text
stringlengths
2
806k
meta
dict
Metadata is commonly used in various information technology (IT) systems to describe the informational content of various files and may include, for example, the name of a file, file type, or the name and length of particular data items. As a result, metadata may be employed to efficiently manage data leading to more convenience, efficiency, and productivity. Advances in computer software and techniques, however, are required to fully use metadata within networked heterogeneous workflow environments, including both software applications and document production equipment such as multifunction printers and copiers.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention: The present invention relates to an air conditioning apparatus for a vehicle seat, which supplies air toward an air passage in the seat to be blown air toward a passenger seated on the seat from a surface sheet of the seat. 2. Description of Related Art: In a conventional air conditioning apparatus for a vehicle seat described in JP-U-59-164552, air conditioned in a front air conditioning unit is supplied to an air chamber within the seat through a seat duct, and air in the air chamber is blown from a surface sheet of the seat to improve pleasant feeling for a passenger seated on the seat in the passenger compartment. However, during a heating mode, when warm air is continually blown toward the seat so that temperature of a surface sheet of the seat becomes high, over-heating may be given to the passenger. On the other hand, during a stationary cooling state where the temperature in the passenger compartment is lowered from a cool-down state to a stable temperature, over-cooling may be given to the passenger. In this case, a temperature sensor may be disposed within the seat, and the temperature of air blown into the seat may be controlled according to the temperature within the seat. However, the temperature sensor adds cost to the air conditioning apparatus for the vehicle seat, and is difficult to be provided within the seat. Further, in the conventional air conditioning apparatus, conditioned air is not blown into the seat before a unit blower of the front air conditioning unit is operated, warm air is not immediately blown from the surface sheet of the seat, and the seat is not quickly heated.
{ "pile_set_name": "USPTO Backgrounds" }
Wireless communication services are an increasingly common form of communication, and demand for wireless services continues to grow. Examples of wireless services include cellular mobile telephones, wireless Internet service, wireless local area computer networks, satellite communication networks, satellite television, and multi-user paging systems. Unfortunately, these communication systems are confined to a limited frequency spectrum either by practical considerations or, as is often the case, by government regulation. As the maximum number of users, or “capacity,” of these systems is reached, user demand for more service may be met by either (1) allocating more frequency spectrum to the wireless service, or (2) using the allocated frequency spectrum more efficiently. Because the frequency spectrum is limited and cannot keep pace with user demand, there is a critical need for new technology that uses the allocated frequency spectrum more efficiently. Wireless communication systems are generally composed of one or more base stations through which wireless users, such as mobile telephone users, gain access to a communications network, such as a telephone network. A base station serves a number of wireless users, fixed or mobile, in a local area. To increase the capacity of the systems, service providers may install more base stations, reducing the area and the number of users handled by each base station. This approach increases system capacity without allocating more spectrum frequency bands, but is quite costly because it requires significantly more hardware. Another approach to using the frequency spectrum more efficiently is by improving “multiple access” techniques. Multiple access techniques allow multiple users to share the allocated frequency spectrum so that they do not interfere with each other. The most common multiple access schemes are Frequency-Division Multiple Access (FDMA), Time-Division Multiple Access (TDMA), Code-Division Multiple Access (CDMA), and more recently Space-Division Multiple Access (SDMA). FDMA slices the allocated frequency band into multiple frequency channels. Each user transmits and receives signals on a different frequency channel to avoid interfering with the other users. When one user no longer requires the frequency channel assigned to it, the frequency channel is reassigned to another user. With TDMA, users may share a common frequency channel, but each user uses the common frequency channel at a different time. In other words, each user is allocated a time slot in which the user may transmit and receive. Thus, TDMA interleaves multiple users in the available time slots. CDMA allows multiple users to share a common frequency channel by using coded modulation schemes. CDMA assigns distinct codes to each of the multiple users. The user modulates its digital signal by a wideband coded pulse train based on its district code, and transmits the modulated coded signal. The base station detects the user's transmission by recognizing the modulated code. In SDMA, a system may separate a desired user's signal from other signals by its direction of arrival, or spatial characteristics. This is sometimes referred to as “spatial filtering.” Thus, even though two users may be transmitting on the same frequency at the same time, the base station may distinguish them because the transmitted signals from the users are arriving from different directions. It is possible to use SDMA in combination with FDMA, TDMA, or CDMA. A conventional SDMA receiver requires an array of multiple receive elements. Further, a conventional SDMA receiver uses a bank of phase shifters that cooperates with the receive element array to form a “beam” that “looks” in a particular direction. It is generally more desirable to form multiple beams, each directed toward a different direction, i.e., toward different users. The more beams, the more simultaneous users the SDMA system may handle operating on the same frequency at the same time. The more beams, however, the more complicated the SDMA receiver. For instance, each beam may require a separate bank of phase shifters and circuits that perform signal tracking. Additionally, each beam may require a separate “signal combiner,” which combines the signals received from each receive element to form a “combined signal.” Further still, each combined signal may require a separate signal detector, which detects the transmitted signal from the user. This hardware complexity greatly increases the cost of an SDMA receiver. Using well known algorithms, hardware complexity may be reduced by performing phase shifting, signal tracking, signal combining and signal detecting in signal processing software. Current signal processing techniques, however, have difficulty identifying and tracking large numbers of simultaneously transmitted signals on the same frequency, particularly in a “multipathing” environment. A multipathing environment is one where transmitted signals may reach the receiver over multiple paths. For instance, a transmitted signal may reach the receiver (1) directly, and (2) indirectly after reflecting off objects. Multipath signals may also further complicate the complexity of the conventional SDMA receiver in the same manner as described above. Thus, there is a need to provide an improved SDMA receiver that can simultaneously receive from multiple directions and operate in a multipath environment without likewise increasing hardware or software complexity of the receiver.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of Invention This invention relates generally to digital data communication systems, particularly to the encoding and decoding of error correcting codes. 3. Related Art and Other Considerations In a digital data communication system (including storage and retrieval from optical or magnetic media), error control systems are typically employed to increase the transfer rate of information and at the same time make the error rate arbitrarily low. For fixed signal-to-noise ratios and fixed bandwidths improvements can be made through the use of error-correcting codes. With error-correction coding, the data to be transmitted or stored is processed to obtain additional data symbols (called check symbols or redundancy symbols). The data and check symbols together make up a codeword. After transmission or retrieval, the codeword is mathematically processed to obtain error syndromes which contain information about locations and values of errors. The Reed-Solomon codes are a class of multiple-error correcting codes. One of the most popular methods of decoding is to generate the error locator polynomial .sigma.(x) [i.e the connection polynomial using the Berlekamp-Massey algorithm]; generate the error evaluator polynomial .omega.(x) from the error locator polynomial; perform a root search for the error locator polynomial to detect error locations; and then evaluate the error evaluator polynomial at the error locator polynomial root to calculate an error value. Most logic circuits for error detection and correction implement the Berlekamp-Massey algorithm. Each iteration of the Berlekamp-Massey algorithm has two parts or stages: ##EQU1## As used herein, d.sub.n is a discrepancy number and .tau. is an intermediate polynomial used in calculating .sigma.. The choice of the two alternate expressions for .tau. depends on whether or not the .sigma.(x) update results in an increase in the order of .sigma.(x). When an increase results, .tau.(x) is set to .sigma.(x) and d.sub.r is set to d.sub.n. If .tau.(x) is instead set to d.sub.n.sup.-1 x.sigma.(x) then d.sub.r can be eliminated and the recursions become: ##EQU2## The second stage requires the result of the first stage. To minimize circuitry size it is desirable to perform all arithmetic in a serial manner and to make updates in a serial manner (as opposed to a parallel manner requiring space-consuming parallel buses). Assuming the field used is GF(2.sup.m), the minimum number of clock cycles needed for a serialized implementation is 2m clocks per iteration, i.e. m clocks per stage. U.S. Pat. No. 4,845,713, issued Jul. 4, 1989 to Zook, shows a method which uses 2m+1 clocks per iteration and bit-serial multipliers and adders. However it uses 4t+1 m-bit registers and a 2.sup.m .times.m ROM look-up table for inversion (t being the number of correctable errors). Also, the update for .tau..sup.(n+1) (x) is done in a parallel manner. Various decoding methods are described in Whiting's PhD dissertation for the California Institute of Technology entitled "Bit-Serial Reed-Solomon Decoders in VLSI," 1984. Whiting's preferred implementation uses the following modified set of recursion equations: ##EQU3## Whiting's implementation can perform an iteration in 2m clocks if a 2.sup.m .times.m ROM look-up table is used for inversion. The updates can be done serially, but d.sub.n.sup.-1 must be parallel bussed to each multiplier. Whiting's overall implementation would use 5(t+1) m-bit registers. The reason that the number of registers is proportional to t+1 instead of t is because .sigma..sub.0 is not identically equal to 1, i.e. the .sigma.(x) generated by EQUATIONS 2 is the .sigma.(x) generated by EQUATIONS 1 multiplied by some constant. Whiting also mentions using the following modified set of recursion equations: ##EQU4## Whiting's second method uses no inversions, but for serial updates it requires 6(t+1)+2 m-bit registers and d.sub.n and d.sub.r must be parallel bussed to each multiplier. All known implementations for the Berlekamp-Massey algorithm use some combination of a 2.sup.m .times.m ROM, symbol-wide signal paths, and an excessive number of m-bit registers in order to perform an iteration in 2m clock cycles. An inherent problem with all of the above sets of iteration equations is that .sigma..sup.(n+1) (x) depends on .tau..sup.(n) (x) and, in turn, .tau..sup.(n+1) (x) depends on .sigma..sup.(n) (x) . Since one or both of them depend upon d.sub.n, consequentially d.sub.n must be calculated during the first m clock cycles and then .sigma..sup.(n+1) (x) and .tau..sup.(n+1) (x) must both be calculated during the second m clock cycles. This implies the need for temporary storage for one or both of .sigma..sup.(n) (x) and .tau..sup.(n) (x) when used in multiplications to produce .sigma..sup.(n+1) (x) or .tau..sup.(n+1) (x). Thus there is a need for a more efficient method.
{ "pile_set_name": "USPTO Backgrounds" }
For some time, electronic percussion instruments that mimic an acoustic hi-hat cymbal have been produced where the hi-hat timbre is controlled by the amount that the foot pedal is depressed (from being stepped on by a performer). In other words, the hi-hat timbre is controlled in conformance with the amount of change in the position of the upper cymbal based on the amount to which the foot pedal is depressed from being stepped on. In Japanese Unexamined Patent Application (Kokai) Publication Number 2005-195981, an electronic hi-hat cymbal is disclosed in which the upper cymbal moves up and down in conformance with the amount that the foot pedal is depressed to simulate a performance feeling of an acoustic hi-hat cymbal. FIGS. 6(a) and 6(b) show an electronic hi-hat 80 similar to that disclosed in Japanese Unexamined Patent Application (Kokai) Publication Number 2005-195981. FIG. 6(a) is a lateral cross-section drawing of the entire electronic hi-hat unit, but with a lateral view (without cross-section) of the upper cymbal 100 and the lower cymbal 200. A cross-section view of the upper cymbal 100, lower cymbal 200 and the portion between the upper and lower cymbals is shown in the drawing of FIG. 6(b). As is shown in FIG. 6(a), the electronic hi-hat 80 is furnished with the upper cymbal 100, the lower cymbal 200, an extension rod 420 to which the upper cymbal is linked in a manner that allows vibration of the upper cymbal 100, and a hollow shaft member 410 to which the lower cymbal is linked in a manner that allows vibration of the lower cymbal 200. A spring 430 is placed in the inner lower end of the hollow shaft member 410. The electronic hi-hat 80 also includes a treading foot pedal 440, a joint 450 that links the extension rod 420 and the foot pedal 440, and a leg section 460 linked to the hollow shaft member 410, for supporting the electronic hi-hat 80 in a standing orientation. The extension rod 420 is linked on the lower portion to the foot pedal 440 through the joint 450 in a configuration such that the extension rod 420 moves up and down in conformance with the treading operation of the foot pedal 440. The upper cymbal 100 is linked by a linking fitting to the upper portion of the extension rod 420 in a manner such that the upper cymbal is able to vibrate and move up and down together with the up and down movement of the extension rod 420, in conformance with the treading operation of the foot pedal 440. The lower portion of the extension rod 420 passes through the upper hollow shaft 411 and the lower hollow shaft 412, and also passes through the spring 430 inside the lower hollow shaft 412. The spring 430 is held sandwiched between the bottom of a knurl section 420a on the extension rod 420 and the top of a knurl section 412a of the lower hollow shaft 412, such that the extension rod 420 is always subjected to a force biasing the rod 420 upward. As a result, when the treading operation of the foot pedal 440 is not being carried out, the upper cymbal 100 and the lower cymbal 200 are separated at a specified interval. Next, an explanation will be given regarding the upper cymbal 100 and the lower cymbal 200 while referring to FIG. 6(b). FIG. 6(b) shows the upper cymbal 100 and the lower cymbal 200 in the open position or separated state. When the foot pedal 440 is stepped on by a sufficient amount, the upper cymbal 100 and the lower cymbal 200 will be in a closed position in which the upper cymbal 100 and the lower cymbal 200 are in a state of close contact. The upper cymbal 100 has a striking surface 110 that is formed using rubber on the top surface. On the side of the upper cymbal 100 facing opposite to the side of the striking surface 110, a vibration sensor 70 is disposed on a vibration sensor attaching frame 120. The vibration sensor 70 is a sensor that detects the vibration level of the vibrations of the upper cymbal 100 due to the striking of the upper cymbal 100 or the contact between the upper cymbal 100 and the lower cymbal 200 and is, for example, a piezoelectric sensor. When the vibration sensor detects the vibration level, an analog electrical signal that corresponds to the vibration level is transmitted to a stereo jack 150 linked for output by a connecting cable (not shown in the drawing). The analog electrical signal is input via the plug 130, the cable 131, and the stereo jack 230, to the stereo jack 250 of the lower cymbal 200. The stereo jack 250 is linked for input from the stereo jack 150 and output from an output terminal (not shown in the drawing). As shown in FIG. 6(b), the displacement sensor 60 is arranged between the upper cymbal 100 and the lower cymbal 200. The displacement sensor 60 is configured with a circular sensor sheet that is housed in the bottom of the inside of a hollow cylinder, the top of which is open. The displacement sensor 60 is further configured with a conical shaped coil spring that is arranged on the sensor sheet and that widens from the top downward, and a cover that is in contact with the top of the coil spring. When the foot pedal 440 is stepped on, the gap between the upper cymbal 100 and the lower cymbal 200 closes by an amount in conformance with the amount that the foot pedal has been depressed. As the foot pedal descends by being stepped on, the cover section is pressed downward and the coil spring is pressed against the cushion sheet and is compressed and changes shape in the vertical direction due to the compression force. The sheet section is used for electrical detection of the changes in shape by the coil spring caused by the compression in the vertical direction. In that manner, the amount that the foot pedal 440 is depressed and, thus, the change in the position of the upper cymbal 100 (hereafter, referred to as the “upper cymbal position”) is detected. When the conical shaped coil spring compresses and changes shape due to the foot pedal 440 being depressed, the coil spring presses against a resistor-printed sheet material of the sensor sheet section, to press a portion of the resistor-printed sheet material against a carbon-printed circuit board. As a result, conductive ink of the resistor-printed sheet material comes into contact with an electrode pattern of the carbon-printed circuit board and the electrical resistance value of the carbon printed circuit board changes. This electrical resistance value changes in conformance with the amount of the pressure deformation of the coil spring and, thus, in conformance with the upper cymbal position due to the amount that the foot pedal 440 is depressed. The electrical resistance value is detected via an output terminal (not shown in the drawing). In this manner, an electronic hi-hat cymbal configuration has been made such that the upper cymbal is moveable relative to the lower cymbal and the position of the upper cymbal 100 (the upper cymbal position) is detected by the displacement sensor 60. In addition, if that the upper cymbal 100 is vibrated due to the striking of the upper cymbal or due to the foot pedal being stepped on by a sufficient amount to cause the upper cymbal to come into contact with the lower cymbal 200, a musical tone is produced that conforms to the upper cymbal position that has been detected by the displacement sensor 60. At that time, the vibration sensor 70 detects the vibration level of the upper cymbal 100 and, if the vibration level exceeds a specified threshold value, a trigger signal is output to the sound source that instructs the audible generation of the musical tone. FIG. 7 is a drawing that shows, visually, the relationship between the upper cymbal position that has been detected by the displacement sensor 60 and the timbre of the musical tone that is generated by the sound source. The horizontal axis shows the displacement sensor values and the vertical axis shows the levels of the musical tones that are generated. The displacement sensor values that are shown on the horizontal axis correspond to the relative positions of the upper cymbal 100 and the lower cymbal 200, where the left end of the horizontal axis corresponds to the cymbals being in close contact, with the values going toward the right correspond to increasing separations between the upper cymbal 100 and the lower cymbal 200. The range in which the displacement sensor values are smaller than a specified threshold value is called the closed position, while the range in which they are greater than a specified threshold value is called the open position. There are five types of hi-hat sounds (open sound, half sound, slightly open sound, closed sound, and press sound) that are assigned correspondingly to the output ranges for the displacement sensor values. The open sound, half sound, and slightly open sound, which correspond to the open position, are classified as the musical tones of the open group. The closed sound and press sound, which correspond to the closed position, are classified as the musical tones of the closed group. The cross-fading of the each of the musical tones is done with the musical tones of the open group (the open sound, half sound, and slightly open sound) in conformance with the displacement sensor values. Similarly, cross-fading is done with the musical tones of the closed group (the closed sound and the press sound) in conformance with the displacement sensor values. In addition, the musical tones of the open group and the musical tones of the closed group, as is the case with an acoustic hi-hat cymbal, are switched mutually exclusively at a specified threshold value of the displacement sensor values. The sound source is controlled such that when the foot pedal is stepped on and the displacement sensor value becomes a specified threshold value or lower at the time that the upper cymbal position is at the open position and a musical tone of the open group is generated, an instruction is issued for the generation of a musical tone of the closed group and the musical tone of the open group that is currently being produced rapidly attenuates (truncates) and, together with this, a musical tone of the closed group is generated. However, with an electronic hi-hat such as that described above, when the foot pedal has not been depressed, but the upper cymbal is struck with a stick or the like with a force strong enough to cause the upper cymbal to drop such that the position of the upper cymbal reaches the threshold value, the cymbal sound is extinguished even though this was not the intention of the performer. FIGS. 8(a)-(c) show timing charts in which that event is represented, where the time is shown on the horizontal axis and the displacement sensor value is shown on the vertical axis. The condition of the musical tone that is generated by the sound in the case where the displacement sensor value has changed in the above-noted manner is shown in FIGS. 8(b) and (c). FIG. 8(b) shows the time on the horizontal axis and the level of a musical tone of the open group that is generated by the sound source on the vertical axis. Similarly, FIG. 8(c) shows the time on the horizontal axis and the level of the musical tone of the closed group that is generated by the sound source on the vertical axis. FIG. 8(a) shows the case in which, when the displacement sensor is at an open position that is in the vicinity of the threshold value (indicated by the alternating long and short dashed line), the upper cymbal 100 has been struck at time a. As shown in FIG. 8(a), the displacement sensor value starts to drop from time a, goes below the specified threshold value at time b, and becomes one of a closed position. Since the upper cymbal 100 has been struck at time a, as is shown in FIG. 8(b), the generation of a musical tone of the open group begins. Next, since at time b, the upper cymbal 100 changes from the open position to the closed position, the musical tone of the open group that is being generated rapidly attenuates. At the same time, as is shown in FIG. 8(c), a waveform of the closed group is generated. After that, at time c, the musical tone of the open group is again generated with the return of the displacement sensor value to the original value and the musical tone of the closed group attenuates. Accordingly, in the interval from time b to c, a rapid attenuation is carried out of the musical tone of the open group and the generation of a musical tone of closed group occurs that was not intended by the performer. However, such unintended effects can be avoided with embodiments of the present invention in which an electronic percussion instrument may be controlled to provide a musical tone that is intended by the performer.
{ "pile_set_name": "USPTO Backgrounds" }
Prosthetic heart valves are used for replacement of defective natural valves in the human heart, being emplaced by open heart surgical procedures. These devices have given thousands of patients a new lease on life, granting them an increased life span, with greater vigor and health, due to the improved blood circulation provided by the prosthetic heart valve. Some of the most advanced models of prosthetic heart valves are coated with isotrophic, pyrolytic carbon, or a similar material, for the purpose of reducing to an absolute minimum the possibility of the formation of thromboemboli on the heart valve. Such thromboemboli, or blood clots, when they do form, can have fatal consequences to the patient. Because of the use of the extremely brittle pyrolytic carbon coatings, and because of the general delicate construction of the heart valve, and the absolute requirement that the valve must not be bent or jolted in any way, the design of a shipping package for heart valves is a matter of critical concern. The package must provide protection from damage by dropping or other severe jolts with an extremely high degree of reliability. The package must also protect the fragile closure member retention struts of the valve from bending during opening or closing of the package. Furthermore, it is preferable for the valve to be gas or stem sterilizable without opening the package, to avoid any possibility of damage to the valve. One commercial package which is an attempted solution to the above requirements includes a pair of package sections with cylindrical mating portions having spaced detent members, so that the mating portions can be attached together by approximately a 1/8th turn rotation of the two package sections. One of the package sections carries a resilient pad, and the heart valve is pressed against the pad by the outer end of the other package section, for protection of the valve. One disadvantage of the above arrangement is that, as the two package sections are relatively rotated to free the cooperating detent means on each package section for opening, a frictional torque is directly imparted from the rotating package sections to the struts of the heart valve. In certain undesirable circumstances, this may cause a slight degree of bending in the struts. Such bending could cause the movable closure member of the heart valve to bind and fail to open and close regularly and easily. In accordance with this invention, an improved heart valve package is provided in which the above disadvantage is avoided, and in which improved protection can be provided to heart valves against rough handling in transit and the like.
{ "pile_set_name": "USPTO Backgrounds" }
Hemodialysis treatment involves obtaining access to blood through one or more blood vessels. Specifically, one or more needles or catheters may be inserted into one or more blood vessels to draw or retrieve fluid. Preferably, the one or more vessels may be located close to the surface of the skin. Frequently, a fistula may be formed between two vessels to provide better access. A fistula allows blood to flow quickly between the vessels, while bypassing the capillaries. The quality of the vascular access that may be achieved may impact the adequacy of hemodialysis. Typically, a vessel for vascular access (e.g., for hemodialysis) is ideally located about 5 mm or less from the skin of the patient. However, some vessels may be too deep below the skin and an underlying layer of fat to reach with a conventional needle. In some cases, it may be desirable to use one or more deep vessels whose access is obscured by a thicker layer of subcutaneous fat. As such, it may be desirable to have devices, systems, and methods to facilitate percutaneous access to these deep vessels.
{ "pile_set_name": "USPTO Backgrounds" }
A metal laser-sintering technology has been known as a means for manufacturing a three-dimensional shaped object wherein the shaped object is obtained by repeating steps of (1) irradiating a powder layer of a metal powder with a light beam (e.g. directional energy beam such as laser beam) to form a sintered layer and (2) providing another powder layer on the sintered layer thus formed and irradiating it with the light beam to form another sintered layer. This technology makes it possible to manufacture the three-dimensional shaped object with a complicated profile in a short period of time. Particularly when a sufficient melting of the metal powder occurs by the irradiation of the light beam with high energy density, a sintered density of almost 100% can be achieved after the solidification of the melted metal powder. The resulting object with such high density can be subsequently subject to a finish machining treatment for smoothing a surface thereof. The shaped object thus obtained can be used as a metal mold for plastic molding. In this regard, however, the metal powder used as a raw material for such metal laser-sintering is required to have different characteristics from those of another kind of powder-sintering process in which a powder compacting followed by a sintering of the compacted powder is performed. For example, it is required for the metal powder to have a particle diameter smaller than the thickness of the powder layer to be irradiated with the light beam. Such smaller particle diameter provides a higher packing density of the powder as well as an improved absorption efficiency of the light beam upon producing the shaped object. This will lead to a higher sintered density and a smaller surface-roughness of the shaped object. On the other hand, when the particle diameter is too small, the metal powder tends to form the aggregated particles so that a packing density of the powder becomes lower, thus making it impossible to uniformly form a thin metal layer thereof. In order to increase the strength of the shaped object, it is required that a contact area is large and a bonding strength is high between a newly formed sintered layer and a preceding and solidified sintered layer lying thereunder. In this case, even between the newly formed sintered layer and an adjacent solidified sintered layer, there is required a large contact area and a high bonding strength. Furthermore, it is required that a top surface of the newly formed sintered layer does not have a significant bulge. The bulge with more than the thickness of the powder layer can interfere with the spread of the subsequent powder layer, making it impossible to form such subsequent powder layer. Upon irradiating the metal powder with the light beam, the metal powder is allowed to melt partially or wholly. The melted metal powder is then solidified by a subsequent rapid cooling thereof. This results in a formation of a sintered material. When the melted metal powder has a high wettability, the contact area between the melted metal powder and the adjacent solidified sintered layer becomes larger, in which case a higher fluidity of the melted metal powder provide a less bulge. Therefore, it is desired that the metal powder, when melted, has not only a high fluidity but also a high wettability. There is a possibility that the three-dimensional shaped object produced by the metal laser-sintering process has the residual metal powder adherent to the surface thereof, resulting in a rough surface of the object. Thus, in a case where the three-dimensional shaped object is used as a metal mold for plastic injection molding in which a high accuracy is required, such residual metal powder must be removed by carrying out a finish machining with a machining tool or the like. When the metal laser-sintering process is carried out by using a metal powder containing an iron-based powder with high hardness, the edge of the machining tool may wear out due to the hardness of the iron-based powder during the machining operation. Particularly when a narrow groove of the object is machined, it is required to use a machining tool having smaller diameter that is more prone to wear out and may undergo a chipping or breakage. Therefore, it is desired to use a metal powder which makes for a better machinability during the finish-machining operation and the like. The three-dimensional shaped object thus obtained must have no significant crack on the outer surface thereof. In particular in a case where the three-dimensional shaped object is used as a metal mold for injection molding, it is desired that there is no micro crack in the inner structure of the object, considering that a flowing fluid is passed therethrough as a coolant. In the light of the above, the applicant of the present invention has proposed a metal powder for metal laser-sintering comprising an iron-based powder (chromium-molybdenum steel powder, alloy tool steel powder) and at least one kind of nonferrous powder selected from the group consisting of nickel, nickel-based alloy, copper and copper-based alloy, as disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2001-152204. The applicant of the present invention also has proposed a powder mixture for metal laser-sintering comprising an iron-based powder (chromium-molybdenum steel), at least one of nickel powder and nickel-based alloy powder, at least one of copper powder and copper-based alloy powder and graphite powder, as disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2004-277877. The chromium-molybdenum steel and the like are used for the reason of strength and toughness. The copper and copper-based alloy powders are used for the reason of wettability and fluidity. The nickel and nickel-based alloy powders are used for the reason of strength and machinability. The graphite powder is used for the reason of the reduction in the absorbing rate of the light beam and micro cracks. However, even the metal powders for metal laser-sintering described in Japanese Unexamined Patent Publications (Kokai) Nos. 2001-152204 and 2004-277877 have such problem that the hard iron-based powder adherent to the surface of the shaped object produced by the metal laser-sintering process causes a machinability resistance to be increased upon the finish machining of the surface, which leads to a short lifetime of the machining tool. On the other hand, a slower machining rate is required for extending the lifetime of the tool, resulting in an increase of the necessary time for machining operation.
{ "pile_set_name": "USPTO Backgrounds" }
Advertisers and others may provide contact information to users via audio or video media, such as television and radio. The contact information may be intended to provide audience members with a method of contacting an advertiser, for example. In some circumstances, it may be difficult for audience members to remember or write down the contact information. Hence, there is a need for an improved system and method of identifying contact information.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to the modification and control of the temperature of a selected body organ. More particularly, the invention relates to a method and intravascular apparatus for controlling organ temperature. 2. Background Art Organs in the human body, such as the brain, kidney and heart, are maintained at a constant temperature of approximately 37° C. Hypothermia can be clinically defined as a core body temperature of 35° C. or less. Hypothermia is sometimes characterized further according to its severity. A body core temperature in the range of 33° C. to 35° C. is described as mild hypothermia. A body temperature of 28° C. to 32° C. is described as moderate hypothermia. A body core temperature in the range of 24° C. to 28° C. is described as severe hypothermia. Hypothermia is uniquely effective in reducing brain injury caused by a variety of neurological insults and may eventually play an important role in emergency brain resuscitation. Experimental evidence has demonstrated that cerebral cooling improves outcome after global ischemia, focal ischemia, or traumatic brain injury. For this reason, hypothermia may be induced in order to reduce the effect of certain bodily injuries to the brain as well as other organs. Cerebral hypothermia has traditionally been accomplished through whole body cooling to create a condition of total body hypothermia in the range of 20° C. to 30° C. However, the use of total body hypothermia risks certain deleterious systematic vascular effects. For example, total body hypothermia may cause severe derangement of the cardiovascular system, including low cardiac output, elevated systematic resistance, and ventricular fibrillation. Other side effects include renal failure, disseminated intravascular coagulation, and electrolyte disturbances. In addition to the undesirable side effects, total body hypothermia is difficult to administer. Catheters have been developed which are inserted into the bloodstream of the patient in order to induce total body hypothermia. For example, U.S. Pat. No. 3,425,419 to Dato describes a method and apparatus of lowering and raising the temperature of the human body. Dato induces moderate hypothermia in a patient using a metallic catheter. The metallic catheter has an inner passageway through which a fluid, such as water, can be circulated. The catheter is inserted through the femoral vein and then through the inferior vena cava as far as the right atrium and the superior vena cava. The Dato catheter has an elongated cylindrical shape and is constructed from stainless steel. By way of example, Dato suggests the use of a catheter approximately 70 cm in length and approximately 6 mm in diameter. However, use of the Dato device implicates the negative effects of total body hypothermia described above. Due to the problems associated with total body hypothermia, attempts have been made to provide more selective cooling. For example, cooling helmets or head gear have been used in an attempt to cool only the head rather than the patient's entire body. However, such methods rely on conductive heat transfer through the skull and into the brain. One drawback of using conductive heat transfer is that the process of reducing the temperature of the brain is prolonged. Also, it is difficult to precisely control the temperature of the brain when using conduction due to the temperature gradient that must be established externally in order to sufficiently lower the internal temperature. In addition, when using conduction to cool the brain, the face of the patient is also subjected to severe hypothermia, increasing discomfort and the likelihood of negative side effects. It is known that profound cooling of the face can cause similar cardiovascular side effects as total body cooling. From a practical standpoint, such devices are cumbersome and may make continued treatment of the patient difficult or impossible. Selected organ hypothermia has been accomplished using extracorporeal perfusion, as detailed by Arthur E. Schwartz, M. D. et al., in Isolated Cerebral Hypothermia by Single Carotid Artery Perfusion of Extracorporeally Cooled Blood in Baboons, which appeared in Vol. 39, No. 3, NEUROSURGERY 577 (September, 1996). In this study, blood was continually withdrawn from baboons through the femoral artery. The blood was cooled by a water bath and then infused through a common carotid artery with its external branches occluded. Using this method, normal heart rhythm, systemic arterial blood pressure and arterial blood gas values were maintained during the hypothermia. This study showed that the brain could be selectively cooled to temperatures of 20° C. without reducing the temperature of the entire body. However, external circulation of blood is not a practical approach for treating humans because the risk of infection, need for anticoagulation, and risk of bleeding is too great. Further, this method requires cannulation of two vessels making it more cumbersome to perform particularly in emergency settings. Even more, percutaneous cannulation of the carotid artery is difficult and potentially fatal due to the associated arterial wall trauma. Finally, this method would be ineffective to cool other organs, such as the kidneys, because the feeding arteries cannot be directly cannulated percutaneously. Selective organ hypothermia has also been attempted by perfusion of a cold solution such as saline or perfluorocarbons. This process is commonly used to protect the heart during heart surgery and is referred to as cardioplegia. Perfusion of a cold solution has a number of drawbacks, including a limited time of administration due to excessive volume accumulation, cost, and inconvenience of maintaining the perfusate and lack of effectiveness due to the temperature dilution from the blood. Temperature dilution by the blood is a particular problem in high blood flow organs such as the brain. Therefore, a practical method and apparatus which modifies and controls the temperature of a selected organ satisfies a long-felt need.
{ "pile_set_name": "USPTO Backgrounds" }
One common treatment for male erectile dysfunction includes the implantation of a penile implant device. One type of penile implant device includes a pair of cylindrical prostheses that are implanted into the corpus cavernosae of the penis. Typically, the cylindrical prostheses or cylinders are inflatable and are connected to a fluid-filled reservoir through a pump and valve assembly. With one such type of system, one tube extends from each of the two cylindrical prostheses and connects to the pump, and one tube connects the pump to the reservoir. The pump is typically surgically implanted into the scrotum of the patient and the reservoir is implanted in the abdomen, with the tubes fluidly connecting the components. To activate the penile implant device, the patient actuates the pump using one of a variety of methods that cause fluid to be transferred from the reservoir through the pump and into the cylindrical prostheses. This results in the inflation of the prostheses and produces rigidity for a normal erection. Then, when the patient desires to deflate the prostheses, a valve assembly within the pump is actuated in a manner such that the fluid in the prostheses is released back into the reservoir. This deflation returns the penis to a flaccid state. In three-piece systems such as those described above, the reservoir can sometimes be unintentionally compressed by bending or other pressure in the abdomen, which can lead to an inadvertent and undesirable spontaneous inflation of the cylinders. This can occur because many pump designs are not intended to prevent movement of fluid from the reservoir to the cylinders when the pump is subjected to pressurized fluid from a compressed reservoir. For one example, a pump that includes various poppets, springs, and valve seats can provide for fluid-tight seals for prevention of certain fluid movement under normal reservoir pressures. However, these same fluid-tight seals may be broken or opened when subjected to increased external pressure from the reservoir, thereby allowing fluid to move to and inflate the cylinders. This cylinder inflation can be embarrassing and uncomfortable for the user. With a three-piece system, the implantation of the three distinct parts of the system (i.e., reservoir, pump, and cylinders) in different parts of the body is typically more invasive to the patient than a system that requires accessing fewer areas of the body. Another system that may be used that typically requires less invasive surgical access can be referred to as a two-piece system. A two-piece system typically differs from a three-piece system in that it does not include a reservoir that is separate from the pump. One such type of system is described, for example, in U.S. Pat. Nos. 4,651,721; 4,895,139; 5,010,882; 5,048,510; and 5,263,981, the entire contents of which are incorporated herein by reference. In these types of systems, the pump itself stores the fluid of the system, thereby also functioning as a reservoir. The pump of this type of system is typically implanted in the scrotum and directly connected to cylinders implanted in the corpus cavernosae of the penis. These systems often involve steps such as manipulating a pump body to activate the pump, then repeatedly squeezing and releasing the pump to transfer fluid to the cylinders. The pump can be squeezed as many times as necessary to achieve the desired firmness of the cylinders. Depending on the system, this can take a significant period of time and may require more repetitive squeezing and releasing cycles than is desirable or convenient for the user. With both two-piece and three-piece systems, due to the positioning of the pieces of each system relative to each other and the type of pumping mechanism provided with the system, some systems require relatively significant manipulation by the user to transfer fluid to and from the cylindrical prostheses. Such manipulation may be either time-consuming or difficult, particularly for users who have problems with dexterity or complicated instructions. Thus, it is desirable to provide an inflatable prosthetic penile device or system that is easy to activate for cylinder inflation and deflation, and that minimizes or eliminates the chances of spontaneous cylinder inflation.
{ "pile_set_name": "USPTO Backgrounds" }
A motorcycle is generally driven forward by the rear wheel, the front wheel is driven by a transmission means and the motorcycle handlebar above which is used to control the direction of the motorcycle. The shock due to the recoil force by a bumpy road on the motorcycle will be transmitted and absorbed by the handgrips mounted at two ends of the motorcycle handlebar and then the arms holding the handgrips. To lessen the resilient force on the arms, which can cause pains if the road is rather bumpy, the frame of the front wheel of a conventional motorcycle is equipped with a pair of shock absorbing springs, and the motorcycle handlebar is provided with a pair of rubber handgrips. Thereby, a two-stage shock-absorbing device is achieved. However, the forked frame of the front wheel can be further provided with a shock absorbing spring and the rubber handgrips can be further reinforced. These additions will improve the shock absorbing effect. Nevertheless, the shock-absorbing device using the shock absorbing springs in the front forked frame and the rubber handgrips is not sufficient when the recoil force from the bumpy road is too great, which will inevitably cause pains in a rider's arms. This will affect the stability and the control of the rider. In the worst case, the resilient force by the road may cause a loss of control of a rider over the motorcycle direction. Therefore, the two-stage shock-absorbing device can still be improved. Further, the connection of a motorcycle handlebar and a front forked frame is realized through a middle section of the motorcycle handlebar being mounted with the front forked frame by a left block and a right block. The left block and the right block are combined, which form a middle platform. The middle bottom part of the platform is provided with a hole for connecting the front forked frame, whereby the motorcycle handlebar and the front forked frame form a shock transport device. However, the central dipped section of the motorcycle handlebar mounted on the front forked frame should sustain not only the recoil force from the latter due to a bumpy road but also the downward force exerted by the hands that hold the former. The central dipped section of the motorcycle handlebar does not have any shock-absorbing device, a problem probably causing structural damages in the connection section. As described above, the shock absorbing effect provided by a pair of rubber handgrips on the motorcycle handlebar is not sufficient to protect a rider from disturbances on a bumpy road.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a container for food and more particularly to a Kraft paper pouch for enclosing a sandwich, such as a hamburger. With the advent of increased environmental concerns, many fast food operations are no longer using conventional containers, such as the popular clamshell container fashioned from foamed plastic for holding hamburgers or the like. The commercial tendency away from the use of plastic containers for fast food products requires suitable substitute containers, such as those fashioned from paper, paperboard, or other readily biodegradable materials. The prior art is aware of flexible pouch constructions, yet no one of these constructions is completely satisfactory, or exhibits the advantages of the present construction.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to novel silicon oxynitride glass compositions containing substantial amounts of magnesium oxide, and to the production of glass-ceramic articles therefrom. Predominantly oxide glasses and glass-ceramics containing structural nitrogen, that is nitrogen bound up in the structure of the glass or glass-ceramic rather than present merely as gaseous inclusions, are known. In U.S. Pat. No. 3,582,307 a procedure resulting in the incorporation of a small amount of nitrogen in an alkali boroaluminosilicate glass was described, that procedure involving bubbling nitrogen through the molten glass under controlled atmosphere conditions. In U.S. Pat. No. 4,186,021, and in related patents referred to therein, thermally crystallizable glasses containing substantial nitrogen concentrations are disclosed. The glasses of the latter patent can be converted to glass-ceramics comprising such nitrogen-containing crystal phases as nitrogen-mullite (Al.sub.3 Si.sub.2 O.sub.7 N), silicon oxynitride (Si.sub.2 ON.sub.2), and beta-silicon nitride (.beta.-Si.sub.3 N.sub.4) solid solution as well as crystal phases normally observed as silicates but in this case containing small amounts of structural nitrogen. Some of these nitrogen-containing crystal phases had previously been observed in the course of research into conventional nitride ceramics, but not in thermally crystallizable glasses. U.S. Pat. No. 2,920,971 provides the earliest disclosure in the field of glass-ceramics. That patent describes the manufacture of a predominantly crystalline article (a glass-ceramic) through the heat treatment of a glass article fabricated from a thermally crystallizable glass. The crystallizable nature of the glass derives from the inclusion therein of a small amount of a nucleating agent which promotes crystal nucleation and growth in dense, homogeneous fashion throughout the volume of the glass during heat treatment. Following this initial disclosure, the bulk of experimental work in the glass-ceramic field has involved the development of new thermally crystallizable glasses, formable into glass articles by conventional glass-forming techniques but thereafter crystallizable in situ by an appropriate heat treatment to glass-ceramics containing new crystal phases and exhibiting new properties. However, most of this work has been concentrated in oxide glass-forming systems.
{ "pile_set_name": "USPTO Backgrounds" }
This section is intended to provide a background or context to the invention that is recited in the claims. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application and is not admitted to be prior art by inclusion in this section. Certain abbreviations that may be found in the description and/or in the Figures are herewith defined as follows: 3GPP third generation partnership project ACK acknowledge CDM code division multiplexing DL downlink (eNB towards UE) DRX discontinuous transmission eNB EUTRAN Node B (evolved Node B) EUTRAN evolved UTRAN (LTE) FFT fast Fourier transform DFT discrete Fourier Transformation DFT-S OFDMA DFT spread OFDMA HARQ hybrid automatic repeat request IFFT inverse fast Fourier transformation LTE long term evolution MAC medium access control MM/MME mobility management/mobility management entity NACK not acknowledge/negative acknowledge Node B base station OFDMA orthogonal frequency division multiple access PDCCH physical downlink control channel PUCCH physical uplink control channel RF radio frequency RS reference symbol SC-FDMA single carrier, frequency division multiple access SF spreading factor UE user equipment UL uplink (UE towards eNB) UTRAN universal terrestrial radio access network In the communication system known as evolved UTRAN (EUTRAN, also referred to as LTE, E-UTRA or 3.9G), the downlink access technique is OFDMA, and the uplink access technique is SC-FDMA in completed LTE Release 8. A further release of 3GPP LTE, referred to herein as LTE-Advanced (LTE-A) is directed toward extending and optimizing the 3GPP LTE Release 8 radio access technologies to provide higher data rates at low cost. LTE-A is expected to be incorporated into LTE Release 10 which is currently under development, and will continue the Release 8 access techniques noted above. FIG. 1 reproduces FIG. 4.1 of 3GPP TS 36.300, V8.6.0 (2008-09), and shows the overall architecture of the E-UTRAN system. The EUTRAN system includes eNBs, providing the EUTRA user plane and control plane protocol terminations towards the UE. The eNBs are interconnected with each other by means of an X2 interface. The eNBs are also connected by means of an S1 interface to a Mobility Management Entity (MME) and to a Serving Gateway (S-GW). The S1 interface supports a many to many relationship between MMEs/S-GWs and eNBs. It has been agreed in LTE-A during RAN1 #61 bis that block spread DFT-S-OFDMA is used as a signaling scheme for HARQ-ACK/NACK on the PUCCH for Release 10 UEs that support more than 4 downlink ACK/NACK bits with carrier aggregation. See for example documents R1-062841 entitled Multiplexing of L1/L2 Control Signalling when UE has no data to transmit (by Nokia); R1-091353 entitled On CSI feedback signalling in LTE-Advanced uplink (by Nokia Siemens Networks and Nokia); and R1-074812 entitled On PUCCH Structure for CQI Report (by NTT DoCoMo, Nokia Siemens Networks, Nokia, Mitsubishi Electric, and Toshiba Corporation). In general the goal of randomization is to limit interfering block spread DFT-signal(s) that originate from adjacent cells such as the two adjacent eNBs shown at FIG. 1. FIG. 2 illustrates a block level description of block-spread DFT-S-OFDM with SF=5. Data signals from different UEs within a single cell are separated by different block level spreading codes, represented as w. At FIG. 2, a FFT is performed on modulation symbols [d(0), d(1), . . . d(N)] which are then multiplied by the SF=5 elements w0, w1, . . . w4 of one particular UE's spreading code w, parallel IFFTs are done on those five results and the time domain OFDMA symbol is inserted into a transmission frame with reference symbols RSs which the UE sends on the UL. One challenge in LTE-A at least is that there are not enough block spreading codes available to provide sufficient randomization in the block code domain between cells. But randomization is important for CDM-based schemes such as DFT-S-OFDMA in order to attenuate co-channel interference between the UEs using the same block spreading code. Otherwise transmissions from one UE operating for example at an edge of a first cell might regularly interfere with transmissions from another UE operating in an adjacent cell and using the same block spreading code. One possible solution is to scramble the encoded bits with DFT-S-OFDMA symbol specific and cell specific scrambling sequences. This is detailed at documents R1-100909 entitled A/N transmission in the uplink for carrier aggregation; and R1-101730 entitled PUCCH design for carrier aggregation, both of which are by Ericsson and ST-Ericsson. But the scrambling sequences need to be DTF-S-OFDMA symbol specific, i.e., vary between DFT-S-OFDM symbols because the same data symbols [d(0), . . . d(N−1)] remain unchanged between the DFT-S-OFDM symbols. It is advantageous to scramble in the time domain (before the FFT or after the IFFT) as shown at FIG. 1 of document R1-101730 to avoid increasing the peak-to-average power ratio (PAR or PAPR). But scrambling before the FFT processing means that instead of one FFT block as in FIG. 2 there would be the added complexity of a separate FFT block immediately upstream of each IFFT block as is shown in FIG. 1 of document R1-101730. Exemplary embodiments of this invention mitigate co-channel interference by randomizing block-spread transmissions from UEs in adjacent cells without adding the complexity as is noted above, even if there are not enough different block spreading codes to do so directly by assigning a spreading code that is unique to all UEs across all adjacent cells.
{ "pile_set_name": "USPTO Backgrounds" }
Generally, a motor vehicle automatic transmission includes a number of gear elements coupling its input and output shafts, and a related number of torque establishing devices, such as clutches and brakes which are selectively engageable to activate certain gear elements for establishing a desired speed ratio between the input and output shafts. The brake can be of the band type or disk type; engineering personnel in the automotive art refer to disc type brakes in transmissions as "clutches" or "reaction clutches". As used herein, the terms "clutches" and "torque transmitting devices" will be used to refer to brakes as well as clutches. The input shaft is connected to the vehicle engine through a fluid coupling, such as a torque converter, and the output shaft is connected directly to the vehicle wheels. Shifting from one forward speed ratio to another is performed in response to engine throttle and vehicle speed, and generally involves releasing or disengaging the clutch (off-going) associated with the current speed ratio and applying or engaging the clutch (on-coming) associated with the desired speed ratio. In this disclosure, a double transition closed throttle downshift is featured wherein two clutches associated with the current speed ratio are released and two other clutches associated with the desired or target speed ratio are engaged. The speed ratio is defined as the transmission input speed or turbine speed divided by the output speed. Thus, a low gear range has a high speed ratio and a higher gear range has a lower speed ratio. To perform a downshift, a shift is made from a low speed ratio to a high, or target, speed ratio. In the type of transmission involved in this invention, the downshift from first range to low range is accomplished by disengaging two clutches associated with the lower speed ratio, and engaging two clutches associated with the higher speed ratio to thereby reconfigure the gear set to operate at the higher speed ratio. Shifts performed in the above manner require precise timing in order to achieve high quality shifting. In the case of closed throttle double transition downshifts, particular care must be taken to avoid clutch tie-up or a momentary shift to neutral or reverse during the shift.
{ "pile_set_name": "USPTO Backgrounds" }
Since the advent of the integrated circuit (IC), circuit components have become smaller and smaller. An IC may include millions of components packed into an incredibly small package. With each new generation of smaller integration, more functionality, and therefore more value, can be derived from ICs. Reliably manufacturing these highly integrated ICs, however, presents significant design challenges. Those skilled in the art will be familiar with numerous processes for manufacturing ICs. For example, most ICs begin with a silicon wafer, and transistors are built one layer at a time in the silicon through repeated applications of photo exposure and chemical processing. A single iteration of the exemplary process usually begins by growing a layer of oxide on the wafer. Then, a layer of light-sensitive material called “photoresist” or “resist” is applied to the oxide. A light source exposes areas of the resist either by projecting an image on the resist material through a reticle or by shining through openings in a contact mask. Hereinafter, the term “mask” will be used to generically refer to a contact mask or a reticle. A chemical process either etches away the exposed resist material or hardens the exposed resist material and etches away the unexposed material to leave behind a layout. Another chemical process transfers the layout from the resist material to the oxide layer to create barriers of oxide protecting the silicon below. Then, the unprotected silicon can be processed in any number of ways, such as electron diffusion or implantation, to create, for instance, p-type or n-type transistor regions. The remaining oxide can be stripped away and a new layer grown to begin the next layer. A typical IC may require 16 to 24 iterations of photo exposure and chemical processing to build transistors, contact pads, transmission paths, etc. Manufacturing challenges tend to arise when critical dimensions (the minimum distance between edges of various types of features in various regions in the IC design) approach, or drop below, the wavelength of the light source used to expose the resist. At critical dimensions near or below the light wavelength, typically in the deep submicron range, manufacturing reliability (yield rate) may be affected by several factors including optical proximity distortions and chemical processing fluctuations. Typical problems include line-end pullback and line-width variations that depend on the local pattern density and topology. FIG. 1A illustrates a simple example of features that may appear on one layer of an IC design. A mask for the design may allow light to pass through the white areas so that the darkened areas are left unexposed. FIG. 1B, however, shows the resulting design in silicon with a deep submicron critical dimension (CD). In many places, not enough light passed through the mask to adequately expose the resist, causing the features to overlap. In deep submicron ICs, whether or not features overlap at a particular point does not depend solely on the distance between the features. For instance, gap 110A and gap 120A have the same width, CD. In FIG. 1B however, corresponding gap 110B does not overlap, but corresponding gap 120B does overlap. Even though both gaps have the same width in the mask, the proximity of edges near gap 120B alters the edge intensity gradient, reducing the intensity of light reaching the resist and causing variations in the chemical processing. Proximity distortions, such as those illustrated in FIG. 1B, can reduce operating speed, or prevent operation entirely, due to breaks in connectivity and short circuits. Those skilled in the art will be familiar with the term optical proximity correction, or OPC, which generally refers to modifying integrated circuit (IC) designs to compensate for manufacturing distortions due to the relative proximity of edges in the design. As used herein however, OPC may refer to design modifications based not only on the relative proximity of edges, but also on distortions introduced during chemical processing, such as resist etching and oxide etching. Therefore, OPC, as used herein, refers to optical and process correction, and includes design alterations made to improve manufacturability from exposure through chemical processing. As IC designs become more complex, manual OPC (entering corrections by hand through trial and error) becomes more time consuming and less cost effective. Software modeling, or simulation, is a basis for one form of automated OPC referred to herein as model-based OPC. In model-based OPC, manufacturing distortions can be predicted and compensated for at the design stage by operating on edge fragments. FIG. 2A illustrates a compensated design based on the design of FIG. 1A. Model-based OPC can be very computationally intensive. For every edge, or fragment of an edge, an edge placement error is determined by simulation. Based on an edge placement error, an edge fragment may be pushed or pulled in an attempt to compensate for the error. The simulations and adjustments may need to be repeated several times for each edge fragment before the edge placement error is within acceptable limits. FIG. 2B illustrates the design in silicon based on the compensated mask. Another automated approach is referred to herein as rule-based OPC. According to a rule-based approach, whenever a particular feature is encountered, a predetermined alteration is introduced. For instance, at every convex right angle, a “serif” can be added, which basically involves pushing the corner edge fragments out a predetermined distance. Rule-based OPC, however, relies on the presumption that altering a particular feature with a predetermined change will improve the quality of the manufactured design. The presumption does not always hold true. For instance, in FIG. 2A, not all of the convex right angle edge fragments are pushed out, and of those that are pushed out, they are not all pushed the same distance. FIG. 3A illustrates another type of IC design feature that is often distorted when manufactured with critical dimensions (CD) near or below the light source wavelength. Densely packed edges alter edge intensity gradients so that edge placement is distorted. Feature 310A extends from a densely packed region to an isolated region. FIG. 3B illustrates what may result. Line width variations, such as the variation over the length of feature 310B, can cause significant problems. As discussed in U.S. Pat. No. 5,242,770 issued to Chen et al., line width variations can be reduced by employing assist features called leveling bars. FIG. 4 illustrates a set of leveling bars 410. The width W of the leveling bars is too narrow for the features to be reproduced in the resist. According to the '770 patent, however, leveling bars spaced at a predetermined distance D on either side of the distorted feature should reduce edge placement distortion. In which case, leveling bars can be automatically placed at a predetermined distance D on either side of features such as feature 310A using a rule-based approach. Model-based OPC, although usually much slower than rule-based OPC, is much more accurate and produces superior yield rates. Rule-based OPC can be faster than model-based OPC because rule-based OPC is less computationally intensive. In which case, using rule-based or model-based OPC is a tradeoff between speed and accuracy. Thus, it would be desirable if rule-based and model-based OPC could be selectively employed at a feature level in an efficient manner.
{ "pile_set_name": "USPTO Backgrounds" }
A snapshot is a copy of a set of files and/or directories as they were at a particular point in the past. That is, the snapshot is an image, or representation, of a volume of data at a point in time. A snapshot may be as a secondary copy of a primary volume of data, such as data in a file system, an Exchange server, a SQL database, an Oracle database, and so on. The snapshot may be an image of files, folders, directories, and other data objects within a volume, or an image of the blocks of the volume. Data storage systems utilize snapshots for a variety of reasons. One typical use of snapshots is to copy a volume of data without disabling access to the volume for a long period. After performing the snapshot, the data storage system can then copy the data set by leveraging the snapshot of the data set. Thus, the data storage system performs a full backup of a primary volume when a primary volume is active and generating real-time data. Although performing a snapshot (i.e., taking an image of the data set) is a fast process, the snapshot is typically not an effective or reliable backup copy of a data set, because it does not actually contain the content of the data set. Restoring data from snapshots can be especially cumbersome, because a restoration process cannot restore the data set using snapshots alone. Recovery of individual files or folders can be especially cumbersome, because typical systems often recover an entire snapshot in order to restore an individual file or folder imaged by the snapshot. Associated information, such as metadata, is often required in order to restore a file or folder via the snapshot, because the snapshot itself does not provide any information about the file or folder other than the image of a data set at a certain time. That is, the snapshot provides information about what was in or is changed in a data set (the image), but does not provide any information about where a particular file (or a copy of a data object) is currently stored or contained. Therefore, a system that provides the benefits of snapshots while avoiding some of the drawbacks would provide significant utility.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to the field of interior space illumination systems. More specifically, the present invention discloses a curved light shelf system mounted adjacent to a window to redirect incident sunlight into an interior space. 2. Statement of the Problem It is a problem in the field of interior space illumination to provide a cost-effective mode of illumination that makes use of the incident sunlight without the need for complex systems or significant occupant intervention. For the purposes of this application, the term “daylighting” should be broadly construed to include any use of natural light from a clear sky (including daylight from both the solar disk and the sky dome) or overcast sky as an interior illuminant. Existing daylighting systems are either of limited effectiveness, limited applicability due to their architectural limitations, or require complex and expensive mechanical and electronic control mechanisms. There is a need for systems that provide improved energy efficiency and environmental quality. One need is to reduce the consumption of electricity for lighting. One option for reducing electricity consumption for lighting is to use daylight to illuminate occupied building spaces. The key to the widespread use of daylighting systems is in providing a system that is both inexpensive and easily applied to both new and existing buildings. In addition to the savings attributed to reduced electricity consumption, daylighting systems typically also result in increased productivity by the occupants of the illuminated space, reduced health problems evidenced by the occupants of the illuminated space and pollution reduction. There appears to be a strong correlation between the quality of the luminous environment and the overall health and productivity of the occupants. These ancillary benefits can produce savings that dwarf the savings attributable to electricity consumption reduction, since studies indicate that, over the life of the building, an overwhelming percentage of the operating cost of commercial space is the salaries of the occupants. Thus, any improvement in the performance of the occupants of the building space results in a significant economic benefit. One such existing daylighting system is the traditional light shelf, which receives daylight through a window and redirects it onto the interior ceiling plane, thereby creating a useful source of interior illumination. The basic light shelf concept typically comprises a wide flat elongated interior light shelf located adjacent to a window that protrudes into a room from the exterior wall of a building. The incident sunlight is reflected by the light shelves onto the ceiling of the occupied space by a diffuse or specular horizontal or slightly-sloped upper surface of the light shelf. However, an interior light shelf typically protrudes a significant distance into the occupied space and is problematic from architectural, mechanical and aesthetic standpoints in many room applications. FIG. 3 is a side cross-sectional view of a typical prior-art light shelf daylighting system. This daylighting system includes at least one light shelf 30 located in the interior space 28 of a building adjacent to a window 20. Each light shelf 30 is oriented in a substantially horizontal plane with its outer edge adjacent to the window 20. If multiple light shelves are employed, they are typically stacked in a vertical arrangement similar to conventional blinds. Optionally, light shelves can also be located on the exterior 26 of the building adjacent to the window 20. The basic light shelf concept typically includes a wide flat elongated interior light shelf 30 located adjacent to a window that protrudes into the room from the exterior wall of a building to receive incident sunlight 10, as illustrated in FIGS. 3 and 6. The incident sunlight 10 is reflected by the light shelf 30 onto the ceiling 24 of the interior space 28 by the top surface of the light shelf 30. In the embodiment depicted in FIGS. 3 and 6, the top surface of the light shelf 20 is located a predetermined distance below the ceiling 24, and divides the window 20 into a view area 21 below the light shelf 30, and a daylighting area 22 above the light shelf 30. The view area 21 can be equipped with a conventional shade control to controllably regulate the intensity of the incident daylight that is transmitted to the interior space 28 as well as to enable the occupants of the interior space 28 to control the visibility of the interior space 28 from outside the building. No means is typically provided to block the incident daylight through the daylighting area 22, although a shade element may be provided for blackout purposes, or to block light from low angles of elevation that may otherwise bypass the light shelf and cause unwanted glare. 3. Prior Art The prior art in the field of light shelves and other devices for reflecting sunlight into an interior space includes the following: U.S. Pat. No. 284,963 (Hyatt) discloses of a system of flat louver-type blades mounted in an arrangement similar to that of a hinged louvered register. This system is designed to pass natural daylight into an interior room through reflectance from the fiat, louvered blades. The system is designed to pivot on a hinge and be operated by a rope-and-pulley system to allow the building occupant to adjust the daylight. One shortcoming associated with this system is that it relies on the operator for continual adjustments. The system also relies on it being placed on a rooftop, more in the fashion of a skylight rather than in a wall system. This renders the invention less useful on multiple-level buildings since only the top floor can be used for daylighting. U.S. Pat. No. 1,567,984 (Reid) discloses a system having a flat reflector plate with a corrugated surface hinged about the interior of a window system. This invention employs many traits of a traditional light shelf in that a light collection area reflects light toward the ceiling of a room. The shortcoming associated with this system is that it tends to direct light in concentrated areas on the ceiling called “hot spots”. The irregular surface that this system utilizes would do little to scatter light deeper into the interior space. U.S. Pat. No. 1,747,928 (Chesney) discloses a system of curved reflector plates mounted to both the inside and outside of the window. The outermost reflector plates are concave to reflect and concentrate light. The concave members predominately face each other to concentrate and direct the light inward toward a third reflector plate. The third reflector plate is convex and scatters the light toward the floor. One shortcoming is that exterior-mounted reflectors are subject to the elements such as wind, snow, rain, and pollution. When dirt or snow collects on the exterior reflector plates, they become ineffective at collecting the daylight. A second shortcoming is that it requires a substantial vertical distance of window to operate correctly. This inhibits the view portion of most windows, therefore making less of the outdoors visible from the interior of the building, and making occupants feel more closed in than if there were no apparatus installed. A third shortcoming is that of concentrating light. Concentrated light can cause intense heat and with that an increased risk of fire. Finally, the light diffused by the third convex reflector is directed toward the floor and the building occupants, which creates undesirable glare. Intense sun glare can have a negative impact on building occupants. Japan Patent No. 58-199314 (Tomofuji) discloses a small-sized concave light condensing device. This is opposite of a daylighting device that produces diffuse light. Instead, the Tomofuji device collects and concentrates light into one area. U.S. Pat. No. 4,630,892 (Howard) discloses a system of three flat surfaces, with two mounted on the exterior, and one mounted on the interior to reflect and direct light inside a building. This can cause hot spots and also requires constant building occupant adjustment for changing sun angles. U.S. Pat. No. 4,634,222 (Critten) discloses a natural-light illumination enhancement assembly having a series of louvered reflectors that direct incoming light downward onto the floor for illumination. Here again, this creates glare downward on building occupants. German Patent No. 3831318 (Hesse) depicts a system of flat prismatic-shaped surfaces that direct light into a space from the exterior side of a building. This is an encased system that is placed in the ground to direct light into basements. Debris, snow, or dirt can gather on the intake side of the system since it is exposed to the elements, and inhibit the effectiveness of the system. The system also would direct light in hot spots. German Patent No. 020296 (Jurastrasse) depicts of a system of a plurality of concave elements similar to a Venetian blind. The shortcomings associated with this system include keeping the surface behind the device clean. Also this system uses a substantial amount of vertical space thereby allowing more heat gain inside the building. Also this system blocks the view of the occupants to the out-of-doors. U.S. Pat. No. 5,293,305 (Koster) discloses a system of vertical concave elements within a window system to direct light upward toward the ceiling. This system appears to be relatively complicated to implement and would offer an obscured view through the window. This system also uses a substantial amount of vertical space to implement. U.S. Pat. No. 5,802,784 (Federmann) discloses a system of vertical concave elements within a window system to direct light upward toward the ceiling. This system appears to be relatively complicated to implement and would offer an obscured view thru the window. This system also uses a substantial amount of vertical space to implement. U.S. Pat. No. 5,285,315 (Stiles) discloses a system that uses light-reflective elements sandwiched between two panes of glass to redirect sunlight into the interior space of a building. The reflective elements comprise both stationary and movable elements that function to redirect the incident sunlight to the back walls of the room, above eye level without striking the ceiling. A shortcoming associated with this light reflecting system is that it is complicated to implement and produces illumination of variable quality. The existing glazing must also be replaced to implement this system. U.S. Pat. No. 4,557,565 (Ruck et al.) discloses a system of refractive structures that are used to collect and redirect light into a building. The refractive structures comprise a planar solid transparent light deflecting panel or plate that is formed of a plurality of parallel triangular ribs located on one face. With the panel in its vertical orientation and placed over a window opening, the panel reflects sunlight into the building interior. The panels are designed to require seasonal adjustments to compensate for the seasonal variations in the angle and nature of the incident sunlight. The refractive panels are complicated to implement and require periodic adjustment by the occupant to compensate for changes in the incident sunlight. U.S. Pat. No. 5,293,305 (Koster) discloses a light guidance system that illuminates the interior of a building by using a light deflection device equipped with a light source. The light guidance system is mounted in a window and both reflects sunlight coming from outside of the building as well as electric light coming from the light source. The light guidance system comprises several light reflective elements that are disposed parallel to one another and spaced apart from one another such that light from outside the building is reflected by the top surface of the light reflective elements and light from an internal light source is reflected by the bottom surface of the light reflective elements into the room. The light reflective elements function both to shade the interior from direct sunlight while also redirecting both the incident sunlight and the light from the light source into the room to provide indirect lighting. A problem with this light guidance system is that it relies on the close spatial-optical relationship between the electric lighting located at the window and the incident sunlight through the window. Another problem with this light guidance system is that it blocks the view through the window and relies on the placement of a source of electric light at the window. Thus, it is expensive to implement and requires expensive adaptation of existing installations to accommodate the light source. U.S. Pat. No. 4,883,340 (Dominguez) discloses a solar lighting apparatus that is mounted on the roof of a building to provide illumination of the interior of the building. The solar lighting apparatus comprises a reflector assembly that is rotatable about a vertical axis for tracking the daily movements of the sun. The reflector panel has multiple panels that are mounted on a frame over a skylight opening and the frame is rotated by the operation of solar tracking electronics. However, the solar lighting apparatus is effective only for the room area located on the top floor of a multiple story building. In addition, it relies on electronics and mechanical tracking apparatus to collect and redirect the incident sunlight. U.S. Pat. No. 6,239,910 (Digert) discloses a mini-blind system similar to that of a window treatment or blind. This system is unique due primarily to the curved nature of the individual blades. This type of optical device, while more efficiently scattering the light than a traditional flat light shelves, creates problems similar to that of traditional window treatments such as the need to continually clean the interior surface of the window directly behind the apparatus. Maintenance personnel can easily damage this type of system making it impractical in most commercial settings. Once a single blade of this system is bent it can direct light inadvertently into buildings occupants' path of vision, creating discomfort. Also, this type of system is mounted vertically. This requires significant square footage of window surface area to allow ample sunlight to penetrate. It is known that letting natural daylight penetrate the building has the inherent drawback of solar heat gain that can increase the buildings cooling system loads substantially in summer months. Often the increased costs of operating such cooling systems can outweigh the benefit gained in electricity savings of interior daylight illumination. U.S. Pat. No. 6,389,216 and U.S. Pat. No. 6,490,403 (Bartenbach et al.) disclose a system having a rolled sheet that is toothed with flat surfaces to guide the light in a particular direction. This system is meant to be installed in conjunction with a daylighting device such as a light shelf to redirect daylight that already has been cast to the ceiling. U.S. Pat. No. 6,480,336 (Digert et al.) discloses a system of concave-curved slats that are vertically stacked, similar to Venetian blinds or that shown in U.S. Pat. No. 6,239,910. Due to its nature, the shortcomings are very similar in those of both devices. One other shortcoming is that this is a static device that cannot be easily removed to access the surface directly behind it for regular cleaning. U.S. Pat. No. 6,580,559 (Doll et al.) discloses a system having a vertically-arranged plurality of flat members placed within a window system for directing light. This system has shortcomings similar to that of U.S. Pat. Nos. 6,239,910 and 6,480,336, being as it is predominately vertical and uses a large amount of viewable window space to implement. U.S. Pat. No. 6,714,352 (Rogers et al.) discloses a system having a vertically-arranged plurality of concave-shaped sections with flat bottom surfaces. This system has shortcoming similar to those of U.S. Pat. Nos. 6,239,910, 6,480,336, and 6,580,559 since it is arranged in a similar vertical fashion. Thus, the field of interior space illumination systems appears to be devoid of an inexpensive, practical, effective, and simple-to-use daylighting system that can be easily implemented in both existing building applications as well as in new building construction. The problem with most existing systems is that they either take up too much vertical window space that could be otherwise used for view, they are difficult to maintain, require frequent occupant intervention, or cast light in concentrated patterns creating hot spots. Architectural Moldings. The prior art in the fields of moldings, architectural trim and picture frames includes a family of decorative cross-sectional profiles commonly referred to as cyma-reversa curves. This profile is also sometimes referred to as an ogee curve. For the purposes of this disclosure, these terms are used synonymously. A cyma-reversa profile has a region with a convex surface followed by a region with a concave surface. In other words, an initial region a cyma-reversa curve bulges outward and is followed by a second region that bows inward. These regions can flow together in a smooth, continuous manner, somewhat similar to a relaxed S-shape. Alternatively, these regions can be clearly demarcated and separated from one another. Although cyma-reversa curves have been employed in moldings, picture frames and architectural details for their aesthetic appeal, they are not believed to have been applied to the field of reflectors or light shelves in particular. Solution to the Problem. The above-described problems are solved and a technical advance achieved in the field by the present curved light shelf daylighting system having a cyma-reversa profile. In particular, the present curved light shelf is a passive, static optical device that can be mounted horizontally adjacent to a window of a building. The curved light shelf receives daylight transmitted through the window and efficiently redirects it onto the ceiling of an interior space in a diffuse manner, double washing the ceiling with a relatively even amount of illumination, thereby creating a useful source of interior illumination that is free of hot spots and is cast deeper into the room than the conventional light shelves. The curved light shelf comprises a single predominately horizontal shelf, that is optically shaped via a cyma-reversa top surface to allow light to be efficiently collected and accurately directed onto the ceiling plane of a room, while at the same time shading the occupants of the room from direct sunlight penetration through the shelf. The curved light shelf is narrow and can be implemented in the normally unused upper foot, or so, of most interior spaces. The window area may or may not be partitioned by the light shelf into a view section and a daylighting area. The occupants' views out of the building remain relatively unobstructed through the view area of the glazing to a height of approximately seven feet, or greater, above the floor. Traditional window treatments, such as exterior shading devices, or interior blinds can be used for this portion of the glazing for shading, privacy, and blackout control. The sunlight incident on the daylighting area of the glazing is collected by the curved light shelf and redirected onto the ceiling plane of the room in a glare-free manner. The curved light shelf system produces effective daylighting for typical ambient light levels for the perimeter zones of a building, and can operate for room depths in excess of fifty feet. The optical geometry of the light shelf and the associated reflective surface characteristics diffuse the collected sunlight more evenly over a larger area of the ceiling plane of the room. The resultant indirect lighting is striation free and substantially uniform in luminance. The use of daylight preserves the visual and psychological connection between the occupants and the outdoors due to the subtle color and luminance changes which occur throughout the day. Visual comfort is enhanced by evenly diffusing the daylight across the ceiling plane of the room from the perimeter wall to the interior extent of the illumination.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to heat pumps, and in particular to heat pumps comprising a cooling mode. FIG. 8 shows a known heat pump as is described in “Technische Thermodynamik”, Theoretische Grundlagen and praktische Anwendungen, 14th revised edition, Hanser Verlag, 2005, pp. 278-279. The heat pump includes a closed cycle, within which a working substance, such as R 134a, circulates. Via a first heat exchanger 80 and the evaporator, so much heat is withdrawn from the soil, or the ground water, that the working substance evaporates. The working substance, which now is rich in energy, is extracted by the compressor via the suction line. Within the compressor 81, it is compressed, thus increasing pressure and temperature. This compression is performed by a piston compressor. The working substance, which has been compressed and exhibits a high temperature, now passes into the second heat exchanger 82, the liquefier. Within the liquefier, so much heat is withdrawn from the working substance by the heating or process-water cycle that the coolant, being subject to high pressure and high temperature, is liquefied. Within the choke or expansion member 83, the working substance is expanded, i.e. the working substance is relieved of stress. Here, pressure and temperature are reduced to such an extent that the working substance is again able to re-absorb energy from the soil or the ground water within the evaporator. Now the cycle is complete and starts again. As can be seen from this, the working substance serves as an energy transporter so as to take up heat from the soil or ground water, and to give it off, within the liquefier, to the heating cycle. In this process management, the 2nd law of thermodynamics is complied with, said law stating that heat or energy only be transferred, “on its own”, can from a higher temperature level to a lower temperature level, and that inversely this may also occur by means of energy supply from outside, here by the driving work of the compressor. FIG. 7 shows a typical h, log p diagram (h is the enthalpy, p the pressure of a material). An isobaric evaporation of the working substance takes place, between point 4 and point 1 in the diagram of FIG. 7, at low values for the pressure and the temperature (p1, T1). Here, the heat Q81 is supplied. Ideally, a reversible compression of the working substance vapor to a pressure of p2 is performed, between point 1 and point 2, within an adiabatic compressor. The temperature rises to T2 in the process. A work of compression is to be supplied here. Then, isobaric cooling of the working substance vapor from 2 to 2′ is performed at a high pressure p2. Overheating is reduced. Subsequently, the working substance is liquefied. Overall, the heat Q25 can be dissipated. Within choke 83, the working substance is choked, in an adiabatic manner, from the high pressure p2 to the low pressure p1. In the process, part of the liquid working substance evaporates, and the temperature falls to the evaporating temperature T1. In the h, log p diagram, the energies and characteristics of this process may be calculated by means of enthalpies, and may be illustrated, as is shown in FIG. 7. The working fluid of the heat pump thus takes up, within the evaporator, heat from the surroundings, i.e. air, water, waste water or the soil. The liquefier serves as a heat exchanger for heating up a heating substance. Temperature T1 is slightly lower than the ambient temperature, temperature T2 is considerably higher and temperature T2′ slightly higher than the heating temperature. The higher the temperature difference called for, the more work is to be effected by the compressor. Therefore, it is desired to keep the rise in temperature as small as possible. Thus, with regard to FIG. 7, a compression of the working material vapors is performed, in the ideal case, along the curve for the entropy s=constant up to point 2. From here up to point 3, the working material liquefies. The length of the distance 2-3 represents the useful heat Q. From point 3 to point 4, the working material is expanded, and from point 4 to point 1, it is evaporated, the distance 4-1 reflecting the heat withdrawn from the heat source. Unlike the T, s diagram, the magnitudes of the heat and of the work may be taken as distances in the h, log p diagram. Pressure losses within valves, within the pressure and suction lines, of the compressor, etc. change the ideal curve of the cyclic process in the h, log p diagram and reduce the effectiveness of the entire process. With piston compressors, the working material vapor which has been sucked in initially has a lower temperature than the cylinder wall of the compressor, and thus absorbs heat from it. As the compression increases, the temperature of the working material vapor eventually increases to exceed that of the cylinder wall, so that the working material vapor gives off heat to the cylinder wall. Then, when the piston again sucks in and compresses vapor, the temperature of the piston wall is initially fallen below again and then exceeded, which leads to constant losses. In addition, overheating of the working material vapor which has been sucked in will be called for and necessitated for the compressor to no longer suck in any liquid working material. What is also disadvantageous, in particular, is the heat exchange with the oil cycle of the piston compressor, which is indispensable for lubrication. Any irreversible processes, such as heat losses during compression, pressure losses within the valves, and flow losses within the pressure line for liquefying and within the liquefier, will increase the entropy, i.e. the heat which cannot be retrieved. In addition, temperature T2, also exceeds the liquefying temperature. Such an “overheating enthalpy” is undesired, in particular because the high temperatures occurring in the process will accelerate the aging of the compressor and, in particular, of the lubricating oil within a piston compressor. Also, the effectiveness of the process is reduced. The liquefied working material at a low temperature at the output of the liquefier would have to be expanded, within the context of an ideal cyclic process, via an engine, for example a turbine, so as to exploit the excess energy which was present in comparison with the state present at the temperature and the pressure prior to compressing. Because of the great expenditure for this, this measure is dispensed with, and the pressure of the working material is abruptly reduced to the low pressure and the low temperature by the choke 83. The enthalpy of the working material remains approximately the same in the process. Due to the abrupt pressure reduction, the working material may partially evaporate to reduce its temperature. The evaporation heat is derived from the working material exhibiting excess temperature, i.e. is not withdrawn from the heat source. The entirety of the losses caused by the expansion within choke 83 (FIG. 8) is referred to as expansion losses. These are exergy losses because heat of a temperature T is converted to heat of a temperature T0. These losses may be reduced if the liquid working material can dissipate its heat to a medium having a temperature smaller than T. This undercooling enthalpy may be exploited by an internal heat exchange which, however, also necessitates additional expenditure in terms of equipment. Also in principle, the internal heat exchange has its limitation, because in the compression of the vapors, the overheating temperature T2 increases, whereby the gains achieved are partly cancelled out, and because also more thermal strain is put on the machine and the lubricating oil. Eventually, the overheating causes the volume of the vapor to increase, whereby the volumetric heat power decreases. This heat is utilized for preheating those vapors of the working material which flow to the compressor, only to the extent for being sure that all droplets contained in the vapor of the working medium are converted to vapor. In general, one may state that the ratio of the enthalpy difference between point 1 and point 4 and the enthalpy difference between point 2 and point 1 of the h, log p diagram is a measure of the economic efficiency of the heat pump process. A working substance which is currently popular is R134a, the chemical formula of which is CF3—CH2F. It is a working substance which, even though it is no longer damaging to the ozone layer, nevertheless has an impact, in terms of the greenhouse effect, which is 1000 times higher than that of carbon dioxide. However, the working substance R134a is popular since it has a relatively large enthalpy difference of about 150 kJ/kg. Even though this working substance is no longer an “ozone killer”, there are nevertheless considerable requirements placed upon the completeness of the heat pump cycle, to the effect that no molecules of the working substance will escape from this closed cycle, since they would cause considerable damage due to the greenhouse effect. This encapsulation leads to considerable additional cost when building a heat pump. Also, one may assume that by the time the next stage of the Kyoto Protocol is implemented, R134a will be prohibited by the year 2015 because of the greenhouse effect, which has also happened to previous, considerably more damaging substances. What is therefore disadvantageous about existing heat pumps, beside the fact of the harmful working substance, is also the fact that, due to the many losses within the heat pump cycle, the efficiency factor of the heat pump typically does not exceed a factor of 3. In other words, 2 times the energy that has been used for the compressor may be withdrawn from the heat source, such as the ground water or the soil. When considering heat pumps wherein the compressor is driven by electrical current, and when considering, at the same time, that the efficiency factor in current generation is perhaps 40%, one will find that—with regard to the overall energy balance—the use of a heat pump is very questionable. In relation to the source of primary energy, 120%=3·40% of heat energy are provided. A conventional heating system using a burner achieves efficiency factors of at least 90-95%, i.e. an improvement of only 25-30% is achieved at high technical and, therefore, financial expense. Improved systems use primary energy for driving the compressor. Thus, gas or oil is burned to provide the compressor rating using the energy released by combustion. What is advantageous about this solution is the fact that the energy balance actually becomes more positive. The reason for this is that even though only about 30% of the source of primary energy may be used as driving energy, the waste heat of, in this case, about 70% can also be used for heating. The heating energy provided will then amount to 160%=3·30%+70% of the source of primary energy. What is disadvantageous about this solution, however, is that a household will nevertheless necessitate a combustion engine and a fuel store even though it has no longer a classical heating system. The expenditure made for engine and fuel storage has to be added to the expense made for the heat pump, which, after all, is a highly closed cycle due to the coolant being harmful to the climate. All of these things have resulted in that heat pumps have had only limited success in competition with other types of heating systems. On the other hand, particularly in warm areas or when the temperature differences between winter and summer are very large, there will often be the need for cooling a building. However, cooling tasks also exist in various other places, such as in cooling ceilings, collectors or in any places where the ambient temperature is too high. Thus, in specific areas, a continuous period of warm weather often leads to the power supply network being overloaded, since many households start to switch on air conditioning systems in order to cool the building. Such air conditioning systems are often installed separately from the heating system and are often operated separately from the heating system. They are characterized particularly in that their current consumption is extremely high. In particular, in such cooling systems, thermal energy is extracted from a heat source in a closed cycle by means of the vaporizing coolant. By means of a compressor, the vaporized heating medium is then pumped to a higher temperature level using mechanical energy, which is responsible for the high current consumption, and is finally condensed again so as to again give off the thermal energy plus the mechanical energy to the heat sink. This known method, which is performed by a heat pump, cools very effectively, but necessitates mechanical energy for cooling, which is mostly obtained from electrical energy. In large-scale plants such as power plants, water is vaporized, in a closed cycle, in that primary energy is converted to heat, which causes vaporization, the vapor generated driving steam turbines, which, in turn, drive a generator. The steam condenses and the water is again vaporized while thermal energy is supplied. This results in electrical or mechanical energy and waste heat, but not in cooling.
{ "pile_set_name": "USPTO Backgrounds" }
Fluorescent lamps, and devices for driving them, are commonly known, therefore a detailed explanation is omitted here. FIG. 1 is a schematic block diagram, showing a fluorescent lamp L and a driver 1 for driving this lamp. The driver has an input terminal 2 for receiving a user input command signal indicating a desired dim level in a range between 0 and 100%. If the input command signal indicates a dim level of 100%, the lamp L is operated at 100% of its nominal rating to produce 100% of its nominal light output. If the input command signal indicates a lower dim level, the lamp L is operated with reduced power to produce a reduced light output. The input command signal may for instance be an analog signal or a digital signal, for instance according to the DALI specification, in which case the desired output level as function of the DALI signal is precisely specified. In any case, it is required that the light output is stable, and in the case of a DALI system the light output should meet the DALI specifications. One solution would be to actually measure the light output, but this is complicated and relatively expensive as it requires the addition of at least one optical sensor. Therefore, in practical systems, the light output is monitored and controlled by monitoring and controlling an electrical parameter, based on the knowledge that the light output is proportional to such electrical parameter. One electrical parameter that is suitable as control parameter is lamp current; lamp drivers where the lamp current is used as control parameter are known. Another electrical parameter that is suitable as control parameter is lamp power; lamp drivers where the lamp power is used as control parameter are known.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field This invention relates to image processing and in particular to a system and method for processing digital images to detect and extract physical entities or objects represented in the image. 2. Related Art Image segmentation is of fundamental importance to many digital image-processing applications. The process of image segmentation refers to the grouping together of parts of an image that have similar image characteristics and this is often the first process in image processing tasks. For instance, in the field of video coding it is often desirable to decompose an image into an assembly of its constituent object components prior to coding. This pre-processing step of image segmentation then allows individual objects to be coded separately. Hence, significant data compression can be achieved in video sequences since slow moving background can be transmitted less frequently than faster moving objects. Image segmentation is also important in the field of image enhancement, particularly in medical imaging such as radiography. Image segmentation can be used to enhance detail contained in an image in order to improve the usefulness of the image. For instance, filtering methods based on segmentation have been developed for removing noise and random variations in intensity and contrast from captured digital images to enhance image detail and assist human visualisation and perception of the image contents. Other fields where image segmentation is important include multi-media applications such as video indexing and post production content-based image retrieval and interpretation, that is to say video sequence retrieval based on user supplied content parameters and machine recognition and interpretation of image contents based on such parameters. Fundamental to image segmentation is the detection of homogeneous regions and/or the boundaries of such regions which represent objects in that image. Homogeneity may be detected in terms of intensity or texture, that is grey level values, motion (for video sequences), disparity (for stereoscopic images), colour, and/or focus for example. Many approaches to image segmentation have been attempted including texture-based, intensity-based, motion-based and focus-based segmentation. Known approaches require significant computational resources and often provide unsatisfactory results. One approach that uses intensity or grey level values for object segmentation is thresholding. The concept of image segmentation based on thresholding is described in the paper “An Amplitude Segmentation Method Based on the Distribution Function of an Image”, Compute, Vision, Graphics and Image Processing, 29, 47–59, 1985. In the thresholding method intensity values are determined for each pixel or picture element in a digital image and on the basis of these values a threshold value is determined that distinguishes each pixel of an object in the image from pixels representing background detail. In practice, the threshold intensity value is determined dynamically for each image according to the statistical distribution of intensity values, that is to say, the value is based on a histogram analysis of all the intensity values for a particular image. Peaks in the histogram distribution generally represent intensity values predominately associated with a particular object. If two objects are present in an image there will be two peaks. In these circumstances the intersection or overlap between the two peaks is taken as the threshold value. This approach to image segmentation is relatively straightforward but can be computationally intensive particularly when complex images are presented, for example, images comprising a number of objects or complex backgrounds or when the image is heavily “textured”, that is to say, the image comprises a number separate regions within an object that have different intensity values. When textured images are processed using threshold-based methods “over-segmentation” can occur, that is, regions within an object are themselves recognised as separate objects within the image being processed. The problem of over segmentation can be partially overcome if the image is simplified prior to thresholding. Image simplification involves the removal of low order intensity value differences between adjacent pixels within an object boundary while the intensity value differences are maintained at the object boundaries. Image simplification is often achieved in digital image processing by using so called non-linear diffusion methods. The concept of non-linear diffusion for image processing is described in the published paper “Scale Space and Edge Detection Using Anisotropic Diffusion”, IEEE Trans. on Pattern Analysis and Machine Intelligence Vol. 12 No. 7 pp629–639, July 1990. In this method pixel intensities are altered in a manner analogous to diffusion of physical matter to provide regions of homogenous intensity within object boundaries while preventing diffusion at the object boundaries, thereby preserving intensity contrast at the boundaries. It has been found, however, that methods of image simplification based on known non-linear diffusion algorithms result in over segmentation.
{ "pile_set_name": "USPTO Backgrounds" }
In various imaging systems and image treatment applications, it is advantageous to automatically recognise the position and/or the orientation of a human head in a source image. For instance, a user may interact with a program running in a computer system, for example, a videogame program, by moving his head within the range of an imaging device. Alternatively, such a head recognition method may also be used in an imaging device for adjusting parameters such as aperture, exposure time, focus depth, etc. so as to optimize them for portraiture. Interaction with computer systems, and, in particular the input of data and commands, is a generally known issue. Conventionally, such interaction takes place through physical input devices such as keyboards, mice, scroll wheels, pens, touch-screens, joysticks, gamepads, etc. which produce signals in response to a physical action of the user. However, such physical input devices have many drawbacks. For instance, they can only offer a limited amount of different input signals, which in some applications such as three-dimensional “virtual reality” environments will feel awkward and lack realism. Moreover, they are susceptible to wear and their continued use may even have negative consequences for the user's health, such as Repetitive Strain Injury (RSI). Alternative input devices and methods are also known. For instance, practical systems for voice recognition are available. However, voice recognition is not a practical alternative for some applications, such as action games, where rapid, precise and repetitive inputs by the user are required. Moreover, their effectiveness is adversely affected by background noise, and they generally require a learning period to recognise a particular user's voice commands. Another alternative is image recognition. In their simplest form, image recognition systems recognise binary patterns in contrasting colours, such as barcodes, and convert these patterns into binary signals for processing. More advanced image recognition systems can recognise more complex patterns in images and produce a large variety of signals in response. Such image recognition systems have been proposed, for instance, in U.S. Pat. No. 6,256,033, for recognising the gestures of a user in range of an imaging system. However, conventional imaging systems have no perception of depth and can produce merely a 2D projection of said user. As a result, the recognition of the user's gestures is inherently flawed, limited in the range of possible inputs and riddled with possible recognition mistakes. In particular, such systems have problems separating the user from its background. The development of 3D imaging systems, however, offers the possibility to develop shape recognition methods and devices allowing, for instance, better user gesture recognition. One such 3D imaging system was disclosed in G. Yahav, G. J. Iddam and D. Mandelboum, “3D Imaging Camera for Gaming Application”. The 3D imaging system disclosed in this paper is of the so-called “Time-Of-Flight” or TOF type, in which a depth perception is obtained from the shape of a wavefront of light reflected from objects in range of the 3D imaging system. However, other types of imaging systems, such as stereo cameras, LIDAR, radar, sonar, etc. have also been proposed. It has been proposed, for instance in International Patent Application WO 2008/128568 A1 to capture a 3D image of a scene, to select a subject, such as a human body, in said 3D image, and to segment this subject into a plurality of discrete regions including a head. In U.S. Pat. No. 7,203,356, it was proposed, among various alternatives, to use ellipse or ellipsoid fitting in order to determine the position of a human head in a source image captured by a 3D imaging system. However, this prior art document does not disclose how the parameters of the ellipse or ellipsoid modelling the head are obtained. A similar 3D model fitting method has been proposed by Zhengcheng Hu, Tetsuya Kawamura and Keiichi Uchimura in “Grayscale Correlation based 3D Model Fitting for Occupant Head Detection and Tracking”, Stereo Vision, ISBN 978-953-7619-22-0, November 2008, I-Tech, Vienna, Austria, pp. 91-102. Yet another method using 3D data and ellipse fitting in order to track a human head was proposed by Ehsan Parvizi and Q. M. Jonathan Wu in “Real-Time 3D Head Tracking Based on Time-of-Flight Depth Sensor”, 19th IEEE International Conference on Tools with Artificial Intelligence. However, this paper also failed to disclose how the preferred parameters of the preferred head model were to be obtained. In “Transformée de Hough elliptique floue rapide”, C. Leignel, O. Bernier, D. Collobert, and R. Seguier disclosed a particularly efficient computer-implemented method for recognising an elliptical contour in an image, and its application for head recognition. In this method, a particular type of elliptical Hough transform is used for recognizing an elliptical shape in a contour image generated from a source image. A Hough transform is a method for finding in an image an imperfect instance of an object within a certain class by a voting procedure. This voting procedure is carried out in a so-called accumulator array, from which object candidates are obtained as local intensity maxima. The accumulator array is populated by generating, in positions corresponding to that of individual points in the image, instances of the object which is being sought. In the particular case of an elliptical Hough transform, the object is an ellipse. The local intensity maxima in the accumulator array, that is, the positions where a plurality of ellipses intersect, represent candidate positions for a similar ellipse in the image. In the method disclosed by Leignel et al, in order to increase the computing speed, the accumulator array is populated with only representative segments of these ellipses. To increase the detection rate, fuzzy ellipses are used, with, for example, a decreasing intensity distribution around the ideal elliptical shape. However, without advance knowledge of the expected size of the head in the image, a compromise must be found between computing speed and a likelihood of false positives. To alleviate this problem, in this prior art method only the contours of skin-coloured areas are taken into account. If the user wears skin-coloured clothing, the risk of false positives is however increased. Moreover, this prior art method is limited to detecting human heads within a relatively limited distance range from the imaging system, namely 1 to 2.5 meters. Other methods of locating a human head in a source depth image are described in published U.S. patent applications US 2005/031166, US 2005/058337 and US 2003/235341. In addition, Clabian M et al, have published, on the Internet, an article entitled “Head detection and localization from sparse 3D data”, INTERNET CITATION 2002, XP002389335 retrieved from URL:http://www.prip.tuwien.ac.at/˜krw/papers/2002/DAGM/Clabian.pdf, relating to head detection. Krotosky S J et al. have also published an article entitled “Occupant posture analysis using reflectance and stereo images for smart airbag deployment”, INTELLIGENT VEHICLES SYMPOSIUM, 2004 IEEE Parma, Italy, Jun. 14-17, 2004 Piscatawy, N.J., USA, IEEE LNKD-DOI:10.1109NS.2004.1336469, 14 Jun. 2004, pages 698 to 703, XP010727732 ISPB: 978-0-7803-8310-4, that relates to the detection of an occupant of a seat in a vehicle to control the deployment of an airbag.
{ "pile_set_name": "USPTO Backgrounds" }
In the industry, methods and apparatuses are generally known for detecting the level of a liquid contained in a vessel. Such methods and apparatuses find application in numerous technical fields and sectors. By way of non-limiting example, such methods and apparatuses are generally employed in the field of electric systems for household machines, particularly washing machines such as laundry washing machines and dishwashers. However, the methods and apparatuses currently known in the art suffer from some drawbacks that the present invention is meant to overcome.
{ "pile_set_name": "USPTO Backgrounds" }
A measurement of radio signal strength, e.g. a Received Signal Strength Indicator (“RSSI”), can be used to estimate a distance of a device that is emitting the radio signal, e.g. a mobile device. Fixed radio receivers can also be used to triangulate a location of a mobile device. Mobile device locations can also be determined using Global Positioning System (GPS) signals. Like reference numbers and designations in the various drawings indicate like elements.
{ "pile_set_name": "USPTO Backgrounds" }
1. The Field of the Invention The present invention relates to field emission devices. More particularly, the present invention relates to a field emission device having a gate electrode including a layer of nanocrystalline or microcrystalline silicon that provides improved adhesion with an underlying silicon dioxide layer. The invention is also directed to methods of making and using the field emission device. 2. The Relevant Technology Integrated circuits and related structures are currently manufactured by an elaborate process in which semiconductor devices, insulating films, and patterned conducting films are sequentially constructed in a predetermined arrangement on a semiconductor substrate. In the context of this document, the term "semiconductor substrate" is defined to mean any construction comprising semiconductive material, including but not limited to bulk semiconductive material such as a semiconductive wafer, either alone or in assemblies comprising other materials thereon, and semiconductive material layers, either alone or in assemblies comprising other materials. The term "substrate" refers to any supporting structure including but not limited to the semiconductor substrates described above. The term semiconductor substrate is contemplated to include such structures as silicon-on-insulator and silicon-on-sapphire. Computer monitors, televisions, and other visual display devices have traditionally used cathode ray tubes which use an electron gun to direct a scanning electron beam upon a phospholuminescent screen. With the advent of portable personal computers, telecommunication devices, and other such appliances, there has been an increased interest in high quality lightweight display panels that are not as bulky as cathode ray tubes. A promising and useful development has been the incorporation of field emission devices into integrated circuits, semiconductor structures or related products to produce flat panel displays. A field emission device typically includes an electron emission structure or tip configured for emitting a flux of electrons upon application of an electric field thereto. The emitted electrons may be directed to a transparent panel having phospholuminescent material placed thereon. By selecting and controlling the operation of an array of miniaturized field emission devices, a selected visual display that is suitable for use in computer and other visual and graphical applications may be produced. Flat panel displays using field emission devices typically have a greatly reduced thickness compared to cathode ray tubes. As a result, field emission devices have been shown to be an attractive alternative to cathode ray tube display devices. Field emission devices used in flat panel displays are generally multilayer structures formed over a semiconductor, glass, or other substrate. FIG. 1 illustrates an example of a field emission device in an intermediate step during the manufacturing process. Multilayer structure 10 comprises two structures that will be used as electrodes during operation of the completed field emission device. In particular, cathode structure 12 and low potential gate electrode structure 14 will be used to establish an electric field across electron emission structure 16. The two electrodes are separated by a dielectric layer 18. In order to freely emit a flow of electrons, electron emission structure 16 must be exposed during manufacturing by removing material positioned thereon. One of the steps of exposing electron emission structure 16 may include conducting a planarization operation on multilayer structure 10, including a layer 21, by chemical-mechanical planarization or other mechanical or non-mechanical means, thereby producing a substantially planar surface indicated by the dashed line at 20. Layer 21 comprises a conductive material such as chromium, aluminum, alloys thereof, and/or silicon. When chemical-mechanical planarization is used to expose electron emission structure 16, there is the risk of delamination of layer 21 from dielectric layer 18 if the bonding forces therebetween are not sufficiently strong. Typically, it has been understood that the bonding forces between a silicon dioxide substrate and an overlying silicon layer are related to the internal compressive stress of the overlying silicon layer. Generally, higher compressive stress values tend to correlate with poor bonding and increased risk of delamination. While not a fixed rule, it has been observed in the past that compressive stress less than 2.times.10.sup.9 dynes/cm.sup.2 are preferred in some circumstances in order to reduce the tendency of the layers to delaminate. Nonetheless, an amorphous silicon layer deposited on a silicon dioxide layer using plasma-enhanced chemical vapor deposition (PECVD) frequently delaminates during a subsequent chemical-mechanical planarization operation, even though the compressive stress of the amorphous silicon layer may be relatively low. The difficulties involved in forming an adequate bond between an amorphous silicon layer deposited using PECVD and a silicon dioxide substrate have generally discouraged the use of PECVD amorphous silicon layers when chemical-mechanical planarization steps are to be conducted thereon. As a result, when chemical-mechanical planarization has been used in the prior art, layer 21 has generally consisted of materials other than amorphous silicon. However, in general, amorphous silicon is understood to be a preferred material in forming other portions of field emission devices and other semiconductor structures. Moreover, PECVD is a preferred and efficient method for depositing silicon layers over a substrate. The inability to use PECVD amorphous silicon layers as described above when chemical-mechanical planarization operations are subsequently conducted has been a persistent problem that, if overcome, would significantly improve the cost-effectiveness and reliability of the process of manufacturing field emission devices. In view of the foregoing, it is clear that there is a need for methods of manufacturing field emission devices in which a silicon layer may be deposited by PECVD on a dielectric layer without delaminating during subsequent chemical-mechanical planarization. In particular, it would be an advancement in the art to provide a method for depositing silicon on silicon dioxide to produce a bond sufficiently strong tot resist subsequent delamination in the fabrication of a field emission device.
{ "pile_set_name": "USPTO Backgrounds" }
In the art solid, polymeric electrolytes (also said "ionic conductor polymers") are known, which are constituted by a solid solution of an ionic compound dissolved in a solid, plastic, macromolecular material, with the latter being the product of polymerization of monomers containing at least one heteroatom, in particular oxygen. Usually, said macromolecular material is polyethyleneoxide, or another polyether, such as, e.g, disclosed in U.S. Pat. No. 4,471,037; French patents 2,523,769 and 2,568,574; and in European patent 13,037. The problems arising in connection with such solid, polymeric electrolytes generally derive from their poor mechanical characteristics, and from their low dimensional stability. Another drawback consists in that they usually only show a satisfactory ionic conductivity at temperatures higher than room temperature values. All the above drawbacks result in the solid, polymeric electrolytes known from the prior art being not very interesting for practical uses. The purpose of the present invention is of overcoming the drawbacks which affect the prior art, as briefly mentioned above. More particularly, the present Applicant found, according to the instant finding, that the product of copolymerization of a monoepoxide and a diepoxide, selected from within particular classes of epoxy compounds, can be easily converted into solid, polymeric electrolytes and that these latter are endowed with good mechanical characteristics and good ionic conductivity also at relatively low temperature.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of Invention Aspects of the present invention relate to content analysis, and more specifically, to systems and methods for automated analysis of content. 2. Discussion of the Related Art Most currently available search engines follow a similar approach to presenting users with documents that may be of interest. For instance, when presented with new documents to make available for searching, conventional search engines typically scan the documents for key terms and build an index to the documents using those terms. Then, when presented with search criteria from a user, conventional search engines will often scan the search criteria for key terms and, using the index, identify one or more documents including those key terms. Next, these documents are usually presented to the user, often ranked in some fashion. The most common basis for ranking is relevancy, which is often computed using, among other factors, the number of times search criteria keywords are found in document content and metadata. When presenting search criteria to a search engine, users typically iterate through a series of search criteria, and, as part of each iteration, assess the quality of the results achieved. Additionally, users may try several different search engines, because idiosyncrasies in the index building process employed by different search engines often yield different search results.
{ "pile_set_name": "USPTO Backgrounds" }
(1) Field of the Invention Molecular complexes showing spin transition phenomena have been the subject of fundamental research since their discovery in 1931. Since then approximately three hundred complexes have been synthesised and studied using different physical-chemical techniques. The spin transition phenomenon can be initiated by temperature, pressure (G. Molnar et al., J. Phys., B. 107, 2003, p. 3149; A. Bousseksou et al., C. R. Chimie 6, 2003, p. 329), an intense magnetic field (Bousseksou et al., Top. Curr. Chem. 235, 2004, p. 65) or light (N. Ould Moussa et al., Phys. Rev. Lett., 94 2005, p. 107205; S. Bonhommeau et al., Angew. Chem. Int., Ed. 44, 2005, p. 2) and is accompanied by a change in magnetic, optical and/or electrical properties. This phenomenon has been physically modelled and is well understood (A. Bousseksou et al., Eur. J. Inorg. Chem., 2004, p. 4353). From the point of view of applications a number of interesting prospects have been suggested (O. Kahn et al., Science 279, 1998, p. 44; O. Kahn et al., Chem. Mater. 9, 1997, p. 3199; O. Kahn et al., Adv. Mater. 4, 1992, p. 718). In particular thermal hysteresis of the dielectric constant in the course of spin transition has been discovered (FR 0111328, EP1430552, A. Bousseksou et al., J. Mater. Chem. 13, 2003, p. 2069), thus making it possible to design micro-nano-condensers having the property of storing information on the molecular aggregate scale. (2) Description of Related Art Using the physical properties of inorganic and organometallic complexes generally requires placing these compounds as a thin layer on a substrate and, if necessary, micro- or nano-structuring into elements of submicron size. The difficulty in this lies in compatibility between the product and the process of deposition, because spin transition is a phenomenon which is very sensitive to various disturbances of the crystal lattice. So far two methods of deposition have been suggested: the method known as the Langmuir Blodgett method, which consists of preparing a film by transferring a single layer floating on a liquid onto a solid support. This method can however only produce a two-dimensional monolayer; this is inadequate for most applications because (1) it is difficult to detect hysteresis cycles in a monolayer (particularly in the case of a deposit on a small surface area) and (2) maintenance of the hysteresis cycle is not ensured in the case of a single monolayer. The method known as “spin coating”, which consists of depositing a fluid on a support by centrifuging (spinning plate), followed if appropriate by evaporation of the solvent. However the spin transition material is deposited in the form of a mixture with an inactive matrix, generally a polymer. Mixing of the active material with the matrix may be discontinuous and generally gives rise to a non-homogeneous deposit. In addition to this, dissolution of the material in the matrix causes loss of the crystalline lattice. These disadvantages therefore limit the use of this process. There is therefore at the present time no method through which a thin layer of spin transition complexes can be deposited as a thin layer while maintaining the properties of spin transition, hysteresis and a surface condition of acceptable quality. It is therefore particularly desirable to provide a process for the deposition of spin transition complexes as thin layers which will fulfil these requirements.
{ "pile_set_name": "USPTO Backgrounds" }
Aqueous cleaning processes are a mainstay of conventional domestic and industrial textile fabric cleaning methods. On the assumption that the desired level of cleaning is achieved, the efficacy of such conventional processes is usually characterised by their levels of consumption of energy, water and detergent. In general, the lower the consumption requirements with regard to these three components, the more efficient the washing process is deemed. The downstream effect of reduced water and detergent consumption can also be significant, as this minimises the need for disposal of aqueous effluent, which is both extremely costly and detrimental to the environment. Such washing processes involve aqueous submersion of fabrics followed by soil removal, aqueous soil suspension, and water rinsing. In general, within practical limits, the higher the level of energy (or temperature), water and detergent which is used, the better the cleaning. One key issue, however, concerns water consumption, as this sets the energy requirements (in order to heat the wash water), and the detergent dosage (to achieve the desired detergent concentration). In addition, the water usage level defines the mechanical action of the process on the fabric, which is another important performance parameter; this is the agitation of the cloth surface during washing, which plays a key role in releasing embedded soil. In aqueous processes, such mechanical action is provided by the water usage level in combination with the drum design for any particular washing machine. In general terms, it is found that the higher the water level in the drum, the better the mechanical action. Hence, there is a dichotomy created by the desire to improve overall process efficiency (i.e. reduce energy, water and detergent consumption), and the need for efficient mechanical action in the wash. Various different approaches to the development of new cleaning technologies have been reported in the prior art, including methods which rely on electrolytic cleaning or plasma cleaning, in addition to approaches which are based on ozone technology, ultrasonic technology or steam technology. Thus, for example, WO2009/021919 teaches a fabric cleaning and disinfection process which utilises UV-produced ozone along with plasma. An alternative technology involves cold water washing in the presence of specified enzymes, whilst a further approach which is particularly favoured relies on air-wash technology and, for example, is disclosed in US2009/0090138. In addition, various carbon dioxide cleaning technologies have been developed, such as the methods using ester additives and dense phase gas treatments which are described in U.S. Pat. No. 7,481,893 and US2008/0223406, although such methods generally find greater applicability in the field of dry cleaning. Many of these technologies are, however, technically very complex. In the light of the challenges which are associated with aqueous washing processes, the present applicants have previously devised a new approach to the problem that allows the deficiencies demonstrated by the methods of the prior art to be mitigated or overcome. The method which is provided eliminates the requirement for the use of large volumes of water, but is still capable of providing an efficient means of cleaning and stain removal, whilst also yielding economic and environmental benefits. Thus, in WO2007/128962 there is disclosed a method and formulation for cleaning a soiled substrate, the method comprising the treatment of the moistened substrate with a formulation comprising a multiplicity of polymeric particles, wherein the formulation is free of organic solvents. The substrate may be wetted so as to achieve a substrate to water ratio of between 1:0.1 to 1:5 w/w, and optionally, the formulation additionally comprises at least one cleaning material, which typically comprises a surfactant, which most preferably has detergent properties. The substrate may comprise a textile fibre. The polymeric particles may, for example, comprise particles of polyamides, polyesters, polyalkenes, polyurethanes or their copolymers, a particular example being nylon beads. The use of this cleaning method, however, presents a requirement for the nylon beads to be efficiently separated from the cleaned substrate at the conclusion of the cleaning operation, and this issue was initially addressed in WO2010/094959, which provides a novel design of cleaning apparatus requiring the use of two internal drums capable of independent rotation, and which finds application in both industrial and domestic cleaning processes. With a view to providing a simpler, more economical means for addressing the problem of efficient separation of the cleaning beads from the substrate at the conclusion of the cleaning process, however, a further apparatus is disclosed in WO2011/064581. The apparatus of WO2011/064581, which finds application in both industrial and domestic cleaning processes, comprises a perforated drum and a removable outer drum skin which is adapted to prevent the ingress or egress of fluids and solid particulate matter from the interior of the drum. The cleaning method requires attachment of the outer skin to the drum during a first wash cycle, after which the skin is removed prior to operating a second wash cycle, following which the cleaned substrate is removed from the drum. The apparatus and method of WO2011/064581 is found to be extremely effective in successfully cleaning substrates, but the requirement for the attachment and removal of the outer skin detracts from the overall efficiency of the process and the present applicants have, therefore, sought to address this aspect of the cleaning operation and to provide a process wherein this procedural step is no longer necessary. Thus, by providing for continuous circulation of the cleaning beads during the cleaning process, it has been found possible to dispense with the requirement for the provision of an outer skin. Thus, in WO2011/098815, the present applicants provided an apparatus for use in the cleaning of soiled substrates, the apparatus comprising housing means having a first upper chamber with a rotatably mounted cylindrical cage mounted therein and a second lower chamber located beneath the cylindrical cage, and additionally comprising at least one recirculation means, access means, pumping means and a multiplicity of delivery means, wherein the rotatably mounted cylindrical cage comprises a drum having perforated side walls where up to 60% of the surface area of the side walls comprises perforations comprising holes having a diameter of no greater than 25.0 mm. Although the apparatus disclosed in WO2010/094959, WO2011/064581 and particularly WO2011/098815 provided considerable improvements there remain several drawbacks associated with using an apparatus of this nature for the cleaning of soiled substrates with formulations comprising solid particulate cleaning material and wash water. In particular, the use of solid particulate material in such apparatus provides challenges associated with the transport of the solid particulate material throughout the cleaning process and storage of the material prior to commencing the cleaning operation and after its completion. Typically, the cleaning apparatus must therefore be adapted to accommodate both the storage of solid particulate material therein and to facilitate its transport so that it can be agitated with soiled substrates contained within a cleaning volume and separated from the washload at the end of the wash cycle. In order to accommodate effective agitation of the solid particulate material with soiled substrates and, ultimately, its separation from the washload, it is desirable to maximise the cleaning volume. Generally this aim cannot easily be attained without increasing the overall size or footprint of the apparatus. The present invention seeks to provide a cleaning apparatus for use in the cleaning of soiled substrates with a solid particulate material that can ameliorate or overcome the above-noted problems associated with the prior art. Particularly, there is desired an apparatus and method for the cleaning of soiled substrates with a solid particulate cleaning material which can provide an enhanced cleaning capacity relative to the footprint of the apparatus. Further desired is an apparatus which can achieve good cleaning efficiency with a specific footprint size whilst further reducing the requirements for energy, water and detergents per unit quantity (e.g. weight) of soiled substrate washed. Further desired is an apparatus which improves the separation of said solid particulate material from the substrate after cleaning.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method of rolling H-beams or wide flange beams by universal mills, which is advantageously used in case of continuously producing H-beams while keeping a constant web width in spite of wear of the rolls used in rolling, or producing various H-beams different in size with the same rolling installation. In general, H-beams are produced by hot rolling steel blanks 5, 6 or 7 having various cross-sections as shown in FIGS. 2a to 2c in a line including a breakdown mill 1, a universal roughing mill 2, an edger mill 3 and a universal finishing mill 4 which are arranged progressively downstream of the flowing of the steel blanks as shown in FIGS. 1a and 1b. The blanks (slab 5, rectangular billet 6 and H-beam billet 7) shown in FIGS. 2a to 2c are first roughly rolled to predetermined shapes in the breakdown mill 1. The breakdown mill 1 used in this case is usually composed of a pair of upper and lower caliber rolls having open passes 8 or closed passes 9 as shown in FIGS. 3a and 3b. In rolling in the breakdown mill 1, the steel blanks are rolled successively through a plurality of passes of the caliber rolls in plural passes to be rolled into shapes suitable for later intermediate rolling processes The steel blanks thus rolled are intermediately rolled in at least one universal roughing mill 10 having rolls of shapes shown in FIG. 4a and at least one edger mill 11 having rolls of shapes shown in FIG. 4b in one pass or plural passes. The steel blanks are then rolled in a universal finishing mill 12 having rolls of shapes shown in FIG. 4c usually in one pass to H-beam steel products. Therefore, sizes of rolls of the finishing universal mill 12 and the rolling mills upstream thereof are determined depending upon the size of the products. The rolls are so designed that distance (a) in FIG. 3a and distances (b), (c) and (d) in FIGS. 4a, 4b and 4c are substantially equal to each other. In rolling for producing H-beams, variation in shape of blanks particularly after breakdown rolling is limited as described above. In the case that a particular series of H-beams (for example, H 600.times.300) are pro practice to use horizontal rolls having particular widths suitable for the H-beams. The H-beams rolled by such horizontal rolls having the particular widths (for example, the width (d) in FIG. 4c) have substantially constant inner web widths. On the other hand, roll gaps between the horizontal rolls and between vertical rolls must be changed in order to roll one series of section steels of several kinds having different thicknesses by the use of the same rolls without exchanging them. In this case, the difference between the maximum and minimum thicknesses of flanges of the rolled H-beams becomes, for example, as much as approximately 16 mm. As the outer web width is an inner web width plus thicknesses of two flanges, the outer web width varies within 32 mm which is twice 16 mm. It is unavoidable to produce a series of H-beams including those of various outer web widths in the rolling methods of the prior art described above. If such H-beams are used as building or construction beams, there are the following problems. In the event that building or construction beams are made by joining a series of H-beams of several sizes, when the H-beams including those of various outer web widths are arranged so that outer surfaces of one flanges of the respective H-beams are in a plane, outer surfaces of the other flanges of the H beams are located unevenly with difference in height of twice the difference in thickness of the flanges. Such an unevenness provides a great problem to be solved in constructing the building or construction beams. In designing structures of buildings, dimensions are usually determined successively from outside to inside of the structure. Therefore, such H-beams whose inner web widths are substantially constant but outer web widths are different depending upon thicknesses of flanges of the H-beams encounter a great problem in cases where adjustment of dimensions relative to each other at joined portions of the H-beams must be severely accurate. In order to avoid the above disadvantages of the H-beams produced by rolling, H-beams made of steel plates by welding have been used particularly for buildings, which are welded to form H-beams having constant outer web widths, even if thicknesses of their flanges are not uniform. However, such welded H-beams are disadvantageous because of high manufacturing cost. In order to solve the problem of the unevenness of outer web widths of H-beams, a method of adjusting the outer web widths was disclosed in Japanese Patent Application Laid-open No 59-202,101, in which rough rolled billets before finish rolling are rolled to widen their webs by a particular rolling mills having rollers inclined relative to rolling directions and supported by cantilevers (FIGS. 5a and 5b). In this method, however, the particular rolling mill for widening the webs is needed to increase the installation cost. Moreover, there is a risk of webs to be broken when billets have thin webs. In order to overcome these problems, a method of reducing outer web widths by vertical rolls of a universal mill was proposed, whose horizontal rolls have widths narrower than inner web widths of H-beams to be produced, as disclosed in Japanese Patent Application Laid-open No. 2-84,203 (FIG. 6). Moreover, a method of reducing outer web widths by a universal mill was proposed, whose vertical rolls are set so as to permit the distance therebetween or roll gap to be less than the width of horizontal rolls plus sum of thicknesses of both flanges and are shifted onto the downstream side relative to the horizontal rolls so as to avoid any interference of the vertical and horizontal rolls with each other, as disclosed in Japanese Patent Application Laid-open Nos. 2-147,102 and 2-147,112 (FIGS. 7a and 7b). In this case, existing rolls used until now are applicable for carrying out these methods and these rolling mills are not needed to be particularly modified. Therefore, these methods can be readily effected. With these methods, however, defects of H-beams are often caused such as overlapping at rounded portions, buckling of webs or shifting of webs from center positions, when rolling reduction of the inner web widths is relatively large. In view of these disadvantages, the inventors of this invention of the present application propose a method of reducing or adjusting inner web widths of H-beams by finish rolling as disclosed in Japanese Patent Application Laid-open No. 2-80,102. In this method, rough rolled billets after breakdown and intermediate rolling are rolled by finish rolling with a finish rolling mill whose horizontal rolls (adjustable width rolls) are set to have roll widths less than those in the rough rolling. As a result, the billets are subjected to the finish rolling to reduce web widths and thicknesses of flanges and to correct inclination of the flanges. In this manner, the web widths are freely adjusted or reduced (FIGS. 8a and 8b). According to this method, H-beams having constant outer web widths can be effectively produced, even if rolling is applied to billets to modify thicknesses of their flanges. Even in this method, however, the reduction of the outer web widths is limited as explained hereinafter. Therefore, a rolling system has been expected which is able to realize larger reduction of web widths. In reducing the web widths by setting the roll widths of the horizontal rolls of the finishing mill less than the inner web width of the billet subjected to the rough rolling, the contacting state between the rolls of the rolling mill and the billet is as shown in FIG. 9. Referring to FIG. 9, as the inner web width Bw.sub.0 is reduced by the vertical rolls V, they contact the billet h prior to contacting of the horizontal rolls H with a normal rolling reduction and normal roll diameters so that the web width of the billet h is reduced until end surfaces of the horizontal rolls H contact the billet h. The reduction of the inner web width Bw.sub.0 is effected mainly at zones located slightly upstream of zones k where the horizontal rolls contact the web ha of the billet h. On the other hand, before the contact of the horizontal rolls with the web ha of the billet h, roll gaps between the upper and lower horizontal rolls H are more than the thickness of the web ha as shown in FIG. 10a. Therefore, buckling or torsion of the web ha may occur as the case may be as shown in FIGS. 10b and 10c. As the web ha of the billet rolled by rough rolling is rolled to reduce its thickness by the horizontal rolls H, the billet h rolled by finish rolling will be shaped substantially determined by the roll gaps between the upper and lower horizontal rolls H even if buckling occurs before the reduction by the horizontal rolls H. However, upon amending the buckling of the web ha by the reduction caused by the horizontal rolls H, contacting pressure between the web ha and the horizontal rolls H becomes locally higher to cause defects such as flaws or cracks in surfaces of the web ha. Moreover, the torsion of the web ha as shown in FIG. 10a or 10c permits the billet to pass through the finishing mill in a condition of longitudinal center lines of the flanges hb shifted from the roll gaps between the horizontal rolls H. Consequently, the web ha of finished product is often shifted relative to the flanges hb in opposite directions or one direction as shown in FIG. 11a or 11b. The thinner and wider the webs of billets before finish rolling, these problems are particularly acute. Moreover, when the reduction or adjustment of web widths is larger, the possibility of occurrence of such defects increases. The thicknesses of webs of billets before finish rolling are determined by appropriate rolling reduction in universal rolling. On the other hand, the inner web widths of billets before finish rolling are substantially equal to inner web widths of billets having the thinnest flange thicknesses in one rolling operation. Therefore, in order to prevent the defects in finish rolling described above, it is necessary to provide a limitation of rolling reduction in one pass according to thicknesses and inner widths of webs. If a required rolling reduction exceeds this limitation, the rolling is required to be divided into two or more passes. Referring back to the prior art methods described above, the method previously proposed (the Japanese Patent Application Laid-open No. 2-80,102) by the inventors of the present invention is fundamentally different from the other methods (Japanese Patent Application Laid-open Nos. 2-84,203, 2-147,102 and 2-117,112) in the feature of rolling to reduce web widths and substantially at the same time to reduce flange thicknesses. According to the method proposed by the inventors of the present invention, it is possible to make larger the rolling reduction of the flanges than that of the webs in universal finishing process so that surfaces of the webs being rolled are subjected to tensile stresses in rolling directions caused by elongations of the flanges. As a result, it is possible to mitigate the limitation of reduction of webs to a remarkable extent for preventing the buckling of the webs caused by the compression in directions perpendicular to the rolling directions. According to this method, therefore, the rolling reduction or adjustment of web widths can be increased more than three times in comparison with those in the other prior art methods, although the adjustable width horizontal rolls are needed. However, if a required adjustment of web widths exceeds a limitation, it is necessary for reducing web widths to divide the rolling into plural passes more than two. In the method previously disclosed by the inventors of the present invention in the Japanese Patent Application Laid-open No. 2-80,102, the rolling is carried out to fulfill the condition .DELTA.Bwmax=80 Tw.sup.2 /Bw, where .DELTA.Bwmax (mm) is the limit value of rolling reduction of inner web width, Tw.sup.2 (mm) is web thickness before being rolled, and Bw (mm) is inner web width. In other words, if a rolling reduction .DELTA.Bw of inner web widths exceeds the .DELTA.Bwmax calculated from the above equation, the rolling is divided into more than two passes to limit the rolling reduction per one pass. However, when the rolling is effected in more than two passes in the finish rolling, the temperature of the steel to be rolled is likely to lower. Such a temperature lowering of the steel often causes not only defects of products in shape such as waved webs and deterioration of product quality but also lowering of production efficiency. It is, therefore, preferable to perform the rolling in one pass. Moreover, it becomes clear that more severe reduction limitations of web widths are often needed in actual rolling operations. In rolling causing rolling reduction of web widths, buckling and detrimental deformation in section of products can be prevented by arranging restraining means such as web guides on the entrance side of a rolling mill. However, such means do not serve to enlarge the rolling reduction or adjustment per one pass. In this connection, the rolling reduction or adjustment of the inner web widths can be effected partially in rough rolling processes. However, as large rolling reductions with adjustable width rolls tend to cause stepped surfaces of products, thicknesses of webs cannot be considerably reduced by the rolling. Consequently, an exclusive pass is needed for reduction of web widths so that the number of passes increases and hence to encounter the difficulties described above.
{ "pile_set_name": "USPTO Backgrounds" }
The diagnosis and treatment of tissue is an ongoing area of investigation. Medical devices for obtaining tissue samples for subsequent sampling and/or testing are know in the art. For instance, a biopsy instrument now marketed under the tradename MAMMOTOME is commercially available from Ethicon Endo-Surgery, Inc. for use in obtaining breast biopsy samples. The following patent documents disclose various biopsy devices and are incorporated herein by reference in their entirety: U.S. Pat. No. 6,273,862 issued Aug. 14, 2001; U.S. Pat. No. 6,231,522 issued May 15, 2001; U.S. Pat. No. 6,228,055 issued May 8, 2001; U.S. Pat. No. 6,120,462 issued Sep. 19, 2000; U.S. Pat. No. 6,086,544 issued Jul. 11, 2000; U.S. Pat. No. 6,077,230 issued Jun. 20, 2000; U.S. Pat. No. 6,017,316 issued Jan. 25, 2000; U.S. Pat. No. 6,007,497 issued Dec. 28, 1999; U.S. Pat. No. 5,980,469 issued Nov. 9, 1999; U.S. Pat. No. 5,964,716 issued Oct. 12, 1999; U.S. Pat. No. 5,928,164 issued Jul. 27, 1999; U.S. Pat. No. 5,775,333 issued Jul. 7, 1998; U.S. Pat. No. 5,769,086 issued Jun. 23, 1998; U.S. Pat. No. 5,649,547 issued Jul. 22, 1997; U.S. Pat. No. 5,526,822 issued Jun. 18, 1996, and U.S. Patent Application 2003/0199753 published Oct. 23, 2003 to Hibner et al. Researchers in the medical device area continue to seek new and improved methods and devices for cutting, handling, and storing tissue samples.
{ "pile_set_name": "USPTO Backgrounds" }
A "standard leak" is a calibration standard used to set leak detection equipment. The word "leak" denotes a very low and constant flow rate of gas. Standard leaks may be of several designs, but they generally consist of a pressurized chamber discharging through a capillary or membrane. Rates generally range from 1.times.10.sup.-4 to 1.times.10.sup.-10 atmosphere cubic centimeters/second with the rate remaining essentially constant for months or even years at a time. The standard leak itself must be periodically recalibrated because the degree to which the leak rate decreases with time varies depending upon the conditions of use and storage. Existing calibration methods and devices for standard leaks include such inaccurate and awkward principles as bubbling in water in which, a 1.times.10.sup.-8 atmosphere cubic centimeters/second leak produces one bubble in 667 hours or moving a slug of liquid through a tiny capillary tube. More sophisticated systems which use vacuum systems and mass spectrometers or similar hardware are expensive to purchase and difficult to operate. Atmospheric pressure calibrators exist which measure volume displacement with small pistons which are manipulated through seals by the operator. Seals are required to separate the measured volume from fluctuations in barometric pressure. Unfortunately, sliding seals tend to develop leaks as large or larger than the leak rates being measured. Therefore, it can be seen that a more accurate and reliable device for measuring the flow rate produced by standard leaks for the purpose of calibration is needed. Accordingly, it is an object of this invention to provide a relatively simple closed system device for measuring the flow rate produced by standard leaks for the purpose of calibration. Another object of this invention is to provide a device which is simple to operate, totally sealed from the atmosphere, and which requires no vacuum system for its operation. Still another object of this invention is to provide a system which has no seals that are readily subject to leakage due to the seal moving relative to a sealing surface. Other objects and advantages of this invention will be obvious to those skilled in this art.
{ "pile_set_name": "USPTO Backgrounds" }
A data processing system typically includes a processing component, memory, and various support circuits, such as conventional cache, power supplies, clock circuits, data registers, input/output interfaces, bus circuitry, and the like to facilitate operation of the system. The processing component may include one or more processors, such as microprocessors. To place a data processing system in a known initial state, the system is typically equipped with a mechanism that causes the processing component to boot or reset (referred to as a “reset condition”). For example, a processor may include a reset pin. As the reset condition is released, the processing component begins to fetch and execute instructions from a memory address known as the processor reset vector (“reset vector”). The reset vector must point to valid data, such as executable software code. Otherwise, the processing component may execute invalid code, generate an invalid instruction exception, or otherwise enter an undesirable state. The data may include any number of instructions that initialize the system and prepare it for execution of subsequent programming instructions. In some cases, however, the memory resource associated with the reset vector may not be initialized or loaded with the data when the processor exits the reset condition. For example, it is often desirable to embed a processor within a larger integrated circuit (IC), such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC). Such an embedded processor is sometimes referred to as an “embedded processor core” or “embedded core.” An embedded processor is typically held in a reset condition unit the host IC is powered and initialized (e.g., initialization of memories, clock circuits, etc. within the IC). Once the IC is initialized, the reset condition is immediately released and the embedded processor begins to fetch and execute instructions mapped to the reset vector. The data mapped to the reset vector may be stored within internal memory resources of the IC, or within external memory resources accessible by the embedded processor. In some cases, use of the often scarce internal memory resources to store data mapped to the reset vector is undesirable. Moreover, external memory may not be initialized or loaded with data mapped to the reset vector when the embedded processor exits the reset condition, which may result in the embedded processor entering an undesirable state. Accordingly, there exists a need in the art for a method and apparatus for controlling a processor during initialization of a data processing system.
{ "pile_set_name": "USPTO Backgrounds" }
With the improvement of living standards, worldwide population aging and younger onset population, the patients with cerebral and cardiovascular diseases are increased year by year. It has become the second large disease that does harm to human health. Angina pectoris is a clinical syndrome which is characterized in chest pain and chest discomfort, caused by myocardial temporary ischemia and hypoxia. Coronary heart disease (CHD) angina pectoris means the pectoris induced by myocardial ischemia and hypoxia that is caused by coronary arteriosclerosis or spasm, accounting for about 90% of the patients with angina pectoris. Now, the methods for treating angina pectoris are dominated by dilating vessels, reducing blood viscosity and inhibiting platelets aggregation as well as anticoagulation. Traditionally, the chemicals include the nitrate, nitrite, β-receptor blocker and calcium antagonist. However, due to the stronger toxicity and side effect, these drugs are not suitable to use for long time. In addition, most of them focus on symptomatic treatment with no more effect on disease progress. Occasionally, symptoms occur after administrating the nitroglycerin, for example the head pain, head throbbing, speed-up heartbeat and even syncope (see New Pharmaceutics, 14th edition, p 264). Recently, the nitroglycerin was reported to have problems of inducing severe hypotension (see China Journal of Modern Medicine, 1997, 7 (4): 42, Shanxi Medicine Journal, 1996, 25(2) 315) and of being prone to producing tolerance (see Nanfang Journal of Nursing, 1996, 3(5):7˜9). Hence, this hindered its application in clinic. Although a lot of traditional Chinese medicines have been used for treating angina pectoris, the pill, powder, ointment, Dan and decoction had become ancient history, which is seldom used by modern people. Now, there are common compound Salvia tablet and capsule commercially available. Because the production processes for the tablet and capsule are outdated, the content of active ingredients is low with no quality control indices. Both are absorbed into blood via the gastrointestinal tract after oral administration. Due to the hepatic first pass effect, they have low bioavailability and slow absorption, and are not competent to the first aid for the patients with angina pectoris. Drop pill is a traditional preparation for traditional Chinese medicine. It has the following merits: reduced volatility of drug, increased drug stability, high bioavailability, quickened onset of effect, prolonged action in topical administration, shortened production cycle, dust pollution-free, and easily carried on. However, the preparation method of traditional drop pill is to melt a medicine liquid and drop it into immiscible cooling medium to give the drop pill. Because the drop pill is formed by the factors of downwards gravity, surface tension of medicine liquid and internal stress, the unit drug loading capacity is small (usually, the drug loading capacity of API is about 25%) and the amount of matrix very large. This does not meet the requirement of international market that the maximum daily dose of PEG matrix should not exceed 700 mg. Moreover, it is difficult to prepare the traditional drop pill with diameter of less than 2.5 mm, so the patients have to take a lot of hard-to-swallow pills each time, which will not satisfy the fast-paced trend of modern life, and be prone to the problems of inaccurate dose. Thus, it is generally unacceptable by the international consumers. In addition, there are a number of shortcomings in the preparation of traditional drop pill, e.g. the low dropping rate, poor roundness and large variation on the pill weight and particle size, as well as small unit drug loading capacity and large amount of matrix (due to sufficient medium to ensure dropping effect). Because the cooling liquid has been used for solidifying the drop pill, the necessary step is needed in the sequent process to remove the cooling liquid, and the remaining cooling liquid may pose the problem of residual organic solvent. Besides, drying methods for the traditional drop pill have the defects of prolonged time, slow speed, uneven drying and easily leading to evaporation of volatile oil and precipitation of Borneol that is included in the products. As a result of this, how to find a production process for preparing micro drop pills, regular drop pills and drop pill capsules that achieves high production rate, reduces amount of matrix and increases drug-loading capacity is an important subject in need of development and exploration of the modern formulation technique for drop pill. Compound Salvia Drop Pill (CSDP) is a traditional Chinese medicine developed by Tasly Pharmaceutical Co., Ltd, which is proven to have the effects of activating blood by removing stasis as well as stopping pain by regulating Qi, used for treating chest distress and angina pectoris. The main ingredients of CSDP include Salvia Miltiorrhiza, Panax Notoginseng and Borneol. Its pharmacological effects include increasing coronary blood flow, protecting ischemia myocardium by strengthening hypoxia tolerance, anti-platelet aggregation, preventing thrombosis and improving microcirculation etc. Although the preparation of CSDP is known as a very mature technique in the prior art, there are still a lot of problems faced during preparation process, e.g. large amount of matrix and small drug-loading capacity.
{ "pile_set_name": "USPTO Backgrounds" }
Refractory materials have often been utilized in order to provide decorative displays. Such materials may be of a natural origin such as, for example, quartz crystals, or may be comprised of synthesized compounds demonstrating desired refractory properties. All such materials, regardless of composition, require a source of light to be refracted into a decorative spectrum of color. When the light source utilized is fixed in position, the refractory material may be rotated so as to provide an optimal angle of incidence with such a source, as well as to provide both movement and variety in the resultant mufti-color displays. In the past, electric motors have been utilized to rotate refractory materials in order to provide a multi-colored display which generates light patterns of varying colors. For example, U.S. Pat. No. 4,764,850 discloses a device wherein an electric motor, powered by means of a photovoltaic cell, is utilized to rotate a generally diamond shaped leaded glass crystal. The crystal is selected to demonstrate a tapered lower end and different-sized facets so as to provide different angles for refraction of sunlight striking the crystal. Since the crystal is radially symmetric—as opposed to having a flattened or otherwise asymmetric cross-sectional conformation—the crystal continuously rotates adjacent facets into incident light. The crystal utilized in the '850 patent is mounted upon a cup shaped receptacle which, in turn, is mounted upon a drive shaft extending above the device housing. When the device is exposed to sunlight, the diamond shaped crystal is rotated so as to refract the light into a “series of spots or patterns of different colors or hues across the walls or ceiling of the room, thus forming an aesthetically appealing display.” (col. 3, lines 41–43 of the '850 patent). The solar powered motor drive unit described in the '850 patent provides, by means of a gear drive system, rotation of the tapered crystal at a speed of from 2 to 3 rpm so that adjacent facets of the tapered crystal are repeatedly exposed to incident light. However, the radially symmetric shape of the disclosed crystal would not be expected to provide for effective movement of a particular projection, such as, for example, a rainbow, across a wall or other surface due to the fact that the radially symmetry of the crystals utilized therein continuously repeats the same angles of incidence to the light source. The solar-powered crystal display disclosed in the '850 patent utilizes a configuration in which the rotating crystal is mounted above a generally rectangular box having a top, bottom, front, rear, left and right sides. A portion of the top of the rectangular housing defines an inclined plane for mounting of a photovoltaic panel. The housing demonstrates a relatively low profile with substantially greater depth and length dimensions as compared to height. The drive motor and the output shaft of the '850 device are horizontally aligned in that they are mounted and positioned in a parallel relation to the top and bottom housing. The output shaft of the '850 motor utilizes a worm gear in order to engage a drive gear positioned upon the vertically aligned crystal drive shaft. Therefore, the '850 device presents a rather bulky, horizontally aligned housing upon which a vertically aligned crystal is rotated. Although such a design may have some utility in providing a stable base for placement upon, for example, a shelf or table, no other means is provided so as to enable optimal placement of said device upon a window. Certainly, the 3 dimensional configuration of the '850 device makes placement directly against a window—the typical portal for ambient light—rather cumbersome. It would be highly advantageous if a crystal display device could be provided demonstrating a substantially reduced depth—a flattened profile—as well as a means of affixing same directly to a window with minimum interference with the operation of blinds, shades or other window light control means.
{ "pile_set_name": "USPTO Backgrounds" }
Compound archery bows are very popular for hunting and target shooting. These bows use a bowstring stretched between one or more pulleys and/or cams. There are a variety of orientations of bowstrings, cams/pulleys, and (on some bows) cables, of which one or more types of bows is discussed herein as an example. Maintaining a drawn bow string can tire an archer quickly, and a tired archer is less likely to be able to continue to effectively hold a drawn bowstring and/or is less likely to be able to continue to shoot a bow effectively. For example, if an archer is hunting and hears game approaching, the archer may want to or need to hold a bowstring in the drawn position for several minutes, before the hunted game enters a distance at which the archer can effectively place an arrow into the vital organs of the game. For some archers the draw weight of a bow string is only 15-20 pounds, but for more advanced archers, a draw weight of a bowstring may be set to as high as 60 to 80 pounds. A higher draw weight corresponds with a bow's ability to shoot an arrow farther, with less drop, and with more speed. However, some archers sacrifice higher draw weights (and the corresponding benefits) in place of draw weights that the archers can hold for longer periods of time, even though the archers are fully capable of drawing higher draw weights.
{ "pile_set_name": "USPTO Backgrounds" }
Climbing is a sport of wide popularity. Whether a climber is experiencing the artificial environment of a recreational facility, or a natural outdoor experience, there is often a desire among enthusiasts to improve performance through a training regimen which enhances muscular capabilities. During off-seasons training can be had on large walls at commercial gymnasiums or on smaller walls that may be constructed in residential environments. It has also become popular to use a variety of smaller devices to improve, for example, strength of fingers, forearms, biceps and back muscles. Many climbers also find interest in training with specific climbing holds. To this end, it has become popular to make or purchase finger boards and hangboards. Hang boards are specifically designed to provide exercises suitable for climbers. They include a series of holds and support multiple pulling positions. A well-designed hangboard is an important tool for training. Hangboards which include a variety of hand positions are often preferred for training. With such a variety, the user can avoid over-exercising with a limited number of holds, and possibly reduce the likelihood of injuries such as a tendonitis. Home-made units offer the opportunity to customize the hold patterns, but a number of commercially available devices appear to provide many of the specific holds and pockets that individuals often desire for personal training. Generally, hangboards are well-suited for permanent mounting in residential environments. They are relatively small and, when mounted over a door opening, they do not directly interfere with other living activities. A reason that these relatively small, mounted hangboards are popular is that they permit a person to train with a variety of exercises while remaining in the comfort and privacy of a private dwelling. When securely placed over a door opening, the mounting provides the user with necessary clearance to perform a series of holds and other exercises without physically contacting a wall. FIG. 1 illustrates a permanent mounting arrangement for a hangboard 1 above a door opening. A backer board 2, cut from a sheet of plywood, is screwed or otherwise attached to framing members within the wall above the door opening. Then the hangboard 1 is attached to the backer board with screws. Pre-formed hangboards normally include holes through which the screws or bolts pass from the front side of the hangboard in order to effect attachment to the backerboard. Due to the forces placed on the mounted unit during use, it may be desirable to secure the hangboard to the backerboard with anchored bolts that penetrate the wall sheathing.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to the identification of the sequence of the pS2 protein secreted in different human tissues and humors, and to peptide fragments of this protein; the present invention further relates to polyclonal and monoclonal antibodies directed against pS2 and against peptide fragments of the pS2 protein, and to the applications of this protein and these peptides and antibodies to the diagnosis and detection of various pathological conditions and especially hormone-dependent breast cancers and stomach cancers or ulcers. 2. Discussion of the Background The fact that breast cancer is hormone-dependent has been known since 1896, when Beatson [Lancet (1986), 2, 104-107] reported two observations of the regression of inoperable tumors after ovariectomy in women who were still having menstrual periods. It is now well established that about one third of breast cancers respond to hormones and regress following a variety of hormonal manipulations. Until recent years, there was no biochemical test for identifying women who were suffering from hormone-dependent cancer and who could therefore benefit from endocrinotherapy. In 1971, Jensen et al. [NATL. CANCER INSTI. MONOGR. (1971) 34, 55-70] were the first to show that measurement of the estrogen receptors in a tumor specimen could be useful for predicting the response to adrenalectomy. This observation has since been amply confirmed as 50 to 65% of women whose tumors contain estrogen receptors (ER's) respond to endocrinotherapy, whereas those whose tumors do not contain estrogen receptors have only a 10% chance, at best, of being helped by hormone treatment. In fact, if cancerous cells possess sites having a strong affinity for a hormone (i.e. a receptor), such sites normally being present in the mammary gland, their growth, like that of normal cells, can be regulated by the hormonal environment. Conversely, if cancerous cells lose their receptors during the malignant transformation, they are no longer recognized as target cells. However, the result of determination of the estrogen receptors (ER's) does not permit a perfect prediction of the response to hormonotherapy as only 55% to 65% of women whose tumors possess receptors respond favorably to hormone treatment. One of the explanations lies in the fact that, in the course of dedifferentiation, some tumors may lose their estrogen receptors. If these receptors persist, the tumors may retain the capacity to bind estradiol, but are incapable of carrying through the subsequent steps of the estrogenic action. Both cases involve tumors which are hormonally autonomous or hormone-resistant. This last hypothesis was proved by going beyond the initial step, i.e. binding to the cytosol receptor, and investigating the end products of the intracellular action of estrogens. This is the case, for example, of the progesterone receptor (PR) as its synthesis is dependent on estrogens in MCF-7 cells (cell line derived from a human breast cancer) and probably in human breast cancer cells in vivo. In actual fact, if the proportion of progesterone receptors is taken into account, the remission levels of cancers under hormone treatment are of the order of 65%. Numerous clinical trials have established that 80% of women whose tumors possess both receptors respond to hormonotherapy. By contrast, if the tumor contains estrogen receptors but not progesterone receptors, the probability of response is no more than one third of cases. The progesterone receptors (PR's) therefore provide additional information for prediction of the therapeutic response. Estrogens stimulate the synthesis of a large number of proteins which are released in the incubation medium of cell lines such as MCF-7. Most of the proteins secreted are detected in the incubation medium with or without estradiol, but their activity is very considerably increased if this hormone is present. They correspond to molecular weights of 37,000, 46,000, 54,000 and 60,000M [MAIRESSE et al. in RECENT RESULTS IN CANCER RESEARCH, G. LECLERCQ, S. TOMA, R. PARIDAENS, J. C. HEUSEN, vol. 91, (1984) 301-306]. Some of them (46,000, 54,000 and 60,000M) are identical to the cytosol proteins. A protein of 50,000M is more abundant in the incubation medium treated with estradiol, but MAIRESSE's work demonstrates that this involves stimulation of the secretion of this protein under the action of a hormone, rather than induction. Furthermore, these stimulated proteins also exist in the incubation medium of MCF-7 cells and are also present in the incubation medium of estrogen-independent Evsa-T cells, but the estradiol in this last medium has no effect on the syntheses and/or their secretion. This is not therefore a case of the induction of a new product under hormonal influence, but only an increase in the concentration of an existing product. ROCHEFORT (same publication as above, p. 289-294) detected a high level of 52K protein in the incubation medium and showed that the induction of this protein was specific for the action of estradiol at physiological concentrations, whereas progesterone and dexamethasone were inactive. Tamoxifen, which inhibits cell growth, does not induce secretion of the 52K protein and prevents the action of estradiol in a molar ratio of 10. One of its metabolites, monohydroxytamoxifen, is 200 times more active than tamoxifen in blocking cell growth and the secretion of 52K in MCF-7 cells. More recently, this same team found that in a variant of MCF-7 cells, namely R-27 cells, which possess ER's and PR's but whose growth escapes the action of estrogen inhibitors, the 52K protein continues to be secreted in the presence of tamoxifen or monohydroxytamoxifen. A team of researchers, including some of the inventors of the present patent application, set out to achieve the expression of specific genes. Starting with a cDNA library built up from MCF-7 cells induced by estradiol, it was possible to carry out differential cloning of the cDNA's corresponding to the mRNA synthesized in the presence of this hormone. With the aid of a cDNA probe produced from cells growing in the presence and absence of hormone, a cDNA clone corresponding to an mRNA which is present only in MCF-7 cells cultivated in the presence of estradiol could be isolated. It was called pS2. The authors deduced, from the determination of the nucleotide sequence of the cloned cDNA, that it is a protein comprising 84 amino acids and having a low molecular weight of 9140 Daltons [JAKOWLEW et al., NUCLEIC ACIDS RES. (1984) 12, 2861-2878]. The hormonal regulation exerted on the pS2 gene is situated at the transcriptional level. The gene is not transcribed in the absence of estradiol, whereas there is a distinct accumulation of mRNA eight hours after the hormone has been added to the culture medium. However, the authors had not yet isolated the pS2 protein. Estradiol-induced screening of the cDNA library built up from MCF-7 cells made it possible also to isolate two other clones, 36 B4 and 3 A5. No hormonal regulation is exerted at the transcriptional level of their corresponding gene. These two clones were called "constant" clones. The 36 B4 and 3 A5 probes can therefore be used to assess the amount of total mRNA's present, whereas the pS2 probe corresponds to a specific estrogen-induced RNA of MCF-7 cells. pS2 RNA is not present in the RNA extracted from T 47 D human breast cancer cells, which contain both estrogen and progesterone receptors but in which the presence of the latter receptor is constitutive. Conversely, 36 B4 RNA is present in T 47 D cells. JELTSCH et al. [NUCLEIC ACID RES. (1987), 15, p. 1401-1414] subsequently cloned the human pS2 gene from DNA of placental cells and cells of the MCF-7 line, studied its structure and established and hence verified the nucleotide sequence of the pS2 gene on the basis of the pS2M clone obtained from the said cell line, and on the basis of the pS2P clone obtained from placental cells. The observation that pS2 RNA is expressed in the MCF-7 cell line derived from a human breast cancer, but is not expressed in the T 47D cell line, indicates a method of identifying hormone-dependent breast cancers. It is for this reason that the inventors attempted to check whether the expression of the pS2 gene can constitute an additional marker for the detection of hormone-dependent breast cancers. More recently [RIO et al., SCIENCE (1988) 241, p. 705-707], the pS2 protein was detected in the mucosa cells of the gastric epithelium. The protein secreted in the gastric fluid has an identical electrophoretic migration to that observed for the protein secreted by MCF-7 cells, and the work reported in the article cited above shows that the size and sequence of the mRNA' s isolated from the two tissues are strictly identical. It should be recalled that sequence (I), determined for the pS2 protein from mRNA, comprises 84 amine acids, has a molecular weight of the order of 9140 Daltons and is as follows: __________________________________________________________________________ 1 10 MET ALA THR MET GLU ASN LYS VAL ILE CYS ALA LEU VAL LEU 20 VAL SER MET LEU ALA LEU GLY THR LEU ALA GLU ALA GLN THR 30 40 GLU THR CYS THR VAL ALA PRO ARG GLU ARG GLN ASN CYS GLY 50 PHE PRO GLY VAL THR PRO SER GLN CYS ALA ASN LYS GLY CYS 60 70 CYS PHE ASP ASP THR VAL ARG GLY VAL PRO TRP CYS PHE TYR 80 PRO ASN THR ILE ASP VAL PRO PRO GLU GLU GLU CYS GLU PHE (I) __________________________________________________________________________ Now, the inventors have been able to establish that this is not the secreted form of the pS2 peptide.
{ "pile_set_name": "USPTO Backgrounds" }
Electronic mail (e-mail) has become one of the most commonly used communication tools in business and in the home. E-mail comprises electronic documents having a particular protocol for addressing, such as “send to”. “from”, and “reply to” addresses, and requires compatible software applications on the part of both sender and recipient for handling the protocol. Such an application in the art is termed an e-mail client, and this term will be used frequently in the present application, meaning the control routines used for processing e-mails, including reading, replying, and the like. Typically, an e-mail message is temporarily stored in an e-mail server connected to a data-network, and users may retrieve the stored messages from such a server at their convenience. Most e-mail clients allow a wide variety of options to a user regarding such e-mail attributes as language type, encryption methods, list mailing capability, document attaching capability, profile options, and so on. Also, user and client information may be easily stored in an address book (database) for simple retrieval and implementation. Although many companies recognize the benefit of using e-mail, some of them have only recently installed e-mail systems. One reason for this is because e-mail applications of current art are largely proprietary and some do not communicate using the same protocol as another application. Therefore, additional steps may be required by a sender to configure his or her e-mail so that a particular receiver using a variant application may be able to read it. Often, these prerequisites are forgotten when a user sends an e-mail to a recipient necessitating a resend of the same message. More recently, however, e-mail protocol has become much more standardized, and e-mails may typically be processed over different networks and through different servers and services. Recently, too, many companies and homes have been connected to the Internet, which is a world-wide public data network connecting tens of millions of computers. One of the reasons for the Internet's popularity is that the cost of access is very low. Another reason is that the Internet offers many resources in addition to e-mails. Each user of the Internet is typically assigned an e-mail address that is recognizable around the world. A computer connected to the Internet, having an e-mail client installed, can send e-mails to any one of these e-mail addresses, however, the proprietary nature of the client software may still require additional steps to be taken before one can send a message to a recipient using a variant application such as initiating variable coding, and so on. As a result of the popularity and convenience of e-mails, particularly over the Internet, some companies now encourage their customers to send comments and request information and services using e-mails. Typically, these companies set up one or more specific e-mail addresses for these purposes, such as [email protected], [email protected] etc., and e-mail servers handling incoming mails may be a part of telephony call centers wherein agent stations are enabled with computer stations connected to the e-mail server. In such e-mail systems there is still a pronounced problem and unmet need that may occur under certain conditions. For example, in some call-center environments wherein e-mail is supported, a number of agents may represent a number of different companies, being responsible for all communication including e-mail with the customers of those companies. In such a call center, it is desirable that agents be able to respond to customers with an e-mail reply having a “from” and a “reply to” address which refers to the company the customer has addressed originally. The present problem is, that with current art e-mail clients, the return address is a default of the client for a profile, in some cases, and not a variable that an agent can manipulate, or that may change automatically depending on some attribute of a received message, without restarting the client, which can be very time consuming. When replying to a customer, default settings automatically insert the default “from” and “reply to” e-mail address into the reply. While most current art e-mail clients support the use of multiple profiles, a user must log-in to each profiles and may use only one at a time. Creating many profiles can be time consuming, and changing profiles during work of answering e-mails is clumsy and inefficient. What is clearly needed is an e-mail client application that may automatically choose and insert addresses in the appropriate field box of an e-mail reply to an original message, or at least provide selectable options for such addresses to an agent or other user. An application such as this would save time and enable one agent to handle e-mail communications to customers of many different companies, and, in the case of automatic insertion in response to characteristics of an original message, avoid any danger of inserting a wrong or misleading address.
{ "pile_set_name": "USPTO Backgrounds" }
An income tax is a tax levied on the financial income of persons, corporations, or other legal entities. The rates for different types of income, such as personal earnings (wages), capital gains, and business income, may vary and some may not be taxed at all. In addition to United States federal income tax, income tax may also be levied by individual states. The rates of state income tax vary from state to state. Not all states levy an income tax. In addition, some states allow cities and/or counties to impose income taxes above and beyond the federal and state income taxes. Some cities collect income tax on not only residents but non-residents employed in the city. This tax can even be incurred when a non-resident works temporarily in the city. Many people receive payment of at least a portion of their income by direct deposit. Direct deposit is a banking term that refers to a system used to transfer money, such as the Automated Clearing House (ACH). ACH is the name of an electronic network for financial transactions in the United States. Payment into an account by direct deposit contains information pertaining to the amount of the deposit and the identification of the entity that made the deposit into the account (i.e., the payor). Income payments received by direct deposit may incur a state, city, and/or county income tax. Determining whether an income payment is subject to such income tax is burdensome, complex, and time-consuming.
{ "pile_set_name": "USPTO Backgrounds" }
Golf is a skill sport wherein the constant goal is a level of improved play. Such a level may be achieved in two ways. The first is by improving the ability and skill of the individual golfer and the second is by improving the performance of the equipment including not only the golf clubs but also golf balls. This invention relates to the desire to provide improved golf balls exhibiting enhanced performance characteristics including better directional stability and control while also providing increases in the lifting force and overall flight distance. The desire to provide golf balls exhibiting enhanced performance characteristics and, accordingly, a competitive edge has been a driving force in golf ball design for years. Improvements in the design of golf balls include, but are not limited to, the development of "two piece" and "three piece" golf balls, cut proof covers and various dimple designs. Despite a large number of specific advances made over the years, however, further improvements in performance are still desired and are possible.
{ "pile_set_name": "USPTO Backgrounds" }
Electrical terminals having a receptacle end adapted to receive a plug terminal such as a flat male tab are well known in the art. Electrical terminals of this type, also known as disconnects, provide a reliable method for making quick and easy interconnections. Generally, these electrical terminals include a receptacle portion having an integral locking tongue for engaging the male tab, and a release member that allows for disconnection of the male tab from the locking tongue. These types of terminals also have a crimping section for terminating the end of a wire to the terminal. Furthermore, terminals of this type are often protected by an insulative housing. While terminals of this type are well known in the art, there are still desirable features and advantages that have not previously been fulfilled. One important feature of disconnects of this type is that the male tab member, once engaged with the locking tongue, is prevented from inadvertent disconnection due to being pulled or shaken. This is of particular concern since many of the uses for electrical terminals of this type involve mechanical vibrations such as in automotive applications. It is also an important feature for fully insulated electrical terminals that when disconnection of the male tab is desired, it can be readily accomplished. It is also desirable since these types of terminals and tabs are frequently disconnected and reconnected that it can be repeatedly performed without damaging or weakening the release member.
{ "pile_set_name": "USPTO Backgrounds" }
Fuel vapor systems are installed in fuel tank and are configured to treat fuel vapor emitted from fuel tanks. The fuel vapor systems typically include a fuel treating device such as a canister configured to treat the vapor. The fuel vapor systems can further include a fuel trap configured to separate fuel droplets from the fuel vapor and to drain the droplet back to the fuel tank. Typically, the fuel vapor systems include parts, such as fuel vapor accessories or tube segments which tend to accumulate fuel therein. Accumulation of fuel inside these parts, however, may cause a malfunction of the fuel vapor system, as the fuel path towards the fuel treating device is blocked and thus fuel vapor does not reach the fuel treating device. Accordingly, it is necessary to provide the fuel vapor system with a draining device to, particularly to portions of the fuel vapor system which tend to accumulate fuel therein.
{ "pile_set_name": "USPTO Backgrounds" }
Battery-powered vehicles, such as electric vehicles or hybrid electric vehicles, may contain one or more high-voltage batteries connected to a DC bus. The high-voltage battery pack may be used as the primary power source of a vehicle to drive various primary loads (e.g., traction motors) and various auxiliary loads (e.g., HVAC, lighting, pumps, etc.). During operation, the battery pack or part of it may need to be taken offline due to faulty components or conditions in the battery pack. For high-voltage battery applications, such as electric vehicles, disconnecting the battery pack may be achieved by opening contactors connected between the battery pack and the high-voltage bus. Over time, the contactors may degrade and cause a safety hazard if they fail to open or close properly. A solution is needed to increase the reliability of the contactors and extend their useful life.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to an exposure apparatus, and more particularly to an exposure apparatus for exposing an object, such as a single crystal substrate for a semiconductor wafer and a glass plate for a liquid crystal display (“LCD”). Recent demands on smaller and thinner profile electronic devices have increasingly required finer semiconductor devices to be mounted on these electronic devices. For example, the mask-pattern design rule requires a formation of an image with a size of a line and space (“L & S”) of less than 0.1 μm in an extensive area. A transfer to circuit patterns of less than 80 nm is expected in the near future. L & S denotes an image projected onto a wafer with equal line and space widths in exposure, and serves as an index of exposure resolution. A projection exposure apparatus as a typical exposure apparatus for manufacturing semiconductor devices includes a projection optical system for exposing a pattern on a mask (reticle) onto a wafer. Effective to higher resolution are shortening of a wavelength of a light source, and increasing of a numerical aperture (“NA”) of the projection optical system as well as maintaining aberrations in the projection optical system to be extremely small. The projection optical system houses, in a lens or mirror barrel (“lens barrel”), an imaging optical system for imaging diffracted light from a reticle. When the imaging optical system has a lens that decenters from the optical axis, the light that should form an image at one point does not converge on one point, causing aberrations, such as a partial defocus, a distortion, and a curvature of field. To correct the aberrations, the projection optical system incorporates an aberration correcting optical system with the lens barrel. The aberration correcting optical system inclines a non-imaging lens that inclines (or has an tilt angle) relative to the optical axis according to the aberrational amount. The aberration correcting optical system determines a position and an orientation (or an tilt angle) of the lens according to the aberrational amount, and is configured to fix the lens as determined. However, the above incorporation of the above aberration correcting optical system fixes the inclination of the lens to the optical axis, and therefore disadvantageously cannot correct aberrations, such as dynamically variable partial defocuses, distortions and curvatures of field, caused by a deformations (expansions, etc.) of the lenses in the imaging optical system due to environmental variances and exposure heats, such as temperature changes. In addition, the lenses in the imaging optical system are made rotated about or moved along the optical axis so as to correct the astigmatism, aspect ratio, etc. This rotations and/or movements also result in decentering from the optical axis. Insufficient corrections of the aberrations, such as the partial defocuses, distortions and curvatures of field, do not provide desired resolution. Due to inevitable incorporation errors, it is significantly difficult to incorporate the aberration correcting optical system into the lens barrel while maintaining the lens's inclination determined and fixed by the aberrational amount. Moreover, it is bad operability to change the inclination of the lens in the aberration correcting optical system by taking out the aberration correcting optical system from the lens barrel in the projection optical system, and changing the lens's inclination, followed by reincorporation.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method in which color processing is performed. 2. Description of the Related Art In a color printer which inputs R (red), G (green) and B (blue) signals, or C (cyan), M (magenta) and Y (yellow) signals or C, M, Y and K (black) signals, serving as complementary-color signals of the R, G and B signals, and which prints an image in colors corresponding to the input signals with ink or toner having C, M and Y, or C, M, Y and K colors, in order to print a blue color, a cyan (C) component having a density of 100% and a magenta (M) component having a density of 100% are superposed. Such a technique, however, has the following problems. That is, in a binary color printing processing apparatus, binary-coding processing, such as dither processing, density diffusion processing or the like, is performed for multivalue density data comprising a plurality of color components. In this processing, each of a plurality of color components is convereted to binary density data by being compared with a predetermined threshold. Hence, in the above-described printing method, a high-density image is, in some cases, formed for a low-density portion. Accordingly, in primary-color and secondary-color regions (R, G, B, C, M and Y regions) where the level of certain color component data is lower than the levels of color component data in the vicinity thereof, the color component whose level must be low is output with a high level in a color different from the colors of adjacent pixels in a part of the image. Hence, the color output with a high level is pronounced with respect to colors of adjacent pixels which are reproduced in an excellent state. As a result, a grainy image is produced. Furthermore, when an ideal subtractive color mixture cannot be performed, a color obtained by mixing 100% cyan and magenta differs from the expected blue, and is output in a color tending to purple.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention generally relates to a fluid transfer device and, in at least one embodiment, relates to a fluid transfer device for transferring fluid from a sealed container such as a vial to a sealed fluid delivery device such as an ambulatory drug delivery device. A wide range of injectable drug delivery devices are known in which a fluid medicament, such as insulin, is stored in an expandable-contractible reservoir. In such devices, the fluid is delivered to the patient from the reservoir by forcing the reservoir to contract. The term “injectable” is meant to encompass subcutaneous, intradermal, intravenous and intramuscular delivery. Such devices can be filled by the manufacturer of the fluid delivery device or such devices can be filled by a pharmacist, a physician or a patient prior to use. If filled by the manufacturer, it may be difficult to provide the required drug stability in the device since the fluid may be stored from several weeks to a number of years and the fluid delivery device manufacturer must then be responsible for providing the required fluid. If filled by someone downstream, it is difficult for such a person to ensure that the fluid has completely filled the reservoir, i.e. that the reservoir and fluid path do not contain any undesirable air bubbles. In general, this requires priming the device by filling it in a certain orientation which ensures that the air is pushed ahead of the fluid, such as with the filling inlet at the bottom and the delivery outlet at the top (to allow the air to be displaced during filling). Also, transferring fluid from one container to another typically results in at least some wasted fluid. It would therefore be desirable to provide an improved fluid transfer device for safely and efficiently transferring fluid between two containers.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention pertains to a hydraulic fluid tank for motor vehicles with a fluid filter. Such hydraulic fluid tanks are part of the hydraulic system in motor vehicles. The necessary hydraulic pressure is generated by a hydraulic pump. The connection between the individual elements of the hydraulic system is established by means of hydraulic lines. A fluid filter, which is used to filter the fluid flowing back from the servo elements of the motor vehicle, is inserted into the hydraulic fluid tank. Both coarse fibrous filters and fine paper filters, which are used corresponding to the requirements imposed, have been known as fluid filters. It is necessary to dimension the filter area of the fluid filter such that a sufficient reserve is available at the expectable average contamination of the fluid filter relative to its service life for a maximum dynamic pressure to be exceeded in the hydraulic system, because the clogging of the pores of the fluid filter implies the risk that the dynamic pressure will increase uncontrollably within the hydraulic system, as a result of which the function of individual units may be disturbed or lost altogether. However, this also means that the size of the fluid filter must increase if a finer filter material is used in order to make available a sufficient reserve filter surface because the finer pores are naturally also clogged by contaminants more rapidly than are coarser ones. Moreover, it must also be guaranteed that the fluid filter is always arranged beneath the fluid level in the hydraulic fluid tank during the operation because it would otherwise draw in air, which may compromise the ability of the units of the motor vehicle to function in the hydraulic system. The essential requirement that the hydraulic fluid tank accommodating the fluid filter must be increased arises in connection with the above requirement, which is ultimately also of significance in the oblique position of the motor vehicle, and this requirement to increase the size of the fluid filter is disadvantageous not only because the space available for installation in the engine compartment is increasingly smaller, but also because such a hydraulic fluid tank requires a large amount of material and is expensive. The requirements on the fineness of the filter and on the dynamic pressure predetermine the necessary size of the fluid filter and consequently the amount of fluid as well as the size of the hydraulic fluid tank in solutions according to the prior art. The basic object of the present invention is to provide a hydraulic fluid tank which also permits fine-pored fluid filters to be used at a small size. This technical object is accomplished according to the present invention with a hydraulic fluid tank for motor vehicles with a fluid filter. The fluid filter is inserted into a filter housing present in the hydraulic fluid tank. Thus, it is provided that the fluid filter is inserted into a separate filter housing present in the hydraulic fluid tank. The fluid filter is thus accommodated within the hydraulic fluid tank in a completely encapsulated form. This encapsulation always guarantees that the fluid filter is arranged completely beneath the fluid level built up within the inner filter housing. This is also true with the motor vehicle in an oblique position. As a result, it also becomes possible to use very fine fluid filter materials because the size of the filter housing can occupy a large part of the interior space of the hydraulic fluid tank and there are only few limitations to the free design of the filter housing. Thus, it is particularly advantageous to design the filter housing as a two-part housing, which comprises, e.g., an upper part and a lower part, which may be connected to one another by means of a lock-in or snap connection. Other types of connection are, of course, possible as well. A collar, which is inserted in a firmly seated and sealing manner into a complementary axial flange present in the hydraulic fluid tank, is made in one piece according to the present invention with the outer surface of the lower part of the filter housing accommodating the fluid filter. The lower bottom of the lower part has, furthermore, an admission opening, through which the hydraulic fluid to be filtered flows into the fluid filter through at least one pressure pipe joint within an admission chamber formed by the axial flange. Moreover, it is expedient to provide in the lower part of the filter housing at least one outlet opening, through which the filtered hydraulic fluid can flow over into the hydraulic fluid tank. The hydraulic fluid thus flows over the pressure pipe joint into the admission chamber, then passes through the admission opening of the lower part, is pressed through the fibrous material of the filter and is filtered in the process in order to be subsequently discharged through the outlet opening into the hydraulic fluid tank. It can now be fed into the hydraulic system in the purified form. According to another embodiment of the present invention, an additional filter material is also provided in the outlet opening. The fluid filter should be supported within the filter housing against the force of a spring element. The supporting of the fluid filter via a spring element means an additional safety aspect for the entire system, because if the fluid filter were completely clogged, the dynamic pressure present in the entire system would increase disproportionately. This pressure would consequently also affect the interior space of the fluid filter via the pressure pipe joint and the admission chamber, so that there could be a risk of destruction of certain components. The fluid filter would be raised by a small amount in this case in the axial direction against the force of the spring element, so that the fluid can flow under the raised fluid filter in the direction of the outlet opening and thus it can be fed into the entire system. Thus, this solution describes a bypass, which offers the advantage over pressure relief valves arranged above the fluid filter that dirt particles already present in the fluid filter material cannot be removed from the filter material and cannot be returned into the hydraulic system, because the hydraulic fluid is discharged below the fluid filter. On the whole, it is guaranteed in a solution according to the present invention because of a first filling under vacuum that the fluid level within the filter housing is always higher than the fluid level in the hydraulic fluid tank. There is, of course, also a risk that the filter housing is dislodged from its anchoring in the hydraulic fluid tank. To avoid this and thus to limit the axial mobility of the filter housing as a whole, it is propvided, furthermore, that a holding-down device be arranged either on the inner surface of the hydraulic fluid tank or on the outer surface of the upper part of the filter housing, which holding-down device is located at a closely spaced location only from the surface of the corresponding other component, which surface is associated with it in an opposing manner. The hydraulic fluid tank according to the invention being described here can be manufactured as a whole from plastic in an advantageous manner. It may comprise a plurality of individual parts in the preassembled state, which are connected to one another after the introduction of the filter housing into the hydraulic fluid tank by, e.g., ultrasonic or orbital welding or bonding and thus they ultimately form a one-part component. Other types of connection of the individual parts of the hydraulic fluid tank may, of course, be applied as well instead of the above-mentioned types. What is meant here is, e.g., screw connections or snap connections with the insertion of corresponding sealing elements, etc. Fibrous, metal or paper filters of a fineness adapted to the needs may be used as filter materials for both the fluid filter and a corresponding insert. A hydraulic fluid tank according to the present invention has a number of advantages over that known from the prior art. Due to the encapsulation of the filter housing, a very large filter area can be used. This may correspondingly have a greater pore fineness than is possible in the solutions known from the state of the art. The hydraulic fluid tanks according to the present invention can also be made, on the whole, smaller. The admission of air into the hydraulic system is nearly ruled out because the fluid filter is always arranged beneath the fluid level as a consequence of the fluid filter in the filter housing being encapsulated. Since the filter housing is a closed, encapsulated system, the fluid level cannot drop by itself within the filter housing. The dynamic pressure can be limited to a predetermined, maximum value, so that the destruction of the system is avoided with a hydraulic fluid tank according to the present invention. Moreover, the simple design of the bypass used for this prevents particles already filtered out of the hydraulic fluid from being entrained from the fluid filter and from being returned into the system, because the fluid flows under the fluid filter. Two embodiments of a hydraulic fluid tank according to the present invention will be described in greater detail below with reference to the corresponding drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
{ "pile_set_name": "USPTO Backgrounds" }
Constrained geometry metal complexes and methods for their preparation are disclosed in U.S. application Ser. No. 545,403. filed Jul. 3, 1990 (EP-A-416,815); U.S. application Ser. No. 547,718, filed Jul. 3, 1990 (EP-A-468,651); U.S. application Ser. No. 702,475, filed May 20, 1991 (EP-A-514,828); U.S. application Ser. No. 876,268, filed May 1, 1992. (EP-A-520,732) and U.S. application Ser. No. 8,003, filed Jan. 21, 1993 (WO 93/19104), as well as U.S. Pat. Nos. 5,055,438, 5,057,475, 5,096,867, 5,064,802, 5,132,380, and WO 95/00526. The teachings of all of the foregoing patents or the corresponding U.S. patent applications are hereby incorporated by reference. U.S. Pat. Nos. 5,350,817 and 5,304,614 disclose zirconium complexes with bridged-metallocene ligands, wherein two indenyl groups are covalently linked together by a bridge containing carbon or silicon, which are useful for the polymerization of propylene. EP-A-577,581 discloses unsymmetrical bis-Cp metallocenes containing a fluorene ligand with heteroatom substituents. E. Barsties, S. Schaible; M.-H. Prosenc; U. Rief; W. Roll; O. Weyland; B. Dorerer; H.-H. Brintzinger J. Organometallic Chem. 1996, 520, 63-68, and H. Plenio; D. Birth J. Organometallic Chem. 1996, 519, 269-272 disclose systems in which the cyclopentadienyl ring of the indenyl is substituted with a dimethylamino group in non-bridged and Si-bridged bis-indenyl useful for the formation of isotactic polypropylene and polyethylene. R. Leino; H. J. K. Luttikhedde; P. Lehmus; C.-E. Wilen; R. Sjoholm; A. Lehtonen; J. Seppala; J. H. Nasman Macromolecules, 1997, 30, 3477-3488 disclose C.sub.2 -bridged bis-indenyl metallocenes with oxygen in the 2-position of the indenyl group, and I. M. Lee; W. J. Gauthier; J. M. Ball; B. Iyengar: S. Collins Organometallics, 1992, 11, 2115-2122 discloses C.sub.2 -bridged bis-indenyl metallocenes with oxygen in the 5,6-positions of the indenyl group, while N. Piccolravazzi; P. Pino; G. Consiglio; A. Sironi; M. Moret Organometallics, 1990, 9, 3098-3105 discloses non-bridged bis-indenyl metallocenes with oxygen in the 4 and 7 positions of the indenyl group. It has been thought that heteroatom-substitution, as opposed to carbon or H-substitution, on any position of the indenyl system of a metallocene complex, when used in an olefin polymerization catalyst, renders the catalyst less active, that is, there is lower catalyst productivity for polymerizations with .alpha.-olefins, and the polymer produced has lower molecular weight with lower tacticity. It has been suggested that the diminished activity of this broad class of catalysts is due to interaction of the heteroatom lone pair electrons with the Lewis acid cocatalyst polymerization activator, resulting in a more electronically deactivated Cp ring which is also more sterically hindered. SEE P. Foster; M. D. Rausch; J. C. W. Chien. J. Organometallic Chem. 1996, 519, 269-272. Disclosure of random heteroatom substitution in mono-Cp metallocenes is found in EP-A-416,815, WO 95107942, WO 96/13529. U.S. Patent Nos. 5,096,867 and 5,621,126 and related cases. Up to now it has been thought that heteroatom substitution in metallocene complexes for use as olefin polymerization catalysts would have disadvantages due to unwanted interactions of the lone pair electrons of the heteroatom either with the transition metal atom of the same or a different metallocene molecule, or with other components of the catalyst system. Numerous improvements in various metallocene complexes used as olefin polymerization catalysts have been made. However, problems still remain with catalyst efficiency and deactivation of the catalyst under high temperature polymerization conditions. It would be advantageous to be able to produce polyolefins with higher molecular weights. It would also be advantageous to be able to improve other physical characteristics of the polymers produced by altering the substitution around the cyclopentadienyl group of the metallocene complexes used in olefin polymerization catalyst systems.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to computer networks and, more particularly, to management of entities in a multi-protocol computer network. Data communications in a computer network involves the exchange of data between two or more entities interconnected by communication links and subnetworks. These networks are typically software programs executing on hardware computer platforms which, depending on their roles within a network, may serve as host stations, end stations or intermediate stations. Examples of intermediate stations include routers, bridges and switches that interconnect communication links in subnetworks; an end station may be a computer located on one of the subnetworks. More generally, an end station connotes a source of or target for data that typically does not provide routing or other services to other computers on the network. A local area network (LAN) is an example of a subnetwork that provides relatively short-distance communication among the inter-connected stations; in contrast, a wide area network (WAN) facilitates long-distance communication over links provided by public or private telecommunications facilities. End stations typically communicate by exchanging discrete packets or frames of data according to predefined protocols. In this context, a protocol represents a set of rules defining how the stations interact with each other to transfer data. Such interaction is simple within a LAN, since these are typically xe2x80x9cmulticastxe2x80x9d networks: when a source station transmits a frame over the LAN, it reaches all stations on that LAN. If the intended recipient of the frame is connected to another LAN, the frame is passed over a routing device to that other LAN. Collectively, these hardware and software components comprise a communications network and their interconnections are defined by an underlying architecture. Most computer network architectures are organized as a series of hardware and software levels or xe2x80x9clayersxe2x80x9d within each station. These layers interact to format data for transfer between, e.g., a source station and a destination station communicating over the network. Specifically, predetermined services are performed on that data as it passed through each layer, and the layers communicate with each other by means of the pre-defined protocols. This design permits each layer to offer selected services to other layers using a standardized interface that shields the other layers from details of actual implementation of the services. The lower layers of these architectures are generally standardized and implemented in hardware and firmware, whereas the higher layers are usually implemented in the form of software. Examples of such communications architectures include the System Network Architecture (SNA) developed by International Business Machines (IBM) Corporation and the Internet Communications Architecture. The Internet architecture is represented by four layers termed, in ascending interfacing order, the network interface, internetwork, transport and application layers. The primary internetwork layer protocol of the Internet architecture is the Internet Protocol (IP). IP is primarily a connectionless protocol that provides for internetworking routing, fragmentation and reassembly of exchanged packetsxe2x80x94generally referred to as xe2x80x9cdatagramsxe2x80x9d in an Internet environmentxe2x80x94and which relies on transport protocols for end-to-end reliability. An example of such a transport protocol is the Transmission Control Protocol (TCP), which is implemented by the transport layer and provides connection-oriented services to the upper layer protocols of the Internet architecture. The term TCP/IP is commonly used to denote this architecture; the TCP/IP architecture is discussed in Computer Networks, 3rd edition, by Andrew S. Tanenbaum, published by Prentice-Hall, PTR in 1996, all disclosures of which are incorporated herein by reference, particularly at pages 28-54. SNA is a communications framework widely used to define network functions and establish standards for enabling different models of IBM computers to exchange and process data. SNA is essentially a design philosophy that separates network communications into several layers termed, in ascending order, the physical control, the data link control, the path control, the transmission control, the data flow control, the presentation services and the transaction services layers. Each of these layers represents a graduated level of function moving upward from physical connections to application software. In the SNA architecture, the data link control layer is responsible for transmission of data from one end station to another. Bridges or devices in the data link control layer that are used to connect two or more LANs so that end stations on either LAN are allowed to access resources on the LANs. Connection-oriented services at the data link layer generally involve three distinct phases: connection establishment, data transfer and connection termination. During connection establishment, a single path or connection, e.g., an IEEE 802.2 logical link control type 2 (LLC2) or xe2x80x9cdata link controlxe2x80x9d connection, is established between the source and destination stations. Once the connection has been established, data is transferred sequentially over the path and, when the LLC2 connection is no longer needed, the path is terminated. Reliable communication of the LLC2 (DLC) is well known and described by Andrew Tanenbaum in his book Computer Networks, Second Edition, published in 1988, all disclosures of which are incorporated herein by reference, especially at pages 253-257. FIG. 1 is a schematic block diagram of a conventional computer network 100 having a host computer coupled to a Token Ring (TR) network TR1 and an end station coupled to TR2. The TR networks are of the type that support Source/Route Bridging (SRB) operations with respect to the contents of a routing information field (RIF) of a frame. The host computer is preferably a SNA host entity comprising a host mainframe computer 110 coupled to a channel-attached router or a front end processor (FEP), such as an IBM 3745 network control processor, hereinafter referred to as the xe2x80x9chost network connectionxe2x80x9d 112. In addition, the end station is an SNA entity 114 comprising a xe2x80x9cphysical unitxe2x80x9d (PU) and a xe2x80x9clogical unitxe2x80x9d (LU) which consists of logical services by which a user may access the SNA network. A control unit 106 (such as IBM 3174) interconnects TR1 and TR2 such that the SRB network 100 effectively functions as a LAN. SNA protocols, such as a hierarchical sub-area SNA protocol that defines a connection path between the PU and host, are used throughout the network. In an alternate embodiment of network 100, Remote Source Route Bridging (RSRB) routers 1,2 operate in conjunction with the host network connection 112 to provide IP connectivity over a TCP/IP cloud 110 with the SNA network 100. RSRB is a software component in each router that permits transmission of TR frame traffic across an IP network. Specifically, RSRB functions to give the IP network the appearance of a single, virtual token ring (VTR) xe2x80x9chopxe2x80x9d in a TR network. The association of the two adjacent RSRB routers is called a xe2x80x9cpeerxe2x80x9d relation and this relation must exist to exchange RSRB traffic across the VTR. The PU entity communicates with the host by exchanging TR frames over LLC2 connections or sessions through the SRB network. Each TR frame 120 includes a RIF 122 that contains source route information in the form of ring number/bridge number pair xe2x80x9chopsxe2x80x9d within a path between the stations. An LLC2 session is established between the stations using a special TR frame, called an explorer frame. The explorer frame is used by a source (PU) to xe2x80x9cdiscoverxe2x80x9d the path to a destination (host); thereafter, a Set Asynchronous Balanced Mode Extended (SABME) frame is sent from the PU to the host to establish a logical connection between the end stations, and the host responds to the SABME frame with an Unnumbered Acknowledgment (UA) frame. Once the UA frame is received by the PU, a connection is established between the source and destination, and these stations communicate by exchanging TR information (INFO) and acknowledgment frames until the logical link SNA session is completed. For example, the PU transmits an INFO frame over TR2 and through the control unit and TR1 to the host. Upon successfully receiving the INFO frame, the host responds by transmitting an LLC2 Receive/Ready (RR) acknowledgment frame over the SRB network to the PU. This INFO/RR exchange continues until the PU has successfully transmitted all of its data and the host has successfully received all of that data. Session completion is then initiated by a Disconnected Mode (DM) frame being transmitted from the PU to the host; the disconnection is thereafter acknowledged by the host responding with a UA frame. The LLC2 frames (packets) are described by Radia Perlman in her book Interconnections, Bridges and Routers, published by Addison Wellesly Publishing Company, in 1992, all disclosures in which are incorporated herein by reference, particularly at pages 33-34. In a SNA network, applications executing on end stations typically access the network through LUs of the stations; accordingly, in a typical SNA network, a communication session may connect two LUs in a LU-LU session. Advanced Peer to Peer Networking (APPN) functions generally include session establishment and session routing within an APPN network. FIG. 2 is a schematic block diagram of an APPN network 200 comprising a host 202 coupled to a host network connection entity 206 and a PU entity 212 coupled to token ring (TR) LAN TRI. During session establishment, an end station (such as PU 212) requests an optimum route for a session between two LUs; this route is calculated and conveyed to PU 212 by an intermediate station (e.g., station 216) via a LOCATE message exchange through the network 200. Thereafter, a xe2x80x9cset-upxe2x80x9d or BIND message is forwarded over the route to initiate the session. The BIND includes information pertaining to the partner LU requested for the session. Intermediate session routing occurs when the intermediate station 216, configured as an APPN network node (NN), is present in a session between the two end nodes. As can be seen, the APPN network node is connected to an APPN/WAN 210 that includes additional APPN NNs to extend the APPN architecture throughout the network. The APPN network nodes forward packets of a LU-LU session over the calculated route between the two APPN end nodes. An APPN network node is a fill-functioning APPN router node having all APPN base service capabilities, including session services functions. An APPN end node, on the other hand, is capable of performing only a subset of the functions provided by an APPN network node. APPN network and end nodes are well-known and are, for example, described in detail in Systems Network Architecture Advanced Peer to Peer Networking Architecture Reference IBM Doc SC30-3422 and APPN Networks by Jesper Nilausen, printed by John Wiley and Sons, 1994, at pgs 1-83. The APPN router node may provide Dependent LU Requester (DLUR) services on behalf of the PU (xe2x80x9cdependentxe2x80x9d LU) in network 200 while a virtual telecommunication access method (VTAM) on the host 202 may provide Dependent LU Server (DLUS) services. The DLUS host may be coupled to the DLUR router by way of a xe2x80x9cpipexe2x80x9d connection over which control traffic for the dependent session flows. The DLUR router essentially functions as a xe2x80x9csurrogatexe2x80x9d for the downstream PU with respect to the DLUS host such that the control information flows over the network to the PU by way of the DLUR router. Data Link Switching (DLSw) is a mechanism for forwarding SNA protocol frames over, e.g., a TCP/IP backbone WAN such as the Internet. In traditional bridging, the data link connection is end-to-end, i.e., effectively continuous between communicating end stations. A stream of data frames originating from a source station on a source LAN traverses one or more bridges specified in the path over the LLC2 (DLC) connection to a destination station on a destination LAN. In a network implementing DLSw, by contrast, the LLC2 connection terminates at a local DLSw device entity, e.g., a router. An example of a DLSw network arrangement may comprise a host DLSw router connected to a host computer via a host LAN and a remote DLSw router connected to a remote LAN having a destination station. The LANs that are accessed through the DLSw routers may appear as SRB subnetworks attached to adjacent rings; each of these adjacent rings manifest as a virtual ring within each DLSw router that effectively terminates the SRB network. A DLSw network is formed when two DLSw devices interconnect the end nodes of a SNA network by way of the IP network; the DLSw devices preferably communicate using a Switch-to-Switch protocol (SSP) that provides packet xe2x80x9cbridgingxe2x80x9d operations at the LLC (i.e., DLC) protocol layer. FIG. 3 is a schematic block diagram of a DLSw network 300 having a TCP/IP cloud 310 disposed between host and remote SRB subnetworks 320, 330. Each SRB subnetwork comprises a DLSw router 1, 2 coupled to a host/host is network connection 302, 304 and PU/LU 312 via TR1 and 2, respectively. The DLSw routers function as end points between TCP sessions over the TCP/IP cloud when transporting TR frames associated with DLC sessions over that intermediate network. In an alternate embodiment of network 300, RSRB routers 1, 2 may be substituted for DLSw routers 1, 2. Broadly stated, each DLSw router establishes a xe2x80x9cpeer relationshipxe2x80x9d to the other DLSw router in accordance with a conventional capabilities exchange message sequence, and the logical and physical connections between these routers connect the subnetworks into a larger DLSw network. To establish a peer connection in accordance with an implementation of DLSw switching, the host DLSw router first opens logical TCP (Read/Write) xe2x80x9cpipexe2x80x9d connections to the remote DLSw router using a conventional socket technique to create a socket into the transport layer of the protocol stack. Once the TCP pipes are established, the SSP protocol is used to transport the capabilities exchange messages between the two DLSw routers. The capability exchange messages contain various parameters, such as the number of pipes used for communicating between the DLSw routers and the largest frame size supported by the routers. Each DLSw router responds to each capability exchange message issued by its peer router with a capability exchange response message. Upon completion of the exchange, each router reconfigures itself to xe2x80x9cact uponxe2x80x9d the agreed capabilities and the peer connection is established. Establishment of a peer connection can occur automatically upon xe2x80x9cboot-upxe2x80x9d of each DLSw router; that is, as soon as a DLSw router activates, it connects with its DLSw peer. The DLSw forwarding mechanism is well known and described in detail in Request For Comment (RFC) 1795 by Wells and Bartky, 1995 at pgs 1-91. DLSw routers can establish multiple parallel TCP sessions using well-known port numbers. All frames associated with a particular LLC2 connection typically follow a single designated TCP session. Accordingly, SNA data frames originating at the PU are transmitted over a particular LLC2 connection along TR2 to DLSw2, where they are encapsulated within a designated TCP session and transported over the TCP/IP cloud 310. The encapsulated messages are received by DLSw1, decapsulated to their original frames and transmitted over a corresponding LLC2 connection of TRI to the host in the order received by DLSw2 from the PU. The LLC2 connection between the PU and host is identified by a data link identifier (ID) 360 consisting of a pair of attachment addresses associated with each end station. Each attachment address is represented by the concatenation of a media access control (MAC) address (6 bytes) and a LLC service access point (SAP) address (1 byte). Specifically, each attachment address is classified as either a target address comprising a destination MAC (DMAC) and a destination SAP (DSAP), or an origin address comprising a source MAC (SMAC) and source SAP (SSAP) addresses. The attachment addresses are contained in the TRs frame exchanged between the PU and host entities. Furthermore, the designated TCP session is identified by a pair of circuit IDs 370, each comprising a 64-bit number that identifies the LLC2 circuit within a DLSw circuit. The DLSw circuit ID generally comprises a data link circuit port ID (4 bytes) and a data link correlator (4 bytes). A pair of circuit IDs along with a data link ID uniquely identifies a single end-to-end circuit through the network. Notably, each DLSw router maintains a table 350 comprising a plurality of data link ID and corresponding DLSw circuit ID pair entries. In order to associate LLC2 frame traffic with a corresponding DLSw circuit when communicating over the IP cloud, each DLSw router typically indexes into the table (the xe2x80x9cDLSw tablexe2x80x9d) using a data link ID to find the corresponding DLSw circuit IDs. FIG. 4 is a schematic block diagram of a conventional network 400 wherein a host mainframe 402 is coupled to a Telnet 3270 server 404, which preferably executes on a channel-attached router. The TN3270 router is coupled to an end station 408 over a TCP/IP cloud 406. Here, the end station 408 employs the TCP/IP protocol to establish a SNA connection with the host via a telnet connection with the TN3270 router. The Telnet connection is well known to the Internet community and described in RFCs 854, 860 and 862. When managing a multi-protocol TCP/IP-based SNA network, the routers and protocols used for carrying the SNA sessions, along with information pertaining to the protocols, must be known in order to diagnose points of failure for those sessions behaving improperly or to determine the sessions that may be affected when performing maintenance on the routers. For example in DLSw network 300, information about the DLSw protocols used to transport SNA session traffic is available to a network operator of a network management station (NMS) 380 via a Simple Network Management Protocol (SNMP). The DLSw circuit information described above, including the data link IDs, are available to the NMS 380 by accessing DLSw management information base (MIB) tables within the routers using SNMP. The MIB and SNMP protocol, and their use in providing network management information between SNMP management stations and agents are well-known and described in, e.g., SNMP, SNMPv2 and RMON by William Stallings, printed by Addison Wesley Publishing Company, 1996. An outage involving a PU session in the network 300 may be diagnosed by the network operator using a conventional approach that correlates SNA frame traffic sessions to DLSw routers for a network having a peer connection over an IP cloud between DLSw peer routers. Typically, management of the SNA entities takes place on the host in accordance with a network management application program, such as NetView, executing on the host. The application can access the status of the PU entity by virtue of its definition contained in a specialized data structure 390 of the host network connection. This data structure is a VTAM table 390 having entries whose contents define all the PUs with respect to the host. The content definitions of the entries comprise a name (e.g. PU name 392) along with an identifier block number/identifier number (IDBLK/IDNUM 394) or control point (CP) name that uniquely identifies each PU on a network at a given time. The NetView application manages those SNA resources known to it; as used in this context, the term xe2x80x9cmanagingxe2x80x9d means that the application program can check and change the status of the resources, and can further control those resources to acquire, e.g., information leading to the traffic patterns of the resources. However, the NetView application cannot manage the component in the routers that encapsulate SNA traffic. As noted, the DLSw routers are preferably managed by the SNMP tool executing on the NMS which communicates with SNMP agents resident on the routers. According to the conventional approach, the NMS communicates with an SNMP agent in each DLSw router to acquire DLSw MIB information including a data link ID identifying a DLSw circuit associated with the router. Since the host computer xe2x80x9cownsxe2x80x9d SNA sessions in the network, it maintains SNA-specific information (in addition to the PU name) such as the MAC/SAP addresses 396 for the host network connection and the PU on VTAM 390 in the host. A SNA View application is also resident on the host and used to acquire the MAC/SAP addresses and PU names. SNA View also communicates with VTAM to collect static definition information associated with the PU name if the PU is statically defined. A complementary version of SNA View (i.e., CiscoWorks Blue SNA View) executes on the NMS and communicates with the host application over a logical TCP/IP (or LU 6.2) xe2x80x9cpipexe2x80x9d connection 385. The SNA View application on the NMS obtains the SNA-specific information from VTAM 390 over the pipe 385 and stores that information on a storage repository, such as a NMS database 382, of the NMS. In the case of DLSw network 300, the SNA-specific information retrieved from VTAM does not include information with respect to the DLSw routers that are routing the session traffic. Using the PU name of a session, an SNMP manager on the NMS may then correlate local and remote MAC/SAP addresses to the PU name in accordance with a conventional correlation procedure. Thereafter, the NMS can draw the topology of the DLSw network, including the DLSw circuit and PU session, to isolate any failures in the network. A typical problem that arises with each of the networks of FIGS. 1-4 is that a customer cannot connect an end station into the network. As a result, the customer calls a network operater which uses conventional tools (such as CiscoWorks Blue SNA View and various CiscoWorks Blue Maps products) to diagnose the problem in the particular network. For example, the SNA View tool may be used to diagnose network 100 (FIG. 1), an APPN Maps application tool may be used to diagnose network 200 (FIG. 2), DLSw Maps and RSRB Maps application tools may be used for the configurations of FIG. 3, and a TN3270 monitor application may be used to diagnose network 400 (FIG. 4). The TN3270 monitor provides a list of PU sessions and status within a TN3270 network. Utilizing these conventional tools, the NMS may display sessions of a particular protocol and perform a certain level of xe2x80x9cfilteringxe2x80x9d (i.e., searching) within the protocol. For example if the customer provides the name of the end station (PU) that cannot connect into the network, then the operator may invoke the SNA View tool to search for sessions based on that PU name because SNA traffic applies across all of the network configurations of FIGS. 1-4. The NMS may thus filter and display, e.g., all physical unit (PU) sessions known to VTAM and all VTAM PU sessions having names starting with a particular character sequence. SNA View would also enable display of the active/inactive status and other relevant information pertaining to the session. To obtain further information, the operator investigates use of all available protocol tools, particularly if the customer has no detailed knowledge of its installed network. For example, the operator may invoke the APPN Maps and DLSw Maps tools to determine whether they have any knowledge of the particular PU session. The DLSw Maps tool includes a display screen that allows input of filtering criteria, such as a PU name. In response to the criteria, the tool provides a list of DLSw circuits that represent (carry) PU sessions and that meet the particular filter criteria. The circuit information includes local and remote MAC/SAP addresses of the circuits. The CiscoWorks SNA View product enables access to the VTAM information in the host to allow correlation between the DLSw circuit information and the PU names from VTAM using the MAC/SAP addresses. However, these conventional tools cannot provide a list of circuits (sessions) based on filter criteria without specifying the protocol. Thus, it would be desirable to show all sessions in a network, regardless of protocol, that have a particular filter criteria, such as a PU name, MAC/SAP address or IP address of the PU. The present invention is directed to a technique for obtaining SNA PU session information pertaining to the filter criteria. In addition, the invention is generally directed to discovering the type of protocols used in network at a customer site without having to rely on the customer for specific information. In particular, the invention is directed to a technique for identifying a session in a customer""s network without knowledge of the protocols being employed. The present invention comprises a technique for identifying a data session flowing through entities of a multi-protocol network based on information contained within a service request provided by a user of the network and without requiring knowledge of the protocols used by the session. The entities comprise a System Network Architecture (SNA) host mainframe (xe2x80x9chostxe2x80x9d), an end station and intermediate stations, such as routers. Information about the protocols used in the network is initially acquired by a network management station (NMS) coupled to the network. In the case of an SNA data session, information about the session is acquired from a virtual telecommunications access method (VTAM) table on the host and from management information bases (MIBs) provided by routers executing protocols utilized by the SNA session. The NMS comprises a translation server configured to translate the service requests into session parameters for use by a novel correlation engine. The NMS further comprises an application protocol server including a plurality of protocol servers, each of which is configured to obtain specific protocol-related information pertaining to the session. In the illustrative embodiment, the protocol servers include a VTAM protocol server, a Data Link Switching (DLSw) protocol server, a Remote Source Route Bridging (RSRB) protocol server, a Telnet (TN3270) protocol server and an Advanced Peer to Peer Networking (APPN) protocol server. Information used by the application protocol server is stored on a NMS repository that is preferably organized as a plurality of tables, each containing protocol-related information associated with a protocol server. In response to receiving the session parameters from the translation server, the correlation engine creates at least one filter containing searching criteria pertaining to session. For an SNA session, the criteria may comprise one or more of the following elements: Logical Unit (LU) name, LU status, Physical Unit (PU) name, PU status, PU type, is identifier block number/identifier number (IDBLK/IDNUM), media access control (MAC) address (with or without service access point (SAP) address), Control Point (CP) name, Dependent Logical Unit Requester (DLUR) name, Dependent Logical Unit Server (DLUS) name, DLUS status, end station (workstation) TCP/IP host name or address (with or without port number), router TCP/IP host name or address and the desired protocols. The correlation engine passes the filter to an appropriate protocol server to search its table of the repository (or its respective MIB) for information relevant to the request. If found, the protocol server returns a list of sessions (and associated information) matching the filter. According to the inventive technique, the initial list of sessions returned by a protocol server becomes the working list. Subsequent session lists returned by the protocol servers are merged with the working list. That is if a subsequent session list includes information that matches information about a session in the working list, then the two sessions are considered the same and the session information from each protocol is combined into a single session. If the subsequent session list information does not match the information pertaining to any working list session, then the subsequent session list information is added to the working list as a new session. Partial matching of the session list generally indicates that the sessions are not identical; therefore an additional multiple criteria matching operation is performed to determine whether the sessions are similar. As each session is merged into the working list, flags are asserted to indicate which protocols have information about the session and which filters were satisfied by session returned by the protocol server. A next stage of the technique involves sorting of the working list session entries based on whether the sessions match all of the filters (the highest order) and by PU name, if present. Each session of the working list that matches all of the filter criteria is flagged as matching the requested filters. The session that matches all of the filters supplied to all of the protocol servers is first in the list. If there are multiple sessions that meet the filter criteria, those sessions are further sorted by PU name. Thereafter, sessions are sorted by the highest number of partially matched filtering criteria. The resulting sessions are returned to the user, preferably in a session table format. Advantageously, the invention provides an interface for a network operator of a NMS to locate any managed session in its network by entering whatever data it knows about the session. The correlation engine responds by returning a list of sessions sorted by the number of matches. By returning all sessions that match any filter criteria instead of just those sessions that match all of the criteria, the inventive technique avoids issues created when the operator mistakenly enters conflicting information. Moreover, the inventive technique enables the correlation engine to choose a session from potentially many sessions as a correct session for the filtering criteria.
{ "pile_set_name": "USPTO Backgrounds" }
There are many cases in which shading processing, which is for eliminating a non-uniformity in brightness as caused by the lighting irregularity of a lighting device or distortion of a camera lens, is required as pre-processing for the reading of characters or for the recognition of other objects. In conventional shading processing, a solid white reference paper having a uniform reflectivity is imaged and the resulting image is adopted as a shading pattern. When an object is imaged, a prescribed arithmetic operation (such as subtraction or division) is performed between image data indicative of the object and image data representing the shading pattern. Image data subjected to a shading correction by this operation is obtained. With this conventional shading method, however, it is required that the reference paper be prepared in advance. Further, in a case where the object is a solid figure, such as a circular cylinder, the amount of light incident upon the image pick-up device differs depending upon the location of the object. This light is part of the illuminating light that has been reflected by the object. More specifically, most of the light reflected from the portion of the object facing the image pick-up device impinges upon the image pick-up device. However, at the side faces of the object or portions in the vicinity thereof, the illuminating light is not reflected toward the position of the image pick-up device. Most of this reflected light does not impinge upon the image pick-up device. Consequently, when an object having such a solid shape is photographed, the photographic image develops a shadow (meaning a portion that is comparatively dark). It is difficult to prevent such a variance in light and darkness with the conventional method using the aforesaid reference paper. An object of the present invention is to provide a shading correction method, and an apparatus therefor, whereby it is possible to eliminate the effects of shadows, which are caused by solid shapes, without using a reference paper or the like. Another object of the present invention is to make possible a correct shading correction even in a case where the position of an object to be imaged in the visual field of a camera has shifted from a reference position.
{ "pile_set_name": "USPTO Backgrounds" }
Differential pressure sensors installed in internal combustion engines are discussed in DE 10 2006 054 043 A1. Pressures are thermodynamic variables and may be used in internal combustion engines for temperature and/or mass flow rate measurements of gases flowing through a fresh-air intake system and/or through an exhaust-gas emissions system. These are used, as a rule, by a control device of the internal combustion engine, in order to inject an optimum fuel quantity into a combustion chamber of the internal combustion engine for a particular operating range of the internal combustion engine.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to a method and system for evaluating a library function call at compile time, and more particularly to a technique for replacing, at compile time, a library function call whose one or more arguments are constant with the result of the function call. 2. Related Art Conventionally, the evaluation of a library function call with compile time constant arguments is performed during a program's runtime, as any reference to a preprocessed library is treated in the same manner as a function call. Depending on whether static or dynamic linking is used, the linker or loader ensures that the code to evaluate the library function call is available to the program during runtime. Since the evaluation of the function call waits until program execution, there is overhead from call linkage, parameter loading and unloading, function prologue, function epilogue, and return linkage. Thus, there exists a need to overcome at least one of the aforementioned deficiencies and limitations of the related art.
{ "pile_set_name": "USPTO Backgrounds" }
Java Card is a well known technology which provides a secure environment for software Java based applications also called “applets” to be run on a secure element. Such secure elements, compliant with Java Card Standard, may sometimes face software bugs when they are already issued and on the field. The bugs may be located in the Java Code or in the native code. When in the java code, the bugs may be fixed by loading a java patch on the secure element. This solution is already known and accepted by certification authorities. A secured load post-issuance for embedded code and Java Card content and linking is described in standards such as GlobalPlatform and JavaCard for example in Cap File format on Java Card, Loading command on GP. When in the native code, a solution may consist in implementing a specific proprietary loader inside the secure element, with its dedicated security verifications. However such solution would require to be reviewed by security labs on the deployment method and on the code content in order to avoid attacks on the native code fix, either when the fix code is loaded by a non authorized party, or when a malicious code is injected inside load blocks during the loading process by an authorized party. Moreover the implementation of a specific proprietary loader itself may be costly in term of memory space in the secure element, and could provide some security holes. It is then an object of the invention to provide a method for securely loading a native code on secure element post issuance, for correcting one or several bugs of the native code once the secure element is issued on the field. Thereto, the present invention provides a method for loading at least one native code on at least one target secure element, said method comprising the following steps: providing a modified CAP file composed of at least one custom CAP component comprising a native code; extracting said native code from the custom CAP component; installing said native code in the target secure element. Thanks to the method, bugs located in the native code may be corrected easily in post-issuance. According to another aspect of the invention, the method may comprise embedding a platform's signature as a dedicated Java Card custom CAP component into said at least CAP file or into the at least one custom CAP component. According to another aspect of the invention, the at least one custom CAP component may comprise a custom header component parameter, a header and the native code. According to another aspect of the invention, the custom CAP component header may comprise information on the size, the type and number of corrections or of new elements or of functions to be added. According to another aspect of the invention, the header information may comprise information on the section or sub-section where the correction(s) or added function(s) have to be done, and the size of said compiled corrections or added elements or functions. According to another aspect of the invention, the method may comprise determining whether the at least one custom CAP component is sent by an authorised party by comparing a platform's component embedded in the custom CAP component with a signature embedded in the target secure element, the party being considered as authorized if the two signatures are identical. According to another aspect of the invention, the method may comprise aborting the loading process if the Operating System of the target secure element determines the at least modified CAP file comprising the custom CAP component is not sent by an authorized party. According to another aspect of the invention, the method comprises grouping a set of native codes as one or more custom CAP components into one single or several modified CAP files in order to load said set of native codes into a set of secure elements, each native code embedding a platform's signature. According to another aspect of the invention, the step of compatibility signature may comprise comparing the platform's signature embedded the one or more custom CAP components and the platform's signature of each secure element of said set of secure elements. According to another aspect of the invention, the method may comprise deploying the one or several modified CAP file post issuance remotely. According to another aspect of the invention, the method may use an IJC file instead of a CAP file. The present invention also provides a method for generating a modified CAP file comprising at least a native code to be loaded on at least a target secure element comprising a Java Card Virtual Machine, said method comprising the following steps: generating a native code to be executed by the target secure element; generating a first CAP file comprising a set of CAP components; generating a modified CAP file by adding to the first CAP file a custom CAP component comprising the generated native code. Thanks to the invention, the loading deployment method of the new native code is secure. The native code fix is integrated using custom Java card component. It facilitates the deployment on server side for example on a Trusted Server Manager, using the current loading method in term of content and security. The secure element verifies the compatibility signature from the native component with its own build signature.
{ "pile_set_name": "USPTO Backgrounds" }
Businesses and organizations worldwide are becoming more dependent upon networks that operate over a broadly distributed physical infrastructure layer. Such networks can be comprised of a relatively large number of cables and connections. For example, some such networks have up to hundreds of millions of cables and connections. The reliability or fallibility of these networks is dependent upon many factors, including comprehensive and accurate status and documentation, and the ability of network personnel to isolate, troubleshoot, and repair failures. As the number of cables and connections increases, the ability of network personnel to accurately install and manage correct connections becomes increasing difficult.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field Various embodiments relate to a semiconductor apparatus, and more particularly, to a bit line discharge circuit of a nonvolatile memory apparatus. 2. Related Art A nonvolatile memory, in particular, a phase change RAM (PCRAM), which stores information using a phase change substance, is a nonvolatile memory apparatus which employs a phase change according to a temperature condition, that is, a resistance value change according to the phase change. A phase change substance is a substance which can be changed into an amorphous state and a crystalline state according to a temperature condition. A typical phase change substance is a Chalcogenide alloy. Because a representative Chalcogenide alloy is Ge2Sb2Te5 (GST) which uses germanium (Ge), antimony (Sb) and tellurium (Te), a phase change substance is generally referred to as ‘GST’. In the PCRAM, a reversible phase change between the crystalline state and the amorphous state of the phase change substance (GST) occurs using Joule heating which is induced by application of current or a voltage of a specific condition to the phase change substance (GST). The crystalline state is referred to as a set state in terms of a circuit. In the set state, the phase change substance (GST) has electrical characteristics of a metal with a low resistance value. Also, the amorphous state is referred to as a reset state in terms of a circuit. In the reset state, the phase change substance (GST) has a resistance value higher than that in the set state. That is to say, the PCRAM stores information using a resistance value change between the crystalline state and the amorphous state, and discriminates stored information by sensing current flowing through the phase change substance (GST) or a voltage variation according to current variation. FIG. 1 is a block diagram of a conventional nonvolatile memory apparatus 1. The nonvolatile memory apparatus 1 includes a sensing node level control unit 10, a write current driving unit 20, a sensing current driving unit 30, a sense amplifier 40, and a memory cell 50. The write current driving unit 20 includes an NMOS transistor N. The memory cell 50 includes a phase change device R_GST which is constituted by a phase change substance, and a cell diode D1. The sensing node level control unit 10 operates in response to a control signal CTR, compares a reference voltage VREF and the voltage of a sensing node SN, and outputs an enable signal EN. The control signal CTR is a signal which controls a read operation and a write operation of the nonvolatile memory apparatus 1. The control signal CTR drives the sensing node level control unit 10 in the write operation of the nonvolatile memory apparatus 1, and drives the sensing current driving unit 30 in the read operation of the nonvolatile memory apparatus 1. The sensing node level control unit 10 operates in response to the control signal CTR in the write operation, is fed back with the voltage of the sensing node SN, and outputs the enable signal EN which can operate the write current driving unit 20. If the voltage level of the sensing node SN is lower than the voltage level of the reference voltage VREF, the enable signal EN is activated, and if the voltage level of the sensing node SN is higher than the voltage level of the reference voltage VREF, the enable signal EN is deactivated. The NMOS transistor N of the write current driving unit 20 receives a first driving voltage VPP through a drain terminal D, and supplies write current I_WRITE through a source terminal S which is connected with a bit line BL, in response to the activated enable signal EN which is applied to a gate terminal G. The memory cell 50 changes the resistance value of the phase change device R_GST when the write current I_WRITE is supplied in the direction of the ground voltage VSS. Conversely, in the read operation of the nonvolatile memory apparatus 1, the sensing current driving unit 30 outputs sensing current I_SENSE to the memory cell 50 in response to the control signal CTR by using a second driving voltage VDD. The sense amplifier 40 senses the sensing current I_SENSE which varies according to the resistance value of the phase change substance R_GST and outputs data DQ. The sense amplifier 40 also receives a second reference voltage VREF2 through its positive terminal. In general, the voltage level of the first driving voltage VPP supplied in the write operation of the nonvolatile memory apparatus 1 is higher than the voltage level of the second driving voltage VDD supplied in the read operation of the nonvolatile memory apparatus 1. This is to cause a phase change by inducing Joule heating in the phase change device R_GST in the write operation. In this regard, even in the case where the enable signal EN is deactivated not to operate the NMOS transistor N of the write current driving unit 20, leakage current may be caused in the NMOS transistor N in the direction of the bit line BL by the first driving voltage VPP as a high voltage, due to gate-induced drain leakage (GIDL). As a consequence, a problem may be encountered in that such leakage current influences the sensing current I_SENSE in the read operation and thus the data DQ stored in the memory cell 50 is likely to be erroneously read and outputted.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a thick film fuse assembly for high reliability applications. These fuses are particularly suitable for high voltage, high amperage circuits which may be operated in high vacuum environments, in which a very high degree of reliability is required. Additionally, these fuses are suitable for use in environments which may subject the fuse to relatively high levels of mechanical shock and vibration. A typical application for this type of fuse is the fusing of satellite power systems. Thick film high reliability fuses have, in the past, been constructed with a single thick film element of conductive metal printed on a thermally insulative substrate with thick film terminations which are used to provide electrical contact with the thick film fuse element. In this context, xe2x80x9cthick filmxe2x80x9d refers to the process of screen printing and firing electrical components on a substrate, not to the actual thickness of the components. In many cases the elements are quite thin i.e. several tenths of a micron. In the screen printing process the fuse components are patterned and printed on the substrate, the firing process of approximately one hour is used to remove the solvents and bind the components to the substrate. The fuse element is covered with a layer of arc suppressant glass which has a relatively low (450xc2x0 C.) melting point. Leads are connected to the terminations and the entire package is encapsulated by an insert molding operation utilizing a high temperature thermoplastic or thermoset plastic with low outgassing characteristics. Traditional thick film fuse assemblies (constructed with gold elements) clear (blow) in the following manner: excessive current in the fuse heats the fuse element to 450xc2x0 C. which is the melting temperature of the arc suppressant glass. When the arc suppressant glass melts, the thermal equilibrium of the fuse is altered. The fuse element goes into thermal runaway which allows the element to melt at temperatures at or above 1050xc2x0 C. The melted fuse element migrates into the arc suppressant glass located above it, which prevents a continued arcing process. These fuses have a limitation in that the maximum operating voltage is approximately 72 volts D.C. for fuses rated above 1 or 2 amps. However, newer satellite power systems operate above 100 volts D.C. at well above 5 amperes which renders traditional thick film fuse constructions unusable. The reason for the voltage limitation of traditional thick film fuses is that during the overload clearing action the fuse element material (throat region) must be completely absorbed by the arc suppressant glass to prevent arcing and restriking which could result in a catastrophic failure, such as the failure of a fuse to completely open or a breaching of the fuse package. In traditional thick film fuse constructions the fuse element thickness is increased as the fuse amperage rating is increased. Thus more fuse element material must migrate into the arc suppressant glass when a 5 amp fuse is cleared than when a 1 amp fuse is cleared. At voltage levels above 72 volts D.C. the arc suppressant glass cannot reliably suppress arcing and restriking at fuse ratings greater than 1 or 2 amperes. It is believed that the larger mass of fuse element material which must migrate during clearing saturates the arc suppressant glass and decreases its ability to suppress the arc, which can promote catastrophic failure. In the first construction of a fuse element in accordance with a present invention the fuse element consists of an insulative substrate in which a plurality of low mass thick film fuse elements are disposed in parallel on the substrate. Thick film contact pads electrically connect to the fuse elements to permit attachment of lead wires and a layer of low melting point arc suppressant material covers the fuse elements. This construction permits a higher voltage and current rating for the fuse element because the fusible element is not concentrated in one area. Thus, there is more arc suppressant glass to absorb the material of the element, which provides a more reliable fuse. In the second embodiment of a fuse assembly in accordance with the invention the fusible elements comprise thick film, screen printed, end portions and gold wires which are positioned so as to stand above and away from the insulative substrate. This construction provides a faster initiation of the clearing action. The wire portion of the fuse element is completely surrounded by arc suppressant glass. During an overload clearing condition the arc suppressant material is better able to limit arcing and restriking because the material of the fusible element is not concentrated in one area as is the case with single element fuses. Finally, if during the clearing action the wire portion of the fuse should burn back to the thick film portion of the element the thick film portion will also migrate into the arc suppressant glass without breaching the fuse package.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to the field of security infrastructure and more particularly to a semiconductor device including enhanced variability and physical unclonable functionality (PUF). Electronics may use integrated circuits (IC) using, for example, a substrate and additives to form a solid-state electronic device. Device variability during manufacture may hinder proper function, however, such manufacture variability may be utilized to enforce security information technology physically on an IC. An integrated circuit (IC) is an electronic circuit which can be formed using silicon as a substrate and by adding impurities to form solid-state electronic devices, such as transistors, diodes, and resistors. Commonly known as a “chip,” an integrated circuit is generally encased in hard plastic, forming a “package.” Often, many such packages are electrically coupled so that the chips therein form an electronic circuit to perform certain functions. During the IC manufacture process, radiation is focused through the mask and at certain desired intensity of the radiation. This intensity of the radiation is commonly referred to as “dosing” or “doping.” The focus and the doping of the radiation have to be precisely controlled to achieve the desired shape and electrical characteristics on the wafer. Security of internet related circuitry and applications is needed to protect information within a networked, cloud, or internet environment. Various methods of securing data have been used, for example, Physical Unclonable Function (PUF). PUF is a physical encoding onto a chips in order to avoid cloning. Typically, a PUF is a function that is embodied in a physical structure and is easy to evaluate but hard to predict. Applications of PUF include challenge-response authentication, where access depends on providing correct responses to challenges, and the challenge-response pairs are generated by a PUF.
{ "pile_set_name": "USPTO Backgrounds" }
As public roads are becoming more and more congested, there is an increasing need to better train drivers of motor vehicles to decrease the number of road accidents. For example, one of the major causes of accidents, especially among younger drivers, is their inability to recognize a dangerous road situation due to the obstructed line-of-sight and path-of-travel. It is often very time consuming to train students to recognize dangerous road situations during the actual behind-the-wheel driving session. Such situations do not present themselves in a repeatable, consistent manner to each student driver. There are significant time gaps between their occurrences, which have a very large margin of error, causing a student to make unnoticed mistakes frequently. Unnoticed driving mistakes, in turn, cause the students to develop bad driving skills. It is also very difficult to train drivers in hazardous road conditions without compromising the safety of the driver. Examples of such hazardous road conditions may include slippery roads, over-speeding on sharp turns, etc. Training through driving simulation generally addresses the above issues. A variety of solutions to the above-identified problem have dealt with simulation driving experiences. Those solutions broadly fall into two categories: (1) modifications of stock vehicles to simulate hazardous road conditions, and (2) complete computer-based simulated driving environments not involving a real vehicle. Modifications of stock vehicles usually call for a dedicated vehicle to be used only for training, which cannot be otherwise used for driving. Simulation of the hazardous road conditions in such dedicated vehicles usually provides realistic haptic and motion feedback, while the spectrum of simulated experiences is limited mostly to tire skids. Computer-based simulated driving environments, while providing the most training benefits, require a dedicated maintained floor space. They also frequently require a real car cabin to be used to achieve a high enough degree of realism of the simulation. When the kind of a training vehicle needs to be changed, the changing procedure usually calls for a cabin replacement, which is very costly and time consuming. Both of the above-described categories also do not allow a driver to get the advantageous training inside the driver's own vehicle. The present invention addresses the need to provide portability and realistic feel of driving an actual vehicle while not exposing the driver to the real hazardous road situation during training. The system of the present invention, can be quickly set-up and used in any available parking space.
{ "pile_set_name": "USPTO Backgrounds" }
The invention is related generally to vial access devices of the type used in the transfer of medical fluids between a vial and another medical fluid container, and more particularly, to sealed vial access devices providing a closed system to avoid the formation of aerosols escaping to the outside atmosphere. Many medicaments are prepared, stored, and supplied in dry or lyophilized form in glass vials. Such medicaments must be reconstituted at the time of use by the addition of a diluent thereto. Many pharmaceutical products supplied in glass vials have a closure that can be penetrated by a syringe so as to add or subtract material from the container. For example, often times, medicines are supplied in dry form inside a vial having a rubber closure or stopper. Liquid such as deionized water is added to the vial to dissolve or suspend the solid material. Sometimes, serum and other medicines are freeze dried in the vial and are then reconstituted in the vial. Various methods of adding the diluent to the dry or lyophilized medicament have been used over the years. One method that is commonly used is the vial access device technique wherein a cannula is inserted at the vial access device through the vial stopper and then attaching a bottle or a syringe that contains the diluent to the vial access device. Once the diluent container is connected, the diluent is communicated to the dry or lyophilized medicament residing in the vial resulting in reconstitution of the medication in liquid form. After reconstitution, the liquid is usually withdrawn from the vial into the intravenous solution bottle or syringe, or other container for administration to the patient through an intravenous (“IV”) administration set or by other means. Vials made of glass or polymeric materials, the walls of which are non-collapsible, require an air inlet when medical fluid is withdrawn to prevent the formation of a partial vacuum in the vial. Such a partial vacuum inhibits fluid withdrawal from the vial. Typically, adapters for use with such vials have a sharpened cannula that includes both a medicament fluid lumen and a vent lumen therein. The vent lumen may provide pressure equalization when fluid is added to the vial or is withdrawn from the vial so that such fluid movement occurs smoothly. Access ports for injecting fluid into or removing fluid from a container, such as a drug vial, are well known and widely used. Conventional seals of drug vials generally involve a pierceable rubber stopper formed of an elastomeric material such as butyl rubber or the like, placed in the opening of the vial. A closure, typically formed of metal, is crimped over the rubber stopper and the flange of the vial to positively hold the stopper in place in the opening of the vial. The closure has an outer size, known as a “finish size.” A sharp cannula is inserted through the rubber stopper to position the distal, open end of the cannula past the rubber stopper to establish fluid connection with the interior of the vial. In the case of certain medications, such as those used for chemotherapy or nuclear medicine, the rubber stopper is made thicker so that increased protection is provided against leakage. Vial access devices have been found useful in that their sharpened cannula is used to pierce the stopper and move far enough into the vial interior to establish fluid communication between the vial and the connection device of another fluid container or fluid conduction device. For example, the adapter may include a female Luer fitting opposite the sharpened cannula to receive the male luer of a syringe. The “adapter” therefore adapts the vial to the syringe, or adapts the sharpened cannula to the male luer of the syringe. It has also been found useful in some applications to provide a means to attach or anchor the adapter to the vial to hold it in place while fluid communication between the vial and another device proceeds so that inadvertent disengagement of the adapter from the vial does not occur. For example, the adapter may have arms that engage the neck or flange of the vial and hold the adapter in place on the vial. Other means include a circular slotted housing that fits around the outside of the vial closure and snaps onto the vial closure under the crimped retaining cap on the under-surface of the vial's flange thereby grasping the vial neck flange and the underside of the closure. The circular housing typically has a plurality of claws or other retaining devices that are positioned under the flange of the vial opening thereby interfering with removal of the adapter from the vial. When an ordinary container and closure is used to dispense medicines which have been reconstituted, several problems are created. Normally when a liquid is added to a powder in a vial there is an increased pressure in the container and syringe due to the change in volume. This pressure tends to force a discharge of the liquid through an opening formed by the closure puncture and the hypodermic needle point, either when the needle is withdrawn or later when a needle is inserted to withdraw some of the contents. Another difficulty arises when the powders and the newly formed liquids experience aerosoling. This phenomenon occurs when small particles or droplets, either powder or in the liquid state, become airborne during the turbulence caused from the pressure released during withdrawal or insertion of the needle into the container. Thus, these airborne particles escape from the container and may contact the healthcare worker. Advances in modern medicine have made the aerosoling problem and others as described above much more serious. Specifically, during the treatment of cancer, chemotherapy drugs are packaged in glass vials in a freeze dried form and are thereafter reconstituted at the time when treatment is beginning. Various quantities of the reconstituted liquid are withdrawn over a period of time using syringes. Because cancer treating drugs are often times powerful, sometimes causing retardation or stoppage of all cell growth, it is obviously an advantage to avoid having unnecessary contact. Every effort is made to avoid contact by the preparer and dispenser of chemotherapy drugs. Not only cancer treating materials are of concern. As AIDS and AIDS-related diseases are treated, drugs which are used may not be safe for universal contact. Antibiotics and cloning drugs also need to be carefully monitored. For such reconstitution activities, a vented vial access device is used to avoid any difficulties with a partial vacuum or high pressure inside the vial. These are sometimes known as pressure-equalizing vial access devices. However, with some vented vial access devices this technique is unsatisfactory because both the dry or lyophilized material and the diluent can be exposed to ambient airborne bacterial contamination during withdrawal of the reconstituted medical fluid if a filter is not present in the vial access device. During the reconstitution process of certain medical fluids, such as chemotherapy fluids or nuclear medicines, it is also desirable to avoid contamination of the surrounding air resulting from the formation of aerosols or drops in the vial. As used herein, aerosols are suspensions of solid or liquid particles in a gas, such as air. Contamination is possible during the injection of the diluent into the vial because more material is being added to the closed space of the vial and therefore, the vent of the adapter must channel away an equal amount of air from the vial to make room for the additive. If this air removed from the vial is channeled to the outside atmosphere, such contamination can lead to problems, among other things, in the form of allergic reactions in the exposed personnel, especially when the air is contaminated with cytotoxic drugs, chemotherapeutic drugs, anesthetics, media containing isotopes, and allergy inducing substances of various kinds. Traditionally, drugs are aspirated from vials having rigid walls by the following process: a. the user aspirates a volume of air into a syringe that is equal to the volume of drug to be removed from a vial; b. the user pierces the top of the drug vial with a needle that is attached to the syringe; c. the user depresses the plunger on the syringe, injecting the air from the syringe into the vial which causes an increase in pressure within the vial; and d. a volume of drug is aspirated from the vial, allowing the pressure within the vial to drop back to near atmospheric pressure. If the vial is accessed more than once in this manner and the volume of air that is injected is slightly more than the volume of drug that is removed, the pressure within the vial will gradually increase. If the pressure becomes too high, some drug may spray from the needle hole in the vial closure as the needle is removed. If the drug contained in the vial is toxic, it may harm anyone who then contacts the loose drug. Chemotherapy pins are frequently used to aspirate chemotherapy drugs from vials. Chemo pins contain a hydrophobic membrane and filter that act as a barrier between the drug and outside atmosphere. This barrier allows air to enter and exit the vial as drug is removed while preventing liquid from escaping and filtering the gases that pass through it. This prevents the buildup of pressure within the vial as described above. However, many nurses and pharmacists do not trust that the filter prevents all harmful vapors from escaping the vial and reaching the atmosphere. Therefore, most users are required to use the chemo pin under a vent hood within the pharmacy. Prior approaches provide a sealed or closed system. However, problems have persisted. For example, one system is attached to a drug vial and then a syringe is used to prime the vial with a volume of air equal to the volume of fluid that will be withdrawn from the vial. The approach uses a thin, flexible section that is in fluid communication with the syringe and the vial. The thin, flexible section expands outward as the syringe is used to force air into the vial, preventing an increase in gas pressure within the vial. Then as fluid is removed from the vial, the flexible section collapses, preventing a decrease in pressure (vacuum) within the vial. However, the thin, flexible section expands outward making it vulnerable to rupture if it contacts a sharp object. Also, if over inflated, it may likewise rupture. Additionally, if the user forgets to prime the vial with air before aspirating the drug, a vacuum will develop within the vial which will inhibit the withdrawal of fluid from the vial. Hence, those skilled in the art have recognized a need for a pressure-equalizing vial access device having improved aerosol retention capability so that reconstituted contents of the vial that become aerosolized do not escape the vial to the atmosphere. The present invention fulfills these needs and others.
{ "pile_set_name": "USPTO Backgrounds" }
Current key-based user input technologies present various limitations due to the decreasing size of devices and consequently the space available devoted to user input. Some of these problems include: 1) a large number of small keys which cause the user to hit the wrong one, 2) sequential pressing of a single key to select one of a number of possible letters, 3) having to switch between different input mode screens to enter letters, numbers, or punctuation, 4) predictive completion methods that provide the wrong suggestions, 5) limited or no capability to enter punctuation, control characters, or function keys, and 6) having to introduce artificial delays between certain character combinations. Standard 104-key, WINDOWS keyboards are usually laid out in the QWERTY scheme and provide a full American Standard Code for Information Interchange (ASCII) character set via shift keys in addition to other functions. These are large and prevent any minimization at least because each letter and number must be individually represented. As a result, the various re-arrangements of QWERTY keyboards for laptops are large and hardly more compressed. More compressed schemes for cellphones, particularly non-internet-connected cellphones with nine to twelve buttons for text entry, are simply based on original phone button inputs like that in U.S. Pat. No. 5,392,338. This scheme allows only input of letters, numbers, and the special characters * and #. The inputs for cellphones have been improved very little, instead relying on auto-completion or, for small keys, auto-correction. A rarely-used scheme for more efficiently entering a limited set of characters (A-Z, 0-9, and ?![%(@)]) is shown in U.S. Pat. No. 6,847,706. This patent uses two different key presses for rarely-used characters and double key presses for common keys, while requiring special keys for spaces, backspace, and switching between letters and numbers. The keyboard provides no capabilities for other characters such as commas, periods, or quotes. Finally, the device treats soft-keys differently from mechanical keys, using a select/unselect process for soft-keys instead. The U.S. Pat. No. 6,847,706 patent relies completely on directionality for the user to translate key-press-sequences into the correct character. This requires that certain keys wrap around and use opposing keys to correspond with the directions provided on some outside keys. Likewise, peripheral letters on internal keys require a press on a key neighboring them in the key pad. In addition, this prior patent requires switching between number and letters with a separate dedicated key called “alpha-numeric” which means that numbers do not follow the same entry method as letters. Thus, this patent is not useful for complete text entry applications. The essence of this invention is to provide a solution to all of these problems in a uniform, logical, deterministic, user-friendly manner by employing a small keyboard apparatus containing a number of textual and control characters per key and a method for the user to easily indicate which of said characters is to be selected. This invention provides a method and apparatus to improve the speed of entry and extend the number of textual and control characters that can be entered from a smaller set of input devices. As a result, the invention provides a means to reduce the number of keyboard input devices required to support a given set of textual and/or control characters. This invention provides complete 104-key keyboard functionality on a matrix of twelve input keys that comprise a physical keyboard or an on-screen keyboard. Deficiencies in the standard character entry methods, where multiple presses of the same key are used to select different characters assigned to that key, are eliminated so that no pausing is required, and generally only two presses of the input devices are required to enter a ASCII textual or control character.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to roller skate fasteners. More particularly, the invention relates to a roller skate fastening device which has less elements than the conventional roller skate fasteners. Referring to FIGS. 1, 2, 2A and 3, a roller skate 10 comprises three crenated straps 11 with a large number of crenatures 111 thereon. The crenature 111 has the first inclined surface 112 and the second inclined surface 113. The slope of the second inclined surface 113 is steeper than that of the first inclined surface 112. The roller skate fastener 12 has a positioning seat 20 with an upper surface 24 to receive a movable fastener 30, a slot 32 formed on the movable fastener 30 to receive a U-shaped retaining plate 40, and a pressing fastener 50 disposed on the retaining plate 40. The positioning seat 20 has an upper surface 24 with a positioning hole 21 thereon, two lugs 23 with the corresponding holes 25 to receive the pins 26. A rivet 22 passes through the positioning hole 21 to fasten the positioning seat 20 on the roller skate 10. The movable fastener 30 has a slot 32 defined by a pressed bar 31 and two legs 33, and a circular hole 34 and a rectangular hole 35 formed on each leg 33. The slot 32 receives the retaining plate 40. The retaining plate 40 has two fins 41. Each fin 41 has a round hole 42 and a hook hole 43 thereon. The pressing fastener 50 has an upper pressed portion 54, a tip 55 extending downward from one end of the fastener 50, a spring recess 51 adjacent to a through hole 52, and a block disposed at one side of the fastener 50 to block a leg 441 of a torsion spring 44. The pin 36 passes through the holes 35, 43 and 52. The leg 442 hooks the hook hole 43. The tip 55 engages with the crenature 111. The user has to hold the roller skate 10 with one hand and fasten the fastener 12 with the other hand. The user has to apply a strong force to pull the strap 11 in order to fasten the fastener 12 tightly. Further, the fastener 12 has too many elements so that the manufacture and assembly of the fastener 12 are difficult and cumbersome.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a fixing device which fixes a toner image to a recording material under application of heat and pressure, an image forming apparatus equipped therewith, and a recording medium on which is recorded the temperature control program. 2. Description of the Related Art In an electrophotographic image forming apparatus often employed in a copier, laser printer, facsimile apparatus, or the like, a heat fixing method has thus far been common as a fixing method used in a fixing device. A heating roller fixing method using a heating roller is widely employed in this heat fixing type of fixing device. With the heating roller fixing method, the heating roller, inside which is provided a heater which is a heat source, and whose periphery is covered with rubber or resin having a good demoldability, and a pressure roller, are brought into pressure-contact with each other, transfer paper on which is formed a toner image is caused to pass through a nip region formed between these rollers to heat and fuse toner, and the toner is fused onto a surface of the transfer paper, carrying out a fixing. With the heating roller fixing method, the whole of the heating roller is maintained at a certain temperature, so that it is suitable for an increase in speed of printing. However, in recent years, a full color image forming apparatus such as a laser printer compatible with a full color printing has often been used, and toners of four colors, magenta, yellow, cyan, and black, have been used in the full color image forming apparatus. In the full color image forming apparatus, as there is a need to mix a plurality of kinds of color toner in a condition close to fusion in order to fix a full color toner image, unlike a case of a single color toner fixing in which toner is simply fixed while being softened and pressurized, it is necessary in the fixing device to place toner in a condition in which it is completely fused. For this reason, with the heating roller fixing type of fixing device in the full color image forming apparatus, an elastic body which is a rubber layer formed of silicone rubber or the like is provided on a support made of a metal or the like with an excellent thermal conductivity, and a surface of the elastic body is covered with a fluorine resin having a good demoldability, forming a heating roller. However, in the heating roller fixing type of fixing device using this kind of heating roller too, when the image forming apparatus starts to operate, it is necessary to heat the rubber layer with a low thermal conductivity by means of a heat source such as a heater provided inside the heating roller until a predetermined temperature is reached. For this reason, there is a problem in that period of time (a warming-up period of time) needed from the image forming apparatus being powered on until it is operable is lengthened, causing a waiting period of time. Also, there is also a problem in that the temperature of the heating roller decreases at the time of a continuous operation at a high speed. Thus, in recent years, in order to solve these problems, a fixing device has been proposed wherein, by bringing a belt type external heating section, equipped with a heating belt which rotates while being heated, into abutment with the surface of a heating roller, the heating roller is heated not only from a heater inside it, but also from the external surface (refer to, for example, Japanese Unexamined Patent Publication JP-A 2007-241143 and Japanese Unexamined Patent Publication JP-A 11-24489 (1999)). As a method of reducing the warming-up period of time in the external heating fixing type of fixing device, the kind of control shown below is described in JP-A 2007-241143. Heat sources 74 and 75 of external heating members of the fixing device, to be described hereafter in reference to FIG. 4, are powered on. A rotation of a motor is started after the external heating members are heated as far as a first temperature T1. In the event that a belt type external heating member is used as the external heating members, when an external heating belt is at a low temperature, the belt is impressed, and does not rotate easily. For this reason, the motor is rotated after the temperature of the belt is increased to the temperature T1 at which the belt is sufficiently softened. In order to effectively heat the surface of the heating roller, the heat sources 74 and 75 of the external heating members continue to be powered on after the rotation of the motor too. After the belt is heated as far as T3, which is a belt target temperature, an electric power ON/OFF control is carried out so as to maintain the temperature of the belt at T3. When the heat sources of the external heating members are powered off, electric power is switched and applied to a heat source 54 of the heating roller. By repeating this control, the heating roller continues to be heated to its target temperature. Also, in JP-A 11-24489, there is proposed a fixing device which can maintain a good fixing performance by adjusting the lighting timings of heating sources provided one inside each of a heating fixing member and an external heating member so that the individual heating sources are not lighted at the same time, and by most efficiently using the heating fixing member and external heating member within a limited range of electric power. Generally, in a case of carrying out the warming-up control described in JP-A 2007-241143, after the external heating members reach the target temperature T3, the external heating members are ON/OFF controlled by the control method shown in FIG. 7 so that they are maintained at T3 and, in the event that a feed of electric power to the external heating members is cut off, electric power is fed to the heat source inside the heating roller in order to efficiently heat the heating roller, and the heating roller is heated from inside. In this case, in order to reduce the warming-up period of time, it is necessary to make electric power high for a lamp inside the heating roller. Also, normally, in a standby mode, a control of the temperature of the heating roller is carried out by the kind of method shown in the flowchart of FIG. 7, to be described hereafter, (refer to JP-A 11-24489). It is determined in step S11 whether or not the surface temperature of the heating roller is equal to or less than a predetermined temperature Ta, which is lower than the target temperature and, if it is Ta or less, in step S12, electric power is fed to a halogen lamp. If it is higher than Ta, the process waits. It is determined in step S13 whether or not the surface temperature of the heating roller has reached Tb, which is the target temperature and, if Tb is reached, in step S14, the feed of electric power to the halogen lamps is stopped. If Tb is not reached, the process returns to step S12, and the heating by the halogen lamp is continued. However, in the event of making electric power high for the lamp inside the heating roller, when the surface temperature of the heating roller has reached the target temperature, and the feed of electric power to the heat source is cut off, the temperature of the metal core of the heating roller is considerably high. This is a difference in temperature caused by the thermal conductivity of the elastic layer of the heating roller being low. The difference in temperature appears more prominently as the thickness of the elastic layer increases. For this reason, a phenomenon called an overshoot occurs wherein the heat of the metal core is transmitted to the surface of the elastic layer, delayed, even after the feed of electric power to the heater inside the heating roller is cut off, and the surface temperature of the heating roller increases by about 20° C. eventually. Also, by the temperature of the metal core becoming higher, the elastic body in contact with the metal core is exposed to a high temperature, causing a thermal deterioration. Also, particularly, in a case of shifting from the warming-up operation to the standby mode, the overshoot of the surface temperature of the heating roller is large, and the temperature of the metal core is also at its highest. After the heating roller is idled for a predetermined period of time from a finishing of the warming-up operation, an operational mode switches to the standby mode, stopping the rotation of the drive motor of the heating roller. As the inside of the heating roller is not sufficiently heated at this time, a decrease in temperature of the heating roller occurs at a point at which the heat from the external heating member ceases to be supplied. Thus, electric power is fed to the heat source of the heating roller, carrying out the heating but, as previously described, when a high-power heat source is disposed in order to reduce the warming-up time, in the event that the heating roller is heated by the heat source, causing the surface temperature of the heating roller to reach the target temperature, the metal core portion reaches a considerably high temperature due to a difference in thermal conductivity. Also, period of time needed for feeding electric power to the heat source is lengthened. For this reason, the elastic body in contact with the metal core is exposed to a high temperature, causing the thermal deterioration. Furthermore, in recent years, a stress on the heating roller has increased because a control reducing a standby mode period of time is used in order to contribute to an energy conservation, and the number of increases in temperature from a low temperature to an operating temperature in one day increases, causing the overshoot of the heating roller, and exposing the elastic body to a high temperature of the metal core. As a method of suppressing the overshoot and the thermal deterioration of the elastic body, there is a method of reducing the output of the heater lamp inside the heating roller, reducing the output of the heater lamp inside the heating roller at a waiting period of time by means of a phase control, or the like. However, in the event of reducing the output of the heater lamp inside the heating roller, a negative effect, such as an increase in the warming-up period of time, or a decrease in the amount of heat supplied at a mass printing period of time, occurs. Also, it is also possible to reduce the output of the heater lamp by using the phase control, but not only is a ratio of reducing the output limited, but efficiency also decreases. Also, there is a negative effect such that the life of the heater lamp is reduced.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention disclosed herein is in the field of electrical wiring systems for movable room dividers and modular wall panels used in office buildings, restaurants, retail stores and the like. 2. Prior Art The present invention is a novel improvement and a departure from at least the following: ______________________________________ Patent No. Patentee Class/Subclass ______________________________________ 4,295,697 Grime 339/22 R 4,313,646 Millhimes et al 339/156 R ______________________________________ Grimes disclosed an electrical power distribution block secured to the lower portion of a metal frame of each space-dividing panel. The distribution blocks in an assembly of panels are electrically connected together. Whenever access to electrical power on either side of a panel is desired, a slide-in duplex receptacle is mounted on the distribution block on that side. The receptacles interlock with the blocks to provide built-in stress relief, without separate mechanical fasteners, against forces generated by plugging into or removing a plug from the receptacle. The terminals of the blocks are recessed and the receptacle terminals which connect with the block terminals are shielded in plastic sleeve portions of the receptacles. The conductors of both the blocks and the receptacles are molded in place. Millhimes et al teaches a combination power distribution block-duplex receptacle for being positioned in a panel raceway. Contained within the structure are five buss bars providing multiple top-off capabilities.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to a lubricant applying device, and an image forming assembly and image forming apparatus which employ the lubricant applying device. 2. Related Art Image forming apparatuses having a mechanism for applying a solid lubricant to an image carrier have been proposed.
{ "pile_set_name": "USPTO Backgrounds" }
Vitamin B12 is a dietary essential, a deficiency of which results in defective synthesis of DNA in any cell in which chromosomal replication and division are taking place. Since tissues with the greatest rate of cell turnover show the most dramatic changes, the hematopoietic system is especially sensitive to vitamin B12 deficiencies. An early sign of B12 deficiency is a megaloblastic anemia. Dietary B12, in the presence of gastric acid and pancreatic proteases, is released from food and salivary binding protein and bound to gastric intrinsic factor. When the vitamin B12-intrinsic factor complex reaches the ileum, it interacts with a receptor on the mucosal cell surface and is actively transported into circulation. Adequate intrinsic factor, bile and sodium bicarbonate (suitable pH) all are required for ileal transport of vitamin B12. Vitamin B12 deficiency in adults is rarely the result of a deficient diet; rather, it usually reflects a defect in one or another aspect of this complex sequence of absorption. Achlorhydria and decreased secretion of intrinsic factor by parietal cells secondary to gastric atrophy or gastric surgery is a common cause of vitamin B12 deficiency in adults. Antibodies to parietal cells or intrinsic factor complex also can play a prominent role in producing deficiency. A number of intestinal diseases can interfere with absorption. Vitamin B12 malabsorption is seen with pancreatic disorders (loss of pancreatic protease secretion), bacterial overgrowth, intestinal parasites, sprue, and localized damage to ileal mucosal cells by disease or as a result of surgery. The recommended daily intake of vitamin B12 in adults is 2.4 μg. There are four main forms of vitamin B12: cyanocobalamin: hydroxocobalamin, methylcobalamin and adenosylcobalamin. Methylcobalamin and adenosylcobalamin are unstable and damaged by light. They are therefore unsuitable for use in dietary supplements or pharmaceuticals and are not essential since they can be formed from cyanocobalamin or hydroxocobalamin within the body. The main form of vitamin B12 found in food is hydroxocobalamin. The main form used therapeutically and in nutritional supplements is cyanocobalamin, chosen because it is the most stable form and therefore easiest to synthesize and formulate. Because deficiencies of vitamin B12 are generally caused by the inability of the vitamin to be absorbed in the small intestine due to a breakdown in the vitamin B12-intrinsic factor complex transport mechanism, vitamin B12 must therefore be administered systemically. Currently, therapeutic amounts of cyanocobalamin are administered by intramuscular or deep subcutaneous injection of cyanocobalamin. However, patients must return to the physician's office periodically to receive additional injections to maintain their levels of vitamin B12. However, an intranasal gel cyanocobalamin preparation, NASCOBAL® is currently being marketed in which cyanocobalamin is administered intranasally as maintenance vitamin B12 therapy. However, many patients find the consistency of the intranasal gel unpleasant and would prefer to have administered intranasally a low viscosity spray containing cyanocobalamin. The prior art suggests that for vitamin B12 to be absorbed intranasally in therapeutically beneficial amounts, the concentration of the B12 in solution must either be greater that 1% by weight, see Merkus; U.S. Pat. No. 5,801,161 or be administered intranasally in a viscous gel, Wenig, U.S. Pat. No. 4,724,231 so that the gel remains in the nostril for an extended period of time. In fact Wenig states that B12 administered intranasally in a low viscosity solution is not in contact with the nasal mucosa long enough for a sufficient period of time to permit useful absorption. Wenig claims that most of the B12 is wasted if the solution has a low viscosity. Merkus developed intranasal formulations of hydroxocobalamin having a concentration of hydroxocobalamin greater than 1%, however hydroxocobalamin is not very stable and thus has a short shelve-life. Merkus chose hydroxocobalamin because cyanocobalamin is not soluble in an aqueous solution at concentrations greater than 1%. U.S. Pat. No. 4,525,341, Deihl, discloses a method of administering vitamins intranasally but do not enable a specific formulation containing only cyanocobalamin. International Patent Application No. PCT/US86/00665, publication no. WO 86/05987, discloses nasal spray composition containing vitamin B12 as cyanocobalamin. However, the specific spray formulations all contained a mercury compound as a preservative, however the disclosure did require the presence of mercury compounds. Other preservatives were also mentioned including benzalkonium chloride and chlorobutanol. As was stated above, an intranasal gel containing cyanocobalamin, NASCOBAL®, is currently being produced and marketed by Nastech Pharmaceutical Company Inc. of Bothell, Wash. It is very effective in maintaining levels of vitamin B12 for patients who have been deficient in the past but have recovered their levels of B12 through intramuscular injections. However, a number of patients find the consistency of the gel unpleasant in their nose, and would prefer an intranasal formulation that has a lower viscosity and is free of mercury compounds. Thus, there is a need to produce a pharmaceutically stable aqueous solution of cyanocobalamin that has a low viscosity, is free of mercury compounds and has sufficient bioavailability to be used as a maintenance therapy for vitamin B12.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field The present disclosure relates to a washing machine, and more particularly, to a washing machine having a plurality of tubs. 2. Background Generally, a clothes treating apparatus may include a washing machine having a washing function, a washing machine having a washing function and a drying function, and a dryer. The clothes treating apparatus includes a drum into which laundry is introduced. In the case of a washing machine, a tub for accommodating washing water is further provided, and a drum is rotatably installed in the tub. FIG. 1 is a sectional view of a washing machine, one example of a clothes treating apparatus in accordance with the conventional art. As shown, the washing machine includes a cabinet 11, a tub 21 accommodated in cabinet 11, and a drum 31 rotatably installed in the tub 21. An opening 12 into which laundry is introduced, and a door 13 are provided on a front surface of cabinet 11. Tub 21 is supported in cabinet 11 by a spring 22 and a damper 23. Tub 21 has a cylindrical shape of which one side is open, and drum 31 is rotatably installed in tub 21. Drum 31 has a cylindrical shape of which front side is open, and a plurality of through holes 33 are formed on a circumferential surface of drum 31. A plurality of lifts 35 for lifting laundry are provided on an inner surface of drum 31. A driving motor 25 for rotating drum 31 is coupled to a rear side of tub 21, and a water discharge passage 27 having a water discharge pump 28 for discharging water is provided at a bottom portion of drum 31. A detergent introduction device 41 for supplying detergent is provided at an upper side of tub 21, and a water supply pipe 43 is connected to the detergent introduction device 41. A water supply valve 45 is provided at water supply pipe 43. Referring to FIG. 1, the conventional washing machine is provided with only one tub 21. Thus, when laundry required to be washed separately is mixed with each other, the laundry should be washed a plurality of times. Further, in a case where opening 12 is formed on a front surface of cabinet 11, once a washing process starts, door 13 cannot be open. In this case, laundry which has not been introduced into drum 31 cannot be re-introduced into drum 31. Further, in the conventional washing machine, tub 21 has a capacity large enough to wash voluminous laundry such as bedding (blanket) or coat. Thus, when a small amount of laundry such as socks or underwear is washed, more washing water and/or power than a predetermined amount is consumed.
{ "pile_set_name": "USPTO Backgrounds" }
Bacillus thuringiensis is a Gram-positive spore forming soil bacterium characterized by its ability to produce crystalline inclusions that are specifically toxic to certain orders and species of insects, but are harmless to plants and other non-targeted organisms. For this reason, compositions including Bacillus thuringiensis strains or their insecticidal proteins can be used as environmentally-acceptable insecticides to control agricultural insect pests or insect vectors for a variety of human or animal diseases. Crystal (Cry) proteins (delta-endotoxins) from Bacillus thuringiensis have potent insecticidal activity against predominantly Lepidopteran, Dipteran, and Coleopteran larvae. These proteins also have shown activity against Hymenoptera, Homoptera, Phthiraptera, Mallophaga, and Acari pest orders, as well as other invertebrate orders such as Nemathelminthes, Platyhelminthes, and Sarcomastigorphora (Feitelson (1993) The Bacillus Thuringiensis family tree. In Advanced Engineered Pesticides, Marcel Dekker, Inc., New York, N.Y.) These proteins were originally classified as CryI to CryV based primarily on their insecticidal activity. The major classes were Lepidoptera-specific (I), Lepidoptera- and Diptera-specific (II), Coleoptera-specific (III), Diptera-specific (IV), and nematode-specific (V) and (VI). The proteins were further classified into subfamilies; more highly related proteins within each family were assigned divisional letters such as Cry1A, Cry1B, Cry1C, etc. Even more closely related proteins within each division were given names such as Cry1C1, Cry1C2, etc. A new nomenclature was recently described for the Cry genes based upon amino acid sequence homology rather than insect target specificity (Crickmore et al. (1998) Microbiol. Mol. Biol. Rev. 62:807-813). In the new classification, each toxin is assigned a unique name incorporating a primary rank (an Arabic number), a secondary rank (an uppercase letter), a tertiary rank (a lowercase letter), and a quaternary rank (another Arabic number). In the new classification, Roman numerals have been exchanged for Arabic numerals in the primary rank. Proteins with less than 45% sequence identity have different primary ranks, and the criteria for secondary and tertiary ranks are 78% and 95%, respectively. The crystal protein does not exhibit insecticidal activity until it has been ingested and solubilized in the insect midgut. The ingested protoxin is hydrolyzed by proteases in the insect digestive tract to an active toxic molecule. (Höfte and Whiteley (1989) Microbiol. Rev. 53:242-255). This toxin binds to apical brush border receptors in the midgut of the target larvae and inserts into the apical membrane creating ion channels or pores, resulting in larval death. Delta-endotoxins generally have five conserved sequence domains, and three conserved structural domains (see, for example, de Maagd et al. (2001) Trends Genetics 17:193-199). The first conserved structural domain consists of seven alpha helices and is involved in membrane insertion and pore formation. Domain II consists of three beta-sheets arranged in a Greek key configuration, and domain III consists of two antiparallel beta-sheets in “jelly-roll” formation (de Maagd et al., 2001, supra). Domains II and III are involved in receptor recognition and binding, and are therefore considered determinants of toxin specificity. Aside from delta-endotoxins, there are several other known classes of pesticidal protein toxins. The VIP1/VIP2 toxins (see, for example, U.S. Pat. No. 5,770,696) are binary pesticidal toxins that exhibit strong activity on insects by a mechanism believed to involve receptor-mediated endocytosis followed by cellular toxification, similar to the mode of action of other binary (“A/B”) toxins. A/B toxins such as VIP, C2, CDT, CST, or the B. anthracis edema and lethal toxins initially interact with target cells via a specific, receptor-mediated binding of “B” components as monomers. These monomers then form homoheptamers. The “B” heptamer-receptor complex then acts as a docking platform that subsequently binds and allows the translocation of an enzymatic “A” component(s) into the cytosol via receptor-mediated endocytosis. Once inside the cell's cytosol, “A” components inhibit normal cell function by, for example, ADP-ribosylation of G-actin, or increasing intracellular levels of cyclic AMP (cAMP). See Barth et al. (2004) Microbiol Mol Biol Rev 68:373-402. The intensive use of B. thuringiensis-based insecticides has already given rise to resistance in field populations of the diamondback moth, Plutella xylostella (Ferré and Van Rie (2002) Annu. Rev. Entomol. 47:501-533). The most common mechanism of resistance is the reduction of binding of the toxin to its specific midgut receptor(s). This may also confer cross-resistance to other toxins that share the same receptor (Ferré and Van Rie (2002)).
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an electric material and more specifically, it relates to a process for the production of a highly-orientated ultralong conjugated polymer having conjugated bonds, such as polyacetylenic bonds, which exhibits electrical conductivity and nonlinear optical effects. Polymers of acetylene, a derivative thereof, etc., have, in the molecule, a linear main chain having a .pi.-electron conjugated bond system and therefore have electrical conductivity and nonlinear optical effects. For this reason, they are widely studied as an optical and electronic function materials. As a process for producing polymers of acetylene or its derivative, a polymerization process of Shirakawa et al is well known, which uses a Ziegler-Natta catalyst. Since, however, presently known polymers of acetylene and its derivatives are unstable to heat, pressure, UV ray, etc., in oxygen-containing atmosphere, studies are being made for the stabilization thereof. However, no method has been found for the stabilization of polymers of acetylene or its derivatives. Further, no technique has been developed for the control of the orientation of polymers of acetylene and its derivatives. In view of the above problems, there is provided, according to this invention, a process for the production of a ultralong conjugated polymer having high stability and high orientation.
{ "pile_set_name": "USPTO Backgrounds" }
Touch panel devices are sometimes used as means for inputting into computer systems in FA equipment, OA equipment, measuring equipment and so on. Touch panel devices are generally provided on the display of the equipment, and are for detecting the position where a finger or the like has contacted the surface of the display. Prescribed processing is carried out in the computer system of the equipment based on data relating to images displayed on the display and data relating to the position of contact detected by the touch panel device. In the technical field of touch panel devices, in recent years SAW type touch panel devices that detect the position of contact using surface acoustic waves (SAWs) have garnered attention. A SAW type touch panel device comprises, for example, a transparent substrate having thereon a detection region and a peripheral region surrounding the detection region, and a plurality of exciting means and a plurality of receiving means provided in the peripheral region on the substrate. Each of the exciting means and the receiving means comprises a piezoelectric device. Such SAW type touch panel devices are described, for example, in Japanese Patent Application Laid-open No. 6-149459 and Japanese Patent Application Laid-open No. 10-55240. The piezoelectric device constituting each exciting means or receiving means comprises, for example, an interdigital transducer (IDT) formed by patterning in the peripheral region on the substrate for each device, and a piezoelectric film provided in the peripheral region so as to cover the IDT. The IDT comprises a pair of comb tooth electrodes, with each of the comb tooth electrodes having a plurality of mutually parallel electrode fingers. The electrode fingers of one comb tooth electrode and the electrode fingers of the other comb tooth electrode are arranged alternately and parallel to each another. The piezoelectric film is made of a piezoelectric material that exhibits a property of an electric field being produced upon strain being applied thereto (a piezoelectric effect), and a property of strain being produced upon an electric field being applied thereto (an inverse piezoelectric effect). When an AC voltage is applied to the IDT of a piezoelectric device acting as exciting means, an AC electric field is produced between adjacent electrode fingers. As a result, strain is produced in the piezoelectric film between the electrode fingers through an inverse piezoelectric effect, and hence prescribed acoustic waves are excited in the piezoelectric film by the IDT as a whole. At this time, acoustic waves of a wavelength equal to the pitch of the electrode fingers are excited most strongly. The excited acoustic waves propagate through the surface of the substrate, reaching a piezoelectric device acting as receiving means. In this device, an AC electric field is produced between the electrode fingers of the IDT through a piezoelectric effect in the piezoelectric film. Induced thereby, an alternating current is outputted from the IDT of the device. During operation of the SAW type touch panel device, surface acoustic waves are produced from each of the piezoelectric devices acting as exciting means, and these surface acoustic waves propagate through the detection region of the substrate, and are received by particular piezoelectric devices acting as receiving means. In the case that a finger or the like is in contact with the touch panel device in the detection region, the amplitude of surface acoustic waves passing through the position of contact will be attenuated. The position of contact in the detection region can be identified/detected by detecting and analyzing this attenuation. With such a SAW type touch panel device, for the exciting piezoelectric devices, the higher the electromechanical conversion efficiency thereof, the more efficiently acoustic waves are excited for a given applied voltage. On the other hand, for the receiving piezoelectric devices, the higher the electromechanical conversion efficiency thereof, the more efficiently an alternating current is outputted based on the received acoustic waves. Consequently, with a SAW type touch panel device, the higher the electromechanical conversion efficiency of each of the piezoelectric devices, the smaller the insertion loss (dB) in the transmission and reception of a signal between a pair of piezoelectric devices, whereby the driving voltage of the touch panel device can be reduced, or the detection precision of the touch panel device can be increased. However, with a conventional SAW type touch panel device, a sufficiently high electromechanical conversion efficiency is not obtained in the piezoelectric devices, and hence it may be that the driving voltage can not be sufficiently reduced, or the required detection precision cannot be obtained.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a frame for eyeglasses, more particularly to a foldable and adjustable eyeglass frame which can be conveniently stored and carried. 2. Description of the Related Art A conventional eyeglass frame is comprised of a lens frame and a pair of elongated bows hinged to opposed endpieces provided on the lens frame. When folded, the frame is stored in a relatively thick casing which, oftentimes, is not convenient to carry. Another disadvantage of conventional eyeglass frames is that the position of the elongated bows cannot be adjusted and maintained so as to achieve tight contact with the user's temples. Conventional eyeglass frames are thus unstable and can easily fall off the head of the user during use.
{ "pile_set_name": "USPTO Backgrounds" }
Thermoplastic stretch wrap films are commonly used to unitize pallet loads of goods during shipment and storage. Optimally, the films should have good stretch performance (high ultimate elongation), low relaxation over time to prevent film sag and loss of goods from the pallet, good cling to hold the film to itself, good optical properties to view the palletized goods through the stretched film (low haze), and good puncture and tear resistance to resist failure on irregularly shaped or sharped-edged loads. These stretch wrap films are commonly manufactured by blown film and cast film processes. The films are often monolayer films comprising linear low density polyethylene, but can also be coextruded film structures having different layers. Coextruded multilayer films are also made which have specific film layers to do specific jobs (e.g., one layer provides cling while another provides stretchability). For example, U.S. Pat. No. 5,019,315 (Wilson), incorporated herein by reference, discloses a coextruded stretch film with two outer layers of LLDPE and a core layer of branched high pressure-type low density polyethylene (LDPE). Other additives are said to be included to help impart tack or cling to the film. Conversely, U.S. Pat. No. 4,339,180 (Briggs et al.) and U.S. Pat. No. 4,418,114 (Briggs et al.), both incorporated herein by reference, describe coextruded stretch wrap films having a core layer of LLDPE and a skin layer of LDPE. Yet another type of cling wrap film is disclosed in U.S. Pat. No. 4,367,256 (Biel), incorporated herein by reference, where a blend of LDPE and a minor amount of LLDPE is used to make the film. Still another type of cling wrap film is disclosed in U.S. Pat. No. 4,518,654 (Eichbauer et al.), incorporated herein by reference, where an A/B stretch wrap film structure has one sided cling. The cling is imparted by using a specific cling additive, such as PIB to one layer of the structure. While there have been various solutions to specific stretch wrap film problems, films having an overall balance of properties, including superior stretch and load retention, along with good tear resistance, are still desired for commercial viability in the marketplace.
{ "pile_set_name": "USPTO Backgrounds" }
EAS systems of the type described above, are described in U.S. Pat. No. 3,665,449 (Elder and Wright). With such systems, a dual status marker of the type described above may be sensitized, i.e., the high-coercive force control elements thereof demagnetized, by applying an alternating, diminishing amplitude magnetic field, or by gradually removing an alternating field of constant intensity such as by withdrawing a bulk magnetic eraser of the type supplied by Nortronics Company, Inc. of Minneapolis, Minn. As disclosed in the U.S. Pat. No. 3,665,449 such a demagnetization operation may also be effected through the proper selection and arrangement of a series of permanent magnets in which adjacent magnets are oppositely polarized. By selecting the magnets to be of different strengths and by arranging them in an order ranging from highest to lowest (relative to the direction of travel), the magnetic field will appear to diminish in amplitude when passed over a control element. The patent also suggests that magnets of the same field strength may be arranged like inverted ascending steps or like an inclined plane so that the amplitude of the field is progressively diminished to produce the same result, and that it is not ordinarily necessary to demagnetize the control element in the strictest sense. Rather, the magnetic influence of the control element need only be reduced to an extent permitting magnetization reversal of the marker by the applied field. While such techniques may be useful in many areas with the markers affixed to a wide variety of articles, the magnetic fields associated therewith have been found to unacceptably interfere with magnetic states associated with certain articles, such as prerecorded magnetic video and audio cassettes utilized in video rental businesses and in public libraries. Because of the compact size and popularity of such prerecorded magnetic cassettes, they are frequent targets for shoplifters, and hence likely articles with which anti-theft markers would be used. At the same time however, such affixed markers would be desirably sensitized upon return of the article, and it has been found that prior art demagnetization apparatus such as those described above may unacceptably affect signals prerecorded on the magnetic tapes within the cassettes. In contrast to the demagnetization apparatus of the art described above in which the intensity of the magnetic fields produced thereby extend in a virtually uncontrolled fashion, the apparatus described in U.S. Pat. No. 4,689,590 (Heltemes) and U.S. Pat. No. 4,752,758 (Heltemes) provides a succession of fields of alternating polarity which rapidly decrease in intensity only a short, controlled distance from the surface of the apparatus and thus, while being capable of demagnetizing high-coercive force control elements of a marker brought close thereto, would be incapable of appreciably interfering with the magnetic signals recorded on tapes within a cassette to which the marker is affixed. The Heltemes apparatus utilizes an elongated array of closely spaced poles whose field intensity is substantially similar but whose polarity alternates. This array is typically formed using a series of permanently magnetized elements made from the same material and having substantially similar dimensions. The array is positioned at an incline relative to a working surface such that a high-coercive force control element that is moved relative to the array along the working surface in the direction of increasing distance between the array and the working surface experiences a magnetic field that alternates in polarity and generally decreases in intensity. Used in such a manner, the apparatus causes the control element to become demagnetized. Demagnetization in such a manner is often referred to as "ring-down." While the Heltemes apparatus is useful in demagnetizing control elements contained in anti-theft markers affixed to prerecorded magnetic tapes without affecting the signals prerecorded on such tapes, the array of alternating poles embodied therein is not designed for optimal ring-down. Optimal ring-down occurs when the alternating magnetic field decreases in an exponential envelope. The Heltemes apparatus relies on the gradually, and typically linearly, increasing distance between a working surface and a series of alternating poles of substantially similar strength to achieve decreasing field intensity at the working surface. Consequently, the length of the series of alternating poles in the Heltemes apparatus is significantly longer than necessary for an optimized magnetic array. In addition, because the first and last magnet elements in the array have only one neighboring magnet element of opposite polarity, the contributions from these end elements can be undesirably large, thus leaving the control element with a net magnetization. Correction of this problem also necessitates a longer array in the Heltemes apparatus.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a command interpretation system, and more particularly, to a synchronous command interpretation system and method. 2. Description of the Related Art Processing commands in a data processing system can be accomplished by using one or more command interpretation systems or command processing machines. Each set of commands is typically associated with a particular command interpretation system. Further, each set of commands is typically processed sequentially by its associated command interpretation system. In some instances, the two sets of commands in the data processing systems need to be processed in parallel with one another. Moreover, the two sets of commands may be required to interact, e.g., a foreground command processing machine that processes commands must switch to a background command processing machine that processes commands before the foreground command processing machine continues processing its commands. In such instances, the command processing machines must be properly synchronized. Data processing systems synchronize the two command processing machines through the use of co-routines. The co-routines are commands that are inserted into both the foreground command stream and the background command stream. The co-routine commands provide addressing information on where to return processing to in the command stream that currently is not processing. For example, if a foreground command processing machine must execute four foreground commands, followed by two background commands, before continuing with three foreground commands, a co-routine must be added to the foreground command stream after the four foreground commands and a co-routine must be added to the background command stream after the two background commands. Each co-routine includes information on where to begin processing in the command processing machine that is not currently active. Thus, using co-routines, the two command processing machines are able to process the foreground and background command streams in parallel. There are, however, drawbacks to the data processing systems using the co-routine approach. Co-routines are not efficient because of the amount of information necessary to provide to a command processing machine before actually beginning processing. Further, co-routines work only with a single pair of command processing machines. Co-routines are impractical for situations involving the synchronization of more than one foreground command processing machine because the co-routines do not provide an adequate structure for determining the processing order for each of the different command processing machines. For example, co-routines do not provide a structure for synchronizing operation of the background command processing machines with multiple foreground command processing machines. In sum, current data processing systems are inadequate for handling complex data command streams that require that the use of multiple command processing machines which increase overall command processing throughput. Therefore, there is a need for a new command processing system and method that (1) allows for the use of multiple foreground command processing machines with a background command processing machine that (2) maintains common representation of the background command processing machine while (3) increasing command processing throughput in a data processing system. A command processing system processes multiple commands in a peripheral system. The commands are from one or more command sources. At least one command source generates one or more local commands for a portion of the peripheral system. Another command source generates global commands for the entire peripheral system. The command processing system includes a command segregation module and a command integration module. The command segregation module is coupled to receive local and global commands from the command sources. The command segregation module is coupled to the command integration module. The command integration module is coupled to a command decoder. The command decoder is coupled to one or more execution modules. The command segregation module segregates the commands it receives from the command sources into at least one local command stream and a global command stream. The command segregation module inserts synchronization commands into each of the local command streams. The command segregation module then generates one or more linearized local command streams and a linearized global command stream. The command integration module receives the linearized local command streams and the linearized global command stream. The command integration module integrates the linearized local command streams with the linearized global command stream. The command integration module generates a single integrated command stream that is sent to the command decoder. The command decoder forwards the integrated command stream to an appropriate execution module for execution. In one embodiment of the present invention, a process includes receiving a plurality of commands for a peripheral system from a command source. The process segregates the plurality of commands into at least a first command stream and a second command stream. For example, in a graphics peripheral system, a first command stream is associated with the portion of a display region and a second command stream associated with the entire display region. The process interleaves the second command stream with at least one point of the first command stream. Specifically, the process inserts a synchronization command into the first command stream at each point with which it is to be interleaved with the second command stream. The synchronization commands include information to resume execution of the first command stream. The plurality of command streams are then interleaved into a single, linearized command stream. This linearized command stream is now ready for execution by one or more execution modules in the peripheral system. The present invention includes a system and a method that advantageously allows for processing a global command stream and one or more logical command streams together rather than individually. The present invention beneficially includes a system and a method that takes an application command stream, segregates the global command stream and the one or more local command streams, synchronizes all of the command streams, and then interleaves the command streams together into a single, logical, integrated command stream for execution (or processing). The integrated command stream generated by the present invention advantageously allows for asymmetrical processing such that the global command stream can complete processing without requiring additional information related to the processing of the one or more local command streams. These features increase processing efficiency and speed because all of the command streams may be processed within a single, logical, integrated command stream without requiring any one particular command stream to be completely processed before beginning processing of another command stream. The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a light-sensitive silver halide emulsion and a photographic light-sensitive material which have high-gamma photographic characteristics, a good graininess, a high incubation resistance, and a high latent image stability. 2. Description of the Related Art Methods of manufacturing and techniques of using tabular silver halide grains are disclosed in, e.g., U.S. Pat. Nos. 4,434,226, 4,439,520, 4,414,310, 4,433,048, 4,414,306, and 4,459,353, JP-A-59-994335 ("JP-A" means Unexamined Published Japanese Patent Application), JP-A-60-209445, and JP-A-63-151618. Known advantages of grains of this type are improvements in sensitivity including an improvement in spectral sensitization efficiency obtained by sensitizing dyes, a good sensitivity/graininess relationship, and an improvement in sharpness and in covering power derived from specific optical properties of tabular grains. In addition, EP514,742A describes that an emulsion, in which a value (flatness) obtained by dividing the value of a mean equivalent-circle diameter by the square of a mean thickness is 8 or greater, and which has mono-dispersity by which the standard deviation of a grain size distribution is 10% or less, has high-gamma photographic properties and a good graininess. The present inventors have examined emulsions with the above characteristics and found that they require further improvements in incubation resistance and latent image stability.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to rotary blood pumps that can be implanted into the chest of humans and can be used to assist a human heart in pumping blood, and, more specifically, to such blood pumps that use magnetic suspensions. 2. Description of the Prior Art. The implantable blood pumps according to the latest technology that are now being developed to assist the heart are turbo pumps. They come in axial flow configurations, such as the Jarvik 2000; centrifugal configurations, such as one being developed by the Cleveland Clinic; and mixed flow types such as the xe2x80x9cStreamlinerxe2x80x9d being developed at the University of Pittsburgh. All employ a high-speed rotary impeller rotating at thousands of rpm. Most, including the Jarvik 2000, use hard-contact journal bearings to support the rotor. Such use is not desirable because blood damage and thrombosis can be caused by the bearings. To try to circumvent contact-bearing problems, magnetic bearings are now being employed, as in the xe2x80x9cStreamlinerxe2x80x9d pump. These are non-contacting bearings and result in minimal blood damage, since the bearing clearances can be kept large to reduce shear stress in the blood. However, the problem still exists of having to thoroughly wash out all the bearing clearances with fresh blood. This washout is essential to eliminate the formation of thrombus. Magnetic bearings must be packaged in a small space in order to minimize the size of the pump, and this can be quite difficult. Most magnetic bearing pumps are too large and therefore unacceptable. Another requirement for implantable blood pumps is low power consumption. Pumps that employ magnetic bearings are notorious for their power consumption, which can be-as high as 20 watts for just the bearings, 5 watts for the bearing(s) being more typical. The power delivered to the blood in a left ventricular assist device (LVAD)is about 3.0 wafts, so one does not want to expend more than 1.0 additional watt for the magnetic bearings. Most magnetic bearings use permanent magnets or electromagnets to-generate radial magnetic fields that directly suspend the rotor radially. However, the bearing radial xe2x80x9cstiffnessxe2x80x9d obtained using the relatively low air gap fields produced by the magnets is not high. A large bearing is, therefore, needed to hold imposed loads with small radial deflection. Radially passive magnetic bearings are inherently unstable axially, as stated by Ernshaw""s Law. Active axial control is, therefore, required to stabilize a rotor suspended by such bearings. Particularly for an axial flow turbo pump that has substantial axial forces acting on the rotor, the power consumed by the active coils can be unacceptably large. A xe2x80x9cvirtually zero powerxe2x80x9d (VZP) control loop is sometimes used to reduce power consumption. This control is generally known as VZP control and was first used back in the 1970s by J. Lyman, one of the founders of magnetic suspensions. Implantable turbo blood pumps are typically run at constant rpm because it has been difficult to close the loop around the patient and physiologically vary pump flow rate according to the needs of the patient. By providing a base rate of flow, increased blood demand due to activity level is made up by the natural heart. However, a sick heart cannot make up much demand, and activity level is limited. Whatever cardiac output demand is made up by the patient""s heart undesirably loads the sick left ventricle. To physiologically control pump output flow, extraneous sensors have sometimes been added to measure physiologic parameters of the patient. These have included the addition of blood pressure transducers to measure the pump outlet pressure or differential pressure. This is highly undesirable because the addition of extraneous sensors can cause thrombosis and long-term hemodynamic reliability concerns. A known LVAD uses an invasively placed series ultrasonic flowmeter to determine pump flow rate since the LVAD cannot directly measure its output blood pressure. The natural heart produces pulsatile flow. Experiments have shown that this unsteady flow minimizes the onset of thrombosis in the larger arteries of the body because the flow pattern constantly changes. In a pulsatile flow pump, areas of stagnant flow are minimized or eliminated not only in the patient""s arteries at the pump outlet, but within the pump itself. Current turbo pumps are direct current (DC) or steady flow devices that do not produce pulsatile flow. Even as the heart of a sick patient recovers and contributes some degree of pulsatile flow to the body, the degree of pulsatility is much less than that of the natural heart since the LVAD blood pump is unloading the sick heart. For xe2x80x9cBridge To Recoveryxe2x80x9d long-term implants, pulsatile flow from the LVAD is highly desirable. Accordingly, it is an object of this invention.to provide alternate means to wash out the magnetic bearing gaps with fresh blood to eliminate thrombus formation at the bearings. It is another object of the invention to allow bearing washout under minimal flow conditions through the pump. It is still another object of the present invention to provide non-contact active washout means for the bearings. It is yet another object of the present invention to provide a magnetic bearing geometry that is easily washed out by the blood flow to prevent areas of stasis. A further object of this invention is to provide a small size bearing system that is simple in construction and packageable with the various turbo pump types for use with both adults and children. A still further object of the present invention is to provide a control system that requires very low power when used with the disclosed high load capacity bearings. It is yet a further object of the present invention to determine pump differential pressure in a direct manner without the addition of extraneous sensors. It is an additional object of this invention to provide an active coil and magnet geometry that requires low power approaching zero to sustain axial loads. It is still an additional object of the invention to provide safety of pulsatile flow by eliminating the undesirable condition of reverse flow through the pump. It is yet an additional object of this invention to provide pulsatile flow in a reliable manner using pump differential pressure determined directly by the magnetic bearings. It is also an object of this invention to shorten the length of an Archimedes screw type axial flow impeller by providing multiple parallel flow blades that minimally overlap. In mini-size blood pumps, for which this invention is intended, minimizing axial length of the pump is desirable particularly for applications in small women and children. It is furthermore an object of this invention to provide a compact outlet stator of short axial length that does not damage blood while recovering impeller pressure. In order to achieve the above objects, as well as others that will become evident hereafter, a blood pump in accordance with the present invention comprises a pump housing defining a pump axis, and inlet and outlet openings at opposite axial ends of said pump housing. A rotor is provided that defines a rotor axis and opposing rotor axial ends. Magnetic suspension means is provided within said pump housing at said rotor axial ends for magnetically suspending said rotor and passively maintaining the radial stability of said rotor so that said rotor axis remains substantially coextensive within said pump axis during operation. Control means is provided for maintaining axial stability of said rotor so that said rotor may absorb externally imposed axial loads and so that contact of said rotor within said pump housing is eliminated. Impeller means on said rotor operates to draw blood into said inlet opening and expel the blood through said outlet opening with rotation of said rotor. Drive means is provided for rotating said rotor and impeller means to thereby pump the blood, fluid gaps being formed between said rotor axial ends and said magnetic suspension means. Blood washout means is provided for continuously moving blood through said fluid gaps during rotation of said rotor to prevent formation of thrombus in said fluid gaps. Preferably, the washout means provides positive or active flow of blood through fluid gaps where stagnation of blood might otherwise take place. In accordance with another feature of the invention, the drive means is arranged to drive the impeller means at a selected rotational speed, and means are provided for sensing the pressure differential within said pump housing and imparting a cyclic variation to said selected rotational speed of said drive means to provide pulsating movements of the blood through the pump and into the patient""s circulatory system. Also, one structure for washout relies on generating differential pressures across the bearing gaps in a passive manner using the flow itself. An alternate structure attaches Archimedes screw pumps to the front and rear of the rotor to actively pump blood through the bearing gaps. In approximately 30% of heart-assist patients the natural heart re-conditions sufficiently after a year or two of LVAD use so that the pump is no longer needed. Rather than explant the device, the pump can be left in place and operated at minimal flow and power consumption. The active screw pumps allow proper bearing gap washout when the pump is put to sleep and minimally used. An important feature of the invention is to mount the impeller means on a magnetically suspended rotor that is inherently stable in radial directions and to provide direct feedback signals useful for stabilizing the rotor in the axial direction. This feature substantially simplifies the design and construction of the pump, reduces its cost of manufacture and substantially enhances the reliability over extended periods of use. A compact high radial stiffness magnetic bearing uses axial fringing ring magnetic fields to passively support the pump rotor radially. The flux is focused or concentrated from a permanent magnet in the fringing rings to produce very high radial load capacity in a small size. This is different than typical radially passive magnetic suspensions that employ radial magnetic fields. Active axial control stabilizes the bearing using a xe2x80x9cVirtually Zero Powerxe2x80x9d control feedback loop. Low power and small size make the bearing applicable to axial flow and other configuration blood pumps particularly suitable for implantation. Differential pressure across the bearing fluid gaps, forcefully positively or actively washes the gaps with fresh blood to eliminate thrombus and flow stagnation. The rotor force on the magnetic bearings can be measured by the bearing control system. This allows the direct determination of differential pressure across the pump. This parameter can be used to obtain a pulsatile output pressure and flow and to exert physiological control on the pump output so as to match the patient""s activity. In the present invention; a very high radial stiffness bearing is obtained. This is accomplished by employing an axially directed fringing ring field that has a radial load capacity an order of magnitude higher than radially directed fields. This allows one to use a small diameter bearing that was not heretofore feasible. The high-load capacity results in low power consumption as well. Until the present invention, it has not been possible to determine turbo pump differential pressure in a direct manner. Turbo pump differential pressure can be used in part to exert physiological control on the pump flow rate as demanded by the patient""s activity level and heart rate.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to the manufacture of a long elongate composite element, comprising long reinforcement fibers, embedded in a matrix of cured resin. It is becoming more and more common to use composite materials for manufacturing structural components or load-bearing components or reinforcement elements, owing to the ever better performance which may be achieved with composite materials. Composite materials often allow considerable weight savings to be made while achieving equivalent mechanical performance. Moreover, in applications where the composite material is subject to considerable stress, it is very important to be able to benefit fully from the reinforcing action of the fibers. This requires absolute mastery of the manufacture of composite elements. The role of the resin is to connect the fibers firmly to one another and to transmit stresses to the fibers. It is very important for the fibers to be totally impregnated and distributed homogeneously and in accordance with the desired level of reinforcement over the entire cross section of the composite element. One of the known methods of manufacturing composite components with good mechanical qualities is known as “pultrusion”. This entails continuously unwinding the reinforcing fibers and dipping them in a resin bath to ensure that the fibers are impregnated with the resin. Then, all the fibers and impregnating resin are drawn through a heated die, in order to effect at least partial polymerization of the resin. In this way, it is possible continuously to draw products with a cross section dictated by the shape of the die. Unfortunately, pultrusion does not readily lend itself to high speed operation, as impregnation tends to be slow and difficult. Furthermore, the kinetics of the heat transfer phenomenon considerably limits the rate of manufacture. Another known possibility consists in disposing the reinforcement fibers as desired in a mold, producing a vacuum and finally impregnating the fibers with the resin. The vacuum allows very effective impregnation. This method lends itself well to the manufacture of components of moderate finite dimensions, as a mold is used which corresponds to the shape and dimensions of the manufactured component. However, when it comes to the continuous manufacture of long components, it is not easy to impregnate the fibers correctly. And the more it is wished to accelerate production rates, the more difficult it becomes to ensure perfect impregnation of the fibers with the resin. Furthermore, the increasing commercial popularity of composite materials also depends on their cost price. It is therefore very important to be able to propose technological means capable of high manufacturing rates under the most competitive economic conditions possible.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to superconducting oxide films and processes for forming thick films of superconducting oxide films. More particularly, the present invention is directed to a electrodeposition process where oxygen is bubbled into the electrolyte during deposition to deposit superconductor precursors onto a wide variety of substrates for subsequent annealing for production of superconducting oxide films. The present invention is further directed to a process of preparing superconducting oxide films from annealed multilayered precursors, wherein the precursor comprises two or more separately electrodeposited layers and wherein an intermediate Ag layer is deposited between each electrodeposited layer. The electrodeposited layers in the multilayered precursors are deposited from an electrolyte solution, which may or may not be saturated with oxygen. 2. Description of Related Art There has been a great deal of effort expended in designing and developing suitable processes for making superconducting oxide films. The most desirable of such processes are those that are simple, efficient, and capable of producing a superconducting oxide film with a relatively high superconducting transition temperature (T.sub.c) Processes which employ electrodeposition as part of the superconductor fabrication procedure have been proposed due to the simplicity, reproducibility, and coating quality that can be obtained using electrodeposition techniques. The deposition processes used to form superconducting oxide films typically involve electroplating a mixture of the desired metals onto a suitable surface to form a film of superconducting precursor metals, which is then annealed at high temperature to form the superconducting oxide. Various methods have been used for the preparation of superconductors. One such general methodology for preparing superconducting oxide films comprises the electrochemical deposition of a mixture of appropriate metals on a substrate, followed by oxidation of the deposited, mixture into the superconducting oxide film. A related method comprises the sequential electrodeposition of layers of appropriate metals on a substrate, followed by oxidation of the deposited, layers. Another approach involves suspending, dispersing or dissolving superconductor precursor components within a liquid medium, followed by electrodeposition on a substrate and subsequent oxidation of the entire mass. Exemplary electrodeposition procedures are set forth in the following U.S. Pat. Nos.: 4,870,051; 4,879,270; 4,939,308; 5,120,707; and 5,162,295. The superconducting oxide films may be prepared on various substrates, including wires or tapes, depending on the desired use of the superconducting oxide film. The primary technical challenge that must be satisfied to permit usage of high temperature superconducting (HTS) wires or tapes in superconducting magnets or power-related applications is the successful demonstration of a low-cost, high-field, high current-carrying wire or tape with acceptable mechanical properties. A great deal of effort has recently been directed to the use of YBa.sub.2 Cu.sub.3 O.sub.7-x (YBCO). YBCO has useful magnetic properties at 77 K, but it is highly susceptible to magnetic field degradation in the transport current due to weak links resulting from high-angle grain boundaries. Thallium (Tl)-based superconducting oxide films present an alternative to YBCO due to a number of features, including high transition temperatures reaching to 127 K and unique features in their growth morphology. Nabatame et al. Physica C (1992) 193: 390) reported a magnetic field versus temperature irreversibility line for a thallium-based superconducting oxide that compared favorably at 77 K with the YBCO performance. Although many of the previously-developed deposition procedures are suited for their intended purposes, there is still a continuing need to develop further and even better deposition procedures that are simple, efficient, and capable of producing superconducting oxide films that have relatively high superconducting transition temperatures. There is also a continuing need to develop efficient deposition procedures for producing thick superconducting oxide films having good film morphology and the are suitable for use in superconducting magnets and other power related applications.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention concerns a watch provided with a case that contains a watch movement, a dial and a function indicator associated with the dial, and a control crown arranged on the periphery of the case and having an axis of rotation substantially parallel to the dial, said crown being able to slide in the axial direction thereof to be set in axial positions corresponding to various functions of the watch, the function indicator being controlled by the axial movements of the crown via a transmission mechanism. These function indicators have already been provided, either so that the wearer of the watch does not choose the wrong function if the crown controls several functions, or to indicate that a “screwed” in crown is actually in its screwed in position, i.e. a position that seals the watchcase in a reinforced manner at the control stem, by compressing a sealing gasket under the crown. The first aforementioned type is illustrated in particular in CH Patent No. 534 381 in accordance with which the control stem cooperates, in a first position, with a rotating selector that causes a pinion of the stem to mesh with one of the correction mechanisms that can be actuated by the stem when the latter is set in its second position. The selector carries function symbols, which appear in turn in an aperture of the dial. This system has a complicated structure, making it difficult to mount the movement in the case and remove it therefrom. Moreover, several manipulations are always needed to carry out each function, since the selector must be returned to a neutral position after use. EP Patent No. 836 125 provides, for an electronic watch with an alarm, that the alarm control is switched on by means of a lever which is controlled by the axial movement of the stem and fulfills a dual role: electric switch for the alarm function and actuating lever for a visual hand indicator on the dial. This type of indicator evidently has only two positions. A Richard Mille watch called Calibre RM008, mentioned on the website Worldtempus.com among the new releases for 2004, included a function indicator with three positions corresponding to the positions of the control crown, including one water-resistant position. However, the Applicant does not know of any description of this particular device. The description of a function indicator especially associated with a screwed in crown can be found in EP Patent No. 730 758. It is known that a screwed in type crown is generally not fixed directly to the control stem, but to a sleeve surrounding the stem and cooperating therewith by means of a coupling that allows some axial play when the crown is being screwed in, to prevent the stem being pushed in too far. The aforecited Patent provides, on the inner end of this sleeve, a drive finger, which, at the end of the sleeve's travel, rotates a toothed wheel meshed in apertures of a slide block placed under the periphery of the dial. One end of the slide block appears in an aperture in the dial as the screwing in of the crown ends. The advantage of this indicator is limited, since it can only indicate one function. The screwed in crown of a mechanical watch has at least three functions (screwed in, winding, time-setting) and often a fourth for correcting a calendar or other complication. Further, watches having a selector have been proposed for selecting the functions to be carried out by the crown or by a multi-functional push-button, the selector naturally being provided with a function indicator. This requires two distinct control members, each penetrating the watchcase, which is evidently not the case of the invention presented here.
{ "pile_set_name": "USPTO Backgrounds" }
Computer rendered graphics have come to play an important role in the production of a variety of entertainment content types. For example computer rendered graphics are regularly used to generate virtual environments for use in feature films and animation. These virtual environments can contain many individual geometric features, such as millions of individual features, and that number may grow as virtual environments continue to grow visually richer and more sophisticated. However, the very numerousness of the individual geometric features included in a virtual environment can undesirably slow the rendering of global illumination for that virtual environment. Moreover, in some instances, the computing resources required for representation of the virtual environment can exceed the memory storage capacity or processor throughput capability of a computing platform used to render the global illumination.
{ "pile_set_name": "USPTO Backgrounds" }
A portable generator may include an engine that converts fuel into kinetic energy and a generator that converts the kinetic energy into electricity. Portable generators may be used to provide electricity in a variety of scenarios such as backup power in emergencies, and remote power for camping or construction. A portable generator may require regular service and maintenance. For example, a portable generator may include a fuel tank that is to be refilled as the fuel is consumed during use. Additionally, a portable generator may be lubricated with oil that should be regularly replaced. Use of the portable generator may be irregular or sporadic. In view of the foregoing, there is a need for techniques for monitoring generators. Further advantages will become apparent from the disclosure provided below.
{ "pile_set_name": "USPTO Backgrounds" }
This invention is directed to the fields of molecular biology and medicine. Recombinant DNA technology has made it possible to produce large amounts of highly purified proteins. Many of these proteins are now in use as pharmaceuticals. Recombinantly produced pharmaceutical proteins include, for example, insulin, erythropoietin, human growth hormone and β-interferon. Pharmaceutical proteins which need to gain systemic access cannot be administered enterally because the enzymes of the digestive system degrade the proteins before they gain access. Therefore, pharmaceutical proteins generally are administered by injection. Diseases that require repeated administration of a protein over a long period of time, such as diabetes, can require daily injection. Of course, frequent injections are not pleasant for the patient and may not be the best method of administration. Therefore, means to deliver proteins without injection would provide an advantage. Various proteins are known to gain access to the system by traversing mucosal surfaces. For example, van Deurs et al. (European J. Cell Biol., 51:96 (1990)) showed that ricin crosses the epithelium by transcytosis. EP 0 222 835 B1 (Russell-Jones et al. May 25, 1987) discusses the use of carrier molecules that specifically interact with the mucosal epithelium, including various toxins, for the oral delivery of immunogens for inducing cell-mediated immunity. Pseudomonas exotoxin A (PE) is a toxic protein produced by the bacterium, Pseudomonas aeruginosa. In its native form, the protein binds to the α2-macroglobulin receptor (“α2-MR”) which is found on the surface of many cells. The molecule comprises four domains. Domain la binds α2-MR. Domain II is responsible for endocytosis of the molecule into the cell. Domain Ib has no identified function. Domain III is responsible for toxicity (by mediating inactivation of protein synthesis) and acts to retain the toxin in the endoplasmic reticulum. PE has been extensively re-engineered to give the molecule new properties. For example, domain la has been replaced with proteins that bind to specific target receptors. Targeting proteins also have been engineered into domain III to provide a binding capability. Such constructs have found use as immunotoxins. Domain III has been modified to eliminate the ADP ribosylation activity. Domain II has been shortened while retaining translocation ability. Thus, the domains of PE act as relatively independent functional units which can be exchanged for other functional units and that can be extensively engineered within themselves. See, for example, U.S. Pat. No. 5,863,745 (FitzGerald et al.); U.S. Pat. No. 5,854,044 (Pastan et al.); U.S. Pat. No. 5,705,163 (Pastan et al.); U.S. Pat. No. 5,705,156 (Pastan et al.); U.S. Pat. No. 5,696,237 (FitzGerald et al.); U.S. Pat. No. 5,602,095 (Pastan et al.); U.S. Pat. No. 5,458,878 (Pastan et al.); U.S. Pat. No. 5,082,927 (Pastan et al.); U.S. Pat. No. 4,892,827 (Pastan et al.); Y. Reiter et al. Nature Biotechnology (1996) 14:1239 and U. Brinkmann and I. Pastan, Biochim. et Biophys. Acta (1994) 1198:27.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention concerns the apparatus involved in playing the sport of paintball warfare and discloses a loading stand that facilitates the loading of paintballs into a paintball container tube which in turn is then used to load paintball gun magazines. The sport of paintball warfare has become a popular pastime and a military training exercise. The sport employs the use of hand held paintball air compression guns which shoot out small approximately .68 caliber diameter paintballs. These paintballs are semi-hard, hollow, plastic balls containing various colored dyes, which leave a colored mark on the objects they strike. These paintballs are contained in paintball ammunition magazines that are attached to and feed these paintballs into the guns. These magazines must be reloaded or refilled from time to time from paintball container tubes, xe2x80x9ctubesxe2x80x9d or xe2x80x9ctubexe2x80x9d for short, which are carried into the playing area. These tubes themselves must be reloaded from bulk paintball stock supplies by pouring these paintballs into the tubes or by hand delivering the paintballs to the tubes. At the present time, the procedure for reloading the tubes has proven to be an awkward process often leading to the destruction, damaging or soiling of the paintballs being transferred to the tubes, thus rendering the paintballs too defective for use in the guns. Various haphazard methods have been applied to overcome this problem, but none has proven to be sufficiently effective or easy to use in order to meet with wide acceptance. The invention described here provides a solution to the problems met in reloading these tubes with paintballs by disclosing a practical, inexpensive, portable, easy to use loading stand apparatus to facilitate the rapid reloading of these tubes. This apparatus comprises a stand which supports two parallel, horizontal shelves, separated by a few inches. These shelves are provided with circular vertically aligned apertures into which the tubes to be loaded are inserted and held steady in fixed, vertical positions, the top of each of the tubes being essentially flush with the top surface of the top shelf. Attached to the top shelf, by a pivoting hinge, is a wide mouthed hopper, open at the top and bottom. When this hopper has been rotated over and onto the top shelf, the paintballs can be poured into the hopper which funnels these paintballs into the top open ends of the tubes until they are full. To remove the loaded tubes, the hopper is rotated off the top shelf freeing the tubes. It is thus an object of this invention to provide a container tube support means to facilitate the loading of paintballs into a container tube. It is a further object of this invention to provide a container tube support means for loading paintballs into a container tube which is easy to use, reliable and portable. It is a further object of this invention to provide a loading stand for loading paintballs into a container tube which is inexpensive to manufacture. These and other objects will be apparent to those skilled in the art.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to the field of data analysis and, more particularly, to merging data resources based on shared information. A data resource may, for example, be a web document, image, video, chart, graph, spreadsheet, or other piece of content or collection of content. Business analytics refers to the skills, technologies and practices for investigating past business performance to gain useful business data and improve business planning. Business analytics make extensive use of data, statistical and quantitative analysis, explanatory and predicative modeling, and fact-based management in order to make decisions and conclusions. In business, several people with varying areas of expertise and objectives may navigate the same information space, such as the internet or World Wide Web, but come to separate conclusions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to an anode assembly and method of reducing sludge formation during electroplating. In particular, the present invention relates to reducing sludge formation during electroplating when utilizing a consumable anode. 2. Description of the Related Art Reliably producing sub-micron and smaller features is one of the key technologies for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. However, as the fringes of circuit technology are pressed, the shrinking dimensions of interconnects in VLSI and ULSI technology have placed additional demands on the processing capabilities. The multilevel interconnects that lie at the heart of this technology require precise processing of high aspect ratio features, such as vias and other interconnects. Reliable formation of these interconnects is very important to VLSI and ULSI success and to the continued effort to increase circuit density and quality of individual substrates. As circuit densities increase, the widths of vias, contacts and other features, as well as the dielectric materials between them, decrease to sub-micron dimensions, whereas the thickness of the dielectric layers remains substantially constant, with the result that the aspect ratios for the features, i.e., their height divided by width, increases. Many traditional deposition processes have difficulty filling sub-micron structures with relatively severe aspect ratios. Therefore, there is a great amount of ongoing effort being directed at the formation of substantially void-free, sub-micron features having high aspect ratios. Currently, copper and its alloys have become the metals of choice for sub-micron interconnect technology because copper has a lower resistivity than aluminum, (1.7 xcexcxcexa9-cm compared to 3.1 xcexcxcexa9-cm for aluminum), and a higher current carrying capacity and significantly higher electromigration resistance. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increased device speed. Further, copper has a good thermal conductivity and is available in a highly pure state. Electroplating is one process being used to fill high aspect ratio features with a conductive material, such as copper, on substrates. Electroplating processes typically require a thin, electrically conductive seed layer to be deposited on the substrate. Electroplating is accomplished by applying an electrical current to the seed layer and exposing the substrate to an electrolyte solution containing metal ions which plate over the seed layer. The seed layer typically comprises a conductive metal, such as copper, and is conventionally deposited on the substrate using physical vapor deposition (PVD) or chemical vapor deposition (CVD) techniques. Finally, the electroplated layer may be planarized, for example by chemical mechanical polishing (CMP), to define a conductive interconnect feature. Typically, electroplating is accomplished by applying a constant electrical current between the anode and the cathode rather than applying a constant electrode potential to the anode or the cathode. In the course of applying a constant electrical current, the voltage of the entire electroplating cell or the potential difference between the anode and the cathode is monitored rather than the potentials at the cathode and at the anode. Due to changes of the processing conditions during electroplating, the electrode potentials of the anode and the cathode vary during the course of electroplating. One problem with electroplating processes is the formation of particles or sludge in the solution generated as metal is dissolved from a consumable anode, such as a consumable copper anode, during electroplating. The sludge may contaminate or damage the substrates during electroplating. Since cleanliness of the substrates is important for their functionality, contamination by particles should be minimized. Two mechanisms have been proposed for the formation of sludge, such as copper sludge from a consumable copper anode. The first mechanism theorizes that monovalent copper ions (Cu1+) are formed during electroplating in the electrolyte solution which are then both oxidized and reduced to form sludge in the solution. The following reactions illustrate the first mechanism. xe2x80x832Cu (s) (anode)xe2x86x922Cu1+2exe2x88x92xe2x86x92Cu(s) (in solution as sludge)+Cu2+ The second mechanism theorizes that dissolution of the anode at grain boundaries causes the release of whole metal grains into the electrolyte solution. One apparatus directed at addressing the problems of sludge formation is the use of a permeable membrane covering the anode. For example, FIG. 1 is a cross sectional view of one embodiment of an anode assembly 10 comprising a consumable anode plate 14, such as a consumable copper anode plate, encapsulated by a permeable membrane 12. The material of the permeable membrane 12 is selected to filter sludge passing from the anode plate 14 into the electrolyte solution, while permitting ions (i.e. copper ions) generated by the anode plate 14 to pass from the anode plate 14 to the cathode. The permeable membrane 12 comprises a hydrophilic porous membrane, such as a modified polyvinylidene fluoride membrane, having porosity between about 60% and 80% and pore sizes between about 0.025 xcexcm and about 1 xcexcm. One example of a hydrophilic porous membrane is the Durapore Hydrophilic Membrane, available from Millipore Corporation, located in Bedford, Mass. The anode plate 14 is secured and supported by a plurality of electrical contacts or feed-throughs 16 that extend through the bottom of the bowl 18. The electrical contacts or feed-throughs 16 extend through the permeable membrane 12 into the bottom surface of the anode plate 14. The electrolyte solution flows from an electrolyte inlet 19 disposed at the bottom of the bowl 16 and through the permeable membrane 12. As the electrolyte solution flows through the permeable membrane, sludge and particles generated by the dissolving anode are filtered or trapped by the permeable membrane 12. Thus, the permeable membrane 12 improves the purity of the electrolyte during the electroplating process, and defect formations on the substrate during the electroplating process caused by sludge from the anode are reduced. However, one problem with the use of a permeable membrane is that some sludge may still be present outside the permeable membrane. In addition, because of the accumulation of sludge on the permeable membrane, the permeable membrane must be replaced or cleaned. Another apparatus directed at addressing the problems of sludge formation is the use of a phosphorized copper consumable anode. Typically, a phosphorized copper consumable anode contains about 0.02% to about 0.07% of phosphorous. It is believed that the phosphorous poisons the reaction of the theorized first mechanism of the formation of sludge, discussed above. However, it has been observed that phosphorized copper consumable anodes still produce sludge. Therefore, there is a need for an improved apparatus and method directed at reducing the formation of sludge. In one embodiment, a higher applied potential may be provided to a consumable anode to reduce sludge formation during electroplating. For example, a higher applied potential may be provided to a consumable anode by decreasing the exposed surface area of the anode to the electrolyte solution in the electroplating cell. The consumable anode may comprise a single anode or an array of anodes coupled to the positive pole of the power source in which the exposed surface area of the anode is less than an exposed surface area of the cathode to the electrolyte solution. In another example, a higher applied potential may be provided to a consumable anode by increasing the potential of the electroplating cell. A combination of decreasing the exposed surface area of the anode and increasing the potential of the electroplating cell may be used to provide a higher applied potential to a consumable anode. In another embodiment, an anode may comprise a copper alloy including Ag, Be, Bi, Cb(Nb), Cd, Co, Cr, Fe, Hf, In, Ir, Mo, P, Sb, Se, Sr, Sn, Ta, Te, Th, Ti, Tl, V, Y, Zr, and combinations thereof to reduce the formation of anode sludge.
{ "pile_set_name": "USPTO Backgrounds" }
Femtocell base stations, which are also referred to as Home base stations or Home nodeBs or Home eNodeBs when they are implemented in 3GPP systems, are base stations with limited range, for example with a transmission radius of only 10 m, for use in indoor environments to improve coverage and capacity. Femtocell base stations have a limited range e.g. limited to a home or office area. As a consequence of this small coverage area a network employing Femtocells can reuse frequencies (or more generally resource blocks) more often and thus has increased capacity when compared to a network using larger cells. Besides these benefits to network operators, Femtocells can also be of benefit to the end user as they can provide network coverage in areas that would be devoid of such coverage in the absence of the use of such Femtocells, for example in buildings through which propagation of an outside network is impeded. The use of Femtocell base stations is especially attractive for homes where the signal from the macro-cell may not be able to penetrate the home, for example due to difficult radio propagation conditions. In situations where a Femtocell base station provides network coverage in an area any user equipment in the covered area may establish a connection to the Femtocell base station, rather than to an also available macro-cell base station, thereby achieving improved connection. This not only helps to off-load traffic off the macro-cell but also creates more capacity on top of what the macro-cell has to offer. Reduced load on the existing macro network by offloading traffic to Femtocells helps to improve performance of the macro cell users. At the same time the capital and operating expenditure of the network operator is reduced. Capacity improvements in the home can moreover assist network operators in rolling out competitive pricing plans e.g. unlimited usage at flat rates to compete with fixed line telephones. The use of Femtocell base stations can be incentivised. Network operators may, for example, be able to reduce call charges, possibly even to such an extent that they are free of charge to the customer, associated with the use of Femtocells, as such use will result in better performance/improvement in capacity at a cheaper price/lower usage rates. Thus both the customer and the operator may benefit from the use of Femtocells. Femtocells are designed to be customer premises equipment. Because of the small coverage area of Femtocells a large number of Femtocell base stations may be operated simultaneously, having been deployed in an ad hoc fashion. In contrast to the manner in which traditional cellular networks are operated it may thus not be possible to carry out elaborate network planning for Femtocells. As the cost associated with the installation of Femtocell base stations by a skilled technicians is prohibitive Femtocell base stations are moreover likely to be installed by end users, most of whom may not appreciate the technical aspects of the installation. Femtocell bases stations are consequently expected to be plug and play type devices that self configure and self optimize during setup and operation. Once a Femtocell base station powers on, there are several tasks that it needs to perform. Firstly a network operator's networks need to be discovered and the Femtocell base station needs to register itself with a thus discovered network. Registration involves the sending of the Femtocell base stations credentials to an authentication server of a discovered network. The authentication server then authenticates the Femtocell base station. Subsequent to successful authentication, the operator's network sends initial configuration parameters. The time-tested standard TR-069 titled “CPE WAN Management Protocol” from the DSL forum, which is herein incorporated by this reference in its entirety, may be used for authentication. The initial configuration of Femtocell base stations does not include operational aspects related to Radio Resource Management (RRM), which comprises interference management. RRM solutions in which the transmit power of a Femtocell base station is altered so as to reduce interference and independently from and without coordination with other Femtocell base stations are known. Such standalone solutions, where Femtocell base stations act independently from each other, may not always be able to provide a stable management of radio resources. If two or more Femtocell base stations independently change operating frequency without coordination to the same new operating frequency, this new frequency is the same for two or more Femtocell base stations then the changes made by the Femtocell base stations may not have solved the interference problem. Instead the problem may have been compounded. Networks employing Femtocell base stations that manage interference in the above described manner may work well in circumstances exhibiting sparse deployment or low levels of traffic. Such networks may, however, not perform well under dense deployment scenarios or if there is significant contention for resources. In the latter situations it may be more desirable to coordinate interference management between Femtocell base stations.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention pertains to detectors and particularly to detectors for fluid analyzers. More particularly, the invention pertains to chemical impedance detectors. U.S. patent application Ser. No. 11/383,723, filed May 16, 2006, entitled “An Optical Micro-Spectrometer,” by U. Bonne et al., is hereby incorporated by reference. U.S. patent application Ser. No. 11/383,663, filed May 16, 2006, entitled “A Thermal Pump,” by U. Bonne et al., is hereby incorporated by reference. U.S. patent application Ser. No. 11/383,650, filed May 16, 2006, entitled “Stationary Phase for a Micro Fluid Analyzer,” by N. Iwamoto et al., is hereby incorporated by reference. U.S. patent application Ser. No. 11/383,738, filed May 16, 2006, entitled “A Three-Wafer Channel Structure for a Fluid Analyzer,” by U. Bonne et al., is hereby incorporated by reference. U.S. Provisional Application No. 60/681,776, filed May 17, 2005, is hereby incorporated by reference. U.S. Provisional Application No. 60/743,486, filed Mar. 15, 2006, is hereby incorporated by reference. U.S. patent application Ser. No. 10/909,071, filed Jul. 30, 2004, is hereby incorporated by reference. U.S. Pat. No. 6,393,894, issued May 28, 2002, is hereby incorporated by reference. U.S. Pat. No. 6,837,118, issued Jan. 4, 2005, is hereby incorporated by reference. U.S. Pat. No. 7,000,452, issued Feb. 21, 2006, is hereby incorporated by reference. These applications and patents may disclose aspects of structures and processes related to fluid analyzers, including the PHASED (phased heater array structure for enhanced detection) micro gas analyzer (MGA).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a radar apparatus which is mounted on an automobile and/or installed on a road facility so as to detect an object (obstacle and traveling vehicle) appeared on a road. That is, the present invention is related to an FM-CW radar apparatus for detecting a beat signal of an FM transmission signal wave, which is produced by a reflection wave reflected from an object, and for analyzing a frequency component of the beat signal so as to calculate both a distance and a velocity-of the object. More specifically, the present invention is directed to an FM-CW radar apparatus capable of reducing a measuring time duration by xc2xd, required to detect an object in such a manner that both an FM modulation wave along a frequency-up direction and an FM modulation wave along a frequency-down direction are simultaneously transmitted, and then, beat frequency components with respect to the respective FM modulation waves are analyzed so as to calculate a distance and a velocity of an object. 2. Description of the Related Art In general, as described in, for instance, Japanese Patent Application Laid-open No. 63-275976 (Japanese Patent No. 2550574), FM-CW type radar apparatus have be widely used as radar apparatus designed for automobiles. FIG. 7 and FIG. 8 are explanatory diagrams for explaining a basic idea of a conventional FM-CW radar apparatus. That is, FIG. 7 represents a change in reception frequencies and a change in beat frequencies in the case that a signal is transmitted to a stationary object, whereas FIG. 8 shows a change in reception frequencies and a change in beat frequencies in such a case that a signal is transmitted to a moving object. In these drawings, transmission frequencies of transmission signals to objects (targets) which should be detected; reception frequencies of reflection signals reflected/received from the objects; and the respective beat frequencies xe2x80x9cfbuxe2x80x9d and xe2x80x9cfbdxe2x80x9d obtained when the signal is frequency-modulated along the up direction, and the signal is frequency-modulated along the down direction are represented in the form of waveforms as a relationship with respect to time xe2x80x9ctxe2x80x9d, respectively. In FIG. 7, a carrier wave (FM modulation wave) having a center frequency xe2x80x9cf0xe2x80x9d is transmitted by way of an FM modulation method by which the carrier wave is repeatedly changed to a triangular shape. A triangular-shaped wave indicated by a solid line in FIG. 7 shows a relationship between the frequency of the transmission signal and the time xe2x80x9ctxe2x80x9d. Another triangular-shaped wave indicated by a broken line shows a relationship between a reception signal and the time xe2x80x9ctxe2x80x9d. This reception signal is reflected/received from, for example, an object located at a distance xe2x80x9cRxe2x80x9d. This triangular-shaped wave is delayed by such a time duration defined by that the transmission signal has been transmitted, and the reflection signal is received. In this case, assuming now that frequencies of beat signals constructed of frequency differences between transmission signals and reception signals during frequency-up modulation and also frequency-down modulation are selected to be xe2x80x9cfbuxe2x80x9d and xe2x80x9cfbdxe2x80x9d, the respective beat frequencies xe2x80x9cfbuxe2x80x9d and xe2x80x9cfbdxe2x80x9d are expressed by the below-mentioned equation (1). fbu=xe2x88x92fr fbd=frxe2x80x83xe2x80x83(1) It should be noted that in the above-described equation (1), symbol xe2x80x9cfrxe2x80x9d shows a beat frequency caused by a reflection signal which is reflected from a stationary object located at a distance of xe2x80x9cRxe2x80x9d. This beat frequency is given by the below-mentioned equation (2) by employing a repetition frequency xe2x80x9cfmxe2x80x9d of an FM signal (FM modulation wave), a frequency shift width xe2x80x9cxcex94Fxe2x80x9d of the FM signal, and a light velocity xe2x80x9ccxe2x80x9d. fr=4xc3x97Rxc2x7fmxc2x7xcex94F/cxe2x80x83xe2x80x83(2) Based upon this equation (2), the distance xe2x80x9cRxe2x80x9d is calculated in accordance with the below-mentioned equation (3). R=frxc2x7c/(4xc3x97fmxc2x7xcex94F)xe2x80x83xe2x80x83(3) On the other hand, in the case that an object is moved, both a frequency change in transmission signals and a frequency change in reception signals with respect to time, which are caused by the Doppler effect, are as indicated in FIG. 8. In general, a Doppler frequency xe2x80x9cfvxe2x80x9d is given by the following equation (4). fv=2xc3x97vrxc2x7f0/cxe2x80x83xe2x80x83(4) In this equation (4), symbol xe2x80x9cvrxe2x80x9d indicates a velocity (speed) of the object. This velocity xe2x80x9cvrxe2x80x9d of the object may be given by the below-mentioned equation (5). vr=fvxc2x7c/(2xc3x97f0xe2x80x83xe2x80x83(5) Also, in FIG. 8, the beat frequencies xe2x80x9cfbuxe2x80x9d and xe2x80x9cfbdxe2x80x9d which are caused by reflection signals reflected from such an object which is approached are defined based upon the below-mentioned equation (6), namely are equal to such values obtained by adding the Doppler frequency xe2x80x9cfvxe2x80x9d to the beat frequencies obtained in the case of the stationary object. fbu=xe2x88x92fr+fv fbd=fr+fvxe2x80x83xe2x80x83(6) In accordance with the above-described equation (6), both the Doppler frequency xe2x80x9cfvxe2x80x9d and the beat frequency xe2x80x9cfrxe2x80x9d are expressed based upon the below-mentioned equation (7). fv=(fbd+fbu)/2 fr=(fbdxe2x88x92fbu)/2xe2x80x83xe2x80x83(7) The above-explained equation (7) is substituted for the above-mentioned equations (3) and (5), so that both the distance xe2x80x9cRxe2x80x9d of the object and the velocity xe2x80x9cvrxe2x80x9d of this object may be calculated by employing the measured beat frequencies xe2x80x9cfbuxe2x80x9d and xe2x80x9cfbdxe2x80x9d as follows. R=(fbdxe2x88x92fbu)xc2x7c/(8xc3x97fmxc2x7xcex94F) vr=(fbd+fbu)xc2x7c/(4xc3x97f0)xe2x80x83xe2x80x83(8) In this case, resolution xe2x80x9cxcex94vxe2x80x9d of the velocity xe2x80x9cvrxe2x80x9d is determined based upon analyzable minimum frequencies of the beat frequencies xe2x80x9cfdxe2x80x9d and xe2x80x9cfrxe2x80x9d. Since the repetition frequency of the FM modulation wave is equal to xe2x80x9cfmxe2x80x9d, this resolution xe2x80x9cxcex94vxe2x80x9d of the velocity xe2x80x9cvrxe2x80x9d may be determined for either a frequency ascent time period or a frequency descent time period (=2xc3x97fm) one time. In other words, the resolution xe2x80x9cxcex94vxe2x80x9d of the velocity xe2x80x9cvrxe2x80x9d may be expressed by the following equation (9). xcex94v=fmxc2x7c/f0xe2x80x83xe2x80x83(9) On the other hand, in the case that a plurality of objects are present on a road, a plurality of beat signals are produced during the frequency-up modulation and also during the frequency-down modulation, the total number of which correspond to the total number of these objects. In this case, in order to detect only a specific object, a beat signal of the relevant object is selected from the plurality of beat signals. Then, both the distance xe2x80x9cRxe2x80x9d and the velocity xe2x80x9cvrxe2x80x9d of this specific object are calculated from the respective beat signals during both the frequency-up modulation and the frequency-down modulation. In order to select a combination of beat signals, such data as magnitudes of signal components of these beat signals may be used as reference purposes. In other words, such beat signals whose signal levels are substantially equal to each other are selected from signals obtained during the frequency-up modulation and the frequency-down modulation, and then, the selected beat signals are combined with each other. On the other hand, while an interval control operation between successively-driven automobiles is carried out, such a fact is known. That is, a change in vehicle drive speeds rather than a change in the above-described intervals between the successively-driven vehicles may give a large influence to a comfortable driving condition. As a consequence, in order that a vehicle speed of the own vehicle is smoothly controlled in response to a relative speed with respect to a preceding vehicle so as to improve such a comfortable driving condition, this relative speed should be measured in high resolution. In the above-explained radar apparatus, as previously described, in order to improve the resolution xe2x80x9cxcex94Vxe2x80x9d of the velocity xe2x80x9cvrxe2x80x9d, the repetition period of the modulation should be set to the longer repetition period. However, when the repetition period is made longer, the data updating period is lowered directly proportional to this long repetition period. As a result, there is a problem that the response characteristic of the radar detection operation is lowered. In particular, generally speaking, in an automobile radar apparatus, while a radar beam is scanned, distances along a plurality of directions are measured so as to recognize a direction of a preceding vehicle. When data is updated one time, distances must be measured plural times in correspondence with a scanning direction. As previously described, in the FM-CW radar apparatus, while the beat signal between the reflection signals is measured during the two modulation periods (namely, frequency-up modulation period and frequency-down modulation period), both the distance xe2x80x9cRxe2x80x9d and the velocity xe2x80x9cvrxe2x80x9d are measured. As a result, the time duration required for measuring the velocity xe2x80x9cVrxe2x80x9d must become two times longer than the time duration required for measuring the Doppler signals. For example, in such a radar apparatus having a center frequency xe2x80x9cf0xe2x80x9d of 76.5 GHz, in order to measure a radar signal in resolution of such a relative speed (=0.5 km/h), such a time duration of xe2x80x9c1/fm (=c/(f0xc2x7xcex94v)=0.028s)xe2x80x9d per one direction is required. Thus, a time duration of xe2x80x9c5xc2x71/fm (=0.14 s)xe2x80x9d per 5 directions is needed, which is five times longer than the first-mentioned time duration of xe2x80x9c1/fmxe2x80x9d. Normally, in order to measure an angle with higher precision, or to measure a wider range, the total number of scanning directions must be increased. This implies that measuring time duration is increased. In other words, this implies that a time duration required for a single scanning operation is increased. As a result, this may induce that the control response characteristic and the control performance of the FM-CW radar apparatus are deteriorated. For example, in the conventional radar apparatus described in the above-explained Japanese Patent Application Laid-open No. 63-275976 (Japanese Patent No. 2550574), while both the upper side band signal and the lower side band signal are transmitted at the same time, the frequencies of which are repeated along the ascent direction and also the descent direction within a constant time period, both the distance xe2x80x9cRxe2x80x9d and the velocity xe2x80x9cvrxe2x80x9d of the object are measured from the frequency differences in the reflection signals. The above-explained conventional radar apparatus is not directed to shortening of the measuring time. However, as a result, since the signal modulation is performed one time in order to measure the velocity, this conventional radar apparatus is in principle arranged in such a manner that the measuring time may be reduced by xc2xd. However, in this conventional radar apparatus, the reference oscillation signal (carrier wave) is mixed with the frequency modulation signal by the up-converter, and thereafter, both the upper side band signal and the lower side band signal are employed as the local signal. This local signal is used to extract the beat signals of the reflection waves and also the transmission waves. As a consequence, while the basic wave is suppressed, the upper side band signal must be completely separated from the lower side band signal. To the contrary, in the millimeter band having the center frequency of 76 GHz employed in an automobile radar, the maximum occupied bandwidth is allowed only up to 1 GHz. Also, such a filtering technique could not be so far established, by which a practically operable filter having a sharp cut-off characteristic in the millimeter band is constructed. As a result, the above explained radar apparatus described in Japanese Patent Application Laid-open No. 63-275976 cannot be practically realized. As described above, in the conventional FM-CW radar apparatus, when the repetition periods of the modulation operations are set to such long repetition periods in order to measure the relative velocity between the object and this radar apparatus in better resolution, the following problem may occur. That is, the data updating time period is lowered, so that the detection response characteristic is lowered. Also, in such a case that this conventional FM-CW radar apparatus is applied to control the interval between the successively-driven vehicles, when the speed changes are controlled in the suppression mode in order to improve the comfortable driving condition, there is such a problem that the lengthy time is required to measure the velocity, and therefore, both the control response characteristic and the control performance would be lowered. Also, as explained in the conventional radar apparatus of Japanese Patent Application Laid-open No. 63-275976 (Japanese Patent No. 2550574), in such a case that both the upper side band signal and the lower side band signal are transmitted at the same time, the frequencies of which are repeated along the ascent direction and also the descent direction within a constant time period, both the upper side band signal and the lower side band signal should be completely separated from each other, while completely suppressing the basic wave signal. Therefore, there is such a problem that this radar apparatus cannot be realized in such a frequency band which is used in the automobile radar apparatus. The present invention has been made to solve the above-described problems, and therefore, has an object to provide such an FM-CW radar apparatus capable of reducing a physically-required radar signal measuring time duration by xc2xd, while measuring means for measuring both a distance of an object and a velocity thereof by way of both a frequency-up modulation and a frequency-down modulation is applied thereto. To achieve the above-explained object, an FM-CW radar apparatus according to the present invention is characterized by comprising: transmission means for separately producing a first FM modulation wave along a frequency-up direction and a second FM modulation wave along a frequency-down direction to transmit both the first FM modulation wave and the second FM modulation wave at the same time; reception means for receiving reflection waves reflected from an object, which are caused by the first and second FM modulation waves; beat signal detection means for detecting a first beat signal and a second beat signal in a separate manner between the reflection waves and the first/second FM modulation waves; and an analysis apparatus for analyzing frequency components of the first and second beat signals so as to measure a distance of the object and also a velocity of the object. Also, the FM-CW radar apparatus according to the present invention is characterized in that a frequency of the first FM modulation wave and a frequency of the second FM modulation wave are set in such a manner that the frequencies thereof are not intersected with each other. Further, the FM-CW radar apparatus according to the present invention is characterized in that a frequency of the first FM modulation wave and a frequency of the second FM modulation wave are set in such a manner that the frequencies thereof are intersected with each other in the vicinity of each of center frequencies of the first and second FM modulation waves.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates, in general, to semiconductor devices and, more particularly, to a novel process for forming contoured openings in insulating layers of semiconductor devices. It has long been known that there exists a need, in the manufacture of semiconductor devices, to round the corners of lower layers of a multi-layer structure so that when subsequent layers are deposited, the surface presented to the subsequent layer will not have sharp or abrupt steps for the subsequent layers to traverse. Deposition of the subsequent layers, without the prior removal of the undesirable contours, may result in discontinuities in the metal interconnect line, thus producing an inoperative device and lowering the overall yield. Further, since some lower or subsequent layers are conductive, that is, metallic or doped polycrystalline silicon (polysilicon) lines, these lines must be insulated from each other. The deposition of glass insulating films that can be flowed at temperatures of, for example 1200-1300.degree. C. to produce a gradual taper over steep steps can usually alleviate this situation. In U.S. Pat. No. 3,833,919 which issued to C. T. Naber on Sept. 3, 1974, there is described a multi-level conductor structure using a lower, undoped silicon oxide insluating layer and a second layer of phosphorous doped oxide formed thereover. The doped oxide layer, when heated to about 1000.degree. C., will flow over the steps in the undoped oxide layer. However, there are difficulties associated with this procedure. For example, after contact openings are formed, the maintenance of exposed areas of silicon at elevated temperatures, for extended periods of time, will cause the formation of an undesirable oxide on the exposed silicon. Additionally, the exposed silicon is susceptible of being doped, by diffusion, from the doped oxide layer while the elevated temperature will drive the dopant from the heavily doped layer into the undoped layer. To prevent doping of the undoped layer, a layer of silicon nitride must be interposed between the two oxide layers. Then, in order to remove any oxide that may have been formed on the exposed silicon areas, an additional processing step will have to be introduced to etch the undesirable oxide which in turn will etch desirable oxide. Accordingly, the deposition of a glass film that can be made to produce a gradual taper over steep steps in the substrate will alleviate this undesirable situation. Phosphosilicate glass (PSG) with about 6-8 wt % P has been used for this purpose since such glasses have been found to have good dielectric and sodium gettering properties and, additionally, can be readily formed, using chemical vapor deposition techniques, from the hydrides. However, such glasses are undesirable in that the fusion or flow temperatures are in the range of about 1000.degree.-1100.degree. C. which have been found to be too high to produce satisfactory radiation-hardened complementary MOS integrated circuits and other heat sensitive large scale integrated circuits. Increasing the phosphorous content of PSG, while lowering the flow temperature, nevertheless increases the chances of corrosion during operation of the device. In U.S. Pat. No. 3,481,781, which issued to W. Kern on Dec. 2, 1969 and is assigned to the same assignee as the subject application and in an article "Chemical Vapor Deposition of Silicate Glasses for Use with Silicon Devices" by W. Kern et al., J. Electrochem. Soc.: ELECTROMECHANICAL TECHNOLOGY 117, Apr. 1970 (I Deposition Techniques, pp. 562-568) and (II Film Properties, pp. 568-573) there are the initial discussions of the use and method of forming borophosphosilicate ternary glasses (BPSG). These BPSG layers are especially attractive to the semiconductor art as it has been found that they are more compatible with positive photoresist in that a positive photoresist will adhere better to BPSG than negative photoresist. In either event, adhesion to BPSG layers is much better than to the prior art 6 wt % PSG. It has also been found that with BPSG, the constituents thereof may be tailored so that it flows at about 900.degree.-950.degree. C. and will initially soften at a temperature of about 750.degree. C.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention provides for a modified form of disk brake assembly which may be used with the type of axle system described herein or with any other conventional axle system for reducing the diameter of braking disks without losing effective braking surface for a given system. The modified disk brake assembly includes two disk elements which are mounted on a common axis of rotation so that a single braking unit can control braking action on both of the disk elements. The single braking unit includes first and second caliper sections which are positioned in overlapping relationship to one another so that a single hydraulic control means can be used to operate both of the caliper sections simultaneously. The improved system of the present invention can provide for more uniform braking of both axle shafts of an axle system having a differential unit contained therein, and the improvements of this invention can be applied to front wheel drive and four wheel drive axles as well as more conventional rear wheel drive axles. The system provides for lighter weight and fewer parts in the braking system. Normal differential action of the axle system is not impaired under normal driving conditions, and yet, a locking differential feature can be included within the system for automatic locking of the axle system under extreme or adverse driving conditions. These and other features and advantages of the present invention will become apparent in the more detailed discussion which follows and in that discussion reference will be made to the accompanying drawings as briefly described below.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method and a device for evaluating the quality of a yarn. At present, several possible ways of evaluating the quality of a yarn are known. A first possibility is to measure variations in the mass of the yarn over its length and to count and estimate the deviations from a mean value. For said purpose, the yarn may be scanned by an electric field or by a light beam. A second possibility is to measure the tensile strength of a yarn using a tensile strength test. The behavior of the yarn during said tensile strength test again provides information about the quality of the yarn. A third possibility is to measure the hairiness of the yarn, i.e. the length, number or frequency of fibers protruding from the body of the yarn. All of the above possibilities and further possibilities not described here provide information about one or more properties of a yarn which are collectively conceived as the quality of the yarn. One of said properties, e.g. the mass variation,; relates to the appearance of the yarn or the textile fabric manufactured using said yarn. Another property, e.g. the tensile strength, relates more to the physical properties or to the behavior during further processing. A further property, e.g. the hairiness, relates more to the feel which the yarn imparts to the textile fabric when it is touched, and so on. A drawback of the presently known methods and devices for evaluating the quality of a yarn is that they are unable to evaluate the quality as a whole. There are still aspects of the quality of a yarn which are not identified by the known methods and devices. Thus, yarns which according to certain criteria and properties have to be classified as good because they are very uniform and have a high tensile strength, for example, nevertheless cause problems during processing, e.g. during spooling, weaving etc., which limit the output of the respective processing stage. The invention as characterized in the claims now achieves the object of providing a method and a device, with which further aspects of the quality of a yarn may be taken into consideration and explained by measured values so that the quality of a yarn as a whole is substantially detectable. Said problem is solved in that, for evaluating the quality of a yarn, first measured values for at least one parameter of the yarn are acquired from a continuously moving yarn which is previously exposed to friction, that second measured values of the at least one parameter of the yarn are acquired from said yarn when the yarn is not previously exposed to friction and that the first and the second measured values are processed together to form third measured values which are a measure of the quality of the yarn. A device for effecting the method accordingly comprises at least one measuring head, a friction element and an evaluation unit for signals from the measuring head. The advantages achieved thereby are that it is therefore possible to indicate a new measure of a property or quality of the yarn which is crucial for the output of the processing stages which are charged with yarn. In such processing stages yarn is, for example, drawn through elements and rubbed against elements. If the yarn stands up well to comparable loads in a test without altering substantially, then there is a high probability that it will also stand up well to further processing. This may be evaluated on the basis of measured values determined using the proposed method or the proposed device.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to car safety system, particularly collision warning system capable of alerting a driver of a collision potential. 2. Description of the Related Art Automatic collision warning systems for a vehicle operate based on input data relating to the mental and physical condition of the driver including his behavior during adverse road conditions. The input data can be used by the systems to generate output control affecting timing of audio, visual, and tactile collision warnings. The state of the art for present collision warning systems may require an input from the operator of the vehicle by way of a dash-mounted control knob. The precise degree of this input is the operator's best judgment as to whether they are an aggressive or conservative driver. A mis-interpretation of this characteristic, or simply a mis-adjustment, can have severe consequences on the performance of the collision warning system. Another known danger avoidance system includes a driver monitoring system for monitoring the driver's physical condition and behavior such as the driver's line of sight, the blinking of the driver, the blood pressure, the pulse count, and the body temperature. The data from the driver monitoring system coupled with the data from other monitoring systems such as the ambient condition monitoring system and vehicle condition monitoring system are used as the basis to prompt danger recognition that effectuates the danger avoidance system to give warning. The shortcoming of the system includes warning given too early for a driver who is aggressive in driving behavior, who tends to drive fast and keeps a short distance from the leading vehicle. On the other hand, the warning may be too late for a driver who is conservative in driving behavior, who tends to drive slowly and keeps a long distance from the leading car. An error in one direction causes false alarms which are feared to be the primary cause of the above types of systems being disabled, and then of no benefit at all. And an error in the other direction may allow the system to alert so late as to be useless, and thereby possibly aiding in the potential accident and creating a liability situation.
{ "pile_set_name": "USPTO Backgrounds" }
It is old in the art to employ a window gasket for mounting a rack inside a vehicle, as evidenced by my prior U.S. Pat. Nos. 3,876,079 issued April 8, 1975; 3,931,893 issued Jan. 13, 1976; and 4,058,221 issued Nov. 15, 1977. Reference is made to these previous patents and to my co-pending U.S. Pat. No. 4,402,164 as well as the art cited therein for further background of the invention. As pointed out in my previous U.S. Pat. No. 4,402,164, it is convenient to be able to employ a rack in a vehicle for hanging various different objects in areas which otherwise have no provisions or appurtenances for this convenience. For example, the fixed rear window of a pickup truck offers a vast amount of readily accessible adjacent area which is commodious and usually not used for storage. Moreover, the roll-up windows of the rear seat area of a vehicle provides a vast amount of unused area most of the time, and it would be convenient to be able to employ a rack in combination with a roll-up window so that articles can be stored in this unused commodious area also. Furthermore, the passenger side of the vehicle offers an abundance of room which can be advantageously utilized if one has means by which a rack device can be included in proximity of the roll-up window on the passenger side. It is not always convenient to utilize the upper edge of a window for a rack, and in these instances it would be advantageous to instead install a rack between the window frame and gasket therefor, as for example, at the lower end of the window, wherein the metal frame and gasket is used for support, rather than the window frame and gasket, as taught in my co-pending patent. Moreover, it would be advantageous to have a rugged rack made from a single piece of bent-up metal which could be installed immediately below a window glass, thereby not obscurring one's view through the window. A rack which achieves the above desirable goal is the subject of the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
Currently, a conventional packaging process for a light-emitting diode mounts a light-emitting diode chip onto a package frame that can provide a protection function, and forms an encapsulant layer to cover and protect the light-emitting diode chip. Other than providing the light-emitting diode chip with a superior protection, the package frame also has to transmit electrical signals from an external circuit to the light-emitting diode chip for the operation of the light-emitting diode chip. However, in order to achieve this with a conventional packaging process, the volume of the packaged structure must be greatly increased which, in turn, increases the manufacturing cost. Therefore, a technique, which can reduce the volume of the light-emitting diode package and can decrease the manufacturing cost, is desired.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, personal digital assistants acronymed as PDAs and cellular phones have undergone explosive growth in demand. Some such systems have digital camera or digital video functions added to them. To implement these functions, CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) sensors are now used as image pickup devices. To reduce the sizes of such systems, it is preferable to use an image pickup device having a relatively small light receiving area. In this case, a sensible tradeoff between size reductions and cost savings must be made while the performance of an optical system is kept high. Size reductions are now achieved by reducing the number of lenses used. On the other hand, cost reductions by use of a fewer step, for instance, is now achieved by use of a fabrication process wherein lenses are formed under pressure in a lens holder. For reductions in the number of lenses that form an optical system, it is necessary to use aspheric lenses. For the fabrication of such aspheric lenses, use is generally made of a fabrication process wherein a preform is pressed in a state softened by heating (hereinafter called the prior art lens processing). With this prior art lens processing, an aspheric lens is formed larger than the required outer diameter, and rounding is carried out in such a way as to incorporate it in a lens barrel. For this reason, for instance, the thickness of the outer periphery of the lens at the necessary outer diameter will become larger than that of the lens during rounding. A reduction in the number of lenses for compactness will result in an increase in lens thickness, because the refracting power of each of lenses inclusive of a positive lens will become strong. For this reason and to give the lens a sufficient peripheral thickness, the peripheral thickness of the lens at the necessary outer diameter will become far larger. Thus, no sufficient effect on size reductions will still be obtained. On the other hand, Patent Publication 1 says nothing about not only size reductions but also conditions for size reductions. Patent Publication 1 JP(A)61-114822
{ "pile_set_name": "USPTO Backgrounds" }
A commonly used method to track the position of a radio signal transmitting device is to use the time difference of arrival (or, equivalently, the phase difference of arrival) at various receivers or receiver antennae (receivers) disposed at known locations, to determine the position of the RF transmitting device. By solving the non-linear equations associated with such systems, the position of the RF transmitting device can be determined. Because phase (θ) and time (t) are related by θ=ωt, where ω is a scalar, phase and time are equivalent systems and subsequent descriptions are denoted by time or time differences, as appropriate. Typically, position tracking systems require at least three or four receivers at known positions to determine a two-dimensional or three-dimensional position recording of the RF transmitting device. An example of an embodiment can contain a receiver channel that includes one antenna, one receiver, phase correlation circuitry for comparing the RF transmitting device signal's time difference of arrival, ADC circuitry, and a processor for processing the timing data. Many tracking systems use just one processor that receives data from each receiver channel with each receiver channel including both receiver hardware and the antenna. Certain computer-based applications track the position of an interactive peripheral device (i.e., RF transmitting device) and use that position data to engage a software program requiring high tracking accuracy. In these applications, the RF transmitting device is registered with screen images provided by software. To make this RF transmitting device's operation effective for a user (e.g., to control a cursor on a screen) highly accurate positions are required to provide realistic interaction between the user operating the RF transmitting device and the software program. A signal time of arrival comparison approach for RF transmitting device tracking can provide these higher accuracies. A problem with such position tracking systems is the reduction in accuracy due to multipath interference and other line-of-sight blockage issues. Multipath interference is a phenomenon whereby a wave from a source travels to a detector via two or more paths and causes the detector to receive two (or more) components of the wave. Complete line-of-sight blockage can occur when an object comes between the source and detector. During a multi-player game, for example, one player can inadvertently block the transmitter used by another player.
{ "pile_set_name": "USPTO Backgrounds" }
There are various types of automatic meter reading devices (AMR) which use optical light-sensing arrangements to provide remote utility readings for determining utility consumption and for billing purposes. These devices were typically developed as a cost-effective alternative to the existing meter reading methods and devices. For example, these AMR devices avoid having a person walk or drive from establishment to establishment and manually read each meter. However, the majority of methods using optical light-sensing devices are installed inside the existing meter and/or require professional installation. Thus, a skilled or trained individual must physically remove the glass housing present on such meter in order to install the automatic reading device. This process is inefficient and also very costly for either the utility company or the consumer. In U.S. Pat. No. 5,767,790, the device utilizes a photoelectric sensor for reading the watt-hour indicator of electricity service usage. A light source beams a light on a rotating disk in the meter. The disk reflects the light except for one darkened area, which absorbs the beam of light. The reflected light is sensed by the photoelectric sensor and a pulse is sent each time the reflected light is not sensed. Each pulse indicates one full rotation of the disk. All of the computing elements of the monitor system are contained within the utility watt-hour meter housing, and even the glass cover is replaced with a polycarbonate cover. Other similar devices installed within the existing meter housing are disclosed in U.S. Pat. Nos. 4,327,3625 and 5,506,404. A significant disadvantage typical of these devices is that the installation process requires the existing meter to be physically opened and/or the optical light sensing arrangement to be assembled with professional assistance. Thus, an ordinary consumer generally cannot set up the device, and therefore consumers would have to bear installation costs. In U.S. Pat. No. 5,880,464, infrared light sensors are used to detect the shadow of a meter pointer against a meter face to enable the meter reader to determine consumption rates. This automatic meter reader device is placed on the cover of the watt-hour meter. However, the device requires the angle and heights of the light source and sensor to be adjusted in a specific manner using a height adjustment carrier having a collar that must be tightened, which a typical customer most likely would find difficult to accurately adjust. Furthermore, no provision is made for powering the device and thus further installation problems may be created for the consumer. There are also certain utility-based applications in which a network controller or some other headend device located in a utility company interrogates the automatic meter reading device, in order to find out the utility usage for billing purposes. Typical drawbacks that are inherent in these systems are that customers cannot see their use in real-time, cannot access this information except when a billing statement is received and, cannot see data except in the standard format chosen by the utility company. In addition, there are various types of readers that can be utilized to manage the consumption of electrical power or fossil fuels. U.S. Pat. No. 6,167,389 allows the consumer, through the use of adapted end-use devices, to program these devices based on a pricing-tier billing system. The pricing-tier billing system sets a billing rate for power consumption based on the load levels on a power grid. A utility company may use a billing system with four-tiers: Normal Load, Medium Load, High Load, and Critical Load. Each tier has a different billing rate for power consumption with the Critical Load tier charging at the highest rate. The utility company may transmit data packets though an open network from a centralized headend to gateways at customer locations. These data packet cause the gateways to generate random startup time offsets, to control when end-use devices will be started. This is useful to protect the power grid from being loaded such that results in a blackout. However, this system does little to provide feedback to the consumer, let alone provide them with real-time data on their use and cost that allows the consumer to directly shed load voluntarily or with incentive, in order to help the utility balance its load demands. Thus, this device allows the utility company to obtain meter readouts are obtained for internal load and billing purposes only.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the invention This invention refers to a procedure that attaches securely a lamp on a ceiling using a spring. 2. Prior Art Statement The existing procedure to attach a lamp on a ceiling FIG. 2 uses a movable part 3 on the lamp, fixed with a screw 6, in order to cover the hook 4 and the hardware 5 screwed in the ceiling structure 2 (ex. 2xc3x976 wood) and electrical connectors. The disadvantages of this procedure are: 1. The movable part 3 requires a portion of the lamp to move on, which will increase the length of the lamp and limits the art work of the lamp especially in the upper end. The movable part and the screw 6 reduce the lamp""s upper end elegance. 2. The lamp isn""t pressed against the ceiling, so if the lamp is touched, it will move (oscillate ) for a while. The object of this invention is to eliminate the disadvantages of the existing procedure. In order to do this, the lamp is attached on a ceiling with a proper spring 10 (FIG. 1), which hooks the lamp, allows to connect the electric power and keeps the lamp pressed against the ceiling, so that the lamp will not oscillate. Thus the lamp will have the most elegant upper end.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to dog leashes or leads having an elongated member which is stiff or rigid to provide greater control of the dog during training and while walking. The rigid portion provides the handler with a certain amount of leverage. The elongated member allows the handler to keep the dog away from his body and legs. Although the dog may provide a certain amount of protection it would be preferrable if the animal handler had a weapon. This would be advantageous for guards or even people out walking their dogs.
{ "pile_set_name": "USPTO Backgrounds" }