text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
The present invention relates to a memory card having an erroneous erase preventing function and its control apparatus, and a data transmission/reception apparatus.
2. Description of the Prior Art
Conventionally, an external storage apparatus such as a magnetic tape, magnetic disc, optical disc, memory card and the like is used for storing a data from an electronic apparatus such as computer, digital still camera and the like. Especially, the memory card is widely used for its convenience for carrying and high transfer rate.
Similarly as a flexible disc, a memory card as an erroneous erase prevention switch for preventing an erroneous erase of a data stored. However, a conventional erroneous erase prevention switch is provided on a main plane of the card memory body and a user cannot operate the switch when the memory card is mounted on an electronic apparatus.
In this case, if the memory card is inserted into an electronic apparatus and the user find that the memory card is disabled for writing, the user cannot write a new data on a data already stored. The user should pull out the memory card from the electronic apparatus, set the erroneous erase prevention switch to a writable mode, and again mount the memory card into the electronic apparatus. It has been desired to improve the switching operationability of the erroneous erase prevention switch. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Disclosure
The disclosure generally relates to the field of malware detection, in particular to detecting malware in websites, e.g., websites for mobile devices.
2. Description of the Related Art
Many mobile malware attacks have relied on social engineering to encourage users to download malicious files, but an emerging class of automated exploits doesn't require the user to do anything to get infected after visiting a web page. These automated attacks, or drive-by attacks, are preferable to attackers due to the higher rate of infected machines when a user is not required to explicitly click anything. Simply by visiting an infected webpage, a user device may be infected and compromised. Such drive-by attacks are increasingly targeting mobile device based web browser vulnerabilities. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention pertains to cells for holding matter to be analyzed by spectrophotoanalysis, and more particularly to such cells which only require small volumes of material to be analyzed and provide high optical sensitivity. In addition, this invention has to do with such cells as designed for use in spectroelectrochemical analysis.
Spectroelectrochemistry is widely used for the study of the mechanisms and kinetics of electrode reactions as well as the characterization of electrogenerated species. The technique is frequently employed for the study of biological redox systems, including multicomponent systems. In such applications, it is frequently essential that the consumption of precious enzymes be minimized by employing cells which feature low volume and high optical sensitivity. These characteristics are also essential for the development of spectroelectrochemical systems for analytical applications.
Several approaches to the problem of minimizing sample volume have been pursued. These include miniaturized conventional cells, circulating cells, including multispectral and circulating long optical path (CLOSET) cells, optically transparent thin-layer electrode cells (OTTLE), and multiple specular reflectance (MSR) cells. All of these approaches have disadvantages. The miniaturized conventional and CLOSET cells have volumes of hundreds of microliters with relatively small surface area/volume ratios, and the samples therein must be stirred to achieve reasonable rates of electrolysis. Stirring may in some cases lead to denaturation of some delicate proteins. OTTLE cells require less volume than conventional or CLOSET cells, but the OTTLE cell has a very low optical sensitivity compared to conventional designs, and therefore requires much higher concentrations of chromophore to obtain comparable response, partially negating the advantage of low volume. Thus, the total quantity of enzyme required for an OTTLE cell may equal the quantity required for a much larger volume CLOSET cell which has greater optical sensitivity. The MSR cell is limited by the requirement for a laser source, and precise alignment of the optical elements. The OTTLE and MSR designs also suffer from the requirement for electrodes with specific optical properties, i.e., transparent (OTTLE) or reflective (MSR) electrodes.
Techniques have also been developed for kinetic studies in which a highly collimated beam is passed at a small angle or parallel to the electrode, using both laser and conventional continuum light sources. Considerable care is required in these techniques to collimate the continuum source. While the total solution volume in these techniques is quite large, the spectrally monitored region is confined to a small volume near the electrode surface and optical beam positioning is critical. | {
"pile_set_name": "USPTO Backgrounds"
} |
The von Schuckmann U.S. Pat. No. 5,603,434 issued Feb. 18, 1997 discloses a pump dispenser having a trigger-type actuator having a rearward arm which vents the container when the trigger is drawn back. More specifically, the arm brushes a projection on a tubular liner which normally engages about the inside of the tubular support for the pump. The projection raises the line away from the wall of the support to partly uncover a vent opening.
The present invention may be regarded as an improvement on the invention shown in von Schuckmann '484 in that it provides for a funnel-shaped vent seal which assures by its structure a reliable breaking of the seal at positions of the trigger and a reliable closing of the seal when the trigger is released. | {
"pile_set_name": "USPTO Backgrounds"
} |
To mount an integrated circuit ("IC ") on a predetermined position on a circuit board, it is necessary to set an exact position of the IC. In order to measure the exact position of the IC, it is necessary to locate the center of the IC and measure its angle of inclination. In the case extracting information regarding the center of the IC and its angle of the inclination using image processing methods, the extraction process is applied to a binarized image in order to make the processing speed high. However, the binarized image is easily damaged by a change in the degree of brightness of lights illuminating the IC, and such methods have trouble measuring exact position . | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates in general to a position sensor for remotely sensing the position of a moving member of a mechanical apparatus. More particularly, the invention relates to a sensor and system for remotely sensing the position of a moving element of a subsea apparatus such as a blowout preventer (BOP) ram or the like.
2. Description of the Prior Art
Prior art efforts for remote sensing of moving members of mechanical apparatus have included using magnetic reed switch technology. Such technology has had only limited success for remotely measuring the position of a movable member of an apparatus for at least three reasons. First, the high failure rate of mechanical switches leads to operator distrust of the system. Second, magnetic reed technology has in practice enabled only the determination of full open or full closed positions of a movable member of a mechanical apparatus (e.g., the ram piston of a ram BOP) and then without precision. Third, and possibly most importantly, magnetic reed switch technology has lead to ambiguous display indications when the system fails completely and especially when "soft" or incomplete failures occur leading to further operator distrust of the system.
3. IDENTIFICATION OF OBJECTS OF THE INVENTION
A primary object of this invention is to provide a sensor and system which will overcome the disadvantages identified above with respect to magnetic reed switch technology in the remote sensing of the position of a movable member of a mechanical apparatus.
It is a further object of this invention to provide a measurement sensor which will not only permit continuous monitoring of the movable member of a mechanical apparatus, but will also enable detection and unambiguous display of the position of the movable member with high resolution of the position between its normal fully open or fully closed position.
It is another object of this invention to provide a position sensor and system for remotely measuring the position of the ram piston of a ram BOP by remotely sensing a visual image of an extension shaft of the ram piston and reproducing it at a remote location.
It is another object of the invention to provide a position sensor and system for a movable member of a mechanical apparatus which is immune to false positives or false negatives of the apparatus itself.
It is another object of the invention to provide a position sensor and system which presents a remote visual image of the movable member itself. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to charge-coupled devices (CCDs), and more particularly pertains to CCD imaging devices with a three dimensional CCD cell and isolation trench structure to achieve highly effective light sensing and charge storage areas with a small cell layout area and also with highly efficient transfer of charges from cell to cell within the CCD device.
This patent application is related technically to patent application Ser. No. 07/461,607, filed Jan. 5, 1990, and commonly assigned to the same assignee, but is quite distinct therefrom. While both the present application and Ser. No. 07/461,607 disclose and utilize charge coupled devices with trench structures, in Ser. No. 07/461,607 the trenches are utilized as electrodes, and are oriented perpendicular to the direction of charge transfer. In contrast thereto, the trenches of the present application are utilized for isolation between adjacent CCD cells, are oriented in the direction of charge transfer, and are oriented orthogonally relative to the trenches of patent application Ser. No. 07/461,607. Utilizing the trenches for isolation between adjacent CCD cells and arranging the trenches in the direction of charge transfer as disclosed and taught herein results in several distinct advantages over the prior art. For example, the charges are transferred laterally from cell to cell along the sidewalls of the trench, rather than from trench to surface up and down the sidewalls, such as in Ser. No. 07/461,607, which results in a more efficient charge transfer efficiency (CTE). Considering that a typical CCD device might comprise three thousand cells in each column, a more efficient transfer of charges from cell to cell results in a CCD device having a higher modulation transfer function (MTF), a higher signal to noise ratio and other advantages discussed more specifically hereinbelow.
2. Description of the Prior Art
CCD devices have become increasingly important components of semiconductor technology. A CCD is a dynamic device which transports charges along a given predetermined path under the control of timed clock signals or pulses. CCD devices can be used in a variety of applications including memory applications, logic function applications, signal processing applications, image acquisition and image processing applications.
A conventional CCD structure is fabricated with an overlapping electrode gate structure. The CCD includes alternating polycrystalline silicon electrodes and polysilicon electrodes, with a layer of silicon dioxide interposed between the electrodes and a silicon substrate. The charge is stored and transferred along the semiconductor oxide interface, which is a two dimensional surface parallel to the substrate.
For high resolution imagers employing a CCD, the CCD cell size, in terms of layout area, has to be scaled down to achieve a high pixel count per unit imaging area in order to keep the total chip area at a manageable size with a reasonable yield. CCDs currently being fabricated have a two dimensional configuration wherein the charge storage capacity and the light sensitive imaging area are directly proportional to the layout area of the CCD cell on the surface of the silicon substrate. Therefore, a high resolution CCD imager is achieved at the expense of a smaller total charge storage capacity and light sensitivity because of the down scaling of the CCD cell layout area. Furthermore, the resolution (measured by the figure of merit of, for example, the modulation transfer function, MTF) of the down-scaled CCD imager is degraded because of the two dimensional nature of the CCD potential profile and the increased proximity of neighboring CCD cells. Photo-generated charges are more easily diffused into neighboring CCD cells in small CCD cells, and result in a smaller MTF. Present techniques for minimizing such diffusion utilize recessed oxide (ROX) and local oxidation (LOCOS) technologies.
U.S. Pat. No. 4,234,887 to W. B. Vanderslice, Jr. discloses a technique for increasing the charge storage capacity per unit area of a CCD imaging device. The disclosed device includes a plurality of parallel V shaped grooves etched into a semiconductor substrate. The grooves are electrically isolated from each other by intervening strips of relatively thick field oxide. A plurality of isolated electrodes are provided orthogonally to the etched recesses such that a shift register structure is formed which extends along the length of each recess. In operation, the packets of charge are transferred by potential wells formed by the electrodes entirely within the grooves. The use of the sidewalls of the grooves to transfer charge results in a certain amount of area reduction. However, the V-grooved CCD has a fixed cross sectional aspect ratio, as any increase of storage capacity is accompanied by an increase of the planar device area. | {
"pile_set_name": "USPTO Backgrounds"
} |
Three principle sources of power supply perturbation exist within today's integrated circuits: resistive voltage (IR) drop; cyclic power supply ripple; and DI/DT induced supply bus ringing. IR drop is caused by the DC current demand of the Integrated Circuit (IC) and resistance of the power supply network within the IC and results in both reduced voltage at the operating circuits relative to the voltage supplied at IC level and voltage gradients across the IC. Cyclic power supply ripple is generated by clocked logic operating on the IC which creates periodic AC current variation and resultant voltage ripple. DI/DT induced supply bus ringing is caused by near-instantaneous current demand changes during IC power-up or when voltage island portions of the IC are enabled/disabled. These step response current changes excite the resistance/inductance/capacitance (RLC) network of the power supply bus generating a voltage ring that is damped over a transient time period which is much greater than the operational period (1/Operational Frequency) of the IC.
Current techniques for reducing DC/Ripple perturbation include quiet capacitance modeling and estimation, automatic power supply bus routing/generation and DC current modeling/load rebalancing. However, step response remains a serious problem in today's IC chips because voltage extremes produced during the step response dictate the minimum and maximum operating voltages encountered within an IC. In prior IC designs, the IC was powered up and down in total, and a wait time and reset performed after power bus stabilization to mitigate power-on transient response. Current IC designs increasingly provide voltage islands which are powered up and powered down multiple times while the remainder of the IC remains functional. A voltage island (VI) allows for one or more portions (islands) of an integrated circuit chip to be selectively powered by either a chip-wide power source or other voltage island power source. Voltage island power sources can be switched on and off in accordance with the operational demands of the integrated circuit requiring supply current from the chip-wide power source and consuming power only when required for functional operation of the IC.
However switching of the VI power supply places the IC at risk of failure due to step response voltage transients and their inherent oscillation frequencies. Each time an island is powered up, the initial current requirements needed to charge diffusions and wells within the island must come solely from on-chip quiet capacitors associated with the chip-wide power source, as the inductive properties of the package prevent real-time charge replacement. These sudden changes in current requirements generate a step response in the chip-package power bus network which results in damped ringing of the power bus voltage, i.e., power supply perturbation.
Referring to FIG. 6, circuit diagrams 500 of the T0− and T0+ power supply response due to voltage island power-on is shown. Just before power on, the bus system is stable and the quiet capacitance 504 in the circuit 502 is fully charged. The rate of change in current flow through the inductor 506 to Cq is 0. At time 0, voltage island capacitance, Cs 510, is switched onto the bus using switch 508 and begins to charge to the rail value. Charging of Cs 510 presents an instantaneous current demand in the circuit 502, or high di/dt to the VDD bus, however, due to the inductive component 506 of the bus, the initial di/dt current remains 0 and all charge pulled into Cs (510) is pulled out of Cq (504) in a charge sharing event. The result is that the voltage across Cq (Vcq) falls. The ratio of the Vcq at T0+ relative to Vcq at T0− illustrated in FIG. 6, is represented by the equation VDD′/VDD=Cq/(Cq+Cs) and is directly related to the capacitance of the voltage island relative to the IC remainder. Thus, an undesirable step response results which produces unwanted power supply perturbation.
The oscillation produced by the di/dt event excitement of the IC chip/package RLC network is typically in the 80 MHz to 200 MHz range in present day semiconductors. These frequencies are centered around clock frequencies typically encountered in ICs for both data processing and I/O functions which further compromises functionality of the IC as the voltage oscillation affects path delays within the IC from cycle to cycle. Past IC chip designs have been unable to adequately resolve the undesirable step response issue. With advances in IC technology and the drive to higher performance and lower power products, integrated circuits are being designed to lower rail voltages to power the chip. These challenges require even more attention to power distribution in the chip and the affects of step response perturbation at each new technology node.
Referring to FIG. 4, a typical known semiconductor IC module 300 including two voltage islands 310, 320 is shown. A power supply VDD is brought from off-module/chip from a plurality of VDD inputs 302 which are shorted together at chip level to form a robust power network/bus 308. Logic circuits, are distributed throughout the IC/chip 306 and attached to the power network. The two voltage islands 310, 320 are also powered by the power network 308, however, power to these islands of logic function 310, 320 is gated using header circuits 314, 322, respectively, disposed between the global power supply network of the IC chip/module 308 and the local power supply network of the voltage islands 310, 320. Each voltage island implemented within the IC/chip 306 may be controlled independently with regard to its power up/down condition at any time during IC function.
Referring to FIG. 5, the electrical equivalent of a typical IC RLC network 400 is shown. It is understood the logic functions connected to the power supply network consume some amount of functional current, and are modeled as capacitor components Cq 410 that comprise diffusions and wells within the circuits which provide storage capacity for charge associated with the power supply voltage VDD 404. As a result, circuits are modeled as the Cq component 410 of the power supply network. The summation of module, image and circuit contributions yields an RLC network 400 for the power bus. Similar to the logic outside voltage islands, logic inside a voltage island is modeled as a capacitance 422, however, as these supply capacitances are charged and discharged in response to a power supply switch (header) they are defined as switching capacitance (Cs) 422. The typical IC RLC network, as shown in FIG. 5, has disadvantages. For example, when power is brought in from off module/chip 402, and the voltage island switch 420 is engaged, unwanted inductance associated with the IC package and IC image is encountered. Additionally, while the power supply system within the IC is quite robust, there remains some amount of resistance associated with each segment of the bus 406 that affects both the transient and DC response of the power supply network.
Presently, noise reduction during voltage island turn on is managed through design of the header circuits which gate power to the voltage island. Headers are designed to provide a time-decreasing impedance between the power bus and island to slow charge up, and therefore reduce unwanted current step response (di/dt).
A block diagram for a prior art header circuit 550 is shown in FIG. 7. The header circuit 550 includes voltage supply VDD 560 and header control input 552 which provides selective coupling of voltage supply VDD 560 to Voltage Island Power Supply Rail 561 through a plurality of power supply coupling switches 554. Built-in delay units 556 time separate activation/deactivation switches 554 in response to control input 552 to limit di/dt during the voltage island power-up/power-down. In addition to header control input 552, typical voltage islands also include at least a second control signal to control the logic boundary of the VI independent of the header control 552. Design of these structures is complex and may not always optimize turn-on time for the internal capacitance of the voltage island. Thus, typical header circuits have not been successful in mitigating RLC-induced power supply ringing caused by current step response during voltage island power-up/power-down. Thus, there is a need for a circuit structure and method for coupling a voltage island to a semiconductor power bus which more effectively eliminates the step response and unwanted power supply perturbation of conventional IC designs. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to cement compositions and more particularly to cement compositions having resistance to elevated temperatures.
In the drilling of wells, for example oil wells, wells penetrating sources of geothermal energy and the like, it is standard practice to utilize a cement to hold the well casing in position and to selectively block or plug portions of the strata through which the well extends so as to prevent the escape of undesirable fluid into the well bore or the loss of drilling muds and the like. When so used, the cement, as an aqueous slurry, is pumped into the annular space between the bore of the well and the casing and permitted to cure so as to form a hardened mass which provides the reenforcing and plugging functions.
The cements utilized in drilling operations are formulated so as to be sufficiently slow setting to permit pumping and yet be sufficiently resistant to the elevated temperature and pressure conditions encountered in the wells. The American Petroleum Institute has promulgated specifications for testing cements to insure that they meet certain minimum requirements with respect to strength, permeability, setting time and the like. These cements are referred to as oil well cements.
To resist the temperatures and pressures normally encountered in wells, the oil well cements have been developed to provide the maximum physical properties under the severe temperature and pressure conditions encountered in relatively deep wells, such as oil wells. These cements are conventionally Portland-type cements to which have been added one or more various additives such as for example mica, blast furnace slag, alumina and various special reactive sands, which are designed to improve the mechanical strength and the thermal and chemical resistance of the set and hardened cement. Although satisfactory for conventional well operations, these cements have proven deficient particularly in the case of ultra-deep wells and geothermal wells where temperature in excess of 600.degree. F. (200.degree. C.) may be encountered. Under such conditions conventional cements quickly increase in porosity and lose compressive strength which may lead to a blowout. Such well blowouts are highly undesirable and can prove to be extremely dangerous, as well as costly to repair.
Accordingly, oil well cements, particularly those used in geothermal wells and in ultra deep wells, that is wells sunk to depths on the order of 25,000 ft. or more, must have the ability to effectively maintain an adequate compressive strength and density and low porosity, even under high temperatures and pressures and in the presence of steam and hot brine. In addition, since the useful life of a typical well is measured in terms of 10 to 30 years, a good oil well cement must operate under the aforementioned severe conditions for a substantial period of time, preferably as long as the life of the well. However, recent studies have indicated that oil well cements presently in use have effective lives of on the order of 5 to 10 years when utilized in geothermal wells, it was noted that the strength and permeability of the oil well cement were seriously deteriorated in a period of as short as 4 years thus raising the possibility of a well blowout and increasing the frequency of replacement and maintenance. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to condoms and packaging for therefore
2. Description of the Prior Art
Amongst the many purposes served by condoms is limitations on the transmission of diseases. In recent years there has been a significant increase in the incidence and spread of sexually transmitted diseases which has driven the public to utilize condoms as a prophylactic measure to reduce the risk of infection and transmission. The advantage of avoiding contact to the condom by a partner with an unknown sexual history are apparent.
One of the causes for the increase in incidents and rate of transmission of sexually transmitted diseases are the development of increasingly antibiotic-resistant strains of disease-causing organisms such as those responsible for syphilis and gonorrhea. Another factor has been the absence of any effective cure for the acquired immunodeficiency.
Factors bearing on the partner's election to make use of condoms is the delay necessary for donning of the condom and the fact that an improperly applied condom will detract from the comfort of the users. Many efforts have been made to provide condoms that do not counter the prevailing mood and which are easily positionable as by the utilization of a split ring holder. It has been proposed to provide an annular C-shaped condom holder for receipt of a rolled or folded condom. A device of this type is shown in U.S. Pat. No. 4,738,357 to Martin et al. Other efforts have lead to a proposal that condoms be housed in a U-shaped package in a rolled or folded configuration as shown in U.S. Pat. No. 5,437,286 to Stratton. Deficiency in devices of this type is that the rolls or folds may be dispensed in a relatively disorganized manner which may result in wrinkles along the length of the condom or incomplete application which may detract from the comfort and pleasure of the partner as well as the prophylactic effectiveness.
Other efforts to improve the construction of condoms to facilitate the rapid and convenient donning has lead to the proposal that the packaging be split so it may be separated and the parts of the package drawn laterally apart to stretch the open end of the condom. It has been proposed to provide condom packaging which includes an annular ridge or hook attachment means for holding the end of the hand ring of the condom while the condom is being donned. A device of this type is shown in U.S. Pat. No. 5,170,887 to Potts et al. Other condom devices include split packaging facilitate spreading of the open end of the condom. See U.S. Pat. No. 5,549,120 to Persson et al. and U.S. Pat. No. 6,913,018 to Van Rensburg. Thus, prior to the present invention, users have been faced with the dilemma of utilizing condoms which provide certain challenges to donning thereof and which risk incomplete or improper application, thus detracting from the enjoyment of the partners. | {
"pile_set_name": "USPTO Backgrounds"
} |
Nucleic acid amplification is typically performed by PCR or Cycle Sequencing of DNA in the wells of a well plate by thermal cycling reactions in the presence of a thermostable DNA polymerase such as Taq Polymerase. Well plates containing wells for 96, 384 and 1536 liquid samples currently are available. The solution in which the amplification occurs typically contains many different components including but not limited to, a buffer, nucleotide triphosphates, magnesium chloride, potassium chloride, dithiothreotol, DNA, oligonucleotides, and the DNA polymerase (e.g. Taq). Once the amplification process of the DNA is complete, the reaction solution contains not only the components listed above but reaction byproducts as well. The amplified nucleic acid must then be purified (segregated) from this mixture before additional steps can be performed. There are a number of methods by which DNA can be purified including size exclusion chromatography, gel electrophoresis, and ion exchange chromatography. Other typical methods to purify the DNA all are modifications of the above three methods. All of the currently available methods to purify the DNA products from solution require multiple additional steps and transfer of the product solution from the original reaction container into at least one additional container. It would be beneficial to be able to perform both nucleic acid amplification and purification in the same well of a well plate serially and without further additions to the well.
As used herein, the term “liquid” refers to pure liquids, as well as liquids containing particulate matter (especially biological material containing for example, proteins, DNA, or cells) and solvents containing solute.
In ion exchange chromatography, molecules of one charge (either positive or negative) are attracted to molecules of the opposite charge that are immobilized onto a solid support, usually a glass particle or insoluble organic support. The insoluble support material is then serial “washed” with solutions containing higher and higher concentrations of a specific salt (typically sodium chloride). As the salt concentration increases, the ions in the salt solution “compete” for the ion binding sites on the solid support with the result that at low salt concentrations, molecules with low net charge are competed from (released from) the solid support while molecules with higher net charges remain bound to the solid support.
Nucleic Acids, including Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA), are polymeric anions. As such, they will be attracted by insoluble supports that contain a positive charge (cathodes) and repelled by insoluble supports that contain a negative charge (anodes). Nucleic Acids have been successfully purified from heterogeneous solutions by ion exchange chromatography using various types of insoluble support materials. Typically, this is done through the addition of an ion exchange material into the solution containing the nucleic acid and manipulation of the ionic strength of the solution through the addition of small inorganic ions to allow binding of the nucleic acid to the insoluble support. Once binding of the nucleic acid to the insoluble support has occurred, the solution, and hence the “impurities”, are removed from the soluble support by sequential “washing” of the support. By manipulating the ionic strength of the wash solution, some means of control over the size (length) of the nucleic acid polymer that remains attached to the support can be achieved. The ions in the wash solution compete for binding to the surface charge on the insoluble support with the nucleic acid and hence, the degree of nucleic acid binding can be crudely regulated by changing the concentration of ion in the wash solution. At a relatively low ionic strength (e.g. Distilled water) nucleic acid binding to the insoluble support is nearly independent of size. As the ionic strength of the wash solution increases, the shorter length nucleic acid polymers will elute from the support first, followed by longer polymers as the ionic strength of the wash solution increases.
One of the major problems with the current methods and devices for purification by ionic interaction is that the support materials have a fixed surface charge that cannot be changed. The support materials are usually described in terms of “weak,” “moderate,” or strong anion/cation exchange resins. Each of these “resins” is actually a different material with different physical properties. In order to change the surface charge, different materials are used as the support, or counter ions are used to effectively mask the charge. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is often difficult for surgeons and other medical practitioners to adequately visualize procedures without appropriate lighting. It has been found that flexible or “gooseneck” lights are advantageous for this purpose, as they may be flexed or snaked to guide illumination directly to an area of interest. The problem, however, is that once a sterile field is created, these lamps must be clamped to the bed-rail, or the like, thereby interrupting the sterile fields and creating a potential source of germs and pathogens. | {
"pile_set_name": "USPTO Backgrounds"
} |
Optical scanners are well-known in the art and produce machine-readable data which is representative of the image of an object, e.g. a page of printed text. Optical scanners generally employ line-focus systems which image an object by sequentially focusing narrow "scan line" portions of the object onto a linear photosensor array by sweeping a scanning head over the object.
In a line-focus system, a light beam from an illuminated line object is imaged by a lens on a linear photosensor array which is positioned remotely from the line object. The linear photosensor array is a single dimension array of photoelements which correspond to small area locations on the line object. These small area locations on the line object are commonly referred to as "picture elements" or "pixels." In response to light from its corresponding pixel location on the line object, each photosensor pixel element in the linear photosensor array (sometimes referred to simply as "pixels") produces a data signal which is representative of the light intensity that it experiences during an immediately preceding interval of time known as a sampling interval. All of the photoelement data signals are received and processed by an appropriate data processing system.
A hand-held optical scanning device is an optical scanner which is moved across a scanned object, e.g. a page of text, by hand. Optical systems for hand-held scanning devices must generally be very compact due to the relatively small size of hand-held scanning devices.
Rollers may be provided on a hand-held scanning device to guide the device across the object to be scanned and also to provide data to the scanning device microprocessor regarding the speed at which the scanning device is being moved over the scanned object. These rollers may also serve to control the speed at which an operator moves the scanning device across the scanned object.
The construction and operation of hand-held optical scanning devices employing such rollers is disclosed in the following U.S. Pat. Nos.: 5,381,020 of Kochis et al. for HAND-HELD OPTICAL SCANNER WITH ONBOARD BATTERY RECHARGING ASSEMBLY and 5,306,908 of McConica et al. for MANUALLY OPERATED HAND-HELD OPTICAL SCANNER WITH TACTILE SPEED CONTROL ASSEMBLY (and corresponding EPO patent application no. 94301507.3 filed Mar. 2, 1994), which are all hereby specifically incorporated by reference for all that is disclosed therein.
In most hand-held optical scanning devices, the optical components and electronics of the scanning device are enclosed in a housing which is adapted to be grasped by the hand of a user while a scan is being performed. The housing generally also rotatably mounts the roller or rollers previously described.
In such scanning devices, it is generally desirable to completely seal the portion of the housing enclosing the optical components and electronics. The housing, sealed in this manner, prevents dust, moisture and other potential contaminants from entering the interior of the housing and contaminating the optical components and associated scanning device electronics.
Because the image beam from the object must pass through the housing to reach the optical components, a sealed housing, as described above, must be provided with a transparent window. This window is often constructed of glass and mounted in the bottom wall of the scanning device housing. In many cases, however, the window is formed of a transparent plastic material in order to reduce the overall weight of the scanning device.
In conventional hand-held scanning devices, the window is located such that it rests directly on the object being scanned and actually slides along the object when the scanning device is moved across the object to perform a scanning operation. The window sliding along the object is useful in that the window maintains the object, typically a document in a flat, stable position as the optics is directed toward the object. However, this presents a problem since such sliding contact between the window and the object often results in scratching of the window material. Although plastic windows are more prone to such scratching, glass windows may also be scratched. Such scratching may result, for example when the scanning device is moved across objects which are dirty or gritty or when a staple is encountered.
A scratched or otherwise damaged window will distort the image beam passing through the window and thus result in degradation of the quality of the image acquired by the hand-held scanning device.
Thus, it would be generally desirable to provide an apparatus which overcomes these problems associated with hand-held optical scanning devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the last few years, the popularity of small, mobile, hand-held remote computing devices, sometimes referred to as palmtop computers or personal digital assistants (PDAs), has grown considerably. Owing to their compact size, these remote devices are easily carried and transported by their users, allowing information to be entered and retrieved from a large number of settings and environments not normally accessible by traditional desktop computing units.
Early generation PDAs offered very limited functionality and were often restricted to serving as personal organizers or datebooks. Indeed, some early models grew out of scientific calculators, and were limited by tiny amounts of memory and equally small text-only LCD screens. Since then, PDAs have become much more powerful with some running versions of operating systems utilized previously only in much larger desktop computers.
While many of these handheld devices were intended to operate as stand alone units, other PDAs were incorporated into larger systems which allowed the free flow of data and information between the PDA and a host computing system or personal computer. In this manner, the PDA and host computing system were provided with the ability to synchronize or reconcile differences between databases implemented on the individual components. For example, applications such as calendar or address books were developed that allowed the implementation of corresponding databases on both the PDA and the host computing system. Each instance of the calendar or address book application was capable of taking new or modifying existing appointments or addresses. Then, the PDAs could be interfaced with the host computing system or personal computer to update changes or entries entered in one database onto the other.
As the versatility and computing power of these PDAs increased, more and more business applications were developed for their use. For instance, later generation PDAs were extremely popular for use as industrial data-gathering devices. As one example, after implementing a warehouse inventory application onto a PDA and host computing system, the PDA could be carried into the warehouse for the collection of inventory data. After finishing the data collection, the PDAs could be interfaced with the desktop units or main computing servers to upload the information into a central location.
However, while these systems were tremendously useful for gathering data from remote environments, the uploading of data typically required an action on the part of the application user. For instance, the user was typically required to physically place the PDA into a cradle attached to, e.g., the host computing system, and press a synchronization button before database reconciliation could commence. If a user failed to remember to commence reconciliation, valuable data could be received late or even lost. Thus, because commencement of the synchronization process was left to the application user, the uploading of data to a central database location often did not meet the time constraints imposed by the application designers.
Furthermore, conventional synchronization processes generally reconciled all of the databases implemented in the PDA and host computing system. For example, with each synchronization operation all of the updated information in a calendar database, an address book application, any newly generated memos, a “To-Do List”, as well as a warehouse inventory application were reconciled. Needless to say, this process was unduly burdensome and rather inefficient in situations where the only information desired consisted of the newly updated data gathered by the warehouse application.
Thus, it can be seen that conventional reconciliation processes are particularly inefficient in today's fast-paced business environment. Consequently, what is needed is a reconciliation technique that allows an application program to initiate the synchronization process. Similarly, what would also be useful is a reconciliation technique that allows the reconciliation of a selected group of databases implemented in the PDAs and host computing systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to image modules and more particularly, to a wafer level image module, the method for making the same and the apparatus for assembling and testing the same.
2. Description of the Related Art
FIG. 12 shows a conventional CMOS (Complementary Metal-Oxide Semiconductor) image module 80. According to this design, the CMOS image module 80 comprises a sensor chip 82 and a lens holder 81 covering the sensor chip 82. The lens holder 81 comprises a rotary lens barrel 83, and a lens set 84 on the center of the rotary lens barrel 83. When the lens set 84 is mapping an image onto the sensor chip 82, the rotary lens barrel 83 is rotatable to change the distance between the lens set 84 and the sensor chip 82, thereby focusing light rays on the sensor chip 82.
FIG. 13 shows an image module according to WO2004/027880. This design of image module comprises an image pickup device 103 and a set of lenses 111 and 127. The lenses 111 and 127 are arranged in a stack and closely attached to the image pickup device 103 to map the image of incident light rays onto the image pickup device 103. The main feature of this patent is that the image pickup device 103 and the lenses 111 and 127 are made through an integrated circuit manufacturing process to minimize the size for use in a cell phone, PDA, or any of a variety of other consumer electronics.
However, during the fabrication of the image module according to WO2004/027880, the lenses 111 and 127 may deform by the manufacturing process and the manufacturing temperature. The focal distance of the finished product shows a 0-50 μm error when compared to the original theoretical design. In actual practice, the lenses 111 and 127 cannot accurately focus the image of incident light rays onto the image pickup device 103, resulting in an out-of-focus problem (see the imaginary line A or B in FIG. 13). Further, when mounting the lenses 111 and 127 on the image pickup device 103, the respective size tolerance, for example, 0-20 μm thickness tolerance of each glass chip makes distance control between the lenses 111 and 127 and the image pickup device 103 difficult, resulting in inaccurate focusing of the lenses 111 and 127 on the image pickup device 103. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a refresh operation control circuit for a semiconductor device. In particular, the invention relates to a refresh operation control circuit that manages and controls the timing of normal memory operations and refresh operations in a semiconductor memory capable of carrying out a refresh operation in the idle time of normal memory operation.
2. Description of the Related Art
A semiconductor memory which needs a refresh operation is a type of RAM (random access memory) in which the memory cells consist, for example, of a transistor and a capacitor. Virtual static RAMs are constructed such that the normal read operation and refresh operation are conducted by time sharing in the same access cycle, so that the user is not aware of the refresh operation (the refresh operation is invisible to the user). These RAMs are proposed in Japanese Patent Applications No. Sho. 59-163508 and No. Sho. 59-111894 of the same assignee. FIG. 1 shows an example of the construction of the memory cell core region that constitutes the major part of such a RAM. FIG. 2 shows an example of the timing chart of its operation. The characteristic feature of such a RAM is that the selected word lines of a memory cell array 51 and sense amplifiers 52 are respectively pulse-driven. Thus the data sensed by a sense amplifier by the normal read operation is transmitted to a buffer register 54 by a column decoder 53, where it is temporarily stored, and then read out to an input/output buffer 55. Since the electrical connection of sense amplifiers 52 and buffer registers 54 is switched with a prescribed timing, the refresh operation can be conducted during the idle time of normal memory operation. Specifically, a word line WL1 corresponding to the address specified by an address (ADD) signal and chip enable bar (CE) signal is opened for a certain period. During this period sense amplifiers 52 are operated in response to a sense amplifier enable (SAE) signal to sense and amplify data from memory cell array 51. This data is then re-written into the memory cells from which it was read. After this, a column decoder 53 is operated by a column decoder enable (CDE) signal. Under the control of its output the output of sense amplifier 52 is transmitted to buffer register 54. In response to a buffer register enable (BRE) signal, data is stored in buffer register 54. This data is output through an input/output buffer 55 from an output pin (not shown) as output data OUT. During the period until this data is output, the CDE and SAE signals are disabled, so the bit lines of memory cell array 51 can be accessed. The refresh address signal now causes refresh word line RWL (connected to the memory cell being refreshed) to be open for a certain time. This refresh word line RWL is separate from word line WL1. During this refresh operation, the CDE signal is still disabled, so the sense amplifier output cannot be read. Next, when the CE signal is enabled, the series of operations from selection of the word line (e.g. selection of WL2) by the address signal up to the refresh operation are performed in the same way as described above.
It should be noted that, although, in the timing of the above operations, the refresh operation took place after the read data was determined by the read operation, this is not essential, and it is possible to carry out the refresh operation before the normal read operation, during address decoding. Furthermore, although in the above operation example, the normal memory operation and refresh operation were performed by time sharing during a single access cycle, it is not essential to carry out the refresh operation every cycle. Normal memory operation and refresh operation can be performed by time sharing, as described above, in just those cycles in which refreshing is needed.
Thus a refresh timing control circuit is needed to manage and control the timing of refresh such that refresh operation is automatically carried out during the idle time of normal memory operation, as described above. Realization of a simple practical circuit to achieve this was required. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the present invention relate to apparatus and methods of running a control line into and out of a well. More particularly, embodiments of the present invention relate to coupling a control line to a wellbore tubular and running the control line and the wellbore tubular into the well.
2. Description of the Related Art
Strings of pipe are typically run into a wellbore at various times during the formation and completion of a well. A wellbore is formed for example, by running a bit on the end of the tubular string of drill pipe. Later, larger diameter pipe is run into the wellbore and cemented therein to line the well and isolate certain parts of the wellbore from other parts. Smaller diameter tubular strings are then run through the lined wellbore either to form a new length of wellbore therebelow, to carry tools in the well, or to serve as a conduit for hydrocarbons gathered from the well during production.
As stated above, tools and other devices are routinely run into the wellbore on tubular strings for remote operation or communication. Some of these are operated mechanically by causing one part to move relative to another. Others are operated using natural forces like differentials between downhole pressure and atmospheric pressure. Others are operated hydraulically by adding pressure to a column of fluid in the tubular above the tool. Still others need a control line to provide either a signal, power, or both in order to operate the device or to serve as a conduit for communications between the device and the surface of the well. Control lines (also known as umbilical cords) can provide electrical, hydraulic, or fiber optic means of signal transmission, control and power.
Because the interior of a tubular string is generally kept clear for fluids and other devices, control lines are often run into the well along an outer surface of the tubular string. For example, a tubular string may be formed at the surface of a well and, as it is inserted into the wellbore, a control line may be inserted into the wellbore adjacent the tubular string. The control line is typically provided from a reel or spool somewhere near the surface of the well and extends along the string to some component disposed in the string. Because of the harsh conditions and non-uniform surfaces in the wellbore, control lines are typically fixed to a tubular string along their length to keep the line and the tubular string together and prevent the control line from being damaged or pulled away from the tubular string during its trip into the well.
Control lines are typically attached to the tubular strings using clamps placed at predetermined intervals along the tubular string by an operator. Because various pieces of equipment at and above well center are necessary to build a tubular string and the control line is being fed from a remotely located reel, getting the control line close enough to the tubular string to successfully clamp it prior to entering the wellbore is a challenge. In one prior art solution, a separate device with an extendable member is used to urge the control line towards the tubular string as it comes off the reel. Such a device is typically fixed to the derrick structure at the approximate height of intended engagement with a tubular traversing the well center, the device being fixed at a significant distance from the well center. The device is telescopically moved toward and away from well center when operative and inoperative respectively. The device must necessarily span a fair distance as it telescopes from its out of the way mounting location to well center. Because of that the control line-engaging portion of the device is difficult to locate precisely at well center. The result is often a misalignment between the continuous control line and the tubular string making it necessary for an operator to manhandle the control line to a position adjacent the tubular before it can be clamped.
Another challenge to managing the control lines is the accidental closing of the slips around the control lines. Typically, while the control line is being clamped to the tubular string, the slips are open to allow the string and the newly clamped control line to be lowered into the wellbore. When the control line is near the tubular string, it is exposed to potential damage by the slips. Thus, if the slips are prematurely closed, the slips will cause damage to the control line. Other challenges include running multiple control lines and keeping track of the respective function or downhole tool for each control line. Running of the control line may also present a safety hazard because sometimes an operator may be required to be hoisted on to the derrick to manage the control line.
There is a need therefore for an apparatus to facilitate running of the control line into and out of a well. There is also a need to for an apparatus to facilitate the clamping of control line to a tubular string at the surface of a well and running the tubular string and the control line into the well. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates in general to an improvement of a charging roller used in an image forming device such as a copy machine, a printer, a facsimile device etc. using an electronic photographic process. More particular, the invention relates to a charging roller, which has a better productivity due to its simple structure and having an excellent recycling ability.
2. Description of Related Art
In an electronic photographic type image forming device, a photoreceptor is charged by a charging device such as a charging roller, and then by exposing the photoreceptor's surface, an electrostatic latent image is obtained. After the electrostatic latent image is developed by the toner provided from a developing device to a toner image, the toner image is transferred onto a transfer paper. Then, an image is thus formed after a fixing process is performed.
In recent years, in view of environmental concerns, a charging device for a photoreceptor or a paper transfer device, which adopts a so-called contact charging type so that only a little amount of ozone is generated, has become a main product. Japanese Patent No. 3100625 discloses a charging material used in the above charging device. A multi-layered charging roller is of a general type with a structure such that a coating layer is coated on an intermediate layer with elasticity and conductivity surrounding a metal shaft of good conductor. When the contact charging process is executed on an electrified body such as the photoreceptor, if the straightness of the charging roller's edge line is not good, the contact state with the electrified body in the generating line direction of the charging roller becomes uneven. Because a poor electrification might occur, in general, the surface of the intermediate layer, which has elasticity and conductivity and is formed by rubber or foam, is ground to obtain a good straightness. This grinding operation is repeatedly performed in an order of a rough grinding, a medium grinding and a finishing grinding.
In addition, in the actual process, the metal shaft protruding form the two ends of the roller in the axial direction is kept rotatable. Mostly, the roller is rotated and a grinding stone is moved to press and contact with the roller, so as to grind the roller. Therefore, the slipping amount of the roller due to the grinding stone's press contact force is different at the roller's end and at the roller's central portion, and therefore, deviation between the grinding amounts at the roller's end and at the roller's central portion occurs easily. In addition, the grinding amount is smaller than the target value, and the grounded dimension becomes large, which causes a bounce phenomenon.
To prevent the aforementioned problem, the press contact forces respectively applied to the roller's end and central portion are changed, the grinding process is performed plural times, and each time only a little amount is grounded. Therefore, the manufacturing time is increased, and the device inevitably costs more. The roller's shape cannot be completely controlled, causing a drawback of the roller having an uneven shape.
In Japanese Laid Open No. H05-307279, when the above charging roller is used to charge in a non-contact manner, an air gap below 120 μm is required. Because the roller shape's unevenness is increased in the grinding process, it is very difficult to maintain the air gap below 120 μm across the longitudinal direction of the roller. In addition, even though the air gap can be maintained within 120 μm, charging unevenness might occur due to much gap unevenness. In order to reduce the charging unevenness, increasing the accuracy in the longitudinal direction of the roller is required, so that the grinding process has to be performed much more. Therefore, the manufacturing cost is increased.
In addition, in order to make the charging roller to be in contact with the electrified body firmly and to be driven by an accompanying rotation with the electrified body, in general, the charging roller uses a resilient unit such as a spring with a preset press pressure to press and contact with the electrified body. In this case, a press force is applied by a spring etc, to the two ends of the charging roller in the axial direction, and the charging roller's central portion in the axial direction is warped to a direction deviating from the electrified body. In order to avoid the above problem, the metal shaft (as the core metal of the charging roller) is thickened to increase the rigidity etc., but problems, such as high cost and heavy weight, may occur.
On the other hand, Japanese Laid Open No. 64-73365 discloses a charging roller with a structure such that a single-layered conductive resistant layer is covered surrounding a metal shaft of good conductor. However, similar to the aforementioned charging roller, a grinding process is also required. Therefore, the cost is high and the shape unevenness is great. Additionally, in view of contamination to the electrified body (the photoreceptor), a structure without the coating layer on the roller's surface is not practical. Furthermore, the conventional conductive unit has a rubber layer formed on the outer circumferential surface. When reusing the conductive base, removing the rubber layer is a time-consuming job, and therefore, the reproducing cost is increased.
Recently, from the environmental viewpoint, it has become desirable to make good products capable of being recycled. The part design capable of reuse becomes a portion of the material recycled. In consideration of recycling, the conventional conductive unit has a structure such that a low friction material is covered on the roller's surface. When the roller's surface is contaminated due to long time use, the contamination can be easily removed by washing and cleaning, so that reuse is possible. However, when there occurs physical defects such as pinholes or cracks, since the roller is fixed by adhesive, replacing the roller needs time and therefore the cost increases. In this case, the reuse is impossible and as a result, the conductive unit is wasted. | {
"pile_set_name": "USPTO Backgrounds"
} |
Gas meters are widely used in residential, commercial, and industrial settings to measure gas consumption. Regardless of quantity or quality of the gas, meters use the volume of the gas passing through the meter in the measurement. However, variables, such as temperature and pressure, can affect the gas flow through the meter and ultimately, the resulting measurement.
Conventionally, gas meters have often included a fluid oscillator sensor. In a meter having a fluid oscillator, gas is directed into a cavity through a nozzle. An obstacle is disposed opposite the output of the nozzle creating a two-dimensional fluid jet that oscillates, as well understood by those of ordinary skill in the art, transversely about a longitudinal axis when gas flows into the cavity at an adequate pressure (in other words, at a sufficient rate of flow). By detecting the frequency of the oscillation of the jet, a flow rate of the gas can be determined. However, when gas flows through the meter at a pressure less than the pressure needed to generate an oscillating jet, for example, such as only at a rate necessary to light a pilot light, such known metering apparatus cannot accurately measure the consumption.
In another conventional approach, a fluid oscillator can detect a greater range of gas flow rates using a single device that measures the frequency of an oscillating fluid jet and a temperature sensor that can be used to determine a flow rate. Such arrangement is generally only for residential settings and requires on the premises calibration. Because the composition and properties of gas differ from each source, significant time, complexity, and cost are utilized to calibrate each temperature sensor individually.
Existing meters include multiple complex assemblies of many parts that are costly and prone to wear and failure. While various implementations of gas meter systems have been developed, and while various combinations of gas flow detection exist, no design has emerged that generally encompasses all of the desired characteristics as hereafter presented in accordance with the subject technology.
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features, elements, or steps. | {
"pile_set_name": "USPTO Backgrounds"
} |
Throughout most of history mankind has handled its solid wastes, particularly municipal wastes or garbage, by burying it or dumping it into bodies of water, but in the face of relatively recent recognition that improper handling of solid wastes can create short term and long term pollution problems, solid waste management has become a matter of increasing concern. Recovery of useable resources from solid wastes is another factor which has lead to increasing concern for proper management and utilization of solid wastes. Of the different types of solid waste, municipal solid waste is the most significant in terms of sheer volume and variety of composition.
Numerous approaches have been suggested and utilized for the handling of solid wastes, though disposal in landfills has been and continues to be the most widely used approach by far. Although disposal in properly constructed, operated and maintained landfills appears to be a relatively safe method of waste management over a short span of time, major concerns remain about the long term safety of even the best designed and operated landfills. Conventional landfills are constructed with a generally impervious liner to serve as a barrier against leaching of wastes into water supplies, but any breach in the liner results in failure of the entire containment system. Further, conventional design and operation of landfills for disposal of solid wastes fails to effectively address the potential for reuse of waste stream components as resources.
Incineration of is another approach which has been in long term use for disposal of solid wastes, sometimes alone and sometimes with recovery of energy from the heat of combustion. Again, while offering partial solutions and recovering at least some portion of the resource value of the incinerated wastes, incineration can produce air pollution, and the use of all waste components for heat is often an extremely inefficient approach to recovery of the resource value of many waste components.
Composting of municipal wastes is another approach which has been attempted, but which has failed to provide a comprehensive solution to the waste management problem. Although some components of municipal waste can be effectively composted, many components are not amenable to biological degradation or may retain toxic or hazardous characteristics through the composting process.
Source separation recycling, in which recyclable and/or reusable materials are separated from the waste stream by each waste generator and separately collected, has been strongly proposed as an effective and efficient solution to solid waste management problems. Source separation recycling, while effective in separating components from the waste stream in order to use their resource value, has met with a number of difficulties.
In the particular case of municipal wastes, source separation of wastes must be done by each waste generating household, and the willingness of the waste generators to participate in detailed separation programs is often a significant determining factor in the effectiveness of the separation, or recycling program. In even the most effective voluntary recycling programs, participation by household waste generators in source separation of wastes at all is not universal, and participation tends to drop as the complexity of separation increases. Problems also arise from errors made by municipal waste generators in identifying materials, resulting in commingling of recovered materials and reduction in the efficiency of separation. In response to the commingling problem, and often in an effort to increase participation, some recycling programs have provided for a combination of source separation and collection separation approaches. In the combined programs reusable materials are separated from other wastes and initially commingled, with additional separation performed as the wastes are collected from each generator. However, combined programs tend to slow waste collection and often require additional manpower, and any improvement in efficiency has been marginal at best.
Another approach that has been used in municipal recycling programs, either alone or in conjunction with separation by each waste generator, is post-collection separation, in which at least some part of the separation process is carried out after collection of wastes from individual households. Post-collection separation techniques range from simple and incomplete manual separation, based upon visual inspection of the waste stream and identification of recyclable materials, to more complex automatic systems utilizing techniques such as magnetic separation of ferrous metals, induction current separation of non-ferrous metals, and density separation in, e.g. water tanks. The effectiveness and efficiency of such separation techniques varies widely, and has proved to be only partially successful as an overall approach. The use of relatively large quantities of water in many conventional separation approaches also creates an environmental water pollution problem while attempting to solve a solid waste problem.
Conventional recycling and reuse approaches have also been plagued with economic problems, and recovered or recycled materials have often proved to be more costly than virgin materials due, at least in part, to inefficient handling, transportation of materials between fragmented processing and utilization facilities, the high cost of the final steps in material purification, and channeling of recovered materials into uses in which they must directly compete with virgin materials. For example, it is commonly perceived that the best recycling use of recovered materials is to return those materials to their original use, for production of the same products from which they were recovered in the waste stream, and while such full loop recycling may be the ideal approach, so long as the commercial economy provides virgin materials at lower cost the utilization of recovered material is suppressed and waste management problems remain unresolved.
There remains a need for an effective method of managing solid wastes, and particularly municipal solid wastes of both domestic and commercial character, so as to directly address and avoid the problems and difficulties of the prior art. There further remains a need for an efficient and cost-effective approach to utilization of recovered materials that coordinates the goal of maximizing recovery and reuse of waste materials with the need to channel those materials into uses that avoid or eliminate the suppressive effect of disadvantageous economic competition with virgin materials. | {
"pile_set_name": "USPTO Backgrounds"
} |
The ultra-high frequency (UHF) white space frequencies are commonly used for digital video broadcasts (DVB-7) and wireless microphones. The UHF frequency band lies in the range from 470-790 MHz. The DVB-T TV broadcasters do not use the whole frequency range for DVB-T broadcasting. Wireless microphones may also communicate in this frequency range and may be switched on and off dynamically without interfering with other wireless microphones and/or DVB-T servers. Because of the relatively small coverage area of a wireless microphone the use of a certain frequency for a wireless microphone has not to be registered at a central network entity. The same applies in some regions or countries for other devices with a small coverage area.
US 2008/159208 A1 discloses a method and apparatus for allocation of shared spectrum in a wireless communication system using a radio frequency beacon signal that is transmitted between access points of the wireless communication system.
EP 1 750 466 A1 discloses a communication network including a set of user terminals such as a cellular network of a WLAN. The communication network includes a system for dynamically controlling spectrum usage. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to a control circuit for a gas furnace which automatically resets itself when it is in a lockout condition by timing the length of time that the thermostat has been "closed" and calling for heat.
U.S. Pat. No. 4,325,689 to Burke discloses a furnace reset which directly senses that the flame is extinguished and a timer is employed to delay the "re-light" attempt until a predetermined time interval after the flame has gone out to prevent a hazardous condition.
U.S. Pat. No. 4,773,586 to Ryan shows a safety sense element 28 which energizes the blower relay of the furnace when a high furnace temperature causes limit thermostat 18 to "open". But, no means is provided for automatic reset of the furnace after a lockout has occurred.
The principal object of this invention is to automatically reset an unattended gas furnace when the primary control of the furnace has gone into a lockout condition for a predetermined time duration.
Another object of this invention is to provide an electrical circuit for a furnace which automatically monitors the furnace control and simulates the effect of manually resetting or lowering the thermostat to reset the furnace control from a lockout condition.
Still another object of this invention is to ensure that unattended furnaces which have gone into a lockout condition will not be left in that condition for an extended period of time with the potential in winter of the water freezing and bursting the pipes with potential of damage to the unattended space and its contents.
A further object of this invention is to provide means for resetting a furnace from a locked out state which does not depend upon the direct sensing of the burner flame, but rather simulates the effect of resetting the thermostat. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a control apparatus, a control method, and a computer program of a communication system.
2. Description of the Related Art
In recent years, a technique for realizing transmission of stream data including video signals and audio signals by wireless communication has been developed in a home theater, etc. The home theater includes a plurality of speakers, a display, associated communication terminals, and a control station for controlling the devices and requires a technique capable of playing back high-quality videos and music without interruptions and without fluctuations such as a transmission delay. When transmitting stream data from a video output apparatus to a video playback apparatus, it is difficult for a single communication path to prevent the effect of blocking by an obstacle. Consequently, a technique is proposed to use a plurality of communication paths to redundantly transmit the stream data. In Japanese Patent Laid-Open No. 2009-49932, each communication terminal uses a plurality of time slots to relay and transfer data transmitted from a control station every predetermined period (frame) to improve the reliability of the transmission data.
Furthermore, a technique for dividing the stream data into priority data and non-priority data to transmit the data is proposed. Japanese Patent Laid-Open No. 2002-204273 proposes a technique for transmitting the priority data by a modulation scheme with low modulation rate and transmitting the non-priority data by a modulation scheme with high modulation rate to improve the reliability of the priority data to prevent the user from feeling a degradation in the playback content. Japanese Patent Laid-Open No. 2005-512418 proposes a technique for transmitting the priority data at a high channel encoding rate and transmitting the non-priority data at a low channel encoding rate. In WirelessHD Specification. Version.1.0 Overview (website at wirelesshd.org in the subdirectory WirelessHD_Full_Overview—071009.pdf), proposed is a method of transmitting the priority data and the non-priority data at the same time without selectively using the modulation classes and then retransmitting only the priority data.
Although the reliability of data improves in the redundant transmission scheme in Japanese Patent Laid-Open No. 2009-49932, a large amount of communication band is used. Therefore, it is desired to improve the communication efficiency while maintaining the reliability of redundant transmission in a more suitable communication scheme.
The present invention provides a communication system capable of efficiently using a band to transfer data while keeping the redundancy of communication paths. | {
"pile_set_name": "USPTO Backgrounds"
} |
As techniques for quantizing an LSP parameter, which is one of coefficients transformable to linear predictive coefficients, methods such as vector quantization are known (see, for example, Non-patent literature 1).
By the way, a parameter η has been proposed by the inventor though it is not publicly known. This parameter η is a shape parameter that defines probability distribution to which coding targets of arithmetic coding belong, in such a coding system for performing arithmetic coding of quantized values of coefficients in a frequency domain, utilizing a linear prediction envelope as is used in the 3GPP EVS (Enhanced Voice Services) standard. The parameter η has relevance to distribution of the coding targets, and it is possible to perform efficient coding and decoding by appropriately setting the parameter η.
Further, the parameter η can be an indicator indicating characteristics of a time-series signal. Therefore, when the parameter η is appropriately used, it is possible to efficiently perform coding and decoding coefficients transformable to linear predictive coefficients such as LSP parameters. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to apparatus and methods for controlling the air to gas ratio of fuel being supplied to gas (gaseous fueled) engines. More specifically, this invention relates to an improved apparatus and method for controlling the air to gas ratio of fuel being supplied to a gas engine wherein the regulator controlling the gas flow to the carburetor is actuated by a pressure which varies between the pressure in the intake to the carburetor and the pressure in the intake manifold of the engine.
Carburated gas engines normally use at least one pressure regulator in the gas line to produce a controlled pressure at the carburetor. The conventional regulator has a diaphragm that produces a force balance between air pressure plus an adjustable spring force on one side and the regulated gas pressure on the other. If the air pressure plus the adjustable spring force exceeds the regulated gas pressure, the valve open and the gas pressure increases. If the regulated gas pressure exceeds the air pressure plus the adjustable spring force, the valve closes and the gas pressure decreases.
The aforedescribed regulator provides a regulated pressure of gas to the carburetor in which the air fuel ratio is presumably controlled. Relatively small changes in ambient conditions, however can cause the air fuel ratio to change and hence cause the engine to operate less efficiently. For example, changes in ambient temperature, humidity, engine temperature and fuel BTU content can all affect the efficiency.
At the present time, high operating efficiencies for the engine are very desirable and the high operating efficiencies are not available with the regulators utilized previously. Accordingly, it is an object of this invention to provide a simple method and apparatus for controlling the air to gas ratio in gas engines that utilize the commercially available regulators, but, provide better efficiencies than in engines operating with standard regulator systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the sense of this description and the claims, a cable is understood to be any elongated, flexible, or elastic material for the transport of energy, information, or materials, in particular, but not exclusively, an electrical cable, an optical cable (including, for example, optical fibers), a delivery pipe, etc.
A solution is known from JP 59.149276 in which the cable is mounted on an elastic flat spiral spring and can be rotated with the axial spring end. Disadvantages of this solution include, first, its large diameter and, second, the rather large restoring moment of the rotating part in the limiting positions and changing with the rotations.
A solution is known from DE 402 6782 in which a helical carrier body has all inflection point and the cable is embedded and in this way guided with a force fit in the carrier body.
From DE 199 28 731 C2, a device for winding, unwinding, and storing elongated, flexible parts is known, which is not formed, however, as a rotation transformer. This device is used for the purpose of holding a cable, like in a cable drum, wherein this cable can be removed from the drum by pulling on the two cable ends. Here, the cable has no guidance by a bearing axis, however, and due to the only two spaces between adjacent separation discs, a controlled winding and unwinding, like that required for a precise rotation transformer, is not possible.
DE 703 0 622 and DE 703 1 318 disclose a device for winding electrical measurement cables and a cable and hose box as their respectively subject matters. In both publications, however, the problem of rotation transmission is not addressed in any way; instead both publications are concerned only with the storage and release of cables, and the problem of rotating the cable ends relative to each other plays no role.
Finally, DE 40 18 440 A1 shows a spiral line arrangement which is connected on one end to a device that can rotate back and forth about a rotational axis, and on the other end to a stationary device, and which can rotate in or out with the rotation of the rotatable device. The solution proposed is technically exceedingly complicated, because a synchronizing drive for the individual cascade arrangements is necessary.
Therefore, there is the task of constructing a rotation transformer for a cable connection that can be produced simply and cost-effectively, generates no restoring moments, requires no special drive, and places no special requirements on the cable configuration or embedding. | {
"pile_set_name": "USPTO Backgrounds"
} |
In machining such as cutting, grinding, etc., using a machine tool, the machining is carried out while supplying coolant (cutting oil, grinding oil, air, etc.) to a cutting zone for lubrication, cooling, chip removal and preventing welding of chips. The coolant application device is used as a device for applying this coolant to the cutting zone. In the coolant application device, the coolant is precisely jetted to the cutting zone by using a motor to drive a nozzle for spouting the coolant, and by adjusting the position or the angle of the nozzle according to the tool change or the progress of machining process. For example, a well-known coolant application device is described in Patent Publication 1.
Patent Publication 1 is Japanese Unexamined Patent Application Publication No. 2012-228739. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for fabricating a semiconductor memory device and, more particularly, to a method for forming trench isolation regions of different depths.
2. Description of the Prior Art
A NAND type flash memory device has a plurality of memory cells connected in series, with one common diffusion layer. Therefore, the plurality of memory cells share one input/output line (bit line) and contact.
The NAND type flash memory device has several disadvantages; the random read speed is slower than a NOR type flash memory device and data programming and erasing are performed in a single unit comprising a plurality of cells connected in series to NAND cell array. However, the advantage of the NAND type flash memory device is the small cell area, which lowers the production cost per bit.
Recently, in the NAND type flash memory device, there is an attempt to deepen silicon etching depth, targeted to shallow trench isolation (STI), to 8000 xc3x85. This method is referred to as deep trench isolation (DTI).
The conventional DTI method for fabricating semiconductor memory devices will be described with reference to annexed drawings FIGS. 1A to 1D.
Referring to FIG. 1A, an STI formation region and a DTI formation region are defined on a semiconductor substrate 10. On the surface of the semiconductor substrate 10, a first insulating layer 11, a second insulating layer 12 and a third insulation layer 13 are sequentially deposited. The first insulating layer 11 is a pad oxide layer, the second insulating layer 12 is a pad nitride layer, and the third insulating layer 13 is an oxide hard mask layer. Subsequently, a first photoresist 14 is deposited on the third insulating layer 13 and is exposed and developed to selectively pattern the photoresist.
Referring to FIG. 1B, the first insulating layer 11, the second insulating layer 12, the third insulating layer 13 and the semiconductor substrate 10 are selectively etched off by using the patterned first photoresist 14 as a mask, thereby forming a plurality of STI regions 15a, 15b. The STI regions 15a, 15b have a depth of 2500xcx9c3000 xc3x85 from the surface of the semiconductor substrate 10.
Referring to FIG. 1C, the patterned first photoresist 14 is removed and a second photoresist 16 is deposited and selectively patterned by exposure and development processes to expose a DTI formation region. The second photoresist 16 has a thickness of 1xcx9c3 xcexcm.
Referring to FIG. 1D, the STI region of 15b of the semiconductor substrate 10 is etched more deeply by using the patterned second photoresist 16 and the third insulating layer 13 as a mask, thereby forming a DTI region 17. The DTI region 17 has a depth of 7000xcx9c8000 xc3x85 from the surface of the semiconductor substrate 10.
As described above, the conventional DTI process requires additional steps to form the hard mask 13 and the DTI region 17 compared to the conventional STI process. Here, the photoresist has insufficient etch selectivity (0.9:1) relative to silicon. Therefore, the second photoresist 16 is etched off in silicon etch process to form the DTI region 17. As a result, the STI region is damaged, thereby causing poor operation of the semiconductor device as shown in a SEM photograph of FIG. 2. In order to prevent this problem, the third insulating layer 13 is employed as a hard mask in the conventional DTI process.
However, the third insulating layer 13 is additionally formed regardless of the original purpose, thereby complicating the fabrication process and increasing the production cost. Moreover, interfacial disharmony between the third insulating layer 13 and the photoresist 14 and 16 cause pattern collapse, as shown in FIG. 3.
In addition, the photoresist must have a predetermined thickness, approximately 1xcx9c3 xcexcm, in order to etch the DTI region 17. Therefore, it has a disadvantage of reducing process margin when performing the mask process.
Therefore, the present invention has been made to solve the above problems. An object of the present invention is to provide a method for fabricating a semiconductor memory device capable of simplifying formation process of trench isolation regions with different depths and increasing mask process margin.
In order to accomplish the above object, the present invention provides a method for fabricating a semiconductor memory device with a photoresist of increased etch selectivity by changing the physical properties of the photoresist in forming trench isolation regions with different depths.
The present invention comprises the steps of: depositing first and second insulating layers on a semiconductor substrate where (STI) regions and (DTI) regions are defined, forming the STI region by selectively etching the second and first insulating layers and the semiconductor substrate, forming a photoresist to cover the STI region and curing the surface thereof, and forming the DTI region by using the cured photoresist and the second insulating layer as a mask.
In the present invention, the curing step of the photoresist surface may include the high energy implantation of argon ions into the photoresist, preferably by employing an e-beam curing process. Furthermore, the implanted concentration of argon ions may be 1012xcx9c15 cm3, the ion implantation energy may be 10xcx9c200 KeV, and the energy of the e-beam curing process may be 1000xcx9c2000 uC/cm2. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electrical test probes are used to transmit a signal voltage from a circuit under test to an electronic test instrument, such as an oscilloscope, logic analyzer, voltmeter, or ammeter, among other test instruments. One desirable characteristic for a test probe is that the signal response at the test instrument, e.g., the probe output signal, is an accurate (although attenuated) representation of the probed test signal over a range of frequencies of interest. Another desirable characteristic is that the probe does not influence, e.g., “load,” the response of the circuit under test.
Some test probes attempt to provide such characteristics by exhibiting both high resistance and low capacitance. A high probe resistance allows relatively little of the output current to flow through the probe, thereby decreasing any loading effect of the probe on the circuit under test. In various test probes, the frequency response of the probe is dependent upon the capacitance of the probe in parallel with the resistance of the circuit under test. Capacitive reactance varies as a function of frequency, causing the impedance of the probe to fall as the applied frequency increases. As such, the effective bandwidth of prior art probes has thus been limited by probe capacitance, thus making some such probes unsuitable for use in the GHz range.
Some test probes that can be used to measure test signals at relatively higher frequencies, e.g., the GHz range and above, use a relatively low input impedance, e.g., 50 ohms, which can be matched to a coaxial input line. However, circuits under test can be severely loaded by the lower impedance such that additional output drivers may need to be used to drive the lower impedance.
To increase the effective bandwidth of test probes, some prior approaches attempt to compensate for, e.g., reduce, probe tip capacitance by using active electronics in the probe tip, e.g., by using active probes which require a source of electrical power. However, such active probes have drawbacks that include relatively large and easily damaged probe tips as well as the use of additional components as well as a source of electrical power. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a coating apparatus of an airbag reinforcing liquid which coats a sewn part of an airbag with a reinforcing liquid.
In an airbag formed by sewing a plurality of pieces of cloth, there is a concern that, when the airbag is spread and inflated by an inflation gas, the cloth is stretched, and an excessive load is applied to the sewn part, resulting in causing a misalignment. The misalignment indicates that an initial shape is collapsed which should be originally maintained due to mutual restraint of a warp and a weft in the cloth, and a weave pattern is misaligned to impair an appearance. Further, there is a concern that the misalignment is enlarged due to a high pressure inflation gas flowing through the seam of the sewn part with high temperature.
In this regard, the sewn part is reinforced. As a mode of the reinforcement, it is common to coal a surface of the cloth coming in touch with the inflation gas with silicone and the like, and to sew a ribbon-shaped (belt-shaped) reinforcing cloth over the cloth.
However, even in the mode of the reinforcement, the bulk of the airbag housed in a folded-up state is increased. In order to suppress the enlargement of the misalignment while suppressing the increase of the bulk, therefore, a technique has been considered in which only the sewn part and the peripheral portion are coated with a reinforcing liquid. For example, a sewing machine is disclosed in JP-A-2004-60071 in which a chuck, which can perform coating along the seam in conjunction with the movement of the sewing needle, is provided, and a chalk-shaped solid body for coating is fixed to the chuck (for example, see FIG. 6).
Incidentally, in the above-described technique in the related art, the chuck is moved separately from the sewing needle so that a dedicated mechanism which is in conjunction with the movement of the sewing needle is needed additionally. Thus, the coating apparatus becomes complicated, which is problematic. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a cooker with heating control system wherein its heater, such as a gas heater or electric heater, is automatically controlled with a high accuracy, thereby preventing boiling over of pan.
2. Description of the Prior Art
It is known that a stew cooking requires strong heating at the initial stage and, when the materials in the pan is about to boil the heating must be switched to a very low rate not to boil over, and such weak heating is continued for a long time. In order to proceed such cooking, person has been manually controlling the heater, and experiencing boiling over due to inadvertent forgetting of weakening the fire, and such manual handling is liable to waste of energy and difficult to carry out in ideal manner.
Hitherto, such a device as shown in FIG. 10(a) has been proposed that temperature of the food material 5 of a cooking pan 4 is measured by a sensor 6' and control circuit 10' issues a signal to control a valve 2 such as a proportional valve or a two step valve, thereby to control heat amount of the heater 3 basing on the temperature, which is measured by the sensor 6'. However, in the conventional device of FIG.10(a), the temperature sensor 6' is to be put in the cooking pan, and is not easy to use, and gives a feeling of insanitary or hazardous. Therefore, another device as shown in FIG.10(b) has been proposed to detect temperature at the bottom of a pan 4 by contacting a sensor 6 to the bottom of a pan 4; but this device has a problem that the detected temperature is different from the actual temperature of the contents and the trouble is that the difference varies depending on material, shape or size of the pan 4 and the amount of the food material 5. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are many-applications wherein metallic materials are used for their strength and endurance and are therefore subjected to loads, stresses, strains, and other forces which, over time, may have a tendency to fatigue the material and create a risk of catastrophic failure. It would be highly desirable to be able to test these discrete metallic parts in situ for their state of fatigue such that they might be replaced or renewed prior to any such catastrophic failure. In still other instances, and especially for critical applications involving health and safety, standards have been established for the routine testing of certain metallic parts prior to their being placed in service to ensure against any such failure of the part. In those applications, techniques have been developed and are available in the prior art to achieve such testing. These include such things as x-ray, destructive testing of selected parts from a lot, and other all techniques of these techniques being well known in the art. However these techniques are all subject to certain drawbacks such as expense, inconvenience, and in some cases failure to entirely eliminate the possibility of premature failure of the part. Still another situation in which these kinds of tests for fatigue are conducted involve many instances where materials or parts are welded and the integrity of the weld must be verified prior to the equipment being placed in service. One particular application, from amongst many, involves the federal safety standards which govern the construction of nuclear power plants. Certain welds in certain critical equipment contained within the plant are subjected to x-ray and other kinds of testing in order to verify their integrity prior to the plant being placed in service. A nuclear power plant presents perhaps an extreme example of the potential harm which might befall not only the people involved but the public at large should a critical piece of equipment suffer a premature failure. There are a myriad of other applications perhaps considered not as critical but which also are important to the health and safety of many people, including the public at large.
Despite the fact that testing for fatigue has been utilized for some time, and the relationship of damping to fatigue has been well known for some time, the inventor is not aware of any other efforts in the prior art to utilize the relationship of damping to fatigue in the arena of fatigue testing. For example, in a paper presented at a colloquium on structural damping at the ASME Annual Meeting in Atlantic City, N.J. in December of 1959, the phenomenon of "plastic strain" was analyzed. In particular, damping was used as a parameter for determining the interrelationship between stress history and stress amplitude as mechanisms for affecting plastic strain in a material. As concluded in the paper, at low stresses and intermediate stresses, within 1-50% of a fatigue limit, damping was not seen to be affected by the stress history of the material. On the other hand, at high stresses, typically above 50% fatigue limit, where large plastic strain damping may be observed, stress history played a part in affecting plastic strain, as measured by the damping factor. Stated differently, data were presented indicating that at low and intermediate stress, the damping factor does not change with the number of fatigue cycles. However, above a critical stress, damping increases with the number of fatigue cycles thereby indicating that stress history plays a part in plastic strain under these conditions. Although this article treated the interrelationship between stress history and stress amplitude, and their effect on damping (plastic strain), there was no disclosure or suggestion of utilizing a measured damping factor as an indicator of the state of fatigue of a material. As stated therein, the article focused on how stress history and amplitude might produce a particular damping factor but not how a measured damping factor could be used as a predictor of relative fatigue in a part. See Structural Damping edited by Jerome E. Ruzicka, ASME Proceedings, 1959.
In order to solve these and other problems in the prior art, and as a departure from the teachings in the prior art, the inventor herein has succeeded in developing the technique of measuring the damping factor of a discrete piece of metallic material, such as a part in an assembly or the like, and using that damping factor for determining the fatigue integrity of that part either by comparing it with a standardized damping factor or with previously measured damping factors for the same part. The part might be a single piece of material, or it might be a welded or otherwise joined piece of material and the test may be one for integrity, i.e. cracking, voids, or the like, as might be required for a new part, or the test might be conducted for determining the fatigue in the part after having been installed and used over time. For new part testing, it is anticipated that standardized damping factors may be determined and available for comparison with the measured damping factor for the new part. Alternately, the damping factor of a series of identical new parts might be measured and used to cull out those new parts which evidence signs of early fatigue and failure, or cracks, voids, or other defects in manufacture. After a part has been installed and used over a period of time, a damping factor measurement may be made periodically to determine the part's increasing fatigue. This technique may be used to identify parts which are in need of replacement prior to any chance of catastrophic failure. There are other applications and situations in which the damping factor measurement of a discrete piece of metallic material might be used to good advantage. These particular examples are being given as exemplary.
In making the damping factor measurement, the inventor herein has also succeeded in developing a simple but effective and accurate technique for measuring the damping factor using either of two methods. Utilizing a first method, an impulse of energy may be applied to the part, such as by striking it with a blunt object or the like, and the induced vibration in the part measured by a transducer which converts the vibration into an electrical signal for input to a computer. A computer may then easily make the appropriate calculation from the induced vibration to determine the damping factor. Generally, as is known in the art, the damping factor of a part vibrating at its natural frequency may be determined by comparing peak amplitudes of successive cycles of the vibration. In an alternative method, a continuous input of energy may be provided to the part instead of an impulse of energy. In a preferred embodiment, a frequency generator may be coupled to a transducer, such as a speaker, shaker, or other such device, and the frequency generator tuned or adjusted so as to sweep through the range of the lowest natural frequencies of the part. As the input of energy remains constant, the part would continue to vibrate at its natural frequency such that the damping factor may be readily calculated by measuring the half-power bandwidth of a cycle and dividing it by the center frequency, as is well known in the art. Using either of these methods, a vibration is induced in the part and the response thereto is measured from which the damping factor is determined.
One of-the advantages of using the inventor's method of inducing a vibration in the part is that it is believed that the part need not be isolated and may be tested in place. This eliminates disassembly of the part from any larger assemblage which dramatically reduces any costs involved in using the present method in determining the damping factor. This provides great advantages over other prior art methods which require disassembly and isolation of the part to be tested, such as in the x-ray method. Furthermore, the device used to implement the method disclosed herein may be relatively compact, readily portable, and sufficiently small such that the testing of many differently sized parts which might be otherwise relatively difficult to access may be readily tested.
While the principal advantages and features of the present invention have been described above, a more complete and thorough understanding of the invention may be attained by referring to the drawings and description of the preferred embodiment which follow. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are known in the prior art various enclosure or cap assemblies for use with pickup trucks or the like to cover the bed area thereof. Prior enclosure assemblies have included rigid or cap members having dimensions to entirely enclose the pickup truck bed or similar area. Those caps may be slid on and off the side walls of a pickup truck by means of tracks positioned on the side walls which have elongated channels formed therein. The cap members include a male portion thereon for cooperating and engaging the channels in the track members. Examples of this type of arrangement can be found in U.S. Pat. Nos. 4,693,508 or 3,773,380.
With the above-described enclosure assemblies, problems have been found to result in the fact that the utility and use of the truck beds for hauling or carrying cargo is limited by the enclosure device. As the needs for the truck bed change, it is very inconvenient to repeatedly remove and replace the cover assembly as it is somewhat large and not easily handled.
Other known enclosure assemblies have included sections being removably secured to the side walls of the truck bed in similar track assemblies. Although breaking the enclosure assembly into sections does make its instgallation and removal more convenient, there is still the necessity to repeatedly remove and replace the cover portion as the needs for the use of the truck bed change. An example of an enclosure having a plurality of sections can be found in U.S. Pat. No. 4,199,188. As can be seen in this patent, there arises a problem of properly sealing the sections with one another to keep moisture, dirt or the like out of the bed area. It is also necessary to include means for locking the separate cover sections in adjoining relationship on the rails or means to lock a particular section to the rails themselves.
For ease and convenience in use of the truck bed for various purposes, there are also known a variety of retractable enclosure assemblies. These known retractable enclosures have been constructed of soft foldable materials such as canvas or other fabrics mounted on a number of frame members slidably engaged to track members on the side walls of the truck bed. Alternatively, a plurality of rigid cover sections may be provided in a telescopically collapsible and extendable arrangement wherein the enclosure sections are slidably engaged along the track members. Examples of collapsible enclosure assemblies can be found in U.S. Pat. Nos. 4,289,346 or 4,659,136.
Although these enclosure assemblies allow the selective opening or enclosing of the truck bed without the need for repeatedly removing and installing the enclosure assembly or sections thereof, they have presented problems in jamming or binding of the frame members or sections within the track members mounted on the side walls of the truck bed. Additionally, the means by which the frame members or sections of the enclosure assembly are moved along the track members have resulted in the uneven application of force to each side of the slidable sections. This results in skewing of the frame members or sections, thereby disabling the smooth operation of the enclosure assembly from its extended and collapsed positions. Also, the means used to collapse or extend the sections have not reliably performed this function is a repeated fashion over the life of the enclosure assembly.
It has thus been found that there is a need for a telescopically collapsing enclosure assembly which enables the area of a truck bed or the like to be conveniently and quickly covered or opened for various uses and which is reliable in its operation. The need also arises for the enclosure assembly to be constructed of a rigid material so as to enable the securing and locking of the storage area of the truck bed and in making the assembly both durable and weather resistent. The enclosure assembly should be easily and selectively operated and simple in its structure to allow flexible use of the truck bed for hauling or recreational purposes.
Other disadvantages are found in that the enclosure assemblies have not enabled the simple and quick securing of the bed area. Elaborate gate or hatch means have normally been necessary in order to secure the rear end of the enclosure in conjunction with the tailgate of the truck. It is also important to ensure safety in the operation of the enclosure assembly. The danger of accidental operation which could present a safety hazard which should be avoided.
Additionally, the enclosure assemblies having gate or hatch means usually allow for the selective opening thereof for access to the truck bed. Previous hatches have normally opened outwardly and may be positioned in an open condition by means of pistons or the like. The open hatch may present sharp corners or other safety hazard as it extends outwardly from the truck itself. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well known, when young children sit next to one another in the back seat of an automobile, there is a high propensity that in a relatively short period of time they will start arguing or fighting. Particularly, such arguments or fighting pertains to comments such as "he touched me" and "she hit me" and "she's looking at me" or the like. As can be appreciated, a dangerous situation is created when such arguments cause the driver of the automobile to take his or her eyes off the roadway in an attempt to remedy the situation. Moreover, in severer instances such arguments force the driver of the automobile to pull off the side of the road which additionally creates both an inconvenient and unsafe situation. Thus, in considering the current levels of automobile usage in today's society, there is a need for a device which reduces the propensity of adjacent occupants on a car seat, particularly small children, from arguing or fighting while being driven in the automobile. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to partial file caching. More specifically, the invention relates to allowing local read and write requests while enabling partial file caching on a file system block boundary.
When a caching relationship is established between two file systems, one system cache presents a view of the other system, also known as remote. One mechanism of implementing a caching file system is to perform whole file caching. In such a system, when a file is read, the file system is aware if the file has been cached in its entirety. A file is either marked “cached” or “uncached”. If a read request is made on an uncached file, the cache system does not have a way to determine if the request can be satisfied with data that is already present in the cache even if the data was previously read, and must make a request to a remote system to fetch the data. Until the file is marked cached after the whole file has been pre-fetched into the cache, all read requests must be forwarded to the remote system. Similarly, any in-place write requests and new allocations or file appends made to an uncached file must wait until the entire file has been pre-fetched. Accordingly, reading any part of a file causes all the contents of the file to be fetched from persistent storage and stored locally in the cache. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to optical communication systems and more particularly to optical communication systems that transmit bipolar digital signals by translating each digital level in the bipolar signal into two bits of a binary signal.
Large numbers of messages are now transmitted over the telephone plant by means of T1 and T2 Carrier Systems. In these systems speech signals are converted into bipolar electrical signals which are essentially binary in nature but the adjacent logic "1s" are caused to alternate in polarity. This alteration in polarity was deemed necessary in order to insure that a sufficient number of transitions would be available in the signal in order to permit the repeaters to derive timing information and to provide dc balance to preclude baseline wander in the ac coupled receiver. In addition, violations in the alternating polarity, known to those in the art as "bipolar violations", are inserted in order to stress receivers by introducing known amounts of baseline wander. The medium used for connecting the terminal stations and repeaters is wire pair cable. A large number of wire pair cables utilized to transmit both 1 and T2 carrier signals have already been installed in the major cities. These cables are physically positioned within ducts beneath the surface of the streets of the cities. Many of the ducts have already been loaded with wire pair cables to their full capacity. Expansion of the telephone plant in these areas, if that expansion is to take place with similar T Carrier Systems will require the installation of additional ducts. It would be advantageous if the existing wire pair cables in these ducts could be replaced by optical fibers inasmuch as each fiber is smaller than a wire and, in addition, may allow larger bandwidths to be transmitted.
In the period of transition when wire pair cables are being replaced by optical fibers, many electrical bipolar signals of the type generated in the T1 Digital Transmission System will have to be converted into optical signals in order to permit them to be transmitted over optical fibers. Inasmuch as there is no straightforward equivalent of two polarities in the optical signal, some sort of conversion is necessary. It would also be advantageous if the resulting optical signal were simply of the binary type as opposed to a multilevel optical signal, in order to simplify the repeater units which will be necessary in the optical transmission system. Finally, it is desirable to maintain the polarity information present in the bipolar signal of the T Carrier System inasmuch as polarity transitions and bipolar violations will continue to provide information to T carrier type equipment operating at the receiving end of the optical transmission system.
One such encoding which will both develop a binary signal in an optical transmission system and preserve the bipolar information is disclosed in a copending application by Messrs. J. S. Cook and S. D. Personick entitled, "Optical Communication System with Bipolar Input Signal" filed Aug. 1, 1975, Serial No. 601,049. In accordance with the Cook-Personick invention, each pulse of the bipolar signal is converted into two binary digits which are then utilized to modulate an optical signal source. Each positive pulse of the bipolar signal is converted into two equal binary digits of a first logic state and each negative pulse of bipolar signal is converted into two equal binary digits of the opposite logic state. Each digital zero or zero voltage level in the bipolar signal is converted into two binary digits of opposite logic states. One feature of this type of conversion is that the two opposite binary digits that are not utilized to represent the digital zero are not generated as a pair in the conversion process. This particular pair of binary digits is in essence a forbidden word with respect to the conversion. In the decoder apparatus disclosed in the Cook-Personick application the binary signal after being detected at the receiving location is stored in a 3-cell shift register. The logic apparatus connected to this shift register is designed to detect the presence of the forbidden code in each of the two pairs of adjacent cells in the 3-cell shift register. The remainder of the decoding apparatus is connected to decode two of the three bits present in the 3-cell shift register. Upon detection of the forbidden word in the two cells being utilized for decoding, the decoding apparatus is switched to the other pair of cells in the 3-cell register. In this way no information is lost as a result of the detection of an out-of-frame condition. Unfortunately, the Cook-Personick approach to word synchronization or framing has the potential shortcoming that an error in the data can be interpreted as an out-of-frame condition thereby causing a reframing which in turn leads to detection on the wrong pair of bits and the introduction of additional errors. In short, this prior art technique of reframing has been determined to be much too sensitive to single transmission errors. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a method for operating a process chamber and more particularly, relates to a method for operating a plasma process chamber and determining the number of contaminating particles in the chamber generated by the plasma process.
In the fabrication of semiconductor integrated circuit (IC) devices, various device features such as insulation layers, metallization layers, passivation layers, etc. are formed on a semi-conducting substrate. It is known that the quality of an IC device fabricated is a function of the processes in which these device features are formed. The yield of an IC fabrication process is in turn a function of the quality of the device fabricated and a function of the cleanliness of the manufacturing environment in which the IC device is processed.
The ever increasing trend of miniaturization of semiconductor IC devices occurring in recent years requires more stringent control of the cleanliness in the fabrication process or the processing chamber in which the process is conducted. This leads to a more stringent control of the maximum amount of impurities and contaminants that are allowed in a process chamber. When the dimension of a miniaturized device approaches the sub-half-micron level, even a minutest amount of contaminants can significantly reduce the yield of the IC manufacturing process. For instance, the yield of the process can be drastically reduced by the presence of contaminating particles during deposition or etching of films which leads to the formation of voids, dislocations or short-circuits resulting in performance and reliability problems in the IC devices fabricated.
In recent years, contamination caused by particles or films has been reduced by the improvements made in the quality of clean rooms and by the increasing utilization of automated equipment which are designed to minimize exposure to human operators. However, even though contaminants from external sources have been reduced, various contaminating particles and films are still generated inside the process chamber during the processing of semiconductor wafers. Some possible sources of contamination that have been identified include the process gases and liquids, the interior walls of the process chambers and the mechanical wear of the wafer handling equipment. The chances of generating contaminating particles are also increased in process chambers that are equipped with plasma enhancement. Various chemically reacted fragments are generated from the processing gases which include ions, electrons and radicals. These fragments can combine and form negatively charged particles which may ultimately contaminate a substrate that is being processed in the chamber. Various other materials, such as polymeric films may also be coated on the process chamber walls during plasma processing. The films may dislodge and fall from the process chamber walls when subject to mechanical and thermal stresses such that they fall onto the wafers that are being processed.
An example for illustrating chamber wall contamination in an etcher is shown in FIG. 1. Etcher 10 is a plasma etching chamber that is equipped with magnetic field enhancement generated by an upper rotating magnet 12 and a lower rotating magnet 14. The plasma etcher 10 includes a housing 16 that is typically made of a non-magnetic material such as aluminum which defines a chamber 20. A substrate holder 22 which is also a cathode is connected to a RF generator 24 and is in turn connected to a gas inlet (or showerhead) 26. The showerhead 26 also acts as an anode. A process gas 28 is supplied to chamber 20 through the gas inlet 26. A semi-conducting substrate 30 to be processed is positioned on the substrate holder or cathode 22.
The semi-conducting substrate 30 is normally held against the substrate holder 22 by a clamp ring 32. During a plasma etching process, a semi-conducting wafer 30 heats up significantly during the process and must be cooled by a cooling gas from a cooling gas supply (not shown) such that heat can be transferred to a water cooled wafer holder 36. The function of the clamp ring 32 is also to hold the substrate 30 down against the pressure generated by the cooling gas. An exhaust port 34 which is connected to a vacuum pump (not shown) evacuates the chamber. During an etching process, the upper rotating magnet 12 and the lower rotating magnet 14 function together to provide a magnetic field inside the process chamber 20.
In a conventional cleaning process for the plasma etch chamber 10, a cleaning gas supply is first flown through the gas inlet port 26 into the chamber 20 and then, the RF generator 24 is turned on. The cleaning procedure is conducted after a predetermined number, i.e. between 100-500 of wafers have been processed in chamber 20. A plasma of the cleaning gas ions is formed in the space between the showerhead 26 and the wafer holder 32 to loosen the contaminating particles and films from the chamber walls and the showerhead 26 or the upper electrode.
In etching polysilicon or metal, a chlorine etching gas is frequently used, while etching gas used for oxide or nitride is frequently a fluorine gas. During a plasma etching process, the reactive plasma ions have a high energy level and therefore can easily combine with any available chemical fragments or elements in the chamber to form contaminating particles or films. For instance, in a metal etching process, the elements frequently seen in the etch chamber includes C, H, N, O, Al, Ti, TiN and Si. Different elements such as C, N, O, Br, Si and W are seen in a polysilicon etch chamber. The contaminating particles or films formed by often volatile chemical fragments or elements during an etching process float or suspend in the chamber due to the interaction with high energy plasma ion particles when the RF power is on. The phenomenon of the floating or suspended particles can be explained by the fact that the particles have higher energy and temperature while suspended in a plasma cloud. However, at the end of a conventional etching process, the RF power is switched off which leads to the sudden loss of energy in the suspended contaminating particles and causing them to fall or stick to the chamber walls or the upper electrode. This is shown in FIGS. 2A and 2B.
FIG. 2A shows a simplified etch chamber 40 equipped with a chamber cavity 42 defined by chamber walls 44. A process gas inlet 46 is used to flow a process gas into the chamber cavity 42. An upper electrode 48 and a lower electrode/wafer holder 50 are used to supply RF power to the chamber and to produce plasma ions. A gas outlet 54 is used to evacuate the process gas from the chamber cavity 42 at the end of the etching process. During the etching process, contaminating particles 52 formed as etch byproducts are buoyant and are suspended in the chamber cavity 42. A wafer 56 is supported by the wafer holder 50 for processing.
After a conventional etching process is conducted, the RF power is turned off. The suspended, contaminating byproducts or particles 52 are easily deposited on chamber walls 58, upper electrode 48 and wafer 50. These contaminating particles (or films) are frequently formed of a carbon or chlorine containing polymeric material and when adhered to the chamber wall 58, are very difficult to remove from the chamber. Conventionally, a wet cleaning process must be conducted after approximately 2,000-3,000 wafers have been processed in the etch chamber 40. The wet cleaning process is carried out by using cleaning solvent such as IPA, deionized water, combination IPA/deionized water or the more volatile acetone. The wet cleaning process is time consuming and may be hazardous to personnel due to the toxic nature of the contaminating byproducts and the highly volatile cleaning solvent used. A wet cleaning process may cause a downtime on an etcher for as long as a whole day.
The contaminating particles or films present a serious problem in an IC fabrication process. The more contaminating particles are present, the more fabrication loss will result. It is known that a metal etching process is a heavy polymer process that readily produces contaminating particles for the chamber and induces particle spikes (a sudden surge in particle contamination). When a particle falls on a wafer, it acts as a mask during etching to cause insufficient etching and possible metal bridging. It is therefore an important task to determine the number of contaminating particles that are present in a process in a chamber in order to determine the necessity of a wet cleaning process.
In a conventional particle monitoring method, a recipe of 12 mTorr/100 sccm Cl2/60 sec is used. This is shown by the solid line in FIG. 3. The method of flowing a chlorine gas at 100 sccm flow rate to reach a chamber pressure of 12 mTorr for monitoring particles in a process chamber is inadequate. The method does not reflect a true chamber condition and cannot detect a particle spike phenomenon. The constant flow of chlorine gas into the process chamber does not detach or loosen contaminating particles or films adhered to the interior chamber wall of the process chamber. The method therefore cannot be used to predict the occurrence of the particle spike phenomenon and let alone providing a solution to such problem.
It is therefore an object of the present invention to provide a method for determining the number of contaminating particles in a process chamber that does not have the drawbacks or shortcomings of the conventional methods.
It is another object of the present invention to provide a method for determining the number of contaminating particles in a process chamber by a series of gas flow/gas evacuation processes to dislodge contaminating particles from the interior chamber wall.
It is a further object of the present invention to provide a method for determining the number of contaminating particles in a process chamber by carrying out at least two cycles of a gas flow/gas evacuation process in the process chamber.
It is another further object of the present invention to provide a method for determining the number of contaminating particles present in a process chamber by repeatedly flowing and evacuating at least one process gas in and out of the process chamber.
It is still another object of the present invention to provide a method for determining the number of contaminating particles in an etch chamber by flowing into and evacuating from the etch chamber at least one etch gas used in the etch process.
It is yet another object of the present invention to provide a method for determining the number of contaminating particles in an etch chamber by flowing at least one process gas into the chamber at a flow rate of at least 30 sccm and then evacuating the gas and repeating the cycle for at least two times.
It is still another further object of the present invention to provide a method for monitoring contaminating particles in an etch chamber by flowing at least one etch gas of Cl2, BCl3 and Ar into the etch chamber to a chamber pressure of at least 8 mTorr, evacuating the at least one etch gas and repeating the cycle for at least two times.
It is yet another further object of the present invention to provide a method for determining the number of contaminating particles in a metal etch chamber by repeating at least three cycles of flowing a process gas into the chamber at a flow rate of at least 30 sccm and then evacuating the process gas from the chamber until a chamber pressure not higher than 1 mTorr is reached.
In accordance with the present invention, a method for determining the number of contaminating particles in a process chamber, and particularly in a metal etch chamber is provided.
In a preferred embodiment, a method for determining the number of contaminating particles in a process chamber can be carried out by the operating steps of first providing a process chamber that is equipped with a gas inlet and a plasma source, conducting a chemical process on a substrate that generates contaminating particles in the chamber, evacuating the process gas from the chamber to a pressure of not higher than 1 mTorr, flowing at least one process gas used in the chemical process into the chamber at a flow rate of at least 30 sccm, evacuating the at least one processed gas from the chamber to a pressure of not higher than 1 mTorr, flowing for the second time at least one process gas used in the chemical process into the chamber at a flow rate of at least 30 sccm, evacuating for the second time the at least one process gas from the chamber to a pressure of not higher than 1 mTorr, and counting number of particles that have fallen onto a top surface of the substrate.
In the method for determining the number of contaminating particles in a process chamber, the flowing/evacuating steps are repeated at least two times, or repeated at least three times. The method may further include the step of evacuating the process gas from the chamber by a factory vacuum system. The method may further include the step of flowing the at least one process gas used in the chemical process into the chamber to a chamber pressure of at least 6 mTorr, or to a chamber pressure of at least 8 mTorr. The method may further include the step of flowing the at least one process gas by flowing Cl2 gas into the chamber to a chamber pressure of at least 8 mTorr. The method may further include the step of flowing the at least one process gas by flowing Cl2 into the chamber at a flow rate not less than 80 sccm.
The method for determining the number of contaminating particles in a process chamber may further include the step of flowing the at least one process gas by flowing BCl3 gas into the chamber to a chamber pressure of at least 8 mTorr. The method may further include the step of flowing at least one process gas by flowing BCl3 gas into the chamber at a flow rate not less than 70 sccm. The method may further include the step of flowing the at least one process gas by flowing Ar gas into the chamber to a chamber pressure of at least 8 mTorr, or at a flow rate not less than 30 sccm. The method may further include the step of flowing the at least one process gas by flowing Cl2 at a flow rate not less than 80 sccm, BCl3 at a flow rate not less than 70 sccm and Ar at a flow rate not less than 30 sccm into the chamber, or flowing the Cl2, BCl3 and Ar gas into the chamber to a chamber pressure of at least 8 mTorr.
The present invention is further directed to a method for detecting contaminating particles in an etch chamber that has polymeric or metal based particles adhered to an interior chamber wall which can be carried out by the operating steps of first providing an etch chamber equipped with a plasma source, conducting a metal etching process in the etch chamber thus generating polymeric or metal based contaminating particles adhered to an interior chamber wall, evacuating the etch chamber to a pressure of not higher than 1 mTorr, conducting a particle dislodging cycle in the etch chamber including the steps of flowing at least one etch gas into the chamber at a flow rate of not less than 30 sccm, and evacuating the at least one etch gas from the chamber to a pressure of not higher than 1 mTorr, repeating the particle dislodging cycle at least once, and detecting the contaminating particles present on a top surface of the substrate.
The method for detecting contaminating particles in an etch chamber may further include the step of detecting the contaminating particles present on the substrate by a KLA particle counter. The method may further include the step of flowing at least one etch gas into the chamber selected from the group consisting of Cl2, BCl3 and Ar until a chamber pressure of 8 mTorr is reached, or flowing at least one etch gas into the chamber selected from the group consisting of Cl2, BCl3 and Ar at a flow rate between about 30 sccm and about 120 scm. The method may further include a step of repeating the particles dislodging cycle at least twice. The method may further include the step of flowing Cl2 at a flow rate not less than 80 sccm, BCl3 at a flow rate not less than 70 sccm and Ar at a flow rate not less than 30 sccm into the chamber. | {
"pile_set_name": "USPTO Backgrounds"
} |
The current size and success of the entertainment industry shows the enormous market for audio and video entertainment by consumers. The music recording industry, television and movie industries, and professional athletics, among others, have all seen large economic gains since the dawn of television and radio. In fact, the demand for such broadcast audio and visual content spawned new for a for advertising. However, current methodologies for the distribution and viewing of audio/visual content including music, movies, information, and advertising have become outdated due to substantial steps forward in technology.
Traditionally, consumers, i.e., those watching or listening to the audio/visual content, were forced to view or listen to the content as it was broadcast. Television stations followed specific schedules to let consumers know when their show, movies, information or sporting events would be broadcast. In addition, radio stations broadcast the music or shows according to their set schedules. As a result, the consumer had very little flexibility in deciding when to view their show, or listen to their music. Similarly advertisers were restricted by the schedule to broadcast their advertisements at whatever affordable, available time was most likely to include viewers interested in their products. The system was neither efficient for the advertisers nor convenient for the consumers.
As a result, techniques developed to allow the consumer to record the music or movie from the broadcast for later viewing or listening. Audio cassettes allowed for the capture of audio content. VCR's allowed the consumer to capture audio visual content. Movie rentals allowed users to rent movies for viewing at a convenient time and place. In addition, models such as those employed by TiVo® digital video recorders and Replay® digital video recorders allowed for the capture of such content for later viewing. However, these models required the viewer to know in advance the scheduled broadcast time for their show and to program a device, such as a VCR to record their shows. This required additional cost for the recording device and medium, and time to study the broadcast schedule and to program the recording device accordingly. This scheme, however, adversely impacted advertisers, as consumers watching the recorded content often fast forwarded past any advertisements.
More recently, video on demand (or audio on demand) has allowed consumers the ability to modify the schedule of the audio/visual content by simply demanding content at times convenient to the consumer. This technique suffered from two profound limitations. First, the content distributed in this scheme was easily copied and disseminated without the consent of the content providers. In addition, advertisers were further limited in their options, as they now may not even chose the broadcast time for their commercials. Instead, they were limited to transmission of the advertisements at the time demanded by the consumer.
Another limitation of current content distribution schemes is that Digital Rights Management (DRM) schemes are digitally implemented. As technology advances, the processing power available for decryption, collaborative distributed processing efforts such as those utilized to break DES (digital encryption system), have minimized the security of existing DRM models. In addition, the publication of software applications such as the DeCSS software application for cracking DVD, and the availability of unencrypted formats, render the cryptographic analysis of digital keys possible. As a result, estimates place lost revenues due to copied VHS recordings at roughly 30%. Furthermore, in emerging markets such as China, the estimates soar to nearly 80%. Estimates of the loss due to ripped CD's and DVD's are difficult to estimate presently.
It is desirable, therefore to provide a distribution scheme for delivery of audio and video content with increased security and convenience, and higher density (i.e. greater data per disc). In addition, the method should provide the ability to archive audio and video content on secure discs for consumers to view at their convenience. In addition, the method should provide the ability to better target ads to the wants and needs of the consumers who will be watching them. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a box spring assembly for bedding usage and to an improved edge construction of the assembly.
2. Description of the Prior Art
Prior art box spring assemblies have included wire grids supported by springs on a lower frame. See for example, U.S. Pat. Nos. 3,827,090, 3,833,948, 3,833,949, 3,855,651, and 3,869,740. The grids of such assemblies must have lateral edges that are somewhat more rigid than the central portion of the grid. A single border wire at the periphery of the grid is conventionally utilized to provide the required edge stiffness. | {
"pile_set_name": "USPTO Backgrounds"
} |
As the realm of genetically modified microorganisms increases, the potential applications for promoting microbial growth similarly increase. A large array of important products may soon be produced through microbial means.
Therefore, the inventors have provided improved additives that promote the growth of microorganisms. | {
"pile_set_name": "USPTO Backgrounds"
} |
Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion this section.
Data may be stored persistently on/in storage devices that may include hard drives. Typically, storage device drivers associated with these storage devices may organize or allocate fixed-sized blocks of persistent storage via use of a one-dimensional, linear block indexing model such as a dense integer index. A dense integer index has been one of the more common ways to allocate a block of persistent storage for smaller file systems or data centers that may include one or only a few hard drives. One type of dense integer index that was developed several years ago for these smaller file systems is known as Logical Block Addressing (LBA).
Recently, as larger file-systems or data centers having an increasing number of disk drives became more common, continued use of dense integer indexes such as LBA are beginning to have increasingly negative effects on data integrity, reliability and management overhead costs. These negative effects, for example, may have been caused by a lack of flexibility associated with a dense integer index that uses fixed-sized blocks of persistent storage that may have been allocated using an index designed for much smaller data systems. Thus, as the number of hard drives and the number of possible blocks of persistent storage maintained at a data center increased, the chances that some identifiers may match or collide also increased. As a result of large data centers, management overhead costs and system complexity have both increased in order to prevent collisions and maintain data integrity. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a data processing system with a host processor and a coprocessor, and more particularly to a pipelined data processing system having a host processor and a coprocessor which are implemented on a single chip and method of interfacing between the processors for performing enhanced pipelined operations.
With an explosive growth in the market of portable electronic products, technological emphasis in VLSI (Very Large Scale Integration) circuit design is shifting away from high speed to low power. However, high-speed functions are still indispensable for a microprocessor (or microcontroller) performing complex mathematical computation operations, for example, multiplications. Such need for speed becomes more pronounced in RISC (Reduced Instruction Set Computer) type processors, DSP (Digital Signal Processing) units, and graphic accelerators because these devices have increased demand for multimedia applications.
As demand grows for enhanced performance of microprocessor-based data processing systems, more complex techniques have been developed and used in microprocessor designs. For example, pipelined data processing techniques such as division of processor operations into multiplicity of elementary suboperations are employed.
With reference to FIGS. 1A and 1B, an execution of an instruction, requiring time T for the execution in a non-pipelined mode of operation, is divided into a plurality of suboperation stages in a pipelined mode of operation. For example, three-stage pipelined mode of operation typically has three suboperation stages, such as ST1, ST2, and ST3. A processor in a pipelined mode is partitioned in such a manner that each suboperation of a pipelined instruction is completed in a predefined stage time period Ts. As a result of such partitions on an instruction, an execution of such pipelined instruction requires three stage time periods 3Ts, which is longer than time T required for an execution of an instruction in a non-pipelined mode of operation.
In a pipelined mode of operation in which a processor separately executes each suboperation by partitioning a pipelined instruction, however, a processing of a pipelined instruction can be initiated after a stage time period Ts rather than after a time period T as in the non-pipelined mode of operation. Since a stage time period Ts for an execution of each suboperation of a pipelined instruction is shorter than time T for an execution of an non-pipelined instruction, the execution of an instruction in a pipelined mode of operation can be expedited. A stage time period Ts can be chosen as small as possible consistent with the number of suboperation stages in a pipelined mode of operation unit.
Recent advancements in VLSI technology have made DSP technology readily available, so that it is not difficult to find electronic products equipped with some form of multimedia DSP capability. Many consumer electronic products with multimedia DSP capability have a microprocessor chip for the control and I/O operations and a separate DSP chip for signal processing.
A SOC (System-On-a-Chip) approach is attracting attention of chip designers (particularly, ASIC designers) because such design represents savings in cost, power consumption, system design complexity, and system reliability as compared to designs having two or more separate processors.
A simple solution to an integration of, for example, a microprocessor core and a DSP core is to put the two independent cores on a single die (i.e., a microprocessor core for control tasks and a DSP core for signal processing algorithms). This simple two-core approach can provide chip designers with a flexibility in choosing any application specific pair of microprocessor cores and DSP cores to fit a target application optimally. This approach, however, suffers from several drawbacks: (1) III Programmability, because the cores should have their own programs and data; (2) Communication Overhead, because resource conflicts, false data dependencies and deadlocks need to be prevented through a complex scheme; and (3) Hardware Overhead due to the duplicated part of the two cores, which results in increased hardware cost and power inefficiency.
Another way to support microprocessor and DSP capabilities on a chip is to use a single processor having both the capabilities, for example, a microprocessor with DSP capabilities or a DSP unit with powerful bit manipulation and branch capabilities.
In general, a microprocessor is a necessary element in electronic products; therefore, there are motivations on the part of designers to integrate a SOC design around a microprocessor. Compared with the two-core approach, the SOC approach can achieve efficient communications between a microprocessor (or a host processor) and its interfaces, for example, coprocessors. By equipping the microprocessor with DSP coprocessor instructions and interface scheme, control functions and DSP functions can be implemented on a single processor chip which also provides a single development environment. The SOC approach also has other advantages over the two-core approach. For example, DSP programs can be written easily by using coprocessor instructions of a host processor, and hardware cost can be reduced because there is no hardware duplication.
The overall processing efficiency in such a host-coprocessor SOC architecture is a function of a number of factors: for example, the computing capability of a coprocessor and the information exchange capability between a host processor and a coprocessor. The computing capability of a coprocessor depends upon how many instructions the coprocessor has and how fast the coprocessor executes each instruction. Such features of a coprocessor are knowable by its specification. Thus, an improvement of a coprocessor performance can be achieved by using, within cost limits, a coprocessor with specification of desired features. On the other hand, the information exchange capability between a host processor and a coprocessor is affected by coprocessor interface protocols of a host processor, rather than a coprocessor performance.
In such conventional host-coprocessor SOC techniques, however, in order to improve the coprocessor capabilities., more powerful coprocessor instructions with appropriate data paths needed to be added to a host processor. Such design is tantamount to a new processor chip. If there is a bottleneck in the information exchange between the host and coprocessor, the system performance will not be improved. Hereinafter, an example of such a bottleneck in the information exchange will be explained.
FIG. 2 is a timing diagram showing pipelined executions of three subsequent instructions I1, I2, and I3 in a typical RISC-based host-coprocessor system. Each instruction I1, I2 or I3 of a RISC instruction pipeline, so-call three-stage pipeline, has three stages: Instruction Fetch (IF), Instruction Decode (ID), and Execution (EX) stages. Each of the three stages IF, ID and EX for an instruction is intended to be completed in a single cycle of a clock signal CLK.
For the purpose of explanation, in FIG. 2, a first instruction I1 is assumed to be a host processor instruction for an execution of a host processor operation, and second and third instructions I2 and I3 are coprocessor instructions for execution of coprocessor operations. The first instruction II is ready to be executed by the host processor alone without coprocessor interfacing, and the second and third instructions I2 and I3 are intended to be executed by the coprocessor responsive to coprocessor commands I2xe2x80x2 and I3xe2x80x2 (corresponding to instructions I2 and I3, respectively) and coprocessor interface signals INF which are issued by the host processor depending on results of decoding the coprocessor instructions I2 and I3.
Referring to FIG. 2, first, the host processor instruction I1 is fetched during cycle T0. That is, the instruction I1 is loaded from a program memory into the host processor. In the next cycle T1, the instruction I1 is decoded therein and at the same time the coprocessor instruction I2 is fetched. The host processor instruction I1 is executed by host processor during cycle T2, in which the coprocessor instructions I2 and I3 are simultaneously decoded and fetched, respectively. During cycle T3, the host processor issues the coprocessor command I2xe2x80x2 corresponding the instruction I2 and also produces coprocessor interface signals INF for the instruction I2. Thus, the coprocessor is interfaced with the host processor under the control of the interface signals INF and then completes decoding of the command I2xe2x80x2 from the host processor. During cycle T4, the coprocessor executes the command I2xe2x80x2.
Due to the execution of the command I2xe2x80x2 associated with the instruction I2 in cycle T4, the instruction pipeline has to be stalled for one clock cycle. Hence, the execution stage of the instruction I3 should be suspended for one cycle and then executed in cycle T5. The coprocessor decodes the command I3xe2x80x2 corresponding to the instruction I3 during cycle T5, and in the next cycle T6 the command I3xe2x80x2 is executed by the coprocessor.
Thus, the pipeline stalling results when the respective coprocessor commands I2xe2x80x2 and I3xe2x80x2 are decoded in the same clock cycles as the corresponding coprocessor instructions I2 and I3 are executed. Such pipeline stalling behaves like a bottleneck in information exchanges between a host processor and a coprocessor, causing degradations in computing speed and system performance.
It is an object of the present invention to provide a low-power, low-cost, high-performance data processing system suitable for multimedia applications, specifically an improved host-coprocessor system-on-a-chip (SOC) performing pipelined operations.
It is another object of the present invention to provide a host-coprocessor SOC with an efficient and powerful coprocessor interface scheme.
It is still another object of the present invention to provide a method for accomplishing effective interfaces between a host processor performing pipelined operations and at least one coprocessor on a single chip.
These and other objects, features and advantages of the present invention are provided by a pipelined microprocessor which fetches an instruction, predecodes the fetched instruction when the fetched instruction is identified as a coprocessor instruction during an instruction fetch (IF) cycle of the instruction, and at least one coprocessor for performing additional specific functions. The microprocessor (host processor) issues to the coprocessor a coprocessor command corresponding to the fetched instruction. The coprocessor decodes the coprocessor command during an instruction decode/memory access (ID/MEM) cycle of the instruction and executes the decoded coprocessor command during an instruction execution (EX) cycle of the fetched instruction.
According to a preferred embodiment of the present invention, the host processor generates a plurality of coprocessor interface signals (e.g., A, B, C and D) when the fetched instruction is identified as a coprocessor instruction. Through the coprocessor interface signals the host processor issues the coprocessor command corresponding to the coprocessor instruction. The coprocessor provides its status data to the host processor after executing the coprocessor command in the EX cycle of the instruction.
A data memory is commonly connected to both the host processor and the coprocessor. The coprocessor accesses the data memory only at time designated by the host processor, and during which the host processor is guaranteed not to access the data memory. An internal clock generation circuit is provided for the host processor and the coprocessor. The internal clock generation circuit generates internal clock signals synchronized with an external clock signal. The host processor generates the coprocessor interface signals, synchronizing with one of the internal clock signals.
According to another aspect of the present invention, in order to execute the coprocessor instruction for a specific function, while performing operations for normal control functions, the host processor checks in an IF stage if the fetched instruction is a coprocessor instruction. If so, the host processor predecodes the fetched instruction during the IF stage. Then, the host processor issues a coprocessor command corresponding to the fetched instruction in the ID/MEM stage of the instruction. The coprocessor then decodes the coprocessor command in the ID/MEM stage, and executes a coprocessor operation designated by the coprocessor command in the EX stage of the instruction. The coprocessor provides the host processor with coprocessor status data after the execution of the coprocessor operation in the EX stage. Then, the host processor evaluates the coprocessor status data to provide for a next conditional branch instruction. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) system, a base station that controls a source cell of a terminal, that is, a source evolved NodeB (eNB), delivers measurement configuration information to the terminal to instruct the terminal to measure signal quality of the source cell and that of a neighboring cell of the source cell. When the signal quality of the neighboring cell meets a handover condition, the terminal reports a measurement result to the source eNB, and the source eNB determines whether to perform a handover according to a measurement report reported by the terminal. A mobility parameter of the neighboring cell in the measurement configuration information directly affects the measurement result reported by the terminal and then affects a success rate of the handover.
In the prior art, the mobility parameter of the neighboring cell is incorrectly adjusted by the source eNB, thereby affecting the terminal handover efficiency. | {
"pile_set_name": "USPTO Backgrounds"
} |
The objective of software development is to produce robust, high-quality software. To do so, during development, software is extensively tested for defects. When a defect is identified, developers strive to design solutions that fix the defect without introducing new problems into the software. Large scale software projects might contain many defects that need to be identified and fixed before the software is released. Hence, testing and, as a result, debugging software can take a significant amount of software development time. Over the years, two main categories of defect-finding techniques have been developed to aid software programmers find and fix defects: black-box testing and white-box testing.
Black-box testing (BBT), also known as functional testing, is a software testing technique whereby the internal workings of a software program are not known by the tester. In BBT, a tester only knows what the inputs into a software program are and what the expected outcomes should be. The tester generally does not examine the programming code and has no knowledge of the program other than its specification. The tester, without any knowledge of the internal structure of the program, attempts to “break” it by putting the software through a battery of tests. For example, given a certain input, the tester checks to see that the program produces the expected result. The tester also performs other types of testing including, among others, stress testing and recovery testing. When testing generates unexpected results, an error message notifies the tester that an error occurred.
White-box testing (WBT) is a technique for performing static analysis on software source code. Static analysis in this context means testers have explicit access to the internal workings of the software program being tested. Unlike black-box testers, white-box testers use their specific knowledge of programming code to examine outputs. Basically, white-box testers logically step through every line and path in the source code to verify correct output. For example, a software development company might implement a review of code wherein every member of a software development team analyzes the source code for defects. The key advantage is that every line of code is evaluated for defects.
However, certain defects in source code still escape detection. For example, neither BBT nor WBT testing techniques identify every instance of certain defects related to integer processing, such as integer overflows and integer underflows. Thus, there is a need for better defect detection techniques that can detect defects such as possible integer overflows and integer underflows. Such techniques could many advantages, such as more reliable and secure software. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fuel dispensers typically include a controller configured to handle sensitive payment information received from a user to effect payment for fuel dispensed to the user. The sensitive payment information is usually provided to the fuel dispenser via one or more components, such as a card reader and a PIN pad. Any sensitive payment information received by the PIN pad is generally encrypted and forwarded to the controller regardless of whether the PIN pad uses a separate controller. Because the controller is configured to handle the sensitive payment information, it is usually subject to certain security requirements imposed on devices that handle such information, which may include a certification process. Any changes to the design of the controller typically require recertification, which can be a relatively protracted and expensive process. This process may also impact other functions of the fuel dispensers supported by the controller. | {
"pile_set_name": "USPTO Backgrounds"
} |
A variety of imaging systems have been proposed for use in equipment and on-board vehicles to monitor a driver and/or passenger(s) in an automotive vehicle. Some proposed imaging systems include one or more cameras focused on the operator or driver of the equipment or vehicle to capture images of the operator's or driver's face. The captured video images are processed to determine various facial characteristics of the eyes, face, and head. Given the determined facial characteristics, such as a driver's eye positioning and gaze, vehicle control systems can provide enhanced vehicle functions.
Many conventional approaches that employ active light illumination suffer from drawbacks. In particular, when an illuminated subject is wearing corrective lens eye glasses or sunglasses, the geometry (e.g., convex shape) of the glasses may reflect the light illuminated onto the image that is acquired by the imaging camera. This reflection of the illumination source is generally seen as a glare on the subject's glasses. The resultant glare may occur at the regions of interest near the eye(s) of the subject, thus inhibiting the ability to recognize imaged facial characteristics of the eyes, face, and head.
One approach that addresses the glare problem is disclosed in U.S. Pat. No. 7,646,422 entitled “Illumination and imaging system with glare reduction and method therefore.” The system disclosed in the aforementioned patent employs first and second light sources spaced from a centrally located video imaging camera and involves capturing successive images under illumination of different combinations of the light sources. A pixel-wise minimisation algorithm is performed on the sequence of images (such as an image pair) to produce a composite image in which glare is reduced.
Reduced glare images allow for enhanced imagery, which is particularly advantageous for use in a vehicle where an object driver of the vehicle may be wearing a corrective lens and glare may be present. Although the above described patent seems to solve some glare problems, it does not account for image motion between consecutive images. In a desired vehicle eye monitoring system, normal head movements should not result in interruption in monitoring the \ subject, operator or driver. As described in the above patent, when a driver's head or eye has moved between images and a pixel-wise “min” operation is performed on the images, then the resulting image may contain artifacts or ‘ghosting.’ These artifacts may totally negate the intended glare reduction effect which can be very detrimental to the analysis of the images. Ultimately, there will be a negative effect on the continuous operation and reliability of the above-described system. An improved method or system is needed to compensate for movement within the captured images, providing increased reliability of the on-board vehicle monitor systems. Given the determined facial characteristics, such as the operator's eye positioning and gaze, alternative vehicle or equipment control systems may provide higher safety and reliability levels for monitoring particular movements or behaviors.
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field. | {
"pile_set_name": "USPTO Backgrounds"
} |
Greater than 80 percent of all U.S. electric power is currently generated from steam turbine cycles. Power cycle steam turbines process heat generated from combustion of hydrocarbon fuels (e.g., coal, natural gas) in a burner through a thermodynamic power cycle and convert the heat into useful work. The combustion of hydrocarbon fuels occurs at high temperatures, which may exceed 1900° C. However, steam turbine blades are exposed to high centripetal accelerations and may begin to creep and/or mechanically deteriorate when coupled with temperatures even significantly lower than the turbine blade melting point.
To protect the heat-sensitive turbine blades, higher mass flow rates of water are typically utilized in a burner heat exchanger to convert heat from the burner into a lower temperature (<650° C.) steam as compared to the combustion gas temperatures. As a result, steam engines often have lower theoretical Carnot cycle thermodynamic efficiencies as well as real thermodynamic efficiencies than could be achieved if the highest temperature of the cycle was closer to the temperatures of the combustion gases in the burner. Typically, thermodynamic efficiencies for converting heat into useful work (e.g., electricity) in these conventional steam turbine cycles is less than 50 percent and may be more commonly 35-42 percent.
Some existing steam applications combine two or more thermodynamic cycles to increase thermodynamic efficiencies. For example, Combined Cycle Gas Turbine (CCGT) systems have achieved cycle efficiencies of ˜60% utilizing a gas turbine Brayton thermodynamic cycle for the “topping” cycle (i.e., the first highest temperature cycle in the overall thermodynamic power conversion system). However, these gas turbine “topping” cycles operate from combustion of a gas, and thus require either a gas fuel source or additional steps for producing gas fuels from solid hydrocarbon fuels.
It is theoretically possible to enhance the overall thermodynamic power cycle efficiency using a “bottoming” cycle (i.e., the lowest temperature cycle in the overall thermodynamic power conversion system) that operates from waste heat of turbines. However, such cycles are typically uneconomical because of very large, expensive equipment needed to extract energy from the small temperatures differences between condensing steam and outside air and/or water. This infrastructure and operating cost is typically high relative to the quantity and value of power produced from the low quality (i.e. low temperature) heat. | {
"pile_set_name": "USPTO Backgrounds"
} |
For the purpose of this patent application the term "kinetic art" refers to paintings or pictures, prepared on materials which have been shaped in a pleated manner and displayed in 3 dimensions so as to afford the viewer different images dependant upon the viewer's position in relation to the art.
In the 1950's, an artist named Yaacov Agam popularized this art form. Since then there have been numerous variations of Agam's theme including a wide variety of 3 dimensional multiple image artwork. One popular use of this art form has been in specifically constructed roadside billboards. These billboards display different messages to vehicle occupants as vehicles approach the billboard from various angles.
There are various ways artwork may be prepared such as to have the resulting image appear on pleated media in the desired manner. One way, includes taking 2 pictures of the same size (i.e., vertical and horizontal dimensions), cutting each picture into a finite number of vertical elongated segments of the same size. Thereafter, while maintaining the order of the strips to be in the same order as before each picture was segmented, interleave the strips of each picture such that the strip from the first picture is alternated between the strips of the other picture. The resulting image can be taped together then photographically reproduced directly onto plain paper which is subsequently folded into pleats. The width of each pleat corresponding to the width of each vertical segment. Alternatively, a computer user may use a commercial graphic program to manipulate two or more images in a similar manner and produce output which may also be placed on plain paper which is subsequently folded into pleats.
If one chose to use plain paper to produce the finished kinetic artwork, the creation of the folds in the paper can be a tedious manual process. Alternatively, pleated paper may be used, but pleated paper could jam a printer and would not allow many sheets to be easily placed in a feeder slot in a typical ink jet printer. Perforated paper may be used but this could also jam a printer and perforated paper also has the disadvantage of lessening the structural integrity of the paper making it easier to tear along a perforated segment.
U.S. Pat. Nos. 5,236,365 and 5,407,718 provide examples of patents which describe unique inventions that utilize special paper products to accomplish desired objectives. In U.S. Pat. No. 5,236,365 an embossed paper is used to simulate a textured surface. In U.S. Pat. No. 5,407,718 a paper product is described which permits peal-off labels to be produced via a computer printer. | {
"pile_set_name": "USPTO Backgrounds"
} |
Friedreigh's ataxia (FRDA) is the most common autosomal recessive neurodegenerative disease among Caucasian populations. FRDA is characterized by the early onset of the disease usually before the age of 25, a progressive ataxia, sensory loss, absence of tendon reflexes and pyramidal weakness of the legs (Friedreich N, Virchows Arch. Pathol. Anat., 68, 145-245 (1876); Freidreich N, Virchows Arch. Pathol. Anat., 70, 140-142 (1877); Harding, A. E., Brain 104, 589-620 (1981); Durr, A. et al., N Engl J Med 335, 1169-75 (1996)). FRDA is known to be caused by a mutation of a gene on chromosome 9q13.
The inventor has recently identified a patient group which is characterized by autosomal recessive inheritance, early age of onset, FRDA-like clinical presentations, and hypoalbuminemia. Linkage of a causative gene of this disease to the FRDA locus was excluded by linkage analysis.
The clinical presentations of this disease were similar to those of a disease, which is called “ataxia with oculmotor aprataxia, AOA” linked to 9p13 (do Ceu Moreira, M et al., Am J Hum Genet 68, 501-8 (2001)).
The causative gene for the disease, which the inventor has found has not yet been identified. Therefore, diagnosis of this disease has been based only on clinical observations. | {
"pile_set_name": "USPTO Backgrounds"
} |
U.S. Pat. No. 4,708,084 and U.S. Pat. No. 4,948,095 are hereby incorporated by reference into this disclosure.
The invention relates generally to a water distribution system for directing the flow of water between a reservoir, such as a livewell on a fishing boat, and a water source, such as a lake or river.
The water distribution systems disclosed in U.S. Pat. Nos. 4,589,441 and 4,708,084 represent typical prior art apparatus for controlling the flow of water between a livewell and an external water source. These systems are used widely by many manufacturers of sport fishing boats. They achieve various advantages such as use of only a single pump to both fill the livewell and recirculate livewell water through the system's aeration device; and, the ability, when the boat is running, to automatically prevent loss of livewell water out the drain port, while continuing to draw water from the livewell drain for recirculation and aeration.
However, while commercially successful, the water distribution systems described in U.S. Pat. Nos. 4,589,411 and 4,708,084 nonetheless suffer from various disadvantages. For example, these prior art systems cannot prevent outside water from being drawn into the livewell by the aerator pump while the boat is still or moving slowly. This "recirculate-only" mode is desirable to prevent drawing hot or muddy water into the livewell when fishing shallow water. It also can be used, to cite another example, when chemicals, such as tranquilizers or ph treatments, are to be added to the livewell without diluting the chemical's effectiveness.
There are also situations in which the flapper valve described in U.S. Pat. Nos. 4,589,441 and 4,708,084 is too flexible to prevent a loss of water. For instance, when the boat is running in rough water, an oscillating pressure wave can occur in the livewell drain. This can cause the flapper to oscillate between open and closed positions, allowing a significant amount of water to leak from the livewell during long runs. Leakage can also occur when the boat is out of the water, as the pump suction can lift the flapper from sealing contact with its valve seat.
It would therefore be desireable to provide a water distribution system for a livewell which could operate in a "recirculate-only" mode, and which would overcome the effect of pressure oscillations in the drain line and resist the suction created by the aerator pump. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to paperboard processing equipment and more particularly to an apparatus for feeding paperboard sheets to printers, cutters, slotters, gluers and the like.
Various types of processing equipment are used in the manufacture of paperboard packaging, including printers, cutters, slitters and gluers. The equipment is used to manufacture a wide variety of boxes and special packaging from sheets of paperboard. Generally, individual sheets of paperboard are fed into the processing equipment manually or by automatic sheet feeders.
Heretofore, various sheet feeders have been proposed. Typically, these feed individual sheets from a stack to the feed rolls of the processing equipment. Problems experienced with prior proposals include excessive wear, complexity and difficulties with setup. It is important to minimize maintenance downtime in order to maintain production rates.
An example of one prior approach is found in U.S. Pat. No. 4,045,015 entitled ROTARY FEEDER FOR PAPERBOARD BLANKS and issued on Aug. 30, 1977, to Sardella. The rotary feeder disclosed in this patent includes a plurality of configured feed wheels. Each wheel has an active portion and a relieved portion. A transmission brings the active portion of the feed wheels into contact with the underside of a sheet of paperboard. The sheet is accelerated to match the speed of the feed rolls of the processing equipment. As the sheet is pulled into the feed roll, the wheels move out of contact with the paperboard sheet. The transmission must transmit rotary input motion so that the feed wheels are initially accelerated, then decelerated and then held stationary.
Another example of a sheet feeder is found in U.S. Pat. No. 4,494,745 entitled FEEDING APPARATUS FOR PAPERBOARD SHEETS and issued on Jan. 22, 1985, to Ward et al. The feeding apparatus disclosed in this patent includes a plurality of feed belts. The belts are brought into contact with the sheet and then actuated to bring the sheet to the feed rolls of the processing equipment. The belts are then moved out of contact with the paperboard sheet before their motion is stopped. The intermittent driving of the belts must be synchronized with the operation of lift bars which move the belts into and out of contact with the paperboard sheet.
A still further example of a paperboard sheet feeder includes a feed table which supports a plurality of feed wheels. The wheels are covered with a polyurethane material. A drive arrangement rotates the wheels to feed sheets. A low friction sliding grid is raised as the sheet is fed to the nip of the feed rolls. The grid keeps the sheet out of contact with the feed wheels as the sheet is drawn into the processing equipment by the feed rolls.
A need exists for a reliable sheet feeder of reduced complexity and increased reliability and which may be readily added at the feed ends of existing paperboard processing equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a technique of manufacturing a semiconductor device. More particularly, it relates to a technology effectively applicable to a manufacturing process in which a wafer is attracted to the top surface of a stage by electrostatic chucking, and the wafer is cooled.
For example, Japanese Unexamined Patent Publication No. 2001-152335 (Patent Document 1) discloses the following vacuum treatment method: for allowing a heating or cooling body to attract a to-be-treated object, and heating or cooling the to-be-treated object in vacuum, during at least the interval in which the temperature of the to-be-treated object reaches a prescribed temperature, a prescribed voltage is applied to an attraction electrode disposed at the heating or cooling body so that the applied voltage accumulatively increases in the case of heating, or so that the applied voltage accumulatively decreases in the case of cooling.
Whereas, Japanese Unexamined Patent Publication No. Hei 6 (1994)-291174 (Patent Document 2) discloses the following wafer attracting and holding method: the power source of an electrostatic chuck is formed as a variable voltage source, and the source voltage is reduced for attraction of the wafer to reduce the number of particles deposited on the wafer, and the source voltage is increased for the treatment after attraction to improve the cooling action of the electrostatic chuck.
Further, Japanese Unexamined Patent Publication No. Hei 8 (1996)-55905 (Patent Document 3) discloses the following method: the dielectric layer over the front surface of an electrostatic chuck is allowed to have a prescribed surface roughness and a pattern of grooves capable of including an inert gas even under a high vacuum, thereby to improve the uniformity of the wafer temperature.
Still further, Japanese Unexamined Patent Publication No. Hei 7 (1995)-335570 (Patent Document 4) discloses the following method for controlling the substrate temperature: in a plasma treatment method, a dielectric layer is disposed between a substrate and a substrate support electrode, and a direct current voltage is applied between the substrate and the substrate support electrode, and as a result, for allowing the substrate support electrode to electrostatically attract the substrate thereto, the direct current voltage is changed, thereby to change the electrostatic attraction force, which changes the substrate temperature.
Whereas, Japanese Unexamined Patent Publication No. Sho 62 (1987)-290133 (Patent Document 5) discloses the following dry etching method: over a stage held at a constant temperature, an electrostatic chuck having at least one pair of electrodes is placed, and the voltage applied to across the one pair of electrodes is changed, so that the degree of the thermal contact between a to-be-etched object and the stage is changed, thereby to control the temperature of the to-be-etched object,
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2001-152335
[Patent Document 2]
Japanese Unexamined Patent Publication No. Hei 6 (1994)-291174
[Patent Document 3]
Japanese Unexamined Patent Publication No. Hei 8 (1996)-55905
[Patent Document 4]
Japanese Unexamined Patent Publication No. Hei 7 (1995)-335570
[Patent Document 5]
Japanese Unexamined Patent Publication No. Sho 62 (1987)-290133 | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to the field of computational biology, and more particularly relates to stable gene analysis of transcriptome sequencing data.
Transcriptome data, including messenger ribonucleic acid (mRNA) data, may arise from genes, and more specifically from gene transcripts. A gene may have multiple differently spliced transcripts that give rise to mRNAs, and mRNAs may also arise from other regions on the genome. Sequencing technologies may provide data for a wide range of biological applications, and are powerful tools for investigating and understanding mRNA expression profiles. There is no limit on the number of mRNAs that may be surveyed by sequencing. Sequencing may not be target specific, so the genes that are examined do not have to be pre-selected, providing a wide dynamic range of data and also allowing the possibility of discovering new sequence variants and transcripts.
Various sequencing platforms may be used to perform mRNA sequencing and to produce mRNA sequencing datasets, each dataset corresponding to an assay of a particular sample. Such mRNA sequencing technologies may be high-throughput and produce relatively large amounts of sequence data. The size of an mRNA sequencing dataset may require the use of various computational techniques to make accurate and meaningful inferences regarding sequenced mRNAs from the dataset. In addition, datasets from different assays (which may be from the same sample at different points in time or from different samples) may also need to be compared. Analyzing data regarding relatively large numbers of mRNAs based on their activity, or expression, levels across different assays may be a complex process. | {
"pile_set_name": "USPTO Backgrounds"
} |
With increasing development of communication technologies, a 3G data card could be externally connected to a mobile electronic device such as a notebook computer, a personal digital assistant (PDA) or a media information device (MID). Therefore, such a mobile electronic device is also referred as a 3G mobile communication device.
For example, when a 3G data card is connected to a notebook computer, the notebook computer will possess the functions of wireless network connection and wireless communication. In other words, wherever and whenever the user is, the notebook computer could be connected to the Internet or used as a communicating device as long as the notebook computer is in communication with a base station of a mobile network system.
FIG. 1 is a schematic functional block diagram illustrating a notebook computer that is connected to a 3G data card according to the prior art. As shown in FIG. 1, the notebook computer 100 comprises a control circuit unit 120. The control circuit unit 120 comprises a central processing unit (CPU) 102, a north bridge chip 104 and a south bridge chip 106. The notebook computer 100 further comprises a peripheral component interconnect mini card (or PCI-Express mini card) interface. Via a USB interface of the PCI-Express mini card interface, the 3G data card 150 and the control circuit unit 120 communicate with each other to exchange data in order to implement the functions of wireless network connection and wireless communication.
For example, for making phone calls over the internet by the notebook computer 100, the notebook computer 100 needs to be in communication with a base station of a mobile network system through the connection between the control circuit unit 120 and the 3G data card 150.
Similarly, the personal digital assistant (PDA) includes a control circuit unit, for example an ARM9 processor or an ARM11 processor. Via the USB interface, the ARM9 processor and a 3G data card communicate with each other to exchange data, so that the PDA possesses the wireless network connection and wireless communication. Similarly, the media information device (MID) also has a control circuit unit to be connected with a 3G data card.
Please refer to FIG. 1 again. As known, the notebook computer 100 has several power-saving modes (e.g. S3 or S5 power-saving mode). S0 is the normal working mode of the notebook computer 100. According to the time needed to bring the notebook computer 100 back to the normal working mode S0, the notebook computer 100 enters different power-saving modes. For example, the notebook computer 100 is switched from the normal working mode S0 to the power-saving mode S3 if the notebook computer 100 has not been used for a relative longer time. Whereas, the notebook computer 100 is switched from the normal working mode S0 to the power-saving mode S5 if the notebook computer 100 has not been used for a relative shorter time.
In a case that the user intends to communicate with the base station through the 3G data card 150 when the notebook computer 100 is in a power-saving mode, the user could easily operate the notebook computer 100 to have the notebook computer 100 enter the normal working mode S0. As such, the user could make phone calls or link to the Internet by using the notebook computer 100.
On the other hand, in a case that an external phone call is being received by the 3G data card 150 when the notebook computer 100 is at a power-saving mode, the 3G data card 150 has no mechanism to wake up the notebook computer 100. Under this circumstance, the external phone call fails to be received by the notebook computer 100. In other words, for effectively receiving the external phone call, the notebook computer 100 that is connected to the 3G data card 150 should be continuously maintained at the normal working mode S0.
Since the notebook computer 100 that is connected to the 3G data card 150 fails to enter the power-saving mode, the power consumption of the notebook computer 100 is considerable and the built-in battery fails to provide electricity for a long time. Similarly, the above drawbacks occur when the personal digital assistant (PDA) or the media information device (MID) is connected to a 3G data card. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well known, an umbrella is a portable shade, screen, or canopy which opens and folds, and is carried in the hand as a shelter from the sun or rain. An umbrella is usually made of cloth or fabric extended on a folding radial frame of bars or strips suitably fastened to an axial rod, the opposite end of which terminates in a handle.
When using the umbrella it is commonplace to hold the open device by means of the handle in position such that the extended canopy is suitably disposed above the head of the user. This means that at least one hand of the user is occupied. In many situations such as during shopping, it would be desirable while using the umbrella as a shelter against the sun or rain to have both hands free for other purposes. It would also be desirable to enable an umbrella to be used by persons handicapped by loss of one or both arms or hands.
This invention is deemed to fulfill these needs most efficiently and effectively. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to a finishing compound for barrel and/or vibratory surface conditioning of metallic components, and more particularly to such a finishing compound which is capable of use with formation of only modest frothing or foaming, and further which is capable of either continuous or periodic filtration in order to separate entrained abrasive particles from the aqueous solution.
The surface conditioning of metallic components, including both ferrous and non-ferrous metallic components is a widely utilized process in industry. Mass production requires means for conditioning surfaces for either enhancing the appearance, or preparing the surface for subsequent chemical treatment, such as electroplating or painting, as well as meeting other miscellaneous functional requirements. In order to render such an operation economically feasible, means must be provided to economically condition the surfaces of the metallic components without sacrificing quality.
Because of the economic demands of material treatment, metal surface conditioning must be undertaken with a view toward minimizing expenditure of time and materials. Also, the environment must be protected from exposure to materials which may contaminate or otherwise deleteriously affect surface or subterranean water. The method and formulation of the present invention is one which permits surface conditioning to be undertaken without adversely affecting either the product quality or the environment.
Barrel and/or vibratory surface treatments have become widely recognized as a processing operation of industry. These techniques are widely accepted and have replaced in whole or in part such other labor intensive operations as belt sanding, wire brushing, hand scraping, electric or air-powered hand grinding, abrasive blasting, hand filing, buffing and the like. Those finishing operations which may be performed by either barrel or vibratory processing include cleaning, de-scaling, grinding and polishing, with this form of finishing being undertaken and completed without adversely affecting the quality of the parts being treated.
Normally, the parts to be treated are loaded into a receptacle for the barrel or vibratory element along with a finishing media and an aqueous compound. A wide variety of abrasive media are available commercially for this purpose, and the formulations of the present invention are adaptable for use with those various abrasive media which are presently utilized. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a paper transportation device for printers which use reel paper and which have a motor-driven platen and a paper pressure roller which contacts the platen and can be swung away from it.
German Pat. No. 3,014,340 (corresponding to U.S. Pat. No. 4,342,521) discloses a device for applying pressure to and lifting a paper transportation shaft in paper feeding apparatus. A locking device serves to pivot the paper transportation shaft, which is mounted on one side, away from the platen for the transportation of peripherally perforated paper. When non-perforated sheet or reel paper is used, the transportation shaft, together with the single paper transportation roller applied thereto, are moved into contact with the platen.
In order for the platen and the paper transportation roller to cooperate in slip-free fashion, the paper transportation roller and the platen are operated at the same peripheral speed.
If a paper transportation device of this kind were operated using multi-layer reel paper, the identical peripheral speed of the paper pressure roller and the platen would give rise to dislocations between the various layers of the multi-layer paper. Futhermore, in paper transportation devices of this type additional guide means are required near the paper guide to faciliate accurate insertion and adjustment of the non-perforated paper. | {
"pile_set_name": "USPTO Backgrounds"
} |
The development of artificial photosynthesis technology that replicates photosynthesis of plants to electrochemically convert sunlight to a chemical substance has been recently progressing in consideration of an energy problem and an environmental problem. Converting sunlight to a chemical substance to store it in a cylinder or a tank is advantageous in that it costs lower for energy storage and has a less storage loss than converting sunlight to electricity to store it in a battery.
A known electrochemical reaction device that electrochemically converts sunlight to a chemical substance is, for example, a two-electrode device including an electrode having a reduction catalyst for reducing carbon dioxide (CO2) and an electrode having an oxidation catalyst for oxidizing water (H2O), the electrodes being immersed in water containing dissolved carbon dioxide. In this case, these electrodes are electrically connected to each other via an electric wire or the like. The electrode having the oxidation catalyst oxidizes H2O using light energy to produce oxygen (½O2) and obtain a potential. The electrode having the reduction catalyst obtains the potential from the electrode that causes the oxidation reaction, thereby reducing carbon dioxide to produce formic acid (HCOOH) or the like. Such two-stage excitation for obtaining the reduction potential of the carbon dioxide makes the two-electrode device low in conversion efficiency from the sunlight to the chemical energy.
An electrochemical reaction device including a stack (silicon solar cell or the like) of a pair of electrodes and a photoelectric conversion layer sandwiched therebetween is also under investigation. The electrode on a light irradiated side oxidizes water (2H2O) using light energy to produce oxygen (O2) and hydrogen ions (4H|). The electrode on the opposite side uses the hydrogen ions (4H+) produced in the electrode on the light irradiated side and a potential (e−) generated in the photoelectric conversion layer to produce hydrogen (2H2) or the like as a chemical substance. An electrochemical reaction device including a stack of silicon solar cells is also known. The aforesaid electrochemical reaction device preferably has high conversion efficiency. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to golf ball manufacturing, and more particularly, to methods and systems of golf ball manufacturing that precisely control the retraction of mold pins based on feedback sensor data, to avoid the formation of imperfections in finished golf balls.
Conventional golf ball manufacturing techniques typically form layers of a golf ball by molding material around a sub-part, such as a solid core or a multilayered preformed golf ball portion. The molding material is typically a thermoplastic or thermoset material that is injection molded around the sub-part. The conventional injection molding techniques customarily use a two-part mold, with each part of the mold defining a hemispherical cavity. The two mold parts mate together with their cavities aligned to define the shape and size of the layer being formed over the sub-part. When the two mold parts are brought together, and before the molding material is injected, the sub-part of the golf ball is usually supported centrally within the cavities by retractable mold pins, leaving a mold cavity of uniform thickness in which to mold the outer layer over the sub-part. The mold pins typically have a pre-load or “pinch” against the sub-part to hold the sub-part in place. Molten molding material is then injected into the mold cavity through several gates. The molding material flowing from each of the gates surrounds the sub-part, converges, and fills the mold cavity between the golf ball sub-part and the mold. In filling the mold cavity, the molding material impinges on and surrounds the mold pins. Once the mold cavity is filled, but before the outer layer has completely hardened, the mold pins holding the sub-part retract so that the molding material may fill the voids left by the pins. The molding material then cools and hardens to form the outer layer, which may be an intermediate layer of the golf ball (e.g., an inner layer or mantle layer) or the cover of the golf ball.
In these conventional golf ball injection molding systems, the initially injected molten molding material fills the mold cavity and may contact and surround the mold pins before the mold pins are retracted. The pins must remain extended a duration sufficiently long enough to prevent movement of the sub-part during injection. In preventing this movement, however, when the pins are eventually retracted, the pins may leave gaps within the initially injected molten molding material. If the pins are held against the sub-part too long, the delay in filling the gaps with additional molten molding material may create a difference in cooling and hardening between the material in the gaps and the remaining material filling the mold cavity. Consequently, imperfections can form at or around the gaps left by the mold pins. For example, the retracting pins can leave cavities beneath the outer surface of the outer layer. In addition, fine cracks, “crows foot” marks, weld marks, and other boundary imperfections may be caused by the molten material flowing around the mold pins and forming knit lines or weld lines as the additional material fills the gap (e.g., circular space) vacated by a mold pin. Detrimentally, the imperfections around the mold pins may create weak spots on the finished ball and lead to premature cracking of the ball. | {
"pile_set_name": "USPTO Backgrounds"
} |
Determining the position of base stations in a network is, in many systems, a first step in finding the location of a mobile device. Examples of known methods for this include methods involving signal timing and observed time difference of arrival between more than one base station. These methods have downsides, including the need for precise timing between a reference clock and the network measurements, and a potential need for many measurements to be made across multiple base stations in a network. Similarly, systems using global navigation satellite systems (GNSS) in conjunction with mobile devices to locate base stations require precise reference clock synchronization. Improved systems and methods determining the relative location between a base station and a mobile device may thus be desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention is in the field of semiconductor manufacturing and more specifically in the field of manufacturing multilayer structures that include copper.
2. Related Art
Dielectric barrier layers including Cu—SiC or Cu—Si3N4 are commonly used in semiconductor devices. For example, these dielectric barrier layers may be incorporated within advanced back-end-of-line (BEOL) metallization structures. It has been found that the inclusion of a cobalt-alloy capping layer deposited between the copper layer and the SiC or Si3N4 layer results in improved adhesion between the layers and improved electro-migration and copper diffusion characteristics. The cobalt-alloy capping layer can be deposited on copper by chemical vapor deposition (CVD) or by electroless deposition.
Electroless deposition of cobalt alloys such as CoWBP or CoWP on copper has been demonstrated. A typical approach is to use a cobalt salt, a tungsten salt, a hypophosphite reducing agent, a borane reducing agent such as DMAB (dimethylaminoborane), and a complexing agent in a highly alkaline environment. For example, deposition usually occurs around a pH of 9 or above. When the cobalt alloy is to be used for adhesion improvement purposes only, the tungsten and phosphorus may be unnecessary as these elements are included principally to improve resistance to copper diffusion by stuffing the Co grain boundaries and reducing or eliminating Cu diffusion paths.
Electroless deposition can be inhibited by the presence of a thin copper-oxide layer on the copper. This copper-oxide layer forms when the copper is exposed to air or other oxidizing environment. Further, contaminants on the copper and dielectric surfaces can cause pattern-dependent plating effects such as pattern-dependent variations in the thickness of the cobalt-alloy capping layer. There is, therefore, a need to limit the formation of native copper oxide on the copper layer prior to deposition of the cobalt-alloy capping layer. Typically, the processing environment is controlled to limit this oxide formation, and also to remove any copper oxide and organic contaminants already on the copper surface. Unfortunately, the use of highly alkaline solutions in the electroless deposition of cobalt alloys, as in the prior art, promotes rather than limits the formation of copper oxides. | {
"pile_set_name": "USPTO Backgrounds"
} |
Roller type window shades (blinds) are known coverings for windows. They include light penetrating blinds and black-out blinds (effectively blocking out the light from passing through the blind) which are each pulled down to cover the window, for example, at night.
Attempts have been made to decorate the face of the material of the light transmitting (penetrating) blinds (shades). In this regard designs and repeating patterns are applied by a rotary printer to the weave material from which the light transmitting (penetrating) blinds (shades) are made up. The applied designs and patterns are however distorted when applied on the material. Despite this distortion, manufacturers continue to manufacture the light transmitting blinds bearing the designs and patterns. The reason is that people hanging the roller type window shades (blinds) do not want a plain fabric face covering the window area when the blind material is rolled down. The weave of the light transmitting (penetrating) fabric cannot however support a high definition picture or design on its face. The designs or pictures when applied are distorted by the nature of the fabric. Furthermore the light transmission makes the design visible from the outside-a not desirable feature or attribute.
In an attempt to overcome these difficulties with the application of the designs and patterns and in an effort to provide a high definition to the applied design and patterns, vinyl fabric or paper bearing high definition designs and high definition patterns are applied to the light transmitting fabric (and even black out blind material). However the costs of making the roller blinds (shades) bearing their designs are escalated substantially making them less commercially desirable and viable.
In another attempt to apply designs to blinds, manufacturers have applied a design to PVC material (without backing) by a continuing application of a design to the face of the material and thereafter combining the material with a fiberglass layer and a black out layer to form a laminated shade which is then secured to a roller to form a window blind. However it is only possible to manufacture blinds with abstract designs or simple designs for which distortion of the design was not a problem because there was distortion with this process. Because PVC is stretchable any design applied by, for example rotary gravure, or silk screen, printing, would be distorted. Thus photographs (of for example sports celebrities) and pictures (of for example cartoon characters, scenes), logos, icons and the like could not be imprinted on roller blinds, (shades) because of the distortion.
It is therefore an object of this invention to provide new roller window blinds (roller window shades) each presenting a high definition photograph (for example a famous person) and pictures (for example cartoon characters, scenes), trade marks, icons, logos and the like imprinted directly on the material making up the face of the roller blind (shade).
It is a further object of the invention to provide processes for making such roller blinds (shades).
Further and other objects of the invention will be realized by those skilled in the art from the following summary of the invention and detailed description of embodiments thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
A method for spatially modulating illuminating light is known a method of observing a specimen such as a biological specimen or the like with super-resolution (see patent documents 1, 2, non-patent documents 1, 2 or the like). According to this method, the spatial frequency of the structure of the specimen is modulated by spatially modulated illuminating light, and information of the spatial frequency having high resolution exceeding the limit of resolution is contributed to the image formation of the optical system of the microscope.
However, in order to observe a super-resolved image, a modulated image of a specimen (modulated image) is required to be demodulated. The demodulation method is roughly classified into two kinds of methods, optical demodulation (see non-patent documents 1, 2) and calculation-based demodulation (see patent documents 1, 2). The optical demodulation is implemented by re-modulating the modulated image by using a spatial modulator such as a grating or the like. Patent Document 1: Japanese Unexamined Patent Application Publication No. Hei 11-242189 Patent Document 2: Specification of U.S. Re-issued Pat. No. 38307 Non-patent Document 1: W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II”, Journal of the Optical Society of America, Vol. 37, PP. 932, 1967 Non-patent Document 2: W. Lukosz and M. Marchand, Opt. Acta. 10, 241, 1963 | {
"pile_set_name": "USPTO Backgrounds"
} |
From U.S. Pat. No. 6,027,422 there is known a switchable synchronising device for a four-wheel drive vehicle. The synchronising device can be switched in such a way that it is suitable for a two-wheel drive and a four-wheel drive. For this purpose, there is provided a differential assembly with a switchable claw coupling which, in a closed condition, transmits torque to the differential and, in an open condition, interrupts a torque flow.
From DE 102 16 290 A1 there is known a similar differential mechanism which is suitable for changing from two-wheel drive to four-wheel drive. The differential mechanism comprises a differential drive, a coupling and an electromagnetic actuator for actuating the coupling.
Document DE 101 51 713 A1 proposes a differential system for a hybrid vehicle. The hybrid vehicle comprises a front wheel drive system with an internal combustion engine and a rear wheel drive system with an electric motor. Via a reduction gear, the electric motor drives an axle differential which transmits the torque to the lefthand and righthand sideshafts. There is provided a control system with a sensor for recording the driving condition and for generating a motor signal for the electric motor. Under normal driving conditions, the internal combustion engine drives the front wheels. If necessary, for example when starting or accelerating the vehicle or when the front wheels slip, the rear wheels are additionally driven by the electric motor.
From DE 10 2004 039 826 B4 there is known a clutch unit, wherein an engagement of a dog clutch can be restricted until a revolution of an input shaft and the revolution of an output shaft correspond to each other so as to be suitable for the engagement. Thus, torque can be reliably transmitted from the driving source to the wheels through a reduction mechanism.
From US 2008/0122436 A1 there is known an electromagnetic actuator assembly and a differential assembly that incorporates same. The electromagnetic actuator assembly comprises a frame, a movable plunger, first and second sensor targets that are coupled to a plunger for movements therewith, first and second sensors that are coupled to the frame and controller. The first and second sensors are configured to sense a position of the first, respectively the second sensor target and to produce a first and second sensor signal in response thereto.
Electric motors have a limited speed range and are therefore usually used as supplementary drives in a motor vehicle which, in addition to the electric motor, comprises an internal combustion engine as the main drive. Therefore, the electric motor is primarily used for low vehicle speeds for driving the vehicle, for instance in urban traffic where frequent starting and braking operations are required. Because of the relatively high torque values provided by the electric motor, there exist good traction conditions and a good starting behaviour. At higher vehicle speeds, for example during long distance driving, the electric motor is switched off, so that the drag moment of the electric motor does not adversely affect the efficiency of the motor vehicle and fuel consumption. For switching off the electric motor, use is made of a controllable coupling which is arranged in the driveline between the electric motor and the differential drive.
There is a need for a differential assembly, more particularly for a driving axle driven by an electric motor in the driveline of a motor vehicle, which differential assembly reliably identifies the switching condition of the coupling and which comprises a simple and space-saving design. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to computerized Enterprise Resource Planning (ERP) systems. More particularly, the present invention relates to an electronic signature approval process for approving modifications to transactions or documents in an ERP system.
Enterprise resource planning (or ERP) is a phrase used to describe a broad set of activities supported by multi-module application software that helps a manufacturer or other business manage the important parts of its business. Computerized ERP systems typically handle the logistics of various activity modules internal to a business or organization, such as manufacturing, production, distribution, inventory, shipping, invoicing, accounting and human resource management. Often, an ERP system uses or is integrated with a relational database system. An example of an ERP system is Microsoft® Business Solutions-Axapta®.
Each activity module managed by an ERP system includes transactions or documents. Transactions or documents include information or data that describes processes that occur internal to a business or organization. Many businesses, such as those in the pharmaceutical or biomedical industries, have certain processes that are critical processes and need to be approved before they can be implemented as an activity of the business. Such critical processes are highly regulated by the Food and Drug Administration (FDA) and require that implementation of new processes and modifications to processes as well as deletions of processes are signed off by a representative or multiple representatives of the pharmaceutical or biomedical business.
Generally, information related to a critical process is stored in the ERP system in the form of a transaction or document. To approve such a process or a modification to a process, the document is printed out and manually signed and dated by an individual or multiple individuals who are allowed to make such approvals. The document is then stored in a safe place that is readily available such that copies can be made of the approved document. For example, if the document requiring approval is a manufacturing drawing or a process of how a product is developed then a working copy of the originally signed document can be made for those needing to complete a specific job shown or discussed in the document. After the job is complete, the working copy is destroyed such that only one original exists.
This manual approval process ensures a history or audit trail that describes the lifecycle of data by storing old versions of an approved document as well as storing modified versions of a document. However, such a paper trail is difficult to manage. Original documents can easily become misplaced. To ensure that the history of critical data is fully documented, keeping and storing additional copies of the original documents is practiced, thus creating more problems with respect to managing paper trails. | {
"pile_set_name": "USPTO Backgrounds"
} |
A computer network is a collection of interconnected computing devices that exchange data and share resources. In a packet-based network, such as the Internet, the computing devices communicate data by dividing the data into small blocks called packets. The packets are individually routed across the network from a source device to a destination device. The destination device extracts the data from the packets and assembles the data into its original form. Dividing the data into packets enables the source device to resend only those individual packets that may be lost during transmission.
Certain devices within the network, referred to as routers, maintain tables of routing information that describe available routes through the network. Each route defines a path between two locations on the network. Upon receiving an incoming data packet, the router examines header information within the packet to identify the destination for the packet. Based on the header information, the router accesses the routing table, selects an appropriate route for the packet and forwards the packet accordingly.
Conventional routers typically include a mechanism, referred to herein as a management interface, for locally or remotely configuring the router. By interacting with the management interface, various clients, such as human users and automated scripts, can perform configuration tasks. For example, the clients may configure interface cards of the router, adjust parameters for the supported network protocols, specify the physical components within the routing device, modify the routing information maintained by the router, access software modules and other resources residing on the router, and perform other configuration tasks.
In some routers, the management interface allows a client to configure the present operational configuration of the router using a commit-based model. In a commit-based model, a client issues one or more configuration commands, and then directs the management interface to apply the commands by issuing a “commit” command. The client may further direct the management interface to disregard the commands by issuing a “rollback” command. Typically, the management interface maintains a copy of the operational configuration, i.e., a candidate configuration, to which the management interface applies the one or more configuration commands. Upon receiving a commit command, the changes made to the candidate configuration transfer to the operational configuration. A rollback command causes the management interface to replace the candidate configuration with a new copy of the operational configuration, thereby removing any changes to the candidate configuration made by the configuration commands.
The management interface, in some routers, also allows a client to archive the operational configuration of the router. Furthermore, the management interface allows a client to restore an archived configuration causing the archived configuration to become the operational configuration. Typically, when restoring an archived configuration, the archived configuration is first restored as the candidate configuration. Subsequently, the management interface issues the commit command to cause the configuration differences between the archived configuration and the operational configuration to transfer to the operational configuration, thereby effectively replacing the operational configuration with the candidate configuration.
As the complexity of computing networks has increased, there has been an increasing need for routers and other network devices to support concurrent configuration by multiple clients. Consequently, some devices allow multiple clients to concurrently issue configuration commands to edit the candidate configuration. In other words, the management interface of such a device does not “lock” the candidate configuration of the device to a single client, i.e., reject configuration commands from other clients, but receives configuration commands from the multiple clients concurrently. Allowing multiple clients to configure the candidate configuration may become problematic during a restore of an archived configuration since the multiple clients may corrupt the archived configuration. Multiple clients may inadvertently alter the archived configuration prior to when the archived configuration becomes the operational configuration and in some instances corrupt the archived configuration. Upon becoming the operational configuration, the corrupt archived configuration may cause the router to become unreachable, inoperable, or both.
To further complicate the restoration process, one or more of the clients often establish sessions with the router via the management interface and remotely transmit configuration commands via the session. A loss of a client connection to the router, i.e., session failure, while restoring an archived configuration may also result in partial restoration or corruption of the operational configuration of the router.
In addition, an archived configuration may be corrupt or contain incorrect configuration data such that, upon restoration of the archived configuration, the router may become inoperable and unreachable by the one or more clients. Thus, routers supporting restoration of an archived configuration do not provide a reliable environment for restoration of an archived configuration, and do not ensure router functionality once the restoration is complete. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure relates to surgical instruments such as electrosurgical and ultrasonic devices. More particularly, the present disclosure relates to end-effector assemblies including three jaw members for use in surgical instruments to grasp, seal and/or cut tissue.
2. Discussion of Related Art
Electrosurgical and ultrasonic devices have become widely used by surgeons. Electrosurgery involves the application of thermal and/or electrical energy to cut, dissect, ablate, coagulate, cauterize, seal or otherwise treat biological tissue during a surgical procedure. Electrosurgery is typically performed using an electrosurgical generator operable to output energy and a handpiece including a surgical instrument (e.g., end effector) adapted to transmit energy to a tissue site during electrosurgical procedures. Electrosurgery can be performed using either a monopolar or a bipolar instrument.
The basic purpose of both monopolar and bipolar electrosurgery is to produce heat to achieve the desired tissue/clinical effect. In monopolar electrosurgery, devices use an instrument with a single, active electrode to deliver energy from an electrosurgical generator to tissue, and a patient return electrode or pad that is attached externally to the patient (e.g., a plate positioned on the patient's thigh or back) as the means to complete the electrical circuit between the electrosurgical generator and the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode. In bipolar electrosurgery, both the active electrode and return electrode functions are performed at the site of surgery. Bipolar electrosurgical devices include two electrodes that are located in proximity to one another for the application of current between their surfaces. Bipolar electrosurgical current travels from one electrode, through the intervening tissue to the other electrode to complete the electrical circuit. Bipolar instruments generally include end-effectors, such as grippers, cutters, forceps, dissectors and the like.
Forceps utilize mechanical action to constrict, grasp, dissect and/or clamp tissue. By utilizing an electrosurgical forceps, a surgeon can utilize both mechanical clamping action and electrosurgical energy to effect hemostasis by heating the tissue and blood vessels to cauterize, coagulate/desiccate, seal and/or divide tissue. Bipolar electrosurgical forceps utilize two generally opposing electrodes that are operably associated with the inner opposing surfaces of end effectors and that are both electrically coupled to an electrosurgical generator. In bipolar forceps, the end-effector assembly generally includes opposing jaw assemblies pivotably mounted with respect to one another. In a bipolar configuration, only the tissue grasped between the jaw assemblies is included in the electrical circuit. Because the return function is performed by one jaw assembly of the forceps, no patient return electrode is needed.
By utilizing an electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate and/or seal tissue and/or simply reduce or slow bleeding by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw assemblies to the tissue. During the sealing process, mechanical factors such as the pressure applied between opposing jaw assemblies and the gap distance between the electrically-conductive tissue-contacting surfaces (electrodes) of the jaw assemblies play a role in determining the resulting thickness of the sealed tissue and effectiveness of the seal.
A variety of types of end-effector assemblies have been employed for various types of surgery, e.g., electrosurgery using a variety of types of monopolar and bipolar electrosurgical instruments. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a control system for a work machine and a method for controlling at least one hydraulic cylinder.
The invention will be described below in connection with a work machine in the form of a wheel loader. This is a preferred but in no way limiting application of the invention. The invention can also be used for other types of work machines (or work vehicles), such as an excavator loader (backhoe) and excavating machine.
The invention relates, for example, to controlling lifting and/or tilting cylinders for operating an implement.
More precisely, the invention relates to a control system which comprises a hydraulic machine which functions as both pump and motor. The hydraulic machine is connected in a driving manner to an electric machine which functions as both motor and generator.
The hydraulic machine therefore functions as a pump in a first operating state and supplies pressurized hydraulic fluid to the hydraulic cylinder. The hydraulic machine also functions as a hydraulic motor in a second operating state and is driven by a hydraulic fluid flow from the hydraulic cylinder. The electric machine therefore functions as an electric motor in the first operating state and as a generator in the second operating state.
The first operating state corresponds to a work operation, such as lifting or tilting, being carried out with the hydraulic cylinder. Hydraulic fluid is therefore directed to the hydraulic cylinder for movement of the piston of the cylinder. On the other hand, the second operating state is an energy recovery state.
A first object of the invention is to provide a control system, preferably for a lifting and/or tilting function, which affords an opportunity for energy-efficient operation.
According to an aspect of the present invention, a control system is provided for a work machine, which system comprises an electric machine, a hydraulic machine and at least one hydraulic cylinder, the electric machine being connected in a driving manner to the hydraulic machine, the hydraulic machine being connected to a piston side of the hydraulic cylinder via a first line and a piston-rod side of the hydraulic cylinder via a second line, the hydraulic machine being adapted to be driven by the electric machine and supply the hydraulic cylinder with pressurized hydraulic fluid from a tank in a first operating state and to be driven by a hydraulic fluid flow from the hydraulic cylinder and drive the electric machine in a second operating state.
The hydraulic cylinder is preferably adapted to move an implement in order to perform a work function. According to a first example, the hydraulic cylinder comprises a lifting cylinder for moving a loading arm which is pivotably connected to a vehicle frame, the implement being arranged on the loading arm. According to a second example, the hydraulic cylinder comprises a tilting cylinder for moving the implement which is pivotably connected to the loading arm.
The speed of the cylinder is preferably controlled directly by the electric machine, that is to say no control valves are required between the hydraulic machine and the cylinder for regulating direction and speed of the movement. In some cases, on/off valves which open and respectively close a communication for the hydraulic fluid flow are required.
According to a preferred embodiment of the invention, the hydraulic machine has a first port which is connected to the piston side of the hydraulic cylinder via the first line and a second port which is connected to the piston-rod side of the hydraulic cylinder via the second line. The second port is thus separated from the first port. In addition, the hydraulic machine is preferably arranged to be driven in two different directions, with one direction being associated with a flow out from the first port and the second direction being associated with a flow out from the second port. The hydraulic machine is thus capable of pumping in both directions.
According to another preferred embodiment of the invention, the system comprises a means for controlling pressure, which pressure means is arranged on a line between the hydraulic machine and the tank, to achieve a pressure build-up between the hydraulic machine and the pressure means. In this way, it is possible to achieve a refilling of the piston-rod side of the hydraulic cylinder during lowering, a forced lowering of the implement (so-called “power down”), and additional energy recovery, etc. Either the piston side or the piston-rod side is preferably connected to the line between the hydraulic machine and the pressure means.
A second object of the invention is to achieve a method for controlling a hydraulic cylinder that makes it possible to carry out a forced lowering (“power down”) of the implement.
According to an aspect of the present invention, a method is provided for controlling a hydraulic cylinder under the influence of a load, with a hydraulic machine being operatively connected to the hydraulic cylinder via a first line and to a tank via a second line, comprising the steps of controlling the hydraulic machine in such a way that it is allowed to be driven by a flow of hydraulic fluid from the hydraulic cylinder, of detecting an operating parameter that is indicative of a pressure on the piston side of the hydraulic cylinder, of comparing the detected pressure with a predetermined level and of increasing the pressure on the piston-rod side of the hydraulic cylinder if the detected pressure is less than the predetermined level.
By this means, it is also possible to achieve a refilling of the piston-rod side of the hydraulic cylinder during lowering.
A third object of the invention is to achieve a method that makes possible an efficient recovery of energy during movement of the hydraulic cylinder under the influence of a load.
According to an aspect of the present invention, a method is provided for regeneration of energy during movement of a hydraulic cylinder under the influence of a load, with a hydraulic machine being operatively connected to the hydraulic cylinder via a first line and to a tank via a second line, comprising the steps of controlling the hydraulic machine in such a way that it is allowed to be driven by a flow of hydraulic fluid from the hydraulic cylinder, of detecting at least one operating parameter and of increasing the pressure in the line between the hydraulic machine and the tank, on the basis of the detected operating parameter, in order to increase the pressure on the tank side of the hydraulic machine.
Further preferred embodiments and advantages of the invention emerge from the following description. | {
"pile_set_name": "USPTO Backgrounds"
} |
Lightweight conductors that can transmit large amounts of electric currents without significant loss are being sought in numerous applications. For example, in many electrorefining applications (e.g., aluminum production processes), high amounts of currents are required. Other applications requiring lightweight, high-current conductors include naval ships. Ships are currently outfitted with a complex system of coiled cables (called degaussing cables) to reduce the magnetic field developed on the ship's body that are typically made of ferromagnetic materials. This allows the ships to evade magnetic mines that explode upon sensing a change in the magnetic field. To accommodate the high-current requirements in exemplary applications described above, large diameter wires, typically made of copper or aluminum, are generally utilized. However, this leads to undesirably heavy, bulky, and inflexible cables. Cables having lowered weight and increased flexibility that can carry large amounts of electric currents without significant loss have not yet been realized. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a technique to control the exhaust state for a fuel cell for a mobile unit.
2. Description of the Related Art
In fuel cells, a reaction generates electricity and discharges a corresponding amount of generated water. Especially in fuel cells for automobiles, a larger amount of water is generated as the vehicle travels a longer distance. Most fuel cells for automobiles are of a solid polymer type, which basically operates at low temperatures. A common problem with the fuel cells is the treatment of the generated water, that is, preventing the generated water from freezing on the road in cold regions or from splashing toward any following vehicles.
Depending on the ambient air conditions and the driving conditions, however, it is also necessary to suppress the generation of white smoke from the exhaust port of a discharge passage for off gas. Generation of the white smoke is not desirable from the standpoint of the merchantability of the automobiles. In some instances, the impact of the automobiles on the surroundings due to the white smoke should be taken into account. In view of the above, proposals have been made to suppress the white smoke in fuel cells for vehicles in Japanese Patent Application Publication No. 7-169498 (JP-A-7-169498) and Japanese Patent Application Publication No. 2001-185199 (JP-A-2001-185199).
To reduce the white smoke, in general, the fuel cells for vehicles have adopted means for cooling or heating the off gas beyond the temperature range where white smoke is easily generated, means for suppressing the amount of scavenged air, and so forth. Therefore, energy is required to reduce the white smoke, which contradicts the requirement to improve the power generation efficiency.
That is, the fuel cells described in the above documents estimate the generation of white smoke mainly based on the difference between the exhaust air temperature and the ambient temperature. Then, a white smoke reduction process is executed according to the estimation results. If the white smoke reduction process is executed frequently, the fuel efficiency is reduced due to the heating, the energy efficiency is reduced, the output is reduced due to the suppressed amount of scavenged air, etc., to a larger degree.
As a result of a more detailed examination of the circumstances where the white smoke is generated, the following may be pointed out. The white smoke generated is not noticeable while the vehicle is in motion because of the diffusion effect of the head wind, but is noticeable while the vehicle is stationary or traveling at low speeds. The visibility of the white smoke varies in accordance with the environmental conditions around the vehicle, such as whether it is daytime or nighttime and whether it is sunny or rainy. The white smoke generated affects the vision of the operator when backing the vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
Traditionally, most commercially available inkjet printers have a print engine which forms part of the overall structure and design of the printer. In this regard, the body of the printer unit is typically constructed to accommodate the print head and associated media delivery mechanisms, and these features are integral with the printer unit.
This is especially the case with inkjet printers that employ a printhead that traverses back and forth across the media as the media is progressed through the printer unit in small iterations. In such cases the reciprocating printhead is typically mounted to the body of the printer unit such that it can traverse the width of the printer unit between a media input roller and a media output roller, with the media input and output rollers forming part of the structure of the printer unit. With such a printer unit it may be possible to remove the printhead for replacement, however the other parts of the print engine, such as the media transport rollers, control circuitry and maintenance stations, are typically fixed within the printer unit and replacement of these parts is not possible without replacement of the entire printer unit.
As well as being rather fixed in their design construction, printer units employing reciprocating type printheads are considerably slow, particularly when performing print jobs of full colour and/or photo quality. This is due to the fact that the printhead must continually traverse the stationary media to deposit the ink on the surface of the media and it may take a number of swathes of the printhead to deposit one line of the image.
Recently, it has been possible to provide a printhead that extends the entire width of the print media so that the printhead can remain stationary as the media is transported past the printhead. Such systems greatly increase the speed at which printing can occur as the printhead no longer needs to perform a number of swathes to deposit a line of an image, but rather the printhead can deposit the ink on the media as it moves past at high speeds. Such printheads have made it possible to perform full colour 1600 dpi printing at speeds in the vicinity of 60 pages per minute, speeds previously unattainable with conventional inkjet printers.
Such a pagewidth printhead typically requires high precision and high speed paper movement and as such the entire print engine (printhead, paper handling mechanisms and control circuitry etc) must be configured accordingly to ensure high quality output.
Accordingly, there is a need to provide a print engine having a pagewidth printhead that can be readily employed within a standard body of a printer unit and is constructed in a manner that ensures that all the necessary parts of the print engine are configured in a manner that enables consistent, high speed printing. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally, a technique of evaluating an operation status from the viewpoint of reducing a fuel consumption amount (energy saving) is known. For example, Patent Literature 1 discloses a configuration that teaches an operator improvement of a fuel consumption amount. According to the fuel-saving operation evaluation system disclosed in Patent Literature 1, how much the fuel can be saved can be quantitatively obtained.
However, according to the fuel-saving operation evaluation system disclosed in Patent Literature 1, the fuel consumption amount in the average operation time needs to be set in advance. Also, the above fuel-saving operation evaluation system has a configuration in which an on-vehicle controller performs calculation, and thus, it is difficult to compare an operator with other operators in real time. Further, according to the above fuel-saving operation evaluation system, it is also difficult to compare an operation with a past operation history due to a limit in storage capacity. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various kinds of window coverings exist, wherein a window covering, for example, a plurality of blind slats, in the case of venetian blinds, or some other form of window covering material such as drapery material or the like in certain other kinds of window covering, must be adjusted or controlled from above in various ways.
In particular, venetian blind structures are well known consisting of a head rail supported typically in a window or in an opening. A series of horizontal slats are suspended beneath the head rail. They are carried on what are known in the trade as "ladder tapes" or simply "ladders". In addition, suspension cords, or "raise" cords, pass through openings in the slats, to the lowermost slat. Raising and lowering of the suspension cords permits the slats to be raised and lowered. The ladder tapes are pairs of cords or tapes with spaced apart transverse flexible elements somewhat in the manner of rope ladders. The tapes actually support the weight of the individual slats and separate them from one another. At their upper ends in the head rail, the ladder tapes are secured in such a manner, to a tape control rod, that the tapes on one side of the slats may be wound up, while the tapes on the other side of the slats are unwound. In this way, the slats can be tilted from the horizontal to an almost, but not completely, vertical position and back again. Usually, they can be tilted either way from the horizontal, to provide various effects of light and shade within a room.
In the past, numerous different designs of ladder tape controls have been provided in different makes of blinds. Generally speaking, a transverse control shaft extends along most of the length of the headrail, and is operated by a drive at one end of the head rail. Usually a worm and wheel gear drive is used, operated by means of a wand. In some cases, a direct drive is provided, operated simply by means of an endless chain, driving a sprocket keyed directly to the control shaft.
In whatever manner, some means are provided for rotating the transverse control shaft to and fro through a predetermined arc, usually slightly less than 180 degrees, although a greater rotation may be required depending upon the width of the slots, and the diameter of the shaft.
The vertical cords or tapes of the two ladder tapes were attached in some fashion to the shaft, so that when the shaft was in the mid position, i.e., at about the 90 degree rotational position, the two ladder tapes were of equal length. In this way, the "rungs" of each of the ladder tapes were essentially horizontal, so that the blind slats were horizontal and were thus "open". As the shaft was rotated one way or the other, the rungs then tilted one way or the other, causing tilting of the actual slats in the same fashion.
The actual manner in which the cords were attached to the shaft varied from one manufacturer to another. In order to provide for an adequate degree of tilting movement of the slats themselves, i.e., from a more or less vertical position on one side to a more or less vertical position on the other side, it was desirable to provide some form of drum device on the shaft, to which the two ends of the ladder tapes or cords could be attached. The drum device would usually have a predetermined diameter greater than that of the shaft itself. In this way, partial rotation of the shaft would provide an adequate degree of movement of the cords themselves, so as to produce a complete tilting movement of the slats from one extreme tilt to the other. Obviously, for reasons of economy it was desirable to have a control shaft of a simple economical slender design to take up a minimum of space and use a minimum of material, and yet to have actual tape drums of adequate diameter, to produce a sufficient degree of movement of the cords for the purpose.
Various problems arise in the design of such drum devices. For example, it is necessary that, in some way, the drum be keyed to the shaft so that when the shaft is rotated the two or more drums supporting the two or more sets of ladder tapes or cords will all be rotated in unison. The drums must be held at a predetermined height along the length of the head rail, so as to maintain the blind slats level. Some form of attachment means must be provided for a quick attachment of the cords to the drums, so that during assembly, workers do not have to spend excessive time on insuring that the lengths of cord are equalized as between two or more drums. If there is any inequality in the length of the pairs of cords, then the blind will not hang level.
All of these features must be provided in low cost parts which are simple and economical to manufacture and for which the tooling cost is a minimum, and which are adaptable to blinds of a variety of different sizes.
Another problem that arises in the design of such venetian blinds is the provision of bearings within the head rail to carry the shaft. It is, for example, not uncommon to attempt in some way to associate bearing devices with the drums carrying the cords, so that the assembly on the shafts is simplified. However, not only is it necessary to assemble the bearings and the drums on the shafts, it is also then necessary to place the shaft, with its bearings and drums, on complimentary bearing supports located in the head rail. It is also necessary to do this by such means that the shaft is retained in position in the head rail so that it cannot inadvertently spring upwardly due, for example, to over vigorous rotation of the shaft, by a user.
It must also be borne in mind that the ladder cords or tapes will, in fact, pass through openings in the head rail, downwardly, so as to support the slats below the head rail. Usually the head rail is also made of sheet metal, and any openings will have relatively sharp edges. It is, therefore, desirable to provide some form of anti-friction guide means within the head rail, registering with the holes in the head rail, through which the ladder cords can pass, so that wear on the cords is reduced to a minimum, thereby prolonging the useful life of the blinds.
It will also be remembered that such venetian blinds also have cords for raising and lowering the entire set of horizontal slats. As explained, this is usually achieved by means of what are known as "raise" cords, which pass downwardly through openings in the head rail and downwardly through openings in successive slats, and are fastened at a lower most slat member.
Usually there are two raise cords, and they pass through a frictional cord lock pulley device at one end of the head rail. Pulling on the two cords together will raise the blind, and releasing the two cords from the cord lock will permit the blind to be lowered. Again, it is highly desirable to provide some form of anti-friction guide means in the head rail, for guiding the raise cords, during their movement so as to minimize wear, and thereby prolong the useful life of the blind.
In the past, one of the commonest designs of drum and bearing systems for the ladder cords has been based on a combination of a sleeve of generally thermoplastic material slid on the shaft, and a more or less cylindrical band of sheet metal material clamped around the thermoplastic sleeve. The band of thermoplastic material was formed with struck-out tongues. The ends of the cords could be placed under the tongues which were then squeezed flat, thereby holding the cords in position. However, the design of the bearing supports in the head rail, which were used in combination with this system, provided two spaced-apart closed bearing rings to retain the control rod in position.
The assembly of the control rod into these two bearings each with closed bearing rings presented a tedious problem. A first thermoplastic sleeve with its clamping cord sleeve around it was placed on the control rod. The control rod was then slid through a first one of the bearing rings. A further sleeve was then placed on the control rod with a further cord clamping sleeve on that plastic sleeve, and that was then slid into the second of the bearing rings. When the rod and the various sleeves were then in Position in the bearing rings, the ladder cords could then be led upwardly through openings in the head rail, and wrapped around the drums, hooked under the sheet metal tongues which were then flattened to hold the cords in position. This assembly work required considerable skill and considerable time. If any mistake was made in clamping of one or other of the cords in position, then the blind would never hang level, and it was necessary to send a service man to correct the problem. Not infrequently, one or more of the cords would become loose from having been inadequately clamped underneath such a tongue, again requiring service calls.
The apparatus, therefore, required several different parts some made of thermoplastic and some made of sheet metal, and required a lengthy and complex assembly process, which had to be carried out in a precise order, and with considerable skill exercised at various stages, in order to produce a satisfactory result.
The net result increased the overall cost of the blinds to an unacceptable extent.
Clearly, it would be advantageous to provide a system wherein the drum devices can be assembled on the shaft, independently of the head rail. Advantageously the assembly of the drum devices and the shaft can then be inserted in suitable bearing supports in the head rail, and then finally the cords can be placed in position, adjusted to length easily and readily, and securely clamped, by finger pressure. Preferably all of the parts will be manufactured of thermoplastic material so that special tools for clamping sheet metal parts will not be required, the clamping being achieved simply by a frictional interference fit between two plastic parts clamping the cords.
In addition, advantageously such a system will incorporate anti-friction means for guiding both the ladder cords and also the raise cords, without the provision of additional parts requiring extra assembly operations.
As noted above, while the invention is of particular application to venetian blinds having slats which must be tilted to and fro, it is also of application to other forms of window covering devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to the combination of certain known active compounds for therapeutic purposes.
The substances used in the combination according to the invention are known active compounds from the PDE inhibitors class and active compounds from the xcex22 adrenoceptor agonists class. Their combined use in the sense according to the invention for therapeutic purposes has not yet been described in the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an optical disc drive, and more particularly, to a method of forming volt level control focus when an optical disc drive scribes a label on a label side of an optical disc.
2. Description of the Prior Art
A light-scribe disc is formed by putting a layer of paint on a label side of the disc, and utilizing a laser beam from an optical pickup head to focus on the label side such that the heat will cause changes on the label side to form a label pattern. Insufficient laser beam heat will not be able to cause effective change and will therefore smear the label pattern. This means that the optical pickup head is required to move with the rotating optical disc to focus on the label side, and thus the laser heat can be concentrated to derive a clear label pattern. However, the paint of the label side is not distributed as evenly as a data side of the optical disc, and the reflective characteristic of the label side is also not as good as the data side, so an effective focus error signal cannot be generated to focus on the label side.
Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 1 is a prior art method of controlling focus of a label side of a disc. FIG. 2 is a label side focus volt level of a prior art. As shown in FIG. 1, a conventional optical pickup head 1 drives a lens 3 to move upwards and downwards via an electromagnetic force generated by adjusting a voltage of an actuator 2, and projects a laser beam from the optical pickup head 1 upon a label side 5 of a rotating disc 4. The label side 5 thereby reflects the laser beam back to the optical pickup head 1 and the laser beam finally projects to the photodetector 6. The photodetector 6 includes four light receiving parts A, B, C, D, which are evenly divided for receiving reflected light in different zones, respectively, and the photodetector 6 thereby converts the received light into electronic signals of corresponding magnitude. An amplifier 7 adds and amplifies the electronic signals in the light receiving parts A, B, C, D to form a side beam added signal (SBAD) of a corresponding magnitude h. During the focusing process, the lens 3 moves upwards and downwards by a predetermined distance S. When the focus point gets close to the label side 5, the derived SBAD increases gradually, and when the focus point is exactly on the label side 5, the reflected light is at its peak and the SBAD has a maximum value. When the focus point is over the label side 5, the derived SBAD will decrease with a distance between the focus point and the label side 5.
As shown in FIG. 2, the label side 5 of the light-scribe disc 4 is divided into eight radial zones 9 via four hundred spokes 8 with fixed angles, each zone having a group containing 50 spokes. When the laser beam of the optical pickup head 1 is projected on the rotating disc 4 at a fixed radial 10, SBADs are recorded during the focusing process of moving the optical pickup head 1 by a predetermined distance S via a volt at each zone 9. Due to a limitation of the interval of zone 9, the limited moving distance S is set by the focus point being over the label side 5 of the disc 4. Therefore, during the focusing process of each zone 9, a maximum SBAD of the focus point over the label side 4 can be derived. By referring to the volts and the spokes 8 corresponding to the maximum SBADs of the eight zones 9, a focus volt level curve 11 can be approximated. By utilizing the focus volt level curve 11, a focus volt corresponding to the spoke 8 where the optical pickup head 1 is located can be derived. Although the derived focus volt is different from the actual focus volt, the lens 3 can be moved to approximately focus on the label side 5 without utilizing the focus error signal to scribe label patterns.
Please refer to FIG. 1 again. When some warps or deformation occurs, such as the dotted line 4′ on the disc 4, during the process of focusing of each zone 9 with the predetermined distance S, the focus point cannot pass over a deformed label side 5′. In particular, when more zones are divided, the interval between zones grows smaller and the predetermined distance S becomes smaller, so the derived maximum SBAD does not indicate that the focus point is on the label side 5′, leading to a larger error upon the approximated focus volt level curve 11. This error will make the focus point of scribing label patterns away from the label side 5′ therefore resulting in a blurred label pattern, and degrading clarity of the label, even to a point of being unable to scribe the label pattern. Therefore, the control method of conventional focusing on a label side of a disc still has many problems to be solved. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
The present invention relates to wireless networks and, in particular, to a variety of techniques for the deployment and operation of access points in wireless networks to improve capacity and geographic isolation.
(2) Description of the Related Art
Wireless networks typically employ egress/access devices, commonly referred to as access points, which form points of presence for client radio devices. An access point may act alone in its function but is often deployed in an array or cellular structure with predictable and overlapping coverage from cell to cell. Client devices act as end-points for telemetry and data transferred to and from access points, or as processing points for the telemetry. In a conventional wireless network having multiple access points, a client device will typically associate with the access point for which it experiences the most favorable signal-to-noise ratio (SNR). The client will then attempt to remain associated with that access point for as long as possible (e.g., by tuning down the data transfer rate).
To avoid interference between adjacent access points, conventional wireless networks often employ different channels within the RF band of interest for different access points, e.g., channels 1, 6, and 11 in the RF band associated with IEEE 802.11, the set of standards relating to wireless local area networks. Careful control of the signal intensities for adjacent access points is also used to reduce the likelihood that the access points will interfere with each other.
In a wireless network based on IEEE 802.11 or similar technologies, it is desirable that client devices be able to roam seamlessly from one access point to another. In some applications, it is also desirable to provide and support a variety of functionalities including, for example, independent data paths, multiple data types, independent user permissions, and independent security protocols allowing or restricting access or content based on geographic or venue locations within an environment which may offer little restriction to radio frequency propagation. For example, it may be desirable to enable a user at a venue with the proper permissions to roam from a public area such as a hallway or lobby into a meeting room or convention area. In these new areas the user would then have access to data and permissions not allowed or available in the public area. The capability of restricting the area of influence or usability by defining strict geographic boundaries, i.e., geographic isolation, enhances or enables a wide variety of services such as, for example, E-911, Point location (i.e., a “You Are Here” service), billing by location, traffic management, data security, access control, etc.
Geographic isolation may be conventionally achieved by restricting the broadcast power of the transmitting access point or base station, and in some circumstances the transmitting power of the client devices. In some applications the Effective Isotropic Radiated Power (EIRP) of both the access point and client device may be restricted. This approach is highly effective in large open areas but breaks down in confined areas such as inside buildings or dense urban environments in which “canyon effects” tend to deduct signal.
In some applications, the attenuation presented by structures in the environment may not present a substantial barrier to signal propagation. This may be especially true, for example, in conference or office environments that may only be separated by glass, or thin, movable partitions. It is often not technically feasible to “dial down” the power of a transceiver to the point where it would continue to be useful in its intended area without transmitting beyond such barriers. In addition, reducing the transmission power of access points increases areas of shadow (or signal detected from other access points), while decreasing the ratio of signal to noise. These are both undesirable results in that they increase the likelihood that a client device might roam to an out-of-area access point. And even where this technique may be used successfully, it can be easily defeated by the use of relatively hi-gain antennas on client devices that enable reaching far beyond the intended area of geographic isolation.
Accurate determination of the location of client devices may also be used to achieve the goals associated with geographic isolation. That is, if the position of a client device is known within an environment, access to services may be controlled on that basis. Presently, wireless systems and devices rely on averaged signal strength from a known source point for location telemetry. The accuracy of the location can be improved upon, by a process known as triangulation. Triangulation is a process by which the location of a radio transmitter can be determined by measuring either the radial distance, or the direction, of the received signal from three different points. For example, the distance to a cell phone may be determined by measuring the relative time delays of the normal communications signal from the phone to three different base stations. Signal strength measurements in combination with triangulation have proven to be quite accurate in open environments. However, closed environments such as building interiors and dense urban areas present conditions which seriously degrade the efficacy of such techniques.
That is, the combination of reflection, refraction, multi-path, and signal absorption in such environments form complex boundary conditions making position predictions based on signal strength and triangulation tricky and often inaccurate. Methods to correct for these effects involve highly complex modeling and mapping of signal levels in the environment. And unfortunately, this time consuming and expensive “correction” falls apart if even a small change occurs from the baseline mapping. These small changes include thing like a door opening or closing, a curtain being opened exposing a reflective pane of glass, or even something as innocuous as the variable flow of water in plumbing.
Another conventional approach to determining the location of client devices is accomplished using global positioning systems (GPS) technologies. Unfortunately, such technologies are not always reliable inside buildings or in dense urban environments in that the reach of GPS equipment is limited by the attenuation caused by surrounding structures. GPS solutions also involve the use of secondary equipment, increasing system costs and introducing an additional point of failure.
In view of the foregoing, it is desirable to provide improved techniques for deploying wireless access points, base stations and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a mobile device system and a mobile device that are capable of handing a plurality of mobile devices as a group.
This application is based on Japanese Patent Application No. 2006-264745, the content of which is incorporated herein by reference.
2. Description of Related Art
Recently, due to the diversification of information, when people go out, in many cases, they carry multiple mobile devices having various functions, such as mobile phones, laptop computers, information communication terminals, digital cameras, and music players (see Japanese Unexamined Patent Application, Publication No. 2002-9879).
Along with this trend, a technology for preventing users from forgetting to carry a mobile device when going out and misplacing a mobile device outside the home has been proposed (see Japanese Unexamined Patent Application, Publication No. 2006-60544).
For example, Japanese Unexamined Patent Application, Publication No. 2006-60544 discloses a technology for periodically sending and receiving location information between a wireless key and a communication phone terminal, determining the distance therebetween on the basis of the information, and providing an alert when the determined distance becomes longer than a predetermined value when the user forgets to carry the mobile device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to computer software and, more specifically, to methods for accessing information via the Internet. Even more specifically, the present invention relates to coordinating speech and visual web browsers.
2. Description of Related Art
The Internet is a global network interconnecting the computer networks of universities, private organizations, corporations, and governments, as well as individual's computers. One segment of the Internet is referred to as the World Wide Web (WWW) or simply ‘the Web.’ One description for the WWW is a “wide-area hypermedia information retrieval initiative aiming to give universal access to a large universe of documents.”
As the WWW and Internet grow, and more information becomes available through them, they become increasingly more important to corporations and individuals alike. Furthermore, the WWW is proving to be an extremely valuable resource for corporate enterprises for communicating via electronic mail (e-mail), for accessing information on-line, etc.
Currently, information on the WWW and Internet is typically accessed by means of web browsers, such as Netscape's Navigator and Microsoft's Internet Explorer. These web browsers typically employ a Hyper Text Transport Protocol (HTTP) to transfer Hyper Text Markup Language (HTML) documents from a web server to a client data processing system.
Most of these web browsers are visual in character. That is, information is provided to a user via a visual display, and requests for information are entered by typing or otherwise manipulating the display using a pointer positioning device, such as a mouse. However, a more recent method of accessing information via the Internet or WWW is the use of speech browsers. Speech browsers speak the content of a web page and then listen for user commands in order to direct the browser to make additional page requests. One markup language understood by speech browsers is Speech Markup Language (SML). It describes what should be spoken and how to speak it, and also what user commands should be listened for. Audio information contained on a web site is returned to the speech browser and broadcast to the user via an audio speaker.
Currently, visual web browsers do not have integrated speech recognition, and speech recognition engines cannot be used to navigate visual web pages. However, personal digital assistants and other similar devices are becoming more popular, and people are desiring to access the Internet and WWW from a wider variety of places where full-size computers with keyboards are not available or feasible. Therefore, the need to integrate speech browsers with visual browsers, so that visual information can be displayed in response to oral requests, becomes more and more important. However, this is likely to be an expensive and time-consuming endeavor. Therefore, it is desirable to have a method of rapidly providing a basic level of coordination between existing visual and speech browsers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates in general to web tracking devices of the type in which a tensioning and steering roller resiliently applies tension to the web uniformly across its width and is tilted in response to lateral movement of the web to steer the web and thereby maintain it within a predetermined path. More particularly, the invention relates to such a device in which the steering position of the roller is established by roller supporting structure including support means cooperating with ramp means such that the tilt of the roller is effected by relative lateral movement between the ramp means and the support means and in which the same elements of the roller supporting structure that define the steering position of the roller also at least partially support the roller to provide for the roller movement by which the web is uniformly tensioned.
2. Description Relative to the Prior Art
The type of web tracking device to which the present invention is directed is typically used in conjunction with an endless web or belt, for example, the endless photoconductor belt in an electrostatographic apparatus such as a copier or printer. In order to tension the belt, to compensate for belt conicity and to steer the belt to maintain it within its desired path, the tensioning and steering roller must have at least three degrees of freedom in addition to its freedom to rotate about its own axis: namely, one degree of translational freedom to allow the roller to move generally parallel to its axis to tension the belt; a first or tilting degree of rotational freedom to provide the required belt steering movement of the roller; and a second or skewing degree of rotational freedom to allow the roller to maintain equal tension across the width of the belt, thereby compensating for unavoidable inaccuracies resulting in belt conicity.
U.S. Pat. No. 4,893,740, issued in the name of Edwin A. Hediger et al. to the assignee of the present invention on Jan. 16, 1990, discloses a web tracking device of the general type described above, in which the steering roller is rotatably carried by a yoke that is pivotable about a steering or gimbal axis defined by a support rod rotatably and slidably mounted in a housing that, in turn, is pivotable about a caster axis. The support rod is spring loaded to urge the yoke away from the housing to tension the web and the movement of the entire assembly about the caster axis provides for uniform tension across the width of the web by allowing the roller to assume an angular position in which it can compensate for belt conicity.
The term "belt conicity" literally means that an endless belt is slightly conical, rather than being perfectly cylindrical, but, as used herein, the term means either that an endless belt or web is slightly conical or that a belt or web, whether endless of not, behaves as if it were endless and slightly conical, either because of inaccuracies in the belt or web per se or in other parts of the belt or web guiding or supporting mechanism. Although the term "web" is generally perceived as being more generic than the term "belt" and the latter sometimes implies endlessness, the two terms, as used herein, should be considered as interchangeable.
In the Hediger device, flanges at both ends of the steering and tensioning roller are axially movable with respect to that roller. When the web drifts laterally in either direction, it engages and displaces the flange at the corresponding end of the roller, and this, in turn, shifts a slidably movable yoke driver in the same direction. The yoke driver includes oppositely sloped slots engaged with corresponding pins extending from the yoke, whereby the lateral movement of the yoke driver causes the roller to tilt in the proper direction to counteract the drifting tendency of the web. | {
"pile_set_name": "USPTO Backgrounds"
} |
A mobile radio communication system, such as a UMTS (Universal Mobile Telecommunication System) type system, includes a mobile radio communication network communicating with mobile terminals or UEs (User Equipments) and with external networks. Traditionally, communications are facilitated using one or more radio base stations that provide radio coverage for one or more cell areas. Various standards for cellular mobile communications include procedures to handover different UEs from one cell to another depending on the experienced radio conditions (e.g. moving UEs). This is the case of 3GPP standards such as GSM, WCDMA, or LTE. The technology in this application may be applied to handover procedures within any cellular mobile communication technology that supports handover including handover from one radio access technology to a different radio access technology (e.g., IRAT HO).
FIG. 1 shows a simplified cellular radio communications system with three cells 1-3 each having an associated base station (BS). As a UE actively involved in a radio connection currently being serviced by cell 1 moves farther away from base station BS1 to cell 3 and base station BS3, the radio connection is handed over to cell 3, which then becomes the serving cell for that connection.
In a typical handover procedure, the UE measures the received radio signal power or quality from downlink transmissions from neighboring cells. When a candidate cell downlink transmission is received with a higher radio signal power or better radio signal quality than the current cell that is serving the UE, a handover procedure is initiated towards the better or best cell.
Due to the varying nature of the radio signals, it is possible that what appears to be an increase of the received radio signal power or quality of a target neighbor cell due to movement is actually a fast signal fluctuation that lasts for only a short period of time. Such fast signal changes typically do not follow a long term average trend of the path loss for a given UE movement pattern, and as a result, may create a series of handovers in a relatively short period of time which are often not beneficial or needed. Each handover has an associated “cost” due to the associated handover signaling, increased probability of the connection being dropped, possible adverse effects on higher layer protocols, e.g., that forward data packets from source cell to target cell, etc. Such a series of handovers occurring in a relatively short period of time is referred to as “handover oscillation.”
Because of the cost associated with each handover, handover oscillation control is desirable. Handover parameters may be used to reduce handover oscillations between different cells. Handover parameters are usually set manually by network operators. Optimal values for handover parameters differ from cell to cell, which presents a problem if such optimal values change with time due to variations in the UE movement pattern, changes in network deployment (e.g., antenna tilt, transmission power, etc.), addition of new cell sites, etc. As a result, operators set default values for the handover parameters and only adjust those default values if a problem is detected. Unfortunately, default handover parameter settings are often not optimal. With default handover parameter values, cells that experience a high number of handover oscillations may only be able to reduce those oscillations to a certain extent, and sometimes, not sufficiently. Cells that do not experience handover oscillations would benefit from having handover parameter settings with a faster reaction time because that would mean that the UEs would spend more time in the best serving cell, thereby reducing interference to neighboring cells. (Typically, the higher the value of the handover parameter, the slower the handover decision is taken, which means a longer time period when the UE is in a non-optimal cell).
Another issue relates to modifying handover parameters. Modifying handover parameters may lead to an increase of handover failures. In that case, it would be desirable for handover performance to be monitored if there is handover oscillation control. | {
"pile_set_name": "USPTO Backgrounds"
} |
When some vehicles are fitted with autonomous driving assist systems, it may become possible to retract the steering column and wheel away from the driver to provide space for non-driving related activities such as working, reading, and game playing. However, the driver may need to be able to retrieve the wheel from its retracted position quickly enough to safely take control when an autonomous driver assistance system relinquishes control.
Accordingly, it is desirable to provide a steering column assembly that enables the driver to rapidly return the wheel from a retracted position. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to data sonification and in particular to sound rendering allowing for multiple simultaneous channels of information-carrying utilizing at least the timbre of one or more parameterized audio waveforms.
2. Background of the Invention
Sonification is the use of non-speech audio to convey information or perceptualize data. Due to the specifics of auditory perception, such as temporal and pressure resolution, sonification offers an interesting alternative or complement to visualization techniques, gaining importance in various disciplines. Sonification has been well established for a long time already as Auditory Display in situations that require a constant awareness of some information (e.g. vital body functions during an operation).
Many analytic tool outcomes produce data that lend themselves well to helpful visualizations (in geographic, spatial formats, and abstract formats). In highly cluttered visual displays, advanced data sonification can be used to convey yet additional data without further encumbering the visual field.
However, sonification systems have long remained far too primitive or inappropriate for general data sets, visualization environments, GIS applications, etc. Accordingly, despite much interest and ongoing intuitive promise, data sonification has remained a novelty area and the use of sonification as a method for exploration of data and scientific modeling is a ongoing topic of low-level research.
Nonetheless, work has demonstrated that sonfication can be an extremely powerful tool is if data is expressed in terms of parameterized timbre variations coupled with systematic sonic design. With proper sonic design (not unlike proper visual design) rich powerful multichannel data representations are possible wherein several channels of data values can be simultaneously conveyed effectively.
So empowered, data sonification takes on the same types of support needs and multi-parameter handling that would be afforded sophisticated data visualization systems. As a result, data sonification can take a peer role with data visualization and accordingly the two can share many if not all of the same data preprocessing operations and environments.
Thus the present invention is directed to parameterized timbre variations, audio signal and sonic design, broader sonification environments, interactions with visualization environments, and other related aspects important to making data sonification the viable and powerful tool it could be. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates in general to covers for the bed of a pickup truck and more particularly to a vertically extensible cover assembly having a lowered position for secured containment of articles in the bed of a pickup truck and an elevated position which permits carrying relatively large articles therein.
2. Description of the Prior Art
The prior art is replete with covers for pickup truck beds ranging from canvas-like covers held in place by snaps to considerably more expensive and complex covers such as a rigid molded plastic cover which is hinged at the front end of the bed. The various types of covers all have some drawbacks. For example, the canvas-like covers mentioned above, sometimes referred to as a tonneau covers, provide virtually no security for articles contained in the bed other than hiding them from view. Also, the only way that relatively large articles, e.g. those which stick up above the sides of the bed, can be carried in a pickup bed that is equipped with a tonneau cover is to remove the cover. The hinged plastic cover provides the desired security but does not make any provisions for carrying large objects.
A particular prior art cover assembly is fully disclosed in U.S. Pat. No. 3,675,885. The cover is a rigid structure which is attached by four special spring-loaded arms located at the corners of the bed of a pickup truck. The arms are designed to fold inwardly relative to the bed of the pickup truck and when all four arms are folded inwardly, the cover will be in its lowered position wherein it will be in resting engagement with the upper ledges of the bed and the cover is provided with means for being locked in its lowered position. By lifting one side or the other of the cover so as to unfold the two arms on the lifted side, the cover will be moved into a tilted partially elevated position so that access to the contents of the pickup bed can be obtained from either side thereof. When both sides of the cover are lifted so as to unfold all four arms, the cover will, of course, be in the fully elevated position and this provides sufficient clearance for virtually any large objects. When the cover is fully elevated, the arms may be locked in their unfolded extended states to allow the pickup to be driven with the cover elevated.
This particular prior art structure is, however, not without some drawbacks. As mentioned above, the folding arms are spring-loaded, and those springs provide the counter-balancing forces needed to help in raising the cover. When the arms are in their folded positions, the counter-balancing springs are stretched taut and folded over the ends of the arms at pivotably interconnected junction, or joint, or legs of the arms. The pivotably interconnected legs are configured so that they provide a relatively sharp edge at the pivot joint and the springs become stretched or otherwise distorted at the location where they engage the pivot joint. Therefore, the counter-balancing springs lose some of their load counter-balancing capability.
The means for locking the folding arms in their extended unfolded positions is in the form of pull pins which are slidably inserted into aligned holes formed through the overlapped ends of the pivotably interconnected legs of each of the folding arms. Sometimes vehicular vibrations cause the pull pins to back out of the aligned holes and this problem is aggravated when the trucks are operated on bumpy roads.
Attachment of the lower ends of the folding arm to the upper ledges of the pickup bed is accomplished by a pair of right angle brackets which are bolted on the upper ledges of the bed. These brackets are difficult to mount on the pickup bed so as to be in proper alignment and they can become mis-aligned in use. Also, the brackets are not readily adaptable for being mounted in various attitudes to accommodate the various configurations of pickup beds being manufactured today.
This prior art structure was disclosed in the above mentioned U.S. Patent as having a stabilizing bar associated with each of the folding arms for stabilizing the cover in a direction coincident with the longitudinal dimension of the vehicle when being driven with the cover in the elevated position. The disclosed longitudinal stabilizing bars are rigid and extend from the pivot joint of their respective arms and are attached to the upper ledges of the pickup bed. The attachment of the stabilizing arms to the ledges of the bed is in the form of a pivot connection so that the stabilizing bars will pivot inwardly with the folding arms when the arms are folded to lower the cover. In use, it was found that the stabilizing bars were not needed in that longitudinal stabilization was not the problem. In that the folding arms must be capable of folding inwardly relative to the pickup truck bed, the cover is inherently unstable in the transverse direction relative to the longitudinal dimension of the pickup truck and not in the longitudinal direction.
Therefore, a need exists for a new and improved cover assembly for use on the bed of a pickup truck with the cover assembly overcoming some of the shortcomings of the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Most conventional detergent compositions contain mixtures of various detersive surfactant components. Commonly encountered surfactant components include various anionic surfactants, especially the alkyl benzene sulfonates, alkyl sulfates, alkyl alkoxy sulfates and various nonionic surfactants, such as alkyl ethoxylates and alkylphenol ethoxylates. Surfactants have found use as detergent components capable of the removal of a wide variety of soils and stains. A consistent effort however is made by detergent manufacturers to improve detersive properties of detergent compositions by providing new and improved surfactants.
A problem commonly associated with anionic surfactants is their sensitivity to cold water and/or hard water. It is the surprising finding of the present invention that in comparison to known anionic surfactant components, the mid-chain branched surfactants utilized herein provide improved cleaning performance, especially for granular detergent compositions to be used under colder wash water conditions and/or in hard water. The cleaning results obtained by using these mid-chain branched surfactants in combination with bleaching agents are particularly desirable.
An advantage of the present invention is the improved cleaning performance, over a wide variety of soils and stains, of the detergent composition formulated with the mid-chain branched surfactants. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to technology for non-volatile storage.
2. Description of the Related Art
Semiconductor memory has become more popular for use in various electronic devices. For example, non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, non-mobile computing devices and other devices. Electrical Erasable Programmable Read Only Memory (EEPROM) and flash memory are among the most popular non-volatile semiconductor memories.
Both EEPROM and flash memory utilize a floating gate that is positioned above and insulated from a channel region in a semiconductor substrate. The floating gate and channel regions are positioned between the source and drain regions. A control gate is provided over and insulated from the floating gate. The threshold voltage of the transistor is controlled by the amount of charge that is retained on the floating gate. That is, the minimum amount of voltage that must be applied to the control gate before the transistor is turned on to permit conduction between its source and drain is controlled by the level of charge on the floating gate.
When programming an EEPROM or flash memory device, such as a NAND flash memory device, typically a program voltage is applied to the control gate and the bit line is grounded. Electrons from the channel are injected into the floating gate. When electrons accumulate in the floating gate, the floating gate becomes negatively charged and the threshold voltage of the memory cell is raised so that the memory cell is in a programmed state. More information about programming can be found in U.S. Pat. No. 6,859,397, titled “Source Side Self Boosting Technique for Non-Volatile Memory;” U.S. Pat. No. 6,917,542, titled “Detecting Over Programmed Memory;” and U.S. Pat. No. 6,888,758, titled “Programming Non-Volatile Memory,” all three cited patents are incorporated herein by reference in their entirety.
In many cases, the program voltage is applied to the control gate as a series of pulses (referred to as programming pulses), with the magnitude of the pulses increasing at each pulse. Between programming pulses, a set of one or more verify operations are performed to determine whether the memory cell(s) being programmed have reached their target level. If a memory cell has reached its target level, programming stops for that memory cell. If a memory cell has not reached its target level, programming will continue for that memory cell.
Some EEPROM and flash memory devices have a floating gate that is used to store two ranges of charges and, therefore, the memory cell can be programmed/erased between two states (an erased state and a programmed state). Such a flash memory device is sometimes referred to as a binary memory device.
A multi-state memory device stores multiple bits of data per memory cell by identifying multiple distinct valid threshold voltage distributions (or data states) separated by forbidden ranges. Each distinct threshold voltage distribution corresponds to a predetermined value for the set of data bits encoded in the memory device. For example, a memory cell that stores two bits of data uses four valid threshold voltage distributions. A memory cell that stores three bits of data uses eight valid threshold voltage distributions.
Although non-volatile memory has proven to be very reliable, sometimes errors can occur. Many memory systems uses Error Correction Codes (ECC) to correct errors found during a read process. Sometime, however, ECC cannot correct all errors. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to novel N-(heterocyclicaminocarbonyl)-o-alkenylbenzenesulfonamides which are useful as agricultural chemicals and in particular as herbicides and growth regulants.
Netherlands Pat. No. 121,788, published Sept. 15, 1966, teaches the preparation of compounds of Formula (I) and their use as general or selective herbicides: ##STR1## wherein R.sub.1 and R.sub.2 may independently be alkyl of 1-4 carbon atoms; and
R.sub.3 and R.sub.4 may independently be hydrogen, chlorine or alkyl of 1-4 carbon atoms. PA1 R.sub.4 is hydrogen, fluorine, chlorine, bromine or methyl; PA1 R.sub.5 is hydrogen, fluorine, chlorine, bromine, methyl or methoxy; PA1 R.sub.7 is hydrogen, fluorine, chlorine, bromine, alkyl of 1-2 carbon atoms or alkoxy of 1-2 carbon atoms; PA1 R.sub.8 is hydrogen, methyl, chlorine or bromine; PA1 R.sub.9 and R.sub.10 are independently hydrogen, methyl, chlorine or bromine; PA1 W and Q are independently oxygen or sulfur; PA1 n is 0, 1 or 2; PA1 X is hydrogen, chlorine, bromine, methyl, ethyl, alkoxy of 1-3 carbon atoms, trifluoromethyl, CH.sub.3 S-- or CH.sub.3 OCH.sub.2 --; and PA1 Z is methyl or methoxy; or their agriculturally suitable salts; provided that: PA1 n is 0 or 1; PA1 R.sub.1 is H, F, Cl, Br, NO.sub.2, CF.sub.3, C.sub.1 -C.sub.4 alkyl, OCF.sub.3 or C.sub.1 -C.sub.3 alkoxy; PA1 R.sub.5 and R.sub.6 are independently H or CH.sub.3 ; PA1 A is ##STR6## X is H, CH.sub.3, OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 CF.sub.3, CH.sub.2 OCH.sub.3 or Cl; PA1 Y is CH.sub.3, OCH.sub.3, OCH.sub.2 CH.sub.3, NH.sub.2, NHCH.sub.3 or N(CH.sub.3).sub.2 ; PA1 Z is N, CH, CCl, CBr, CCN, CCH.sub.3, CCH.sub.2 CH.sub.3, CCH.sub.2 CH.sub.2 Cl or CCH.sub.2 CH.dbd.CH.sub.2 ; PA1 Y.sub.1 is H, CH.sub.3, OCH.sub.3 or Cl; PA1 X.sub.2 and Y.sub.2 are independently CH.sub.3 or OCH.sub.3 ; and PA1 Q is O or CH.sub.2 ; provided that PA1 (1) Compounds of Formula I wherein R.sub.1 is H; PA1 (2) Compounds of Preferred (1) wherein A is ##STR7## and Z is N or CH; (3) Compounds of Preferred (2) wherein R.sub.5 and R.sub.6 are H; and PA1 (4) Compounds of Preferred (3) wherein X is CH.sub.3, OCH.sub.3 OCH.sub.2 CH.sub.3 or CH.sub.2 OCH.sub.3, and Y is CH.sub.3 or OCH.sub.3. PA1 n is 0 or 1; PA1 R.sub.1 is H, F, Cl, Br, NO.sub.2, CF.sub.3, C.sub.1 -C.sub.4 alkyl, OCF.sub.3 or C.sub.1 -C.sub.3 alkoxy; PA1 R.sub.5 and R.sub.6 are independently H or CH.sub.3 ; and PA1 Z is N or CH. PA1 (a) The compound of Formula II can be suspended or dissolved in an alkanol solvent in the presence of at least two equivalents of alkoxide. The alkoxide can be added directly as alkali metal or alkaline earth metal alkoxide or can be generated by the addition to the alkanol solvent of at least two equivalents of a base capable of generating alkoxide from the solvent. Suitable bases include, but are not limited to, the alkali and alkaline earth metals, their hydrides and tert-butoxides. For example, when X' is methoxy, the compound of Formula II could be suspended or dissolved in methanol in the presence of two equivalents of sodium methoxide. Alternatively, two equivalents of sodium hydride could be used in place of the sodium methoxide. PA1 (b) The compound of Formula II can be suspended or dissolved in an inert solvent in the presence of at least two equivalents of alkoxide. Suitable inert solvents include, but are not limited to, acetonitrile, THF and dimethylformamide. The alkoxide may be added directly as alkali metal or alkaline earth metal alkoxide or may be generated from alkanol and a base as described in (a) above. For example, when X' is methoxy, the compound of Formula II could be suspended or dissolved in THF in the presence of two equivalents of sodium methoxide. Alternatively, two equivalents each of methanol and sodium hydride could be used instead of sodium methoxide.
Compounds of Formula (II), and their use as antidiabetic agents, are reported in J. Drug. Res. 6, 123 (1974): ##STR2## wherein R is pyridyl.
In U.S. Pat. No. 4,127,405, compounds are disclosed of the general formula: ##STR3## R.sub.3 and R.sub.6 are independently hydrogen, fluorine, chlorine, bromine, iodine, alkyl of 1-4 carbon atoms, alkoxy of 1-4 carbon atoms, nitro, trifluoromethyl, cyano, CH.sub.3 S(O).sub.n -- or CH.sub.3 CH.sub.2 S(O).sub.n --;
(a) when R.sub.5 is other than hydrogen, at least one of R.sub.3, R.sub.4, R.sub.6 and R.sub.7 is other than hydrogen and at least two of R.sub.3, R.sub.4, R.sub.6 and R.sub.7 must be hydrogen; PA2 (b) when R.sub.5 is hydrogen and all of R.sub.3, R.sub.4, R.sub.6 and R.sub.7 are other than hydrogen, then all of R.sub.3, R.sub.4, R.sub.6 and R.sub.7 must be either chlorine or methyl; and PA2 (c) when R.sub.3 and R.sub.7 are both hydrogen, at least one of R.sub.4, R.sub.5 or R.sub.6 must be hydrogen. PA2 (1) when Z is other than N or CH, then X is H, CH.sub.3 or OCH.sub.3 and Y is CH.sub.3 or OCH.sub.3 ; and PA2 (2) when Z is N and X is Cl, then Y is CH.sub.3.
In particular, the patent discloses orthosubstituted compounds wherein the substitution is C.sub.1 -C.sub.4 alkyl.
The presence of undesired vegetation causes substantial damage to useful crops, especially agricultural products that satisfy man's basic food needs, such as soybeans, corn, wheat and the like. The current population explosion and concomitant world food shortage demand improvements in the efficiency of producing these crops. Preventing or minimizing the loss of a portion of such valuable crops by killing, or inhibiting the growth of undesired vegetation is one way of improving this efficiency.
A wide variety of materials useful for killing, or inhibiting (controlling) the growth of undesired vegetation is available; such materials are commonly known as herbicides. The need exists however, for still more effective herbicides especially those which destroy or retard weeds without causing significant damage to useful crops. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an ink ribbon cartridge for use in a color printer, specifically in a color printer of a sublimating and thermal transfer type.
Ink ribbon cartridges for a color printer are well known in the art. Generally, the ink ribbon cartridge includes a supply spool and a take-up spool rotatably disposed in a cartridge housing. The spools carry an ink ribbon connected at its both ends with the spools and wound thereon. The ink ribbon has a plurality of color regions arranged in series. Each of the color regions includes color segments, for example, yellow, magenta, cyan, and the like. The cartridge housing, the spools, and the ink ribbon are made of different kinds of synthetic resin such as HIPS (high impact polystyrene), PET (polyethylene terephthalate), or the like. A metal coil spring is interposed between a wall of the cartridge housing and one end of each of the spools and biases the spool against the wall.
Related Japanese Patent Applications No. P05-015037 and No. P05-195046 have been filed but unpublished.
Upon installation of the spool in the prior art ink ribbon cartridge, the coil spring mounted on the end of the spool must be installed in a compressed state on the corresponding wall of the cartridge housing. This installation work is neither easy nor convenient.
In addition, the prior art ink ribbon cartridge is generally of a disposable type. When the ink ribbon cartridge is disposed of, the metal coil spring must be separated from the cartridge housing made of synthetic resin. Similarly, the ink ribbon, the cartridge housing, and the spools, which are made of different kinds of synthetic resin from each other, must be separated upon melting for reuse. For instance, specifically in the case of the cartridge housing and spools made of HIPS, great heat energy of 15,000 kcal/kg is generated when they are melted in an incinerator. This great heat generation leads to a damage to the incinerator. | {
"pile_set_name": "USPTO Backgrounds"
} |
In vitro culturing of cells provides material necessary for research in pharmacology, physiology, and toxicology. The environmental conditions created for cultured cells should resemble as closely as possible the conditions experienced by the cells in vivo. One example of a suitable environment for culturing cells is a common laboratory flask such as demonstrated in U.S. Pat. No. 4,770,854 to Lyman. The cells attach to and grow on the bottom wall of the flask, immersed in a suitable sustaining media. The flask is kept in an incubator to maintain it at the proper temperature and atmosphere.
Although most cells will tolerate a hydrogen ion concentration (pH) range of 6.8 to 7.8, the optimal pH for growth of mammalian cells is 7.2 to 7.4. For the optimal pH to be maintained during cell cultivation, the cell culture medium must contain a buffering system.
Frequently, pH is maintained by using a bicarbonate buffering system in the medium, in conjunction with an incubator atmosphere of approximately 5 to 7 percent carbon dioxide by volume. The carbon dioxide reacts with the water to form carbonic acid which in turn interacts with bicarbonate ions in the medium to form a buffering system which maintains the pH near physiological levels. Entry of carbon dioxide from the incubator into the cell culture flask is generally achieved by using a loosely fitting or vented cap or cover so that the small opening remains for the exchange of gas between flask and incubator. Further, flasks have been sold that are made from impact resistant polystyrene plastic which is permeable to water vapor, oxygen and carbon dioxide. However, relying only on the gas exchange through the polystyrene is generally ineffective since the vessel wall thickness greatly decreases the permeability rate. Further still, flasks have been made having a cell growth surface that is itself an extremely thin (approximately 0.004 inches thick) flexible, gas permeable membrane. While this type of construction allows for gas exchange, the flexibility and thinness of the growth surface makes the growth of a uniform surface difficult and contributes to problems associated with the durability of the flask.
Gas exchange, particularly the utilization of oxygen by the cells, is a factor that limits the area for cell growth within a cell culture flask. Since flasks for cell culture typically grow attachment dependent cells in a monolayer roughly equal in size to the footprint of the flask, media volume is therefore restricted to an area within the flask permissive to the diffusion of oxygen. Oxygen and carbon dioxide are of particular importance to the culturing of cells. The supply of oxygen for cellular respiration and metabolic function in conventional cell culture containers occupies the head space of the container, e.g., the void space in the container that is above the surface of the cell culture medium. Thus, the volume of the container and the surfaces within conventional cell culture containers are inefficiently used. This results in limiting the rate of gas exchange and/or restricting the equilibration of gases. There is a need for a cell culture flask that can provide an increased surface area for cell growth while still permitting sufficient gas exchange for the multitude of attachment dependent cells.
Desirably, many flasks are stacked together in the incubator and a number of cultures are simultaneously grown. Small variations in the growth medium, temperature, and cell variability have a pronounced effect on the progress of the cultures. Consequently, repeated microscopic visual inspections are needed to monitor the growth of the cells. As such, cell culture flasks are typically constructed of optically clear material that will allow such visual inspection.
With the advent of cell-based high throughput applications, fully automated cell culture systems have been the subject of serious development work (see e.g. A Review of Cell Culture Automation, M. E. Kempner, R. A. Felder, JALA Volume 7, No. 2, April/May 2002, pp. 56-62.) These automated systems employ traditional cell culture vessels (i.e. common flasks, roller bottles, and cell culture dishes) and invariably require articulated arms to uncap flasks and manipulate them much like the manual operator.
There is a need for a cell culture apparatus having a rigid structure that is capable of providing an increased surface area for cell growth while also providing necessary gas exchange. Even further, it is desirable to produce a greater cell yield within commonly known flask volumes while permitting gas exchange at a surface of cell attachment.
Additionally, the desired cell culture apparatus will be suitable for use in the performance of high throughput assay applications that commonly employ robotic manipulation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to devices and methods for collecting air samples in indoor environments. In particular, the present invention relates to devices and methods for collecting, processing, and analyzing air samples in clean rooms and electronically and automatically controlling and calibrating the sampling equipment from a single, central location.
2. Description of the Related Art
Clean rooms found in manufacturing, research, and other facilities are typically classified into two broad categories based on the static air pressure inside the rooms relative to atmospheric pressure and/or based on the air pressure in spaces adjacent the clean rooms. A positive air pressure room is maintained at an absolute air pressure greater than atmospheric pressure, greater than the air pressure in spaces adjacent the clean room, or both. The positive air pressure in such rooms is provided by pumping filtered and/or conditioned air into the rooms and controlling the flow of air out of the rooms. The adjacent spaces, which may be manufacturing facilities or offices, are typically maintained at or close to atmospheric pressure by heating, ventilation, and air conditioning (HVAC) systems, or by providing an opening to the environment that allows the adjacent spaces to equilibrate with atmospheric pressure. Thus, air flowing from the positive pressure clean room will flow toward the lower pressure in adjacent rooms or to the atmosphere.
When a positive air pressure clean room is breached, air flowing to adjacent spaces or the atmosphere is generally not a problem as long as airborne contaminants present in the clean room do not pose a potential adverse health effect to people in the adjacent spaces. Typically, the air inside clean rooms in which electronics, aerospace hardware, optical systems, military equipment, and defense-related research are manufactured or conducted may not contain airborne gases, vapors, and particulate matter at concentrations that present a safety or health concern to human health or the environment. However, that is not always the case, as other operations within those industries may generate contaminants that are above acceptable levels and, therefore, must be prevented from escaping the clean room without treatment.
A negative air pressure room is maintained at an absolute air pressure that is either less than atmospheric pressure, less than the air pressure in spaces adjacent the clean room, or both. The negative pressure is maintained by pumping air out of the room at a rate faster than that at which filtered and/or conditioned air is pumped into the room. Negative pressure rooms are often used when there is a concern that contaminants in the air in the room may pose a potential health threat to human health in adjacent spaces or the environment.
Notwithstanding the human health and environmental implications, certain types of manufacturing and research operations must be conducted within a positive air pressure clean room to satisfy regulatory requirements and industry-adopted good manufacturing and laboratory quality control standards. For example, state and federal regulations, including those promulgated by the National Institute for Occupational Safety and Health (NIOSH), may necessitate the use of positive or negative pressure clean rooms.
In particular, the U.S. Food & Drug Administration (FDA) requires that pharmaceutical production be done within the confines of clean rooms that provide for the validation and certification that manufactured batches of pharmaceutical products are being produced in a sanitary environment.
Positive and negative air pressure clean rooms have been used for many years. U.S. Pat. No. 4,604,111, for example, discloses a negative pressure apparatus and method for protecting the environment and populations from airborne asbestos and other particulate contamination inside a building, which includes an enclosure having a blower to pull air into a filtration unit inside the enclosure and dispel the filtered air to the atmosphere. U.S. Pat. No. 5,645,480 discloses the general features of a clean room.
Various FDA regulations and standards also specify requirements for air sampling and/or air monitoring equipment to be used inside clean rooms to verify or validate the cleanliness of the facility during certain drug manufacturing activities. The regulations also provide for electronic data recording, accuracy, precision, and record-keeping relating to monitoring the air quality within clean rooms. Similar requirements are imposed on other industries, such as the biotechnology industry.
U.S. Pat. No. 6,514,721 describes an air sampling device and method for collecting airborne pathogens and psychrometric data from a room or from remote air samples where the sample volume is electronically controlled by closely monitoring fan speed. That patent illustrates a device that draws room air into a sampling device using a pump, which causes pathogen-containing particulates in the air to impact a growth/inhibitor media (a solid, liquid, gel, or mixture thereof) stored in a dish that is positioned within the sampling device. The patent states that previous sampling devices could not achieve a constant volumetric air flow of better than ±30% relative to a nominal or set-point flow rate, which caused a large variability in calculated concentrations of pathogens.
As U.S. Pat. No. 6,514,721 patent suggests, one of the keys to successfully monitoring the air quality within a clean room is to ensure that the air flow rate through the air sampling/monitoring devices is very accurately determined during the time when a volume of air is collected. That fact is also appreciated in U.S. Pat. No. 4,091,674, which discloses an electronically timed, positive displacement air sampling pump for use with a wide variety of air sample collecting devices and in a wide range of environmental conditions. The disclosed invention is said to provide accurate average flow rate, independently metered total volume, operating time register, and audible “rate fault” alarm. In that patent, accuracy is achieved by using a timing circuit coupled with a mechanical bellows.
U.S. Pat. No. 6,216,548 illustrates a control system flow chart for an air sampling device for use in a controlled environment. In particular, the patent discloses a controller logic that involves turning on a pump, checking pressure, monitoring sampling time, drawing air into the sampler, shutting off the pump, and checking for leaks in the lines. The patent also teaches using a purge system for purging the lines and associated air particulate sampler using a purge gas such as nitrogen gas. In that patent, air sampling only occurs at one location (e.g., a processing chamber for semiconductor devices).
None of the prior art devices and air sampling methods described above is suitable for monitoring the level of contaminants in the air of a modern clean room. For example, a volumetric air flow accuracy not better than ±30% relative to a nominal or set-point flow rate, mechanical bellows, and single-location sampling are not sufficient where issues of sample volume accuracy and precision are important at multiple locations in a clean room. Accordingly, there is a need for an air sampling system and method that has a flow rate accuracy better than ±30%, a digital flow switch, and simultaneous multi-location sampling.
In addition, none of the prior art devices provide the degree of control, monitoring, reporting, modularity, and remote operation required in the modern clean room. For example, none of the prior art devices and air sampling methods described above utilizes multiple air sampling devices with inline digital flow switches at each air sampling device to separately and simultaneously measure the air flow realized at each individual air sampling device. Nor do any of the prior art devices and air sampling methods described above provide the ability to simultaneously monitor and control a variable number of air sampling devices placed at different locations in a clean room from a single, central location that is remote from the air sampling devices. Accordingly, there is also a need for an air sampling system and method that allows the user to separately and simultaneously measure, monitor, and control varying numbers of air sampling devices from a single, central location. | {
"pile_set_name": "USPTO Backgrounds"
} |
A substrate for manufacturing an electronic component may be required to have through holes, through trenches, recessed portions, and the like formed therein. Whereas, an electric connection may be established, or an electric circuit may be formed by filling a conductive material in the through holes, the through trenches, and the recessed portions formed in the substrate, or forming a plated layer on the surfaces of the through holes, the through trenches, and the recessed portions.
For example, in a double-sided printed wiring board or a multilayer printed wiring board, connection of wiring patterns of the opposite sides or respective layers is carried out by silver through holes obtained by filling silver in the through holes formed in the substrate, or plated through holes obtained by plating the through holes. Further, as a semiconductor package, there is known an insertion type package to be mounted by inserting a lead introduced from the package to the substrate having through holes referred to as through holes.
As the hole processing methods for forming through holes in a printed wiring board, for example, mechanical processing methods such as blanking by a punching die and cutting processing by a drill are known. However, with such mechanical processing methods, fine processing may be difficult, or the methods are difficult to apply according to the material of the substrate.
Also in processing of trenches of a substrate for an electronic component, conventionally, the trenches have been formed by blanking with a die. However, the formation of flash upon blanking has been unfavorably inevitable. Under such circumstances, there has been proposed a method for subjecting a substrate for an electronic component having a metal foil on the surface to trench processing by water jet. More specifically, there is proposed a method in which the substrate is supported on a support provided with a water jet release hole to carry out trench processing by water jet, and thereby floating of the metal foil is prevented (see, e.g., Patent Document 1). However, with this method, the dimensions allowing trench processing depend upon the diameter of the jet of water jet. Therefore, fine processing is difficult, and in addition, the method is not suitable for processing trenches having a wide variety of patterns.
Conventionally, there has been proposed a method in which a glass thin plate or a sintered ceramic thin plate is sand blast processed to form through holes and recessed portions (see, e.g., Patent Document 2). Specifically, a resist pattern is formed on a glass thin plate or a sintered ceramic thin plate by a photo process. Thus, sand blast processing is carried out from above the resist pattern, thereby to process the positions and the shapes of the through holes and the recessed portions with high precision. In the resist pattern, an opening pattern corresponding to the through holes and the recessed portions is formed. Thus, the resist pattern serves as a mask during a sand blast processing. A conductive material is filled in the through holes and the recessed portions to form a wiring layer. A plurality of the wiring layers are stacked one on another to manufacture a multilayer wiring substrate.
Alternatively, the following method has been proposed. In a printed wiring board, openings each for passing there through a bonding wire to connect an electronic component to be mounted and a contact terminal are formed. At this step, the substrate covered with a resist for blast is subjected to sand blast processing, thereby to form the openings (see, e.g., Patent Document 3). As the substrate, a double-sided metal-laminated resin-coated substrate containing a glass fiber is used. In the resist for blast, an opening pattern corresponding to the openings is formed.
However, with a conventional sand blast processing, the formation of fine-pitch wiring, deep through holes, and deep trenches is difficult. The first reason for this is that the substrate to be subjected to a sand blast processing is a high hardness material such as a glass thin plate, a sintered ceramic thin plate, a resin substrate containing a glass fiber, or a resin laminated plate having a metal layer. The second reason is as follows: a mask material such as a resist for blast is required to be reduced in thickness as the pitch becomes finer; this however causes the mask itself to be incapable of standing a harsh sand blast processing or a long-time sand blast processing. Even in the case where a hard material such as a stainless steel thin plate is used as a mask material, when the object to be processed is a hard substrate, the mask pattern of fine through holes, through trenches, and the like, formed in the mask are chipped in the sand blast processing. Therefore, it is difficult to form deep through holes and trenches in the substrate with precision. (Patent Document 1) JP-A-2000-246696 (Patent Document 2) JP-A-10-284836 (Patent Document 3) JP-A-11-102992
An object of the invention is to provide a method for manufacturing a porous material in which very complicated and fine through portions and recessed portions have been patterned, using a soft porous material in place of a conventional hard substrate material.
Particularly, another object of the invention is to provide a method for manufacturing a porous molded product or a nonwoven fabric in which fine through holes, trenches, and the like have been patterned with a processing method using a fluid such as a sand blast processing with a porous molded product or a nonwoven fabric targeted for processing under conditions causing less damages to a mask.
A still other object of the invention is to provide an electric circuit component made of a patterned porous molded product or nonwoven fabric in which a plated layer has been selectively formed on the surfaces of the through portions and the recessed portions.
The inventors conducted a close study in order to achieve the foregoing objects. As a result, they found the following fact. By a processing method in which a fluid is sprayed via a mask having through portions in a pattern, with a soft porous material, which has been conventionally considered very difficult or impossible to finely pattern by mechanical processing, targeted for processing, it is possible to obtain a porous material having through portions and recessed portions to which a pattern of fine through portions of the mask has been transferred. As the fluid, a fluid containing abrasive grains is preferably used.
The following fact was found. With this method, it is possible to carry out fine processing such as the formation of deep through holes and deep trenches without breaking the porous structure of the porous molded product. Further, a conductive metal is deposited on the surfaces of the through portions such as through holes and through trenches, and the recessed portions such as trenches formed by this method. As a result, it is possible to obtain a soft and elastic circuit substrate and an electric circuit component such as a member for the electric reliability inspection. This invention was completed based on these findings. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is in the field of processes for making alkylbenzenesulfonate surfactants. The processes herein include a combination of two essential steps, delinearization and alkylation. The delinearization step selected herein introduces particular types of limited branching into an aliphatic hydrocarbon having ten or more, but no more than about 16, carbon atoms. The hydrocarbon includes olefin having a hydrocarbon chain length suitable for detergent manufacture, e.g., C10-C14, or a corresponding paraffin. The second essential step is an alkylation step having an internal isomer selectivity of from 0 to no more than about 40 in which the hydrocarbon is used to monoalkylate benzene catalytically with an alkylation catalyst. Such alkylation catalysts preferably comprise an at least partially crystalline porous zeolite-containing solid, the zeolite having moderate acidity and intermediate pore size. Preferred alkylation catalysts include certain at least partially dealuminized acidic nonfluoridated mordenites. The processes herein further comprise sulfonating, neutralizing and incorporating the resulting modified alkylbenzenesulfonate surfactants into consumer products. The invention relates also to the products of the processes, including modified surfactants and consumer cleaning products containing them.
Historically, highly branched alkylbenzenesulfonate surfactants, such as those based on tetrapropylene (known as xe2x80x9cABSxe2x80x9d or xe2x80x9cTPBSxe2x80x9d) were used in detergents. However, these were found to be very poorly biodegradable. A long period followed of improving manufacturing processes for alkylbenzenesulfonates, making them as linear as practically possible (xe2x80x9cLASxe2x80x9d). The overwhelming part of a large art of linear alkylbenzenesulfonate surfactant manufacture is directed to this objective. Large-scale commercial alkylbenzenesulfonate processes in use in the U.S. today are directed to linear alkylbenzenesulfonates. However, linear alkylbenzenesulfonates are not without limitations; for example, they would be more desirable if improved for hard water and/or cold water cleaning properties.
In the petroleum industry, various processes have more recently been developed, for example for producing low viscosity lube oil, which the inventors have now discovered provide new insight on how to delinearize hydrocarbons to a limited and controlled extent. Such deliberate delinearization, however, is not a feature of any current commercial processes in the different field of alkylbenzenesulfonate surfactant manufacture for consumer products. This is not surprising, in view of the overwhelming volume of LAS surfactant art teaching toward linear compounds and away from delinearization.
The majority of commercial processes for making alkylbenzenes rely on HF or aluminum chloride catalyzed alkylation of benzene. Quite recently, it has been discovered that certain zeolite catalysts can be used for alkylation of benzene with olefins. Such a process step has been described in the context of otherwise conventional processes for manufacture of linear alkylbenzenesulfonates. For example, the DETAL(copyright) process of UOP uses a zeolite alkylation catalyst. The DETAL(copyright) process and all other current commercial processes for alkylbenzenesulfonate manufacture are believed to fail to meet the internal isomer selectivity requirements of the inventive process and alkylation catalyst defined hereinafter. Moreover, the DETAL(copyright) process catalyst or catalysts are believed to lack the moderate acidity and intermediate pore size of alkylation catalysts used in the processes of the present invention. Other recent literature describes the use of mordenite as an alkylation catalyst, but no such disclosure makes the combination of specific process steps required by the instant invention. Moreover, in view of the linearity desired in alkylbenzenesulfonate products of conventionally known processes, they also generally include steps directed to the provision or making of a substantially linear hydrocarbon, not a delinearized one, prior to the alkylation. A possible exception is in U.S. Pat. No. 5,026,933 which includes, for example, oligomerization of lower olefin such as propylene under narrowly defined conditions using collidine-deactivated ZSM-23 to form a composition comprising a tetramer assertedly having 1.3 methyl branches per chain, followed by fractionation and an alkylation using mordenite catalyst. See Example XVII. See also U.S. Pat. No. 4,990,718 in which an alkylbenzene is made via a process that produces a vinylidene olefin by dimerization in presence of chromium catalyst but in which the vinylidene yield is adversely affected by oligomerization and in which distillation is required prior to alkylation. However, the processes of ""933 and ""718 have numerous shortcomings from the standpoint of the detergent industry in terms of cost, catalyst limitations in the propylene oligomerization or olefin dimerization stage, presence of large volumes of distillation fractions that would need to be discarded or find nondetergent customers, and limited range of product compositions, including mixtures of chainlengths attainable. Such developments by the petroleum industry are, in short, not optimal from the standpoint of the expert formnulator of detergent products.
U.S. Pat. No. 5,026,933; U.S. Pat. No. 4,990,718; U.S. Pat. No. 4,301,316; U.S. Pat. No. 4,301,317; U.S. Pat. No. 4,855,527; U.S. Pat. No. 4,870,038; U.S. Pat. No. 2,477,382; EP 466,558, Jan. 15, 1992; EP 469,940, Feb. 5, 1992; FR 2,697,246, Apr. 29, 1994; SU 793,972, Jan. 7, 1981; U.S. Pat. No. 2,564,072; U.S. Pat. No. 3,196,174; U.S. Pat. No. 3,238,249; U.S. Pat. No. 3,355,484; U.S. Pat. No. 3,442,964; U.S. Pat. No. 3,492,364; U.S. Pat. No. 4,959,491; WO 88/07030, Sep. 25, 1990; U.S. Pat. No. 4,962,256, U.S. Pat. No. 5,196,624; U.S. Pat. No. 5,196,625; EP 364,012 B, Feb. 15, 1990; U.S. Pat. No. 3,312,745; U.S. Pat. No. 3,341,614; U.S. Pat. No. 3,442,965; U.S. Pat. No. 3,674,885; U.S. Pat. No. 4,447,664; U.S. Pat. No. 4,533,651; U.S. Pat. No. 4,587,374; U.S. Pat. No. 4,996,386; U.S. Pat. No. 5,210,060; WO 95/17961, Jul. 6, 1995; WO 95/18084; U.S. Pat. No. 5,510,306; U.S. Pat. No. 5,087,788; U.S. Pat. No. 5,625,105 and U.S. Pat. No. 4,973,788 are useful by way of background to the invention. The manufacture of alkylbenzenesulfonate surfactants has recently been reviewed. See Vol. 56 in xe2x80x9cSurfactant Sciencexe2x80x9d series, Marcel Dekker, New York, 1996, including in particular Chapter 2 entitled xe2x80x9cAlkylarylsulfonates: History, Manufacture, Analysis and Environmental Propertiesxe2x80x9d, pages 39-108 which includes 297 literature references. Documents referenced herein are incorporated in their entirety.
The present invention is predicated on an unexpected discovery that combining a specifically defined delinearization step or steps of a non-lower olefin or paraffin (xe2x80x9cnon-lowerxe2x80x9d meaning having 10 or more carbon atoms) with a particularly defined selective alkylation step results in an unexpectedly superior alkylbenzenesulfonate surfactant product.
Accordingly, in one aspect, the present invention relates to a process for preparing modified alkylbenzenesulfonate surfactant suitable for use in cleaning products such as laundry detergents, hard surface cleaners, dishwashing detergents and the like, said process comprising (a) reducing the linearity of an olefin, preferably one having molecular weight of at least about 126 and no more than about 280, preferably no more than about 224, by a step of skeletally isomerizing, in the presence of a constrained skeletal isomerization catalyst, a substantially linear olefin preformed to have at least said molecular weight; and (b) a monoalkylation step having low internal isomer selectivity (from 0 to no more than 40 preferably from 0 to no more than 20, more preferably from 0 to no more than 10 using measures further defined hereinafter), of reacting the product of step (a) with an aromatic hydrocarbon selected from benzene, toluene and mixtures thereof in the presence of a particularly defined alkylation catalyst. Such catalyst comprises a moderate acidity, medium-pore zeolite defined in detail hereinafter. A particularly preferred alkylation catalyst comprises at least partially dealuminized acidic nonfluoridated mordenites.
In another aspect, the invention relates to a process for preparing modified alkylbenzenesulfonate surfactant suitable for use in cleaning products, said process comprising (a) a step of arriving at (making or providing) a reduced-linearity alkylating agent selected from an olefin having molecular weight, n, of at least about 126 and no more than about 280 and produced by a sequence of steps comprising: (i) skeletally isomerizing a linear paraffin having molecular weight of n+2 where n is said molecular weight of said olefin; and (ii) dehydrogenating the isomerized paraffin; and (b) a monoalkylation step of reacting the reduced-linearity alkylation agent of stage (a) (that is, the hydrocarbon produced in that stage) with an aromatic hydrocarbon selected from benzene, toluene and mixtures thereof in the presence of an alkylation catalyst identical with that which is used in the embodiment described in the preceding paragraph.
The invention also encompasses a process according to either of the foregoing aspects or embodiments of the invention having the additional steps, of (c) sulfonating the product of step (b); and one or more steps selected from (d) neutralizing the product of step (c); and (e) mixing the product of step (c) or (d) with one or more cleaning product adjunct materials; thereby forming a cleaning product.
Moreover the invention also encompasses cleaning products including heavy-duty and light-duty laundry detergents, hard surface cleaners, dishwashing detergents, laundry bars, detergent tablets or detergent gels, shampoos and the like formed by any of the processes described.
All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (xc2x0 C.) unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of specific binding assays is of great value in a variety of clinical and other applications, see for example PCT patent application US2004/031220 published as WO 2005/031355. Specific binding assays involve the detection and preferably quantitative determination of an analyte in a sample where the analyte is a member of a specific binding pair consisting of a ligand and a receptor. The ligand and the receptor constituting a specific binding pair are related in that the receptor and ligand specifically mutually bind. Specific binding assays include immunological assays involving reactions between antibodies and antigens, hybridization reactions of DNA and RNA, and other specific binding reactions such as those involving hormone and other biological receptors. Specific binding assays may be practiced according to a variety of methods known to the art. Such assays include competitive binding assays, “direct” and “indirect” sandwich assays as described, for example, in U.S. Pat. Nos. 4,861,711; 5,120,643; 4,855,240 or EP 284,232.
Because the complex formed of by a specific binding reaction is generally not directly observable various techniques have been devised for labeling one member of the specific binding pair in order that the binding reaction may be observed. Known labels include radiolabels, chromophores and fluorophores and enzymes the presence of which may be detected by means of radiation detectors, spectrophotometers or the naked eye. When a member of a specific binding pair is tagged with an enzyme label, a complex may be detected by the enzymatic activation of a reaction system including a signal generating substrate/cofactor group wherein a compound such as a dyestuff, is activated to produce a detectable signal.
Lateral flow capillary devices, such as lateral flow capillary device 10 depicted in FIG. 1, are well known in the fields of analysis and detection and are often used for quick and simple implementation of specific binding assay of analyte in a liquid sample 12. Sample 12 is placed in lateral flow capillary device 10 through a reservoir 14 to contact a liquid receiving zone 16 of a bibulous capillary flow matrix 18. Receiving zone 16 includes a soluble labeled reagent configured to bind to the analyte which present in the sample 12. Sample 12 including the analyte bound to the labeled reagent, migrates by capillary flow to fill all of capillary flow matrix 18 and to migrate further into liquid drain 23. During the capillary flow of sample 12 from liquid receiving zone 16 towards liquid drain 23, sample 12 passes reaction zone 20 which is observable through an observation window 22. Reaction zone 20 comprises an anti-analyte that together with the analyte constitutes a specific binding pair. Analyte in sample 20 forms a complex with the anti analyte and is thus captured at reaction zone 20. As the labeled reagent is bound to the analyte, and as the analyte is concentrated at reaction zone 20, an observable signal is produced at the reaction zone 20, where the intensity of the observable signal is related to the amount of analyte in the sample.
Lateral flow capillary devices such as device 10 are extremely useful as these are simple to operate even by an unskilled person or under non-laboratory conditions and are relatively cheap to produce.
One drawback of known lateral flow capillary devices such as device 10 is that a sample evenly spreads in all directions until a border to capillary flow is encountered, such as an edge of the capillary flow matrix. Thus, sample and any analyte therein are distributed within the entire volume of the capillary flow matrix and wasted. It would be advantageous to be able to enable transport of all of a sample added to a capillary flow matrix to the vicinity of a respective reaction zone.
An additional drawback of known lateral flow capillary devices is that these are not configured for multistep reactions. To perform a multistep binding assay using a lateral flow capillary device such as device 10, reagent liquids are added serially. For example, a device 10 is provided where a liquid receiving zone 16 does not include a labeled reagent.
First, a sample 12 including analyte is added through reservoir 14, passes into capillary flow matrix 18 through liquid receiving zone 16 and is transported by capillary flow to drain 23. When sample 12 passes through reaction zone 20, analyte in sample 20 forms a complex with the anti analyte located at reaction zone and is thus captured at reaction zone 20.
When all of sample 12 has drained into capillary flow matrix 18, a first reagent liquid containing a labeled reagent configured to bind to the analyte is added through reservoir 14, passes into capillary flow matrix 18 through liquid receiving zone 16 and is transported by capillary flow to drain 23. When the first reagent liquid passes through reaction zone 20, labeled reagent in the first reagent liquid binds to analyte captured at the reaction zone.
When labeled reagent includes an enzyme, then when all of the first reagent liquid has drained into capillary flow matrix 18, a second reagent liquid containing an enzyme substrate is added through reservoir 14, passes into capillary flow matrix 18 through liquid receiving zone 16 and is transported by capillary flow to drain 23. When the second reagent liquid passes through reaction zone 20, the enzyme substrate therein reacts with the enzyme label, producing a strong observable signal at the reaction zone 20, where the intensity of the observable signal is related to the amount of analyte in the sample.
It is known that multistep binding assays are significantly more sensitive and accurate than single step binding assays. Thus, there is a desire to perform multi step binding assays as described above. It is clear, however, that it is very difficult if not impossible to achieve accurate and repeatable results for such a complex process without the use of an expensive robotic system located in a laboratory. Even with the use of a robotic system, since any succeeding liquid is added onto a liquid receiving zone 16 already wet with a preceding liquid, mixing of the two liquids invariably occurs, leading to unpredictable result, adversely affecting duration of any given step, preventing performance of a truly sequential reaction, and affecting repeatability and accuracy.
In U.S. Pat. No. 5,198,193 is taught a flow capillary device with multiple capillary paths leading towards a single reaction zone, each path having a different length and/or a valve to allow variation of timing of arrival of a liquid to the reaction zone. Such a device is ineffective as at each intersection of capillary paths including two different liquids, parallel flows are produced, analogous to the produced when a succeeding liquid is added onto an already wet capillary flow matrix as discussed above. Further, the valves described in such a lateral flow capillary device are difficult to fabricate.
In European Patent No. EP 1044372 is taught a lateral flow capillary device where sample and reagent liquids are added at two or more adjacent positions along a capillary flow matrix that is substantially a strip of bibulous material, e.g., 8 micron pore size polyester backed nitrocellulose. N+1 narrow (e.g., 1 mm) spacers, impermeable hydrophobic strips of material (mylar or polyester sticky tape) are placed perpendicularly to the flow direction to define N broad (e.g., 5 mm) liquid receiving zones upstream of a reaction zone located upstream of a liquid drain. When liquids are added simultaneously to the liquid receiving zones a portion of each liquid is absorbed through the upper surface of the capillary flow matrix at the liquid receiving zone. Liquid that is not immediately absorbed remains as drops on the surface of a respective liquid receiving zone, where adjacent drops are prevented from mixing or flowing along the surface of the capillary flow matrix by the spacers. In cases where the liquids are added simultaneously an interface between the two liquids is formed in the volume of the matrix underneath the spacer, while excess liquid remains on the surface of a liquid receiving zone. Liquid from a first, most downstream, liquid receiving zone is transported downstream by capillary flow past the reaction zone to the liquid drain. When all the liquid in the first liquid receiving zone is exhausted, the second liquid receiving zone is transported downstream by capillary flow past the reaction zone to the liquid drain.
Seemingly the teachings of EP 1044372 provide the ability to perform multistep reactions using a lateral flow capillary device, but practically the teachings are severely limited by limitations imposed by the structure of the lateral flow capillary device.
A first limitation is that the amount of liquid added to a liquid receiving zone is limited. The liquid is added as a drop resting on a liquid receiving zone. If the surface tension of the liquid is insufficient, for example due to size or due to detergents in the liquid, if the capillary flow matrix is highly hydrophillic or if the lateral flow capillary device is perturbed, the drop collapses and spills from the lateral flow capillary device.
A second limitation is that the liquids must be added simultaneously. If liquids are added non-simultaneously, a liquid added to a first liquid receiving zone flows into a second, adjacent, liquid receiving zone. When a second liquid is added to the second liquid receiving zone, the second liquid flows into a volume of the matrix from the top through dry parts of the second liquid receiving zone while the second liquid flows into the same volume laterally. The two liquids mix, and as discussed above, leads to unpredictable result, adversely affects duration of a given step, prevents performance of a truly sequential reaction, and affects both repeatability and accuracy of the results.
A third limitation is that the teachings of EP 1044372 may lead to the formation of a multiple capillary paths. As noted above, a spacer is a strip of smooth material attached using adhesive to the top surface of the matrix that has micron scale features. As a result, capillary paths are formed in the space between a spacer and the capillary flow matrix through which two liquids in adjacent liquid receiving zones may be mixed and as discussed above, leads to unpredictable result, adversely affects duration of a given step, prevents performance of a truly sequential reaction, and affects both repeatability and accuracy of the results.
An additional disadvantage of the teachings of EP 1044372 is the reliance on adhesives for securing the spacers to the capillary flow matrix. In the art it is known that adhesives, especially non-polymerizing adhesives, are attracted by and over time migrate into bibulous materials such as nitrocellulose that are suitable for use as capillary flow matrices (see, for example, Kevin Jones; Anne Hopkins, Effect of adhesive migration in lateral flow assays; IVD Technology, September 2000). Thus, after a period of storage, the adhesive securing a spacer to a capillary flow matrix of a device made in accordance with the teachings of EP 1044372 would migrate into the pores of the capillary flow matrix in the region where the liquid-liquid interface is to form. The presence of a hydrophobic adhesive in the matrix blocks pores or modify the capillary properties of the pores so that an interface formed between liquids is indefinite and not clear, leading to mixing of the two liquids of the interface and concomitant negative effects. Another disadvantage of using adhesives is the possible detachment of the spacers from the matrix during prolonged storage.
In U.S. Pat. No. 4,981,786 is taught a lateral flow capillary device with two reservoirs. The provision of a lateral flow capillary device with two or more reservoirs allows addition of two or more succeeding liquids without mutual contamination: once a liquid has been added to a first reservoir, remnants of the liquid remain on the walls of the reservoir. Any liquid added through the same reservoir will be contaminated with the remnants. In a first lateral flow capillary device taught in U.S. Pat. No. 4,981,786, two or three distinct reservoirs are in fluid communication with a capillary flow matrix through distinct and physically separated liquid receiving zones. Located at one of the liquid receiving zones is a reaction zone including a trapping reagent. A liquid drain is in capillary communication with capillary flow matrix downstream from the two reservoirs. Although not entirely clear from the description, it is understood that the use of the first lateral flow capillary device includes adding a small volume of sample through a reservoir to provide a spot of sample at the reaction zone on the capillary flow matrix and subsequently to add one or more reagents, each reagent through a different reservoir.
In a second lateral flow capillary device taught in U.S. Pat. No. 4,981,786, two distinct reservoirs are in fluid communication with a capillary flow matrix through distinct and physically separated liquid receiving zones. In capillary communication with the upstream edge of the capillary flow matrix is a liquid reservoir that may be activated to release a reagent liquid that subsequently migrates downstream. A reaction zone is located downstream from the two reservoirs. A liquid drain is in capillary communication with capillary flow matrix downstream from the reaction zone.
In both lateral flow capillary devices are taught a number of structural features to keep a capillary flow matrix in place but make only minimal contact therewith. Further, it is noted that there is little or no contact between a reservoirs and the capillary flow matrix at a respective liquid receiving zone, and if there is contact it is only light contact resulting from swelling of the capillary flow matrix upon wetting. Such features preclude the use of the lateral flow capillary devices as effective devices for multistep reactions in a manner analogous to the disclosed in EP 1044372. When a first liquid is added to a first reservoir and simultaneously a second liquid is added to a second adjacent upstream reservoir, the first and second liquids both flow into the capillary flow matrix through a respective liquid receiving zone. When the two liquids meet, an interface is formed and the first liquid begins to flow downstream. Uncontrollably, liquid begins to leak from the capillary flow matrix at any point where an alternate capillary path exists, for example down the supporting structures on which the capillary flow matrix rests or along the laterally disposed walls that hold the capillary flow matrix in place. Liquid also climbs up any object contacting the upper surface of the capillary flow matrix, for example where a reservoir contacts the capillary flow matrix. As a result, liquid leaks away from all liquid receiving zones through any alternative capillary path, filling the lateral flow capillary device with liquid and rendering results of an experiment useless.
It would be highly advantageous to have a lateral flow capillary device or methods for using lateral flow capillary devices for the performance of multistep reactions in the fields of biology and medicine, particularly for diagnosis not having at least some of the disadvantages of the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a driver circuit and a system including a driver circuit, and particularly relates to a driver circuit having a predriver in a stage previous to an output driver and a system including such a driver circuit.
2. Background Art
FIG. 1 is a diagram showing the configuration of a related driver circuit. As shown in FIG. 1, the driver circuit includes a predriver 10 and an output driver 12.
The predriver 10 is configured by connecting plural CMOS inverters 20 in series. The output driver 12 is a CML (Current Mode Logic) type output driver and includes N-type MOS transistors N1, N2, and N3 and resistances R1 and R2.
A bias voltage BIAS is applied to the transistor N3, and hence the transistor N3 functions as a constant current source.
FIG. 2 is a diagram showing operation waveforms of the driver circuit shown in FIG. 1. As shown in FIG. 2, a node MAIN_P and a node MAIN_N which are output nodes of the predriver 10 oscillate, for example, between 0 V and a voltage VTERM.
If threshold voltages of the transistors N1 and N2 are VTHN, the transistor N1 remains off while the voltage of the node MAIN_N is between 0 V and the voltage VTHN when the node MAIN_N rises from low (0 V) to high (voltage VTERM). Accordingly, the voltage of an output terminal TX_P does not drop. Then, the voltage of the output terminal TX_P starts to drop only after the voltage of the node MAIN_N has reached VTHN.
On the other hand, the node MAIN_P drops from high (voltage VTERM) to low (0 V), and when the voltage of the node MAIN_P drops from the voltage VTERM to the voltage VTHN, the transistor N2 is turned off. Therefore, at this point, the voltage of an output terminal TX_N rises to high (voltage VTERM).
As described above, on/off timings of the transistor N1 and the transistor N2 do not coincide, whereby a voltage waveform of the output terminal TX_P and a voltage waveform of the output terminal TX_N are not perfect differential waveforms. Therefore, as shown in FIG. 2, an intersection point (VCOMMON) of the voltage waveform of the output terminal TX_P and the voltage waveform of the output terminal TX_N when the output switches between high and low has a higher potential than an intermediate potential. Namely, {(voltage of output terminal TX_P)+(voltage of output terminal TX_N)}/2=VCOMMON is not a constant value.
However, specifications needed for the driver circuit sometimes require that VCOMMON is constant (fluctuations are within a predetermined range), for example, as in the case of PCI-EXPRESS. In such specifications, it is necessary to avoid fluctuations in VCOMMON in the driver circuit as much as possible. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a common rail fuel injection system, the injection pressure can be produced independently of the engine speed and the injection quantity. The decoupling of pressure production and injection is accomplished by means of a pressure reservoir (rail). To produce the pressure, a high-pressure pump (HDP) is provided, which delivers the fuel into the pressure reservoir. The high-pressure pump can be connected to a tank by a fuel inlet duct and to the pressure reservoir by a fuel outlet duct. The high-pressure pump compresses the fuel fed in from the fuel inlet duct and, in a pump working space, produces a high-pressure volume of the fuel, which is discharged to the pressure reservoir. In the injection of fuel into a cylinder, an injection volume of the fuel is taken from the pressure reservoir.
An inlet valve is arranged ahead of the high-pressure pump in the fuel inlet duct. An outlet valve is provided after the high-pressure pump in the fuel outlet duct. In addition to passive valves, which open and close in accordance with a pressure, the inlet and outlet valve can each be configured as an active valve. The purpose of conventional active valves is to control the volume flow which is actually available for the production of high pressure in such a way that neither an excess nor a lack of high-pressure volume flow arises. The volume flow at the high-pressure outlet of the high-pressure pump exhibits oscillations dependent on the stroke frequency, depending on the delivery properties of a piston pump. Moreover, the periodic opening and closure of the inlet valve leads to noise, the frequency of which is a function of the speed of a drive shaft of the high-pressure pump. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a device for pulling a silicon single crystal, comprising an element, which annularly surrounds the single crystal growing at a crystallization boundary and this element has a face directed at the single crystal. The invention furthermore relates to a method for pulling a silicon single crystal, in which the single crystal is pulled at a pull rate V chosen in such a way that the ratio V/G is equal to the value 1.3*10.sup.-3 cm.sup.2 min.sup.-1 K.sup.-1 .+-.20%, preferably .+-.10%, where is the axial temperature gradient in the region of the crystallization boundary.
2. The Prior Art
German Publication DE-4,414,947 A1, describes silicon semiconductor wafers which are separated from a single crystal as sometimes having a stacking fault ring. The occurrence of a stacking fault ring is closely connected with the pull rate V and the axial temperature gradient G in the region of the crystallization boundary. According to the empirically derived formula V/G=1.3*10.sup.-3 cm.sup.-2 min.sup.-1 K.sup.-1, it is possible to specify a lower pull rate, above which a stacking fault ring just starts to occur.
The prior art furthermore describes that the stacking fault ring causes separate regions within the semiconductor wafer which are characterized by the presence of different types of defects and different defect densities (E. Doxnberger and W. V. Ammon, Journal Of The Electrochemical Society, Vol. 143, No. 5, 1996). This literature reference also discloses that, with the customarily employed pulling method, the temperature gradient in the region of the crystallization boundary is not constant. This is because the temperature gradient changes in the radial direction, when viewed along the longitudinal axis of the crystal. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the field of circuit board processing, the apertures on the circuit board are generally filled utilizing a method which requires the use of a drilled metal mask and a subsequent planarization step. Specifically, prior art fill processes are carried out by first applying a drilled metal mask, e.g. Cu, to at least one surface of a circuit board having apertures and circuitry therein. The drilled metal mask has openings so as to expose the apertures on said circuit board. Next, a composite comprising a non-photoactive fill material such as a conductive or non-conductive filled dielectric and a carrier is applied to the drilled metal mask so that the fill material is in contact with the metal mask. This structure is then subjected to vacuum lamination to cause the non-photoactive fill material to flow into the apertures of the circuit board. After vacuum lamination, the drilled mask and the fill carrier are removed and the structure is subjected to a planarization process such as chemical mechanical polishing (CMP).
The above described prior art process requires that an extra planarization step, which adds time and cost to the overall process, be employed to provide a planarized surface. A planar surface is essential and required for such structures in order for it to be utilized in subsequent assembly operations such as use of liquid resists for fine line circuitry, plated through hole protection, overmold, globtop or die attach.
In recent technology, liquid solder masks are now being employed to both fill the apertures and to protect the circuitry on the circuit board. A major problem with using such solder masks to fill the apertures and protect the circuitry is that an excessive thin coating of the solder mask material forms around the rim of the apertures. This thin coating is considered a defect and can contribute to high yield loss.
In view of the drawbacks mentioned with prior art processes of filling the apertures of a circuit board, there is a continued need to develop a new method which eliminates the prior art's required use of a planarization step to provide a circuit board structure having a planarized surface. Moreover, there is also a need to develop a method wherein rim defects are substantially eliminated. | {
"pile_set_name": "USPTO Backgrounds"
} |
An air battery is a battery employing oxygen as a cathode active material; at the time of discharge, air is introduced from outside the battery. So, compared with other type of batteries which incorporate active materials for both cathode and anode, it is possible to enlarge the occupancy rate of the anode active material in the battery case. Hence, in principle, the air battery has features that dischargeable electric power is large as well as downsizing and weight saving can be easily carried out. In addition, oxidation power of oxygen to be employed as the cathode active material is strong so that the electromotive force is relatively high. Moreover, since oxygen is a clean resource the amount of which is not limited, the air battery is environmentally-friendly. As above, air battery has many advantages; therefore it is expected to be used for batteries for mobile devices, electric vehicles, hybrid cars, and fuel-cell-powered vehicle.
An embodiment of an air battery, for example, comprises: a housing; and a power section being incorporated in the housing, wherein the power section comprises, in the order mentioned: a cathode, an electrolyte layer including an electrolytic solution, and an anode. In this case, by ion conduction between the cathode and the anode through the electrolyte layer (electrolytic solution) of the power section, it is possible to take out the electric energy to outside the battery.
In the above embodiment employing an electrolytic solution in the electrolyte layer, problems such as depletion of the electrolytic solution and gas retention in the battery are caused due to, for example, volatilization of electrolytic solution as well as degradation of electrode material and electrolytic solution by the discharge. To solve the above problems, for instance, Patent literature 1 proposes an air battery where the air electrode and the anode are always filled with electrolytic solution by impregnating an entire power section with an electrolytic solution. | {
"pile_set_name": "USPTO Backgrounds"
} |
Apparatus, such as portable electronic devices, usually include an antenna arrangement to enable the portable electronic device to wirelessly communicate with other devices. The antenna arrangement may be provided within a housing of the portable electronic device to shield the antenna arrangement from damage caused by the environment and from contact with the user. Alternatively, the antenna arrangement may comprise a part of a housing of the portable electronic device.
The housing of the portable electronic device defines the exterior surface of the portable electronic device and may at least partly comprise a metal or any other conductive material. Such a housing is relatively strong and may have an attractive aesthetic appearance. | {
"pile_set_name": "USPTO Backgrounds"
} |
In U.S. Pat. No. 2,903,162, Regan discloses a winding key for collapsible wall containers. These plastic or metal containers are commonly used for dispensing fluid and semifluid materials, such as toothpaste, shampoo, glue, lotions, medicines and cake frosting. Winding keys are desirable because they reduce waste of the tube contents, indicate the degree of fill in a tube and provide a neater tube appearance.
The winding key of Regan comprises a blank which has been punched or cut from a metal sheet and bent to have projecting longitudinal flanges. The flanges form therebetween a longitudinally-extending slot adapted to receive the flat tube end. At one end of the key, a handle is formed for manually rotating the key about its longitudinal axis, and thus winding the lower end of the tube. Pivotally connected to the key is a rigid retaining bar of a U-shaped configuration and having a pair of parallel legs joined at their extremities furthermost from the pivotal connection by a transverse portion. The extremities of the legs closest to the pivotal connection are bent inwardly and extend through oppositely aligned openings in the key. The retaining bar is thus pivotally connected to the body of the key by the cooperation of the inwardly directed extremities with the oppositely aligned openings of the key. A flange of the key is bent upwardly to abut the ends of the longitudinal flanges, and has a tongue adapted to receive and positively engage the transverse portion of the retaining bar when the bar is in its locking position. The retaining bar will then engage the container wall to oppose the restoring force inherent in the tube material which tends to cause unwinding.
Devices of the type described are quite useful, but have not found widespread acceptance because the cost of the winding key is significant compared to other manufacturing costs, such as the cost of the tube and its filling.
An object of the invention is to produce a winding key for collapsible tubes having simplified construction, which is durable and easy to use. | {
"pile_set_name": "USPTO Backgrounds"
} |
Ehrlichia bacteria are obligate intracellular pathogens that infect circulating lymphocytes in mammalian hosts. The most natural mode of Ehrlichia transmission is via a variety of tick vectors. Ehrlichia canis (E. canis) and Ehrlichia chaffeensis (E. chaffeensis) are members of the same sub-genus group of Ehrlichia that infect canines and humans and cause canine monocytic ehrlichiosis (CME) and human monocytic ehrlichiosis (HME), respectively. Another species of Ehrlichia known as Ehrlichia ewingii (E. ewingii) has tropism for granulocytes and causes granulocytic ehrlichiosis. The canine disease is characterized by fever, epilepsy, incoordination, lethargy, bleeding episodes, lymphadenopathy, weight loss, and pancytopenia. In humans the disease is characterized by fever, headache, myalgia, and leukopenia.
Indirect immunofluorescence assays (IFA) and enzyme-linked immunosorbent assays (ELISA) have typically been used in the diagnosis of these diseases. These assays measure or otherwise detect the binding of anti-Ehrlichia antibodies from a subject's blood, plasma, or serum to infected cells, cell lysates, or partially purified whole Ehrlichia proteins. However, currently known assays for detecting anti-Ehrlichia antibodies or fragments thereof are severely limited in usefulness because of sensitivity and specificity issues directly related to the impure nature of the Ehrlichia antigen(s) used in these tests.
The diseases caused by bacteria belonging to different Ehrlichia species manifest differently and require separate management routine (Thomas, R. J., et al.; Expert Rev Anti Infect Ther. 2009 August; 7(6): 709-722). It is, therefore, important to identify the Ehrlichia species that causes a particular infection. The currently known immunoassays use mixtures of many whole Ehrlichia antigens or antigens that are not species specific. PCR methods, which may be useful to identify Ehrlichia species, are useable only if the tick is recovered and/or the tissue from host is tested soon after infection. Furthermore, cultivation of bacteria from the infection site, another method which may be useful to identify Ehrlichia species, is not only technically complex but also requires freshly infected tissue. In addition, a cultivation method for the species E. ewingii has not yet been developed.
Accordingly, there remains a need in the art for additional assays for detecting Ehrlichia antigens and serodiagnosis of monocytic ehrlichiosis and granulocytic ehrlichiosis. In particular, there remains a need for an assay for identifying Ehrlichia species, especially an assay that can be used in a variety of circumstances and for various samples, including samples that do not require isolation from freshly infected tissues. The present invention provides methods, compositions, and kits to facilitate the diagnosis, the species identification, and the treatment of the various types of Ehrlichia infections. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.