unoccupied. In addition, consumers are becoming more sensitive to the amount of energy consumed by electrical loads, such as plug-in electrical loads that are plugged into electrical receptacles. Such plug-in electrical loads may still consume energy to maintain a standby mode when “turned off” and are often referred to as “vampire” loads.
Some standards (such as ASHRAE 90.1 and California Title 24) are now requiring that many electrical outlets installed in new construction or major renovations must be controlled (e.g., switched) to provide energy savings. For example, the electrical outlets may be controlled in response to a timeclock and/or an occupancy or vacancy sensor. Such electrical outlets may be coupled to a communication link (e.g., a wired or wireless digital communication link) and may be configured to receive digital messages including commands for controlling the plug-in electrical loads (e.g., in response to the timeclock and/or the occupancy or vacancy sensor). | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates in general to the field of mechanical resonators (that comprise a spring-mass system) and methods of operation thereof.
One knows tunable microelectromechanical resonators. Microelectromechanical resonators are used in clock generators and electronic filters. Fabrication tolerances of the microelectromechanical devices can result in resonance frequency tolerances that need to be corrected, or tuned. In addition, for some applications the frequency of the resonator may need to be tunable. Moreover, if the tunable resonator provides a large enough tuning range, it can replace a bank of fixed resonators. | {
"pile_set_name": "USPTO Backgrounds"
} |
An operating system is software code that provides basic functions allowing a user or users to interact with a computer. For example, an operating system provides the user with commands for opening files, closing files, printing files, displaying data objects on a display screen, as well as many other functions.
In a computer system that is designed to service a single user only, a single copy of software code is required to provide these functions. As the user performs actions requiring operating system intervention, the appropriate section of the operating system code services the user request. In a system that services multiple users, however, it becomes unwieldy to provide a separate copy of the operating system code for each user.
This problem has been addressed in some multi-user operating systems by providing only a single copy of certain segments of the operating system code which are shared among many or all of the users. For example, WINDOWS NT.TM., an operating system produced and sold by Microsoft Corporation of Redmond, Wash., provides only a single copy of the code necessary to implement graphics functions, i.e. display data objects on a display screen. This approach has the drawback of not truly providing multi-user access to graphics functions because multiple user accesses would result in data collisions between individual users' data. Further, even if multiple users could simultaneously perform actions requiring invocation of the graphics code without data collisions, users would experience delays due to code contention. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a swim paddle, and particularly to a swim paddle worn on a user's hand for training swimming technique and exercising arm muscles.
2. Related Art
A swim paddle for training swim technique generally comprises a body portion and a strap. A type of body portion has size of appropriately larger than palm area, and another type of body portion has size of appropriately the same as finger area. The two types of body portions respectively define positioning holes for allowing the strap extending therethrough. When the swim paddle is worn, the palm area or the finger area is sandwiched between the body portion and the strap. The strap exerts restriction force on the palm area or the finger area toward the body portion. Users may train swim acts by the swim paddle.
After a period of use, the trap tends to become loose. The strap is fixed to the body portion by the means of a knot larger than the positioning holes. The knot is ordinarily hard to be untied, and therefore is troublesome to adjust the strap.
Additionally, when the swim paddle is used, a user's wrist frequently acts and often hits peripheral of the swim paddle. The swim paddle is made of hard material, and may hurt the user's wrist and affect adversely on his swim training. Moreover, in crowded swim pool, the hard swim paddle may also impacts neighboring swimmers, resulting in undesired incidents. | {
"pile_set_name": "USPTO Backgrounds"
} |
Silodosin, 1-(3-hydroxypropyl)-5-[(2R)-2-({2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1H-indole-7-carboxamide of Formula (I) is an indoline antidysuric which has a selectively inhibitory effect against urethra smooth muscle constriction, and decreases urethra internal pressure without great influence on blood pressure. Silodosin is available under trade names RAPAFLO® or UROREC®. Silodosin was first disclosed in EP 0600675 as a therapeutic agent for the treatment of dysuria associated with benign prostatic hyperplasia, where a process for producing the compound is also disclosed.
Since, Silodosin is an optically active compound having a complex chemical structure; its synthesis is relatively complex and requires a sequence of multiple steps.
U.S. Pat. No. 6,310,086, discloses a process for preparing Silodosin analogue compound from reaction of (R)-3-{5-(2-aminopropyl)-7-cyano-2,3-dihydro-1H-indol-1-yl}propylbenzoate with 2-(2-ethoxyphenoxy)ethyl methanesulfonate and finally isolated as a crude compound which is purified by column chromatography. The said process has a major disadvantage of using column chromatography which is not feasible at plant scale production.
PCT application no. WO 2012147019, discloses the preparation of Silodosin as shown in scheme-1, wherein the N,N-dialkyl impurity of Formula (IIa) formed during condensation of 3-{7-cyano-5-[(2R)-2-aminopropyl]-2,3-dihydro-1H-indol-1-yl}propyl benzoate of Formula (III) with 2-(2-(2,2,2-trifluoroethoxy)phenoxy)ethyl methanesulfonate of Formula (IV); is removed through preparation of monotartarate salt to give compound of Formula (VI). The compound of Formula (VI) is base hydrolyzed followed by cyano hydrolysis to give crude Silodosin of Formula (VIII) which is then further purified by crystallization to get desired pure Silodosin.
Major drawback of above said reaction process is that multiple isolations and crystallizations are required to get pure Silodosin.
Similarly, U.S. Pat. No. 7,834,193 discloses monooxalate salt represented by Formula VIa having 0.9% of dialkyl impurity represented by Formula IIa. The oxalate salt so obtained is subjected to alkaline hydrolysis followed by transformation of the nitrile to an amide.
Similarly, PCT application no. WO 2012147107, discloses the method wherein Silodosin is prepared by condensation of 3-{7-cyano-5-[(2R)-2-aminopropyl]-2,3-dihydro-1H-indol-1-yl}propyl benzoate with 2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl methanesulfonate in solvent using base and phase transfer catalyst wherein, dialkyl impurity is formed up to 11%, followed by hydroxyl deprotection in protic solvent using base and phase transfer catalyst which is then subjected to purification to remove N,N-dialkyl impurity represented by Formula (IIb) up to 0.6% through the preparation of acetate salt. This process suffers from a serious drawback i.e., accountable formation of dialkyl impurity and even after purification the impurity is reduced to only up to 0.6%. Secondly, the process requires multiple isolations and purifications ensuing into time engulfing work-ups and purifications and hence incurring solvent wastage. This makes process lengthy, uneconomical and tedious to be performed at plant scale.
Another PCT application no. WO 2012131710, discloses the preparation of Silodosin in which the chiral compound (3-(5-((R)-2-aminopropyl)-7-cyanoindolin-1-yl)propyl benzoate) is reacted with 2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl methane sulfonate in isopropyl alcohol using sodium carbonate as base. The reaction is completed in 40-50 h and about 9-11% of dimer is formed during condensation. After completion of reaction, it is subjected to hydroxyl deprotection and the crude compound so obtained is purified to remove the N,N-dialkyl impurity of Formula (IIb). The pure compound is then reacted with hydrogen peroxide in dimethyl sulfoxide to give Silodosin. The major drawback of this process is that the process is a multistep process wherein the condensation reaction is long-drawn-out resulting into countable amount of dimer formation during the process.
Thus, the prior art methods of preparing Silodosin require multiple and repeated purifications to synthesize DMF (Drug Master File) grade Silodosin. None of the prior art produces compound of Formula (VI) or (VII) with N,N-dialkyl impurity of Formula (IIa) or (IIb) in an amount less than 0.6% to 0.5% even after purification. Therefore to prepare highly pure Silodosin, there is a need to explore new synthetic schemes that could be more economical and scalable. The present invention provides a novel, improved, commercially viable and industrially advantageous process for the synthesis of Silodosin and its pharmaceutically acceptable salts or solvates thereof. The present invention focus on preparation of highly pure Silodosin in appreciable yields with minimal use of solvents wherein the Silodosin is isolated with purity ≥99.5% having N,N-dialkyl impurity less than 0.03% and other individual impurities below 0.1%. | {
"pile_set_name": "USPTO Backgrounds"
} |
Compact arc discharge fluorescent lamps are known in which the envelope includes at least two longitudinally extending leg members joined together by a transversely extending envelope portion. Examples of such lamps which are commercially available are the "Twin Tube" and "Double Twin Tube" fluorescent lamps manufactured by GTE Sylvania, Danvers, Mass. Other examples are disclosed in U.S. Pat. No. 4,374,340, which issued to Bouwknegt et al. on Feb. 15, 1983; U.S. Pat. No. 4,426,602, which issued to Mollet et al. on Jan. 17, 1984; and U.S. Pat. No. 4,481,442, which issued to Albrecht et al. on Nov. 6, 1984.
In lamps of the above type, in which a plurality of spaced-apart leg members are employed, breakage of the transversely extending envelope portion may occur as the result of inward deflection of the longitudinally extending leg members caused during handling of the lamp.
In order to eliminate the chance of lamp breakage, it is known in the art to attach a separate brace member between the leg members to prevent the compression of the leg members. A "slip-on" brace member is disclosed in U.S. Pat. No. 3,337,035, which issued to Pennybacker on Aug. 22, 1967. The brace is made from stiff wire and is provided with arcuate loops at each end that are slipped over and compressively grip the legs of a U-shaped envelope. While braces of this type work satisfactorily, the looped portions of the brace may cause the brace to fit two tightly or too loosely on the lamp.
Braces which are formed to interfit with lamp base members are also known in the art. Examples of such braces are disclosed in U.S. Pat. No. 3,548,241, which issued to Rasch et al. on Dec. 15, 1970; U.S. Pat. No. 3,579,174, which issued to Gilbert, Jr. on May 18, 1971; and U.S. Pat. No. 4,217,630, which issued to Albrecht on Aug. 12, 1980. Disadvantages of all of the above braces include the added cost incurred for the additional base components. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fresh biological cells such as sperm, blood, or pancreatic islet cells are viable for a relatively short period of time before they spoil and must be destroyed. Nevertheless, it is often advantageous to use such biological material long after it has been collected, sometimes several months or even years later. Various methods, principally freezing, are employed, where known possible, to preserve biological cells for these relatively longer periods of time. For example, freezing sperm permits a domestic animal breeder to maintain stocks of valuable sperm for use when necessary, enables the inexpensive transport of such stocks, and ultimately permits genetically superior males to inseminate a larger number of females. Beyond livestock, artificial insemination is also used in the human context for various medical and health reasons. As another example, freezing blood permits blood donations to last much longer than the typical 14 day storage period. Moreover, diseases carried in blood with a latency period longer than 14 days may not be discovered in the donor until the blood has been placed into a patient. Frozen blood could exceed this period and allow donors to be screened beyond their date of donation.
The survivability of viable cells using prior art freezing methods is often quite low. Freezing conditions are relatively harsh and thermal shock or other phenomena such as ice crystal formation often destroy biological cells. Therefore, maximizing the viability of thawed cells has been the goal of many researchers.
The prior art discloses various methods for improving the survivability of frozen cells. U.S. Pat. No. 4,007,087 to Ericsson discloses a sperm fractionation and storage method which claims to increase the percentage of motile sperm that survive frozen storage. Ericsson discloses a method whereby motile sperm are separated from non-motile, defective or dead sperm. The fraction containing the motile sperm is then frozen. Ericsson reports that his method increases the fertility of a sperm sample by enhancing the environmental (the ratio of total sperm to motile sperm) and viability (progressiveness of motility of the motile sperm) factors effecting the fertility of a sample, but his method does not improve the population (motile sperm count) factor which is possibly the most critical.
U.S. Pat. No. 3,791,384 to Richter et al. discloses a method for deep freezing and thawing boar sperm which includes inactivating the fresh sperm by means of an inactivating solution that includes dextrose, dihydrate of ethlenedinitrotetra-acetic acid, sodium citrate and sodium hydrogencarbonate. Richter reports that inactivation of the sperm gives them a greater power of resistance to freezing.
U.S. Pat. No. 4,429,542 to Sakao et al., U.S. Pat. No. 4,487,033 to Sakao et al., U.S. Pat. No. 3,893,308 to Barkay et al. and U.S. Pat. No. 4,480,682 to Kameta et al. all disclose different freezing methods which claim to improve the fertility of sperm samples. In all of these methods, the temperature of sperm in solution is lowered by various means which attempt to reduce the thermal shock and increase the survivability of the viable sperm and ova present. Most of these methods are, however, complex, cumbersome and expensive to utilize. Other freezing methods are also used including the "Sherman" method of rapid freezing in liquid nitrogen vapors (Sherman, J. K., Improved Methods of Preservation of Human Spermatozoa by Freezing and Freeze Drying, Fertil. Steril., 14:49-64 (1963), and the "Behrman-Sanada" method of gradual freezing (Behrman et al. Meterologous and Humologus Inseminations with Human Semen Frozen and Stored in a Liquid Nitrogen Refrigerator., Fertil. Steril. 17:457-466 (1966)).
A disadvantage of the aforementioned methods resides in that low-temperature preservation of the cells is accompanied by the ice crystallization process. The ice crystallization process is retarded by the use of a cryoprotectant; however, the influence of the cryoprotectant on reducing ice crystallization is offset by the negative effects of the cryoprotectant on the cells. Addition of a cryoprotectant typically results in injury to the cell membrane because the addition leads to powerful osmotic shifts. The osmotic shifts cause partial denaturation of the protein molecules and disorientation of the cell organelles. In addition, if the cells have prolonged exposure to a high concentration of cryoprotectant before freezing, there is also concern that the cryoprotectant will be toxic to the cells. Accordingly, custom methods and devices are needed to rapidly add and remove a cryoprotective agent (CPA) as quickly as the membrane of a particular cell type will allow to avoid toxic effects and to shorten the time period from thawing to use while still maintaining the viability of the cells. The present invention addresses this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
General purpose computers, such as personal computers (PCs), are ubiquitous in homes, schools and the workplace. The number of tasks and capabilities performed by general purpose computers continues to increase with improvements in memory capacity, processing speeds, and other hardware and software improvements. Provision of audio data and video data in digital formats, as well as improvements in networking architectures (e.g., the public internet), have also increased the multi-media capabilities of general purpose computers. For example, general purpose computers now perform additional functions including implementing external (e.g., networked) communications and audio/video playback in addition to traditionally performed operations, such as word processing and execution of other similar applications.
More recently, small personal information appliances have been introduced to provide digital processing devices with networking capabilities in relatively inexpensive and portable hardware packages. For example, Audrey systems introduced by 3Com Corporation and I-Opener introduced by Netpliance, Inc. were designed to connect directly to the public Internet offering some functionality traditionally provided by personal computers. For example, Audrey units were designed to include email capabilities as well as provide a wireless keyboard and a built-in modem, microphone and speakers. The Audrey systems were designed to work with a variety of Internet service providers. However, to date, small personal information appliances have not been readily accepted in the marketplace due to various drawbacks including utilization of unreliable wireless networking platforms, such as Third Generation Mobile Systems (3G). Further, some personal computer prices have dropped to levels of the small personal information appliances.
Additional consumer digital media devices have also been introduced which include a standalone box which can play compact disks, DVDs, streaming audio, and streaming video. The premise behind these products is offering a choice of web content in a familiar and simple product (e.g., similar to a VCR). These devices have associated drawbacks including requiring purchase of entire hardware platforms which are relatively inflexible with respect to upgradeability.
Aspects of the present invention provide improved methods and apparatus for disseminating digital data. | {
"pile_set_name": "USPTO Backgrounds"
} |
Patent Document 1 discloses a wire saw of this type. The wire saw disclosed in this document includes multiple processing rollers and a wire. The wire is wound around the processing rollers several times. An up-and-down mechanism is arranged above an area where the wire is wound. A workpiece is attached to and detached from the up-and-down mechanism through a carbon plate and an attachment plate. The workpiece is fixed to the carbon plate and the attachment plate with an adhesive. The rotation of the processing rollers makes the wire travel around the processing rollers. Meanwhile, a processing liquid containing abrasive grains is supplied to the wire. If the up-and-down mechanism moves down while the wire saw is in this condition, the workpiece is pressed against the wire to cut the workpiece.
The conventional wire saw necessitates attachment of a workpiece to the carbon plate and the attachment plate with an adhesive before cutting of the workpiece. Additionally, after the cutting of the workpiece, the cut workpiece should be detached from the carbon plate and the attachment plate. Hence, a task to be done before and after the cutting becomes burdensome, causing the problem of reduction of processing efficiency and increase of manufacturing cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates in general to the field of automatic screw feeding machines and in particular to the field of track feeding arrangements, whereby the fasteners are delivered to a driver head of an automatic screw feeding machine and even more particularly to a gravity fed track arrangement for an automatic screw machine.
2. Description of the Prior Art
An automatic screw feeding machine is the terminology which is commonly applied to a machine which arranges fasteners, such as screws, from a bulk, loose form into an arrangement whereby the fasteners are aligned and then individually delivered to a driver head. The driver head is then utilized to drive a single fastener within a pre-existing hole so as to fasten one component to another. The purpose of such machines is, of course, to speed up production by providing rapid fastening of two or more components. Since speed of production is the main objective of such machines, any portion of the machine which tends to jam or malfunction in any manner results in a work stoppage which is contrary to such main objective. Each operation performed upon a fastener which is being utilized within the machine from its bulk supply disposition to its fastened disposition and any point therebetween must necessarily occur in a serial mode whereby one step follows the other. Any one step, therefore, if it is not accomplished properly, will cause a complete shutdown of the machine and production. In today's modern factories, any production shutdown due to a malfunctioning machine must be avoided at all reasonable costs.
Screws or other similar fasteners used in industry are mass produced. Mass production generally involves greater tolerances for a given characteristic such as fastener head height, head diameter, or shank diameter, than corresponding individualized custom machining of screws. Automatic screw feeding machines must accommodate such mass-produced fasteners. The greater tolerances of mass-produced fasteners thereby impose relatively difficult, individualized tasks on automatic screw feeding machines.
One area where an automatic screw feeding machine of the prior art experiences difficulty is in arranging the screws or other fasteners from a bulk disposition to the point where a single fastener is fed to escapement apparatus which then feeds the single fastener to a driver head of the machine. It is generally known in the prior art machines for a rotating drum to contain a large number of fasteners which in accordance with the rotation of the drum are placed onto a track mechanism. The track mechanism orients and aligns each of the fasteners into a single row and through the use of gravity moves the fasteners down the track whereupon the lead fastener is then delivered to pneumatic apparatus. The pneumatic apparatus feeds each of the screws or fasteners, when demanded, to the driver head of the automatic screw feeding machine.
The relative complex and awkward geometry of the various types of screw fasteners does not generally lend the fasteners to a desired alignment and orientation on the track mechanism. The necessity for the track arrangement to feed the screws to the pneumatic apparatus, as stated previously, involves motion of the screws along the track arrangement. The motion of the screws further complicates an already difficult task. The shanks of the screws fit between an opening in the track mechanism while the underpart of the heads of the fasteners rests on the top surfaces of the tracks. The heads of the fasteners butt up against one another while the screw shanks are spaced apart from each other. The space between adjacent screw shanks in combination with the travel motion of the fasteners and the friction between the underside of the head of the fasteners and the top surface of the tracks tend to cause the fasteners to rock or pivot about their heads during the travel down the track arrangement. The rocking results in misalignment and on occasion interference between the heads of adjacent fasteners, which further results in increased friction and resistance to travel down the tracks. Invariably, one or more of the fasteners then become further misoriented or misaligned within the track mechanism. The friction and interference becomes greater, causing further misalignment and ultimately, jamming of the screws within the track mechanism. The end result is production must be shutdown until the jamming is eliminated. The frequency of jamming and the accompanying production stoppage in the prior art, due to the prior art machines, is a very significant problem.
Accordingly, a new, different, and improved gravity track feeding arrangement is desired which decreases the tendency for mass produced fasteners to become misoriented and thereby jam while being fed to additional apparatus which further feeds the fasteners to the driver head of an automatic screw feeding machine. It is also desirous to provide an improved arrangement for loading the fasteners onto the track mechanism with a view toward minimizing the possibility of jamming of the screw feed mechanism.
It is to be noted and especially recognized that there are other objects of the present invention which, although not specifically stated but which objects will be obvious to those skilled in the art to which this invention pertains, are intended to be included within the scope of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electronic distribution of information has gained importance with the proliferation of personal computers and wide area networks such as the Internet. With the widespread use of the Internet, it has become possible to store and distribute large, coherent units of information, such as books, using electronic technologies. Books and other media in electronic format are commonly referred to as electronic books (“eBooks”) or digital works.
Typically, digital works are structured as virtual frames presented on a computing device, and a user may turn or change from one virtual frame or “page” of electronic content to another. The term “page” as used herein refers to a collection of content presented at one time on a display. Thus, “pages” as described herein are not fixed permanently, and may be redefined or repaginated based on variances in display conditions, such as screen size, font type or size, margins, line spacing, resolution, or the like. Due in part to the variable nature of such “pages,” users may find it difficult to gauge their progress through the digital work. This problem is compounded by the fact that digital works may be displayed and read on a variety of different computing devices (e.g., computer monitors, portable digital assistants (PDAs), pocket computers, specialized eBook reader devices, etc.), under a variety of different display conditions (e.g., screen size and resolution, font type and size, margins, line spacing, etc.).
Accordingly, there remains a need to improve a reader's ability to navigate within a digital work and to better identify his or her location within the content of the digital work. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to a new method for temperature measurement that provides a direct digital temperature output, and is especially suited for low cost, low power, moderate accuracy implementation. More particularly, it relates to a measurement method for use with a sensor whose resistance or capacitance varies in a known manner with temperature. The measurement circuit is a temperature-to-digital converter which performs a zero-crossing time measurement of a step input signal that has been double differentiated using two time constants.
2. Description of Related Art
Resistive elements such as thermistors, resistive temperature devices and sensistors are routinely used to measure temperature. Two temperature measurement methods widely used with resistive sensors involve either: (1) applying a high precision current and measuring the resultant voltage with an correspondingly high precision voltage-sensitive analog-to-digital converter (ADC); or (2) applying a high precision voltage and measuring the resultant current with an equally precise current-sensitive analog-to-digital converter. Whichever measurement method is used, both require the use of not one but two functional circuit modules with approximately equal precision to produce a digital representation of temperature from the resistance-based temperature sensor. This requirement for two high precision circuit modules is a limitation of the present art heretofore unaddressed.
Temperature monitoring is often performed in situations where it is difficult to environmentally control the measurement electronics. In some automotive applications, for example, measurement electronics are required to function from -40.degree. C. to 150.degree. C. while the sensor temperature may reach combustion levels. Both aviation and oil well drilling present similarly challenging temperature measurement difficulties. Temperature measurement in situations like these where the measurement electronics and sensor temperature vary independently has been difficult. The traditional temperature measurement methods above, which rely on maintaining highly accurate and stable circuit functions over wide temperature ranges, have been at a disadvantage.
We present a new method for temperature measurement whose accuracy relies on the ability to generate an accurate timebase. A timebase function can be easily implemented in a single circuit module. Our method makes possible a moderate accuracy temperature measurement implementation using ASIC technology that can be miniaturized, battery powered, and can result in a very low cost measurement method. It eliminates the aforementioned problems associated with prior methods in that they require more circuit elements that have to be precisely controlled, and such control has been very difficult to achieve over desired temperature ranges.
Therefore, it is a first object of the present invention to provide a new temperature measurement method where the precision of measurement relies on a single high precision component in the form of a robust timebase generator.
A second object is to provide a new temperature measurement method based on the interaction of two time constants.
A third object is to provide a temperature-to-digital converter that gives direct temperature-to-digital conversion, and eliminates temperature-related errors associated with analog-to-digital conversion methods.
A fourth object is to eliminate the need for absolute voltage or current sources required in traditional sensistor, thermistor and resistive temperature device measurement circuits.
A fifth object is to eliminate the need for high gain, temperature-stable amplifiers in temperature measurements based on thermocouple sensors.
A sixth object is to provide a new temperature measurement method that is insensitive to the amplitude or gain of the signal applied to the sensor, thereby eliminating electronics drift problems associated with amplitude or gain instability.
A seventh object is to eliminate dc offset errors associated with electro-static discharge protection structures and other dc currents that become particularly significant at elevated temperatures.
An eighth object is to provide a new temperature measurement method for use with both resistance-based temperature sensors and capacitance-based temperature sensors.
Further and other objects and advantages of the present invention will become apparent from the description contained herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the present invention generally relate to optical transport networks and, more particularly, to a method and apparatus for providing a control plane across multiple optical network domains.
2. Description of the Related Art
Traditionally, transport networks are managed by centralized management systems, which receive connection requests, perform path selection, and establish connections through transport network elements. Recently, the intelligence for transport network functions, such as topology and resource discovery, automated connection provisioning, and failure recovery, are being moved into the network elements through the emergence of distributed transport control planes. Control plane standards that extend signaling protocols from packet networks are being developed. The Internet Engineering Task Force (IETF) has extended Internet Protocol (IP)-based protocols used in the Multi-Protocol Label Switching (MPLS) control plane to define Generalized Multi-Protocol Label Switching (GMPLS).
Standards development, however, has lagged vendor implementations, resulting in network operators deploying sub-networks running vendor-specific control planes that do not inter-work. In addition, company mergers and the associated network management integration complexities, scalability concerns, as well as other economic factors have led to transport networks that often consist of several control islands referred to as control domains (CDs). A control domain is a sub-network in which all network nodes run a common control plane. A given transport network may include several control domains, each of which implements different control plane signaling and routing protocols. Accordingly, there exists a need in the art for a method and apparatus for providing a control plane across multiple optical network domains. | {
"pile_set_name": "USPTO Backgrounds"
} |
An example for an apparatus of the kind in question here is a freeze-drying apparatus as described in EP-B1-391 208 (U.S. Pat. No. 5,129,162). A plurality of containers containing a product that is to be freeze-dried must be loaded onto supporting surfaces of the freeze-drying apparatus. Unloading is required after performing a freeze-drying process. Due to the extremely large number of containers that are loaded and unloaded during a batch, these processes are no longer performed manually. Typically, the containers are transported to and from the freeze-drying apparatus on conveyer belts. The containers are transferred from the conveyor belt to the supporting surfaces located in the chamber and back therefrom, after performing the freeze-drying process, by means of a sliding element.
The loading of the supporting surfaces of freeze-drying chambers or similar equipment must take place under extremely clean conditions since the containers or bottles containing the product to be freeze-dried are initially opened. Usually, a plug having a recess for the removal of the water vapor, lies on the opening of each of the containers. After performing the freeze-drying process, the containers are closed in the freeze-drying chamber by moving the supporting surfaces together and forcing the plug into the container. Even though the containers have already been closed, the unloading of the containers from the supporting surfaces, and the transfer of the containers to a capping device, occurs under clean room conditions. In this respect, freeze-drying facilities are equipped with insulators—if they are not located in clean rooms. An insulator, that is preferably formed by transparent wall sections, encloses those areas of the freeze-drying apparatus in which clean room conditions are supposed to be maintained. This also includes the container feed and removal means. Compared to the typical clean rooms, an insulator has the advantage that the required clean room volume is significantly smaller.
In freeze-drying apparatuses and installations of similar type, the drive systems for the moving parts are a problem. A spindle drive is used in the aforementioned freeze-drying apparatus. The use of toothed racks is also known. Drives of this type require a lot of space. Moreover, such structures include relatively narrow indentations or recesses, that require long sterilization periods. Since lubricants can also lead to contamination, drives of this type must be operated “dry”. The consequence is increased abrasion, which likewise causes contamination. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a receptacle assembly for a power supply.
2. Description of the Related Art
A conventional receptacle assembly for a power supply in accordance with the prior art shown in FIGS. 4 and 5 comprises a casing (40) having a closed side and an open side, a plurality of receptacle hole modules (42) each defined in the casing (40) and each containing a plurality of, insertion holes (420) defined in the closed side of the casing (40), a plurality of lugs (44) extending from the closed side of the casing (40) and each containing a receiving space (440) therein aligning with one of the corresponding insertion holes (420), and a plurality of conductive terminals (52) each received in the receiving space (440) of one of the corresponding lugs (44). Each of the conductive terminals (52) is attached to an elongated terminal plate (50).
In assembly, each of the conductive terminals (52) is initially inserted into the receiving space (440) of the respective lug (44) to align with the respective insertion hole (420). The terminal plate (50) is then connected to a power supply (not shown), and a cover (not shown) is then attached to the open side of the casing (40), thereby accomplishing the assembly of the receptacle assembly. A plug (not shown) including a plurality of blades (not shown) can then be inserted into the casing (40) of the receptacle assembly through the insertion holes (420), with each of the blades being respectively received in the respective conductive terminal (52) such that the electric current from the power supply can be supplied from the receptacle assembly into the plug by means of the electric connection between the blades and the conductive terminals (52) so to be used by an electric appliance (not shown).
However, there is no fastening device provided to retain each of the conductive terminals (52) in the receiving space (440) such that the conductive terminals (52) are easily detached from the receiving space (440) of the lugs (44) during the assembly or transportation process, thereby causing inconvenience to a user. The present invention has arisen to mitigate and/or obviate the disadvantage of the conventional receptacle assembly. | {
"pile_set_name": "USPTO Backgrounds"
} |
Modern computer systems typically comprise at least one multiple-core central processing unit and, increasingly, at least one multiple-core graphics processing unit, with the latter being programmable to perform useful non-graphics tasks through heterogeneous computing frameworks such as CUDA and OpenCL. Due to the parallelism enabled by such systems, computer programs are increasingly designed to generate multiple program threads—ranging from a handful to thousands—in order to carry out sets of tasks which may be run relatively independently from one another and scheduled for concurrent execution. Examples of programs adopting multiple-threaded designs include web servers, databases, financial analytics applications, scientific and engineering analytics applications, and the like.
Specialized memory organization schemes can be useful in such systems since contention for access to the program heap can be so costly. Dynamic memory allocation can be one of the most ubiquitous operations in an application, with up to 30% of program execution time being spent in allocation and deallocation operations in certain benchmark applications. Frequent locking of the program heap during dynamic allocation operations also leads to poor scaling in multiple-threaded designs. Memory allocation modules focusing upon this problem generally use an organizational architecture pioneered by Hoard that provides a public, global memory heap for access by all threads as well as private, thread-local memory heaps for access by individual threads. [1] Thread-local memory heaps (each hereinafter a “local heap”) are created to meet much of the program memory demand without requiring the use of memory locks or transactional memory mechanisms to protect a heap against modification by other concurrently-executing threads. The global memory heap (hereinafter a “global heap”) is used to hold any global variables or large data structures as well as to provide a cache of memory allocatable for use in local heaps. Performance of the allocator can still be important since contention for operations involving the global heap—fetch operations requesting chunks of memory for local heaps and return operations releasing chunks of memory back to the global heap—will similarly delay the execution of allocator-invoking threads. As shown in FIG. 1, a thread must still invoke the allocator to transfer chunks of memory to and from the global heap, and the allocator must still use memory locks, transactional memory mechanisms, or the like in order to maintain coherency of the global heap while completing such transfer operations. Accordingly, contention for the allocator—or, more strictly speaking, contention for responses to requests relating to management of the global heap—remains a problem in such architectures. TCMalloc (thread-caching malloc) is a well-known example of an allocator using a Horde-like memory organization architecture. [2]
Memory allocation modules comprehensively addressing the problem of contention for the allocator are relatively unknown. In most existing allocators performance tuning is largely left to experts who devise default parameters based upon broad assumptions concerning program behavior and performance. For example, Doug Lea engineered his classic dlmalloc allocator so that “[if] configured using default settings [it] should perform well across a wide range of real loads.” [3] dlmalloc allows those default settings to be modified via a mallopt call supporting programmer-specifiable parameters such as the size of an “arena” (the size of chunks of memory that are to be requested from the operating system for use by the program) and the size of an “arena cache” (the number of allocated-but-free chunks to be held for program reuse rather than immediate return to the operating system), but that capability is used infrequently and on an ad hoc basis. Due to the increasing importance of thread-level concurrency, various next-generation parallel memory allocators, some of which use sophisticated and highly tunable heuristics, are being developed. But these allocators tend to follow dlmalloc in pursuing uniform performance across wide ranges of loads. When the level of concurrency varies greatly, e.g., from a few threads to several hundred or more, there typically will not be a single set of parameters that consistently works well. Thus there is a need for a program memory allocation module which may be readily controlled based upon easily understood parameters. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional syringes have a barrel and a closely fitting piston which draws fluid into the barrel via a needle in front of the barrel. Fluid is drawn into the barrel through the needle, the air is expelled and an injection is made by depressing the plunger. Many of these medical devices have been designed to retract the needle by various mechanisms because of the continuing danger of exposed needles contaminated with infectious agents. With the increase of dangerous communicable diseases such as AIDS, it has become critical to eliminate needle stick injuries to medical personnel. Intensive efforts have been directed to development of retractable syringes which are safe, effective and practical, which can be mass produced at low cost.
Seemingly ignored in all this activity is the smaller but still significant group of syringes which employ a pre-filled cartridge of fluid medication and a double ended hypodermic needle communicating with the cartridge for injecting the contents of the cartridge. The pre-filled syringe cartridges are referred to as "carpules". They are typically cylindrical tubes with a puncturable membrane in front and a piston seal at the rear which is pressed forward by some form of plunger. The most common of these are the carpule syringes used by dentists in freezing the gums of their patients prior to their performing dental work on their teeth. Typically, the syringe enclosures with which such pre-filled syringe cartridges are used are not easily capable of retracting the needle into a protective enclosure to avoid inadvertent and potentially harmful needle sticks. Consequently, most syringes used for this purpose by dentists have a fixed needle which must be sheathed.
The relatively few attempts that have been made to produce a retractable needle syringe have produced results not altogether satisfactory. Weltmnan, U. S. Pat. No. 3,306,290; Sullivan, U. S. Pat. No. 5,330,430; and Haber, U.S. Pat. No. 4,820,275 among other things suffer from the deficiency that the device is necessarily much longer than the stroke the plunger itself would require in order that the outer shell house both needle and cartridge. Stanners, U. S. Pat. No. 5,330,440, although it doesn't suffer from the length deficiency, employs special thread engaging plugs in both ends of the carpule and plunger. These threaded connections must be mechanically connected together to withdraw the needle to the back of th e special carpule. Retraction is done manually by disengaging a catch.
Although the needles can be retracted, these devices do not provide instantaneous retraction of the needle automatically at the end of an injection by further depression of the plunger while the needle is still in the patient's tissue. A slow controlled manual retraction of the needle is undesirable. Unintended movement of the syringe could damage tissue. Carpule syringe devices that would meet the above objections and which enable instantaneous retraction by continuation of the same motion used for the injection would be a significant improvement. These and other objects are the subject of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method for lubricating the rotation mechanism of a drill shank in a rock drilling machine, the method comprising directing to the rotation mechanism of the drill shank at least part of the flow of the pressure fluid of a hydraulic circuit of a device of the rock drilling machine performing at least one function, for the purpose of lubricating the rotation mechanism of the drill shank.
The invention further relates to an arrangement for lubricating the rotation mechanism of the drill shank of a rock drilling machine, in which arrangement at least part of the flow of the pressure fluid of a hydraulic circuit of a device of the rock drilling machine performing at least one function is arranged to be directed to the rotation mechanism of the drill shank for the purpose of lubricating it.
Rock drilling rigs are used in rock drilling and excavating in underground mines, opencast mines and excavation sites. Known methods used in rock drilling and excavation are cutting, crushing and percussive methods. Percussive methods are most commonly used with hard rock. In the percussive method, the drilling tools, such as drill rods and the drill bit at the end thereof, of one or more rock drilling machines in a rock drilling rig are both rotated around their longitudinal axes and impact toward the rock being drilled. The breaking of the rock occurs mainly due to the impact. The purpose of the rotation is mainly to ensure that the studs or other working parts of the drill bit always impact a new point of rock. For striking, the rock drilling machine may comprise a hydraulic percussion device, the percussion piston of which causes stress pulses to the drill shank and further to the drilling tools of the rock drilling machine, which stress pulses travel in the form of a compression stress wave to the drilling tools at the extreme end of the drill bit and on to the rock, making the rock break. Instead of a hydraulic percussion device, the rock drilling machine may comprise a percussion device, in which means based on electromagnetism, for instance, cause a stress pulse to the drill shank without a mechanically moving percussion piston or other percussion member.
Typically, the lubrication of the rotation mechanism of the drill shank in a rock drilling machine, which can later also be called a drilling machine, is done with pressurized air, in which lubricating oil is added to compressed air. This lubricating air circulates inside the drilling machine, lubricates the necessary points, and is finally led out of the drilling machine. In some cases, the air may be circulated back to the rock drilling rig, and the lubricating oil is separated from the air and disposed of, or taken to be further processed for re-use. The lubricating oil that has circulated in the drilling machine is, thus, not returned to the drilling machine. In some solutions, the rotation mechanism of the drill shank may be lubricated by means of a separate circulation oil lubrication circuit, but the splines of the drill shank are still lubricated using pressurized air lubrication.
One problem with a pressurized air lubrication-based lubrication solution is that all lubricating oil cannot necessarily be recovered, but some of the lubricating oil remains in the air as micronic droplets. In addition, a pressurized air lubrication-based lubrication solution of a drill shank is not suitable for percussion devices where stress pulses are caused at a high frequency, for instance several hundreds or even thousands per second, in which case the pressurized air lubrication capacity is not enough to lubricate and cool the splines of the drill shank, for example, which leads to rapid wear of the splines of the drill shank and the rotation bushing or a corresponding member used in the rotation device. | {
"pile_set_name": "USPTO Backgrounds"
} |
Existing methods for converting two-dimensional content into three-dimensional content for display and viewing by a viewer generally require the use of specialized software and hardware paired together with three-dimensional glasses worn by the viewer. For example, stereoscopic 3D effects may be achieved by encoding each eye's image using filters of different (usually chromatically opposite) colors, typically red and cyan. Accordingly, stereoscopic 3D images contain two differently filtered colored images, one for each eye. When viewed through color-coded glasses, each of the two images reaches the eye it is intended for, revealing an integrated stereoscopic image. The visual cortex of the brain then fuses this into the perception of a three-dimensional scene or composition. However, the use of three-dimensional glasses tends to be cumbersome. Moreover, means to readily convert any source of two-dimensional content into three-dimensional content for viewing without utilizing sophisticated hardware and software tends to be lacking. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are known delivery systems for medical devices such as vascular supporting bodies (stents). To avoid introducing air into the vascular system, the lumens of a stent delivery system are rinsed with a saline solution and vented before being inserted. This permits rinsing and venting of the internal lumen in which the guide wire is guided or the intermediate lumen between the inner shaft and the outer shaft where the stent is arranged during delivery. The intermediate lumen cannot be vented with some of the known delivery systems. US 2007/0282420 A1 discloses a stent delivery system having vent and rinse openings in the outer shaft surrounding the stent on insertion.
There are other known delivery systems in which the guide wire lumen and the intermediate lumen can be vented by two separate connecting pieces in separate operations. Separate T-bodies through which a rinsing fluid can be supplied and the respective lumen can be vented are known.
The object of the present invention is to create a delivery system and a method for operating such a system with which simple handling and uncomplicated design of the delivery system are possible.
This object is achieved according to the invention by the features of the independent claims. Advantageous embodiments and advantages of the invention are derived from the additional claims and the description. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to an electric power steering system that assists steering operation of a driver.
2. Discussion of Background
There has been known an electric power steering system that assists steering operation of a driver by giving power of a motor to a vehicle steering mechanism. Conventionally, as the electric power steering system of this type, there is a system described in JP2006-175940 A.
An electric power steering system described in JP2006-175940 A includes a first normative model that determines a target steering torque based on a steering angle, and a second normative model that determines a target rudder angle (a target steered angle) of a steering system based on a steering torque. Driving of a motor is controlled based on these normative models (ideal models). That is, it is possible to constantly maintain the steering torque at an optimal value by a first assist component obtained by performing torque feedback control to cause an actual steering torque to follow the target steering torque. Further, it is also possible to cancel reverse input vibration from steered wheels by a second assist component obtained by performing steered-angle feedback control to cause an actual steered angle to follow the target steered angle.
In the meantime, for example, in a case where a vehicle that is running on a low μ road (a road with a low friction coefficient μ) skids when the vehicle is turning, an oversteering state occurs. In this case, a driver may operate a steering wheel in a reverse direction with respect to a turning direction of the vehicle so as to steer steered wheels in the reverse direction with respect to the turning direction of the vehicle. This operation is effective for stabilizing the vehicle, and is generally called counter steering.
On the other hand, in the electric power steering system described in JP2006-175940 A, if a steered angle of the steered wheels is changed so as to be apart from the target steered angle at the time when the driver performs counter steering, an assist torque to bring the steered angle back to the target steered angle acts on a steering mechanism. That is, an assist torque in a reverse direction with respect to a direction of the counter steering acts on the steering mechanism. Therefore, a reaction felt by the driver at the time of the counter steering becomes large, which may cause the driver to feel the sense of discomfort. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to information-processing apparatus, information-processing methods, recording mediums, and programs. More particularly, the present invention relates to information-processing apparatus, information-processing methods, programs, and recording mediums, which are connected to each other by a network, used for synthesizing a content common to the apparatus with voices and images of users operating the apparatus and used for reproducing a analysis result synchronously.
The apparatus in related art used in interactions with people at locations remotely separated from each other include the telephone, the so-called TV telephone, and a video conference system. There is also a method whereby personal computers or the like are connected to the Internet and used for chats based on texts and video chats based on images and voices. Such interactions are referred to hereafter as remote communications.
In addition, there has also been proposed a system wherein persons each carrying out remote communications with each other share a virtual space and the same contents through the Internet by using personal computers or the like connected to the Internet. For more information on such a system, refer to documents such as Japanese Patent Laid-open No. 2003-271530. | {
"pile_set_name": "USPTO Backgrounds"
} |
In today's high-technology economy, banks, credit card companies, and other financial institutions provide various facilities for enabling their account holders to fund transactions. For example, banks provide checks, debit cards, and electronic drafting to enable their account holders to pay for goods, services, and other transactions. Similarly, credit card companies provide their account holders with credit cards for funding transactions online, in retail stores, over the telephone, or in other ways. However, even though account holders have many payment methods at their disposal, they are often concerned about having enough money/credit in their accounts to complete their transactions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to longitudinal cancellation circuits for use with telephone signal systems, and, in particular, to a longitudinal cancellation circuit in which precise matching of current and voltage sources, and other passive components is not required.
Long cancellation circuits are well known in the prior art. These devices can use voltage sources to drive the differential signal onto the line. If the longitudinal cancellation approach is used within this path, it necessitates precisely matched feed resistors to obtain good longitudinal balance. If the feed resistors are not matched, the longitudinal signal converts into a differential signal proportional to the mismatch. It is then impossible to differentiate between the telephone differential signal received, and the longitudinal converted differential signal.
It is also known in the prior art, that this problem of matching feed resistors can be eliminated by the use of voltage-controlled current sources connected to the tip-and-ring terminals of the circuit. If the current sources are identical, the longitudinal balance becomes independent of the feed resistors. However, it has been found that in order to ensure that the current sources are matched, extremely high cost circuit elements are required.
This problem in the prior art is overcome by the present invention which allows the matching of the current sources to be relaxed enough to make the circuit economical to manufacture. | {
"pile_set_name": "USPTO Backgrounds"
} |
Biodegradable polyester is a kind of macromolecule material using biological resources as raw materials. With respect to a petroleum-based polymer using petrochemical resources as raw materials, the biodegradable polyester can be degraded during a process of biological or biochemical effect or in a biological environment, being a very active degradable material in the present biodegradable plastic research and one of the best degradable materials in market application.
At present, biodegradable polyester film takes one of the most important application fields of biodegradable polyester, mainly including grocery bag, garbage bag, shopping bag, mulching film and the like. During blow molding process of the biodegradable polyester in preparing films, it frequently appears that the film is not lubricating enough to adhere to a roll or is too lubricating to roll up. Thus it results in poor bubble stability and large range of film thickness during film blowing which severely affect a continuity of film blowing. In CN 101622311A, by adding 0.05-5 wt % of biodiesel into a biodegradable polyester mixture, a viscosity of the polyester mixture is decreased, to some extent leading to less adherence of film to the roll, which guarantees the continuity of film blowing. However, a decrease of the viscosity of the polyester mixture indicates that an addition of biodiesel damages performances of the polyester to some extent, resulting in an increased melting index and a decreased viscosity of the polyester mixture.
The present invention surprisingly finds by research that adding a trace amount of cyclopentanone into the biodegradable polyester composition enables the biodegradable polyester to have obviously improved film blowing properties. When a velocity of film blowing is relatively high, it presents good bubble stability as well as relatively small range of film thickness and guarantees the continuity of film blowing production. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inclement weather causes hundreds of millions of dollars of damage to homes and business throughout the United States and in other parts of the world every year. Much of the damage results from large amounts of rain and associated flooding and the high winds generated by severe thunderstorms, tornadoes and hurricanes and other violent weather formations. In an effort to reduce the toll that heavy rains, flooding and high winds levy against buildings both large and small, artisans spend considerable time and resources toward trying to improve construction methods, construction geometry and building systems. Although current efforts are noteworthy, existing construction methods and building configurations still easily succumb to the forces of nature that manifest from often violent yet predictable weather formations.
Thus, there is a need for improved building configurations and methods that are designed to resist the predicted forces of inclement weather. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to the field of geophysical prospecting and, more particularly, to seismic data interpretation. Specifically, the invention is a method for analyzing the morphology of seismic objects extracted from a three-dimensional (3D) seismic data volume.
In the oil and gas industry, seismic prospecting techniques commonly are used to aid in the search for and evaluation of subterranean hydrocarbon deposits. A seismic prospecting operation consists of three separate stages: data acquisition, data processing, and data interpretation, and success of the operation depends on satisfactory completion of all three stages.
In the data acquisition stage, a seismic source is used to generate an acoustic impulse known as a xe2x80x9cseismic signalxe2x80x9d that propagates into the earth and is at least partially reflected by subsurface seismic reflectors (i.e., interfaces between underground formations having different acoustic impedances). The reflected signals (known as xe2x80x9cseismic reflectionsxe2x80x9d) are detected and recorded by an array of seismic receivers located at or near the surface of the earth, in an overlying body of water, or at known depths in boreholes. The seismic energy recorded by each seismic receiver is known as a xe2x80x9cseismic data trace.xe2x80x9d
During the data processing stage, the raw seismic data traces recorded in the data acquisition stage are refined and enhanced using a variety of procedures that depend on the nature of the geologic structure being investigated and on the characteristics of the raw data traces themselves. In general, the purpose of the data processing stage is to produce an image of the subsurface from the recorded seismic data for use during the data interpretation stage. The image is developed using theoretical and empirical models of the manner in which the seismic signals are transmitted into the earth, attenuated by subsurface strata, and reflected from geologic structures. The quality of the final product of the data processing stage is heavily dependent on the accuracy of the procedures used to process the data.
The purpose of the data interpretation stage is to determine information about the subsurface geology of the earth from the processed seismic data. The results of the data interpretation stage may be used to determine the general geologic structure of a subsurface region, or to locate potential hydrocarbon reservoirs, or to guide the development of an already discovered reservoir.
Currently, 3D seismic data is the preferred tool for subsurface exploration. As used herein, a xe2x80x9c3D seismic data volumexe2x80x9d is a 3D volume of discrete x-y-z or x-y-t data points, where x and y are mutually orthogonal, horizontal directions, z is the vertical direction, and t is two-way vertical seismic signal traveltime. These discrete data points are often represented by a set of contiguous hexahedrons known as xe2x80x9ccellsxe2x80x9d or xe2x80x9cvoxels,xe2x80x9d with each cell or voxel representing the volume surrounding a single data point. Each cell or voxel typically has an assigned value of a specific seismic attribute such as seismic amplitude, seismic impedance, or any other seismic data attribute that can be defined on a point-by-point basis.
A common problem in interpretation of a 3D seismic data volume is the extraction of xe2x80x9cseismic objectsxe2x80x9d from the data volume and evaluation of their geometric relationships to each other. A xe2x80x9cseismic objectxe2x80x9d is defined as a region of the 3D seismic data volume in which the value of a certain selected seismic attribute (e.g., acoustic impedance) satisfies some arbitrary threshold requirement, i.e., is either greater than some minimum value or less than some maximum value. At a certain threshold, two such regions may not be connected (i.e., they are two separate seismic objects); at a different threshold, they may be connected (i.e., a single seismic object). The interpreter must decide which threshold depicts a scenario that is more consistent with other known information about the subterranean region in question. Selection of an appropriate threshold is not always straightforward, and it may take multiple iterations to achieve the desired result which, of course, is that the seismic objects should correspond to actual underground reservoirs.
One technique for identifying and extracting seismic objects from a 3D seismic data volume is known as xe2x80x9cseed picking.xe2x80x9d Seed picking results in a set of voxels in a 3D seismic data volume, which fulfill user-specified attribute criteria and are connected. Seed picking has been implemented in several commercial software products such as VoxelGeo(copyright), VoxelView(copyright), GeoViz(copyright), Gocad(copyright), and others. Seed picking is an interactive method, where the user specifies the initial xe2x80x9cseedxe2x80x9d voxel and attribute criteria. The seed picking algorithm marks an initial voxel as belonging to the current object, and tries to find neighbors of the initial voxel that satisfy the specified attribute criteria. The new voxels are added to the current object, and the procedure continues until it is not possible to find any new neighbors fulfilling the specified criteria.
Seed picking requires a criterion for connectedness. There are two criteria commonly used, although others may be defined and used. One definition is that two voxels are connected (i.e., are neighbors) if they share a common face. By this definition of connectivity, a voxel can have up to six neighbors. The other common criterion for being a neighbor is sharing either an edge, a face, or a comer. By this criterion, a voxel can have up to twenty-six neighbors.
Another technique for identifying and extracting seismic objects from a 3D seismic data volume is by identifying discontinuities in the data using trace-to-trace correlations. These discontinuities may be assumed to represent the boundaries between contiguous seismic objects.
Current techniques for extracting seismic objects from 3D seismic data volumes fail to capture the valuable information about subsurface stratigraphy that is represented by the morphology of the extracted seismic objects. There is clearly a need for a method for capturing this information. Such a method preferably should be capable of analyzing a wide range of morphologic parameters and of operating automatically based on user-specified input conditions. The present invention satisfies this need.
In a first embodiment, the invention comprises a method for analyzing and classifying the morphology of a seismic object extracted from a 3D seismic data volume comprising the steps of (a) selecting one or more morphologic parameters for use in classifying the morphology of the seismic object, (b) performing geometric analyses of the seismic object to determine geometric statistics corresponding to the morphologic parameters, and (c) using the geometric statistics to classify the morphology of the seismic object according to the morphologic parameters. The seismic object may comprise any type of seismic data, including but not limited to seismic amplitude data, seismic impedance data, and seismic attribute data.
In another embodiment, the invention includes the steps of fitting one or more surfaces to the seismic object and performing geometric analyses of these surfaces. Typically, these surfaces would comprise surfaces conforming to the top, middle, or base of the seismic object.
In another embodiment, the invention also includes the step of extracting one or more seismic objects from the original 3D seismic data volume. The seismic object(s) may be extracted using any known technique. For example, the seismic object(s) may be extracted using multi-threshold, nested, bulk seed detection linked to an interactive hierarchical tree interface. Alternatively, discontinuity analysis may be performed on the original 3D seismic data volume to identify boundaries between contiguous seismic objects.
The inventive method may be used to classify seismic objects according to a wide variety of morphologic parameters, including without limitation perimeter, area, volume, maximum thickness, minimum thickness, mean thickness, standard deviation of thickness, major and minor axes from principal component analyses, hierarchical medial axis skeleton analysis, 3D edge and surface curvature analysis, and time-conformable edge analysis. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to insulating compositions. More particularly, this invention relates to insulating compositions useful for making insulated, smoke and fire resistant plenum communications cables typically used at frequencies ranging from DC up to several hundred MHZ.
Fluorocarbon polymers have been used as insulation for various purposes including plenum-type communications cables. The insulated conductors may be used alone, or as in a coaxial cable construction, or twisted with other conductors as pairs which may be combined to form a multiple pair core. The core may be coated with a jacket consisting of a fluorocarbon polymer or other flame retardant, low smoke polymer that will pass applicable regulatory requirements for plenum rated communications cables. Because of the possibility of fire and subsequent spreading of smoke within a building through the air plenum, plenum approved fire retardant, low smoke cables must be used for those applications.
Fluorocarbon polymer materials are often used as insulations because of their fire retardant properties and low smoke emissions when ignited. The electrical properties of fluorocarbon polymers are typically not as good as polyolefins, such as polyethylene or polypropylene and are more costly. The most pertinent electrical properties include the dielectric constant and dissipation factor. Dissipation factor in particular is important for cables designed to operate at frequencies in excess of 10 MHZ. The higher the dissipation factor of an insulation material the more a signal is attenuated as it is transmitted through a transmission line, such as a communications cable. The effect of dissipation factor becomes greater as the transmission frequency is increased. Fluorinated ethylene-propylene (FEP) resin is a melt processible fluoropolymer that has both good electrical properties and adequate flame and smoke performance. Due to the high cost and limited availability of FEP; alternative materials are desirable.
To lower the dielectric constant and improve the dissipation factor a foamed insulation of the polymer coating over the wire may be used. An example of such process is taught in U.S. Pat. Nos. 4,472,595 and 3,643,007 for polyolefin insulations.
An example of efforts to use fluorocarbons in cable insulation is described in co-pending application Ser. No. 65,860, filed May 21, 1993, now U.S. Pat. No. 5,462,803, which provides an insulating layer of a copolymer of ethylene and chlorotrifluoroethylene (commercially available under the trade name HALAR.RTM. copolymer and an outer layer of polyvinyl chloride.
In another example, foamed electrical insulation of ETFE and ECTFE is described in U.S. Pat. Nos. 4,331,619 and 4,394,460 wherein the process uses a chemical blowing agent and a nucleating agent. Polyethylene is added in small amounts as a processing aid. These patents do not address electrical attenuation performance, which is not adequate to meet some current 100 MHZ twisted pair applications. These patents also do not address potential degradations of the insulations mechanical properties as a result of this foaming process. Insulation elongation performance in particular is negatively impacted by foaming.
Since these insulating compositions are used in environmental conditions from about 0.degree. C. to 60.degree. C., the effect of temperature on electrical properties is important and specified in application standards, such as TIA/EIA 568A. Attenuation, in particular, is affected negatively by increases in temperature. ETFE and ECTFE insulated cable exhibit increases of approximately 0.6% per degree centigrade temperature increase at a frequency of 100 MHZ. This is more than twice the 0.25% increase measured when using a polyolefin or FEP insulation. While one may design a cable utilizing a foamed ETFE or ECTFE insulation that meets room temperature requirements for high frequency applications, a product that will also meet the applicable elevated temperature standards will be physically larger than desirable.
There is need for a melt processible insulation material with good physical properties that may be used as a substitute for FEP in plenum cable applications that require high performance signal transmission at frequencies in excess of 10 MHZ. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a yarn brake, especially, a yarn brake for a two-for-one twisting spindle or a two-for-one twisting spindle machine, having a substantially tube-shaped yarn brake housing in which a capsule-shaped brake cartridge is arranged, the brake cartridge comprising first and second telescopically movable tube portions which are movable against the bias of springs. Each tube portion of the brake cartridge has a substantially ball or curve shaped end portion with the pair of end portions disposed oppositely one another for each cooperating with a respective fixed axial position brake and/or a resiliently biased, axially movable brake ring with the pair of brake rings being at an adjustable axial spacing from one another.
Particularly in connection with the use of two-for-one twisting spindles, yarn brakes are known which comprise a yarn brake housing through which the yarn is axially trained. The inlet and outlet openings of the actual yarn brake region are respectively formed by brake rings having conical braking surfaces. The brake rings are typically comprised of a material having a high wear resistance. A brake cartridge, which forms the actual braking mechanism, extends between the individual inlet and outlet side of the brake rings and comprises two substantially cylindrical tube portions which are telescopically inserted into one another, and which include ball or curve shaped ends. The tubes enclose a spring which, upon the disposition of the brake cartridge in the yarn brake housing, outwardly resiliently biases the two tube end portions such that the curved-shaped ends of the tube portions are biased toward the brake rings and together therewith, as a function of the respective axial positions of the brake rings, exert the required braking force on the yarn traveling through the yarn brake. In accordance with the size of the required braking force, correspondingly stronger or weaker springs are disposed in the brake cartridge.
It is also conventionally known as well in connection with capsule yarn brakes that the actual braking body can be comprised of two tube sections, as is disclosed in German Industrial Model Patent Document 19 75 652, to provide a radially inwardly projecting flange portion on the inner end of the outermost tube section and a radially outwardly directed flange portion on the inner end of the innermost tube section so as to prevent or hinder an inadvertent release of the tube sections which are inserted into one another.
To permit adjustment or, respectively, setting of the braking force, it is known from DE 43 43 458 C2 (corresponding to U.S. Pat. No. 5,581,988) and DE 44 08 262 C2 (corresponding to U.S. Pat. No. 5,487,263), to set the axial position of the upper brake ring or, respectively, the brake ring carrier which supports this brake ring, in selected different settings so as to thereby vary the axial spacing of the upper and lower brake rings from one another. In the yarn brake disclosed in DE 43 43 458 C2, the lower brake ring is disposed in a fixed axial setting in the yarn brake housing while the upper brake ring is axially adjustably mounted in the yarn brake housing to thereby effect adjustment of the braking force. DE 44 08 262 C2 further discloses that the lower brake ring or, respectively, its brake ring carrier, can be adjusted relatively against the force of a return position spring by means of a downward pressure exerted from the direction of the upper brake ring, so that the downwardly moving brake cartridge, which is urged downwardly under the influence of gravity, can be supported against support elements which project radially inwardly from the inner wall of the yarn brake housing. The brake cartridge thereby loses contact with the upper and lower brake rings so that a training or feeding of the yarn through the yarn brake is possible.
It is additionally known in connection with two-for-one twisting spindles to arrange two brake cartridges in serial arrangement with one another in tandem manner so that, in total, four braking locations are available. A yarn brake of this configuration with one after another tandem brake cartridges has a fairly long axial extent.
It is an object of the present invention to provide simple and effective possibilities for altering the braking force.
In accordance with the present invention, a yarn brake is provided having the two tube sections as well as a third tube section added to the brake cartridge such that the three tube section are telescopically arranged for axial movement relative to one another against a spring force. The yarn brake of the present invention is characterized substantially in that, instead of a two piece brake cartridge, now a three piece brake cartridge is comprised together into a unit, whereby, for example, in contrast to a tandem-type, one after another serially activated brake cylinder, significant material and space savings can be realized.
In accordance with a preferred embodiment of the yarn brake of the present invention, it is provided that the yarn brake includes a guide conduit which communicates with its yarn brake housing, the yarn guide conduit receiving therein an axially adjustably positionable yarn intake tube adjustable to at least two positions relative to the guide conduit and having an inner end which supports the third brake ring thereon. By adjustment of the axial position of the yarn intake tube, one can, as desired, adjust the third brake ring relative to the third brake surface, so that this third brake surface can be rendered inoperable. By lowering of the yarn intake tube, the braking action of the third brake surface can be put into operation and this, in fact, in addition to the possibilities which are offered by positional adjustment of the first or the second brake ring carriers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to methods and apparati for detecting leaks in fluid conveying conduits, and more particularly to methods and apparati for detecting and accurately locating the position of leaks in fluid conveying conduits which are buried underground or otherwise inaccessible for inspection.
Fluid conveying conduits, such as water distribution pipelines, commonly experience leaks. To complicate matters, because fluid conveying conduits are commonly buried underground or are otherwise unexposed or inaccessible, leaks produced by such conduits often do not surface and, therefore, are not detected. As a result, fluid conveying conduits can often experience leaks for prolonged periods of time, such one or more years, without ever being detected, which is highly undesirable.
Accordingly, a multi-stage inspection process is commonly performed in the art to localize and correlate leaks in fluid conveying conduits.
Specifically, in the primary stage, a general surveying, or localization, mode is commonly executed to determine the presence of leaks in a conduit, such as a pipeline. Leak localization is commonly achieved by monitoring the flow of the fluid into and out of a district metered area (DMA), by monitoring minimum night flow of the fluid, or by utilizing sound loggers to detect when the noise produced by the fluid exceeds a pre-determined threshold.
In the secondary stage, a more detailed correlation mode is commonly executed to determine the exact location of the leaks in the underground fluid conveying conduit. Specifically, correlators are commonly used on the surface above an underground pipeline or directly upon an easily accessible, external device, such as a valve or hydrant, in order to more accurately determine the position of leaks in the conduit. After correlators are used to determine the position of the leaks, the ground directly above the leaks is excavated so that the leaks can be repaired. As can be appreciated, by knowing the exact location of the leaks in the conduit, excavation can be limited to only the portion of the street surface which is directly above the leaks, thereby reducing excavation costs and repair time, which is highly desirable.
Correlators commonly utilize sound technology to determine the location of leaks. Specifically, it is well known that a fluid, such as water, which escapes from a pressurized conduit, such as a pipeline, produces a high frequency sound wave that is propagated along the conduit with a constant velocity in both directions away from the source of the leak. It is also well known that, by placing a pair of sensors on opposite sides of the leak, the leak noise will be received at the sensors at different times depending upon the distance of each sensor from the source of the leak. Since the propagating velocity of the sound wave can be easily calculated, the location of the leak in the pipeline can be determined as a function of the time difference in which each sensor detects the sound wave.
In U.S. Pat. No. 4,083,229 to A. R. Anway, there is disclosed a method and apparatus for detecting and locating a fluid leak in an underground pipe or the like in which the vibration produced by the leak is intercepted at selected spaced apart points by microphones or other transducers, in which the vibration intercepted at each of the two points in converted into an electrical signal, and in which the extent of correlation of the two resulting signals is varied by variably time delaying one signal relative to the other to determine the leak""s location fro the occurrence of maximum correlation between the signals. In one embodiment, the variable time delay of one signal relative to the other is accomplished by a variable length time delay line and a means for progressively varying the length of the delay line. In another embodiment, the variable time delay is accomplished by a recirculating delay line analyzer that does more data age comparisons with the same delays in the same time than the variable length delay line.
The method and apparatus for detecting and locating a fluid leak in an underground pipe disclosed in the aforementioned patent to Anway utilizes a cross-correlation measurement technique in which one signal is progressively delayed relative to the other while the apparatus continues to compare the similarity between the two signals. This enables the device to measure the difference in travel time Td of the leak noise to the respective sensors. By determining the velocity of sound for the particular pipeline and knowing the distance between the sensors, the apparatus can compute the leak position in accordance with the following formula:
L=[Dxe2x88x92(Vxc3x97Td)]/2
where L is the leak position relative to one sensor, D is the overall distance between the sensors, V is the velocity of sound in the pipeline medium, and Td is the transit time difference.
In U.S. Pat. No. 5,205,173 to T. J. Allen, there is disclosed an improved method and apparatus for detecting leaks in pipelines using cross-correlation techniques including improved correlating circuitry featuring a pair of circulating delay lines for respectively receiving, temporarily storing and processing in a revolving sequence, samples of input data obtained from a pair of remotely positioned sensors, a multiplying circuit for causing samples input to each channel to be multiplied by each sample stored in the circulating delay line associated with the other channel, an adder and accumulator memory for accumulating the multiplication results, and a display for displaying the correlation results.
Although well known and widely used in commerce, prior art methods and apparati for detecting and locating fluid leaks in underground conduits suffer from notable drawbacks.
As an example, prior art methods and apparati for detecting and locating fluid leaks in underground conduits typically need to analyze the sound data obtained by the pair of sensors in real time. Specifically, the sound data detected by the sensors is transmitted to a central correlating unit via a communications link, such as radio or hard wire links. The data transmitted to the central correlating unit is then analyzed in real time by a correlation workforce, the real time analysis ensuring that the sound data detected by the sensors is synchronized in time. As a result, because the sound data must be analyzed in real time, the data can not be used in repeat correlations or comparisons after repair work has been carried out on the site of the leaks. In addition, because the sound data must be analyzed in real time, a constant correlation workforce is required during the accumulation of sound data by the sensors, thereby increasing expenses and operation time, which is highly undesirable.
As another example, although well known and widely used in commerce, the conventional multi-stage inspection process described above for localizing and correlating leaks in fluid conveying conduits is typically accomplished using different equipment and different workforces, thereby increasing equipment and labor costs, which is highly undesirable.
As another example, prior art methods and apparati for detecting and locating a fluid leak in underground fluid conveying conduits typically require that a fixed delay be introduced into one of the sound data streams, thereby increasing the total analysis time, which is highly undesirable.
As another example, prior art methods and apparati for detecting and locating a fluid leak in underground fluid conveying conduits typically fail to compensate for variances in the ambient temperature, thereby compromising the accuracy of the calculation of the location of the source of leaks in the pipeline, which is highly undesirable.
As another example, prior art methods and apparati for detecting and locating a fluid leak in underground conduits typically analyze one set of sound data, which can be unreliable. Specifically, temporary noise can be created in the pipeline during moments of increased fluid usage and, as a result, can create inaccuracies in the detection and location of leaks in the pipeline, which is highly undesirable.
As another example, prior art methods and apparati for detecting and locating a fluid leak in underground conduits are typically capable of utilizing only two sensors during the sound data collection period, thereby limiting the speed and efficiency in which a pipeline may be inspected, which is highly undesirable.
It is an object of the present invention to provide a new and improved method and system for localizing and correlating leaks in fluid conveying conduits.
It is another object of the present invention to provide a method and system for localizing and correlating leaks in fluid conveying conduits using compiled sound data.
It is yet another object of the present invention to provide a method and system for correlating leak noise sound data to accurately pinpoint the position of one or more leaks.
It is still another object of the present invention to provide a method and system of the type described above wherein the compiled sound data is stored in memory for the future localization and correlation of leaks.
It is another object of the present invention to provide a method and system of the type described above which compensates for variances in the ambient temperature.
It is yet another object of the present invention to provide a method and system of the type described above which compiles sound data over multiple time slices.
It is still another object of the present invention to provide a method and system of the type described above which is inexpensive to manufacture and unobtrusive to use.
Accordingly, as one feature of the present invention, there is provided a system for localizing and correlating at least one leak in at least one fluid conveying conduit, said system comprising first and second loggers which are positioned along the fluid conveying conduit in a spaced apart relationship, said first and second loggers being adapted to detect and store sound data produced within the at least one fluid conveying conduit, an interface unit removably connected to said first and second loggers, and a computer system removably connected to said interface unit, wherein the sound data stored by said plurality of loggers is capable of being downloaded onto said computer system, said computer system being capable of using the sound data to localize and correlate the at least one leak in the at least one conduit here is provided a dental cast tray assembly for forming a dental cast model, comprising a base, and a tray removably mounted on said base, said tray comprising a bottom surface and a top surface, the top surface being recessed so as to form an enclosed reservoir for holding the dental cast model.
As another feature of the present invention, there is provided, a method for correlating at least one leak in at least one fluid conveying conduit using a plurality of sound data loggers, each sound data logger being adapted to detect and store sound data produced within the at least one fluid conveying conduit, said method comprising the steps of programming the plurality of sound data loggers to detect and store sound data, deploying the plurality of sound data loggers along the at least one fluid conveying conduit in a spaced apart relationship, detecting and storing sound data produced within the at least one fluid conveying conduit using the plurality of sound data loggers, retrieving the sound data loggers, and correlating the at least one leak in the at least one fluid conveying conduit using the sound data stored in the plurality of sound data loggers.
Additional objects, as well as features and advantages, of the present invention will be set forth in part in the description which follows, and in part will be obvious from the description or may be learned by practice of the invention. In the description, reference is made to the accompanying drawings which form a part thereof and in which is shown by way of illustration an embodiment for practicing the invention. The embodiment will be described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is best defined by the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims priority from Korean Patent Application No. 2003-7157, filed on Feb. 5, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to an apparatus and method for producing a semiconductor device, and more particularly, to an apparatus and method for producing a semiconductor device including a system capable of controlling certain byproducts formed during the semiconductor production process.
2. Description of the Related Art
In the chemical vapor deposition process (CVD) employed in semiconductor device fabrication, various reaction gases are used according to the reaction condition and the types of treatment gases.
Accordingly, various byproducts are formed by chemical reaction of these reaction gases some of which are undesirable. For example, when NH3 and dichlorosilane (DCS) are the gases that react with each other in a reaction chamber, at a relatively high temperature of 650° C. or more and a pressure of 10−2 torr, a desired silicon nitride film (Si3N4) is deposited.
However, at the same time, ammonium chloride (NH4Cl) is generated as a byproduct. NH4Cl is a white, odorless, crystalline substance formed by the reaction of gaseous ammonia (NH3) and hydrochloric acid (HCl). It is mainly formed at the outlet portion of a reaction chamber or a vacuum pipe, which has a relatively low temperature.
Therefore, as the deposition process proceeds, powdery NH4Cl is accumulated at the outlet portion of the reaction chamber or the vacuum pipe. As the deposition process continues, the outlet portion of the reaction chamber and the vacuum pipe become clogged.
As a result, the accumulated NH4Cl flows backward into the reaction chamber. As the amount of the accumulated NH4Cl increases in the reaction chamber, the effective inner diameter of the outlet portion of the reaction chamber and the vacuum pipe decreases. Then, the volume of the exhaust gas changes. As a result of these differences caused by the presence of excess NH4Cl, a pressure change takes place within the reaction chamber.
Conventionally, in the deposition of a silicon nitride film, the reaction chamber and the vacuum pipe are periodically cleaned to remove the NH4Cl byproduct. However, if the use of equipment for cleaning the reaction chamber is circumvented, an increase of production loss and working expense is incurred.
In attempts to overcome this problem, there have been methods of preventing the generation of NH4Cl, channeling the generated NH4Cl toward an area away from a reaction chamber, and exhausting the generated NH4Cl through the back side of a vacuum pump.
FIGS. 1 and 2 are illustrative views of an apparatus for manufacturing a semiconductor device having a construction capable of preventing the generation of NH4Cl according to an example of the prior art. FIG. 2 is an enlarged view of the part of “A” of FIG. 1.
Referring to FIGS. 1 and 2, the deposition of a silicon nitride film is performed using DCS and NH3 in a reaction chamber 12 installed in a vertical-type reaction furnace 10. During the deposition, in order to prevent the accumulation of a NH4Cl byproduct in the outlet portion of the reaction chamber 12 and in the discharge port 14, a heating jacket 70 or a heating coil (not shown) is installed around sections in which a temperature drastically drops, i.e., the “A” part surrounding the discharge port 14, the “B” part between the discharge port 14 and a vacuum pipe 20 connected to a vacuum pump 60, and the “C” part surrounding the vacuum pipe 20.
Such a heating jacket or heating coil serves to maintain the above sections at a temperature of about 150° C. In FIG. 1, a reference numeral 16 denotes a heater for heating the reaction chamber 12 to a temperature required for the deposition and a reference numeral 50 denotes a utility box.
In a method using such a heating jacket 70, as shown in FIG. 2, an external heat is applied to the outer surfaces of the discharge port 14 and the vacuum pipe 20. Therefore, the outlet portion of the reaction chamber 12, the inner portion of the discharge port 14, and the inner portion of the vacuum pipe 20 are indirectly heated and kept warm.
As a result, NH4Cl4 can be prevented from being accumulated in the reaction chamber 12 and the discharge port 14. However, because the heating jacket 70 generates heat using a heating coil inserted in an outer insulating shell made of asbestos or a flexible synthetic silicon material, a high manufacturing cost is incurred.
In addition, various problems such as breakage of the heating coil during use and degradation due to the presence of water during the cleaning operation may occur. Therefore, an average life span of the heating jacket 70 is about a year. In addition, because overheating may cause a fire hazard, installation and management of separate fire safety equipment are required.
As a direct heating method, there is adopted a method for supplying a hot N2 gas into a discharge port of a reaction chamber to prevent the accumulation of a byproduct in a vacuum pipe. FIG. 3 is an illustrative view of an apparatus for manufacturing a semiconductor device having a construction capable of preventing the generation of NH4Cl by supplying a hot N2 gas according to another example of the prior art. In FIG. 3, the same reference numerals as in FIGS. 1 and 2 denotes the same constitutional elements.
Referring to FIG. 3, a hot N2 generator 80 as a separate heating unit is installed outside deposition equipment. When a room temperature N2 gas passes through the hot N2 generator 80, a hot N2 gas with a temperature of 50° C. or more is generated. The generated hot N2 gas is supplied into the outlet portion of the reaction chamber 12 or the discharge port 14, which has a lower temperature. According to this method, the inner portions of the vacuous reaction chamber 12 and discharge port 14 are heated by the hot N2 gas, and thus, NH4Cl is prevented from being accumulated in the reaction chamber 12 and the discharge port 14.
However, the hot N2 generator 80 is very expensive. Also, in order to separately install such a heating unit outside the deposition equipment, additional costs such as a high installation cost and working expense are required, in addition to the limitation of the available installation space.
In such conventional semiconductor device manufacturing apparatuses as described above with reference to FIGS. 1 through 3, a separate expensive unit such as a heating jacket and a hot N2 generator for heating the outlet portion of a reaction chamber, a discharge port, or a vacuum pipe is required. In addition, together with a separate space for installation of such a unit, additional cost for separate electric equipment installation and working expense are required. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.