text
stringlengths 2
806k
| meta
dict |
---|---|
Disposable hypodermic syringes are widely used throughout the world in hospitals and by the medical profession. Due to the high incidence of infectious diseases in recent years it has become of increasing importance to ensure that the syringe cannot be re-used, and that its needle of cannula is protected against accidental contact.
While many such syringes are inexpensive to manufacture and can therefore be economically disposed of after a single use, it is desirable to provide such a product that is arranged and designed in such a manner that its operation is essentially fool-proof. That is, minimizing the likelihood of human error in the operation and use of the product is extremely important. | {
"pile_set_name": "USPTO Backgrounds"
} |
The recent deployment of 3G networks has made a wide array of content types available to wireless subscribers. Multimedia content, such as music, games, and movies, and content rich websites and web applications, create an abundance of network traffic between a content provider residing outside of the wireless operator's network and the core and access subsystems of the network. The interfaces used for communication between the external content providers and the operator's network are inefficient and incapable of providing end-to-end quality of service (QoS) for content requests. As such, the operator's network is used as an intermediary to deliver content to subscribers. This places an inordinate amount of traffic load on the network systems. Moreover, the need to send and reseed the same content for multiple subscribers places additional strain on network resources.
In addition, external content providers target general users and cannot properly consider and adapt content to a format conducive to mobile devices in general, let alone a format configured specifically for a particular mobile device.
Thus, what is needed are new systems and novel methods to optimize content provisioning to mobile subscribers, to minimize the amount of data traversing the operator's network at any given time and, to increase the overall system response time. As will be seen by the following description, such new systems and novel methods allow mobile subscribers to experience less latency, better QoS, and increased throughput, resulting in better content presentation. Wireless operators can also benefit by reduced expense associated with less redundant capacity, simpler operation and easier maintenance associated with the present invention, as well as becoming the true content provider instead of an intermediary. Content providers also benefit from increased usage of their content. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a novel saccharide, a process to produce the same and also its uses, more particularly, to a non-reducing oligosaccharide as represented by the formula .beta.-D-oligoglucosyl .alpha.-D-glucoside, .alpha.-D-oligoglucosyl .beta.-D-glucoside or .beta.-D-oligoglucosyl .alpha.-D-oligoglucoside and a process to produce the same, as well as to its uses.
2. Description of the Prior Art
There have been known several types of non-reducing oligosaccharides: a type where as found in sucrose, erlose, raffinose, melezitose and kestose, glucose and fructose are bound via the .alpha.-1 and .beta.-2 linkages, in other words, oligosaccharides having a sucrose structure in the molecules; sugar alcohols such as maltitol, maltotriitol and lactitol; and neotrehalose where glucose is bound each other via the .alpha.-1 and .beta.-1 linkages. Oligosaccharides having a sucrose structure in the molecules are, however, less stable at the .alpha.-1 and .beta.-2 linkages and readily decomposable in an acidic solution. Such less stability provides several restrictions in the processing of foods and the like. Sugar alcohols, which are usually prepared by hydrogenation at an elevated pressure, are excellent in stability, however, less digestible and assimilable in human body so that they have the drawback that when excessively taken they may induce diarrhea. While neotrehalose (.alpha., .beta.-trehalose) is stable and handles readily, and has a gentle and mild sweetness. As disclosed in Japan Patent Kokai No.176,490/92 or No.252,973/93 by this applicant, neotrehalose is orally or parenterally administered to human bodies and well metabolized and advantageously utilized as an energy source without toxicity and side effects. Furthermore, since neotrehalose is not readily fermentable by dental-carries-inducing microorganisms, it can be utilized as a less cariogenic sweetener. These superb properties are found in neotrehalose, however, for the sake of viscosity-imparting ability and moisture-retaining ability, the development of a higher molecular oligosaccharide exhibiting the properties of neotrehalose is expected. | {
"pile_set_name": "USPTO Backgrounds"
} |
Data may be stored as unstructured data, for example, in files and directories in a file system. A distributed file system may store multiple copies of a file and/or directory on more than one storage server machine to help ensure that, in case of a hardware failure and/or system failure, the data should still be accessible. Typically the protocol for replication in a distributed file system involves multiple operations for each transaction (e.g., write transaction). Generally, when there is a request for a transaction to write to a file, the protocol involves five operations (1) lock, (2) pre-operation change log, (3) operations (e.g., write), (4) post-operation change log, and (5) unlock. Some transactions may overlap in time, and may result in unwarranted and/or inefficient operations. For example, a file that is locked for Transaction-1 may be unlocked when Transaction-1 is completed and may be locked again for Transaction-2. | {
"pile_set_name": "USPTO Backgrounds"
} |
There has long been a need for a wound dressing which is soft, pliable and elastic, yet high in tensile strength and abrasion resistance and which can release drugs at a controlled, sustained level.
Presently available bandages made of materials such as cotton are undesirable because they retain water, serve as growth mediums for bacteria, and soak up tissue pieces and blood which clots, causing adhesion to the wound and trauma during removal.
Other bandages are made with plastic coverings with an adhesion coating to decrease the undesirable water absorption of cotton wound dressings. Unfortunately, new problems were created due to lack of oxygen transmission through the plastic coating. Indeed, holes had to be punched through the plastic covering to allow the transmission of some oxygen to the skin below. Hard plastic or silicone coatings were also applied to the side of the bandage adjacent to the wound to prevent adhesion. These coatings did not significantly decrease the problem of the bandage sticking to the wound, and blocked oxygen and water transmission.
In further attempts to overcome the adhesion and permeability problems, polyurethane and other plastic dressings were tried. For example, U.S. Pat. No. 3,975,567 to Lock discloses a pressure and heat-treated polyurethane foam which is lyophilic.
Other polyurethanes which polymerize upon exposure to ultraviolet light were also developed. The majority of these UV-curable polyurethanes were designed for use as orthopedic casts, e.g., U.S. Pat. No. 4,209,605. Other types of polymers have been used as matrices for incorporation of biologically active agents and, in the form of polymerized sheets or films, have been used as wound dressings, such as the compounds disclosed by U.S. Pat. Nos. 4,321,117 (acrylic polymers) and 4,156,067 (polyurethane). None of these compositions managed to combine the properties of softness, oxygen and water vapor permeability, flexibility, thixotropy and capability for incorporation of biologically active agents, with a fast cure at room temperature to a tough, colorless film. The ability to cure at room temperature without release of heat is particularly important because many drugs are heat labile.
At present, the most commercially successful burn and superficial skin wound dressing is a polyether-based polyurethane, moisture-vapor permeable membrane compounded with silica gel. The composition, known as "Op-Site".RTM., described in U.S. Pat. Nos. 4,340,043 and 4,460,369 assigned to Smith & Nephew Research Ltd., is in the form of a thin film having a surface coated with a polyvinylethylether adhesive. Although considerably more comfortable, permeable, and effective as protection against bacterial contamination than the prior art wound dressings, this material still suffers from the inability to incorporate biologically active agents such as coagulants and antibiotics into the membrane, rather than into the adhesive, and from difficulty in formation and application as a bandage which conforms to the contour of the site of application. In connection with this latter problem, two to three people are required for application.
It is therefore an object of the present invention to provide a wound dressing which physically incorporates drugs such as antibiotics, coagulants, and anti-inflammatories into the dressing structure having appreciable tensile strength rather than into the adhesive or thin coating on the dressing so that the drugs are released in a controlled, sustained manner.
It is a further object of the present invention to provide a material for use as a wound dressing which is strong yet flexible, and which can be made to conform to the shape of the site of the wound.
It is a still further object of the present invention to provide such a material for use as a wound dressing which is nontoxic, non-carcinogenic, and biocompatible.
It is a further object of the present invention to provide a material which can be easily formed and applied to a wound by one person in adverse circumstances.
Yet a further object of the invention is to provide a polymeric material which is a liquid at room temperature and which has a sufficiently low viscosity at room temperature (prior to cure) to facilitate admixture with a drug to form a homogeneous blend.
Still a further object is to provide such a polymeric material which cures at room temperature without release of heat (non-exothermic).
The foregoing and other objects and features of the claimed invention will be understood by those skilled in the art from a reading of the description which follows. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a personal computer (PC) system and more particularly to an input/output driver circuit and a core section embodied upon a single monolithic substrate. The input/output driver circuit includes transistor devices which selectively connect or disconnect an input/output pad to the core unit based on the presence or absence of power upon the input/output driver circuit. To minimize power consumption, the input/output pin is further driven to ground by the input/output circuit during times in which power is removed from the input/output driver circuit.
2. Description of the Relevant Art
Personal information devices (herein referred to as PIDs) are well known in the industry. Typically, a PID includes any computer-based device which can store and manipulate data according to a user-defined program. Common types of PIDs are: notebook computers, subnotebook computers, digital assistants (test units, meters, etc.), electronic calendars, organizers, "smart" phones, etc. Depending upon their usage, PIDs are instrumental as a portable tool for communicating, computing and generally organizing day to day activities of a user.
PIDs typically employ both an AC power supply and/or battery pack (primary power source) as well as a backup power supply (secondary power source). The battery pack allows the PID operation remote from an AC plug in. Hence, the device enables a user to reference and manipulate information stored within the PID at a client's place of business, at the user's home, or while the user is traveling, for example.
At a minimum, a PID is implemented using a set of basic subsystems including: a central processing unit (CPU), an input/output structure, a memory, a control bus, a data bus and an address bus. Each of the above basic subsystems of the PID can be embodied upon separate silicon substrates or upon a single monolithic substrate, as an "integrated circuit". When one of the subsystems included upon the integrated circuit is the CPU, the integrated circuit is referred to as an "integrated processor". Depending upon the complexity of the PID, additional subsystems can be added to the basic subsystems listed above. Further, the basic subsystems as well as the additional subsystems can be configured upon the same silicon substrate as the integrated processor.
One of the basic subsystems included in a PID, as mentioned above, is a memory. The memory is typically composed of dynamic random access memory, or DRAM. DRAM has the requirement that each memory cell be refreshed. Refresh is a process wherein the contents of the memory cell are transferred out and subsequently transferred back into the memory cell. Refresh is required because capacitors associated with the cells cannot permanently retain voltage. The voltage represents the value stored in the cell, and thus the value can be lost over time. Because a given cell is not guaranteed to be accessed within a given amount of time by the natural operation of the system, refresh logic is included in either the memory controller that is typically coupled to the DRAM, included within the DRAM itself, or coupled to some combination of the memory controller and/or the DRAM. Two typical refresh schemes are CAS before RAS refresh and self refresh.
In CAS before RAS refresh, two interface signals between the DRAM and its controller are driven active in the opposite order of a normal access. During normal read or write accesses to a DRAM, RAS is driven active and then later CAS is driven active. RAS before CAS signaling causes the DRAM to transfer the contents of a requested memory location to its associated output. However, if CAS is driven active and then later RAS is driven active (i.e. CAS before RAS), the DRAM interprets the request as a refresh request. Subsequently, a refresh occurs in accordance with an incremented register within the DRAM. By periodically using the refresh signalling technique, a computer system can keep the entire DRAM refreshed and each memory cell will continue to maintain the value that was last stored into it by the memory controller.
In self refresh, the DRAM is signaled to begin refresh similar to the CAS before RAS refresh scheme, wherein CAS is driven active followed by RAS. However, using a self refresh scheme will allow the DRAM to continuously execute refresh cycles until CAS and RAS are driven inactive. Conversely, only one refresh cycle is preformed in DRAMS using CAS before RAS refresh for each CAS/RAS activation cycle.
The basic subsystems listed above are included in the IBM-compatible, AT-style personal computer (PC) architecture. The AT architecture is a well-known and popular configuration for various PIDs, and has enjoyed widespread acceptance in the computer industry as evidenced by its use in a large majority of the PCs currently being sold. In addition to the basic subsystems listed above, AT-style PCs employ expanded basic subsystems necessary for specific PID applications. In addition to other subsystems, an AT-style system used as a PID include the following expanded basic subsystems: a real time clock (RTC) unit and configuration static random access memory (configuration RAM).
The RTC unit serves to maintain time and date information within the PID. Typically, the RTC unit is adapted to receive an oscillator input for incrementing the RTC register value. The oscillator input is normally driven by an external oscillator crystal which is configured to oscillate at a defined frequency. The RTC register is then read by an operating system at boot time, and the read value is used to update the time and date values associated with the operating system running upon the integrated processor. The operating system then maintains the time and date during normal operation.
Configuration RAM maintains information regarding many of the subsystems (components) coupled within or to the integrated processor and forming the PID. Exemplary information maintained within the configuration RAM includes the number and size of fixed disk drives, the size of main memory coupled to the CPU, information about various peripheral components installed in the expansion slots, etc. The user or manufacturer of the PID defines the configuration of the components when the PID is first powered on, whereby application of power causes information storage into the configuration RAM. Whenever components are updated, added or removed from the PID, the configuration RAM is changed to reflect the new status of the PID components. Accordingly, the PID can always determine information about components currently installed by examining the information stored in the configuration RAM. Configuration RAM is well known in the industry and is commonly termed "CMOS RAM".
In order for the aforementioned RTC unit to maintain accurate time and date information, and the configuration RAM to maintain the current configuration information, these expanded basic subsystems must remain powered even when the remaining subsystems are powered off. Early PIDs employ a separate battery (secondary power source), typically a lithium cell, to supply power to the RTC unit and configuration RAM while the remaining subsystems are selectively powered by the primary source. In the above configuration, power is always drawn from the secondary power source regardless of the PID power state.
Various semiconductor manufacturers have produced integrated circuits that have integrated the RTC unit, the configuration RAM, and the battery cell into a single integrated circuit. It would be advantageous in a PID to include the RTC unit and the configuration RAM with other subsystems on a single integrated circuit. Such integration provides enhanced minimization and reduces the number of separate (discrete) subsystems required to build a PID. Reducing the number of discrete subsystems and placing as many subsystems as possible on a single monolithic substrate lowers the cost of the PID. However, an integrated circuit of this type would require an apparatus which can reset the basic subsystems and additional subsystems to a known state without disturbing the contents of the expanded basic subsystems such as the RTC unit and configuration RAM. Furthermore, an integrated circuit which includes such subsystems requires selective power capability (i.e. an apparatus which can apply power to the RTC unit and configuration RAM during times when the remaining integrated subsystems are powered off). If such an apparatus is not provided, the contents of the configuration RAM and the real time clock sections would be lost each time the PID is powered down or reset.
In addition to needing selective power capabilities, PIDs must also provide high performance while utilizing low power. The low power requirement exists because the PID is configured to operate from a battery pack. Subsystems which operate at lower power will therefore function for a longer period of time than higher power subsystems. Several power management techniques have been implemented by PID manufacturers to accomplish low power designs.
One such power management technique is to lower the voltage provided to the integrated circuits that comprise subsystems of a PID. However, the lowest voltage that can be used is limited by a number of factors, including noise margin and the semiconductor technology that was used to manufacture the integrated circuits. Noise margin refers to the resilience of a circuit to the presence of random fluctuations in the electrical signals which are used to communicate within the circuit.
Another power management technique typically used within an integrated circuit is to temporarily disable the clock signal to circuits that are idle for a period of time. With the clock signal stopped, the inputs to the circuit will be held constant and thus no switching of the circuits will occur. In many semiconductor technologies, such as CMOS, very little power is used if no switching occurs.
Another power management technique is to remove the power input from peripheral devices when those devices are idle for a period of time. The term "peripheral component" or "peripheral device" refers to an electronic component which is coupled to a peripheral controller linked to a peripheral bus. The peripheral controller is defined as an additional subsystem. Peripheral devices and associated peripheral controllers are not critical to PID functionality, but nonetheless expand functionality of the PID when included. Exemplary peripheral devices are fixed disk drives, PCMCIA devices, etc. Due to the nature of subsystems integrated as an integrated circuit, powering off of peripheral components requires a buffer inserted between the peripheral component and the integrated circuits which interface to the peripheral component when the peripheral component is to be powered off while connected to other components which remain powered on.
Integrated circuits are typically divided into a core section and one or more input/output driver sections. The core section includes circuits necessary to provide the basic, expanded, and additional subsystem functions of the integrated circuit. Each input/output driver section provides the interface between the core and a corresponding peripheral device. Thus, the input/output driver section is coupled between the core and pins on the exterior of the package containing the integrated circuit.
One or more input/output driver circuits included in an input/output driver section typically contain a transistor for driving a pin associated with an input/output driver section to a voltage representing a logical one. Another transistor is included for driving the pin to a voltage representing a logical zero. In some driver circuits, the inputs to the logical one and logical zero-driving transistors are configured to be off simultaneously at certain times. Such a configuration is known as a "tri-state" driver. The term "tri-state" means that the associated input/output pin may take on three values: logical one, logical zero, and unknown (or floating). The floating or unknown value may correspond to any voltage.
If a peripheral component attached to an input/output pin of an integrated circuit having input/output drivers as described above is to be powered off, then it is necessary to prevent the integrated circuit from driving current (via an output signal through an input/output pin) into the powered down device. Such current could damage the integrated circuit or the receiving peripheral component. The external buffer is used to prevent this damage. The input/output pins of the integrated circuit are coupled to one side of the buffer, and the pins of the peripheral component are coupled to the opposite side of the buffer. A control input to the buffer is provided. When the control input is in the connect state, the respective input/output pins of the two devices are coupled together. However, when the control input is in the disconnect state, the respective input/output pins of the two devices are not coupled together. Thus, when a peripheral component is powered down, the control inputs of the buffers associated with that component are driven to the disconnect state and the integrated circuit is electrically isolated from the peripheral component.
Unfortunately, the buffers that are required to enable peripheral component power off are costly. Also, controlling the buffer requires extra signals to be added to the PID, also possibly adding cost. A solution for powering down peripheral components without requiring external buffers in a PID is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
a. Field of the Invention
The instant invention relates to deflectable catheters, including introducer catheters and treatment catheters, as well as methods of use and methods of manufacturing relating thereto.
b. Background Art
Catheters are used for an ever-growing number of procedures. For example, catheters are used for diagnostic, therapeutic, and ablative procedures, to name just a few examples. Typically, the catheter is manipulated through the patient's vasculature and to the intended site, for example, a site within the patient's heart. The catheter typically carries one or more electrodes, which may be used for ablation, diagnosis, or the like.
To increase the ability to move and navigate a catheter within a patient's body, steerable catheters have been designed. Steerable catheters are often manipulated by selectively tensioning one or more pull wires running along the length of the catheter, typically offset from a central axis of the catheter, thereby deflecting the distal end of the steerable catheter in one or more planes. These pull wires are often attached to a metallic catheter component located at the distal end of the catheter, such as one of the electrodes carried on the distal end of the catheter or a pull ring incorporated in the catheter. Placing a pull wire in tension causes the distal end of the catheter to deflect in at least one plane. In this fashion, the catheter can be navigated through the tortuous path of a patient's vasculature to a target site. Because of the length of the path that a catheter may need to travel to reach a target site, however, greater control over deflectability is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to determining time of delivery of mailpieces. More particularly, the invention relates to a system and method for determining an amount of time required to complete a mail processing job.
Typical mailpiece sorting equipment incorporates a feeding mechanism for feeding mailpieces, a separating mechanism for separating the mailpieces from each other, a reading means for reading the information on the mailpieces, a mailpiece transport mechanism for transporting the mailpieces to compartments or bins, compartments or bins for receiving the mailpieces, and software for making choices regarding placement of the mailpieces into the compartments and a control device.
The operation of automated sorting equipment typically entails an operator placing an armload of mail that has been edge aligned onto the feeder portion of the system. The mailpieces are fed into the sorting system and sorted into bins or compartments. Often, when one or more bins become full, the sorting system stops, and the bins are emptied into a mail tray. From the mail tray, the mailpieces are sorted again, in which case the sorting apparatus is restarted and sorting continues.
Typically, mailpieces are sorted multiple times because there are fewer bins in a sorting system than delivery points (for example addresses). So, in a first sort (rough sort) each bin may represent all the mailpieces addressed to a particular neighborhood. In a second sort (fine sort), each bin may represent all of the mailpieces addressed to each street from one neighborhood. In a third sort, each bin may represent all of the mailpieces addressed to each street from another neighborhood. Delivery points will almost invariably outnumber the number of bins in the sorting apparatus, which forces at least a second pass (or sort). For example, a neighborhood having 50 addresses, 5 streets and 10 addresses per street, and a sorting system with 10 bins, cannot possibly sort mailpieces for each address in a single sort. To compensate for this, the sorting apparatus is programmed to have a first sort based upon the street where the addresses of the mailpieces are directed. Thus, bin 1 can collect mailpieces destined for the first street of the neighborhood. Bin 2 can collect mailpieces destined for the second street, while bins 3, 4, and 5 can collect mailpieces for streets 3, 4, and 5, respectively. Once the mailpieces have been sorted by street, the mailpieces from each bin (street) can be sorted a second time by address, where each bin now represents a particular address. This process is referred to as a xe2x80x9cjobxe2x80x9d and each xe2x80x9cjobxe2x80x9d and has its own sort scheme (e.g. several passes), as described above. Often a job has a specific time requirement where the mailpieces need to be sorted in time for pickup by a mail delivery truck. In these situations a job may be 30% through its first pass and the delivery truck will be showing up at any minute. If it is going to take 40 minutes to finish the first pass, then the delivery truck will have to wait or leave without any mailpieces, since the fine sorts have not been started. What is needed is a method and a system for estimating the amount of time required to complete a mail processing job so that sort schedules (jobs) can adjusted to meet schedules.
Deficiencies in the prior art are overcome, and an advance in the art is achieved with a system for estimating a time to sort mailpieces for a job. The system has a control module for receiving and maintaining real time data of a quantity of mailpieces and a time to sort the quantity of mailpieces during a first sort. It also has a progress module for estimating a time to complete one or more second sorts of the mailpieces, based upon the quantity of mailpieces and the time to sort the quantity of mailpieces during the first sort.
Operationally, the system measures a quantity of mailpieces and a time to sort the quantity of mailpieces during a first sort. It determines a time to complete one or more second sorts of the mailpieces, based upon the quantity and the time to sort the quantity of mailpieces during the first sort. Depending upon the estimated time of completion of the one or more sorts, the progress module advises an operator on whether to change the job schedule. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pro-fragrances and pro-accords have been used to enhance the delivery of fragrance raw materials and to sustain their duration. Typically pro-fragrances and pro-accords deliver alcohol, ketone, aldehyde, and ester fragrance raw materials via substrates which are hydrolyzed by one or more mechanisms, inter alia, the acidic pH of skin, nascent moisture.
Fragrances or odors not only provide a pleasant aesthetic benefit, but also serve as a signal. For example, foods, which have soured or are no longer edible, may develop smells, which are repulsive and send a signal that they are no longer palatable. Therefore, the delivery of an aroma sensory signal is also a benefit, which a pro-fragrance can provide.
However, pro-fragrances and pro-accords typically rely on the break down of a chemical species not based on accidental circumstance but on deliberate execution. There are currently no fragrance or odor releasing compounds which involve release of fragrances by way of a controlled chemical cascade initiated by exposure to electromagnetic radiation, inter alia, UV light. The present invention provides a means for delivering a fragrance or an accord wherein the delivery of said fragrance or said accord is instigated by exposure to light. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates In general to a catalytic converter installed in an exhaust system of a motor vehicle to reduce noxious components contained In a gas exhausted from an engine of the motor vehicle, More specifically, the present invention is concerned with a catalytic converter which has a honeycomb metallic catalyst bed unit mounted therein.
2. Description of the Prior Art
Hitherto, honeycomb beds have been widely used as a catalyst carrier for catalyst converters. Nowadays, some of the honeycomb beds are constructed of a sheet metal, such as a Fe--Cr--Al system ferrite stainless steel sheet metal (viz., 20Cr--5Al--La--Fe) or the like.
To produce such honeycomb metallic catalyst beds, various methods have been proposed and put into practical use. One method is disclosed in Japanese Patent First Provisional Publication 1-242152. In this method, an elongate corrugated sheet metal and an elongate flat sheet metal are put on each other and then they are rolled up to produce a metallic bed in the shape of cylinder or elliptic cylinder. Then, to suppress relative displacement between the two sheet metals, the metallic bed is subjected to a soldering process to solder or braze contacting portions of the two sheet metals. Laser soldering and vacuum brazing methods are commonly used for such soldering. In another method, corrugated sheet metals of different widths and flat sheet metals of different widths are alternately put on one over another to produce a metallic bed in the shape of cylinder or elliptic cylinder. Then, the metallic bed is subjected to a soldering process for soldering the sheet metals. The metallic bed thus produced in the above-mentioned manners has a plurality of through cells 5 as is shown in FIG. 20. In this drawing, denoted by numerals 1 and 3 are the corrugated and flat sheet metals respectively. These two types of sheet metals 1 and 3 are soldered or brazed at portions 7. As shown, each of through cells 5 defined In the metallic bed has a generally triangular cross section. The produced metallic bed is then subjected to a catalyst treating process to have surfaces of the through cells 5 coated with catalyst layer. Usually, for the catalyst treating process, a dipping method is used wherein the metallic bed is dipped in a wash coat solution for a given time. The wash coat solution Is a solution containing catalyst, .gamma.-alumina and additives. Thus, when the metallic bed is taken out from the solution, the entire surfaces of the through cells 5 are coated with the wash coat layer or catalyst layer. The metallic bed is then heated to dry up the catalyst layer on the surfaces. The metallic catalyst bed is then encased in a metallic case and soldered to the same.
However, due to inherent construction, the catalytic converter produced in the above-mentioned conventional methods has the following drawbacks.
First, as is seen from FIG. 20, when the metallic bed is dipped up out of the wash coat solution, surfaces of through cells are coated or wetted with the solution or catalyst layer 9. However, as is seen from this drawing, at portions "T" where an acute angle is defined between mutually soldered segments of the two types of sheet metals 1 and 3, there is collected a larger amount of catalyst due to the nature of surface tension of solution at such acute angle spaces. This means that an effective surface area of the catalyst layer on the surfaces of the through cells 5 is reduced by a certain degree and most of the catalyst in the portions "T" is wastefully used.
Second, usage of two types of sheet metals tends to lower the solidity or mechanical strength possessed by the metallic bed. In fact, the flat sheet metal can not smoothly absorb the thermal stress like in a manner as is exhibited by the corrugated sheet metal. Thus, when the metallic bed constructed of the two types of sheet metals is exposed to the highly heated exhaust gas for a long time, a considerable deformation tends to occur in the bed due to the thermal stress difference between the two types of sheet metals.
Third, soldering or brazing the two types of sheet metals needs a skilled and thus expensive technique. If the soldering or brazing is poorly made, undesired film-out phenomenon of the layered sheet metals of the metallic bed tends to occur. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a group supervision apparatus for an elevator wherein a plurality of cages are dispersed and kept on standby during a period of light traffic.
In a group supervision apparatus for an elevator, cages are dispersed to several floors in the whole building and kept on standby during a period of light traffic, so that hall calls which arise in the future can be responded to in short waiting periods of time. Dispersive standby operations by prior-art group supervision apparatuses for elevators include, for example, methods disclosed in Japanese Patent Application Laid-open No. 54-162357, Japanese Patent Application Laid-open No. 56-48375 and Japanese Patent Application Laid-open No. 59-48366.
Japanese Patent Application Laid-open No. 54-162357 discloses a method of operation wherein the numbers of occurrence of hall calls are counted for individual floors, and using statistics, dispersive standby floors are set to respective floors at which there are many users or on the basis of predicted large number of usage, or the number of cages to stand by at given floors may be determined. Japanese Patent Application Laid-open No. 56-48375 discloses a method of operation wherein a dispersive standby floor is set, and among a plurality of cages, one which is anticipated to reach the dispersive standby floor in the shortest period of time is given a dispersive standby command, whereby the dispersive arrangement of the cages can be promptly performed. In this case, the dispersive standby floor is artificially set at will. Japanese Patent Application Laid-open No. 59-48366 discloses a method of operation wherein a predetermined value is set between corresponding floors or between corresponding cages, and when an interval based on the positions of the cages has exceeded the predetermined value, the cages are moved so as to establish the interval of the set predetermined value, thereby to set dispersive standby floors. According to the prior-art group supervision apparatuses for elevators, cages are dispersed and kept on standby, and consideration is given so as to shorten the response times of the cages to hall calls to occur in the future, that is, the waiting times of users.
The prior-art group supervision apparatuses for elevators have the tendency that dispersive standby floors are fixed or are unevenly set to specified floors. This is inconvenient for some purposes of buildings. Especially in a building such as an apartment house or condominium, usually the dwellers of respective floors utilize the elevator equally. Therefore, in the case where the dispersive standby floors are fixed or biased to the specified floors, the apparent inequality that the service to the dwellers of those floors is better, whereas service to the dwellers of the other floors is worse, takes place and creates a problem.
As regards the apparatus which statistically sets the dispersive standby floors according to the degrees of use, special hardware and software for collecting the statistics of past use are required and make it expensive to realize the installation of the apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates, in general, to novel pharmaceutical uses of tetrahydroisoquinoline compounds represented by the following chemical formula 1 and 2. More particularly, the compounds of the present invention can be used to therapeutically effective ingredients in pharmaceutical compositions for treating heart failure, thrombosis, septicemia, disseminated intravascular coagulation (hereinafter referred to as xe2x80x9cDICxe2x80x9d) and/or tissue injuries mediated by nitric oxide (NO), which is clearly driven from enhancement of inducible NO synthase (hereinafter referred to as xe2x80x9ciNOSxe2x80x9d) induction:
Tetrahydroisoqunoline (hereinafter referred to as xe2x80x9cTHIxe2x80x9d) compounds are in the ring closing state of N-alkylphenylethylamines. Particularly, the chemical structures of 6,7-dihydroxytetrahydroisoquinolines possess a common backbone of catecholamine. That is, they contain, in their structures, 3,4-dihydroxyphenylethylamine, which is the backbone of catecholamine of which epinephrine, norepinephrine and dopamine are representative. Thus, many THI compounds show affinity for adrenergic receptors. In addition, it is reported that, depending on substituents"" kinds and their binding positions, THI compounds act on xcex1- and/or xcex2-receptors and exert agonistic and/or antagonistic effects, thereby exhibiting various pharmacological activities.
Particularly, THI compounds which have an hydroxy(OHxe2x80x94), methoxy(OCH3xe2x80x94), or halogen-substituted benzyl group on the carbon at the 1-position, are reported to show potent activities, such as bronchodilation, inhibitory activity against platelet aggregation, calcium channel blocking action, etc (King, V. F. et al., J. Biol. Chem., 263, 2238-2244, 1988; Triggle, D. J. et al., Med. Res. Rev., 9, 123-180, 1989; Lacorix, P. et al., Eur. J. Pharmacol., 192, 317-327, 1991; Chang, K. C. et al., Life. Sci., 51, 64-74, 1992; Chang, K. C. et al., Eur. J. Pharmacol., 238, 51-60, 1993).
Recently, bisbenzyl-tetrahydroisoquionoline compounds, such as tetrandrine, isotetrandrine and chondrocurine, have been disclosed to have a potent inhibitory activity against the mass production of NO induced by the endotoxin lipopolysaccharide (hereinafter referred to as xe2x80x9cLPSxe2x80x9d) (Kondo, Y. et al., Biochem. Pharmacol., 46, 1861-1863, 1993).
Higenamine, a THI compound containing a 4-hydroxybenzyl group at the position-1 and a hydroxy group at each of the positions-6 and -7, is very similar in structure to dobutamine which is clinically used as a cardiotonic agent. Higenamine is found to increase myocardial contractile force and heart rate and inhibit platelet aggregation in vitro experiments using isolated hearts and to show the increasing of cardiac output, hypotensive action, and anti-platelet aggregation in vivo experiments using rats or rabbits. In experiments using peritoneal macrophages of mice and thoracic aorta preparations from rats, higenamine was also reported to inhibit expression of iNOS and NO production by LPS, which accounted for restoration of the depressed vascular reactivity and lower the mortality due to endotoxin (Y. J. Kang et al., J.Pharmacol. Exp. Ther. 291, 314-320, 1999). Further, in an arthritis model, anti-inflammatory and analgesic activity were observed from higenamine (Park, C. W. et al., Arch. Int. Pharmacodyn., 267, 279-288, 1984; Chang, K. C. et al., Can. J. Physiol. Pharmacol., 72, 327-334, 1994; Yun-Choi, H. S. et al., Yakhak Hoeju, 38, 191-196, 1994; Kang, Y. J. et al., Kor. J. Physiol. Phamacol., 1, 297-302, 1997; Shin, K. H. et al., Natural Products Sciences, 2, 24-28, 1996) However, higenamine is disadvantageous in that it shows a drug effect only for a short period of time and the aforementioned pharmacological actions are insufficient.
As a result of the research on the development of higenamine derivatives having superior pharmacological effects, the present inventors succeeded in synthesizing novel compounds of Chemical Formulas 1 and 2, which have a long drug action period of time and show cardiotonic and hypotensive action, as disclosed in Korean Pat. No.148,755. In addition, these novel compounds were also found to have potent action for increasing myocardial contractile force and heart rate in an experiment using isolated rat heart preparations, for dilating the isolated blood vessels which are contracted with phenylephrine, and for increasing heart rate and decreasing blood pressure in an experiment using rabbits, as reported by the present inventors (Lee, Y. S. et al.).
In current use as therapeutics for congestive heart failure are digitalis cardiac glycosides and dopamines. Digitalis cardiac glycosides have an advantage of being suitable for oral administration, but are disadvantageous in that they have so a narrow safety margin that they are dangerous to use and cause arrhythmia. Sympathomimetic drugs, such as dopamine and dobutamine, are effective as therapeutic agents for congestive heart failure, but there are some shorcomings that they must be intravenously infused and their use causes the down regulation of the xcex2-adrenoceptor.
A good therapeutic effect may be attained in patients suffering from heart failure by co-administration of cardiotonic drugs capable of increasing the lowered myocardial contractile force, and the drugs which can reduce the burden overloaded to the heart through vasodilation or by prevention of thrombogenesis for smooth blood circulation. Thus, because digitalis cardiac glycosides or dopamine have only cardiotonic activity, they can show a good therapeutic effect when being administered along with a vasodilator (hypotensive agent) and a platelet aggregation inhibitor. Such co-administration of various drugs, however, has a problem in that the drugs administered are interacted to affect the adsorption and drug metabolism of each drug in the body, so as to increase the frequency of side effect occurrence.
From various evidences, it has been disclosed that oxygen free radicals excessively generated, including NO, act as one of the major factors causing acute and chronic tissue/organ injury. The above tissue/organ injuries can be exemplified by the tissue injury upon re-perfusion for inflammatory diseases such as arthritis, myocardial infarction, cerebral apoplexy, or ischemic diseases or by the complex organ injury due to endotoxins derived from bacterial infection. Accordingly, much attention has been paid to developing the materials, suppressive of the expression of iNOS or inhibitory of mass production of NO, which can be used for treating various diseases caused by a large quantity of NO. These materials, also are expected to protect the myocardial injury due to, for example, acute cardiac infarction or ischemic cardiac diseases, thereby suppressing the aggravation of heart failure or curing it.
With the above problems in mind, the present inventors found, as, a result of active research, that the compounds of Chemical Formulas 1 and 2 are useful as therapeutic agents for heart failure by virtue of their expressing heart stimulating action, vasodilation (hypotensive action), anti-platelet aggregation and iNOS inhibition at once and in combination as well as a therapeutic agent for the treatment of thrombosis by taking advantage of their inhibitory activity against platelet aggregation and as a therapeutic agent for NO-mediated tissue injury, septicemia, and DIC by virtue of their suppressive activity against iNOS expression and NO synthesis.
Therefore, it is an object of the present invention to provide a therapeutic composition for the prophylaxis and treatment of heart failure, thrombosis, iNOS-induced tissue injury, septicemia, and DIC.
Based on the present invention, the above object could be accomplished by a provision of a pharmaceutical composition comprising, as a pharmacologically effective ingredient, 1-xcex1-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and/or 1-xcex2-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, each of them showing heart stimulating activity, hypotensive activity, inhibitory activity against platelet aggregation, and suppressive activity against iNOS expression in combination and at once, represented by the following Chemical Formulas 1 and 2, respectively,: | {
"pile_set_name": "USPTO Backgrounds"
} |
To efficiently compress a time variable video sequence, redundancy in the temporal domain as well as in the two dimensional spatial domain must be reduced. MPEG uses a discrete cosine transform (DCT) to reduce the redundancy in the two dimensional spatial domain and a motion compensation method to reduce the redundancy in the temporal domain.
The DCT is a method of reducing the correlativity between data through a two dimensional spatial transformation. Each block in a picture is spatially transformed using the DCT after the picture is divided into blocks. Data that has been spatially transformed tends to be driven to a certain direction. Only a group of the data driven in the certain direction is quantized and transmitted.
Pictures, which are consecutive in the temporal domain, form motions of a human being or an object at the center of the frame. This property is used to reduce the redundancy of the temporal domain in the motion compensation method. A volume of data to be transmitted can be minimized by taking out a similar region from the preceding picture to fill a corresponding region, which has not been changed (or has very little change), in the present picture. The operation of finding the most similar blocks between pictures is called a motion estimation. The displacement representing a degree of motion is called a motion vector. MPEG uses a motion compensation-DCT method so that the two methods combine.
When a compression technique is combined with a DCT algorithm, the DCT transform is usually performed after input data is sampled in a unit size of 8×8, and the transform coefficients are quantized with respect to a visual property using quantization values from a quantization table. Then, the data is compressed through a run length coding (RLC). The data processed with the DCT is converted from a spatial domain to a frequency domain and compressed through the quantization with respect to the visual property of human beings, not to be visually recognized. For example, since eyes of human beings are insensitive to a high frequency, a high frequency coefficient is quantized in a large step size. Thus, a quantization table is made according to external parameters, such as a display characteristic, watching distance, and noise, to perform an appropriate quantization.
For the quantized data, the data having a relatively high frequency is coded with a short code word. The quantized data having a low frequency is coded with a long code word. Thus, the data is finally compressed.
In processing a moving picture as discussed above, blocks are individually processed to maximize the compression ratio and coding efficiency. However, the individual process causes blocking artifacts that disturb the eyes of human beings at boundaries between blocks.
Accordingly, various methods for reducing a blocking artifact in a coding system, which individually processes blocks, are presented. For example, attempts to reduce the blocking artifact by changing processes of coding and decoding have been implemented. However, this method of changing the processes of coding and decoding increases the amount of bits to be transmitted.
Another method for reducing the blocking artifact is based on the theory of projection onto convex sets (POCS). However, this method is applied to only a still picture because of an iteration structure and convergence time.
The blocking artifact is a serious problem in a low transmit rate moving picture compression. Since a real-time operation is necessary in coding and decoding a moving picture, it is difficult to reduce the blocking artifact with a small operation capacity.
Consequently, the related art methods involve various problems and disadvantages when reducing a blocking artifact created in coding a moving picture. A calculation for performing an algorithm is complicated, and the calculation amount and time become correspondingly large. Further, the blocking artifacts are not reduced in either complex regions or smooth regions in a picture. In addition, the amount of bits to be transmitted increases.
The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background. | {
"pile_set_name": "USPTO Backgrounds"
} |
The advent of virtualization technologies for computing resources has provided benefits with respect to managing large-scale computing resources for many customers with diverse needs and has allowed various computing resources or computing services to be efficiently and securely shared by multiple customers. For example, virtualization technologies may allow a single physical computing machine to be shared among multiple customers by providing each customer with one or more computing instances hosted by the single physical computing machine using a hypervisor. Each computing instance may be a guest machine acting as a distinct logical computing system that provides a customer with the perception that the customer is the sole operator and administrator of a given virtualized hardware computing resource.
Launching one or more computing instances on a single physical computing machine may entail identifying available computing resources (e.g., a physical host) on which a computing instance may be loaded and executed. A time to load and launch a computing instance on a host server may vary due to various aspects of the computing environment containing a physical host and aspects of the computing instance being launched. As a result, a launch time for a computing instance may range from a few minutes to several minutes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to integrated circuit manufacturing, and more particularly to insulated-gate field-effect transistors.
2. Description of Related Art
An insulated-gate field-effect transistor (IGFET), such as a metal-oxide semiconductor field-effect transistor (MOSFET), uses a gate to control an underlying surface channel joining a source and a drain. The channel, source and drain are located in a semiconductor substrate, with the source and drain being doped oppositely to the substrate. The gate is separated from the semiconductor substrate by a thin insulating layer such as a gate oxide. The operation of the IGFET involves application of an input voltage to the gate, which sets up a transverse electric field in order to modulate the longitudinal conductance of the channel.
Polysilicon (also called polycrystalline silicon, poly-Si or poly) thin films have many important uses in IGFET technology. One of the key innovations is the use of heavily doped polysilicon in place of aluminum as the gate. Since polysilicon has the same high melting point as a silicon substrate, typically a blanket polysilicon layer is deposited prior to source and drain formation, and the polysilicon is anisotropically etched to provide a gate. Thereafter, the gate provides an implant mask during the formation of source and drain regions by ion implantation, and the implanted dopants are driven-in and activated using a high-temperature anneal that would otherwise melt the aluminum.
An important parameter in IGFETs is the threshold voltage (V.sub.T), which is the minimum gate voltage required to induce the channel to conduct. In general, the positive gate voltage of an N-channel device must be larger than some threshold voltage before a conducting channel is induced, and the negative gate voltage of a P-channel device must be more negative than some threshold voltage to induce the required positive charge (mobile holes) in the channel. There are, however, exceptions to this general rule. For example, depletion-mode devices already have a conductive channel with zero gate voltage, and therefore are normally on. With N-channel depletion-mode devices a negative gate voltage is required to turn the devices off, and with P-channel depletion-mode devices a positive gate voltage is required to turn the devices off
As IGFET dimensions are reduced and the supply voltage remains constant (e.g., 3V), the electric field in the channel near the drain tends to increase. If the electric field becomes strong enough, it can give rise to so-called hot-carrier effects. For instance, electrons can overcome the potential energy barrier between the substrate and the gate insulator thereby causing hot carriers to become injected into the gate insulator. Trapped charge in the gate insulator due to injected hot carriers accumulates over time and can lead to a permanent change in the threshold voltage of the device.
A number of techniques have been utilized to reduce hot carrier effects. One such technique is a lightly doped drain (LDD). The lightly doped drain reduces hot carrier effects by reducing the maximum lateral electric field. The drain is typically doped using two ion implants. A light implant is self-aligned to the gate, and a heavy implant is self-aligned to spacers adjacent to opposing sidewalls of the gate. The spacers are typically oxides or nitrides. The purpose of the lighter dose is to form a lightly doped region of the drain at the edge near the channel. The heavier dose forms a low resistivity heavily doped region of the drain. Since the heavily doped region is farther away from the channel than a conventional drain structure, the depth of the heavily doped region can be made somewhat greater without adversely affecting the device characteristics.
A known fabrication sequence includes implanting lightly doped source/drain regions using the gate as an implant mask, forming the spacers, and implanting heavily doped source/drain regions using the gate and spacers as an implant mask. Another known fabrication sequence includes forming disposable spacers, implanting heavily doped source/drain regions using the gate and spacers as an implant mask, removing the spacers, and implanting lightly doped source/drain regions (between the heavily doped source/drain regions and the gate) using the gate as an implant mask.
A drawback of lightly doped source and drain regions is that their light doping levels increase parasitic resistance. During operation, this parasitic resistance decreases drain current and switching speeds. Therefore, while the lightly doped drain should be large enough to adequately reduce hot carrier effects, the lightly doped source and drain should not be larger than necessary since this increases parasitic resistance.
Complementary metal-oxide semiconductor (CMOS) circuits include N-channel and P-channel devices. During CMOS manufacturing, the gates for the N-channel and P-channel devices are typically formed by depositing a blanket layer of polysilicon over the substrate, forming a photoresist layer over the polysilicon layer, etching and removing portions of the polysilicon layer beneath openings in the photoresist layer, and stripping the photoresist layer. Thereafter, the spacers for the N-channel and P-channel devices are typically formed by depositing a blanket layer of spacer material over the substrate, and then applying an anisotropic etch. Arsenic and/or phosphorus are often used to dope the source and drain for the N-channel device, and boron is often used to dope the source and drain for the P-channel device. Since the gates for the N-channel and P-channel devices typically have identical thicknesses, the spacers for the N-channel and P-channel devices typically have identical sizes.
Boron, however, tends to diffuse into silicon more rapidly than phosphorus and far more rapidly than arsenic during high temperature processing. As a result, after the lightly and heavily doped source and drain regions are implanted into the N-channel and P-channel devices, as the high-temperature anneal is applied to drive-in and activate the implanted dopants, the heavily doped source and drain regions for the P-channel device tend to exhibit far more lateral diffusion than the heavily doped source and drain regions for the N-channel device. This can result in smaller lightly doped source and drain regions for the P-channel device than for the N-channel device. Accordingly, complications may arise with obtaining lightly doped source and drain regions having the desired size for both the N-channel and P-channel devices.
For instance, if the spacers are relatively large, then the lightly doped source and drain regions for the P-channel device may be suitably sized, but the lightly doped source and drain regions for the N-channel device may be larger than necessary, resulting in increased parasitic resistance that decreases drive current and switching speeds. On the other hand, if the spacers are relatively small, then the lightly doped source and drain regions for the N-channel device may be suitably sized, but the lightly doped source and drain regions for the P-channel device may be smaller than desired, resulting in increased hot carrier effects that disrupt the threshold voltage.
Furthermore, a problem encountered in P-channel devices with polysilicon gates containing a high concentration of boron is that when a thin gate oxide is used, poor threshold voltage control may arise due to unwanted boron penetration into the gate oxide, or further, into the underlying channel region. It is reported that boron will penetrate gate oxides that are less than 125 angstroms thick during a 900.degree. C. 30-minute post-implant anneal in nitrogen. It has also been found that the presence of fluorine in the gate oxide worsens the boron penetration problem. Such fluorine can be introduced into the gate oxide if boron difluoride (BF.sub.2) is the implant species. Unfortunately, in some instances, the boron penetration may severely disruption the threshold voltage.
Nitrided oxides and reoxidized nitrided oxides have been used to reduce boron penetration. Likewise, nitrogen has been implanted into gate oxides to reduce boron penetration. For instance, a heavy nitrogen dose (1.times.10.sup.15 atoms/cm.sup.2) can result in the gate oxide incorporating high concentrations of nitrogen that suppress boron penetration of the gate oxide. There are, however, drawbacks to these approaches. For instance, NH.sub.3 nitridation incorporates hydrogen in the oxide, which increases electron trapping in the oxide. Reoxidized nitrided oxide is unable to eliminate the nitridation induced electron traps. Although electron trapping can be reduced by using a very light nitridation, the resulting oxide does not show sufficient resistance to boron penetration. Similarly, N.sub.2 O nitrided and N.sub.2 O grown oxides may not contain sufficient nitrogen to prevent boron penetration. Finally, implanting nitrogen into the gate oxide may not achieve the desired nitrogen concentration in the gate oxide, particularly as the gate oxide becomes extremely thin.
Accordingly, a need exists for an improved method of making N-channel and P-channel IGFETs that provides improved control over the sizes of lightly doped source and drain regions and reduces boron penetration. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the electrodeposition of iridium/iridium oxide onto the surface of a microelectrode. More particularly, the invention relates to an improvement in the electroplating of iridium onto the surface of a microelectrode comprising a transition metal or mixtures thereof. The electroplated microelectrode is capable of holding and transmitting a higher charge density in biomedical applications than presently available plated microelectrodes. These microelectrodes are particularly useful when used in conjunction with electrical devices to treat neurological diseases and conditions in living mammals.
2. General Description of the Field
The use of electrical stimulation of muscles and nerves in the body to overcome specific diseases and nerve conditions has been under experimentation for a number of years. The diseases and conditions include--hearing loss (cochlear implant), incontinence, or impotence (series of implanted electrodes), heart arrhythemia (pacemaker) retinal stimulation, spasticity, limb paralysis, and the like.
Although much of the early development was empirical, it was recognized that the implanted electrodes need specific desirable characteristics. First, the basic electrode material needed to be non-toxic. That is, with or without the electrical activity, the implanted metal did not cause tissue or nerve damage or necrosis in the short or long term. Second, the precise form of the electrical stimulations needed to insure that any electrical charge injected into living tissue be balanced to prevent any irreversible reactions which would dissolve or impair the electrode. It was found that copper, stainless steel, silver or other generally common electrode materials rapidly corrode when electrically charged in an electrolyte environment, such as body fluids. In the early research, certain metals were identified as generally being an acceptably low corrosion rate so long as the charge density was limited to 200 microcoulombs/cm.sup.2 or less. Generally, these electrode materials include, for example, platinum, gold, iridium, rhodium, palladium, mixtures (or alloys) of these and the like.
For the stimulation of large-scale muscles and nerves, electrodes of the above metals or alloys were reasonably large in size; therefore, it was possible to keep stimulation parameters well within the charge density requirements. However, with the development of neural prosthetic devices for delicate structures such as the inner ear, eye, etc., microelectrodes smaller than those of the art were required. These microelectrodes and the electrical current density which was required to be transmitted through them quickly pushed to the limit the safe charge carrying capacity of the above-described metals and alloys in their present configurations.
In such delicate applications where the charge capacity required for electrical stimulation might be as high as 200 microcoulombs per square centimeter, the present microelectrodes are being driven dangerously close to the limit where irreversible dissolution and gas evolution occurs. The trend of the research was to go to much denser and smaller electrodes.
There are several known methods of increasing the capacity of a metallic electrode to carry and transfer an electrical charge. Since the charge is only safely transferred by the chemical reactions in which all products are insoluble and remain bonded to the electrode surface, the electrode charge capacity can be increased by identified electrode-bound reactions involving more electron transfers, i.e., valence states of the metallic oxides, Alternatively, discovering a method of increasing the real effective surface area of an electrode will allow more charge to safely flow through it.
The above described chemical design considerations are complicated and difficult, generally because material which may be optimal as an electrode for its mechanical properties may be far from optimal in terms of its electrical, chemical and biochemical properties. Specifically, a number of research groups have established that iridium and its oxides have more valence states than other metallic oxides, and it represents a greatly improved electrode interface as compared with platinum. However, iridium itself is generally not mechanically suitable as a material for a microelectrode. Some reports have been made about mechanically coating iridium onto the surface of platinum wires (which have good electrical and mechanical properties) by dipping in iridium chloride solution followed by heating (baking at 325.degree. C. or higher) the iridium coating at elevated temperatures. This technique often resulted in greatly increased charge capacity of the microelectrode, but the iridium coatings were not predictable either electrically or mechanically. Iridium was electroplated onto the platinum electrode using conventional direct current (DC) electroplating techniques. These DC plated electrodes had increased in charge capacity, but the iridium coatings were not mechanically rugged. After being exposed to ultrasonication) (a conventional cleaning and testing technique), the charge capacities of the electrodes were very unpredictable. The fundamental problem underlying the lack of mechanical ruggedness is that the mechanical and chemical adhesion between the base platinum electrode and the iridium metal coating is generally not very good.
It is therefore desirable to have a technique which will produce a microelectrode having improved adhesion between the iridium coating and the base electrode and have predictable mechanical ruggedness to withstand the electrical, chemical and biological environments to which it will be subjected during use. It is also desirable to have methods available to condition iridium-coated microelectrodes to increase the overall charge density. | {
"pile_set_name": "USPTO Backgrounds"
} |
Household pets, such as dogs and cats, tend to shed hair, which collects on carpets, furniture, and other areas of the home. A common complaint of pet owners is the seemingly never-ending battle to remove the pet hair. Pet hair and other similar debris can be relatively small and difficult to collect, even with conventional vacuum cleaners. Further, when vacuum cleaners having rotating or otherwise moving parts, such as rotatable agitators and air turbines, in the suction path are used to remove pet hair and other similar debris, the pet hair can collect at the moving parts, thereby impeding the operation and effectiveness of the vacuum cleaner.
U.S. Pat. No. 6,711,777 to Frederick et al. discloses a turbine powered vacuum cleaner tool wherein a nozzle body encloses an agitator located adjacent an elongated suction inlet opening. A turbine rotor is rotatably connected to the nozzle body and operatively connected to the agitator so that airflow generated by a remote suction source flows through the nozzle body and rotates the agitator.
U.S. Pat. No. 4,042,995 to Varon discloses a brush for removing animal hair from carpeting and upholstery comprising a plurality of flexible bristles composed of polymeric materials that create an electrostatic charge to attract the animal hair to the bristles.
U.S. Pat. No. 3,574,885 to Jones discloses a brush having a base member, a plurality of flexible plastic bristles mounted to the base member and a tubular adapter for connection with a vacuum cleaner to remove loose hair dislodged while brushing an animal. In an alternate embodiment, the brush comprises a mitt secured to a flexible base member to receive the hand of the operator.
German Patent Application Publication No. 2,100,465 to Schwab discloses a sweeper with a horizontal brush driven by the rotation of ground engaging wheels. Bristle pads are arranged on both sides of the brush and have bristles directed toward the rotating horizontal brush.
U.S. Patent Application Publication 2002/0170140 to Diaz et al, now abandoned, discloses a vacuum cleaner adapter comprising a bristle wheel comprising protruding bristles for removing hair and animal fur from rugs and carpets. The bristles can be made of natural or synthetic organic, polymeric, elastomeric, or composite materials such as nylon, rubber, or the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a dustproof fabric and to a method of manufacturing the same. More particularly, the present invention relates to a dustproof smock worn by technicians in the clean room and to a method of manufacturing the fabric of the smock.
2. Description of the Related Art
Clean rooms are being used more often in a great number of different areas including semiconductor fabrication facilities. The requirements for maintaining cleanliness in semiconductor fabrication clean rooms are stringent. Even the smocks worn by technicians in clean room environments must be carefully designed and manufactured to prevent the clean room from being contaminated by dust or moisture emanating from the bodies of the technicians themselves (now referred to as "particles").
The first semiconductor devices to be manufactured were not nearly as highly-integrated as the semiconductor devices which are manufactured today. In the past, the clean rooms were maintained at a cleanliness class level of between 10 k and 100 k, and the smocks worn by the technicians in the clean rooms were made of nylon or polyester taffeta.
However, the semiconductor device fabrication process continues to become more and more affected by the environmental conditions existing in the place in which the process takes place. Such conditions include the level of particulate contaminants, the electrostatic level of the air, etc. Accordingly, more attention has been paid to the material of the smocks worn by the technicians in the clean room. In this respect, polyester smocks have been adopted for use in the clean room.
Recently, highly integrated semiconductor devices having critical dimensions on the order of sub-microns, such as the 64M DRAM, 256M DRAM, etc., have been developed. The clean rooms in which such devices are made must be maintained at a cleanliness class of less than 10 k. This requirement has brought about an even greater scrutiny of the fabric from which the clean room smock is made.
Even the ultra-fine filaments of the nylon taffeta or polyester taffeta of the conventional clean room smocks could not prevent an unsatisfactory amount of moisture or fine particulates from emanating from workers' bodies into the clean room environment. The warp and weft of such fabric is just too great. Therefore, such fabric was treated with a moisture-permeable and water-proof, water-repellent coating or laminate of polyurethane resin or fluoric resin. Fabric treated in this way is shown in FIG. 1, and is manufactured by The Dupont Company of Delaware under the trademark GORETEX.
Referring now to FIG. 1, a polyester fabric 3 woven from aligned conductive yarns 2 is coated with a polyurethane and/or fluoric resin film 1. As shown in FIG. 2, particles emanating from one's body cannot pass through the coated resin film 1, but moisture from the body can pass through fine pores of the fabric. Accordingly, the fabric is moisture-permeable. On the other hand, water molecules having a relatively large size cannot permeate the pores 14 of the coating layer 15 and may become stuck. Thus, the moisture permeability decreases, and the comfort level of wearing the fabric is somewhat compromised. The comfort level is even lower when the resin layer 1, 15 is located at the side of the fabric which contacts the skin. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a center mechanism of a tire vulcanizer for attaching and detaching a bladder for vulcanization-molding to and from a green tire. More specifically, the present invention relates to a center mechanism of a motor driven tire vulcanizer in which a bladder is raised and lowered in the vertical direction so as to attach and detach the bladder.
2. Description of the Related Art
A tire vulcanizer is a machine for heating an unvulcanized tire which is called as a green tire housed in a die from the inside and the outside of the die so as to perform vulcanization-molding, and in general, a extendable and contractible rubber bag formed by a material having elasticity (such as butyl rubber) called as a bladder is attached in the center thereof. This bladder is inserted so as to be along an inner surface of the green tire which is brought in the center of the die of the vulcanizer. A heating and pressurizing medium with a high temperature and high pressure such as steam is supplied to the inside thereof so as to vulcanize the green tire. The green tire vulcanized by heating and pressurizing for a fixed time is to be a vulcanized tire, the bladder is removed and the tire is brought to the next step. Such a bladder type vulcanizer is provided with a device for attaching and detaching the bladder to and from the green tire and the device is called as a center mechanism of the vulcanizer. In this center mechanism, various types of mechanisms are commercialized. The present invention relates to a center mechanism of a tire vulcanizer in which an upper edge part of a bladder is raised and lowered in the vertical direction so as to attach and detach the bladder. As the center mechanism of this type, there are techniques disclosed in the following related documents.
Conventionally, a technique related to a center mechanism for a fluid pressure driven tire vulcanizer is disclosed (for example, refer to U.S. Pat. No. 5,776,507). This center mechanism for the tire vulcanizer is provided with a center post to which an upper clamp ring for retaining an upper edge part of a bladder is attached to an upper end thereof, a first cylinder attached to a lower end of the center post, and a second cylinder arranged in parallel to the first cylinder. The upper clamp ring is raised and lowered by the first cylinder through the center post. The entire bladder is raised and lowered by the second cylinder. This patent document is applied for patent by the present applicant. Although not described in the published document, since there is a need for large force to operate the first cylinder and the second cylinder, a hydraulic cylinder with high pressure is generally used as the first cylinder and the second cylinder.
Here, the first cylinder is attached in series with the center post so as to extend from the lower end of the center post to the lower side. Therefore, the entire length of the vulcanizer is extended and installation height of a die part is suppressed. Consequently, there is frequently a need for forming a pit having predetermined depth in an installation surface of the vulcanizer and installing the vulcanizer at the place. In the center mechanism described in this patent document, the second cylinder is arranged in parallel to the first cylinder. Therefore, the entire length is suppressed in comparison to a center mechanism in which a second cylinder is arranged in series with a first cylinder. However, a countermeasure thereof is not yet sufficient as there is a need for a shallow pit. In order to form the pit, a fundamental work is increased. When the pit is formed, a degree of freedom in changing arrangement of the vulcanizer is decreased.
Since the first cylinder is positioned at a lower part of the center of the vulcanizer, an exchange of the first cylinder is not easily performed in the case of occurrence of oil leakage in the cylinder or the like. There is also a problem that the heating and pressurizing medium with a high temperature and high pressure to be supplied into the bladder and the first cylinder come close to each other so that the life of oil is shortened. Further, since hydraulic pressure is used as a drive source, there is also a problem that a sealing structure thereof is complicated.
As a technique without such problems, the present applicant also proposes a technique related to a center mechanism for a motor driven tire vulcanizer in which fluid pressure driving is replaced by motor driving (for example, refer to Japanese Patent Laid-Open No. Sho 62-6964). This center mechanism of the vulcanizer is provided with a rod (a center post) to which an upper ring body retaining an upper edge part of a bladder is attached to an upper end thereof, a cylinder tube in which a rotational movement body which is formed by a screwing shaft and a screw nut for a ball screw screwed onto the screwing shaft is installed, a motor for rotating the screwing shaft, and a fluid impact absorbing device provided at a lower end of the cylinder tube. By rotating the screwing shaft by the motor, rotational movement of the motor is converted into up and down movement of the screw nut, and the rod is raised and lowered together with the screw nut. At the time of lowering the rod, the screwing shaft is housed in the rod. Therefore, in comparison to the center mechanism for the fluid pressure driven tire vulcanizer described in U.S. Pat. No. 5,776,507, the center mechanism for the tire vulcanizer described in this patent document is capable of suppressing the entire length thereof. Due to the motor driving, there is no problem in the oil leakage, the decrease in the life of the oil, and the complicated sealing structure as in the case of the fluid pressure driving.
However, in the center mechanism for the motor driven tire vulcanizer described in Japanese Patent Laid-Open No. Sho 62-6964, there are the following problems as a driving method is replaced from the fluid pressure driving to the motor driving. In order to explain the problems, at first, a part of operations of the center mechanism for the tire vulcanizer described in this patent document will be briefly described. At the time of performing shaping of a green tire, the upper ring body which is already raised is firstly lowered and stopped at a predetermined position and a brake is put on. This is to avoid a situation that the screwing shaft is rotated by shaping pressure imposed on the bladder so that the upper ring body is raised and a position of the bladder is displaced, and hence the air is mixed into between the bladder contacted onto an inner surface of the green tire with pressure and the inner surface of the green tire. Next, when the shaping is finished, an upper die performs a closing action so as to perform die clamping. Since the shaping pressure is imposed on the bladder even during the closing action of this upper die, there is a need for putting on the brake even during the closing action of the upper die in order to prevent a rise of the upper ring body until the upper die and the upper ring body are brought into contact with each other. The brake is released immediately before the upper die and the upper ring body are brought into contact with each other. Then, the upper ring body is lowered to a press position while being pushed down by the upper die. Here, during the closing action of the upper die, in order to suppress impact force generated at the time of the contact between the upper die and the upper ring body and suppress movement (the rise) of the upper ring body due to the shaping pressure, the brake should be released immediately before (at the very last moment before) the contact between the upper die and the upper ring body. However, setting of the release timing is difficult. Therefore, the center mechanism for the tire vulcanizer described in this patent document is provided with the fluid impact absorbing device serving as a device for absorbing downward impact force in the vertical direction due to the contact between the upper die and the upper ring body.
The problems in the center mechanism for the tire vulcanizer described in Japanese Patent Laid-Open No. Sho 62-6964 firstly include a point that in this center mechanism, a structure is complicated by providing the fluid impact absorbing device. Other problem is that even when the fluid impact absorbing device capable of absorbing the downward impact force in the vertical direction is provided, the brake is a mechanical brake. Therefore, in the case where the brake is not disengaged (or released) at the good timing due to an erroneous operation of this brake or incorrect setting, and even when the screwing shaft is to be rotated through the screw nut by lowering force of the upper die after the contact between the upper die and the upper ring body, the screwing shaft cannot be rotated due to brake force. Consequently, there is sometimes a case where a large overload is continuously imposed on the screwing shaft, the screw nut, the brake and the like so that a screwing part is damaged and the brake is broken. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
Aspects of the invention relate to an output data creating device that creates output data to be used by an image forming device (e.g., a printer, a display and the like) and an output data creating program which controls a computer or the like to create such output data.
2. Description of Related Art
Conventionally, when the output data to be used by image formation devices such as a printer, a display and the like is created, it is general that a color conversion of input data representing an image to be formed is performed using a color conversion table. For example, when print data for a color printer, the color conversion of the image data is executed using, for example, the ICC color profile, and then based on the color-converted data, the print data is created. In an inkjet printer, based on the print data, C (Cyan), M (Magenta), Y (Yellow) and K (Black) inks are ejected to form respective color components. By overlaying these color components, a color image is formed (printed) on the recording medium.
In a conventional print data creating device, a plurality of color conversion tables have been prepared corresponding to print conditions such as resolutions, total ink amount restricting value and a type of the recording medium (material and color), environmental conditions such as the temperature and humidity, and a combination of the printing conditions and environmental conditions (which will be referred to as output conditions, hereinafter). Then, depending on the output condition set by the user, a corresponding to color conversion table is used so that the optimum color conversion can be applied to the image data.
Optionally, there is known a compensation table corresponding to the printing condition (e.g., the type of ink, the type of the recording sheet, etc.) of the color image is used to compensate for the color conversion table. An example of such a technique is disclosed in Japanese Patent Provisional Publication No. P2001-128018A (hereinafter, referred to as '018 publication). According to this publication, the print data corresponding to the printing condition can be obtained quickly. Therefore, a color image can be printed quickly at high quality. Such a configuration is advantageous since data storage capacity can be reduced in comparison with a case where the color conversion tables are prepared corresponding to all the printing conditions.
According to the conventional art described above, a plurality of color conversion tables should be prepared corresponding to all the output conditions. Accordingly, the more the conditions are, the more the color conversion tables should be prepared. Therefore, in practice, when the image data is color-converted, if the output condition set by the user is within a predetermined range, the color conversion table corresponding to the condition closest to the output condition is used. Therefore, if the color conversion table corresponding to the output condition set by the user does not exist, the optimum color-conversion corresponding to the output conditions cannot be performed. Thus, it is very difficult to create the print data accurately reflecting the output condition.
Further, according to the '018 publication, it is necessary to create a plurality of compensation tables corresponding to the printing conditions in advance. Therefore, if the number the print condition is relatively large, it is troublesome to prepare such compensation tables. Further, when the number of the print conditions is relatively large, the number of compensation tables is also relatively large, and therefore, it is impossible to reduce the storage capacity. Further, if there is no compensation table corresponding to the printing condition, similar to the conventional technique, it is impossible to execute the optimum color conversion corresponding to the printing conditions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cardiac contraction in a healthy human heart is initiated by spontaneous excitation of the sinoatrial (“SA”) node, which is located in the right atrium. The electric impulse generated by the SA node travels to the atrioventricular (“AV”) node where it is transmitted to the bundle of His and to the Purkinje network. The fibers in the Purkinje network branch out in many directions to facilitate coordinated contraction of the left and right ventricles, thus providing natural pacing. In some disease states, the heart loses some of its natural capacity to pace properly. Such dysfunction is commonly treated by implanting a pacemaking device that generates an electronic pulse.
While effectively improving the lives of many patients, such implantable pacemakers have certain technical limitations. For example, implantable pacemakers rely on a self-contained power source such as a battery and consequently have a limited lifetime before the power source is in need of replacement. Hence, an otherwise healthy patient may require multiple surgeries to replace the power source or the entire implantable pacemaker. In addition, implantable pacemaker batteries are large and are usually the bulkiest pacemaker component. A pacemaker's size and capability for implantation in different body regions are typically dictated by the battery size. Also, implantable pacemakers have very limited or no capacity for directly responding to the body's endogenous signaling the way the SA node responds to such signaling, i.e. by a modulation of the heart rate relative to the physiological and emotional state (e.g. sleep, rest, stress, exercise).
Recently, biological methods of influencing a patient's cardiac cells have been developed, some of which include administering biopharmaceutical compositions that affect cardiac pacing. Developments in genetic engineering have produced methods for genetically modifying cardiac cells to modify non-pacemaking cardiac cells to acquire pacemaking capabilities or supply stem cells to regenerate the pacing capabilities of cells in the conduction system of the heart. For example, U.S. Pat. No. 6,214,620 describes a method for modulating the excitability of ventricular cells by controlling the regulation of the expression of certain ion channels (for example, K+ channels), and PCT Publication No. WO 02/087419 and WO 05/062890A3 describe methods and systems for modulating electronic behavior of cardiac cells by genetic modification of inwardly rectifying K+ channels (IK1) in quiescent ventricular cells.
Other biological approaches for moderating cardiac pacing involve implanting into the SA node, or other suitable heart regions, cells having particular ion channels that are commonly referred to as hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. Physiologically originating in the SA node, the HCN channels play a prominent role in the control of rhythmic electrical heart, activity. Cyclic nucleotides modulate HCN channel activity, and channel activation occurs upon hyperpolarization rather than depolarization. There are four isoforms of HCN channels (HCN1-4), and each has greater or lesser prevalence in different heart regions. Because the HCN isoforms are directly involved in pacemaker current modulation and activation, implantation of HCN-expressing cells into cardiac tissue that is diseased or experiencing conduction blockage is a viable method for regulating cardiac pacemaker function. See, for example, PCT Publication Nos. WO 02/098286 and WO 05/062958A2 and U.S. Published Application 20090099611.
Biological pacemakers, implemented using gene or cell based therapies, present great potential and promise as therapeutic alternatives to implantable electronic pacemakers for the treatment of cardiac disorders. However, there is a need for effective methods, systems, and apparatus for monitoring the functional maturation over time of the gene therapy or cell therapy approaches involved in establishing a biological pacemaker and for assessing the success or failure of such biological interventions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Vehicle mass is a parameter of interest particularly in the area of road freight. There are different elements which make up vehicle mass: the mass of the vehicle and trailer itself which are together referred to as vehicle tare; the mass of the load applied to the vehicle which is referred to as the payload; and the total mass of the vehicle and its load which are together known as the total combination mass (TCM).
Vehicle tare may vary due to fuel loads but for the most part, this has little impact on the mass of a loaded vehicle during its journey. Commercial payload is typically measured at the point of loading and is usually an important figure in a commercial transaction. If the mass is not known or cannot be determined during the loading process, then weighbridges are used at the unloading site or elsewhere; the tare is deducted from the TCM measured by the weighbridge to determine payload.
Vehicle mass monitoring requirements depend on the needs of the end user of the mass data. For obvious reasons, customers, transporters and suppliers are interested in payload mass as this bears directly on financial return. Road authorities are likely to be more concerned about the overall TCM and axle group mass during travel as this can lead to assumptions about the impacts that use of that vehicle will have on traffic and the road pavement and bridges.
Static vehicle mass measurements used by transporters and suppliers are commonly determined using weigh-in-motion (WIM) stations, weighbridges (static and low speed) and portable scales. Once mass data is obtained using one of these systems, it may be recorded by the driver into vehicle log books. This is a static mass data entry, i.e. a snapshot of vehicle mass at that time. WIM stations enable a vehicle to be weighed without stopping. WIM data is low cost to collect but is inadequate for use in an evidentiary monitoring system because it is less precise. Weighbridges are more accurate but labour intensive and therefore higher cost. Another deficiency of currently used vehicle weighing techniques is that they only provide for intermittent checking of vehicle mass, e.g. when the vehicle is in the vicinity of a WIM station or weighbridge. Typically both weighbridges and WIM stations are permanent sites provided in main vehicle corridors which may not meet the needs of all users.
On-board mass-monitoring (OBM) is another means to measure mass and is capable of continuously monitoring mass for a vehicle during the course of its journey which may include intermittent loading and unloading points. An OBM sensor is essentially some form of transducer incorporated into the vehicle's suspension system to measure the mass of an individual axle or an entire axle group. For steel sprung suspensions, this typically involves use of load cells containing strain gauges. These are also used for the turntable of prime movers (fifth wheel). Load cells are usually installed as an integral part of the vehicle or trailer structure, as a load bearing member. For air bag suspensions, an OBM device typically involves use of air pressure transducers connected to the air output lines from the airbags of the vehicle suspension system.
In some OBM systems the electrical signal from the mass transducer is fed into some form of electronic buffer (typically associated with an axle group or vehicle combination unit). The buffer may condition or pre-process the incoming signal, combine/collate a number of incoming signals, digitise an incoming analogue signal by sampling at a particular frequency (e.g. 100 Hz to 20,000 Hz), store a number of mass records or even convert the mass signal to an actual mass value based on some pre-defined formula. Most OBM devices (also known as on-board vehicle mass-monitoring systems or OVMS) also provide some form of interface that allows users to configure the system, read and extract mass data from the unit and connect to other devices such as printers and wireless communications devices. In some systems this component also performs the functions of electronic buffers.
The commercial investment in an OBM system fitted to a vehicle can be justified in many cases because it permits the driver during loading to more accurately distribute the mass of the load on the vehicle (i.e. to legal weight limits over each axle group) and to reduce instances of under-loading which leads to revenue loss. Also, monitoring vehicle mass and load distribution using OBM devices reduces instances of overloading which can lead to lost profits due to fines (and loss of travel time), missed delivery deadlines and increased risk of hazard and accidents as well as uneven wear on vehicle tyres and the like.
There are various possibilities for tampering with OBM systems. For example, exposed cables in air bag suspension systems and the ability to “chock” load cell transducers on turntables expose OBM systems to tampering. Electronic tampering is less likely since most systems are password protected but this cannot be ruled out. Research indicates there is little incentive to tamper with OBM systems since the drivers themselves benefit from using them. Nevertheless, tamper-evidence is crucial to utilise measurements from OBM devices in an evidentiary system whose data can be relied on to check compliance with regulatory requirements.
Although a range of mass-monitoring devices are available on the market, few of them have the capability to provide mass determinations which can be used at an evidentiary level. It would be desirable to improve upon existing mass monitoring systems by providing an approach to vehicle mass monitoring which is sensitive to possible tamper attempts so that the mass data obtained can be used reliably, e.g. as evidence of vehicle compliance (or non-compliance) with mass-related conditions of vehicle use. It may also be desirable to develop an approach for providing mass quality data to indicate the health of static and/or dynamic mass data pertaining to a vehicle or axle group of the vehicle.
The discussion of the background to the invention included herein including reference to documents, acts, materials, devices, articles and the like is intended to explain the context of the present invention. This is not to be taken as an admission or a suggestion that any of the material referred to was published, known or part of the common general knowledge as at the priority date of any of the claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to devices for generating, detecting, and analyzing surface acoustic waves.
A surface acoustic wave is one of several types of wave motion in which acoustic energy may appear as it travels through a solid medium. Bulk acoustic waves, for example, propagate through the interior of an acoustically conductive medium and, in general, exhibit a single type of motion, such as shear or longitudinal waves, while surface waves are a more complex mixture of these shear and longitudinal motions which is made possible by the presence of a stress free boundary condition. Because of this boundary condition, surface wave energy extends only a few wavelengths into the bulk of the propagating medium. This concentration of surface wave energy near the surface makes a variety of applications for surface waves possible in the field of electronics, such as signal filtering, the amplification of weak signals, the storage of signals in delay lines, the provision of highly accurate frequency references, and the detection of physical changes, like pressure or temperature, which affect the propagation characteristics of surface acoustic waves in a medium.
Practical applications for surface acoustic wave devices have expanded dramatically since the development of the interdigital transducer, which is capable of efficiently converting an electrical signal into a surface acoustic wave and vice versa. A simple interdigital transducer consists of a pair of interleaved electrodes which are placed in electrical contact with a piezoelectric material. When such a material is distorted, it produces an internal electric field. Conversely, if an electric field is applied to a piezoelectric material, the material will expand or contract, depending upon the polarity of the applied field. Because of this phenomenon, when a rapidly changing electrical signal is applied to a piezoelectric material through an interdigital transducer, the material will vibrate in response to the electrical signal, thereby generating a surface acoustic wave. A pair of single-fingered electrodes will not produce surface acoustic waves efficiently, but a multiple number of electrode fingers, when placed in an intedigitating pattern, will each excite an acoustic wave and, if the spacing between the fingers is properly related to the desired acoustic wavelength, the separately excited waves can be made to reinforce one another and produce a suitably large acoustic singal.
One of the most promising applications for surface acoustic wave technology has occurred in the design of crystal resonators for use in such devices as multipole crystal filters, crystal controlled oscillators, and tuned radio frequency receivers. In the past, bulk wave quartz crystal resonators with a high Q (quality factor) have been extensively employed to stabilize the frequencies of such oscillator circuits. Undesirable spurious modes can appear in the response of a bulk crystal resonator, however, and, in addition, bulk wave resonator technology is limited in its frequency range because a minimum thickness must be maintained in the crystal to ensure an adequate amount of physical strength. With the advent of surface acoustic wave techniques, a variety of improved crystal controlled oscillator designs have become feasible and offer an alternative approach which eliminates some of the problems which have been experienced with bulk wave devices.
One of the simplest of these alternative approaches utilizes a surface acoustic wave delay line, the output of which is fed back to the input through an amplifier which supplies excess gain. Acoustic waves are well suited for employment in a delay line, because their velocity is typically five orders of magnitude lower than the velocity of an electrical signal, permitting usefully long delay times to be obtained in a reasonably sized device having dimensions on the order of centimeters. The operating principle of the surface acoustic wave (SAW) delay line oscillator is based on forming a return loop with gain in which the phase shift around the loop is an integer multiple of 2.pi. radians for a particular frequency. To complete the device, this circuit must be coupled to a transmitting or receiving network, which may be electrical or, in the case of an acoustic device, may utilize a piezoelectric interaction.
Another type of SAW oscillator employs a pair of quarter wavelength spaced grating reflectors which are positioned on a substrate to form a surface wave resonant cavity. An interdigital transducer is placed within the cavity to provide the electrical input and output coupling port for the oscillator. Because of the narrow bandwidth associated with such distributed grating reflectors, it is possible to design a SAW resonator cavity which effectively responds to only a single longitudinal mode of acoustic waves.
The frequency control capabilities of the single mode SAW resonator are well known. In addition to this category of applications, however, the SAW resonator and the SAW delay line may also be used as strain sensors. In this configuration, an external perturbation, such as an acceleration or the weight of an object, is applied to distort the propagating medium. This perturbation is sensed by measuring the resulting change in the resonant frequency or the phase of the surface acoustic wave travelling in the delay line or the resonator. For the frequencies at which such devices are typically operated, the necessary electronics must be located physically close to the SAW components, since any significant length of connecting cable would introduce phase variations and adversely affect the measurement. In some applications for these devices, however, the environment in which the SAW sensor must be placed is too hostile (as in a high temperature, for example) for the electronic components to survive. Therefore, a need has developed in the SAW sensor art for a device in which the SAW components can be isolated from the electronics components. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known that electrical equipment and devices, such as high voltage transformers, are usually equipped with bushings, which are suitable to carry current at high potential through a grounded barrier, e.g. a transformer tank or a wall.
Conventional bushings are constituted by an insulator made of ceramic or composite material, which is provided with sheds and is generally hollow. The voltage grading can be obtained with or without a condenser body through which the electrical conductor passes.
An example of a bushing 1 for wall mounting will now be described with reference to FIG. 1 showing the overall structure of the bushing, and FIG. 2 showing a sectional view of the bushing mounted to a wall.
A high voltage conductor 2 extends through the center of a hollow gas filled bushing insulator 4 that forms a housing around the high voltage conductor. A wall flange 6 is provided to connect the housing of the bushing to ground through a wall. The high voltage conductor is provided with a contact 8, 10 in both ends thereof.
A wall 12 is shown in FIG. 2, in which the bushing 1 is mounted by means of the wall flange 6. This figure shows a so-called throat shield or voltage grading shield 14 provided inside the hollow bushing insulator 2 at and around the portion of the bushing going through the wall 12. This shield, which is made of a suitable metal, such as aluminum, accomplishes grading of the electrical field in the bushing and is used instead of a condenser core.
In high voltage applications, the voltage grading shield can be very large, such as five meters or more in length, which complicates manufacturing and transportation of the bushing. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some processing units may include a variety of types of components, depending upon the specific application for which they are intended. | {
"pile_set_name": "USPTO Backgrounds"
} |
Animal protein-containing food products, such as poultry, ham, roast beef, frozen fish filets, shrimp, scallops and fine paste sausages, contain moisture in the form of natural water content and, in some cases, water that is added during processing. The water content of such products has a pronounced effect on both product weight and product sensory qualities. Various additives, such as, for example, polyphosphates, starches, gums, and carrageenans, are used as to enhance the moisture retention of such food products. Polyphosphates are the most commonly used moisture retention additive, but may undesirably increase the phosphorus content of food processing effluents. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates to intervertebral disc prostheses, and more particularly to an intervertebral disc prosthesis that can be surgically introduced between adjacent vertebral bodies, preferably between lumbar vertebrae, and adjusted or expanded in situ to occupy an optimal or desired space between the vertebral bodies.
In recent years, surgical procedures have been developed in which two or more vertebrae are joined or fused together. Such procedures are now common in the treatment of spinal disorders such as spondylolisthesis, scoliosis, and disc degeneration. Certain of these fusion surgeries include Posterior Lumbar Interbody Fusion (PLIF), Transforaminal Lumbar Interbody Fusion (TLIF), Anterior Lumbar Interbody Fusion (ALIF), and DLIF (Direct Lateral Interbody Fusion). These procedures are well known to spinal surgeons.
Interbody vertebral spacers are known that are inserted between the vertebrae bodies to replace a collapsed, degenerated, or unstable disc. However, these prior spacers were typically of a predetermined thickness and thus it was difficult to size the thickness of the spacer to result in the desired amount of distraction between the vertebrae bodies in order to achieve the desired amount of distraction between the adjacent vertebra bodies. Such prior spacers are commercially available from Stryker Spine of Mahwah, N.J., from Medtronic, Spinal and Biologics Business, Memphis, Tenn., from Spinal Concepts, Inc. of Austin Tex., and from NuVasive, Inc. of San Diego, Calif.
Certain adjustable height interbody fusion devices are known, such as described in U.S. Pat. No. 6,080,193 that vary the distance between the portions of the spacer that engage the endplates of the adjacent vertebrae. However, these adjustable fusion devices rely on cam and other complicated mechanisms for adjustment purposes.
In general, lordosis is the curvature of the spine with the convexity forward. Lordosis is not necessarily a disease state, but rather the normal anterior physiologic curve of the neck or low back. This disclosure is primarily concerned with lumbar lordosis. Most lumbar disc spaces in healthy spines are generally parallel or nearly 0 degree lordotic, and is particularly true for L1/2, L2/3, and L 3/4 However, the L4/5 may have a lordotic angle ranging between about 0°-12°, and L5/S1 may also range between about 0°-12°. Therefore, in reconstructing a disc space that has some lordosis it would be advantageous to have an implant matching the existing anatomy so that the two surfaces of the implant would better conform to and better fit the shape of the disc space so that load sharing occurs over the whole implant. Otherwise, an implant having parallel upper and lower surfaces used in a disc space having, for example, 8 degrees of in situ lordosis would result in only part of the implant contacting its respective vertebrae bodies and therefore lessening the corrective support applied to the spine and thus predisposing the implant to subsidence. That is, subsidence refers to an increased tendency of the implant, over time, to telescope, settle or project into the adjacent vertebrae bodies with loss disc space height back to preoperative levels. When using conventional implants, it is frequently observed that such telescoping or settling occurs with such implants placed wholly within the disc space, rather than having the implant bearing on and distracting from the cortical rim/apophyseal ring of the adjacent vertebrae as disclosed in my co-pending U.S. patent application Ser. No. 12/899,625. Additionally, a more conformal fit in a disc space with lordosis will allow more uniform distribution of corrective forces applied during distraction. Thus, it would be desirable to provide an expandable (variable height) implant, as described in my above-noted pending application that would provide options for encountered or desired disc space lordosis. It would also be desirable to use either a variable or a fixed height implant that could reconstruct any disc space anatomy or morphology surgically encountered including lordotic conditions with the surgical procedures described in my above-identified U.S. Patent applications and in the present disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to cables produced using polyvinylidene fluoride and/or their copolymers (“PVDF”) capable of meeting the limited combustible requirements as defined in standard NFPA 90A (Standard for the Installation of Air Conditioning and Ventilation Systems), which Standard requires that such cables when tested by standard NFPA-259 have a potential heat value (“PHV”) below 3500 BTU/pound and when tested by NFPA-255 have a smoke developed index (“SDI”) below 50 and a flame developed index (“FDI”) below 25. Such limited combustible cables (“LC Cables”) are also referred to in industry as Duct Cables, CMD, 25/50/8, 25/50, CMP-50 Cables and/or by other references indicating compliance with the PHV, SDI and FDI requirements referenced in the NFPA 90A Standard for limited combustible materials.
To date, all LC Cables have been developed with fluorinated ethylene propylene (“FEP”) resins for both their primary insulation and jacket components. Applicant is not aware of any LC Cables made commercially using PVDF in one or more of the components. In order to meet the ever more stringent standards for these products, it would be useful to find alternative resins which can provide improved properties. PVDF has historically been limited to applications where its poor dielectric properties do not interfere with the performance of a cable.
It has been understood in industry that PVDF compounds with high limited oxygen index (“LOI”) values would be useful for plenum grade cables. Such high LOI compositions are taught, for example, by U.S. Pat. Nos. 4,898,906 and 5,919,852. The present invention has found that these earlier teachings are not applicable to LC Cables. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor storage device, and more particularly to a reference voltage generation circuit which generates the word line voltage of a semiconductor storage device which stores multiple-bit data in one memory cell.
2. Description of the Prior Art
Recently, in response to the request for a large-capacity semiconductor storage device, a semiconductor storage device which stores multiple-bit data in one cell with the use of the multiple-value technology has received much attention. The multiple-value technology will be described with a mask ROM as an example.
A mask ROM using the multiple-value technology must store multiple-bit (for example, two-bit or four-bit) data in one memory cell transistor. To do so, the threshold voltage of each memory cell transistor must be set to one of four or more threshold voltages according to the data to be stored. For example, to store two-bit data in one memory cell transistor, the threshold voltage must be set to one of 2.sup.2 =4 types of threshold voltages according to the data to be stored; to store four-bit data in one memory cell transistor, the threshold voltage must be set to one of 2.sup.4 =16 types of threshold voltages according to the data to be stored. The threshold is set up by the ion implantation technology during manufacturing.
Data is read from a memory cell transistor, which stores multiple-but data, as described below.
For a mask ROM which does not use the multiple-value technology, that is, a mask ROM which stores one-bit data in one memory cell transistor, one voltage level need be applied to a word line. This is because, in order to store one-bit data in one memory cell transistor, one of two threshold voltage levels need be set up for data to be stored. This means that applying the intermediate of the two threshold voltage levels to the word line indicates which threshold voltage level the memory cell transistor has. In this case, the memory cell transistor having one of two threshold values is set to ON, and the memory cell transistor having the other threshold value is set to OFF. Therefore, data may be read from the selected memory cell.
However, for a mask ROM using the multiple-value technology, each memory cell transistor has four or more threshold voltage levels. Therefore, to check the threshold voltage each memory cell transistor has, it is necessary to apply multiple levels of voltage to the word line one after another. For example, when one memory cell transistor contains two-bit data, that is, when the memory cell transistor has four threshold voltage levels, Vt0, Vt1, Vt2, and Vt3, it is necessary to apply the intermediate voltage (T1V) of Vt0 and Vt1, the intermediate voltage (T2V) of Vt1 and Vt2, and the intermediate voltage (T3V) of Vt2 and Vt3, one after another, to the word line to check which threshold voltage level the memory cell transistor has. This means that a mask ROM storing two-bit data in one memory cell transistor requires a circuit which generates three levels of word line voltage.
Similarly, when one memory cell transistor contains four-bit data, the mask ROM requires a reference voltage generation circuit which generates 15 (16-1) levels of word line voltage.
Although many circuits which generate these reference voltages have been introduced, the threshold voltage of a memory cell transistor is not always a desired threshold voltage because of manufacturing process problems. This means that the relation between the reference voltage and the memory cell transistor threshold voltage is not always a desired relation because of manufacturing problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
One type of computer-related attack is based on an inherent access to sensitive data that is traveling over an easily monitored path, for example, data traveling on an open bus. Mechanical methods (e.g., based on board circuit layout) can be used to reduce the accessibility of an open path, but these are not always practical and increase cost. A simple but also generally impractical solution to this problem is to not allow sensitive data travel over accessible paths. This is often not possible for a significant number of resource designs, such as those in which cost, performance requirements and/or current chip capabilities preclude media decryption and decompression from being feasibly implemented in the same physical module.
Another apparent solution would be to strongly encrypt any sensitive data that may be accessible to a hacker. However this solution is not feasible in many instances, because, among other reasons, this requires public key cryptography and/or secure key storage capability in one or both modules, which is at present a very expensive solution. Thus, strong cryptographic protection of the key often remains an unfulfilled need. In such a situation, the key used to encrypt the data, and/or the key used to encrypt the encryption key, eventually needs to be transferred from one module to another.
For compressed data, the limitation is one of processing power in the resources. For example, it is precisely when a decoder chip is incapable of performing real-time decryption on media that the data travels on an open bus in the clear. Therefore, encrypting this data to protect it is not an option.
A significant percentage of data-related security attacks to easily accessible data result from the ability to automate the analysis of the data. To this end, software and/or hardware tools analyze transmitted data looking to match known probability patterns, bit pattern signatures and/or frequency distributions. For example, one type of attack attempts to extract compressed media from data tapped off a bus by searching for start codes and estimating packet lengths.
As mentioned above, with encryption-based solutions, the inability to securely perform public key cryptography in a data decryption module (where “data” refers to code, media, text, or any other digital information) means that a data decryption key travels from the encryption module to the decryption module. As a result, even with encrypted data, in such a “security-constrained” environment, the data is not necessarily safe from an automated discovery attack. For example, attacks exist that attempt to discover the transmitted encryption key via correct decryption hypothesis. Some repetitive trial and error is required, but automated tools allow this to be accomplished; when the key is discovered, it becomes readily apparent from the signature of the data.
What is needed is a way to frustrate automated-analysis-types of attacks in constrained-resource scenarios. Although manual attacks are still possible, it has been found that manual attacks require a high skill level and are expensive, and thus do not spread at anywhere near the rate of that automated attacks spread, which only require a small expense and a low-skill level. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a display device, and more particularly, to a stereoscopic image display device and a method for manufacturing the same, in which switching between a two-dimensional image and a three-dimensional image is performed using an electro-wettable material depending on whether a voltage is applied.
2. Discussion of the Related Art
It is expected that services for high rate information based on a high speed information communication network will be developed from a simple type service such as ‘hearing and speaking’ service of a phone to a multimedia type service such as ‘seeing and hearing’ service based on a digital terminal, which processes text, audio, and video. Ultimately, it is expected that the simple type service will be developed to a three-dimensional stereoscopic information communication service that allows a user to stereoscopically see, feel and enjoy beyond the realm of time.
Generally, a stereoscopic image that expresses a three-dimension is obtained by the principle of stereo vision through two eyes. Since binocular parallax, i.e., the distance between two eyes is about 65 mm, the left eye and the right eye see different images from each other due to such a difference in their positions. The difference between images due to the difference in positions of two eyes will be referred to as binocular disparity. The three-dimensional stereoscopic display device allows the left eye to see an image only on the left eye and the right eye to see an image only on the right eye by using the binocular disparity.
In other words, left/right eyes see different two-dimensional images, and if the two images are transferred to the brain through the retina, the brain mixes the images with each other to reproduce depth and reality of the original three-dimensional image. This ability will generally be referred to as stereography, and if this ability is applied to a display device, the device will be referred to as a stereoscopic display device.
Meanwhile, the stereoscopic display device can be divided depending on elements that realize 3-dimension (3D). For example, a driving mode of the stereoscopic display device, which drives the stereoscopic display device to have a light path difference such as a lens by using a liquid crystal layer, will be referred to as a liquid crystal field lens mode.
Generally, a liquid crystal display device includes two electrodes facing each other, and a liquid crystal layer formed between the two electrodes, wherein liquid crystal molecules of the liquid crystal layer are driven by the electric field generated by applying a voltage to the two electrodes. The liquid crystal molecules have polarization properties and optical anisotropy. In this case, the polarization properties means that molecular arrangement is switched depending on the electric field as electric charges in the liquid crystal molecule are grouped at both sides if the liquid crystal molecule is arranged in the electric field. The optical anisotropy means that a path or polarizing state of emitting light is switched depending on an incident direction or polarizing state of incident light due to a thin and long structure of the liquid crystal molecule and the molecular arrangement.
In this case, the liquid crystal layer shows the difference in transmittance due to the voltage applied to the two electrodes and displays images by varying the difference per pixel.
Recently, a liquid crystal lens electrically driven has been developed, in which the liquid crystal layer serves as a lens by using the properties of the liquid crystal molecule.
In other words, the lens controls the path of the incident light per position by using the difference in refractive index between a material constituting the lens and the air. If the liquid crystal layer is driven by forming the electric field generated by applying a different voltage to each position of the electrodes, the incident light upon the liquid crystal layer brings different phases per position. As a result, the liquid crystal layer can control the path of the incident light like the actual lens.
Hereinafter, a general liquid crystal field lens will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view illustrating an effect of the difference in light path of a general liquid crystal field lens.
The general liquid crystal field lens includes first and second substrates facing each other, and a liquid crystal layer formed between the first and second substrates.
In this case, a first electrode is formed on the first substrate at a first distance from the first substrate, and a second electrode is formed on the second substrate.
Liquid crystals are arranged depending on the electric field formed between the first electrode and the second electrode when a voltage is applied, whereby an effect similar to that of the lens can be obtained by the difference in light path caused by arrangement of the liquid crystals per region as shown in FIG. 1. In this case, as the strongest electric field is applied to the center of the first electrode, the liquid crystal lies down, whereby the shortest light path is obtained. If the liquid crystal becomes far away from the center of the first electrode, it becomes erect, whereby the light path becomes longer, and an effect like a parabolic lens is obtained.
The aforementioned liquid crystal field lens is attached to the display device, and displays a stereoscopic image depending on the voltage is applied.
In this case, the display device and the liquid crystal field lens require a process of respectively forming independent panels and bonding the panels to each other. When the panels are bonded to each other, miss-alignment between a lens area of the liquid crystal field lens and a pixel of the display device may occur. This means that three-dimensional display cannot be performed normally.
Also, as the liquid crystal field lens and the display device are independently provided, they require at least two glass substrates, respectively. In order to obtain a stereoscopic image display device, at least four glass substrates are required. For this reason, problems occur in that it is difficult to obtain a slim device and the cost and process steps are increased.
As described above, the aforementioned stereoscopic image display device according to the related art has the following problems.
The stereoscopic image display device based on a liquid crystal field lens is obtained by filling a liquid crystal layer between upper and lower substrates of a display device at a certain thickness and attaching the liquid crystal filed lens, which serves as a lens depending on that a voltage is applied, thereto.
In this case, at least four glass substrates are required, whereby the cost and thickness are increased. Also, in case of the liquid crystal field lens, the liquid crystal layer requires a thickness more than the height of the desired lens, whereby a long time is required to form the liquid crystal layer having the thickness and the liquid crystal may not be filled fully. Also, misalignment may occur in the bonding process of the liquid crystal field lens and the display device. Accordingly, it is required that the aforementioned stereoscopic image display device should be formed at a different structure to have a slim size.
As the case may be, in addition to the liquid crystal field lens, a lenticular lens sheet may be attached to the display device. In this case, problems occur in that misalignment may occur between the lenticular lens sheet and the display device and image switching between a two-dimensional image and a three-dimensional image cannot be performed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to bleaching of pulp with a peroxidase, hydrogen peroxide, and violuric acid or a derivative thereof.
2. Description of the Related Art
It is well-known to use enzymes in the manufacture of paper materials. Examples of enzymes used for this purpose are proteases, lipases, xylanases, amylases, cellulases, as well as various oxidizing enzymes such as laccases and peroxidases.
The effects of these enzymes are wide-spread, e.g. control of various deposits such as pitch, strength-improvement, de-inking, drainage improvement, tissue softening, bleaching etc. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. The Field of the Invention
The present invention relates to methods for manufacturing semiconductor devices. More particularly, the present invention relates to modifying the surface of a mold used for formation of planar surfaces during fabrication of semiconductor devices.
2. The Relevant Technology
During fabrication of semiconductor devices from silicon wafers, various processes are carried out prior to cutting the wafer into individual chips for packaging. At certain stages during fabrication of semiconductor devices, it is necessary to form planarized surfaces on the silicon wafer. Various methods have been developed to carry out the required planarization.
An efficient method of planarizing surface topography on a silicon wafer substrate during semiconductor device fabrication utilizes a photocurable polymer material that is applied to the wafer substrate. The polymer material is pressed against a flat quartz window of a mold, and radiant light energy such as ultraviolet light is directed through the quartz window to cure the polymer material, thereby forming a planar surface on the wafer substrate. The cured planarized polymer material can then be removed by a dry etch or chemical mechanical planarization (CMP) until the underlying topography is reached. By carefully choosing the method and application of polymer material removal, the underlying layer, such as an insulating layer of borophosphosilicate glass (BPSG), is removed at the same rate as the polymer material and results in a planar topography of the underlying layer.
A major drawback to the above method is adhesion of the polymer material to the surface of the quartz window when the polymer material is cured by light energy. Various mold release agents have been used in an attempt to alleviate the polymer adhesion problem on the surface of the mold. One mold release agent that has been used is octadecyl trichlorosilane (ODTS). A disadvantage of ODTS is that it must be reapplied to the mold window surface periodically, since this release agent wears off after repeated processing.
Another problem that occurs is that silicon wafers in a production line can have large particles of debris land on the surfaces thereof, such as particles of polysilicon from a broken wafer along the production line. If such debris-laden wafers are pressed against the flat quartz surface of a mold, the quartz surface can be scratched or otherwise damaged. Release agents such as ODTS offer no protection against surface damage of a quartz window by debris on a wafer. Such release agents also provide no protection against surface damage by hard material topography such as tungsten on a wafer.
Various other release agents have been used as surface modifiers. For example, perfluoroalkysilanes have been employed to prevent proteins from sticking to glass in biochemical processes. Another mold release agent that has been used is polytetrafluoroethylene (Teflon) formed on the mold surface as a planar sheet. While this mold release agent has good non-stick capabilities, it does not provide adequate protection against mold surface damage.
Accordingly, improved mold surface modifications are needed which overcome or avoid the above problems.
The present invention is directed to surface modifications of a mold contact surface used during semiconductor device fabrication. The modified mold surface provides effective non-stick characteristics and a mold surface that is resistant to abrasion or wear. The invention is particularly useful in modifying the planar surfaces of molds such as quartz molds used in forming planar surfaces on wafers during fabrication of semiconductor devices. The mold planar surface is adapted to contact a photocurable polymer material applied to a semiconductor wafer surface during a fabrication process. The mold including the planar surface thereof allows radiant electromagnetic energy such as ultraviolet light to pass therethrough to cure the polymer material placed against the planar surface of the mold.
In one aspect of the invention, a method for modifying a mold surface used during semiconductor device fabrication includes providing a mold having a planar surface as described above adapted to contact a photocurable polymer applied to a semiconductor wafer surface during a fabrication process. The mold surface is modified by forming a non-stick film on the planar surface of the mold, with the non-stick film including a release agent such as a fluoroalkylsilane compound. The non-stick film can be formed by a conventional coating process.
Alternatively, a non-stick film of a hard material such as diamond or diamond-like carbon can be formed on the mold surface, with the non-stick film providing protection against abrasion or wear on the planar surface of the mold. The non-stick film can be formed by various conventional processes such as chemical vapor deposition, plasma vapor deposition, sputtering, and the like. In addition, the non-stick film of diamond or diamond-like carbon can be fluorine-terminated, or can have a film of a fluoroalkylsilane compound formed thereover to provide further enhanced nonstick characteristics to the surface of the mold. For example, a modified mold surface can include a film comprising a protective first layer of a hard material such as diamond or diamond-like carbon deposited on the mold surface, and a non-stick second layer of a fluoroalkylsilane compound formed over the first layer.
In another aspect of the invention, a mold apparatus for use during semiconductor device fabrication is provided having a surface modified as described above such that a non-stick film of a fluoroalkylsilane compound is formed over the planar surface. Alternatively, a non-stick film of a hard material such as diamond or diamond-like carbon is formed over the planar surface of the mold. The non-stick film of diamond or diamond-like carbon can be fluorine-terminated, or can have a film of a fluoroalkylsilane compound formed thereover.
In a further aspect of the invention, a method for planarizing a semiconductor wafer device during fabrication includes providing a mold having a planar surface allowing transmission of radiant electromagnetic energy therethrough. The planar surface is modified with a non-stick film of a fluoroalkylsilane compound or a hard material such as diamond or diamond-like carbon formed thereover, as described above. The planar surface of the mold is contacted with a photocurable polymer material that has been applied to a semiconductor device wafer surface during a fabrication process. The photocurable polymer material which is planarized by pressing against the mold surface is solidified by transmitting radiant electromagnetic energy through the planar surface of the mold while the polymer material contacts the planar surface. The solidified polymer material is then released from the planar surface of the mold to allow further processing of the wafer.
The invention is particularly useful in modifying the surface of a quartz mold having a window that will transmit ultraviolet light therethrough. The mold surface modifications of the invention provide enhanced non-stick characteristics and protection against abrasion or wear on the mold surface.
These and other aspects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter. | {
"pile_set_name": "USPTO Backgrounds"
} |
Historically, management and communications with a large employee workforce has been a complex and time-consuming task. With regard to managing large groups of employees, it is difficult to predict which applications they will need access to or data from or what employee preferences would be from day to day. Additionally, appropriate and timely communication with a set of workers can be time consuming and difficult.
The current state of the art for login of employees to multiple domains, applications and environments is the limitations of one operator workstation per conference call bridge. A conference call bridge is a bridge that connects and controls conference call operations between a group of participants and agents. Each conference call bridge is also statically mapped to the agent. These limitations prevent management of the agents from reassigning an agent to another conference call bridge dynamically. In addition, because of these limitations, a new agent may not be able to log into a conference call bridge timely if the existing agent fails to log off the workstation correctly.
A need was felt for a supervisor to manage a pool of agents. The supervisor should have the ability to define in scheduling an automated process to assign agents to conference call bridges. Based on the credentials of the agents, the process should be able to log the agents into correct bridges automatically. Therefore, what is needed is a solution that overcomes the static mapping and workstation per bridge limitations currently experienced. This solution should allow dynamic mapping of agents to bridges and provide supervisors the ability to determine agent status and availability. | {
"pile_set_name": "USPTO Backgrounds"
} |
According to National Fire Protection Agency regulations covering aircraft refueling, a deadman control must be used with the valve that controls the flow of fuel to an aircraft, and deadman controls shall be designed to preclude defeating their intended purpose. Further, the fuelling operator should monitor the panel of the fuelling equipment and the aircraft control panel during pressure fuelling or should monitor the fill port during overwing fuelling. According to the regulations, use of any means that defeats the deadman control shall be prohibited. A deadman switch should be used with fuel flow control valves such as a hydrant pit valve, a tank outlet on a tank vehicle, a separate valve on the tank vehicle or on a hose nozzle for overwing service.
Under typical regulations, a deadman switch should be used when performing any pressure fueling or tender filling operation. Deadman switches are designed to safeguard against over filling circumstances or situations that may delay the suspension of fuel flow. Fuel flow stops when the deadman device is released. Ideally, a deadman switch should not be jammed or bypassed during any fuel transfer operation. Deadman switch types include the electromechanical deadman switch, pneumatic deadman switch (sometimes called the air deadman switch), and combination electromechanical/pneumatic types. The deadman switch is actuated, for example through being in the hands of the operator, during a refueling process.
However, a conventional equipment control system, such as a conventional deadman switch, provides no method of identifying the operator and so may be used by any person, even those not authorized or trained to use the equipment. Also, conventional equipment controls are susceptible to jamming or locking in an operating position. These conventional systems allow both authorized and non-authorized personnel to purposely jam existing deadman switches into an operating position.
There are also many other circumstances where an authorized person such as an authorized operator needs to be in proximity to the equipment or operation. These circumstances may include any hazardous operation (such as a fueling operation), operation of equipment, medical monitoring situations, operation of equipment requiring some kind of safety interlock system, and the like. Conventional equipment control methods do not attempt to identify an authorized operator. | {
"pile_set_name": "USPTO Backgrounds"
} |
A digital cross-connect system (DSX) provides a location for interconnecting two digital transmission paths. The apparatus for a DSX is located in one or more frames, or bays, usually in a telephone central office. The DSX apparatus also provides jack access to the transmission paths.
DSX jacks are well known and typically include a plurality of bores sized for receiving tip-and-ring plugs. A plurality of spring contacts are provided within the bores for contacting the tip-and-ring plugs. The jacks are typically electrically connected to digital transmission lines, and are also electrically connected to a plurality of wire termination members used to cross-connect the jacks. By inserting plugs within the bores of the jacks, signals transmitted through the jacks can be interrupted or monitored. | {
"pile_set_name": "USPTO Backgrounds"
} |
Materials such as silicon oxide (SiOx), silicon carbide (SiC) and carbon doped silicon oxide (SiOCx) films find widespread use in the fabrication of semiconductor devices. One approach for forming such silicon-containing films on a semiconductor substrate is through the process of chemical vapor deposition (CVD) within a chamber. For example, chemical reaction between a silicon supplying source and an oxygen supplying source may result in deposition of solid phase silicon oxide on top of a semiconductor substrate positioned within a CVD chamber. As another example, silicon carbide and carbon-doped silicon oxide films may be formed from a CVD reaction that includes an organosilane source including at least one Si—C bond.
Water is often a by-product of the CVD reaction of organosilicon compounds. As such, water can be physically absorbed into the films as moisture or incorporated into the deposited film as Si—OH chemical bond. Either of these forms of water incorporation are generally undesirable. Accordingly, undesirable chemical bonds and compounds such as water are preferably removed from a deposited carbon-containing film. Also, in some particular CVD processes, thermally unstable organic fragments of sacrificial materials need to be removed.
One common method used to address such issues is a conventional thermal anneal. The energy from such an anneal replaces unstable, undesirable chemical bonds with more stable bonds characteristic of an ordered film thereby increasing the density of the film. Conventional thermal anneal steps are generally of relatively long duration (e.g., often between 30 min to 2 hrs.) and thus consume significant processing time and slow down the overall fabrication process.
Another technique to address these issues utilizes ultraviolet radiation to aid in the post treatment of CVD silicon oxide, silicon carbide and carbon-doped silicon oxide films. For example, U.S. Pat. Nos. 6,566,278 and 6,614,181, both to Applied Materials, Inc. and incorporated by reference herein in their entirety, describe the use of UV light for post treatment of CVD carbon-doped silicon oxide films. The use of UV radiation for curing and densifying CVD films can reduce the overall thermal budget of an individual wafer and speed up the fabrication process. A number of various UV curing systems have been developed which can be used to effectively cure films deposited on substrates. One example of such is described in U.S. application Ser. No. 11/124,908, filed May 9, 2005, entitled “High Efficiency UV Curing System,” which is assigned to Applied Materials and incorporated herein by reference for all purposes.
Despite the development of various UV curing chambers, further improvements in this important technology area are continuously being sought. | {
"pile_set_name": "USPTO Backgrounds"
} |
Two types of semiconductor memory devices are volatile memory devices which lose their stored data content in the absence of power, and non-volatile memory devices which retain their stored data content in the absence of power.
A flash memory device, which is a type of non-volatile memory device, can be configured as a NOR type memory device and/or as a NAND type memory device. NOR type memory devices can have a relatively fast operational speed because they control each memory cell. However, because every two cells requires one contact, the NOR type memory device can have a relatively large size cell area. In contrast, a NAND type memory device controls a plurality of memory cells in one body by binding the memory cells with one string and, accordingly, can be configured for a high degree of integration.
The NAND type flash memory device includes a memory block and a page buffer block. The memory block includes a plurality of strings connected in parallel. Each string includes a plurality of cell transistors connected in serial, a string select transistor, and a ground select transistor, which are respectively disposed on both sides of the string. The page buffer block includes a plurality of page buffers. The page buffers transmit programming data and reading data between the memory block and a peripheral circuit. Bit lines are disposed to electrically connect page buffers to string select transistors for data transmission. The bit lines are divided into even bit lines and odd bit lines.
In a conventional NAND type flash memory device, bit lines in a memory block are arranged in an even/odd/even/odd bit line order. Accordingly, when a memory cell (hereinafter, referred to as an even cell) connected to an even bit line is programmed after programming a memory cell (hereinafter, referred to as an even cell) connected to an even bit line, the even cell has a relatively large influence from the odd cell. That is, since the odd cells are disposed on both ends of the even cells, coupling disturbance between adjacent cells can occur when a programming operation is performed, which may deteriorate the reliability and operational characteristics of the associated flash memory device. | {
"pile_set_name": "USPTO Backgrounds"
} |
In general, a door hinge refers to a component used in a hinged door that opens or closes while rotating on a certain axis and is also called a hinge. This door hinge has been widely used in everyday life of an office, home and the like as well as industrial settings in which heavy equipment is used.
FIG. 1 is a perspective view showing a state in which a typical door for heavy equipment is opened by a hinge, and the door hinge 1 for heavy equipment is provided at a hinge shaft of a door 2 for heavy equipment to enable the door 2 to open or close.
The door hinge 1 for heavy equipment is composed of a pair of plates 10, 20 whose one end is rotatably connected as illustrated in FIG. 2, thereby rotatably supporting the iron door 2 and functioning to openably and closably connect the door 2 to a main body of the heavy equipment.
However, in a case where the aforesaid door for heavy equipment, namely, the iron door, is open with regard to the main body of the heavy equipment, a phenomenon that the door closes by itself due to a weight, wind or the like occurs, and accordingly, there is generated an inconvenience that the open door must be supported by a separate device when a worker rides in the heavy equipment or would like to replace or repair components of the heavy equipment.
That is, in order to maintain the iron door for the heavy equipment in the open state, a separate door stay device is needed.
In order to mount the separate door stay according to a conventional art, one end of the door stay must be fixed to a rotating door frame, and another end thereof must be connected by mounting a bracket to a main body of an excavator for connection of the door stay, but when the bracket cannot be mounted to the main body of the heavy equipment due to space restriction, it is problematic in that it is difficult to mount the door stay device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an opthalmologic apparatus, and more specifically, to a technique for focusing in an opthalmologic apparatus.
2. Description of the Related Art
A technique about a fundus camera, which selects and uses a plurality of illumination light sources, is discussed in Japanese Patent Application Laid-Open No. 09-066030. In this case, if an illumination light source is changed, it is necessary to improve visibility by changing the wavelength of index light. However, a difference in the length of the light path is generated due to the difference in the wavelength of the index light, so that it is difficult to confirm an accurate focal point. In the technique discussed in Japanese Patent Application Laid-Open No. 09-066030, the difference in the length of light path is absorbed by changing a relay lens of an illumination system according to the illumination light source.
However, since a relay lens barrel of the illumination system is large, it is difficult to replace the relay lens barrel while maintaining the accuracy of the optical system. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a dry etching apparatus and method, and more particularly to a dry etching apparatus and method which are suitable to implement high-selectivity high-anisotropy etching at high speed and with high throughput.
2. Description of the Related Art
Conventional dry etching techniques have used low gas pressure of 1-10 mTorr or so in order to improve anisotropy. Discharging gas with such a low gas pressure requires adoption of effective discharging techniques. One of them is microwave discharging. Examples of microwave gas discharging are disclosed in "Journal of Electrochemical Society" 1982, page 2764, "Journal of Vacuum Science Technology" A7, 1989, page 899 and "Proceeding of Dry Process Symposium" 1990, page 99.
Generally, reducing pressure lowers etching speed, so the conventional dry etching at low gas pressure uses high density plasma with the degree of ionization being high. The higher the plasma density, the higher the etching speed because the ion current incident to a sample to be treated increases. In microwave discharging, the plasma density can be made high by boosting the power of the microwave.
As an alternative way of improving the anisotropy, the conventional dry etching adopts an exchange of gas. For example, the process disclosed in JP-A-61-61423 and JP-A-63-65628 uses different gases in different steps in such a manner that the first step performs an anisotropic etching, the second step forms a side wall protection film and the third step performs an isotropic etching. The process disclosed in JP-A-60-50923 and JP-A-2-105413 realizes anisotropic treatment by making "time modulation etching" of exchanging etching gas for deposition gas at intervals of a few seconds. The process disclosed in JP-A-2-270320, in order to improve the temperature controllability in lower temperature etching to thereby increase the anisotropy, fixes a wafer by electrostatic adsorption, requires a plasma which (as does the wafer removal). Discharging gas exchanged into inert gas assures more accurate etching. Thus, the efficient method of improving the anisotropy has been to exchange gas.
A dry etching apparatus with the short gas residence time of 25 ms is disclosed in "Journal of Vacuum Science Technology" B8 (1990) p. 1185. The apparatus has a volume of about 2 liters between electrodes and an effective exhaust speed of 80 liter/sec.
The prior art described above has the following problems to be solved. The conventional dry etching techniques show a phenomenon that even when the incident ion current density is enhanced with the density plasma made high, the etching speed of a sample ceases to increase. This causes a problem that the necessary etching speed cannot be obtained solely by making the plasma density high. The etching speed can also be increased by applying an RF bias to a sample or body to be treated to thereby enhance the energy of incident ions. Enhancing the incident ion energy, however, deteriorates the etching selectivity ratio of the sample and a mask or underlying layer.
For example, the Si gate treatment process in which a resist is used as a mask, a poly-Si (polycrystalline silicon) sample having an underlying SiO.sub.2 is to be treated and, requires a poly-Si/resist selectivity ratio of 5 or more and a poly-Si/SiO.sub.2 selectivity ratio of 50 or more. This treatment process uses Cl.sub.2 gas plasma for etching. In order to provide the above selectivity ratios, the plasma etching was performed at the poly-Si etching speed of 300 nm/min or so. Since the poly-Si film is about 300 nm thick, the treatment time including 50% over-etching was 1.5 minutes. But the treatment time is desired to be one minute or less for good throughput. Therefore, the first problem to be solved is:
(1) to realize a poly-Si etching speed of 450 nm/min or more with a poly-Si/resist selectivity ratio of 5 or more and a poly-Si/SiO.sub.2 selectivity ratio of 50 or more. PA0 (2) to realize a poly-Si etching speed of 450 nm/min or more with a poly-Si/resist selectivity ratio of 10 or more and a poly-Si/SiO.sub.2 selectivity ratio of 100 or more. PA0 (3) to make the etching without leaving, a material with a low gas pressure as residue. PA0 (4) to estimate and control etching uniformity before the etching. PA0 (5) to introduce gas in a pulse shape with a pulse width of 0.1 ms to 100 ms into a treatment chamber. PA0 (6) to improve throughput in the etching accompanied by gas exchange. PA0 (1) Means for solving the first problem PA0 (2) Means of solving the second problem PA0 (1). If the ion energy is reduced to make the selectivity ratio twice, the etching speed of poly-Si becomes 200 nm/min. Thus, in order to make the etching speed 2.3 times as high as 200 nm/min to provide 450 nm/min, the ion current density must be raised to 27 mA/cm.sup.2 which is 2.3 times as high as that in the item (1). This can be realized with a power surface density of applied high frequency of 10 W/cm.sup.2 or more to provide an high density plasma. PA0 (3) Means of solving the third problem PA0 (4) Means of solving the fourth problem PA0 (5) Means of solving the fifth problem PA0 (6) Means of solving the sixth problem
With development of miniaturization of semiconductor devices, the resist mask and the underlying SiO.sub.2 is expected to become about half as thick as at the present time. On the other hand, since the thickness of the poly-Si gate is expected to remain fixed, selectivity ratios which are twice as large as before are required. Therefore, the second problem to be solved is:
The conventional dry etching technique has a disadvantage that if the sample to be treated contains plural kinds of atoms like AlCuSi, a material with a low gas pressure such as a reaction product of Cu is likely to be left as residue. Therefore, the third problem to be solved is:
Uniformity in etching depends on the uniformity in the density of the ion current supplied to the sample. But the conventional dry etching has no means of examining the uniformity in the ion current density. Thus, the uniformity in etching cannot be known until the etching is completed. The fourth problem to be solved is:
The conventional dry etching apparatus, in which the gas residence time within a chamber was 0.4-3 sec or so, could not introduce gas in a pulse shape into the chamber at time intervals shorter than the residence time which is the time that the gas resides within the chamber from when it is supplied into the chamber to when it is exhausted. The gas residence time can be calculated by EQU gas residence time=(volume within the apparatus)/(effective exhaust speed) (1)
In order to implement "atomic layer etching" in which a sample is etched at a sufficient etching speed (100 nm/min or more) for each atomic layer, at a pressure of 0.1 mTorr, it is necessary to control gas adsorption with the accuracy of at least 10 atomic layers, preferably 0.01 atomic layers, for the surface of the sample. In order to control the gas adsorption with the accuracy of 10 atomic layers, it is necessary to introduce the gas with a pulse width of 100 ms, and in order to control the gas adsorption with the accuracy of 0.01 atomic layers, it is necessary to the gas with a pulse width of 0.1 ms. The fifth problem to be solve is:
The conventional dry etching apparatus, in which the gas residence time in the treatment chamber is 0.4-3 sec or so, took one second or more to exchange gas. The etching accompanied by gas exchange has a problem that it takes relatively longer time to exchange the gas to thereby reduce the throughput. In order to observe or examine the shape of the sample during the etching by an observing means attached to the etching apparatus, the gas supply must be stopped to reduce the gas pressure. It took a few seconds to exhaust gas so that the etching with observation of the sample shape reduces the throughput. Therefore, the sixth problem to be solved is: | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a key cutting machine, and more particularly to an improved automatic key cutting machine having a key carriage that can be pivotably moved by means of a torsion spring, and can be moved leftward and rightward along a guide rod by means of a reversible motor as well as a pair of microswitches in order to effect the key cutting automatically.
2. Description of Background Art
In a conventional automatic key cutting machine, the milling cutter and key carriage are driven by the same motor, hence cams should be used for obtaining reciprocal movement of the key carriage. However, the use of cams can only urge the key carriage to move forward for effecting the key cutting, and can not urge the same to return to its original position. For effecting the next key cutting, it is necessary to have the key carriage pivotably moved by hand to such a degree that the key blank is moved away from the milling cutter and thus the key arriage can be moved back to its original position. This will decrease the cutting speed and its accuracy. Furthermore, it is impossible for the key carriage to change its moving direction and to make a stop during its moving period due to the use of cams. | {
"pile_set_name": "USPTO Backgrounds"
} |
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. The necessity to optimize the performance of each device becomes increasingly significant.
Embedded SRAM and DRAM have problems with non-volatility and soft error rates, while embedded FLASH memories require additional masking layers or processing steps during manufacture, require high-voltage for programming, and have issues with endurance and reliability. Nonvolatile memory based on resistance change, known as RRAM/ReRAM, typically operates at voltages greater than 1V, typically requires a high voltage (>1V) forming step to form a filament, and typically have high resistance values limiting read performance.
For low voltage non-volatile embedded applications, operating voltages less than 1V may be desirable or advantageous. Furthermore, compatibility with CMOS logic processes may be desirable or advantageous. Thus, significant improvements are still needed in the area of non-standard device manufacture and operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field of the Invention
The present invention relates to a rectifier for an automotive alternator that is for use in a motor vehicle, such as a passenger car or a truck.
2. Description of the Related Art
A rectifier for an automotive alternator is generally designed to rectify three-phase AC power output from a three-phase stator winding of the alternator into DC power.
To be competitive in the market, it is required for the rectifier to be compact and light, have a high output and a low price, and be durable.
One of the factors that determine the durability of the rectifier is the fatigue life of solders that join, in each of the rectifying elements of the rectifier, a semiconductor chip to electrodes. Further, the fatigue life of the solders is influenced by loads, such as a load due to a difference in thermal expansion, a mechanical load induced during the assembly and installation of the rectifier. In particular, when a tensile load is applied to the solders in a direction perpendicular to the layers of the solder layers, the fatigue life of the solders will be considerably shortened.
To reduce such a tensile load, Japanese Patent First Publication No. 2004-282938 discloses a rectifier in which: a lead electrode of each of the rectifying elements is configured to include a stress-relieving portion; and a heat sink, which is disposed in contact with a mount electrode of each of the rectifying elements, is configured to have high rigidity.
In the above rectifier, when a large tensile load is applied to each of the rectifying elements, the stress-relieving portion of the lead electrode will be deformed, thereby absorbing the tensile load. However, when a small tensile load is applied to each of the rectifying elements, the stress-relieving portion of the lead electrode will not be deformed, allowing the tensile load to act on the solders. Consequently, as the small tensile load is continuously applied, the fatigue life of the solders will be shortened.
In addition, in the above rectifier, the stress-relieving portion of the lead electrode is formed into a spiral shape. However, forming such a complicated shape will increase the manufacturing cost of the rectifier.
Moreover, the lead electrode of each of the rectifying elements is generally soldered, at a high temperature, to a metal terminal so as to form a bridge circuit of the rectifier. However, when the temperature of the lead electrode drops from the high temperature to an ambient temperature, the lead electrode, which has joined in its expanded state to the metal terminal, will contract, producing a tensile load on the solders formed in the rectifying element. In particular, during operation of the rectifier, the lead electrode will be subject to a temperature lower than the high temperature for the soldering process, permitting the tensile load to constantly act on the solders. | {
"pile_set_name": "USPTO Backgrounds"
} |
A variety of plural-arm clapper-type noisemakers have been proposed; some have been referred to as musical instruments, others as toys or rattles. Devices of this general kind have also been employed as animal training devices. All constitute percussion noisemakers of one sort or another.
For the most part, known clapper-type percussion noisemakers have required specially shaped and formed arms, clapper elements, and other components that have no utility apart from devices of this kind. Some have been relatively simple and inexpensive but others, particularly those employing metal components, are rather costly to manufacture. Devices of this kind produce a single, distinctive sound; only the repetition frequency of that sound is determined by the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
Preparing a field for planting crops involves a number of steps. Typically, the field is first ploughed. Ploughing turns a top layer of soil over. Plants growing in the top layer of soil are under the top layer after ploughing. This plant matter can decay to build the soil and provide nutrition for the current-year's crop. This plant matter is known as ‘green fertilizer’.
One or more additional preparation steps are typically performed after ploughing to break up the soil. Breaking up the soil makes it easier for a new crop to establish itself and to access nutrients in the soil and also facilitates planting. A harrow is a tool commonly used for this purpose. One type of harrow is a disc harrow. The disc harrow has a number of rows of disc-like blades that cut the soil as they pass through it. After ploughing a farmer may pull a disc harrow (or other harrow) over the ploughed field to break up the soil sufficiently to allow a new crop to be planted.
Soil compaction resulting from driving repeatedly over the field with heavy equipment can harm the land. Repeated passage of tractors or other equipment can seal off the natural passages by way of which air and water can penetrate the soil.
The field of agriculture is becoming increasingly competitive. Farmers work hard to reduce their cost of production. Field preparation involves significant costs because it typically involves traveling over every part of the field to be prepared multiple times. This results in very significant costs for fuel as well as wear and tear on expensive tractors. Labour costs can also be significant.
Over the years farmers have taken advantage of a number of developments that help to reduce costs of production. One of these developments is the tumble plough. Because ploughs are “handed” a farmer cannot simply plough a furrow to one end of the field and then turn around and plough another furrow adjoining the just-ploughed area. This would result in the soil being turned over in one direction for the first furrow (or set of furrows in the case of a multi-bottom plough) and turned over in the opposing direction on the return trip.
A tumble plough has two sets of plough shares. The two sets are oppositely handed (one set turns the soil over to the right-hand side of the tractor as the tractor pulls the plough ahead and the other set turns the soil over to the left-hand side of the tractor as the tractor moves ahead). Using a tumble plough, a farmer can plough a set of furrows along a field in one direction. When the farmer reaches the end of the field, the farmer can lift the plough shares clear of the ground, flip the plough over to bring the second set of plough shares into operating position, turn around in a U-turn, drop the plough into engagement with the ground and plough another set of furrows immediately next to the just-ploughed area. This significantly increases efficiency and can save both fuel and labour costs in ploughing the field (at the cost of the capital investment in a tumble plough).
There remains a need for methods and apparatus useful in soil tilling which provide further savings in time and/or fuel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a technique for constructing a graph structure representing a tubular structure in a three-dimensional medical image.
2. Description of the Related Art
Lung cancers are a disease in which a survival rate sharply drops as the stage of the disease progresses. Therefore, early detection and early treatment of lung cancers are extremely important. For example, when a shadow of a suspicious tumor or the like is found in a simple X-ray image of a chest, a CT image or the like, precise examinations are necessary to judge whether the suspicious tumor is a tumor. If the suspicious tumor is a tumor, it is necessary to judge whether the tumor is benign or malignant. In judging whether the tumor is benign or malignant, a pathology examination is performed by removing a part of the tumor by a bronchial endoscope. In this examination, it is important to more speedily and more accurately move the endoscope to the position of the tumor. For that purpose, it is effective to recognize the shape (a branching pattern or the like) of bronchi and a path to the tumor by using a CT image obtained by imaging before the examination.
Here, a technique using a Hessian matrix has been proposed, as an image recognition technique for extracting linear structures, such as bronchi, from a three-dimensional medical image obtained by CT, or the like. Specifically, first, multi-resolution transformation is performed on the three-dimensional medical image. After then, eigenvalue analysis of Hessian matrix is performed on the image of each resolution to extract a linear structure element. The linear structure element has a characteristic that only one of three eigenvalues obtained by eigenvalue analysis is close to 0. Next, linear structure elements (blood vessels) in various sizes are extracted from the three-dimensional medical image by combining results of analyzing images of respective resolutions. Further, data of a tree structure representing tubular structures in the three-dimensional medical image are obtained by connecting the extracted linear structure elements to each other by using a minimum spanning tree algorithm. When the linear structure elements are connected to each other by the minimum spanning tree algorithm, a cost function based on a positional relationship between linear structure elements or the principal axis direction of each linear structure element represented by an eigenvector corresponding to the aforementioned eigenvalue close to 0 is used (Japanese Unexamined Patent Publication No. 2010-220742 (Patent Document 1).
Meanwhile, bronchi have a tree structure in which a diameter gradually becomes smaller from 20 mm or larger to 0.5 mm or less while repeating branching from a trachea, and exhibit different anatomical and image characteristics depending on the diameter. Specifically, first, the angle of branching is different. The angle of branching may be an obtuse angle at a large diameter portion of the bronchi, but the angle of branching is an acute angle at a small diameter portion of the bronchi. Second, the bronchi are interrupted. Specifically, the bronchi in an image are not interrupted at a large diameter portion of the bronchi as long as a stenosis caused by a disease or the like is not present. However, at a small diameter portion of the bronchi, the bronchi in the image may be represented as if the bronchi are interrupted because of a noise in the image, which is caused by a partial volume effect and a motion artifact of a heart. Third, the thickness of the wall of the bronchi is different. Specifically, since the wall of the bronchi is thick at a large diameter portion of the bronchi, a difference in CT values between the wall of the bronchi and an air region in the bronchi is prominent. However, since the wall of the bronchi is thin at a small diameter portion of the bronchi, a difference in CT values between the wall of the bronchi and the air region in the bronchi is small, and a boundary between the wall and the air region is vague.
When bronchi are extracted by using the technique disclosed in Patent Document 1, a minimum spanning tree algorithm is executed by using a cost function in which the principal axis direction of each linear structure element is considered. Therefore, even if an interruption in an image is present, or a difference between the wall of the bronchi and the air region in the image is small at a small diameter portion of the bronchi, it is possible to correctly connect each of the linear structure elements. However, in a part of the bronchi in which the diameter is large and the angle of branching is an obtuse angle, a difference between principal axis directions of neighboring linear structure elements is large. Therefore, there is a risk that the linear structure elements are not correctly connected to each other. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a data transmission/reception method in Near Field Communications (NFC). More particularly, the present invention to a method for improving data throughput between devices.
2. Description of the Related Art
Near Field Communications (NFC) are used for communications between devices that are spaced from each other typically within about 10 cm. In NFC protocol stacks, the NFCIP-1 standard is used on physical layers of ISO 14443. In NFCIP-1, the devices used for the NFC (or NFCIP-1 devices) may operate in an Active mode or a Passive mode. An NFCIP-1 device in a transmission mode is referred to as an initiator and an NFCIP-1 device in a reception mode is referred to as a target.
In the Passive mode, an NFCIP-1 device does not have its own power source that is required for modulation of its own Radio Frequency (RF) field and thus cannot generate a request message by itself. In the Passive mode, a communication is started by the initiator at all times. In other words, once the initiator in Active mode sends a request message through the RF field, the target in a Passive mode drives a receiver circuit with the power source provided through the RF field. If the initiator does not have transmission data, the initiator periodically transmits a symmetry (SYMM) frame to at least one target. In response to receiving the SYMM frame or an Information (I) frame from the initiator, the target sends back to the initiator the received frame having inserted its own data therein. Thus, the throughput, i.e., data transfer rate, of data transmitted from the target depends on the frequency of the I frame or the SYMM frame received from the initiator.
Moreover, in a current Logical Link Control Protocol (LLCP) version, the initiator has to wait a period of time for reception of a response frame after transmitting a request frame. Due to such a wait, data transfer may be delayed by the response waiting time (RWT). In this mechanism, a unidirectional data transfer from the target inevitably relies on a frequency used for SYMM frame transmission from the initiator to the target.
As a result of the RWT discussed above, when the amount of data to be transmitted between NFC devices increases, a data transfer rate between the NFC devices decreases due to unnecessary idle time or waiting time.
To solve those problems, there is a need for a fundamental method for improving the data transfer rate between NFC devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to linearizing reactance sensor circuitry and more particularly to capacitance transducers for measuring pressure.
2. Prior Art
Practical reactance sensors commonly exhibit transfer functions that can be approximated by: EQU O=MX+NX.sup.2 +QX.sup.3
where:
O=output signal PA1 X=sensed variable PA1 M=sensitivity constant PA1 N=second order nonlinearity constant and PA1 Q=third order nonlinearity constant
It is desired that N and Q be as low as possible to give a desired linear relationship between the output signal, O, and the sensed variable, X. Prior art circuitry allows the third order constant, Q, to be adjusted as desired to minimize the combined effect of the second order term, N, and the third order term, Q. In the present invention substantially in dependent adjustment of the second and third order nonlinearity constants, N and Q, is made possible, resulting in substantially improved performance. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a test apparatus for testing a mobile communication terminal such as cell phone or mobile terminal, and a method for displaying a message associated with the testing.
2. Description of the Related Art
When a communication terminal such as cell phone is newly developed, a test needs to be done as to whether the developed communication terminal can normally operate in an actual use environment. However, it is so difficult to exchange communication information for various tests between the newly-developed communication terminal and an operating actual base station and thereby to test whether the newly-developed communication terminal can normally operate.
Thus, there is known a test apparatus for testing whether the newly-developed communication terminal can normally operate when the newly-developed communication terminal is connected to a pseudo base station having a base station function and various items of communication information are exchanged between the communication terminal and the pseudo base station. The document disclosing the test apparatus therein is JP-A 2008-193314 (KOKAI), for example. The test apparatus has a trace function of acquiring various messages exchanged between a mobile communication terminal to be tested and a pseudo base station and displaying the same as trace information indicating a communication history on a display. The trace function is used to display and output a plurality of items of detailed and time-sequential log information of the communication information as the trace information, thereby easily discovering an abnormality occurrence cause when the mobile communication terminal to be tested cannot normally operate.
In recent years, W-CDMA (Wideband-Code Division Multiple Access) or its next-generation communication standard called LTE (Long Term Evolution) has been introduced as a communication standard of mobile communication terminals to further enhance the speed of communication. Under such a situation, the amount of messages exchanged between the pseudo base station and the mobile communication terminal and the amount of trace information necessary to be processed per unit time increase.
However, a conventional test apparatus can only display a large amount of messages exchanged for test in time sequence, and thus there is a problem that it is difficult for a tester to find a desired message and visibility is poor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computer systems include various components to process and communicate data. Typical systems include one or multiple processors, each of which may include multiple cores, along with associated memories, input/output (I/O) devices and other such components. To improve computation efficiencies, computation accelerators, special-purpose I/O devices and other such specialized units may be provided via one or more specialized components, referred to generically herein as helper units. However, inefficiencies may occur in using such helper units, as in a typical computing environment that has a general-purpose processor and an industry-standard operating system (OS) environment, system software is isolated from application software via different privilege levels. Thus whenever a helper unit such as a special-purpose accelerator is incorporated, it is usually exposed as a device and a user-level application can only indirectly use the helper unit via the OS's device driver for the helper unit.
A processor can be connected to a helper unit via a front side bus (FSB), or input/output (I/O) link such as a Peripheral Component Interconnect (PCI) Express™ interconnect, and communication is via a traditional system interrupt mechanism. Traditionally, because peripheral devices are designed by different manufacturers, the OS requires specialized device drivers provided by the manufacturers in order to communicate with the device. Programmers then write code to use common application programming interfaces (APIs) provided by the OS to control the behavior of the devices. Thus by default, any helper unit coupled to a processor is treated as a device. The problem with having to use a device driver to access a helper unit is the inefficiency (in terms of path length from application to driver to the helper unit), and inflexibility due to OS-imposed restrictions related to “standardized” driver interfaces. | {
"pile_set_name": "USPTO Backgrounds"
} |
When mounting components such as flat package type IC, for example, QFP (Quadrate Flat Package) on a printed wiring pattern of a substrate, every connection between each pattern and its corresponding lead terminal is typically soldered in the following way: there are a number of the tips of lead terminals like crank legs protruding outward from the peripheries of ICs, and also there are formed a plurality of rectangular patterns (pads), the locations of which are preliminarily so determined that the patterns correspond to their lead terminals respectively, and lead terminals are placed on their corresponding patterns (pads). As a soldering method, a proper amount of soldering cream is printed and performed, a lead terminal is placed on the soldering cream, and heated to melt the soldering cream, and later cooled to be solidified. This reflow method is mostly practiced.
However, there are various causes such as variation in the length of a lead terminal protruding downward and poor contact between the lead terminal and a pattern at the time of soldering so that they may make solder solidified in such a situation that the lead terminal is remote from the pattern or the solder after solidifying.
Namely, FIG. 7(a) and (b) are illustrative views for comparing the cases between appropriate soldering and poor soldering and top views of mounting practice. The soldering cream printed on a pattern to is molten by heating thereof, and molten solder moves toward a lead terminal 4 due to capillary attraction. Thus, the molten solder is cooled to be solidified. When each lead terminal 4 of an IC 3 is connected by solder 5 to each pattern 2 on a substrate 1, in the Figure the lead terminal 4 on the right side has a good contact and is soldered well on the pattern 2. Whereas, if the lead terminal 4 does not contact with the pattern 2 before the soldering cream is molted by heat, the molten solder does not move toward the lead terminal 4 because capillary attraction caused by the lead terminal 4 does not affect the molten solder 5. Therefore, the molten solder 5 is solidified on the pattern 2 with uniform thickness. Accordingly, the lead terminal 4 on the left side is completely separated by not only the pattern 2 but also the solder 5.
In fact, there are intermediate cases between these extremes such that both of them are poorly soldered so that these insufficient soldered connections may be often the potential cause of making the lead terminal separated later.
Previously, there has been the difficulty of finding the case of such a poorly soldered connection. That is, formerly poorly soldered connections have been checked by visual inspection from the side of a substrate, and when the poorly soldered connection has been found, then it has been resoldered by soldering iron, resulting in soldering being completed as such. But it is very difficult to detect precisely such a case as being separated and poorly soldered connecting only by observing visually. In particular, it is impossible detecting the cases where both of them are just only slightly separated and no or extremely insufficient soldered connection is still formed though there could seem certain contact.
Since an electronic device cannot work naturally because of missing detecting a poorly soldered connection, the checking operation is critical and required to be perfect with no missing. However, as described above, missing will always take place due to such possible reason and it may happen that the electronic device does not work well after delivery as commercial goods.
Therefore, it is an object of the present invention to provide a printed wiring pattern in which there can be easily detected poorly soldered connection between the printed pattern and the lead terminal of an IC with visual inspection or an automatic checking method. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to an improved process and equipment for converting feedstock into useful materials, and more specifically, to an anaerobic fermentative process for bioconverting animal waste, sewage sludge or other biodegradable feedstock into methane gas, carbon dioxide gas, ammonia, carbon black, organic acid, charcoal, a fertilizer and/or an insecticidal mixture.
Animal waste poses a significant problem in the poultry, swine and cattle industries. Animal waste from animal raising or processing operations is responsible for a significant amount of underground water contamination and methods are continually being developed for handling animal wastes. One known method is the bioconversion of animal waste into useful products.
Methods for the anaerobic digestion or treatment of sludge, animal waste, synthesis gas or cellulose-containing waste are disclosed in U.S. Pat. Nos. 5,906,931 to Nilsson et al., No. 5,863,434 to Masse et al., No. 5,821,111 to Grady et al. No. 5,746,919 to Dague et al., No. 5,709,796 to Fuqua et al., No. 5,626,755 to Keyser et al., No. 5,567,325 to Townsley et al., No. 5,525,229 to Shih, No. 5,464,766 to Bruno, No. 5,143,835 to Nakatsugawa et al., No. 4,735,724 to Chynoweth, No. 4,676,906 to Crawford et al., No. 4,529,513 to McLennan, No. 4,503,154 to Paton, No. 4,372,856 to Morrison, No. 4,157,958 to Chow, and No. 4,067,801 to Ishida et al. These patents disclose different processes and equipment for the bioconversion, either by microbial digestion or enzymatic conversion, of those materials into methane and other useful materials.
The equipment used for the anaerobic digestion or fermentation of waste into fuel, such as methane, varies greatly and is generally tailored to specific applications. Equipment that is suitable for a first type of feedstock generally has to be modified before it can be used for a second different type of feedstock.
Chemical and biochemical reactions that create a gas are generally conducted at low to sub-atmospheric pressures due to the tendency of the product gas to function as feedback inhibitor that inhibits further formation of the gas. The art recognizes that variations in the pressure of an anaerobic digester can be used to effect different biochemical and productivity results. U.S. Pat. No. 4,409,102 to Tanner discloses an anaerobic digestion conducted at sub-atmospheric pressures that unexpectedly affect an increase in methane gas production. U.S. Pat. No. 3,994,780 to Klass et al. discloses the high pressure rupture of cells in an anaerobic digester to render cellular components available to other intact cells in the digester. U.S. Pat. No. 3,981,800 to Ort discloses a process for preparing high quality methane (about 98% wt.) with an anaerobic digester operated at 1-5 atm. above atmospheric pressure provided that the sludge is degassed by a recirculator and passed between two digesters connected serially to remove carbon dioxide in the sludge that is then fed back into the digester. Therefore, unlike the presently claimed system, the system or Ort requires that each batch of feedstock under go a two-stage digestion, wherein the feedstock is predigested in a first anaerobic digester and then completely digested in a second anaerobic digester that is connected serially with the first anaerobic digester. U.S. Pat. No. 4,100,023 to McDonald discloses that the internal pressure of the anaerobic digester should be kept at about 1 to 3 inches of water column to ensure proper performance. U.S. Pat. No. 4,568,457 to Sullivan discloses a two-stage anaerobic digester system having an acid forming stage and a methane gas forming stage, wherein the pressure of the gas in the headspace of the two stages can be slightly above atmospheric pressure.
Methanogenic microbes that create methane from carbon and hydrogen containing feedstocks, such as cellulose, animal waste, food processing waste, and sludge, are well known. These microbes have been used in the waste processing industry and are available in their native forms from natural sources or in genetically altered or manipulated forms, which can produce greater amounts of useful materials per unit weight of waste than can unaltered methanogenic bacteria.
To date, no equipment containing the required components as described herein has been disclosed. Further, the improved equipment design and layout of the present invention provides a higher yield of methane and other useful materials than other comparable equipment. Still further, the improved process and equipment of the invention can be used in the poultry, swine, dairy or cattle industries to convert cellulose-containing animal waste into methane which is used to operate farm or ranch equipment thereby reducing operating costs and the volume of waste produced.
The present invention provides a system for converting cellulose-containing feedstock into useful materials, wherein the system comprises:
a feedstock slurry feeder;
a plurality of conduits connecting various components of the system;
a single pressurizable anaerobic digester comprising agitation means, one or more feed ports, one or more discharge ports, an optional pressure regulator, and a reaction vessel for holding a reaction solution comprising an anaerobic microbe which converts an aqueous slurry of cellulose-containing feedstock into at least methane and an enriched effluent;
a pressurizer; and
one or more gas processors directly or indirectly connected to the anaerobic digester;
wherein the headspace of the anaerobic digester is pressurized to about 10 psi or more to form the enriched effluent and a discharge gas comprising at least methane during anaerobic digestion of the feedstock slurry.
Depending on the feedstock slurry used, the anaerobic digester will also form a fertilizer, sludge, scum, ammonia, charcoal, carbon black, an organic acid and/or an insecticidal mixture. The anaerobic digester is preferably operated at pressures between 10 to 265 psi, more preferably 10 to 100 psi, and even more preferably 25-75 psi. In preferred embodiments, the system also comprises one or more of the following: one or more gas scrubbers, one or more heaters for heating or preheating the slurry being digested in the anaerobic digester, one or more water storage tanks, one or more feedstock slurry tanks, one or more feedstock grinders, one or more supernatant storage tanks, one or more sludge storage tanks, one or more sludge dryers, one or more scum storage tanks, one or more CO2 tanks, and/or one or more produced gas storage tanks.
Other preferred embodiments include those wherein the system does not require a water lagoon, a foam trap, and/or a water vapor trap. Still other preferred embodiments include those wherein: (1) the system is operated in a batch, semi-continuous, or continuous mode; (2) the feedstock slurry comprises from about 1-90% wt. solids, more preferably about 1-60% wt. solids, or even more preferably about 1-40% wt. solids; (3) the agitation means comprises a gas bubbler, an aerator, a sparger bar, a fluid stream, a mechanical agitator, or a combination thereof; (4) the feedstock slurry is gravity fed or fed under pressure to the anaerobic digester; (5) the pressurizer pressurizes the anaerobic digester with gas or a liquid; (6) the pressurizer is the feedstock slurry feeder, which is preferably a pump, gravity feed system, or a gas compressor; (7) the anaerobic digester does not require aerobic digestion of the feedstock; (8) the anaerobic digester does not require multiple discrete zones of environmentally incompatible waste-digestive microorganisms; (9) the anaerobic microbe is a methanogenic bacterium; (10) the anaerobic microbe is mesophilic or thermophilic; (11) methane produced by the anaerobic digester is used to operate an internal combustion engine, an electrical current generator, an electric engine, a water heater, a furnace, an air conditioning unit, a ventilation fan, a conveyor, a pump, a heat exchanger, fuel cell, or various components of the system itself and/or to recharge power cells; (12) the gas processor comprises a gas scrubber and/or a gas separator; (13) a gas recirculator is used to recirculate gas from the headspace of the reactor to the slurry in the reactor; (14) a gas recirculator adds methane-depleted or carbon dioxide enriched biogas back to the reactor; and/or (15) a fluid recirculator recycles the scum, supernatant, effluent, or sludge of the reactor.
Another aspect of the invention provides a system for converting cellulose-containing feedstock into useful materials, wherein the system comprises:
one or more feedstock slurry feeders;
two or more pressurizable anaerobic digesters connected in parallel, each anaerobic digester comprising agitation means, one or more feed ports, one or more discharge ports, an optional pressure regulator, and a reaction vessel for holding a reaction solution comprising an anaerobic microbe which converts an aqueous slurry of cellulose-containing feedstock into at least methane and an enriched effluent;
one or more pressurizers;
one or more gas processors directly or indirectly connected to each anaerobic digester; and
a plurality of conduits connecting various components of the system;
wherein the headspace of each anaerobic digester is pressurizable to about 10 psi or more to form the enriched effluent and a discharge gas comprising at least methane during anaerobic digestion of the feedstock slurry.
Specific embodiments of this aspect of the invention include those wherein: 1) a major portion of the discharge gas is methane; 2) the system comprises a single feedstock slurry feeder connected to each of two or more pressurizable anaerobic digesters connected in parallel; 3) the enriched effluent from a first pressurizable anaerobic digester is not fed into a second pressurizable anaerobic digester; 4) the system further comprises one or more receiving tanks that receive the enriched effluent from each pressurizable anaerobic digester.
Another aspect of the invention provides an integrated system for converting cellulose-containing feedstock into useful materials, wherein the integrated system comprises:
a feedstock slurry feeder system that forms an aqueous slurry of cellulose-containing feedstock;
an anaerobic digester system directly or indirectly connected to the feeder system and comprising two or more pressurizable anaerobic digesters connected in parallel, wherein each anaerobic digester receives the aqueous slurry of cellulose-containing feedstock and converts it into a discharge gas and an enriched effluent; and
a discharge gas processing system that is directly or indirectly connected to the anaerobic digester system and that at least separates methane from the discharge gas;
wherein the headspace of each anaerobic digester is pressurizable to about 10 psi or more to form the enriched effluent and a discharge gas comprising at least methane during anaerobic digestion of the feedstock slurry.
Specific embodiments include those wherein: 1) the integrated system further comprises an enriched effluent processing system; 2) the integrated system further comprises a pressurizer system; 3) the feedstock slurry feeder system comprises one or more mixing vessels and one or more pumps; 4) the discharge gas processing system comprises a dehydrator, separator, and scrubber; 5) each anaerobic digester comprises agitation means, one or more feed ports, one or more discharge ports, an optional pressure regulator, and a reaction vessel for holding a reaction solution comprising an anaerobic microbe that converts the aqueous slurry of cellulose-containing feedstock into at least methane and the enriched effluent; 6) the discharge gas processing system comprises one or more separators for separating CO2 or ammonia gas from the discharge gas; 7) the integrated system further comprises a gas recirculator to recirculate gas from the headspace of an anaerobic digester to the slurry of the digester; 8) a gas recirculator adds methane-depleted or carbon dioxide enriched discharge gas back to an anaerobic digester; and/or 9) the integrated system further comprises a fluid recirculator system that recycles the scum, supernatant, effluent, or sludge of an anaerobic digester.
Another aspect of the invention provides an integrated anaerobic digester system comprising:
a single-stage anaerobic digester system comprising two or more pressurizable anaerobic digesters connected in parallel, wherein each anaerobic digester receives an aqueous slurry of cellulose-containing feedstock and converts it into a discharge gas and an enriched effluent;
a discharge gas processing system that is directly or indirectly connected to the anaerobic digester system and that at least separates methane from the discharge gas; and
an enriched effluent processing system that is directly or indirectly connected to the anaerobic digester system;
wherein the headspace of each anaerobic digester is pressurizable to about 10 psi or more to form the enriched effluent and a discharge gas comprising at least methane during anaerobic digestion of the aqueous slurry of cellulose-containing feedstock.
Other features, advantages and embodiments of the invention will be apparent to those skilled in the art by the following description, accompanying examples and appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
This specification generally relates to computer-based techniques for interactive content recommendation for selecting and providing customized content to users.
A user can have access to a large volume of media content from various sources, such that selection of a particular content item (e.g., movie, television program, music album, online books, streaming content) can be overwhelming without assistance. Content guidance can be provided in the form of saved selections (e.g., “continue watching your show?”), sorting by a content provider of content into various categories (e.g., “dramas,” “comedies,” “animated”), or other similar forms of streamlining a content selection process. However, while predictive technology may incorporate historical user preferences to recommend content, it can fail to account for changes in user taste, and unpremeditated user choices. | {
"pile_set_name": "USPTO Backgrounds"
} |
European Patent Applications EP-A-523,183, EP-A-520,888 and EP-A-520,889 describe small spherical particles having the advantage of being injectable. However, the nanoparticles thus prepared have mean diameters of the order of 50 to 500 nm and may not be sterilized by sterilizing filtration without a considerable loss in yield, and/or may not be freeze-dried owing to insufficient stability.
In Eur. J. Pharm. Biopharm., 39(5), 173-191 (1993) the authors examined the technologies currently available in the field of nanoparticles intended for the pharmaceutical industry. It is stated on page 182 that the sterile filtration of nanoparticle suspensions has never been described.
According to the present invention, it is possible to prepare particles, of which 95% have a mean diameter less than 100 nm, and more preferably whose mean diameter is between 20 and 75 nm and which may thus be subjected to sterile filtration on a 0.22 .mu.m filter without loss of yield. The particles are, moreover, more stable than those obtainable according to the prior art and may be freeze-dried without any agglomeration of the particles occurring. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The disclosed embodiments relate to a device and method for alerting in the event that foreign bodies are introduced into the housings of aircraft gear.
2. Brief Description of Related Developments
It transpires that stowaway migrants risk their life by secreting themselves aboard the housings of landing gear of airliners on international journeys.
Lack of oxygen and temperatures of below −40° C., critical at altitude, make this journey in most cases extremely dangerous, or indeed fatal. Experience shows that very few stowaways have survived this type of journey.
Paradoxically, it is relatively easy to hoist oneself aboard aircraft with the aid of the kinematics of the gear housings.
This risk is heightened furthermore in airports where surveillance of the surroundings is very restricted, thereby easing the stowaway's access to the aircraft.
Airline companies generally make an inspection of the gear housings when checking over the aircraft before takeoff, but this inspection is ineffective for two reasons: on certain wide-bodied planes, the space reserved for the gear housing is immense and inspection is made difficult because of the numerous crannies, especially if this inspection is done at night; experience shows finally that most stowaways climb aboard during the takeoff phase in particular during the alignment of the aircraft before throttle-back.
Moreover a great many airliner takeoffs from countries with high emigration rates are performed at night, thereby making it still more difficult to spot would-be stowaways.
Another issue is related to the security aspect in the sense that the ease of access to the gear housings before takeoff and the difficulty of inspection can constitute a risk to flight safety. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a power amplifier to provide protection using temperature sensing, in the event of faults occurring, for examples, when the output terminal is shortcircuited to a constant potential causing an output offset across the load or when an abnormal output offset condition, such as leakage cause from the deterioration of the coupling capacitor or the characteristic of the amplifier varies due to the influence of an environment occurs, and it could cause a DC offset current to flow through the load, such as a speaker, and the heat generated when the offset current flows through a voice coil in the speaker damages the speaker. Therefore the protection circuits will forestall the offset-induced adverse affects or damage to the power amplifier and the load. An example of such protection circuits is disclosed in the U.S. Pat. No. 2003/0160653 A1.
In a power amplifier system, it is desirable to avoid operation in fault modes, which could result in permanent damage of the system, especially power transistors. In a conventional design, the protection circuits detect and judge the occurrence of an offset using external low-pass filter and control unit.
FIG. 5 shows a prior art power amplifier system having an arrangement of protection to prevent a load, such as a speaker, from being damaged. The power amplifier system comprises a power amplifier 9 an electronic volume circuit 10, a coupling capacitor 11, a low-pass filter 12, a control unit 13 and a display unit 14.
The power amplifier 9 is provided with a non-inverting amplifying circuit 16 for applying non-inverting amplification to an audio signal supplied at the input terminal Q0 from the electronic volume circuit 10 through the coupling capacitor 11, an inverting amplifying circuit 17 for applying inverting amplification to the audio signal, a power amplifying circuit 18 for amplifying the audio signal from the non-inverting amplifying circuit 16, and another power amplifying circuit 19 for amplifying the audio signal from the inverting amplifying circuit 17.
The output contacts of the power amplifying circuits 18 and 19 are connected, respectively, to the output terminals Q1 and Q2 through switch elements 20 and 21. The output voltage S1 from the power amplifying circuits 18 and an output voltage S2 from the power amplifying circuits 19 are provided to a differential voltage detecting unit 22 for generating a differential voltage signal S12 for detecting an offset. The differential voltage detecting unit 22 has a differential amplifier for calculating a difference between the output voltages S1 and S2 and a comparator for comparing the voltage level of a difference signal (S1-S2) outputted from the differential amplifier with a certain threshold voltage VTHD. The comparator compares the threshold voltage VTHD with the differential signal (S1-S2), and outputs the differential voltage signal S12 in a duty ratio corresponding to the difference (S1-S2).
The low-pass filter 12 has a band as high as or lower than the audio band, and generates a detection signal Vdet of a DC voltage by smoothing the differential voltage signal S12 outputted from the outside output terminal Q4. The detection signal Vdet is supplied to the control unit 13.
The control unit 13 performs basic control. For example, control unit 13 adjusts a volume of the speaker 15 by receiving command information supplied from an operation panel or the like manipulated by the user, thereby controlling an operation of the electronic volume circuit 10 at a command from the users. The control unit 13 not only performs the basic control, but also pre-sets a threshold voltage Vok which is used for detecting the absence/presence of an offset. The threshold voltage Vok is determined in advance in consideration of a practically allowable offset voltage.
The control unit 13 compares the voltage level of the detection signal Vdet with the threshold voltage Vok, and judges the absence of an offset in the outputs from the power amplifying circuits 18 and 19 when the voltage level of the detection signal Vdet is higher than the threshold signal Vok. Conversely, control unit 13 detects the presence of an offset in the outputs from the power amplifying circuits 18 and 19 when the voltage level of the detection signal Vdet is equal to or lower than the threshold voltage Vok.
Upon judging the presence of an offset, the control unit 13 supplies a switching control signal to the switch elements 20 and 21 through the outside input terminal Q3, and brings the switch elements 20 and 21 into a non-conductive state (OFF state) to cut the connection between the power amplifying circuits 18 and 19 and the speaker 15. Upon judging the absence of an offset, the control unit 13 maintains the switch elements 20 and 21 in conductive state (ON state). The control unit 13 supplies signal to the switch display unit 14 to display a warning.
In this conventional design, the judgment of the occurrence of the offset and the control of the protection is accomplished by detecting the differential voltage, applying the detected differential voltage through the external LPF 12 and control unit 13 and feeding the switching control signal back to the power amplifier 9. This is operation is very slow and would stressed the power amplifier 9 and the speaker 15 before the protection starts. Thus, the performance is deteriorated. | {
"pile_set_name": "USPTO Backgrounds"
} |
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Plasma arc torches, also known as electric arc torches, are commonly used for cutting, marking, gouging, and welding metal workpieces by directing a high energy plasma stream consisting of ionized gas particles toward the workpiece. In a typical plasma arc torch, the gas to be ionized is supplied to a distal end of the torch and flows past an electrode before exiting through an orifice in the tip, or nozzle, of the plasma arc torch. The electrode has a relatively negative potential and operates as a cathode. Conversely, the torch tip constitutes a relatively positive potential and operates as an anode during piloting. Further, the electrode is in a spaced relationship with the tip, thereby creating a gap, at the distal end of the torch. In operation, a pilot arc is created in the gap between the electrode and the tip, often referred to as the plasma arc chamber, wherein the pilot arc heats and ionizes the gas. The ionized gas is blown out of the torch and appears as a plasma stream that extends distally off the tip. As the distal end of the torch is moved to a position close to the workpiece, the arc jumps or transfers from the torch tip to the workpiece with the aid of a switching circuit activated by the power supply. Accordingly, the workpiece serves as the anode, and the plasma arc torch is operated in a “transferred arc” mode.
The plasma arc torch is generally maintained at a predetermined torch height during operation for optimum cut quality. For manual operation, a welder can adjust the torch height based on the arc voltage between the torch tip and the workpiece even for cutting a workpiece with varied height or thickness. For automated plasma arc torches controlled by robots, however, the torch height control becomes difficult or slow based on the arc voltage. Therefore, the robot-controlled plasma arc torches are generally pre-programmed with a fixed torch height. As such, the robot-controlled plasma arc torches can be used to cut limited types of workpieces, such as small workpieces which are more dimensionally stable during cutting or thicker workpieces which are less sensitive to height variations of the workpiece. The robot-controlled plasma arc troches are not suitable for cutting workpieces with height variations.
Moreover, using robotic-controlled plasma arc torches to cut large thin materials poses another challenge in that the large thin materials may have a dimensional tolerance that is greater than the torch height (in the range of 0.020 to 0.150 inches). In other words, the height variations in the workpiece may be greater than the torch height. The large thin materials may have deformed due to heat or residual stress generated during prior operations such as stamping. Without the ability to adjust the torch height during operation, the automated plasma arc torches would not achieve optimum cut quality or may be damaged by the workpiece. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention pertains to the field of semiconductor non-volatile data storage system architectures and their methods of operation, and has application to data storage systems based on flash electrically erasable and programmable read-only memories (EEPROMs).
A common application of flash EEPROM devices is as a mass data storage subsystem for electronic devices. Such subsystems are commonly implemented as either removable memory cards that can be inserted into multiple host systems or as non-removable embedded storage within the host system. In both implementations, the subsystem includes one or more flash devices and often a subsystem controller.
Flash EEPROM devices are composed of one or more arrays of transistor cells, each cell capable of non-volatile storage of one or more bits of data. Thus flash memory does not require power to retain the data programmed therein. Once programmed however, a cell must be erased before it can be reprogrammed with a new data value. These arrays of cells are partitioned into groups to provide for efficient implementation of read, program and erase functions. A typical flash memory architecture for mass storage arranges large groups of cells into erasable blocks, wherein a block contains the smallest number of cells (unit of erase) that are erasable at one time.
In one commercial form, each block contains enough cells to store one sector of user data plus some overhead data related to the user data and/or to the block in which it is stored. The amount of user data included in a sector is the standard 512 bytes in one class of such memory systems but can be of some other size. Because the isolation of individual blocks of cells from one another that is required to make them individually erasable takes space on the integrated circuit chip, another class of flash memories makes the blocks significantly larger so there is less space required for such isolation. But since it is also desired to handle user data in much smaller sectors, each large block is often further partitioned into individually addressable pages that are the basic unit for reading and programming user data (unit of programming and/or reading). Each page usually stores one sector of user data, but a page may store a partial sector or multiple sectors. A xe2x80x9csectorxe2x80x9d is used herein to refer to an amount of user data that is transferred to and from the host as a unit.
The subsystem controller in a large block system performs a number of functions including the translation between logical addresses (LBAs) received by the memory sub-system from a host, and physical block numbers (PBNs) and page addresses within the memory cell array. This translation often involves use of intermediate terms for a logical block number (LBN) and logical page. The controller also manages the low level flash circuit operation through a series of commands that it issues to the flash memory devices via an interface bus. Another function the controller performs is to maintain the integrity of data stored to the subsystem through various means, such as by using an error correction code (ECC).
In an ideal case, the data in all the pages of a block are usually updated together by writing the updated data to the pages within an unassigned, erased block, and a logical-to-physical block number table is updated with the new address. The original block is then available to be erased. However, it is more typical that the data stored in a number of pages less than all of the pages within a given block must be updated. The data stored in the remaining pages of the given block remains unchanged. The probability of this occurring is higher in systems where the number of sectors of data stored per block is higher. One technique now used to accomplish such a partial block update is to write the data of the pages to be updated into a corresponding number of the pages of an unused erased block and then copy the unchanged pages from the original block into pages of the new block. The original block may then be erased and added to an inventory of unused blocks in which data may later be programmed. Another technique similarly writes the updated pages to a new block but eliminates the need to copy the other pages of data into the new block by changing the flags of the pages in the original block which are being updated to indicate they contain obsolete data. Then when the data are read, the updated data read from pages of the new block are combined with the unchanged data read from pages of the original block that are not flagged as obsolete.
According to one principal aspect of the present invention, briefly and generally, both the copying of unchanged data from the original to the new blocks and the need to update flags within the original block are avoided when the data of fewer than all of the pages within a block are being updated. This is accomplished by maintaining both the superceded data pages and the updated pages of data with a common logical address. The original and updated pages of data are then distinguished by the relative order in which they were programmed. During reading, the most recent data stored in the pages having the same logical address are combined with the unchanged pages of data while data in the original versions of the updated pages are ignored. The updated data can be written to either pages within a different block than the original data, or to available unused pages within the same block. In one specific implementation, a form of time stamp is stored with each page of data that allows determining the relative order that pages with the same logical address were written. In another specific implementation, in a system where pages are programmed in a particular order within the blocks, a form of time stamp is stored with each block of data, and the most recent copy of a page within a block is established by its physical location within the block.
These techniques avoid both the necessity for copying unchanged data from the original to new block and the need to change a flag or other data in the pages of the original block whose data have been updated. By not having to change a flag or other data in the superceded pages, a potential of disturbing the previously written data in adjacent pages of that same block that can occur from such a writing operation is eliminated. Also, a performance penalty of the additional program operation is avoided.
A further operational feature, which may be used in conjunction with the above summarized techniques, keeps track of the logical offset of individual pages of data within the individual memory cell blocks, so that the updated data need not be stored with the same physical page offset as the superceded data. This allows more efficient use of the pages of new blocks, and even allows the updated data to be stored in any erased pages of the same block as the superceded data.
Another principal aspect of the present invention groups together two or more blocks positioned in separate units of the memory array (also termed xe2x80x9csub-arraysxe2x80x9d) for programming and reading together as part of a single operation. Such a multiple block group is referenced herein as a xe2x80x9cmetablock.xe2x80x9d Its component blocks may be either all located on a single memory integrated circuit chip, or, in systems using more than one such chip, located on two or more different chips. When data in fewer than all of the pages of one of these blocks is updated, the use of another block in that same unit is normally required. Indeed, the techniques described above, or others, may be employed separately with each block of the metablock. Therefore, when data within pages of more than one block of the metablock are updated, pages within more than one additional block are required to be used. If there are four blocks of four different memory units that form the metablock, for example, there is some probability that up to an additional four blocks, one in each of the units, will be used to store updated pages of the original blocks. One update block is potentially required in each unit for each block of the original metablock. In addition, according to the present invention, updated data from pages of more than one of the blocks in the metablock can be stored in pages of a common block in only one of the units. This significantly reduces the number of unused erased blocks that are needed to store updated data, thereby making more efficient use of the available memory cell blocks to store data. This technique is particularly useful when the memory system frequently updates single pages from a metablock.
Additional aspects, features and advantages of the present invention are included in the following description of exemplary embodiments, which description should be read in conjunction with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inspection techniques for semiconductor manufacturing processes include etching techniques such as reactive ion etching, focus ion beam etching, and chemical etching. Etching of semiconductor wafer specimens has traditionally been used for masked film/layer removal. However, etching can also be used for defect analysis and metrology by inspecting the stacks of materials that make up a wafer. In reactive ion etching, the ions react with the surface material of the sample to form an evaporative material that thereby evaporates from the sample. An obstacle encountered with this technique presents itself when dry etching some materials such as copper. When the copper is bombarded with Cl-containing reactive gases, a copper chloride material, CuClx, is formed over the surface of the copper. This chloride material fails to evaporate well at room temperatures. Accordingly, the sample needs to be heated to temperatures that are significantly higher than room temperature to facilitate evaporation of the CuClx, material. For example, the substrate of sample must be heated to above 200° C. in order to etch Cu films. In many cases, a conventional dry etch process prevents the sample from being used in production since the high temperatures tend to damage the sample.
Another obstacle encountered with the etching process involves determining the endpoint for each etching process. An endpoint refers to the point at which an etching process is terminated because a specific metal, oxide, or photo resist has been fully removed.
Consequently, improved techniques and systems for etching materials, such as Cu, to produce fine patterns at low temperature are needed. Additionally, techniques and systems for etching samples which do not destroy the sample are needed. Preferably, a dry etching mechanism that works at room temperatures for materials which cannot be conventionally dry etched at room temperatures is needed. Also, techniques for accurately determining the endpoint of such etching techniques would be desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
In general, a disc-type data recording carrier such as a compact disc (CD), a video disc (LD) or the like is used in a manner to be removed from a packing case and set in a recording and/or reproducing equipment.
Conventionally, it has been desirable to protect such a disc type recording carrier from the environment because it is not only easy to be covered with dust and damaged but adversely affected due to a variation in temperature. For this purpose, the use of an envelope such as a tray, a casing or the like has been proposed to protect the disc. Unfortunately, such a conventional envelope is not suitable for the protection of a double-sided hard disc, because the the housing of the disc in a storage space defined in the envelope causes the disc to be contacted by the envelope. Also, the envelope causes the disc to be contacted by an inner surface thereof during the storage or transportation. Thus, the use of the envelope results in damage and/or pollution of the disc as well as the exposure of the disc to a variation in temperature. Further, the conventional envelope has a further disadvantage of rendering handling of a disc cartridge troublesome.
Accordingly, it would be highly desirable to provide a disc cartridge which is capable of preventing a recording surface section of a disc from being contacted by a casing to ensure the safe housing of the disc in the casing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method of etching a thin film on a substrate in a plasma processing system, and more particularly to a method for treating a mask layer on the thin film prior to etching the thin film using plasma assisted by a ballistic electron beam.
2. Description of Related Art
During semiconductor processing, a (dry) plasma etch process can be utilized to remove or etch material along fine lines or within vias or contacts patterned on a silicon substrate. The plasma etch process generally involves positioning a semiconductor substrate with an overlying patterned, protective layer, for example a photoresist layer, in a processing chamber. Once the substrate is positioned within the chamber, an ionizable, dissociative gas mixture is introduced within the chamber at a pre-specified flow rate, while a vacuum pump is throttled to achieve an ambient process pressure.
Thereafter, a plasma is formed when a fraction of the gas species present are ionized by electrons heated via the transfer of radio frequency (RF) power either inductively or capacitively, or microwave power using, for example, electron cyclotron resonance (ECR). Moreover, the heated electrons serve to dissociate some species of the ambient gas species and create reactant specie(s) suitable for the exposed surface etch chemistry. Once the plasma is formed, selected surfaces of the substrate are etched by the plasma. The process is adjusted to achieve appropriate conditions, including an appropriate concentration of desirable reactant and ion populations to etch various features (e.g., trenches, vias, contacts, etc.) in the selected regions of the substrate. Exemplary substrate materials where etching may be required include silicon dioxide (SiO2), low-k dielectric materials, poly-silicon, and silicon nitride. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor device with an insulated gate field effect transistor and a method of making the same.
2. Description of the Prior Art
Heretofore, there have been proposed a variety of semiconductor devices provided with an insulating gate field effect transistor (hereinafter referred to as an MIS (Metal-Insulator-Semiconductor) FET). The MIS FET is divided into a surface channel type and a bulk channel type.
The surface channel type MIS FET basically has a structure which comprises a semiconductor substrate of a first conductivity type, first and second semiconductor regions of a second conductivity type reverse from the first one and formed in the semiconductor substrate from the side of its major surface, an insulating layer formed on the major surface of the semiconductor substrate to extend over a region between the first and second semiconductor regions, and a conductive layer formed on the insulating layer in opposing relation to that region of the semiconductor substrate defined between the first and second semiconductor regions. In such a surface channel type MIS FET, the first and second semiconductor regions serves as the one and the other of source and drain regions, respectively; the region of the semiconductor substrate defined between the first and second semiconductor regions serves as a channel forming region; that region of the conductive layer confronting the channel forming region serves as a gate electrode; and that region of the insulating layer underlying the gate electrode serves as a gate insulating layer. With the arrangement of the surface channel type MIS FET described above, the ON or OFF state is obtained between the source and drain regions in accordance with a control voltage which is applied across the source region and the gate electrode. The ON or OFF state is dependent on whether or not an inversion layer, that is, a channel is formed in the surface of the channel forming region.
The bulk channel type MIS FET basically has a structure which comprises, by way of example, a semiconductor substrate of a first conductivity type, first and second semiconductor regions of a second conductivity type opposite to the first one and formed in the semiconductor substrate from the side of its major surface, a third semiconductor region formed in the semiconductor substrate from the side of its major surface to extend between the first and second semiconductor regions and having a lower impurity concentration than the first and second semiconductor regions, an insulating layer formed on the third semiconductor region, and a conductive layer formed on the insulating layer in opposing relation to the third semiconductor region. In such a bulk channel type MIS FET, the first and second semiconductor regions serve as the one and the other of source and drain regions, respectively, as in the case of the surface channel type MIS FET; the third semiconductor region serves as a channel forming region; that region of the conductive layer confronting the channel forming region serves as a gate electrode; and that region of the insulating layer underlying the gate electrode serves as a gate insulating layer. With the arrangement of the bulk channel type MIS FET described above, an ON or OFF state is obtained between the source and drain regions in accordance with a control voltage which is applied across the source and drain regions as is the case with the surface channel type MIS FET. This ON or OFF state depends on whether or not a depletion layer formed in the channel forming layer to spread from the side of the gate insulating layer towards the semiconductor substrate reaches the latter.
In either of the surface channel and bulk channel type MIS FETs, it is desirable for a high-speed operation and the reduction of the overall dimensions to decrease the inner spacing of the source and drain regions, thereby to minimize the length of the gate electrode correspondingly.
In the conventional MIS FETs, however, there is a certain limitation on reducing the length of the gate electrode to less than 1 .mu.m. The reason is as follows: The gate electrode is usually formed by the photoetching method employing a mask. With the photoetching method, it is very difficult to form the gate electrode of a length smaller than its thickness. The length of an ordinary gate electrode is twice to five times larger than its thickness. Accordingly, by forming the gate electrode to a thickness 1/2 to 1/5 times as large as its length through utilization of the photoetching method, the length of the gate electrode can be reduced smaller than 1 .mu.m. In such a case however, the gate electrode becomes as thin as 1/2 to 1/5 .mu.m, resulting in a large resistance, which is an obstacle to high-speed operations. Thus the prior art has impsoed a certain limitation on reducing the length of the gate electrode down to less than 1 .mu.m.
Consequently, the prior art MIS FETs have the defect of some limitations on speeding up their operations and reducing their areas. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an effect adding apparatus which is capable of adding various sound effects to audio signals input from an electronic musical instrument and other audio equipment.
2. Description of the Related Art
In an electronic musical instrument and audio equipment which generate and process sounds, it has been an important theme how to generate musical tones of rich tone color. A conventional electronic musical instrument and audio equipment generate musical tones which are richer in sound effects with the aid of effector devices which add sound effects such as chorus, delay, reverberation effects and the like to the generated musical tones.
In recent, a so called multi-effector which is capable of simultaneously adding a plurality of sound effects to musical tones has been proposed and put in use in place of an effector which adds a single sound effect to musical tones.
The multi-effector includes a plurality of effectors which add a single sound effect to musical tones. The multi-effector is composed of a series connection of effectors or a parallel connection of effectors, or is composed of a digital signal processor (DSP), to which a program involving algorithms for performing various effect processes is sent to obtain a plurality of sound effects.
Furthermore, when the multi-effector is used as an effect adding device in an electronic musical instrument, the method of playing the musical instrument is changed to alter an atmosphere of musical tones to be generated, but lately some trials have been made to realize the above by changing a way to apply the sound effects to musical tones or changing the number of sound effects to be applied to the musical tones.
In the conventional effect adding device including a plurality of effectors, however, the physical connection of those effectors must be changed. But it will be easily understood that it is extremely hard to change the physical connection of the effectors while a performance of the musical instrument is being effected, and the effect adding device will not exhibit its features as the multi-effectors to a full extent. Usage of a switch may be also proposed for switching the connections of the effectors during the performance of the musical instrument, but a complicated circuitry arrangement will be invited for that purpose.
Meanwhile, when a user operates the multi-effector composed of DSP, he is simply required to change a program to be input thereto to obtain various sound effects, but a sufficient number of algorithms must be prepared in advance for executing various effect processes combined in different ways, and a central processing unit (CPU) consequently needs a large capacity of memory for storing the algorithms to be transferred to the DSP.
Some effects of superior features may be realized by an analog effect adding device using analog elements, rather than by the DSP executing a digital process. A distortion effect for distorting an input audio signal is one example of such effects. The reason why the analog effect adding device is preferably used in place of the digital effect adding device is that the analog effect adding device employs an analog element (for example, a diode) which is of a non-linear characteristic to add the distortion effect to an input signal while the digital effect adding device has inherently limited features to precisely exhibit the fine non-linear characteristic.
To include specific effects which will be expressed more efficiently by the analog effect adding device to the effects of the multi-effector, some trials have been made to generate musical tones of higher tone quality, in which an analog process is used to obtain specific effects and also digital processes are used to realize other effects. As a result, a multi-effector has been proposed which comprises a DSP for generating digital effects and an analog effect adding device for generating analog effects, both being physically connected with each other.
With the above structure of the multi-effector, however, an order of applying effects to a musical tone is limited by the physical connection of the DSP and the analog effect adding device, so that the order of application of sound effects to a musical tone can not be changed easily.
For example, when the distortion effect is added to a musical tone by the analog effect adding device and other effects are added by the DSP, and effects are added to tones in the order of reverberation, chorus, echo, and distortion effects, the analog effect adding device may be connected to the output of the DSP. To change the above order of the effects to such order as chorus, echo, distortion and reverberation effects, two units of DSPs must be prepared and an analog effect adding device are connected in series in the order of the DSP, the analog effect adding device and the DSP. The first DSP is arranged to execute the chorus and echo processes, and the following analog effect adding device executes the distortion effect, and finally the last DSP performs the reverberation effect.
With the above multi-effector including a connection of the analog effect adding device and the digital effect adding devices, the order of the physical connection of these two types of effect adding devices must be changed to alter the order of addition of various effects, which prevents the multi-effector from being used often and conveniently. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to verifying text translation in an application program. More particularly, the present invention relates to verifying text translation in network application programs based on document object model (DOM) tree information.
With the rapid development of application programming technology and graphical user interface (GUI) technology, more and more application programs provide support for users to interact with an application program using a GUI interface. In order to meet localization requirements of application programs in various countries or regions, text in an application program shown within a GUI interface needs to be translated into multiple languages. A program integrated information (PII) file is used for storing text content of an application program shown within a GUI interface while the application program is running Examples of a PII file include, but are not limited to: property files in a Java environment, and RESX files in a Microsoft.NET environment.
Generally, a translator will realize localization of an application program by translating a PII file. However, during translation, a translator cannot see the actual GUI interface of the application program that will be presented when the program application is actually running, thus translators may make incorrect or inaccurate translations because they don't fully understand the context of the application program code. Further, since most translators are not software developers, they may not be able to correctly translate text in a PII file into proper translated text suitable for a computer program environment. For example, the English word “run” can be translated into “ ” (go for a run) or “” (operate) in Chinese, and an incorrect translation could be made unless the context of application program is understood.
Thus, translation verification tests (TVT) need to be performed in order to find and correct these potential errors in translation. There are some technical solutions for performing TVTs in the art.
One of them is known as live TVT. Using live TVT, a verifier needs a program developer to build an instance of the application program that is based on the original PII file. The verifier also needs to build an instance of a PII file for the application program that is based on a national language version (NLV) in order to perform translation and verification tasks between the two built instances. As a result, a verifier has to wait to have two instances of an application program built, thereby increasing the build resources and time consumed in waiting for verification. Furthermore, with a live TVT solution, if a verifier finds a translation error during comparison between two built instances, the verifier has to return the corrected PII file to the program developer in order for the program developer to re-build it and provide a new instance of an application program that is based on the NLV to the verifier, so that the verifier can confirm that the correction was completed. This requires both verifier and program developer resources, which will significantly influence the efficiency of completing the verification task.
There is another technical solution for performing TVT in the art: screen shot TVT. Screen shot TVT means that the verifier receives screen shots of a built instance of an original PII file and a built instance of a NLV PII file and performs verification tasks based directly on the screen shots. This will bring additional burdens to the program developer and will reduce execution efficiency of TVT because once again two instances of the application program have to be built, and screen shots are taken of the GUI interface for both instances. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to improvements in methods and apparatus for forming seals between film materials, such as in packaging.
2. Description of the Background Art
Bags for potato chips or other snack food products typically are formed, filled and sealed in a substantially continuous operation. To produce a bag, polymeric sheet material typically is formed into a tube by bringing the edges of the material into engagement as the material passes over a tube-forming collar. A portion of the tube corresponding to an end of a bag is gripped and sealed by jaws to form a closed-end tube. The jaws move downward, pulling the closed-end tube past a device which seals the engaged edges of the tube between a sealing die and a back-up plate by application of heat and pressure to the edges to form a back seal along the closed-end tube. The closed-end tube may be filled with product from a suitable device at substantially the same time that it is being back-sealed, or immediately thereafter. The jaws then release the sealed end and move upward along the length of the closed-end tube. The jaws stop and close together at a point corresponding to the opposite end of a product-filled bag to seal the end of the tube containing product to form the filled bag. The jaws simultaneously seal the end of the next tube and then move downward to effect the back seal of the newly-formed, close-end tube. The formed bag may be separated from the continuous material when the jaws are at their lowermost position.
During movement of the jaws downwardly while gripping the closed-end tube, the engaged edges of the tube are moved quickly past the back-sealer to form a "slip" area of the back seal. However, when the tube remains stationary after the jaws release the sealed end and move upward along the length of the closed-end tube, a portion of the engaged edges of the tube remain stationary, and within the sealing device for considerably longer than during movement of the tube, to form a "dwell" area of the back seal. Because of this variation in the residence time of tube edges within the back sealing device, the quality of the "dwell" and the "slip" areas of the seal often are inconsistent, particularly with certain types of film material. This may result in defectively sealed bags.
Defectively sealed bags often go undetected until the product moves into retail commerce. The customer may buy the package and be quite unaware that it has a defective seal. The faulty seal, however, may have caused the product to lose freshness and the customer is dissatisfied. Also, the customer may return the product to the store for exchange or a refund. Since by this time the whole chain of commercial transactions has occurred, the refund or exchange is generally accounted for by some type of back transactions giving credit to the retailer, route man and the like until reaching the product manufacturing stage. This is a costly and time-consuming process. Accordingly, there remains a need in the art for methods and apparatus for forming consistently high quality back seals in form and fill machines. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to direction finding systems and, more particularly, to an adcock DF-on-the-fly type direction finding system employing a beam forming dispersive delay line.
Direction finding (DF) systems are well-known in the art and are typically employed to find the source of a radio frequency (RF) transmitter. For example, radio transmissions from enemy aircraft or vessels can be used to determine their presence and location while they are still beyond the limits of radar detection. RF responsive DF systems can also be used to pick out an individual member of a group detected by radar such as in the case of quickly locating a particular private plane within an airport's landing pattern.
Typically in such systems, an array of receiving elements is deployed in a known configuration so as to develop a plurality of respective electrical output signals as a result of receiving the RF signal of interest. These electrical signals are then processed to determine the angle of arrival of the RF signal that caused them. Such a system employing a linear array and surface accoustic wave (SAW) device for time compressing the signals from the elements of the array is shown in U.S. Pat. No. 4,245,333 to Jelks. In a so-called adcock DF-on-the-fly system, a square array of four elements is employed.
Other patents of relevance and interest to the subject matter of the present invention include U.S. Pat. No. 4,229,740 to Krilanovich; U.S. Pat. No. 3,946,388 to Schifrine; and U.S. Pat. No. 3,631,496 to Fink et al.
Typical prior art adcock DF systems are complex, costly, and have many sources of potential error such as temperature sensitivity induced phase and amplitude errors within the state-of-the-art components employed therein to reduce size as much as possible. A typical example is the SAW device of the above-referenced Jelks patent. A three dispersive line phasing system uses costly quartz lines which have poor sidelobe performance. A four dispersive line amplitude system requires the purchase of four matched lines.
Wherefore, it is the object of the present invention to provide a DF system with a reduction in components, simplification of octantal error reduction over a wide band, which reduces temperature induced variations in DF accuracy, and which reduces size and power consumption of apparatus.
It is a further object of the present invention to provide a DF system using a specially designed beam forming dispersive delay line to provide pulse compression and direction vectors from a single device, thus providing DF information on a large number of simultaneous signals over a wide band of frequencies.
It is another object to provide a more compact adcock DF-on-the-fly system in which the pulse compression process and signal direction vectors are generated in a single device.
It is also an object to provide a substantial reduction in the required number of components in a DF-on-the-fly system, particularly in the number of pulse-compression delay lines which constitute an expensive component.
Additional objects are to provide a reduction in the number of phase tracking signal channels to two and to provide a simplified means of controlling octantal error over a wide band. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to vessels for anaerobic fermentation, and particularly to closed vessels with improved sealing means.
2. Related Art
It is already known to provide a device for extracting material in the form of a powder or in the form of particles, in a vessel or circular or polygonal cross-section having a bottom consisting of a flat plate. The known extraction device is in the form of a frame sliding on the flat plate and associated with several upwardly open channels, which are parallel to the flat plate of the vessel.
The known extraction device operates in the following manner: the frame sliding on the flat plate sweeps the material until it falls into the upwardly open channels. Then, the transport screws displace the material towards openings provided at the side, under the flat plate of the vessel. | {
"pile_set_name": "USPTO Backgrounds"
} |
The device of this invention lies in the field of splints or braces for application to traumatized portions of a human body and is directed more particularly to a device of this class which is useful in maintaining during the healing period a traumatized nose resulting from injury or surgery in the desired size and shape after squeezing out all of the edema fluid from the soft tissue.
For many years it has been common practice to form splints from Plaster of Paris for use in maintaining immobility of bony segments after surgery. They are difficult to make and difficult to retain in place, requiring excessive taping or bandaging, in addition to being uncomfortable and unsightly. Various other approaches have been tried with indifferent success.
One approach has been the molding of a complete face mask, the nose portion of which is then modified to the desired contour. One or more blanks of sheet material are then formed to fit the contour and secured to a restraining member. The device is placed over the nose and an elastic band connected to the ends of the restraining member is passed around the back of the head to hold the splint in place. An example of this type is disclosed in U.S. Pat. No. 3,742,943 to Malmin. Obviously the method is expensive and time consuming, and the splint is easily displaced from its intended position.
In a somewhat similar approach a piece of malleable sheet metal of about the same area as the nose is laid against the nose and then pressed inward to assume the same shape as the nose. A retainer similar to a pair of goggles is applied to the splint and a headband connected to the ends of the retainer tends to hold it in place. An example of this type is disclosed in U.S. Pat. No. 3,835,848 to Berner. While the method of manufacture is simpler and cheaper than that of Malmin, it suffers from the same disadvantages in use. The device is uncomfortable and unsightly and the splint itself is easily displaced especially when the wearer is sleeping. Since neither of these devices is directly secured to the nose they both fail to maintain constant pressure on precise areas to prevent swelling or distortion. | {
"pile_set_name": "USPTO Backgrounds"
} |
A relatively new process for making steel, the bottom-blown oxygen steelmaking process developed in Germany, is beginning to receive considerable attention in the United States. This new process has decided advantages over the conventional open hearth process, and even the more recent top-blown basic oxygen process (BOP process) which is currently replacing many open hearth shops. Like the more conventional BOP process, the new bottom-blown oxygen process is a basic process utilizing a combination of an oxygen blow and a lime-containing basic slag to remove the impurities from the molten iron. Unlike the BOP process, however, the bottom-blown oxygen process blows oxygen through tuyeres extending through the vessel refractory lining below the molten metal surface. Each oxygen tuyere is substantially flush with the surface of the vessel refractory lining and is surrounded by a larger concentric tuyere for the simultaneous injection of a protective jacket fluid such as natural gas, propane or other gaseous or liquid hydrocarbons, or at least a fluid containing such hydrocarbons. The hydrocarbon jacket fluid acts in part as a shield between the oxygen or molten metal upon initial emergence into the metal bath thereby momentarily delaying oxidation reactions to prevent rapid errosion of the tuyeres and adjacent refractory material. In addition, the jacket fluid acts as a super-coolant, endothermically dissociating upon contact with the hot molten metal, thereby preventing the rapid increase in temperature that would otherwise result from the oxidation reactions.
Both the BOP and the bottom-blown oxygen processes share a common disadvantage of producing nose-skulls, i.e. build-up of solid material, metal and slag, in the mouth or nose portion of the vessel which eventually restrict the vessel opening and interfere with satisfactory operation of the vessel. Although many mechanical devices have been developed for "deskulling" BOP vessels these are not suitable for bottom-blown oxygen vessels because the nature of the two skulls are quite different. Whereas the BOP skull typically consists mostly of slag, and is therefore friable and easily broken away from the vessel, skulls formed on bottom-blown oxygen vessels are mostly metallic and are very difficult to remove. To remove these nose-skulls, furnace operations are halted, and the skulls torch-cut into pieces and usually recharged as scrap. Because the skulls formed on bottom-blown oxygen vessels are predominately metallic, and form rather quickly, the formation of such skulls does measurably lower metallic yield. In addition, skull removal does often cause damage to the vessel refractories, which must be patched before resuming operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
In U.S. Pat. No. 4,713,821, Bradford et al. describe a MOPA with discrete oscillator and amplifier elements. The MOPA includes a semiconductor laser diode having an output facet optically coupled to an optical power amplifier. The diode and amplifier are formed together as a single integral crystal, then cleaved to form a crack or division between the two. The diode and amplifier remain essentially a single unit in optical alignment with only a slight longitudinal shift resulting from the cleave. The active region at the entrance to the amplifier has the same lateral dimension as the active region at the exit of the laser diode, and the lateral dimension increases linearly in the forward direction toward the exit facet. The exit facet of the amplifier is antireflection coated.
In U.S. Pat. No. 4,744,089, Montroll et al. describe an improved MOPA structure which requires no cleaving into separate laser and amplifier elements, and is therefore monolithic. A laser diode has a periodic grating providing distributed feedback. A power amplifier with a diverging active area follows the laser, and the amplifier output facet is made antireflecting. The laser and amplifier are formed with separate electrical contacts so they can be driven by independent current sources.
In U.S. Pat. No. 5,003,550, Welch et al. describe a monolithic MOPA device having a steerable output beam. The device includes a single mode diode laser with distributed Bragg reflector (DBR) gratings, an optical amplifier disposed in tandem with the laser and a detuned second order grating surface output coupler disposed to receive the amplified light, all formed on a common substrate. The diode laser is tunable by means of a separate tuning current I.sub.t applied to the rear DBR grating. The amplifier is a flared waveguide coupled to receive the laser output and electrically pumped to provide optical power gain to the received light. In an alternate embodiment, the amplifier is a power splitter network of branching single mode waveguides coupled at y-junctions. The branched waveguides are followed by an array of single mode gain waveguides. The power splitter portion is pumped to compensate for scattering and splitting losses at the y-junctions, while the single mode gain waveguides are pumped to provide an optical power gain to the lightwaves. Tuning the laser, in conjunction with the surface output coupler grating, produces a longitudinal steering of the output beam. Lateral phase controllers having an array of separately addressed electrodes may be incorporated between the amplifier output and the surface output coupler to adjust the optical path length in order to enable compensation for lateral phase variations in the amplifier and to provide lateral steering of the output beam.
In U.S. Pat. No. 5,175,643, Andrews describes a monolithic MOPA device having a laser diode and preamplifier section, both with a single mode waveguide of constant width throughout, followed by a flared amplifier section increasing in width at a constant rate of flare. The laser diode, preamplifier section, and flared amplifier section are independently supplied with pumping current applied to separate contacts. The preamplifier section is modulated instead of the laser diode to avoid "chirping". The preamplifier section may also be used as a phase controller, a variable gain device for the laser or to saturate the gain at the input end of the flared amplifier section. The flared amplifier section has a single contact and so a uniform current density is applied over the entire flared amplifier.
In U.S. Pat. No. 4,965,525, Zah describes an optical amplifier having an index guided waveguide oriented so that its longitudinal axis is at a nonperpendicular angle relative to the cleaved facets. The facets are antireflection coated. The "slanted" waveguide has a relatively long straight middle portion supporting propagation of only a single spatial mode and two flared portions in the immediate vicinity of the facets. The mode width in the flared waveguide portions gradually increase from the straight portion towards the facets. In operation, the slanted orientation of the waveguide keeps internal light reflected by the facets from coupling back through the waveguide, thereby suppressing self-resonance by the amplifier. The flaring of the waveguide at its ends allows the waveguide to be formed with a greater slant angle without causing an increase in coupling losses for light input into the amplifier.
An object of the invention is to provide an optical amplifier with efficient, high power, coherence-maintaining amplifier operation together with reduced lensing or other phase distortions in broad area portions of the amplifier.
Another object of the invention is to provide an amplifier with improved modulation characteristics at high power.
A further object of the invention is to provide a MOPA device incorporating such optical amplifiers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a multi-DOF (degree-of-freedom) of positioning device using spring-mounted electromechanical actuators, and more particularly to the positioning device that can perform precise translational and rotational motions in three dimensions with micro/nano-meter positioning ability.
2. Description of Related Art
A conventional optic fiber alignment device uses a computerized motor and a gear assembly to control an alignment angle between two optic fibers. Each of the optic fibers has an alignment end, and a maximum acceptance angle, which is the radiated angle when lights transmit out of an alignment end for an optic fiber. The closer the two filament alignment ends are pointing at each other then the more portion of the radial angle is covered. The more portion of the radial angle is covered then the better the signal carried by lights passes through. In other words, a higher coupling efficiency has a potential to be achieved when an alignment angle can be determined within range of every hundred nano-meter. However, a clearance occurs in alignment ends between the two optic fibers when the gear assembly is used to determine the alignment angle almost every time. If repeatedly uses the computerized motor and gear assembly for determining the alignment angle between two alignment ends of any two optic fibers, a clearance keeps happening and blocks the efficiency of a signal transmitting from one optic fiber to another optic fiber. Therefore, the disadvantage is that using a computerized motor and gear assembly to determine an alignment angle between two optic fibers are not accurate enough in terms of every hundred nano-meter.
To overcome the shortcomings, the present invention tends to provide a positioning device with micro/nano-meter positioning ability in three dimensions to mitigate and obviate the aforementioned problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a filling stand for pouring molten metal from a tiltable metallurgical vessel into a metallurgical ladle, in particular for pouring molten pig iron from a pig iron mixer into a transporting ladle. In such an arrangement the metallurgical ladle is surrounded by a casing to which at least one exhaust conduit is connected and in whose upper part a pour-in opening for the molten metal is arranged below an outlet of the tiltable vessel.
A filling stand of this kind is known from German Auslegeschrift No. 2,056,261. The ladle to be filled with pig iron in this filling stand, is placed on a ladle carriage which is displaceable in a pit below the floor. On one end thereof, the top of the pit is closed by a stationary cover defining a pour-in opening. By means of the ladle carriage the ladle is movable to a position below the pour-in opening, and the side of the pit is closeable by a shield mounted on the ladle carriage. Exhaust conduits for exhausting the smoke forming during the pouring of the molten metal, run into this pit. A tight sealing of the pit by means of the shield mounted on the ladle carriage is difficult to achieve, so secondary air has to be sucked through the gaps in the seal, which air has to be exhausted from the pit together with the smoke forming therein. Since the metal jet emerging from the tiltable metallurgical vessel changes its position in dependence on the position of the spout of the tiltable vessel, a further disadvantage of this known filling stand is to be seen in the fact that the pour-in opening has to be very large in order to let the metal jet through, both while the tiltable metallurgical vessel is full and also when it is almost empty. Due to this large pour-in opening additional large amounts of secondary air are sucked in, which air has to be exhausted together with the smoke. Consequently, with this known plant, the exhaust system has to be designed substantially larger and stronger than would be necessary for capturing only the smoke amounts forming during the pouring procedure. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to nucleic acid and amino acid sequences and constructs, and methods related thereto.
Fatty acids are organic acids having a hydrocarbon chain of from about 4 to 24 carbons. Many different kinds of fatty acids are known which differ from each other in chain length, and in the presence, number and position of double bonds. In cells, fatty acids typically exist in covalently bound forms, the carboxyl portion being referred to as a fatty acyl group. The chain length and degree of saturation of these molecules is often depicted by the formula CX:Y, where xe2x80x9cXxe2x80x9d indicates number of carbons and xe2x80x9cYxe2x80x9d indicates number of double bands. As the carbon chain of fatty acyl molecules always contains an even number of carbons, the formula xe2x80x9cC2Xxe2x80x9d may also be used to represent carbon chain length.
Fatty acyl groups are major components of many lipids, and their long, non-polar hydrocarbon chain is responsible for the water-insoluble nature of these lipid molecules. The type of covalent linkage of the fatty acyl group to other factors can vary. For example, in biosynthetic reactions they may be covalently bound via a thioester linkage to an acyl carrier protein (ACP) or to CoenzymeA (CoA), depending on the particular enzymatic reaction. In waxes, fatty acyl groups are linked to fatty alcohols via an ester linkage, and triacylglycerols have three fatty acyl groups linked to a glycerol molecule via an ester linkage.
The fatty acid composition of an oil determines its physical and chemical properties, and thus its uses. Plants, especially plant species which synthesize large amounts of oils in plant seeds, are an important source of oils both for edible and industrial uses.
A wide range of novel vegetable oils compositions and/or improved means to obtain or manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed for a variety of intended uses. Plant breeding, even with mutagenesis, cannot meet this need and provide for the introduction of any oil traits which are outside of the target plant""s gene pool.
Various oils compositions are now in demand. For example, edible oil sources containing the minimum possible amounts of saturates, palmitate (C16:0) and stearate (C18:0) saturated fatty acids, are desired for dietary reasons and alternatives to current sources of highly saturated oil products, such as tropical oils, are also needed. Generating a spread of C4, C6 and C8 short chain 3-keto fatty acids could become a key improvement in polyhydroxybutyrate (PHB)-based biodegradable plastics made in bacteria and plants. Medium-chain fatty acids have special importance in the detergent and lubricant industries or in the formulation of edible oils with reduced caloric value or other health benefits. See for example, U.S. Pat. No. 4,863,753 and Barch, A. C. and Babayan, V. K., Am. J. Clin. Nat. (1982) 36:950-962. Longer chain fatty acids may have certain other utilities, i.e., C16 and C18 have particular uses in margarine and other solid oil-based products and very long chain fatty acids also have specialized uses, i.e., C22 is used to make peanut butter smoother. As such, a ready source of a variety of fatty acid lengths, including storage lipids which have incorporated differing chain length fatty acids in desired ratios, are desired for a variety of industrial and food use fields. Improved yield of current oilseed crops and the development of novel plant fatty acid compositions and oils products are also needed. Examples of novel plant fatty acid and oils products include fatty alcohols, epoxy fatty acids (e.g., biodegradable paint thinner), long chain liquid wax (e.g., jojoba oil substitute), hydroxylated fatty acids (motor lubricants) or cyclopropanated fatty acids (motor lubricants).
There is a need for improved means to obtain or manipulate compositions fatty acids from biosynthetic or natural plant sources. For example, novel oil products, improved sources of synthetic triacylglycerols (triglycerides), alternative sources of commercial oils, such as tropical oils (i.e., palm kernel and coconut oils), and plant oils found in trace amounts from natural sources are desired for a variety of industrial and food uses. Or, the ability to increase total oil production in plants may provide for novel applications of seed oils for use in human and animal nutrition.
The present invention is directed to fatty acid xcex2-oxidation polynucleotides, and in particular to acyl-CoA oxidase (ACOX) polynucleotides. The present invention further provides 3-ketoacyl-CoA thiolase (thiolase) polynucleotides. The polynucleotides of the present invention include those derived from plant sources.
One aspect of the present invention relates to oligonucleotides which include partial or complete ACOX or thiolase encoding sequences.
It is also an aspect of the present invention to provide recombinant DNA constructs which can be used for transcription or transcription and translation (expression) of ACOX and/or thiolase. In particular, constructs are provided which are capable of transcription or transcription and translation in host cells. Particularly preferred constructs are those capable of suppression of endogenous host cell ACOX and/or thiolase.
In another aspect of the present invention, methods are provided for production of ACOX and or thiolase in a host cell or progeny thereof. In particular, host cells are transformed or transfected with a DNA construct which can be used for transcription or transcription and translation of ACOX and/or thiolase. The recombinant cells which contain ACOX and/or thiolase are also part of the present invention.
In a further aspect, the present invention relates to methods of using polynucleotide and polypeptide sequences to modify the fatty acid content as well as composition, particularly in seed tissue of oilseed crops. Plant cells having such a modified fatty acid content are also contemplated herein.
In yet a further aspect, the present invention relates to methods of using polynucleotide and polypeptide sequences to inhibit or delay the germination of seeds.
The modified plants, seeds and oils obtained by the expression of the plant ACOX proteins are also considered part of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Solid state lighting technology is beginning to penetrate the white lighting market due to recent gains in LED device and luminaire efficacy. LED solutions can be found in applications where LEDs can be distributed to ease the difficulty of thermal management, such as linear strips and down-lighting solutions where the luminaire is relatively large. Development of small form factor LED retrofits with high luminous flux has been challenging because of the limited volume for driver electronics and surface area for heat dissipation.
Conventional 50 W Sylvania MR16 halogen reflector lamps, such as shown in FIG. 1, are small form factor lamps primarily used in interior retail and residential applications. Dimensions of the MR16 are no more than about 2.0 inches in diameter and 1.9 inches in overall length. A 50 W halogen achieves about 600 lumens. Beam angle varies by application, ranging from less than 10° narrow spot lights to about 60° wide flood lights. Color quality is important in retail applications as the light output from the lamps must render merchandise in a very high quality.
Typically, the most efficacious high CRI warm white approach is to mix white phosphor converted InGaN LEDs with red InGaAlP LEDs. Since the two materials have different thermal characteristics, a complex and costly sensing and feedback control mechanism is needed to stabilize the white color point. This technique is not suitable for the small MR16 lamp; there simply is not sufficient space to house both LED drivers and control systems and such a replacement lamp may not have sufficient heat sinking area to maintain low InGaAlP junction temperatures required for this technique. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to improvements in camera and it relates particularly to an improved data recording device in a photographic camera.
Cameras heretofore available or proposed with a built-in data recording device may be classified into the following three types depending on the time when the data recording circuit operates.
(a) The data recording circuit which starts operating while the camera exposure control circuit is in operation.
(b) The data recording circuit which starts operating after the camera exposure control circuit has completed its operation.
(c) The data recording circuit which starts operating almost in synchronization with the commencement of the operation of the camera exposure control circuit.
With a camera of type (a), the data recording circuit is so arranged that it starts operating in response to the closure of the camera X contact. This arrangement may result in a high voltage being applied from an electronic flash to the data recording circuit, causing damage thereto. Additionally, when the electronic flash built into the camera body and the camera exposure control circuit operate on a common power supply, an overlap occurs between the time when the electronic flash unit is charged for subsequent firing after a flash in response to the closure of the X contact and the time when the data recording circuit operates. This overlap causes a power voltage variation, resulting in a malfunctioning of the data recording circuit.
With a camera of type (b), a power switch for the data recording circuit is maintained in its ON position when the camera shutter release button is depressed. As a result, releasing the shutter release button immediately after exposure may cause the power switch to be opened during the data recording period. Therefore, with this type of camera data recording system the desired data is not properly recorded under suitable exposure conditions.
A characteristic of the camera of type (c), is that the data recording circuit starts to operate immediately after the shutter release operation. However, there occurs an overlap between the operating times of the data recording circuit and the exposure control circuit. This results in a power voltage variation during the shutter exposure operation, causing the exposure control circuit to malfunction, whereby an exposure error occurs.
Specifically, the data recording circuits of the above type start operating simultaneously with, before or after the operation of the exposure control circuit in response to the shutter release operation, and completes its operation when the exposure circuit is in operation. The electrical loading by the data recording circuit of the power supply circuit is interrupted thereby causing the power voltage to over rebound, whereby the exposure control circuit is affected and fails to operate properly. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to hand operated devices, and, more particularly, to such devices in which complementary members must be engaged before the devices can be operated.
Hand operated devices take many forms; and can be used for actual or simulated operations. One well known form is provided by a tool or weapon which is not to be operated until certain preliminary conditions have been satisfied. A safety interlock can be provided for that purpose, but an interlock has a number of disadvantages. It does not prevent an unauthorized person from operating the device; the operator may believe that the interlock is active when it is not; and effective interlocks are generally mechanically complex.
Accordingly, it is an object of the invention to expedite the provision of tools or weapons for restricted actual or simulated operation.
Another object of the invention is to achieve restricted and simplified operation of operator controlled tools and weapons.
A further object is to achieve restricted operation in tools and weapons without the need for a conventional interlock. A related object is to attain the effectiveness of a secure interlock without the attendant cost and complexity.
Still another object of the invention is to prevent unauthorized persons from using an operator controlled device. An associated object is to do so in a simple way.
Yet another object of the invention is to assure the inoperability of an operator controlled device until certain preliminary conditions have been satisfied. | {
"pile_set_name": "USPTO Backgrounds"
} |
Small, mobile computing devices such as personal desktop assistants, including hand-held and pocket-sized computers, tablet personal computers and the like, are becoming important and popular user tools. In general, they have become small enough to be extremely convenient, while consuming less battery power, and at the same time have become capable of running more powerful applications. Although the computing circuitry of such devices continues to shrink in size, the area available for displaying data to a user shrinks as well. The usability of such data may be problematic due to the relatively small size of the display.
For example, data is often displayed in the form of a “web page” that includes text, tables, images, blocks of text, and other varieties of display information. The display information included on a web page is optimized to be displayed on a screen having a specified minimum size. When the size of the screen available is smaller than the specified minimum size, such as on a mobile device, the mobile device may be unable to show the display information in a usable format. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to methods and apparatus for placing a product in a flexible, recloseable container, and methods and apparatus for manufacturing a flexible, recloseable container. More specifically, the present invention relates to the use of sliders on profiles used with flexible recloseable containers.
Flexible, recloseable containers such as zipper-type plastic bags are a significant advancement in the field of prepackaged items both for industrial and retail uses. The packaging industry recognizes the importance of using interlocking fastener profile strips to provide the ability to reclose the container after first use. It is also important that it be easy for the user to reliably close the interlocking strips. For instance, some containers utilize multi-colored interlocking strips to make it easier for the consumer to determine if a container is closed. Another way in which to provide for reliable interlocking is by the use of a slider that opens the interlocks when moved in one direction, and closes the interlocks when moved in the other direction. Sliders have not been applied to flexible, recloseable containers being filled with a product on a form, fill, and seal machine. What is needed is a method for incorporating a slider on a flexible, recloseable container that is formed, automatically filled with a product, and sealed. The present invention provides this in a novel and unobvious way. | {
"pile_set_name": "USPTO Backgrounds"
} |
In rechargeable alkaline cells, weight and portability are important considerations. It is also advantageous for rechargeable alkaline cells to have long operating lives without the necessity of periodic maintenance. Rechargeable alkaline cells are used in numerous consumer devices such as portable computers, video cameras, and cellular phones. They are often configured into a sealed power pack that is designed as an integral part of a specific device. Rechargeable alkaline cells can also be configured as larger cells that can be used, for example, in industrial, aerospace, and electric vehicle applications.
The materials proposed in the prior art for use as hydrogen storage negative electrode materials for secondary batteries are materials that have essentially simple crystalline structures. In simple crystalline materials, limited numbers of catalytic site are available resulting from accidently occurring, surface irregularities which interrupt the periodicity of the crystalline lattice. A few examples of such surface irregularities are dislocation sites, crystal steps, surface impurities and foreign absorbates. For more than three decades, virtually every battery manufacturer in the world pursued such crystalline electrode materials for electrochemical applications, but none produced a commercially viable nickel metal hydride battery until after the publication of U.S. Pat. No. 4,623,597 (the '597 patent) to Ovshinsky, et al, which disclosed fundamentally new principles of electrode material design.
As taught in the '597 patent (the contents of which are incorporated by reference), a major shortcoming of basing negative electrode materials on simple ordered crystalline structures is that irregularities which result in the aforementioned catalytically active sites occur relatively infrequently. This results in a relatively low density of catalytic and/or storage sites and consequently poor stability. Of equal importance is that the type of catalytically active sites available are of an accidental nature, relatively few in number and are not designed into the material as are those of the present invention. Thus, the efficiency of the material in storing hydrogen and its subsequent release is substantially less than that which would be possible if a greater number and variety of sites were available,
Ovshinsky, et al, fundamental principles overcome the limitations of the prior art by improving the characteristics of the negative electrode through the use of disordered materials to greatly increase the reversible hydrogen storage characteristics required for efficient and economical battery applications. By applying the principles of disorder, it has become possible to obtain a high energy storage, efficiently reversible, and high electrically efficient battery in which the negative electrode material resists structural change and poisoning, with improved resistance to the alkaline environment, good self-discharge characteristics and long cycle life and deep discharge capabilities. The resulting disordered negative electrode materials are formed from lightweight, low cost elements by techniques that assure formation of primarily non-equilibrium metastable phases resulting in high energy and power densities at low cost. These non-equilibrium, metastable phases assure the formation of localized states where a special degree of disorder, if properly fabricated, can come from the structural and compositional disorder of the material.
The materials described generally in the '597 patent have a greatly increased density of catalytically active sites providing for the fast and stable storage and release of hydrogen. This significantly improved the electrochemical charging/discharging efficiencies and also showed an increase in hydrogen storage capacity. Generally, this was accomplished by the bulk storage of hydrogen atoms at bonding strengths within the range of reversible electromotive force suitable for use in secondary battery applications. More specifically, such negative electrode materials were fabricated by manipulating the local chemical order and hence the local structural order by the incorporation of selected modifier elements into the host matrix to create the desired disorder, type of local order and metal hydrogen bond strengths. The resulting multicomponent disordered material had a structure that was amorphous, microcrystalline, multiphase polycrystalline (but lacking long range compositional order), or a mixture of any combination of these structures.
The host matrix of the materials described in the '597 patent were formed from elements capable of storing hydrogen an thus are considered hydride formers. This host matrix was modified by incorporating selected modifier elements which could also be hydride formers. These modifiers enhanced the disorder of the final material, thus creating a much greater number and spectrum of catalytically active sites with an increase in the number of hydrogen storage sites. Multiorbital modifiers (such as transition elements) provided the greatly increased number of sites due to various bonding configurations available. Because of more efficient storage and release of hydrogen and because of the higher density of the catalytic sites, the hydrogen more readily found a storage site. Unfortunately, there remained, until U.S. Pat. No. 5,840,440 ('440), an insufficient density of new hydrogen storage sites formed due to disorder to significantly increase the hydrogen storage capacity of the material.
The '597 patent describes the use of, inter alia, rapid quench to form disordered materials having unusual electronic configurations, which results from varying the three-dimensional interactions of constituent atoms and their various orbitals. Thus, it was taught that the compositional, positional and translational relationships of the constituent atoms were not limited by crystalline symmetry in their freedom to interact. Selected elements could be utilized to further control the disorder of the material by their interaction with orbitals so as to create the desired local internal chemical environments. These various and at least partially unusual configurations generate a large number of catalytically active sites and hydrogen storage sites not only on the surface but throughout the bulk of the material. The internal topology generated by these various configurations allowed for selective diffusion of hydrogen atoms.
In general, disorder in the modified material can be of an atomic nature in the form of compositional or configurational disorder provided throughout the bulk of the material or in numerous regions or phases of the material. Disorder can also be introduced into the host matrix by creating microscopic phases within the material which mimic the compositional or configurational disorder at the atomic level by virtue of the relationship of one phase to another. For example, disordered materials can be created by introducing microscopic regions or phases of a different kind or kinds of crystalline phases, or by introducing regions of an amorphous phase or phases, or by introducing regions of an amorphous phase or phases in addition to regions of a crystalline phase or phases. The types of disordered structures that provide local structural chemical environments for improved hydrogen storage characteristics include amorphous materials, microcrystalline materials, multicomponent multiphase polycrystalline materials lacking long range composition order or multiphase materials containing both amorphous and crystalline phases.
Short-range, or local, order is elaborated on in U.S. Pat. No. 4,520,039 to Ovshinsky, entitled Compositionally Varied Materials and Method for Synthesizing the Materials, the contents of which are incorporated by reference. This patent discloses that disordered materials do not require periodic local order and how spatial and orientational placement of similar or dissimilar atoms or groups of atoms is possible with such increased precision and control of the local configurations that it is possible to produce qualitatively new phenomena. In addition, this patent discusses that the atoms used need not be restricted to "d band" or "f band" atoms, but can be any atom in which the controlled aspects of the interaction with the local environment and/or orbital overlap plays a significant role physically, electronically, or chemically so as to affect physical properties and hence the functions of the materials. The elements of these materials offer a variety of bonding possibilities due to the multidirectionality of f-orbitals, d-orbitals or lone pair electrons. The multidirectionality ("porcupine effect") of d-orbitals provides for a tremendous increase in density of sites, the spectrum of types of sites and hence the presence of active storage sites. Following the teaching can result in a means of synthesizing new materials which are disordered in several different senses simultaneously.
The '597 patent is described in detail above because this patent represents a starting point for the investigation that resulted in the present invention. That patent introduced the concept of making negative electrode material for nickel metal hydride batteries from multicomponent disordered alloys. This teaching was diametrically opposed to the conventional "wisdom" of battery manufacturers at the time. It was not until this concept was adopted in production processes by said manufacturers that negative electrode materials with an increased number of catalytically active sites were produced and nickel metal hydride batteries became commercially viable. In capsule form, the '597 patent taught that significant additional sites for hydrogen catalysis (to allow the rapid storage and release of hydrogen and greatly improve stability) were formed and made available by purposely fabricating disordered negative electrode material (as opposed to the homogeneous, ordered polycrystalline material of the prior art). The '597 patent also proposed that the use of disorder could be employed to obtain additional hydrogen storage sites. However, it was not appreciated that in order to obtain a substantial increase in hydrogen storage capacity from such non-conventional storage sites, it would be necessary to increase the number of storage sites by approximately 3 orders of magnitude.
Not only was the teaching of the '597 patent adopted by all nickel metal hydride manufacturers, but in recent years some of these manufacturers have begun to use rapid solidification techniques (as taught by Ovshinsky) to increase the degree of disorder within a negative electrode alloy formula. For instance, battery companies have even gone so far as to rapidly quench highly-modified LaNi.sub.5 -type electrochemical negative electrode material. By employing nonequilibrium processing techniques, the resulting negative electrode material includes hydrogen storage phases and catalytic phases on the order of 2000 Angstroms in average dimension. The hydrogen storage capacity of the negative electrode material does not improve significantly, but the catalytic activity is greatly improved as evidenced by improved rate capability and stability to oxidation and corrosion, resulting in increased cycle life.
As mentioned above, certain battery companies have begun to investigate the use of rapidly-quenched, highly modified LaNi.sub.5 type hydrogen storage materials for electrochemical applications. For example, in Phys. Chem 96 (1992) No. 5 pp. 656-667, P. H. L. Notten, et al of Philips Research Laboratories presented a paper entitled "Melt-Spinning of ABS.sub.5.5 -Type Hydride Forming Compounds and the Influence of Annealing on Electrochemical and Crystallographic Properties." In this paper, non-stoichiometric modified LaNi.sub.5.5 materials, La.sub.6 Nd.sub.2 Ni.sub.3 Co.sub.24 Si.sub.1 and La.sub.6 Nd.sub.2 Ni.sub.26 Co.sub.24 Mo.sub.1 were rapidly solidified. These non-stoichiometric materials were compared to their stoichiometric counterparts with the result being that the non-stoichiometric materials demonstrated good, but not unusual hydrogen storage capacity. However, the non-stoichiometric compounds did show the presence of additional volume percents of a catalytic phase, which phase, as predicted by the '597 patent, was responsible for the improved electrochemical properties as compared to the properties found in the examples of stoichiometric material. Once again, and more importantly, no significantly higher density of non-conventional hydrogen storage sites were obtained. In research and development activities at Energy Conversion Devices, Inc. with highly modified TiNi-type electrochemical negative electrode materials, such as described in U.S. Pat. No. '440 which is incorporated herein by references, rapidly quenched electrode materials were melt spun. The work resulted in improved oxidation and corrosion resistance and cycle life was increased by a factor of five. On the other hand and as was true in the case of the aforementioned Japanese work, no significant increase in hydrogen storage capacity was demonstrated and the phases of the negative electrode material present were also relatively large.
Therefore, while the teachings of the '597 patent were revolutionary for those of ordinary skill in the art in learning to apply the principals of disorder disclosed therein to negative electrode materials to obtain commercial batteries with commercially viable discharge rates and cycle life stabilities while maintaining good hydrogen storage capacity, the '597 patent provided for the most part generalities to routineers concerning specific processes, processing techniques, alloy compositions, stoichiometries in those compositions, etc. regarding how to further significantly increase the hydrogen storage capacity (as opposed to the catalytic activity). It was not until the '440 patent that a teaching was presented of the nature and quantification of additional active storage sites required to significantly increase the hydrogen storage capacity of the negative electrode material through the deliberate introduction of defect sites and the presence of other concurrent non-conventional and/or conventional storage sites.
Despite the exceptional electrochemical performance now provided by current highly disordered nickel metal hydride systems (twice the hydrogen storage capacity of conventional NiCd systems) consumers are demanding increasingly greater run times, safety and power requirements from such rechargeable battery systems. No current battery system can meet these demands. Accordingly, there exists a need for a safe ultra high capacity, high charge retention, high power delivery, long cycle life, reasonably priced rechargeable battery system.
While U.S. Pat. No. 5,840,440 ("the '440patent") represents innovative ideas with respect to useable storage sites in an electrochemical negative electrode material due to the use of high defect density and small crystallite size, the focus of the '440 patent is on the bulk properties of the hydrogen storage alloy. Significant discussion therein relates to increased surface sites; however, the additional sites so described relate to the interior surfaces, or grain boundaries, again within the alloy. The '440 patent does not address the interface between the metal hydride alloy and the electrolyte at the so-called oxide layer.
Of most relevance to the present invention is commonly assigned U.S. Pat. No. 5,536,591 ("the '591 patent") in which the oxide (metal/electrolyte) interface is addressed in detail and where teachings on composition, size and distribution of catalytic sites within the oxide interface was first provided.
The '591 patent taught that hydrogen storage and other electrochemical characteristics of the electrode materials thereof could be controllably altered depending on the type and quantity of host matrix material and modifier elements selected for making the negative electrode materials. The negative electrode alloys of the '591 patent were resistant to degradation by poisoning due to the increased number of selectively designed storage and catalytically active sites which also contributed to long cycle life. Also, some of the sites designed into the material could bond with and resist poisoning without affecting the active hydrogen sites. The materials thus formed had a very low self discharge and hence good shelf life.
As discussed in U.S. Pat. No. 4,716,088 ("the '088 patent"), the contents of which are specifically incorporated by reference, it is known that the steady state surface composition of V--Ti--Zr--Ni alloys can be characterized as having porous, catalytic regions of enriched nickel. An aspect of the '591 patent was a significant increase in the frequency of occurrence of these nickel regions as well as a more pronounced localization of these regions. More specifically, the materials of the '591 patent had discrete nickel regions of 50-70 Angstroms in diameter distributed throughout the oxide interface and varying in proximity from 2-300 Angstroms or preferably 50-100 Angstroms, from region to region. This was illustrated in the FIG. 1 or the '591 patent, where the nickel regions 1 were shown as what appear as particles on the surface of the oxide interface 2 at 178,000.times.. As a result of the increase in the frequency of occurrence of these nickel regions, the materials of the '591 patent exhibited significantly increased catalysis and conductivity.
The increased density of Ni regions in the materials of the '591 patent provided metal hydride powder particles having a highly catalytic surface. Prior to the '591 patent, Ni enrichment was attempted unsuccessfully using microencapsulation. The method of Ni encapsulation results in the expensive physical, chemical or electrochemical deposition of a layer of Ni at the metal-electrolyte interface. The deposition of an entire layer was expensive, excessive and resulted in no improvement of performance characteristics since this kind of encapsulated layer did not result in the production of the localized, finely distributed nickel regions of 50-70 Angstrom in a porous matrix.
The enriched Ni regions of the '591 patent could be produced via two general fabrication strategies. The first of these strategies was to specifically formulate an alloy having a surface region that is preferentially corroded during activation to produce the described enriched Ni regions. It was believed that Ni was in association with an element such as Al at specific surface regions and that this element corroded preferentially during activation, leaving the enriched Ni regions described in the '591 patent. "Activation" as used herein specifically refers to "etching" or other methods of removing excessive oxides, such as described in the '088 patent as applied to electrode alloy powder, the finished electrode, or at any point in between in order to improve the hydrogen transfer rate.
The second of these strategies was to mechanically alloy a secondary alloy to a hydride battery alloy, where the secondary alloy preferentially corroded to leave enriched nickel regions. An example of such a secondary alloy was given as NiAl. The most preferred alloys having enriched Ni regions were alloys having the following composition: (Base Alloy).sub.a Co.sub.b Mn.sub.c Fe.sub.d Sn.sub.e ; where the Base Alloy comprised 0.1 to 60 atomic percent Ti, 0.1 to 40 atomic percent Zr, 0 to 60 atomic percent V, 0.1 to 57 atomic percent Ni, and 0 to 56 atomic percent Cr; b was 0 to 7.5 atomic percent; c was 13 to 17 atomic percent; d was 0 to 3.5 atomic percent; e was 0 to 1.5 atomic percent; and a+b+c+d+e=100 atomic percent.
The production of the Ni regions of the '591 patent was consistent with a relatively high rate of removal through precipitation of the oxides of titanium and zirconium from the surface and a much lower rate of nickel removal, providing a degree of porosity to the surface. The resultant surface had a higher concentration of nickel than would be expected from the bulk composition of the negative hydrogen storage electrode. Nickel in the metallic state is electrically conductive and catalytic, imparting these properties to the surface. As a result, the surface of the negative hydrogen storage electrode was more catalytic and conductive than if the surface contained a higher concentration of insulating oxides. Many of the alloys of the '591 patent include Mn. The effects of the addition of Mn to these alloys was generally discussed in U.S. Pat. No. 5,096,667, the disclosure of which is incorporated herein by reference. The addition of Mn usually results in improved charging efficiency. This effect appears to result from the ability of Mn to improve the charging efficiency of alloys into which it is added by improving oxidation resistance and oxygen recombination. It has been observed that oxygen gas generated at the nickel hydroxide positive electrode recombined at the surface of the metal hydride electrode. Oxygen recombination is an especially aggressive oxidizer of its environment, even compared to the alkaline electrolyte.
It is possible that the modifier elements added to the Base Alloy of the '591 patent, particularly Mn and Fe, and most particularly Co, either alone, or in combination with Mn and/or Al for example, act to catalyze oxygen reduction, thereby avoiding or reducing the oxidation of the surrounding elements in the metal hydride alloy. It is believed that this function of the modified alloys reduces or even eliminates the formation and build up of detrimental surface oxide, thereby providing a thinner and more stable surface.
It is believed that several additional factors may explain the unexpected behavior of Mn and Fe in the Base Alloys of the present invention: (1) The combination of Mn and Fe may affect the bulk alloy by inhibiting the bulk diffusion rate of hydrogen within the metal through the formation of complex phase structures, either by effecting the grain boundaries or by affecting the equilibrium bond strength of hydrogen within the metal. In other words, the temperature dependence of the hydrogen bond strength may be increased thereby decreasing the available voltage and capacity available under low temperature discharge. (2) It is believed that the combination of Mn and Fe may result in a lower electrode surface area for metallurgical reasons by increasing the ductility of the alloy and thereby reducing the amount of surface area formation during the activation process. (3) It is believed that the combination of Mn and Fe to these alloys may inhibit low temperature discharge through the alteration of the oxide layer itself with respect to conductivity, porosity, thickness, and/or catalytic activity. The oxide layer is an important factor in the discharge reaction and promotes the reaction of hydrogen from the Base Alloy of the present invention and hydroxyl ion from the electrolyte. It is believed that this reaction is promoted by a thin, conductive, porous oxide having some catalytic activity.
The combination of Mn and Fe does not appear to be a problem under room temperature discharge, but has shown a surprising tendency to retard the low temperature reaction. The formation of a complex oxide could result in a subtle change in oxide structure such as pore size distribution or porosity. Since the discharge reaction produces water at the metal hydride surface and within the oxide itself, a small pore size may be causing a slow diffusion of K.sup.+ and OH.sup.- ions from the bulk of the electrolyte to the oxide. Under room temperature discharge where polarization is almost entirely ohmic to low temperature discharge where activation and concentration polarization components dominate the physical structure of the oxides with Fe and Mn compared to Mn alone could be substantially different.
Still another possible explanation is that Mn and Fe have multivalent oxidation states. Some elements within the oxide may in fact change oxidation state during normal state of charge variance as a function of the rate of discharge and can be both temperature, fabrication, and compositionally dependant. It is possible these multiple oxidation states have different catalytic activity as well as different densities that together effect oxide porosity. A possible problem with a complex oxide containing both Mn and Fe could be that the Fe component retards the ability of the Mn to change oxidation state if present in large quantities.
Throughout the preceding discussion with respect to the oxide it should be noted that the oxide also contains other components of the Base Alloy, such as V, Ti, Zr, Ni, and/or Cr and other modifier elements. The discussion of a complex oxide of Mn and Fe is merely for the sake of brevity and one skilled in the art should not infer that the actual mechanism cannot also include a different or more complex explanation involving other such elements. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a golf training tool for mastering grips which can be also used as lighters or cases for accommodating lighters.
2. Description of the Related Art
A grip is the most important of the fundamentals of playing golf. If a player grips a golf club loosely or in a wrong direction, he cannot swing the club well however well he intends to do. It is said that if the player makes light of practicing the grip, he remains as a poor player for a long time. Accordingly, the use of a golf training tool for mastering grips is recommended, particularly to a beginner.
A conventional golf training tool for mastering grips has been long-rod-shaped and made of plastic, the gripping portion of which is formed uneven so as to conform to the gripping shapes of both hands. Since the gripping portion is concave where fingers should touch the same, a player swings the tool while gripping the gripping portion so as to fit his hands to the basic grip. Accordingly, he can master the basic grip as a natural result of gripping it many times.
Since the conventional golf training tool for mastering the basic grips which is integrally formed, heavy and long-rod-shaped as described above is inconvenient to carry, it is usually placed at home and a player usually practices the grip by gripping it when he finds time. However, since many players cannot find time, it is very convenient if he can practice the grip also in a commuter train.
On the other hand, since the lighter is small-sized enough to carry, a regular smoker always bears in mind to put it in his pocket and he feels much inconvenience if he forgets it. Further, in the case of a disposable lighter, some of them are contained in accommodating cases to safely cover the cylinder of a lighter body in each of them. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an oscillation circuit for a proximity switch in which an amplitude of an oscillation varies in response to approach of an object to be sensed.
2. Related Art
It has been recently required to provide a proximy switch with a setting display function. With this function, a distance in which an object can be sensed with a high stability (e.g. a distance of about 80% of the maximum distance for sensing an object) is displayed. For the provision of the display function, it is necessary to integrally dispose in the proximity switch an oscillation circuit of which the oscillation amplitude varies depending on the distance from an object to be sensed to the switch.
In order to solve this problem, the inventors have devised a linear oscillation circuit, as shown in FIG. 3, as an example of the oscillation circuit which varies its oscillation amplitude in association with the distance of the object to be sensed. Although the circuit configuration of FIG. 3 does not belong to the prior art technology, for an easier understanding of the present invention, the linear oscillation circuit will be here described as a related art of the present invention.
The linear oscillation circuit comprises a constant current mirror circuit constituted with a constant current source CS.sub.0 to generate a current I.sub.0 and a current mirror circuit including transistors Tr4 and Tr5. Connected on an output side of the mirror circuit is a transistor Tr6 for an oscillation. The linear oscillation circuit further includes an LC oscillation circuit having a sense coil L and a capacitor C connected in parallel thereto, a bias current source CS.sub.1, and a diode connecting transistor Tr1 as a bias circuit connected between the current source CS.sub.1 and the LC resonance circuit. The transistor Tr1 has a collector linked to a base of the oscillation transistor Tr6. Furthermore, there is disposed a current mirror circuit for feeding back a current flowing through the transistor Tr6 to the parallel LC resonance circuit. The feedback current mirror circuit includes two transistors Tr2 and Tr3. When an upper end portion (an emitter Of the transistor Tr1) of the LC resonance circuit is set to a positive potential, the oscillation transistor Tr6 turns on to flow an output current I.sub.0 equal to the current from the constant current source CS.sub.0 through the transistor Tr6. The current I.sub.0 is fed back via the current mirror circuit including the transistors Tr2 and Tr3 to the LC resonance circuit.
The oscillation circuit is of constant current feedback type, namely, the constant current I.sub.0 is fed back to the LC resonance circuit. In consequence, the oscillation amplitude of this oscillation circuit, namely, a voltage V.sub.RP appearing across the LC resonance circuit is determined by the constant current I.sub.0 and conductance g of the resonance circuit as follows. EQU V.sub.RP =K.multidot.I.sub.0 /g (1)
where, K is a proportional constant. Moreover, since I.sub.0 and V.sub.RP of the expression (1) are values associated with an alternate current and hence may be regarded as effective values thereof.
Since the conductance value g varies depending on the distance l of an object Oj to be sensed, the oscillation amplitude V.sub.RP also varies in association with the distance l of an object Oj. This phenomenon is shown in FIG. 4. The oscillation voltage V.sub.RP is fed to a level discriminator (comparator) circuit so as to be discriminated by use of a predetermined level (having a hysteresis). As the object Oj approaches the sense coil L, the oscillation amplitude V.sub.RP decreases. When the amplitude V.sub.RP becomes equal to or less than the reference level, the proximity switch turns a sense signal on (sensing point, on point). A setting point is located at a position, as compared with the sensing point, slightly nearer to the sense coil L (e.g. 80% of the distance of the sensing or sense point as described above). Conversely, as the distance of the object Oj increases, the oscillation amplitude V.sub.RP becomes greater. Due to the hysteresis of the reference level, when the object Oj is at a position slightly further apart from the sensing point, the sense signal is turned off (off point).
Since the circuit of FIG. 3 is of a constant current feedback type, the change in the oscillation amplitude V.sub.RP depends only on the variation in the conductance of the LC resonance circuit. In consequence, when an LC resonance circuit having a small conductance variation is employed, it is impossible to attain a sufficient change in the oscillation amplitude (i.e. the graph of FIG. 4 has a small gradient) and hence the operation cannot be accomplished with a satisfactory stability. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a sheet conveying apparatus and an image forming apparatus having the same, in particular, to a material and shape of a pinch roller which is provided in the sheet conveying apparatus and constitutes a component of a pair of conveying rollers for pinching and conveying a sheet.
2. Related Background Art
In the past, an image forming apparatus such as printer, copying machine and facsimile has been provided with a sheet conveying apparatus for conveying a sheet to an image forming portion, and as the sheet conveying apparatus, known is the type which is provided with a pair of conveying rollers comprising a rubber driving roller which comes in contact with a back surface of the sheet and a pinch roller which presses the sheet on the rubber driving roller.
In regard to the rubber roller, the limits of deflection and outside diameter accuracy are low and outside-diameter changes with temperature change are large. In order to cope with this situation, as the configuration for obtaining much higher conveying accuracy, there is provided a sheet conveying apparatus configured by using, as the driving roller, a metal roller having roughness provided on the surface thereof and, as the driven pinch roller, a rubber roller having a fluorine coating applied on the surface thereof as disclosed in, for example, Japanese Patent Application Laid-Open No. 11-013744.
At this point, with the roughness provided on the metal roller surface, the metal roller can convey a sheet because the roughness bites into the back surface of the sheet. And the fluorine coating applied on the rubber roller surface not only enables the prevention of the plasticizer contained in the rubber from being eluted and deposited on the sheet surface, but also enables the decrease in xcexc value (frictional resistance value) of the rubber. Thus the leading end of the sheet is allowed to enter the nip portion between the conveying roller and the pinch roller without failure.
At the time of using a rubber roller, as the pinch roller, which comes in pressure contact with a conveying roller rotating in the opposite direction to the conveying direction of a sheet so as to correct skew feed of the sheet, the leading end of the sheet is allowed to be prevented from folding when it strikes the pinch roller during the skew feed correcting operation by decreasing xcexc value of the rubber roller surface in such a manner as to apply a fluorine coating on the surface of the rubber roller.
The sheet conveying apparatuses of the conventional art which are provided with the pinch roller as described above, however, give rise to problems that applying a fluorine coating on the rubber roller surface is very costly and that the fluorine coating wears easily, accordingly, the durability of the pinch roller is low.
Next, the state in which the fluorine coating wears will be briefly described with reference to FIG. 7. In FIG. 7, reference numeral 8 denotes a conveying roller having a roughness 8a provided on its surface and numeral 16 a pinch roller driven to rotate by coming in pressure contact with the conveying roller 8, and the pinch roller 16 includes a rubber roller 16a and a fluorine coating layer 16b formed on the rubber roller 16a.
Furthermore, the conveying roller 8 and the pinch roller 16 are designed to rotate in the opposite direction to the conveying direction of a sheet, as indicated by an arrow B, at the time of starting the sheet feeding operation. And correction of skew feeding is performed in such a manner as to form a loop of a sheet S1 by allowing the leading end of the sheet S1 conveyed by a sheet feeding mechanism not shown in the figure to strike the nip portion between the conveying roller 8 and the pinch roller 16 both of which are rotating.
During this correction of skew feeding, since the pinch roller 16 rotates against the leading edge portion of the sheet S1, the fluorine coating layer 16b applied on the surface of the pinch roller 16 is abraded by the leading edge portion of the sheet S1 and wears gradually.
Although the state in which the fluorine coating wears has been described in terms of the correction of skew feed in reverse rotation in which the sheet S1 is allowed to strike the conveying roller 8 and the pinch roller 16 both rotating in the reverse direction, the fluorine coating layer 16b also wears during the correction of skew feed in stopping rotation in which the sheet S1 is allowed to strike the conveying roller 8 and the pinch roller 16 both in a stopped state, though the degree of wearing differs from each other.
When the fluorine coating layer 16b becomes worn as described above, the rubber roller 16a becomes exposed with the increase in the number of sheets passing through the apparatus, which causes deposition of the plasticizer on the sheet S1 and folding of the leading end of the same.
The present invention has been achieved in light of the situation as described above; accordingly, the object of the present invention is to provide a sheet conveying apparatus of low cost and high durability and an image forming apparatus having the same.
The present invention provides a sheet conveying apparatus including a pair of conveying rollers for pinching and conveying a sheet by means of a metal driving roller having roughness provided on a surface thereof and a pinch roller coming in pressure contact with and being driven by the metal driving roller to be rotated, in which the pinch roller is formed of a synthetic resin or a resin.
In the sheet conveying apparatus, the pinch roller is formed in such a manner that the outside diameter of the opposed end portions of the pinch roller is smaller than that of the other portion of the pinch roller.
In the sheet conveying apparatus, the pinch roller is formed in such a manner that the outside diameter of the opposed end portions of the pinch roller is smaller than that of the substantial center portion of the pinch roller and that the opposed end portions and the center portion have a smoothly connected shape.
In the sheet conveying apparatus, the outside diameter of the opposed end portions of the pinch roller is smaller than that of the substantial center portion by 10 xcexcm or more.
In the sheet conveying apparatus, the opposed end portions of the pinch roller have a round-shape.
In the sheet conveying apparatus, the pinch roller is formed of the material of which main raw material is polyacetal.
In the sheet conveying apparatus, the pinch roller is formed with a die, the die is parted in the longitudinal direction so that the parting line will not appear on the circumference of the pinch roller, the inside diameter of the die part for forming the end portion near the core side of the pinch roller is smaller than that of the portion for forming the substantial center portion of the pinch roller, and the inside diameter of the die is set in such a manner that galling is not caused between the pinch roller and the die during the mold releasing in expectation of some percentage for shrinkage of the substantial center portion of the pinch roller during the resin fillingxe2x80x94coolingxe2x80x94releasing processes.
In the sheet conveying apparatus, the roughness is provided on the surface of the driving roller by coating the surface of a metal roller with ceramic powder or alumina powder.
In the sheet conveying apparatus, the roughness is provided on the surface of the driving roller by subjecting the surface of a metal roller to blast finishing.
In the sheet conveying apparatus, the roughness is provided on the surface of the driving roller by subjecting the surface of a metal roller to knurling.
Further, the present invention is an image forming apparatus including an image forming portion and a sheet conveying apparatus for conveying a sheet to the image forming portion, and as the sheet conveying apparatus, any one of the apparatus described above is used.
And, the sheet is pinched and conveyed by a metal driving roller having roughness provided on its surface and a pinch roller coming in pressure contact with the driving roller and thereby driven to rotate. The pinch roller is formed of a synthetic resin or a resin, thereby the pinch roller can be manufactured less costly and the endurance of the same can be increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
At scenes of disaster management, when a disaster occurs, it is important to instantaneously catch a disaster occurrence place. However, it is difficult to set a physical sensor that catches a disaster event in every single place where there is a risk of occurrence of a disaster. Thus, it is examined to use disaster witness reports through social media as “sensors by human”. The social media in this connection is media used by users for positing and exchanging messages on line and thereby performing information distribution. Examples of social media include Twitter (a registered trademark of Twitter, Inc.), Facebook (a registered trademark of Facebook, Inc.), and the like. For example, there is a technique in which a message related to a disaster is extracted from social media to extract information related to a disaster occurrence place.
Related art is described in, for example, Japanese Laid-open Patent Publication No. 2014-6735, Japanese Laid-open Patent Publication No. 2013-50919, and Japanese Laid-open Patent Publication No. 2013-235527. | {
"pile_set_name": "USPTO Backgrounds"
} |
The field of this invention relates to automotive electrical boxes and harness connectors having electrical connector position assurance mechanisms.
Electrical systems in automobiles have become modular in recent years. The wires from various components become harnessed together into a harness connector that is plugged into a header of an electrical box. These electrical components range from optional accessories such as auxiliary power outlets to important microprocessors that control air bag actuation or control the combustion process of the engine. It is thus important to assure that the harness connector is properly connected to the header such that all the electrical circuits are connected.
Mechanical devices are known which provide a mechanical advantage to expedite connection of the multiple electrical sockets into the header. Furthermore, these mechanical devices are commonly in the form of a latch. A second separate movable member provides a visual indication that the harness is properly mounted. The visual indicator member can not be mounted or connected if the operating latch is not fully closed.
Attempts have been made to use an electrical indicator to assure that the harness connector is properly connected to the header. These systems"" objective is to have an electrical indicator alarm such as a conveniently positioned light operably connected to the connector. These previous attempts provide for a separate connector being plugged into the connection system. The addition of a second movable member undesirably adds size and complexity to the electrical connection harness system. The extra size is particularly undesirable when the harness system is mounted under an interior instrument panel where space is extremely limited.
What is needed is an electrical position assurance system that adds no separate movable components to the harness connector and adds no size to the present mechanical harness connector and still further allows visual confirmation of a properly mated connection between the harness connector and the header.
In accordance with one aspect of the invention, a harness connector for an electrical connection box includes a connector housing having an open end having a plurality of pin connections constructed to be releasably installed onto complementary pin connections of a header section of the electrical connection box. A latching device is movable between an engage position and a release position with the header for selectively retaining the connector housing to the header section. An arm lever is operably connected to the latching device. The arm lever correspondingly and pivotably moves between its release and engage positions. The connector housing has two electrical contacts forming a pilot circuit that is operably connected to an indicator circuit.
The arm lever is constructed to electrically connect the two electrical contacts when the arm lever is moved to its lock position to close the pilot circuit and control the indicator circuit. The indicator circuit correspondingly indicates that the arm lever has fully locked the connector housing in its installed position on the header. Commonly, the indicator circuit illuminates an appropriate warning light when the arm is not in the engage position.
The arm lever in one embodiment has a pair of leg sections pivotably mounted onto the connector housing and a bight section extending between the two legs.
The indicator circuit includes wiring in the connector housing that includes a plurality of pin connections between the connector housing and the header. In one embodiment, the indicator circuit includes a microprocessor that activates an instrument panel indicator when the arm lever is not in its engage position. The indicator circuit includes a visual indicator that indicates when the arm lever is not in its engage position.
The arm lever preferably has at least one leg section pivotably mounted to the connector housing and a transverse section at a distal end of at least one leg section. The transverse section has an electrically conductive strip extending a substantial length of the transverse section.
The conductive strip contacts both electrical contacts when the arm lever is in the locked position. Preferably this closes a pilot circuit which controls the indicator circuit. The conductive strip preferably has prongs that extend through openings in a top surface of the connector housing when the arm lever is in its engage position. The contacts are desirably recessed below the top surface of the connector housing and aligned with openings to contact the prongs when the prongs extend through the openings.
The connector housing preferably has a resilient lock button that resiliently flexes to allow the arm lever move to the engage position and locks the arm lever in place until the lock button is manually operated and moved to release the arm lever from the engage position.
In accordance with another aspect of the invention, an electrical box and harness connector assembly includes a connector housing having an open end. The open end has a plurality of pin connections. A header section of the electrical box has complementary pin connections that connect to the pin connections of the connector housing. The latching device is mounted on one of the connector housing and electrical box and movable between an engage position and a release position for selectively retaining the connector housing to the header. The arm lever is pivotably mounted onto one of the electrical box and connector housing and movable between a releasing and a lock position and operably connected to the latching device for moving the latching device between its engage and release positions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Natural antibodies are dimers and are therefore referred to as bivalent. They have four variable domains, namely two VH domains and two VL domains. The variable domains serve as binding sites for an antigen, a binding site being formed from a VH domain and a VL domain. Natural antibodies recognize one antigen each, so that they are also referred to as monospecific. Furthermore, they also have constant domains which add to the stability of the natural antibodies. On the other hand, they are also co-responsible for undesired immune responses which result when natural antibodies of various animal species are administered mutually.
In order to avoid such immune responses, antibodies are constructed which lack the constant domains. In particular, these are antibodies which only comprise the variable domains. Such antibodies are designated Fv antibody constructs. They are often available in the form of single-chain monomers paired with one another.
However, it showed that Fv antibody constructs only have little stability. Therefore, their usability for therapeutic purposes is strongly limited.
Thus, it is the object of the present invention to provide an antibody by means of which undesired immune responses can be avoided. Furthermore, it shall have a stability which makes it usable for therapeutic uses.
According to the invention this is achieved by the subject matters defined in the claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an acousto-optic tunable filter (AOTF) configuration which extends the tuning range of the filter. Additionally, the invention provides a method for extending the tuning range of an acousto-optic tunable filter.
The term acousto-optic filter refers to the fact that in certain birefringent optical materials, a light beam propagating as an E-ray can, under certain conditions, be converted into an O-ray by interaction with, and difraction from, an acoustic wave propagating in the same medium. This phenomenon has been utilized in producing narrow band optical filters, the peak transmission wavelength of which can be selected by properly choosing the frequency of the acoustic wave. The center wavelength of the passband of the acousto-optic filter is electronically tunable by changing the frequency of the acoustic wave within the crystal.
Two basic types of tunable acousto-optic filters have been constructed: collinear and non-collinear. A collinear acousto-optic filter is disclosed in U.S. Pat. No. 3,679,288 entitled "Tunable Acousto-Optic Method and Apparatus" by Stephen E. Harris. Harris was concerned primarily with the collinear filter, in which the incident and diffracted light beams inside the birefringent crystal are collinear with the acoustic beam. A diffracted light beam at the selected passband is separated from the incident light beam with a polarizing beam splitter. In the non-collinear filter, the light beams inside the birefringent crystal are non-collinear with the acoustic beam. U.S. Pat. No. 4,052,121 to Chang entitled "Noncollinear Tunable Acousto-Optic Filter", teaches that an electronically tunable optic filter with large angular aperture can be obtained by utilizing the interaction of optical and acoustic beams that propagate non-collinearly in an anisotropic medium. Incident light of one polarization is diffracted by the acoustic wave in an orthogonal polarization over an optical passband, the center of which can be tuned by changing the acoustic frequency. U.S. Pat. No. 3,679,288 and U.S. Pat. No. 4,052,121, which are identified above, are incorporated herein by reference as if the contents thereof were completely set forth herein.
Both collinear and non-collinear filters possess unique advantages and liabilities. In general, the collinear acousto-optic tunable filter will yield a higher resolution but the extraction of the filtered light output will require a polarizing beam splitter. The non-collinear acousto-optic tunable filter is often more convenient to use because there is some angular separation between the incident and the filtered light. It may be difficult to achieve high resolution with non-collinear filters of reasonable geometry, but for many applications, the achievable results are more than adequate. One such particularly useful application of the non-collinear acousto-optic tunable filter is described in U.S. Pat. No. 4,490,845 entitled "An Automated Acousto-Optic Infrared Analyzer System", which is assigned to the assignee of the present invention and incorporated herein by reference. This patent teaches an automated acousto-optic tunable filter infrared analyzer system usable in a variety of industrial and commercial control applications. The system relies upon a narrow passband tunable acousto-optic filter which is selectively tuned by predetermined RF signals to selectively transmit the narrow band-pass of interest which corresponds to a specific molecular species for identification and analysis. The system includes a microcomputer and associated memory functions to measure and compare detected signals from an infrared detector which converts the filtered infrared signal to an electrical signal. The memory provides control signals for the computer and for controlling the sequence and frequency of RF engergy applied to tune the filter. In this way, the near-to-mid range infrared can be analyzed for absorption bands corresponding to predetermined molecular species such as combustion product gases, and a feedback signal generated to control the combustion process.
The development of new efficient infrared acousto-optic materials such as thallium-arsenic-selenide (Tl.sub.3 AsSe.sub.3) as described in U.S. Pat. No. 3,792,287; thallium-phosphorus-selenide per U.S. Pat. No. 3,929,970; and thallium-arsenic-sulfide per U.S. Pat. No. 3,799,659 all of which are owned by the assignee of the present invention and are incorporated herein by reference provide the possibility of operation over the near-to-mid infrared range of from about 1.3 micrometers to about 16 micrometers. The crystal Tl.sub.3 AsSe.sub.3 (TAS) provides a relatively high figure of merit and transmits from 1.25 to 16 microns. In addition, the crystal symmetry of the TAS crystal makes it particularly suitable for use in non-collinear applications. While the TAS crystal possesses a relatively high figure of merit and extended transmission range, the optical wavelength range capability of the device is limited by the RF range capability of the acoustic transducer structure. The full optical range of a typical TAS AOTF design requires an RF bandwidth from 12.4 to 91 MHz, which cannot be readily done with a single transducer structure. The usable fractional bandwidth of the transducer will generally never exceed 100%, and will almost always be less due to practical limitations. It is often desirable to operate a single acousto-optic tunable filter with as large as possible a wavelength coverage and this may require an RF bandwidth greater than 100%. There have been several posed solutions to increasing the bandwidth capability of an acousto-optic device. For example, U.S. Pat. No. 3,759,603 discloses an acousto-optical light deflector having increased bandwidth by the use of providing three transducers along one side of the crystal, which transducers operate at consecutive frequency ranges. Such a structural configuration, however, requires the use of an optical medium of increased dimensions. Typically, as the size of the crystal increases in both length and width, problems are encountered in both the optical quality and mechanical integrity of the medium, and the device fabrication becomes more difficult.
It is, therefore, an object of the present invention to provide an acousto-optic tunable filter configuration in which the range coverage may be doubled without the corresponding increase in crystal size. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the type of vending machine shown in U.S. Pat. Nos. 3,589,556 and 3,767,081, there are a plurality of rows of shelves, each row of shelves being actuated by a separate actuating mechanism. One of the common ways of actuating a machine of this type is to use a separate solenoid or a separate motor for each row of shelves. This is, however, an expensive thing to do and for that reason becomes an economic problem.
There are carousel vending machines in the prior art of a type which have a plurality of vertical rows of product and including structure for turning the rows about a central axis for selection and dispensing of the desired product for example as shown in U.S. Pat. Nos. 1,644,371; 1,835,605; 2,208,298; 3,179,289 and 4,069,943, but it has not become practical to combine the type of vending machine shown in U.S. Patent No. 3,589,556 with a carousel arrangement because there are certain problems which have not been overcome. One of these problems is that in using a carousel type of vending machine having a plurality of shelves pivotally attached and releasable there must necessarily be a close tolerance between the partition separating the rows of shelves and each set or row of shelves to prevent the product from falling between the shelf and the partition. This becomes a real problem in a carousel type of arrangement, since a pie shaped shelf is dictated by the carousel arrangement and such a shelf cannot drop properly to release the product because the wider portions of the pie shaped shelf catch on the partition as it begins to drop, thereby preventing such dropping of the shelf as is required. Consequently, there is a need for structures to alleviate this problem.
Another problem associated with the carousel type of vending machine when vertically disposed rows of shelves are used is that it is necessary for the rows to be viewed, preferably by using a motor to rotate the carousel and then to stop it at rather precise positions. Heretofore this problem has not been solved sufficiently to make such a machine commercially practical. Consequently, there is a need for structures to solve this problem.
Still another problem associated with this type of machine is a way to easily and positively set the prices for the product in each of the vertical rows of shelves. Accordingly, there is also a need for structures to solve this problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
Epithelial mucosal surfaces are lined with fluids whose volume and composition are precisely controlled. In the airways, a thin film of airway surface liquid helps protect mammalian airways from infection by acting as a lubricant for efficient mucus clearance (Chmiel et al., Respir. Res. 4:8 (2003); Knowles et al., J. Clin. Invest. 109:571 (2002)). This layer moves cephalad during mucus clearance and excess liquid that accumulates as two airways converge is eliminated by Na+-led airway surface liquid absorption with Na+ passing through the epithelial Na+ channel (ENaC) (Knowles et al., J. Clin. Invest, 109:571 (2002)). How ENaC activity is sensed and controlled by the airways is poorly understood. However, there is evidence that reporter molecules in the airway surface liquid can serve as volume sensing signals whose dilution or concentration can alter specific cell surface receptors which control ion transport rates to either absorb or secrete airway surface liquid as needed (Chambers et al., Respir. Physiol. Neurobiol, 159:256 (2007)). ENaC must be cleaved by intracellular furin-type proteases and/or extracellular channel activating proteases (CAPs) such as prostasin to be active and to conduct Na+ (Planes et al., Curr. Top. Dev. Biol. 78:23 (2007); Rossier, Proc. Am. Thorac. Soc. 1:4 (2004); Vallet et al., Nature 389:607 (1997); Chraibi et al., J. Gen. Physiol. 111:127 (1998)). ENaC can also be cleaved and activated by exogenous serine proteases such as trypsin, an action that is attenuated by the protease inhibitor aprotinin (Vallet et al., Nature 389:607 (1997)). When human bronchial epithelial cultures are mounted in Ussing chambers where native airway surface liquid is washed away, ENaC is predominantly active, suggesting that cell attached proteases are predominant (Bridges et al., Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L16 (2001); Donaldson et al., J. Biol. Chem. 277:8338 (2002)). In contrast, under thin film conditions, where native airway surface liquid is present, ENaC activity is reduced, suggesting that airway surface liquid contains soluble proteases inhibitors (Myerburg et al., J. Biol. Chem. 281:27942 (2006); Tarran et al., J. Gen. Physiol. 127:591 (2006)).
The Palate Lung and Nasal epithelial Clone (PLUNC) family are secreted proteins that are subdivided into short (SPLUNCs) and long (LPLUNCs) members which contain either one or two domains respectively (Bingle et al., Biochim. Biophys. Acta 1493:363 (2000); Weston et al., J. Biol. Chem. 274:13698 (1999)). The original PLUNC gene which is now called SPLUNC1 comprises up to 10% of total protein in the airway surface liquid and can readily be detected in both nasal lavage and tracheal secretions (Bingle, C. D., and Craven, C. J. (2002) PLUNC: a novel family of candidate host defense proteins expressed in the upper airways and nasopharynx Hum Mol Genet 11, 937; Campos, M. A., et al. (2004) Purification and characterization of PLUNC from human tracheobronchial secretions Am J Respir Cell Mol Biol 30, 184; Lindahl, M., Stahlbom, B., and Tagesson, C. (2001) Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight Electrophoresis 22, 1795). SPLUNC1 is expressed in both submucosal glands, the superficial epithelia and in neutrophils and in theory, is present in the correct regions of the lung to be a volume sensing molecule since it can be secreted onto the mucosal surface of the superficial epithelial where ENaC is expressed (Bartlett et al., J. Leukoc. Biol. 83:1201 (2008); Bingle et al., J. Pathol. 205:491 (2005)).
The present invention addresses previous shortcomings in the art by disclosing the regulation of sodium channels by PLUNC proteins and the manipulation of this pathway to regulate sodium absorption and fluid volume and treat disorders responsive to modulating sodium absorption. | {
"pile_set_name": "USPTO Backgrounds"
} |
Automated Teller Machines (ATM) are in general believed to be relatively secure devices since they handle consumer financial transactions. However, ATMs are susceptible to malware, viruses, and eavesdropping just like any other device having memory and processor capabilities.
One ATM resource that is particularly valuable to the ATM is the Basic Input/Output System (BIOS), which is utilized to boot the ATM, set resources configurations, and the like. Unauthorized access to the BIOS can create substantial security breaches at the ATM.
However, an ATM is often serviced on site by a service (field) engineer for purposes of diagnostic testing, software upgrades, peripheral replacements, and the like. Because ATM security is an issue more and more security enhancements on the ATM are requiring that the BIOS be password protected, such that the ATM can only boot from the main hard drive with a known password for the ATM's BIOS.
This makes it difficult for the field engineers to use bootable diagnostic compact-disks (CDs), such as a bootable system application to analyze problems on a faulty ATM (e.g., an ATM existing system application from the hard drive is replaced for diagnostic testing from a CD during boot of the BIOS, such a situation cannot occur when the BIOS only permits password booting from the main hard drive of the ATM). Moreover, a particular fault may require the field engineer to access the BIOS, which means that the field engineer has to have the ATM BIOS password to effectively service the ATM.
Managing passwords for ATMs is problematic because BIOS passwords for each ATM should be unique and/or changed frequently to meet minimal security requirements, and, perhaps government compliance regulations. As stated above, the field engineers may require access to the BIOS in order to diagnose and fix issues with the ATMs. But, giving the field engineer a BIOS password presents a significant security risk, as the engineer may lose or actively give away the BIOS password to someone unauthorized to have such password; thereby giving hackers access to the BOIS on the ATM. The engineer may also take actions while working on the AMT that may make the BOIS less secure through such actions.
Therefore there is a need for improved BIOS credential management. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an overcurrent protective circuit for a modulated-conductivity type MOSFET.
2. Description of Background
A modulated-conductivity type MOSFET (metal oxide semiconductor field-effect transistor) is a FET which is provided with a MOS gate input, operates in a bipolar mode, and has such advantages as rapid switching speed and low ON (saturation) voltage. This permits a high-power high-frequency control which has not been available by use of conventional bipolar transistors or MOSFETs, and allows compactness and low cost of various apparata to be realized. Hereinafter, the above-described modulated-conductivity type MOSFET is simply referred to as BIFET (Bipolar, mode FET).
FIG. 1 shows a basic chopper circuit of a BIFET, wherein reference numeral 1 designates a BIFET. In FIG. 1, the turn-on and turn-off operation of the BIFET 1 functions so as to supply power from a DC power source 2 to a load 3. The BIFET 1 is on-off controlled by a gate signal generating circuit 50 which has a gate power source 4 that supplies a positive voltage to the gate of the BIFET 1, a gate power source 5 that supplies a negative voltage to the same, and bipolar transistors 6 through 9 that amplify a control signal received at a control signal input terminal 10. When the control signal input terminal 10 of the gate signal generating circuit 50 receives a positive signal, the transistors 6 and 7 are turned on so as to supply a positive voltage from the gate power source 4 through an output terminal 11 to the gate of the BIFET 1, which is thereby turned on. When the control signal input terminal 10 receives a negative signal, the transistors 8 and 9 are turned on so as to supply a negative voltage from the gate power source 5 through the output terminal 11 to the gate of the BIFET 1, which is thereby turned off.
FIG. 2 is a graph illustrating one example of characteristics between a drain voltage V.sub.D and a drain current I.sub.D, both of a BIFET. As shown, when operated with higher gate voltages V.sub.G, ON voltages of the BIFET become lower, whereby power loss therein can be reduced.
In FIG. 1, when a short-circuit failure occurs within the load 3, the voltage between the drain and source of the BIFET 1 rises up to the voltage of the DC power source 2. As a result, power loss within the BIFET 1 becomes excessively large, thereby causing the BIFET 1 to be damaged. Should the BIFET 1 be operated with the gate voltages lower taking such a failure within the load 3 into consideration, as seen from FIG. 4, ON voltages of the BIFET 1 become higher, whereby the power loss within the BIFET during the ON state becomes larger.
To solve the above-mentioned problem, there is provided an overcurrent protective circuit shown in FIG. 3. In FIG. 3, between the drain and source of the BIFET 1, are connected resistors 12 and 13 in series, and a voltage between the drain and source is detected across the resistor 13. Between the gate and source of the BIFET 1, are connected a resistor 41 and a transistor 42 in series, and the base of the transistor 42 is connected through a zener diode 43 to the higher potential side of the resistor 13. The gate of the BIFET 1 is connected through a resistor 44 to the output terminal 11 of the gate signal generating circuit 50.
In operation, when a failure within the load 3 causes an overcurrent to flow through the BIFET 1, the ON voltage of the BIFET 1 rises. This ON voltage is divided by the resistors 12 and 13, and when the voltage across the resistor 13 exceeds the zener voltage value of the zener diode 43, a current flows into the base of the transistor 42. This causes the transistor 42 to be turned on, so that the voltage of the gate power source 4 becomes divided by the resistors 41 and 44 so as to be lowered. For example, assuming that the voltage of the gate power source 4 is 15 V and both the resistors 41 and 44 are 50 .OMEGA., the gate voltage of the BIFET 1 is 15 V when operated in normal operation. However, after a short-circuit failure has occurred within the load 3, the gate voltage is lowered to 7.5 V, whereby a current that flows through the BIFET 1 can be reduced.
On the other hand, when the BIFET 1 is turned on with the load 3 which is in normal state, there exists, at the initial turn-on period thereof, a delay time of several tens of nanoseconds. Thus, during the period of several tens of nanoseconds from an instant at which a positive gate voltage is applied to the gate of the BIFET 1, the voltage of the DC power source 2 is applied between the drain and source of the BIFET 1. During this period, a current flows into the base of the transistor 42, so that the gate voltage of the BIFET 1 becomes lower value. However, as time advances, the ON voltage of the BIFET 1 is gradually lowered, and ultimately reaches a value of several volts. Should a voltage developed across the resistor 13 at this instant become lower than the zener voltage of the zener diodes 43, the transistor 42 becomes turned off and the gate voltage of the BIFET 1 rises up to the voltage of the gate power source 4, so that the BIFET 1 can be operated such that the ON voltage thereof becomes sufficiently lowered.
FIG. 4 is a graph illustrating the relationship between a drain current I.sub.D (max) and a drain-source voltage V.sub.D of a BIFET in the case when the BIFET is damaged due to an overcurrent that flows thereinto. In FIG. 4, the hatched portion is a region in which the BIFET is damaged. As can be seen from the graph, I.sub.D (max) is in inverse proportion to V.sub.D, and it becomes significant that the overcurrent be reduced as low as possible particularly when the BIFET is utilized in a high voltage circuit. To achieve this, it is necessary that the gate voltage of the BIFET be restricted either below Vth (a minimum gate voltage to cause the BIFET to be in the ON-state) so as to cause the flow of current to cease, or below a value of approximately Vth+3 V so as to sufficiently reduce the current flow.
However, in the conventional protective circuit shown in FIG. 3, should the resistors 41 and 44 be determined such that the gate voltage of the BIFET 1 becomes less than or equal to Vth when an overcurrent flows into the BIFET 1, several problems are developed. First, as described above, at the initial turn-on period of the BIFET 1, the voltage of the DC power source 2 is applied between the drain and source of the BIFET 1, so that the transistor 42 is turned on, and at this instant the gate voltage of the BIFET 1 inevitably decreases to a level of less than or equal to Vth. As a result, the BIFET 1 does not become turned on, or the turn-on time thereof becomes extremely longer. Second, in the case when a failure within the load 3 causes the protective circuit to operate, an overcurrent that flows through the BIFET 1 decreases abruptly, so that a voltage applied to the BIFET 1 oscillates due to a stray inductance component of the circuit, and the voltage developed across the resistor 13 becomes temporarily lower than the zener voltage of the zener diode 43. At this instant, the transistor 42 becomes turned off, and a high gate voltage is applied again to the BIFET 1, thereby causing an overcurrent to flow. The above-described repetition induces oscillatory phenomena within the circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
Vertical antifuse memory cells conventionally comprise a decoupling element, such as a PN junction diode, and an antifuse element electrically connected in series with the blocking element. The memory cell is connected between a bit line and word line. Initially, the antifuse exists in a nonconductive state. To program the memory cell, a voltage is selectively impressed across it to short the antifuse and thereafter cause the antifuse to exist in a highly conductive state. Shorted antifuse memory cells return a logical "1" on the bit line, and unshorted antifuse memory cells return a "0" on the bit line inherently.
Prior art antifuse constructions are shown in the following publications: "Memories," Electronics, Vol. 53, No. 23, p. 141 (Oct. 23, 1980); and "A 16K PROM USES VERTICAL FUSE," Electronics, Vol. 55, No. 4, p. 184 (Feb. 24, 1982). One of these references discloses a vertical antifuse where the memory cell comprises a polysilicon emitter above a bipolar transistor decoupling element. A layer of aluminum is disposed above the polysilicon emitter. In order to program the cell, a voltage is impressed across the aluminum and the base of the decoupling element in order to raise the temperature of the aluminum and the poly emitter up to their eutectic point, causing aluminum to spike through the emitter-base junction. This short-out of the emitter based junction leaves the base/collector junction as the decoupling element of the programmed memory cell. A disadvantage of this technique is that the current has to be sufficiently high (on the order of 100 milliamperes) to diffuse through 1500-2500 Angstroms of single crystal silicon, in addition to the polysilicon emitter. A problem exists in attempting to control the diffusion of the aluminum so that it does not short out the base/collector junction as well. The base must be wide enough to avoid the spike-through of aluminum to the collector, shorting out the entire decoupling element. This poses a restriction on scaling.
Another antifuse approach is disclosed by M. Tanimoto, et al., "A Novel Programmable 4K-Bit MOS PROM Using A Polysilicon Resistor Applicable To On-Chip Programmable Devices," IEEE J. Solid State Circuits, Vol. SC-17, No. 1, pp 62-68 (February 1982). An initially nonconductive polysilicon resistor fuse element is disclosed in this reference and is used in MOS applications. The resistor fuse is surrounded by phosphorus oxide. Autodoping of the polysilicon fuse by the phosphorus will occur during subsequent high temperature fabricating steps to drop the resistance of the fuse element to below 100 Kilohms. Thereafter, the resistance is further reduced by the diffusion of arsenic in order to program the antifuse element. Because arsenic and phosphorus are not highly conductive dopants, Tanimoto's resistor fuse provides an electrical path of relatively high resistance between the word line and the bit line as opposed to a path created by a highly conductive metal diffusant such as aluminum.
In view of the above problems, a need has arisen in the industry to provide a vertical antifuse structure that avoids the danger of destruction of a bipolar decoupling element upon programming and that simultaneously provides a low-resistance conductive path upon programming the cell. | {
"pile_set_name": "USPTO Backgrounds"
} |
Photomasks are chrome patterned quartz templates (Refer to FIG. 1) employed in a photolithographic process (sometimes referred to as photoengraving) for transferring the integrated circuit designer""s ideas onto silicon substrates. An integrated circuit is manufactured by succession transfers of unique photomask layers composing a device set of 15 to 25 layers onto silicon wafers coated with a photo-active polymer called a resist. The pattern transfer is accomplished using ultraviolet (UV: 365 nanometers) or deep-ultraviolet (DUV: 248 nanometers) exposure tools called wafer steppers that optically reduce the photomask image by factor of 4xc3x97 or 5xc3x97 its original size. As the wafer stepper exposes the silicon wafer, the stage of the wafer stepper moves in precise incremental steps to create a 2-dimensional matrix of identical patterns on the coated silicon wafer. The minute features represented in the resist define the areas for doping or interconnection and will ultimately constitute the functional elements (i.e., sources, drains, and gates) that make up the integrated circuit device. When the wafer manufacturing process is complete, the matrix of identical patterns will be cut into separate elements each yielding an integrated circuit chip.
Manufacturing specifications for photomasks are very tight with regards to critical dimension control (feature size), pattern placement (registration), hard defects (pattern errors) and contamination (soft defects), as any imperfections in the photomask will be replicated many times in the silicon and adversely impact the functional integrity of the resulting integrated circuits. Accordingly, photomask manufacturers invest considerable time in verification of product quality using an extensive line of sophisticated measurement and automated inspection tools. In additional, a safeguard is taken to ensure that when the product is shipped and throughout its lifetime of use by the IC manufacturer it is protected from the deposition of airborne contaminants. Referring again to FIG. 1, a dust cover called a frame-supported pellicle (pellicle) is mounted on the photomask (1). The frame-supported pellicle (2) is a transparent polymeric membrane (pellicle membrane) bonded in a taut drum-like manner to a rigid aluminum frame (3), also known as a pellicle-frame. The opposing side of the pellicle-frame, bonded to the photomask surface, is coated with a pressure-sensitive adhesive (4), The mounted frame-supported pellicle enshrouds and protects the important pattern data (5) of the photomask from the deposition of airbourne contaminants (6) yet is transparent to the actinic radiation of the wafer stepper tool. The pellicle frame height is an important functional element of the frame-supported pellicle. Its dimension is established such that any contaminants (7) falling on the pellicle membrane are out of the focal plane of the wafer stepper tool and unable to image on the resist coated silicon wafer. Each brand and model of wafer stepper has its own specifications for pellicle-frame height and size. The length and width of frame-supported pellicles vary based on the size of the stepper""s exposure quality area, the size of the photomask substrate, and the amount of pattern area. In short, there is not one frame-supported pellicle size but rather an assortment of sizes. Regardless of size or type, all pellicles perform the same basic functional purpose of protecting the photomask from contamination.
Referring now to FIG. 2, is a summary of the photomask manufacturing process. As shown, frame-supported pellicle mounting (904) is one of the final steps in the photomask manufacturing process (800-905). It occurs, only after it has been verified that the photomask meets its specifications for critical dimension control (804), pattern placement accuracy (805), and is free of hard defects and contamination (900-902). Once the frame-supported pellicle has been mounted on the photomask, one final xe2x80x9cthrough-the-pelliclexe2x80x9d (through-pellicle) inspection (904) is performed to verify that no hard defects or contamination have been added to the photomask since the time of its last xe2x80x9cpre-pelliclexe2x80x9d inspection (900). If and only if, the photomask passes its through-pellicle inspection, can it then be shipped to the customer or used internally for IC manufacturing. It is also assumed, although not verified, that the mounted frame-supported pellicle has no distorting affect upon the photomask substrate that will compromise the accuracy of its pattern placement (registration).
In actuality the photomask frequently fails its final xe2x80x9cthrough-pelliclexe2x80x9d inspection (904), an event that given the prior art of pellicle frame design results in the destructive removal of the frame-supported pellicle (1001) and sometimes destroys the photomask, itself. Furthermore, photomask distortions have been directly correlated to the application of the prior art""s pellicle frame and have been measured as pattern placement errors.
The yield of the pellicle mounting process is defined as the percentage of photomasks which, though passing their pre-pellicle inspection, ultimately fail their final xe2x80x9cthrough-pelliclexe2x80x9d inspection and thereby require the removal of the frame-supported pellicle. The pellicle process is arguably the lowest yielding area in the photomask manufacturing process. Pellicle yields are frequently as low as 70% for tight specification product. The causes of yield loss are multifarious. The automated inspection equipment is not 100% accurate. Defects or contamination can be missed during the pre-pellicle inspection that are latter captured during the final through-pellicle inspection. This is particularly prevalent when the photomask has a defect size specification approaching the limit of the detection capability of the inspection tool. Defects found during the pre-pellicle inspection may be inadequately repaired and later found during the final through-pellicle inspection. Defect inspection, contamination inspection, and pellicle mounting often take place in separate cleanroom bays by different production personnel. The considerable handling and transportation of the photomask risks the introduction of contaminants or damage to the product from scratches. The contamination inspection immediately preceding the pellicle mount process is always a blind process. There is no way of knowing if the photomask is free of contaminants until after its xe2x80x9cthrough-pelliclexe2x80x9d inspection since a post-clean pre-pellicle inspections itself risks introducing additional contamination. The pellicle mounting process is a labor-intensive manual operation very prone to the introduction of contaminants and susceptible to damaging the photomask and pellicle. What""s more, the manual nature of the pellicle mount process is dependent on the skill of the pellicle mount operator and can vary dramatically from individual to individual. Furthermore, as photomasks specifications continue to tighten with regard to defects and contamination, these problems are sure to be exacerbated.
In the prior art of pellicle frame design, the frame-supported pellicle is permanently bonded to the photomask after its xe2x80x9cpre-pelliclexe2x80x9d inspection without any assurance it will pass its final xe2x80x9cthrough-pelliclexe2x80x9d inspection. This is a major flaw in the design of the pellicle process that has considerable logistical and financial consequences. When defects or contamination are found underneath the pellicle, the pellicle must be removed from the photomask to allow for the repair of those defects or the removal of that contamination (2000). In the prior art, pellicle removal is an aggressive process. The pressure sensitive adhesive is so tenacious that the pellicle must be mechanically pried from the from the photomask surface in a manner that is in sticking contrast to the delicate handling employed in every other step of the photomask manufacturing process. The removal process always results in the destruction of the pellicle. Pellicles can cost more than $400 a piece. As the industry moves toward larger and larger substrates (preparations are underway for introducing 8xe2x80x3 or 9xe2x80x3 photomasks) pellicle sizes will increase accordingly with a corresponding increase in cost. Simultaneously, the wafer industry is moving towards E-line ultra-violet (EUV: 193 nanometers) wafer exposure tools that will require pellicles with advanced polymeric membranes transmissive at these wavelengths. The combination of increasing size and more advanced pellicle membrane technology will appreciably increase the cost of pellicles and the financial loss associated with the prior art""s re-pelliclization process.
Another tremendous disadvantage of the prior art is the risk pellicle removal process poses to the photomask itself. Once the pellicle has been dismounted from the photomask the photomask must be cleansed of any residual adhesive left behind by the frame. This process entails its own inherent risks. The additionally handling can result in catastrophic errors such as breakage or scratches on the photomask. The cleaning process used to remove the adhesive may cause damage to the minute features on the photomask or introduce unknown contaminants that cannot be removed. The financial loss of rejecting the photomask is considerable. The cost of a 6xe2x80x3xc3x976xe2x80x3xc3x970.250xe2x80x3 photomask can range from $4000 for a binary photomask to $20,000 for a xe2x80x9cstate-of-the-artxe2x80x9d phase-shift photomask. As in the case with pellicles, the cost of photomasks will increase enormously when 8xe2x80x3 or 9xe2x80x3 substrates are introduced and thus, the financial liability of the prior art"" pellicle process.
An additional matter that compounds the risks of pellicle removal is that there are no assurances that with a second round of pellicle application the photomask will pass its final xe2x80x9cthrough-pelliclexe2x80x9d inspection. In fact, often the cycle of pellicle removal and reattachment must be performed several times before the photomask passes or is destroyed in the process. A simple probability calculation shows that if the pellicle yield were 80%, there yet remains a 6.4% chance that the second pellicle will also have to be removed and the entire process begun again. Every such cycle consumes expensive pellicles and endangers the underlying photomask.
In the preferred embodiment, the proposed invention employs a novel frame design that permits a two-step process for affixing the pellicle to the photomask surface. In the first step, the pellicle is temporarily affixed to the photomask using a vacuum bonding frame. The vacuum bonded pellicle is sufficient to enshroud and protect the photomask throughout its final xe2x80x9cthrough-pelliclexe2x80x9d inspection process. In the event that defects are found during the xe2x80x9cthrough-pelliclexe2x80x9d inspection, the pellicle can be removed without any damage to itself, the underlying photomask, or requiring any post-processing of the photomask. If and only if, the final inspection verifies the photomask is defect and contamination free, is the pellicle permanently bonded to the photomask using an adhesive coated locking ring assembly.
The photomask quartz substrate has the characteristics of extremely low thermal expansion, great mechanical rigidity, and flatness specifications of between 0.5 and 2.0 microns with a very high surface polish. These characteristics are basic functional requirements necessary to limit mechanical distortions in the photomask that could result in pattern placement errors or surface flaws that could degrade resist coating and pattern imaging. In the prior art, the pellicle frame is manufactured in a manner that is inconsistent with the above requirements and has been observed to induce distortions in the pellicle mounted photomask. The pellicle frame is currently composed of anodized aluminum manufactured using a mechanical milling process. In the course of machining, internal stresses are released in the material that result in physical distortions of the frame. An attempt is made by the pellicle frame manufacturer to limit these distortions by machining the frame from a single block of material and employing intermediate metal relaxation methods. Although some improvement is achieved, it is limited and accomplished at the expense of considerable waist of the constituent material. In addition, very little, if any, mechanical lapping is used to improve the quality of the pellicle frame""s mounting service. As a result, photomask distortions have been directly correlated to the application of the pellicle frame and have been measured as pattern placement errors using registration tools such as the Leitz LMS 2000. The distortions are particularly apparent on photomasks of size 5xe2x80x3xc3x975xe2x80x3xc3x970.090xe2x80x3 and less so, but still observable on 6xe2x80x3xc3x976xe2x80x3xc3x970.250xe2x80x3 material.
In the preferred embodiment, this invention eliminates the distortion and improves the flatness of the pellicle frame by replacing aluminum as the constituent material with a polymer that is compatible with an injection molding process. A judiciously selected semi-crystaline polymer such as Polyetheretherkeytone (PEEK) can provide excellent mechanical properties such as stiffness, dimensional stability, chemical resistance, a variety of surface finishes together with superior processing characteristics. As will be discussed in the preferred embodiment of this invention, the injection molding process will allow greater flatness to be achieved in the pellicle frame reducing distortion of the underlying photomask and eliminating pattern placement errors.
The present invention is a method and apparatus for a pellicle frame that permits removal of the frame and pellicle without any damage to itself or to the underlying photomask or requiring any post-processing of the photomask such that the necessary corrections for defects or contamination can be implement and the original pellicle re-applied. In the preferred embodiment of this invention, this objective is achieved by employing a novel frame design that permits temporary bonding of the frame-supported pellicle to the photomask using a vacuum and later permanently bonding the frame to the photomask using a secondary locking ring assembly employing a pressure sensitive adhesive. Pattern placement errors in the photomask induced by the physical distortions and/or imperfections in flatness of the mounted pellicle frame are reduced by improving the surface characterisitics of the frame. In the preferred embodiment of this invention this objective is enhanced by replacing the current pellicle frame material with a polymer compatible with an injection molding process. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This document relates to devices and methods for the treatment of heart conditions. For example, this document relates to devices and methods for treating heart failure with preserved ejection fraction, including diastolic heart failure, by performing a pericardial modification procedure.
2. Background Information
The pericardium is the thin double-layered fluid filled sac that surrounds the heart and the roots of the aorta, vena cava, and the pulmonary artery. The outer sac is known as the fibrous pericardium. The inner sac is known as the serous pericardium. The serous pericardium consists of a visceral layer portion and a parietal layer portion (“parietal pericardium”). The visceral layer, or epicardium, covers the heart and the great vessels. The parietal portion lines the outer fibrous pericardium.
The phrenic nerves run from the brain to the diaphragm. The phrenic nerves provide motor impulses to muscles of the diaphragm, thereby causing breathing. The right phrenic nerve passes underneath the muscles of the neck and bones of the shoulder to the base of the right lung, contacting the heart and the windpipe. The left nerve follows a similar path, passing close to the heart before entering the diaphragm. | {
"pile_set_name": "USPTO Backgrounds"
} |
Thromboxane A.sub.2 receptor antagonists have been found to be effective in preventing early pulmonary hypertension induced by exposure to endotoxin, Schumacher, W. A. et al., "Effect of the TxA.sub.2 -receptor antagonists SQ 29,548 and SQ 28,688 on the pulmonary hypertensive response to endotoxemia in swine," Pharmacology 34:301-308, 1987.
Protamines are simple proteins of low molecular weight that are rich in basic amino acids. Protamine is a cationic protein which is used in man to reverse the anticoagulant activity of heparin. It reacts with anionic heparin to form a complex which is inactive as an anticoagulant.
Upon completion of surgical procedures requiring anticoagulant treatment, it is desirable to restore normal function to the blood coagulation cascade to minimize post-operative bleeding. When heparin is employed as the anticoagulant, protamine is often infused to neutralize the heparin-induced anticoagulant activity. Thus, protamine acts as a heparin antagonist and is used to neutralize heparin in surgical procedures.
Unfortunately, certain patients show intolerance to protamine. Adverse reactions which may result from the interaction between protamine and heparin include anaphylaxis and pulmonary hypertension. The latter response, when produced in pigs, can be significantly blunted by pretreatment with aspirin and is associated with enhanced TxB.sub.2 blood levels, Degges, R. D. et al., "Pulmonary hypertensive effect of heparin and protamine interaction; evidence for thromboxane B.sub.2 release from the lung," Am. J. Surg. 154:696-698, 1987. The Physicians' Desk Reference, 41st Edition, 1987, pp, 1162-1163, indicates that "Because fatal reactions often resembling anaphylaxis have been reported after administration of protamine sulfate, the drug should be given only when resuscitation techniques and treatment of anaphylactoid shock are readily available." | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to an apparatus for recovery of valuable metals including Cu, Zn, Sn, Cr, In, Pb, Mo, V, W, Zr, Ge, Re, Au, Ir, Rh, Ru, Os, or mixtures thereof, and a method for recovery of valuable metals using the same. More particularly, the present invention relates to alkali leaching of valuable metals, an apparatus for recovery of valuable metals, and a method for recovery of valuable metals using the same, which recovers valuable metals by volatizing or dissolving valuable metals using chlorine gas generated in an electrolytic chlorine producing bath in the form of an oxide or leaching solution depending on the kind of valuable metal. Here, the apparatus is a closed system, in which chlorine gas generated in an anode chamber of the electrolytic chlorine producing bath and sodium hydroxide generated in a cathode chamber are re-circulated to allow elimination of additional supply of chlorine and sodium hydroxide from outside, thereby preventing generation of waste liquid and waste gas while ensuring eco-friendliness, safety without leakage of toxic gas, and economical feasibility.
2. Description of the Related Art
Generally, large amounts of valuable metal are contained in scrap and waste produced during manufacture of various electronic products, waste catalysts produced in chemical processes, waste water generated from a plating factory, textile fabrication factory, film development workroom, and the like. Thus, recycling of such waste resources and efficient recovery of valuable metals from the waste resources are very important issues in terms of value creation of the waste resources and prevention of environmental pollution.
Examples of such valuable metals may include copper (Cu), zinc (Zn), tin (Sn), chromium (Cr), indium (In), lead (Pb), molybdenum (Mo), vanadium (V), tungsten (W), zirconium (Zr), germanium (Ge), rhenium (Re), gold (Au), iridium (Ir), rhodium (Rh), ruthenium (Ru), osmium (Os), and the like. As one method for recovery of such valuable metals by processing content or waste water containing such valuable metals and mixtures thereof, alkali leaching is generally performed using an alkaline solution prepared by dissolving an alkaline salt in a solvent.
In general alkali leaching, an aqueous solution containing a large amount of alkaline salt is used for reaction of valuable metals at high temperature. As such, the large amount of alkaline salt is used due to continuous consumption of alkali metal ions, a waste liquid generated during the leaching can cause environmental damage, and the use of such more expensive alkaline salt than acid salts is a main reason for increase in manufacturing cost.
As another method for recovery of valuable metals, electrolysis is used. Electrolysis is used not only for processing valuable metals contained in waste water but also for processing general inorganic or organic compounds. However, electrolysis has problems of a long processing time and low efficiency due to accessory equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
In related art, a technology is known for capturing an image of objects around a vehicle using a camera and performing image recognition of the captured image, for example. Another technology is also known for generating route guidance information, most appropriate for the driver, using only the feature objects that the driver recognizes from the objects detected based on the images ahead of a vehicle (see Japanese Patent Application Publication No. JP-A-2002-5668). | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method for encapsulating an electronic component, in particular a semiconductor chip on a substrate. Such methods permit the manufacture of so-called chip scale packages (CSP) with which the completed semiconductor element provided with connection parts is only insignificantly larger than the bare silicon chip.
With this the basic idea lies in that between the substrate and the component there is arranged a buffer mass, for example of a silicone elastomer, which compensates the coefficient of thermal expansion differences of the materials. With this also the soldered connections of the installed semiconductor chip are only subjected to slight stress during environmental temperature fluctuations. The life duration and reliability of such chip scale packages is thus relatively high. Known manufacturing methods are for example described in xe2x80x9cSemiconductor Internationalxe2x80x9d, November 1997, page 48, or in U.S. Pat. No. 5,659,952 or U.S. Pat. No. 5,679,977. In spite of the improved properties of the end product, the known methods are however relatively complicated and do not permit an efficient manufacture. In particular there are necessary numerous individual steps with a comparatively high cost with respect to required apparatus and time required for manufacture. It is therefore an object of the invention to provide a method of the above mentioned type with which fewer processing steps are required. Furthermore with the placing of the component onto mechanical installation parts and/or onto the component itself there is to be effected no unnecessary exposure to heat because micromechanical processes with a simultaneous heat effect are difficult to handle and may tend to degrade the electronic component.
This object according to the invention is achieved with a method in which the buffer material and/or an adhesive in a liquid or pasty (flowable form is deposited from a dispenser onto a substrate. With this at least one working step which was necessary until now may be saved, specifically the pressing on of an adhesive in a stencil printing method. The component itself is at room temperature placed onto the buffer material and/or onto the adhesive and not as previously in the heated condition. With this the term xe2x80x9croom temperaturexe2x80x9d is to be understood as a temperature which prevails in working rooms corresponding to the applicable standards in air conditioning technology and which settle roughly in the temperature range from 10xc2x0 C. to 45xc2x0 C., preferably from 16xc2x0 C. to 26xc2x0 C. With this the throughput per unit of time is improved since no heating time for the component is required. Mechanical installation parts and/or measuring instruments are not compromised by the effect of heat.
After the placing-on of the component the buffer material and/or the adhesive may be subjected to a precuring and a curing and specifically advantageously on the same installation as the placing-on of the component. By way of this in a particularly advantageous manner there is exploited the condition that with the adhesives applied here, the joining together of the parts to be connected and the curing of the adhesive do not necessarily have to coincide. By way of the temporal separation, the precuring and/or the curing may be effected in an installation region at which heat development is less problematic. After the precuring or curing the connected units without risk of a mutual displacement of the substrate and component may be transported to any other working station.
An essential process simplification may be achieved in that firstly several buffer cams or nubbins are applied to a substrate such as in a stencil printing method, the buffer cams are cured. Before the placing-on of the component, adhesive is deposited with the dispenser on or next to various buffer cams. With this method existing stencil printers for depositing the buffer cams (nubbins) may be used. In contrast the despositing of the adhesive is effected in a considerably more simple manner with the dispenser. Advantageously adhesive is deposited simultaneously from several dispenser openings, each to one of a plurality of nubbins. Under certain circumstances a dispenser, which in rapid succession coats a group of buffer cams with an adhesive would however also be conceivable.
With a suitable material choice the dispenser may be used to deposit the buffer cams may be deposited onto the substrate and be secured thereto. Subsequently each buffer cam may be provided with an adhesive layer. This may either be effected with a separate dispenser or with the same dispenser.
A further essential simplification of the process may finally be achieved in that an adhesive material may be applied that simultaneously serves as a buffer material. With this the subdividing into two separate materials is done away with, which simplifies the procedure as a whole. The adhesive may with this be deposited in the form of individual buffer bodies, which remain alone after the placing-on of the component. Subsequently, the voids are together with the covering of the wiring locations, filled out with a protective mass. Alternatively however it is also conceivable that the adhesive, with the dispenser, is deposited as an adhesive pattern which after placing on the component connects to a homogeneous layer between the component and the substrate. Air pockets are thus prevented and a retrospective filling out of the voids is no longer necessary. Such adhesive patterns are already known in semiconductor encapsulation technology.
Further advantages may be achieved when the depositing of the buffer material and/or of the adhesive, with the dispenser, is effected directly shortly before the placing on of the component at the same machine. Advantageously with this also the substrate, on the same transport system, is led past the dispenser and the placing-on device for the component. On the one hand with this both working steps may be exactly matched to one another and the drying or curing time may be better controlled. In the same machine and on the same transport system a smooth transport is possible, by which means the danger of an inadvertent displacement of the component from the nominal position is greatly reduced. Before the placing on the component is advantageously adjusted with respect to position.
An improvement of the planarity of the component and the substrate may be achieved in that during the placing on of the component the substrate is secured on a rest surface by way of a vacuum.
For improving the manufacturing rationality advantageously groups of components are fastened on the same substrate. For this in each case several components after one another are deposited to a group. The whole group may then simultaneously be subjected to a pressing-on pressure and/or to a heat treatment. This pressing on and/or heating in groups may also be applied with alternative encapsulation processes in which the components are not deposited at room temperature. The simultaneous processing of the components may be effected via commonly actuated individual tools, such as e.g. individual pressing punches, which however are actuated simultaneously. Alternatively it may also however be the case of a common tool which impinges the whole group simultaneously, such as e.g. a common pressing punch of a suitable size.
Generally, in order to ensure an adequate adhesion and to cure the elastomer mass, the components with the simultaneous heating must be pressed against the substrate.
A disadvantage of the known method lies however in the fact that the exact placing of the components on the substrate and the final connection under a high pressure and at a high temperature is effected in one step. The pressing procedure with this lasts considerably longer that the placing procedure which leads to great capacity reductions in the production line. On the other hand however the application of high temperatures in the region of the placing of the components is disturbing in that the heat may damage the component or the adhesive materials. At the placing station, specifically highly precise manipulators and measuring apparatus operate, which react sensitively to temperature effects. It is therefore a further object of the invention to provide a method of the previously mentioned type with which, with simple means, the production capacity within the same line may be increased. Furthermore the method is to permit a separation of the placing-on procedure from the actual processing procedure for the definitive connection.
This object, according to the invention, is achieved with a method which In which the pressing in groups and/or heating of the components is with this effected separately with respect to time from the placing-on procedure so that according to the tool size a relatively large number of components may be simultaneously treated.
With this, the placing of the components onto the substrate and the impinging with the tool at spaced working stations are effected particularly advantageously. Specifically it has been shown that the exact placing and the processing do not necessarily have to be effected at the same working station. With the application of suitable substrates and adhesives it is possible to achieve adequate adhesive force at room temperature for the further transport after the placing. With this the substrates may be transported away from the sensitive placing region to a processing station at which without negative influence to the placing procedure, pressure and/or heat may be applied.
Several groups of components after one another may with this in a cycled manner be impinged, wherein the impingement of a group in the ideal case lasts maximally for as long as the placing-on of a preceding group. With the placing-on procedure with this in a rapid succession the components may be arranged to a group, wherein at the processing station during the whole time duration from the placing of the first component up to the placing of the last component one presses. Considerable advantages with the processing of the components may further be achieved when each component is impinged with a separate plunger and when with the impinging for achieving a uniform bearing force on all components each plunger is adapted to the individual height of the component. With this measure it is ensured that also with the unavoidable height tolerances of the component a uniform processing of the whole group with pressure and temperature is effected. A component with a maximum height which is only just allowable will thus be subjected to the same pressing force and to the same temperature as a component with an allowable minimum height.
For the heat treatment before or during the impingement of the components the plunger and/or a substrate rest serving as a support are heated. It would however also be conceivable to carry out the whole pressing procedure in a closed oven or to effect the heating in another manner, e.g. by way of a convection oven or by microwaves. The substrate is furthermore during the impingement of the components advantageously held on the substrate rest by way of a vacuum. Since with the substrate it is usually the case of a film-like or gel-like material, with this also a flat lying on the substrate rest is ensured without air pockets.
The invention also relates to a device for carrying out the described method. With slight constructional adaptations with this advantageously known equipping automatic machines (die bonders) may be applied, as is known e.g. by way of WO 97/32460, the contents of which are hereby incorporated herein in its entirety.
The dispensing station may comprise a dispenser with several delivery openings or however a dispenser with at least one movable dispenser opening with whose help by way of a simultaneous movement and delivery of the means a certain pattern is drawn.
A particularly compact manufacturing unit may be achieved when in the transport direction after the placing-on station there is arranged a precuring station and/or a curing station in which the unit consisting of the substrate and component is impingable by way of electromagnetic rays, in particular by way of infrared rays or ultra-violet rays. The semiconductor components may run through this precuring station or curing station in the same operating cycle as the dispensing station and placing-on station.
The invention also relates to a device for processing components arranged on a substrate, in particular semiconductor chips. This device is particularly suitable for carrying out the method according to the invention, but may also be applied in other manners. The device in particular is to ensure that in spite of the processing of the components in a group, the individual nature of each component is taken account of as with an individual processing.
The individual and displaceably mounted plungers in the tool permit each individual component of a group to be processed individually. Conceivable therefore would be the exertion of an individual pressing force and/or an individual temperature. The individual plungers may be shaped differently so that within a group various sizes and shapes of components may be impinged.
With the above mentioned manufacture of semiconductor elements however as a rule only the differing heights of the raw silicon chips need be taken into account. This is preferably effected in that the plungers are in active connection with a compensation means. This compensation means may function according to differing technical principles. Thus for example a purely mechanical solution would be conceivable, with which in a neutral home position of the tool the displaceable plungers are applied loosely onto the components. Via a central locking then all plungers are locked in their sliding bearing whereupon via the tool the pressing force is exerted via the individually adjusted plungers. It would however also be conceivable to allocate to each individual plunger a pressure means cylinder whose allowable inner pressure may be individually controlled.
In a particularly simple manner the compensation means however is formed by a fluid chamber or manifold for the hydrostatic distribution of an equal impingement force onto the individual plungers. The fluid chamber functions according to the known principle, according to which in a practically non-compressible still fluid, the pressure forces propagate independent of direction. With this each of the plungers could with an equal impingement surface submerse into the fluid chamber whose walls are otherwise rigid.
A technically considerably more simple solution lies in arranging the fluid chamber on the rear side, of the plunger, which is distant to the substrate rest and for it to comprise a flexible membrane, wherein the rear sides of the plunger bear on the membrane. The volume in the chamber always remains the same size, independently of how the plungers are positioned. With this the elasticity of the membrane within a certain tolerance region permits a displacement of the plungers. The pressure in the fluid and thus the pressure on the individual plungers with this however remain constantly equal.
For monitoring and control or where appropriate also for recording the pressing force acting on the plungers the fluid chamber may be in active connection with a pressure sensor. It is also with tools without fluid chambers generally advantageous to control the pressing pressure of the tools via a pressure sensor, in order to approximate the pressing force during the whole pressing duration to a nominal value. In particular pressure sensors, but also other sensors, e.g. force sensors may be applied.
The plungers could be mounted in a plunger guide, which for heating the plunger is provided with a heating device. The plungers may with this, indirectly via at least one heating device, be heated to process temperatures, for instance of up to 300xc2x0 C. Preferably the plunger guide and the plunger consist of the same metallic material (or materials having compatible coefficients of thermal expansion) so that no jamming occurs with the thermic expansion. The plungers specifically must be guided in the plunger guide with a very small play so that exclusively vertical forces and no transverse forces act on the working surface of the plungers. For the same reason the plunger guides in relation to the diameter of the plungers are preferably formed relatively long.
In order to prevent the irradiation of heat or to protect the operating personnel, the tool at least partly may be surrounded by a heat-insulating layer. The same also applies to the substrate rest in the case that this is likewise heated by way of a heating device. So that also the operating temperature may be monitored and controlled in the tool as well as in the substrate rest there is arranged at least one temperature sensor.
For safety reasons the plungers in the idle condition of the tool are biased into a neutral home position in which they are preferably completely retracted into the tool. In this manner the plungers may not be damaged when the tool for example for re-equipping work is removed from the tool mounting. Furthermore it is thus ensured that the plunger rear sides in the home position bear uniformly on the membrane of the fluid chamber. Finally with the spring biasing it is also preferably ensured that the plungers for the optimal heat accommodation after each operating stroke again completely submerge into the plunger guide.
The substrate rest rests preferably on an adjustable three-legged stand. By way of this the substrate rest in a particularly simple manner may be aligned plane-parallel onto the working plane of the plungers. Also this measure serves the prevention of transverse forces acting on the components.
The device may in particular be used for re-pressing the chips in a line for manufacturing chip scale packages (CSP), in particular ball grid arrays (BGA) or flex BGA""s. With the same devices however also other processings in semiconductor manufacture may be carried out. Thus for example in the field of flip chips, wherein the chips are adhered with bumps, are eutectically fastened or are soldered. The device is however also suitable for LOC processes (lead on chip) with which the connection between the chips and a metallic lead frame is manufactured under pressure and temperature. Finally it would however also be conceivable to apply the device according to the invention also outside semiconductor technology, for example in the field of electrotechnology or opto-technology. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the technology of treating electrical cables with fluids. In particular, the present invention is directed to method and apparatus for treating electrical cables with fluids effective to retard "electrochemical tree" formation. The method of the present invention involves introducing and supplying fluid to a cable including a stranded conductor surrounded by an insulation layer in such a manner that interruption of the current of electricity through the conductor of the cable is not required.
2. Discussion of Background and Material Information
The transmission and distribution of electrical power is frequently accomplished using cables composed of an interior stranded conductor material covered or otherwise encased by insulation material. Such cables are particularly useful in underground cable systems wherein the cables may be directly buried or installed through ductwork. Regardless of the method of installation of the cables, the cables are normally exposed to environmental moisture throughout their use.
The following patents relate to representative examples of cable systems which may be used for such purposes. U.S. Pat. No. 3,594,492 is directed to a high-voltage electrical cable enclosed within a pipe which may be wrapped with a sheath or tapes of magnetic low-loss material.
U.S. Pat. No. 4,397,807 is directed to a cable for cryogenic use which includes an inner conductor and a solid polymeric insulator adapted to accommodate a collapsible spacer between the inner conductor and the polymeric insulator to further space the insulator away from the conductor so as to permit a greater shrinkage of the insulator. The invention claimed in this patent is the method of treating the cable for use in low temperatures without introducing damaging stresses during cool down in the insulation.
U.S. Pat. No. 4,394,534 relates to the previously discussed patent, and is directed to a coaxial cryogenic electrical cable having a collapsible spacer positioned between the inner conductor and the conductor shield.
U.S. Pat. No. 4,446,095 is directed to a method for manufacturing heat shrinkable tubing sleeves for use in splicing electrical cables.
U.S. Pat. No. 4,519,759 relates to the previously mentioned patent, and is directed to an apparatus used for manufacturing long links of such heat-shrinkable sleeves for use in splicing electrical cables.
U.S. Pat. No. 4,533,789 is directed to a high voltage electrical power cable with thermal expansion accommodation which includes an insulation shield having thick polymeric insulation constructed to have a metallic layer radially spaced from the inner semi-conducting layer.
U.S. Pat. No. 4,256,921 is directed to a moisture resistant high-voltage cable which has a composite jacket with inner and outer parts such that a corrugated moisture barrier is sandwiched between and bonded to these parts to prevent both radial and longitudinal flow of moisture in the cable.
Typically, however, high-voltage cables for underground installation are composed of an insulation layer of polyolefin material, such as polyethylene, cross-linked polyethylene or ethylene propylene rubber. A problem associated with the polyolefin covering of such electrical cables is that over time environmental moisture, which has a high dielectric constant and high conductivity, diffuses throughout the insulation layer of the cable through the intermolecular spaces in the insulation, which are relatively large in polyolefin materials, and tends to accumulate therein. The accumulated moisture forms into droplets, both in the intermolecular spaces and in microvoids and voids which may be present in the body of the insulation. Under electric fields, electroforces act on the droplets of moisture causing them to elongate in the direction of the field thereby decreasing the radii of the ends of the droplets which effects an increase in the strength of the electric field at the narrowed ends of the droplets. At sufficiently high field strengths, small electrical discharges occur at the narrowed ends of the droplets and cause concomitant decomposition of the insulation in the region of these discharges. As the insulation material decomposes, additional moisture is permitted to enter and accumulate in the decomposed area of the insulation thereby moving the electrical discharge region further into the insulation to result in a network or pattern of channels or voids throughout the insulation material. This type of insulation deterioration is known as "electrochemical tree formation". Insulation deterioration resulting from electrochemical tree formation causes the breakdown voltage of the insulation in the area of the electrochemical tree to decrease as the size of the electrochemical tree increases.
Over the years considerable effort has been expended in studying the causes and proposing solutions to the problems associated, with electrochemical tree formation. For example, U.S. Pat. No. 3,252,834 is representative of an early prior art attempt to treat electrical cables by the introduction of treating compositions into the electrical cable to protect the cable against penetration by moisture and to otherwise prolong the useful life of the cable. The disclosed process involves introducing a treating composition under pressure for the purpose of physically expelling any moisture and air from the interior of the cable and for the purpose of applying a protective coating of the composition on the conductor insulation and interior surfaces of the cable sheathing. The procedure is accomplished by pumping a suitable liquid, such as varnish, silicone oil and solvent, under pressure through a section of the electrical cable. The particular method used permits this to be done even when the cable is in service. Afterwards, the treatment solution is disclosed as being moved from the cable for reuse in treating additional sections of cable. Related to this, U.S. Pat. No. 3,821,640 is directed to an accelerated method of testing the insulation of an insulated conductor for its susceptibility to treeing.
U.S. Pat. No. 4,354,992 is directed to a method and apparatus for fabricating insulated cables, particularly polymeric insulated electrical power cables, which are resistant to the formation and growth of electrical chemical trees.
U.S. Pat. No. 4,145,567, is directed to a solid dielectric cable for high-voltage, alternating current power transmission, which has been fabricated to reduce access of moisture into the cable, particularly to the inner face of the insulation, to such an extent as to make the cable highly resistant to the formation of electrochemical trees in the solid extruded insulation of the cable.
U.S. Pat. No. 4,042,776 is directed to a power cable designed to have a plastic electrical insulation which is partially or wholly composed of a plastic compound which contains an inorganic or organic electrolyte which ionizes when disolved in water. When the solute dissolves in water, the electric conductivity of the electrolyte is increased in the insulator to render the electric field in a mass of minute voids filled with water relatively small so that the water tree can be prevented.
Recently, electrochemical tree formation and concomitant cable failures have become particularly troublesome in view of the popular use of underground cable systems in residential areas, and continued use of subterranean cables in urban areas. Although various efforts, such as those disclosed above, have been made to alleviate electrochemical tree formation in an attempt to extend the life of such cables and minimize problems which often result because of interruptions in electrical service, none of these efforts have been successful to an acceptable level prior to the invention set forth in U.S. Pat. Nos. 4,372,988 and 4,545,133.
In U.S. Pat. No. 4,372,988, a method and apparatus is disclosed for retarding electrochemical tree-type decomposition of polyolefin electrical insulation by saturating the insulation with a liquid having high resistivity and a low dielectric constant. In particular, this patent provides a method for the in situ repair of an underground high voltage electrical cable composed of a stranded conductor and a polyolefin insulation which involves continuously introducing an electrochemical tree retardant liquid to the conductor so as to cause the liquid to diffuse along between the strands of the conductor and into the insulation layer so as to fill electrochemical trees which may be present in the polyolefin insulation layer. In the case of treating a previously installed cable, this patent discloses that the cable should be dried before introducing the tree retardant liquid into the stranded conductor by heating the cable, for example by passing an electrical current through the conductor of the cable, or by passing a desiccative fluid through the conductor of the cable. The method of the invention set forth in U.S. Pat. No. 4,372,988 is performed by providing a reservoir for supplying electrochemical tree retardant liquid to the conductor at one end of the cable via connection with a flexible tube which is fitted over an end portion of the cable. Although the liquid supply may be accomplished under the force of gravity, a pump may be used to pressurize the liquid and supply the liquid to the input port of a supply valve which, when open, permits the pressurized liquid to pass through the flexible tube and to the conductor at the end of the cable over which the flexible tube is fitted. Thus, the liquid then flows through the inter-strand interstices in the conductor and diffuses through the insulation of the cable so that eventually an entire length of cable and its insulation become saturated with the electrochemical tree retardant liquid.
Related to this, U.S. Pat. No. 4,545,133 is directed to a method and apparatus for retarding electrochemical tree decomposition of electrical insulation by flushing moisture from the insulation of installed power cables with a fluid having a low moisture content, such as nitrogen. By this procedure, the insulation of the power cables is dried, and maintained dried by a continuous flow of dry fluid through the conductor and insulation while the cable is energized. To this end, a dried fluid is disclosed as being introduced into the stranded cable conductor from which it diffuses through the conductor shield and polyolefin insulation. Although the introduction of fluid is disclosed as taking place at the time of installation of the cable, it is also disclosed that the dry fluid may be maintained flowing through the cable while the cable is in use. This is particularly advantageous because the dry fluid will continue to remove the moisture as it reenters the cable insulation structure so as to retard the formation of electrochemical trees. This patent also discloses an apparatus which permits the fluid to be introduced and withdrawn from the cable, particularly while the cable is energized and in use. To this end, the disclosed entry and exit device is installed by stripping the insulation shield from the cable and forming a small hole through exposed insulation near the center of the section of the cable where the insulation shield has been removed. A plastic hose connection is then fastened tightly over the hole using plastic holders, such as plastic ties and rubber washers, in an attempt to minimize leakage of the fluid to the environment, particularly when internal fluid pressures of up to 50 psig are generated while the fluid is being forced through the cable system. It is then recommended that a few layers of electrical insulating tape be placed over the cable insulation in the area where the entry and exit device have been tapped into the cable.
Notwithstanding the effectiveness of the inventions set forth in U.S. Pat. Nos. 4,372,988 and 4,545,133 for treating electrochemical tree deterioration of polyolefin insulation throughout a given length of cable, the methods suffer from certain shortcomings and disadvantages. In this regard, the methods and apparatus of U.S. Pat. Nos. 4,372,988 and 4,545,133 are limited to the entry and exit of the electrochemical tree retardant fluid with respect to a given length of cable in a point-to-point installation between pieces of electrical equipment, such as pad-mount transformers. The main disadvantage with this type of arrangement is that a separate system for introducing and withdrawing the electrochemical tree retardant fluid from the length of cable must be installed at each end of the cable between each pad-mount transformer, switch or other piece of electrical equipment. As a practical matter, such replication of supply reservoirs and entry and exhaust ports are extremely impractical and expensive for use in large-scale cable systems, such as those which would be used for a residential area or other community.
Similarly, although the method for flushing moisture from the insulation of installed power cables with a fluid having a low moisture content, as disclosed in U.S. Pat. No. 4,545,133, is somewhat effective for its intended purposes, the disclosed method and apparatus likewise suffers from disadvantages. In particular, the apparatus disclosed by U.S. Pat. No. 4,545,133 to permit the fluid to enter and exit from the cable has a structure which is particularly difficult to use and is more prone to permit leakage of the fluid from the system than the apparatus disclosed in the present invention.
The method and apparatus of the present invention remedy such shortcomings of U.S. Pat. No. 4,372,988 by providing means for reducing the number of supply reservoirs and related apparatus, by providing an apparatus for connecting lengths of cable to electrical equipment, such as pad-mount transformers, in such a way as to permit the current to pass between the lengths of cables through the piece of electrical equipment while causing the electrochemical tree retardant fluid to by-pass the piece of electrical equipment and pass from one length of cable to another length of cable attached to the equipment in an uninterrupted fashion throughout a large-scale cable system including numerous pieces of electrical equipment interposed between lengths of cable. Thus, the present invention is advantageous in that it permits the treatment of a plurality of lengths of cable connecting various pieces of electrical equipment while requiring only one reservoir for the electrochemical tree retardant fluid in contrast to the system disclosed by U.S. Pat. No. 4,372,988 which requires a liquid supply reservoir and entry and exit ports for each length of cable between pieces of electrical equipment.
Moreover, the method and apparatus of the present invention remedy the previously discussed disadvantages of the entry and exit device disclosed by U.S. Pat. No. 4,545,133 to permit the introduction of fluid into the interstitial spaces of the cable. In contrast to the cut-and-paste type of procedure disclosed by U.S. Pat. No. 4,545,133, a uniquely designed T-shaped fitting has been developed which can be easily inserted between two lengths of cable in a relatively simple and straightforward manner using conventional pieces of electrical equipment to secure the lengths of the cable and the fitting together in a manner which essentially prevents any leakage from occurring.
As will be better understood from the description of the invention presented hereinafter, the present invention is directed to a method and apparatus for treating electrical cables with fluid effective to flush or dry the cable, as well as to retard electrical tree formation, in a relatively simple and straightforward manner using apparatus and devices which permit the introduction of the appropriate fluid continuously through the cable system over a length of cable heretofore not thought possible using novel and unique devices and fittings which have been improved over what has been taught or suggested by the prior art to minimize leakage of the fluid into the environment surrounding the cable system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to dispensing machines, and more particularly to a machine that can be actuated to dispense articles one at a time.
A variety of article dispensing machines are known, particularly in the form of vending machines commonly used to dispense cigarettes, food products, soap, novelties and the like. These machines are most often of the gravity feed type in which the articles are stacked in columns within vertical or inclined slots and a releasing mechanism selectively allows articles at the bottom to be dispensed when actuated by a solenoid or mechanical linkage. In the case of a vending machine, there is a provision for disabling the releasing mechanism until a predetermined quantity of coins has been inserted.
Dispensing machines are often used at widely scattered locations, where route men reload them and collect the money that has been deposited. Other such machines are grouped together in stores, where they are used in preference to conventional counter displays because they prevent theft and reduce the need for sales clerks, although this latter use has been less common.
However they may be deployed, dispensing machines should maximize the quantity of product stored in relation to the size of the machine to make optimum use of the available area and minimize the frequency with which reloading is necessary. Many presently known gravity feed machines utilize a relatively small portion of their total volume for the storage of products, and the inclined or vertical arrangement of the slots sometimes limits the variety of products that can be dispensed by a relatively tall machine that takes up a minimum of floor space. Another drawback of conventional gravity machines is that they often do not permit the article being dispensed to be viewed directly, and therefore require relatively complex provisions for signaling when the supply of an item has been exhausted. Moreover, purchasers may be reluctant to use a vending machine if they cannot view the particular article to be dispensed.
Some efforts to improve upon gravity feed dispensing machines have led to arrangements in which the articles to be dispensed are moved horizontally toward dispensing positions by conveyor belts. While these belt-type machines may permit the user to view the article to be dispensed, they are generally complex and often contain a relatively small amount of product in relation to their size.
Other previously known machines have arranged the articles to be dispensed in stationary horizontal troughs. The articles are inserted in the troughs from the front, pushing back a movable wall or bumper and thereby compressing a spring that feeds the articles toward the front of the trough as they are dispensed. In other such machines, springs have been attached at the front of the trough to pull the wall forward as the articles are dispensed. Regardless of which spring arrangement is used, if the articles are both loaded and dispensed from the front of the trough, an article placed in the machine first will remain there until the trough is completely empty. Where the freshness of the articles is important, as in the case of cigarettes or food products, it is particularly desirable that the articles inserted first be dispensed first, and the first-in - last-out arrangement of the front loading machines is unsatisfactory.
Another important disadvantage of previously known spring feed dispensing machines is that the spring force feeding the articles varies inversely with the number of articles remaining in the machine. If the spring is strong enough to smoothly feed articles to a releasing mechanism at the front of the trough when the machine is nearly empty, then it tends to crush the articles when almost full. The crushed articles are not only subject to possible damages, but due to their reduced width, are sometimes dispensed two at a time instead of one at a time when the machine is actuated.
The principal objectives of the present invention are to provide a dispensing machine of simple and relatively trouble free construction in which the articles to be dispensed are arranged in horizontal or substantially horizontal rows, and the articles are loaded in such a manner that they can be dispensed in the order in which they are inserted. Another principal objective is to provide such a machine in which the spring force by which articles are dispensed remains substantially constant regardless of the extent to which the machine is loaded. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.