text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
The present invention relates to a tri-frequency duplexer circuit and multi-frequency duplexer circuit; in particular, the present invention relates to a tri-frequency duplexer circuit and multi-frequency duplexer circuit utilizing mushroom Electromagnetic Band Gap (EBG) frequency designs.
2. Description of Related Art
At present, system integration technologies have made huge contributions to the advancement of the wireless system, and wireless communication systems capable of integrating a variety of communication frequency specifications have especially become the focused issue recently as well. Therefore, the circuit design at the system integration end whose circuits enable good integration of various functions in accordance with different communication specifications is definitely one of the best technologies in such type of focused application fields.
Common circuit designs may include the duplexer, the diplexer and the triplexer. FIG. 1-a shows a duplexer, FIG. 1-b shows a diplexer, and FIG. 1-c shows a triplexer. Though conventional technologies can integrate different communication specifications, including the bi-directional communication in the duplexer 100, as well as the frequency classification function in the diplexer 101 and the triplexer 102, current microwave circuit at the integration end can nevertheless only achieve either bi-direction communication or frequency classification function. In other word, a bi-directional communication circuit is incapable of providing frequency classification function, while the circuit having frequency classification function does not provide bi-directional communication. The reasons for this dilemma found in the present microwave circuit lie in limitation of prior art design and use of non-comprehensive matching network. Consequently, seeking alternative design solutions to allow the microwave circuit at the integration end to simultaneously have bi-directional communication and frequency classification function will be helpful for the construction of future integrated communication systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the case of a known device of this type (CZ 288 848 B6), a first drive unit enables the transfer device to pivot in a reciprocating manner. Furthermore, a second drive unit is provided, the driven shaft of which rotates constantly in the same direction and by means of a pair of cranks in the shape of a parallelogram enables the transfer device to move radially in a reciprocating manner into and out of contact with the hollow glass objects. This device is costly to construct. The device for moving the transfer device horizontally in a linear reciprocating manner requires a large volume of space and has an unfavourably large mass which is to be periodically accelerated and decelerated. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to articles of clothing worn in conjunction with various types of contact sports such as martial arts, including kick boxing, TaeKwonDo, fencing, boxing, and so forth. This invention also relates to detection systems for detecting and measuring vibrations such as weight measurement, perimeter intrusion detection, safety and security fencing, and other applications in which a force or a vibration is used to generate a detectable signal.
Prior publications forming the subject matter herein concerns the use of piezo film technical data sheets published by Measurement Specialties, Incorporated of Valley Forge, Pa. Additionally, the use of piezo film to sense impact in sporting and athletic devices is disclosed in U.S. Pat. No. 4,824,107. Also disclosed in a somewhat more limited extent is U.S. Pat. No. 5,553,880.
In combative sports such as boxing, martial arts such as kick boxing, dueling weapons such as fencing, and so forth, athletes compete in a duel. The object is to strike blows and score points while preventing an opponent from doing the same. Typically, points are awarded in these competitions to athletes who successfully deliver a legal blow to targets illustrated on designate parts or location on athletic gear such as articles of clothing. At the end of the competition, generally determined by the passage of a specific time frame, the athlete with the most points is declared the winner.
In TaeKwonDo, the athletes score points by delivering accurate “trembling” force blows to designated locations on an opponent's athletic gear through various kicking techniques. To protect athlete injuries from these blows, an athlete wears protective equipment, such as a helmet and a protective vest, on which are designated the locations on the opponent's body “legal” targets for kick-delivered impacts. Competition judges award points based on their observation of a competitor's impact delivery.
Currently, the ruling in this sport for issuance of legitimate points is the deliverance of a “trembling shock” observed by the judges as legal kicking techniques. Any other technique besides kicking is considered invalid, with the exception of a referee awarding a point to a punching technique that is deemed as good as a kick.
Although there are strict rules and regulations that govern a match, there are many shortcomings in the current scoring method, namely: 1. The observation of a “trembling shock” is qualities and subjective, and makes the definition relative and inconsistent. 2. Frequently, scoring is confusing to the players and spectators. 3. The threshold of the magnitude of an impact differs from competition to competition, which furthers the confusion of the combatants and spectators. Even within the same competition, the scoring methods differ from match to match and ring to ring, depending on interpretation of rules by the judges. 4. There is a lack of accuracy in judging due to the inability of the judges to visually keep up with the speed and position of the combatants to enable accurate and decisive observations. 5. Due to the difference in size of the combatants, the magnitude of an impact required to generate a “trembling shock” differs between age groups and weight classes, causing difficulty in judging, leading to inconsistency in scoring. 6. Judges have no way to monitor excessive force, which may cause a major injury during competition and hence the knowledge of which is useful for post-evaluation of a serious injury.
Additionally, it has been found that training for effective martial arts can be more effective with the addition of the following features:
1. Accurate measurement of the magnitude of an impact delivered by an athlete to evaluate efficiency and effectiveness of various techniques. 2. An accurate determination of the source of a technique which generated an impact. The source can be evaluated to determine the validity of the technique, while the impact determines the quality of the technique. The combination of source and impact can be used to determine a valid score. 3. During practice sparring, accurate measurement of valid techniques is important to evaluate an athlete's performance as well as to provide conditions which represent a true competitive environments. 4. Given an ability to quantitatively measure shock requirements, the athletes can monitor and optimize techniques to obtain valid points most effectively.
Accordingly, it is a principal objective of this invention to provide an article of clothing and athletic gear worn by a combatant that functions to indicate an impact delivered to a “legal” location on the body of a combatant delivered by a combatant's proper kicking technique.
Another object of this invention is to provide a detection system for recording the magnitude of the force imposed by an impact, and the legitimacy of the location at which the force is applied in relation to a combatant's body.
Another object of this invention is to provide a means and method for determining the source of the technique causing an impact. This is useful in sports requiring the distinction between a kicking technique, hand technique, elbow or other actions causing an impact.
Still another object of this invention is provide a means and method for adjustment of and setting of a threshold force that will activate equipment to account for the size and age of combatants during competition, or the appropriate threshold level during training sessions.
A further object of this invention is the provision of a means and method for indicating and recording the status of an impact on a combatant in terms of location of the impact and the intensity of force of the impact.
Another object of this invention is to provide a method and means to transmit to a control station data relating to the status of impacts delivered to a combatant for recording and display as an aid to judges when scoring legitimate points for the combatants.
Another object of this invention is to provide a method and means to facilitate the application of garments required to meet the functional objectives that are described, supra, that provide improved comfort level for the athletes wearing the equipment.
Another object of this invention is to provide a method for detecting impact and contact of weapons to weapon, and weapon to body during martial arts competition with simulated weapons. Currently, in martial arts competition or training using weapons, there are no realistic ways to determine valid techniques to keep track of a winner or loser. | {
"pile_set_name": "USPTO Backgrounds"
} |
According to the World Health Organization, 33.3 million people worldwide were living with Human Immunodeficiency Virus (“HIV”) as of 2009. That same year, 2.6 million new infections were reported and 1.8 million people worldwide died of AIDS-related illnesses.
Human immunodeficiency virus type 1 (HIV-1) enters host cells through a multistep process that requires sequential interactions of the envelope glycoprotein gp120. The envelope protein interacts first with the CD4 receptor and then with one of a family of chemokine coreceptors, mainly CCR5 or CXCR4. The V3 loop in HIV-1 gp120 has been shown to be critical for coreceptor binding.
Importantly, HIV-1 strains can be phenotypically classified according to a virus' ability to use the CCR5 (R5) and/or CXCR4 (X4) co-receptor. Pure R5-tropic and pure X4-tropic virus can use only the CCR5 and CXCR4 co-receptors to enter the target cell, respectively, while dual-tropic virus can use both co-receptors. In a virus population, the use of both co-receptors can be due either to the presence of dual-tropic clones or to a mixture of pure R5-tropic and X4-tropic clones or both. This is cumulatively defined as dual/mixed phenotype.
HIV-1 co-receptor usage is of central pathological and clinical importance. It has been shown that R5-tropic viruses are generally responsible for the establishment of the initial infection and predominate in the majority of newly HIV-1 infected patients, while the use of the CXCR4 co-receptor is generally seen in more advanced stages of disease, and has been associated with a more rapid CD4 decline and progression to AIDS.
HIV-1 co-receptor usage is also of critical therapeutic importance given the current and future approval of CCR5 antagonists for the treatment of HIV-1 infection. CCR5-antagonists are a new class of anti-HIV-1 drugs that specifically inhibit the entry of R5-tropic HIV-1 strains into the target cells by allosteric inhibition of the CCR5 co-receptor. Maraviroc is the first approved CCR5 antagonist, which entered clinical practice in 2007.
Significantly, HIV-1 tropism must be determined before CCR5 antagonists can be prescribed. CCR5-antagonists are most effective (and the viruses less likely to develop resistance) when administered to treatment-naïve patients. This is due to the higher prevalence of CCR5-tropic HIV-1 early in the infection cycle and relative to more advanced patients. Moreover, CCR5 antagonists are ineffective against X4-tropic viruses.
The mandatory determination of HIV-1 tropism prior to administration of CCR5 antagonists presents several practical difficulties. A number of phenotypic assays have been developed, such as the Trofile® assay (Monogram Biosciences). Trofile® is a single-cycle recombinant virus assay in which a pseudovirus is generated from full length envelope (env) genes derived from the patient's virus population. The complete envelope is used to determine viral tropism taking into account determinants that lie outside the V3 loop. However, phenotypic assays are complex and marked by high cost and long turnaround times. In addition, most of them cannot determine HIV-1 tropism in clinical samples with viral loads below 1,000 copies/ml and have an unacceptably high sensitivity threshold for detection of the minority X4-tropic virus population. Thus, a need exists for genotypic tropism assays that can rapidly and efficiently determine tropism based on the sequence of a patient-derived V3 loop in HIV-1 gp120.
In addition to these genotyping needs, there is a long-felt need for accurate quantification of HIV-1 RNA and proviral DNA. RNA quantification, also referred to as viral load measurements, are routinely used in clinical settings. (FIG. 1). Indeed, studies have shown HIV-1 RNA levels to be a predictor of the time to progression to acquired immunodeficiency syndrome (AIDS) and death that is independent of CD4 cell counts. Viral load measurements are also useful in determining when to initiate anti-retroviral therapy and in monitoring the response to such therapy. In specific situations, HIV-1 RNA and proviral DNA levels may also be useful in diagnosing of HIV infection. For example, serologic testing may not reliably identify HIV-1 infection in neonates with passively acquired maternal HIV-1 antibodies or with incompletely developed immune systems, in individuals with early infection (<30 days from infection), or with “indeterminate” antibody profiles by Western blot assays. In these situations, detection and quantification of HIV-1 nucleic acids (RNA or proviral DNA) can provide early evidence of HIV-1 infection (approximately 10-14 days after infection) and can also provide early evaluation of the progression of infection. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is a new and distinct variety of evergreen azalea of the genus Rhododendron. This new azalea, hereinafter referred to as ‘MNIHAR025’, originated from a planned cross hybridization in 2002 between the female azalea plant ‘Conleb’ (U.S. Plant Pat. No. 10,581) and the male azalea plant ‘Jay Valentine’ (unpatented) in a controlled environment in Lawrenceville, Ga. The present invention has both spring and fall blooming. ‘MNIHAR025’ has a compact, broadly globose freely branching growth habit, and cold hardiness.
The new plant was first propagated via semi-hardwood cuttings in 2005 in Dearing, Ga. and has been asexually reproduced repeatedly by semi-hardwood cuttings in Dearing, Ga. for over 7 years, four generations. ‘MNIHAR025’ has been found to retain its distinctive characteristics through successive asexual propagations via semi-hardwood cuttings.
Plant Breeder's Rights for this variety have not been applied for. ‘MNIHAR025’ has not been made publicly available or sold more than one year prior to the filing date of this application. | {
"pile_set_name": "USPTO Backgrounds"
} |
For a long time, wireless communication systems have been facing a conflict between the limited spectrum resources and the continuously and quickly increasing of the number of users. Although system capacity has been increased to a certain extent by technologies such as frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA), these technologies are far from the demand of ever-increasing quantity of wireless traffic. Therefore, people begins to utilize the spatial domain characteristic of a data transmission channel, e.g. diversity, sectorization, and switching multi-beam and adaptive antenna array, etc., to increase the capacity of a receiving system. By using these methods, communication quality of a wireless communication system have been improved to some extent, and the capacity have been increased.
In the diversity technology, signals received by different antennas with a space larger than 10 carrier-wavelength are not correlated. The signals received by respective antennas are combined by using a maximum ratio to improve system performance such as multipath anti-fading.
In the sectorization technology, a cell is divided into 3, 6, 9, or 12 sectors, each sector being configured with an antenna and a predetermined spectrum range. The interference of the communication channels can be decreased to a certain extent by sectorization, thereby increasing communication quality of the system.
The switching multi-beam technology is to form fixed beams in a cell in different directions, wherein signal quality of an expected signal in each beam is detected by a base station, and the best beam is selected to be received. One of the main reasons for calling it switching multi-beam is that during a procedure that the system selects a beam, there are controlled switches on the channels between each beam and the respective channel receiver, that is, a “switch matrix”. After a certain beam is selected, a switch between the beam and the corresponding channel receiver is closed, while the switches of the other channels are open.
The signals received by respective antennas are weighted and combined adaptively by an adaptive antenna array based on maximum signal to noise ratio criterion, maximum likelihood criterion, and minimum mean square error criterion, etc. The interference and noise signals are suppressed effectively, thereby increasing the entire performance of the wireless system.
Because the diversity method requires a large distance between the antennas (normally, larger than 10 wavelengths), the more the antennas, the more the spaces are occupied. However, spaces used practically by a base station are limited. In addition, although the diversity method for combining by using the maximum signal to noise ratio has the effect of multipath anti-fading, it cannot suppress signal interference effectively.
The common sectorization methods have used 3 sectors or 6 sectors. The reason for not using more sectors is that the more the division of the sectors, the less the spectrum resources can be used by each sector, and signal relay efficiency will be decreased. Furthermore, the more the division of the sectors, the more the beams overlap between different sectors, interference between the channels will increase, and system performance will decrease.
It can be considered to some extent that switching multi-beam is a type of sectorization method, whereby the division of sectors is formed dynamically by a combination of different beams. Because “the best” beam is set for receiving signals, switching multi-beam differs from the sectorization method. The more the beams of the switching multi-beam overlap, the more gain loss at the boundary between the beams will be decreased. The field of a beam of a current switching multi-beam system is cohered and overlapped by a directional antenna or by using a radio frequency phase shift network (for example, Butler matrix) to form a plurality of narrow beams directing to different directions in the space for covering a cell. In theory, the narrower the beams are, the better the performance of spatial domain filtering a multi-beam antenna switched by beams will have, and the stronger the ability for suppressing the signal interference. However, because an aperture of a directional antenna is limited, and phase shift accuracy of a radio frequency phase shift network is limited, the width of a beam is limited, and the overlapping the beams is limited. As a result, the ability for improving communication capacity of the existing switching multi-beam systems is limited. Furthermore, since a switching matrix of the existing switching multi-beam systems is implemented by radio frequency switching devices, it makes the cost of system hardware increase. When beams are selected by switching beams, it is implemented normally based on power magnitude of an expected signal in a beam. When there is strong interference, and the time for evaluating expected power of a user is rather short, it will sometimes cause malfunction in selecting the beams.
An adaptive antenna array employs an adaptive algorithm based on different standards to obtain an array-weighting factor. Although optimum system performance can be achieved in some extent, a large amount of calculation will be required for the adaptive algorithm with excellent performance. The requirement for digital signal processing devices is rather high, and a number of algorithms cannot be implemented by using high speed processing chips that are currently used.
Based on the above reasons, and by incorporating the technology of switching multi-beam and adaptive antenna array, one of the objectives of the invention is to provide a digital baseband spatial domain matched filtering method for an array receiver in a radio communication system. The method allows simple and small amount of calculation. Therefore, the cost for implementing the hardware is low, while the system performance is better. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are a number of operational parameters that can be of concern in oscillator operation, depending on the oscillator's intended application. In oscillators intended for measurement instrumentation applications, for example, "phase noise" is often a critical parameter. Other parameters of concern may include output power and compression characteristic. Many of these parameters are influenced by the base inductance (or gate inductance) of the oscillator transistor.
In an oscillator intended for fixed frequency operation, it is relatively straightforward to select a base inductance that optimizes parameters of particular concern. However, a serious problem is evident in oscillators that can be tuned to operated over a broad band of frequencies: what base inductance should be selected?
The usual approach is to select a fixed, compromise base inductance that permits adequate (rather than optimum) oscillator operation over a desired range of frequencies. By so doing, however, optimum oscillator performance is achieved at only one frequency, if at all. Further, the use of fixed base inductance necessarily limits the range of possible operating frequencies, sometimes preventing certain design criteria from being met.
An alternative approach is to electronically alter the topology of the base inductance network to provide different inductances at different frequencies. This can be accomplished by means such as PIN diodes that switch certain circuit elements into or out of the circuit when predetermined tune voltage thresholds are passed. This approach, however, suffers by reason of its complexity and by reason of parasitic problems associated with the additional circuit elements.
Another approach is to design a network that achieves a desired reactance vs. frequency characteristic across the band of interest. However, this approach is difficult to implement without introducing too much loss. | {
"pile_set_name": "USPTO Backgrounds"
} |
The suspension links of the textile fenders are objects which are stuck, welded or sewn on the flexible upper part of the fender. They create the link between the fender that protects the hull from impacts with the dock where the boat is moored and the end bit passes inside the links, itself secured to the rail of the boat.
The purpose of these links is to suspend the fender by means of an end bit secured to the rail of the boat. They must be capable of supporting intensive vertical traction forces, caused by various movements, in particular the pitching of the boat moored to the dock.
There are three types of fenders:
1. The textile fender provided with flexible suspension links with eyelets, eyelets secured on a tab connected to the fender.
2. The rubber fender provided with suspension links molded in one single piece on production for maximum resistance to vertical traction.
3. The inflatable pvc fender provided with suspension links welded or stuck on vertical reinforcements inside the pvc casing for maximum resistance to vertical traction.
The major drawback caused by using flexible suspension links secured in the upper part of the textile fender is the detachment noticed during the repetitive and violent traction forces caused by the relative movements between the boat hull and the dock to which it is moored.
This drawback alters the quality of the mechanical resistance of the textile casing of the fender, rendering the use of the latter hazardous. | {
"pile_set_name": "USPTO Backgrounds"
} |
Embodiments of the present invention relate to vision treatment techniques and in particular, to ophthalmic lenses such as, for example, contact lenses, corneal inlays or onlays, or intraocular lenses (IOLs) including, for example, phakic IOLs and piggyback IOLs (i.e. IOLs implanted in an eye already having an IOL).
Presbyopia is a condition that affects the accommodation properties of the eye. As objects move closer to a young, properly functioning eye, the effects of ciliary muscle contraction and zonular relaxation allow the lens of the eye to change shape, and thus increase its optical power and ability to focus at near distances. This accommodation can allow the eye to focus and refocus between near and far objects.
Presbyopia normally develops as a person ages, and is associated with a natural progressive loss of accommodation. The presbyopic eye often loses the ability to rapidly and easily refocus on objects at varying distances. The effects of presbyopia usually become noticeable after the age of 45 years. By the age of 65 years, the crystalline lens has often lost almost all elastic properties and has only limited ability to change shape.
Along with reductions in accommodation of the eye, age may also induce clouding of the lens due to the formation of a cataract. A cataract may form in the hard central nucleus of the lens, in the softer peripheral cortical portion of the lens, or at the back of the lens. Cataracts can be treated by the replacement of the cloudy natural lens with an artificial lens. An artificial lens replaces the natural lens in the eye, with the artificial lens often being referred to as an intraocular lens or “IOL”.
Monofocal IOLs are intended to provide vision correction at one distance only, usually the far focus. Predicting the most appropriate IOL power for implantation has limited accuracy, and an inappropriate IOL power can leave patients with residual refraction following surgery. Accordingly, it may be necessary for a patient who has received an IOL implant to also wear spectacles to achieve good far vision. At the very least, since a monofocal IOL provides vision treatment at only one distance and since the typical correction is for far distance, spectacles are usually needed for good near vision and sometimes intermediate vision. The term “near vision” generally corresponds to vision provided when objects are at a distance from the subject eye of between about 1 to 2 feet are substantially in focus on the retina of the eye. The term “distant vision” generally corresponds to vision provided when objects at a distance of at least about 6 feet or greater are substantially in focus on the retina of the eye. The term “intermediate vision” corresponds to vision provided when objects at a distance of about 2 feet to about 5 feet from the subject eye are substantially in focus on the retina of the eye.
There have been various attempts to address limitations associated with monofocal IOLs. For example, multifocal IOLs have been proposed that deliver, in principle, two foci, one near and one far, optionally with some degree of intermediate focus. Such multifocal or bifocal IOLs are intended to provide good vision at two distances, and include both refractive and diffractive multifocal IOLs. In some instances, a multifocal IOL intended to correct vision at two distances may provide a near add power of about 3.5 or 4.0 diopters.
Multifocal IOLs may, for example, rely on a diffractive optical surface to direct portions of the light energy toward differing focal distances, thereby allowing the patient to clearly see both near and far objects. Multifocal ophthalmic lenses (including contact lenses or the like) have also been proposed for treatment of presbyopia without removal of the natural crystalline lens. Diffractive optical surfaces, either monofocal or multifocal, may also be configured to provide reduced chromatic aberration.
Diffractive monofocal and multifocal lenses can make use of a material having a given refractive index and a surface curvature which provide a refractive power. Diffractive lenses have a diffractive profile which confers the lens with a diffractive power that contributes to the overall optical power of the lens. The diffractive profile is typically characterized by a number of diffractive zones. When used for ophthalmic lenses these zones are typically annular lens zones, or echelettes, spaced about the optical axis of the lens. Each echelette may be defined by an optical zone, a transition zone between the optical zone and an optical zone of an adjacent echelette, and an echelette geometry. The echelette geometry includes an inner and outer diameter and a shape or slope of the optical zone, a height or step height, and a shape of the transition zone. The surface area or diameter of the echelettes largely determines the diffractive power(s) of the lens and the step height of the transition between echelettes largely determines the light distribution between the different add powers. Together, these echelettes form a diffractive profile.
A multifocal diffractive profile of the lens may be used to mitigate presbyopia by providing two or more optical powers; for example, one for near vision and one for far vision. The lenses may also take the form of an intraocular lens placed within the capsular bag of the eye, replacing the original lens, or placed in front of the natural crystalline lens. The lenses may be in the form of a contact lens, most commonly a bifocal contact lens, or in any other form mentioned herein.
Although multifocal ophthalmic lenses lead to improved quality of vision for many patients, additional improvements would be beneficial. For example, some pseudophakic patients experience undesirable visual effects (dysphotopsia), e.g. glare or halos. Halos may arise when light from the unused focal image creates an out-of-focus image that is superimposed on the used focal image. For example, if light from a distant point source is imaged onto the retina by the distant focus of a bifocal IOL, the near focus of the IOL will simultaneously superimpose a defocused image on top of the image formed by the distant focus. This defocused image may manifest itself in the form of a ring of light surrounding the in-focus image, and is referred to as a halo. Another area of improvement revolves around the typical bifocality of multifocal lenses. Since multifocal ophthalmic lenses typically provide for near and far vision, intermediate vision may be compromised.
A lens with an extended depth of focus may provide certain patients the benefits of good vision at a range of distances, while having reduced or no dysphotopsia. Various techniques for extending the depth of focus of an IOL have been proposed. For example, some approaches are based on a bulls-eye refractive principle, and involve a central zone with a slightly increased power. Other techniques include an asphere or include refractive zones with different refractive zonal powers.
Although certain proposed treatments may provide some benefit to patients in need thereof, still further advances would be desirable. For example, it would be desirable to provide improved IOL systems and methods that confer enhanced image quality across a wide and extended range of foci without dysphotopsia. Embodiments of the present invention provide solutions that address the problems described above, and hence provide answers to at least some of these outstanding needs. | {
"pile_set_name": "USPTO Backgrounds"
} |
In legacy mainframe computing environments, it is common to find monolithic applications including thousands and even tens of thousands of individual programs all running together in a very monolithic structure in a single operating environment. This monolithic structure of programs may represent substantial investments of time and resources in the development of their underlying code (up to several thousands of man-years), and the interdependent nature of the software programs makes translating or migrating the code from one computer environment very difficult.
Legacy program files may be compiled, assembled and linked with the constraint to run only on a processor of a specific architecture and instruction set, often referred to as part of a legacy system or legacy platform.
FIG. 1A depicts the elements of a legacy platform (100) that uses hypervisor virtualization. The system hardware (10) may include, for example, a mainframe computer running a hypervisor (30), often as a virtual machine monitor (z/VM), to provide as set of fully isolated virtual machines (70), each with its own guest Operating System (OS) (20), and associated OS libraries (80) in which programs are typically run. The hypervisor (30) provides a management platform that partitions the resources of the host machine into the set of virtual or guest machines (70) that can operate independently within the legacy system. A guest operating system (40), or multiple guest operating systems (40) are installed in the virtual machines. A set of binaries and library programs (50), and one or more applications (60) then run on a given virtual machine. Like a physical machine, the virtual machine has associated state information, can be backed up or restored, and may be assigned dedicated system resources. The starting up and tearing down of a virtual machine in a hypervisor system requires considerable overhead, and for this reason, when established, virtual machines typically persist for considerable run times.
FIG. 1B depicts an example of a container management system (110). The hardware (15) of the container system may be a physical server or a cluster of physical servers, which may, for example, be X86-based computers. The host operating system kernel (25) of the system, such as Linux, is shared by the platform, and a set of containers (75) are enabled through a container management system (35) such as Docker. In particular, the namespace and group functionality of the Linux kernel may be used for containerization. Container management systems may be provided as wrappers around the kernel functionalities and allow for container management, such as deployment.
Other container management systems such as the Amazon ACS, Azure Container Service, Cloud Foundry Diego, CoreOS Fleet, Docker Swarm, Google Container Engine, or Mesosphere Marathon container management system, or other container management and orchestration system can be used. The container management system (35) and a set of shared operating system libraries (85) provide a platform in which the set of containers (75) may execute. For example, some low-level operating system libraries 85, such as those used for basic file input/output (I/O) functions, may be shared by all containers through the operating system kernel or container management system rather than resident in individual containers.
As in the case of the virtual machine, a set of binaries and library programs (55), and one or more applications (65) run in a set of containers (75). By way of example, a library that provides web access services, such as http protocol, may only be needed in some applications and not others, and would thus be included in the library programs (55) when required for a specific application service, but omitted from the library programs (55) of a container with only applications that never use a web access service.
Compared to a virtual machine, a container is a relatively lightweight construct, and is not burdened with the overhead of its own full operating system and all of the state information associated with a physical or virtual machine. Consequently, the starting up and tearing down of a container requires little overhead, which makes the deployment and termination of containers an effective technique for application upgrade, dynamic load balancing and resource allocation within a cluster.
In particular, virtual machines have their own operating system, file system, processor(s), network adapters, and associated storage volumes. The fact that they run a guest operating system over a hypervisor makes virtual machines a heavyweight process, with the overhead of running two operating systems (hypervisor+guest operating system) on top of each other, that cannot be easily launched and terminated, to accommodate changing demand for application services. Containers, on the other hand, share core operating system functions through kernel direct access and other physical resources including storage volumes. Storage volumes are typically resident on fixed disk drives, but may also reside in other mass storage including flash drives, tape, or other fixed or removable storage media. Although the behavior of different container may differ based on binary and library programs that are incorporated into the image loaded into those particular containers, the use of shared operating system services significantly reduces the overhead associated with each individual instance of a container. For this reason, containers are lightweight, relative to virtual machines, which makes the instantiation and termination of containers in response to application demands more feasible. Indeed, in the case of, for example, the Kubernetes container management system running Docker, a container can be launched in a fraction of a second. For that reason, large deployments may launch and terminate several thousands of those containers every second.
Container management systems may also include pods. A pod is a deployment unit in a container system that includes one or more containers that are deployed together on the same host or cluster. In some container management systems, such as Kubernetes, containers in a pod share the same network namespace and port space. Additionally, shared volumes of storage that are attached to the pod may be mounted in one or more of the pod's containers.
A standard Linux distribution includes tens (even hundreds) of thousands of individual files, and, depending on the application for which such a system is used, may be combined with thousands of additional system packages that add functionality to the platform. Examples of such packages include the Apache web server, Java virtual machine, PostgreSQL, or other packages to provide database or language support and the like. These packages include program code and metadata describing the packages and dependencies between packages and other libraries. Shared libraries can be used by dynamically linked packages to provide tremendous functionality, but can greatly increase the footprint of the Linux image, and the complexity of system administration. A minimal instance of Linux that incorporates very few packages may occupy only a few megabytes of memory. On the other hand, a large installation with many packages used to support, for example, a large-scale application web-server with advanced database services may occupy hundreds of megabytes of storage, or even more. The administration of Linux-based platforms often includes the use of package manager software to manage the dependencies between packages and libraries and the recurring upgrades of those libraries and packages. A large image serving multiple targets at once is more complex to manage than a simple one.
Microservices are typically small, autonomous services that can collaborate tightly together to provide the functionality of an application. The autonomous nature of microservices enables them to be deployed independently of each other as isolated services, that may communicate with other services through network calls. A set of closely related microservices, or microservices that, in their operation, share access to a common volume, may be deployed within the same pod. A microservice architecture offers important advantages of manageability, availability, scalability, and deployability on clustered systems. However, the monolithic nature of many legacy applications, makes translating such monolithic applications into sets of minimally interdependent microservices a difficult and manually intensive task. Further complicating the problem, legacy monolithic applications written in Cobol and compiled to run on legacy architectures such as MVS or z/OS with their proprietary APIs cannot generally be exported from the legacy architecture and executed onto a Linux or other operating system or cluster, especially when based on x86 servers. due to differences in instruction sets and APIs.
More generally, systems that translate application code from one operating environment to another, whether through emulation, cross-compiling, transcoding, or a hybrid approach can be developed to enable the execution of a compiled legacy program to run on a guest operating system using a different underlying architecture. However, such systems tend themselves to be large programs that do not easily scale, which is particularly problematic in the case of executing applications that perform high transaction volumes. Additionally, emulation or transcoding systems lend themselves to be monolithic applications because, in order to be useful, the emulator or transcoder must be capable of executing an unknown subset of the possible instructions of the legacy environment in the guest environment. | {
"pile_set_name": "USPTO Backgrounds"
} |
A touch screen is an electronic visual display device that detects the presence and location of user touch inputs. Similarly, a touchpad is an input device including a surface that detects a touch-based inputs of users. So-called dual touch or multi-touch displays or track pads refer to devices that can identify the presence, location and movement of more than one touch input, such as two or three finger touches. More recently, multi touch user interfaces have become widely adopted with a diverse array of functions responding to touch gestures.
Gesture recognition in connection with single, dual or multi-touch devices refers to the interpretation of touch inputs, such as position and movement, into gestures. A recognized gesture may cause an in-focus application to perform one or more operations, such as scrolling, rotating, zooming, or selecting an object. Dual and multi-touch devices with the ability to recognize two or more touch positions allow for recognition of an increasing number of more complex gestures. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a 3GPP network, the physical uplink control channel (PUCCH) is used to transmit uplink control information (UCI) from User Equipment (UE) to a 3GPP eNodeB (eNB). An example of the UCI information is an acknowledgement signal in a Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK) process. Typically, PUCCH resources are dynamically allocated to a mobile station based upon the lowest carrier control element (CCE) index of a signal transmitted on the PDCCH by the eNB using one or more CCEs. Because the PDCCH transmission is unique to a given UE, use of the CCE index would result in the UE being assigned a unique uplink resource on the PUCCH.
However, an enhanced physical downlink control channel (ePDCCH) using one or more enhanced carrier control elements (eCCEs) has recently been introduced to the 3GPP specifications. The uplink resource of the PUCCH may be based on the lowest eCCE index for one or more eCCEs used for a transmission on the ePDCCH. In certain instances the lowest CCE index and the lowest eCCE index may be in the same. In these instances, an uplink resource allocated to a first UE using the lowest CCE index of the PDCCH may be the same as an uplink resource allocated to a second UE using the lowest eCCE index of the ePDCCH, resulting in a resource allocation collision.
Cell-specific reference signals (CRS) may be transmitted in DL subframes except for multimedia broadcast/multicast service (MBMS) regions in multimedia broadcast/multicast service network (MBSFN) subframes. In a certain carrier, with non-backward compatibility, CRS can be removed or reduced to increase DL throughput as well as to provide network energy saving. Also, legacy PDCCH is not transmitted but PDSCH is scheduled by either ePDCCH or cross-carrier scheduling from legacy cells using legacy PDCCH.
In a heterogeneous network with low power RRHs within the macrocell coverage are, e.g., coordinated multipoint (CoMP) scenario 4, the transmission/reception points created by the RRHs have the same cell IDs as the macro cell. Since the same physical Cell ID is used for several RRHs, the capacity for CRS based PDCCH is limited. This is mainly due to the CRS is transmitted from the RRHs as well as from macro cells in a synchronous or quasi-synchronous manner. Accordingly, enhanced PDCCH has been proposed to address PDCCH capacity.
To reduce overhead and inter-cell interference levels, a new carrier type (NCT) has been introduced. The new carrier type is complementary to legacy carrier type(s) and is backward compatible. For example, ePDCCH may be transmitted on the new carrier type (NCT). However, a resource allocation method has not been developed for ePDCCH transmitted on NCT. Moreover, dynamic resource allocation of HARQ-ACK transmission has not been adequately addressed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to making insulating glass assemblies using a low-temperature press process.
Insulating glass assemblies such as insulating glass (IG) units and insulating sash assemblies often include a pair of glass panes maintained in a fixed spaced relation to each other by a spacing structure (spacer) and sealing structure that extends around the periphery of the inner facing surfaces of the glass sheets to define a sealed and insulating space between the glass panes. In the case of insulating sash assemblies, the spacer is an integral part of the sash frame and the glass panes are attached to the spacer by a sealant or adhesive composition. The sealant or adhesive composition is also used to seal the edges of the insulating glass assembly so as to establish a barrier that prevents moisture from penetrating into the interior of the assembly and potentially to prevent thermally insulating gases, like argon, from leaving the airspace.
Many construction materials are used in manufacturing insulating glass assemblies, including wood, metals (e.g., aluminum and steel), polymers such as polyvinyl chloride and composites (e.g., wood fiber reinforced polymer composites and fiberglass reinforced polymer composites). Insulating glass assemblies that include a thermoplastic spacer (e.g., polyvinyl chloride) can experience distortion and deformation when exposed to elevated temperatures leading to residual stresses in the bond line, which can then lead to a loss of bond integrity, bond durability, an increase in the potential for stress cracking and moisture intrusion into the sealed chamber of the assembly. Build up in residual stresses in the bond line is exacerbated by the mismatch in the coefficients of thermal expansion due to the dissimilar substrates (e.g., glass panes and a thermoplastic spacer).
Conventional insulating glass windows are currently manufactured in a two step process in which a stand-alone subassembly consisting of two pieces of glass and a spacer, which is referred to as an “insulating glass unit,” is inserted into a sash frame to produce an insulating sash subassembly. The insulating sash is installed into a frame to make a window. Insulating glass units are typically manufactured according to processes known as “linear extrusion,” SWIGGLE sealing, and hand gunning.
Hand gunning involves applying a sealant to a channel formed by the two panes of glass and the spacer. The sealant is either a two-component sealant, which is applied at room temperature or a single-component sealant, which is applied at relatively high temperatures (e.g., temperatures of at least 200° F.). Two-component sealants require metering, mixing and monitoring of the ratio of the two components. Two-component sealants also require time to cure to a sufficient degree to be suitable for handling and the equipment used to dispense the sealant is purged periodically to prevent blockage. Hot applied single-component sealants require a high application temperature, which can create safety issues. Hand gunning is often used to apply sealants to aluminum spacers, which have poor thermal performance. The nature of hand gunning results in a relatively low throughput and consequent higher cost per unit. Automated or semi-automated application equipment is costly.
Residential insulating glass units are often manufactured using a lineal extrusion process, which is referred to by the trade designation INTERCEPT. A linear extrusion process is described, e.g., in U.S. Pat. No. 5,177,916 (Misera) and U.S. Pat. No. 6,223,414B1(Hodek). Linear extrusion involves coating the bottom inside of a channel of a spacer, which is typically made from metal. A desiccant matrix is often positioned on the inside bottom of the channel. The desiccant matrix is used to dry the insulating glass unit airspace and potentially remove chemical volatiles that may cause chemical fog from the airspace of the unit. At least one sealant is applied to the outer three sides of the spacer and a pair of glass panes are placed on the sealant on opposite sides of the spacer. The insulating glass unit is then passed through an oven heated to an air temperature in excess of 200° F. and a press, which is positioned in the oven, to adhesively bond the glass to the spacer. The pressure exerted on the insulating glass unit is at least 5 psi. High temperature and pressure is necessary to generate a sufficient bond between the glass and the spacer. Rollers are employed to apply pressure and move the unit through the oven.
Another insulating glass unit manufacturing technology is referred to by the trade designation SWIGGLE and involves the use of a rope-like product that includes a sealant, desiccant, and a spacer. The rope is positioned between two panes of glass and passed through a roller oven/press to bond the panes of glass together at oven air temperatures in excess of 160° F. Roller oven/press processes require relatively large amounts of energy and additional equipment for complex manufacturing and handling hot insulating glass assemblies.
Once the insulating glass unit is prepared, the unit is then secured in a frame, which is referred to as “glazing.” Glazing is typically accomplished by one of two processes. In one process, an adhesive strip or glazing tape is attached to a structure on the profile (i.e., “glazing leg”) of a frame and the insulating glass unit is adhered to the exposed surface of the glazing tape. Glazing stops or beads are then placed over the insulating glass unit in order to provide static pressure against the unit, reduce the UV light exposure and improve visual look of the sash.
In another process, which is referred to as “back-bedding sealing,” a sash frame is placed horizontally on an X-Y back-bedding machine that is capable of laying down a continuous bead of sealant along the glazing leg. The insulating glass unit is then adhered to the bead of sealant and glazing stops are attached to the sash. The back bedding sealant forms a seal between the insulating glass unit and the sash frame.
A relatively new window construction has been developed and utilizes an integrated sash design whereby the insulating glass assembly is an integrated part of the sash, i.e., the frame and insulating glass unit are not separate components. A variety of integrated insulating glass assemblies are available and are described in, e.g., U.S. Pat. No. 5,653,073 (Palmer), U.S. Pat. No. 6,055,783 (Guhl et al.), U.S. Pat. No. 6,286,288 (France), and U.S. Pat. No. 6,401,428 (Glover et al.).
These numerous commercially available approaches provide some flexibility in both the final window design and in the materials selected to make the windows. However, most approaches utilize sealant compositions that require application at elevated temperatures and pressures to achieve the desired properties, which consume relatively high amounts of energy. Heat may also distort the spacer and frame. There remains a need for systems that utilize sealant compositions capable of bonding a glass pane to a spacer without high temperature and pressure. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates most generally to color correction of computer peripheral devices, and more particularly to a color profiling system for a printer and scanner.
Color is defined as the perceptual result of light in the visible region of the spectrum. The human retina has three types of color photoreceptor cells for illumination, therefore, it is possible to define color using only three numerical components.
The Commission Internationale de L""Eclairage (CIE) created a standardized system for representing color illuminations using three numerical components to represent the mathematical coordinates of color space. The colors produced by reflective systems are a function not only of the colorants but also of the ambient illumination that requires further spectral matching. The most familiar color systems include CIE XYZ, CIE xyY, CIE L*u*v* and CIE L*a*b*.
The CIE system is based on the description of color as luminance component Y and spectral weighting curves components X and Z. The spectral weighting curves for X and Z were standardized by the CIE based on statistics from experiments involving human observers. The magnitudes of the XYZ components are proportional to physical energy, but their spectral composition corresponds to the color matching characteristics of human vision.
Most devices employ a device-dependent color-coordinate system to specify the colors, and there are several different systems in the market. The coordinate system is defined in a color space that maps the color coordinates to the color mechanism used by the device. Color space refers to an N-dimensional space in which each point in the space corresponds to a color. The cyan (C), magenta (M), yellow (Y) and black (K) (CMYK) color space is commonly used for color printers, where each point in the CMYK color space corresponds to a color produced using a formula for the CMYK colorants. The color space could be represented solely by CMY, but black is added as a colorant for print matter for several reasons. Printing black by overlaying cyan, yellow and magenta ink is expensive and time-consuming, and the edges of the lettering tend to blur. The printing of three ink layers to produce black also causes the printed paper to become wet requiring more time to dry.
The red, green and blue (RGB) system is a color space system that is complementary to the CMYK color space. The RGB system is a three-dimensional color space wherein each point in the color space is formed by some combination of RGB colorants. The RGB system is typically used for computer monitors, TV screens and scannersxe2x80x94illuminating devices.
The term color gamut is used to refer to a range of colors that can be produced within a color space by a particular device from a set of colorants. The color gamut of a device corresponds to the visible colors that can possibly be produced by the device.
A digitized color image is represented as an array of pixels, wherein each pixel contains numerical components that define a color. The three components are required to represent an image, and printing necessitates a fourth component, namely black. Color printers and color copy machines typically use three or four colorants, such as CMYK to produce the color image. The combination mix and density of the colorants produce a wide array of shades and colors.
While the three numerical values for digitized images could be provided by a color specification system, the color coding systems require faster processing. Several other systems have developed for image coding, including linear RGB, nonlinear Rxe2x80x2Gxe2x80x2Bxe2x80x2, nonlinear CMY, nonlinear CMYK, and derivatives of nonlinear Rxe2x80x2Gxe2x80x2Bxe2x80x2 such as Yxe2x80x2CBCR. RGB values can be transformed to and from the CIE XYZ values by a three-by-three matrix transform.
A scanner is used for converting print mediums such as pictures, artwork, documents, transparencies, and photographs into an electronic format. The scanner captures an image by measuring colors reflected from or transmitted through an image at many points and assigns numerical values to the colors at those points. Normally, the scanned image is represented as digital data, called pixels, in a Red-Green-Blue (RGB) representation. The pixels are arranged into a table of rows and columns, and contain information about the image such as the color information for a particular pixel defined as some formula of the primary colors R-G-B. Some scanners convert the RGB values to CMYK values.
The reproduction of color information from multiple devices and varying environments is a common occurrence in the industry. Colored works are transferred among variety of peripheral devices and the color information processing systems within the various systems seek to ensure the accuracy of the original work. For example, a computer with a color monitor can interact with a colored printer, a scanner, digital camera, color copy machine, color facsimile and various other devices. As the color data passes from one medium to another, digital processing attempts to maintain a visual match within the capabilities of the devices.
Advances in technology and computing means have made color reproduction systems available to the general public. Many desktop publishing systems employ hardware and software that are affordable to users that need to produce quality color work products. Unfortunately, the concept of xe2x80x98What you see is what you getxe2x80x99 is normally lacking, and it is not uncommon to see the desired image on the monitor but produce a print product that lacks the quality characteristics desired.
Colors produced by two different devices based on the same input will differ, in part because of distortion of the signals which occur due to nonlinear response characteristics of the electronics of the devices and the method of selecting a color within a device color gamut. An input signal representing a particular color provided to two different devices typically results in the devices producing two different colors. This is true even when the input signal represents a color within the color gamuts of both of devices.
In order to accomplish accurate color transfer, the individual devices employ color calibration techniques. Calibration is necessary to set the color response of the color reproduction devices. The process of deriving a transform by comparing the device output to some reference output and generating a lookup table is called system color calibration. A transform derived for a particular scanner-printer combination is referred to as a closed system and the process is called closed system color calibration.
The purpose of the calibration is to account for the color differences. The color differences actually refers to numerical differences between the color specifications and more specifically refers to the perception of color differences in XYZ or RGB. Perceptual uniformity concerns numerical differences that correspond to color differences at the threshold of perceptibility. A perceptually uniform system is one where a small change to a component value is equally perceptible across the entire range. XYZ and RGB systems are not perceptually uniform and are actually highly nonuniform. In order to transform XYZ into a uniform standard, two systems developed, L*u*v* and L*a*b*, also written CIELUV and CIELAB. L*u*v* and L*a*b* improve perceptual nonuniformity but require highly complex computations to accommodate real-time display.
In most cases, an initial factory calibration creates calibration tables that are used by the digital processing schemes to make the color reproduction devices conform to standards and to compensate for drift and other changes.
Various instruments and methods are used to calibrate devices for color reproduction, including densitometers and colorimeters. A densitometer measures the density of ink on a print patch in each of CMYK colorants. The densities are then compared to a scale of desired densities to produce calibration curves. The data from the calibration curves is used to correct the device so that it more closely resembles the scale data.
A colorimeter measures CIE values of color on a scale of printed patches in each of the CMYK print colorants. The measured CE values are then compared with a corresponding scale of desired values to obtain calibration curves, which correct the device so that is more closely resembles the scale data.
In the field of desk top publishing, it is common to have a scanner device as part of the office equipment rather than a densitometer or calorimeter. It is therefore convenient to use the scanner to calibrate the printer. The prior art describes using a scanner as a calibrating device, wherein the scanner scans a print target and measures the densities of ink deposited on the target. The system measures the densities or calorimetric values of the color samples generated by a printing device.
Although the scanner is more convenient that using the other calibration devices, the quality is usually lacking. Scanners operate on a linear sensitivity scale, not a logarithmic density scale. Based on scanner deficiencies, the tonal and spectral scanner outputs vary even when measuring the same colored object. Thus, not only would similar scanners produce different results, but the same scanner suffers from degradation of performance over time.
To accomplish calibration between a printer and scanner, a transform is used in a digital image processor that maps the color signals of the scanner to the printer color signals so that the color reproduction system reproduces the colors present of the original images. Often the transform is implemented by employing a three dimensional lookup table (LUT).
One method to calibrate a color reproduction system includes using the color scanner, a processor, and a color printer. This requires transforming the color space environments. A first color transform is used to convert the scanner color signals, such as RGB signals, into color signals in a device independent color space. The second transform is used to convert color signals from the device independent color space to printer color signals such as CMYK signals.
It is possible to combine the two transforms into one function implemented by the processor that directly converts scanner color signals into printer color signals. The transformations are typically implemented by storing calibration values in a three or four-dimensional LUT and using a linear interpolation method to interpolate between values in the lookup table.
A typical printer and scanner calibration involves printing a set of color patches on the printer, measuring the color patches using an optical instrument and using a mathematical method such as regression to derive the printer transform based on the measured data. The calibration continues by scanning a set of test patterns, measuring the test patterns using an optical instrument and employing a mathematical method such as regression to then derive the scanner transform.
There are ways to decrease the time required to calibrate, including using a smaller number of sample points. This creates a lookup table that is much smaller and easier to search during the mathematical manipulations, however the accuracy during interpolation is much lower.
Another prior art approach is to sample a cube in the printer color space. For example, an RGB cube in the printer color space may be uniformly sampled along the R, G and B axis to provide a discrete set of printer color coordinates which are stored in a computer. These color coordinates are provided to a printer that prints color patches corresponding to the specified color coordinates.
The printed color patches are subsequently fed to a scanner and scanned to provide a set of scanner color coordinates that is a subset of the entire space of color coordinates of the scanner. Thus, a direct correspondence is obtained between the set of stored printer color coordinates and the set of scanned color coordinates.
The terms calibration, characterization and profiling are sometimes incorrectly used interchangeably. For purposes of this application, the terms are distinguished herein. Calibration refers to the process of deriving a transform by comparing a device output to some reference output and generating a lookup table. This is a device dependent process. Calibrating a device returns the device to some normalized, standard, and predictable state. Therefore, calibrating a monitor, a scanner or a printer alters the behavior of that device.
Profiling, also called characterizing or describing is really a description of the color capabilities of the device. Profiling measures the device properties and transforms the properies into some usable form as part of a color management system. Profiling does not change the behavior of that device as with calibration, but rather compliments the calibration. However, it does not preclude the need to calibrate individual devices to ensure that the process that created the characterization remains consistent.
Because some coloration inaccuracies are introduced when switching between different color spaces, device profiling is useful to correct such inaccuracies. Device profiling measures the inaccuracies and corrects them in a device-independent color space (LAB). By working in the device independent LAB environment, improved color conversions between devices is possible.
To generate a profile, software is used to determine the device""s full color range capabilities. The gamut of the device is determined by measuring the calorimetric values for a set of known color patches or targets. The measured data is then used to generate a custom profile for the device. The profiles are then applied to an image data to compensate for any transformation inaccuracies.
The International Color Consortium (ICC) created a standardized system for describing the color-rendering capabilities of any device. The ICC profile defines the gamut of the device, and a measure of the color distortion. The ICC profile actually has two components, the first element contains hardware data about the device, and the second element is the colorimetric device characterization data that defines the manner in which the device establishes color.
The profiles are used in conjunction with the other color-management engine and the application programs that use the profiles. The generic profiles provided by the manufacturer are often based on a perfectly calibrated device, and do not generally provide the accuracy required in modern systems. Therefore, custom profiles are utilized to enhance the factory profiles and provide more accurate color reproductions.
The purpose of profiling is to accurately define the reproducible and repeatable gamut of a device. This is accomplished by using a reference target on the device and measuring the device""s reproduction values Software is used to build a transform that maps scanner color space values to device independent color values. The transform is typically built by using a mathematical technique such as the least squares algorithm with the reference data and measured data.
A typical scanner profiling process involves scanning a reference target that has numerous color patches. IT8 is one such reference standard. Software is used to compare the color reference values that accompany the target with the measured values. The entire process is a comparison of reference data and measured data.
Some profiling packages only profile a scanner""s raw color space while others create a corrective profile, wherein a scanner driver uses the ICC profiles of the device to incorporate the physical limitations of the device in the processing.
Printers are more difficult and time-consuming to profile because they do not emit light and require another device, properly calibrated, to measure the color data. The printer prints a target that contains the color patches. The printout is measured by a color measuring device, such as a spectrophotometer, and software uses the measured values to build a transform that maps device independent colors to the printer""s color space. Various factors effect the printer color values, including paper stock, ink, temperature, and pressure, so other variable and calculations are required for processing.
The typical custom profile is produced by comparing measured color values against reference values. For example, a scanner profile is produced by scanning a color target, wherein the profiling application converts the scanned data into device independent values. The device independent values are compared to the CIE values for the reference target, and a custom profile is created to correct any deficiencies. The reference target is normally the industry-standard IT8 target that contains 264 color patches plus 24 shades of gray.
Printers are more difficult and time-consuming to profile because they do not emit light and require another device, properly calibrated, to measure the color data. The profiling software compares the measured data to the target values and produces the correction data. By comparing the measured colors with the color values, a custom profile is developed.
A color management system comprises interconnected devices such as a scanner, monitor, printer, and computer, with a software application that handles the color reproduction between the application and various color devices. The system interacts with the processing means and the memory means of the system to control the devices, process transformations, and store data. The software performs the color transformations to exchange accurate color between diverse devices, in various color coding systems including RGB, CMYK and CIEL*a*b*. In theory, the color management system evaluates capabilities of the system and devices and determine the appropriate color device and color space. However present systems have significant difficulties implementing such s system in a commercially feasible manner.
There have been various attempts at creating cost-effective and quality color calibration systems that address the aforementioned problems. U.S. Pat. No. 5,185,673 (""673) describes a closed loop system that calibrates a scanner to a printer. The calibration profile created by the system resides in the scan driver so the scanned images are pre-calibrated for the specified printer. The calibration profile is created by the following steps:
1. The scan driver creates an image with color patches.
2. This image is passed through the printer path until the color patches are printed.
3. These color patches are scanned by the scanner.
4. The system builds a profile that maps desired RGB values to RGB values that when printed will actually produce the desired RGB values.
5. This profile is then applied to all images scanned for the desired printer.
This calibration scheme has the disadvantage of forcing the user to work with images that are calibrated for a particular printer. For correct screen viewing the images must be translated from printer space to monitor space. Images that were scanned for one printer will not work with another printer, as the data is device dependent. Even images scanned for the same printer will become incompatible if the paper type, ink type, or some other variable is changed.
There are additional problems with the system described in the ""673 patent. The scanner is not profiled, and as known in the industry, quality results requires that the scanner be properly profiled. Also, the color space of the printer is not RGB, and printers often have poor internal profiles that result in the printing of RGB images that look very poor on the screen.
The present invention is distinguishable because it profiles both the scanner and the printer individually and is not truly a closed loop system. The system produces two profiles: a scanner profile and a printer profile. Both profiles translate to and from a device independent color space, thus images from the scanner are independent of any device that is attached to the printer and images that go to the printer are independent of the printer. Images from the scanner can be printed on many different printers and images from many sources can be printed on the printer.
Similarly, U.S. Pat. No. 5,491,568 (""568) describes a closed loop system where the scanner output is mapped to a printer input. The primary difference is in the implementation details, but the ""568 has the same inherent problems as the ""673 invention. The steps of the ""568 patent are:
1. Determine the relationship between equal printer color signals and averaged scanner color signals.
2. Produce a set of color patches uniformly distributed in scanner color space on the printer.
3. Scan the patches with the scanner.
4. Produce a look-up table from printer to scanner.
5. Invert the look-up table to go from scanner to printer.
U.S. Pat. No. 5,809,213 presents a system that is similar to both the ""568 and ""673 systems. It uses a scanner and printer to calibrate the path from the scanner to the printer. It includes non-linear interpolation and gamut mapping techniques. As with the other systems, it does not solve the problem of accurately calibrating the scanner that would likely result in color reproduction problems.
A color matching system that uses a device independent color space to map colors from one device to another under different viewing conditions is shown in U.S. Pat. No. 5,754,184. Similar systems are common and supported by the industry standard ICC specification.
In U.S. Pat. No. 5,760,913 (""913) a system that calibrates a printer by using the scanner as a densitometer is discussed. The scanner is used as a densitometer by scanning an image with known densities and building a look-up table that translates RGB values to density. Patches composed of separate inks at different levels are printed and measured by the scanner. These measurements are then used to calibrate the printer.
The ""913 system does not actually characterize a printer. The ""913 system uses the scanner to return a printer to a known state so a pre-built table will function correctlyxe2x80x94a calibration function. In distinction, the system of the present invention uses the data from the scanner to actually build the types of tables that accurately reproduce the color values.
In the ""913 patent a simultaneous scanning method is described wherein the printed calibration image and the gray scale test strip are scanned simultaneously to overcome scan to scan error and to reduce the number of user steps in the calibration process. One of the distinctions between the ""913 method and the present invention method is that the patches measured by the ""913 system can only be used to re-calibrate the devices, not fully characterize the devices like the present invention.
U.S. Pat. No. 5,271,096 (""096) describes a method of adjusting the calibrations of a scanner and a printer by scanning in calibration images and comparing the scanned data to previous data. In this embodiment the system first scans a calibration target with known color values, compares the scanned values with the known values and produces calibration data. Then it prints calibration patches, scans the patches, and compares the scanned patches to previously printed patches and produces calibration data. Finally, it combines the two sets of calibration data to produce data that calibrates both the printer and scanner.
A fundamental difference between the ""096 system and the present invention is that the ""096 patent compares calibration data when calibrating a printer. The present system produces a printer profile by understanding how the printer produces a particular color and then building a table that allows that color to be printed. The ""096 system also has no simultaneous scanning or compensation table.
Other commercial products have tried to alleviate the aforementioned problems. The company X-Rite displayed a public a color calibration system that uses the combination of a color measurement device such as a spectrophotometer and a scanner to calibrate a printer. With this system, color patches were first printed with a printer. A very small number of the patches were then read with the measurement device and then the entire set of patches was read with the scanner. The patches that were read with the measurement device and the scanner was used to calibrate the scanner and the calibration of the scanner was then used to modify the entire patch set so that a printer calibration could be made.
The X-Rite system has the advantage of calibrating the scanner and printer with just one scan and also calibrating the scanner to the printer. However, the X-Rite system requires the use of an expensive measurement device. In addition, the X-Rite system also had the disadvantage of calibrating the scanner only to the printer, not with more common photographic materials or reflective works.
Providing efficient and accurate color reproduction remains a problem because of numerous difficulties described herein. What is needed is a practical and simple means to produce a printer profile. There should be a color reproduction system that provides reproduced colors that match the original colors. This system would provide color matching to be performed between a scanner and a printer without the use of expensive additional photometric equipment such as a spectrophotometer. The profiling results should be device independent so that the equipment can be substituted. The profiling should also be preformed in a single step to reduce the time required for profiling and to avoid any scanner-setting errors.
The purpose of the invention is to provide a color reproduction system that addresses the aforementioned problems. The present invention produces accurate printer ICC profiles from a scanner. The present system also produces a scanner ICC profile, however the scanner profile is not a requirement of the invention. A scanner profile is created that can be used to process images intended for any output device. A printer profile is created that can be used to print images from any source. Using a scanner compensation table allows any scanner to function more closely to a spectrophotometer and ensures more accurate color data collection than can normally be obtained from a scanner.
Another object of the invention is to scan the scanner calibration target at the same time as the printer calibration target, and use these targets to fully calibrate both the scanner and printer. Scanning both targets simultaneously significantly reduces scanner-setting errors, ensures the color data in both targets is measured under identical conditions, and decreases the profiling process.
An object of the invention is the compensation color transform that improves the quality of the color reading produced by the scanner. The compensation transform compensates for the difference between how a scanner scans a photographic target and how it scans a printed target. Photographic and printed materials all have unique spectral properties that a scanner is sensitive to and can measure. The differences between photographic and printed materials are often large enough to cause a scanner that has been properly calibrated for photographic material to misread printed material. The algorithms of the present invention map the same RGB value from a scanner to different CIEL*a*b* values when the RGB values come from patches with different ink values.
An object of the invention is a scanner system comprising a physical scanner, scanner driver software, scanner ICC profile, central processing unit (CPU), storage means, monitor, printer, printer driver, printer ICC profile, profiling application, sets of compensation transforms, an IT8 photographic target, and a print target printed by the printer, wherein the scanner ICC profile is produced by the compensation transforms. The print target and photograph target are scanned simultaneously and the profiling algorithms calculate accurate printer ICC profiles.
An object of the present invention is a method of profiling, comprising the steps of printing a print target, placing and IT8Q60 scanner target onto the print target to produce a combined target, scanning the combined target, processing the scanner data to produce a scanner ICC profile, processing the printer data to produce device independent color values, selecting a compensation transform, and building a printer ICC profile.
Additional object is the generation of a scanner profile that can be used to process images intended for any output device. Furthermore, a printer profile is created that can be used to print images from any source.
Yet another object is the use of a scanner compensation table that allows any scanner to function more closely to a spectrophotometer and ensures more accurate color data collection than can normally be obtained from a scanner.
An object of the invention includes scanning both the reference target and the print target simultaneously thereby reducing scanner-setting errors and ensuring the color data in both targets is measured under identical conditions. Scanning simultaneously, these targets can be used to fully calibrate both the scanner and printer.
Another object of the invention is a method of creating a compensation transform that uses the least squares algorithm to solve the equation y=Ax where x is an array of CIELAB values from the calibrated scanner, y is an array of compensated CIELAB values, and A is a matrix that transforms between x and y. The x array currently contains non-linear combinations of the CIELAB values. The array x is defined as:
x[0]=L
x[1]=a
x[2]=b
x[3]=L2
x[4]=a2
x[5]=b2
x[6]=La
x[7]=Lb
x[8]=ab
x[9]=L3
x[10]=L2a;
x[11]=L2b;
x[12]=La2;
x[13]=Lab;
x[14]=Lb2;
x[15]=a3;
x[16]=a2b
x[17]=ab2;
x[18]=b3;
The matrix A is computed by using the calibrated scanner and spectrophotometer data with the least-squares algorithm.
A further object of the invention is another method of creating the compensation table that takes into account the fact that scanners read different inks and paper types differently. A printer with more than three inks is generally capable of printing exactly the same color with more than one different combinations of ink. Unfortunately, these different ink combinations may not be read the same by a scanner because of the spectral differences of the inks. In addition, the scanner can see different colors as the same because of the differences in the inks. This embodiment of the compensation transform uses different transforms for different combinations of inks and takes advantage of the fact that the ink values for each patch in the print target are known.
A further object is to provide a color reproduction system suitable for the graphic arts, such as printings, sign making, and color correction, and also for medical imaging, and color imaging applications.
An additional object is a method of profiling a color printer using a scanner comprising the steps of printing a print target on said color printer, placing a reference target onto the print target to produce a combined target, and scanning the combined target on the scanner to produce a scanned image. The scanned image comprises reference target data and print target data. Processing the reference target data produces a scanner profile, and processing the print target data with the scanner profile produces an uncompensated printer profile data. The next step requires adjusting the uncompensated printer profile data using a compensation transform. Finally, building a printer profile and storing the printer profile.
A further object wherein the printing is performed without using a printer profile so a full gamut is achieved.
Another object wherein the reference target is an IT8.
Yet a further object wherein the compensation transform is processed using the least squares algorithm.
An additional object wherein the compensation transform compensates for ink differences. This is crucial for the present invention to produce the compensation transform. A further object compensates for paper differences.
An object includes manually cropping the combined target or automatic cropping of the combined target.
A further object is for inputting data for the compensation transform, wherein such data represents the user""s device type, paper type and/or ink type.
Another object is wherein the uncompensated printer profile data is expressed as device independent colorspace values.
An object of the invention is a method of producing compensation transforms comprising the steps of generating a plurality of color reference patches, scanning the patches to produce scanned color space values, measuring the patches with an optical measuring device to produce measured color space values, creating a compensation table from the scanned color space values and the measured color space values.
Yet another object is a method, wherein the compensation transform for CMYK inks with linear interpolation is processed using the formula y=af0(x)+(1xe2x88x92a)f1(x).
An object includes an optical measuring device that is a spectrophotometer.
An object of the invention is for a color profiling system for producing a device independent printer profile comprising a printer section having a printer driver and a printer device, wherein said printer device prints a print target. A scanner section having a scanner driver and a scanner device. A combined target with the print target and a reference target, wherein the combined target is scanned by the scanner device to produce a combined target data. A processing section for processing the combined target data, wherein the processing section produces a scanner profile and uncompensated printer color patch readings in device independent colorspace values. A compensation transform module for transforming the uncompensated printer color patch readings into compensated printer color patch readings. A processing section for processing the compensated printer color patch readings into a printer profile.
Still other objects and advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only a preferred embodiment of the invention is described, simply by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Recent research and development activity has focused on paste-form, gel-like and thixotropic forms of liquid automatic dishwasher detergents because of the desirable advantages to the consumer over conventional powdered forms of detergents. These advantages include ease of dispensing from the container, lower volume consumption per wash load because of higher concentrations of active ingredients, and long term storage without moisture spoilage.
The development of suitable liquid automatic dishwasher detergents has not been without its problems due to the requirement that such formulations incorporate a number of ingredients which are generally incompatible, i.e., they tend to react with each other prior to use in the dishwasher. Additionally, liquid automatic dishwasher detergents should also exhibit thixotropic properties, i.e., it should be highly viscous in a quiescent state and have relatively high yield values (Bingham Plastic), but when subjected to a shear stress, such as being squeezed through a orifice, it should have flow properties similar to a viscous liquid so it can be easily dispensed into a dishwasher detergent dispenser cup. Once inside the dispenser cup it should quickly revert to the high viscosity/Bingham plastic state.
Another common problem with liquid automatic dishwashing detergent compositions is that they tend to separate into substantially solid and liquid phases during the shelf life of the product. Improvement in the phase stability has been accomplished by the addition of clays, polymers, soaps or combinations of clays and soaps. However, a drawback of this approach is that any addition to the detergent composition may adversely affect the rheological properties of the detergent composition.
Similarly, addition of a fragrance to a liquid automatic dishwasher detergent to impart a desirable scent has also been problematical because of the effect on the complex balance of ingredients within the composition necessary to produce the desired rheology and other physical characteristics. For example, the presence of a chlorine releasing compound would be expected to have a detrimental effect on an oil-type fragrance that is readily oxidized. In addition, the presence of oil-like fragrances would be expected to have an adverse effect on the phase stability of such compositions because of their tendency to act as defoamers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many classes of intravenous agents can be used in the treatment of medical patients, such as general anesthesia or an inhalational anesthetic supplements; neuromuscular blockers and paralysis drugs; cardioresuscitative drugs for critical care applications; and many others. For example, anesthesiologists often employ one or more drugs for continuous infusion techniques. However, this practice may be cumbersome and difficult because of the large number of variables involved and the difficulty of remembering each important factor involved in administering one or a combination of drugs. Hence, practitioners often choose to administer one or two agents only and memorize the requirements related to those specific agents and-or standardize a drug mix and vary the delivery rate for each patient, all in hopes of reducing the possibility of error.
The most common method present requires physicians to determine the doses they are giving according to the following cumbersome equation: EQU D.times.BW.times.0.06=C.times.R
The variables for this equation are defined as follows:
D=Dosage Rate=.mu.g.multidot.kg.sup.-1 .multidot.min.sup.-1 PA1 BW=Body Weight=kg PA1 C=Concentration of infusion=mg.multidot.ml.sup.-1 PA1 R=Rate of infusion=ml.multidot.hr.sup.-1 PA1 (Constant=60 min.multidot.hr.sup.-1 .multidot.1 mg.1000 .mu.g.sup.-1 =0.06) PA1 1. a means for inputting data; PA1 2. a memory means for storing data, the memory means having stored therein a predetermined dosage rate for the drug and a standardized rate of infusion; PA1 3. a means operable to determine a required concentration of the drug on the basis of the predetermined dosage rate, the standardized rate of infusion and a patient weight supplied via the input means; and PA1 4. a means for displaying the required concentration and/or preparing the final mixed bag of drugs and dilute to be administered. PA1 5. a means for mixing diluent and drug concentrate(s) into a final mixed bag ready for administration. PA1 6. a means for marking the constituents on the outside of each final mixed bag.
This equation includes five "unknowns" (the "C" comprising two variables: the numerator (weight in mg) and the denominator (volume in ml)), requiring that a series of calculations be performed each time a drug mix is prepared and used. These intricate calculations make application of the infusion techniques laborious, and increase the risk of human error. The pressures of providing critical health care, coupled with the long and late hours worked by care providers, make desirable any method that reduces the potential for error.
Due to varying body weights of patients, the desired drug flow rates will vary. It becomes very difficult during clinical procedures to repeatedly reevaluate the dosage of drug the patient is receiving. One method of dealing with this problem has been to standardize the drug concentrations. However, a significant problem continues to exist with this method: the delivery rate still varies. Computerized delivery systems that automatically adjust the rates to anesthesia requirements have been used, but such systems are extremely expensive, making them economically impracticable for many operating rooms. Further, the administration of anesthesia is an art as well as a science, and that a computerized system cannot entirely replace the need for the administering physician to understand the factors involved in the application of each drug so as to facilitate proper evaluation of the patient's clinical response.
The many classes of intravenous agents that can be used greatly complicate the practitioner's task. Anesthesiologists more often employ one or more drugs for continuous infusion techniques. As such, prior methods are cumbersome if not undesirable because of the large number of calculations required and the difficulty of remembering all of the variables and factors involved. Hence, many practitioners select one or two agents to simplify the otherwise complex formulas that must be used, and memorize the administration requirements related to these one or two specific agents.
A variety of patents and other references disclose methods and apparatuses for the preparation and administration of intravenous anesthetic drugs.
U.S. Pat. No. 4,853,521 discloses a system for verifying and recording drug administration to a patient, including computerized system to run delivery.
U.S. Pat. No. 4,058,120 discloses a vaporizer carousel for anesthesia machine.
U.S. Pat. Nos. 4,246,894 and 4,334,526 disclose a method and system for administering a dissociative unconscious type of anesthesia.
U.S. Pat. No. 5,015,781 discloses an Anesthetic compound and method of preparation.
U.S. Pat. No. 4,917,670 discloses a continuous spinal anesthesia administering apparatus and method.
U.S. Pat. No. 4,873,076 and similar references disclose a method of safely providing anesthesia or conscious sedation.
U.S. Pat. No. 4,825,860 discloses a device for supplying anesthetic dispensing systems.
U.S. Pat. No. 4,053,604 discloses a method for improving anesthesia mixtures and compositions.
Paul F. White, in his article "Clinical Uses Of Intravenous Anesthetic And Analgesic Infusions" Anesthesia and Analgesia 1989;68:161-71, describes clinical applications of continuous infusion anesthesia, but does not contemplate the improved methods of the present invention.
Infusion pumps are also well-known, although the expense of these devices can be prohibitive in many clinical settings. See "Infusion Pumps," Milestones in Anesthesia, pp.2-3.
See also, Burtles, Richard; "Continuous Infusion Of Drugs: A Simple And Rational System." Journal of Cardiothoracic and Vascular Anesthesia 1991;5(4):362-364; Tilden, Samuel and Hopkins, Robert L.; "Calculation Of Infusion Rates Of Vasoactive Substances." Annals of Emergency Medicine 1983;12:697-99;
It has therefore become desirable to develop a method and apparatus for preparing drug solutions for continuous infusion that do not suffer from the shortcomings of prior methods and apparatuses. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a cloth product having an antitheft device attached thereto and method of making same, and in particular to such a cloth product which is launderable and utilized in hospitals, nursing homes, and similar facilities.
2. Prior Art Statement
A serious problem in hospitals, nursing homes and similar health care facilities is the theft of bedroom and bathroom linens as well as thefts of items of wearing apparel such as gowns, scrub suits, shirts, pajamas, and the like of the types worn on the premises by patients and health care professionals such as doctors, nurses, and hospital assistants.
In an effort to solve these thefts, various techniques have been employed heretofore including the attachment of metal members to the various cloth products by various means. Each cloth product thus provided with a metal member is then capable of being detected once such product is moved through a magnetic field.
However, it is a simple matter to remove some of the previously proposed metal devices from their associated cloth products without damage thereto whereby it would then be easier for a theif to steal the product without being detected.
The cloth products which have been candidates for theft are launderable cloth products and in the past metal members have been attached to such products for antitheft purposes. However, the previously used metal members have been unsatisfactory because they tend to corrode or are attacked by the chemicals used in the laundry water during laundering of the cloth product. The net result is an unsightly staining or spotting of the cloth product. Further, in some instances the chemicals used in the laundry water produce a chemical reaction with the metal member causing deterioration thereof and often premature failure of the cloth product adjoining such metal member. In other instances where a metal member has been used in a cloth product of the character mentioned and wherein such metal member is disposed within a hem thereof, there has been a tendency for the metal member to move around or pierce the fabric causing premature failure of the portions of the cloth product which define the hem.
The net result has been that previous launderable cloth products having antitheft metal members attached thereto have only been capable of being laundered as few as about two dozen times and thereafter the antitheft device was either ineffective due to deterioration therof or the cloth product was so badly stained or spotted due to the action of laundry chemicals on the metal member that it was necessary to discard the cloth product prematurely and thereby incur a substantial added expense in the operation of health care facility, or the like.
Accordingly, it is apparent that previous cloth products of the character mentioned have deficiencies. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pantoprazole, 5-(difluoromethoxy)-2-[(3,4-dimethoxy-2-pyridyl)methylsulphinyl]-1H-benzimidazole, is a H+/K+-adenosine triphosphate (ATP) inhibitor (also known as acid pump or proton pump inhibitor (PPI), is an enzyme present in the gastric parietal cells. It is believed that these drugs are metabolized in the parietal cells to active sulfenamide metabolites that inactivate the sulfhydryl group of the proton pump, thus reducing the hydrogen ion secretion. PPIs are generally lipophilic weak bases with poor aqueous solubility at low pH. Many PPIs are unstable in low pH solutions and undergo rapid acid-catalyzed degradation, and they are relatively stable at neutral or high pH.
The current commercial oral formulations of sodium pantoprazole are single unit coated tablets. See, e.g., U.S. Pat. No. 5,997,903, which describes oral forms of pantoprazole that consist of a core, an intermediate layer and an outer layer. The current coating has a tendency to cause undesirable sticking of the tablet to the gastrointestinal tract.
Multiparticulate formulations, because of their nature of dispersing in the gastrointestinal tract, show a reduced food effect and variability in gastric emptying times, thereby providing for reduced inter and intra subject variability, as compared to single unit tablets (Intl. Journal of Pharmaceutics 140 [1996] 229-235).
Several unsuccessful attempts have been made in the past to develop a multiparticulate formulation of pantoprazole. However, these attempts yielded multiparticulates that were not bioequivalent to tablets, only 70% relative bioavailability was found. Another attempt using different technologies-non-pareil seed coating and extrusion/spheronization, resulted in a product that did not provide the appropriate release in acid conditions. In addition, these attempts yielded product that was unstable, as observed by discoloration, when stored at room temperature. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a presentation "Advances in molecular sieve technology for natural gas sweetening" by Turnock and Gustafson, presented at the 22nd Annual Gas Conditioning Conference, the University of Oklahoma, April, 1972, conversion of H.sub.2 S into COS has been disclosed, however, such a conversion is considered to be disadvantageous, and concentrating H.sub.2 S in the heavier hydrocarbon fraction has not been disclosed. | {
"pile_set_name": "USPTO Backgrounds"
} |
A cache is a computer component (e.g., type of memory) that stores data such that future requests for that data can be responded to faster, thus speeding up overall accesses to cache. Data stored in a cache can include original values computed at an earlier moment in time or duplicates of original values that are stored elsewhere, such as in a far (or main) memory. If requested data is in the cache, a request can be handled by reading the cache, which is faster than reading far memory. Otherwise, the requested data is fetched from its original storage location. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to injection molding apparatus and procedures and more particularly to a structure and method for enabling and facilitating the transmission of information from injection mold sensors to a control device without the use of cumbersome and expensive analog hard-wired connections. The present invention also provides increased reliability in the feedback control loop as it enables the user to eliminate numerous junctions which can introduce errors into the control system.
Injection molding is typically done in molds which operate at high temperatures and high pressures within the molds. Typical molds include means to heat the molds at numerous points within the mold in order to ensure that the material injected into the mold remains in a molten state until the mold cavity is completely filled and that no voids exist within the cavity (i.e. hot runner system) as is known to those skilled in the art. In addition, as is known to those skilled in the art, it can be desirable to heat a mold, prior to injecting material therein, in order to control the rate at which the material cools and hardens in order to effect the material properties of the molded product (e.g. material strength, etc.)
In order to effect such control, it is necessary to provide a closed-loop feedback system between the controlled device (e.g., a mold heater) and the mold sensor (e.g., a mold temperature sensor), through a controller of some sort which can utilize the information from the mold sensor and control the controlled device in accordance with a predetermined set of instructions. Currently, information from injection mold sensors is transmitted to a controller in analog form via a hard-wired connection which utilizes sensor specific wires which are physically connected to the sensors and the control device through a series of connectors. These wires, used with readily available connectors, create sensor feedback cables. Each cable typically requires two or more wires per sensor located in the mold to transfer an analog signal.
The number of cables required to transfer the information as applied to, for example, temperature in thermal analog form, from the mold to the control device, is dependent on the number of sensor devices located in the mold, but often times exceeds 48 wires for a typical commercial mold configuration. For example, if a mold requires 30 sensor devices, 60 analog sensor wires would typically be required. In addition, each of the sensor wires is typically arranged such that there are 7 thermal junction points between the sensor device and the control device for each sensor wire. Accordingly, in an injection mold such as the one described above, there would be 420 connections created between the sensor devices in the identified mold and the control device for that mold.
Closed-loop feedback systems such as those described above with numerous wires and connectors can create various problems known to those skilled in the art, including: 1) problems associated with bad connections and cold solder joints which may feedback faulty or intermittent data; 2) inaccurate feedback due to temperature variations along the path of the analog feedback cable; 3) the effects of electrical noise on low level analog signals over the span of the feedback cable; 4) numerous problems caused by the sheer volume of cables and wires required, including problems as simple as storage of the wires and cables, and people tripping over cables located on the floor of the injection mold area; and 5) other problems known to those skilled in the art. As the number of sensors in a given mold increases, so too does the number of wires and connections in a conventional system. Thus, as the mold becomes more intricate or sophisticated and control of the operation of the mold becomes more critical, the chance for induced error in a conventional control system similarly increases. Indeed, one practical limitation on the number of temperature sensors which can be effectively employed in injection molding systems results from the limitation on the number of sensor and control wires which a system and system operator can manage. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an organic electroluminescent device and a method of preparing the same, and more particularly, to an organic electroluminescent device including a transparent moisture absorption layer formed using an attaching method and a method of preparing the electroluminescent device.
2. Description of the Related Art
A sealed structure is required to prevent deterioration of organic electroluminescent devices by permeation of moisture.
Conventionally, a metallic can or glass is processed in the form of a cap so as to have a groove, and a powder desiccant for absorbing moisture is placed in the groove.
However, the method of placing the desiccant includes complicated processes, and thus is very expensive. Also, the total thickness of substrates increases and a substrate used for sealing cannot be used for front light emission since it is not transparent. Additionally, although the metallic can is structurally firm, an etched glass is structurally weak. Thus, the etched glass can be easily impaired by an external impact.
Japanese Patent Laid-Open Publication No. Hei 9-148066 discloses an organic electroluminescent display device including a laminated body in which an organic luminescent material layer of an organic compound is placed between a pair of electrodes facing each other, an airtight container for shutting off the laminated body from the outside air, and a drying means, such as an alkali metal oxide or an alkali earth metal oxide, placed in the airtight container. This organic electroluminescent display device is thick due to the shape of the airtight container. Also, although the drying means maintains a solid state after adsorbing moisture, it cannot be applied to front light emission since it is opaque. Also, as stated above, since the method of placing the desiccant includes complicated processes, the manufacturing cost of the organic electroluminescent device is high.
To prepare a front light emission type organic electroluminescent device, it is very important to develop processing techniques for manufacturing a transparent sealing layer having moisture absorption property. Transparent sealing layers having moisture absorption property developed up to now are generally prepared by filling a liquid phase type transparent moisture absorption material in a glass cap and heat treating it to form a coating layer.
However, the side portions of the sealing layer may be contaminated during the process of applying the transparent moisture absorption material, and outgasing (e.g., outgasing of a solvent) may be caused during the process of heat treating the applied transparent moisture absorption material, thereby weakening a bonding force between a sealant and a sealing substrate. Thus, a firm sealed structure is not achieved, thereby fatally affecting a life span of the device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the field of immunotherapy, and more particularly immunotherapy with low doses of cytokines.
The present method and products are suitable for the treatment of diseases or conditions such as microbial infections, cancer and the like.
2. Description of the Background
In the immune system, there are three major types of lymphocytes: B cells, T cells, and natural killer (NK) cells. B-cells are derived from bone marrow, and comprise about 10% of the lymphocytes found circulating in blood. When stimulated by a specific antigen, each B-cell differentiates into a plasma cell that secretes antibodies of a single specificity. T-cells mature in the thymus and, make up about 80% of circulating lymphocytes. Although not producing antibodies, T-cells bear on their surfaces specific antigen receptors resembling antibody molecules. T-cells react to antigen stimulation by secreting immunomediator molecules or cytokines (helper T-cells), and toxic molecules (cytotoxic T-cells). Cytotoxic T-cells act directly on infected cells, and by secreting toxic molecules kill them and any foreign particles, such as microorganisms, they may contain. NK cells, make up about 10% of the lymphocyte population, and are not antigen specific, but recognize and kill cells infected with microbes. Monocytes and macrophages are large scavenger cells that ingest foreign particles and present antigens to the T-cells, which trigger specific immune responses. When an antigen is introduced, it is initially ingested by macrophages and other antigen presenting cells. After digestion, short segments thereof are presented on their cell surfaces. Only a few of all circulating T-cells have receptors that specifically bind to the antigen, and this binding stimulates the T-cells to secrete cytokines.
Cytokines are small proteins secreted primarily, but not exclusively, by cells of the immune system that promote the proliferation and/or differentiative functions of other cells. Examples of cytokines include interleukins, interferons, hematopoietic colony stimulating factors (CSF), and proinflammatory factors such as tumor necrosis factor (TNF). The therapeutic stimulation of the immune system has yet to find broad applications because of the difficulty in avoiding toxicity, which is part and parcel of immune-mediated inflammation. The toxicity associated with immunoreactivity is familiar to everyone as the signs and symptoms that occur during microbial infections, such as fever, fatigue, malaise and myalgia. These toxic symptoms were originally thought to be caused by substances, such as toxins, released or produced by the microbes themselves. Within the past decade, however, it has gradually become appreciated that the toxic signs and symptoms associated with microbial infection are attributable to molecules termed cytokines released, upon activation, by the immune system. When stimulated, for example, by microbes, the immune system produces the cytokines, which themselves, i.e. not the microbial toxins, produce the recognizable unpleasant and harmful effects. This was proven when the cytokines themselves were isolated, purified and injected into experiential animals and humans.
Despite producing toxic symptoms, the cytokines are primarily responsible for regulating the immune system. They determine the onset, magnitude, and duration of the immune response by stimulating the proliferation and differentiation of various types of cells comprising the immune system, including all of the white blood cells (leukocytes) that are recognizable as lymphocytes, monocytes/macrophages, polymorphonuclear leukocytes (PMN), and specialized antigen-presenting cells (APCs). When it was realized that cytokines regulate the immune system, it was hoped that they could be used therapeutically, to boost or augment immune reactivity in the treatment of microbial infections, malignancies, and for various immunodeficient states, such as the Acquired Immune Deficiency Syndrome (AIDS). However, the high and sometimes intolerable toxicities associated with cytokine administration have precluded their widespread use, especially in asymptomatic individuals afflicted with an infection or illness without signs or symptoms, such as infection with the Human Immunodeficiency Virus (HIV).
The toxicities associated with the administration of various cytokines at high doses are severe. For example, one of the first cytokines to be discovered, interleukin 2 (IL-2), was used initially to treat cancer in very high doses, up to 150xc3x97106 IU/day (10 mg/day). This resulted in extremely toxic side effects, including capillary leak with hypotension and high fever ( greater than 39xc2x0 C.). This limited the duration of IL-2 therapy to only a few days, and restricted its use to solely patients hospitalized in the intensive care unit.
Over the past several years, lower doses of cytokines have been administered in attempts to circumvent most of the toxicities, while hoping to still retain at least some of the immune enhancing effects. For example, Caliguri and co-workers, including the inventor, found that ambulatory cancer patients could tolerate IL-2 administered as a continuous intravenous (IV) infusion for up to 90 days with minimal toxicities (WHO Grade 1, see table) provided the dose was in the range of 2.5-5.0xc3x97105 IU/m2 body surface area per day. Most importantly, even though the dose was lowered about 600-fold from the original dose used earlier in the treatment of cancer, there were still detectable augmenting effects on the immune system, notably a gradual increase in the concentration of circulating Natural Killer (NK) cells. Similar results were recently reported by Bernstein and co-workers, who administered IL-2 subcutaneously (s.q.) to patients suffering from AIDS-associated malignancies, in doses ranging from 0.5-1.0xc3x97106 IU for 3 months. In a separate study, Teppler and co-workers, including the present inventor, injected IL-2 daily for 30 days intradermally (i.d.) into asymptomatic HIV+ individuals. At a dose of 0.18xc3x97106 IU/day given for this short interval, no untoward toxic effects were noted, but neither was there an increase in circulating leukocytes.
Thus far, the following four (4) families of cytokines that regulate the immune system, are recognizable according to their structures.
1) The interleukin family includes cytokines such as IL-2, 3, 4, 5, 6, 7, 9, 12, 13, and 15. These cytokines are small (10-20 kDaltons) proteins that all share a 3 dimensional structure of 4 antiparallel alpha helices. The receptors of this cytokine family share amino acid sequence homologies, especially in their extracellular domains.
2) The tumor necrosis factor (TNF) family includes compounds such as TNF-xcex1, TNF-xcex2 (lymphotoxin), nerve growth factor (NGF), and the CD40, Fas, CD27, and CD30 ligands. The ligands of this family are either secreted or remain membrane anchored, and function as homotrimers of about 15 kDalton monomers. The receptors of this family share amino acid sequence homologies.
3) The interferon (IFN) family includes compounds such as IFN-xcex1, IFN-xcex2, and IFN-xcex3, and is distinguished by the unique biologic property of stimulating cells to prevent viral replication.
4) The chemokine family includes molecules such as IL-8, macrophage inhibiting protein (MIP), and Rantes. These cytokines are small (about 10 kDaltons), and bind to a distinct family of receptors that have 7 membrane spanning alpha helices, and that are coupled to guanine nucleotide binding proteins (G proteins).
Even though these distinct cytokine families may be classified based upon their structure, they have in common the properties of being produced in, and/or being active on, the mammalian immune system.
Interleukin 2 (IL-2), for example, was one of the first cytokines to be identified and characterized. It is produced exclusively by T-lymphocytes in response to stimulation by antigens. IL-2 acts on the three major types of lymphocytes, including T cells, B cells, and NK cells, stimulating them to proliferate and augmenting their differentiative functions. IL-2 potentiates both innate or natural host defenses by stimulating NK cells, and antigen-specific acquired immune reactivity by stimulating T cells and B cells.
In vitro studies have shown that IL-2 mediates its effects by binding to specific receptors (IL-2R) expressed on the surfaces of IL-2-responsive target cells. When IL-2 binds to its receptors, it initiates a series of intracellular events that result in the activation of a set of genes, the products of which determine the cellular responses observed, such as cellular proliferation. Thus, one of the consequences of IL-2 stimulation is an expansion in the number of T-cells, B-cells and NK cells. IL-2 also stimulates the expression of genes encoding other cytokines, especially by T-cells and NK cells. In particular, IL-2 stimulation of NK cells results in their production of secondary, pro-inflammatory cytokines, including TNFxcex1, IFN-xcex3 and GM-CSF. These NK cell-derived cytokines, in turn, are potent stimuli for monocytes, promoting their production of further pro-inflammatory cytokines. Thus, although IL-2 is attractive as an immunotherapeutic agent, given that it stimulates all of the major types of lymphocytes, its therapeutic use has been impeded by its toxicity, most of which has been attributed to the release of large quantities of secondary cytokines. Clearly, the major problem associated with the administration of IL-2 has been its toxicity, which has prevented its use in therapy for a wide range of illnesses and indications.
Various studies on IL-2 immunotherapy have been reported, the initial ones dating back to 1984. Since that time, various doses, routes of administration and schedules of administration have been tried. However, up to the present time, IL-2 has only been approved by the Food and Drug Administration for limited use in patients with renal cell carcinoma. For this purpose, the high doses of IL-2 used, only permit its administration for 1-2 weeks before severe toxicity develops. Additional rounds of treatment administered after discontinuance proved ineffective.
Throughout this patent, where possible, all reported cytokine units of biological activity have been converted to International Units (IU) to enable a comparison of the doses of the same cytokine used in different studies. Also, where possible, and when appropriate, cytokines will be referred to as the amount of protein, in weight or moles for uniformity""s sake. In addition, some agents"" doses are expressed as either IU or moles per m2 of body surface area (BSA). The BSA values are easily calculated from similar values based on a subject""s weight and height using a standard conversion table of height and weight measurements. For example, a 70 kg. person of normal height has 1.5 m2 BSA. Doses of 0.15 to 15xc3x97106 IU impure, natural IL-2/m2/day were administered to severely ill AIDS patients by subcutaneous (s.q.) or intravenous (i.v.) injection for a short period (3 weeks) or for 5 days/week for 4 weeks. Neither significant toxicity nor improvements in immunologic parameters were seen. The first administration of recombinant interleukin-2 (rIL-2) was reported in 1985, when cancer patients were given intermitent daily doses of up to 70xc3x97106 IU rIL-2/m2/day for 1-2 weeks, with severe toxicity WHO grades 3 and 4. (See, Table 3 below). In spite of the severe toxicity elicited, this dose continued to be used, with minor variations on dose and schedule, in the past 10 years in the treatment of many malignancies and other indications because of its beneficial anti-tumor effect. The doses used varied from 5xc3x97103 and 12xc3x97106 IU IL-2/m2/day and the time of administration varied from just a few days to 90 days, in some cases the administration being done only a few days every week. These studies proved disappointing, mostly due to their lack of efficacy or to the toxicity elicited, which varied from grade 1 to grades 3 and 4 in some cases, or both. U.S. Pat. No. 5,026,687 discloses the use of ddI for the treatment of HIV+ patients. Example 8 is a paper example forecasting the oral administration of ddI in combination with an all encompassing dose of IL-2 (25,000-1,000,000 U/day) by continuous infusion or other systemic administration for a period of 3 months. Although the example indicates that xe2x80x9cbeneficial results are seenxe2x80x9d, because of its hypothetical nature, it provides no real information on IL-2 toxicity since no enabling work was provided. In summary, immunotherapy with high doses (greater than 1xc3x97106 IU/m2/day) of IL-2 has been shown to lead to severe, unacceptable toxicity WHO grades 2 and higher, requiring hospitalization. These doses are only tolerable for a few days, and result in only transient detectable improvements in immune function. Lower doses (0.1-0.5xc3x97106 IU rIL-2/m2/day) have been administered for up to 90 days but resulted in toxicity WHO grade 1, with only transient increases in immunological function.
Thus, up until the time of this invention, the view was widely held that the use of cytokines was ineffective in some diseases, and contraindicated, for example, in patients with HIV infection due to its potential for activating or increasing replication of HIV. More generally, up to the present time, no long term cytokine therapy has been proven suitable, effective and safe, for the treatment of HIV infected individuals in the absence of severe side effects. Nor have there been any reports on the administration of cytokines to immune impaired infants or mammalian animals, or to normal individuals, infants or mammalian animals which may be temporarily afflicted with an infection or other condition, and who would benefit from a temporary stimulation of their immune system to overcome the condition.
Accordingly, up to the present invention, it was not believed possible to administer cytokines, whether in a preventative or therapeutic mode, for prolonged periods of time, so that individuals could carry on normal lives and experience improved immune function, without eliciting toxicity. Moreover, up to the present time, cytokines had never been administered to asymptomatic individuals for longer than 30 days, so that the long-term effects of its chronic administration remained unknown.
Thus, there is still a need for a maintenance method of administering agents having cytokine activity at a dose which stimulates the immune system, while producing minimal or no toxicity and/or detrimental side effects which have precluded the continued administration of the same cytokines, alone and/or in combination with other therapeutic agents. Such method would permit the effective avoidance, and/or amelioration of symptoms, which afflict certain subjects with decreased immune response or an impaired immune system, in a safe manner, permitting them to resume an active life schedule.
This invention relates to a unit dosage composition comprising, in a sterile container, an agent having cytokine activity, including natural, recombinant and mutated cytokines, fragments, analogs, and derivatives of the cytokines, and mixtures thereof. The composition is also provided as a kit with single or multiple unit dosages of the composition, instructions, and device(s) for its administration, such as needles and syringes, inhalators, and the like. The composition may be provided in various forms, including topical and systemic forms, such as powders, creams, ointments, sprays, solutions, suppositories, powders, suspensions, patches, emulsions, implants, and encapsulated particles, among others, and may contain other therapeutic agents, such as various forms of the cytokines, including natural, recombinant and mutated forms, fragments, fusion proteins, and other analogues and derivatives of the cytokines, mixtures, other biologically active agents and formulation additives, and mixtures thereof. Topical and controlled release formulations, implants, inhalators, and transdermal, intradermal, transbuccal, and transpulmonary delivery devices, among others, are also included.
The composition of the invention may be self-administered by any topical or systemic route, as long as its peptide bonds are protected from degradation. The present agent is suitable for the chronic stimulation and/or maintenance and/or inhibition of immune response in a subject when administered at a dose effective to activate high affinity cytokine receptors without eliciting substantial toxicity, i.e., WHO group 1 or higher. The amount of the agent administered may be determined as described herein, and is preferably effective to produce about 10 to about 90% or higher saturation of the biologically relevant, high affinity cytokine receptors. The present immunotherapy is useful for stimulating and/or inhibiting the immune system in the prevention and treatment of malignancies, of mild and severe infections afflicting normal individuals, of opportunistic infections generally arising in immunocompromised individuals, such as viral, fungal, parasitic, and bacterial infections, including patients infected with the human immunodeficiency virus (HIV), and infections frequently encountered after operations or procedures, such as bone marrow transplants (BMT), inflammation, necrosis, sepsis, and as an adjuvant for vaccines, among other applications. The present immunotherapy is also generally suitable for the stimulation or inhibition of the immune system in general or of specific immune responses, in normal subjects, children, and the elderly, and for use in animals in general. | {
"pile_set_name": "USPTO Backgrounds"
} |
WLAN's of various kinds are known in the art including, but not limited to, 802.11 compatible systems (such as 802.11(a), 802.11(b), 802.11(g) and so forth). Such systems allow a portable computing device to be used at various locations within the coverage area of the WVLAN in a fairly transparent manner with respect to the user's perception regarding connectivity. For example, although a given WLAN may be comprised of a plurality of access points (AP's), the user will often have no particular sense of which AP is presently supporting their mobile unit's communications needs.
Such WLAN's are capable of supporting a wide variety of communication needs including but not limited to voice communications (such as so-called Voice-over-Internet-Protocol (VoIP) communication services). When available, such voice services can be very desirable as often such services, including even long distance telephony, can be accomplished with essentially little or no incremental additional cost to the user. Notwithstanding such benefits, however, there are some impediments to widespread application and use of such services. For example, the user must have a handset (or other platform) that will support such services. This requirement can be troubling to some users who wish to only have and utilize a single communication platform. Such users will typically eschew use of a separate device that offers the benefits of WLAN connectivity in favor of a single wide area network (WAN) device such as a cellular telephone that will offer essentially ubiquitous coverage.
To meet the requirements of such users, it has been proposed that a single portable device can be configured as both a WAN device and a WLAN device such that a single device can support and facilitate voice communications (or other desired communications) in both a WAN operating environment and in a WLAN operating environment when available. Unfortunately, a simplistic combination of two such capabilities in a single housing, while quite attainable, does not address all of the user's needs. As one important example, without further integration between such operability, the user can experience a dropped communication when they begin a communication using the WLAN capability of the device but, during the course of that communication, leave the coverage area of the WLAN.
One proposed solution is to facilitate a handoff of the on-going communication from the WLAN to the WAN during the course of such a communication. While such a capability would appear to address this particular need, implementation of such a capability poses numerous challenges. In particular, present system dynamics mitigate strongly in many operating scenarios against being able to actually effect a handoff during the course of the communication. For example, while it can consume many seconds (such as more than ten seconds) to complete the entire process of acquiring a WAN link and switching the WLAN communication over to the WAN link, the user can leave the effective coverage area of the WLAN in considerably less time. As a result, the time that intervenes between when the device or system can ascertain that a handoff is required and when the device is unsupported by the WLAN is often considerably less than what is required to ensure a handoff of a presently on-going communication. Instead, the WLAN link will be lost and dropped prior to when the WAN link can be brought up and rendered able to accept the WLAN-supported communication.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are typically not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to methods of screening for molecules, including drugs, that target and inhibit specific proteins or cellular pathways that affect the proliferation, growth or survival of a cell or organism. The methods are based on a co-culture assay, and can be applied to bacteria, yeast, C. elegans, and cultured cells, such as mammalian, insect and plant cells.
Co-culture experiments have been utilized extensively to identify genes that contribute to the fitness of cells. Giaever et al. (1999, Nat. Genet. 21:278-283) recently showed that from a large pool of cells with distinct genotypes, cells could be identified that had slight differences in fitness when grown in the presence of inhibitors. The genotypes that were responsible for the altered fitness were heterozygous mutations in diploid cells. Thus, this technique was sensitive enough to identify changes in fitness that resulted from the difference between one and two copies of a given gene.
It has been shown that overexpression of a drug""s target protein in a cell confers resistance to the cell against the drug. The resistance conferred by overexpression of a target gene has been used as a basis for screening yeast populations transformed with an expression plasmid library for yeast colonies that are resistant to tunicamycin, compactin or ethionine (Rine et al., 1983, Proc. Natl. Acad. Sci. USA 80:6750-6754; Launhardt et al., 1998, Yeast 14:935-942). The ability of a colony to grow after treatment with a drug indicates that the plasmid harbored by the colony directs expression of a protein that confers resistance to the drug, i.e., that the protein is the target of that drug.
Identification of targets for drug development is a laborious process that has had a low rate of success. Accordingly, there is a need in the art for novel methods for the development of novel drugs and therapies that modulate specific cellular pathways. The present invention provides a method for screening for compounds which specifically inhibit such target pathways. Traditional methods for identifying inhibitors of specific cellular targets typically involve in vitro assays that can directly measure the biochemical activity of an enzyme or the binding of a ligand to a receptor. Alternative methods for identifying inhibitors utilize reporter genes in intact cells that are up- or down-regulated when a specific process has been modulated in the cell by a test compound. While these approaches have been successfully used to identify pharmaceutical lead compounds, they require a considerable amount of lead time and labor to develop prior to screening thousands to hundreds of thousands of chemical compounds or natural products.
Similarly, new antibiotics are desperately needed. The widespread use of antibiotics over the past half century has lead to the emergence of bacterial strains that are resistant to nearly all antibiotics now in use. Thus there is an immediate need to develop fast and efficient methods for producing new antibiotics to combat the increasing number of these antibiotic-resistant strains (Chopra et al., 1997, Antimicrob. Agents Chemother., 37:1563-1571; Cohen, 1992, Science, 257:1050-1055; Kunin, 1993, Ann. Intern. Med., 118:557-561; Neu, 1992, Science, 257:1064-1073; Tenover and Hughes, 1996, JAMA, 275:300-304).
Traditional approaches to antibiotic development have failed to meet these needs. One commonly used approach involves chemical modification of an existing antibiotic to produce a more potent formulation. Another approach involves screening for compounds that target the resistance mechanism of a known antibiotic. Such compounds are then be used in conjunction with the known antibiotic to improve its efficacy. These approaches have been somewhat successful, but are research intensive and such drugs tend to target the same bacterial processes as existing antibiotics, and thus, like the earlier breed of antibiotics, are likely to quickly encounter resistance. A second approach has involved mass screening of compounds for their ability to inhibit bacterial growth. Using microbiological assays, natural products and semisynthetic or synthetic chemicals are screened for their ability to kill or arrest the growth of a target pathogen. At least initially, this approach has the advantage of being simple and relatively inexpensive, and allowing rapid testing of large libraries of compounds. However, the promising lead compounds that emerge from such screens subsequently must be tested for host toxicity. Furthermore, since such screens are result-oriented and blind to mechanism, further studies must be done in order to precisely understand the drug""s mechanism of action and to identify its target in the cell.
The genomes of several pathogenic microorganisms, such as Escherichia coli, Helicobacter pylori, and Chlamydia trachomatis, recently have been sequenced (Blattner et al., 1997, Science 277: 1453; Tomb et al., 1997, Nature, 388: 539-547). The availability of gene sequences encoding all proteins of these bacteria provides an unprecedented opportunity for understanding and manipulating bacterial genomes at the molecular level. A number of genes are known or are suspected to be essential to growth, survival or virulence. Such genes could be ideal targets in screening for novel antibiotics.
The present invention provides screening methods for the identification of drugs or antibiotics that target specific proteins using co-culture methods.
Citation or discussion of a reference herein shall not be construed as an admission that such is prior art to the present invention.
The present invention provides methods for screening for a molecule that inhibits the expression or activity of a protein encoded by a target gene which affects the fitness of a cell. The methods comprise co-culturing a first cell and a second cell, wherein the first cell has higher expression or activity of the protein encoded by the target gene (xe2x80x9ctarget proteinxe2x80x9d) than the second cell, and wherein the first cell further comprises and expresses a reporter gene that is substantially not expressed in said second cell and wherein the first cell and second cell are of the same species and cell type, wherein said target protein affects the fitness of the first cell and second cell, wherein the first cell further comprises and expresses a reporter gene that is substantially not expressed in said second cell, and wherein the first cell and second cell are of the same species and cell type; and measuring the activity or amount of protein encoded by the reporter gene, wherein the activity or amount of protein encoded by the reporter gene is indicative of whether the test molecule inhibits the target gene.
In certain specific embodiments, the first and second cells are selected from the group consisting of a bacterial cell, a yeast cell, an insect cell, a mammalian cell and a plant cell.
In an alternative embodiment, the first and second cells can be groups of cells, e.g., individual multicellular organisms of the same species. In a preferred mode of the embodiment, the species is C. elegans.
In one embodiment, the first cell has wild-type levels of target protein expression or activity and the second cell has reduced levels of target protein expression or activity relative to wild type levels of expression or activity. In an alternative embodiment, the first cell has elevated levels of target protein expression or activity relative to wild type levels of expression or activity and the second cell has wild-type levels of target gene expression or activity. In another alternative embodiment, the first cell has elevated levels of target protein expression or activity relative to wild type levels of expression or activity and the second cell has reduced levels of target protein expression or activity relative to wild type levels of expression or activity.
The reduced level of target protein expression or activity can be generated by one copy of the target gene in a diploid cell or mutating the target gene to reduce its activity, by expressing a dominant negative form of a component of a cellular pathway of the target gene, or by lowering the activity or abundance of a target gene encoded RNA. The activity or abundance of a target gene encoded RNA can be lowered, for example, by means of a ribozyme, an anti-sense nucleic acid, a double-stranded RNA or an aptamer.
In a specific embodiment, the elevated level of target gene expression can be generated by recombinantly expressing the target gene from a plasmid or from a chromosome. The elevated level of target gene activity can also be generated by expressing a constitutively active form of the target gene.
In certain embodiments, the reporter gene of the invention encodes an enzyme, a protein or peptide comprising an epitope, a receptor, a transporter, tRNA, rRNA, or a bioluminescent, chemiluminescent or fluorescent molecule. In a specific embodiment, the fluorescent molecule is GFP or a mutant thereof. In a preferred mode of the embodiment, the fluorescent molecule is a mutant GFP having an altered fluorescence wavelength, increased fluorescence, or both. In certain specific embodiment, the mutant GDP is blue GFP. In other modes of the embodiment, the fluorescent molecule is red fluorescent protein or yellow fluorescent protein.
In certain specific embodiments, the first and second cells are co-cultured initially (upon establishment of the co-culture) at a ratio of 1:1, 1:10, 1:100, 1:1000, or 1:10000.
In certain specific embodiments, a screen of the invention is xe2x80x9cmultiplexedxe2x80x9d, i.e. one round of screening is used to identify inhibitors of multiple target genes. In such embodiments, screening comprises co-culturing a first cell, and two or more second cells, wherein each said second cell has elevated expression or activity of a different target gene than does the first cell, wherein each target gene positively contributes to the fitness of the first and second cells, wherein said second cells each further comprises and expresses a reporter gene that is substantially not expressed in said first cell, and wherein said first cell and said second cells are of the same species and cell type; exposing the co-culture to a test molecule; and detecting whether a differential sensitivity to the molecule exists between the first cell and one or more of the second cells by detecting an increase in the ratio of cells having reporter gene activity by measuring the activity or amount of protein encoded by the reporter genes in said second cells, wherein said increase in reporter gene activity indicates that the molecule inhibits one or more of said target genes.
In certain modes of multiplexing, the second cells comprise and express the same reporter gene. To determine which of the second cells have increased reporter activity in co-cultures having a significant increase in reporter activity, a secondary round of screening, or a re-screening is carried out. The re-screening can entail polymerase chain reaction (PCR), auxotrophic growth selection, or a co-culture method according to the methods of the present invention. In other modes of multiplexing, the second cells each comprises and expresses a different reporter gene.
In certain specific embodiments, a screen of the invention is used to identify a molecule that inhibits a protein encoded by a first target gene that positively contributes to cell fitness but not the protein encoded by a second, functionally similar target gene. The functionally similar target gene can be a homolog of the target gene from another species, or encode a related protein from the same species. Such related proteins include but are not limited to isozymes, splice variants, or point mutants. Such a method comprises co-culturing a first cell and a second cell, wherein the first cell expresses elevated levels of the target protein and the second cell expresses elevated levels of the protein encoded by the functionally similar gene, wherein said target gene and functionally similar gene both positively contribute to the fitness of the first cell and second cell, wherein the first cell further comprises and expresses a reporter gene that is substantially not expressed in said second cell, and wherein the first cell and second cell are of the same species and cell type; exposing the co-culture to a test molecule; and measuring the activity or amount of protein encoded by the reporter gene, wherein said increase in reporter gene activity indicates that the molecule inhibits the target gene but not the functionally similar gene.
The screening methods of the invention identify compounds that are lead candidates for drugs that cause loss of function of a target gene. There are myriad instances where specific loss of function of a gene is therapeutically desirable, where loss of function results in a desirable phenotype, e.g., in disorders involving low cholesterol levels, cancer, etc. For example, an inhibitor specific to COX2, an oncogene, a cholesterol synthesis enzyme, etc. would be desirable.
The present invention further provides a kit comprising in one or more containers a first cell and a second cell, wherein the first cell has higher expression or activity of the target gene than the second cell, wherein the first cell further comprises and expresses a reporter gene encoding a bioluminescent, chemiluminescent or fluorescent molecule that is substantially not expressed in said second cell and wherein the first cell and second cell are of the same species and cell type.
The present invention further provides an assay system comprising a first cell and a second cell, wherein the first cell has higher expression or activity of the target gene than the second cell, wherein the first cell further comprises and expresses a reporter gene encoding a bioluminescent, chemiluminescent or fluorescent molecule that is substantially not expressed in said second cell and wherein the first cell and second cell are of the same species and cell type. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to archery accessories and, more particularly, a device, system, and method for improving archery accuracy.
Currently, determination of the optimal balance of the setup of an archer's bow is often done through personal recommendations, which is unreliable since every person utilizes different forms and processes to developing the skill of archery accuracy. Similarly, everyone reacts to their bow in their own way when shooting archery. In short, recommendations are unreliable data, and in the absence of reliable data, results are based on inefficient guesswork. And due to the cost of equipment, individuals cannot afford trying multiple setups. Likewise, archers looking to reach and maintain a sufficient level of accuracy quickly, cannot afford to continually test for peak results.
As can be seen, there is a need for an inexpensive device, system, and method for improving archery accuracy that can be tailored for each archer and their current archery equipment.
The present invention embodies a small wireless accelerometer and gyroscope to collect data related to the movement of the archer's bow, wherein the resulting data is coupled to software adapted to graphically represent to users their bow movement relative to a site picture—“shot pattern”. As a result of this graphical feedback, archers can visually appreciate how their setup adjustments translate to their bow's movement; specifically, adjustments can be made by the archer in response to a first data set of graphical representations of bow movement as well as a subsequent second data set of graphical representations of bow movement resulting from said response. The first, second, and subsequent sets of graphical representations of bow movement, or shot patterns, may be layered over in a cumulative graphical representation. The software may be adapted to automatically determine correct setup between first and second and so forth data sets as well as providing suggested changes to the setup. The test process continues until ideal setup for each individual user is determined. Thereby, the present invention removes human guessing and shows true, representative data specifically tailored to each individual to ensure the best setup for improving a user's shot. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a battery power control system, and more specifically, to a low-cost configuration and control method for a hybrid battery system which achieves both high energy density and high power density for use in an electric or hybrid electric motor drive system such as used in electrically propelled vehicles.
Propulsion systems for electric motor propelled vehicles (“electric vehicle” or EV) generally use rechargeable traction batteries to provide electric power for driving electric motors coupled in driving relationship to wheels of the vehicle. For example, U.S. Pat. No. 5,373,195 illustrates a system in which the traction batteries are connected to a direct current (DC) link, which link connects to a power control circuit such as a pulse width modulation (PWM) circuit for controlling power to a DC motor or to a frequency controlled inverter for controlling power to an alternating current (AC) motor. Hybrid electric vehicle (HEV) propulsion systems are constructed similarly to EV propulsion systems but also include internal combustion engines to drive on-board generators to supplement battery power.
In general, traction batteries for electric vehicles and hybrid-electric vehicles represent a compromise between power density and energy density. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
Aspects of the present invention relate generally to mobile communications, and more particularly, to methods and devices for DRX paging cycle extension of user equipment (UE) in IDLE mode.
Description of the Related Art
To receive paging messages from an evolved universal terrestrial radio access network (E-UTRAN), the user equipment (UE) in an IDLE mode monitors the physical downlink control channel (PDCCH) for using a Paging Radio Network Temporary Identifier (P-RNTI) to indicate paging. The UE only needs to monitor the PDCCH channel at certain UE-specific occasions, i.e., at specific subframes within specific frames. At other times, the UE may apply discontinuous reception (DRX) not to listen to the paging messages, meaning that the UE can turn off its receiver to save battery power.
Each cell broadcasts a default paging cycle, so that the E-URTAN can configure the radio frames and subframes used for paging. In addition, upper layers may use dedicated signaling to configure a UE-specific paging cycle. If the default paging cycle and the UE-specific paging cycle are both configured, the UE applies the lowest value of the above two as the paging cycle. The UE would calculate a radio frame (a Paging Frame (PF)) and a subframe within that PF (a paging occasion (PO)), which E-URTAN uses to page the UE. One Paging Occasion (PO) is a subframe, which is an occasion of the P-RNTI transmitted on the PDCCH used to send the paging message. One Paging Frame (PF) is a Radio Frame, which may comprise one or multiple paging occasions. When the DRX is used, the UE only needs to monitor one PO for itself per DRX cycle.
The PF and PO are determined by using the DRX parameters provided in System Information (SI) and the following equation, wherein the PF is given by following equation:SFN Mod T=(T div N)*(UE_ID Mod N). (1)
Wherein Mod represents modulo operation and div represents division operation. T represents the paging cycle, and UE_ID represents the ID of the UE (i.e., a terminal identification). N=min(T, nB), wherein nB represents the number of paging subframes per frame*T.
The index i_s can be derived from the following equation:i_s=floor(UE_ID/N)mod Ns. (2)
Wherein floor represents a floor function returning an integer portion of a number, and Ns=max(1, nB/T). The PO can be obtained from the following mapping relationship according to i_s and the parameter Ns, which may be found in TABLE 1 and TABLE 2. TABLE 2 shows that the parameters can be applied to all TDD UL/DL configurations:
TABLE 1the corresponding relationshipamong PO, i_s and Ns in FDD modePO whenPO whenPO whenPO whenNsi_s = 0i_s = 1i_s = 2i_s = 319N/AN/AN/A249N/AN/A40459
TABLE 2the corresponding relationshipamong PO, i_s and Ns in TDD modePO whenPO whenPO whenPO whenNsi_s = 0i_s = 1i_s = 2i_s = 310N/AN/AN/A205N/AN/A40156
Once DRX parameter values are changed in the SI, the DRX parameters stored in the SI shall be updated locally in the UE. If the UE has no international mobile subscriber identity (IMSI). For example, when the UE makes an emergency call without using the universal subscriber identity module (USIM), the UE may use the default identity UE_ID=0 in the equation (2) described above.
The following parameters are used to calculate PF and i_s. T is the DRX cycle of the UE, and T is determined by the minimum value between the UE specific DRX cycle value (obtained through the upper layer configuration) and the default DRX cycle value (obtained by broadcasting the SI). If the UE specific DRX cycle is not configured by the upper layer, the default DRX cycle value is used. nB is one of the set {4T, 2T, T, T/2, T/4, T/8, T/16, T/32}. N=min(T, nB), Ns=max(1, nB/T), UE_ID=IMSI mod 1024. IMSI is given as an integer sequence of 10 digits. IMSI may be a decimal integer in the equation described above, wherein the first digit given in the integer sequence represents the highest order digit. For example: IMSI=12 (digit1=1, digit2=2).
However, for UEs of certain traffics, such as machine type communication (MTC) UE, due to the traffic characteristics with small packets and small amount of data, there is no need to monitor PDCCH under the current mechanism. Since there is not so much data needed to interact with the eNB in real-time, the mobile terminals need low power consumption. However, the mobile terminals are generally in an IDLE mode most of the time. Thus, there is a need for power saving schemes for mobile terminals in the IDLE mode. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure is directed generally to resins and, in particular, to aminoplast resins and their use as binders.
Among other aminoplast resins, melamine-formaldehyde resins find wide industrial application. Owing to their characteristic tensile strength and water repellence, their use is noted as binders for cellulosic, fiberglass, and polymeric materials as well as composite blends thereof. Resins without formaldehyde used for substitution of phenolic or aminoplast resins are desired due to regulatory and health concerns. In response, the industry has attempted to put forward aminoplast resins matching the functional benefits of formaldehyde-containing resins.
There exists a continuing need for thermosetting compositions without formaldehyde which perform in many applications like melamine-formaldehyde resins and exhibit for example, tensile strength compared to conventional resins. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to signal processing, and more particularly to signal predistortion techniques for use in conjunction with power amplification or other nonlinear processing operations in a wireless communication system or other type of system.
As is well known, signal predistortion techniques are used in conjunction with power amplification in order to correct for undesirable effects, such as output signal distortion, spectral regrowth and adjacent channel power (ACP), that are typically associated with amplifier nonlinearity at high output power levels. In general, predistortion techniques involve distorting an input signal prior to amplification in a manner that takes into account the transfer function characteristics of the amplifier, such that the nonlinearity-related effects are at least partially canceled out in the resulting output signal.
Recently-developed signal predistortion techniques which overcome one or more problems associated with conventional techniques are described in U.S. patent application Ser. No. 09/915,042, filed Jul. 25, 2001 and entitled xe2x80x9cSystem and Method for Predistorting a Signal Using Current and Past Signal Samples,xe2x80x9d and U.S. patent application Ser. No. 09/928,628, filed Aug. 13, 2001 and entitled xe2x80x9cMultiple Stage and/or Nested Predistortion System and Method,xe2x80x9d both of which are hereby incorporated by reference herein.
Despite the considerable advances provided by the predistortion techniques described in the above-cited U.S. patent application Ser. Nos. 09/915,042 and 09/928,628, a need remains for further improvements in predistortion techniques, so as to provide additional performance enhancements in wireless communication systems and other systems employing power amplification.
In accordance with one aspect of the invention, a signal is predistorted by producing a first set of sample values using a first predistortion technique, producing a second set of sample values using a second predistortion technique different than the first predistortion technique, and combining the first and second sets of sample values to produce a predistorted signal. At least one of the first and second predistortion techniques produce the corresponding set of sample values based at least in part on a plurality of past time spaced input samples relative to a current time spaced input sample. By way of example, the first predistortion technique may be configured to produce sample output values each of which is dependent on one of a plurality of time spaced input samples and independent of any other time spaced input sample, and the second predistortion technique may be configured to produce sample output values each of which is dependent on (i) at least one of a plurality of past time spaced input samples and (ii) a current time spaced input sample, and independent of any other time spaced input sample.
In one illustrative embodiment of the invention, the predistorted signal is of the form given by the following equation having first and second addends: y ( n ) = ∑ k = 0 K - 1 x ( n - k ) · f k ( "LeftBracketingBar" x ( n - k ) "RightBracketingBar" ) + x ( n ) · f xe2x80x2 ( ∑ l = 0 L c l "LeftBracketingBar" x ( n - l ) "RightBracketingBar" ) ,
where y(n) denotes the predistorted signal, x(n) denotes a corresponding input signal, fk and fxe2x80x2 denote functions, the first addend of the equation implements the first predistortion technique, the second addend of the equation implements the second predistortion technique, and cl are coefficients of one or more memory filters associated with the second predistortion technique.
In another illustrative embodiment of the invention, the predistorted signal is of the form given by the following equation having first and second addends: y ( n ) = ∑ k = 0 K - 1 x ( n - k ) · f k ( "LeftBracketingBar" x ( n - k ) "RightBracketingBar" ) + x ( n ) · ∑ l = 1 L f l xe2x80x2 ( "LeftBracketingBar" x ( n - l ) "RightBracketingBar" ) ,
where again y(n) denotes the predistorted signal, x(n) denotes a corresponding input signal, fk and flxe2x80x2 denote functions, the first addend of the equation implements the first predistortion technique, and the second addend of the equation implements the second predistortion technique.
In accordance with another aspect of the invention, the quantity l in the above equations may be permitted to have a value which is less than zero, such that one or more future time spaced input samples are utilized in the second predistortion technique.
In accordance with a further aspect of the invention, predistortion circuitry for implementing the first and second predistortion techniques may be implemented using a plurality of predistortion core circuits, each of the predistortion core circuits receiving a data input and an index input associated with a particular input sample and generating a corresponding data output. More particularly, a given one of the predistortion core circuits includes a first processing element comprising at least one of a coefficient lookup table and a polynomial generator, the first processing element receiving the index input and generating an output which is applied to a second processing element comprising a multiplier which multiplies the output of the first processing element and the data input to generate the corresponding data output. The data outputs of the predistortion core circuits correspond to at least one of the first and second sets of sample values.
The predistortion circuitry also preferably includes at least one memory finite impulse response (FIR) filter which processes at least one input sample in conjunction with at least one of the first and second predistortion techniques. For example, the memory FIR filter may generate an output which is supplied to a predistortion core circuit in the predistortion circuitry, with the predistortion core circuit producing at least a subset of one or more of the sample values.
These and other features and advantages of the present invention will become more apparent from the accompanying drawings and the following detailed description. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an air cleaner which is suited for use in the suction system of a small air-cooled two-stroke gasoline engine of a portable working machine. More particularly, the invention relates to an air cleaner provided with a novel bellows-like air cleaning filter.
2. The Prior Art
A typical example of the conventional air cleaner is shown in FIGS. 15 and 16. This air cleaner 50 is intended to be employed in the suction system of a small air-cooled two-stroke gasoline engine, of a portable working machine for instance, and is provided with an air cleaning filter 52 made of an air-permeable filter paper folded into a bellows-like shape, in order to increase the filtering area thereof, and formed into a cylindrical shape as shown in FIG. 15. The air cleaner 50 further comprises an inner cylindrical member 56 disposed inside of the air cleaning filter 52, which functions as a shape-retaining member to maintain the air cleaning filter 52 cylindrical in shape. The cylindrical member 56 is made of punched metal having a large number of vent holes 56a. An annular end cap 59 is attached to each of the upper and lower end portions of the air cleaning filter 52 and the inner cylindrical body 56.
Since the bellows-like air cleaning filter 52 is formed of a filter paper in the conventional air cleaner 50 as described above, it is not only impossible to wash the air cleaning filter 52 with water or gasoline, but it is also difficult to clean the filter 52 by use of compressed air. This presents a problem in the maintenance of the air cleaning filter 52. Furthermore, since an air cleaning filter 52 that is made of a bellows-like filter paper is not strong enough to retain its cylindrical shape by itself, some kind of shape-retaining member (e.g. the inner cylindrical member 56 made as a punched metal member) is required to retain the cylindrical shape of the filter 52, thus increasing manufacturing and assembly costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various techniques exist for processing digital video data for purposes of image recognition, pattern recognition, object detection, etc. Typically, video data is captured by one type of device and then analyzed by the device or by another processing device. For example, one method includes acquiring visual image primitives from a video input comprising visual information relevant to a human activity. The primitives are temporally aligned to an optimally hypothesized sequence of primitives transformed from a sequence of transactions as a function of a distance metric between the observed primitive sequence and the transformed primitive sequence. Another method detects a moving target with the use of a reference image and an inspection image from the images captured by one or more cameras. A moving target is detected from the reference image and the inspection image based on the orientation of corresponding portions in the reference image and the inspection image relative to a location of an epipolar direction common to the reference image and the inspection image; and displays any detected moving target on a display.
Current video data processing techniques typically operate on one type of video input data. Making available a larger source of data aggregated from multiple sources into a combined source has not been possible for individual contributors.
In addition, it has proven challenging to process large amounts of streaming video data effectively.
It would be desirable to have a system and method for receiving digital video data from multiple sources of different types and be able to analyze the raw data as a single data source from the different sources to determine facts about a scene both at a point in time and over a period of time. | {
"pile_set_name": "USPTO Backgrounds"
} |
One type of ceiling system includes ceiling panels or tiles that are installed in a support grid which may be suspended from or directly installed to a suitable overhead building support structure. Such ceiling systems may be designed to partially or completely conceals the support grid from view.
An improved ceiling system with concealed support grid is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
In addition to ISO containers which have outer dimensions between 10 and 40 feet (approximately 3 and 12 m) in length and 8 feet (approximately 2.4 m) in width, as common in the international container traffic, small and medium size containers, specifically tank containers, are increasingly used. With these smaller containers, there is regularly the problem that, due to their dimensions and fittings, they cannot be combined with ISO unit loads and cannot be handled and secured by means of handling and locking devices provided for ISO containers. Moreover, there are frequently customer specifications concerning the handling and securing of medium and small size containers.
U.S. Pat. No. 4,905,854 discloses a smaller than standard size container which comprises a tank disposed between a pair of end frames and a base structure connected to the end frames and having pockets defining two pairs of fork lift channels extending perpendicularly of each other. | {
"pile_set_name": "USPTO Backgrounds"
} |
A process of developing an electrostatic image in electrophotography is to form an image by adhering charged toner particles on the electrostatic image using the electrostatic interaction of the electrostatic image. The developer for developing the electrostatic image includes a one-component developer using a magnetic toner comprising a magnetic material dispersed in a resin and a two-components developer which is used by mixing a non-magnetic toner with a magnetic carrier. The latter is preferably used especially for a full-color copying machine for which high image quality is demanded or a full-color image forming apparatus such as a full-color printer and the like.
As the magnetic carrier used in the two-components developer, there is used a coated carrier in which the surface of ferrite particles or a magnetic material-dispersion type resin core is coated with a resin for the purpose of stabilizing the charging amount and improving the endurance of the carrier.
A lot of proposals have been made for the coated carrier, for example, as a durable carrier which prevents charge injection, there is proposed a carrier coated with a fluorine resin obtained by using a specific monomer (Japanese Patent Application Laid-Open No. H10-307430). In this case, uniform coating properties are also improved by using the specific fluorine resin. However, since fluorine has a strong negative charging property and the rising of the charging amount may be slow for a negative toner, especially when an image having a low printing ratio is continuously printed under a low humidity, the charging amount may be increased.
In addition, there is proposed a carrier which is coated with a copolymer of a specific monomer and a methyl methacrylate monomer and has a contact angle of 95° or more for water (Japanese Patent Application Laid-Open No. 2007-279588). Since the charging stability can be achieved and the releasing property can be improved by the use of such a coating resin, the carrier is excellent in durable stability. However, the adhesion between the core and the coating resin is unstable depending on the kinds of the core material and the coating resin is peeled off in some cases. When a machine is allowed to stand for a few days after long-term use especially under high temperature and high humidity environments, the charging amount may be decreased and fog may occur when an image is output. | {
"pile_set_name": "USPTO Backgrounds"
} |
Light waves may be made to carry information by modulating a light source, often a laser source, to change various properties of the light, such as its amplitude, phase, frequency, wavelength, etc. The light waves may be in the visible spectral band, the infrared spectral band, or another region of the electromagnetic spectrum. In some cases, an underlying signal, such as a radio frequency signal, may be modulated via amplitude, phase, or frequency modulation, or any combination thereof, and the light source may be modulated by the underlying signal. Optical receivers receive the light waves and measure properties or variations of the light wave, such as the amplitude, phase transitions, and the like, from which the underlying signal and the information may be recovered.
Phase modulation of light signals may convey useful information. Information encoded in phase modulation may include transmitted communication data, or may include other information such as information about the source of the optical signal, interaction of the optical signal with an object, the optical channel through which the optical signal traveled, and/or objects with which it interacted. Compared to typical amplitude modulation receivers, phase modulation receivers can be significantly more complex, requiring precision optics, local oscillators, Fiber Bragg Gratings (FBG), and/or delay line interferometers (DLI), etc.
Conventional high order PSK demodulators use a local reference source and multiple detectors, and operate by measuring intensity of fringes obtained by mixing a received signal with a phase shifted local reference. Thus conventional receivers for high order coherently encoded signals require frequency controlled lasers to serve as local oscillators, and require multiple detectors and significant digital signal processing. | {
"pile_set_name": "USPTO Backgrounds"
} |
With development of wireless communication technology, real-time bidirectional data communication and websocket communication that can support a plurality of concurrent users have been introduced. The websocket communication is based on communication between servers and clients.
FIG. 1 is a view for describing an example of a general websocket communication method according to the related art.
Referring to FIG. 1, it is assumed that a server 102 supports websocket communication, and first to fourth clients 104, 106, 108, and 110 connect to the server 102 using a websocket protocol to transmit/receive data to/from the server 102. In FIG. 1, for convenience of description, a server supporting websocket communication is shown, however, two or more servers may exist.
The websocket communication overcomes the disadvantage (that is, unidirectional communication) of hyper text transfer protocol (HTTP) which is one of typical communication methods to provide seamless bidirectional communication between servers and clients. Also, since the websocket communication can easily interwork with hypertext markup language 5 (HTML 5) without having a server to perform complicated programming, the websocket communication is expected to be widely applied in environments requiring bidirectional communication.
For this reason, studies into a method for applying the websocket communication to communication between applications running on different devices are underway. Accordingly, detailed procedures for applying websocket communication designed for bidirectional communication between servers and clients to communication between applications are needed.
The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an integrated planar waveguide optical device suitable for switching optical signals between three or more ports and/or modulation of the optical intensity, and more particularly, to an integrated optical Mach-Zehnder interferometer device having low polarization dependent loss at a high level of attenuation or signal isolation.
Integrated optical switching or modulation devices are based on the conventional Mach-Zehnder (M-Z) interferometer geometry and comprise two or more channel waveguides formed on a planar substrate. The two channel waveguides are usually parallel to each other and separated at the terminal ends, which form the input and output ports of the device. The waveguides come in sufficiently close proximity to each other in two discrete regions permitting exchange of light by optical coupling. These regions, referred to as optical couplers, generally divide the incident light beam arriving from an input port of one waveguide equally between both waveguides. Thus, light entering one waveguide is split in the first coupling region, or input coupler, so that it propagates with equal intensity in both waveguides until it reaches the second, or output, coupler. Accordingly, the portion of the channel waveguides located between the input and output couplers are referred to as the waveguide arms. If the optical path length of both arms is the same in the normal, that is un-activated state of the device, the two beams recombine in phase and are transmitted without modulation of intensity to a common output port, the incident optical signal crossing from the first channel waveguide input port to the output port of the second channel waveguide.
If the optical path length of the two arms is different by a half wavelength, which is out of phase, the two beams recombine without modulation of intensity at the output port associated with the same waveguide input port.
Thus switching of signals between output ports is achieved by the selective modification of the optical path lengths of waveguide arms by a half wavelength. Selective control of the optical path length differences of less than half a wavelength split the incident beam energy between the output ports, permitting the device to be used as a variable optical attenuator as well as an optical switch.
As the optical path length of the waveguide arms is a function of the local refractive index in the waveguide media, modulation of the refractive index of either of the waveguides changes the optical path length to cause either partial or total destructive interference of the co-propagating optical signals, which permits the selected attenuation of the output signal, or switching of the signal to the output port of the first waveguide.
Refractive index modulation in one or more arms of the M-Z optical waveguide device may be accomplished by exploiting the electric or magnetic field responsive optical properties of particular waveguide materials, or by utilizing the thermo-optical properties or stress-optical properties of a wide range of materials. An actuator is connected to a control circuit such that the selective application of an electromagnetic field or bias to an actuator associated with one or more arms of the device induces a strain, temperature change or otherwise modifies the refractive index of the selected arm, or arms, to induce the desired phase difference. For example, U.S. Pat. No. 5,502,781, which is incorporated herein by reference, discloses integrated optical devices which utilize either a magnetostrictively, electrostrictively or photostrictively induced stress to alter the optical properties in one or more waveguide segments of the device. Latchable integrated optical devices are achieved by utilizing a controlled induced stress to xe2x80x9ctunexe2x80x9d one or more waveguides to a desired refractive index or birefringence, which will be retained after the field is removed.
Thin film heaters are a preferred actuator for exploiting the thermo-optical properties of the waveguide materials, being generally compatible with other thin film processes and materials used to fabricate the waveguide and/or substrate.
However, it has been found that thin film heaters and other actuators limit device performance via second order effects. Channel waveguides are generally fabricated from materials that are homogenous and optically isotropic in the bulk state, having a single refractive index. Device fabrication methods and actuator designs may induce optical anisotropy in the channel waveguide such that the refractive index will vary depending on the polarization state of the incident light propagating in the waveguide. The difference in refractive index of a material is referred to as birefringence. The propagation characteristic of unpolarized light in a birefringent media is readily evaluated by decomposition into vectors of orthogonal polarization states, TM and TE. This difference in birefringence between the two arms of the M-Z interferometer results in a polarization dependent loss in the optical signal.
Prior art integrated planar waveguide M-Z devices, such as disclosed in WO 00/52518, which is incorporated herein by reference, suggest that the actuation mechanism should be designed so as to avoid introducing birefringence in the plane orthogonal to the direction of signal propagation in either of the waveguide arm segment. More specifically, this application discloses a method of placing piezoelectric ribs actuators on selected region of a Mach-Zehnder optical device to minimize differential strain perpendicular to the waveguide channel.
Accordingly, it is an object of the present invention to provide an integrated optical Mach-Zehnder interferometer device having a low polarization dependent loss at high levels of signal attenuation or isolation.
It is a further object of the invention to provide a simple means for decreasing the polarization dependent loss that avoids the addition of compensating components or additional process steps in fabricating the integrated optical Mach-Zehnder interferometer device.
An integrated optical Mach-Zehnder interferometer device comprises a first and second channel waveguide formed in or on a substrate which are connected at their terminal ends to plurality of input and output ports through an input coupler and an output coupler.
In the case of thermal optical switches or variable attenuators where the selective adjustment of refractive index of the waveguide channel material occurs by selective temperature change of one of the channel waveguides, the polarization dependent loss (PDL) may be significant depending on the thermal properties of the substrate and the temperature change required to sufficiently modulate the refractive index of the optical media forming the channel waveguide. Moreover, it has been found that polarization dependent loss may increase dramatically as the incident optical signal is attenuated or switched, as even a linearly proportional increase in birefringence with refractive index of the channel waveguide material results in a non-linear increase in PDL.
In one aspect of the invention the aforementioned limitation is overcome by utilizing a first or second channel waveguides having an initial birefringence xcex94, to compensate for an increased birefringence on actuation of the switch or modulation device. The first and second channel waveguides are preferably of unequal physical path length such that the optical path length is substantially equal when the device is not energized. The change in birefringence induced by heating the first or second channel waveguide is of equal magnitude to the initial birefringence in the first or second channel waveguide. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a projector for projecting color images (projection display apparatus).
As a display having a large viewing surface, projectors for magnifying and projecting images on a screen are widely used. As the projectors known are a front type projector for projecting light rays on a reflection type screen and a rear-type projector for projecting light rays on a transmission type screen. As the rear-type projector, the technique disclosed in Japanese Unexamined Patent Application Publication No. 10-307332 has been exemplified.
In the rear-type projector, a light ray irradiated from a projecting device for projecting images is reflected by a plurality of mirrors so as to be projected on a screen. Of the plurality of mirrors, the reflecting mirror for reflecting the light ray to the screen is generally arranged to have an inclination of less than 45xc2x0 with respect to the screen, and by reducing the depth from the screen to this mirror, the rear-type projector is miniaturized.
As described above, when arranging the mirror for reflecting a light ray toward the screen, it is necessary to place the projecting device to slant relative to a plane perpendicular to the screen in order to compensate the rotation of an image to be projected on the screen. Accordingly, there is a difficulty in the positional adjustment of an optical system constituting a projector when slanting the projecting device to be placed corresponding to the inclination of the mirror.
The present invention has been made in order to solve the above-described problem in a conventional technique, and it is an object thereof to provide a technique capable of facilitating the positional adjustment of an optical system constituting a projector and also of miniaturizing the apparatus.
In order to solve at least part of the problem mentioned above, a projector according to the present invention comprises three electro-optical devices for forming images of three color components, a color-combining optical system for forming a color image by combining the images of three color components, a projection lens for projecting a color image formed by the color-combining optical system, a screen onto which the color image is projected, and first and second mirrors disposed on an optical path ranging from a plane of light incidence of the projection lens to a plane of light incidence of the screen for sequentially reflecting image light representing the color image emitted from the color-combining optical system. Furthermore, when three axes orthogonal to each other are referred to as an x-axis, a y-axis, and a z-axis, the screen is placed substantially in parallel with a yz-plane, and the color-combining optical system, having two kinds of dichroic surfaces arranged substantially in an X-shape, is placed so that a line of intersection between the two kinds of dichroic surfaces is to be substantially parallel to the z-axis. Also, each of the electro-optical devices, having a substantially rectangular image-forming region, is placed so as to face a corresponding plane of incidence out of three planes of incidence parallel to the line of intersection of the color-combining optical system so that the direction of the longer side of the image-forming region agrees with the direction of the line of intersection. Moreover, a reflection surface of the first mirror is arranged substantially perpendicularly to the yz-plane and also with an inclination of approximate 45xc2x0 relative to an xy-plane, and at least the electro-optical devices, the color combining optical system, and the projection lens are arranged along the xy-plane so that an image light emitted from the color-combining optical system enters the first mirror with its optical-axis parallel to the xy-plane and inclined xcex1xc2x0 with respect to the y-axis. Also, the second mirror is placed substantially perpendicularly to an xz-plane with an inclination of smaller by xcex1/2xc2x0 than 45xc2x0 approximately with respect to the yz-plane so that an image light reflected from the first mirror is reflected by the second mirror again so as to enter the screen with the optical axis being incident on the substantial center of the screen and substantially perpendicular to the screen.
In the projector according to the present invention, the second mirror for reflecting image light from the first mirror to be incident on the screen can be arranged substantially perpendicularly to the xz-plane with an inclination of smaller by xcex1/2xc2x0 than 45xc2x0 approximately with respect to the yz-plane, so that the depth from the screen to the second mirror can be reduced. Thereby, the apparatus can be miniaturized. At least the electro-optical device, color combining system, and projection lens are arranged along a plane substantially perpendicular to the screen (horizontal plane, for example), so that the arrangement or positional adjustment involved in the arrangement of these optical components can be facilitated. Therefore, in the projector according to the present invention, the arrangement of the optical system constituting the projector can be facilitated, and the apparatus can be miniaturized as well.
In the projector described above, the first mirror may be preferably integrally arranged with the projection lens.
By such a structure, the arrangement space for the first mirror can be reduced, so that the apparatus can be miniaturized. In addition the meaning of xe2x80x9cbeing integrally arrangedxe2x80x9d includes not only being integrally arranged combined with the vicinity of the incidence plane or the emission plane of the projection lens but also being arranged within the projection lens.
Wherein the first mirror may be preferably formed of a total reflection prism.
By such a structure, the reflectance of the first mirror can be increased and bright projection images can be readily achieved. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an ultrasonic probe and an ultrasonic diagnostic apparatus.
2. Description of the Related Art
There is known an ultrasonic diagnostic apparatus that scans the inside of a subject with an ultrasonic wave and visualizes an inside state of the subject on the basis of a reception signal generated from a reflected wave from the inside of the subject. Such an ultrasonic diagnostic apparatus transmits an ultrasonic wave into the subject with an ultrasonic probe including piezoelectric oscillators and receives a reflected wave, which is caused by mismatching of acoustic impedances in the subject, with the ultrasonic probe to generate a reception signal.
In the ultrasonic probe, plural piezoelectric oscillators, which oscillate on the basis of a transmission signal to generate an ultrasonic wave and receives a reflected wave to generate a reception signal, are arranged in a scanning direction. For example, such piezoelectric oscillators transmit an ultrasonic wave having a rectangular sound pressure distribution, which is uniform in a direction perpendicular to the scanning direction, and form a focus at a predetermined depth in a subject when the piezoelectric oscillators are given a differential delay by an acoustic lens.
Incidentally, for the purpose of realizing acoustic matching of an acoustic impedance of the piezoelectric oscillators and an acoustic impedance of the subject, an acoustic matching layer having a multilayer structure is provided on the piezoelectric oscillators to transmit and receive ultrasonic waves via the acoustic matching layer. As the acoustic matching layer, an acoustic matching layer consisting of two layers has more satisfactory acoustic matching than an acoustic matching layer consisting of one layer. An acoustic matching layer consisting of three layers has still more satisfactory acoustic matching. This is because an acoustic loss is less when acoustic impedances change from the piezoelectric oscillators to the subject in three stages than in one stage.
The acoustic matching between the piezoelectric oscillators and the subject is made satisfactory in this way. This is because, if a difference between the acoustic impedance of the piezoelectric oscillators and the acoustic impedance of the subject is large, a reflection loss of an ultrasonic wave in the subject increases when the ultrasonic wave is transmitted from the piezoelectric oscillators to the subject. Consequently, the transmission of the ultrasonic wave to the subject cannot be performed efficiently, and a high quality image cannot be obtained.
FIG. 9 shows a structure of an ultrasonic probe including an acoustic matching layer having a multilayer structure. FIG. 9 is a front view of the ultrasonic probe. The ultrasonic probe includes a back material 32, a piezoelectric oscillator layer 33 that is divided into plural layers to be arranged in a scanning direction on the back material 32, an acoustic matching layer 34 that is divided into plural layers to be arranged in the scanning direction on the piezoelectric oscillator layer 33, and an acoustic lens 35 provided on the acoustic matching layer 34. The acoustic matching layer 34 includes a first acoustic matching layer 34a, a second acoustic matching layer 34b provided on the first acoustic matching layer 34a, and a third acoustic matching layer 34c provided on the second acoustic matching layer 34b. In such an ultrasonic probe, the piezoelectric oscillator layer 33 performs transmission and reception of ultrasonic waves via the acoustic matching layer 34.
In general, an acoustic impedance of the piezoelectric oscillator layer 33 is about 30 Mrayl and an acoustic impedance of a subject is about 1.5 Mrayl. In order to make acoustic matching between the piezoelectric oscillator layer 33 and the subject, it is necessary to form the acoustic matching layer 4 in a multilayer structure and gradually reduce acoustic impedances from the piezoelectric oscillator layer 33 to the subject. In the case of the ultrasonic probe shown in FIG. 9, it is necessary to gradually reduce acoustic impedances from the first acoustic matching layer 34a to the third acoustic matching layer 34c to set an acoustic impedance of an acoustic matching layer on the subject side (the third acoustic matching layer 34c) of the acoustic matching layer 34 to 1.5 to 3.5 Mrayl. In addition, in the case of an ultrasonic probe including an acoustic matching layer consisting of two layers, it is necessary to set an acoustic impedance of the second acoustic matching layer to 1.5 to 3.5 Mrayl.
Conventionally, an acoustic impedance is set low by using a soft resin film of polyurethane or polyethylene in the acoustic matching layer 34. However, since the resin film is poor in machinability due to its flexibility, it is impossible to subject the acoustic matching layer 34 to machining by dice cutting (array machining) in order to divide the acoustic matching layer 34 into plural layers to be arranged in the scanning direction. In other words, after stacking the piezoelectric oscillator layer 33 and the acoustic matching layer 34 on the back material 2, it is impossible to subject the acoustic matching layer 34 to dice cutting at a desired pitch. Therefore, there is a problem in that acoustic crosstalk between the piezoelectric oscillator layer 33 and the acoustic matching layer 34 is high. In addition, since machinability is poor, it is impossible to manufacture the ultrasonic probe easily.
In addition, since polyurethane and polyethylene do not have electric conductivity, it is impossible to draw out a ground electrode from the acoustic matching layer 34 side. Here, even if conductive particles such as a metal filler is mixed in polyurethane or polyethylene in order to give electric conductivity to the acoustic matching layer 34, a desired acoustic impedance is not satisfied because a density of the acoustic matching layer 34 increases. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technical Field
The present invention relates to Recursive Neural Networks (RNN), and more particularly training RNNs in predicting future events.
Description of the Related Art
Much of the current future prediction work with RNNs focuses on detecting entailment or paraphrase relationships between two sentences or events. Work on detecting temporal relationships is needed. Some models are designed solely for predicting textual order of events instead of semantic order of events. As a consequence, some models do not model the fact that some specific events will not occur in the future as a consequence of the occurrence of a previous event. As an example, once an apple is fully consumed, it is unlikely that the next future event will be to “eat the apple.” Current models do not attempt to remove the specific events that will not occur in the future, because of the occurrence of a previous event, from the set of possible future events.
While current efforts focus on detecting entailment or paraphrase relationships between two sentences or events, there is little work on detecting temporal relationships. One line of research, tries to extract “what happens-after an event occurs” relationships from large collections of text using bootstrapping methods utilizing resources such as VerbOcean. In the context of script learning, another line of work, uses corpora statistics such as event bi-grams to define probabilities of what the next possible event will be.
However, such models cannot generalize situations of new events that have not been observed before. These models are designed for predicting textual order of events instead of semantic order of events. What is needed is an ability to train a recursive neural network (RNN) in predicting the occurrence of future events. Further, what is needed is a method for the RNN to learn how to make accurate predictions of future events and for the RNN to take action automatically in hazardous situations in order to mitigate risk to human life and damage to property. | {
"pile_set_name": "USPTO Backgrounds"
} |
Accordingly, the present disclosure provides an actuator housing that provides these features. The present actuator housing enables the housing to be utilized in a multitude of positions. The present housing enables a single housing to be manufactured to reduce the cost of manufacturing. The present disclosure provides different attachment members to secure the housing for various applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a child lock apparatus which disables a door opening operation made by a door inner handle positioned in a vehicle cabin, so as to prevent an unintentional door opening operation.
When a child sits, for example, in the back seat of an automobile, he or she may manipulate a door inner handle of a door and unintentionally open the door. In order to prevent such an unintentional door opening operation, there is provided a child lock apparatus which disables the door opening operation even if the door inner handle is manipulated from the vehicle cabin side.
Japanese Patent Publication No. H05-61430 (claims and FIG. 4) discloses a conventional child lock apparatus, which includes a child lever for locking and unlocking a child lock. The child lever is provided at one end surface of the door that faces to the vehicle body, and it is connected to a switch (lock release manipulation switch) so that the operating condition of the child lever is outputted to a control circuit (a flip-flop circuit, a first AND gate circuit, a second AND gate circuit, an actuator drive circuit, etc.) in accordance with the ON/OFF signal of the switch. When the child lever is manipulated to lock the child lock, the control circuit supplies an electric current to the actuator to operate the same, so that the door is child-locked and is not opened by the door inner handle.
However, in the above conventional child lock apparatus, the child lever is provided at one end surface of the door that faces to the vehicle body. Therefore, the child lever is not manipulated if the door is closed. In other words, it is necessary to open the door in advance, and thus locking/unlocking the child lock requires complicated operations.
Further, since locking the child lock is manually operated, if the child lock remains inadvertently unlocked by shear mistake, the child lock apparatus does not provide a reliable child lock performance and it allows a child to open the door, by the manipulation of the door inner handle, while the vehicle is running.
In view of the above, the present invention in one preferred mode seeks to provide a child lock apparatus which can reliably child-lock the door during the running of the vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure is directed to a multilayer structure in an integrated circuit for damage prevention and detection and methods of creating the same.
2. Description of the Related Art
As integrated circuits get smaller and denser, damages to dice become critical. Any damages, such as cracks or moisture exposure, to the dice may result in defects in the integrated circuits. Current methods for preventing damages to dice include forming protective structures on the edges of each die. For example, structures may be formed on respective corners of a square shaped die at the end of a fabrication process to minimize damages caused by wafer dicing.
Current methods, however, do not protect damages that may occur throughout a fabrication process. That is, current methods do not prevent damages that may occur during the fabrication of each level, such as a via level or a metal level, of a die. Current methods also cannot be performed simultaneously with the fabrication of electrical components of an integrated circuit and require additional fabrication steps to form protective structures. This results in increased fabrication time and cost. In addition, current methods do not allow damages to dice to be detected throughout fabrication. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
In one aspect, the invention relates to an assembly for contemporaneously preparing, encoding, and validating the encoding of symbologies and associated RFID transponders. In another aspect, the invention relates to a process for contemporaneously preparing, encoding, and validating the encoding of symbologies and associated RFID transponders. In yet another aspect, the invention relates to a system or assemblage for maintaining inventory control utilizing contemporaneously prepared, encoded, and validated symbologies and associated RFID transponders. In another aspect, the invention relates to a system or assemblage for facilitating a chain-of-custody protocol utilizing contemporaneously prepared, encoded, and validated symbologies and associated RFID transponders. In another aspect, the invention relates to a system or assemblage for simultaneously identifying and encoding a plurality of RFID tags, each tag including an alpha-numeric character(s), a 2-D barcode, color coding, and an RFID transponder having a UTID.
2. Description of the Related Art
A “symbology” may be defined as a predefined configuration of one or more symbols, icons, logos, and the like, which can “contain” or represent data that may be read and decoded by a scanner and/or a decoding protocol. Examples of a symbology include a system of linear barcodes, a 2-dimensional or “2-D” code, which may take one of several forms, such as an Aztec code, a DataMatrix code, a Maxicode, a QR code, or forms similar to linear barcodes, alpha-numeric characters, color bars, ID photos, fingerprints, and retinal images.
Other technologies, such as a magnetic strip or a radio-frequency identification (RFID) tag, may also store data for later retrieval. Each symbology and/or technology may be associated with a different encoding technique, different reading technique, different technical specification or characteristic, different industry standard, and the like. Preparing, encoding, and validating several different, but associated, symbologies and/or technologies may involve multiple encoding devices, multiple scanning devices, and validation devices that are capable of interpreting and comparing data from the different technologies.
RFID inlays may be prepared, encoded, and incorporated with products having a generally undifferentiated appearance. In addition to an RFID transponder, an item may be uniquely identified by a magnetic strip, embossed alphanumerics, a barcode, or a combination thereof. For example, a credit card may include embossed alphanumeric characters, a magnetic strip, and an RFID transponder. The redundant data storage components may be monitored by one or more of a visual scanning instrument, a magnetic reader, a radio-frequency transceiver, and the like.
Each data storage component, e.g. barcode, color bar, RFID transponder, must be accurately encoded with selected data, and the accuracy must be validated. The data associated with a data storage component must also be verified against the data associated with every other data storage component. Preparing, encoding, and validating multiple technologies and symbologies, particularly in a coordinated manner, raises technological and operational challenges. There is a need for a system that enables end users to dynamically select data input for diverse storage components and to validate such data input. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a method for processing magneto-resistive random access memory (MRAM) film stacks. More specifically, the invention relates to a method for removal of residues after plasma etching a magneto-resistive random access memory (MRAM) film stack using a sacrificial silicon dioxide layer.
2. Description of the Related Art
Microelectronic devices are generally fabricated on a semiconductor substrate as integrated circuits wherein various layers of metals must be interconnected to one another to facilitate propagation of electronic signals within the device. An example of such a device is the use of magnetic multilayer films, or film stacks, as a storage element in memories, such as magneto-resistive random access memories (MRAM). The magnetic multi-layer films are typically a stack of different layers composed of various materials, for example permalloy (NiFe), cobalt iron (CoFe), tantalum (Ta), copper (Cu) and the like, and may also contain insulator materials such as aluminum oxide as a thin tunneling layer sandwiched between the multi-layers. The layers are typically deposited in overlying blanket films, layer by layer, and then featured. One of the typical processes used during feature fabrication is plasma etching, in which one or more layers comprising a film stack are removed, either partially or in total to form a feature.
During the plasma etching process, a metal film (or film stack) is etched using a plasma, for example a plasma comprising fluorine or chlorine chemistry. In such an example, the fluorine or chlorine from the etchant combines with the removed metal to form a residue. For example, if a film contains tantalum, a plasma etch process utilizing chlorine (Cl2) will form tantalum chloride (TaCl5) residue. Additionally, if a carbon-based photoresist is used during the metal etch, a metal-containing polymer may also form as an additional residue resulting from the etch process.
The residues formed typically deposit or redeposit along the sidewalls of the layer or film stack. These residues, for example, can be redeposition of the material just removed from the layer along the sidewalls of the film or film stack, or a by-product of the plasma etchant reacting with the removed metal and this by-product residue being deposited along the sidewalls of the film or film stack. Such residues may build up along the sides of the film or film stack above the upper surface of the film or film stack, forming a “veil” like structure.
Residues containing metal, metal chlorides, fluorides, oxides and polymers interfere with further processing of the film or film stack. These residues may contaminate any additional films or layers that are deposited upon the remaining metal and/or the film or film stack. Additionally, the residues, and especially the veil-like structures, can cause electrical short-circuits, for example as between the two magnetic layers separated by a thin tunneling layer within a MRAM device, and other problems, as well as causing film stack irreproducibility.
Therefore, there is a need in the art for a method of removing residues after plasma etching a magneto-resistive random access memory (MRAM) film stack. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to a system which dramatically increases the speed and efficiency by which substances can be tested for their effects upon a myriad of biochemical processes, for example in living cells. The system can be applied to many fields including application in high throughput drug screening. When applied to the field of high throughput drug screening the system only requires a fraction of the cells currently needed for such tests, enables microminiturization of the process, and reduces the cost of drug screening by reducing the amount of reagents, cells, and disposable materials utilized in the screening process.
2. Discussion of the Background
Scientific research in general, and medical research as a specific example, often requires the evaluation of certain compositions relative to other compositions, plant cells, animal cells, etc. A common example of such research would be in the discovery and development of new drugs.
The discovery and development of a new drug occurs via two main stages. An initial discovery stage aims to the identification and optimization of chemical lead structures among the numerous compounds synthesized to interact with a molecular target putatively involved in the pathophysiology of a human disease. A development stage then follows that assesses the pharmacokinetics, safety and efficacy properties of those drugs found to be potential candidate in humans. Recent advances in drug discovery include the synergistic development of two new technologies in biomedical research known as Combinatorial Chemistry (CC) and High Throughput Screening (HTS). CC, via computer-aided drug design and automated organic synthesis, allows thousands of compounds (a library) of systematic variants of a parent chemical structure to be produced in parallel. Pharmaceutical researchers can now create in a relatively short time millions of new compounds designed to target a specific cellular substrate such as receptors, enzymes, structural proteins and DNA, thus increasing the need for rapid and broadly applicable methods to screen these compounds. While it is important to screen compounds for the targets they were designed for, it is also important to be able to screen compounds for their unintended targets to anticipate potential side effects of selected candidate drugs and to find new uses for these substances if the side effect turns out to be a desired property. The development of HTS has been making it feasible, through automation and miniaturization techniques, to screen upwards to millions of drug candidates a year with robotic workstations running continuously 24 hours a day, 7 days a week. Billions of animal cells expressing the molecular target against which a library is made are grown in 96, 384, or 1536 micro-well plates and, via automated drug and liquid delivery and computerized read-out devices, are tested for a biological response to the drugs.
In conventional HTS systems, animal cells are placed in each of the individual wells of the micro-well plates and are subject to many different processes to test for a response to applied drug candidates. However, an extremely large number of novel drug candidates can now be made available by CC. The conventional approach in HTS systems has been to increase the number of individual wells in the micro-well plates to increase the number of drug candidates that can be screened at one time.
The Scintillation Proximity Assay by Amersham, as disclosed in U.S. Pat. No. 4,271,139 and U.S. Pat. No. 4,382,074 as examples, is a one-step radioisotope-based assay that can be easily automated for HTS. However, the advantages of this sensitive and simple technique are challenged by increasing constrains on the use as well as the cost of disposal of radioactive materials. Thus, new nonradioisotope based screening alternatives have been sought. The development of fluorescent probes able to penetrate living cells, or be biochemically synthesized by cells, such as with chimeric constructs of green fluorescent proteins (GFP), and target protein receptors and enzymes in combination with improved optical instrumentation and means of delivering light and detecting signals has made fluorescence based technique the preferred alternative for many research applications. Fluorimetric Imaging Plate Reader (FLIPR) is a recently developed technique which permits kinetic measurements of intracellular fluorescence on cells labeled with an indicator whose fluorescence properties change upon binding to a cellular substrate targeted by a given drug. FLIPR allows for simultaneous and real time measurements of 96 (and recently 384) samples every second and finds an ideal application in HTS for candidate drugs targeting cell membrane receptors or channels whose activation leads to intracellular ion fluxes in a matter of seconds as in the case of the internal release or influx of calcium ions. In the pharmaceutical industry, HTS is currently performed on commercially available cell lines established from a variety of embryonic and adult animal tissues both normal and pathological. To create cell lines, cells are made immortal via exposure to defined agents such as viruses or chemicals thus acquiring the ability to continuously grow and divide in culture. However, it is generally recognized that, as a result of the immortalization procedure, changes in the expression of certain genes can randomly occur leading to a cell phenotype which might deviate from that of the parental tissue. For example, immortalized liver cells might have lost the ability to express a certain receptor, or to express it in the correct form or cellular compartment as the parental liver cells. Consequently, upon establishment, cell lines are tested for the expression of specific markers, receptors, enzymes, etc. and categorized accordingly.
In contrast to immortal cell lines, primary cell cultures derive from cells freshly isolated from a given organ or tissue. No viral or chemical intervention are used to pressure the cell division cycle and, thus, the cells will survive in vitro for only a short period of time, generally 10-15 days, and need to be re-established quite frequently during a research project. Primary cells are obtainable from a variety of animal models as well as human tissues surgically removed mainly for pathological reasons. Because of their short life span, primary cells maintain the biological stigmata of the original tissue virtually unchanged and, thus, are the research model considered closest to the in vivo environment. Therefore, drug screening on primary cells is highly desirable because it both decreases the chances to miss a valuable lead and increases the physiological relevance of the data collected. However, the dependence of conventional HTS on a tremendously high volume of biological substratexe2x80x94billions of cells grown and processed in 96-, 384-, or 1536-micro-well platesxe2x80x94has prevented the application of widespread drug screening to primary cells because they are only available in limited quantities. Thus, cell lines exhibiting the biological target against which a drug library has been made are the unique and invaluable source of biological substrate fitting the needs of HTS currently available in drug discovery.
In many of the currently available HTS methodologiesxe2x80x94e.g. fluorescence imaging basedxe2x80x94the vast majority of cells grown are wasted because, among all the cells present in a given well and exposed to a drug candidate, only those occupying a microscopic field are ultimately monitored for their response. Along with the cells, precious chemical compounds and expensive reagents and supplies are dissipated making the process wasteful and time-consuming, thus reducing the overall afforded by HTS. As discussed above, conventional HTS systems provide individual cells in individual wells of micro-well plates. FIG. 1(a) shows a standard 96-well micro-well plate 100 including 96 individual wells 110, and an individual well 110 is shown in FIG. 1(b). Each micro-well 110 has a diameter D, which in the example of the standard 96 well plate 100 is 6 mm.
Currently available HTS systems perform the screening on the micro-well plates with a process such as shown for example in FIG. 2. In an example of utilizing the 96 well format in a first step S20, as shown in FIG. 2, cells are plated under aseptic sterile conditions and grown into each of the 96 wells. During the growth phase under aseptic sterile conditions, removal of growth media must be made from each well and new media repipetted into each well under aseptic sterile conditions. Once the cells are grown, then the wells are treated in step S25, which may include, as an example, loading the cells with a fluorescent dye, which again requires removal of media from each well, addition of the dye, incubation for a period of time, etc. Then, in step S30 rinsing of the cells is executed for, as an example, removal of dye from each well. Finally drug candidates are added to each well and the cell response is measured in step S35 and the plates are then discarded in step S40.
The conventional HTS process shown in FIG. 2 suffers from the following drawbacks. First, in that process cells are grown into the entire area of each of the 96 wells, which means that that entire area of each of the 96 wells must be loaded with the fluorescent dye, the drug candidate, and any other reagents needed. Further, in the conventional HTS process of FIG. 2 as there are only 96 wells only 96 drug candidates can be evaluated at a single time. Although that may be a significant number of drug candidates, the HTS system relies on evaluating tens of thousands of drug candidates to determine whether the drug candidates provide a desired reaction with the cells. Therefore, evaluating only 96 drug candidates at one time is very time consuming evaluation process.
Accordingly, one object of the present invention is to provide a novel analysis system for analyzing a sample in a highly efficient manner.
A more specific object of the present invention is to provide a novel cost effective HTS system which greatly improves the efficiency, throughput, and physiological relevance of HTS drug screening.
A further object of the present invention is to provide a novel HTS system which dramatically reduces the number of cells used for each measurement and which also reduces the amount of reagents and disposable materials used in the HTS process.
A further object of the present invention is to provide a novel HTS system which can be effectively used with primary cells in addition to immortal cells.
The mainstream of the pharmaceutical industry is moving to solve HTS throughput problems by developing multiwell plates with more, and thus smaller, individual wells per plate. The current trend in the HTS industry is to move from 96 well plates 100 such as shown in FIG. 1 to 1536 well plates, a 16 fold increase in the number of wells per plate and a 16 fold decrease in the size of each individual well. Coincident with this is increased complexity: 1) of growing cells in the smaller wells, 2) in optics, 3) in fluid handling, and 4) of the mechanics involved with the process-all under aseptic sterile conditions. These drawbacks are in addition to the expenditure of untold hundreds of millions of dollars to achieve probably less than an order of magnitude increase in speed without other significant technological advantages which would increase the information content of the screening process.
The inventor of the present invention, however, has taken a contrary approach to that taken by the mainstream in the pharmaceutical industry. The inventor of the present invention has specifically not taken an approach to reduce the size of a micro-well, but has taken an opposite approach which can maintain the existing well structures, and in fact with the novel HTS system of the present invention cells can even be grown on monolayers without any predetermined well structure.
To achieve the above and other objects, the novel HTS system of the present invention tests the action of a drug candidate upon a group of cells in a monolayer such that a microscopic field area of 100-200 microns in diameter is isolated from other cells on the monolayer by creating a seal between a drug delivery perfusion unit and the cells to create a microspace for analysis. The novel HTS system of the present invention can provide improved efficiency over current HTS methods since the vast majority of the cells on a monolayer can be used for drug testing rather than wasting most of the cells and reagents, as is currently the case with HTS technology based upon cells grown in multi-well plates.
Further, the novel HTS system of the present invention can provide improved efficiency over current HTS systems since the HTS system of the present invention can more readily be used with primary cells as a first screen rather than requiring immortal cells for such an initial screening of compounds. Primary cells have exactly the same biological characteristics as do any cell in the body, because in fact that is exactly what they are, cells isolated from an animal and kept in cell culture for a short time. Because the number of primary cells available is somewhat limited, the efficient use of cells by the present invention makes it feasible to use primary cells for HTS with the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an improved applicator for makeup. More specifically, the invention relates to a brush designed for efficient and consistent application of liquid eyeliner to the eyelids. A preferred embodiment of such a brush has a configuration of bristles positioned in a shape designed to both compliment the naturally occurring shape of the eye and to provide an even, consistent and symmetrical distribution of eyeliner.
To achieve a smooth, even, and natural-looking application of eyeliner, it is necessary to carefully apply the cosmetic such that the proper amount is applied in an even distribution, which is equally balanced between the left and right eyes.
A common problem with conventional brushes is that they result in the over-application of makeup. When an excess amount of cosmetic is applied, this results in a very unnatural look which is undesirable. In particular, eyeliner is intended to enhance and accentuate the natural shape of the eyes, and its over-application therefore nullifies its purpose.
The ideal eyeliner application will define the eyes by lending color and shape to the lashline. Conventionally, various types of applicators have been used to apply eyeliner, including a variety of bristled brushes having different widths, sponge-like applicators, pen- or pencil-like applicators, or even fingers. However, all of these have practical disadvantages, including, for example, uneven or imprecise application of the cosmetic, and irregular draw line width.
Currently, brush type eyeliner applicators are comprised of felt tips, foam applicators, or straight fibers and bristles. The bristles are typically arranged in a straight line fashion to allow linear application of cosmetic along the plane of the face.
Examples of such brush type eyeliner applicators are disclosed in Nehashi, U.S. Pat. No. 5,097,853 (disclosing a felt tip applicator) and Nakamura, U.S. Pat. No. 5,205,301 (disclosing an applicator with straight natural or synthetic fiber bristles.) Nehashi discloses an applicator designed specifically for the eye, whereby a felt tip is inserted into a material soaked with cosmetic, and then the cosmetic is applied to the face via the felt tip. The patent discloses a felt tip with a tapering end.
Nakamura discloses an applicator for cosmetics with straight fibers wherein the applying tip comprises a flat end. The bristles are arranged in a straight line, for applying cosmetic to the skin in a uniform linear manner.
Prior to the present invention, there has not been an eyeliner brush designed to conform to the natural shape of the eye, so that eyeliner makeup can be applied in a manner such that the proper quantity is applied with an even, uniform distribution around the contours of the eye.
The invention described herein relates to a brush specifically designed to deposit eyeliner in a manner that exactly corresponds to the shape of the eyelid. The brush is designed to ease the application of makeup to the eye by placing the bristles in such a manner that the wearer need not force said bristles to unnaturally follow the shape of the eye during application of eyeliner.
In light of the above described inadequacies in conventional applicators of eyeliner, it is a primary object of the invention described herein to provide an eyeliner brush that allows for improved application of eyeliner to the upper lashline of the eyes.
It is another object of the invention to provide a brush designed such that it may also perform the functions of conventional applicators.
It is a further object of the invention to provide an eyeliner brush having a curved or arched design such that it allows for application of eyeliner between individual lashes of the upper lashline of the eyes.
It is yet a further object of the invention to provide an eyeliner brush having a curved or arched design such that it may be used in a xe2x80x9cposition and wigglexe2x80x9d manner to apply eyeliner between individual lashes of the eyelashes.
It is yet another object of the invention to provide an eyeliner brush that allows for easier and more even application of eyeliner.
It is still another object of the invention to provide an eyeliner brush which facilitates more accurate application of eyeliner by conforming more closely to the contour of the eye.
Other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description with reference to the accompanying drawings, all of which form a part of this specification. | {
"pile_set_name": "USPTO Backgrounds"
} |
In large scale computing systems, a backplane is used to mount a number of storage drives and network communication devices, such as Disk Arrays, redundant array of independent disks (RAID) Subsystems, Small Computer System Interface (SCSI) and Fiber Channel (FC) Disk Array or Switched Disk Array Servers, and Telecommunication Equipment. A host bus adapter (HBA) is used to facilitate the communication between a host computer and the backplane, and allows the host computer to monitor and manage the storage and network devices installed on the backplane. The HBA provides an operator with detailed information regarding the presence and status of mass storage devices and network devices, and provides facilities for generating visual indicators based upon backplane management data received from the HBA of the host computer. For instance, individual light-emitting diodes (“LEDs”) may be driven by a backplane for displaying information regarding the activity, failure, rebuild status, and other information for each of the mass storage devices connected to the backplane. In order to provide these indicators and other types of functionality, a backplane typically provides connections for multiple mass storage devices, such as hard disk drives. The backplane also interfaces with an HBA and provides an interface through which the HBA may communicate with the mass storage devices. A backplane also may receive and transmit backplane management data to and from the HBA. Backplane management data is any data relating to the provision of backplane management services by a backplane.
Several different physical interfaces may be utilized to deliver backplane management data between an HBA and a backplane. For instance, some Serial Attached SCSI (“SAS”)-compatible HBAs are equipped with a serial general purpose input/output interface (“SGPIO”). Some Serial Advanced Technology Attachment (“SATA”)-compatible HBAs, on the other hand, utilize a control or management bus, such as the system management bus, to exchange backplane management data between the backplane and the HBA. For various reasons, some vendors have decided on some HBA models, to implement a backplane management protocol based on the SMBus, even for SAS HBAs, which could be for backward compatibility reasons with SATA backplanes.
The particular protocol utilized to transfer backplane management data between the backplane and the HBA may also vary from vendor to vendor. However, the most popular protocols used in the backplane management are: the SCSI Enclosure Services (or SES) utilizing the system management bus (or I2C bus), and the SGPIO protocol utilizing an SGPIO interface to exchange backplane management information between the HBA and the backplane.
Both software and hardware of newly developed enclosure management controller need to be tested for its compatibility with HBAs of various manufactures. In order to provide backplane solutions supporting the various physical interfaces for exchanging backplane management data, the various standard protocols for exchanging backplane management data, and the various manufacturer-specific protocols for exchanging backplane management data, it has previously been necessary to provide HBAs from various manufacturers, and configured for each particular combination of physical interface and protocol to ascertain the software and hardware of newly developed enclosure management controller (EMC) support standard SGPIO commands. However, providing a separate HBA for each combination of physical interface and protocol can be extremely cost-inefficient and time consuming. Conventionally, in order to ascertain compatibility with various vendors' HBA, many actual HBAs were ordered from various vendors to be tested with the new EMCs. But this process can be very costly and time consuming, because a large number of HBAs have to be ordered from various vendors and tested with the hardware and software of the new EMC. For example, it took about one and a half month to two months to test each HBA from one vendor.
Therefore, heretofore unaddressed needs still exist in the art to address the aforementioned deficiencies and inadequacies. | {
"pile_set_name": "USPTO Backgrounds"
} |
Semiconductor devices have a significant role in solving energy challenges. Specifically, nitride power transistors have great potential in the application of advanced transportation systems, reliable energy delivery networks and many new approaches for high-efficiency electricity generation and conversion. Those systems rely on very efficient converters to step-up or step-down electric voltages. Most of these devices are made of silicon (Si). However, the limited breakdown voltage and frequency response of Si, and its higher resistance make the commercial devices and circuits currently available very bulky, heavy and inappropriate for future power applications. As an alternative, gallium nitride (GaN) devices have achieved record combination of high-voltages, high frequency response and low on-resistances for power applications.
GaN power devices, such as the GaN-based high electron mobility transistors (HEMTs), are regarded as one of the most promising candidates for high-power, high-voltage and high frequency applications. GaN HEMTs have achieved up to 10 times higher power density of GaAs HEMTs with much larger breakdown voltage (VB) and current density, as well as a high cut-off frequency of over 400 GHz. State-of-the-art power levels have been demonstrated on silicon carbon (SiC) substrates with total output powers of 800 W at 2.9 GHz and over 500 W at 3.5 GHz. However, for the high-power applications, such as high-power motors, a higher output power, i.e. 3˜5 kW, is desired, which requires a further enhancement of output power of semiconductor devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to techniques for arbitrating access to a shared resource. One particular example is a device having multiple inputs and outputs for routing message traffic in a communications network. More particularly, the invention relates to a method, and apparatus for implementing that method, to bias the arbitration between two or more inputs of the device that are contending for data communication access to the same output of the device.
As multiprocessing environments grow, the ability to provide data communication between the individual system elements (i.e., processors and peripheral equipment) of the system requires careful thought so as not to inadvertently give a system element unfair access to a communications path or some other shared resource (e.g., a multiple-user bus system) while, at the same time, limiting such access to other system elements.
Many of today""s data communication networking configurations will use various devices (typically, xe2x80x9croutersxe2x80x9d) to direct or otherwise route message traffic from one communications link to one of a number of other communications links. However, message traffic can be received at two or more inputs of the device at substantially the same time bound for the same output, raising the issue of which of the two will be allowed to proceed before the other, i.e., who goes first. Access to the output requires some form of arbitration between the two contending inputs. Smaller systems (i.e., those with a small number of system elements needing to communicate with one another) may use such classic arbitration techniques as assigning fixed priorities to the inputs or xe2x80x9cround-robinxe2x80x9d processing. In the former, each port input is provided a predetermined priority to form a hierarchical arbitration scheme. Inputs with higher priority will be given access to an output over inputs with lower pre-assigned priorities seeking access to that same output. The round-robin technique involves assigning priorities according to a predetermined order among the inputs. As message traffic is received, the priorities change so that the last input granted access to a particular output is then given the lowest priority, and the next input in order now has the highest priority; the remaining inputs will have their priorities similarly changed according to the predetermined order.
Similar techniques may be used in other shared resource environments such as, for example, multiple-user bus systems, to allocate access to the bus between connected controllers.
As computing systems become more complex, so that the number of elements (processors and peripheral units) increase, it would not be unusual for an input of a routing device to be required to route message traffic from several elements. Further, routing devices are sometimes cascaded to form, for example, tree-like network configurations, increasing the number of system elements that may need to route message traffic through an input of a routing device. Using pre-assigned priorities, round-robin processing, or other similar techniques can unfairly allocate the services of a routing device""s input to some of the system""s elements at the expense of other elements that use another input of that routing device. For example, a routing device may receive at one input message traffic from only one system element, while another input of that same routing device is required to service several elements. Using any of the above techniques will operate to give more of the routing device""s attention to the one element, and less attention to each of the several elements using the second input. Thus, prior arbitration techniques can unfairly allocate more of the routing device""s services to the input having the lesser number of system elements using that routing device.
One solution to assuring fair allocation of services to device inputs is to use biased arbitration techniques. With biased arbitration, each input has a bias value that determines the percentage of time it will win arbitration.
Biased arbitration can be used either to assure fair access to all nodes, or to purposely give some paths higher priority than other paths. Biased arbitration can be used to help support quality of services (QOS) guarantees for real-time or constant bit rate traffic.
One biased arbitration system is described in U.S. Pat. No. 5,694,121, assigned to the assignee of the present application, which discloses an ALU arbitration technique. Each port has a bias value provided and has an associated accumulator. The port with the highest value in its accumulator wins arbitration. The winner then decrements its accumulator by sum of the bias values of all the losers, and each loser increments its accumulator by its own bias value. Another biased arbitration system is described in U.S. Pat. No. 5,710,549, which is also assigned to the assignee of the present application.
This ALU biasing scheme works well for routers with small numbers of ports. However, it does not scale well to larger routers because large adders and logic for pairwise comparisons of all accumulators are required to determine a current arbitration winner.
Accordingly, research continues to develop effective biased arbitration techniques of utility on complex systems.
According to one aspect of the present invention, requestors are assigned bias values which are encoded as binary bias vectors. The bias vectors are stored as columns in a matrix, with each column corresponding to a particular requester. During an arbitration the rows of the matrix are fetched; thus, the matrix is designated a transpose matrix. The rows are fetched in a way that gives the correct biasing and also gives the lowest possible latency.
According to another aspect of the invention, storage areas hold requester identifiers identifying unique requesters in a plurality of requesters. Storage areas are accessed at different frequencies. Requestors assigned a high bias priority have their requestor identifiers stored in one or more storage areas that are accessed at a higher frequency and requesters having a low bias priority have their requestor identifiers stored in one or more storage locations accessed at a lower frequency.
According to another aspect of the invention, the rows are fetched by a mapped counter output. The counter output is mapped so that rows having more significant bit positions of the binary bias vectors are fetched more frequently that less significant bit positions.
According to another aspect of the invention, bias vectors for requestors not having a request pending are masked during an arbitration.
According to another aspect of the invention, most significant rows having no active request are masked to avoid fetching the rows.
According to another aspect of the invention, a compression technique is utilized to reduce storage in the case where a transpose matrix stores a large number of xe2x80x9c0xe2x80x9ds.
Other features and advantages will be apparent in view of the following detailed description and appended drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a channel encoder of digital communication system, and more particularly to a convolutional interleaver and method for generating a memory address for reducing the effect of burst errors during data transmission by randomizing an input data stream.
2. Description of the Prior Art
Generally, in a digital communication system, an error correcting technology has been commonly used for detecting and correcting the errors generated during data transmission. The error correcting technology is mainly composed of an error correcting coding (ECC) process in which parity data is added to the transmitted information data at the transmitting end and an interleaving process for rearranging the ordering of coded data to spread apart consecutive errors. When a block code such as Reed-Solomon code out of error correcting codes is employed, information data is divided into a plurality of blocks and redundancy bits are added thereto for detecting and correcting errors in units of block. When a non-block code such as convolutional code is employed, coding is performed according to input sequence and the coded current data is affected by the previous data, which results in better error correcting capabilities than the block code. In the interleaving process, the ordering of data stream coded with either convolutional code or Reed-solomon code is rearranged in a deterministic manner so that the effect of burst errors can be efficiently reduced.
In general, in the digital communication system, the error generated during data transmission is classifed into two types: random errors which are spread apart, and burst errors which comprise a large number of consecutive errors. The error correcting coding (ECC) has an excellent correcting capability for the random errors, however, it is ineffective in presence of burst errors. Accordingly, in most of digital communication systems, an interleaver is equipped for rearranging the original data stream to spread apart the burst errors at the transmitting end, and at least one deinterleaver for recovering the rearranged data stream into the original data stream is provided at the receiving end.
There are two kinds of interleavers a block interleaver and a convolutional interleaver. The block interleaver interleaves the data stream in block units (K.times.L), consisting of K rows and L columns and randomizes the data stream by varying the input/output sequence. That is, the input data stream is horizontally scanned to be stored in a memory and the data stored in the memory is vertically scanned to be outputted. As a result, a bit stream with interleaving level L is inserted between two adjacent data. That is, in the block unit (K.times.L), K is codeword length and L is interleaving level.
In the convolutional interleaver, the input data is temporarily in the memory for a predetermined delay, and the delayed data are inserted between two adjacent data.
FIG. 1 is a diagram illustrating a concept of convolutional interleaver and deinterleaver. The convolutional interleaver 10 is composed of an input switch 11, a plurality of shift registers (I-0) through I-(B-1), and an output switch 12. The convolutional deinterleaver 15 is composed of an input switch 16, a plurality of shift registers D-(B-1) through (D-0), and an output switch 17. Here, data is inputted/outputted to and from the convolutional interleaver 10 and the convolutional deinterleaver 15 in byte units.
The convolutional interleaver has the structure that in the first shift register (I-0), the input and the output are directly connected, such that the length of the shift register is 0, and from the next shift register I-1 to the last shift register I-(B-1) the length of the shift register is M, 2M, 3M, . . . , (B-1)M, such that the length difference between adjacent shift registers is M byte. The convolutional deinterleaver has the inverse structure of the convolutional interleaver.
In (B, M) convolutional interleaver, B indicates the number of the vertical ends of the shift registers, which is called the interleaving level, and M indicates the length difference between the adjacent shift registers.
In the convolutional interleaver 10, the input switch 11 operates in synchronization with the output switch 12, and sequentially switches from the shift register I-0 to the shift register I-(B-1) with B period. According to the switching operation, the first data of B period inputted to the shift register I-0 is outputted without delay, and the second to the last data of B period inputted to the shift registers I-1 to I-(B-1) is outputted after BM, 2BM, . . . , (B-1)BM delay, respectively. Consequently, at the transmitting end, BM number of arbitrary data are inserted between two adjacent data of the input data stream to be transmitted via the channel 13.
In the convolutional deinterleaver 15, the input switch 16 operates in synchronization with the output switch 17 in the same manner as the convolutional interleaver 10. That is, according to the switching operation, the first to the last data of B period inputted to the shift registers D-(B-1) to D-1 is outputted after (B-1)BM, (B-2)BM, . . . , BM delay, and the last data of B period inputted to the shift register D-0 is outputted without delay. Consequently, at the receiving end, after (B-1)BM clock delay, the original data stream is obtained.
The minimal amount of memory (Smin) required for the convolutional interleaver is given by the following mathematical expression 1. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many examples of sandals can be purchased widely at major suppliers and outlets. In addition to standard foam rubber sandals that appear to be most common, there are other specialty sandals that serve various niche markets. Massage sandals feature raised embossments on the insole that attempt to simulate a massaging action while walking. Birkenstock sandals have specially textured surfaces made of cork or rubber that gradually mold to the shape of the user's foot after extended walking.
Sandals, or forms of open footwear, are typically worn either in casual/informal situations, and/or ones that involve some degree of water exposure to the foot. It is common that cost-effective, water-resistant materials are used partially/wholly in the sandal construction, such as ethyl-vinyl acetate (EVA), polyurethane (PU), poly-ethylene (PE), poly-vinyl chloride (PVC), thermo-plastic rubbers (TPR) or pure rubber, as well as combinations of these polymers. In no instance is the combination of a rigid, porous material, effecting both a drying and massaging function, and a non-rigid material that comprise the remainder of the open footwear, taught.
There exists some related prior art along these lines:
EP0685257B1 (priority date May 26, 1995) describes shoe insoles that include a moisture absorbent material, and more particularly to a shoe insole of the type comprising at least two interconnected layers of material, of which at least one layer is moisture permeable and one layer defines at least one space filled with the moisture absorbent material. WO95/33555 (priority date May 26, 1995), and related cases, describe moisture absorbent material comprising a porous matrix of adsorbent material, with the pores containing a crystalline deliquescent compound. WO97145206 (priority date May 30, 1996), and related cases, describe an open cell polyurethane, non-swelling foam impregnated or coated into a non-woven fabric, comprising super absorbent ingredient particles. The disclosed material is a super absorbent, fluid locking, moldable footwear product that takes body fluids away from the surface, and gels or locks the fluids in place even while under pressure. The material is breathable and releases fluids through evaporation. US20080120869 (priority date Nov. 26, 2006) describes a footwear cover that has an inner-surface comprised of a water absorbent material. The moisture absorbent material is generally comprised of desiccating salt and/or metal oxide powders. References therein describe the general incorporation of porous, granular material into the matrix of the insole. EP2095733A1 (priority date Jul. 6, 2007) describes an absorbent insole which has the dual function of being absorbent and transpire-able while simultaneously providing a shock absorbent function. The resulting insole is realized in multiple, continuous layers (up to 5 discrete layers) the first layer being water repellant and subsequent layers being water absorbent by being comprised of hydrophilic, micro-porous materials. The main intention is to direct moisture from the foot continuously downward to the base layer, where it is presumably stored for re-evaporation when the footwear is not in use. EP2167725B1 (priority date Jul. 17, 2007) describes having a liquid-repelling and vapor permeable polymeric coating, obtained by a plasma treatment process, provided over the entire item of footwear and combined with a liquid-absorbing foot supporting foot-bed. U.S. Pat. No. 7,055,265 (priority date Aug. 29, 2002) describes a sandal system that has inter-changeable insoles that may be tailored to specific activities and exhibit different properties. U.S. Pat. No. 7,866,062 (priority date Oct. 13, 2004) describes a sandal wherein an insert-able body, amenable to absorbing impact, is designed to insert into a cavity in the main body of the sandal, U.S. Pat. No. 8,151,487 (priority date Jun. 2, 2005) describes a liner for footwear that is designed to absorb and dissipate moisture, comprising a moisture absorbing material with certain frictional characteristics that extends beyond the foot, and an adhesive layer designed to adhere the assembly to the footwear. None of the previous art describes a sandal that is partially or wholly comprised of a rigid porous material, such as sandstone. It is the focus of this application to describe a sandal whose contact surface with the foot is preferentially comprised partially or wholly of a rigid, porous material. | {
"pile_set_name": "USPTO Backgrounds"
} |
A DRAM cell typically comprises a MOS transistor and a capacitor. An example of such a DRAM cell is shown in FIG. 1. The DRAM cell 10 of FIG. 1 comprises the MOSFET 12 and the capacitor 14. A word line is connected to the gate of the MOSFET 14. A bit line is connected to the source of the MOSFET 12. The capacitor 14 is connected to the drain of the MOSFET 12. The state of the DRAM cell 10 is determined by whether or not the capacitor 14 is holding a charge.
The DRAM cell is read by using the bit line to determine whether or not a charge is stored in the capacitor. The DRAM cell is written by using the bit line to add or remove charge from the capacitor. However, the cell can only be read or written when the cell is addressed (i.e. activated) by the word line.
With the continuous advancement of DRAM technology, the chip area used for one DRAM cell is getting smaller. There are two methods used to increase the capacitance of the capacitor in the DRAM cell. One method is to decrease the effective dielectric thickness and the other method is to increase the effective capacitor surface area.
It is expected that future scaled DRAM cells will rely heavily on the quality and storage capacity of ultra thin dielectric materials that are sandwiched between two heavily doped polysilicon and/or silicon electrodes. However, higher capacitance values cannot be obtained without seriously degrading the device retention time. Specifically, films thinner than 50 angstroms present excessive leakage current due to direct carrier tunneling. For a given capacitor dielectric film, the larger the surface area, the larger the capacitance.
FIGS. 2, 3, 4, 5 and 6 illustrate prior art DRAM cells. The DRAM cell 20 of FIG. 2 comprises a MOSFET 22 and a capacitor 24 which are both formed on a silicon substrate 25. The MOSFET 22 comprises the source and drain regions 26 and 28, which regions are separated by the channel 29. It should be noted that the source and drain regions 26, 28 have a conductivity type opposite to that of the substrate. A metal contact 27 directly contacts the source region 26. A gate 30 is formed from polysilicon material (Poly-1) and is separated from the surface of the substrate by an oxide layer 31. An additional oxide region 32 is on top of the gate 30.
The capacitor 24 sits on top of the drain region 28. The capacitor 24 has a first electrode 40 formed by a conducting polysilicon material (poly-2), a thin dielectric layer 42 which may be NO or ONO, and a second electrode 44 which is formed from a conducting polysilicon material (poly-3). The capacitor contacts the drain region 28 in a space between the oxide region 32 and the oxide region 52.
FIG. 3 shows a DRAM cell 20' which is similar to the DRAM cell 20 of FIG. 2. The main difference is that the shape of the poly-2 electrode layer 40, dielectric layer 42 and poly-3electrode layer 44 have been altered to increase the surface area of the capacitor 24.
FIG. 4 shows a DRAM cell 20" in which the poly-2 electrode 40 has been made rugged to increase the surface area of the capacitor.
FIG. 5 shows a DRAM cell 20'" in which the polysilicon electrode 40 is formed from a plurality of horizontal layers 41 to increase the surface area of the capacitor.
Another capacitor structure which can be used to increase the capacitance of a DRAM cell is known as MOST (modulated stacked) capacitor. (See e.g. Y. K. Jun et al, "The Fabrication and Electrical Properties of Modulated Stacked Capacitor for Advance DRAM Applications" IEEE Electron Device Letters, Vol. 13, No. 8, August 1992, the contexts of which are incorporated herein by reference).
A DRAM cell 20"" having a MOST capacitor structure is illustrated in FIG. 6. In the capacitor 24 of FIG. 6, the poly-2electrode 40 comprises a plurality of spaced apart vertical pillars 43. The capacitor dielectric 42 and poly-3electrode 44 are then deposited over the spaced apart vertical pillars 43. In this manner a capacitor with a large effective surface area is formed in a DRAM cell.
It is an object of the present invention to provide a technique for manufacture of a MOST capacitor for use in a DRAM cell. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a detector arrangement in connection with a mobile work machine.
The invention further relates to a method of determining a mutual position or a mutual state of motion of at least two structural parts of a mobile work machine.
Determination of an absolute or a relative position of structural parts of mobile work machines, such as forest work units, is necessary e.g. for controlling the machines, improving the operator's work ergonomics, ensuring safe and efficient working, and managing forces to which the machine is subjected. Various solutions are known for determining the position of the structural parts. These solutions are often based on contact and/or mechanical connection, such as articulation angle measurements between two structural parts by means of a rotation angle sensor to be installed directly in a joint, such as a resolver, or, alternatively, e.g. measurements of a position of linear movement of a linear actuator controlling a rotating joint by means of resolvers or potentiometers, for instance. However, all known solutions present problems that are usually caused by the measuring methods and devices used as well as the operating manners and operating conditions of the forest work units and/or the compatibility thereof. Forest work units are, for instance, used in a varying, often slanting and rough terrain, they are subjected to mechanical impacts e.g. by branches, trunks and stumps as well as to various kinds of vibration, booms and loads arranged thereon apply forces and strains to the machines. In addition, environmental conditions, such as great variation in outside temperature as well as moisture and impurities, may harm sensors arranged particularly in connection with the structures of a forest machine or control electronics of the machine.
Determination of an angular position by using different conventional inclination detectors presents various problems. A problem with detectors based on an acceleration sensor is that other accelerations, in addition to gravitational acceleration, directed at the sensor cause distortion in an angular value. Therefore, it is usually necessary to filter a signal heavily in order to reduce these distortions, which, in turn, makes the filtered signal slower to react to changes in the angle. Detectors based on detecting angular velocity, such as gyroscope measuring devices, in turn, detect the rate of change in the angle rather than the absolute position in relation to the direction of an acceleration due to gravity vector, for instance. Consequently, errors caused by non-idealities of the measurement and measuring arrangements accumulate during use in the angular position determination based on angular velocity. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a head for recording a signal containing a high frequency component as in a television signal, onto a recording medium having a high coercive force or for reproducing such a signal therefrom, and more particularly, to an amorphous magnetic head in which a main core is composed of an amorphous magnetic material and also, to a manufacturing method of such an amorphous magnetic head in an efficient manner.
Generally, in a magnetic head for a video tape recorder (VTR), ferrite single crystal material is employed for a main core, because said material is superior in abrasion resistance, with favorable soft magnetic characteristics. Incidentally, owing to the recent trend toward compact size of video tape recorders, there has been a tendency that a material such as a metal tape and the like having a high coercive force and capable of achieving recording at a higher density is employed also for a magnetic tape, for example, as in the so-called 8 mm movie camera type video tape recorders. Different from the conventional .gamma.-Fe.sub.2 O.sub.3 tape, such metal tapes have a high coercive force, and therefore, if ferrite materials having saturation flux densities in the range of 4000 to 5000 gauss at most are adopted, the magnetic head is subjected to magnetic saturation, and can not effect magnetization by overcoming the coercive force of the metal tape. Accordingly, at present, investigations are made into the magnetic heads which employ Fe-Al-Si alloy (sendust) materials (saturation flux density Bs.apprxeq.8000 gauss), amorphous material (saturation flux density Bs.apprxeq.10,000 gauss), etc. having higher saturation flux densities as main cores, of which the sendust heads have already been supplied into the market as audio heads corresponding to metal tapes. However, the sendust heads as referred to above have various disadvantages for the heads of video tape recorders to be used in a higher frequency range (e.g. 5 MHZ or thereabout) in that machining thereof is difficult, while due to a low electrical resistance as compared with the ferrite material, the sendust heads have a large eddy current loss at high frequency range, with a sharp reduction of the effective permeability, and thus, the sendust heads have not been supplied as yet into the market for the heads of video tape recorders currently available.
On the other hand, with respect to the amorphous magnetic head, although attention has recently been directed to the amorphous material itself (during the past five years at most) as a future magnetic material for development both in Japan and abroad, the amorphous magnetic heads have not yet been put into practical application at the current stage.
As is well known, the amorphous material is obtained by a manufacturing method referred to as a liquid melt rapid cooling method, in which an amorphous material having an alloy composition not conceivable by the conventional knowledge of metallurgy may be produced in terms of principle. On the contrary, there is a limitation to the configurations of the material to be produced by the above manufacturing method. More specifically, since it is required to rapidly cool the molten metal at cooling speeds of 100,000.degree. to 1,000,000.degree. C./sec., the resultant amorphous material is obtainable only in the form of a ribbon-like sheet of 10 to 100 microns in thickness or in form of a powder.
Accordingly, in the amorphous magnetic material, it is not possible to employ, as it is, the manufacturing method conventionally adopted for the ferrite material, i.e., the processing technique such as cutting, polishing, welding, etc. from a bulk material. However, in the case where the conventional manufacturing method as described above is to be followed somehow, it may be considered to employ a starting material prepared by laminating a large number of ribbon-like sheets one upon another (i.e., forming such ribbon-like sheets into a shape similar to the bulk material), thereby to constitute a magnetic head with a track width less than a thickness of the ribbon-like sheet, but since precise control of a thickness of a bonding material layer between the ribbon-like sheets can not be readily effected, it is extremely difficult to arrange the confronting core halves to face each other precisely.
Moreover, as a problem inherent in the amorphous material, there is the problem related to crystallization temperature Tx. Generally, amorphous materials prepared by the rapid cooling method have transition points of crystalline structure referred to as vitrification temperature Tg and cyrstallization temperature Tx. In connection with the above, the vitrification temperature is a temperature at which the amorphous material begins to be softened in the similar manner as in the common soda-lime glass, silica glass, etc., while the crystallization temperature is a temperature at which the amorphous structure is transferred to the crystalline structure. It is to be noted here that, different from glass in general, the amorphous material is not provided with reversibility during passing of the above transition points. In other words, once the amorphous structure has been turned into the crystalline structure, it will never be returned into the original amorphous state. Accordingly, for manufacturing magnetic heads with the use of such amorphous material as described above, it is not possible to apply thermal or mechanical energy exceeding the crystallization temperature Tx, while processing techniques such as glass welding, brazing, etc. for the conventional ferrite material, sendust material, etc. can not be applied, thus making it necessary to develop new processing and manufacturing techniques. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a positive photoresist composition which exhibits high sensitivity and definition, and improved focal depth range properties and underexposure margin. The term "underexposure margin" used herein means a ratio of Eop/Es, where the exposure to exactly reproduce a pattern in accordance with predetermined dimensions by a mask pattern at an illumination intensity at substrate of 500 mW/cm.sup.2 is defined as the exposure Eop (ms) and the minimum exposure to give an isolated pattern at an illumination intensity at substrate of 500 mW/cm.sup.2 is defined as the exposure Es (ms).
2. Description of the Related Art
In the manufacture of ultralarge-scale integrated circuit (Ultra LSI) where a high definition of not more than half amicron, in particular, of not more than 0.35 .mu.m is required, there are demands on photoresist compositions which can form a resist pattern satisfactory in definition, underexposure margin, focal depth range properties and having a good shape.
By way of illustration, Japanese Patent Laid-Open No. 6-167805 discloses a positive photoresist composition containing a quinonediazide ester having a tetra- to hepta-nuclear linear polyphenol skeleton as a photosensitizer. This conventional composition has high definition but remarkably low underexposure margin of 1.0 to 1.2 due to its extremely high .gamma. value, and can hardly form a pattern particularly at positions with low exposures (underexposure side).
In the exposure step, therefore, the formation of a resist pattern is blocked when the exposure is shortened for only several milliseconds relative to the optimum exposure (exposure Eop) or when thickness of a resist film becomes only several hundred nanometers thicker at locations corresponding to steps of a substrate.
In addition, a material containing the aforementioned photosensitizer hardly forms an isolated pattern when the focus of a light source in the exposure step shifts to the plus side (i.e., the light focus is in the substrate side from the resist surface) in the formation of an ultrafine resist pattern of not more than 0.35 .mu.m. FIG. 5 demonstrates changes in the formation of resist patterns with shifts of the focus, where (a) indicates the case using the aforementioned photosensitizer, and (b) indicates the case using another photosensitizer having no tetra- to hepta-nuclear linear skeleton. FIG. 5 demonstrates that the pattern formations in both cases are similar when the focus shifts to the minus side from the zero point where the focus is not shifted, but the use of the aforementioned photosensitizer fails to form any pattern when the focus shifts to the plus side, which is inherent to this photosensitizer.
As a result, the photosensitizer is disadvantageous in that it is narrow in focal depth range and cannot form a resist pattern of the predetermined dimensions when the distance between a light source and a substrate shifts in the exposure step or when a resist film is formed on a stepped substrate and hence the surface of resist film is uneven due to steps of the substrate.
Further, Japanese Patent Laid-Open No. 8-245461 discloses a high-definition positive photoresist composition containing a quinonediazide ester of the specific compound which is disclosed in the present invention as a compound of the formula (Ia) as a photosensitizer, and its Example 1 describes an embodiment using a photosensitizer containing the above quinonediazide ester and a quinonediazide-tetraester of 4-(4-hydroxy-2,5-dimethylbenzyl)pyrogallol.
This composition exhibits high definition but extremely low underexposure margin of 1.0 to 1.2 due to its very high y value, and can hardly form a pattern particularly at positions with low exposures (underexposure side), as in the above-mentioned Japanese Patent Laid-Open No. 6-167805.
In addition, no isolation pattern is formed when the focus of a light source shifts to the plus side in an exposure step in the formation of an ultrafine resist pattern of not more than 0.35 .mu.m (FIG. 5), and hence the composition has narrow focal depth range and has disadvantageous as in Japanese Patent Laid-Open No. 6-167805 mentioned above.
Furthermore, Japanese Patent Laid-Open No. 63-115162 mentions a positive photoresist composition having improved film residual rate after development, which is obtained by using a quinonediazide ester of the specific compound which is disclosed in the present invention as a compound of the formula (IIIa). The composition is inferior in definition and cannot form a pattern having satisfactory underexposure margin and focal depth range properties in the formation of an ultra fine pattern of not more than 0.35 .mu.m.
Japanese Patent Laid-Open No. 60-121445 also discloses a positive photoresist composition using, as a photosensitizer, a quinonediazide ester of a compound, which is disclosed as the compound of the formula (IVa) in the present invention. The composition is inferior in definition and cannot form a pattern having satisfactory underexposure margin and focal depth range properties in the formation of an ultrafine pattern of not more than 0.35 .mu.m. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is becoming increasingly more common for vehicles to include a brake booster in vehicle braking systems for reducing the amount of pedal pressure needed to apply brakes, particularly with respect to vehicles having disk brakes. It is generally understood that a brake booster employs a vacuum to multiply the force that the pedal applies to a master cylinder, allowing a driver to more easily engage the brakes and reduce the speed of the vehicle. In some brake systems, such as in vehicles operated with diesel engines and electrical motors, the brake booster may employ an independent vacuum pump to provide the vacuum to the master cylinder. These vacuum pumps occasionally generate loud noise and contain lubrication that may backflow to the master cylinder. This backflow may deteriorate the elastomeric components within the brake booster and components leading to the brake booster, which in addition to potentially compromising the effectiveness of the brake system, may also generate additional noise. | {
"pile_set_name": "USPTO Backgrounds"
} |
An impedance/conductivity cavity probe can be formed using a rectangular waveguide. A closed rectangular cavity has six metal walls with a small iris located in the center of one of the walls. Electromagnetic energy (e.g., radio frequency (RF) or microwave energy) may be coupled into and out of the cavity via the iris. The iris will couple energy at a particular frequency (e.g., a resonant frequency) into the cavity while not coupling energy at frequencies other than the particular frequency. Thus, as energy is fed to the impedance/conductivity cavity probe over a band of frequencies, most of the energy will be returned except at the resonant frequency. If one plots the returned energy as a function of frequency, a sharp null will be located at the resonant frequency.
An open-ended cavity probe may be formed by removing one of the six walls of the closed rectangular cavity, resulting in a cavity with five walls (e.g., an open-ended cavity). The open-ended cavity probe may be used to measure properties of a sample by placing the sample proximate to the open end of the open-ended cavity, thereby effectively closing the open-ended cavity.
In some examples, the sample may be a conductive material. Closing the open-ended cavity probe with the conductive material sample may result in a null at the resonant frequency of the chamber including one wall corresponding to the sample. For a sample with conductivity close to that of a metallic surface, the null may have the same depth as if the original metal wall (e.g., of the closed rectangular cavity) was still in place. If the material is less conductive than a metallic surface, then the null may still be located at the resonant frequency, but it may not be as deep. As the material becomes less conductive, the null may become shallower until it completely disappears.
The open-ended cavity probe can be used to measure the conductivity of a given sample based on a relationship between the null depth and conductivity. The open-ended cavity probe may be calibrated by measuring probe responses to conductive material samples, referred to as materials standards, and establishing a relationship between the probe responses (e.g., null depth of the probe responses) and the known constitutive properties of the materials standards (e.g., conductivity).
In other examples, the sample may include a conductive material coated by a non-conductive (e.g. dielectric) layer. The open-ended cavity probe may still be used to measure conductivity/impedance of samples that include a thin dielectric topcoat, although a different calibration/relationship needs to be established than when the samples do not include a dielectric topcoat. For example, the null depth returned by the open-ended cavity probe when closed by a sample including a conductive material coated by a non-conductive layer may still be related to the conductivity of the sample (as with a purely conductive material), but the relationship between null depth and conductivity may be modified somewhat by the presence of the dielectric topcoat. In addition, the null measured when the open-ended cavity probe is closed by a sample including a conductive material coated by a non-conductive layer may no longer present at the same resonant frequency as when the sample is a purely conductive material. The amount of shift may be influenced by the thickness of the dielectric topcoat. A cavity probe is typically calibrated to measure conductivity/impedance of samples that include a dielectric topcoat using different materials standards (e.g., samples) formed of different conductive materials in combination with two thickness of a dielectric for the purposes of performing the calibration. However, this can be problematic in a field or mobile environment as the samples can get damaged or lost. In addition, the materials of the samples can degrade with time, and it may be problematic to make materials consistently. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to rotating magnetic disk drives, and more particularly, to a method for determining repeatable runout written to a servo track during a servowriting process for accurate track following relative to a concentric track center.
2. Description of the Prior Art
Repeatable runout (RRO) in a disk drive results from imperfections, with respect to a perfect circle, in the location of servo information along a track on a disk surface in the disk drive. Due to disk spindle rotation, the servo imperfections due to RRO are periodic having a fundamental frequency that is equal to the spindle rotation frequency. The RRO imperfections are relatively static over time and the effect of the RRO may be attenuated by measuring the RRO during manufacturing and using the RRO measurements in a head-position servo loop to compensate for the RRO effect.
However, accurate RRO measurements may be difficult to obtain. The head-position servo loop may not be able to track the imperfections or may prevent convergence on cancellation values in a timely and cost effective manner.
Accordingly, there exists a need for technique for determining RRO cancellation values without unnecessarily increasing manufacturing costs or significantly decreasing manufacturing throughput. The present invention satisfies these needs.
The present invention may be embodied in a method, implemented in a magnetic disk drive, for recursively determining repeatable runout (RRO) cancellation values. The disk drive has a head disk assembly (HDA) and a sampled servo controller. The HDA includes a rotating magnetic disk having distributed position information in a plurality of uniformly spaced-apart servo wedges, and an actuator for positioning a transducer head in response to a control effort signal. The transducer head periodically reads the position information from the servo wedges. The sampled servo controller periodically adjusts the control effort signal during a track-following operation based on the position information. In the method, initial resonant filter states are stored, with each initial filter state corresponding to a servo wedge of a predetermined track. The stored resonant filter states are filtered to substantially compensate for effects of the sampled servo controller, which effects tend to distort position error signals generated during track following, to generate current repeatable runout cancellation values. A current repeatable runout cancellation value is generated for each servo wedge. The position information related to the predetermined track is read during track following for a disk rotation to generate position error signals based on the read position information and the current repeatable runout cancellation values. The position error signals are scaled to generate convergence values such that a convergence value is generated for each servo wedge. Each convergence value is applied to each corresponding stored resonant filter state to generate a resulting updated resonant filter state. The updated resonant filter states are stored to replace the previously stored resonant filter states. The above steps related to filtering, reading, scaling and applying are repeated until a predetermined threshold is obtained thus recursively determining the repeatable runout correction values.
In more detailed features of the invention, the predetermined threshold may be a particular number of disk rotations, such as 20. Alternatively, the predetermined threshold may be obtained when the position error signals are less than a particular level. Further, the position error signals generated during track following for the disk rotation may be based on a difference between the read position information and the current repeatable runout cancellation values. Each resulting updated resonant filter state may be generated by combining each convergence value with the corresponding previously stored resonant filter state.
In other more detailed features of the invention, each initial filter state may be set to zero, or may be set based on reading the position information related to the predetermined track during track following for an initial disk rotation. The step of filtering the stored resonant filter states to generate the current repeatable runout cancellation values may be performed using a filter based on an inverse error rejection function for compensating effects of the sampled servo controller. The inverse error rejection function may be modified with low frequency attenuation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to an everter and threadthrough device for attaching a graft vessel to an anastomosis device which can be used for forming a sutureless connection between a bypass graft and a blood vessel.
2. Brief Description of the Related Art
Vascular anastomosis is a procedure by which two blood vessels within a patient are surgically joined together. Vascular anastomosis is performed during treatment of a variety of conditions including coronary artery disease, diseases of the great and peripheral vessels, organ transplantation, and trauma. In coronary artery disease (CAD) an occlusion or stenosis in a coronary artery interferes with blood flow to the heart muscle. Treatment of CAD involves the grafting of a vessel in the form of a prosthesis or harvested artery or vein to reroute blood flow around the occlusion and restore adequate blood flow to the heart muscle. This treatment is known as coronary artery bypass grafting (CABG).
In the conventional CABG, a large incision is made in the chest and the sternum is sawed in half to allow access to the heart. In addition, a heart lung machine is used to circulate the patients blood so that the heart can be stopped and the anastomosis can be performed. During this procedure, the aorta is clamped which can lead to trauma of the aortic tissue and/or dislodge plaque emboli, both of which increase the likelihood of neurological complications. In order to minimize the trauma to the patient induced by conventional CABG, less invasive techniques have been developed in which the surgery is performed through small incisions in the patients chest with the aid of visualizing scopes. Less invasive CABG can be performed on a beating or stopped heart and thus may avoid the need for cardiopulmonary bypass.
In both conventional and less invasive CABG procedures, the surgeon has to suture one end of the graft vessel to the coronary artery and the other end of the graft vessel to a blood supplying vein or artery. The suturing process is a time consuming and difficult procedure requiring a high level of surgical skill. In order to perform the suturing of the graft to the coronary artery and the blood supplying artery the surgeon must have relatively unobstructed access to the anastomosis site within the patient. In the less invasive surgical approaches, some of the major coronary arteries including the ascending aorta cannot be easily reached by the surgeon because of their location. This makes suturing either difficult or impossible for some coronary artery sites. In addition, some target vessels, such as heavily calcified coronary vessels, vessels having very small diameter, and previously bypassed vessels may make the suturing process difficult or impossible.
An additional problem with CABG is the formation of thrombi and atherosclerotic lesions at and around the grafted artery, which can result in the reoccurrence of ischemia. The thrombi and atherosclerotic lesions may be caused by the configuration of the sutured anastomosis site. For example, an abrupt edge at the anastomosis site may cause more stenosis than a more gradual transition.
Accordingly, it would be desirable to provide a sutureless vascular anastomosis device which easily connects a graft to a target vessel. It would also be desirable to provide a sutureless anastomosis device which is formed of one piece and is secured to the target vessel in a single step.
The invention provides an everter tool useful for everting an end of a graft vessel over an end of an anastomosis device. The everter tool preferably includes a mechanism which expands an end of a graft vessel and everts the end of the graft vessel over an anastomosis device mounted on a deployment tool. For instance, the mechanism can include a first member having fingers at a distal end thereof, the fingers being expandable from a first configuration which fits within the and of the graft vessel to a second configuration which expands the end of the graft vessel, and an optional second member cooperating with the first member such that the second member is movable from a first location at which the fingers are in the first configuration to a second location at which the second member expands the fingers to the second configuration.
The everter tool can include various features. For example, the everter tool can be slidably received in a bore of an everter fixture and a handle on the everter tool can be used to engage a first portion of the handle with the first member and a second portion of the handle with the second member, the handle being movable in an axial direction such that the second portion pushes the second member along the first member until a distal end of the second member expands the fingers from the first configuration to the second configuration after which the first portion pushes the first member along the bore until the fingers evert the graft vessel. In such a case, a deployment tool having an anastomosis device mounted on a distal end thereof and a graft vessel fitted through the anastomosis device can be located in the bore of the housing such that the fingers can be pushed into a portion of the graft vessel extending beyond an end of the anastomosis device.
In order to locate the graft vessel in the anastomosis device, a threadthrough device can be used for pulling the graft vessel through the anastomosis device. The threadthrough device can include a clamp which attaches to an end of the graft vessel and an extension attached to the clamp, the threadthrough device being sized to pass through the anastomosis device. The threadthrough device can also include a tongue pivotally connected to the clamp, the clamp being movable towards and away from the tongue such that the graft vessel can be clamped between the clamp and the tongue. In a preferred embodiment, the threadthrough device includes three clamps and the extension comprises a wire connected to each of the clamps.
According to a preferred embodiment, the anastomosis device includes barbs for penetrating the graft vessel and the everter tool includes a membrane engageable with the anastomosis device such that the barbs penetrate the graft vessel when the membrane is pressed against the anastomosis device.
The invention also provides a method of everting a graft vessel onto an anastomosis device, the method comprising locating a graft vessel in an anastomosis device mounted on a deployment tool such that a first portion of the graft vessel is within the deployment tool and a second portion of the graft vessel extends from an end of the deployment tool, expanding the second portion of the graft vessel, and everting the second portion of the graft vessel over the anastomosis device.
The method can be carried out in any suitable manner. For instance, the step of locating the graft vessel in the anastomosis device can be carried out by attaching an end of the graft vessel to a threadthrough device and passing the threadthrough device through the deployment tool. The step of expanding the second portion of the graft vessel can be carried out by inserting an everter tool into the second portion of the graft vessel. In such a case, the everter tool can optionally be pressed against the distal end of the deployment tool until barbs on a distal end of the anastomosis device penetrate the graft vessel. The step of expanding the second portion of the graft vessel can be carried out by inserting fingers of the everter tool into the second portion of the graft vessel and expanding the fingers within the second portion of the graft vessel. The step of everting the second portion of the graft vessel can be carried out by pressing the everter tool against the deployment tool. The step of expanding the second portion of the graft vessel can be carried out by locating the deployment tool in a bore of an everter fixture and sliding the everter tool from a first position to a second position along the bore. The step of everting the second portion of the graft vessel can be carried out by sliding the everter from the second position to a third position along the bore. The step of locating he graft vessel in the anastomosis device can be carried out by passing a threadthrough device through the deployment tool, the threadthrough device having a clamp attached to an end of the graft vessel and a wire extending from the clamp, the wire being pulled through an angled hole in the fixture while the graft vessel is pulled through the anastomosis device. In such a case, the clamp can be designed to spring open after passing out of the anastomosis device leaving a segment of the graft vessel extending beyond a distal end of the anastomosis device. According to a preferred embodiment, the step of everting the graft vessel can be carried out by pressing a first portion of the everter tool against an annular section of the graft vessel and moving a second portion of the everter tool in contact with an inner surface of the graft vessel until the inner surface is turned inside out over the anastomosis device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Related Applications
This application is designed to make use of information supplied by ground stations as taught in our co-pending U.S. application Ser. No. 08/854,104 filed 11 May 2001 for a Dual Mode of Operation Multiple Access System for Data Link Communication which is incorporated by reference herein.
2. Field of the Invention
The present invention relates to communication networks of the type employed between airborne platforms and ground stations. More particularly, the present invention relates to a method and system for controlling the bandwidth of data transmitted by airborne transmitters to multiple ground station receivers.
3. Description of the Prior Art
Heretofore, point-to-point networks have been employed as intranets in businesses and as internets in the worldwide web. Point-to-point communications relate to a message or data sent to a particular receiver or user from a single source. When there are a number of receivers, the same message must be sent to each of the receivers which increases the bandwidth proportional to the number of receivers. U.S. Pat. Nos. 6,038,216 and 6,046,980, and references cited therein, have suggested a method and system for managing bandwidth in point-to-point networks by assigning priorities to the type of data and to the individual receivers or users. There are no known systems or apparatus for prioritizing messages and data in multi-broadcast or point-to-multipoint network systems.
It would be highly desirable to provide a method and a system for managing bandwidth in a point-to-multipoint central node airborne broadcasting system. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the electronics industry there is a steady trend towards manufacturing microprocessors of increasingly high speed and large information storage capacity. This requires the individual electrical devices such as transistors, etc. within the microprocessors to be fabricated at an increasingly small scale. The metallic electrical interconnects between the devices also need to be miniaturized. As device and interconnect dimensions fall below one-quarter of a micron, the choice of interconnect metal becomes critical.
A process for producing these microscopic metal features found in microprocessors and interconnects is CVD (Chemical Vapor Deposition). In this technique a volatile organometallic (OM) compound in the gas phase is contacted with areas of a circuit where growth of a metal film (i.e. interconnect) is required. A surface catalyzed chemical reaction then occurs which leads to deposition of the desired metal. Since this is a chemical reaction, there is a potential for it to provide surface selective metallization.
Chemical vapor deposition of copper metal using organometallic copper compounds has been widely used in the electronics industry for the above applications. One class of copper organometallics for this application is the copper+1 (xcex2-diketonate)(L) complexes where (L) represents a suitable stabilizing ligand, typically a non-aromatic unsaturated group including silylolefins and silylalkynes. Typically, in the synthesis of copper+1 (xcex2-diketonate)(L) complexes, the divalent by-product copper bis(xcex2-diketonate) and unreacted xcex2-diketone species can be encountered as impurities that need to be removed.
The following patents are representative of organometallic compounds for chemical vapor deposition in the electronics industry.
U.S. Pat. No. 5,085,731 discloses organometallic complexes base upon copper+1(xcex2-diketonate) (L) complexes where (L) is a silylolefin stabilizing ligand. These are represented by the formula:
wherein R1 and R3 are each independently C1-C8 perfluoroalkyl, R2 is H, F or C1-C8 perfluoroalkyl, R4 is H, C1-C8 alkyl, or Si(R6)3, each R5 is independently H or C1-C8 alkyl, and each R6 is independently phenyl or C1-C8 alkyl. One type of complex is prepared by reacting a copper salt, e.g., copper chloride, the potassium salt of hexafluoroacetylacetone(i.e. K+(hfac)), and a silylolefin in hexane or other solvent.
U.S. Pat. No. 5,187,300 discloses organometallic copper complexes suited for selectively depositing copper films onto electrically conducting portions under CVD conditions. The copper complexes are based upon copper(+1)(xcex2-diketoneonate)(L) where (L) is a silylalkyne stabilizing ligand. One type of complex is prepared by the reaction of the potassium salt of hexafluoroacetylacetone with copper chloride in the presence of a silylalkyne stabilizing ligand. These complexes have the formula:
wherein R1 and R3 are each independently C1-C8 perfluoroalkyl, R2 is H, F or C1-C8 perfluoroalkyl, R4 is H, C1-C8 alkyl, phenyl, or Si(R5)3, and each R5 is independently H or C1-C8 alkyl or phenyl.
U.S. Pat. No. 5,098,516 discloses organo copper based ligands of the formula:
wherein R1 and R3 are each independently C1-C8 perfluoroalkyl, R2 is H or C1-C8 perfluoroalkyl and L is carbon monoxide, an isonitrile or an unsaturated hydrocarbon ligand containing at least one non-aromatic unsaturation. These compounds are also prepared by the reaction of the potassium salt of hexafluoroacetylacetone with copper chloride in the presence of a stabilizing ligand.
U.S. Pat. No. 6,096,913 discloses the synthesis of copper(+1)(xcex2-diketoneonate)(L) type complexes by the reaction of xcex2-diketone with cuprous oxide in the presence of stabilizing ligand (L) and finely divided copper powder to suppress the formation of unwanted copper bis (hexafluoroacetylacetonate). The process is described by the following equation:
2Hfac+Cu2O+2(A)=2copper+(hfac)(A)+H2O
This invention relates to a streamlined and cost effective process for the purification of Cu(+1)(xcex2-diketonate) (L) liquid and solid complexes which are suitable for the chemical vapor deposition of copper. Solid Cu(+1)(xcex2-diketonate) (L) complexes can be purified using this technique by first dissolving them in a suitable inert solvent then subjecting this solution to the treatment described below for liquid precursors.
In the basic process for preparing Cu(+1)(xcex2-diketonate) (L) complexes, sometimes referred to as a monovalent copper xcex2-diketone complex product, a reactive copper compound is treated with a coordinating anion such as the anion of hexafluoroacetylacetone or other coordinating anion such as a fluorinated xcex2-ketoimine anion and, if required, a stabilizing ligand (L), typically bearing at least one unsaturation that is olefinic or acetylenic or is an amine or a phosphine. Depending upon the reactants employed, a monovalent copper based complex of a p-diketone represented by the formula below is generated:
where n is 1 and z is 1. Optionally, as shown, the complex is stabilized with a neutral ligand designated (L) as shown. L is selected from the group consisting of trimethylvinylsilane, alkenes, dienes, silicon substituted alkenes, silicon substituted dienes, alkynes, silicon substituted alkynes, alkyne-alkenes, silicon substituted alkynes-alkenes, nitriles, silicon substituted nitrites, isonitriles, silicon substituted isonitriles, carbon monoxide, trialkyl phosphines, triaryl phosphines, imines, diimines, amines and mixtures thereof.
Representative complexes are shown in formulas 2-4 when xcex2-diketone coordinating anions are used:
wherein R1 and R3 are each independently C1-C8 fluoroalkyl, R2 is H, F or C1-C8 fluoroalkyl, R4 is H, C1-C8 alkyl, or Si(R6)3, each R5 is independently H or C1-C8 alkyl and each R6 is independently phenyl or C1-C8 alkyl;
wherein R1 and R3 are each independently C1-C8 fluoroalkyl, R2 is H, F or C1-C8 fluoroalkyl, R4 is H, C1-C8 alkyl, or Si(R5)3, and each R5 is independently H or C1-C8 alkyl or phenyl; and,
wherein R1 and R3 are each independently C1-C8 fluoroalkyl, R2 is H or C1-C8 fluoroalkyl and L is carbon monoxide, an isonitrile or an unsaturated hydrocarbon ligand containing at least one non-aromatic unsaturation.
Preferably, the fluoroalkyl groups in Formulas 2-4 are perfluoroalkyl.
In the syntheses of all of the above compounds it is typical for the crude reaction mixture to be contaminated with some divalent copper bis(xcex2-diketonate) byproduct, sometimes referred to as divalent copper xcex2-diketone complex byproduct, along with unreacted residual xcex2-diketonate species either as free xcex2-diketone or xcex2-diketonate as a metal salt.
The improvement for removing unreacted fluorinated xcex2-diketonate, e.g., Hhfac or the xcex2-diketonate salt, e.g., Khfac from the reaction mixture comprises the following: contacting the reaction mixture with an effective amount of deionized water, preferably a degassed, and, most preferably, deoxygenated water, for solubilizing and extracting the unreacted fluorinated xcex2-diketonate species into an aqueous phase. In the preferred case, which includes the removal of the divalent copper xcex2-diketone complex by-product from the reaction mixture containing the monovalent copper(+1) (xcex2-diketonate) (L) complex product, as well as other impurities, the process comprises: contacting the reaction product with a mixture of an acid and deoxygenated water under conditions for forming a water soluble divalent copper salt. The resulting aqueous phase is then separated thereby removing both the unreacted fluorinated xcex2-diketonate species and the divalent copper bis(xcex2-diketonate) by-product from the monovalent copper(+1) (xcex2-diketonate) (L) complex product. Additionally, if cuprous oxide is used in the original syntheses and traces of it remain in the crude reaction mixture, then acid treatment also dissolve the oxide up into the aqueous phase as an additional purification benefit. Further, if excess stabilizing ligand (L) is present in the crude Cu(+1)(xcex2-diketonate)(L) then it will also dissolve to a certain degree in the acid phase providing yet facilitating the purification step.
There are several advantages achieved by the practice of this process and these include:
an ability to simultaneously remove excess unreacted xcex2-diketone species, byproduct divalent copper byproducts, e.g., Cu(hfac)2 and copper oxide from the crude reaction product without significant yield loss;
an ability to reduce the level of excess silylolefin such as trimethylvinylsilane (TMVS) or other stabilizing ligand (L) compounds that are present in the copper complexes
an ability to remove byproducts much faster than the conventional media absorbent processes; and,
an ability to remove by products by means less costly than media absorbent processes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Linear solenoids are electromechanical devices that convert electrical energy into a linear mechanical motion, which is used to control electrical, pneumatic or hydraulic systems. Solenoids are used in valves, relays and contactors.
Electromechanical solenoids consist of an electromagnetically inductive coil that is wound to encircle a movable steel or iron slug, termed “the armature” or “plunger.” The coil is shaped such that the plunger can be moved in and out of its center, altering the inductance of the coil. The plunger is used to provide a mechanical force to activate the control mechanism, for example opening and closing of a valve.
A solenoid coil needs a higher current during activation, called the pull—in current, to pull the plunger into the solenoid. However, once the plunger has moved completely, the solenoid coil needs only approximately 30% of its nominal current, called “the hold current,” to keep the plunger in the same position. DC solenoids having coils that operate continuously at their nominal current, which is limited by the resistance of the coil, will have an increase in temperature of the coil due to the higher power dissipation. Once the complete plunger movement is detected, the steady-state current can be reduced to the hold current to minimize the power consumption in the solenoid. The detection of the plunger movement is required in safety-critical applications to detect proper operation of the valve, relays or contactors. Movement of the plunger can be slow, due to factors such as friction, rusting and other mechanical impediments to the movement of the plunger.
FIG. 1 shows an example of a known solenoid drive circuit, shown generally as 100. A DC input voltage at 102 is applied to one terminal of a solenoid coil 104, the other terminal of the solenoid coil is connected to a transistor 108, controlling current through the solenoid, which is sensed by sense resistor RSENSE 110. Transistor 108 is controlled by current controlled solenoid driver 112, which will drive the solenoid at its nominal current until the plunger has moved completely, at which time the current can be reduced to its hold value. Freewheeling diode 106 is used to eliminate the sudden voltage spike seen across the transistor when it is switched off by the current controlled solenoid driver.
FIG. 2 shows the known excitation current waveform of a solenoid, generally as 200. As soon as the solenoid is energized at 202, the current begins to increase as shown at 204. When the current reaches IPEAK at 206, the plunger starts moving because of the sufficient magnetic field created by the solenoid coil. The movement of the plunger induces back EMF in the coil, and hence, the solenoid current starts dropping. At 208, the plunger has moved completely and the current dips to IVALLEY. After the plunger strokes, the current continues on its normal upward path, as shown at 210, to its maximum value, as shown at 212, which is limited by the resistance of the coil. The prominent dip in the excitation curve from IPEAK to IVALLEY is an indication of plunger movement.
One known plunger position sensing method includes hall sensors to detect the position of the plunger. The mechanical mounting of these sensors are complex and their performance is affected by ageing and external field. In addition, the hall sensor will provide a signal at the end of the plunger movement, and therefore, cannot detect slow movement of the plunger.
Other plunger movement detection logic uses fixed references for detecting peak and valley current, or utilize algorithmic solutions. These algorithms may fail during temperature variation or during slow movement of plunger.
There is a need for a simple, low-cost and reliable technique for detecting complete solenoid movement that can detect plunger movement over wide variation of temperature and also detect slow-moving plungers. | {
"pile_set_name": "USPTO Backgrounds"
} |
“Streaming” is a broad term for the delivery of time-ordered data such that the beginning will be consumed (e.g., fed into another system for display) before the end is completely delivered. The distinguishing characteristic of streaming is that the data contains desired consumption times relative to the consumption of the beginning of the stream. For example, a desired consumption time for video streaming may be of the following form: the millionth byte is used to generate the three-hundredth frame of a 30 frame per second video stream and thus should be received within 10 seconds of the consumption of the first byte.
Live streaming is streaming that is characterized by a relatively short delay between the instant at which data enters the transmitting unit and the instant at which the transmitted data is affected by this data. The content of a live stream may include audio, video, stock ticker data, database updates, telemetry, delta or change propagation data and many other types of data.
The term “live streaming” can apply to data that is not “live” in the common-language sense of being generated contemporaneously with the data communication. For example, it is clear that a system that sends digitized video of a sporting event to a receiver that displays the video with short delay is a live streaming system. But one may also apply live streaming techniques to a recorded movie; from the point of view of the streaming transmitter, the information from the movie playout device is a live stream.
A reliable live streaming system accurately reproduces at a one or more receiver the content of a live data stream that is present at a transmitter, most of the time, despite the loss of some of the transmitted data. The most common methods for reliable communication of non-streaming data on computer networks include the use of the TCP and IP protocols. The use of TCP/IP has significant disadvantages for live streaming, especially if a single transmitter is communicating with a large number of receivers. With TCP/IP, the sender is virtually connected to each receiver with an independent, variable-rate, reliable, byte-granularity channel. The variable-rate property is problematic for satisfying the delivery deadlines of live streaming, and the fact that each connection is independent means that some resources of the transmitter are consumed in linear proportion to the number of receivers. For these reasons, it is often preferable for the reliability mechanisms to be based on forward error correction (FEC) codes rather than retransmission of lost data.
A live streaming system has several important performance measures, including the loss protection, protection period, and startup time. Loss protection is defined as the fraction of the live stream data that can be lost over a specified period of time without interrupting the timely reconstruction of the live data stream at the receiver. The protection period is defined as the period of time over which the loss fraction is measured (the loss fraction may be higher for shorter periods of time). The startup time is generally defined as the time from the beginning of reception of data until the uninterrupted reconstruction of the live data stream can begin.
Unfortunately, current systems which employ FEC for live streaming are severely limited in the combinations of these performance measures that can be achieved, in the degree of variation in these performance measures that can be achieved during the reception of a live stream, and in the degree of variation in these performance measures for different receivers that are receiving the same live data stream. What is therefore needed is a system and method for communicating the content of a live data stream with improved parameters, such as high reliability, short startup time, and an extended protection period. | {
"pile_set_name": "USPTO Backgrounds"
} |
Loss of life and property occur in a natural disaster when the fabric of a dwelling in which humans are sheltered fails when subjected to the extraordinary forces of an uncommonly occurring event of nature. Until now, attempts to bolster the robustness of the standard wood stick framed house have been inadequate, as the dollar value of construction lost in the last decade, to severe storms, shows.
It is well known that high speed wind can do great damage to residential and commercial building structures, particularly in areas prone to hurricanes and other high wind storms. Each year hurricanes cause a considerable amount of damage to buildings, resulting in increased insurance rates. For this reason several states have enacted new building codes designed to insure that new structures are resistant to hurricane speed winds. For example, the state of Florida recently enacted a new building code which requires all new buildings to comply with standards by the American Society of Civil Engineers and the Southern Building Code.
In the United States, wood structures have been predominant in constructing houses of every size. Such structures may be utilized in residential and light commercial construction. When wood framing is employed, the structure must be protected from upward, shear and overturning loads developed by either wind or seismic activity which differs with geographical location. Other than such natural forces, the wood framed structures should also be resistant to other weather conditions such as, water, temperature, snow, and the like. Such wood structures may need a resistant coating. Each year hurricanes and high speed winds cause considerable destruction to wood framed buildings, and greatly devalue the money invested in constructing these buildings. For these reasons, many design codes for buildings have been introduced to insure new building structures are resistant to powerful natural forces. However, building houses or other structures by implementing such codes and techniques is a costly affair.
It is a scientific fact that the severity of natural processes; storms, winds, tsunamis and other natural phenomenon; are going to increase in severity in the coming decades due to climate change. The present state of the building stock in the United States, particularly single family housing, is woefully unprepared for this coming increase in storms. A study concentrating on a strip of land ten miles wide; extending back from the mean high water line, running from Maine to Mexico, following the coast of the Continental US; reports that in that small band alone there are 1.4 trillion dollars worth of buildings at risk.
Therefore, there exists a need to provide a unique building structure and housing assembly that can withstand extremely powerful natural forces and weather conditions capable of damaging the housing structures, and a method to build that assembly. Further, there also exists a need to produce and erect this building structure and housing assembly at a competitive price. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a process for preparing a fermented soybean milk.
2. Description of the Related Art
Recently, vegetable protein has attracted public attention from the point of view of health. Especially, soybean milk, which is made from soybean, containing good quality protein but not cholesterol, has attracted a great deal of public attention as a health food.
However, there are some problems in using the soybean milk. For example, the soybean milk has an unpalatable taste such as grassy smelling and stimulating taste due to minor components from soybean such as 2-hexenal and several saponins.
In order to improve the flavor of soybean milk, some methods including a step of fermenting soybean milk with lactic acid bacterium have been proposed, for example, in Japanese Laid Open Patent Applications Nos. SHO 61-141840, SHO 62-205735, SHO 63-7743, SHO 63-276979, HEI 2-167044, HEI 6-276979 and HEI 8-66161. However, the products obtained by these known methods still have some problems such as insufficient masking of the unfavorable soybean flavor, unpleasant fermentation flavor, and a disappearance of the soybean""s body and taste.
For the purpose of solving these problems, the inventors have tried to ferment soybean milk with various strains of lactic acid bacteria, and have found that lactic acid bacterium of the genus Bifidobacterium is useful to improve the unpleasant flavor peculiar to soybean without adding components other than soybean. However, when the inventors Lactobacillus bulgaricus, which had been known to have flavor improving ability, in addition to Bifidobacterium bacteria, the former bacteria could not grow well in soybean milk. When saccharides that are utilized by lactic-acid bacteria were added to the soybean milk, Lactobacillus bulgaricus could grow well in soybean milk, but the flavor of the obtained fermented soybean milk was not improved sufficiently.
On the other hand, the conventional lactic-acid fermented soybean milk has a problem that it generates reverse odor of soybean during cold storage. Therefore, conventional products are heat-treated so that the bacteria in the products are destroyed. However, the heat treatment causes aggregation of the product or generation of unpleasant taste.
One object of the present invention is to provide lactic-acid fermented soybean milk having an improved total flavor without the unpleasant flavor of conventional soybean milk.
The present invention provides a process for preparing fermented soybean milk comprising the steps of: inoculating a lactic acid bacterium of the genus Bifidobacterium, Lactobacillus bulgaricus and one strain selected from the group consisting of Lactobacillus acidophilus and Lactobacillus casei to soybean milk, and fermenting the same.
Soybean milk used in the present invention is preferably one obtained by the process comprising the steps of contacting dehulled and dehypocotyl whole soybeans with warm or hot water; removing the warm or hot water-soluble component from the soybeans; pulverizing the soybeans to make a slurry, and removing the insoluble component from the slurry.
Another object of the present invention is to provide a lactic-acid fermented soybean milk, which can be stored longer without the problem of reversed odor of soybean. The present invention also provides a process for producing lactic acid fermented soybean milk further comprising the step of introducing the lactic acid fermented soybean milk into an container made of a material having an oxygen permeability of below 100 cc/ m2/24 hr/atm (25 xcexcm, 25xc2x0 C., 50% RH).
In the present invention, soybean milk may be one obtained from whole or defatted soybeans according to any conventional method and may be any conventional commercially available soybean milk. For example, soybean milk can be obtained by the process comprising the steps of impregnating whole soybeans or dehulled soybeans with water by immersing them into water or any other procedure, pulverizing the same with water to make a slurry and removing the insoluble portion of the slurry by a method such as filtration, to provide soybean milk.
The soybeans employed in the present invention may be whole or defatted soybeans, preferably dehulled soybeans, and more preferably dehulled and dehypocotyl soybeans. According to the present invention, it is preferred to remove the hot or warm water-soluble portion of the soybeans by contacting the same with the hot or warm water and then separating and removing the water phase containing the portion eluted in the water. Said portion may contain isoflavone, sapogenin and saccharides. In the case of whole soybeans, the soybeans may be contacted with water at a temperature of about 50 to 100xc2x0 C. for about 30 minutes to 10 hours. In the case of dehulled and dehypocotyl soybeans, the temperature of the water may be about 20 to 100xc2x0 C. and the contacting time may be about 20 minutes to 10 hours. Most preferably, the hot or warm water-soluble portion may be removed from the soybeans so that said portion remaining in the soybean milk is no more than 20 percent, preferably, no more than 15 percent by weight of the dried solid portion of the obtained soybean milk.
According to the present invention, the pH of the hot or warm water with which the soybeans are contacted may be from neutral to weakly alkaline.
Preferably, the pH is weakly alkaline in order to avoid stimulating taste due to the effect of xcex2-glucosidase. Any food additive, which can adjust the pH to weakly alkaline, may be employed to control the pH. For example, a salt of an organic acid such as sodium dioxide carbonate and sodium carbonate is preferably used from the point of view of flavor.
After that, the treated soybeans are pulverized in water to make a slurry and then, soybean milk can be obtained by separating and removing the insoluble portion from the slurry.
The step of pulverizing the soybeans may be conducted at room temperature. However, in order to prevent degradation of the product during the pulverizing step due to lipoxygenase, peroxidase or xcex2-glucosidase, it is preferable to carry out the step at a temperature of below about 10xc2x0 C. or above about 80xc2x0 C.
The obtained slurry may be kept above about 80xc2x0 C. and then may be separated into okara and soybean milk by any conventional means such as filtration, decanting, centrifugation or the like.
The soybean milk obtained as above may be sterilized by, for example, heating it to about 135 to 150xc2x0 C. for about 1 to 120 seconds before fermentation.
Since the soybean milk obtained as above has good flavor, it will provide good flavor to the fermented soybean milk of the present invention. In addition, because of the relatively small concentration of saccharides, it is easy to control the fermentation of the soybean milk by adding saccharides to the same, which saccharides are utilized by lactic-acid bacteria.
It is preferable to add some saccharides, which are utilized by lactic-acid bacteria, to the soybean milk to promote fermentation. Any saccharides utilized by lactic-acid bacterium may be employed, and oligo saccharides are preferable. When oligo saccharides are employed, they may be added to the soybean milk in an amount of about 0 to 5%, preferably, 1 to 2% by weight of the soybean milk. In addition, bifidus factor may be added to the soybean milk.
The lactic-acid bacterium of the genus Bifidobacterium used in the present invention may be any strain belonging to said genus. For example, B. bifzdum, B. longum, B. breve, B. infantis, and B. animalis may be used for the present invention. However, from the point of view of health, it is preferable to use bacterium occurring in human, i.e. other than B. animals.
Lactobacillus bulgaricus used in the present invention may be any of the known strain and these are commercially available.
Both of Lactobacillus acidophilus and Lactobacillus casei used in the present invention may be any of the known strains and these are commercially available.
It has been known that Lactobacillus bulgaricus grows very well in cow milk but not in soybean milk. Therefore, when it was inoculated to soybean milk together with lactic acid-bacteria of the genus Bifidobacterium, it could not grow well enough and therefore, could not improve the flavor. The inventors however found that, when either Lactobacillus acidophilus or Lactobacillus casei is inoculated into the soybean milk in addition to these other two bacteria, Lactobacillus bulgaricus grew well in the soybean milk and improved the flavor of the resulting fermented soybean milk.
In general, soybean milk fermented with a lactic-acid bacterium of the genus Bifidobacterium alone contains unfavorable components produced during fermentation, such as acetic acid and diacetyl, which generate a cheese like odor. According to the present invention, such unpleasant odor or flavor are masked or reduced by culturing the soybean milk with the combination of these three bacteria, and a pleasant fermenting flavor may be generated.
These three bacteria may be inoculated all together to the soybean milk for lactic-acid fermentation, or the soybean milk may be fermented with the respective bacterium separately and then mixed together. It is preferred to inoculate them together.
According to the present invention, these bacteria may be purely cultured before inoculation to form so to speak xe2x80x9cbulkxe2x80x9d starters. Alternatively, freeze-dried bacteria or freeze-dried concentrated bacteria may be inoculated directly into the soybean milk.
The dosage of the inoculation may vary depending on the temperature or time of the fermentation step. For example, the total amount of bulk starters inoculated to the soybean milk may be about 0.5 to 15%. The freeze-dried bacteria may be inoculated so that the starting concentration of total lactic-acid bacteria is above about 105 cells/ml.
Then, the inoculated soybean milk may be fermented at about 20 to 50xc2x0 C., for about 3 to 48 hours, preferably at about 25 to 45xc2x0 C. for about 4 to 24 hours. Fermentation may be carried out with any conventional device or fermentation tank used for producing fermented cow milk.
In one embodiment of the present invention, the soybean milk may be fermented under the condition that the fermentation atmosphere is substantially free of oxygen, that the oxygen concentration of the atmosphere is lower than 5.0%, preferably lower than 3.0%. By fermenting under such a low oxygen atmosphere, the fermented soybean milk of this embodiment may be free from unfavorable odor peculiar to soybeans, and can obtain a body like that of cow milk and a good flavor.
In order to adjust the oxygen concentration during fermentation, the soybean milk inoculated with the lactic-acid bacteria may be introduced into an airtight container and fermented therein so that there is no room for air. Alternatively, the oxygen concentration of the atmosphere, such as the headspace of the container or fermentation tank, may be reduced.
In order to reduce the oxygen concentration of the atmosphere, deoxygenating agent, evacuation procedure or gas exchanging procedure may be employed and the gas exchanging procedure is most preferable. In the present invention, the gas used for exchanging the atmosphere is not limited. For example, an inert gas such as rare gas, nitrogen gas and carbon dioxide can be used for this procedure. Nitrogen gas and carbon dioxide are preferable because they are safe for food.
During fermentation, the concentration of oxygen dissolved in the soybean milk is not so important as the oxygen concentration of the atmosphere, and may vary depending on the temperature of the soybean milk or the pressure of the atmosphere. Preferably, the concentration is below about 2.0 ppm. The lower the oxygen concentration of the soybean milk is, the better will be flavor of the product. In order to reduce the amount of oxygen dissolved in the soybean milk, a vacuum deodorization machine such as a vacuum chamber may be employed.
The obtained fermented soybean milk of the present invention may be stirred and cooled, and then introduced into a container to provide a soft type yogurt-like product, or homogenized and cooled to provide a yogurt-like drink product. The products obtained according to the present invention can be combined with any conventional flavor, sweetener, colorant and stabilizing agent as desired. In addition, the products can be combined with a fruit preparation to provide a fruit type product.
In one embodiment of the present invention, the fermented soybean milk is stored in a container having oxygen permeability of less than 100 ml/m2/24 hr/atom (at 25 xcexcm, 25xc2x0 C., 50% RH), preferably, less than 10 cc/m2/24 hr/atom (at 25 xcexcm, 25xc2x0 C., 50% RH). Due to the low permeability of the container, the lactic-acid fermented soybean milk can be protected from contacting outside oxygen and, therefore, the product can be protected from the generation of reverse odor of soybeans.
The container having such a low oxygen permeability may be made from materials such as glass (less than 0.1) or resins. Examples of resins include polyvinyl chloride (PVC)(1), poly vinylidene chloride (PVDC)(1), ethylene-vinyl-alcohol copolymer (EVOH)(2), polyethylene terephtalate coated with polyvinylidene chloride (K-PET)(20), ceramic vacuum evaporated PET (0.2), and aluminum vacuum evaporated PET (0.2) (each number after the name represents the respective oxygen permeability rate cc/m2/24 hr/atm (at 25 xcexcm, 25xc2x0 C., 50% RH)). The container may be any form as long as made of the materials listed above. It may be a container made from glass, plastic resin, plastic resin+paper plastic film, paper plastic film, metal such as aluminum, and metal+plastic film. The lid of the container should also be made from one of the above listed material. From the environmental point of view, however, some of these materials have disadvantages for example, used glass containers are difficult to collect and aluminum vacuum evaporation requires a high burning energy. The most preferable container is made from a combination of paper and plastic film having oxygen barrier property (so called multi layer structure). Examples of a plastic film having oxygen barrier property include ceramic vacuum evaporated PET (0.2 cc/m2/24 hr/ atm), EVOH-PET (2 cc/m2/24 hr/atm), K-coating PET (20 cc/m2/24 hr/atm) but are not limited to them.
According to the present invention, the soybean milk inoculated with the specified lactic-acid bacteria may be introduced into the above container, and fermented and stored. Alternatively, the inoculated soybean milk may be fermented in a fermentation tank and then the product may be added to the container.
In this embodiment, the good flavor of the lactic-acid bacteria fermented soybean milk can be kept over 2 weeks when stored in the cold, at a temperature between about 0 and 10xc2x0 C.
In the present invention, the lactic-acid bacteria contained in the fermented soybean milk should be active and the concentration of the active bacteria is preferably more than 1 million cells per 1 ml. In order to keep the good flavor of the lactic-acid fermented soybean milk longer, the concentration of bacteria other than lactic acid bacteria is preferably less than 10 cells per 1 ml. To eliminate contamination of the bacteria, it is preferable to add the lactic-acid fermented soybean milk to the container specified as above under a germ free condition, for example with the use of an aseptic filling up device.
It is preferable to fill up the container with the fermented soybean milk in order that the fermented soybean milk is prevented from contacting oxygen. In case there is some headspace in the container, the space is preferably filled with an inert gas for example, nitrogen gas. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wireless communications systems are becoming the preferred choices for the provision of transmission services for digital voice, video and data. Code division multiple access (CDMA) technology is one of the effective wireless access technologies for supporting variable and high data rate transmission services. As an example, wideband CDMA (WCDMA) is adopted in the standardization of the third generation partnership project (3GPP).
It is therefore envisaged that there is substantial business potential in the provision of Internet services through wireless communications. In the wireless Internet domain, most of the data is transferred from a base station (BS) to a mobile station (MS), thus making downlinks the dominant traffic link in the wireless Internet domain. This situation is also true of other data transmission applications, e.g., wireless multimedia communications. Therefore, it is important that the performance of downlinks in wireless communications systems, in particular CDMA-based systems, is improved.
In the downlinks of CDMA-based systems, all mobile stations within the same cell or sector use the same frequency bands and time slots but different spreading codes for data transmission. Spreading codes consist of two layers of codes, namely long scrambling and short channelization codes. The long scrambling codes are common codes assigned to all mobile stations within the same cell or sector. However, the mobile stations are allocated unique short channelization codes which are dedicated codes orthogonal to each other. To support multi-data rate transmissions in CDMA-based systems, two spreading methods may be used, namely the multi-code (MC) and orthogonal variable spreading factor (OVSF) methods.
Communication channels allocated to the mobile stations are referred to as downlink traffic channels (DTCHs), through which data symbols intended for the respective mobile stations are conveyed. In order to establish and maintain the connections between the base stations and mobile stations, common channels, namely a common pilot channel (CPICH) and a common control channel (CCPCH), are also allocated to each cell or sector for conveying the relevant information shared by all the mobile stations within the same cell or sector. The data symbols conveyed by DTCHs, CPICH and CCPCH are orthogonally spread using spreading codes into data-bearing spread signals, then synchronously multiplexed, and finally transmitted through the same physical medium as a transmitted signal. In multi-data rate transmissions, the orthogonality between the spreading codes for low- and high-data rate DTCHs and the CPICH and CCPCH is maintained.
There may be many tall obstacles such as buildings and hills situated between base stations and a mobile station, and a wireless channel is therefore well modeled as a wide-sense stationary uncorrelated scattering (WSSUS) channel. In a CDMA downlink transmission system, a transmitted signal arrives at a mobile station together with several time-delayed, amplitude-scaled variants of the transmitted signal which travel along multiple paths in the wireless channel. A CDMA receiver resolves the multipath wireless channel into several paths which convey these multipath signals known as rays, the time delays of which are multiples of a spread signal chip interval Tc, and each ray is subject to statistically independent Rayleigh fading. The resolved ray with time delay τ represents a group of multipath signals with time delays over an interval [τ−Tc/2, τ+Tc/2]. If there is only one resolved ray, a frequency non-selective fading channel is observed. However, if there is more than one resolved ray, the wireless channel is called a frequency selective fading channel.
If the wireless channel is frequency non-selective, data symbols may be recovered at the mobile station using a conventional despreader without any intra-cell interference. However, a wireless channel is practically frequency selective because of the large time dispersion or time difference between the multipath signals arriving at the mobile station.
A conventional CDMA receiver in a mobile station employs a Rake combiner to coherently combine the despread outputs from all resolved rays determined by a path searcher, thereby recovering the transmitted signal.
A Rake receiver provides for path diversity and captures all resolved rays. However, there are two kinds of interference associated with a Rake receiver for CDMA downlink transmission, namely inter-finger interference (IFI) and multiple access interference (MAI), both of which are due to the frequency selectivity of the wireless channel. The capacity of a CDMA system with Rake receivers is limited by IFI and MAI.
In order to improve the performance of CDMA downlink transmission, CDMA receivers that provide for suppression of IFI and MAI are needed. When the delay dispersion is large, a frequency selective fading channel may be transformed into a frequency non-selective fading channel through channel equalization. Therefore, equalization receiver is an effective CDMA receiver for recovering data symbols by restoring the orthogonality of the spreading codes, thus suppressing both IFI and MAI.
FIG. 1 shows a block diagram of a conventional equalization receiver 100 in a mobile station for CDMA downlink transmission. The conventional equalization receiver 100 includes a cell searcher 102, a code generator 104, a path searcher 106, a despreader 110, an equalizer 108, and a signal detector 112.
In the equalization receiver 100, the cell searcher 102 receives from a CDMA downlink system a transmitted signal and any corresponding rays using multiple antennas that may employ oversampling, and retrieves therefrom long scrambling codes relating to a cell or sector in which the equalization receiver 100 operates, and information relating to cell and frame synchronization. The code generator 104 using the long scrambling codes retrieved by the cell searcher 102, generates a combination of long scrambling and short channelization codes known as spreading codes relating to the common channels CPICH, CCPCH and the corresponding DTCH required by the equalizer 108. The path searcher 106 then provides the time delay parameters of several rays with largest received powers by using the data symbols intended for the CPICH, which is known to the equalization receiver 100, the long scrambling and short channelization codes, and the received signals.
The equalizer 108 is described in greater detail with reference to FIG. 2, where there are M physical channels obtained using multiple receiver antennas that may employ oversampling, each of which is defined as a subchannel that includes a linear finite impulse response (FIR) hj(n) with maximum delay relating to L number of taps. For example, M=4 physical channels may be achieved via four receiver antennas without over-sampling, or via two receiver antennas, each of which employs 2-times over-sampling.
In the equalizer 108, there are M linear FIR filters 202, gj(n), each corresponding to a physical channel with response hj(n). During operation, a received signal received via a physical channel j is passed to into a corresponding FIR filter 202 of length G thereby producing a filtering output zj(n). A signal combiner 204 then sums the output from each FIR filter 202, generating an equalization output signal z(n) for further processing by the despreader 110. Equalizer coefficients used in the equalizer 108 may be obtained, for example, by minimizing the difference, using the minimum mean-square-error (MMSE) method, between the equalization output z(n) and delayed variant of the received signal, x(n−u), where u is known as a reference timing. The path searcher 106 provides such a reference timing required by the equalizer 108 during operation.
The despreader 110 then despreads the output of the equalizer 108 using the spreading codes allocated to the mobile station. The signal detector 112 then recovers from the output of the despreader 110 data symbols intended for the mobile station.
In a conventional equalization receiver, the FIR filter length G is chosen to be greater than or equal to the subchannel length L, so that energy from all taps in the respective subchannel may be captured. The number of taps therefore is typically chosen to be equal to the subchannel length L. Taps are sampled outputs corresponding to different time delays from a continuous signal measured against units of time delays sampled at a sampling frequency, for example at chip rate sampling frequency, where the continuous signal represents the channel response of the wireless channel between the base station and mobile station. Only a single equalizer is required when G is chosen in this way, and the minimum total number of equalizer coefficients required for the operation of the equalizer in the conventional equalization receiver is ML, which is deemed very large for a wireless communications system.
Typically in a conventional equalization receiver with a large number of taps, noise is increased and convergence problems arise when the equalizer is implemented using adaptive algorithms. The least mean square (LMS) algorithm, a type of adaptive algorithm, is not suitable for the acquisition of equalizer coefficients because of the typically long convergence time relating to such an algorithm. Conversely, adaptive algorithms which involve a short convergence time, such as the recursive least square (RLS) algorithm, are considered too complex for applications with a large number of taps. If the adaptive algorithm diverges, or converges slowly, it is difficult to achieve the suppression of IFI and MAI, which is an important objective of an equalization receiver.
There is therefore clearly a need for CDMA downlink receivers that suppress IFI and MAI, employ a simple receiver structure, and apply a fast convergence algorithm for addressing the foregoing problems.
Specification Text:
In accordance with a first aspect of the invention, there is described hereinafter a code division multiple access downlink receiver for providing wireless communication via a wireless channel between a base station and a mobile station in which the receiver is implemented. The receiver comprises a plurality of subchannels whereof each conveys at least one signal received from the base station, and a cell searcher for receiving signals in the plurality of subchannels and retrieving therefrom a common code relating to a cell. The receiver also comprises a code generator for generating a set of common and dedicated codes relating to at least one communication channel using the output of the cell searcher, and a plurality of equalizers for receiving the code generator output and equalizing the received signals in the plurality of subchannels, wherein each of the plurality of equalizers includes a plurality of filters wherein each of the plurality of filters corresponds to each of the plurality of subchannels.
In accordance with a second aspect of the invention, there is described hereinafter in a code division multiple access downlink receiver, a method for providing wireless communication via a wireless channel between a base station and a mobile station in which the receiver is implemented. The method comprises the steps of providing a plurality of subchannels whereof each conveys at least one signal received from the base station, and receiving using a cell searcher signals in the plurality of subchannels and retrieving therefrom a common code relating to a cell. The method also comprises the steps of generating using a code generator a set of common and dedicated codes relating to at least one communication channel using the output of the cell searcher, and using a plurality of equalizers for receiving the code generator output and equalizing the received signals in the plurality of subchannels, wherein each of the plurality of equalizers includes a plurality of filters wherein each of the plurality of filters corresponds to each of the plurality of subchannels. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fueling nozzles for refueling an aircraft include “overwing” type nozzles and “underwing” type nozzles. The overwing type fueling nozzles are similar to a fuel or petrol station nozzles for refueling an automobile and include a spout that delivers the fuel through an opening above a fuel tank of the aircraft by means of gravity feeding. In contrast, the underwing type fueling nozzles are used when the fuel is pumped into the fuel tank of the aircraft through a single-point fueling port that is often located below the wing. The underwing type fueling nozzles are accordingly designed to be used with a dry break quick disconnect adapter. The dry break quick disconnect adapter allows the underwing type fueling nozzle to be disconnected from the adapter without spilling excessive amounts of the fuel by discontinuing a flow of the fuel through the nozzle when the underwing type fueling nozzle is not coupled to the adapter.
When using equipment for the refueling of an aircraft, it is frequently desirable to recirculate the fuel through the refueling system. The fuel may be recirculated through the refueling system to flush new hoses, following the replacement of a filter element, and for the testing of meters, additive systems, and interlocks, for example. The recirculation of the fuel may be accomplished by pumping the fuel through the fueling nozzle of the refueling system back into the fuel tank of the refueling system.
Many refueling systems already include or are easily adapted to include a dry break quick disconnect adapter acting as a recirculation inlet that is adapted to mate with an underwing type fueling nozzle to perform the recirculation of the fuel. Such dry break quick disconnect adapters are not adapted for use with an overwing type fueling nozzle having a traditional spout for delivering the fuel. Instead, the recirculation process requires that the overwing type fueling nozzle be placed into an inlet of the refueling system that delivers the fuel by gravity to the fuel tank of the refueling system. The recirculation of the fuel using the overwing type fueling nozzle may present a hazard in cases where accessing the inlet to the fuel tank of the refueling system is difficult such as when the inlet is located on the top of a truck-based tank. Additionally, the lack of a dry break interconnect between the overwing type fueling nozzle and the inlet may create the potential for splashing, spray, and the accumulation of fuel vapors, which also present potential hazards.
It would therefore be desirable to create an adapter for an overwing type fueling nozzle that allows the overwing type fueling nozzle to mate with a dry break disconnect adapter. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a music-generating system consisting of a host unit and a plurality of terminal units for generating music.
Music-generating devices such as `karaoke` units (units for generating musical accompaniment, i.e., the instrumental part without voice, to which people enjoy singing songs) generally include a memory medium for storing music data, e.g., magnetic tapes or optical disks. The music-generating device reads out specified music data from the memory medium according to external instructions and reproduces music corresponding to the music data.
The above conventional music-generating devices generally reproduce music corresponding to music data stored on the memory medium. Accordingly, frequent replacement of the memory medium is required for fulfilling various requirements of customers, for example, for regenerating newly released or available pieces of music. Shops or companies owning many music-generating devices such as `karaoke` devices have to conduct troublesome replacement for each memory medium. The frequent replacement of many memory mediums requires both time and cost.
Wherefore, the object of this invention is thus to provide an improved music-generating system for efficiently supplying newly available music data to a plurality of music-generating terminal units.
Other objects and benefits of the invention will become apparent from the detailed description which follows hereinafter when taken in conjunction with the drawing figures which accompany it. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a liquid crystal display device and a method of manufacturing a liquid crystal display device, and more specifically relates to a liquid crystal display device capable of reducing stress applied to a liquid crystal substance and preventing display defects caused by the stress, and a method of manufacturing the liquid crystal display device.
Along with the recent development of office automation systems, office automation (OA) apparatuses such as word processors, personal computers and PDA (Personal Digital Assistants) have been widely used. With the spread of such OA apparatuses, portable OA apparatuses that can be used in offices as well as outdoors are used, and there are demands for small-size and light-weight of these apparatuses. Liquid crystal display devices are widely used as one of the means to satisfy such demands. Liquid crystal display devices not only have small size and light weight, but also have a power saving feature, and are used in television applications in place of a CRT.
A liquid crystal display device comprises a liquid crystal substance sealed in a gap formed by placing two substrates having electrodes so that the electrodes face each other, and applies a voltage across the electrodes to control the light transmittance of the liquid crystal substance which is determined by the applied voltage. A TN (Twisted Nematic) liquid crystal which is used generally has a millisecond-order response speed to the applied voltage, and the response speed is sometimes abruptly decreased to a value near a hundred millisecond value, particularly, in a region with low applied voltage. Consequently, when displaying moving images (for example, 60 images per second) on a liquid crystal display device using a TN liquid crystal, the liquid crystal molecules can not move sufficiently and the images are blurred, and therefore the TN liquid crystal is not suitable for the display of moving images, such as multimedia applications.
Hence, liquid crystal display devices using a ferroelectric liquid crystal (FLC) or an anti-ferroelectric liquid crystal (AFLC) with a spontaneous polarization and a microsecond-order response speed to the applied voltage have been put to practical use. When such a liquid crystal capable of responding at high speed is used for a liquid crystal display device, it is possible to realize an excellent moving image display by controlling a voltage applied to each pixel electrode by a switching element, such as a TFT and an MIM, and completing the polarization of liquid crystal molecules within a short time.
A conventional liquid crystal display irradiates white light of a backlight composed of a discharge light or a light emitting diode from the rear face of a liquid crystal panel, and realizes a color display with color filters provided on the liquid crystal panel. However, if an FLC or an AFLC is used, since the FLC or AFLC has a high speed response, it is possible to perform time-dividing drive (field sequential drive) that realizes a color display by time-dividing lights of the respective light emitters (for example, red, green and blue (primary colors), or cyan, magenta and yellow (complementary colors)). Accordingly, one pixel can display red, green and blue colors, and it is possible, in theory, to realize a three times higher definition display compared to a liquid crystal display device using color filters.
An FLC is known to form a chevron structure, a bookshelf structure or a layer structure composed of a mixture of these structures. If the FLC is used as a liquid crystal substance, there is a drawback that the layer structure is easily broken by stress applied to the liquid crystal substance, such as an external force that changes the gap.
Therefore, in order to maintain the gap of a predetermined distance against an external force, a method in which adhesive columnar spacers are formed between the substrates is used in practical applications. FIG. 1 is a schematic plan view showing a conventional liquid crystal panel. A conventional liquid crystal panel 100 comprises an array substrate 101 and a counter substrate 102 functioning as a pair of insulating substrates made of glass or quartz with good transmittance in a visible light region. The peripheral portions of the array substrate 101 and counter substrate 102 are sealed with a seal member 104 and a closing member 105 through gap maintaining members (for example, columnar spacers) 103 which are provided in a display region 100a to maintain the clearance dimension (gap). The gap formed by sealing is filled with a liquid crystal substance 106 such as an FLC.
Thus, a technique was invented to maintain the gap of a predetermined distance by forming the adhesive columnar spacers 103 between the two substrates to exhibit effects not only against an external force acting in the direction of reducing the gap, but also against an external force acting in the direction of expanding the gap (see, for example, Japanese Patent Application Laid-Open No. 8-110524/1996).
However, if the adhesive columnar spacers 103 are used, the volume of the liquid crystal substance 106 sealed in the gap is determined at the time the liquid crystal is injected, and, when a temperature change occurs, stress is applied to the liquid crystal substance 106 due to the difference between a change in the volume of the liquid crystal substance 106 and a change in the capacity of the space maintained by the columnar spacers 103. If the columnar spacers 103 are formed at high density, cracks or defects 110 (see FIG. 1) due to the stress occur in the peripheral portion (interface 104a) in a predetermined direction because of the differences in the coefficient of linear expansion (hereinafter referred to as the expansion coefficient) and the modulus of elasticity between the display region in which the columnar spacers 103 are provided and the peripheral portion where the seal member 104 is provided, and the defects 110 enter the display region 100a and cause a problem of degradation of display quality.
For example, if a liquid crystal substance showing the phase transition sequence: isotropic phase (Iso phase)—chiral nematic phase (N* phase)—chiral smectic phase (Sc* phase) is used, the uniform alignment state of the Sc* phase is obtained by applying a DC electric field at the time of phase transition from the N* phase to the Sc* phase, and it is presumed that the defects 110 are caused by the difference in the volume shrinkage at the time of phase transition, namely, the difference between the expansion coefficient in the Sc* phase and the expansion coefficient of a panel component member. Note that the defects 110 tend to occur when the columnar spacers 103 are placed at high density, and it is presumed that the degree (the size (length), density, etc. of defects) is determined by not only the difference of the expansion coefficient of the liquid crystal substance 106 from that of the seal member 104, but also the difference of the expansion coefficient of the liquid crystal substance 106 from that of the columnar spacer 103.
Since the expansion coefficient and the modulus of elasticity are physical values varying depending on the environmental temperature, if a temperature change occurs in the environment where the liquid crystal panel 100 is used, the defects 110 may be caused by this change in the same manner as above. For example, when connecting a drive circuit to the liquid crystal panel 100, since a method in which a metal electrode (for example, gold) formed on a FPC and a metal electrode (for example, aluminum) formed on the liquid crystal panel 100 are connected by thermo-compression bonding is used, the defects 110 are caused by the heat. Note that the defects 110 sometimes disappear naturally with the passage of time, but, even when the defects 110 disappeared naturally, there is a possibility that the defects 100 are caused again by a temperature change in the environment where the liquid crystal panel 110 is used. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The embodiments are generally directed to tessellation in a graphics pipeline. More particularly, the embodiments are directed to balancing a workload in the graphics pipeline pre-tessellation.
2. Background Art
Display images comprise thousands of dots, where each dot represents one of thousands or millions of colors. These dots are known as picture elements, or “pixels”. Each pixel has multiple attributes, such as, color and texture attributes. Those attributes are manipulated and processed before being rendered on a display screen of an electronic device.
Pixels form graphical objects. Example graphical objects include points, lines, polygons, and three-dimensional (3D) solid objects. Points, lines, and polygons represent rendering primitives which are the basis for most rendering instructions. More complex structures, such as 3D objects, are formed from a combination or a mesh of such primitives. To display a particular scene, the visible primitives associated with the scene are drawn individually by determining pixels that fall within the edges of the primitives and manipulating the attributes that correspond to each of those pixels.
Because there are thousands, if not millions of primitives, the inefficient processing of primitives reduces system performance when complex images are rendered on a display screen. Conventional graphics pipelines process generated primitives from patches that include instructions for displaying pixels on a display screen. The patches, depending on size, are divided or combined into prim groups. Each prim group is sent to a shader engine for processing. A shader engine performs tessellation on each patch, and converts control points in each patch to multiple primitives. The number of primitives in each patch depends on a tessellation factor. A tessellation factor may be greater for patches processed by one shader engine in comparison to other shader engines. For example, the tessellation factor is greater for patches that appear closer on the display screen than the patches that appear further on the display screen.
Because tessellation occurs after patches are distributed to shader engines, the shader engines become unbalanced pre-tessellation. This causes one shader engine to process thousands of primitives, while other shader engines remain idle. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an ink composition, an ink set, and an image recording method.
2. Related Art
For color image recording materials, so-called subtractive three primary color dyes (dyes or pigments) and a black dye have been used to reproduce or record full color images. However, under the current circumstances, there is no dye with fastness having absorption properties capable of realizing preferable color reproduction regions and having resistance to various use conditions. Thus, improvement thereof has been strongly desired.
Ink jet recording methods have been rapidly popularized and are undergoing further development because the methods have advantages of low material costs, capability for high-speed recording, and low recording noise, and further allow color recording with ease.
The ink jet recording methods include continuous methods in which droplets are ejected in succession and on-demand methods in which droplets are ejected according to image information signals. In the ink jet recording methods, the droplets of an ink are discharged by a method of applying pressure to the ink by a piezo device; heating the ink to generate bubbles therein; using an ultrasonic wave; or aspirating the ink by an electrostatic force. As inks for ink jet recording, water-based inks, oil-based inks, or solid (melting-type) inks are used.
Colorants contained in the ink for ink jet recording are required to have excellent solubility or dispersibility in a solvent; to be capable of recording with a high density; to be excellent in hue; to have fastness with respect to light, heat, environmental active gases (e.g., SOx in addition to oxidizing gases such as NOx and ozone), water, and chemicals; to have excellent fixability with respect to an image receiving material and hardly blur; to be excellent in storability as an ink; to have no toxicity; to be high in purity; and to be available at a low price.
In order to satisfy these requirements, ink jet dyes have been vigorously developed which have fastness with respect to light, heat, and environmental active gases (e.g., Japanese Patent Application Laid-Open (JP-A) Nos. 2001-335714, 3-103484, 4-39365, and 2000-303009). Moreover, it is disclosed that fastness increases by the use of dyes having an oxidation potential nobler than 0.8 V (vs SCE) (e.g., JP-A No. 2004-331699). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Application
The present invention relates to a rotation angle detection apparatus that detects a degree of rotation of a rotary shaft from a reference angular position. In particular, the invention relates to a rotation angle detection apparatus which incorporates a magnet and in which the degree of rotation is detected based on changes in detected levels of magnetic flux.
2. Description of Related Art
Types of rotation angle detection apparatus are known in the prior art, which detect changes in rotation angle of magnets by utilizing magnetic sensors, and thereby detect amounts of change in rotation angle of a rotary shaft. A rotary shaft whose angular position is to be detected by such an apparatus will be referred to as the “output rotary shaft”. A type of rotation angle detection apparatus that enables detection of amounts of rotation angle (from a reference angular position) that exceed 360° has been described for example in Japanese patent publication number 2002-213910 (referred to in the following as reference document 1). Such a type of rotation angle detection apparatus will be designated in the following as an “over-360° rotation angle detection apparatus” in the following.
With the over-360° rotation angle detection apparatus described in reference document 1, two shafts carrying respective magnets engage respectively independently with an output rotary shaft (i.e., whose angular position is to be measured), and the respective rotation angles of the two magnet shafts are detected by corresponding magnetic sensors. Two rotation angle detection signals are thereby produced by these magnetic sensor,
With the apparatus of reference document 1, a first one of the rotation angle detection signals is a signal that varies monotonically over an entire range of measurement of the angular positions of the output rotary shaft. The second rotation angle detection signal varies in a periodic manner (i.e. successively changing by increasing from a minimum value to a maximum value) as the rotation angle of the output rotary shaft is successively increased throughout the measurement range, with a plurality of variation periods of the second rotation angle detection signal occurring over the measurement range.
Calculations are performed on the respective rotation angle detection signals from the two magnetic sensors, to obtain values of amounts of rotation of the output rotary shaft that exceed 360°.
However such a type of rotation angle detection apparatus is known to exhibit a lowering of detection accuracy as a result of the effects of temperature variations and of long-term usage. For that reason it has been proposed in Japanese patent publication number 2005-55297 (referred to in the following as reference document 2) to utilize a temperature detector to apply temperature compensation to a rotation angle detection apparatus of the type described in reference document 1. In addition it has been proposed in Japanese patent publication number 2004-53444 (referred to in the following as reference document 3) to store information beforehand, for the purpose of applying compensation for the effects of long-term usage to a rotation angle detection apparatus of the type described in reference document 1.
However such types of prior art rotation angle detection apparatus require the addition of temperature sensor elements (in the case of methods which apply temperature compensation), thereby increasing the overall cost of such an apparatus. In the case of an apparatus in which compensation is applied for the effects of long-term variations, actual changes in component characteristics as a result of long-term usage may vary substantially from predicted changes, due to the effects of manufacturing variations in the component characteristics, etc.
Hence, such prior art types of apparatus have the disadvantage of unreliability with respect to long-terminal accuracy of measurement. In addition, they require the use of a plurality of magnets and a mechanism which drives the magnets respectively separately for rotation, and so have the disadvantage of a relatively complex configuration, resulting in further increases in manufacturing costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
Known illumination means for displays, for example, of mobile applications, have a light source which is a tubular light source (CCFL; cold cathode fluorescent lamp), for example. The light emitted by the light source is coupled into a molded part with a wedge-shaped cross-section or cuboid shape on a front surface thereof. Especially due to the wedge-shaped embodiment of the molded part, a total reflection of the light beams at the phase boundary and, through corresponding scattering centers, an exiting of the light beams at the surface of the wedge-shaped molded part occur. The surface of the wedge-shaped molded part is arranged opposite to the display to be transilluminated. The surface of the molded part has such a structure that the light exits from the optical waveguide by refraction. The thus refracted light is collimated by several films provided between the molded part and the display and guided in such a way that an essentially white light arrives at the display. The structure of such illumination means is complicated, all the more so since several films must be inserted in one frame or the like, for example, and it must be ensured that shifting or the like of the films is avoided. Due to the complicated structure, the manufacturing cost is high. Further, there is a risk of functional defects.
Compositions containing various acrylates are known.
EP 0 478 261 A2 describes defined compositions containing up to 45% by weight of a partially fluorinated acrylate.
U.S. Pat. No. 4,511,209 A describes compositions containing either more than 9% by weight of photoinitiator or less than 50% by weight of partially fluorinated acrylate.
WO 92/21492 A1 describes compositions containing more than 5% by weight of photoinitiator.
EP 0 536 743 A1 describes compositions containing less than 50% by weight of partially fluorinated acrylate or less than 24.9% by weight of non-fluorinated acrylate.
EP 0 333 464 A1 describes compositions that contain spacer-free perfluorinated acrylates.
EP 0 196 212 A2 also describes compositions with spacer-free perfluorinated acrylates. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to electromagnetic field simulation technology used in developing and designing high-frequency products such as multilayer products, giga filters, and EMI (Electro-Magnetic Interference) elimination filters, and more particularly, the present invention relates to an electromagnetic field analyzer, an electromagnetic field analyzing program, and a storage medium for recording the program in which the simulation time is reduced.
2. Description of the Related Art
In recent years, the development and design of high-frequency products have been aggressively pursued, and, in order to perform an electromagnetic field analysis of high-frequency products, electromagnetic field simulation software has been commonly used. Generally, there are many instances where a finite element method is used for electromagnetic field analysis. In the electromagnetic field simulation using the finite element method, since it takes a long time to solve simultaneous linear equations, high-speed solving methods are desired. In particular, in the field of electromagnetic field analysis, since only a direct method called a Gauss' elimination method can be used, the problem of long calculation times is more serious.
However, a paper (R. Hiptmair, “Multigrid Method for Maxwell's Equations,” SIAM Journal of Numerical Analysis, vol. 36, no. 1, pp. 204–225, 1999), which is referred to herein as Non-patent document 1, and which was made public by Hiptmair in 1999, proved that a solution method called a multi-grid method can be also used in an electromagnetic field analysis and the method greatly reduces the calculation time as compared to a direct method.
In the multi-grid method, an analysis object is divided into two classes of fine elements and coarse elements, and the solution of fine elements is determined using the solution of coarse elements.
When simultaneous linear equations are calculated by the Gauss' elimination method, generally the calculation time is proportional to the third power of the dimensions of a matrix. Since the size of the dimensions corresponds to the number of elements, when the number of elements is doubled, the calculation time is 8 times as large, and, when the number of elements is 10 times as large, the calculation time is 1,000 times as large. When the Gauss' direct method is applied to only coarse elements, an approximate solution to fine elements is obtained by using the solution to coarse elements, and the Gauss' elimination method is not used, the calculation time for fine elements can be reduced to ⅛ and 1/1000, respectively. Since additional calculation time is added, although the practical calculation time is not reduced to such a great extent, the calculation time is always greatly reduced.
The multi-grid method can be broken down into two methods: a method using a nested mesh and a method using a non-nested mesh. However, since a prolongation matrix is incomplete as described later, the method using a nested mesh must be used.
FIGS. 12A and 12B show the division into elements using a nested mesh. FIG. 12A shows the division into elements using a nested mesh in the case of two-dimensional analysis where a coarse triangular element is uniformly divided to form fine triangular elements. Furthermore, FIG. 12B shows the division into elements using a nested mesh in the case of three-dimensional analysis where a coarse tetrahedral element is uniformly divided to form eight fine tetrahedral elements. As understood from FIGS. 12A and 12B, there are geometrical restrictions between coarse elements and fine elements when using a nested mesh.
Another prior art method is described in non-patent document 2: D. Dibben and T. Yamada, “Non-Nested Multigrid and Automatic Mesh Coarsening for High Frequency Electromagnetic Problems” IEEJ Investigating Research Committee Material, SA-02-34, pp. 71–75, 2002.
FIGS. 13A and 13B describe a first problem that occurs when using a nested mesh. FIG. 13A shows how a circle is divided into elements using a nested mesh to form coarse elements. Furthermore, FIG. 13B shows how coarse elements are divided into fine elements using a nested mesh. As understood from FIGS. 13A and 13B, a curved surface cannot be correctly expressed because of the geometrical restrictions of a nested mesh.
Furthermore, FIG. 13C shows how a circle is divided into elements using a non-nested mesh to form fine elements. As understood from FIG. 13C, since there are no geometrical restrictions when using a non-nested mesh, a curved surface can be correctly expressed.
FIGS. 14A to 14C describe a second problem that occurs when using a nested mesh. FIG. 14A shows how a square is divided into elements using a nested mesh to form coarse elements. Furthermore, FIG. 14B shows how coarse elements are divided into fine elements. As understood from FIGS. 14A and 14B, coarse elements cannot be partially divided into fine elements because of the geometrical restrictions of a nested mesh.
Furthermore, FIG. 14C shows how a square is divided into elements using a non-nested mesh to form fine elements. As understood from FIG. 14C, coarse elements can be partially divided into fine elements because there are no geometrical restrictions when using a non-nested mesh.
Most industrial products have curved surfaces, such as a circular cylinder and square surfaces, and they inevitably contain partially fine portions. Accordingly, it is difficult to apply a nested mesh to industrial products. On the other hand, since there are no geometrical restrictions in a non-nested mesh, fine elements can be freely formed. However, since the positional relationship is not systematic, it is difficult to make the electromagnetic field of coarse elements related to the electromagnetic field of fine elements. It is a prolongation matrix to make coarse elements related to fine elements, but no precise prolongation matrix has been found. This means that a multi-grid method cannot be practically used, and accordingly, nothing can be used except for a Gauss' direct method, which requires a lot of time, in the analysis of magnetic field. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
The present invention relates to a multilayer capacitor housing a capacitor element in an outer case, the capacitor element being comprised of a plurality of metal foils alternately stacked with electrically insulating separators interposed therebetween, the metal foils partly comprising connecting portions, and connecting the above-mentioned connecting portions respectively to a positive electrode external terminal and a negative electrode external terminal, and a method for manufacturing the multilayer capacitor.
(2) Related Art Statement
A multilayer capacitor using the electrolytic capacitor element formed by stacking or coiling the anode foil, where a metal foil made of valve metal such as aluminum is processed with surface enlargement for increasing its surface area and an oxide layer, which is a dielectric layer, is formed by anode oxidation, and the cathode foil, where a metal foil made of the above-mentioned valve metal such as aluminum is processed only with the above-mentioned surface enlargement, with an electrolytic paper interposed therebetween as the above-mentioned electrically insulating separator, the electrolytic paper being impregnated with an electrolyte, or a multilayer capacitor using the electric double layer capacitor element formed by stacking or coiling the paired polarizable electrode foils of an anode and cathode made by forming activated charcoal layers on both sides of a metal foil made of valve metal such as aluminum, with an electrolytic paper interposed therebetween as the electrically insulating separator, the electrolytic paper being impregnated with an electrolyte, have been conventionally known as the multilayer capacitor. The multilayer capacitors using such capacitor elements are made to be multilayer electrolytic capacitors by bundling together and stacking successively a plurality of connecting portions for each electrode, the connecting portion being protrudingly formed in the circumference of each electrode foil, connecting each bundled and stacked connecting portion to form a capacitor element, housing said capacitor element in an outer case, and sealing an aperture with a sealing material (Patent Document 1).
[Patent Document 1]
Patent Application Unexamined Publication No.H04-154106
For the multilayer electrolytic capacitors using the capacitor elements, it is necessary to electromechanically connect and combine each connecting portion protrudingly formed in the circumference of each metal foil. Stitch welding or ultrasonic welding is mainly used as the above method.
The stitch used for such stitch welding method must be increased in size in proportion as the number of stacked layers increases and the thickness of the stacked layers becomes thick. Thus, this method is not suitable for the case of connecting a plurality of connecting portions.
In addition, for the ultrasonic welding, etched layers for surface enlargement are formed on the surfaces of the anode and cathode foils stacked or coiled, or the oxide layer formed by a formation process is formed on the anode foil as stated above. Because carrying out masking treatment or the like so as not to form the etched layers or oxide layers only on the above-mentioned connecting portions complicates its process, the etched layers or oxide layers are formed on those connecting portions as well for the purpose of simplifying the process. In order to weld each aluminum that is the base metal of each connecting portion over the etched layers and oxide layers formed on the surfaces of both connecting portions to be connected, it becomes necessary to give a bigger ultrasonic vibration. Thus, if a big ultrasonic vibration is given to connect all the connecting portions in a good condition including the bottom of the successively stacked connecting portions, there may occur a problem that the top of the successively stacked connecting portions is ruptured due to the applied big ultrasonic vibration. Alternatively, if the applied ultrasonic vibration is controlled so as not to generate the rupture, the bottom of the successively stacked connecting portions can not be connected in a good condition.
Also, when metal foils comprising polarizable electrode layers made primarily of activated charcoal or carbon on their surfaces instead of the above-mentioned oxide layers formed by the formation process are connected, the same problem as above may occur.
Also, this ultrasonic welding may be carried out on the above-mentioned connecting portions where the etched layers or oxide layers are not formed by carrying out the masking treatment or the like. In this case, although the connecting portions are connected in a better condition compared with the ones comprising the etched layers and oxide layers, a boundary layer remains between the metal foils, each of which is the connecting portion, and said metal foils are easily broken away from their interface. Thus, the connection strength is not enough.
Accordingly, the present invention focuses on the above described problems, and intends to provide a multilayer capacitor capable of connecting the above-mentioned connecting portions in a good condition regardless of the etched layers, oxide layers, and polarizable electrode layers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention generally relates to a hub transmission for a bicycle. More specifically, the present invention relates to a multi-speed hub transmission with a plurality of power transmission paths. The present invention further relates to a method for shifting such a hub transmission.
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. Recently, the bicycle drive train has been extensively redesigned.
One type of a bicycle drive train utilizes an internally mounted multi-speed hub transmission for changing gears. Internally mounted multi-speed hub transmissions form part of the rear wheel of a bicycle. An internally mounted multi-speed hub transmission basically includes a hub axle that is mounted to the bicycle frame, a driver rotatably supported by the hub axle for receiving a pedalling force, and a hub shell rotatably supported by the hub axle. A power transmission mechanism is disposed between the driver and the hub shell transmitting rotational power from the driver to the hub shell through a plurality of power transmission paths. The hub transmission further comprises a shift mechanism that cooperates with the power transmission mechanism for selecting one of the pluralities of power transmission paths.
The power transmission mechanism typically includes a planetary gear mechanism with a plurality of sun gears, at least one ring gear and a planet gear carrier each of which is rotatably supported by the hub axle. The planet gears are rotatably supported by the planet gear carrier meshing with the sun gears and the ring gears. To change the power transmission paths and the corresponding gear ratios, the aforementioned various gear components are selectively non-rotatably coupled with each other by actuating the shift mechanism.
An example of this kind of a bicycle hub transmission is disclosed in European Patent Publication No. 1 323 627 A2. The hub transmission according to this publication is configured to provide for 8 speed stages. In speed stages 5 to 8, the driver is coupled with the planet gear carrier by a clutch, while in speed stages 1 to 4, the driver is uncoupled from the planet gear carrier. This change of the power transmission path when shifting between speed stages 4 and 5 is problematic in view of a desired shock-less shifting. To alleviate this problem, this publication proposes a particular timing of the coupling mechanisms that includes a shifting transition sequence. That is, when the bicycle is accelerating and the cyclist shifts from speed stage 4 to speed stage 5, the planetary gear mechanism is actuated to produce gear ratios corresponding to speed stages 3 and 7 prior to completing the shift to speed stage 5. Thereby, an undesired rapid acceleration of the pedals and a significant shock is avoided when the transmission completes the shift to speed stage 5.
When the bicycle is decelerating and the cyclist shifts from speed stage 5 to speed stage 4, a temporary transition from speed stage 5 to speed stage 7 and then to speed stage 3 prior to completing the shift to speed stage 4 is carried out to avoid a rapid deceleration of the pedals.
While the aforementioned shifting transition sequence reduces excessive acceleration or deceleration of the pedals when shifting between speed stages 4 and 5, the cyclist still feels a (reduced) shifting shock that still causes undesired discomfort.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved bicycle hub transmission. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention generally relates to bicycle hydraulic brake device. More specifically, the present invention relates to bicycle hydraulic brake (actuation) device that includes an adjustment mechanism for adjusting a free stroke of an operating member and for adjusting a rest position of the operating member.
2. Background Information
Bicycling is becoming an increasingly more popular form of recreation as well as a means of transportation. Moreover, bicycling has become a very popular competitive sport for both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. Specifically, bicycle braking systems have been extensively redesigned.
In recent years, bicycles have been provided with hydraulic braking systems. A hydraulic brake system typically includes a hydraulic brake actuation device, a rotor attached to one of the bicycle wheels and a brake caliper having a slot that receives the rotor therein. The caliper has brake pads that selectively contact the rotor in response to changes in hydraulic pressure in the hydraulic brake actuation device when an actuator such as a lever is moved. Bicycle typically include a front braking system to apply a braking force to the front wheel and a rear braking system to apply a braking force to the rear wheel.
A hydraulic brake actuation device typically has a housing mounted to the bicycle handlebar. The housing includes a master cylinder, a master piston disposed in the master cylinder and a brake lever pivotally supported on the housing. Pivoting movement of the brake lever provides leverage for moving the master piston in the master cylinder, which in turn causes movement of one or more slave pistons in the caliper. Typically, the brake pads are spaced apart from braking surfaces of the rotor until moved into braking contact with the rotor by movement of the slave piston(s).
Typically, when the brake lever of the hydraulic brake actuation device is moved, the slave cylinder(s) also move a corresponding amount. Such an arrangement can result in a strong braking force relatively early in the range of movement of the brake lever. Such a braking action can feel unnatural as compared to using cable actuated rim brakes. Moreover, with this arrangement, a higher than desired braking force may be applied (i.e., the brake action may slow the rider more quickly than desired). Accordingly, some hydraulic braking systems have been provided which have a free stroke. A free stroke is a range of movement of the brake lever during which the slave cylinder(s) do not move. While these braking systems utilizing a free stroke generally work well, the amount of free stroke is not always optimum for all riders or riding conditions. Additionally, typical hydraulic brake actuation devices utilize a set rest or start position for the brake lever. Unfortunately, the set rest or start position of typical hydraulic brake actuation devices is not always optimum for all riders or riding conditions.
Accordingly, more recently, some hydraulic brake systems have been provided that have an adjustable free stroke and/or rest position. While these adjustable systems generally work well, these adjustable systems have disadvantages. Specifically, the typical adjustable systems can be relatively complicated (e.g., utilize numerous parts) and/or expensive to manufacture and/or assemble. Moreover, with these adjustable systems, it can be relatively cumbersome to adjust the free stroke and/or the rest position. Furthermore, with these typical adjustable hydraulic brake systems, it can be difficult and/or even impossible to adjust the free stroke or rest position without also adjusting the other.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved hydraulic brake (actuation) device. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an apparatus for effecting the precise alignment of surfaces that are to be joined together. In particular, the invention relates to an optical system adapted for use in aligning an integrated circuit wafer or microchip with a patterned substrate.
The development of apparatuses for the precise alignment of surfaces that are to be joined together continues to be active. This is particularly the case in the area of microelectronic fabrication, where the patterns that are to be aligned are microscopic or nearly microscopic in scale. One such pattern may be on a surface of an integrated circuit wafer or an individual microchip and may comprise a variety of connectors, such as metallic wires or ribbons, or tiny bumps of solder, conductive epoxy or indium, that are formed thereupon. The complementary pattern typically would be on a surface of a substrate and would comprise a pattern of tiny pads or conductors to provide electrical connections to the microchip or to another patterned substrate.
In the commercial production of microelectronic devices, a die may be attached to a substrate during an automated process. In some approaches, the patterns of the die and substrate are aligned directly with each other, or reference marks for guiding alignment may be provided on the components or component carriers. Accurate alignment of components or reference marks may be facilitated using an optical system that provides enlarged images of the components superimposed one upon the other. A typical optical system is illustrated in FIG. 1. The optical system 1 includes an optical cube beam-splitter 2 and an image processor 3, which may contain components such as one or more cameras, a video monitor, and circuitry for signal processing and control of the assembly process. A die 4 having connector bumps 5a, 5b is suspended above the beam-splitter 2 by means of a die carrier 6. Suction applied through a port 8 holds the die 4 against the die carrier 6 during the assembly operations. A substrate 10 having electrical contacts 12, 14 is positioned beneath the beam-splitter 2 on a substrate carrier 16. Reference marks A, B are provided on the die 4 and reference marks Axe2x80x2, Bxe2x80x2 are provided on the substrate 10 to facilitate the accurate alignment, and hence, attachment, of the bumps 5a, 5b with the electrical contacts 12, 14, respectively.
Still referring to FIG. 1, the beam-splitter 2 is provided with two similar triangular optical prisms 18 and 20. The prism 18 has a transparent face 22, a 100% reflective mirror face 24 and a hypotenuse face 26, with the faces 22, 24 being perpendicular to each other. The prism 20 has a transparent face 28, a transparent face 30 and a hypotenuse face 32, with the faces 28, 30 being perpendicular to each other. Each prism 18, 20 also has a 45xc2x0 angle between the faces 24, 30 and the respective hypotenuse faces 26, 32. The prisms 18, 20 contact each other at their respective hypotenuse faces 26, 32, forming an interface 34 along the plane of contact. One or both of the hypotenuse faces 26, 32 is coated with a reflective material, such as a metal or a reflective dielectric material. Typically, these coatings provide the interface 34 with a reflectance of 50%, i.e, half of the light striking the interface 34 will be reflected and half will pass through the interface 34.
Light, provided by a source of illumination (e.g., a lamp) and striking the die 4, is reflected as an image of the die 4 comprising light beams 36a, 36b which pass through the face 28 of the prism 20 and strike the interface 34. A portion 38a, 38b of each light beam 36a, 36b is reflected by the interface 34 at a 90xc2x0 angle of rotation. The reflected portions 38a, 38b exit the prism 20 through the face 30 and is received by the image processor 3.
Light, provided by a source of illumination (e.g., a lamp) and striking the substrate 10, is reflected as an image of the substrate 10 comprising light beams 41a, 41b which pass through the face 22 of the prism 18 and strike the interface 34. A portion 43a, 43b of each light beam 41a, 41b is reflected by the interface 34 at a 90xc2x0 angle of reflection and is reflected back to the interface 34 by the mirror face 24, thereby being transmitted to the image processor 3.
The resulting image, viewed at the face 30 of the prism 20, comprises images of the die 4 and the substrate 10 superimposed upon each other. Image processing software can be used to determine the relative locations of the reference marks A, B relative to the reference marks Axe2x80x2, Bxe2x80x2 respectively, and to signal an associated control system to move the die carrier 6 and/or the substrate carrier 16 until the reference marks A, B are accurately aligned with the reference marks Axe2x80x2, Bxe2x80x2, respectively.
The alignment method described above has various disadvantages and shortcomings. For example, with reference to FIG. 1, portions 40a, 40b of the light beams 36a, 36b (i.e., the image of the die 4) pass through the interface 34, project an image of die 4 onto the substrate 10, and are then reflected back to the beam splitter 2 from the substrate 10. Similarly, portions 45a, 45b of the light beams 41a, 41b (i.e., the image of the substrate 10) pass through the interface 34, project an image of the substrate 10 onto the die 4, and are then reflected back to the beam-splitter 2 from the die 4. These reflected images create interference fringes or blurring of the image received by the image processor 3. Such effects can increase the difficulty of accurately aligning the die 4, and the substrate 10 with each other.
One approach to overcoming this problem is to generate separate images of the die 4 and substrate 10, and combine the images digitally. For example, if the interface 34 were made to be 100% reflective, the image processor 3 would receive only the image of the die 4 at the face 30 of the prism 20. A second image processor would be provided to capture the image of the substrate 10 at the face 24 of the prism 18 (which is made to be transparent), and the two images would be superimposed by digital manipulation (see, e.g., U.S. Pat. No. 4,899,921 to Bendat, et al.). Besides the increased cost of equipment to capture and combine two images, it would be necessary to carefully calibrate the image processors to accurately track the positions of the die carrier 6 and the substrate carrier 16 relative to each other.
The present invention overcomes the disadvantages and shortcomings of the prior art discussed above by providing a new and improved optical device adapted to superimpose the image of a die positioned at one side of the device and the image of a substrate positioned at an opposite side of the device. In one embodiment, the device comprises a plurality of reflective surfaces arranged so that the superposition of images takes place at a partially reflective surface within the probe. The superimposed image is displaced laterally from the die and the substrate. Neither the superimposed image nor the individual images of the die or the substrate is projected onto either component. Preferably, the optical device comprises a pair of right triangular prisms, each having a mirror hypotenuse face, a pentaprism having a pair of opposed inclined mirror faces, and an optical cube beam-splitter comprising the partially reflective surface.
In another embodiment, the optical device is a component of a single-camera optical probe for use in aligning the die with the substrate. The camera receives the superimposed image of the die and the substrate together that is produced at the partially reflective interface, and converts the image to a digital signal. The image received by the camera can, thereby, be monitored by image recognition software or by an operator to observe and correct the alignment of the die and the substrate. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various means have been used in the past to produce hidden or covert images. The most obvious utility for such covert images is perhaps the use of secret messages by agents of a political entity. Use of such covert images, however, is not necessarily primarily used for espionage, but are also used as an aid in prevention of fraudulent or counterfeit negotiable and/or non-negotiable documents and for determining winners in certain kinds of games and contests.
In the prior art, one known method for providing a covert image is to print a document with a background pantograph image, which contains a chemical ingredient which changes color when a bleach solution or other "ink" eradicator is applied. This means is not desirable as the application of a second chemical ingredient is necessary in order to cause the image to become visible. Thus, this means would not be suitable, for example, for games or contests, in which the general public desiring to reveal the covert image would not have access to such a chemical.
Another method known in the prior art is to print a document with an ink which contains a component which is colorless in visible light, but which fluoresces in a visible color when exposed to ultraviolet light. This method is also undesirable, in that it requires the party desiring to reveal the covert image to have access to additional equipment, i.e. a source of ultraviolet light.
A third manner known in the prior art to obtain a covert image is to print an image form on a document with an ink containing an abrasive pigment. When a coin or other metallic instrument is rubbed over the image, metal particles sare removed from the rubbing instrument and retained on the image, thus darkening the image. This method has the disadvantage that it is not possible to totally hide the image. The image which is intended to be covert can be seen to some extent, thus making it inappropriate for most end uses.
A fourth method of preparing covert images is to print an image on a substrate and then apply an opaque coating over it to hide it. The image is later made visible by scratching or rubbing away the overcoating to expose the image. This method is undesirable in view of the mess that is made by the scratched off coating. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is related to the invention disclosed in copending U.S. patent application Ser. No. 07,419,367 of MacLane et al., entitled "Method and Apparatus for Interlaced Printing", assigned to the same assignee as the present application.
The preferred apparatus for and method of practicing the present invention is associated with an ink jet printer wherein a print head scans a print medium, most typically a sheet of paper, by shuttling back and forth across the sheet of paper or by moving continuously along the sheet of paper which is held against a rotating drum. Images are formed by selectively depositing ink deposits or pixels which are located on lines and in columns. The present invention however is equally applicable to any printing process wherein a print head travels along parallel lines relative to a print medium to form a desired final image, whether that image be graphic or textual.
Early scanning print heads contain a single nozzle per color of printing. This nozzle is positioned adjacent a sheet of paper. A print head carriage then moves relative to the paper one line at a time depositing ink pixels at selected pixel locations until the entire image area has been scanned.
The length of time that it takes to make the image on the page depends on the rate of travel of the head relative to the paper and the density of pixels, and therefore lines, desired in the final image. In many commercial applications it is desirable to make the pixels small and dense enough so that the human eye during normal unaided viewing is unable to distinguish between the pixels, thereby making the image appear to be formed of continuous lines. A pixel density of 300 dots per inch (DPI) is common. This means that in order to print one inch of image across a page, 300 lines are required. Thus, for an eleven inch page, 3300 lines are required. If the print head can make ten passes over the page in one second, it would take 51/2 minutes to print the page one line at a time. This time can be reduced by printing a U.S. standard 81/2.times.11 inch sheet of paper lengthwise. This would reduce the printing time to 41/4 minutes.
One approach which has been used to reduce the printing time even further is to put multiple printing nozzles on a single printing head so that a plurality of lines are printed simultaneously. An example of a thermal printer-plotter system which has thermal resistor elements which each form pixels and which are provided in an array of adjacent elements is described in U.S. Pat. No. Re. 30,743 (originally U.S. Pat. No. 4,070,680) reissued on Sept. 15, 1981 to Shelley et al. The present invention is also usable in this type of system.
It would appear that the printing time can be reduced to any figure, at least conceptually, by making heads with any desired number of nozzles. This is conceptually possible with thermally driven jets, although the structure becomes very complex. However, it is very difficult to mount piezoelectrically driven jets on the same head so that they print in the same column on adjacent lines. A conduit connected to a reservoir of ink and controls must be connected to each nozzle. When three colors plus black are used, four jets per line are required. As the number of jets is increased, the physical requirements of head construction becomes very limiting.
In order to overcome the limitations of placing nozzles at single-line spacings, the concept of interlaced printing was developed. Representative of conventional interlaced printing are U.S. Pat. Nos. 4,069,485 issued to Martin for "Bidirectional Ink Jet Printer With Moving Record Receiver"; 4,112,469 issued to Paranjpe et al. for "Jet Drop Copying Apparatus"; 4,131,898 issued to Gamblin for "Interlacing Recorder"; 4,272,771 issued to Furukawa for "Ink Jet Printer with Multiple Nozzle Print Head and Interlacing or Dither Means"; 4,593,295 issued to Matsufuji et al.; and 4,630,076 issued to Yoshimura for "Ink-On-Demand Color Ink Jet System Printer".
FIG. 1 shows a simplified design of an exemplary printing head 20 having a plurality (five) of nozzles 22 spaced for printing simultaneously a plurality of spaced lines. Head 20 is positioned adjacent a drum 24 having a print medium, such as a sheet of paper 26, mounted on it. As the drum and sheet rotate, the head is moved at a constant velocity longitudinally along the drum so that all lines are printed. During each full revolution, the head advances the equivalent of 5 line spacings. Thus, on each subsequent revolution, the upper lines between lines printed on the prior revolution are printed in addition to new spaced lines, as shown. This head embodiment is also shown in FIG. 3 for printing by scanning back and forth across a planar print medium.
In these figures, one line spacing between the centers of adjacent lines is the inverse of the dot-per-inch density, or 1/DPI, two line spacings is 2/DPI, etc. In FIG. 2, head 20 is shown in dashed lines at the position at the edge of the sheet after completing a series of lines. The head is also shown in solid lines, in the same position on drum 24, ready to begin the next set of lines. It can be seen by the arrows that two lines of the next set of lines are interlaced with the preceding set of lines. All of the preceding lines are printed. Continued drum rotation results in all of the lines on sheet 26 being printed.
A printing system equivalent to that of FIGS. 1 and 2 is shown in FIG. 3. In this embodiment a head 30 with nozzles 32 prints alternate lines on sheet 34. However, rather than sheet 34 being on a drum and rotated, it is moved both longitudinally and laterally relative to head 30. Normally, the head shuttles back and forth across the face of sheet 34 as the sheet is advanced. After each set of lines is printed, head 30 is shifted down the sheet by an amount shown by arrows 36 and 38 which are equal in length to the width of 5 lines of print. Thus, typically head 30 is stopped at the end of each scan pass, the sheet is shifted, and the head is driven across the sheet in a reverse direction.
It can be seen that the embodiment of FIG. 3 provides in effect the same printing operation or method as that of FIGS. 1 and 2. The letters at the top of the respective head positions represent the passes in alphabetical sequence. Corresponding letters are applied to the beginning of lines printed during each pass.
In such systems, pixel data normally comes to a printer from a controller or data source in strict raster-scan format, in which the upper left-hand pixel is the first in the data stream, the next one to the right arrives next, and so on until the end of the line. The next pixel in the data stream is then the first one in the second line of the image, and the cycle repeats until the end of the image is reached. In the case of print heads which print on more than one line at a time, it is necessary to rearrange this data before it is sent to the print head so that the resultant print correctly duplicates the desired image. The resequencing scheme must be able to generate the data elements for each head nozzle at each head location.
In order for the data reformatting unit to function, as a minimum, all of the data for printing a set of pixels for a given head position must exist in a memory. Conventionally, a memory is selected which is capable of storing the entire set of data elements defining the pixels for an entire image. In this way, there is a one-to-one correspondence between pixel location on the print medium and address locations within the memory. The selection of data elements for each head position then is based simply on a mapping of the printing element positions on the memory. Such memories, however, are very large and have a correspondingly high cost. It is desirable to provide printing in a manner which will require a reduced memory size while maintaining correspondence between the memory locations and head printing elements for each head position during printing.
U.S. Pat. No. 4,069,485 issued to Martin shows an alternative system wherein lines on a document are scanned, fed into a memory, and read out to a print head for printing in the same order per line as the document was scanned. Yet another system is shown in Paranjpe et al., U.S. Pat. No. 4,112,469 in which the pixels are printed as soon as they are scanned. These systems require synchronization of scanning and printing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to sensing apparatus and, more particularly, to methods and apparatus for sensing a particular piece of electronic equipment which may be attached to a computer system capable of operating with many different types of equipment.
2. History of the Prior Art
Personal computers are designed to be used by persons of varying capabilities. For example, they may be used persons having no background in computer operation or theory whatsoever or by persons who themselves design computers. One way to make a single type of computer appeal to persons having a very broad spectrum of backgrounds is to design the computer to hide from the operator many of the technical details necessary to the operation by performing those details automatically. The line of MacIntosh personal computers manufactured by Apple Computer Company, Cupertino, Calif., emphasizes this philosophy in its design.
One way that this is accomplished in certain of the MacIntosh computers is to make the computers able to determine the various pieces of peripheral equipment connected to the central processing unit so that the operator need not do this during system set up. For example, the bandwidth, number of lines, numbers of pixels per line, height, and width are among the characteristics which vary from monitor to monitor. It is necessary for the central processing unit to know the characteristics of the particular output display monitor to which it is connected in order to present the information correctly on the display monitor. One method of automatically telling the central processing unit that a particular video output monitor is attached is to provide a three wire connector between the main body of the computer and the video output monitor. The three wires allow eight distinct binary numbers to be sensed by the central processing unit, each of which is used to indicate a different monitor.
However, with the growth of this particular line of computers, it has become apparent that many more than eight monitors may be used with these computers. Consequently, provision must be made for indicating to the central processing unit that one of a much larger number of monitors is connected to provide output for the system. Moreover, because the three wire system is already implemented for a large number of systems in use, it is very desirable that the three wire system continue to function in the same manner to indicate that one of the already designated output monitors is connected yet provide the additional facility to indicate the presence of many additional monitors. In addition, the lack of more pin-out terminals on particular pieces of equipment already set to provide three terminals for such a detection system, emphasizes the need to maintain the three wire design. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an apparatus for distributing sheets in a predetermined sequence into a plurality of collection pockets arranged in a side-by-side row in a frame positioned beneath a horizontally moving belt extending over approximately the whole length of the frame.
The moving belt provides a sheet conveyor arrangement comprising one or more endless belts, a sheet deflecting device movable in a step-wise manner along the belt and at least two guide rollers tangent with a sheet transport path. At least one endless belt is guided on belt rollers and a lower run of the belt rides on the guide rollers and extends in the transport path. The sheet deflecting device includes at least one deflector roller movable between a raised position and a lowered position between the guide rollers for deforming the lower run of the belt into a U-shaped loop, or for acting directly against the sheet, for diverting the sheet from the transport path into a pocket, as fully disclosed in the above-identified application.
The foregoing device affords improved sheet transport at higher speeds and improved reliability of operation. With further reference to the above device, the guide rollers are arranged side-by-side in a horizontal plane such that the lower run of the endless belt in contact with the peripheries of the guide rollers provides only line contact with the guide rollers.
With extremely high conveyor speeds, positive transport of the sheets is not assured at all times since there is insufficient radial pressure between the belt and the guide rollers when the sheets pass therebetween. Therefore, the frictional force exerted against the sheets being transported is also insufficient or non-uniform. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to anode monitoring systems and anode monitoring methods for monitoring the integrity of anodes provided on a metallic structure for cathodic protection purposes. Examples of such structures are pipelines and components used with pipeline systems such as trees, manifolds and processing plants. This invention also relates to subsea pipeline power transmission systems, methods and apparatus.
The term subsea is used in this application as this is conventional terminology, however, it will be understood that this covers any underwater situation.
A subsea pipeline is typically protected by the use of cathodic protection. This means that sacrificial anodes are disposed at spaced locations along its length. The continued presence and effectiveness of the anodes is essential to the functioning of the cathodic protection. Thus, to ensure the continued integrity of the pipe itself, the anodes must be regularly inspected. At present this is either done by the use of remotely operated vehicles and/or potential surveys. Each of these methods is extremely costly and can only be performed when weather conditions allow.
In many circumstances where subsea pipeline systems are used, there is a desire to operate equipment at locations which, in the general sense, are remote. That is to say, although the equipment is situated adjacent to the pipeline itself it is not near any other facility or infrastructure. Such pieces of equipment might, for example, be sensors which monitor the integrity or operation of the pipeline system.
One of the problems with such remote pieces of equipment is providing a suitable power source. Whilst batteries can be used these are unattractive for various reasons including their limited life, their expense and environmental concerns.
It is an object of this invention to provide an anode integrity monitoring technique which alleviates at least some of the problems of the existing techniques.
It will be appreciated that the anodes may become non-effective in a number of ways, for example the anode may become totally detached from the pipeline, it may lose effective electrical contact with the pipeline or may have disintegrated to such an extent that it ceases to be effective. It is desirable to be able to detect when any of these events has occurred.
It is another object of the present invention to provide methods, systems and apparatus which allow the supply of power to remote equipment in subsea pipeline systems.
According to a first aspect of the present invention there is provided an anode monitoring system for monitoring the integrity of anodes provided on a metallic structure for cathodic protection purposes comprising a signal circuit having at least one signal path comprising the metallic structure and a selected anode whereby the characteristics of the signal circuit depend on the effectiveness of the selected anode, signal generation means for generating and applying a signal to the signal circuit, and a central station for monitoring signals on the signal circuit to thereby determine whether the selected anode is effective.
According to a second aspect of the present invention there is provided an anode monitoring method for monitoring the integrity of anodes provided on a metallic structure for cathodic protection purposes comprising the steps of:
generating a signal and applying said signal to a signal circuit, the signal circuit comprising at least one signal path comprising the metallic structure and a selected anode whereby the characteristics of the signal circuit depend on the effectiveness of the selected anode; and
monitoring signals on the signal circuit at a central station to thereby determine whether the selected anode is effective.
Preferably the signal generating means is arranged, when the selective anode is effective, to apply a signal to the signal circuit which is indicative of the effectiveness of the selected anode.
Preferably the signal generating means, or at least one component thereof is disposed at the selected anode.
The absence or defectiveness of the selected anode may be detectable as a break in the signal circuit. The break in the circuit may be detectable as the result of an inability to apply a signal to the signal circuit and/or an inability to receive a signal from the circuit. The absence or defectiveness of the selected anode may be detectable due to the absence of an expected signal. The expected signal may be that resulting from a change in the effective impedance of the signal circuit.
The signal circuit may comprise a return path via earth. Preferably the selected anode, when effective, provides a conduction path from the metallic structure to earth. Where the selected anode provides a path to earth, the absence or defectiveness of the selected anode may be detectable as the loss of an earth connection.
The signal circuit may comprise impedance means. The impedance means may be disposed between the selected anode and the remainder of the metallic structure. The impedance means may be provided in series between the selected anode and the metallic structure.
The impedance means may comprise isolation means.
The impedance means may comprise inductance means. The impedance means may comprise filter means. The impedance means may be arranged to give a high impedance to time varying signals within one or more selected ranges of frequencies and a low impedance to signals outside the selected range or ranges. The impedance means can be arranged so that the real part of the impedance is substantially zero. This means that there is little or no attenuation of the dc components of signals passing through the impedance means.
The use of inductance means and/or filter means has advantages when the metallic structure is used to carry signals because these means can be chosen to offer high impedance to the time varying signals used for signalling thereby reducing losses, whilst offering low impedance to the currents used for cathodic protection.
Transmitting means and receiving means may be provided for allowing data to be transmitted along the metallic structure. The transmitting and receiving means may be provided to assist the anode monitoring operation and/or to provide a distinct data transmission function.
The transmitting means and/or receiving means may be connected across the impedance means and arranged to transmit and/or receive signals across the impedance means.
Where signals are received across the impedance means, the use of filter means as the impedance means has an additional advantage that noise generated outside the frequency band of interest will be attenuated before it enters the receiver.
In some embodiments the signal generating means comprises transmitting means, the signal circuit comprises an earth return path so that the transmitting means requires an earth connection and the selected anode is arranged, when effective, to provide the earth connection so allowing transmission of a signal indicative of the anode""s effectiveness which is detectable at the central station. When the selected anode is defective or absent the transmitting means has no earth reference so that no signal is transmittable by the transmitting means. Therefore if the signal is absent it can be determined that the selected anode is defective or absent. In such embodiments the transmitting means is preferably connected across the impedance means.
In other embodiments the signal generating means comprises reference signal generating means arranged to apply a reference signal to the signal circuit and effective impedance varying means for varying the effective impedance of the signal circuit in accordance with data to be transmitted, the central station comprises monitoring means for monitoring changes in the reference signal caused by varying the effective impedance of the signal circuit and the signal circuit is arranged such that defectiveness or absence of the selected anode causes a break in the signal circuit whereby non-effectiveness of the selected anode is detectable at the central station due to the absence of changes in the reference signal.
In such embodiments the reference signal generating means may be arranged to be locatable at a position which is remote from the selected anode. The impedance varying means may be located adjacent the selected anode.
Preferably the signal circuit comprises a plurality of signal paths each comprising the metallic structure and a respective anode. The subsidiary features defined above in relation to the selected anode apply equally to each of the respective anodes in a system with a plurality of signal paths. Independent signal generating means or at least one independent component of the signal generating means may be disposed at each anode.
Different data and/or a different signal and/or a different frequency may be associated with each of the respective anodes. The system may be arranged so that signals associated with each anode are generated at different times. The signals may be randomly generated. In this way, for example, when a particular anode is non-effective and hence its associated data/signal is not received at the central station it is possible to determine which anode it is which is non-effective.
According to a third aspect of the present invention there is provided a data transmission system comprising transmitting means, receiving means and a metallic structure which is primarily intended for another purpose but which in use acts as a signal channel between the transmitting means and the receiving means, wherein the metallic structure includes at least one anode provided for cathodic protection purposes and impedance means are disposed between the metallic structure and the anode.
The data transmission system may comprise a signal circuit comprising the metallic structure and a return path. The return path may be via earth. The signal circuit may comprise the anode. Preferably the anode provides a path from the metallic structure to earth.
The impedance means may be provided in series between the respective anode and the metallic structure.
The impedance means may comprise inductance means. The impedance means may comprise filter means. The impedance means may be arranged to have a high impedance to time varying signals within one or more selected ranges of frequencies and a low impedance to signals outside the selected range or ranges. The use of the inductance means or filter means gives the advantages discussed above.
According to a fourth aspect of the present invention there is provided apparatus for use with a metallic structure in carrying out the first, second or third aspects of the invention.
In all of the above aspects of the invention the metallic structure may comprise a pipeline, for example, a subsea pipeline of the type used for conveying oil or gas. The metallic structure may comprise a processing plant and/or a tree and/or a manifold.
According to a fifth aspect of the present invention there is provided a subsea pipeline power transmission system comprising a pipeline, an electrical power supply connected to the pipeline at a first location, and connection means provided on the pipeline at a second location for connection of a load to the pipeline to allow the load to receive electrical power from the power supply via the pipeline wherein the pipeline has a plurality of cathodic protection anodes, each of which is electrically connected via respective impedance means to the pipeline.
According to a sixth aspect of the present invention there is provided a method of subsea pipeline power transmission along a pipeline having a plurality of cathodic protection anodes comprising the steps of:
applying electrical power to the pipeline at a first location; and
electrically connecting a load to be supplied to the pipeline at a second location;
wherein each anode is electrically connected via respective impedance means to the pipeline.
According to a seventh aspect of the present invention there is provided apparatus for use in a subsea pipeline power transmission system or method comprising:
an anode arrangement comprising, a sacrificial anode arranged for mounting on a pipeline and impedance means having one terminal connected to the anode and another terminal arranged for connection to said pipeline; and
an electrical power supply arranged for electrical connection to a pipeline.
According to an eighth aspect of the present invention there is provided an anode arrangement for use in a subsea pipeline power transmission system, the arrangement comprising, a sacrificial anode arranged for mounting on a pipeline and impedance means having one terminal connected to the anode and another terminal arranged for connection to said pipeline.
The anode arrangement may include further terminals allowing the connection of a load across the impedance means.
The impedance means may comprise inductance means. Preferably the impedance means comprises filter means. The impedance means, especially when comprising filter means, may be arranged to give a high impedance to time varying signals within one or more selected ranges of frequencies and a low impedance to signals outside the selected range or ranges. The impedance means can be arranged so that the real part of the impedance is substantially zero. This means that there is little or no attenuation of the dc components of signals passing through the impedance means.
The use of inductance means and particularly filter means has advantages when the metallic structure is used to carry power currents because these means can be chosen to offer high impedance to the time varying signals used for power supply thereby reducing losses, whilst offering low impedance to the currents used for cathodic protection. Minimising losses is particularly important when transmitting power rather than merely trying to detect a signal. Limiting loss to a realistic level is necessary to give a practical system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an automatic transmission for use in a vehicle, and more particularly relates to a hydraulic fluid pressure control system for controlling the engagement of the gear speed stages of such a transmission.
Various automatic transmissions for use in vehicles are well known. Such an automatic transmission generally comprises a gear transmission mechanism which comprises a plurality of friction engaging mechanisms, and one or another of a plurality of gear speed stages is achieved by selectively providing operating fluid pressures to various ones of the friction engaging mechanisms. Further, various hydraulic fluid pressure control systems are well known for controlling said selective supply of operating fluid pressures to the friction engaging mechanisms. Such a hydraulic fluid pressure control system generally comprises: a source of hydraulic fluid pressure such as a pump; a line fluid pressure control valve which modifies the fluid pressure supplied from the fluid pressure source and which produces a line fluid pressure which is regulated to an appropriate line fluid pressure level; a throttle fluid pressure control valve which modifies the line fluid pressure and which produces a throttle fluid pressure which increases in accordance with increase of a parameter representative of the load upon the internal combustion engine of the vehicle--in most cases, in accordance with increase of throttle opening of the engine, which is taken as indicative of engine load; a governor fluid pressure control valve, which modifies the line fluid pressure and which produces a governor fluid pressure which increases in accordance with increase of the road speed of the vehicle; a manual selector valve which is controlled by hand by the driver of the vehicle and which is selectable between a plurality of positions which correspond to desired ranges of gear speed stages, typically including a "D" range and at least one forward range which is not a "D" range; and a plurality of speed shift valves, which selectively shift supply of actuating fluid pressures to the plurality of friction engaging mechanisms, according to various equilibrium relationships between the throttle fluid pressure and the governor fluid pressure, in a per se well known fashion.
Thus, in such an automatic transmission, the desired transmission speed range is manually set by the driver on the aforesaid manual selector valve, and then, within this speed range, the various speed shift valves corresponding to speeds which are allowed to be selected within this speed range are shifted to and fro according to the aforesaid balance relationships between the opposing governor fluid pressure and throttle fluid pressure, in accordance with the operating conditions of the vehicle and of the internal combustion engine of the vehicle, and thus the gear transmission mechanism is set to a particular speed stage.
Further, it is known for the aforesaid level of the line fluid pressure maintained by the line fluid pressure regulation valve to be increased in accordance with increase of the value of the throttle fluid pressure. This is usually done because when the vehicle is being operated at high engine load, i.e. high throttle opening, then the torque produced by the engine is high, and accordingly it is desirable to engage the friction engaging mechanisms of the automatic transmission (which are typically engaged by selectively switched supply of said line fluid pressure) more quickly and more tightly than when the engine is producing low torque. Accordingly, therefore, the value of the line fluid pressure provided by the line fluid pressure regulation valve is increased when the load on the internal combustion engine of the vehicle is high, so that the engagement of the friction engaging mechanisms may be better able to cope with the increased torque at this time.
A problem has arisen with prior art hydraulic fluid pressure control systems for automatic transmissions, in that, when the vehicle comprising the transmission is being driven, for example, at a high road speed with the manual range selection valve of the automatic transmission set to the "D" range, and then the manual range selection valve is manually shifted down by the driver of the vehicle to, for example, the "2" range, with the intention of obtaining strong engine braking for decelerating the vehicle, and when in accordance with this intention the throttle pedal of the vehicle is also released so that the throttle fluid pressure becomes very low or minimum, and thereby also, according to the above described operation, the line fluid pressure becomes minimum, then, although the vehicle's actual road speed still is high, the gear transmission mechanism may be directly shifted down to the second speed stage, and thereby the engine of the vehicle will be rotated at an unduly high rotational speed, i.e., will be over-revved, by the force of the momentum of the vehicle. This happens because, although the speed of the vehicle is still high, because the line fluid pressure has dropped to near minimum due to the aforesaid dropping of the throttle fluid pressure to very low or minimum, the governor fluid pressure control valve, which modifies this line fluid pressure to produce the governor fluid pressure which ought to be representative of the vehicle's road speed, is not able to produce a proper governor fluid pressure accurately representative of the vehicle's road speed, because such a proper governor fluid pressure would be higher than the actual current value of the line fluid pressure, because this line fluid pressure has dropped. Thus, because the governor fluid pressure control valve is of course unable actually to increase the value of the line fluid pressure to produce the governor fluid pressure, accordingly the governor fluid pressure has failed to be maintained at a level properly representing the true road speed of the vehicle. Accordingly, during engine braking, the downshift to, for example, the second speed stage has had a tendency to occur much earlier than it ought to have done.
The most serious possible consequent of this too early downshifting is that the engine of the vehicle is rotated by the momentum of the vehicle at such an excessively high rotational speed that it is seriously damaged. Even if this does not occur, severe shifting shock occurs at the time of this too early downshifting, and this is very uncomfortable for the occupants of the vehicle, and may possibly even cause a serious accident. Further, the durability of the friction engaging mechanisms in the gear transmission mechanism of the automatic transmission is deteriorated, because of the sudden repeated shocks to which they are subjected, and the amount of energy which they are required to absorb. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to nonreciprocal circuit devices. In particular, the present invention relates to a nonreciprocal circuit device, such as an isolator and a circulator, preferably for use in a microwave band, and also relates to a manufacturing method of the nonreciprocal circuit device.
2. Description of the Related Art
Conventionally, nonreciprocal circuit devices, such as isolators and circulators, have a characteristic that allows signals to be transmitted only in a predetermined specific direction but not in the opposite direction. By making use of such characteristics, isolators, for example, are used in transmission circuits of mobile communication apparatus, such as automobile phones and portable phones.
In this type of nonreciprocal circuit device, to protect an assembly of a ferrite having a plurality of central electrodes and permanent magnets applying a direct-current magnetic field to the ferrite from an external magnetic field, the assembly is surrounded by a ring-shaped yoke (see, WO 2006/011383) or by a box-shaped yoke (see, Japanese Unexamined Patent Application Publication No. 2002-198707).
However, in a conventional nonreciprocal circuit device, a yoke obtained by processing a soft iron or other suitable material into a ring shape or a box-shaped yoke is used as a magnetic shield. Consequently, a significant amount labor and cost are required for the processing and assembly of the nonreciprocal circuit device. | {
"pile_set_name": "USPTO Backgrounds"
} |
The phenomenal growth of data networking has presented communication service providers with the continual challenge of responding to the millions of customers' demands for secure, reliable, and fast access to their networks. Such demands are particularly onerous when the customers (e.g., major corporations) utilize or interact with a number of geographically disperse networks—i.e., an enterprise network. For example, corporate users interact closely with other business partners in their regular conduct of business, and thus, the networks of these business partners require a certain level of reliability and security as well. Satisfying these demands is imperative to maintaining a competitive edge in an intensely competitive market. To further intensify the challenge of supplying fast and reliable communication services, service providers and their customers frequently are victims of various types of security threats that negatively impacts service availability. Conventional approaches to addressing security have been unsatisfactory in part because network attacks are seldom isolated to a particular local network, but can be coordinated across the entire enterprise network, and because of false positive of attacks, which results in waste of precious network resources.
FIG. 9 is a diagram of conventional system for detecting network intrusions across an enterprise network. As seen in the figure, a customer, such as a large business, has an enterprise network 900 that spans a number of sites A, B, C, and D, which operate respective local networks 901, 903, 905, and 907. Traditionally, these local networks 901, 903, 905, and 907 are managed locally using local network management systems (NMSs) 909, 911, 913, and 915 that are seldom integrated for monitoring and analysis of network events across the entire network 900. That is, these NMSs 909, 911, 913, and 915 are traditionally isolated, sharing little information on security threats. This lack of coordination is made evident particularly when the collective network events are numerous; in a typical enterprise network 900, the number of events can total in the tens to hundreds of millions. Under such an arrangement, an intruder 917 can readily mask its attack on the enterprise network by initiating false attacks to site A, while the true attack on the local network 905 of site C.
For instance, the intruder 917 can launch a denial-of-service (DoS) attack in site A to impact site C. A DoS attack is initiated to deliberately interfere or disrupt a customer's datagram delivery service. One type of DoS attack is a packet flood attack that provides constant and rapid transmission of packets to the victim computing system. The flood attack overwhelms the victim's connection. Examples of packet flood attacks specific to Unreliable Datagram Delivery Service Networks utilizing IP (Internet Protocol) include ICMP (Internet Control Message Protocol) flood, “SMURF” (or Directed Broadcast Amplified ICMP Flood), “Fraggle” (or Directed Broadcast UDP (User Datagram Protocol) Echo Flood), and TCP (Transmission Control Protocol) SYN flood. These attacks effectively prevent the subscribers from communicating to other hosts; in some circumstances, the effects of these attacks may cause a victim host to freeze, thereby requiring a system reboot. In addition to being a nuisance, a system freeze can result in lost of data if precautions were not taken in advance.
In response to the attacks of the intruder 917, the NMS 909 of site A may effectively shut down the communication interface and/or network elements responsible for connecting to site C. Accordingly, the NMS 909 of site A may unknowingly believe it has nullified the attack, when in fact, site C is negatively impacted. The NMS 913 of site C is unaware that site A has encountered attacks from the intruder 917, and therefore, cannot properly respond to the loss of connectivity to site A.
Further, the conventional security mechanisms, such as intrusion detection systems and firewalls, of the sites A, B, C, and D can be ineffective against certain types of attacks. For example, if the attack by the intruder 917 is slow over a long period. Additionally, traditional intrusion detection systems are merely signature-based. Consequently, new attacks in which no signature has been developed will go undetected until the subject signature is created.
Another drawback of conventional security systems for detecting anomalous events is that they are expensive to maintain and operate, given the continual introduction of new threats. Accordingly, customers seek service providers to offer a managed service, thereby eliminating the need to purchase the necessary hardware and software platforms and associated personnel. However, traditionally, attempts to provide managed security services have been manually intensive with respect to provisioning and installation.
Therefore, there is a need for detecting and resolving network security attacks across the entire enterprise network. There is also a need for a near real-time security mechanism that can protect against novel attacks and slow attacks. There is a further need to provide a security approach that can be easily deployed as a managed service. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technical Field
This invention relates to fixtures for retail stores, and specifically to a fixture for holding a stack of paper bags at a bagging station of a retail store.
State of the Art
A bagging station is a fixture in a retail store where purchased items are loaded into bags so the items can be carried out of the store by the customer. Bagging stations are often at checkout registers where purchased items are paid for. Bagging stations are usually designed for use with plastic shopping bags. When paper bags are being dispensed at a bagging station instead of plastic bags, the paper bags are usually stacked in a pile on a surface of the bagging station. It is often difficult for a person bagging items to remove one paper bag from the stack of paper bags without disrupting the whole stack of paper bags and scattering the paper bags. Thus, it is desirable to have a cabinet for storing paper bags at or near the bagging station. Additionally, it is desirable to have a bag retaining fixture that holds the stack of paper bags in place even as one or more paper bags are removed from the stack for filling. | {
"pile_set_name": "USPTO Backgrounds"
} |
One particular concern in all systems that dispense postage, such as a postage meter, is that an accurate accounting be made of all postage dispensed. This accounting is required by law and, typically, is accomplished by well known accounting registers within the postage dispensing system. These registers may have the form of ascending and descending registers. Typically, the ascending register is incremented by a value representative of the value of the postage dispensed while the descending register is simultaneously decremented by the total value of postage dispensed. At any given time in the operation of the system, the values of the ascending and descending registers must reflect the total amount of postage provided thereto. In order to provide an initial amount of postage funds to the system, the descending register is charged with a value amount which represents the amount of postage funds available to be dispensed, while the ascending register is set to a zero funds condition.
The evolution of mailing systems has resulted in the need for a mail management system which provides for the centralized control over one or more postage dispensing devices in such a way that the activity of the devices may be monitored and recorded by a host system. In this way, an accounting may be made of the activity of all of the postage dispensing devices which are coupled to the host. This centralized control leads to increased efficiencies and accounting reliability in the overall operation of a mailroom. As an example, in a large organization, such as a corporation, the mailroom typically performs mailing services for a variety of different clients, such as departments, within the organization. Individual clients may be the marketing department, the product department, the legal department and other diverse interorganization departments. In order that each department may be accurately charged for the services performed by the mailroom it is desirable to generate a report which allocates, for example, on a department by department basis, the postage expenditure and the value of services performed by the mailroom which are related to mailing functions.
In other organizations the mailroom may be a primary service provided by the organization, the organization typically processing and mailing material for a number of different clients. In this type of organization, it is essential that the postage dispensed and the services related to the dispensing of this postage be allocated on a client-by-client basis in order that each client may be correctly invoiced for the postage expended and the services rendered. Thus, it can be realized that in any type of organization having a mailroom that it is important that the mailroom be capable of uniquely identifying each client so that each client may be correctly invoiced. It can further be realized that it is important that certain costs associated with mailing be capable of being accurately identified in order that the postage or other charges associated with the mailpiece may be determined and accounted for. It can still further be realized that it would be beneficial to provide a user of a mail management system the ability to define a number of mailing transaction related parameters that the user wishes to record and to subsequently report, such as parameters related to operator and machine efficiencies and/or parameters related to total postage charges for a given account. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to control and utilization of personal information management (PIM) data such as calendar and contact information and other types of information in the general context of personal and professional activities. More specifically, the present invention relates to publishing data amongst a community of users.
2. Background of the Invention
Presently available groupware applications and other related collaboration products that facilitate shared work and access to documents and information (e.g., data pools) are, to a certain extent, ‘closed networks.’ That is, certain information cannot be shared amongst users of different groupware products because the protocols setting forth the rules and standards by which communication of data takes place are different. For example, an individual using Microsoft® Outlook® as an e-mail client via a Microsoft® Exchange® Server can exchange e-mail messages with an individual using a Lotus® Notes client via an IBM® Lotus® Domino Server. Those same users cannot, however, access the contact or calendar data of one another due to protocol differences between an Exchange® Server and a Domino Server.
There have been some software applications that have attempted to bridge the protocol gap such as the Trillian instant messaging (IM) client from Cerulean Studios. Trillian is a multi-protocol chat client that supports AOL® Instant Messenger, ICQ®, MSN® Messenger, Yahoo!® Messenger and IRC through a single interface by enabling simultaneous connections to existing instant messaging networks via a direct connection to whatever servers actually power the messaging network. Trillian, however, cannot share most types of corporate or personal data as it is limited to Instant Messaging.
Day-to-day life—as evidenced by the advent of such technologies like Instant Messaging—has become increasingly digitally interactive with a need and desire to share or ‘publish’ various types of information with others. Business relationships, for example, are the result of networking and referrals whereby access to information concerning certain persons or businesses has become critical. Personal relationships, too, are more global thereby requiring access to some sort of networked digital communication medium in order to bridge the thousands of miles that might separate individuals or communities.
Even with e-mail, facsimile, courier and express mail services, the sharing or publication of data can be delayed by hours or days. Hours can often mean the difference between closing a deal or losing a deal to a possible competitor. Similar delays can leave friends and family ‘out-of-touch’ with other members of a community. For example, a relative in Europe may not know of, for example, a birth or death in the family that occurred thousands of miles away in the United States.
There is, therefore, a need for a system that allows for the aggregation and access of all types of data in a centralized manner notwithstanding network protocols or other proprietary limitations. Through the aggregation of this data in a centralized manner, the data can then be shared or published amongst a community of users in order to allow for more informed personal and professional relationships. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to ophthalmic lenses, and more particularly, to contact lenses designed to slow, retard, or prevent myopia progression. The ophthalmic lenses of the present invention comprise a high plus or high add treatment zone, thereby preventing and/or slowing myopia progression.
Discussion of the Related Art
Common conditions which lead to reduced visual acuity are myopia and hyperopia, for which corrective lenses in the form of spectacles, or rigid or soft contact lenses, are prescribed. The conditions are generally described as the imbalance between the length of the eye and the focus of the optical elements of the eye. Myopic eyes focus in front of the retinal plane and hyperopic eyes focus behind the retinal plane. Myopia typically develops because the axial length of the eye grows to be longer than the focal length of the optical components of the eye, that is, the eye grows too long. Hyperopia typically develops because the axial length of the eye is too short compared with the focal length of the optical components of the eye, that is, the eye does not grow enough.
Myopia has a high prevalence rate in many regions of the world. Of greatest concern with this condition is its possible progression to high myopia, for example greater than five (5) or six (6) diopters, which dramatically affects one's ability to function without optical aids. High myopia is also associated with an increased risk of retinal disease, cataracts, and glaucoma.
Corrective lenses are used to alter the gross focus of the eye to render a clearer image at the retinal plane, by shifting the focus from in front of the plane to correct myopia, or from behind the plane to correct hyperopia, respectively. However, the corrective approach to the conditions does not address the cause of the condition, but is merely prosthetic or symptomatic.
Most eyes do not have simple myopia or hyperopia, but have myopic astigmatism or hyperopic astigmatism. Astigmatic errors of focus cause the image of a point source of light to form as two mutually perpendicular lines at different focal distances. In the foregoing discussion, the terms myopia and hyperopia are used to include simple myopia or myopic astigmatism and hyperopia and hyperopic astigmatism respectively.
Emmetropia describes the state of clear vision where an object at infinity is in relatively sharp focus with the crystalline lens relaxed. In normal or emmetropic adult eyes, light from both distant and close objects and passing though the central or paraxial region of the aperture or pupil is focused by the crystalline lens inside the eye close to the retinal plane where the inverted image is sensed. It is observed, however, that most normal eyes exhibit positive longitudinal spherical aberration, generally in the region of about +0.50 Diopters (D) for a 5.0 mm aperture, meaning that rays passing through the aperture or pupil at its periphery are focused +0.50 D in front of the retinal plane when the eye is focused to infinity. As used herein the measure D is the dioptric power, defined as the reciprocal of the focal distance of a lens or optical system, in meters.
The spherical aberration of the normal eye is not constant. For example, accommodation (the change in optical power of the eye derived primarily though change to the internal crystalline lens) causes the spherical aberration to change from positive to negative.
As noted, myopia typically occurs due to excessive axial growth or elongation of the eye. It is now generally accepted, primarily from animal research, that axial eye growth can be influenced by the quality and focus of the retinal image. Experiments performed on a range of different animal species, utilizing a number of different experimental paradigms, have illustrated that altering retinal image quality can lead to consistent and predictable changes in eye growth.
Furthermore, defocusing the retinal image in both chick and primate animal models, through positive lenses (myopic defocus) or negative lenses (hyperopic defocus), is known to lead to predictable (in terms of both direction and magnitude) changes in eye growth, consistent with the eyes growing to compensate for the imposed defocus. The changes in eye length associated with optical blur have been shown to be modulated by changes in both scleral growth and choroidal thickness. Blur with positive lenses, which leads to myopic blur and decreases scleral growth rate, results in hyperopic refractive errors. Blur with negative lenses, which leads to hyperopic blur and increases scleral growth rate, results in myopic refractive errors. These eye growth changes in response to retinal image defocus have been demonstrated to be largely mediated through local retinal mechanisms, as eye length changes still occur when the optic nerve is damaged, and imposing defocus on local retinal regions has been shown to result in altered eye growth localized to that specific retinal region.
In humans there is both indirect and direct evidence that supports the notion that retinal image quality can influence eye growth. A variety of different ocular conditions, all of which lead to a disruption in form vision, such as ptosis, congenital cataract, corneal opacity, vitreous hemorrhage and other ocular diseases, have been found to be associated with abnormal eye growth in young humans, which suggests that relatively large alterations in retinal image quality do influence eye growth in human subjects. The influence of more subtle retinal image changes on eye growth in humans has also been hypothesized based on optical errors in the human focusing system during near work that may provide a stimulus for eye growth and myopia development in humans.
One of the risk factors for myopia development is near work. Due to accommodative lag or negative spherical aberration associated with accommodation during such near work, the eye may experience hyperopic blur, which in turn stimulates myopia progression as discussed above. Moreover, the accommodation system is an active adaptive optical system; it constantly reacts to near-objects, as well as optical designs. No matter what optical designs one puts on the eye, when the eye accommodates to near-objects, continuous hyperopic defocus will be present and make the eye myopic. Therefore, one way to design optics to slow the rate of myopia progression is to utilize a high plus signal to the retina through use of high add or plus powers.
U.S. Pat. No. 6,045,578 discloses that the addition of positive spherical aberration on the contact lens will reduce or control the progression of myopia. The method includes changing the spherical aberration of an ocular system by a direction and degree related to alter the growth in eye length, in other words emmetropization may be regulated by spherical aberration. In this process, the cornea of a myopic eye is fitted with a lens having increasing dioptric power away from the lens center. Paraxial light rays entering the central portion of the lens are focused on the retina of the eye, producing a clear image of an object. Marginal light rays entering the peripheral portion of the cornea are focused in a plane between the cornea and the retina, and produce positive spherical aberration of the image on the latter. This positive spherical aberration produces a physiological effect on the eye which tends to inhibit growth of the eye, thus mitigating the tendency for the myopic eye to grow longer.
Although the level of positive spherical aberration and/or plus power required to achieve an optimum slowdown in the myopia progression rate is unclear, researchers in the field have attempted to use multi-zone devices with regions of positive power of about +1.50 to a maximum of +3.00 D add in an attempt to slow the progression of myopia. The approach resulted in treatment results of less than about 50 percent. Treatment efficacy is defined as the relative change of axial length and/or spherical equivalent refraction from baseline for a test group compared to the change of axial length and/or spherical equivalent refraction of a control group over a year or a predetermined time period. There remains a need for a myopia control treatment with efficacy greater than 50 percent and closer to 100 percent. Intuitively adding treatment zones of high plus power would provide greater treatment as the ocular growth response in animals was proportional to the power of the optical stimulus as reported by Wildsoet, Vision Research 1995.
However, conventional wisdom in the field of bifocal or multifocal ophthalmic lenses assumes lenses with high plus or high add power may have deleterious effects on vision and contrast sensitivity as reported by Ardaya et al, Optometry 2004. Further, Smith et al (U.S. Pat. No. 7,025,460) teaches against going to powers outside the range normally found in bifocal or multifocal lenses for presbyopia. They state “It is important to note that, while the appropriate type of refractive defocus can drive eye growth (or non-growth) leading to myopia (or its regression) in the phenomenon of lens compensation, when the amount of refractive defocus is great, there may be such a large degradation in image quality due to the severe defocus that the optical state may change into the phenomenon of form deprivation and may induce myopia in that way.” Further, they teach “that the maximum amount of relative curvature of field before substantial vision degradation occurs, which leads to form deprivation myopia, to be around the spherical equivalent of +3.50 D to +4.00 D, which represents the upper limit for negative curvature of field for effective treatment of myopia.” This belief has discouraged researchers from pursuing high plus treatment zones for myopia control.
To the contrary, applicant's research shows that using a design with a central distance zone and a high plus or high add treatment zone having a plus power greater than about 3.00 D reduces visual acuity loss relative to low conventional plus type designs with no significant additional impact on contrast sensitivity. This is also supported in recent work by De Gracia et el, OVS 2013, although they only investigated up to 4.00 D of add power and did not relate the work to a potential benefit in myopia progression control. This breakthrough enables ophthalmic designs to achieve a meaningful greater than 50 percent slowdown in myopia progression without further negatively impacting visual acuity.
Further, significantly higher plus power relative to the distance power is not expected to lead to reduced accommodation as may occur with a lower add power design where a subject might rely to some extent on the add power for clear vision during near work activities, as has been observed during the course of our research. This reduced accommodation may lead to hyperopic defocus of rays passing through the distance portion of the device. In the current invention, the subject must accommodate over the distance portion of the lens for near vision correction as objects imaged through the treatment zones of high plus powers are sufficiently out of focus that they cannot be cleared with the accommodation-convergence system.
Another researchers in the field, R. Griffin WO2012/173891, claims to relieve accommodative lag and accommodative stresses that lead to myopia progression through the creation of an artificial pinhole that results in increased depth of focus and depth of field. In their intellectual property, “the eye's accommodation is more relaxed” in contrast to the present invention.
With reference now to FIG. 1, the graph illustrates a device with a design that incorporates a distance zone to correct for distance vision and a peripheral zone of variable plus power. Visual acuity was measured using a four forced choice method with progressively smaller Snellen optotypes. Increasing peripheral plus power to about +2.00 D to +3.00 D causes an increasing loss of high contrast visual acuity, as typical of multifocal type designs for presbyopes. As the peripheral power continues to increase; however, the relative effect on visual acuity surprisingly improves and plateaus, so that by above about +4.00 D to +5.00 D peripheral plus, the visual acuity loss becomes relatively constant. This is of significance for the design of myopia control lenses, since higher plus power is found (with animal models) to have a greater impact on eye growth, as reported in Wildsoet, Vision Research 1995.
However, further optimization of plus power designs is required to optimize image quality. With reference now to FIG. 2, power profiles are illustrated having +5.00 D or +10.00 D power beyond a 2.25 mm radial location from a center of a lens. Rays passing through these high plus or high add power regions form sharp foci in front of the retina. However, due to continued propagation to the retina, these rays form a ring-like defocus blur on the retina.
As shown in the point spread function (PSF) cross section of FIG. 3, rays coming from the +5.00 D and +10.00 D regions form separate spikes on the retina. Thus, if one looks at a point light source through one of these +5.00 D or +10.00 D high plus lenses, his/her retina would receive a peak signal surrounded by a ring-like halo. Usually, this is not a problem when one reads letters or resolves fine details of objects because the halo is so dim that the human doesn't perceive it. Nevertheless, this is a problem if a person looks at a black/white edge, as energy from the white background can leak into the black due to the presence of the spike in PSF.
With reference now to FIG. 4, the image cross section for the +5.00 D and +10.00 D power profiles of FIG. 2 at an entrance pupil size of 6.0 mm are shown by convolving the PSF with the black/white edge in object space. A lens having 0.00 D power forms a sharp edge between the black and white (at 0.0 mm location) and thus doesn't have a ring-like structure. On the other hand, the lenses with +5.00 D and +10.00 D regions do not have a sharp edge between black and white, thereby resulting in images in which the black background is not completely black, and the white background is not completely white.
Accordingly, the presence of halo is an inherent property of high plus or high add lens designs. The present invention is directed to lenses having high plus power treatment zones that are suitable for the use in treating, controlling, or reducing the progression of myopia while also minimizing a halo effect. | {
"pile_set_name": "USPTO Backgrounds"
} |
Gypsum is commonly manufactured by drying, grinding, and calcining natural gypsum rock. The drying step involves passing crude gypsum rock through a rotary kiln to remove free moisture. The dried rock is then ground. The calcination is to dehydrate the ground gypsum rock to hemihydrate:CaSO4.2H2O+heat→CaSO4.½H2O+3/2H2O
Gypsum reacts with water and sets rather quickly. The setting is a reversal of the calcination. The hemihydrate gypsum dissolves in water until it is saturated. The soluble hemihydrate forms dihydrate which is less soluble than hemihydrate. As dihydrate crystals precipitate, the hemihydrate solution is no longer saturated, and the process continues to consume the hemihydrate gypsum. The reaction can be followed by measuring the heat evolved. Initially there is very little reaction and no rise in temperature. This time is referred to as the induction period. As the amount of dihydrate increases, the mass thickness increases, and the gypsum sets.
A large amount of excess water is generally required to provide the gypsum slurry with sufficient fluidity during the process. It is desirable to reduce the amount of excess water to save energy and production cost associated with water removing.
Water reducing agents are known. For example, naphthalene sulfonate has been used as a water reducing agent. One drawback of naphthalene sulfonate is that it requires a high dosage. Further, gypsum compositions containing naphthalene sulfonate tend to set too fast. To slow down the setting, a setting retardant is often added.
Recently, acrylic-polyether comb-branched copolymers are used as water reducing agents in gypsum compositions. See U.S. Pat. No. 6,527,850. The comb-branched copolymers can be used in much lower dosages than naphthalene sulfonate. However, the comb-branched copolymers tend to retard the setting.
In sum, new water reducing agents are needed. Ideally, the water reducing agents would not only improve the fluidity but also have no or reduced retardation on gypsum setting. | {
"pile_set_name": "USPTO Backgrounds"
} |
The object of the invention is a method for inducting targeted somatic transgenesis (TGC=targeted genetic conditioning), which is used for expressing foreign proteins in cells, tissue, organ or an entire host organism, as well as for somatic gene therapy.
It is known that proteins for technical application or for therapeutic purposes can be expressed in sufficient quantity by the transfer of genes in microorganisms or mammalian cells. These procedures are particularly important for proteins occurring naturally in the body, such as hormones, regulatory factors, enzymes, enzyme inhibitors and humanized monoclonal antibodies which are otherwise only available to a limited extent or not available at all. The procedures are also important for producing surface proteins of pathogenic microorganisms or viral envelope proteins so as to safely produce diagnostic tests and for the development of efficacious vaccines. Through protein engineering it is also possible to produce new types of proteins, which through fusion, mutation or deletion of the corresponding DNA sequences, have properties optimized for particular uses, for example immunotoxins.
Genes obtained from human cells are also functional in mouse, rat or sheep cells and there lead to the formation of corresponding gene products. This has already been made use of in the production of therapeutic products, for example in the milk of transgenic farm animals. The hitherto known method has been by the microinjection of corresponding foreign DNA carrying vectors into the nucleus of the fertilized egg cell, in which the DNA is then incorporated into the chromosome with a yield of 1%. The transgenic fertilized egg cell is then transplanted into hormonally stimulated mother animals. An offspring carrying the transfected gene in all its body cells is the basis for the creation of a xe2x80x9ctransgenic herd/flockxe2x80x9d. Using gene technology it is now possible to alter farm animals in such a targeted way that they produce human proteins in their blood, tissue or milk, which cannot be produced by microorganisms or plants.
However, the use of transgenic animals as protein production factories has the decisive disadvantage that it is necessary to manipulate the germ line of the animal. Due is to the considerable expenditure of technology and time required to create and breed transgenic animals and also due to the discussions regarding the ethical consequences of these methods, alternative methods for producing proteins in animal hosts without manipulation of the germ line are necessary and would be very advantageous.
It is known, furthermore, that the milk of mammals such as cows, sheep, goats, horses or pigs can contain a range of disease-causing bacterial agents. Among such agents are Listeria, mycobacteria, Brucella, Rhodococcus, Salmonella, Shigella, Escherichia, Aeromonads and Yersinia or general bacteria with intracellular lifestyle [1, 2]. These bacteria are usually transmitted to humans or animals through oral ingestion [3], but can also be transmitted by droplet infection. A major source for the infection of humans with Listeria [4], mycobacteria [5] and Escherichia coli is contaminated milk [6]. Humans ingest the bacteria when consuming unpasteurised milk or milk products. The other bacteria types listed above, such as Salmonella, Shigella, Yersinia, Rhodococcus and Brucella are transmitted to humans in a similar way. However, bacteria may also enter humans through other bacterially infected animal products from cows, goats, sheep, hares, horses, pigs or poultry.
The infection of animals frequently occurs through mucosal surfaces and very frequently through the digestive tract. However, after ingestion of bacteria, for example in the case of Listeria, not all tissues show symptoms of infection. In cows and goats the infection is mainly evident in the udder, spleen and liver. In sheep there may additionally be illness in the central nervous system in the form of meningitis, so not all animals survive the infection. With infection of the udder, the infection chain is closed. With contaminated milk, acquired bacteria can reinfect another animal, for example a suckling calf or a human via the digestive tract.
The following is known at present regarding the process of bacterial infection in humans, here presented using the example of Listeria:
Of the six known Listeria species, only L.monocytogenes and L.ivanoviiare pathogenic for humans [7]. Illness in humans results from consuming infected milk or milk products. The course of the illness depends on the state of health of the individual and is generally inapparent. Intrauterine transmission of bacteria to the fetus may occur during pregnancy, resulting in abortion, stillbirth or premature birth. In all cases excellent and problem-free treatment exists using antibiotics such as ampicillin or erythromycin [8; 8a].
The mode of entry into the cell occurs is well defined for L.monocytogenes in humans and animals and for L.ivanovii in sheep. For full pathogenicity of Listeria to occur, a range of pathogenicity factors are necessary. Among them are PrfA (positive regulator of virulence), ActA (actin nucleating protein), PlcA (phosphatidylinositol-specific phopholipase), PlcB (phosphatidylcholine-specific phopholipase), Hly (listeriolysin), Mpl (metalloprotease) [9]. The cell specificity of the pathogenxe2x80x94host cell interaction is mediated through a range of proteins. Among these are the internalins InlA and InlB, which are involved in the initial contact and the interaction of bacteria and cell surface [10, 11]. Under experimental conditions L.monocytogenes can also infect endothelial cells, epithelial cells, fibroblasts and hepatocytes. In addition, L.monocytogenes can infect cells of the white blood cell count like neutrophilic granulocytes, macrophages and lymphocytes. This is a significant factor in the transmission of bacteria from the site of primary infection to the target organ in the host. Finally, lung tissue can also be infected by Listeria if the bacteria are applied as a droplet infection.
After adhering to the cell surface, L.monocytogenes is taken up by the cell by endocytosis, the bacterium breaks down the endosome membrane under the effect of listeriolysin (Hly) and is thus released into the cell cytosol [14]. Once inside the cell, the bacteria can proliferate. With the production of further proteins, the fully pathogenic bacteria does not stay localized but actively spreads to distal sites . Bacterial spread is effected by using a range of proteins from L.monocytogenes itself and some cellular proteins [15, 16]. ActA is expressed on the cell surface of L.monocytogenes. It binds the cellular protein VASP, which for its part forms the bridge required for the attachment of cellular actin. Actin tails subsequently develop, which carry the bacterium at their tip and thus move it further through the cell. If L.monocytogenes contacts the cell membrane, a membrane protrusion forms, which projects directly into any adjacent cells if they are present. This protrusion is then endocytosed by the adjacent cell so the L.monocytogenes is then inside the new cell within a double membrane. The two membranes are dissolved under the effect of Hly and PlcB [171]. At the end of this process L.monocytogenes has also infected the neighbouring cell and the infection process begins again. In this way L.monocytogenes enters, for example, secretory cells of the cow udder. Secreted Listeria proteins are detectable in milk, i.e. they are passed on intracellularly from the lactating cell into the milk [18]. Hly (listeriolysin) and IrpA (internalin related protein [19]) are two pathogenicity factors belonging to this group of proteins which are produced, secreted and passed out in milk in large quantities by L.monocytogenes [20].
Knowledge of the infection process has made it possible to alter L.monocytogenes genetically in such a way that it expresses foreign proteins. Examples for the expression of foreign proteins in L.monocytogenes are: alkaline phosphatase from Escherichia coli, nucleoprotein from influenza virus, major capsid protein (L1) from cottontail rabbit papillomavirus (CRPV) and Gag protein from HIV type 1 [20 to 27].
In addition to proteins of prokaryotic origin, this also applies to viral proteins which are not normally produced within eukaryotic cells. These viral proteins and similar foreign proteins of prokaryotic and eukaryotic origin can be produced by L.monocytogenes without a eukaryotic cell being needed. Proteins produced by L.monocytogenes are secreted into the milk.
Infection by bacteria occurs through specific interactions of ligand proteins of the bacteria with receptor proteins of the target cells. In the case of L.monocytogenes, the internalin family plays a significant role; the internalin proteins determine to a large extent the cell specificity of the infection process [28]. Additionally, an ActA dependent cell ingestion has been discussed, which is mediated through receptors of the heparan sulphate family [29]. If L.monocytogenes infects a cell, it does not lead to a full infection cycle in every case. If listeriolysin in L.monocytogenes is inactivated, the bacteria then remain in the endosome and the infection in the xe2x80x9cfirst cellxe2x80x9d does not take place. Bacteria in which the protein ActA is deleted, inactive or no longer available, enter the first infected cell but remain there and can no longer infect the neighbouring cells [30, 31]. If PclB is deleted, the bacteria is no longer able to establish itself in the second cell.
L.monocytogenes is a bacterium which can be treated with a range of antibiotics. Ampicillin and penicillin (always in combination with gentamycin) are particularly suitable. Erythromycin and sulphonamides can also be used as alternatives. Tetracycline, vancomycin or chloramphenicol can also be used in special cases [32]. Similar treatments exist for other bacteria [8a] of the following types: Aeromonads, Bartonella, Brucella, Campylobacter, Enterobacteriaceae, Mycobacterium, Renibacterium, Rhodococcus and other bacteria which are genetically or biochemically related to them.
Given this information, the question arises as to how bacterial infection can be used to induce organotropic protein production.
This problem is solved by a TGC procedure that induces targeted somatic transgenesis, whereby bacteria, carrying a foreign DNA which is integrated into an episomal vector and prepared for subsequent transcription and expression, release their genetic information into an infected single cell when infecting cells, tissue, an organ or the whole host organism and so cause expression of the foreign protein.
This method can be used to obtain a foreign protein but is also advantageous for somatic gene therapy. Here the foreign DNA, introduced into the host organism through bacterial infection, can cause the production of protein missing in the host organism or, by producing single or double strand nucleic acids, can increase, reduce or hinder the production of a protein in the host organism. This method can be used on all known farm animals and also on humans.
If the infected tissue is the egg of a poultry bird, the foreign protein is produced in the egg and can be isolated following known procedures for the isolation of proteins, for example from hen eggs. If the infected tissue is blood cell tissue, the bacteria can spread via parenteral infection of the cells and through them the foreign DNA can reach the entire infected organism. If the host animals are laboratory animals whose infected organ is an udder, the desired foreign protein is then produced in the milk of the laboratory animal from which the foreign protein can then be isolated. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method and apparatus for removing volatile contaminants from the phreatic zone, also known as the zone of saturation, that is, ground water.
Contamination of the phreatic zone with potentially hazardous materials is a common problem facing industry, the government and the general public. Frequently, as a result of spills, leakage from storage facilities or surface discharges, contaminants percolate into ground water, thereby posing a health threat to drinking water supplies. While groundwater is not as susceptible to pollution as surface water, once polluted, its restoration is difficult and long term. Various methods for withdrawing and treating contaminated groundwater have met with limited success. Typically, groundwater is removed from the phreatic zone, treated and then returned to the phreatic zone. This method involves great expense.
One previous attempt at solving these problems involved a closed-loop device which included one or more contaminant withdrawal wells surrounded by multiple air injection wells connected by a conduit. This device utilized the principle of sparging. Sparging is the process of forcing air through water to remove undesirable volatile organic contaminants (VOC's). The above described device formed air channels within the phreatic zone that were distributed in three-dimensions. This approach may lead to uncontrolled distribution of contaminants.
The method and apparatus of the present invention utilizes the principles of controlled two-dimensional sparging. The method involves installing one or more air injection wells and pressure relief wells in the phreatic zone. The pressure relief wells are porous within the phreatic zone but impermeable above the phreatic zone. Air is forced into the air injection well through the phreatic zone towards the pressure relief wells. The arrangement creates an air and water mixture in the phreatic zone and the pressure relief wells, where the volatile contaminants are stripped from the phreatic water, removed and/or treated along with the injected air. As the contaminated phreatic water moves through the arrangement of air injection wells and pressure relief wells by natural flow the phreatic water is cleansed of volatile contaminants.
When operation of the present invention is initiated, the injected air spreads in all directions, in a three-dimensional manner, from the injection well. Additionally, the water pressure at the base of the pressure relief wells is significantly higher than it is at the top of the water table within the relief wells. However, once the injected air reaches the pressure relief wells and forms an air/water mixture within the pressure relief well, the density of the water column within the relief wells drops significantly. As the density of the water column within the pressure relief wells starts to decline, the pressure at the base of the pressure relief well decreases significantly. This causes the air in the phreatic zone to tend toward the relief wells much more readily than on initial startup, because the air seeks to move in the direction of lower pressure area offered by the pressure relief wells. Therefore, the injected air tends to travel more directly towards the pressure relief wells, rather than in all directions.
If the injection well and the pressure relief wells are ganged in a line, the resultant air channels would be formed in two directions (thus, in a two-dimensional single plane) from the injection well to each of the relief wells. Thereby, approximating a two-dimensional sparging region, rather than a three-dimensional region. This arrangement may be utilized especially well when the ground water moves perpendicularly across the air path.
The present invention obviates the need for a pump at each relief well to assist the contaminated gas in escaping from each pressure relief well for treatment or storage. The air/water mixture achieved in each relief well rises above the water table and forces the contaminated air to exit the relief well at the ground surface. The contaminated air may then be collected, and may be treated and/or returned into the injection well if desired.
Objects and advantages of the present invention will be readily apparent upon a reading of the following description. | {
"pile_set_name": "USPTO Backgrounds"
} |
According to Third Generation Partnership Project (3GPP) Technical Specification 25.331, a User Equipment (UE) can initiate a signaling connection using an initial direct transfer (IDT) procedure that includes calculating a START value for a security mode command procedure. This START value is sent from the UE to its communicating network, and the network uses the received START value to initialize a COUNT-I variable that is used for integrity protection of messages between the UE and the network.
If, however, connection failures cause a signal connection release prior to the security mode command procedure completing, the START value sent in an IDT may not be the same as the START value used at the UE, and the integrity check for messages could fail. Subsequent attempts to establish a replacement connection using the IDT procedure will also fail due to an inability to sustain integrity protection.
There is an opportunity for a UE to compensate for COUNT mismatches to improve the chances that a replacement connection will succeed. The various aspects, features and advantages of the disclosure will become more fully apparent to those having ordinary skill in the art upon careful consideration of the following Drawings and accompanying Detailed Description. | {
"pile_set_name": "USPTO Backgrounds"
} |
A virtual machine (VM) comprises virtualized representations of real hardware, software, and firmware components available in a data processing system. The data processing system can have any number of VMs configured thereon, and utilizing any number of virtualized components therein. The data processing system is also referred to as a computing node, a compute node, a node, or a host.
For example, the host may include a processor component. One virtual representation of the processor can be assigned to one VM, and another virtual representation of the same processor can be assigned to another VM, both VMs executing on the host. Furthermore, the second VM may also have access to a virtual representation of a reserve processor in the host and certain other resources, either exclusively or in a shared manner with the first VM.
Certain data processing systems are configured to process several workloads simultaneously. For example, separate virtual data processing systems, such as separate VMs, configured on a single host data processing system often process separate workloads for different clients or applications.
In large scale data processing environments, such as in a data center, thousands of VMs can be operating on a host at any given time, and hundreds if not thousands of such hosts may be operational in the data center at the time. A virtualized data processing environment such as the described data center is often referred to as a “cloud” that provides computing resources and computing services to several clients on an as-needed basis.
VMs are installed or created on a compute node as needed for processing workloads, meeting service level requirements, and many other reasons. Furthermore, different configurations of VMs may be needed for different purposes. For example, when a VM is created just for providing a user a general purpose computing platform, the VM may be created only with the basic operating system and no applications. In another example, when a new VM has to provide application services, the VM may be created with an operating system and an application server configured thereon. Similarly, many different configurations of VMs may be created for a variety of other purposes.
An image is a binary package that can be installed on a hardware to instantiate a VM on the hardware. A layer is a software package that participates in an image. An image can include any number of software packages, whose layers are assembled together in the image as a monolithic binary. A single image can, but need not necessarily, represent an application.
A commonly used method of virtualization—traditional virtualization—preconfigures various VM configurations as template images (templates). When a VM having a specific predetermined configuration has to be created on a compute node, a suitable template is selected from a template storage, such as a database or a file-system, and installed on the compute node to create a VM having the desired configuration. An image of a VM in traditional virtualization is a monolithic binary image.
Another method for virtualization is container-based virtualization. Container-based virtualization, also called operating system virtualization, is an approach to virtualization in which the virtualization layer runs as an application within the operating system. In this approach, the operating system's kernel runs on the hardware node with several isolated application environments installed on top of it. The isolated guest application environments are called containers. In other words, a container is a running instance of an image of a VM in which the layers are distinguishable from one another.
Container-based virtualization is a way to operate several VMs on the same host, where the VMs share the same kernel and memory space among themselves and with the host. The isolation between the containers occurs at multiple resources, such as at the file-system, the network stack subsystem, and one or more namespaces, but not limited thereto. By sharing the same running kernel and memory space there is virtually no difference between the performance of the “host” operating system and the containers.
This method of virtualization is significantly different from the traditional virtualization technology where the hardware is emulated using a software emulation layer, which causes provisioning latencies, slow startup times, and decreased performance of the underlying hardware. These and other drawbacks of the traditional virtualization method are due to the software emulation layer that sits between the physical hardware of the host and the operating system that is being run on top of the emulated hardware.
Generally, a container is an image formed using a set of one or more layers. For example, a container may include one layer for modifying the operating system to a specific version or specific customization—e.g., apply Ubuntu™ 14.04 binary to the underlying Linux® operating system (Ubuntu is a trademark of Canonical Ltd. in the United States and in other countries. Linux is a trademark of Linus Torvalds in the United States and other countries); another layer might include configuration data for the operating system customization—e.g., Ubuntu configuration; another layer might apply or remove updates to the modified operating system—e.g., apply Ubuntu system updates; another layer might include an application to be configured in the container—e.g., the binaries of an application server; another layer might include the configuration data of the application server; another layer might include the binary or other data of a user application that is to be executed using the container; another layer might include a set of environment variables that is needed to successfully operate the application server, the user application, or both on the container; and so on. Many different types of layers can be similarly configured in a container image, and any number of layers can be configured in a container image to create a container.
The container-based virtualization technology offers higher performance and less resource footprint when compared to traditional virtualization, and has become an attractive way for cloud vendors to achieve higher density in the datacenter. Thus, containerization (i.e., operating a virtualized data processing environment using container-based virtualization) is changing how workloads are being provisioned on cloud infrastructure.
Containers offer many advantages, but the illustrative embodiments recognize that significant hurdles exist in making container-based virtualization technology prepared to handle enterprise-type workloads. One such hurdle is around image management and initial provisioning time latency. Due to the layered nature of container images, traditional approaches to image management and workload placement are insufficient to optimize container-based workloads.
Provisioning is the process of providing a resource to a configuration. Specifically, in deploying containers on host machines in a data processing environment, provisioning a container refers to the process of providing the container image—i.e., providing the layers comprising the container image—over a data network from a repository of layers or images to a selected host machine in the data processing environment where the container is to be created and operated.
When containers are provisioned in a data processing environment where traditional placement techniques are used for the provisioning, under certain circumstances, container provisioning can experience latency that is excessive, e.g., higher than the expected latency of a preset performance metric, due to on-demand download of container layers. The illustrative embodiments overcome this and other drawbacks of provisioning containerized images in a data processing environment.
In the above example of Ubuntu, application server, and user application layers, the aggregation of those layers makes up the container image. When the container image is built, each build time action generates a new layer which leverages functionality from the layers beneath. Each layer is assigned a unique identifier at build time. When request is made for a container to be started on a given host, the host verifies that each layer's unique identifier is present on local storage before the host completes the request. If a particular layer identifier is not present, that layer is downloaded from a source location prior to starting the container.
A layer can be large and the downloading of the layer can result in slow provisioning time and high latency depending on network conditions. The illustrative embodiments recognize that generally, a significant part of the start-up latency in container-based virtualization is due to the downloading of layers, and particularly the larger-than-a-threshold-size layers. Presently available methods determine the layers that are missing from a local cache of a host and download only those layers that are missing in the local cache. The illustrative embodiments recognize that issues still exist, and cause unacceptable start-up latency when the largest layer, or layers exceeding a certain threshold size, are not present in the local cache. The illustrative embodiments minimize or reduce the download latency—particularly when one or more layers exceeding a certain threshold size have to be downloaded, thereby improving the provisioning and deployment efficiency of containers in a data processing environment. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a magnetic connector, particularly to a magnetic connector for use in establishing the connection a connection object, such as a flexible printed circuit (FPC) and a flexible flat cable (FFC), in which a plurality of contact patterns are arranged on a base member having flexibility (property allowing flexible deflection).
In recent years, with the trend toward smaller sizes and higher densities of electronic devices, connectors for use in establishing the connection of connection objects such as FPCs and FFCs are also required to have reduced external dimensions. In this regard, a magnetic connector using a magnet is known as a connector capable of producing contact pressure at a contact without use of a spring contact, a cam mechanism or the like.
For instance, JP 5-135833 A discloses a magnetic connector in which two FPCs 2a and 2b are disposed to face to each other between openable and closable segment members 1a and 1b of a casing 1 as shown in FIG. 50. In the segment member 1a, a magnet plate 3 is embedded and fixed and a plurality of metal pieces 5a corresponding to patterns of contacts 4a of the FPC 2a are inserted and fixed between the magnet plate 3 and the FPC 2a, while in the segment member 1b, a plurality of metal pieces 5b corresponding to patterns of contacts 4b of the FPC 2b are held to be vertically movable within the segment member 1b.
Although the metal pieces 5a disposed above the FPC 2a are fixed on the segment member 1a, owing to the magnetic force from the magnet plate 3 that acts on the metal pieces 5b disposed under the FPC 2b, the metal pieces 5b movably held in the segment member 1b are attracted up toward the FPC 2b and this causes the contacts 4b of the FPC 2b to be pressed against the corresponding contacts 4a of the FPC 2a.
As a result, the contacts 4a of the FPC 2a and the contacts 4b of the FPC 2b are brought in contact with each other, thus securing connection reliability.
However, the magnetic connector of JP 5-135833 A needs to hold the metal pieces 5b corresponding to the patterns of the contacts 4b of the FPC 2b to be vertically movable in the segment member 1b, which results in complex structure and hampers the reduction in size. | {
"pile_set_name": "USPTO Backgrounds"
} |
Current sensors, such as household environmental sensors, light sensors, and motion sensors, typically have individual displays associated with each sensor to display data from each sensor. Present principles recognize that the displays are often small and/or low-quality, making the displays difficult to read, understand, and ascertain useful information from, among other things.
Also understood herein, the displays are typically positioned in close proximity to its respective sensor such that multiple displays associated with different sensors are often not located in the same general location of, e.g., a personal residence. Thus, a need has arisen to aggregate the information produced by one or more sensors in a single location for convenient viewing, rather than requiring multiple displays scattered in different locations to the display data and/or information and thereby making monitoring of the data and/or information from the sensors burdensome. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to injection molding and more particularly to a valve gated hot runner injection molding system having a pneumatically driven rack and pinion valve pin actuating mechanism.
Valve gated injection molding systems are well known in the art, as are the related problems of valve pin actuating mechanisms. Actuating mechanisms are usually either lever operated or piston operated. A lever operated mechanism is shown in the applicant's U.S. Pat. No. 4,222,733 which issued Sept. 16, 1980. While this arrangement is satisfactory for many applications, it has the disadvantage that the lever unavoidably applied a lateral force to the reciprocating valve pin which causes friction, uneven wear and a larger gap on one side than the other. As a result, during the operating life of the system there is an uneven buildup of melt deposits around the valve pin which can cause leakage and malfunction. Other examples of lever operated valve pin mechanisms having similar problems are shown in the following brochures; Incoe "SVG 5000, SVG 7000", H. Muller Mekaniska AB "Flytgot Typ N" and "Precision Products GmbH Delta" Spritzduse Mit Hydraulicverschluss.
Actuating mechanisms having a piston connected directly to the valve pin have been used to overcome these problems associated with lever operated mechanisms. Examples of such piston operated mechanisms are shown in U.S. Pat. Nos. 4,380,426 to Wiles which issued Apr. 19, 1983, 4,433,969 to the applicant which issued Feb. 24, 1984 and 4,755,131 to Schmidt which issued July 5, 1988. While these piston operated systems do reduce the lateral forces applied to the valve pin they have the disadvantage that they are relatively costly to make and require a considerable amount of space around the valve pin head to which the piston is connected. This is particularly a problem in providing for the melt passage in a center entry single nozzle system as described in U.S. Pat. No. 4,380,426 referred to above. Also, many of the piston operated systems are hydraulically driven which has the additional problems of hot seals and continuing to circulate the oil for cooling after shut down. Furthermore, in a stack molding configuration the additional height required for the actuating mechanism is a considerable disadvantage. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.