text
stringlengths 2
806k
| meta
dict |
---|---|
Take-All disease is a serious problem in the production of cereals, particularly wheat and barley. It is caused by the soil-borne fungus Gaeumannomyces graminis (Gg). The fungus infects the roots of the plant, and grows throughout the root tissue, causing a black rot. The growth of the fungus in the roots and lower stem prevents the plant from obtaining sufficient water and/or nutrients from the soil, and is manifested as poor plant vigor and, in severe instances of disease, by the formation of "whiteheads," which are barren or contain few, shriveled grains. Yield losses result. Gaeumannomyces species also infect other cereal crops, for example, rice and oats; and turf.
Currently the primary means of avoiding crop loss due to infestation of the soft by Gg has been to rotate the crop grown to one which is resistant to Gg. However, in areas where the primary crops are cereals, rotation is not a desirable practice, and an effective control agent is greatly desired.
The international patent application PCT/US92/08633 discloses a broad scope of compounds effective against Take-all disease. The present invention is a selected compound having superior and unexpected effectiveness against the present disease.
It is an object of the present invention to provide a compound that provides superior and unexpected control of the growth of Gg in the soft to reduce crop loss. It is a further object of this invention to provide an effective method for superior and unexpected control of Take-all disease in plants. It is still a further object of this invention to provide fungicidal compositions that may be used for superior and unexpected control of Take-All disease.
These and other objects of the invention will be apparent to those skilled in this art from the following detailed description of a preferred embodiment of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to treatment of memory deficits, specifically the invention provides molecules and methods related to the synthesis of inverse agonists and agonists for the treatment of memory-related diseases such as dementia and Alzheimer's disease. | {
"pile_set_name": "USPTO Backgrounds"
} |
U.S. patent application Ser. No. 09/034,720, filed Mar. 4, 1998, discloses a secure content distribution system which enables users to securely download literary titles and other types of content to a hand-held reader device. Using the reader device's control buttons and touch-sensitive display, users can perform such tasks as selecting, viewing and deleting titles, adjusting the font size and orientation of displayed text, and adding notes to selected passages. Because the titles are disseminated and stored in digital form, many of the costs associated with the sale and distribution of books and other types of printed publications are eliminated, including the costs associated with printing, storing and shipping of such publications.
In order for such a system to appeal to the mass public, it is important that the reader device have a user interface which is simple and intuitive to use. In addition, the device should provide functions which take advantage of the content's digital form, so that users have the incentive to use the system in place of printed publications. Further, the device should be comfortable to hold during prolonged viewing session.
The present invention addresses these and other problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technology for integrating metals and resins is needed in many different fields of industry, such as manufacturing of parts for automobiles, consumer electrical products, industrial machinery and so forth and many adhesive agents have been developed for this purpose. Some very excellent adhesives have been proposed. For example, adhesives that exhibit their function at normal temperature or with heating are used to integrally join metals and synthetic resins and this method is currently a common joining technique.
On the other hand, more rational joining methods that do not involve the use of an adhesive have been studied heretofore. An example is a method in which a high-strength engineering plastic is integrated with a light metal such as magnesium, aluminum or an alloy of these or an iron alloy such as stainless steel without using any adhesive. For instance, the inventors proposed a method, in which a molten resin is injected onto a metal part preliminarily inserted into a metallic mold for injection molding thereby forming a resin portion and at the same time the molded article and the metal part are joined (hereinafter this will be referred to as “injection joining”).
According to the technology, a manufacturing technique was proposed, in which a polybutylene terephthalate resin (hereinafter referred to as “PBT”) or a polyphenylene sulfide resin (hereinafter referred to as “PPS”) is joined by injection joining to an aluminum alloy (see Japanese Patent Application Laid-open No. 2004-216425: Patent Document 1, for example). A joining technique was also disclosed, in which somewhat large holes (but invisible to the naked eye) is made in an anodized film on a piece of aluminum and a synthetic resin is made to penetrate into these holes and adjoined there (see WO/2004-055248 A1: Patent Document 2, for example).
The principle behind the injection joining in Patent Document 1 is as follows. An aluminum alloy is immersed in a dilute aqueous solution of a water-soluble amine compound and the aluminum alloy is finely etched with a weakly basic aqueous solution. It was found that the amine compound molecules are adsorbed to the surface of the aluminum alloy at the same time in this immersion treatment. After undergoing this immersion treatment, the aluminum alloy is inserted into a metallic mold for injection molding and a molten thermoplastic resin is injected under high pressure.
Here, the amine compound molecules adsorbed to the surface of the aluminum alloy encounter the thermoplastic resin to produce a chemical reaction such as an exothermic reaction or a macromolecular cleaving reaction. As a result of this chemical reaction, the thermoplastic resin, which was apt to be quenched, crystallized and solidified by contact with the aluminum alloy held at a low temperature of the mold, is not solidified as quickly and gets into ultrafine recesses on the aluminum alloy surface. Consequently, with a composite composed of an aluminum alloy and a thermoplastic resin, the thermoplastic resin is securely joined (hereinafter also referred to as fixed) without being separated from the aluminum alloy surface. That is, when an exothermic reaction or a macromolecular cleaving reaction occurs, a strong injection joint is produced. It has actually been confirmed that PBT or PPS, which can undergo the above-mentioned chemical reaction with an amine compound, can be joined by injection joining to an aluminum alloy. Another well known technique involves performing chemical etching preliminarily, then inserting a metal part into the metallic mold of an injection molding machine and performing injection molding with a thermoplastic resin material (see Japanese Patent Application Laid-Open No. 2001-225352: Patent Document 3, for example).
However, although the joining principle in Patent Document 1 by the inventors does exhibit an extremely good effect with aluminum alloys or the like, it has not effect in injection joining to other metals besides aluminum alloys. Accordingly, there has been a need for the development of a novel technique for joining metals and resins. The inventors discovered such a novel technique in the course of making improvements to injection joining of a hard resin to an aluminum alloy. Specifically, the conditions were discovered under which injection joining might be possible without any chemical adsorption of the amine compound to the metal part surface, in other words, without the help of a special exothermic reaction or any particular chemical reaction.
At least two conditions are necessary. The first condition is that a hard resin of high crystallinity be used, namely, that PPS, PBT or an aromatic polyamide be used and, furthermore, that these be suited to injection joining to obtain a further improved composition. Another condition is that the surface layer of the metal part have a suitably rough shape and that the surface be hard. In ordinary words, this means that the surface is strong and strength is expressed in terms of material mechanics by tensile strength, compression strength, shear strength and so forth. However, the actual thickness of the surface layer to which attention is paid in the present invention is from ten to a few dozen nanometers and the strength of such a fine portion can be rephrased as hardness. Therefore, the surface layer is preferably a ceramic layer whose hardness is higher than that of metal crystals and, more specifically, the inventors attained the conclusion that it is essential for the surface layer to be a metal oxide or metal phosphorus oxide.
For example, when a shaped material in which a copper alloy serves as the substrate is used and it is immersed in an acidic hydrogen peroxide aqueous solution, the copper is oxidized to become copper ions. As a result, if the immersion conditions are suitably set, the surface of the substrate is chemically etched to a surface roughness in which the bumps have a period of one to several microns. If the chemically etched copper alloy that has been shaped is then immersed in a strongly basic sodium chlorite aqueous solution, the copper is oxidized but the copper ions do not dissolve and the surface is covered with a thin layer of cupric oxide. Examination of this surface with an electron microscope revealed it to be covered by a ultrafine textured face in which recesses (openings) with a diameter of several dozen to several hundred nanometers are present at a period of several hundred nanometers.
These shaped copper alloys with their surfaces treated are considered theoretically as follows, assuming that they are inserted into a metallic mold for injection molding. The metallic mold for injection molding and the inserted shaped copper alloy are generally held at a temperature that is at least by 100° C. below the melting point of the resin being injected, although it varies with the injection molding conditions, so there is a high possibility that the temperature of injected resin may have dropped below its melting point at the time when it is quenched upon entering the channel inside the metallic mold for injection molding and comes into contact with copper alloy part.
Regardless of the crystalline resin, when it is rapidly cooled to below its melting point, it does not become crystallized and solidified immediately (that is, in zero time) but there is a time, albeit an extremely short time, for the resin to remain in a molten state below the melting temperature or, in other words, in a super-cooled state. If the roughness (surface roughness) of a shaped alloy is on the micron order, that is, if the recesses are large with an inside diameter of several microns, then microcrystalline resin will penetrate into these recesses within the limited time from super-cooled state to creation of the initial crystals, that is, microcrystals. To put this in another way, if the numerical density of the macromolecular microcrystal group that is produced is still low, then the resin will sufficiently penetrate into the recesses as long as the recesses are large with an inside diameter of several microns.
These microcrystals of the injected resin are surmised from molecular models to have a size from a few to more than a dozen nanometers. If there are fine openings (holes in the recesses) about 50 nm in diameter in the inner walls of the above-mentioned micron-order recesses, then there is a slight possibility of penetration, although it can hardly be said that microcrystals can readily penetrate these fine openings. Specifically, countless microcrystals are simultaneously produced, so there is an abrupt increase in the viscosity of the resin flow at places abutting on the metal face of the mold or at the distal end of the injected resin. Therefore, this resin flow is surmised to have a shape resembling the roots of a plant that stick slightly into the fine openings in the inner wall faces.
In other words, the flowing molten resin cannot penetrate into the deep portions of the fine openings but does penetrate somewhat, then crystallizes and solidifies to become a crystalline resin that has solidified in the micron-order recesses. In addition, if the metal surface layer that forms the fine openings is copper oxide, that is, a hard ceramic surface layer, then the resin will be hooked more securely within the recesses, making it less likely that the resin having solidified and crystallized will come out of the recesses. In short, the joint strength will be higher.
Improving the resin composition that is injected is an important element in the present invention. Specifically, if the resin composition is one that crystallizes slowly in injection molding (when quenched from a molten state to a temperature below the melting point), the joint strength will be higher. This is a requirement for a resin composition to be suitable for injection joining. Based on this, the inventors discovered that, if the surface of a shaped copper alloy is chemically etched as discussed above, the surface layer is made into a ceramic by a surface treatment such as oxidation and a hard crystalline resin is joined by injection joining to this, good joining ability is obtained (PCT/JP2007/070205). The inventors have also made a proposal based on their finding that, in addition to the above-mentioned PBT-based and PPS-based resins, a resin composition whose main component is an aromatic polyamide resin is also a suited to injection joining as a resin composition which is hard and highly crystalline and crystallizes extremely slowly during quenching similarly as in the technology discussed just above (PCT/JP2006/324493).
In the above description about the theory of injection joining, there is nothing that limits the kinds of metal. This indicates that injection joining can be performed using PBT, PPS or other such crystalline resin that has been improved for use in injection joining with respect to all metals and metal alloys, as long as it has the same surface shape and surface layer properties. Patent Document 3 discloses a method for manufacturing a lead wire-equipped battery cover having a shape such that several copper wires pass through the middle portion of a PPS disk, in which a chemically etched copper wire is inserted into a metallic mold for injection molding, and PPS is injected. This technology is said to be characterized by the fact that even if the internal pressure of gas generated in a battery rises a labyrinth effect will prevent the gas from leaking out through the lead wire part owing to the shape of bumps (roughness) on the surface of a copper wire by chemical etching.
At first glance the technology discussed in Patent Document 3 represents one that is similar to that according to the present invention. However, it is not the above-mentioned injection joining technology that the inventors assert in detail but is instead a technology that is an extension of existing injection molding technology and is no more than one that utilizes the difference in the linear coefficient of expansion of metals and the molding shrinkage of resins. In manufacturing a shaped article in which a rod-like metal piece passes through the inner portion of a resin part, if the resin is injected around this rod-like piece for injection molding, then the molded article is parted from the mold for injection molding and allowed to be cooled, the rod-like piece is in such a situation as to be pressed by the surrounding molded resin portion. The reason is that the linear coefficient of expansion of a metal is at most 1.7 to 2.5×10−5° C.−1 for an aluminum alloy, magnesium alloy, copper or copper alloy and, even if the calculation is made on the assumption that the metal has been removed from the metallic mold for injection molding and cooled to room temperature, the shrinkage will be in a range of the linear coefficient of expansion multiplied by a hundred and several tens of degrees and it will be no more than 0.2 to 0.30 of the total length.
Concerned with a resin, however, the molding shrinkage is about 1% for PPS and 0.5% for PPS containing glass fiber and even for a resin, in which the filler content has been increased, the resin portion will always undergo more heat shrinkage than the metal part after injection molding. Therefore, if a shaped article in which the metal part is disposed in the center and this metal part goes through the resin portion is produced by injection molding with an insert, an integrated product can be manufactured in which the metal part is not likely to come loose due to the pressing effect produced by heat shrinkage after the molding of the resin portion.
This method for manufacturing an integrated metal and resin product that makes use of heat shrinkage is known conventionally and is used to fabricate knobs on fuel oil stoves, for example. This method involves inserting a thick iron needle with a diameter of about 2 mm into a metallic mold for injection molding and injecting a heat resistant resin or the like into the mold. In this method, jagged bumps (by knurling) are formed around the outer peripheral face of the needle and the resin is injected and molded so that there is no relative movement. Patent Document 3 discloses that the surface configuration is smoothed by changing the texturing process from a physical process to a chemical process with knurling or the like, bumps are made finer and grip effect is improved by using a resin that is hard and crystalline.
The composite according to the present invention does not at all require that the resin press the metal by heat shrinkage or the like, and even with a shaped article in which two flat plates are joined together at their flat planes, a tremendous force is needed to break the joint. In order that the joined state of the metal and thermoplastic resin is to be maintained stably over an extended period, it is actually necessary for the linear coefficients of expansion of the two materials to be close in value. The linear coefficient of expansion of a thermoplastic resin composition can be lowered considerably by adding a large amount of glass fiber, carbon fiber or other such reinforcing fiber (that is, a filler) but the limit to this is generally 2 to 3×10−5° C.−1. Kinds of metals that have such numerical value at a normal temperature or so are aluminum, magnesium, copper and silver.
The present invention relates to technology that makes possible the injection joining of a hard resin to stainless steel. The linear coefficient of expansion of stainless steel is about 1×10−5° C.−1, which corresponds to about the middle value of the above-mentioned group of metals. In this sense, research and development related to injection joining conducted by the inventors lags behind in priority, while it is thought very likely that it can be used if the temperature range in use is narrow and the inventors have also conducted research and development into stainless steel.
Stainless steel has a specific gravity of about 8. It has high mechanical strength and is used as a metal with high corrosion resistance. Therefore, stainless steel parts are frequently used in various heavy-duty electronic and electrical equipments, medical instruments, automotive mounted equipments, automobile parts, marine machineries and other such parts used in movable equipments and particularly in the casings and housings of equipments that may be exposed to drops of salt water or sea water. If a hard resin can be injected onto stainless steel, the production of these casings or housings for equipments is considered to be extremely easy.
The required conditions for the injection joining of a metal and a resin will once again be summed and explained below based on the hypothesis of the inventors. Specifically, to obtain good injection joining strength, at least the shaped metal should satisfy the following conditions.
(1) The surface has large bumps (surface roughness) obtained by chemical etching and the period thereof is usually on the micron order, which in the present invention refers to the range of 0.5 to 10 μm.
(2) The surface is sufficiently hard (a metal oxide or metal phosphorus oxide) and, to prevent slippage, has a coarse surface that consists of ultrafine bumps on the nanometer order (a coarse surface in subjective view with an electron microscope).
(3) The resin must be a crystalline resin of high hardness, while it is particularly favorable to use these improved compositions in which the crystallization rate during quenching is further slowed.
The findings of the inventors have shown that this hypothesis is correct for magnesium alloys, copper alloys, and titanium alloys. The “coarse surface” in (2) above is a figure of speech expressing what is observed with an electron microscope and high injection joining strength can be obtained when the surface is a ultrafine textured surface in which the spacing period is at least 10 nm and the height or depth was at least 10 nm. | {
"pile_set_name": "USPTO Backgrounds"
} |
Natural gas may be used as a fuel for certain vehicles, and is compressed and stored in on-board tanks. Such gas may contain particulate matter unsuitable for consumption by an engine. Filters, as a result, are typically included with vehicles outfitted for use with natural gas. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims priority of Korean Patent Application No. 10-2004-0011819, filed on Feb. 23, 2004, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a lead frame and a method for manufacturing a semiconductor package with the same, and more particularly, to a lead frame for connecting a semiconductor chip to an outer circuit, the lead frame being manufactured with a pre-plated frame. The present invention further relates to a method for fabricating a semiconductor package with such a lead frame.
2. Description of the Related Art
As shown in FIG. 1, a conventional lead frame typically includes a die pad 110 and a plurality of leads 120 arranged around the die pad 110. The die pad 110 is connected to a rail or outer flame 170 by pad supports 180 to support a semiconductor chip on the die pad 110. The leads 120 include inner leads 130 and outer leads 140. A damper portion 160 is disposed between the inner and outer leads 130 and 140 to support them while maintaining a gap between the inner and outer leads 130 and 140. When an assembly of the semiconductor package is completed, the outer flame 170 and the damper portion 160 are cut out.
FIG. 2 shows a semiconductor package 105 containing a lead frame depicted in FIG. 1, in which a semiconductor chip 50 is mounted on the lead frame.
Referring to FIG. 2, the semiconductor chip 50 is mounted on the die pad 110. The inner leads 130 are wire-bonded to the semiconductor chip 50 by a wire 52, and the outer leads 140 are electrically connected to an external circuit (not shown). Accordingly, the leads 120 have a bonding portion W that is wire-bonded to the semiconductor chip 50, an outer bonding portion S connected to the outer circuit and bending portions B bent at an intermediate portion of the leads 120.
The semiconductor chip 50 and the inner leads 130 are molded with resin 55 to form the semiconductor package 105. In manufacturing such a semiconductor package 105, there is a need for improving the wire boning property between the semiconductor chip 50 and the inner leads 130. For this, solder containing Sn—Pb may be deposited on a predetermined area of the outer leads 140. However since this process must be performed through a wet process after the resin molding process is performed, the reliability of the product may be deteriorated.
To solve this problem, a pre-plate frame has been proposed. In this method, metal having a superior solder-wettability is pre-deposited before the semiconductor packaging process so that the solder plating process can be omitted in the post semiconductor packaging process. The lead frame using the pre-plated frame makes the post packaging process simple. In addition, environmental pollution can be prevented since soldering can be omitted in the semiconductor packaging process.
However, since the semiconductor chip bonding, wire boding, epoxy molding, and soldering processes are performed at a temperature generally above 200° C., it becomes important to properly select the outer plating layers when the lead frame is formed with the pre-plated frame.
Describing more specifically, the outer plating layers of the pre-plated lead frame must be good in the oxidation property at a high temperature, in the bonding property for bonding with the bonding wire, in the adhering property for attaching with the chip formed typically of silicon, in the bonding property for bonding with the epoxy resin, and in the deliquescence with the solder for soldering. Furthermore, the outer plating layers must have a proper ductility to prevent the bonding capillary from being worn during the wire bonding process. In addition, the outer plating layers must have a property for preventing the migration phenomenon that may cause the short circuit as the plated metal is diffused to a contact medium for a long time under a high temperature and humidity condition in order to obtain a long term reliability of the semiconductor device.
FIG. 3 illustrates a construction of a lead frame disclosed in U.S. Pat. No. 6,518,508 that is assigned to the co-assignee of this application. This lead frame may be manufactured through a conventional method for forming a pre-plated frame that can satisfy the above-described conditions.
Referring to FIG. 3, the lead frame 120 includes a base metal layer 121 formed of copper, copper alloy or an iron-nickel alloy, a Ni plating layer 122 formed of nickel or nickel alloy and deposited at least on an upper surface of the base metal layer 121, a Pd plating layer 123 formed of palladium or palladium alloy and deposited on the Ni plating layer 122, and a protective plating layer 124 formed of Ag or Ag alloy and deposited on the Pd plating layer 123.
Such lead frames that are formed through the known pre-plating methods have a good effect when the lead frames are not damaged for example by an outer shock or the like. However, since the lead frames must go through a bending process during a conventional semiconductor package assembling process, the plating structure at the bending portion can be cracked and corroded. This problem may be more severe when the base metal layer 121 is formed of alloy 42 rather than cooper or cooper alloy. As well known in the art, alloy 42 is composed of 42% Ni and 58% Fe, and widely used as a base material for the lead frame. However, since the alloy 42 is greatly different in the dielectric characteristics from that of the over layer metals such as Pd, Au and Ag of the Pd plating layer 123 and the protective plating layer 124, a galvanic coupling may be occurred, which may facilitate a severe corrosion of the base metal layer 121.
Particularly, referring to FIG. 4, during the lead frame manufacturing process, cracks or other defects may be easily incurred, thereby causing portions of the protective plating layer 124 to be easily chipped off. When the protective plating layer 124 is chipped off or otherwise damaged, inner layers such as the base metal layer 121 and Ni plating layer 122 can be exposed to oxygen contained in the air. Corrosion can be more easily developed at the exposed portions (such as portion 120c in the figure) due to the galvanic coupling.
Where the Pd plating layer 123 is plated on the Ni plating layer 122 formed on the defective portions through an electroplating process as shown, a large amount of hydrogen is mixed with the educed Pd components because the education potential of Pd is similar to that of the hydrogen, and the Pd plating layer 123 can be damaged more quickly. Accordingly, cracks may be easily developed at wired bonding portions W and soldering portions S of the lead frame 120. In addition, as it is common to form the Ni, Pd and protective plating layers through the electroplating process, the electroplating of the plating layers has a tendency to deteriorate ductility of the lead frame. Accordingly, when the bending portions B are formed in the lead frame, cracks may be easily developed at the bending portions B.
Because the cracks can easily be developed at the bending portions B, the wire-bonding portions W of the lead frame, and the soldering portions S of the external leads, these cracked portions are readily exposed to the air, and the galvanic coupling is increasingly occurred at these portions. As a result, the exposed portions may be easily corroded.
Furthermore, in the course of forming the Pd and Ni plating layers, a large amount of hydrogen is mixed with the lead frame. As a result, the deposition density of the Pd and Ni plating layers is degraded, thereby deteriorating the overall reliability of the lead frame. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a vector control board. More particularly, the present invention relates to a vector control board for an electric vehicle propulsion system motor controller. While the invention is subject to a wide range of applications, it is especially suited for use in electric vehicles that utilize batteries or a combination of batteries and other sources, e.g., a heat engine coupled to an alternator, as a source of power, and will be particularly described in that connection.
2. Description of the Related Art
For an electric vehicle to be commercially viable, its cost and performance should be competitive with that of its gasoline-powered counterparts. Typically, the vehicle's propulsion system and battery are the main factors which contribute to the vehicle's cost and performance competitiveness.
Generally, to achieve commercial acceptance, an electric vehicle propulsion system should provide the following features: (1) vehicle performance equivalent to typical gasoline-powered propulsion systems; (2) smooth control of vehicle propulsion; (3) regenerative braking; (4) high efficiency; (5) low cost; (6) self-cooling; (7) electromagnetic interference (EMI) containment; (8) fault detection and self-protection; (9) self-test and diagnostics capability; (10) control and status interfaces with external systems; (11) safe operation and maintenance; (12) flexible battery charging capability; and (13) auxiliary 12 volt power from the main battery. In prior practice, however, electric vehicle propulsion system design consisted largely of matching a motor and controller with a set of vehicle performance goals, such that performance was often sacrificed to permit a practical motor and controller design. Further, little attention was given to the foregoing features that enhance commercial acceptance.
For example, a typical conventional electric vehicle propulsion system consisted of a DC motor, a chopper-type motor controller, an independent battery charger, and a distributed set of controls and status indicators. Vehicle performance was generally inadequate for highway driving, acceleration was uneven, and manual gear-changes were required. In addition, regenerative braking was either not available or, at best, available only at high motor speeds. Also, each of the system components had its own cooling system that used forced air or a combination of forced air and liquid cooling. Moreover, the issues of volume production cost, EMI, fault detection, maintenance, control and status interfaces, and safety were generally not addressed in a comprehensive manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to golf ball delivery apparatus and, more particularly, to apparatus and systems for setting or delivering golf balls onto a golf ball tee.
2. Brief Description of the Prior Art
Golf driving ranges have become extremely popular for use by golfers to practice golf swings in order to improve accuracy, distance and proficiency as well as to correct problems in the golf swing. Typical driving ranges sell buckets of golf balls to be utilized by the golfers for practice. After each practice drive or swing, the golfer must bend over to pick up a new golf ball from the bucket and place the new golf ball on a golf ball tee in preparation for the next practice swing. Repeated bending by the golfer can cause injury and strain in the legs and back and is particularly problematic for golfers with existing back problems. In addition, the amount of time available for practice is reduced due to the time required to "tee up" for each practice swing.
Various apparatus for delivering golf balls automatically or on demand to a golf ball tee have been proposed. Representative of prior art golf ball delivery apparatus are U.S. Pat. No. 5,326,107 to Park, U.S. Pat. No. 5,282,628 to Kamori et al, U.S. Pat. No. 5,259,622 to Irving, U.S. Pat. No. 5,131,661 to Jorgensen, U.S. Pat. No. 4,995,614 to Tange, U.S. Pat. No. 4,892,318 to Jennings, U.S. Pat. No. 4,817,955 to Hickson et al, U.S. Pat. No. 4,796,893 to Choi, U.S. Pat. No. 4,265,453 to Loof, U.S. Pat. No. 3,003,770 to Jones, U.S. Pat. No. 2,171,299 to Beckett, U.S. Pat. No. 2,071,356 and U.S. Pat. No. 1,940,321 to Pagett, U.S. Pat. No. 348,497 to Tange and U.S. Pat. No. 345,665 to Luther. Prior art golf ball delivery apparatus have various disadvantages including complexity of structure, construction and/or operation, the inability to be easily transported, the inability to be used away from a commercial driving range, adverse impact on the golfer's swing, inconvenient operating procedures or protocols disliked by golfers, high installation, maintenance and operating costs, susceptibility to major damage when accidentally hit by a golfer, the tendency for golf balls to bind or jam and the failure of golf balls to be accurately, consistently delivered to a golf ball tee. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to sound motion-picture cameras provided with a sound-recording unit which includes components which are mounted for movement between inoperative and operative positions. Such cameras utilize film provided with for example a magnetic recording track applied to the film prior to film exposure, so that sound can be recorded onto the film along with moving images.
To this end, the camera includes a sound-recording unit. The components of the recording unit which engage the motion-picture film usually include a capstan driven by a motor, a counterpressure roller which bears against the capstan and presses the film thereagainst, a recording head, and a pressure pad which presses the film against the recording head. The counterpressure roller and the capstan are disengageable, and the pressure pad and the recording head are likewise disengageable, in order to facilitate insertion and removal of film. However, when the sound-recording unit is actually utilized, these components must be engaged, to assure that the capstan transports the film with constant speed, and to assure that the recording head properly engages the audio track on the film. Usually, the recording unit is so designed that the capstan and recording head are stationary, whereas the counterpressure roller can be shifted away from the capstan, and the pressure pad away from the recording head, and then shifted back when necessary.
It is necessary to shift the movable components (e.g., the counterpressure roller and pressure pad) away from the stationary components (e.g., the capstan and recording head) for reasons other than to facilitate insertion and removal of film. In particular, it is advantageous to effect such disengagement whenever the sound-recording unit is not in operation. The counterpressure roller, in particular, is made of elastic material. However, if it is perpetually in engagement with the capstan, even when the camera is not being used at all, it will eventually undergo a permanent deformation. Such a loss of roundness can detrimentally affect the constancy of the film transport speed, and therefore the quality of the recorded sound.
To avoid such permanent deformation, it is known to couple the carrier structure upon which the counterpressure roller and pressure pad are mounted to the camera release member through the intermediary of a resilient or yieldable linkage. The linkage is so designed that when the camera release member is activated, the disengageable components of the recording unit are moved into their operative positions against spring force, and when the user of the camera lets go of the camera release member, the disengageable components return to their inoperative positions, in which they do not contact the film.
The camera release member in present day cameras is customarily a lever, slider or pushbutton. However, cameras are frequently provided, in addition, with threaded connectors for wire or cable release attachments and/or with jacks into which remote control cables can be plugged. These are provided in order that the user of the camera can operate the camera when the camera is mounted on a tripod.
With cameras of this type, when use is made of a wire release attachment or a remote control attachment, the sound-recording unit is not utilized, because the remote control attachment, or the like, is not capable of causing the disengageable components (e.g., counterpressure roller and pressure pad) of the recording unit to assume their operative positions. These movable components of the recording unit can be moved into their operative position only by the camera release member utilized for normal camera operation, which is not activated in these circumstances.
Also, certain cameras are provided with a hand grip mounted on the housing of the camera. The hand grip is mounted for movement between an operative position and an inoperative position. When it is in its operative position, it projects downwardly, for use during hand-held operation of the camera. When it is in its inoperative position, it does not project downwardly, in order not to interfere with the mounting of the camera on a tripod. However, when in its inoperative position, the hand grip is so located that it interferes with, or positively precludes, operation of the camera release member. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cytokines are soluble, small proteins that mediate a variety of biological effects, including the regulation of the growth and differentiation of many cell types (see, for example, Arai et al., Annu. Rev. Biochem. 59:783 (1990); Mosmann, Curr. Opin. Immunol. 3:311 (1991); Paul and Seder, Cell 76:241 (1994)). Proteins that constitute the cytokine group include interleukins, interferons, colony stimulating factors, tumor necrosis factors, and other regulatory molecules. For example, human interleukin-17 is a cytokine which stimulates the expression of interleukin-6, intracellular adhesion molecule 1, interleukin-8, granulocyte macrophage colony-stimulating factor, and prostaglandin E2 expression, and plays a role in the preferential maturation of CD34+ hematopoietic precursors into neutrophils (Yao et al., J. Immunol. 155:5483 (1995); Fossiez et al., J. Exp. Med. 183:2593 (1996)).
Receptors that bind cytokines are typically composed of one or more integral membrane proteins that bind the cytokine with high affinity and transduce this binding event to the cell through the cytoplasmic portions of the certain receptor subunits. Cytokine receptors have been grouped into several classes on the basis of similarities in their extracellular ligand binding domains. For example, the receptor chains responsible for binding and/or transducing the effect of interferons are members of the type II cytokine receptor family, based upon a characteristic 200 residue extracellular domain.
Cellular interactions, which occur during an immune response, are regulated by members of several families of cell surface receptors, including the tumor necrosis factor receptor (TNFR) family. The TNFR family consists of a number of integral membrane glycoprotein receptors many of which, in conjunction with their respective ligands, regulate interactions between different hematopoietic cell lineages (see, for example, Cosman, Stem Cells 12:440 (1994); Wajant et al., Cytokine Growth Factor Rev. 10:15 (1999); Yeh et al., Immunol. Rev. 169:283 (1999); Idriss and Naismith, Microsc. Res. Tech. 50:184 (2000)).
One such receptor is TACI, transmembrane activator and CAML-interactor (von Bülow and Bram, Science 228:138 (1997); PCT publication WO 98/39361). TACI is a membrane bound receptor, which has an extracellular domain containing two cysteine-rich pseudo-repeats, a transmembrane domain and a cytoplasmic domain that interacts with CAML (calcium-modulator and cyclophilin ligand), an integral membrane protein located at intracellular vesicles which is a co-inducer of NF-AT activation when overexpressed in Jurkat cells. TACI is associated with B cells and a subset of T cells.
The demonstrated in vivo activities of tumor necrosis factor receptors illustrate the clinical potential of, and need for, other such receptors, as well as tumor necrosis factor receptor agonists, and antagonists. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an information recording method, an information recording apparatus, a program and a computer readable information storage medium for writing data to an information recording medium having a plurality of recording layers.
2. Description of the Related Art
Recently, along with improvement of the performance in a personal computer (PC), the personal computer becomes to be able to handle AV (Audio-Visual) information such as music, pictures or such. Since such AV information has a very large information size, an optical disk such as a DVD (Digital Versatile Disc) has taken attention as an information recording medium, and, along with price reduction thereof, an optical disk apparatus as an information recording/reproduction apparatuses have spread as peripheral devices for PCs.
As a DVD-ROM, there exist DVDs having single recording layers and DVDs each having two recording layers. However, as writeable recording-type DVDs, only DVD having single recording layers, such as DVD+R (Recordable), DVD−RW (Rewriteable), DVD-RAM (Random Access Memory) or such exist. Therefore, a recording-type double-layer DVD having two recording layers has been studied recently. This medium has a configuration such that, as a result of data being written thereto in the same manner as that in the DVD-ROM, it has a recording capacity same as that of the DVD-ROM, and also, it has a compatibility with the DVD-ROM.
A reproduction-only-type double-layer DVD has two types of track systems, i.e., a parallel track path system (PTP system) in which a track on a second layer has a direction from the central side to the peripheral side same as that in a track of a first layer, and an opposite track path system (OTP system) in which a track on a second layer has a direction from the peripheral side to the central side.
FIG. 12 generally shows a logical format of a recording-type double-layer DVD in the PTP system while FIG. 13 generally shows a logical format of a recording-type double-layer DVD in the OTP system. In FIGS. 12 and 13, the left hand corresponds to the central side of the optical disk while the right hand corresponds to the peripheral side of the optical disk.
As shown in FIG. 12, in each layer of a first recording layer and a second recording layer, from the central side of the optical disk, a lead-in zone (LEAD-IN ZONE), a data zone (DATA ZONE) and a lead-out zone (LEAD-OUT ZONE) are provided. In other words, in each layer of the first and second recording layers, data is written from the central side toward the peripheral side of the optical disk. It is noted that, in the PTP system, a radial position of an address at which the data zone starts is equal between the first and second layer. For example, each of both starts at a physical address of 30000H.
As shown in FIG. 13, in a first recording layer, from the central side of the optical disk, a lead-in zone (LEAD-IN ZONE), a data zone (DATA ZONE) and a middle zone (MIDDLE ZONE) are provided. In a second recording layer, from the peripheral side of the optical disk, a middle zone (MIDDLE ZONE), a data zone (DATA ZONE) and a lead-out zone (LEAD-OUT ZONE) are provided. In other words, in the first recording layer, data is written from the central side toward the peripheral side of the optical disk, while, in the second recording layer, data is written from the peripheral side toward the central side of the optical disk. It is noted that, in the OTP system, a radial position of an address at which the data zone starts in the second recording layer is equal to a radial position of an address at which the data zone ends in the first recording layer. Further, a physical address at which the data zone starts in the second recording layer is an address bit-inverted from an address at which the data zone ends in the first recording layer.
Thus, in the logical format in the recording-type double-layer DVD, the data other than the user data (for example, the lead-in (LEAD-IN) data, lead-out (LEAD-OUT) data, middle (MIDDLE) data or such) is written before or after the user data.
On the other hand, a technology of previously creating data to be written to a multilayer optical disk having a plurality of recording layers has been proposed. According to the technology, data to be written to a multilayer optical disk is previously created, and, upon switching of a recording layer, data other than user data (for example, lead-out data) is written (see Japanese Laid-open Patent Application No. 2000-48542). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to fluid control valves and, more particularly, to a mixing valve for use within a faucet.
Single-handle water faucet control valves are well known in the art and have been offered with different mechanical structures for controlling the available directions of travel, the ranges of motion, and the type or style of motion for the handle. One such known style of control valve includes a handle that is moved in a generally sideways (left-to-right and right-to-left) direction in order to adjust the mix of hot and cold water for a desired temperature. With this style of water faucet valve control arrangement, the handle is typically moved in an upward or forward direction, away from the user, to increase the flow rate and the volume of water delivered. The handle is typically moved in a downward or rearward direction, toward the user, in order to reduce the flow rate and volume of water, or to completely shut off the flow of water delivered from the faucet.
Known single-handled control valves are often referred to as having a joy stick control handle due to the single-handle construction and the manner in which the handle may be moved. The directions and ranges of motion are controlled by the internal structure of the valve mechanism and by the selection and arrangement of the component parts. It is further known to provide a water faucet control valve that is constructed and arranged to independently control the temperature and the flow rate of the water delivered to a use location by a single-handle or control lever. Illustrative examples of single-handled faucet control valves are described in U.S. Pat. No. 6,920,899, and U.S. patent application Ser. No. 11/444,228, filed May 31, 2006, the disclosures of which are expressly incorporated by reference herein.
One illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly including a valve body having hot and cold water inlets and an outlet. A lower disc includes first, second, and third ports corresponding to the hot and cold water inlets and the outlet, and is supported by the valve body. An upper disc includes upper and lower surfaces, the lower surface being positioned in engagement with the lower disc and including a peripheral channel for selective communication with the first, second, and third ports.
Another illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly including a valve body having an inlet and an outlet. A valve mechanism is configured to selectively control the flow of the water from the inlet to the outlet, the valve mechanism being positioned in the valve body. An upper housing includes an interior cavity. A ball includes a stem and two extensions extending laterally from the ball. The ball is adapted to be positioned in the interior cavity of the upper housing and to move through a range of motion. A coupling member is configured to couple to the upper housing to secure the ball, and includes a cavity configured to cooperate with the ball and a plurality of tabs extending toward the upper housing. The tabs are positioned adjacent to the extensions of the ball and defining a continuous glide surface along the range of motion of the ball.
A further illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly including a valve body having an inlet and an outlet. A plurality of discs are configured to control the flow of water through the valve body from the inlet to the outlet. An upper housing includes a body defining an interior cavity and a flexible arcuate rib extending from the body into the cavity. A coupling member is configured to couple to the upper housing. A ball includes a stem and is positioned between the upper housing and the coupling member in the interior cavity in engagement with the flexible arcuate rib. The ball is configured to actuate at least one of the plurality of discs to selectively control the flow of water through the valve assembly.
Another illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly including a valve body including an interior cavity. Hot and cold water inlets and an outlet are in communication with the interior cavity. The valve assembly further includes an upper housing including a valve actuator, a lower housing, and a lower disc positioned in the lower housing. The lower disc includes a plurality of ports corresponding to the hot and cold inlets and the outlet. An upper disc is positioned above the lower disc and includes upper and lower surfaces, the lower surface including a first channel configured to interact with the plurality of ports, and the upper surface including an aperture extending therethrough and at least one depression. A carrier is positioned above the upper disc and is configured to cooperate with the upper disc such that the aperture causes water to exert pressure against the upper surface of the upper disc to create a pressure reversing hydrobalance. The carrier is adapted to interact with the valve actuator, and a bonnet nut is adapted to couple to the valve body. The bonnet nut is configured to secure the upper and lower housings in the interior cavity of the valve body.
A further illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly having a valve body having an interior cavity and an inlet and an outlet in communication with the interior cavity. A valve mechanism includes an upper housing having a valve actuator and a lower housing coupled to the upper housing. The upper housing includes an outer flange positioned above the valve body, and the lower housing includes a valve actuated by the valve actuator. The valve mechanism is positioned within the interior cavity of the valve body, and a bonnet nut is adapted to couple to the valve body and to secure the valve mechanism in the interior cavity of the valve body. The bonnet nut includes an interior ridge adapted to contact the outer flange of the upper housing to provide a separation between the bonnet nut and the valve body.
Another illustrative embodiment of the present invention includes a valve assembly for controlling water flow in a faucet, the valve assembly including a valve body having an interior cavity, hot and cold water inlets in communication with the interior cavity, and a water outlet in communication with the interior cavity. A valve mechanism includes an upper housing having a valve actuator and a lower housing coupled to the upper housing. The lower housing includes an upper disc and a lower disc, the lower disc including a plurality of ports cooperating with the hot and cold water inlets and the water outlet. The upper disc is configured to be actuated by the valve actuator to selectively allow water flow in the faucet. The valve mechanism is positioned within the interior cavity of the valve body. A single sealing surface is positioned in the interior cavity of the valve body between the valve body and the valve mechanism, the sealing surface being in contact with the lower disc.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived. | {
"pile_set_name": "USPTO Backgrounds"
} |
Partition systems for open office spaces, and other similar settings, are well known in the art. Individual partition panels are interconnected in different configurations to form separate offices, workstations, or work settings. The partition panels are extremely durable and can be readily disassembled and reassembled into alternative configurations to meet the ever-changing needs of the user.
Partition systems can be adapted to provide privacy in some areas, generally using a floor-to-ceiling partition systems, while also allowing for open communication in other areas, which is better provided by low height, see-over partition systems.
The finishing, fitting-out or build-out of open building spaces for offices and other similar environments has become a very important aspect of effective space planning and layout. Work patterns, technology, and business organizations are constantly evolving and changing and so too are the needs of each individual user. The building space users require products which facilitate change at lower costs while also having the adaptability necessary to provide a clean and uniform aesthetic appearance in assembly. Changing technology and changing work processes demand that a design and installation be able to support and anticipate change. At the same time, appearance of the building space has become increasingly important to customers and occupants, particularly as companies have realized the importance and positive (or negative) effect on worker's attitudes and their ability to do a job efficiently. Accordingly, one very important requirement for a floor-to-ceiling partition wall assembly is an adjustable door assembly providing user privacy as well as a novel attractive appearance. | {
"pile_set_name": "USPTO Backgrounds"
} |
Handheld driving tools with propellant charges are known from the prior art, in which the combustion gases resulting after ignition of a pyrotechnic charge expand in a combustion chamber. Thereby a piston as an energy transfer means is accelerated and drives a fastener into a workpiece. The most optimized, residue-free and reproducible combustion of the charge possible is fundamentally desired. It must be taken into account in this regard that the charge generally includes particles such as powder grains, fibers or the like, which are initially driven ahead of a flame front upon ignition.
U.S. Pat. No. 6,321,968 B1 describes a driving tool having a propellant charge, in which the combustion chamber is separated by means of a perforated disk into an upper partial chamber and a lower partial chamber. Powder grains of the propellant charge are larger than the holes of the disk. Therefore the powder grains are initially accelerated in the central discharge region toward the perforated areas of the separating disk, where they are retained due to the dimensioning of the holes in the separating disk, so that the powder grains are primarily combusted in the upper partial chamber. FIG. 10 shows a variation in which a propellant charge is used without a cartridge. Due to the design of this variant, an ejection region enclosing the central axis and extending between the propellant charge and a central region of the separator disk cannot be provided in the upper partial chamber. The ejection region according to FIG. 10 therefore does not include the central axis of the combustion chamber but is instead arranged in a ring shape about a central plunger of the combustion chamber. The cartridge-free charge is ignited at an upper end of the central plunger.
U.S. Pat. No. 6,321,968 B1 also presents an adjustability of a dead space volume in order to adjustably modify the driving energy of the tool. A valve-like slide can be adjusted in a direction perpendicular to a driving axis for this purpose. Even in the closed position of the slide, the combustion chamber has a dead space, which is formed as a recess in a side wall of the combustion chamber.
The problem addressed by the invention is that of specifying a driving tool that allows an effective adjustment of a driving energy for a given propellant charge. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to compounds, compositions, patterned substrates (such as displays and colour filters) comprising these colorants and to methods of making thesame.
The ability to produce brightly coloured patterns or images on substrates, where the colour has high resistance (fastness) to light, water, heat and/or solvents is important in many areas of for instance the electronics and printing industries. Examples of this are in the production of colour filters, in ink-jet printing and in electrophotographic imaging. Thus it is important to discover colorants which can be readily used (and/or formulated into inks for use) in such applications.
Colour filters, alternatively known as optical filters, are a component of coloured liquid crystal displays (LCDs) used as flat screen displays, for example, in small television receivers or portable computers.
Dyes of the following formulae are known:
Dyes of structures II and III are water soluble monoazo pyridones used as cellulose reactive dyes as described in EP 169,457 B1 (Hoechst). The dye of structure IV is described in GB 1,359,171 (Ciba-Geigy), as a dye for wool or cellulosics. The dye of structure I in which a pyridone moiety is bound to a zinc phthalocyanine is described in JP-A 01-303407 (Nippon Kayaku) as a one component green dye for colour filters. This is different from the present invention in which a yellow dye is used as a separate component of a green ink for colour filters. This offers much greater flexibility in adjusting the precise shade of the ink and also is advantageous over zinc phthalocyanines which are less favoured due to poor light fastness.
Known mixtures of copper phthalocyanines and azopyridone yellow dyes (such as the dyes exemplified in JP2701387B2 [Mitsubishi Kasei Corp]) are unsatisfactory for use in colour filter applications because of poor light fastness. However, green colour filters containing azopyridone yellow dyes are significantly brighter than those produced using alternative yellow chromophores such as azobenzenes, azopyrazolones, metallised azo dyes and yellow pigments, which are prevalent in the art.
It is desirable therefore to find improved colorants for use in colour filters, in particular colorants which can be used either alone for example as a yellow or as a yellow component in a mixture (e.g. with cyan colorants such as phthalocyanines). It is a preferred object of a preferred aspect of the invention to discover a green colorant comprising a mixture of one or more yellow colorants with one or more cyan colorants which is of particular use in a colour filter, optionally with improved properties such as light fastness and/or brightness.
The present invention provides azopyridone compounds of use in preparing patterned colored substrates such as colour filters. The compounds give stable inks with advantageous properties. As a preferred aspect of the present invention the applicant has surprisingly discovered certain simple pyridone dyes containing carboxy groups ortho to the azo linkage have a significant advantage in terms of light fastness versus related ortho-sulpho analogues, with no loss in brightness.
According to the present invention there is provided a composition comprising a solvent and at least one compound of Formula (1)
in which:
R1 represents H, an optionally substituted C1-8carbyl derived group, or a group of Formula A:
where:
c is from 2 to 6;
R3 represents H or optionally substituted C1-8carbyl derived group;
R4 and R5 independently represent an optional substituent;
R2 represents an optionally substituted C1-8carbyl derived group;
X, Y and Z independently represent H or an optional substituent group;
M represents H or a cation; and
m and n independently represent 0, 1 or 2.
The azopyridones of Formula (1) are particularly suitable for use in colour filters, giving very bright yellow films with good light fastness, and as components of ink-jet inks. Conveniently compounds of Formula (1) are not pyridinium pyridones (i.e. Z is not pyridinium).
Preferred compounds of Formula (1) are those in which:
R1 represents H, optionally substituted alkyl, a group of Formula [R9O]aR6, or a group of Formula A
R2 represents alkyl, especially C1-4alkyl more especially methyl, or CH2SO3M,
X and Y independently represent SO3M, CO2M, PO3M2, SO2NR6R7, CONR6R7, CO2R6, COR6, alkyl, alkoxy, NR6COR7, halogen, NO2, NR7R8;
where R6 and R7 independently represent H, optionally substituted C1-6alkyl, optionally substituted aryl; and R8 represents R6 or a substituted triazinyl group;
Z represents CN, CONH2, H or CH2SO3M;
R3 represents H or optionally substituted C1-8carbyl derived group;
R4 and R5 independently represent halo, SO3M, NR6R7, OR6 or SR7;
M represents H, alkali metal ion, ammonium, or a quatemary ammonium cation (hereinafter QAC); more preferably M is Li+, Na+, K+ or NH4+;
m, n is 0, 1 or 2;
a is an integer from 1 to 10, more preferably from 1 to 5, especially 2 to 3;and each R9 is independently ethylene or propylene:
with the proviso that at least one of R1 to R8, X, Y or Z comprises a group of Formula SO3M or PO3M2; and the compound of Formula (1) is other than a compound of Formula II, III or IV as described herein.
Preferred QAC""s are those containing C1-30 , alkyl chains. More preferred QAC cations may be selected from one or more of the following: N,N-diethyl-N-dodecyl-N-benzylammonium; N,N-dimethyl-N-octadecyl-N-(dimethylbenzyl) ammonium; N,N-dimethyl-N,N-didecyl ammonium; N,N-dimethyl-N,N-didodecyl ammonium; N,N,N-trimethyl-N-tetradecylammonium; N-benzyl-N,N-dimethyl-N-(C12-18alkyl)ammonium; N-(dichlorobenzyl)-N,N-dimethyl-N-dodecylammonium; N-hexadecyl pyridinium; N-hexa decyl-N,N,N-trimethylammonium, dodecylpyridinium; N-benzyl-N-dodecyl-N,N-bis(hydroxyethyl)ammonium; N-dodecyl-N-benzyl-N,N-dimethylammonium; N-benzyl-N,N-dimethyl-N-(C12-18alkyl)ammonium; N-dodecyl-N,N-dimethyl-N-(1-naphthylmethyl) ammonium and N-hexadecyl-N,N-dimethyl-N-benzylammonium cations.
Suitable QAC cations may also be formed from suitable amines for example from one or more amines selected from: isononylamine, dodecylamine, octadecylamine, didecylamine, didodecylamine, tetradecylamine, hexadecylamine, mixed C12-18alkylamines and N-benzyl amines. Preferred amines which may be used to from suitable QAC comprise N-C1-6alkyl primary amines, N,N-di-C1-8alkyl secondary amines and N-benzyl amines. Particularly preferred amines comprise methyl and ethyl amine derivatives.
Preferably at least one of R1, R2, X, Y or Z comprises a group of Formula SO3M or PO3M2 where M is independently as represented herein; when n is 0; m is 1; X is a sulpho group para to the azo group; Z is H and R2 is methyl then R1 is other than ethyl and the compound of Formula (1) is other than a compound of Formula II, III or IV as described herein.
More preferred compounds of Formula (1) are of Formula (2):
in which
Z is CONH2, CN or H;
R1 is optionally substituted C2-8alkyl (preferably hydroxy substituted) or a glycol group (for example CH2CH2OCH2CH3 or CH2CH2OCH2CH2OH);
with the proviso that if the SO3M group is in the 4-position of the benzene ring then either R1 is other than ethyl or Z is other than H.
In general, preferred compounds of the invention are those which give particularly bright yellow films and prints, and are easily synthesised from readily available intermediates. Solubility in an aqueous ink is also desirable, hence compounds of Formula (1) comprise at least one SO3M or PO3M2 group, comprise substituent (e.g. R1) of C8 (or less) carbyl-derived groups. To improve solubility optionally R1 comprises at least one PEG and/or OH group.
Compounds of the present invention can be prepared by analogy to any of the methods known in the art, for example as in GB 1,271,226.
According to a further aspect of the present invention there is provided a compound of Formula (1) as hereinbefore defined with the provisos that:
at least one of R1, R2, X, Y or Z comprises a group of Formula SO3M or PO3M2 where M is independently as represented herein;
when n is 0; m is 1; X is a sulpho group para to the azo group; Z is H and R2 is methyl then R1 is other than ethyl; and
the compound of Formula (1) is other than a compound of Formula II, III or IV as described herein.
Preferences for the substituents in Formula (1) are as hereinbefore defined in relation to the composition. Especially preferred compounds of the invention are of Formula (2) as hereinbefore defined.
Preferably the solvent comprises water or more preferably water and one or more water soluble organic solvents.
The viscosity of the composition is preferably less than 100 cp, more preferably less than 50 cp, especially less than 20 cp, more especially less than 15 cp and most preferably less than 10 cp at 20xc2x0 C.
Preferably the composition has been filtered through a filter having a mean pore size below 10 xcexcm, preferably below 5 xcexcm, more preferably below 2 xcexcm, especially below 0.5 xcexcm. In this way particulate matter is removed which could otherwise block fine nozzles in an ink-jet printer.
The composition preferably has a total concentration of divalent and trivalent metal ions, other than those bound to the pigment, below 5000, more preferably below 1000, especially below 100, more especially below 20 parts per million by weight relative to the total weight of the composition. Pure compositions of this type may be prepared by using high purity ingredients and/or by purifying the composition after it has been prepared.
Suitable purification techniques are well known, for example ultrafiltration, reverse osmosis, ion exchange and combinations thereof.
When in the formulae herein there is a list of labels (e.g. Ar1 and Ar2) or indices (e.g. xe2x80x98nxe2x80x99) which are said to represent a list of groups or numerical values, and these are said to be xe2x80x9cindependent in each casexe2x80x9d this indicates each label and/or index can represent any of those groups listed: independently from each other, independently within each repeat unit, independently within each Formula and/or independently on each group which is substituted; as appropriate. Thus in each of these instances many different groups might be represented by a single label (e.g. Ar1).
The term xe2x80x98haloxe2x80x99 as used herein signifies fluoro, chloro, bromo and iodo.
The terms xe2x80x98optional substituentxe2x80x99 and/or xe2x80x98optionally substitutedxe2x80x99 as used herein (unless followed by a list of other substituents) signifies the one or more of following groups (or substitution by these groups): carbyl, carboxy, sulpho, phospho, formyl, hydroxy, amino, imino, nitrilo, mercapto, cyano, nitro, halo and/or combinations thereof. These optional groups include all chemically possible combinations in the same moiety of a plurality (preferably two) of the aforementioned groups (e.g. amino and sulphonyl if directly attached to each other represent a sulphamoyl radical).
The term carbyl as used herein denotes any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either solely (e.g. xe2x80x94Cxe2x89xa1Cxe2x80x94) or optionally combined with at least one other non-carbon atom (e.g. alkyl, carbonyl etc.). The non-carbon atom(s) may comprise any elements other than carbon (including any chemically possible mixtures or combinations thereof) that together with carbon can comprise an organic radical moiety. Preferably the non-carbon atom is selected from at least one hydrogen and/or heteroatom, more preferably from at least one: hydrogen, phosphorus, halo, nitrogen, oxygen and/or sulphur, most preferably from at least one hydrogen, nitrogen, oxygen and/or sulphur. Carbyl groups include all chemically possible combinations in the same group of a plurality (preferably two) of the aforementioned carbon and/or non-carbon atom containing moieties (e.g. alkoxy and carbonyl if directly attached to each other represent an alkoxycarbonyl radical).
Preferably xe2x80x98carbyl-derivedxe2x80x99 moieties comprise at least one of the following carbon containing moieties: alkyl, alkoxy, alkanoyl, carboxy, carbonyl, formyl and/or combinations thereof; optionally in combination with at least one of the following heteroatom containing moieties: oxy, thio, sulphinyl, sulphonyl, amino, imino, nitrilo and/or combinations thereof.
The term xe2x80x98hydrocarbylxe2x80x99 as used herein (which is encompassed by the term xe2x80x98carbyl-derivedxe2x80x99) denotes any radical moiety which consists only of at least one hydrogen atom and at least one carbon atom. A hydrocarbyl group may however be optionally substituted.
More preferably xe2x80x98hydrocarbyl derivedxe2x80x99 moieties comprise one or more of the following carbon containing moieties: alkyl, aryl, alkaryl and/or combinations thereof. The term xe2x80x98arylxe2x80x99 as used herein signifies a radical which comprises an aromatic hydrocarbon ring, for example phenyl, naphthyl, anthryl and phenanthryl radicals. The term xe2x80x98alkylxe2x80x99 or its equivalent (e.g. xe2x80x98alkxe2x80x99) as used herein may be readily replaced, where appropriate, by terms denoting a different degree of saturation and/or valence e.g. moieties that comprise double bonds, triple bonds, and/or aromatic moieties (e.g. alkenyl, alkynyl and/or aryl) as well as multivalent species attached to two or more substituents (such as alkylene).
Any radical group mentioned herein as a substituent refers to a monovalent radical unless otherwise stated. A group which comprises a chain of three or more atoms signifies a group in which the chain may be straight or branched or the chain or part of the chain may form a ring. For example, an alkyl group may comprise: propyl which includes n-propyl and isopropyl; butyl which includes n-butyl, sec-butyl, isobutyl and tert-butyl; and an alkyl group of three or more carbon atoms may comprise a cycloalkyl group. The total number of certain atoms is specified herein for certain substituents, for example C1-nalkyl, signifies an alkyl group having from 1 to n carbon atoms. Preferred alkyl groups in compounds of Formulae (1) and (2) may be branched or straight chain and preferred branched chain alkyl groups are xcex1-branched alkyl groups.
Advantageously the optional substituents and/or carbyl derived groups which may be present in Formula (1) herein may be each independently selected from: carboxy, sulpho, phospho, nitro, bromo, chloro fluoro, alkyl (especially C1-4alkyl) alkoxy (especially C1-4alkoxy), hydroxy, sulphamoyl, amine (especially xe2x80x94NHR10 and NR10Ar), mercapto, thioalkyl (especially C1-4thioalkyl), cyano, ester (especially OCOR10 or COOR10) and amide (especially CONHR10 and NHCOR10);
where R10 is H or optionally substituted C1-6alkyl (especially H or C1-4alkyl) and Ar is an optionally substituted aromatic ring (especially a benzene ring).
More preferred optional substituents and/or carbyl derived groups in Formula (1) are selected from SO3M, CO2M, PO3M2, Cl, Br, F, OH, C1-4alkyl, C1-4alkoxy, CONH2, SO2NH2, OCO(C1-4alkyl), COO(C1-4alkyl), NHAr and NHCO(C1-4alkyl), where M and Ar are as defined herein.
Certain compounds and/or moieties therein (such as repeat units), which comprise the present invention may exist in many different forms for example at least one form from the following non-exhaustive list: salts (e.g. with organic and/or inorganic acids and/or bases including acid and/or base addition salts); isomers, stereoisomers, enantiomers, diastereoisomers, geometric isomers, tautomers, conformers, zwitterions, forms with regio-isomeric substitution, isotopically substituted forms, polymorphs, polymeric configurations, tactic forms, interstitial forms, complexes, chelates, clathrates, interstitial compounds, non-stoichiometric complexes, stoichiometric complexes, ligand complexes, organometallic complexes, solvates, isotopic forms, mixtures thereof and/or combinations thereof within the same species. The present invention preferably comprises all such forms of compounds, polymers, moieties therein, any compatible mixtures thereof and/or any combinations thereof, which comprise the present invention, preferably those which are effective in IJP and/or colour filters.
Salts of Formula (1) may be formed from one or more organic and/or inorganic bases. Preferred salts of Formula (1) are soluble in water.
The inks preferably contain from 1 to 10, more preferably from 1 to 6, especially from 1 to 3, more especially 1 compound of Formula (1).
The compounds of Formula (1) are preferably soluble in water. However, they may be modified to be soluble in organic solvents by use of a QAC as the counter ion, where QAC is as hereinbefore defined.
The compounds of Formula (1) may be prepared by any suitable method known in the prior art.
The composition may contain further compounds other than those of Formula (1), for example to modify the colour or brightness of the ink.
The compounds of Formula (1) may be used individually as part of a YMC (yellow, magenta, cyan) colour filter, or mixed with other compounds as the red or green component of an RGB (red, green, blue) colour filter. The arrangement of pixels could be any of those known in the art (stripe, mosaic, delta) and the filters would be suitable for displays, especially LCD""s, and solid state imaging devices.
Use of the compounds of Formula (1) gives filters with very good fastness properties and brighter than those in the prior art.
The compounds may also be used in an ink-jet printing ink to give bright yellow prints with good fastness properties.
It is another object of the present invention to provide improved inks for processes for forming film coatings, that overcome some or all of the disadvantages of the prior art as discussed above, as well as products made and coated by processes using such inks (in particular colour filters). In particular there is provided a composition according to the first aspect of the invention which is a green, red or yellow ink suitable for use in any of these processes.
Therefore according to another aspect of the present invention, there is provided an ink containing a compound of Formula (1) for use in any process for preparing a patterned, cross-linked, polymer, film coating on a substrate.
It is particularly preferred that the inks of the current invention are used in processes to manufacture a colour filter. These processes may comprise or consist of steps known in methods for producing colour filters (with colorants other than the novel compounds of the present invention). Such processes are well known in the art and include various printing, photolithographic, photographic, electrodeposition, laser ablation and thermal transfer processes. Examples of suitable processes are described below and in the following references, but it is to be understood that the invention is not limited to these processes:
xe2x80x9cReliability Improvements of Dichromated Gelatin Color Filters for TFT-LCD""sxe2x80x9d, A. Endo, E. Hirose, T. Sato, S. Otera, N. Chiba, Polym. Mater. Sci. Eng., 1990, 63, 472-6.
xe2x80x9cProcess and Material for Color Filter Preparation in Liquid Crystal Displayxe2x80x9d, H. Aruga, J. Photopolym. Sci. Technol., 1990, 3, 9-16.
xe2x80x9cColor Filter for Liquid Crystal Displayxe2x80x9d, S. Okazaki, Trans. Inst. Electron. Inf. Commun. Eng., Sect. E, 1988, E71, 1077-9.
P. Gregory, Chapter 2 xe2x80x9cMicro Color Filtersxe2x80x9d in xe2x80x9cHigh-Technology Applications of Organic Colorantsxe2x80x9d, Kluwer Academic/Plenum Publishers, 1991.
xe2x80x9cColor Filters for LCDsxe2x80x9d, K. Tsuda, Displays, 1993, 14, 115-24.
xe2x80x9cPrinting Color Filter for Active Matrix Liquid Crystal Display Color Filterxe2x80x9d, K. Mizuno, S. Okazaki, Jpn. J Appl. Phys., Part 1, 1991, 30, 3313-17.
EP 661350 (=U.S. Pat. No. 5,608,091) (Nippon Shokubai)
EP 833203 (Nippon Shokubai)
It will be appreciated that where the compounds described are not water soluble, the processes described in the references may need appropriate modification to allow the use of the compositions and compounds of the present invention. Alternatively, where the colorants described are solvent soluble dyes, compositions and compounds of the present invention may be used by modification of their solubility in organic solvents through appropriate choice of the counter ion as described previously.
A typical process for preparing a patterned, cross-linked, polymer, film coating on a substrate comprising the steps of
(a) applying to the substrate simultaneously and/or sequentially in any order.
(i) one or more cross-linkable polymer precursor(s);
(ii) optionally one or more additional cross-linker(s) capable of cross-linking the precursor(s) for the polymer(s); and
(iii) one or more compound(s) of Formula (1) optionally with one or more other colorant(s);
(b) optionally patterning one or more non cross-linked film(s) of component (i); component (ii); component (iii) and/or mixture(s) thereof, optionally before application of further components; and
(c) initiating cross-linking the mixture of components (i), (ii) in situ, to form an optionally patterned, cross-linked polymeric film coating on the substrate.
Preferably the application method in step (a) comprises applying an ink comprising both components (i) and (ii).
It is also preferred that the polymer precursor(s) in step (a) (i) above comprise water dissipatable polymer precursor(s). It is especially preferred that these water dissipatable polymer precursor(s) comprise acrylic polymer precursor(s).
A process for which the present invention is particularly suitable is a printing process, especially an ink-jet printing (IJP) process.
Preferably the printing process used is thermal or piezo IJP. The principles and procedures for ink jet printing are described in the literature for example in High Technology Applications of Organic Colorants, P. Gregory, Chapter 9 ISBN 0-306-43637-X.
Other suitable printing methods comprise: flexographic printing; off-set printing [e.g. as described in JP-A-10(98)-088055 (Sumitomo Rubber)] lithographic printing; gravure printing; intaglio printing; dye diffusion thermal transfer, screen and/or stencil printing [e.g. as described in WO 97-048117 (Philips Electronics)] and/or using xe2x80x98typographic ink imaging pinsxe2x80x99 (e.g. as described in WO 97-002955 (Coming Inc.)].
Preferred methods of applying the polymer precursor and compound of Formula (1) to the substrate comprise one or more of the following:
1) print onto the substrate (advantageously by IJP) a mixture comprising the polymer precursor which is thermally cross-linkable and the colorant; and thereafter curing the mixture in situ (e.g. as described in the applicant""s co-pending application GB 9824818.0).
2) Apply to the substrate a polymer precursor which is an anionic colourable photosensitive resin, and then exposing the resin to UV light via a mask to either make the exposed portions, which correspond to the pixels accept colorant; or harden the resin at the exposed portions, which correspond to the black matrix, to make it resistant to colorant; and print onto the resin (advantageously by IJP) a solution of the colorant. [e.g. as described in EP 0703471(Canon)]:
An additional method of applying the ink is by a photolithographic process. This may involve either
1) Apply to a substrate a polymer precursor which is an anionic colourable photosensitive resin; and then expose the resin to radiation (e.g. UV light) through a patterned mask, develop the substrate to remove unexposed portions of the resin, optionally heat to further set the resin, then dip the substrate into an aqueous solution of the colorant. [e.g. as described in U.S. Pat. No. 5,190,845 (Nippon Kayaku)]
2) Apply to a substrate an ink containing a photosensitive resin and the colorant; and then expose the resin to radiation (e.g. UV light) through a patterned mask, develop the substrate to remove either the exposed or unexposed portions of the resin and optionally heat to further set the resin [e.g as described in EP 564237 (Mitsui Toatsu)]
3) Apply to a substrate a non-photosensitive ink containing the colorant and a thermally cross-linkable resin; then apply an ink containing a photosensitive resin over this coloured film; expose the photosensitive resin to radiation (e.g. UV light) through a patterned mask; develop the substrate to remove either the exposed or unexposed portions of the photosensitive resin and the corresponding portions of the coloured film beneath, heat to thermally cure the coloured polymeric film and optionally strip the photosensitive resin that remains [e.g. as described in U.S. Pat. No. 5,176,971 (Kyodo Printing) and WO 88/05180 (Brewer Science Inc.)]
In 1) the photosensitive resin may be either a natural polymer such as gelatin or casein which has been photosensitised by the addition of for example ammonium dichromate, or may be a synthetic polymer.
In 2) and 3) the photosensitive resins used may be of either the positive or negative type. In the positive type, the solubility of the resin in a developing solution increases on exposure to radiation; in the negative type the solubility of the resin in a developing solution decreases on exposure to radiation.
In the laser ablation method, an ink containing a compound of Formula (1) and a (optionally thermally curable) non-photosensitive resin is applied to the substrate, then portions of the substrate are irradiated with a laser beam to selectively remove the ink in those areas through vaporisation and the remaining ink is optionally heated to thermally cure the resin [e.g. as described in JP10274709 (Sekisui Chem Ind.)]
In these processes the inks may be applied to the substrate by any known coating method including spin-coating, bar-coating, dip-coating, curtain-coating, roller-coating and electrospray.
The process of the present invention can be used to give optionally patterned, optionally transparent films and coatings on substrates in general, including substrates which are not transparent. Accordingly the present invention includes a process for preparing polymeric film coatings for substrates in general not just colour filters.
The cross-linked polymeric film coating may be formed on a substrate to which the coating will bond, adhere, absorb or fuse. Preferably (e.g. if the process of the present invention is used to manufacture a colour filter) the substrate is transparent. Suitable transparent substrates include glass; plastics films and plates such as those of polyvinylalcohol, polyester, polyvinylchloride, polyvinylfluoride, polycarbonate, polystyrene, polyamide or polyimide. The substrate may be flexible or may be a flat panel (e.g. as used in many LCD displays). A preferred substrate is glass.
The substrates may be pre-treated to improve bonding, adhesion, absorption, fusion or spreading of the cross-linked polymeric coating on the substrate. Suitable pre-treatments include plasma etching in which the substrate is placed in an oxygen atmosphere and subjected to an electrical discharge or application of an adhesion promoter such as a silane.
An ink suitable for manufacture of a colour filter according to the present invention may be made by any method known in the art and comprise: one or more compounds(s) of Formula (1), one or more solvents and optionally other formulating agents. The inks may in addition contain precursor(s) for cross-linked polymer(s), one or more cross-linker(s) capable of cross-linking the precursor(s), optionally one or more non cross-linkable polymer(s) for improving the film-forming ability of the inks or the properties of the final films and (as appropriate for chemically or photochemically initiated systems) either a radical source, a photopolymerisation initiator or a dissolution inhibitor. An ink coloured in one of the desired colours can be produced with compounds of the present invention and optionally one or more other colorants, typically either yellow, green or red.
Preferably the optionally patterning method in step (b) of the process of the present invention uses electromagnetic radiation, more preferably UV radiation. Optionally to produce a colour filter the pattern formed may comprise of a multiplicity of discrete filter regions (pixels) on a transparent substrate via a single pass ink-jet printing process. Optionally, the transparent substrate has previously been subdivided into discrete pixel regions by any method known in the art (for example formation of a black matrix by photolithography).
The steps of the process of the present invention described herein may be followed for each of the desired colours to form a multi-colour optical filter structure so that the filter structure finally comprises the transparent substrate and a single layer of differently coloured pixels arranged in triads or in any desired groups, each consisting of a predetermined number of differently coloured pixels.
The inks of the present invention are particularly useful for forming the green and red pixels of an additive (red, green and blue [RGB]) colour filter and for forming the yellow pixels of a subtractive (yellow, magenta and cyan [YMC]) colour filter.
A further aspect of the invention provides a process for printing an image on a substrate comprising applying thereto an ink according to another aspect of the present invention, preferably by printing, more preferably by means of an ink jet printer. Preferably the ink comprises solvent (preferably aqueous) and a compound of Formula (1) as described herein.
The ink jet printer preferably applies the ink to the substrate in the form of droplets which are ejected through a small nozzle onto the substrate. Preferred ink jet printers are piezoelectric ink jet printers and thermal ink jet printers. In thermal ink jet printers, programmed pulses of heat are applied to the ink in a reservoir (e.g. by means of a resistor adjacent to the nozzle) thereby causing the ink to be ejected in the form of small droplets directed towards the substrate during relative movement between the substrate and the nozzle. In piezoelectric ink jet printers the oscillation of a small crystal causes ejection of the ink from the nozzle. The term ink-jet printer denotes any device which could use an IJP technique to produce an image.
A further aspect of the present invention provides a substrate which has applied thereon an ink of the present invention as defined herein and/or which has been prepared by the process of the present invention also as defined herein.
The substrate, which is optionally transparent, preferably comprises plastic, metal, glass, paper, an overhead projector slide and/or a textile material. More preferably for a colour filter the substrate is glass. Preferred textile materials for ink jet printing are cotton, polyester and blends thereof. When the substrate is a textile material the process for printing an image thereon according to the invention preferably further comprises the step of heating the resultant printed textile, preferably to a temperature of 50xc2x0 C. to 250xc2x0 C.
According to a further feature of this invention there is provided a colour filter comprising red, green and blue filter elements, or yellow, magenta and cyan filter elements, characterised in that the colour filter carries a compound of Formula (1). Preferably the color filter further comprises a coloured cross-linked polymeric coating on a transparent substrate and/or a transparent, coloured, cross-linked, polymer coating on a substrate prepared by the processes according to the present invention.
More preferably the substrate or colour filter comprises an array of coloured trichromatic elements in which the trichromat is selected from: a red, green and blue trichromat; and a cyan, magenta and yellow trichromat.
Preferably the substrate or colour filter has utility as a component for a coloured display.
A further feature of the invention comprises a display containing a substrate or colour filter prepared according to the present invention. Preferably the display comprises a liquid crystal display.
A further feature of the present invention provides a cartridge suitable for use in an ink jet printer containing an ink according to the invention. Also there is provided an ink jet printer containing an ink according to the invention.
The compounds of the present invention are particularly useful as yellow dyes which form particularly good green colorants when combined with a further cyan dye or pigment. Such compositions are particularly useful to produce a green colour filter For the purposes of the present invention the term xe2x80x98colorantxe2x80x99 as used herein denotes perceptible and/or emissive materials. The term xe2x80x9cperceptible materialxe2x80x9d as used herein includes all dyes and/or pigments and denotes materials which absorb radiation substantially in that part of the electromagnetic (EM) spectrum which encompass the infra red (IR); visible and/or ultraviolet (UV) regions, preferably in a region where the radiation wavelength [xcex] is from about 200 nm to about 800 nm, more preferably in the visible region which is detectable by the normal, unaided human eye. The term xe2x80x9cemissive materialxe2x80x9d as used herein denotes a material which is capable of emitting radiation, preferably EM radiation, more preferably radiation in the IR, visible and/or UV regions of the EM spectrum. Examples of emissive materials comprise fluorescent, phosphorescent and/or radioactive materials.
Therefore broadly in another aspect of the present invention there is provided a coloured composition comprising a compound of Formula (1) or (2) (as described herein) together with one or more cyan or green dye(s) and/or one or more cyan or green pigments(s).
Preferably the cyan or green dye comprises a water soluble metal phthalocyanine, more preferably a copper, zinc, aluminium and/or nickel phthalocyanine. Preferably the composition of the present invention comprises a cyan dyes of Formula (3)
in which:
T represents H or an optional substituent, preferably H, alkyl, alkoxy, CO2M, SO3M;
V represents CO2M, SO3M or PO3M2, especially meta-CO2M x and y independently represent from 0 to 4, preferably from 1 to 3; and
x+y is from 3 to 5, preferably 4;
where M is as given herein for compounds of Formula (1) herein.
Where the cyan or green colorant is a pigment, preferred pigments include C.I. Pigment Green 7 and C.I. Pigment Green 36.
The colorants of the present invention may also be used as shading components in combination with red, magenta and/or orange colorants to produce good red colorants which are useful for producing a red colour filter.
Therefore, in another aspect of the present invention there is provided a coloured composition comprising a compound of Formula (1) (as described herein) together with one or more red, magenta and/or orange colorant(s), [e.g. dye(s) and/or pigment(s)].
It is also to be understood that one or more further yellow colorant(s), [e.g. dye(s) and/or pigment(s)] other than those of the current invention, may be present in the ink for the purpose of adjusting the shade or enhancing the fastness properties of the ink and the resultant film or image produced using the ink.
Apart from the colorants of the present invention of Formula (1) and (2), compositions, inks, colour filters and processes of the present invention may comprise at least one further colorants to form a colorant mixture.
The further colorants (as well as colorants of the present invention) are preferably compatible with the resultant cross-linked polymer coatings, i.e. the resultant cured films have high transparency. Where the colorant is a dye, preferably the colorant is insoluble in organic solvents and soluble in water, for example the colorant may contain sulpho, phospho or carboxy groups.
If the colorant used is not soluble in the solvent used for the ink, the colorant is preferably present as a fine dispersion, prepared by for example milling the colorant in a solvent in a horizontal shaker in the presence of glass or metal beads and a dispersant. Suitable dispersants may comprise an anionic type (for example lignosulphonates and other sulphonated aromatic species) or a non-ionic type (for example alkylene oxide adducts).
Useful classes of further colorants include azos (including metallised azos), anthraquinones, phthalocyanines, perylenes, quinacridones, diketopyrrolopyrroles, pyrrolines, thiophenedioxides, triphenodioxazines, methines, benzofuranones, benzodifuranones, coumarins, indoanilines, benzenoids, xanthenes, triphenylmethanes, nitros, nitrosonaphthols, phenazines, solvent soluble sulphur dyes, quinophthalones, pyridones, aminopyrazoles, pyrollidines, pyrroles, styrylics, maleimides, triphenazonaphthylamines, styryls, dithienes, azomethines, cyanines, indanthrones, benzimidazolones, isoindolinones, isoindolines and azoics.
The Colour Index International lists suitable dyes and pigments for use as further colorants such as acid dyes, direct dyes, basic dyes, reactive dyes, solvent dyes, disperse dyes and pigments and further examples of acid dyes are given in the Colour Index, 3rd Edition, Volume 1, pages 1003 to 1561, further examples of direct dyes are given in Volume 2, pages 2005 to 2478, further examples of basic dyes are given in Volume 1, pages 1611 to 1688, further examples of reactive dyes are given in Volume 3 pages 3391 to 3560, further examples of solvent dyes are given in Volume 3, pages 3563 to 3648, further examples of disperse dyes are given in Volume 2, pages 2479 to 2742, and further examples of pigments are given in Volume 3 pages 3267 to 3390. These colorants are included herein by reference.
Preferably the further colorant(s) is selected from at least one cyan, green, red, magenta and/or orange colorant which is a dye or a pigment.
Subject to the provisos herein, generally preferred colorants are pigments; or dyes which have substituent groups which aid the solubility of the dye(s) in liquid media used in the process or which aid the solubility of the dye(s) in the final cross-linked polymer matrix.
Preferably the composition is an the ink comprising:
(a) from 0.01 to 30 parts of a compound of Formula (1); and
(b) from 70 to 99.99 parts of a liquid medium or a low melting point solid medium; wherein all parts are by weight and the number of parts of (a)+(b)=100.
The number of parts of component (a) is preferably from 0.1 to 20, more preferably from 0.5 to 15, and especially from 1 to 5 parts. Compound A is preferably an IJP effective compound of Formula (1) more preferably of Formula (2). The number of parts of component (b) is preferably from 99.9 to 80, more preferably from 99.5 to 85, especially from 99 to 95 parts.
When the medium is a liquid, preferably component (a) is completely dissolved in component (b). Preferably component (a) has a solubility in component (b) at 20xc2x0 C. of at least 10%. This allows the preparation of concentrates which may be used to prepare more dilute inks and reduces the chance of the colorant precipitating if evaporation of the liquid medium occurs during storage.
Preferred liquid media include water, a mixture of water and a water miscible organic solvent.
When the medium comprises a mixture of water and an organic solvent, the weight ratio of water to organic solvent is preferably from 99:1 to 1:99, more preferably from 99:1 to 50:50 and especially from 95:5 to 80:20. The liquid medium may comprise water and preferably two or more, more preferably from 2 to 8, water-soluble organic solvents.
The water-miscible organic solvent(s) may comprise any of the following and/or mixtures thereof: C1-6-alkanols, preferably methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, cyclopentanol and/or cyclohexanol; amides, preferably linear amides, for example dimethylformamide and/or dimethylacetamide; ketones and/or ketone-alcohols, preferably acetone, methyl ether ketone, cyclohexanone and/or diacetone alcohol; water-miscible ethers, preferably C2-4ethers, tetrahydrofuran and/or dioxane; diols, preferably alkylene glycols containing a C2-C6 alkylene group; more preferably C2-12diols (for example pentane-1,5-diol, ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol); thioglycols preferably thiodiglycol; oligo- and/or poly-alkyleneglycols (for example diethylene glycol, triethylene glycol, polyethylene glycol and/or polypropylene glycol); triols, preferably glycerol and/or 1,2,6-hexanetriol; lower alkyl glycol and polyglycol ethers, preferably C1-4alkyl ethers of diols or monoC1-4alkyl ethers of C2-12diols: {for example 2-methoxyethanol, 2-(2-methoxyethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, 2-(2-butoxyethoxy)ethanol, 3-butoxypropan-1-ol, 2-[2-(2-methoxyethoxy)ethoxy]ethanol, 2-[2-(2-ethoxyethoxy)ethoxy]ethanol and/or ethyleneglycol monoallyl ether}; cyclic amides, preferably optionally substituted pyrrolidones (for example 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, caprolactam and/or 1,3-dimethylimidazolidone); cyclic esters, preferably caprolactone; sulphoxides, preferably dimethyl sulphoxide and/or sulpholane.
More preferred water-soluble organic solvents are selected from: cyclic amides (for example 2-pyrrolidone, dimethyl pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone N-(2-hydroxyethyl)-2-pyrrolidone and mixtures thereof.); diols, (for example 1,5-pentane diol, ethyleneglycol, thiodiglycol, diethyleneglycol and triethyleneglycol); C1-6alkyl ethers of diols (for example 2-methoxy-2-ethoxy-2-ethoxyethanol); C1-6-alkyl mono ethers of C2-6-alkylene glycols; C1-6-alkyl mono ethers of poly(C2-6-alkylene glycols); and mixtures thereof.
A preferred liquid medium comprises:
(a) from 75 to 95 parts water; and
(b) from 25 to 5 parts in total of one or more solvents selected from: diethylene glycol, 2-pyrrolidone, thiodiglycol, N-methylpyrrolidone, cyclohexanol, caprolactone, caprolactam and pentane-1,5-diol;
where the parts are by weight and the sum of the parts (a)+(b)=100.
Another preferred liquid medium comprises:
(a) from 60 to 80 parts water;
(b) from 2 to 20 parts diethylene glycol; and
(c) from 0.5 to 20 parts in total of one or more solvents selected from:
2-pyrrolidone, N-methylpyrrolidone, cyclohexanol, caprolactone, caprolactam, pentane-1,5-diol and thiodiglycol;
where the parts are by weight and the sum of the parts (a)+(b)+(c)=100.
When the liquid medium comprises an organic solvent free from water, (i.e. less than 1% water by weight) the solvent preferably has a boiling point of from 30xc2x0 to 200xc2x0 C., more preferably of from 40xc2x0 to 150xc2x0 C., especially from 50 to 125xc2x0 C. The organic solvent may be water-immiscible, water-miscible or a mixture of such solvents. Preferred water-miscible organic solvents comprise any of those described above and mixtures thereof. Preferred water-immiscible solvents comprise aliphatic hydrocarbons; esters (for example ethyl acetate) chlorinated hydrocarbons (for example dichloromethane), ethers (for example diethyl ether) and mixtures thereof.
When the liquid medium comprises a water-immiscible organic solvent, preferably it comprises a polar solvent (for example a C1-4alkanol) to enhance the solubility of the dye in the liquid medium. It is especially preferred that where the liquid medium is an organic solvent free from water it comprises a ketone (especially methyl ethyl ketone) and/or an alcohol (especially a C1-4alkanol, more especially ethanol or propanol).
The organic solvent free from water may be a single organic solvent or a mixture of two or more organic solvents. It is preferred that when the medium is an organic solvent free from water it is a mixture of 2 to 5 different organic solvents. This allows a medium to be selected which gives good control over the drying characteristics and storage stability of the ink.
Ink media comprising an organic solvent free from water are particularly useful where fast drying times are required and particularly when printing onto hydrophobic and non-absorbent substrates, for example plastics, metal and glass.
Preferred low melting solid media have a melting point in the range from 60xc2x0 C. to 125xc2x0 C. Suitable low melting point solids include long chain fatty acids or alcohols, preferably those with C18-24chains, and sulphonamides. The compound of Formula (1) may be dissolved in the low melting point solid or may be finely dispersed in it.
The ink may also contain additional components conventionally used in inks for IJP, for example viscosity and surface tension modifiers, corrosion inhibitors, biocides, kogation reducing additives and surfactants which may be ionic or non-ionic.
In a further aspect of the present invention there is provided a general purpose ink optionally for use in preparing a colour filter, the ink comprising a fluid medium, and one or more compounds of Formula (1) herein. The precursor(s), cross-linker(s) and colorant(s) are as defined previously.
Preferably inks according to the invention are prepared by mixing together (i) a solution of the compound(s) of Formula (1) and optionally water.
The amount of the compound(s) or Formula (1) and solvent contained in the ink will vary according to the depth of shade required. Typically, however, the ink will comprise
(a) from 0.5 to 15 parts, more preferably 0.8 to 10 parts, especially 1 to 8 parts in total of one or more compounds of Formula (1);
(b) from 0 to 90 parts, more preferably from 50 to 80 parts of water; and
(c) from 0 to 90 parts, more preferably 0 to 60 parts of one or more water miscible organic solvent(s); and
(d) other ingredients from 0 to 50 parts, more preferably 0 to 30;
where all parts are by weight and the total number of parts of (a)+(b)+(c)+(d) add up to 100.
The water-miscible solvent may be one or more of those described herein, preferably with a solubility in water at 20xc2x0 C. of more than 50 g/l.
Instead of parts (b) and (c) [the water and water-miscible organic solvent(s)] the ink may comprise one or more water-immiscible organic solvent(s).
Suitable water-immiscible organic solvents include aromatic hydrocarbons, e.g. toluene, xylene, naphthalene, tetrahydronaphthalene and methyl naphthalene; chlorinated aromatic hydrocarbons, e.g. chlorobenzene, fluorobenzene, chloronaphthalene and bromonaphthalene; esters, e.g. butyl acetate, ethyl acetate, methyl benzoate, ethyl benzoate, benzyl benzoate, butyl benzoate, phenylethyl acetate, butyl lactate, benzyl lactate, diethyleneglycol dipropionate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di (2-ethylhexyl) phthalate; alcohols having six or more carbon atoms, e.g. hexanol, octanol, benzyl alcohol, phenyl ethanol, phenoxy ethanol, phenoxy propanol and phenoxy butanol; ethers having at least 5 carbon atoms, preferably C5-14 ethers, e.g. anisole and phenetole; nitrocellulose, cellulose ether, cellulose acetate; low odour petroleum distillates; turpentine; white spirits; naphtha; isopropylbiphenyl; terpene; vegetable oil; mineral oil; essential oil; and natural oil; and mixtures of any two or more thereof.
The water-immiscible solvent preferably has a solubility in water at 20xc2x0 C. of up to 50 g/l.
A further feature of the invention provides a composition comprising a water-dissipatable polymer and a compound of Formula (1). In these compositions the preferred water-dissipatable polymers and dyes are as described in in the following co-pending patent applications WO95/34204, WO99/50326, WO99/50362, WO99/50361, WO00/29493, WO00/37575. These applications are hereby incorporated by reference These applications are hereby incorporated by reference.
Such compositions may be dissipated in water and optionally mixed with further ingredients to give an ink, for example with one or more organic solvents.
The other ingredients may comprise one or more formulating agents conventionally used in inks for example to improve the solubility of colorant in the ink and/or to improve the flow and handling properties of the ink. Thus for example the ink may comprise one or more: humectant(s); rheological agent(s) [such as viscosity modifier(s) and/or surface tension modifier(s), for example wax(es) (e.g. beeswax) and/or clay(s) (e.g. bentonite)]; corrosion inhibitor(s), biocides (such as those available commercially from Avecia Limited under the trade name Proxel GXL or from Rohm and Haas under the trade name Kathon); fungicide(s); kogation reducing additives; IR absorber(s) (such as that available commercially from Avecia Limited under the trade name Projet 900NP); fluorescent brightener(s), (such as C.I. Fluorescent Brightener 179); and surfactant(s) (which may be ionic or non-ionic and include surface active agent(s) wetting agent(s) and/or emulsifier(s) such as those described in McCutcheon""s Emulsifiers and Detergents 1996 International Edition or in Surfactants Europa 3rd Edition 1996 each of which is incorporated herein by reference).
The ink may also comprise radical scavengers and/or UV absorbers to help improve light and heat fastness of the ink and resultant colour filter. Examples of such additives include: 2-hydroxy-4-methoxy-5-sulfobenzophenone; hydroxy phenylbenzotriazole; 4-hydroxy-TEMPO and transition metal complexes (such as nickel complexes of thiocarbamic acids). These additives are used typically in an amount from 30% to 60% by weight of the colorant, and are further described in xe2x80x9cThe Effect of Additives on the Photostability of Dyed Polymersxe2x80x9d, Dyes and Pigments, 1997, 33(3), 173-196 and JP-A-04-240603 (Nippon Kayaku).
For an aqueous ink, the ink preferably has a pH from 3 to 12, more preferably from 4 to 11. The pH selected will depend to some extent on the desired cation for the colorant and the method of application. The desired pH may be obtained by the addition of a pH adjusting agent such as an acid, base or pH buffer. The amount of pH adjuster used will vary according to the desired pH of the ink, but typically a base may be present in an amount of up to 30%. Where a liquid(s) is added to the mixture the printed substrate may be dried by heating or by air drying at ambient temperature to evaporate the liquid before the coating is cured or during curing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure relates to an electronic pen and a handwriting input system using the same.
2. Description of the Related Art
Japanese Laid-Open Patent Publication No. 2007-226577 discloses a technology by which for writing a letter or the like on a sheet of paper on which a great number of dot marks obtained by coding positions are located by printing or the like, information provided on the sheet of paper is made electronic data by use of an electronic pen and the information made the electronic data is sent to a server or a terminal. Japanese Laid-Open Patent Publication No. 2012-128563 discloses a handwriting input system by which a great number of dot marks obtained by coding positions are located on a digital display or the like and handwriting input is performed on the digital display by use of an electronic pen. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a semi-closed circuit passive gas addition breathing apparatus and more particularly to a variable volume ratio compound counterlung used in a rebreathing apparatus.
2. Description of Related Art
Conventional semi-closed rebreathers operate by delivering a premixed gas from a scuba cylinder through a constant flow regulating device, usually by supplying a regulated gas supply to a changeable orifice. Gas is delivered at a preset rate regardless of depth. The gas being breathed is recirculated, and as the oxygen within the mixture is metabolically consumed, it is hopefully being adequately replaced on a continuous basis with a predetermined continuous flow of oxygen enriched gas.
Rebreathers consist of a breathing loop from which the diver inhales and into which the diver exhales. As most of the exhaled gas stays in the breathing loop, rebreathers allow for much greater gas efficiency than open circuit systems. This greater gas efficiency allows for longer duration dives as compared to open circuit systems, or, conversely, requires less gas supply for a dive of equal duration.
The breathing loop generally includes a relief valve, scrubber, counterlung, depth equalization regulator, continuous injection system, hoses and a mouthpiece. The relief valve is utilized for dumping or venting excess gas in the breathing loop created by the rebreather on ascent and excess gas which is produced with the use of constant (active) addition systems. The scrubber cleanses the exhaled gas of carbon dioxide. The counterlung or breathing bag allows for the retention of the diver's exhalation gas. The injection system adds fresh gas to the carbon dioxide cleansed gas in the breathing loop. The depth equalization regulator adds supply mix to the loop to keep pace with depth increases. The hoses are utilized to connect the counterlung and scrubber with the mouthpiece. The mouthpiece is connected to the two hoses and is the point on the breathing loop where the diver exhales and inhales. Typically, two conventional one-way valves are incorporated into the mouthpiece.
Rebreathers normally include a harness to strap the unit to the diver, with some units also including a protective case for the various above described components.
As stated above, rebreathers generally work by recycling most of a diver's exhaled breath, which travels through the breathing loop through the scrubber, and is returned to the diver during inhalation. The use of a rebreather allows a diver to remain underwater for a relatively long time as compared to the use of open circuit equipment.
Accordingly, rebreathers allow exhaled gas to be cleansed of carbon dioxide and replenished with fresh oxygen for further consumption. A traditional fixed flow (active addition) semi-closed rebreather recycles the gas the diver is breathing, removing excess carbon dioxide from the exhaled gas and replacing it with a measured amount of premixed gas to maintain an oxygen partial pressure in the inspired gas that will continue to support metabolism.
There are several previously known types of operating systems for semi-closed circuit rebreathers, including fixed discharge ratio, continuous injection and mechanically pulsed. In the 1970's, as electronically controlled rebreathers were coming into their own, a fixed discharge ratio counterlung (an inner bellows within an outer bellows) was developed for semi-closed use in Europe. This type of rebreather was coined the first "passive" addition or counter mass ratio system. "Passive" means gas is only added as required to replace gas that has been discharged from the breathing loop by the control mechanism.
The "passive" addition system discharged a fixed percentage of each exhalation overboard, thus responding to respiratory minute volume ("RMV") or work rate. As such, reasonably tight decompression schedules could be computed for semi-closed equipment, eliminating the need for complex electronic oxygen monitoring.
Any system keyed to RMV is essentially using the diver as a sensor. The passive system uses a proportional discharge valve or a bellows within a bellows to discharge a fixed percentage of every exhalation overboard. The missing part of the exhalation is made up "passively" by one or two demand regulators on the following inhalation. Excess gas in the breathing loop from reduced ambient pressure is vented off by an overpressure relief valve. The fixed discharged ratio units maintain reasonably steady oxygen fractions in the breathing loop. The counterlung does not have to be purged on normal ascents to prevent hypoxia.
One drawback with the fixed discharged ratio semi-closed circuit is that it is not as gas efficient as electronic closed circuit rebreathers or constant flow (active) semi-closed rebreathers due to the fact that gas usage increased with depth similar to open circuit equipment. Furthermore, different diver positions often caused gas to be lost. The increased gas usage limits dive duration at depth as compared to other types of semi-closed units. Thus, despite solving decompression problems the bellow within a bellow system was ultimately abandoned due to its limited dive duration capabilities.
The continuous injection system is an active addition system and typically bleeds a fixed flow of single source mixed gas into the breathing loop from a variable or changeable fixed orifice. The flow rate is determined by estimating the diver's work rate for the intended dive and hopefully ensuring that enough oxygen from the mixed gas supply enters the system to meet anticipated metabolic requirements. Hypoxia is possible if the counterlung is not purged during ascent. Additionally, extended periods of higher than anticipated work loads can also produce hypoxia.
The mechanically pulsed semi-closed rebreather is also an active system and uses a bellows counterlung to mechanically drive a ratchet/cam that pulses gas addition valves in approximate response to respiratory minute volume. The gas addition is from a single mixed gas supply and is regulated to provide reasonably tight oxygen fractions in the breathing loop. Excess gas in the breathing loop from additions or reduced ambient pressure is vented off by an overpressure relief valve. However, with this type of unit, there are more single point addition failure possibilities.
Accordingly, no prior RMV controlled recirculating breathing system has incorporated a mass-constant discharge capability. Thus, there exists a need for a "passive" gas addition semi-closed circuit rebreather unit which provides for a variable discharge ratio which changes with depth to effect a mass constant discharge ratio (to reduce gas wastage) that is controlled by the diver's RMV (to make the unit responsive to actual metabolic requirements). It is therefore, to the effective resolution of the aforementioned problems and shortcomings that the present invention is directed. | {
"pile_set_name": "USPTO Backgrounds"
} |
A regulating transformer with a tap changer is known from U.S. Pat. No. 3,175,148 A. The transformer has a main winding and a regulating winding for each phase. In addition, associated with each phase is a choke (preventive autotransformer) that is used as a switching inductance from the tap changer, which is separately arranged outside at the regulating transformer, during the switching-over processes. The three switching inductances of the three phases are on the upper yoke of the main and regulating windings.
Since the chokes are directly at the yoke, in the case of arrangement of the tap changer on the high-voltage side, thus at the high-voltage potential, these chokes have to be particularly well insulated relative to the transformer yoke at ground potential. This has a significant effect on production costs of chokes of that kind. The connecting of the chokes with the respective tap changers is in that case complicated and similarly has to be very well insulated relative to ground potential. | {
"pile_set_name": "USPTO Backgrounds"
} |
Extruded synthetic foam is generally prepared by melting a base polymeric composition and incorporating one or more blowing agents and optional additives into the polymeric melt under conditions that provide for the thorough mixing of the blowing agent and the polymer while preventing the mixture from foaming prematurely, e.g., under pressure. This mixture may then be extruded through a single or multi-stage extrusion die to cool and reduce the pressure on the mixture, allowing the mixture to foam and produce a foamed product.
Polystyrene is often used to produce foams, since polystyrene foams are good thermal insulators. Polystyrene foams are traditionally less thermally stable at high temperatures than other foamed polymers, which limit the use of polystyrene foams in certain markets.
U.S. 2007/0149711 ('771) discloses a polymeric composition that includes thermally reversible cross-linked bonds. The thermally reversible cross-links are formed by mixing a free-radical reactive polymer, such as polyethylene; a free-radical inducing species; a free radical trapping species; and a complementary thermall-reversible bond contributor. The polymer is capable of forming free radicals when induced by the free radical inducing species. | {
"pile_set_name": "USPTO Backgrounds"
} |
Magnetic locators used for detecting ferromagnetic objects that are buried or obscured from plain sight are known in the art. These magnetic locators are often employed in industrial or construction sites to detect ferromagnetic objects, such as Parker-Kalon (PK) nails, iron pipes, buried metal objects, valve covers, masonry nails, manhole covers, wires, cast iron water and gas lines, valve boxes, septic tanks and well casings, and surveyor markers.
Conventional magnetic locators, however, leave much room for improvement. Current magnetic locators are often costly to both the manufacturer and the customer, are unduly complex in configuration, and have variable sensitivity. For example, conventional magnetic locators often require manual orientation to a north pole, and need to be carried close to the ground in order to generate accurate readings. Conventional magnetic locators often employ elements such as a dipping needle, an LCD, or audible tones, to indicate the presence of ferromagnetic objects. Such conventional magnetic locators also employ flux-gate magnetic field sensors, such as single-core and double-core (e.g., Förster and Vaquier type sensors), where the odd harmonics of the magnetizing current in the output signal are heavily attenuated.
Accordingly, there is a need for improved magnetic locators that enable reduction in manufacturing cost, provide improved sensitivity, and/or provide other enhanced functionality. | {
"pile_set_name": "USPTO Backgrounds"
} |
The field of art to which this invention pertains is the absorption of one or more gas species from a flowing gas stream. In particular, the present invention pertains to the separation of gas species which are particularly aggressive towards conventional materials of construction which are used to build absorbers. More specifically, the invention relates to a gas absorber for removing at least one gaseous component from a flowing gas stream by contacting the gas stream with a lean liquid stream to absorb at least a portion of the gaseous component to produce a rich liquid stream comprising the gaseous component and a flowing gas stream having a reduced concentration of the gaseous component. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention is directed primarily to the sport of golf, and, more particularly to golf clubs associated with the sport. The particular club disclosed and claimed pertains to one that has an adjustable shaft angle such that the golf club can be adjusted and tuned for a particular user. The invention is shown primarily with respect to putters, however, the principles of the invention may be applied to other clubs.
2. Background Art
Golf clubs, and, in particular, putters have long been known in the art. Countless designs for golf clubs have been developed to provide certain advantages. Among other features, it has been found that a proper fitting club is highly advantageous to a golfer. Inasmuch as different players have different heights, arm lengths, postures, etc., to provide a custom club, a user must have access to machinery or a large number of different configurations (i.e., a large inventory).
It would be highly advantageous if a club had a range of adjustment so that a single club could be modified (i.e., adjusted) to a number of different orientations. In turn, a single set of components could be suitable for a number of differently shaped and sized golfers. As a result, the quantity of specialized parts and the inventory that would be maintained by a golf club fitter could be greatly reduced.
It is therefore an object of the invention to provide a golf club which includes components which permit a certain amount of adjustment, to, in turn, provide a perfect fit for a number of golfers having differing measurements.
It is another object of the invention to provide a custom golf club fit with components that fit a wide variety of users of different measurements.
These and other objects of the present invention will become apparent in light of the present specification, claims, and drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Robotic vehicles, such as aerial robotic vehicles or “drones,” are often used for a variety of applications, such as surveillance, photography, and/or cargo delivery. Many robotic vehicles use obstacle avoidance systems that work in conjunction with vehicle control systems to avoid hitting people, property, and objects. For example, once a robotic vehicle detects a nearby object, the obstacle avoidance system executing within the controller may prevent the robotic vehicle from approaching the object closer than some minimum distance (which is referred to herein as a “proximity threshold”). The proximity threshold is typically a fixed distance. In the case of aerial robotic vehicles that includes propeller blades, the proximity threshold may be a few feet to avoid damage and/or injury from contact with the spinning propeller blades. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present device relates generally to electronic systems and, more particularly, to electronic systems and components exhibiting non-analogous reset strategies.
To contain and potentially shorten the design and development cycle time for large-scale systems, previously designed components, or modules, are commonly used. Such modules, having been designed for systems having differing reset requirements, often have differing clock and timing constraints. Some modules, for example, employ an asynchronous reset scheme, a synchronous reset scheme or a mix of both. Others employ a positive-edge-triggered clocking scheme, a negative-edge-triggered clocking scheme, a level sensitive scheme, a multi-phased scheme, and so on. In like manner, the convention used for resetting each module may differ. For each module, the reset strategy employed introduces timing constraints relative to the particular clocking scheme employed. Examples of such timing constraints include: a synchronous reset must arrive at the module for a specified duration before the active edge of the clock and/or be held at its active state for a specified duration after the clock edge; an asynchronous reset should not be released in close proximity to a change of clock state in a level sensitive clocking design; a reset signal should not be asserted, or de-asserted, in close proximity to an assertion or desertion of a set signal; the release of a reset signal is advantageously effected about simultaneously for all modules; and so on. From a systems viewpoint, the varying reset and clocking strategies produce a combinatorial complex set of design constraints.
To accommodate the varying clocking strategies among modules, conventional systems include a module-clock-generator that generates the various clocking signals, at appropriate frequency and phase relative to each other for proper system operation. Accommodation of the varying reset strategies is commonly somewhat less structured. Typically, because of the combinatorial nature of the problem, specific reset circuitry is designed for each modules, or for each set of modules having a similar combination of reset and clock configurations. While the design of each reset circuit may not be unduly burdensome, the system level design task of properly defining, configuring, and testing each of these circuits can be significant.
The use of specific, time-dependent, reset circuits also minimizes the likelihood that systems designed with such circuits with xe2x80x9cscalexe2x80x9d as technologies change, or as other features are added to the system. Similarly, the use of such a system as a future module in a larger system will only serve to exacerbate the problems associated with modules having differing reset strategies and timing constraints.
The present invention makes possible a reset circuit that is modular, scaleable, straightforward to implement, allows for simple and safe physical design implementation, and addresses problems stated in the Background hereinabove. The present invention is exemplified in a number of implementations and applications, some of which are summarized below.
According to an example embodiment of the present invention, a reset circuit is adapted to reset a plurality of circuit modules in a manner that addresses problems including those discussed in the Background hereinabove. The reset circuit includes a reset module adapted to generate a reset signal, a clock module and a plurality of synchronization modules. The clock module has an external clock reference and at least one clock module output for each of the plurality of circuit modules. A reset clock signal is provided to each of the circuit modules via the clock module outputs in response to the generated reset signal. The frequency of the clock module is selectable to an external clock reference. Each synchronization module is coupled to one of the plurality of circuit modules and has a reset input port coupled to the reset module and a clock input port coupled to one of the clock module outputs. The synchronization modules are adapted to synchronize the reset signal to the reset clock signal and to provide the synchronized reset signal to reset each circuit module. The circuit modules are adapted to enable internal resets in response to a reset signal.
In another example embodiment of the present invention, a plurality of circuit modules adapted to enable internal resets in response to a reset signal are reset using a method that addresses problems including those discussed in the Background hereinabove. A reset signal is generated, and a reset clock signal having a frequency of an external clock reference is sent to each circuit module in response to the generated reset signal. The reset signal is synchronized to the reset clock signal for each circuit module, and the synchronized reset signal is to reset each circuit module. When the reset is disabled, each circuit module releases its internal reset almost simultaneously.
The above summary is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and detailed description that follow more particularly exemplify these embodiments. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to data center infrastructure and networking, and more particularly, this invention relates to supporting converged traffic over Ethernet link aggregation (LAG).
Network packet switches use Link Aggregation (LAG) to create a higher bandwidth port channel using multiple switch ports. As defined in the IEEE 802.1AX standard, LAG provides a logical interface to the Media Access Control (MAC) client (higher layer protocol in network stack) and is responsible for distribution of frames across physical ports within a LAG enabled system with the help of a frame distribution algorithm.
LAG may be formed statically or dynamically. Static LAG has a fixed number of ports which are always members of the LAG if they are configured to be members of the LAG. Dynamic LAG, according to Link Aggregation and Control Protocol/LACP IEEE 802.3AD, provides facilities where port members may dynamically join and leave the dynamic LAG. Distributing or load balancing network traffic over the LAG ports is accomplished with algorithms, various different algorithms being currently available to control distribution across members in a LAG. Good algorithms provide efficient ways of hashing packets over the member ports, make sure each port is used equally, and ensure that no one port gets congested.
A switching processor, such as a switching application specific integrated circuit (ASIC) may be used to provide various algorithms which choose ports for network packets. Most of the algorithms are based upon tuples formed from information in the packet header of the packets. The tuples typically include a source media access control (MAC) address, a destination MAC address, a virtual local area network (VLAN) identifier, a source internet protocol (IP) address, a destination IP address, a source transport port, and a destination transport port. Some algorithms consider additional programmable factors to achieve better distribution of packets on ports and/or other usage metrics.
LAGs are important properties of the switches in a network and impact the performance of the switches and network in general. LAGs also alter the overall performance of the set of switches connected together. While link aggregation improves throughput/resiliency performance of a network, higher layer protocols in the end host network stack impose certain constraints on packet delivery. For TCP/IP networks, for example, one requirement may be in-order packet delivery.
A converged Ethernet network may include both Ethernet and storage-based communications for example, where storage communications may include Fiber Channel over Ethernet (FCoE) and/or remote direct access memory (RDMA) over Converged Enhanced Ethernet (RoCEE).
Accordingly, it would be beneficial to be able to utilize LAGs on a converged network in a way that adheres to the requirements of both Ethernet and storage-based protocols. | {
"pile_set_name": "USPTO Backgrounds"
} |
The following disclosure relates to energy management, and more particularly to energy management of household consumer appliances, as well as other energy consuming devices and/or home energy systems found in the home. The present disclosure finds particular application to coupling a home energy management system (HEM)/home energy gateway (BEG) with coordinate-based location devices that will allow the HEM/HEG to track the home member's location based on time and control home devices and/or appliances accordingly.
Many utilities are currently experiencing a shortage of electric generating capacity due to increasing consumer demand for electricity. Currently utilities charge a flat rate, but with increasing cost of fuel prices and high energy usage at certain parts of the day, utilities have to buy more energy to supply customers during peak demand, which causes prices to rise during these times. If peak demand can be lowered, then a potential huge cost savings can be achieved and the peak load that the utility has to accommodate is lessened. In order to reduce high peak power demand, many utilities have instituted time of use (TOU) metering and rates which include higher rates for energy usage during on-peak times and lower rates for energy usage during off-peak times. As a result, consumers are provided with an incentive to use electricity at off-peak times rather than on-peak times and to reduce overall energy consumption of devices at all times.
Home Energy Management (HEM) systems have been developed and described in U.S. patent application Ser. No. 12/892,130, fully incorporated by reference herein, that can automatically operate and disable power consuming devices in a designated home network. The energy management systems include a central controller that is in communication with each of the power consuming devices and provide a homeowner the means to monitor and manage their energy consumption through a combination of behavior modification and programmed control logic. Active and real time communication of energy costs of power consuming devices to the consumer enables informed choices of operating the power consuming functions of the appliance. One type of HEM is in the form of a special custom configured computer with an integrated display, which communicates to devices in the home and stores data, and also has simple algorithms to enable energy reduction. This type of device may include a keypad for data entry or the display may be touch screen. This device is either integrated in a unitary housing, or if the display is not in the same housing, the display and computer are otherwise connected/associated to work as a single unit. A second HEM is in the form of a low cost router/gateway device in a home that collects information from devices within the home and sends it to a remote server and in return receives control commands from the remote server and transmits the commands to energy consuming devices in the home. As with the first, this HEM may be custom configured including a computer and integrated or otherwise connected/associated display (and keypad if used) designated as a single unit.
Additionally, a Home Energy Gateway (HEG) system has been developed as a premise data management system that is significantly smaller, cheaper, and consumes less power, as described in U.S. patent application Ser. No. 12/983,425, fully incorporated herein by reference. The HEG has the capability of operating over multiple communication networks which each use different formats, protocols, and bandwidths. This allows the HEG to acquire and manipulate (e.g. reformat) data of one communication network (e.g., that which monitors/controls the home appliances) and to supply that manipulated data to another communication network (e.g. to the consumer electronics network, such as to a home computer, smart phone, web-enabled TV, etc.), even though these networks are not generally compatible.
To take advantage of the lower cost of electricity during off-peak times, the HEM/HEG systems are designed automatically operate power consuming devices during off-peak hours in order to reduce consumer's electric bills and also to reduce the load on generating plants during on-peak hours. Active and real time communication of energy costs of devices to the consumer enables informed choices of operating the power consuming functions of the devices. Although these systems are capable of being run automatically according to demand period, a user may choose to override the system and run a device normally, or delay the operation of the system for a particular period of time.
The HEM/HEG is designed to operate home network power consuming devices and provide homeowners with power and cost saving information. It would be advantageous, however, to enable operation of the home network in view of the locations of home network members, such as when such members are at home or away from the home.
Navigation systems, such as global positioning systems (GPS), vehicle compass, distance sensors, and other navigation systems are being included in devices such as vehicles, cellular telephones, and other portable devices, to provide navigation and location information-based information to users. Global Positioning Systems (GPS) are widely used as space-based global navigation systems that provide reliable location and time information in all weather and at all times anywhere on earth.
Accordingly, it would be beneficial to utilize the positioning capability of GPS and other navigation devices to provide an HEM/HEG with the positional information of home network members to allow an HEM/HEG to control the home network devices based on the member's location. | {
"pile_set_name": "USPTO Backgrounds"
} |
A method and apparatus for injecting one or more fluids into a borehole.
Boreholes such as producing wellbores may periodically require treatment in order to maximize the efficiency of the recovery of fluids from the borehole. Such treatments often involve the injection of treatment fluids into the borehole and thus into the formation surrounding the borehole.
The treatment fluids may serve a variety of purposes. For example, fluids may be injected into a borehole in order to xe2x80x9ccleanxe2x80x9d a clogged formation or may be injected into a borehole in order to seal off a portion of the formation which has become fractured or which is excessively permeable. Sometimes the fluid treatment of boreholes requires the injection of several fluids either simultaneously or in sequence.
One option for performing fluid treatment of boreholes is merely to inject treatment fluids into the borehole from the ground on the assumption that an adequate amount of the fluids will be delivered to their desired location. This option is potentially very expensive, since considerable waste of treatment fluids may result. In addition, where a long section of the borehole must be treated, it may be difficult to deliver adequate amounts of treatment fluids to the desired section of the borehole.
A second option for performing fluid treatment of boreholes is to first isolate the section of the borehole that must be treated with packers or other sealing devices and then inject the treatment fluids only into the isolated section. This option is also potentially very expensive, since the apparatus for isolating the treatment section must be installed in the borehole before the fluid treatment occurs and must be removed from the borehole after the fluid treatment is finished. In addition, if multiple sections or a long continuous section of the borehole must be treated, the isolation apparatus must be moved through the borehole between treatments.
Exemplary apparatus and methods for isolating borehole sections for injection of fluids therein include those described in U.S. Pat. No. 2,764,244 (Page), U.S. Pat. No. 2,869,645 (Chamberlain et al), U.S. Pat. No. 3,319,717 (Chenoweth), U.S. Pat. No. 3,398,796 (Fisher et al), U.S. Pat. No. 3,454,085 (Bostock), U.S. Pat. No. 3,527,302 (Broussard), U.S. Pat. No. 3,945,436 (Nebolsine), U.S. Pat. No. 4,030,545 (Nebolsine), U.S. Pat. No. 4,424,859 (Sims), U.S. Pat. No. 5,002,127 (Dalrymple et al), U.S. Pat. No. 5,018,578 (El Rabaa et al) and U.S. Pat. No. 5,350,018 (Sorem et al).
The apparatus described in the above patents constitute relatively fixed and permanent installations in the borehole which typically require the setting of the sealing devices before fluid injection takes place and the unsetting of the sealing devices after fluid injection is finished in order to facilitate the injection apparatus being removed from or moved within the borehole.
It would be desirable to be able to move the injection apparatus through the borehole without first setting and unsetting the sealing devices since this would undoubtedly result in a saving of time and cost associated with fluid treatment. Unfortunately, none of the patents referred to above appear to contemplate simultaneous fluid injection and movement of the injection apparatus through the borehole.
One explanation for this is that it is difficult to achieve the objective of isolating the section of the borehole into which injection is performed without the use of sealing devices which exert a relatively high sealing force against the interior surface of the borehole, which sealing force is an impediment to movement of the injection apparatus through the borehole.
One attempt to provide an injection apparatus which offers simultaneous fluid injection and movement of the apparatus through the borehole is found in PCT International Publication No. WO 99/34092 (Blok et al), which was published on Jul. 8, 1999.
The Blok apparatus includes a tool which comprises at least three axially spaced swab assemblies which define at least two annular spaces between the tool body and a wellbore. In use the tool is moved through the wellbore while a first treatment fluid is pumped via a first annular space into the wellbore and the formation and a second treatment fluid is pumped via a second annular space into the wellbore and the formation.
The combined effect in Blok of the movement of the tool and the injection of the two treatment fluids is that the first treatment fluid enters the formation before the second treatment fluid so that the two treatment fluids together provide a complete fluid treatment without the need for wellbore cycling to deliver different fluids to the treatment zone separately.
The swab assemblies in Blok are required to satisfy two somewhat incompatible design criteria since they must minimize the amount of sealing force between themselves and the wellbore in order to facilitate movement of the tool through the wellbore and also must provide an xe2x80x9ceffective sealxe2x80x9d between the annular spaces in order to maintain segregation of the treatment fluids in the wellbore before they enter the formation.
In some circumstances, it may be desirable to maintain segregation of fluids after they have entered the formation in addition to maintaining their segregation within the borehole. Blok does not appear to contemplate or address this issue.
One mechanism for maintaining segregation of different fluids in the formation surrounding the borehole is to create an interface between them which restricts their movement in the borehole.
U.S. Pat. No. 4,842,068 (Vercaemer et al) contemplates containing a fluid treatment zone between two protection zones in a wellbore and a formation by simultaneously injecting a treatment fluid into the treatment zone and injecting protection fluids into the protection zones. The interface between the treatment fluid and the protection fluids is created by providing that the protection fluids are immiscible with the treatment fluid. There is no discussion in Vercaemer concerning the pressures or relative pressures at which the treatment fluid and the protection fluids are injected into the wellbore and the formation. There is also no indication in Vercaemer that the method can be performed while moving the injection apparatus through the wellbore.
U.S. Pat. No. 5,002,127 (Dalrymple et al) describes a method for controlling the permeability of an underground well formation by creating a chemical barrier in the formation as an interface between fluids. This chemical barrier is created by simultaneously injecting a first treatment fluid and a second sealant fluid into the formation via a wellbore which is fitted with a packer for maintaining separation of the first fluid and the second fluid in the wellbore. Migration of the second fluid into the portion of the formation occupied by the first fluid is inhibited by substantially balancing the injection pressures of the first fluid and the second fluid. Dalrymple does not contemplate moving the injection apparatus (including the packer) through the wellbore while injection of the first fluid and the second fluid is ongoing.
U.S. Pat. No. 5,018,578 (El Rabaa et al) contemplates the delivery of two separate fluids into two separate zones in a borehole, which zones are separated within the borehole by sealing means such as a packer. The two fluids are chemically reactive with each other such that they form a precipitate which acts as a barrier and interface between the two zones in the formation surrounding the borehole.
Although El Rabaa indicates that the two fluids should be injected into the borehole and the formation sufficient to achieve the stated goal of fracturing the formation in a controlled manner, there is no discussion in El Rabaa concerning the relative pressures at which the two fluids should be injected in order to control the location of the chemical barrier between the two injection zones. Furthermore, El Rabaa does not suggest that the injection apparatus (including the sealing means) can be moved through the wellbore while the two fluids are injected into the wellbore.
It would be advantageous to apply the principles for creating an interface between two fluids to the design of an apparatus which can be moved through a borehole while fluid injection is taking place in order to provide an apparatus which facilitates segregation of different fluids within the borehole while minimizing the tap design requirements for seals which are included in the apparatus.
The present invention is a method and apparatus for injecting one or more fluids into a borehole in a plurality of zones by creating interfaces in the borehole between zones. The interfaces may be constituted by sealing devices, chemical barriers, physical barriers, pressure balancing between fluids, or by a combination of techniques. Preferably the interfaces are constituted by using a combination of zone interface elements and pressure balancing techniques.
In a method aspect, the invention is a method for injecting an injection fluid into a borehole, the method comprising the following simultaneous steps:
(a) injecting the injection fluid into a primary injection zone in the borehole at an injection fluid pressure, wherein the primary injection zone is bounded longitudinally by a proximal injection zone interface and a distal injection zone interface;
(b) maintaining pressure at the proximal injection zone interface at a proximal interface pressure which is substantially balanced with the injection fluid pressure; and
(c) maintaining pressure at the distal injection zone interface at a distal interface pressure which is substantially balanced with the injection fluid pressure.
The pressure maintaining steps may be performed in any manner which substantially balances the pressures at the injection zone interfaces. Preferably the step of maintaining pressure at the proximal injection zone interface may be comprised of injecting a proximal balancing fluid into a proximal balancing zone in the borehole, wherein the proximal balancing zone is adjacent to the proximal injection zone interface. Preferably the step of maintaining pressure at the distal injection zone interface may be comprised of injecting a distal balancing fluid into a distal balancing zone in the borehole, wherein the distal balancing zone is adjacent to the distal injection zone interface.
The balancing zones may be comprised of a single balancing zone stage or a plurality of balancing zone stages.
Preferably the proximal balancing zone is comprised of a plurality of proximal balancing zone stages disposed sequentially between a proximal end of the proximal balancing zone and the proximal balancing zone interface and the step of maintaining pressure at the proximal injection zone interface is comprised of simultaneously injecting the proximal balancing fluid into each of the proximal balancing zone stages such that a positive pressure gradient is formed from the proximal end of the proximal balancing zone to the proximal injection zone interface.
Preferably the distal balancing zone is comprised of a plurality of distal balancing zone stages disposed sequentially between a distal end of the distal balancing zone and the distal balancing zone interface and the step of maintaining pressure at the distal injection zone interface is comprised of simultaneously injecting the distal balancing fluid into each of the distal balancing zone stages such that a positive pressure gradient is formed from the distal end of the distal balancing zone to the distal injection zone interface.
In the preferred embodiment, each pair of adjacent balancing zone stages is separated by a proximal balancing zone interface. In the preferred embodiment, the proximal balancing fluid has a pressure in each proximal balancing zone stage and the pressure increases between adjacent proximal balancing stages from the proximal end of the proximal balancing zone to the proximal balancing zone interface. In the preferred embodiment, the distal balancing fluid has a pressure in each distal balancing zone stage and the pressure increases between adjacent distal balancing stages from the distal end of the distal balancing zone to the distal balancing zone interface.
Preferably, the method further comprises the step of moving the primary injection zone longitudinally through the borehole while injecting the injection fluid into the primary injection zone and further comprises the step of sensing at least one borehole parameter in the primary injection zone while moving the primary injection zone longitudinally through the borehole.
The step of moving the primary injection zone longitudinally through the borehole may be performed using any apparatus or method. The sensed borehole parameter or parameters may be comprised of any characteristic or property of the borehole or the formation surrounding the borehole, including but not limited to temperature, pressure, permeability, porosity, composition etc. Data pertaining to the sensing of the borehole parameter or parameters may be recorded for analysis at a later date and may be stored with the apparatus performing the method or transmitted for storage outside the borehole.
The proximal balancing fluid and the distal balancing fluid may be comprised of the same fluid or different fluids and the balancing fluids may be different in different balancing zone stages, so long as the pressure maintaining steps can be facilitated. The balancing fluids may be comprised of treatment fluids or may be fluids which serve no purpose other than facilitation of the pressure balancing steps.
In an apparatus aspect, the invention is an apparatus for injecting an injection fluid into a borehole, the apparatus comprising:
(a) a body adapted for passage through the borehole such that an annular space is provided between an outer surface of the body and an inner surface of the borehole;
(b) at least four radially extendable and retractable zone interface elements spaced longitudinally along the body, for filling the annular space between the outer surface of the body and the inner surface of the borehole when extended to define at least three zones along the body;
(c) a zone interface element actuator associated with the zone interface elements for selectively extending and retracting the zone interface elements; and
(d) a fluid delivery system associated with each zone for delivering a fluid to each zone;
wherein the zone interface elements when extended permit the passage of the body through the borehole while inhibiting the fluids from passing between zones.
The fluid delivery system may be comprised of any method or apparatus for delivering fluids to the zones, including but not limited to conduits which are connected with a remote source of fluid or pressurized tanks of fluid associated with the apparatus. Preferably the fluid delivery system is comprised of a plurality of fluid delivery conduits wherein each zone is provided with fluid from at least one fluid delivery conduit. In the preferred embodiment the fluid delivery conduits are carried within the body of the apparatus.
The zone interface element actuator may be comprised of any apparatus or plurality of apparatus which is capable of extending and retracting the zone interface elements. Preferably the zone interface element actuator is comprised of a reciprocating actuator piston which is contained within an actuator chamber. In the preferred embodiment the actuator chamber is carried on the body of the apparatus.
In the preferred embodiment the zone interface element actuator is further comprised of a linkage assembly for operatively linking the actuator piston with the zone interface elements such that reciprocation of the actuator piston will alternately extend and retract the zone interface elements. Preferably the linkage assembly is comprised of a plurality of linkage collars positioned between adjacent zone interface elements for connecting adjacent zone interface elements. Preferably the zone interface elements and the linkage collars are sidably carried on the outer surface of the body of the apparatus. Preferably the fluid delivery conduits communicate with the zones via apertures defined by the linkage collars.
The zone interface elements may be comprised of any apparatus including any structure or device which is capable of extending and retracting and which when extended will provide a zone interface without unduly inhibiting movement of the apparatus through the borehole. The zone interface elements therefore preferably exert only a minimal sealing force against the inner surface of the borehole when they are extended which is sufficient to maintain substantial segregation of fluids between zones when the pressures between zones are substantially balanced.
As a result, the zone interface elements are not comprised of conventional packers or other sealing devices which are designed to maintain a seal between zones where a significant pressure differential exists between zones by exerting a relatively high sealing force against the inner surface of the borehole. Instead, the zone interface elements may be described as xe2x80x9crelatively low pressure sealing devicesxe2x80x9d since they need only provide substantial segregation of fluids in situations where there is a relatively low pressure differential across them.
Preferably the zone interface elements also are not comprised of sealing devices which rely upon significant pressure differentials between zones to provide or enhance their sealing force and thus their sealing capacity. For example, cup type packers or swab assemblies may possibly not be preferred for use as zone interface elements unless they are capable of maintaining substantial segregation of fluids between zones when the pressures between zones are substantially balanced while still permitting relatively uninhibited movement of the apparatus through the borehole when they are extended.
There are therefore two essential criteria for selection of the zone interface elements. First, the total sealing force exerted against the inner surface of the borehole by all of the zone interface elements when they are extended should not unduly inhibit the movement of the apparatus through the borehole. Second, the sealing capacity of each of the zone interface elements should be such that when they are extended they are capable of maintaining substantial segregation of fluids between the injection zone and the balancing zones under the operating conditions of the apparatus. The required sealing capacity of the zone interface elements is controlled by controlling the differential pressure across each of the zone interface elements during use of the apparatus.
In the preferred embodiment, the zone interface elements are comprised of bellows-shaped resilient members which are extended when they are compressed and which are retracted when they are expanded. Preferably the bellows-shaped resilient members provide an outer surface which is gently contoured or rounded when the members are extended in order to facilitate relatively uninhibited movement of the apparatus through the borehole.
The actuator piston is preferably actuated by movement within the actuator chamber under the influence of an actuator fluid. The actuator fluid may be comprised of any gas or liquid and may be the same fluid as any of the injection fluid or the balancing fluids.
Preferably the zone interface element actuator is therefore further comprised of at least one actuator conduit for delivering an actuating fluid to the actuating chamber. Preferably the actuator piston divides the actuator chamber into two sides and preferably the actuator piston is a double acting piston such that the zone interface elememt actuator is comprised of a plurality of actuator conduits for delivering actuator fluid to both sides of the actuator chamber. In the preferred embodiment the actuator conduits are carried within the body of the apparatus.
The fluids and the actuator fluid may be delivered to the zones and the actuator chamber via the fluid delivery conduits and the actuator conduits in any manner. The source of the fluids and the actuator fluid may be located outside of the borehole or inside of the borehole. The source of the fluids and the actuator fluid may also be carried on, in or with the apparatus.
Preferably the source of the fluids is located outside of the borehole and the fluids and the actuator fluid are delivered to the apparatus via the fluid delivery conduits and the actuator conduits via one or more injector devices. Preferably the injector device or devices are located outside of the borehole and are operated from outside of the borehole.
The apparatus is preferably adapted to be moved through the borehole while fluids are being injected into the zones. The apparatus may be moved through the borehole in any manner. In the preferred embodiment the apparatus is connected to a conduit such as a jointed pipe string or coiled tubing string for movement through the borehole. The apparatus may, however, also be configured for connection with a wireline or other suitable conveying system or mechanism. As a result, preferably the apparatus is further comprised of a connector for connecting the apparatus to an apparatus conveying mechanism which is preferably operated from outside of the borehole. | {
"pile_set_name": "USPTO Backgrounds"
} |
Sporting events attract people of all ages across the world. While television and radio communication offers some insight into various aspects of the sport, nothing compares to actual attendance to experience the passion a sport commands. The chants and fanfare of supporters in a stadium is a sight to behold. Typically spectators are seated on rows of outdoor bleachers for the entire duration of a game. More often than not, the bleacher bench seats are hard and lack padding or are semi padded. Although youngsters may have no trouble sitting on these seats, older spectators may find it hard to comfortably sit through an entire game. Furthermore, some stadiums may have individual seats instead of benches. Due to prolonged use, most seats may be dirty. A padded seat cover which can be used to adjustably cover different types and makes of seats is required.
Typically seat covers that are used to cover bleacher bench seats or individual seats become dirty over time due to repeated use. Conventional seat covers are not washable which result in shorter life and more wear and tear of the seat cover. A portable seat cover that is machine washable and reusable is thus required. Additionally, spectators may require snacks, electronic devices, for example smartphones, power banks, music players, etc. Some contemporary seat covers can be also used as bags, however, lack secure compartments for storing multiple objects or valuables. A portable seat cover which is convertible to a bag having multiple secure compartments is required. Hence, there is a long felt but unresolved need for a padded seat cover which can be used to adjustably cover different types and makes of seats. Furthermore, there is a need for a portable seat cover that is machine washable and reusable. Moreover, there is a need for a portable seat cover which is convertible to a bag having multiple secure compartments. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a guidance system for a missile or projectile, for example a terminally-guided mortar shell.
2. Discussion of the Prior Art
One proposed guidance system comprises a target sensor including a steerable dish antenna coupled via a transceiver to a series of range gates which discriminate components of the return signal reflected from points within a series of range bands and enters these components into respective appropriate ones of a series of range channels of the system. The antenna is steered to execute a scan pattern over a field of view of the sensor. It has been proposed for such a system to have a resolution sufficient, at least when the projectile gets near to a target, to be able to discriminate returns from different portions of the target. A target tracking sub-system can then use the return signals to derive reflector steering signals which maintain the reflector tracked, not merely onto the target, but rather onto some desired aim-point on the target. The target return, say from a tank, comprises a series of discrete components returned from respective reflective items or features distributed over the target, probably along with some ground clutter returns and spurious signals. There have been proposed various ways of processing in the return signals with a view to guiding the weapon onto the preferred aim point in the face of difficulties arising from the possibly uneven distribution of the reflective items on the target and the clutter and spurious signals. The object of this invention is to provide a guidance system incorporating an alternative form of signal processing which, in some situations, may be preferred. | {
"pile_set_name": "USPTO Backgrounds"
} |
Dry eye syndrome is a debilitating disease that affects millions of patients worldwide and can cripple some patients. Millions of these individuals suffer from the most severe form. This disease often inflicts severe ocular discomfort, results in a dramatic shift in quality of life, induces poor ocular surface health, substantially reduces visual acuity and can threaten vision. Patients with severe dry eye develop a sensitivity to light and wind that prevents substantial time spent outdoors, and they often cannot read or drive because of the discomfort. Current treatment options provide little relief for those suffering from severe conditions. Current options include artificial tears, punctal plugs, humidity goggles, topical cyclosporine, and tarsorrhaphy. None of these treatments provides sufficient relief or treatment of the disease. What is needed is a system for restoring adequate tear production in patients having dry eye syndrome. | {
"pile_set_name": "USPTO Backgrounds"
} |
Clinical-Epidemiological Background
Methicillin resistant strains of Staphylococcus aureus (MRSA) have become first ranking nosocomial pathogens worldwide. These bacteria are responsible for over 40% of all hospital-born staphylococcal infections in large teaching hospitals in the US. Most recently they have become prevalent in smaller hospitals (20% incidence in hospitals with 200 to 500 beds), as well as in nursing homes (Wenzel et al., 1992, Am. J. Med. 91(Supp 3B):221-7). An unusual and most unfortunate property of MRSA strains is their ability to pick up additional resistance factors which suppress the susceptibility of these strains to other, chemotherapeutically useful antibiotics. Such multiresistant strains of bacteria are now prevalent all over the world and the most "advanced" forms of these pathogens carry resistance mechanisms to all but one (vancomycin) of the usable antibacterial agents (Blumberg et al., 1991, J. Inf. Disease (63:1279-85).
A most ominous and recent development is the appearance of a vancomycin resistance mechanism in another nosocomial pathogen--Enterococcus faecium--which is known for its ability to transfer from one cell to another plasmid-born resistance factors, such as vancomycin resistance. The arrival of vancomycin resistance to MRSA is only a matter of time. Once this happens, an invasive bacterial pathogen without any antibacterial agent to control it will result. This event would constitute nothing short of a potential public health disaster of immense proportion (Leclercg et al., 1988, New Eng. J. Med. 319:157-61).
The preceding explains the intense interest in the public health and pharmacological community in any new method that promises a usable intervention against MRSA. A more complete explanation of the basis for antibiotic resistance follows.
Molecular Basis of Antibiotic Resistance
The central genetic element of methicillin resistance is the so called mecA gene. This gene is found on a piece of DNA of unknown, non-staphylococcal origin that the ancestral MRSA cell(s) must have acquired from a foreign source. The mecA gene encodes for a penicillin binding protein (PBP) called PBP2A (Murakami and Tomasz, 1989, J. Bacteriol. 171:874-79), which has very low affinity for the entire family of beta lactam antibiotics. In the current view, PBP2A is a kind of "surrogate" cell wall synthesizing enzyme that can take over the vital task of cell wall synthesis in staphylococci when the normal complement of PBPs (the normal catalysts of wall synthesis) can no longer function because thy have become fully inactivated by beta lactam antibiotic in the environment. The critical nature of the mecA gene and its gene product PBP2A for the antibiotic resistant phenotype was best demonstrated by transposon inactivation experiments in which the transposon Tn551 was maneuvered into the mecA gene. The result was a dramatic drop in resistance level from the minimum inhibitory concentration (MIC) value of 1600 .mu.g/ml in the parental bacterium to the low value of about 4 .mu.g/ml in the transposon mutant (Matthews and Tomasz, 1990, Antimicrobial Agents and Chemotherapy 34:1777-9).
This observation is consistent with the foregoing theory. The mutant bacteria with their interrupted mecA gene could no longer synthesize PBP2A; thus the surrogate enzyme needed for the survival in the antibiotic-rich environment was no longer available to catalyze wall synthesis. Consequently, the methicillin susceptibility of the Tn551 mutant dropped to a level approaching the susceptibility of staphylococci without the mecA gene. Methicillin MIC for such bacteria is usually in the vicinity of 1-2 .mu.g/ml.
Auxiliary genes
Additional genetic work resulted in several surprising observations. First it was found that the level of antibiotic resistance could also be dramatically lowered in transposon mutants in which the Tn551 did not interrupt the mecA gene or interfere with the expression of this gene (i.e., the production of PBP2A). Clearly, these mutants were low in resistance for some reason other than an interruption of the functioning of the mecA gene. In fact, it turned out that the great majority of Tn551 insertional mutants with reduced methicillin resistance all continued to produce normal amounts of PBP2A in spite of the fact that their resistance level could be reduced by very large factors, such as dropping from the methicillin MIC of 1600 .mu.g/ml to a low of 3 .mu.g/ml.
The first such mutant was isolated in 1983 by Swiss scientists at a time when the nature of methicillin resistance was hardly understood at all (Berger-Bachi, 1983, J. Bacteriol. 154:479-87). Subsequent work in several laboratories have increased the number of these genetic determinants, the common feature of which was that they had an intact mecA gene and yet they had reduced resistance levels to the beta lactam family of antibiotics. The provisional name "auxiliary genes" was proposed for this class of unusual genetic elements to imply that they appeared to perform some essential "helper" function(s) in the expression of high level beta lactam resistance (Tomasz, 1990, In Molecular Biology of the Staphylococci, Novick and Skurray, Eds., VHC Publishers: New York, pp. 565-583).
A second surprising observation concerned the number of auxiliary genes that have been identified. By 1993, the number of genetically distinct auxiliary mutants described in the literature had risen to four.
A third set of observations provided clues as to the biochemical nature of auxiliary functions. It was shown by a newly developed high resolution chromatography technique that many of the auxiliary mutants produced abnormal peptidoglycan in their cell walls. Studies combining High Performance Liquid Chromatography (HPLC) and mass spectrometry allowed the identification of the chemical changes that occurred in the mutants (De Jonge et al., 1991, J. Bacteriol. 173:1105-10; De Jonge et al., 1992, J. Biol. Chem. 267:11248-54; De Jonge et al., 1992, J. Biol. Chem 267:11255-9; and De Jonge et al., 1993, J. Bacteriol. 175:2779-82). The cell wall peptidoglycan of auxiliary mutants was composed of muropeptides (cell wall building blocks) either with incomplete cross-linking peptides or containing a free glutamic acid residue instead of the usual isoglutamine. Still other mutants showed different cell wall muropeptide fingerprints in which the exact nature of changes remains to be elucidated. These findings suggest that the auxiliary genes are genes involved with the biosynthesis of cell wall precursor muropeptides.
While all the numerous auxiliary mutants share the common feature of carrying an intact mecA, each one of the auxiliary genes are unique by the criteria of (i) physical location on the chromosome as determined by restriction mapping; (ii) in the several cases in which DNA sequences of the genes were determined (as in the cases of the auxiliary genes known as femA, femB and femC) (Berger-Bachi et al., 1992, Antimicrobial Agents and Chemotherapy 36:1367-73; Gustafson et al., 1993, In Abstracts of the 93rd General Meeting of the American Society for Microbiology, Abstract A-97, p. 18; and De Lencastre et al., 1993, "Molecular Aspects of Methicillin resistance in Staphylococcus aureus", J. Antimicrob. Chemother. 33:), the genes were shown to have unique DNA sequences; and (iii) in the cases in which the mutants had altered cell wall composition, the HPLC patterns provided additional gene-specific fingerprints characteristic of the particular mutant.
Various references are cited in the Description of the Drawings and the Examples by number. A complete citation for each of such references is found at the end of the specification, after the Examples, and before the claims.
The citation of any reference herein is not an admission that such reference is available as prior art to the instant invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Protein kinases (PKs) are a group of enzymes that regulate diverse, important biological processes including cell growth, survival and differentiation, organ formation and morphogenesis, neovascularization, tissue repair and regeneration, among others. Protein kinases exert their physiological functions through catalyzing the phosphorylation of proteins (or substrates) and thereby modulating the cellular activities of the substrates in various biological contexts. In addition to the functions in normal tissues/organs, many protein kinases also play more specialized roles in a host of human diseases including cancer. A subset of protein kinases (also referred to as oncogenic protein kinases), when dysregulated, can cause tumor formation and growth, and further contribute to tumor maintenance and progression (Blume-Jensen P et al, Nature 2001, 411(6835):355-365). Thus far, oncogenic protein kinases represent one of the largest and most attractive groups of protein targets for cancer intervention and drug development.
c-Met, a proto-oncogene, is a member of a distinct subfamily of heterodimeric receptor tyrosine kinases which include Met, Ron, and Sea (Birchmeier, C. et al., Nat. Rev. Mol. Cell Biol. 2003, 4(12):915-925; Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26). The only high affinity ligand for c-Met is the hepatocyte growth factor (HGF), also known as scatter factor (SF). Binding of HGF to c-Met induces activation of the receptor via autophosphorylation resulting in an increase of receptor dependent signaling. Both c-Met and HGF are widely expressed in a variety of organs, but their expression is normally confined to the cells of epithelial and mesenchymal origin, respectively. The biological functions of c-Met (or c-Met signaling pathway) in normal tissues and human malignancies such as cancer have been well documented (Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26; Corso, S. et al., Trends in Mol. Med. 2005, 11(6):284-292).
HGF and c-Met are each required for normal mammalian development, and abnormalities reported in both HGF- and c-Met-null mice are consistent with proximity of embryonic expression and epithelial-mesenchymal transition defects during organ morphogenesis (Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26). Consistent with these findings, the transduction of signaling and subsequent biological effects of HGF/c-Met pathway have been shown to be important for epithelial-mesenchymal interaction and regulation of cell migration, invasion, cell proliferation and survival, angiogenesis, morphogenesis and organization of three-dimensional tubular structures (e.g. renal tubular cells, gland formation) during development. The specific consequences of c-Met pathway activation in a given cell/tissue are highly context-dependent.
Dysregulated c-Met pathway plays important and sometimes causative (in the case of genetic alterations) roles in tumor formation, growth, maintenance and progression (Birchmeier, C. et al., Nat. Rev. Mol. Cell. Biol. 2003, 4(12):915-925; Boccaccio, C. et al., Nat. Rev. Cancer 2006, 6(8):637-645; Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26). HGF and/or c-Met are overexpressed in significant portions of most human cancers, and are often associated with poor clinical outcomes such as more aggressive disease, disease progression, tumor metastasis and shortened patient survival. Further, patients with high levels of HGF/c-Met proteins are more resistance to chemotherapy and radiotherapy. In addition to the abnormal HGF/c-Met expression, c-Met receptor can also be activated in cancer patients through genetic mutations (both germline and somatic) and gene amplification. Although gene amplification and mutations are the most common genetic alterations that have been reported in patients, the receptor can also be activated by deletions, truncations, gene rearrangement, as well as abnormal receptor processing and defective negative regulatory mechanisms.
The various cancers in which c-Met is implicated include, but are not limited to: carcinomas (e.g., bladder, breast, cervical, cholangiocarcinoma, colorectal, esophageal, gastric, head and neck, kidney, liver, lung, nasopharygeal, ovarian, pancreas, prostate, thyroid); musculoskeletal sarcomas (e.g., osteosarcoma, synovial sarcoma, rhabdomyosarcoma); soft tissue sarcomas (e.g., MFH/fibrosarcoma, leiomyosarcoma, Kaposi's sarcoma); hematopoietic malignancies (e.g., multiple myeloma, lymphomas, adult T cell leukemia, acute myelogenous leukemia, chronic myeloid leukemia); and other neoplasms (e.g., glioblastomas, astrocytomas, melanoma, mesothelioma and Wilm's tumor (www.vai.org/met/; Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26).
The notion that the activated c-Met pathway contributes to tumor formation and progression and could be a good target for effective cancer intervention has been further solidified by numerous preclinical studies (Birchmeier, C. et al., Nat. Rev. Mol. Cell Biol. 2003, 4(12):915-925; Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26; Corso, S. et al., Trends in Mol. Med. 2005, 11(6):284-292). For example, studies showed that the tpr-met fusion gene, overexpression of c-met and activated c-met mutations all caused oncogenic transformation of various model cell lines and resulted in tumor formation and metastasis in mice. More importantly, significant anti-tumor (sometimes tumor regression) and anti-metastasis activities have been demonstrated in vitro and in vivo with agents that specifically impair and/or block HGF/c-Met signaling. Those agents include anti-HGF and anti-c-Met antibodies, HGF peptide antagonists, decoy c-Met receptor, c-Met peptide antagonists, dominant negative c-Met mutations, c-Met specific antisense oligonucleotides and ribozymes, and selective small molecule c-Met kinase inhibitors (Christensen, J. G. et al., Cancer Lett. 2005, 225(1):1-26).
In addition to the established role in cancer, abnormal HGF/c-Met signaling is also implicated in atherosclerosis, lung fibrosis, renal fibrosis and regeneration, liver diseases, allergic disorders, inflammatory and autoimmune disorders, cerebrovascular diseases, cardiovascular diseases, conditions associated with organ transplantation (Ma, H. et al., Atherosclerosis. 2002, 164(1):79-87; Crestani, B. et al., Lab. Invest. 2002, 82(8):1015-1022; Sequra-Flores, A. A. et al., Rev. Gastroenterol. Mex. 2004, 69(4)243-250; Morishita, R. et al., Curr. Gene Ther. 2004, 4(2)199-206; Morishita, R. et al., Endocr. J. 2002, 49(3)273-284; Liu, Y., Curr. Opin. Nephrol. Hypertens. 2002, 11(1):23-30; Matsumoto, K. et al., Kidney Int. 2001, 59(6):2023-2038; Balkovetz, D. F. et al., Int. Rev. Cytol. 1999, 186:225-250; Miyazawa, T. et al., J. Cereb. Blood Flow Metab. 1998, 18(4)345-348; Koch, A. E. et al., Arthritis Rheum. 1996, 39(9):1566-1575; Futamatsu, H. et al., Circ. Res. 2005, 96(8)823-830; Eguchi, S. et al., Clin. Transplant. 1999, 13(6)536-544).
Inhibitors of c-Met and other kinases are reported in U.S. Ser. No. 11/942,130, including the compound 2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide (I) having the structure indicated below.
New or improved forms of existing agents which inhibit kinases such as c-Met are continually needed for developing more effective pharmaceuticals to treat cancer and other diseases. The salts, compositions, and methods described herein are directed toward these needs and other ends. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to devices for hanging objects such as framed pictures and paintings on a surface, such as a wall or other support structure. More particularly, this invention relates to a hanging device formed to have a plurality of openings that provide adjustability in essentially any direction in the plane of the surface on which the device is to hang the object.
A variety of devices are known for hanging objects such as framed pictures and paintings on a wall or other surface. Such devices, which include wires and brackets, are typically attached to the back of the object and adapted for engaging a nail or similar item secured in the wall. To simplify the hanging operation, various hanging devices have been proposed that provide multiple points which a support nail can engage. As an example, U.S. Pat. No. Des. 282,525 to Samson et al. depicts a version of the widely-available sawtooth-notched hanger. Another example is U.S. Pat. No. 5,048,788 to Lorincz, which discloses a hanging device with a single aperture that defines a horizontal row of channels from which an object can be hung from a nail by inserting the nail head into one of the channels. These types of hanging devices are usually individually used to allow the user to adjust the horizontal tilt of the object by inserting the nail into the notch, channel, etc., that is most nearly vertically above the object's center of gravity, and then pivoting the object about the nail to level the object. However, these devices are not adapted to provide any degree of vertical repositioning of the object, and horizontal repositioning is very limited since hanging the object from a notch/channel that is not vertically above the center of gravity will inevitably result in the object becoming tilted. Consequently, care must be taken when locating the nail on the wall, and any horizontal and vertical repositioning of the object requires moving the nail on the wall or moving the hanging device on the object, neither of which is desirable from the standpoint of ease and minimizing damage to the object and wall. If the object is one of multiple objects that are to be hung together, arranging the objects to provide a desired spacing between objects can require the process to be repeated several times.
In view of the above, it would be desirable if an improved hanging device were available that provided the capability of both horizontal and vertical adjustment of the object being hung. | {
"pile_set_name": "USPTO Backgrounds"
} |
Detergents used in industrial and institutional warewashing machines have been problematical, whether liquid, powder or solid detergents are used. These problems include: safety problems in handling the detergents, particularly high alkaline (more than 12% caustic) detergents; chemical stability; caking; softening; dehydration; homogeneity; and dispensing equal amounts of detergent and additives at a uniform rate. There are also manufacturing problems with the institutional and industrial detergents. Most of these problems have been adequately discussed in prior art. See U.S. Pat No. Re. 32,763 and 32,818, and the references cited therein, for a discussion of such problems.
In order for a detergent to be effective, whether of high or low alkalinity, the detergent must be able to clean all surfaces, be dispensed uniformly and be used with minimal foaming. To meet these requirements, additives are combined with the detergent. Chlorine-based compounds and defoamers are the common additives used in these detergents. The chlorine-based compounds are particularly important for removing coffee and tea stains.
For industrial and institutional ware washing machines, the detergents used should have the characteristics of being dispensed from a container or the like uniformly, that is, at a controlled rate, into the wash water. Highly alkaline detergents are the most suitable for superior cleaning. In addition to the uniform dispensing of the detergent, the components of the detergent itself should be homogeneous such that there is no variation in the strength of the detergent delivered including any additives within the detergent. This homogeneity can be easily achieved with liquid detergents but for high alkaline solid detergents homogeneity has been difficult to achieve.
Prior to the liquid cast solid detergents disclosed in the above-referenced reissue patents, the problems of solid detergents were acknowledged to be the difficulty in forming solid detergents with high alkalinity which would provide a constant rate of delivery, in blending highly alkaline detergents with sequestering agents, and in mixing highly caustic materials in an aqueous solution to produce a homogeneous product. The other additives typically found in the detergents, such as chlorine-based compounds and defoamers, if added during the formation of the liquid cast solid detergents, could either react with the components, separate within the casting mass, and/or lose their efficacy. According to the disclosures of the reissue patents, the then prior art problems of the difficulty of safely forming a solid homogeneous detergent were overcome by forming an aqueous solution of an alkaline hydratable component and a hardness sequestering agent and then casting the liquid which, upon cooling, formed a hard solid product. Although the compositions disclosed in these patents overcame some of the prior art problems, the process for making such a liquid cast detergent is relatively time consuming.
As described in the reissue patents, a liquid composition is made under very carefully controlled conditions and the liquid composition cast into a receptacle. However, the liquid composition has to be continuously agitated and the temperature controlled up to the time when the liquid composition is cast. Although this process then represented an advance in the state of the art, the forming of the liquid composition further required careful control because of the mixing of the reactive components. Lastly, certain additives, such as surfactants and defoamers, could not simply be blended into the final liquid detergent composition mix in a uniform, dispersed manner.
The present invention is directed to a process which overcomes the problems of forming and casting liquid detergent compositions of non-compatible materials and to the product of the process. The inventive process and product eliminate the need to segregate within the solid detergent certain additives, such as surfactants and defoamers. The product of the invention has uniformly dispersed therethrough the major components of the detergent as well as the other additives. The detergent and additives are dispersed at a uniform rate.
With the process disclosed herein, a cake-like high-alkaline detergent is provided with less water content than other available solid detergents. This results in a cake-like detergent which therefore can deliver more cleaning power per unit weight.
Applicant's invention provides a solid cake-like detergent, which is homogeneous. Applicant's invention forms the homogeneous solid cake-like detergent by blending the components of the detergent as powders to form a dry detergent mixture, then flowing the dry powder mixture through a water spray, moistening the particulates, which then fall into a vibrating receptacle where the moistened powder detergent mix forms into a solid cake.
As used in this disclosure, the term flowing powder means that the particulates of the powdered detergent mixture can easily move and change their relative position within the mixture without separation from the stream such that there is intimate contact between the moisture and the particulates substantially throughout the flowing powder stream of particulates. That is, the particulates of the detergent mixture are distributed at a rate and in an amount such that the particulates flow in the flowing powder stream without being carried out of the system. Under this condition, the use of particulates tends to equalize the composition of the reaction mixture and temperature throughout the moving powder stream. This uniformity of mixing and temperature dispersion has successfully overcome the prior art problems of forming homogeneous high alkaline solid detergents. | {
"pile_set_name": "USPTO Backgrounds"
} |
Software testing can be complex and expensive. One import form of testing is to test that the performance characteristics of a newer version of software is acceptable relative to the older version. When dealing with very large software, such performance testing can be very time-consuming and expensive. Such testing typically includes instrumenting the software, executing the instrumented software, and profiling the execution to determine performance characteristics such as cache misses, pages faults, and the like. Techniques for reducing performance testing costs are desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
Aspects of the present invention relate to prescaler circuits in a performance counter circuit, and more specifically, to dynamically configuring an event-count rate in a prescaler circuit for a performance counter circuit in a computer processing system.
Counters can be used to count signaled events for processes or events which are being monitored by a computer system. The signaled events can generate an event count in the counter that can keep track of the events for data logging, control, diagnostics and other functions in the system. Prescalers can be used in conjunction with counters to scale the events generated by the counters in order to reduce the occurrence of overflows from excess event counts in the counter. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinct cultivar of Dahlia plant, botanically known as Dahlia hybrida and hereinafter referred to by the name ‘Bkdapbg’.
The new Dahlia plant is a product of a planned breeding program conducted by the Inventor in Maasdijk, The Netherlands. The objective of the breeding program is to create new container Dahlia plants that have a freely branching habit, attractive ray floret coloration, long flowering period and good garden performance.
The new Dahlia plant originated from an open-pollination in June, 2006 in Maasdijk, The Netherlands of a proprietary selection of Dahlia hybrida identified as code number 2006-0001, not patented, as the female, or seed, parent with an unknown selection of Dahlia hybrida as the male, or pollen, parent. The new Dahlia plant was discovered and selected by the Inventor as a single flowering plant from within the progeny of the stated open-pollination in a controlled environment in Maasdijk, The Netherlands in July, 2007.
Asexual reproduction of the new Dahlia plant by cuttings in a controlled environment in Maasdijk, The Netherlands since November, 2007 has shown that the unique features of this new Dahlia plant are stable and reproduced true to type in successive generations. | {
"pile_set_name": "USPTO Backgrounds"
} |
In many patients who suffer from disfunction of the mitral and/of tricuspid valve(s) of the heart, surgical repair of the valve (i.e. "valvuloplasty") is a desirable alternative to valve replacement. One specific group of patients who are typically candidates for such surgery are children who suffer from congenital atrioventricular septal defect (AVSD).
Remodelling of the valve annulus (i.e. "annuloplasty") is central to many reconstructive valvuloplasty procedures. Such remodelling of the valve annulus may be accomplished by implantation of a prosthetic ring (i.e. "annuloplasty ring") to stabilize the annulus and to correct or prevent valvular insufficiency which may result from defect or disfunction of the valve annulus.
The prior art has included numerous annuloplasty rings, such as those described in U.S. Pat. Nos.: 4,042,979 (Angell); 4,290,151 (Massana); 4,898,446 (Reed); 4,602,911 (Ahmadi et al.); 5,061,277 (Carpentier et al.); and 5,201,880 (Wright et al.), as well as International Patent Publication WO 91/17721 and Foreign Patent Publication SU197710.
One problem associated with the annuloplasty rings of the prior art is that, when such annuloplasty rings are implanted into children (such as pediatric patients with AVSD) the subsequent growth of the patient may render the annuloplasty ring too small for its intended function. Thus, follow-up surgery my be necessary to replace the originally implanted annuloplasty ring with a larger ring suitable for the then-current size of the patient.
Although some of the annuloplasty rings of the prior art have incorporated means for adjusting the size of the ring at the time of implantation, applicant is aware of no prior art annuloplasty ring which is constructed and equipped for post-implantation size adjustment, in situ, to accommodate changes in annular-size due to growth of the patient. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure relates to a seal for use in a surgical procedure. More particularly, the present disclosure relates to a seal anchor member adapted for insertion into an incision in tissue and including a plurality of non-parallel lumens adapted for the sealed reception of one or more surgical objects such that a substantially fluid-tight seal is formed with both the tissue and the surgical object or objects.
2. Background of the Related Art
Today, many surgical procedures are performed through small incisions in the skin, as compared to the larger incisions typically required in traditional procedures, in an effort to reduce both trauma to the patient and recovery time. Generally, such procedures are referred to as “endoscopic”, unless performed on the patient's abdomen, in which case the procedure is referred to as “laparoscopic”. Throughout the present disclosure, the term “minimally invasive” should be understood to encompass both endoscopic and laparoscopic procedures.
During a typical minimally invasive procedure, surgical objects, such as surgical access devices (e.g., trocar and cannula assemblies) or endoscopes, are inserted into the patient's body through the incision in tissue. In general, prior to the introduction of the surgical object into the patient's body, insufflation gasses are used to enlarge the area surrounding the target surgical site to create a larger, more accessible work area. Accordingly, the maintenance of a substantially fluid-tight seal is desirable so as to prevent the escape of the insufflation gases and the deflation or collapse of the enlarged surgical site.
To this end, various valves and seals are used during the course of minimally invasive procedures and are widely known in the art. However, a continuing need exists for a seal anchor member that can be inserted directly into the incision in tissue and that can accommodate a variety of surgical objects while maintaining the integrity of an insufflated workspace. | {
"pile_set_name": "USPTO Backgrounds"
} |
A membrane touch switch is a momentary contact, low voltage switch which includes a first and a second switching element or membrane, disposed on opposite sides of an insulating membrane. The insulative membrane has appropriate apertures through which electrical contact between the switching elements may be made. Each switching element has a layer of conducting material formed in a predetermined circuit pattern on one surface thereof. One of the switching elements is connected to a source of electrical potential and the other to ground potential. An electrical circuit is completed when one of the switching elements is depressed and thus extended through the aperture in the insulating membrane to bring the conducting material disposed on the surface of that switching element into contact with the conducting material on the other switching element.
Typically, each of the switching elements includes a substrate of a flexible material, for example, a polyester film such as that sold by E. I. du Pont de Nemours and Company, Inc. under the trademark Mylar.RTM.. Of course, other flexible materials, such as polycarbonate film or polyvinyl fluoride (PVF) film may be used as the flexible substrate. In some instances, the substrate of the upper switching elements is flexible, with the substrate of the base switching element being rigid.
The circuit pattern is usually formed on the switching element by applying onto the substrate a thick film paste composition containing particles of a conductive material dispersed in a volatile organic solvent-resin medium. After screen printing the composition is dried, ordinarily by heating, and the volatile organic material in the solvent-resin medium is driven off. The resin is left to bind together the conductive particles, thus forming the electrically conducting circuit pattern on the switching element.
Membrane touch switches are fabricated using either a semiautomatic or an automatic high speed (e.g., reel-to-reel) technique. In the semiautomatic processing technique, the substrate is manually fed to a printing apparatus and the composition is screen printed onto the surface of the substrate. In the automatic high speed reel-to-reel technique, a roll of substrate material is passed through an automatic printing station and through a drying station before being taken up on suitable take-up reels. The composition is automatically screen printed and dried.
The technology surrounding membrane touch switches in general, and the compositions therefor in particular, are continuously changing to satisfy more stringent environmental requirements, to provide lower operating costs, and to meet changing design criteria and increasing functional requirements imposed on them by the marketplace. Increased demands on paste composition functionality include more durability to harsh environmental changes, increased ability to use the switch at higher temperatures and increased abrasion resistance and increased resistance to high pressure electrical connectors. The most immediate market needs are perceived at this time to be lower processing costs and increased product capabilities. Processing costs can be reduced by providing paste compositions with better conductivity efficiency (i.e., greater conductivity per unit weight of conductive material), less and/or lower cost conductive material and higher throughput capability including longer screen life.
Heretofore, the conductive materials for membrane touch switches have been noble metals, especially silver. However, upward fluctuations in the price of silver metal have made it extremely important to find ways to substitute less expensive conductive materials, such as base metals, without adversely affecting either the primary electrical properties or the secondary functional properties mentioned above. | {
"pile_set_name": "USPTO Backgrounds"
} |
Users of wet-shave razors generally appreciate a feeling of warmth against their skin during shaving. The warmth feels good, resulting in a more comfortable shaving experience. Various attempts have been made to provide a warm feeling during shaving. For example, shaving creams have been formulated to react exothermically upon release from the shaving canister, so that the shaving cream imparts warmth to the skin. Also, razor heads have been heated using hot air, heating elements, and linearly scanned laser beams, with power being supplied by a power source such as a battery. Razor blades within a razor cartridge have also been heated. The drawback with heated blades is they have minimal surface area in contact with the user's skin. This minimal skin contact area provides a relatively inefficient mechanism for heating the user's skin during shaving. However the delivery of more to the skin generates safety concerns (e.g., burning or discomfort).
Accordingly, there is a need to provide a shaving razor capable of delivering safe and reliable heating that is noticeable to the consumer during a shaving stroke. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cloud computing providers deliver computing infrastructures as a fully outsourced service, enabling companies to reduce capital expenditure on hardware, software and support services by paying a provider only for what they use.
Cloud computing services may be offered at various layers of the software stack. At lower layers, Infrastructure as a Service (IaaS) systems allow users to have access to entire virtual machines (VMs) hosted by the provider, and the users are responsible for providing the entire software stack running inside a VM. At higher layers, Software as a Service (SaaS) systems offer online applications that can be directly executed by the users.
Despite its advantages, cloud computing raises security concerns as users have limited means of ensuring the confidentiality and integrity of their data and computation. Users of cloud computing services are particularly vulnerable to malicious providers or malicious customers of the same provider.
In order to increase the security and trust associated with communications to a given computer platform, Hardware Security Modules (HSMs) have been used to enable construction of trusted platforms. An HSM is a coprocessor that is typically affixed to a computer's motherboard. It can create and store cryptographic keys and other sensitive data in its shielded memory and provides ways for platform software to use those services to achieve security goals. A popular HSM in use today is the Trusted Processing Module (TPM), as specified by the Trusted Computing Group (TCG).
While a number of different distributed computing architectures built on the TPM standard have been proposed, security concerns in the cloud computing space still persist. | {
"pile_set_name": "USPTO Backgrounds"
} |
When a data processing system fails to operate as designed, various analysis techniques may be used to identify a source of the failure. Generally, trace functions and breakpoint functions are implemented within the data processing system to aid in the isolation of failing circuitry and the correction of failing software programs.
Trace functions provide a means for allowing an external user to observe intermediate results of execution of a data processing operation. Trace functions generally provide a status of selected registers and memory included in the data processing system after each instruction or a predetermined group of instructions of a software program is executed by the data processing system. By reflecting the status of selected registers and memory, the trace function provides the external user with very detailed information about an internal programming model of a data processor or data processing system. With this information, many types of errors may be identified and subsequently corrected. Breakpoint functions also provide a method for identifying and isolating erroneous software code or faulty circuits in a data processing system. A breakpoint function is, in effect, where a preprogrammed event occurs causing a break in a software program. Data is then retrieved to determine a status of the software program. Like the trace function, the breakpoint function allows the external user to ascertain a status of each of the selected registers and memory such that data processing errors may be identified.
Both the trace function and the breakpoint function have been integrated in currently available data processing systems to provide the previously described isolation and identification capabilities. For example, the i960 Jx microprocessor, available from the Intel Corporation of Santa Clara, Calif., is an integrated circuit microprocessor which has internal breakpoint registers which generate trace events and trace faults. In the i960 Jx microprocessor, the internal breakpoint registers are dedicated to trapping on either instruction execution addresses or on the addresses of various types of data accesses. To use the tracing facility of the i960 Jx Microprocessor, software which utilizes the microprocessor must provide fault handling procedures or interface with a debugging monitor program. Software is also required to manipulate several registers and control bits to enable various tracing modes and to selectively enable or disable the tracing function.
Similarly, the 80486 microprocessor, also available from the Intel Corporation of Santa Clara, Calif., is an integrated circuit microprocessor which has internal breakpoint registers and is able to perform the trace function. In the 80486 microprocessor, a breakpoint instruction is implemented for use by internal software debugger devices, where internal software simply refers to software running on the data processing system. During general operation, a software debug program may implement the breakpoint instruction at all desired breakpoints which depend on a type of software code executed. The 80486 microprocessor also provides a mechanism for implementing a single step trap function which executes an interrupt after the trap routine is executed.
While the i960 Jx microprocessor and 80486 microprocessor integrate the breakpoint and trace functions, the debug functionality of the microprocessors requires the microprocessors to suspend normal operation and enter into a special debug exception routine. During the debug exception routine, the microprocessors do not function as they would during normal operation and, therefore, the failures in circuitry or software may not occur in a similar manner. Consequently, the external user will not be able to verify and isolate a root cause of the failures in either microprocessor when the real-time failing conditions do not actually occur.
Furthermore, both the i960 Jx microprocessor and the 80486 microprocessor require either an internal software debug program which is executed by the microprocessor to provide program control during the breakpoint and trace functions. The use of such debug control provides a very intrusive manner of debugging which requires a significant amount of overhead. As well, the use of debug software may not provide a true reflection of a faulty circuit or sequence in the failing microprocessor.
Therefore, a need exists for a data processor which provides both real time trace and real time debug functions. If both the trace and debug functions are executed in a manner which reflects operation of the data processor during normal operation, and not in a special debug mode of operation, the external user will more accurately identify and correct failures in the circuitry and software of the data processor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Imaging devices in the medical diagnostics field, in particular in diagnostic radiology, typically comprise a radiation detector, in particular an X-ray radiation detector, or X-ray detector for short. Imaging devices are generally understood in the present context to mean X-ray machines and specifically computed tomography systems.
X-ray detectors are usually embodied as scintillator detectors or as photon-counting detectors having a direct converter.
Scintillator detectors comprise a scintillator material. Scintillator materials are excited as a result of being irradiated with X-ray radiation and emit the excitation energy in the form of light. The emitted light is subsequently converted, for example via sensor elements embodied as photodiodes, into an electrical sensor signal to produce an output signal, in particular into an electrical current, also known as a signal current, and evaluated in an evaluation unit, the latter usually comprising a plurality of evaluation elements. To that end, each evaluation element usually includes an application-specific integrated circuit (ASIC). The output signal may also have a current pulse, for example, though such current pulses occur only in the case of photon-counting direct converters.
Scintillator detectors frequently comprise a plurality of scintillator elements which are arranged in the manner of an array. Analogously, the sensor elements and the evaluation elements likewise comprise an arrangement in the manner of an array.
Radiation detectors having direct converters usually contain a semiconductor material, for example a semiconductor based on cadmium telluride (CdTe), which converts incident radiation, for example X-ray radiation, into an electrical output signal, in particular into a current pulse.
The two types of detector in each case feature a matrix-like arrangement, both of the sensor elements and of the evaluation elements. In this connection, the sensor elements are also referred to as sensor pixels and the evaluation elements as evaluation pixels.
In order to evaluate the signal currents, a sensor element typically has an electrical connection to an evaluation element associated with it via an electrical interconnect element, for example an electrical line element. The signal currents are typically evaluated in the evaluation unit to produce an output signal and converted, into an image, for example, in a signal processing unit that usually directly follows the evaluation unit.
Because small currents are often evaluated via the evaluation unit and electrical lines typically exhibit parasitic effects, for example parasitic capacitances, the sensor unit and the evaluation unit are frequently embodied as coextensive in area and are arranged one placed on top of the other in order to keep the length of the electrical interconnect elements to a minimum. By small currents, in the present context, are understood electrical currents having a value in the range from 1 pA to 1 μA (per evaluation element). In order to evaluate such small signal currents, each evaluation element typically comprises in addition for example an amplifier unit for amplifying the signal currents and consequently also for amplifying the output signal.
Coextensive embodiment is understood in the present context to mean that the sensor unit and the evaluation unit in each case have a length and a width which each have an equal value, except for a tolerance of <20%, in particular <10%. This applies analogously to the number and distribution of the individual elements (sensor elements and evaluation elements), as well as to a surface area profile, for example in the shape of a rectangle, of the elements (sensor elements and evaluation elements). Furthermore, the sensor unit and the evaluation unit are arranged one on top of the other in a form-fitting manner. This ensures that each sensor element has associated with it an evaluation element which is disposed “opposite” the sensor element. The length of the electrical connection between a sensor element and its associated evaluation element is reduced as a result. In particular, the already mentioned shortest possible electrical connection between the sensor elements and the evaluation elements is guaranteed by this configuration. | {
"pile_set_name": "USPTO Backgrounds"
} |
Minimally invasive procedures are preferred over conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. Thus, there is a need for a highly controllable yet minimally sized system to facilitate imaging, diagnosis, and treatment of tissues which may lie deep within a patient, and which may be accessed via naturally-occurring pathways, such as blood vessels, other lumens, via surgically-created wounds of minimized size, or combinations thereof.
Currently known minimally invasive procedures for the treatment of cardiac, vascular, and other disease conditions use manually or robotically actuated instruments, which may be inserted transcutaneously into body spaces such as the thorax or peritoneum, transcutaneously or percutaneously into lumens such as the blood vessels, through natural orifices and/or lumens such as the mouth and/or upper gastrointestinal tract, etc. Manually and robotically-navigated interventional systems and devices, such as steerable catheters, are well suited for performing a variety of minimally invasive procedures. Manually-navigated catheters generally have one or more handles extending from their proximal end with which the operator may steer the pertinent instrument. Robotically-navigated catheters may have a proximal interface configured to interface with a catheter driver comprising, for example, one or more motors configured to induce navigation of the catheter in response to computer-based automation commands input by the operator at a master input device in the form of a work station.
In the field of electrophysiology, robotic catheter navigation systems, such as the Sensei® Robotic Catheter System (manufactured by Hansen Medical, Inc.), have helped clinicians gain more catheter control that accurately translates the clinician's hand motions at the workstation to the catheter inside the patient's heart, reduce overall procedures (which can last up to four hours), and reduce radiation exposure due to fluoroscopic imaging necessary to observe the catheter relative to the patient anatomy, and in the case of electrophysiology, within the relevant chamber in the heart. The Sensei® Robotic Catheter System employs a steerable outer catheter and a steerable inner electrophysiology (EP) catheter, which can be manually introduced into the patient's heart in a conventional manner. The outer and inner catheters are arranged in an “over the wire” telescoping arrangement that work together to advance through the tortuous anatomy of the patient. The outer catheter, often referred to as a guiding sheath, provides a steerable pathway for the inner catheter. Proximal adapters on the outer guide sheath and inner EP catheter can then be connected to the catheter driver, after which the distal ends of the outer sheath and inner EP catheter can be robotically manipulated in the heart chamber within six degrees of freedom (axial, roll, and pitch for each) via operation of the Sensei® Robotic Catheter System.
While the Sensei® Robotic Catheter System is quite useful in performing robotic manipulations at the operational site of the patient, it is desirable to employ robotic catheter systems capable of allowing a physician to access various target sites within the human vascular system. In contrast to the Sensei® Robotic Catheter System, which is designed to perform robotic manipulations within open space (i.e., within a chamber of the heart) after the outer guide sheath and inner catheter are manually delivered into the heart via a relatively non-tortuous anatomical route (e.g., via the vena cava), and therefore may be used in conjunction with sheaths and catheters that are both axially and laterally rigid, robotic catheter systems designed to facilitate access to the desired target sites in the human vascular system require simultaneous articulation of the distal tip with continued insertion or retraction of an outer guide sheath and an inner catheter. As such, the outer guide sheath and inner catheter should be laterally flexible, but axially rigid to resist the high axial loads being applied to articulate the outer guide sheath or inner catheter, in order to track through the tortuous anatomy of the patient. In this scenario, the inner catheter, sometimes called the leader catheter extends beyond the outer sheath and is used to control and bend a guidewire that runs all the way through the leader catheter in an over-the-wire configuration. The inner catheter also works in conjunction with the outer guide sheath and guidewire in a telescoping motion to inchworm the catheter system through the tortuous anatomy. Once the guidewire has been positioned beyond the target anatomical location, the leader catheter is usually removed so that a therapeutic device can be passed through the steerable sheath and manually operated.
Robotically navigating a guide sheath, an inner catheter, and a guidewire through the anatomy of a patient, in contrast to robotically manipulating a guide sheath and inner catheter at a work site in which these devices have previously been manually delivered, increases the complexity of the robotic catheter system. For example, as shown in FIG. 1, robotic catheter systems typically employ a robotic instrument driver 1 to provide robotic insertion and retraction actuation, as well as robotic steering actuation, to a telescoping assembly of elongated flexible instruments. The instrument driver 1 comprises a housing 2 that contains motors (not shown) for providing the robotic actuators to the telescoping assembly, which may include an outer steerable guide sheath 3, an inner steerable leader catheter 4 disposed within the sheath catheter, and a conventional guidewire 5 disposed within the leader catheter 2.
The robotic instrument driver 1 may robotically insert/retract the leader catheter 2 relative to the sheath catheter 1. To this end, the proximal ends of the guide sheath 3 and leader catheter 4 are mechanically interfaced to the housing 2 of the instrument driver 1 in such a manner that they may be axially translated relative to each other via operation of the motors, thereby effecting insertion or retraction movements of the respective guide sheath 3 and leader catheter 4. In the illustrated embodiment, the guide sheath 3 and leader catheter 4 respectively include proximal steering adapters 6, 7 (“splayers”) mounted to associated mounting plates 8, 9 on a top portion of the instrument driver 1. The mounting plate 8 is affixed to the distal end of the instrument driver 1, whereas the mounting plate 9 is affixed to a carriage (not shown) within the housing 2 of the instrument driver 1 that can be translated relative to the mounting plate 8 via one or more motors (not shown) within the housing 2 of the instrument driver 1, thereby allowing the proximal steering adapter 7 to be translated relative to the proximal steering adapter 6, and thus, the associated leader catheter 4 to be inserted/retracted within the guide sheath 3. In the illustrated embodiment, each of the proximal adapters 6, 7 can be actuated via motors (not shown) within the housing 2 of the instrument driver 1 to deflect or articulate the distal ends of the respective in any direction.
Unlike the steerable guide sheath 3 and leader catheter 4, the distal ends of which can be robotically articulated via the instrument driver 1, the guidewire 5 is conventional, and thus, its distal end is not capable of being robotically articulated. Instead, as with most conventional guidewires, the guidewire 5 may be manipulated by simultaneously rolling while axially displacing the guidewire. In a non-robotic environment, such manipulations can be accomplished by pinching the proximal end of the guidewire between the forefinger and thumb of the physician and moving the forefinger relative to the thumb while axially displacing the guidewire.
In order to navigate the guide sheath 3 and leader catheter 4 through the tortuous anatomy of a patient, it is desirable that these components be laterally flexible. However, the flexibility of the leader catheter 4 may create issues when performing the robotic insertion actuation. In particular, due to the flexibility of the leader catheter 4 and the relatively long distance between the mounting plate 9 and the point at which the leader catheter 4 is contained within the guide sheath 3, translation of the mounting plate 9 towards the mounting plate 8 with the intention of inserting the leader catheter 4 within the guide sheath 3 may actually cause the leader catheter 4 to buckle, thereby preventing it, or at least hindering it, from axially translating within the guide sheath 3. Although “passive” anti-buckling devices may be used to add lateral support to the leader catheter 4, thereby preventing the leader catheter 4 from buckling, these anti-buckling devices may be too cumbersome and time-consuming for medical personnel to install.
Furthermore, emulating a manual guidewire manipulation in a robotic catheter system is not a straightforward procedure. For example, although the instrument driver 1 illustrated in FIG. 1 can be designed to robotically insert/retract the guidewire 5 relative to the leader catheter 4 in the same manner in which the instrument 1 uses to robotically insert/retract the leader catheter 4 relative to the guide sheath 3, such an arrangement may be impractical. In particular, the incorporation of an additional carriage within the housing 2 will disadvantageously increase the length of the instrument driver 1, which must accommodate the telescoping assembly when assuming a maximum retraction between the leader catheter 4 and guide sheath 3 and between the guidewire 5 and leader catheter 4. The increased size of the instrument driver 1 may be impractical and too big and heavy to be mounted on a table in a catheter lab environment. Thus, it is preferable that any drive device that inserts/retracts the guidewire 5 relative to the leader catheter 4 be immobile relative to the proximal end of the leader catheter 4, e.g., by locating it on the same carriage that is associated with the leader catheter 4. This drive device must also be capable of rolling the guidewire 5.
Furthermore, the use of an additional carriage for the guidewire 5 would also require the installation of an additional “passive” anti-buckling device. Because medical personnel often exchange out guidewires that are as long as 300 cm in length, the use of a “passive” anti-buckling device not only may be tedious for medical personnel to install, the extended length of the anti-buckling device due to the length of the guidewire may render the anti-buckling device functionally impractical.
There, thus, remains a need to provide an improved an instrument driver for a robotic catheter system that prevents a leader catheter from buckling when inserted within a guide sheath and/or prevents a guidewire from buckling when inserted within a leader catheter without overly increasing the length of the instrument driver. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the past few years, corporations have been busy building their World Wide Web sites. While creating web pages is a relatively simple task, adding fresh content and managing a web site to ward off information obsolescence is not simple at all.
On the contrary, managing content on a busy World Wide Web site is an increasingly complex problem. As a web site grows, the likelihood of anyone being able to keep links, navigation, and functions updated is minuscule. This is not for lack of effort or resources, but rather because of the exponentially growing number of links and elements that need refreshing with every new addition. No amount of individual page redesign can make up for the basic need of a real structural fix. Unless preemptive steps are taken, maintenance will soon consume the lion's share of all site resources. Costing between $250,000 and $500,000 annually, manually managing changes to a web site will drain even the deepest pockets. The magnitude of the cost is an important consideration for corporations, particularly because monetary returns from a web site cannot always be easily measured from an accounting standpoint.
Software solutions at the high end of the market include $50,000 to $100,000 middle-ware and software packages and may require equally expensive hardware configurations. As a result, such software programs serve only the corporate elite and the high-tech industry. Examples of such software solutions include StoryServer software produced by Vignette Corporation of Austin, Tex.
Software solutions at the low end of the market are hypertext markup language (HTML) editors with server plug-ins and software packages that try to emulate server functions from a user's desktop. These solutions try to perform some management tasks, but cannot manage content. At best, they merely rearrange files on the web server from a remote desktop.
Applicants have recognized a need in the industry for an elegant, simple, powerful, and inexpensive content management tool. That is, Applicants have determined that corporations and other users need a platform-independent, server-side software package that allows users to design and manage simple web sites to complex, database-driven web sites.
Applicants have determined that it would be desirable to have a method and/or system that permits users to interface with a web management tool through, for example, an Internet browser without a client-side application, thereby eliminating the need for users to buy and master additional software. Applicants have recognized that such a system could advantageously reside, for example, at an Internet service provider to eliminate the cost of shrink-wrapping and to facilitate optional automatic on-line software upgrades. | {
"pile_set_name": "USPTO Backgrounds"
} |
In production type of machining operations, magnetic faceplate chucking is infrequently used since time is lost and skilled operator attention is required for centering each workpiece on the faceplate. A dial indicator and skillfully dealt hammer blows to the workpiece are required to center the workpiece. Of course, the object for the operator is to center the workpiece on the faceplate with the geometrical axis of the workpiece substantially coaxial with the rotational axis of the faceplate that is attached on a rotatable spindle.
It is an object of the invention to provide a centering mechanism for centering a workpiece on a magnetic or other chuck and which eliminates the time consuming and labor intensive manual centering technique and is under automatic adaptive control of a computer control unit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor memory device and a construction of a portion related to data reading for reading data accurately at high speed. Specifically, the present invention relates to a construction for achieving high-speed data reading in a non-volatile semiconductor memory device.
2. Description of Background Art
A non-volatile semiconductor memory device such as a flash memory is widely used in the field of portable equipments and the like as it can store data in a non-volatile manner. A memory cell structure of the non-volatile semiconductor memory device is roughly divided into a structure utilizing a stacked gate type transistor in which charges are stored in a conductive floating gate formed of polysilicon or the like, and insulating film trap type memory cell structure in which charges are stored in an insulation film such as a nitride film. In either memory cell structure, a threshold voltage of the memory cell transistor is set in accordance with the amount of trapped charges, and the data is stored in accordance with the magnitude of the threshold voltage.
Such a non-volatile semiconductor memory device is characterized in that it has smaller area of cell occupation per bit as compared with an SRAM (Static Random Access Memory) that typically requires six transistors per memory cell, and that a refresh operation for holding data required in a DRAM (Dynamic Random Access Memory) is unnecessary. Storage of a large amount of data such as sound or image is required also for a non-volatile semiconductor memory device, and hence, increase in storage capacity thereof has been desired.
In such a non-volatile semiconductor memory device having large storage capacity, a construction is generally used in which the memory array is divided into a plurality of blocks, an X decoder and a Y decoder for selecting memory cells are arranged for each block, and memory cell selection is performed in a block basis. As only a selected block is operated, power consumption can be reduced. Further, the number of memory cells connected to a bit line can be reduced by such block division, and therefore, load of the bit line is reduced, achieving higher speed of accessing.
Such a construction of the non-volatile semiconductor memory device having large storage capacity is disclosed, for example, in “An Overview of Flash Architectural Developments”, PROCEEDINGS of the IEEE, Vol. 91, No. 4, April 2003, pp. 523-536.
As disclosed in the reference above, in a non-volatile semiconductor memory device, an address decode circuit (including a predecode circuit) is provided for each memory array block. An address signal applied in synchronization with an external clock signal is latched by an address latch circuit arranged commonly to the memory array blocks, predecoded and then, supplied to each address decode circuit.
In the non-volatile semiconductor memory device, a command designating an operation mode is supplied to an address input circuit through an address signal line. The address latch circuit is arranged on one end side of the memory array, in the vicinity of the address input circuit. Further, the predecode circuit is arranged on one end side of the memory array in the vicinity of the address latch circuit, in order to reduce the number of internal address signal lines and to reduce charging/discharging current of the internal address signal lines, and supplies a predecode signal to each address decode circuit. Therefore, when the memory array size increases as the storage capacity increases, the signal line transmitting the internal address signal from the address predecode circuit to each address decode circuit becomes longer to have an increased load. Consequently, the address predecode signal comes to have large skew, that is, difference in arrival time of address predecode signal becomes larger between the leading end and terminating end of the address predecode signal transmitting line. Accordingly, a margin for the timing of starting memory cell selection becomes smaller, making it difficult to guarantee accurate memory cell selecting operation. In order to ensure sufficient margin for the memory cell selecting operation and the data reading operation, it is necessary to set the timing of memory cell selection/data reading operation, taking into account the worst case of arrival of the address predecode signal to the address decode circuit, which makes it difficult to achieve a high-speed operation.
For accurate data reading, it is necessary to correct an erroneous bit if present. Provision of the error correction function (ECC function) improves efficiency in repairing a defective bit, and hence improves production yield. When the bit width of the internal read data increases to 64 bits or to 128 bits, the number of bits for error detection/correction must be increased for accurate error detection/correction.
When an error of the stored data is simply to be detected, an even/odd parity bit (s) is added, and typically, 1 bit of parity bit is added on the basis of 8-bit unit. In this case, whether there is an error or not can be detected, dependent on whether the least significant bit of the addition result value of the read out 8 bit data matches the parity bit or not. Parity check using even/odd parity bit (s) can detect an error while it cannot specify the bit that causes the error. Therefore, error correction is impossible. When an ECC code is used to realize the error detection/correction function, typically, an ECC code typically of 7 bits is added to the data of 64 bits. Here, information data and the ECC data must be read at the same speed, to perform error detection and correction. In the aforementioned reference, the manner how the data bit for error detection/correction is stored in the memory array and how the data bit and the ECC code bit are read substantially at the same speed to achieve high-speed reading are not at all considered.
In order to achieve high-speed data reading, it is necessary to initialize the internal circuitry at a timing as fast as possible, to be ready for the next reading cycle. Generally, a non-volatile semiconductor memory device operates in a static manner like an SRAM, for decoding an address and providing data output. In a large storage capacity memory, signal lines in the data reading path are of different length, propagation time of internal data differs dependent on the position of a selected memory cell, and hence the timing at which the data is made definite differs for each data bit in the data output circuit. Therefore, in this case also, in order to read data accurately, the data reading timing and the timing for initializing the data output path must be set considering the worst case. Therefore, the cycle time of data reading cannot be reduced, and it becomes difficult to achieve high-speed reading. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to compositions and articles suitable for use in thermal transfer imaging processes, and also relates to graphic articles comprising a graphic image formed using the inventive compositions and articles, and methods of making such graphic articles.
2. Related Art
Graphic articles, sometimes referred to as signage articles, are used in a wide variety of applications, both for informational and for decorative purposes. For example, retroreflective sheetings are an important medium used in manufacturing graphic articles such as license plates, road/street markings, validation stickers, and package labels. Decals are a medium used for automotive labels and decoration.
Images on graphic articles may be formed by thermal transfer of a color layer from a first substrate or carrier, usually a plastic film, to a second substrate surface, e.g., the retroreflective sheeting or a component thereof. Thermal transfer printing methods, such as hot stamp printing or thermal mass transfer printing, form an image by selective transfer of portions of the color layer from the first substrate to the second substrate. Images formed on graphic articles may be, for example, alphanumeric characters, bar codes, or graphics.
Alternatively, images may comprise preformed color layers on a decal, which are transferred by hot transfer lamination. It is known to form graphic patterns on substrates using transfer articles bearing predesignated designs. G.B. Patent No. 1,218,058 (Hurst et al.) discloses transfers with an adhesive layer applied to only those areas intended to be transferred to the substrate; U.S. Pat. No. 4,786,537 (Sasaki) and U.S. Pat. No. 4,919,994 (Incremona et al.) disclose transfer graphic articles wherein the graphic design is formed via imagewise differential properties within the transfer film itself. One problem with such approaches is that a large and varied inventory must be maintained in order to provide a variety of graphic patterns.
Formation of desired graphic images from continuous layers via thermal transfer processes is also well known. For example, thermal mass transfer articles, typically comprising a carrier, optionally a release layer, and a transferable color layer have been known for some time. The article is contacted to a desired substrate such that the color layer is in contact with the substrate and heat is applied in imagewise fashion to cause imagewise portions of the color layer to release from the carrier and adhere to the substrate.
Hot stamping foils comprising a carrier, one or more color layers, and an adherence layer have also been known for some time. Such films have been used to provide imagewise graphic patterns, e.g., alphanumeric or decorative legends, to substrates via imagewise application of heat and/or contact or pressure. In some embodiments, additional members such as release layers are used to facilitate desired performance. In some embodiments, so-called "texture layers" and/or "ticks", metal layers, etc. are used as well to yield desired appearance. Hot stamping foils are also sometimes called hot stamp tapes or thermal transfer tapes.
The color layer(s), adherence layer, and any other layers that are selectively applied to the substrate should split or fracture in desired manner in order for the applied graphic pattern to have a desired edge appearance. Some illustrative examples of previously known hot stamping foils are disclosed in U.S. Pat. No. 3,770,479 (Dunning) U.S. Pat. No. 3,953,635 (Dunning), and U.S. Pat. No. 4,084,032 (Pasersky). It has also been known to transfer graphic patterns using means in addition to or other than heat to achieve imagewise separation of imaging material from a carrier and adhesion to a substrate. For example, U.S. Pat. No. 3,834,925 (Matsumura et al.) discloses a transfer material that utilizes solvent action to achieve imagewise deposition.
An advantage of the foregoing techniques is that the transfer film may be made as a uniform sheet, i.e., with no specific latent image embodied therein. The applicator defines the graphic pattern by controlling the application process, e.g., imagewise application of heat and/or contact or pressure permits maintenance of a smaller inventory of thermal transfer element material.
One well known use of hot stamping foils is to print legends on vehicle identification plates. For example, license plates produced using hot stamping foils have been used in Austria, Australia, Finland, Germany, Ireland, Portugal, and Switzerland. One commercially available hot stamping foil currently used on license plates with polyvinyl chloride cover films is believed to comprise a polyester carrier, about 28 microns thick; a color layer based on acrylic resins such as polymethyl methacrylate and containing carbon black pigments, about 5 microns thick; and an acrylate-based adherence layer, about 5 microns thick. Examples of resins that are believed to have been used in adherence layers include polyvinyl alcohol copolymers, nitrocellulose, and methyl methacrylate/butyl methacrylate copolymers.
Recently improved retroreflective sheetings have been made available which have cover films made of olefin-based materials or polyurethane-based materials to improve certain performance. As disclosed in the aforementioned U.S. Pat. No. 4,896,943 (Tolliver et al.), olefin-based cover films, e.g., ethylene/acrylic acid copolymers, can provide superior properties including abrasion and dirt resistance. Many conventional hot stamping foils do not achieve good adherence to such cover sheets, however, resulting in graphic patterns having unsatisfactory durability and performance.
More recently, U.S. Pat. No. 5,393,950 (Caspari) discloses hot stamping foils well suited for use on retroreflective articles wherein the foils comprise a carrier, optionally a release control layer, a color layer, and an adherence layer wherein the adherence layer comprises, and may consist essentially of, a mixture of an ethylene copolymer dispersion and an acrylic dispersion.
Graphic articles having images formed by thermal transfer normally provide satisfactory print quality, legibility, and adhesion. However, many presently known thermal transfer color layer formulations are compatible with only a limited class of retroreflective sheeting layers, primarily those layers comprising polyvinyl chloride (PVC), acrylics and polyurethanes. Sheetings having polyvinyl butyral, ethylene/acrylic acid copolymer, or melamine/alkyd copolymer surface layers may be difficult to print upon by known thermal transfer methods. Furthermore, PVC is not environmentally desirable.
Retroreflective articles are typically provided with cover films (e.g., made of polymethylmethacrylate (PMMA), plasticized PVC, alkyd resins, acrylic resins, and the like) to improve retroreflective performance under wet conditions and to protect the retroreflective elements.
To provide improved durability, embossability, and abrasion resistance, improved retroreflective sheetings with substantially thermoplastic cover films were developed, for example aliphatic polyurethanes and ethylene/acrylic acid copolymers, that latter including ionomers. One of the problems with the newer substantially thermoplastic cover film materials is that in order to achieve satisfactory adhesion of thermal transfer color layers to such films, chemical and/or physical priming of the cover film may be needed. For example, U.S. Pat. No. 5,393,590 (Caspari) discloses a hot stamp foil having a novel adherence layer over the color layer that permits effective thermal transfer printing upon polyolefin- or polyurethane-based surfaces.
Color layers of hot stamp foils and thermal transfer ribbons generally have low cohesive strength, which promotes efficient and desired imagewise transfer of color layer material from the first substrate to the second substrate surface during thermal transfer. However, images formed from such color layers should exhibit sufficient durability for many end uses. To improve the durability of the image, a protective layer often is formed thereover, e.g., by incorporating a cover layer in a hot stamp foil to be transferred along with the color layer, or by applying a clear coat over the transferred color layer.
U.S. Pat. No. 5,468,532 (Ho et al.), and a continuation-in-part thereof, U.S. patent application Ser. No. 08/506,926, filed Jul. 26, 1995, (Phillips), now pending, both incorporated herein by reference, disclose multilayer graphic articles comprising a substrate, a color layer disposed on the substrate, and a transparent, protective layer that overlies both the color layer and the substrate. The color layer is formed from ink formulations comprising a color agent and a copolymeric binder formed from the copolymerization product of an olefinic monomer and a second monomer having a pendant carboxyl group. The binder may be crosslinked through an ionic bond, a covalent bond, etc. In each case where the binder is crosslinked, carboxylic acid groups pendant from the copolymeric binder participate in the crosslinking reaction.
Although the above work is impressive, there still exists a need for thermoplastic thermal transfer compositions and thermal transfer articles that allow the thermoplastic composition to be readily and easily applied to a variety of substrates without using chemical and/or physical priming of the substrate, and which produce durable, weatherable images. Durability and weatherability of the compositions after being transferred to the substrate, with or without a cover layer, is also a primary goal. | {
"pile_set_name": "USPTO Backgrounds"
} |
Code Division Multiple Access (CDMA) networks are widely deployed throughout the world. The current implementations of CDMA typically follow the IS-95 industry standards and are referred to as IS-95 wireless systems. With the advent of enhancements to CDMA technology such as third generation CDMA, CDMA2000 and W-CDMA, the deployment of CDMA is expected to increase dramatically.
A typical CDMA system 100 is shown in FIG. 1. It is divided into a plurality of cells 121. Each cell contains a fixed base station 103. Each base station 103 is connected to a centralized switch or mobile switching center 109 that provides switching capabilities and acts as a gateway to wired networks such as the public switched telephone network (PSTN), the Internet, and other public and private data communications networks. As is known, the base station 103 includes a transmitter 105 and a receiver 107 for communicating with the mobile customers or users.
On the customer side, users connect to the wireless network through wireless mobile nodes 101 that can act as transmitters and receivers. The mobile nodes 101 communicate with the base stations 103 over wireless communications links. The link from a base station transmitter 105 to a mobile node receiver is the forward link 115 (or downlink). The link from the mobile node transmitter to a base station receiver 107 is referred to as the reverse link 113 (or uplink).
One advantage of CDMA over other wireless access systems is that all users share the same spectrum at the same time. However, the fact that multiple users occupy the same bandwidth limits performance and capacity. Because the conventional matched filter receiver 107 does an imperfect job of removing signals from these users, each user in a CDMA system degrades the performance of every other user; this effect is called multiple access interference or MAI. An increase in interference between users can lower the ability of a wireless provider to reuse frequencies, resulting in a reduction of system capacity. Because of the tremendous demand for wireless voice and data services and increased competition between service providers, CDMA network providers cannot afford such a reduction in system capacity. Therefore, wireless providers are continually striving to maximize system capacity, which in turn, requires limiting interference.
In CDMA wireless systems, power control is used to control the level of MAI at the base station. By adjusting every user's power so that all user transmissions arrive at the base station at approximately the same level, the base station receiver for each user sees the same amount of MAI, and the link quality is roughly the same for each user. If power control was not implemented, then a single user close to the base station could prevent the conventional CDMA receiver for other users from receiving a usable signal, resulting in the so-called near-far problem.
Power control works reasonably well for currently deployed CDMA wireless systems although limitations in the speed of power control are a constant engineering concern and limit capacity and link quality. However, there are frequently situations where it is desirable to deploy auxiliary receivers that are not the target of mobile station power control. Auxiliary receivers can be used to monitor the health of a CDMA wireless system or assist in geolocation. These auxiliary receivers may even be used by law enforcement and military operators for non-cooperative monitoring of a CDMA system for drug-interdiction, counter-terrorism and international intelligence gathering. In these cases, the auxiliary receiver must contend with a wide range of received power levels. Often the auxiliary receiver may need to receive a signal from a mobile station whose received power level is far below (30 dB or more) the strongest arriving signal.
A need therefore exists for enabling a user in a CDMA system to receive user signals in the presence of interference from other users when the power level of all co-channel signals is not adjusted to be substantially the same. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a conventional electromagnetic wave-shielding tape, a conductive sheet having a conductive adhesive layer on one side of a foil of metal such as aluminum and copper has been proposed (Patent Literature 1). In order to prevent occurrence of short circuit due to contact of such a conductive sheet with another conductive body, or the like, a polyethylene terephthalate (PET) film is laminated as an insulating resin layer on a side without a conductive adhesive layer of the conductive sheet to impart improvement of giving insulating properties to one side of the conductive sheet. By bonding a release film to the conductive adhesive layer, the handleability is improved.
In recent years, a display operation panel (i.e., touch panel) is applied to a smartphone, a portable game console, a ticket selling machine, or the like, and a conductive sheet is used for electrical continuity between a display operation face and a back face thereof. In order to prevent occurrence of short circuit due to unintended contact of such a conductive sheet with another conductive body such as a metal housing, an insulating resin film is laminated on one side to impart insulating properties to the side. When the display operation face of the display operation panel and the back face are electrically continuous using such a conductive sheet, an attempt has been made to cover an outer edge of the display operation panel so that the insulating resin film of the conductive sheet is outside. In this case, in order to improve quality of an image viewed through the display operation panel or prevent a reduction in image visibility, an attempt has been made to color the insulating resin film itself in black or form a black printing layer on the insulating resin film so that the insulating resin film of the conductive sheet serves as a black frame. | {
"pile_set_name": "USPTO Backgrounds"
} |
Typically, printing on a substrate is performed with reflective inks and/or toners using, for example, an ink-jet or laser printer, respectively. In toner systems, reflective colors are produced by the reflection of light of one or more wavelengths by toner printed on a substrate. Multiple color reflective toners may be applied to a substrate in differing amounts to produce a variety of reflective colors. The colors reflected are determined by the electromagnetic energy (i.e., light) that the toner on the substrate absorbs or otherwise subtracts from the light incident on the toner. The subtractive primary colors commonly used in reflective color printing are cyan, yellow, and magenta. Such a printing system is referred to as a CYMK model. In printing with component C, Y, and M reflective toner compositions, colors of hues other than cyan, yellow, and magenta can be produced by combining the subtractive primary colors in differing amounts on the substrate to combine the absorption of each primary color. The incident light not absorbed is reflected to produce reflected light of a particular color. For example, a reflective cyan toner composition absorbs certain wavelengths of incident visible light and reflects the non-absorbed remaining visible light having wavelengths corresponding to the color cyan. In another example, a reflective yellow toner composition absorbs certain wavelengths of incident visible light and reflects the non-absorbed remaining visible light having wavelengths corresponding to the color yellow. Combining the subtractive absorption of a reflective yellow toner and a reflective cyan toner can produce a reflective light having wavelengths corresponding to a green color. Combination of colors (e.g., inks, toners) in printing may occur by a variety of known processes including, but not limited to, stochastic screening, traditional line screening, half-toning, dithering, pixelation, and any combinations thereof.
In reflective printing using cyan, yellow, and magenta reflective toner compositions, the C, Y, and M image components may be combined to produce the absorption of substantially all visible wavelengths and reflecting a black color. Alternatively, a CYMK model (where the “K” represents the “key”) may include a fourth reflective black toner composition as the key for producing reflective black color in printing.
Another color model, the RGB model, is based on additive properties of the colors red (R), green (G), and blue (B), from which many colors and hues may be produced. The CYMK and RGB models have been correlated by known processes in traditional reflective printing (e.g., in digital computer printing processes utilizing software correlations and/or conversions). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. The Field of the Invention
This invention relates to apparatus and methods for monitoring, non-intrusively, the contents of a container containing fluid. The invention relates particularly, but not exclusively, to a method of non-intrusively monitoring the gaseous contents of a container in order, for example, to confirm the composition or purity of the gas within the container.
2. The Relevant Technology
It is often important to be able to monitor and confirm the composition or purity of gas contained within a container in order to monitor possible events, such as corrosion of the container, or to detect a leakage of the gas contained within the container or the leakage of a gas into the container. This may be particularly important when the gas or other contents of the container are toxic or in some other way harmful.
The invention therefore has particular application in, for example, the nuclear industry where the storage of radioactive substances requires continual or periodic monitoring of storage conditions to confirm continuous safe storage.
It may also be useful to non-intrusively monitor the contents of a container holding hazardous fluid or solid in the form of, for example, flammable, biological or pharmaceutical materials.
The invention may also be useful in monitoring the contents of containers in the vicinity of potentially hazardous processes such as in the operation of high voltage switch gear where gas within containers provides electrical insulation for the switchgear.
Known methods and apparatus for monitoring the gaseous contents of a container in order to confirm the composition of the gas within the container require penetration of the container in order to sample the gas contained within the container or in order to introduce a sensor into the container.
A problem with such known methods and apparatus is that because it is necessary to penetrate the container, there is a risk that leakages from the container occur around the area where penetration has taken place. Such systems, in seeking to establish that no leakage is occurring have to generate a potential site for leakage. This is technically undesirable and a potential problem with regulatory authorities.
Spent nuclear fuel is highly radioactive and it is necessary to appropriately deal with the fuel to ensure that the radioactive spent fuel does not contaminate the environment.
There is a requirement to be able to safely store spent nuclear fuel for an intermediate period known as xe2x80x9cinterim storagexe2x80x9d which period may be prolonged if required, pending a decision as to whether reprocessing or disposal of the fuel is to be undertaken. Spent fuel is typically stored within a sealed container during such storage.
Typically, a container suitable for interim storage of spent fuel comprises a canister made of pressure vessel grade steel within which the spent fuel is held. The canister incorporates radioactive shielding in its lid. Once the canister has been filled with spent fuel, it is fitted with a lid and welded. The final welding of the lid seals the fuel. The lid of the canister will typically have a double seal. Prior to final sealing of the lid, the canister is filled with helium so that the spent fuel is held in a sealed container in a helium atmosphere.
To provide further radiation shielding the canister is placed in a concrete storage cask which is also fitted with a lid. The canister may be positioned within a concrete cask such that there is a space between the canister and the cask. The cask has inlet ports at the bottom and outlet ports at the top so that air may flow within the concrete cask in order to cool the canister.
The concrete outer cask provides shielding for both gamma and neutron radiation and protection against external hazards.
It is desirable to be able to, from time to time, monitor the contents of the canister in order to ensure that no untoward reactions are occurring within the canister. Such checks would also indicate the continued integrity of the fuel cladding in the canister.
A known method of monitoring spent fuel within a sealed canister or dual purpose metal cask involves opening the sealed canister to examine the fuel and the atmosphere surrounding the fuel known as the cover gas within the canister.
A disadvantage with this known method is that there is a risk of contamination to the surroundings and the facilities required are extensive and expensive. In addition, it is neither easy nor practical to be able to continuously monitor the canister and contents thereof using such a method.
A second known method of monitoring spent fuel within a canister is through use of an installed penetration by which it is possible to attach instrumentation to measure the pressure or quality of the cover gas over the spent fuel or the seal interspace gas. Measurement of such gases will provide information relating to the chemical composition of the cover gas in the canister.
A disadvantage of this known method is that the presence of the penetration prejudices or degrades the integrity of the containment barrier of the canister thus providing a potential leak which could lead to radioactive contamination.
According to a first aspect of the present invention, there is provided a method for non-intrusively monitoring the contents of a sealed container comprising steps of:
transmitting an ultrasonic signal through a wall of the container into the contents of the container, receiving a signal from within the container, and analysing the received signal thereby deducing the composition of the contents of the container. This can thus be achieved without having to unseal the container.
According to a second aspect of the present invention there is provided apparatus for non-intrusively monitoring the contents of a sealed container the apparatus comprising:
transmitter means for transmitting an ultra-sonic signal through a wall of the container into the contents of the container;
receiving means for receiving a signal from within the container;
analysing means for analysing the received signal thereby deducing the composition of the contents of the container.
By means of the present invention it is possible to measure at intermittent intervals the quality of the atmosphere within a container.
The canister may be a substantially gas tight canister. The canister may be a metal canister, for instance of carbon steel or stainless steel.
The canister may be formed of a body and one or more lid elements. The one or more lid elements may be sealed to the body in use. Preferably a first lid is provided, together with a second outer lid. Preferably the first lid is received within the opening to the canister. The first and/or second lid may rest on one or more internal lips provided by the canister. The one or more lid elements may be welded to the body. The welds may provide a gas tight seal between a first lid and the canister and a second lid and the canister.
Preferably the canister has the general form of a right cylinder. Preferably the lids are provided on the top end of the canister, most preferably within the profile of the side wall of the canister, such that an end wall of the side wall is exposed.
Preferably the canister contains spent nuclear fuel rods or other irradiated nuclear material.
The canister may be provided with an internal gas pressure of greater than ambient, a positive pressure. The positive pressure may be at least 1.1 atmospheres, more preferably at least 1.2 atmospheres. Preferably the gas in the canister is substantially helium.
Preferably the canister is provided within a further container in use. The outer container may be a cask, for instance a concrete cask. Preferably the internal configuration of the outer container generally matches the outer configuration of the canister.
The outer container may be provided with a lid to seal the body of the container following insertion of the canister.
Preferably the outer container is provided with a supply of cooling gas to its interior. Preferably the cooling gas directly cools the outside of the canister. The cooling gas is preferably air. An inlet to the inside of the outer container and an outlet therefrom may be provided. Preferably the inlet and outlets are dog-legged.
The invention may be used to measure the fluid contents of a container and may therefore be used to monitor a gaseous or liquid content of a container. The invention may be used to measure the presence of one or more components of a gas. For instance, the presence of air in an helium atmosphere or the presence of xenon and/or krypton in an helium atmosphere may be measured. The invention may be used to measure the level of one or more components of a gas. For instance, the level of air in an helium atmosphere may be measured or the level of xenon and/or krypton in an helium atmosphere may be measured.
Advantageously, the method comprises the steps of measuring the sound velocity and/or attenuation of the transmitted signal and/or the reflected signal. The sound velocity and/or attenuation may be considered at more than one frequency of transmitted signal.
By measuring velocity and attenuation at least two different frequencies of transmitted signal, unknown quantities in the calculations/algorithms required to derive information regarding a composition of the contents are eliminated from the calculations. The method may measure the velocity and/or attenuation using transmission measurements. The method may measure the velocity and/or attenuation using reflected measurements. Conveniently, the method comprises the step of measuring velocity and attenuation of both a transmitted signal, such as a xe2x80x9cline of sightxe2x80x9d received signal, and a reflected signal.
The transmitted ultrasound signal may be provided by a transducer.
Preferably the ultrasound source and/or receiver therefore is removed from the canister between at least some of the tests. The transmitter and/or receiver may be removed whenever the time period between tests exceeds 1 hour, or more preferably 1 day.
Preferably a calibration and/or checking station is provided for the transmitter and/or receiver and/or accompanying electronics between at least some of the tests. Preferably such checks are made when tests are separated by more than 1 hour and more preferably by more than 1 day.
Conveniently, the source of the transmitted signal is positioned outside the container, and a receiver is positioned outside the container. The source of the signal and/or receiver are preferably mounted on the lid of the container. The source of the signal and/or receiver may be mounted on a side wall of the container, preferably on the top of the side wall. The source of the signal and/or receiver are preferably provided in a housing.
The housing may be mounted on the lid of the canister, for instance the outer lid or the inner lid.
The housing may be mounted on the outer surface of the outer lid, with a passage connecting the monitoring location in the housing to the body of gas within the canister, the passage being provided in a passage defining element which passes through the lid or lids, the cross-sectional profile of the passage defining element as it passes through at least a part of a lid being less than the cross-sectional profile of the housing, parallel to the lid. Preferably the cross-sectional profile is less throughout the elements passage through the outer lid, and if present the inner lid.
The housing may be mounted on the outer surface of the inner lid, with a passage connecting the monitoring location in the housing to the body of gas within the canister, the passage being provided in a passage defining element which passes through the inner lid, the cross-sectional profile of the passage defining element as it passes through at least a part of the inner lid being less than the cross-sectional profile of the housing, parallel to the lid. Preferably the cross-sectional profile is less throughout the elements passage through the inner lid. Preferably the cross-sectional profile of the housing as it passes through the outer lid is substantially the same as the housings cross-sectional profile outside the outer lid.
The housing may be mounted on the end wall of the side wall of the canister, most preferably wholly within the outline of the extension of that side wall. The housing may be welded to the canister. The housing may be formed of one or more different materials.
The received signal is preferably subjected to signal processing to extract the desired information. The signal processing may involve Fast Fourier Transform and/or chromatic based processing. The signal processing may involve the application of one or more Gaussian processors to the signal. The processors are preferably nonorthogonal. Preferably the processors cover the range of transmitted and/or received signal frequencies. Three processors may be applied. Preferably the processor outputs are further processed algorithmically. Preferably the algorithm results corresponding to the nominal energy content of the signal and/or the dominant frequency and/or the effective bandwidth, most preferably all three.
The signal may be represented as a point on a three dimensional plot defined by the nominal energy content of the signal, the dominant frequency and the effective bandwidth.
The condition within the container may be represented as a point on a three dimensional plot. The change in conditions may be represented as a deviation in one or more dimensions relative to that point. The extent of the deviation may represent the magnitude of the change in conditions. The direction of the deviation may represent the type of change in conditions.
Alternatively however the transmitter may be positioned within the container and may be activated by, for example, a signal transmitted from outside the container.
A transmitter suitable for positioning within the container may comprise, for example, a tuning fork or resonant cavity.
The canister will normally be filled with helium at a pressure of about 1xc2xc atmospheres at the time of sealing the canister. By means of the present invention, it is possible to confirm the continued presence of helium, the absence of atmospheric gases principally oxygen, the absence of fission product gases. It is also possible to discriminate between oxygen and fission product gases, so indicating the type of failure occurring.
The continued presence of helium, which is a highly mobile gas, will confirm that the canister is still satisfactorily sealed.
The absence of oxygen will confirm that corrosion of the external surface of the canister has been inhibited.
The absence of fission product gases will confirm that no deterioration of fuel integrity has taken place since the loading of the spent fuel into the canister.
By transmitting ultrasonic sound waves into the canister and receiving waves back from the canister (waves which have passed through the internal gas) the effects of variation in gas temperature can be allowed for, and the nature and amount of any foreign gas identified.
The internal gas at a monitoring location may be investigated. The monitoring location may be within the body of the canister. The monitoring location is preferably provided outside the body of the canister, but still sealed relative to the surrounding environment. Preferably the monitoring location is provided with a housing, most preferably the housing for the transmitter and/or receiver for the ultrasound. Preferably the monitoring location is provided in proximity to the outside of the canister lid.
The monitoring location is preferably connected to the internal body of gas in the canister via a bore or other passageway. The bore may be of circular cross-section. Preferably the bore includes one or more dog-legs. Preferably the bore passes from within the canister body to outside. The bore most preferably passes through the lid or lids of the canister. The bore may alternatively pass through the side wall of the canister. The bore may pass up through the side wall of the canister, towards the lid end of the canister. The bore may pass through the side wall of the canister, for instance to connect to an element externally provided on the canister and leading to the monitoring location.
The monitoring location is preferably in proximity to the transmitter and/or receiver. Ideally the monitoring location is provided between the transmitter and the receiver. The transmitter and receiver may be separated by a gap of between 0.5 and 20 cm or more preferably 3 and 8 cm.
The transmitter and/or receiver are preferably separated from the monitoring location by a thickness of material. The material thickness is preferably at least 5 mm and more preferably at least 10 mm or even 20 mm.
Preferably a volume of gas is provided in the housing on the distal side of the monitoring location relative to the body of the canister. Preferably the body of gas has a greater extent, perpendicular to the bore supplying it and/or parallel to the axis of the transmitter/receiver alignment, than the monitoring location itself. A disc shaped gas volume may be provided. In this way reduction of noise is facilitated.
It has previously been thought impossible to use sound or ultrasonic waves to determine the contents of a canister due to the fact that the temperature of the gas within the canister will affect the characteristics of reflected sound waves.
In addition, in order to be able to deduce the composition of the fluid within the container, the signal sound wave has to travel through a thick container wall without unacceptable signal loss. It had previously been thought that the attenuation of signals due to the thickness and nature of the canister material would be an insurmountable problem in using ultra-sonic signals to determine the contents of the container.
In addition, further problems associated with the method of the present invention include attenuation of the signal due to the impedance mismatching at changes of material. Further, a large amount of noise is generated by spurious internal reflections of the signal.
The physical properties of helium, oxygen and krypton/xenon (the principle fission product gases) in terms of atomic weight, molecular weight and bonding characteristics are sufficiently different to one another to allow reliable discrimination at the levels which would be expected within a canister containing spent fuel.
The present invention therefore provides a method where ultra-sound is transmitted through a container wall which may be metallic and may have considerable thickness, or alternatively may be a non-metallic material.
The ultra-sound may traverse through the gas or fluid within the container and then be received and detected through the container wall at a different point to that of which the ultrasound was transmitted into the canister wall initially. Alternatively, it may be received and detected at the same point at which it was transmitted through the canister wall following reflection of the signal.
The passage of the signal through the gas atmosphere or fluid will have modified the signal signature so by comparing the transmitted and received signals the composition of the gas or fluid may be inferred
In particular, the speed of sound, its attenuation and its frequency may be modified by differences in gas or fluid composition.
Alternatively, the resonance frequencies of the container and internal structures will be altered by the contained gas or fluid composition and this change may be used to infer the composition.
The signal may be produced by means positioned outside the canister for example a transmitter.
Alternatively, the signal may be produced from transmission means contained within the canister. Such transmission means may be in the form of, for example, a tuning fork or resonant cavity which may be activated from outside the container. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention concerns a method for operating a front-loading washing machine with a washing aggregate comprising a tub holding a rotatably-mounted drum suspended in the machine housing so as to be able to oscillate with a midaxis descending from front to back and equipped with an imbalance sensor that changes the rotation of the drum by means at a control program when an imbalance occurs in the spin cycle.
2. Description of the Related Art
In a front-loading washing machine of this kind, as a result of the physical laws of gravity and centrifugal force, an asymmetrical imbalance occurs at a specific point precisely when the laundry loads are small. In an inclined washing aggregate the small amount of laundry always travels to the back and the bottom of the drum above all during the spin cycle and collects there at the lowest point. Here at the rear, i.e., in immediate proximity to the drum bearing, the bearing load is, because of the laws of leverage less when imbalances occur than in the case of imbalances in the front loading area of the washing aggregate. Added to this is that during the spin cycle run-up in a washing aggregate that is inclined a small amount of laundry is better distributed along the rear wall of the drum, i.e., the laundry is more advantageously pulled apart. This also has a positive effect on the imbalance behavior; at the least the degree of imbalance is reduced.
The problem of the invention is to improve spin results by creating a method for operating a front-loading washing machine of the aforementioned kind that can in a simple way make optimal the superior imbalance advantage of conditions arising in small laundry loads. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to receivers and, in particular, to a receiver for analog and digital signals.
For over half a century, television signals have been broadcast in accordance with standardized analog signal formats, such as the NTSC format in the United States, the PAL format in Europe, and the SECAM format in France. Analog television signal formats have inherent limitations that preclude further improvement of picture quality, however, those inherent limitations can be overcome by broadcasting television signals in a digital format. Happily, advances in the design and processing of digital integrated circuits of ever increasing complexity and capability has resulted in sophisticated digital signal processing becoming available in a practical form and at reasonable cost.
Present digital television signal broadcast formats include the Digital Video Broadcast (DVB) format in use in Europe and the Advanced Television Standards Committee(ATSC) formats, such as ATSC format A/53 in use in the United States. Unfortunately, the various systems proposed and/or adopted for transmission of television signals in digital format are not compatible with the existing processing of television signals in analog format. This incompatibility arises not only because one format is analog and the other digital, but also because the signal processing at radio frequencies (RF) and/or at intermediate frequencies (IF) required to properly receive the formats are also different, such as in required filtering. Filtering at IF is typically implemented in surface acoustic wave (SAW) filters and SAW filters for NTSC signals should have a vestigial-sideband filter characteristic and those for ATSC signals should have a root-cosine filter or a xe2x80x9croofingxe2x80x9d (flat) filter characteristic.
The conventional approach to a receiver for receiving television signals in both analog and digital formats have required dual SAW filters and dual IF amplifiers, one set for each format, thereby undesirably increasing the complexity and cost of the television receiver and possibly introducing electrical interference. One such prior art arrangement is shown in FIG. 1. RF television signals received at antenna 10 (which may include a cable TV signal input as well as an air wave broadcast signal input) are down converted to the IF frequency, typically about 44-45 megahertz (MHZ) by RF tuner 12 whose gain is controlled to amplitude limit the RF signal in response to RF automatic gain control (AGC) detector 14. Frequency synthesis, band switching and filter tuning of tuner 12 is controlled in response to control signals received via a conventional I2C control data bus from a micro-controller. ATSC SAW filter 20 selects the bandwidth of an ATSC format signal at the IF frequency, typically about a 6 MHZ bandwidth for an ATSC format signal, which is applied to IF amplifier 26 when switch 24a is closed. Similarly, an NTSC SAW filter 22 selects the bandwidth of an NTSC signal at the IF frequency, typically about a 5.75 MHZ bandwidth, for an NTSC format signal which is applied to IF amplifier 26 when switch 24n is closed. In this example, the complication of IF switches 24a, 24n is introduced to avoid plural IF amplifiers. The IF signal from IF amplifier 26 is down converted to baseband for conventional analog signal processing of NTSC analog format signals and is digitally processed for ATSC digital format signals, to reproduce the transmitted program as a displayed picture and sound program. The IF signal from IF amplifier 26 is also applied to automatic gain control (AGC) detector 16 for gain-controlling IF amplifier 26, and in conjunction with RF AGC detector 14, controlling the gain of tuner 12.
In the United States, for example, the change over from all-NTSC analog format broadcasting to all-ATSC digital format broadcasting will be phased in gradually over many years so as not to instantly obsolete the installed base of existing NTSC television transmitters and receivers. Initially, only a few of the available programs may be in digital format and only a few of the broadcast channels will be changed from NTSC analog format to ATSC digital format, and later additional programs and channels will be converted. This leads to a further problem with the prior art arrangement of FIG. 1 in that the operation of ATSC and NTSC selection switches 24a and 24n is undefined in view of the unknown and unpredictable program and channel broadcast patterns in any particular geographical area.
Accordingly, there is a need for a receiver that can receive both analog format and digital format signals without the added complexity of dual IF filters. In addition, it is desirable that such receiver automatically select whether the received signal is in analog format or in digital format.
To this end, a receiver of the present invention comprises a tuner for converting input signals to IF signals, the input signals being in either one of an analog signal format and a digital signal format, an IF filter having a passband for passing the IF signals, and an IF amplifier for amplifying the IF signals. A first signal processor processes the IF signals that are in the analog signal format and a second signal processor processes the IF signals that are in the digital signal format.
In another aspect of the present invention, a method of receiving a signal which may be in either one of an analog signal format or a digital signal format comprises:
receiving the signal as if it is in the analog signal format, and detecting a signal characteristic thereof unique to the analog signal format;
receiving the signal as if it is in the digital signal format, and detecting a signal characteristic thereof unique to the digital signal format;
responsive to the detected signal characteristics unique to the analog signal format and to the digital signal format, respectively, selecting one of the analog signal format and the digital signal format as a received signal format; and
receiving the signal in the selected one of the analog signal format and the digital signal format. | {
"pile_set_name": "USPTO Backgrounds"
} |
Drive devices and drive control units of the type described above are generally known. The drive control units generally take the form of motion control devices, in particular as numerical control units for machine tools or motion control units for production machines. The sequences of setpoint values that are communicated from the drive control units to the corresponding drive devices are generally sequences of position- or rotational speed setpoint values. In individual cases, however, the determination of torque- or other setpoint values is also possible.
The drive devices are conventional motor control devices. They convert the determined position-, rotational speed-, torque- or other setpoint values at least into current setpoint values. In many cases, the drive devices themselves directly trigger their electric motors. In other cases, they communicate the current setpoint values to a lower-level device, which effects determination of the trigger signals for circuit-breakers and triggering of the circuit-breakers.
During normal operation the drive device carries out only the conversion of the communicated sequence of setpoint values into the current setpoint values but does not carry out any monitoring tasks with regard to the electric motor. In many operating states, however, it is necessary for the electric motor to be controlled in a specific manner and also monitored. For example—depending on the operating situation—one of the following requirements may exist: The electric motor is to be decelerated to zero rotational speed and then actively held at a standstill. The rotational speed of the electric motor is to be lowered until it is below a maximum permissible rotational speed. The motor is to be operated only in a specific direction of rotation. This mode of operation may be important particularly if there is a risk of a so-called pull-through load. The motor is to be operated at most with a torque limit. The electric motor is to be brought to a standstill and then de-energized. Optionally an interaction with a mechanical brake may occur.
Other requirements may also exist.
Such monitoring operations are conventionally carried out by the drive device. If the electric motor in the monitoring mode of the drive device does not comply with the required operating condition, it is disconnected from the power supply by the drive device. A braking device, in particular a mechanical brake, may possibly also be actuated.
Whether the electric motor is to be monitored by the drive device and the possible nature of the monitoring is decided by the drive device on the basis of corresponding safety-related signals that are supplied from outside to the drive device. Parameters that more closely define the state to be monitored may also be supplied from outside to the drive device. Thus for example the maximum permissible rotational speed value, the desired direction of rotation or the maximum permissible torque value may be supplied to the drive device.
From the above, purely exemplary list of monitoring operations it is clear that for many monitoring operations the electric motor even after initiation of the monitoring mode may continue to remain connected to the power supply. In the framework of the present invention only such states are of importance. So long as in such monitored states the actual value of the electric motor complies with the actual-value condition, the electric motor remains connected to the power supply and is operated in accordance with the current setpoint values determined by the drive device. It is only if the electric motor breaches the actual-value condition that the drive device automatically causes the electric motor to be disconnected from the power supply. The drive device—speaking metaphorically—pulls the emergency brake.
Within the framework of selection of the setpoint values by the drive control unit, as a rule a management of the electric motor occurs. The time sequence of setpoint values is therefore determined by the drive control unit while simultaneously taking into account the dynamics of the electric motor—possibly also while taking into account a load actuated by the electric motor—in such a way that the electric motor may follow the corresponding setpoint selection. If the monitoring mode is initiated, the appropriate information therefore generally has to be supplied not only to the drive device but also to the drive control unit. In the prior art various procedures for this purpose are known.
Thus for example it is known to transmit the first signals via a fail-safe programmable controller to the drive device. In this case, three embodiments are known.
Firstly, it is known for the first signals to be communicated by the fail-safe programmable controller not only to the drive device but also to the drive control unit. Secondly, it is known for the drive control unit alternatively passively to listen in on the data traffic from the fail-safe programmable controller to the drive device. Thirdly, it is possible for the drive device to output the first signals and for the first signals to be supplied via an intrinsic terminal module directly to the drive control unit. This means that this supplying has to be effected in addition to the supplying of the first signals to the drive device.
It is further known for the first signals to be supplied directly via a terminal module to the drive device. In this embodiment it is known to associate an intrinsic terminal module with the drive control unit. The signals supplied to the drive control unit may in this case alternatively directly be the first signals or signals for output that are determined by the drive device on the basis of the first signals. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to peer-to-peer networks, and more specifically to manipulating and querying arbitrary resources of peers in the peer-to-peer network.
2. Description of the Related Art
Currently, a client can access resources through a server over a network. For example, FIG. 1 is a prior art diagram illustrating a client 140 accessing resources over a network 130. A server 110 interfaced by a proxy server 120 provides access to multiple resources of the server 110. The resources can include a central processing unit (CPU) 112, a memory 114, a disk 116, and a printer 118. Typically, the client 140 requests access to a resource, such as the printer 118 and the proxy server 120 either grants or disallows access. It should be appreciated that in this type of system the available resources are pre-set as being available to the client. That is, the client does not have to search for available resources that may be desired.
In a decentralized network, e.g., a peer-to-peer network, as the number of peers in the network become large, each peer is incapable of notifying each of the other peers of its available resources because of the large number of peers. One barrier for a system having a large number of peers, i.e., hundreds of thousands of peers, is the bandwidth required for handling the publishing of available resources between each of the peers. One technique to address the publishing of resources has been to allow searching for an exact resource and not a range of resources. This type of search is limiting as an exact amount is not the preferable search format, i.e., it is preferable to search for a resource having a minimum or maximum percentage of the resource available. In addition, as resource availability tends to constantly change, the update rate and the bandwidth consumed by the constant updates of the exact available amount of the resource become excessive.
Accordingly, a method and an apparatus for enabling notification of available resources in a deterministic manner that does not impact performance for a decentralized network are needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
A sprung balance resonator generally has a configuration like that shown in FIG. 2. Thus, the resonator 1 includes a balance 3 driven onto a staff 7 so that it is rotatably mounted between a bridge and the bottom plate of a timepiece movement.
As shown in FIG. 2, in order to transmit its oscillation frequency to the escape system, balance 3 includes a pin 6 fitted in a recess of said balance. The balance spring 5 is fitted on the other side of the shoulder 8 of staff 7. The balance spring 5 includes a hairspring 2 formed in single piece with a collet 4, which is fitted onto staff 7. | {
"pile_set_name": "USPTO Backgrounds"
} |
Monitoring large and complex environments is a challenging task for security operators because situations evolve quickly, information is distributed across multiple screens and systems, uncertainty is rampant, decisions can have high risk and far reaching consequences, and responses must be quick and coordinated when problems occur. The increased market present of single-touch and multi-touch interaction devices such as the iPhone, GPS navigators, HP TouchSmart laptop, Microsoft Surface and Blackberry mobile devices offer a significant opportunity to investigate new gesture-based interaction techniques that can improve operator performance during complex monitoring and response tasks.
However, the solutions that are typically incorporated to address the myriad of needs in complex security environments often consist of adding a multitude of features and functions. Adding such features requires operators to remember the features available, including when and how to access them. Therefore, it would be desirable if the added features were intuitive thereby making them easy to use. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field
Embodiments disclosed herein generally relate to a magnetic disk device employing a heat assisted magnetic recording (HAMR) head.
Description of the Related Art
Higher storage bit densities in magnetic media used in disk drives have reduced the size (volume) of magnetic bits to the point where the magnetic bit dimensions are limited by the grain size of the magnetic material. Although grain size can be reduced further, the data stored within the magnetic bits may not be thermally stable. That is, random thermal fluctuations at ambient temperatures may be sufficient to erase data. This state is described as the superparamagnetic limit, which determines the maximum theoretical storage density for a given magnetic media. This limit may be raised by increasing the coercivity of the magnetic media or by lowering the temperature. Lowering the temperature may not always be practical when designing hard disk drives for commercial and consumer use. Raising the coercivity, on the other hand, requires write heads that incorporate higher magnetic moment materials, or techniques such as perpendicular recording (or both).
One additional solution has been proposed, which uses heat to lower the effective coercivity of a localized region on the magnetic media surface and writes data within this heated region. The data state becomes “fixed” once the media cools to ambient temperatures. This technique is broadly referred to as HAMR, which can be applied to longitudinal and perpendicular recording systems as well as “bit patterned media”. Heating of the media surface has been accomplished by a number of techniques such as focused laser beams or near-field optical sources.
Typically, external optoelectronic devices such as lasers or photodiodes are integrated into a finished slider through optical coupling to various waveguides that then guide and focus the light onto a plasmonic near field transducer (NFT) used to generate the heat spot. A protective overcoat made of amorphous diamond-like carbon (DLC) is typically formed on the slider facing the magnetic media. Degradation or oxidation of the protective overcoat, along with back-heating of the NFT as a result of slider-media frictional heating, can reduce the reliability of the NFT.
Therefore, an improved method for forming a HAMR head is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
An example of video display system using a digital camera is disclosed in Japanese Laid-open Patent No. 11-88808. Herein, as shown in FIG. 37, a file name of a image file 3701 selected by the user on a digital camera is created as a display management information file 3702 on a memory card (flash memory card). A display control unit 3705 for controlling a display unit 3703 such as a liquid crystal display device in FIG. 37 obtains file names of images to be displayed from the display management information file 3702 of the memory card by a display management information acquiring unit 3704, and sequentially displays on the display unit 3703.
In this prior art, however, files being handled are only the files recording the image signals, and it is not assumed, for example, to reproduce independent audio data or audio data recorded simultaneously with taking images, in synchronism with images, and such technical means is not proposed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of prosthetic devices for treatment of bone injuries/illnesses is continuously expanding with an increasingly active and aging population. Among those disorders are osteoporosis, Paget's disease of bone and joints, and arthritis. All these disorders may cause limited mobility and often, particularly in the elderly, can result in death due to resulting bone fractures. When not fatal, these disorders still often require surgical bone or joint replacement of hips, knees, elbows, and other joints.
The major problem associated with the bone replacement, especially for the defects of both the bone and the adjacent cartilage, is the lack of a suitable material which would have the same or similar properties as bone but that would also be compatible with the human body. The properties which the bone or joint replacement material need to possess include biocompatibility, porosity, strength, durability, elasticity and, in order to prevent wear in joint areas and to prevent or allow tissue attachment in other areas, as need be, a possibility to be surface finished. Therefore, such material must have approximately the same porosity, weight and structure and must not be more fragile or more brittle than the normal bone.
Current research is focused around the use of porous degradable synthetic polymer materials as osteochondral plug scaffolds to allow regeneration of both the subchondral bone and hylan cartilage surface. Some have even added in small amounts of calcium phosphate or calcium sulfate directly blended into the polymer scaffold to facilitate bone formation. Animal studies show that the underlying subchondral bone results in either large unresorbed areas of polymer or void spaces filled with fluid or fibrous tissue. This void space in the subchondral bone can often result in a collapse of the upper cartilage surface and suboptimal repair of the hylan cartilage layer with the host hylan cartilage. Thus, the “one size fits all” approach hinders implant incorporation into the host bone and cartilage and eventual replacement by natural host tissue.
Accordingly, there is a need for improved osteochondral implantable devices suitable for repair of bone/cartilage defects. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to workpiece stands and in particular to an adjustable stand for a stretcher frame and the like.
2. Description of the Prior Art
A variety of stands have heretofore been developed for supporting workpieces such as stretcher frames, embroidery hoops and the like in predetermined positions. One such stand is exemplified by the Vosler U.S. Pat. No. 699,263 for an embroidery frame adapted for attachment to a chair, table or bedside rail. The embroidery frame is mounted on a bow which is pivotable with respect to two axes for positioning.
Another type of embroidery frame holder is shown in the Post U.S. Pat. No. 707,353 and includes an arm movably mounted on a clamp mechanism by a ball and socket-type universal joint. Yet another type of workpiece stand for embroidery frames and the like is exemplified by Parsons et al., which show a floor stand with a base plate, a pole and support strips connected to the pole upper end by a universal joint.
However, heretofore there has not been available a stand for workpieces with the adjustability of the present invention or its flexibility for accommodating various types of workpieces. | {
"pile_set_name": "USPTO Backgrounds"
} |
Today's automobiles and other vehicles generally include a number of vehicle sensors for determining values of various vehicle parameters and variables. For example, today's vehicles often include an inertial sensor unit having one or more inertial sensors configured to determine yaw rate and lateral acceleration values, among various other values. Today's vehicles often also include a steering angle sensor unit having one or more steering angle sensors configured to determine values of a steering angle of the vehicle. While these and other sensors are generally quite effective in providing such values and other information, it can be difficult to control for improper installation of such sensors.
Accordingly, it is desirable to provide an improved method for controlling for improper installation of vehicle sensors, for example when one or more inertial sensors or steering angle sensors are installed backwards in the vehicle. It is also desirable to provide an improved program product for controlling for improper installation of vehicle sensors, for example when one or more inertial sensors or steering angle sensors are installed backwards in the vehicle. It is further desirable to provide an improved system for controlling for improper installation of vehicle sensors, for example when one or more inertial sensors or steering angle sensors are installed backwards in the vehicle. Other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method and apparatus for producing a food product from minced fish meat and the like, having the appearance of cooked-and-peeled shrimp.
Apparatus for producing food products having the appearance of cooked-and-peeled shrimp from minced fish meat are disclosed in the applicants' U.S. patent application Ser. No. 818,618, now U.S. Pat. No. 4,692,341, and Ser. No. 879,984. These applications, the disclosures therein being incorporated into this application by reference, disclose apparatus including a split-in-two metal mold having a cavity in the shape of a cooked-and-peeled or shelled shrimp, a device for spraying a dye over the inner surface of the mold, a filler for injecting minced fish meat into the mold cavity, a heating device for heating and solidifying the minced fish meat in the mold, and a device for removing the food product from the mold. The shrimp-like food product thus produced has a fan-like tail at one end, an arcuate abdomen portion in the center, and a thicker end which, in a real shrimp, is broken off from the head. As shown in FIG. 4 herein, the mold cavity for forming the shelled-shrimp-like food product has its fishmeat receiving opening at the thicker end where the removed head is connected.
The shelled-shrimp-shaped food products produced by the above-mentioned apparatus have the appearance of the natural or real products. When the natural shrimps are large in size, their gut portion extending from the head to the back is removed during the cooking-and-peeling process. The resulting groove does not become colored even after heating, and both ridges or sides of the groove swell after heating. If the simulated food product were formed in this shape by the mold, the product could not be removed out of the mold. If the mold were shaped so that the product can be removed from the mold, the resulting food would not have a natural appearance. | {
"pile_set_name": "USPTO Backgrounds"
} |
Infection with dengue virus can lead to a painful fever of varying severity. To date, five serotypes of dengue virus have been identified: dengue-1 (DEN-1), dengue-2 (DEN-2), or dengue-3 (DEN-3), dengue-4 (DENV-4) and dengue-5 (DEN-5). Dengue fever is caused by infection of a dengue virus. Dengue virus serotypes 1-4 can also cause dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). The most severe consequences of infection, DHF and DSS, can be life threatening. Dengue viruses cause 50-100 million cases of debilitating dengue fever, 500,000 cases of DHF/DSS, and more than 20,000 deaths each year. To date, there is no effective vaccine to protect against dengue fever and no drug treatment for the disease. Mosquito control efforts have been ineffective in preventing dengue outbreaks in endemic areas or in preventing further geographic spread of the disease. It is estimated that 3.5 billion people are threatened by infection with dengue virus. In addition, dengue virus is a leading cause of fever in travelers to endemic areas, such as Asia, Central and South America, and the Caribbean.
All four dengue virus serotypes are endemic throughout the tropical and subtropical regions of the world and constitute the most significant mosquito-borne viral threat to humans worldwide. Dengue viruses are transmitted to humans primarily by Aedes aegypti mosquitoes. Infection with one dengue virus serotype results in life-long protection from re-infection by that serotype, but does not prevent secondary infection by one of the other three dengue virus serotypes. In fact, previous infection with one dengue virus serotype can lead to an increased risk of severe disease (DHF/DSS) upon secondary infection with a different serotype. The development of an effective vaccine represents an important approach to the prevention and control of this global emerging disease. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention pertains to a patient interface device that provides a stable platform supporting a sealing assembly for coupling a flow of gas with an airway of a patient, is relatively small to minimize the amount of material supported on the patient's face and head, and yet provides a high degree of adjustability, so that the patient interface device fits comfortably on a wide variety of differently sized and shaped patients.
2. Description of the Related Art
There are numerous situations where it is necessary or desirable to deliver a flow of breathing gas non-invasively to the airway of a patient, i.e., without intubating the patient or surgically inserting a tracheal tube in the esophagus. For example, it is known to ventilate a patient using a technique known as non-invasive ventilation. It is also known to deliver continuous positive airway pressure (CPAP) or variable airway pressure, such as a bi-level pressure that varies with the patient's respiratory cycle or an auto-titrating pressure that varies with the monitored condition of the patient. Typical pressure support therapies are provided to treat a medical disorder, such as sleep apnea syndrome, in particular, obstructive sleep apnea (OSA), or congestive heart failure.
Non-invasive ventilation and pressure support therapies involve the placement of a patient interface device, which is typically a nasal or nasal/oral mask, on the face of a patient to interface the ventilator or pressure support system with the airway of the patient so that a flow of breathing gas can be delivered from the pressure/flow generating device to the airway of the patient. It is known to maintain such masks on the face of a patient by a headgear having upper and lower straps, each having opposite ends threaded through connecting elements provided on the opposite sides and top of a mask.
Because such masks are typically worn for an extended period of time, a variety of concerns must be taken into consideration. For example, in providing CPAP to treat OSA, the patient normally wears the patient interface device all night long while he or she sleeps. One concern in such a situation is that the patient interface device is as comfortable as possible, otherwise the patient may avoid wearing the interface device, defeating the purpose of the prescribed pressure support therapy. It is also important that the interface device provides a tight enough seal against a patient's face without discomfort. A problem arises in that in order for the mask to maintain a seal without any undue gas leaks around the periphery of the mask, the mask cushion may be compressed against the patient's face. This is most notable, for example, in masks having a bubble type cushion. While the bubble cushion itself is comfortable, it does not provide adequate support, which may cause gas leaks around the periphery of the mask. The bubble effect is diminished when the headgear strap force is increased to improve stability.
Some conventional respiratory masks attempt to enhance mask stability by providing a relatively large structure that must be mounted on the patient's face. Therefore, an advantage exists for a respiratory mask that minimizes the amount of material that must be supported on the patient's head and face, yet provides a relatively high degree of stability, so that that the mask is not easily dislodged from the patient. Another advantage exists for a respiratory mask that evenly distributes the headgear strapping force needed to hold the mask on the patient at locations on the patient's face that are best suited to handle such forces.
A further advantage exists for a respiratory mask that avoids providing any structural features near the patient's eyes. This advantage is particularly important for patient's who desire to wear glasses while wearing the mask and for patient's that tend to feel claustrophobic when a structure is provided at or near their eyes. Avoiding the ocular area also eliminates or avoids the leakage of gas into the user's eyes, which can cause great discomfort. A still further advantage exists for a mask that accomplishes these functions while also providing a relatively high degree of adjustability, so that a common mask style or configuration can be fitted to a variety of differently sized and shaped patients. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an insulating target material suitably used for radio frequency (RF) sputtering, a method of manufacturing the insulating target material, a conductive complex oxide film, and a device.
A target for obtaining a complex oxide film by sputtering is generally obtained as follows. For example, a target for obtaining a perovskite oxide film of the general formula ABO3 is obtained by pulverizing oxide raw materials of the element A and the element B, mixing the oxide raw materials taking the stoichiometric composition into consideration, and sintering the mixture. A material disclosed in JP-A-10-176264 has been known as such a target, for example. This document discloses a sputtering target for a perovskite oxide of the chemical formula ABO3 which has a specific relative density and size.
On the other hand, the inventor of the invention found that a target sufficient for obtaining a conductive complex oxide film of the general formula ABO3 cannot be obtained by merely pulverizing oxide raw materials of the element A and the element B and mixing and sintering the oxide raw materials at a specific composition.
For example, the inventor formed a target for forming an LaNiO3 conductive complex oxide film by RF sputtering using a known sintering method to obtain the following findings. Specifically, a target obtained by mixing an La oxide powder and an Ni oxide powder at a composition ratio of 1:1 and sintering the mixture did not exhibit uniform insulating properties over the entire target, in which a portion exhibiting low insulating properties (i.e. portion exhibiting conductivity higher than that of the surrounding portion) was formed. When RF sputtering is performed using such a target, plasma is concentrated on the portion exhibiting low insulating properties, whereby the portion on which the plasma is concentrated may be dissolved or cracks may occur in the target due to plasma concentration. This makes it difficult to use such a target for RF sputtering. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a window frame for lights for use in connection with holiday lights. The window frame for lights has particular utility in connection with displaying holiday lights in a window.
2. Description of the Prior Art
Window frames for lights are desirable for displaying holiday lights in a window. Traditional methods of displaying holiday lights in a window require the use of tape, tacks, nails, suction cups, or other fasteners which often damage the area surrounding the window or leave unsightly marks on the window glass. Furthermore, suction cups in particular are vulnerable to losing their grip on the window glass, resulting in the holiday lights falling off the window. These methods of installing holiday lights also require a significant amount of time. In contrast, the window frame for lights is simply adjusted to accommodate the window and positioned in place, resulting in rapid installation of the holiday lights without any damage to the area surrounding the window or to the window glass.
The use of ornament light frames is known in the prior art. For example, U.S. Pat. No. 5,580,160 to Schuler discloses an ornament light frame. However, the Schuler ""160 patent does not have spring-loaded adapter tubes, and has further drawbacks of lacking an outlet hole.
U.S. Pat. No. Des. 426,327 to Guzik discloses a window light housing that supports holiday lights around the perimeter of a window. However, the Guzik ""327 patent does not have spring-loaded adapter tubes, and additionally does not have an outlet hole.
Similarly, U.S. Pat. No. 4,995,181 to Wolf discloses a luminous display frame and kit that supports holiday lights around the perimeter of a window. However, the Wolf ""181 patent does not have spring-loaded adapter tubes, and also does not have an outlet hole.
In addition, U.S. Pat. No. 5,791,762 to Wroblewski discloses a window display lighting system that supports holiday lights around the perimeter of a window. However, the Wroblewski ""762 patent does not have a frame of one-piece construction, and also does not have an outlet hole
Furthermore, U.S. Pat. No. 6,116,752 to Mayfield et al. discloses a holiday decoration with covered light string having projecting lights that includes first and second strands, at least one of which is a covered strand of lights. However, the Mayfield et al. ""752 patent does not attached to a window without the use of suction cups, and further lacks a frame.
Lastly, U.S. Pat. No. 5,338,585 to Fraus et al. discloses an ornamental Christmas display that comprises a triangular backing sheet of pliant, easily rolled up material densely covered on one side with garland segments to create a wall hung Christmas tree display. However, the Fraus et al. ""585 patent does not have spring-loaded adapter tubes, and has the additional deficiency of requiring that it be hung from a wall support.
While the above-described devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not describe a window frame for lights that allows displaying holiday lights in a window. The Schuler ""160 patent, the Guzik ""327 patent, and the Wolf ""181 patent make no provision for spring-loaded adapter tubes or an outlet hole. The Wroblewski ""762 patent does not have a frame of one-piece construction and further lacks an outlet hole. The Mayfield et al. ""752 patent requires the use of suction cups and does not have a frame. Finally, the Fraus et al. ""585 patent does not have spring-loaded adapter tubes and requires that it be hung from a wall support.
Therefore, a need exists for a new and improved window frame for lights that can be used for displaying holiday lights in a window. In this regard, the present invention substantially fulfills this need. In this respect, the window frame for lights according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of displaying holiday lights in a window.
In view of the foregoing disadvantages inherent in the known types of ornament light frames now present in the prior art, the present invention provides an improved window frame for lights, and overcomes the above-mentioned disadvantages and drawbacks of the prior art. As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new and improved window frame for lights which has all the advantages of the prior art mentioned heretofore and many novel features that result in a window frame for lights which is not anticipated, rendered obvious, suggested, or even implied by the prior art, either alone or in any combination thereof.
To attain this, the present invention essentially comprises a frame with a connected window attachment mechanism.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood and in order that the present contribution to the art may be better appreciated.
The invention may also include the frame being square or rectangular in shape. There may be frame attachment mechanism holes present in each of the side members of the frame. The window attachment mechanism may take the form of a frame tube inserted through the frame attachment mechanism holes with a stop, compression spring, and adjustment tube in either end. End caps may be attached to the protruding end of each adjustment tube. The bottom member of the frame may have a hollow forming a light channel with an outlet hole at one end and a light hole piercing the top of the bottom member. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims attached.
Numerous objects, features and advantages of the present invention will be readily apparent to those of ordinary skill in the art upon a reading of the following detailed description of presently current, but nonetheless illustrative, embodiments of the present invention when taken in conjunction with the accompanying drawings. In this respect, before explaining the current embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of descriptions and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
It is therefore an object of the present invention to provide a new and improved window frame for lights that has all of the advantages of the prior art ornament light frames and none of the disadvantages.
It is another object of the present invention to provide a new and improved window frame for lights that may be easily and efficiently manufactured and marketed.
An even further object of the present invention is to provide a new and improved window frame for lights that has a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such window frame for lights economically available to the buying public.
Still another object of the present invention is to provide a new window frame for lights that provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith.
Even still another object of the present invention is to provide a window frame for lights for displaying holiday lights in a window. This allows the user to install holiday lights in a window without damaging or dirtying the window glass or its surrounding area.
Still yet another object of the present invention is to provide a window frame for lights for displaying holiday lights in a window. This makes it possible to install holiday lights in a window without the use of tools.
An additional object of the present invention is to provide a window frame for lights for displaying holiday lights in a window. This allows the user to rapidly install holiday lights in a window.
A further object of the present invention is to provide a window frame for lights for displaying holiday lights in a window. This allows the user to electrically connect the holiday lights contained in multiple window frames for lights.
Lastly, it is an object of the present invention to provide a new and improved window frame for lights for displaying holiday lights in a window.
These together with other objects of the invention, along with the various features of novelty that characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated current embodiments of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Signals may be defined as a physical quantity, such as sound or voltage, which vary with respect to time, space or some other variable. These signals may include information wherein the information is represented by the variations in the signal. For example, the human voice or music are signals that included information based on variations in the amplitude and frequency of sound waves. It is often useful to convert a signal such as a human voice or music into an electronic signal where one or more processes can then be performed on the signal. For example, sounds such as a human voice can be converted to an electronic signal in a device such as a hearing aid. In the hearing aid example, the voice of the person speaking is converted into an analog electronic signal by a device such as a microphone. Once the hearing aid has converted the sound to an analog electronic signal, the signal can be processed to amplify one or more portions of the signal, and then converted back into sound by a speaker or other output device. The processing of the signal in the hearing aid example allows the person using the hearing aid to better hear the sounds.
In the processing of electronic signals, it is often helpful or necessary to convert the analog electronic signal into a digital signal. Digital signals allow the signals to be processed by digital signal processing systems, including systems incorporating digital computers and microprocessors. In order for an analog electronic signal to be processed by a digital signal processing system, the analog electronic signal is converted to a digital signal. This can be accomplished using an analog-to-digital converter. The analog-to-digital converter takes samples of one or more characteristics of the analog electronic signal at certain time intervals, and converts each sample into a digital representation of a value or values of the one or more characteristics of the sample. A series of these samples, taken at a fast enough sampling rate, will result in a digital representation of the analog signal.
One problem faced when performing analog-to-digital signal conversion is aliasing. Aliasing occurs when frequencies not present in the original analog electronic signal could be represented by the digital representation produced by the analog-to-digital conversion. The ability of an analog-to-digital converter to remove or at least attenuate the unwanted aliasing is referred to as image rejection, and is measured in decibels.
In addition, performing analog-to-digital signal conversions using low power is desirable in various devices, for example, devices powered from batteries where battery life and time between battery recharging are important criteria.
There is a need in the art for a system and a method for converting an analog electronic signal to a digital signal having a low power requirement, being compact, and yet being capable of operating over the required frequency range while achieving the required amount of image rejection. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to optical lens holders used for performing tests or other processes on the lens. More particularly, the present invention relates to a holder for supporting an accommodating intraocular lens device having at least two optics interconnected by one or more haptics.
Intraocular lenses having a single optic have been known and used for many years. More recently, accommodating intraocular lens devices having two optics interconnected by one or more haptics have been disclosed in the following U.S. patents and applications to Faezeh Sarfarazi, the entirety of which are incorporated herein by reference: U.S. Pat. No. 5,275,623 “Elliptical Accommodative Intraocular Lens For Small Incision Surgery”; U.S. Pat. No. 6,423,094 “Accommodative Lens Formed From Sheet Material”; U.S. Pat. No. 6,488,708 “Open Chamber Elliptical Accommodative Intraocular Lens System”; U.S. Ser. No. 10/445,762 filed on May 27, 2003 entitled “Mold for Intraocular Lens”.
The Sarfarazi accommodating lens device includes two optics, one negative and the other positive for placing in the evacuated lens capsule of an eye. The optics are interconnected along their peripheries by one or more haptics which space the optics from each other and assist in properly positioning the device in the eye. The haptics are formed from a flexible material such that they may flex in response to forces exerted by the eye's ciliary muscles which control accommodation. The haptics will thus flex and bow further radially outwardly upon a compressive force being applied to the device, whereby the two optics are drawn closer together to achieve an accommodative effect in the eye. When the ciliary muscles relax, the haptics flex in the opposite direction (toward a straightened positioned) causing the optics to space further apart and the lens device returns the eye to its natural, unaccommodative state.
As stated above, single optic intraocular lenses have been known and used for decades while the two lens accommodative intraocular lens device is new and not yet seen on the market. It will be appreciated that manufacturing a two optic lens device presents issues not present in the manufacture of single optic intraocular lenses. During design and manufacture of intraocular lenses, certain measurements must be taken of the device to ensure the device achieves its design parameters. Certain measurements require not only that the device be held stationary, but also not interfere with the optic pathway. Furthermore, in a two optic device, the optics must be able to be moved in a manner simulating their accommodative movements in the eye. The holder for such a device must therefore be able to hold the device stationary while also allowing relative movement of the optics. Besides the taking of measurements, manufacturing process steps may need to be carried out such as polishing, for example. The holder should therefore also be able to support the device during manufacturing process steps without damage to the device. | {
"pile_set_name": "USPTO Backgrounds"
} |
Maintenance hemodialysis for end stage renal disease (ESRD) patients requires a reliable means of repetitive access to large blood vessels that are capable of rendering rapid extracorporeal blood flow to an artificial kidney. Typically an artery and vein are sutured to form a fistulae which enlarges to a point of maturity over several months. Synthetic grafts are also used.
Hemodialysis patients receiving dialysis treatment via native vein arteriovenous fistulae and synthetic grafts typically undergo puncture of skin, subcutaneous tissue, and vascular access with 14-17 gauge needles two to three times weekly. When the procedure is finished and the needles are removed from the skin, many patients bleed from the puncture site for an extended period of time such that the standard treatment involves post-hemodialysis compression at the site for at least 15-20 minutes.
Problems are commonly associated with repeated vascular access, i.e., access to circulation, and include hyperplasia, thrombosis, hematoma, venous stenosis, arterial stenosis, vascular occlusion, infection, and morbidity. Thrombosis, i.e., a blood clot, is the primary cause of access failure responsible for 50% of cases in polytetrafluoroethylene (PTFE) grafts. In those situations where anatomic lesions can be identified, the pathology has been found to be intimal hyperplasia. Other causes of vascular access complications include: venous or arterial stenosis and infection (Mayers 1992, ASAIO J. 38:113-115). These complications with vascular access sites lead to blocking or narrowing of vascular access sites which in turn result in an increased incidence of surgery to repair, replace, or create new vascular access sites. Degradation of the vascular access site also results in a reduction in the delivered dose of dialysis through the use of temporary catheters or reduced blood flow (Hakim and Himmelfarb, 1998, Kidney International, 54:1029-1040). Schwab found that 30% of hemodialysis patients with A-V fistulae, allowed to mature for 60 days, required intervention after about 800 days of hemodialysis therapy, and 80% of hemodialysis patients with A-V grafts required intervention after about 800 days of hemodialysis therapy. After 400 days of hemodialysis therapy, about 18% of A-V fistulae patients and 50% of A-V graft patients required intervention, and after about 200 days 10% of A-V fistulae and 30% of A-V graft patients required intervention (Schwab, 1999, Kidney International, 55:2078-2090).
Hemodialysis vascular access is also a major risk factor for infection and bacteremia, caused mostly by staphylococcal organisms, such as, but not limited to, S. taphylococcus aureus and Enterococcus spp. (Nassar and Ayus, 2001, Kidney International 60:1-13; Tokars et al., 2002, AJIC 30:288-295). These infections and bacteremia lead to complications such as degradation in vascular access sites and surgical replacement of vascular access sites. Other complications can include infectious endocarditis, septic arthritis, epidural abscess, septic pulmonary emboli, and osteomyelitis. Infections and bacteremia can be clinically diagnosed or a leukocyte-labeled indium scan of the vascular access site can be performed to identify infection where clinical manifestation of infection is not apparent or definite. One skilled in the art would know how to perform such scans and identify infections or resulting vascular access complications.
The pathology and risk factors for vascular access complications have been studied. Age, diabetes, the use of synthetic grafts, serum levels of liproprotein(a) (Lp(a))≧57 mg/dL, serum fibronectin, calcification, apolipoprotein(a) serum levels, excessive compression of the vascular access site following hemodialysis or during sleep, turbulent blood flow and reduced blood pressure have been identified as predisposing to access occlusion (Berkoben, 1995, ANNA J. 22:17-24; Butterly, 1994, Adv. Ren Rep. Thpy. 1:163-166; Goldwasser 1994, AJKD 24:785-794; Astor et al., 2002, Kidney International 61:1115-1123). The cause of vascular access complications is suggested to be multifactorial and poorly understood (Goldwasser, 1994, AJKD 24:785-794; Schwab, 1989, Kidney International, 36:707-711; and Windus, 1997, AJKD 29(4):560-564).
Hemodialysis patients also have an increased bleeding tendency due to platelet dysfunction and ineffective platelet-vessel interaction induced by uremia. In hemodialysis patients, the risk of prolonged bleeding is further increased by systematic anticoagulation resulting from the continuous infusion of heparin during the dialysis procedure (Di Minno et al., 1985, Am. J. Med. 79:552-559). Many of these patients have a high incidence of cardiovascular risk factors. A retrospective study done by the Department of Anesthesiology of the Mayo Clinic reported that for all the patients requiring creation of an A-V fistula in the years 1986 to 1991, 92% suffered from hypertension, 86% from coronary artery disease and 42% from a previous myocardial infarction (Solomonson, 1994, Anesth. Analg. 79:694-700). Most of this group of patients must be on prophylactic anticoagulation therapy with aspirin or warfarin. Further, thiazide diuretics, which are commonly used to treat hypertension or congestive heart failure, impair megakaryocyte production and can produce mild thrombocytopenia which may persist for several months after the drug is discontinued (Harrison's Principles of Internal Medicine 13th Ed. 1994, p. 1799).
Hemostasis, i.e., the stopping or cessation of bleeding, is often compromised in hemodialysis patients. The abnormal hemostasis associated with ESRD patients is most apparent in the prolonged post treatment bleeding. Traditionally, when the cannulation needles are removed at the end of treatment, many hemodialysis patients require long compression times at the site of removal to stop bleeding. Hemostasis is typically obtained by 15-20 minutes of manual compression (Schwab, 1994, Kidney International 36:707-711). Vaziri reported that in the population of heparinizied ESDR patients studied the mean bleeding time was about 7-9 minutes following hemodialysis which was reduced to about 3.2-3.3 minutes with the topical administration of bovine thrombin to the site where the hemodialysis needles are removed (Varizi et al., 1978, Journal of Dialysis, 2:393-398; and Varizi, 1979, Nephron 24:254-256).
Several compositions that can act as hemostatic agents and typically include collagen or fibrin are known (Falstrom et al., 1997, Catheterization and Cardiovasular Diagnosis 41:79-84; Hoekstra et al., 1998, Biomaterials. 19:1467-1471; Prior et al., 2000, Journal of Biomedical Materials Research. 53(3):252-257). U.S. Pat. No. 4,394,373, for example, discloses compositions that act as coagulants and may be used to promote clotting of a wound by placing the compositions in contact with the wound where the composition comprises liquid or powder chitosan. U.S. Pat. No. 5,510,102, for example, discloses compositions that act as coagulants and may be used to promote clotting of a wound by placing the compositions in contact with the wound where the composition comprises platelet rich plasma plus a biocompatible polymer that is a hemostatic agent such as alginate. The compositions of U.S. Pat. Nos. 4,394,373 and 5,510,102 are either applied directly to the wound surface, in the case of treatment of a superficial wound or in the case of a puncture in an artery left by a needle or catheter.
Preserving access function and long-term vascular access is essential for the care of dialysis patients, particularly now that high-efficiency dialysis places even more demands on access function, and with increasing numbers of older, sicker patients entering the ESRD program with limited access sites. Vascular access complications remain the single greatest cause of morbidity and account for approximately one third of all admissions and hospitalization days in the hemodialysis population (Spergel, 1997, Neph. News and Issues. 3:26-27, 35). An average 1.2-2.8 surgical procedures per patient are performed each year to repair or replace the vascular access site (Brothers et al., 1996, J. Sur. Research 60:312-316; Harland, 1994, Adv. Ren. Rep Therapy 1:99-106). As much as $1 billion annually is spent on placement and maintenance of vascular access (Spergel, 1997; Hakim and Himmelfarb, 1998, Kidney International, 54:1029-1040).
High rates of vascular access complications in the hemodialysis population coupled with the increased use of high flux dialyzers, which require higher blood flow, draw attention to the need for new methods for maintaining blood flow through vascular access sites (Hakim and Himmelfarb, 1998, Kidney International, 54:1029-1040).
The patents and published articles referenced in this section are incorporated by reference herein in their entirety. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to a honeycomb structure that is used in filters for trapping particulate matters included in exhaust gases from diesel engines or gasoline engines, and the like, and especially relates to a honeycomb structure that can be preferably used in filters for which loading of a catalyst is required, and the like.
Description of the Related Art
Particulate matters (PM) are contained in exhaust gases from diesel engines and gasoline engines such as GDI (Gasoline Direct Injection) engines. The PM is mainly composed of carbon particulates such as soot and has been found to have a cancer-causing property. Therefore, it is necessary to prevent the PM from being released into the air, and thus a strict discharge regulation is imposed.
In order to correspond to such strict discharge regulation, various studies for decreasing the PM discharge amount have been conducted, but there is a limit to decrease the PM discharge amount by improving a combustion technology, and the only effective means for decreasing the PM discharge amount as of now is to install a filter in an exhaust system.
As a filter for trapping PM, wall flow type filters using a honeycomb structure are widely used since a high PM trapping efficiency can be obtained while a pressure loss is suppressed to be within an acceptable range. A honeycomb structure used in a wall flow type filter has a porous partition wall that defines a plurality of cells that extend from an inlet end face as an inlet side for an exhaust gas to an outlet end face as an outlet side for the exhaust gas, and a circumferential wall. By providing plugging portions that are configured to plug the open ends at the side of the outlet end face of the predetermined cells and the open ends of at the side of the inlet end face of the residual cells to this honeycomb structure, a filter having a high PM trap efficiency can be obtained.
Among such filters, gasoline particulate filters (GPFs), which are used for removing PM contained in exhaust gases from GDI engines, are used by loading a catalyst for purifying exhaust gases onto a partition wall in many cases. In such cases, honeycomb structures having a high porosity of 50% or more are used so that a pressure loss is suppressed to be within an acceptable range after the loading of the catalyst.
A relatively small honeycomb structure used for GPF is generally such that a partition wall and a circumferential wall are formed monolithically. Such honeycomb substrate is prepared by simultaneously forming the partition wall and the circumferential wall by extrusion molding, and firing the obtained formed article, and the partition wall and circumferential wall have an identical porosity.
In the case when a catalyst is loaded on a partition wall of a honeycomb structure, a slurry containing a catalyst (catalyst slurry) is introduced in cells by a conventionally-known aspiration process or the like to attach the slurry to the surface of the partition walls and pores, and a high temperature treatment is conducted to thereby fire the catalyst contained in the catalyst slurry on the partition walls. In the case when the honeycomb structure on which a catalyst is to be loaded has a high porosity as mentioned above and the circumferential wall and the partition wall have an identical porosity, the catalyst slurry that has been introduced into the cells may pass through the pores of the circumferential wall and exude on the outer surface of the circumferential wall. Furthermore, also in the case when a catalyst is loaded on a partition wall of a honeycomb structure in which the partition wall and a circumferential wall are separately formed, the catalyst slurry that has been introduced into the cells may exude on the outer surface of the circumferential wall if the circumferential wall has a porosity of 35% or more. In addition, there is a problem that, when such exudation of the catalyst slurry occurs, the workability deteriorates in the step of loading a catalyst on the partition wall of the honeycomb structure. Furthermore, the step of loading a catalyst on the honeycomb structure is conducted under a state in which a part of the circumferential wall of the honeycomb structure is chucked (gripped), but there is a problem that, if the circumferential wall has a high porosity, a sufficient strength cannot be obtained, and the circumferential wall is easily broken during the chucking. Furthermore, there is also a problem that, if the entirety of the honeycomb structure (partition wall and circumferential wall) has a high porosity, the isostatic strength of the honeycomb structure decreases, and thus the honeycomb structure is easily broken during transportation and actual use.
Conventionally, as a technology for improving the strength of the honeycomb structure, a technology for attaching a reinforcing material to a circumferential wall is known. For example, Patent Document 1 discloses a honeycomb structure in which the circumferential part of the honeycomb structure is reinforced with a material that disappears or scatters at a high temperature. Patent Document 2 discloses a honeycomb structure in which a material having approximately the same thermal expansion rate as that of a catalyst is attached to the entire outer surface of the circumferential wall of a ceramic honeycomb structure before loading a catalyst. Patent Document 3 discloses a honeycomb catalyst carrier in which an impregnated part is formed on the outermost periphery part at a predetermined thickness of an outermost circumference which is composed of a porous body and disposed so as to cover the circumferential part of a cell structural body. Here, the impregnated part is formed by impregnating the outermost periphery part with a non-water-soluble organic substance or inorganic substance that is lost by combustion.
[Patent Document 1] JP-A-2000-809
[Patent Document 2] JP-A-2001-871
[Patent Document 3] JP-A-2004-113887 | {
"pile_set_name": "USPTO Backgrounds"
} |
In electronic devices, fuses are used to protect the circuits in these electronic devices from overcurrents, which may lead to an overheating of the electronic devices. Typically, SMD fuses (SMD—surface mounted device) are soldered on a board of such a device, for example, on a mobile phone PCB board (PCB—printed circuit board). A disadvantage of this concept is the limited packing level on such a PCB board and furthermore the high costs of such SMD fuses. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an electrochemically active alloy of aluminum in which the alloy has selected inclusions of elements, which improve the alloy for utilizing it in special circumstances, such as corrosion protection and primary elements.
2. Description of the Prior Art
It is generally known that electrodes, preferably for use as primary elements, are essentially made from zinc. However, due to the high price of zinc, they are not cheap enough. Hence, there is a tendency to try and discover a material which would have the same properties as zinc, or even better, but which would be cheaper.
It has been considered and tried to put into use aluminum dipped in the electrolytic solution that represents in principle a useful system for practical application as an electrode for the primary elements or for protection against corrosion. It has a high negative theoretical equilibrium potential and high ampere/hour capacity since each atom exchanges 3 electrons in the process of ionization. In practice, however, aluminum cannot be used as a pure metal since, due to the formation of a protective oxide layer, the open-circuit potential spontaneously establishes at a far more positive value than the theoretical one. If the potential is made more positive than the open-circuit potential in order to dissolve aluminum anodically, passivization of its surface very soon occurs and the process of dissolving either slows down considerably or stops. Besides, contrary to expectations, hydrogen evolution reaction with the corresponding self-corrosion of aluminum is enhanced at more positive potentials (the so-called "negative differential effect"). | {
"pile_set_name": "USPTO Backgrounds"
} |
Digital music has become readily available due in part to the development of consumer level technology that has allowed people to listen to digital music using personal audio devices. With the increased availability of digital music has come an increased demand for customizability of the listening experience. Users have increasingly demanded the ability to customize the media played, system and device preferences, and various other aspects that make up the experience of listening to digital music.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
A semiconductor exposure apparatus for manufacturing a semiconductor device such as an LSI or a VLSI and a device manufacturing method using the same.
In a conventional laser process apparatus, e.g., a semiconductor exposure apparatus, the entire apparatus is covered with a chamber to allow temperature control of the apparatus and simultaneously ensure safety for operators of the apparatus and operators around the apparatus. Such a chamber of a laser process apparatus normally has a door through which an object such as a reticle to be exposed is loaded/unloaded into/from the apparatus. The laser is turned on only while the door is closed.
Normally, in such a semiconductor exposure apparatus, objects to be exposed are stored in a case capable of storing one or more objects to be exposed and loaded/unloaded into/from the apparatus. The semiconductor exposure apparatus incorporates a means for holding a plurality of cases, so not only a case that is currently being processed but also cases that are already processed or cases that are to be processed next can also be simultaneously held in the apparatus.
The semiconductor exposure apparatus has an interlock mechanism for protecting human bodies from being exposed to scattered light from a laser used as a light source or coming into contact with various manipulators.
The interlock is actuated instantaneously to interrupt laser oscillation and operation of manipulators when the work door of the chamber opens. Hence, when an operator carelessly opens the work door during a normal exposure sequence, the operation efficiency of the apparatus lowers. Interruption of laser operation adversely affects the quality of products.
When the operation of manipulators is interrupted, a long time is required to resume the exposure sequence. In the semiconductor exposure apparatus, to prevent such troubles, the lock of the work door is controlled in accordance with the state of the exposure sequence. The work door is originally provided on the chamber to load/unload wafer cassettes or reticle cassettes into/from the apparatus. Hence, the work door is controlled such that when no processing such as an exposure sequence is in progress, the work door is unlocked or the operator can easily unlock the work door, and when processing is in progress, the work door is locked.
In recent years, according to on-line or in-line automatization of a production system using an advanced semiconductor manufacturing apparatus, the operation efficiency of a semiconductor device manufacturing line is greatly increasing. In the manufacturing line, if troubles occur on the individual apparatuses, the entire production system stops. The frequency of various troubles that occur on the individual apparatuses and the time required for restoration largely influences the operation efficiency of the entire manufacturing line.
Under the circumstance, troubles due to human errors or malfunction of apparatuses are reduced by automation, improvement of apparatus performance, or improvement of maintenance technology. On the other hand, semiconductor exposure apparatuses have not taken sufficient measures against troubles on wafer conveyance due to wafer deformation in the semiconductor device manufacturing process. A wafer chuck error during wafer conveyance is representative of troubles due to wafer deformation. If a wafer chuck error takes place, the operator must interrupt the operation of the semiconductor exposure apparatus and remove the wafer while keeping the work door of the chamber open.
However, in the conventional semiconductor exposure apparatus, even when a wafer chuck error occurs during the exposure sequence, it is determined that processing in the apparatus is continued, and the work door of the chamber is kept locked.
To eliminate the error while keeping the work door of the chamber open, the work door must be forcibly unlocked using a dedicated key switch. When the work door is unlocked in this way, the lock is controlled without intervention of the sequence controller. For this reason, when the exposure sequence is resumed, a human error such as door open may occur. Depending on the state of the exposure sequence, opening the work door may adversely affect the quality of products or prolong the time required for restoration. Hence, to unlock and release the work door of the chamber to remove errors of this type, the operator must check the exposure sequence or unlock the work door of the chamber. This prolongs the time required for restoration and consequently lowers the operation efficiency of the entire manufacturing line.
The operation efficiency lowers, not only due to restoration for wafer conveyance errors, but also when the apparatus normally operates as a single unit for loading (supplying) or unloading (delivering) a case storing objects to be exposed into or from the apparatus. If cases can be loaded/unloaded only while the laser is not lasing, processed cases may stay loaded in the apparatus long after exposure or cases may have to wait long before loaded and exposed. In this case, the number of cases in process becomes large in the entire manufacturing line, and the manufacturing lead time of semiconductor devices increases.
During loading/unloading, every time the door is opened, the interlock for invalidating laser operation is actuated to ensure sufficient safety against the laser beam and disables laser operation. Hence, processing of the apparatus itself is interrupted.
Canceling the interlock and enabling laser operation require manual operation unlike the normal control sequence. However, if an xe2x80x9cerrorxe2x80x9d occurs due to manual operation, the operation efficiency of the apparatus further lowers because restoration for removing this error is individually required. An example of a human error will be described. The operator must close the door and then depress the laser oscillation start button. If the door is closed, and laser operation is resumed without depressing the button, the apparatus determines that the laser oscillation start button is not depressed and detects an error. The operator is not aware that the button has not been depressed until an error is detected. For restoration after this error, elimination of the error using control software of the apparatus, restoration of the hardware of the apparatus to the home position, and the like are necessary, resulting in a decrease in operationed efficiency of the apparatus. When the apparatus is incorporated in an in-line system, such error lowers the efficiency of the entire line.
The present invention has been made in consideration of the above situation, and has as its object to minimize the time necessary for restoration after a trouble such as a wafer chuck error which requires operator""s operation in the chamber of a semiconductor exposure apparatus so as to improve the operation efficiency of a manufacturing line as compared to the prior art.
It is another object of the present invention to allow to unload processed objects to be exposed (or cases storing the objects) or load objects to be exposed, which are to be processed, at an arbitrary time including the laser ON time and obviate the need for additional operations such as depressing a button every time objects to be exposed are loaded/unloaded into/from the apparatus, thereby preventing the operation efficiency of the apparatus from lowering due to loading/unloading the objects.
In order to achieve the above objects, according to the present invention, a semiconductor exposure apparatus and device manufacturing method using the exposure apparatus are characterized by the following arrangements.
There is provided a semiconductor exposure apparatus comprising determination means for determining a start or interruption of an exposure sequence, and control means for controlling to lock and unlock a door of a chamber of the semiconductor exposure apparatus in accordance with the determination result.
There is also provided a semiconductor exposure apparatus comprising means for determining whether or not an error generated during an exposure sequence can be eliminated by operation performed while keeping a door of a chamber of the semiconductor exposure apparatus open.
There is also provided a semiconductor exposure apparatus comprising means for detecting an error during a semiconductor exposure sequence, and means for determining the level of the detected error.
There is also provided a device manufacturing method using the exposure apparatus, comprising the steps of preparing the exposure apparatus, and performing exposure using the exposure apparatus.
There is also provided a semiconductor exposure apparatus comprising means for detecting an open/closed state of a door of a process chamber of the semiconductor exposure apparatus, means for controlling to lock the door on the basis of the detection result, and means for determining an interruption or resumption of a process in accordance with a locked/unlocked state of the door.
There is also provided a semiconductor exposure apparatus comprising scattered light limiting means for limiting the path where scattered light of a laser beam leaks from the apparatus in a plane or a space having a specific shape containing a path along which an object to be exposed or a case storing the object to be exposed moves, and loading/unloading means, engaging with the plane or space limited by the scattered light limiting means, for holding and moving the object to be exposed or the case while shielding the scattered light of the laser beam so as to load/unload the object to be exposed or the case between an internal space where the object to be exposed is irradiated with the laser beam and an external space.
There is also provided a device manufacturing method using the semiconductor exposure apparatus, comprising the steps of preparing the exposure apparatus, and performing exposure using the exposure apparatus.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the control means unlocks the door of the chamber when the exposure sequence is interrupted due to an error manufacturing.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the control means locks the door of the chamber when the interrupted exposure sequence is to be resumed.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the door of the chamber comprises a wafer cassette exchange door.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the door of the chamber comprises a reticle cassette exchange door.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, unlock of the door of the semiconductor exposure apparatus is controlled on the basis of the determination result of the level of the detected error.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, supply of a work to the semiconductor exposure apparatus is interrupted on the basis of the determination result of the level of the detected error.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the work comprises a wafer or a reticle.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, when a work is being processed, the door is unlocked after processing of the work is ended.
According to a preferred aspect of the present invention, the semiconductor exposure apparatus further comprises unlock means for, on the basis of the determination result, interrupting the exposure sequence and then unlocking the door of the chamber of the semiconductor exposure apparatus, operation means for inputting an instruction for resuming the interrupted exposure sequence, and resumption means for locking the door and then resuming the exposure sequence.
According to a preferred aspect of the present invention, the semiconductor exposure apparatus further comprises notification means for notifying an operator that the door of the chamber of the semiconductor exposure apparatus is unlocked by the unlock means.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, when an error is generated during wafer alignment or exposure processing, and the error does not adversely affect the processing, an interruption of the exposure sequence and unlock of the door by the unlock means are executed after exposure processing for all wafers is ended.
According to a preferred aspect of the present invention, a device manufacturing method using the exposure apparatus comprises the steps of preparing the exposure apparatus, and performing exposure using the exposure apparatus.
According to a preferred aspect of the present invention, in the semiconductor exposure apparatus, the object to be exposed comprises a reticle having a circuit pattern, and the object to be exposed is irradiated with the laser beam to transfer the circuit pattern to a photosensitive substrate.
Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an assembly of an optical fiber and an optical fiber holder.
2. Description of the Related Art
In an optical fiber device, light is emitted from a light emitting element, such as a light emitting diode, and is converged on an end surface of an optical fiber by means of a lens, thereby light coupling is achieved. Also, light is emitted from an end surface of an optical fiber, then transformed into collimated light by means of a lens and is incident on a light receiving element, such as a photo-diode, thereby light coupling is achieved. The optical fiber is held in an optical fiber holder. A lens and a light emitting element (a light receiving element) are mounted in a receptacle. An optical fiber holder is connected to a receptacle such that the lens comes into focus on the end surface of the optical fiber (for example, JP2002-90584A). “The end surface of an optical fiber”, used herein, refers to a light exiting surface or a light incident surface of an optical fiber, i.e., a surface at the end portion of an optical fiber that is orthogonal to the direction of the axis of the optical fiber.
FIG. 1 is a cross-sectional view showing an example of a conventional optical fiber holder. Optical fiber 2 is inserted through throughhole 7 of optical fiber holder 1 with its end surface 2b facing lens 5 that is supported by receptacle 3. Optical fiber 2 is adhered to optical fiber holder 1 by the following steps. First, optical fiber 2 is pre-processed (the optical fiber coating is removed and the optical fiber is cut) and pre-processed optical fiber 2 is inserted through throughhole 7 of optical fiber holder 1 such that its end portion 2a protrudes from surface 1b of optical fiber holder 1 that faces receptacle 3. Next, UV (ultraviolet-ray) cure resin 11 is injected into gap 9 that is formed between inserted optical fiber 2 and throughhole 7. UV cure resin 11 spreads in gap 9 due to the capillarity phenomenon and fills gap 9. Then, resin 11 is irradiated with ultraviolet rays so as to be cured, thereby optical fiber 2 is adhered to optical fiber holder 1.
The reason why end portion 2a of optical fiber 2 protrudes from surface 1b of optical fiber holder 1 is as follows. UV cure resin 11 instantaneously reaches end portion 2a of optical fiber 2 due to the capillarity phenomenon. If end surface 2b of optical fiber 2 aligns with surface 1b of optical fiber holder 1, the resin that reaches end portion 2a of optical fiber 2 will spread onto end surface 2b of optical fiber 2, preventing light from passing through end surface 2b. This may cause the performance of an optical fiber device to deteriorate. Removing the resin sticking to end surface 2b requires a cleaning process. A similar phenomenon occurs when end surface 2b of optical fiber 2 is positioned inside throughhole 7 of optical fiber holder 1. In this case, it is quite difficult to completely remove the resin sticking to end surface 2b. In contrast, when end surface 2b of optical fiber 2 protrudes from surface 1b of optical fiber holder 1 that faces receptacle 3, the resin, after reaching surface 1b of optical fiber holder 1 due to the capillarity phenomenon, not only spreads along optical fiber 2 but also spreads on surface 1b of optical fiber holder 1 because no capillarity works ahead of surface 1b. The resin that spreads widely in this manner is less likely to reach end portion 2a of optical fiber 2 and is less likely to stick to the end surface of the optical fiber.
However, when the end portion of an optical fiber protrudes from the surface of an optical fiber holder, the end surface of the optical fiber is easily subject to mechanical shocks from the outside, although the resin is less likely to stick to the end surface of the optical fiber. | {
"pile_set_name": "USPTO Backgrounds"
} |
Control of stepping motors has involved various design configurations of the motor windings; extensive switching circuits; and the use of sophisticated circuit control elements. As the applications of stepper motors increases, the need for higher stepping resolution also increases.
One method to achieve a higher stepping resolution is by the use of a mechanical gear reduction unit between the motor and the output device. The motor itself is stepped in large angular increments and the output of the motor is applied to a gear reduction unit that converts the large angular motor rotations into smaller angular rotations of the output device. The potential disadvantage in this type of reduction is that the gears may jam, break or malfunction and the control is then lost or compromised. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to devices and methods for simultaneously treating different medical conditions of a patient, and more particularly, to implantable meshes having conductive elements incorporated therein, that may be used in conjunction with neurostimulation devices or other devices for electrically stimulating selected body parts.
2. Background Discussion
Implantable surgical meshes have been widely used for a variety of different surgical procedures such as hernia repair, pelvic floor repair, urethral slings for treating incontinence, and many others. In hernia repair, meshes are placed surgically to repair the protrusion or defect. Various mesh materials and configurations have been proposed to reinforce the abdominal wall and to close abdominal wall defects by different methods well known in the art. In pelvic floor repair, mesh is used to repair the prolapse of organs within the pelvic cavity. These conditions typically involve organs, namely the bladder, bowel and uterus, that are normally supported by the pelvic floor, but have herniated or protruded into the vagina. The most common cause of pelvic floor prolapse is vaginal childbirth.
Implantable meshes have also been used to treat incontinence. The relatively thin piece of mesh, known as a “urethral sling”, is passed using a needle, without open surgery, via a suitable path that leaves the sling positioned beneath the urethra so that it provides support to the urethra under circumstances where pressure is being exerted on the urethra from the abdomen (i.e., during coughing). One such method is described in detail in U.S. Pat. No. 5,899,909, which is incorporated herein by reference in its entirety. According to this method, the tape or sling is implanted by passing an elongated, curved needle that is attached to one end of the tape through an incision in the vaginal wall, to one lateral side of the urethra, through the pelvic tissue behind the pelvic bone, and exiting out through an incision made in the abdominal wall. The procedure is then repeated passing the other end of the tape on the other lateral side of the urethra. After the tape is properly positioned, the free ends that extend outside of the abdominal wall are trimmed. Over time, fibroblasts grow into the tape to anchor the tape in the surrounding tissue. Thus, the tape is left as an implant in the body to form an artificial ligament supporting the urethra.
Sub-urethral slings have also been placed by a different approach, wherein a needle is passed first through the abdominal wall, along the same path as described above, and eventually exiting through the vaginal incision. The tape is then coupled to the needle in some manner, and pulled back through the body from the vaginal incision and out through the abdominal incision. The chosen approach, vaginal or abdominal, will often depend on the preferences of the surgeon. Yet another approach for implanting a sub-urethral sling has been recently developed, wherein the sling is placed via a pathway extending from a vaginal incision out through the obturator foramen. In still another known method, the sling is similarly placed beneath the urethra, yet is anchored within the pelvic cavity in some fashion (bone or tissue anchors) rather than extending out of the body through an incision in the abdomen or obturator foramen.
As indicated above, urethral slings, of whatever type and placed by whatever means, are used to treat stress incontinence. While stress incontinence is typically a result of an anatomical defect, another form of incontinence, urge incontinence, appears to be neurologically based and generally revealed as detrusor muscle instability or “bladder spasms.” As such it is usually not conducive to surgical correction. In some cases, women can have both stress and urge incontinence, a condition known as mixed incontinence. In many of these cases, the woman is treated for stress incontinence only to be disappointed when incontinence due to bladder spasms does not resolve itself. The urge component of mixed incontinence would then need to be treated on its own, involving additional intervention. Urge incontinence may or may not result in urine leakage, but both conditions otherwise have similar symptoms and similar forms of treatment, which generally include a combination of behavioral modification (learned strategies for reducing the urge sensation, scheduled voiding, avoidance of bladder-stimulating substances such as caffeine, and pelvic muscle exercises, with or without biofeedback) and drug therapy (typically anticholinergeic agents such as oxybutynin or tolterodine). These treatments require life-long therapy. Unfortunately, behavioral modification requires continuous effort to maintain results and the available drugs have significant side effects for many patients, causing 80% to discontinue therapy within a year. The alternative therapy is to modify lifestyle to accommodate the condition—frequent urination to avoid “accidents” and wearing protective pads or undergarments, depending on the severity of the condition.
Another approach for treating urge incontinence is the stimulation of nerves that innervate the pelvis or lower urinary tract. The sacral spinal nerve roots separate in pairs to exit laterally through the nerve root foramina. The main destinations for these roots are the sacral plexus. Nerves from this plexus provide the motor and sensory innervation of the lower limbs and pelvic organs. Specifically, the sacral plexus splits into five sacral nerve pairs, sacral spinal nerves S1 to S5. These nerves supply the thighs and lower parts of the legs, the feet, most of the external genital organs, and the area around the anus. The pudendal nerve is the largest branch of the pudendal plexus and is composed of somatosensory, somatomotor and autonomic elements derived from the anterior primary divisions of the second, third and fourth sacral nerves. The pudendal nerve affects the function of the bladder, urethral sphincter and genitals. Lower branches of the pudendal nerve contribute to peristalsis of the colon and anal sphincter contraction force. The pudendal nerve is closer to the bladder, and its stimulation innervates the bladder, thus eliminating or lessening its contractions. At least one known commercial device sold by Medtronic, Inc. of Minneapolis, Minn. stimulates the sacral nerve through a needle extended into the sacral nerve bundle. This device, however, supplies a continuous signal to provide constant stimulation of the nerve. Various drawbacks of this device include its invasive nature, and unwanted stimulation effects on other areas of the body, since the sacral nerve as a whole is being stimulated and multiple other areas of the body are innervated by such stimulation (i.e., resulting in leg twitches or the like).
A company called Advanced Bionics has an implantable stimulation device that targets the pudendal nerve specifically rather than the sacral nerve. This device is implanted in the vicinity of the pudendal nerve, but also is invasive and supplies a constant signal as described above and therefore, has the same drawbacks.
In addition to incontinence, women can suffer from other diseases as well, often simultaneously with incontinence. Interstitial cystitis is a chronic bladder condition involving an inflamed or irritated bladder wall. Patients with this condition may experience mild discomfort, pressure, tenderness, or intense pain in the bladder and surrounding pelvic area. Other symptoms may include an urgent need to urinate (urgency), frequent need to urinate (frequency), or a combination of these symptoms. The inflammation can lead to scarring and stiffening of the bladder, less bladder capacity (the bladder is able to hold less urine), and pinpoint bleeding in the bladder lining. In rare cases, ulcers form in the bladder lining. Of the more than 700,000 Americans estimated to have interstitial cystitis, about 90 percent are women.
Treatments for interstitial cystitis include oral medicines, such as aspirin, ibuprofen, other painkillers, antidepressants and antihistamines. Another treatment is bladder instillation (a bladder wash or bath) in which the bladder is filled with a solution that is held for varying periods of time before being emptied. These treatments require life-long therapy. Sacral nerve stimulation implants are also used for the treatment of interstitial cystitis, but, as stated previously, its invasive nature and unwanted stimulation effects on other areas of the body make this treatment undesirable. Surgery, considered a treatment of last resort, does not necessarily improve symptoms.
Other diseases that may occur simultaneously with urinary incontinence include fecal and anal incontinence. Fecal incontinence is the inability to control the bowels, and can have several causes with constipation being the most common. Fecal incontinence can also be caused by injury to one or both of the ring-like muscles at the end of the rectum called the anal internal and/or external sphincters. In women, the damage often happens when giving birth. Hemorrhoid surgery can damage the sphincters as well. Fecal incontinence can also be caused by damage to the nerves that control the anal sphincters or to the nerves that sense stool in the rectum. Nerve damage can also be caused by childbirth, a long-term habit of straining to pass stool, stroke, and diseases that affect the nerves, such as diabetes and multiple sclerosis. In addition, rectal surgery, radiation treatment, and inflammatory bowel disease can cause scarring that makes the walls of the rectum stiff and less elastic. Abnormalities of the pelvic floor, which is typically caused by childbirth, can also lead to fecal incontinence. Examples of some abnormalities are decreased perception of rectal sensation, decreased anal canal pressures, decreased squeeze pressure of the anal canal, impaired anal sensation, a dropping down of the rectum (rectal prolapse), protrusion of the rectum through the vagina (rectocele), and/or generalized weakness and sagging of the pelvic floor. Treatment depends on the cause and severity of fecal incontinence, and may include dietary changes, medication, bowel training, or surgery. A last resort is a colostomy, which is the surgical creation of an opening between the large intestine and the abdominal wall. More than one treatment may be necessary for successful control since continence is a complicated chain of events.
One type of treatment typically cannot be used to treat the different conditions described above, and, as indicated above, many of the known treatments are invasive or have other negative side effects. Accordingly, what is needed is an improved device and method for simultaneously treating different diseases or conditions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Heretofore, in a multi-stage or section bandpass filter a plurality of di-electric resonators are integrally formed as shown in FIG. 17. The materials of the resonators are (ZnSn)TiO.sub.4 series ceramics, BaO--PbO--Nd.sub.2 O.sub.3 --TiO.sub.2 series ceramics etc. This filter is small but has the following defects.
1. Frequency adjustment due to the disorder of sintering (calcination) is required and for this purpose, hot side or earth side electrodes 13 or 14 (FIG. 17) of copper or silver are provided on the open face of the resonator. These hot side or earth side electrodes 13 or 14 are trimmed by scraping or shaving with a laser light, by sandblasting or a by cutting with diamond cutter. But laser trimming is expensive; sandblasting needs setting or adjusting of trimming time according to the thickness of the electrode and the work is not constant, and diamond cutter blades become clogged or choked with metal scraped from the electrode and needs troublesome maintenance.
2. Adjustment of bandpass width by changing the coupling between resonators is proposed by the following methods: that is, distance P between resonators as shown in FIG. 18(a) is changed, a recess 15 on the open face between resonators as shown in FIG. 18(b) is provided, recesses 16, 16 on the side faces between resonators as shown in FIG. 18(c) are provided, or a non-metallized bore 17 between resonators as shown in FIG. 18(d) is provided. However, these methods require long times for changing and adjusting the mold in which the resonator is molded.
3. For resolving the above problems, another method is proposed in which a plurality of resonators 18, 18 . . . 18 are coupled by base plate 19, as shown in FIG. 19. In this method, a certain amount of clearance between resonators 18 and base plate 19 is required to avoid frequency and coupling relation aberrations. But the presence of base plate 19 and the clearance required make the device bulky so it cannot be small like a small bandpass filter of the integral shaped type. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many hormones and neurotransmitters regulate vital functions through specific receptors existing in cell membranes.
Many of these receptors conduct intracellular signaling through the activation of coupled guanine nucleotide-binding protein (as may be hereafter abbreviated to “G-protein”). Also, these receptors are collectively called G-protein-coupled receptors (GPCR) or 7 trans-membrane receptors (7TMR), as they have common structures having seven trans-cytomembrane domains.
As one of such G-protein-coupled receptors, a human receptor protein coded by CXCR4 gene is known [Journal of biological chemistry, Vol. 273, 4754 (1998)].
Also, CXCL12/SDF-1α, which is a physiologically active peptide functioning as a ligand of the above-mentioned CXCR4, is known [Science, Vol. 261, 600-603 (1993)].
Certain peptidic compounds having antagonistic action against CXCR4 are disclosed and their anti-HIV activity is described in Fujii, International Publication WO02/20561 Mar. 14, 2003.
Cancer metastasis is one of the critical factors affecting the life expectancy of patients. It is reported that the expression of CXCR4 is enhanced in breast cancer cells, etc., and that the expression of CXCL12/SDF-1α which is a ligand of CXCR4 is enhanced in cancer-metastasized organs (lymph nodes, lungs, livers and bones) [Nature, Vol. 410, 50-56 (2001)]. Also, in chronic rheumatoid arthritis, the infiltration of CD4 positive mermory T-cells into articular cavity fluids affects the progression of the conditions. It is reported that in CD4 positive T-cells in articular cavity fluids of patients suffering from chronic rheumatoid arthritis, the expression of CXCR4 genes is enhanced, and that the expression of CXCL12/SDF-1α genes is enhanced in articular synovial membrane tissues [Journal of Immunology, Vol. 165, 6590-98 (2000)].
The present invention aims at providing novel means using CXCR4 antagonistic compounds for the prevention and/or therapy of cancers and chronic rheumatoid arthritis. Also, the present invention provides novel compounds, in particular, various oligopeptides with common structures, which have preventive and/or therapeutic activity for cancers and chronic rheumatoid arthritis. | {
"pile_set_name": "USPTO Backgrounds"
} |
The need for image stabilization arises in many applications including the movie industry which must remove unwanted jitter between successive frames of source video, television news cameramen who must stabilize video from hand held cameras in newscasts produced in the field, video from surveillance cameras molted on swaying or rotating platforms, or on moving vehicles, which must be stabilized prior to computer analysis, or prior to display to human observers, and video from moving vehicles which must be stabilized prior to image compression or presentation to a remote operator (teleoperation) or to computer vision systems for automatic driving.
Mechanically stabilized platforms of various types are used in surveillance to compensate for imager, not image, motion. In FIG. 1, an imager 10 is mounted on a mechanically stabilized platform 12. The output I.sub.in (t) on lead 14 of the imager 10 is displayed on a monitor 16. The platform 12 typically uses gyroscopes to sense platform rotation, and motors to compensate for that rotation. A user can guide the imager direction of gaze (pan and tilt) and zoom via an electronic control sisal 18 and motor drives in the platform 12.
Electronic stabilization with imager motion sensors can be used to compensate for imager motion but not image motion. In FIG. 2, an imager 10, mounted on a mechanically stabilized platform 12, has an output I.sub.in (t) on lead 14. Residual motion of the platform 12 is measured using sensors 20. Sensed displacements d(t) on lead 22 are converted to transformation parameters p(t) on lead 24 by a transform module 26. Parameters p(t) 24 are used by image warp deuce 28 to produce a stabilized output image I.sub.out (t) 30, in which imager motion has been compensated, for display on monitor 16.
In FIG. 3 a system for electronic stabilization with digital processing to sense image motion is shown. The system includes imager 10 having an output I.sub.in (t) 14 which is stored in an image frame store 32 to hold the image until appropriate warp parameters have been computed and transmitted to image warp device 28 for stabilization. (This frame store is not needed if the warp performed at one frame time is based on parameters computed at the previous frame time.) In order to reduce memory, a set of features may be extracted from the source video by module 34. A second image frame store 36 is provided to hold the features extracted from the previous image so that it can be compared with the present image. The features f(t) on lead 38 extracted at time t are compared with features f(t-1) on lead 40 extracted at time (t-1) in displacement estimator 42 that uses digital image processing to determine image-to-image motion to produce displacements d(t) on lead 44. One commercially available camera uses an array of 36 pixels as the features compared between frames. Sensed displacements d(t) on lead 44 are used by image warp device 28 to produce a stabilized output image I.sub.out (t) 30, in which image motion has been compensated, for display on monitor 16. Such systems known to the inventor can not compensate zoom, rotation, parallax and/or lens distortion.
In FIG. 4 an electronic target tracking system uses correlation to locate a target within an imager's field of view, then steers the imager to center the target, and, at least roughly, stabilize the target pattern. The system includes imager 10 having an output image I.sub.in (t) 14 which is compared in a correlation module 46 to match a reference pattern stored therein with the image 14. The reference pattern is selected from a prior frame in the video sequence module 48, stored in memory 50. The reference pattern may represent a stationary object in the scene or a moving object. The difference between the image I.sub.in (t) and the reference pattern provides displacement information to transform module 26 which converts this information to produce a signal to stabilize platform 12.
In FIG. 5 a system for electronic target tracking using change detection is shown. The difference between the current image I.sub.in (t) and a previous image I.sub.n (t-1) in frame store 60 is determined by subtractor 62 and regions of significant change are located. The location information x(t) provided by module 64, is used to redirect the imager 10 to maintain the image at a particular point or on a particular track in the displayed image. This approach may be preferred to a pattern based approach when targets are too small to be detected based on pattern match, but are moving so that detection can be based on this motion. Existing systems require that motion of the background scene be small so that target motion can be detected.
Burt et al. in the Proceedings Of The Workshop On Visual Motion, Irvine, Calif., Mar. 20-22, 1989, pages 1-12, have disclosed procedures for obtaining precise image alignment through iterative refinement. Such procedures have been used for such applications as terrain shape recovery and moving target detection. It would be desirable to have a method and system for electronically stabilizing images which can compensate zoom, rotation, parallax and/or lens distortion while having improved accuracy. It would also be desirable to extend the functionality of an image stabilization system to include derived image sequences with reduced noise or highlighted change by making use of information generated as a byproduct of the improved stabilization process. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is standard practice in large civil-engineering projects to mix concrete at the site. The cement, water, and aggregates are stocked in bulk so they can be mixed together and loaded into standard mixer trucks which transport the mixture to the work location. This is, for instance, the procedure used on remote highway-construction projects. Such a procedure ensures that fresh concrete whose composition is closely controlled can be produced cheaply and delivered to the job without appreciable supply problems.
To this end a large mobile apparatus is used which usually comprises a tower that is transported to the site horizontally and erected, then fitted with various cranes, outrigger arms, and the like. The assembly must normally have devices for holding or amassing the various components of the concrete mixture, then lifting up this mixture to a level high enough, typically at least 4 meters, to load it into the cement truck.
Such an arrangement is usually very complex to set up. The assembly must normally be done by a special crew using a small crane, and even so quite some time is needed. Disassembly and preparation for transport to another site is normally also quite complex, necessitating a specially outfitted truck. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to wall structures and in particular to log wall structures.
Log construction has been known for many decades as typified by the log cabin. For many years the logs have been notched so that at a corner, logs forming one wall of a structure can be laid on top of and at an angle alternating with logs from an intersecting wall. Although a number of materials may be used to form the “logs” used as wall members, including various types of composite materials, the wall members are typically milled from wood. The term “logs” will be used throughout this disclosure to include all types of materials that simulate a horizontal wooden log and includes different cross sections, either machined, hand-hewn or in a natural state.
The assembly of buildings from logs has been performed using traditional techniques. Where hand hewn logs are used, the builder individually fits each log to ensure a proper fit. Whilst this is traditionally done at the final site of the building it has become more common to assemble the shell of the building at a convenient remote location and then disassemble the logs for transportation. The building is then reassembled at the intended site and finished.
Log buildings using manufactured logs have the logs machined and cut at the factory to provide the desired floor plan. The logs are then transported to the site where the building is assembled.
In practical use, traditional construction is usually limited to right angle corners because of the complexity of the angled notches required for non-right angle corners. More recently, posts have been introduced that can be milled with longitudinal faces at a range of desirable angles such that wall members having square-cut ends can be attached by spikes to the posts to form right-angle or non-right angle corners.
To form a tight connection between the logs and the posts, split key members have been used that engage cooperating undercut recesses in the end of the log and a face of the post. In U.S. Pat. No. 6,050,033 there is disclosed a spline arrangement in which the log and post are connected by a key formed by a pair of wedges. The key is expandable and secures the log to the post. A first section of the key member is fitted into place to engage the recesses in the post and the log and then a second section of the key member is inserted and tapped into place beside the first section of the key member. The cross-sections of the split key member are wedge-shaped and tighten the joint as the second portion of the key member is tapped into place.
It is necessary to ensure that the interconnecting butt joints are tight and provide an effective seal, but at the same time accommodate relative movement between logs whilst maintaining the seal. This is particularly an issue in wooden log construction because of the shrinkage of the logs as they dry. This causes the logs to settle and move vertically down. However, in some circumstances the connection of the key to both the log and the post as shown in U.S. Pat. No. 6,050,033 may inhibit such movement and as a result a gap is created between adjacent logs in the log walls.
Similar considerations apply where a pair of walls intersect, such as where an internal wall meets an external wall. This may occur between the locations of the posts and a secure butt joint between the intersecting walls is required.
It is an object of the present invention to obviate or mitigate the above disadvantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a publishing platform for aggregating, managing, and delivering electronic content to connected consumer electronic devices.
2. Description of the Related Art
The education publishing industry faces a number of significant challenges to effectively delivering media and services through an on-line delivery network. These challenges center around four discrete phases:
1. Ingestion: A lack of digital textbook standardization, a plethora of incompatible formats, and a lack of integration and interoperability between publishers makes it difficult to ingest and aggregate a large volume of educational content efficiently and reliably.2. Publishing: Significant transformation of education content needs to be undertaken to ensure that the content is suited to publish across a variety of client devices that users may use to access the content.3. Distribution: In an electronic distribution environment, particular attention needs to be given to issues of content protection and rights management, as well as service policies and quality of service, so that content providers are fairly compensated and users of the content perceive the value and reliability of the service.4. Connected Services: In an educational platform, there exists the potential to deliver a rich user experience that extends beyond electronic access to textbooks. To implement such connected services would require complex business rules and content models that are unavailable in existing education digital publishing services.
Effectively enabling and managing each of the above four phases has not yet been accomplished by the education publishing industry. Accordingly, this has inhibited the growth of delivering media and services through an on-line delivery network. | {
"pile_set_name": "USPTO Backgrounds"
} |
The background description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
It is generally believed (by non-proponents of alternative medicine) that the only effective treatment for cataracts is surgery. While cataract surgery is considered to be generally safe, it can be a very daunting prospect for many individuals. Moreover, there are numerous risks associated therewith, including infection, swelling, bleeding, retinal detachment and loss of vision.
On the other side of the spectrum, homeopathic efforts have been put forth towards non-surgical alternatives to cataract surgery. Such efforts include eye drops having homeopathic active ingredients that are micro-diluted and homeopathically potentized.
Examples of known efforts can be found in U.S. Patent Application Publication Nos. 2003/0017216 to Schmidt et al., 2007/0275098 to Banks, 2008/0033027 to Bascomb et al., 2008/0033027 to Bascomb et al., 2009/0215852 to Bascomb et al., 2010/0222587 to Hughes et al., and 2012/0142652 to Hughes et al.
Unfortunately, there is apparently a clear divide between proponents of mainstream conventional medicine and proponents of homeopathic alternatives. While some proponents of mainstream medicine have attempted to find alternatives to cataracts eye surgery, they have apparently failed to consider the possible use of homeopathic ingredients or preparations. See, for example, Shi, qiong et al (Oct. 21, 2009) Effect of a Combination of Carnosine and Aspirin Eye Drops on Streptozotocin-Induced Diabetic Cataracts in Rats. Mol Vis. 2009; 15: 2129-2138 (Oct. 21, 2009), see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773744. Therefore, people have failed to appreciate that superior compositions and methods could be achieved using a combination of homeopathic remedies and allopathic medicine.
Thus, there is still a need for compositions and methods of treating and preventing signs or symptoms associated with eye diseases. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This disclosure generally relates to database query optimizations, and more specifically relates to a query optimizer that rewrites a query to take advantage of multiple nodes and multiple network paths in a parallel computer system.
2. Background Art
Databases are computerized information storage and retrieval systems. A database system is structured to accept commands to store, retrieve and delete data using, for example, high-level query languages such as the Structured Query Language (SQL). The term “query” denominates a set of commands for retrieving data from a stored database. The query language requires the return of a particular data set in response to a particular query.
Execution of a database query can be a resource-intensive and time-consuming process. A query optimizer is used in an effort to optimize queries to make better use of system resources. In order to prevent an excessive drain on resources, many databases are also configured with query governors. A query governor prevents the execution of large and resource-intensive queries by referencing a defined threshold. If the cost of executing a query exceeds the threshold, the query is not executed.
Many large institutional computer users are experiencing tremendous growth of their databases. One of the primary means of dealing with large databases is that of distributing the data across multiple partitions in a parallel computer system. The partitions can be logical or physical over which the data is distributed.
Massively parallel computer systems are one type of parallel computer system that have a large number of interconnected compute nodes. A family of such massively parallel computers is being developed by International Business Machines Corporation (IBM) under the name Blue Gene. The Blue Gene/L system is a scalable system in which the current maximum number of compute nodes is 65,536. The Blue Gene/L node consists of a single ASIC (application specific integrated circuit) with 2 CPUs and memory. The full computer is housed in 64 racks or cabinets with 32 node boards in each rack. The Blue Gene/L supercomputer communicates over several communication networks. The compute nodes are arranged into both a logical tree network and a 3-dimensional torus network. The logical tree network connects the computational nodes so that each node communicates with a parent and one or two children. The torus network logically connects the compute nodes in a three-dimensional lattice like structure that allows each compute node to communicate with its closest 6 neighbors in a section of the computer.
Database query optimizers have been developed that evaluate queries and determine how to best execute the queries based on a number of different factors that affect query performance. However, none of the known query optimizers rewrite a query or optimize query execution for queries on multiple networks. On parallel computer systems in the prior art, the query optimizer is not able to effectively control the total use of resources across multiple nodes with one or more networks. Without a way to more effectively optimize queries, multiple network computer systems will continue to suffer from inefficient utilization of system resources to process database queries. | {
"pile_set_name": "USPTO Backgrounds"
} |
Locating a radio device such as a user equipment (UE) is important inter alia for emergency services, cargo tracking, theft protection as well as services using the location as a service parameter or context dependency, such as search engines, speech recognition and augmented reality. Furthermore, some jurisdictions require mobile operators to locate emergency callers. Such services are collectively referred to as location-based services (LBS).
Since reliability and locating accuracy determine rescue success, it is desirable to seamlessly integrate the locating technique into radio access networks (RANs). In existing cellular RANs implementing the Universal Mobile Telecommunications System (UMTS) or Long Term Evolution (LTE) according to the Third Generation Partnership Project (3GPP), two or more transmission and reception points (TRPs) such as base stations are within range of radio communication relative to the radio device.
However, a conventional technique for locating the radio device is based on distance estimates, which is suboptimal in some respects. Firstly, the conventional locating technique is very susceptible to errors in the estimated distance between the radio device and the respective TRP. Secondly, the radio device has to perform additional procedures, such as a random access (RA) procedure towards multiple TRPs for estimating a timing advance (TA) or measuring and reporting of positioning reference signals (PRSs), causing an overhead over baseline active mode signaling and radio device operation. For example, the distances are estimated based on the time difference of arrival (TDOA) in RANs using Wideband Code Division Multiple Access (WCDMA). The TDOA of signals from multiple TRPs is analyzed by the radio device and the TDOA is reported to the RAN, as described in the book “UMTS networks: Architecture, mobility and services”, Wiley, 2005, 2nd ed., p. 231. In LTE, the radio device measures and reports the TDOA of PRSs.
An alternative conventional locating technique estimates angles for geographical position estimation in order to not rely on accurate distance estimates. For example, the radio device estimates an angle of arrival (AOA) of signals from multiple TRPs (loc. cit., p. 232). The document “SpotFi: Decimeter Level Localization Using WiFi” by M. Kotaru, K. Joshi, D. Bharadia and S. Katti, Proceedings of the SIGCOMM 2015, ACM Conference on Special Interest Group on Data Communication, pp. 269-282, describes an implementation of “SpotFi”, which is an indoor localization system deployable on commodity Wi-Fi infrastructure without hardware or firmware changes as an example of a non-cellular RAN. “SpotFi” incorporates algorithms that compute the AoA of multipath components at a Wi-Fi access point (AP) as an example for a TRP. In order to detect multipath propagation, the AoA of the direct path between the radio device and the TRP is identified at the TRP by receiving multiple subcarriers.
However, conventional techniques such as SpotFi require the radio device to transmit signals to a plurality of TRPs, and each of the TRPs is required to receive the signals and estimate the AoA based on the received signals over multiple subcarriers. Hence, the conventional techniques occupy radio resources of the RAN in space and frequency at a plurality of TRPs for locating a single radio device. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wear-resistant, superabrasive compacts are utilized in a variety of mechanical applications. For example, polycrystalline diamond compacts (“PDCs”) are used in drilling tools (e.g., cutting elements, gage trimmers, etc.), machining equipment, bearing apparatuses, wire-drawing machinery, and in other mechanical apparatuses.
PDCs have found particular utility as superabrasive cutting elements in rotary drill bits, such as roller cone drill bits and fixed cutter drill bits. A PDC cutting element typically includes a superabrasive diamond layer commonly referred to as a diamond table. The diamond table may be formed and bonded to a substrate using a high-pressure, high-temperature (“HPHT”) process. The PDC cutting element may also be brazed directly into a preformed pocket, socket, or other receptacle formed in the bit body. The substrate may often be brazed or otherwise joined to an attachment member, such as a cylindrical backing. A rotary drill bit typically includes a number of PDC cutting elements affixed to the bit body. It is also known that a stud carrying the PDC may be used as a PDC cutting element when mounted to a bit body of a rotary drill bit by press-fitting, brazing, or otherwise securing the stud into a receptacle formed in the bit body.
Conventional PDCs are normally fabricated by placing a cemented carbide substrate into a container with a volume of diamond particles positioned adjacent to the cemented carbide substrate. A number of such containers may be loaded into an HPHT press. The substrate and volume of diamond particles are then processed under HPHT conditions in the presence of a catalyst that causes the diamond particles to bond to one another to form a matrix of bonded diamond grains defining a polycrystalline diamond (“PCD”) table that is bonded to the substrate. The catalyst is often a metal-solvent catalyst (e.g., cobalt, nickel, iron, or alloys thereof) that is used for promoting intergrowth of the diamond particles.
In one conventional approach, a constituent of the cemented carbide substrate, such as cobalt from a cobalt-cemented tungsten carbide substrate, liquefies and sweeps from a region adjacent to the volume of diamond particles into interstitial regions between the diamond particles during the HPHT process. The cobalt acts as a catalyst to promote intergrowth between the diamond particles, which results in formation of bonded diamond grains.
Despite the availability of a number of different PCD materials, manufacturers and users of PCD materials continue to seek improved PCD materials. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present invention relates to a power steering apparatus.
2. Related Art
For an electric power steering apparatuses for vehicles, during assembly, setting an inter-axis distance between a worm gear and worm wheel needs to be easily performed without being affected by a dimensional error in components such as the worm gear. After assembly, even if the meshing between the worm gear and the worm wheel is subjected to a temporal change, the inter-axis distance needs to be easily adjusted to eliminate backlash in the worm gear and the worm wheel.
For example, JP-5859891-B discloses an electric power steering apparatus having a preload unit that biases a bearing that supports a tip shaft portion of the worm gear, in a predetermined preload direction, so as to impose a preload on the meshing portion between the worm gear and the worm wheel. Japanese JP-5859891-B further discloses that the bias force exerted by the preload unit is used to adjust the inter-axis distance between the worm gear and the worm wheel to eliminate backlash in the worm gear and the worm wheel.
In the configuration in which the preload is imposed on the meshing portion between the worm gear and the worm wheel, a meshing reaction force exerted between the worm gear and the worm wheel may cause the bearing to slide in the preload direction and in a direction opposite to the preload direction. In such a case, sliding of the bearing is expected to lead to lack of a lubricant such as grease, hindering, for example, smooth sliding of the bearing. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention, in some embodiments thereof, relates to systems and methods for reconnecting phone calls and, more specifically, but not exclusively, to systems and methods for reconnecting phone calls made over packet networks.
Phone calls between two parties may be cut off before the parties complete the call themselves by hanging up. Such undesired early termination of the phone conversation is sometimes referred to as a dropped call. Dropped calls may occur, for example, when a wireless telephone user enters a region in which reception is poor or absent, for example, an elevator. To continue the phone call, users may manually redial to establish a new phone call. | {
"pile_set_name": "USPTO Backgrounds"
} |
A wireless network represented by a wireless LAN (local area network) is conventionally used for data transmission between devices such as personal computers (PC). Such a wireless network can be constructed so as to transmit data from an access point to devices through multicast transmission.
For example, Patent Document 1 discloses a wireless transmission apparatus that wirelessly communicates with other communication stations within a wireless network. This wireless transmission apparatus includes a wireless processing means that transmits and receives a wireless signal, and a control means that sets a predetermined frame cycle received by the wireless processing means based on management information from surrounding communication stations, that defines a predetermined position within the set frame cycle as a management information transmission area, that prescribes a plurality of slots in the management information transmission area to allow communication stations to transmit management information through one of the slots, that prescribes a portion of the slots as a new entry slot in advance, and that executes processing, for involving a transmission source of a specific signal in the wireless network when the specific signal is recognized at a predetermined new entry slot position.
If AV (audio visual) contents are transmitted by utilizing wireless transmission, the AV contents can be distributed through multicast transmission to a plurality of devices at the same time as described above. Not only a device having a display and a speaker integrated such as a television appliance (television) is available, but also a television and a plurality of speakers (e.g., 5.1-ch surround system) can be combined and utilized as devices on the side of receiving the distribution of AV contents (referred to as sink devices). Since such a form of utilization through the multicast transmission is difficult in a wired AV transmission mode such as conventional HDMI (High Definition Multimedia Interface), AV systems utilizing wireless transmission are likely to become widespread in the future. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years, the production of mobile terminals in which the substantially entire surface is formed by a display unit and a touch panel (liquid crystal display device or the like) and which are operated through the touch panel, such as smartphones, have been increasing in number. For this reason, the production of mobile terminals operated with hard keys have been decreasing in number.
In the mobile terminal, from the viewpoint of battery durability, the brightness of the display unit and the battery durability are balanced by performing backlight control according to ambient light using the information of an illuminance sensor or the like. In addition, the brightness up to the limit is not output in terms of the lifespan of the display device, such as a liquid crystal display device.
As conventional apparatuses in which a touch panel is disposed so as to overlap a display unit and which are operated through the touch panel, for example, there are apparatuses disclosed in Patent Document 1 and Patent Document 2. The information processing apparatus disclosed in Patent Document 1 sets the center point and the magnification when enlarging or reducing an image on the basis of one trajectory when a touch position on the display screen of the display unit is moved, so that image enlargement and reduction can be performed with a simple touch operation of drawing the trajectory with one finger. The image pickup device disclosed in Patent Document 2 includes a liquid crystal monitor with a backlight that displays an image on the basis of an image signal from a charge coupled device (CCD), a release button having a touch sensor that detects a finger touch, and light control means for turning on or off the backlight based on the determination of the touch sensor regarding whether or not a finger has touched the release button.
In addition, in the mobile terminal disclosed in Patent Document 3, when a sliding operation is performed within the operating region for a touch panel provided on the top surface of an LCD monitor that displays the operating region including a plurality of keys, the CPU determines whether or not the sliding operation is a specific operation. If it is determined that the sliding operation is a specific operation, an unresponsive region is set in a touch reaction region of the touch panel.
In addition, most smartphones described above have a communication function that enables Internet connection, and can obtain various programs provided by the 3rd generation partnership project (3GPP) and the like. Therefore, by downloading various applications other than an application installed initially (dedicated program; hereinafter, referred to as an “application”), the functions different from the application installed initially (referred to as a “pre-installed application”) can be enjoyed. As the pre-installed application, for example, there is a camera application. By downloading another camera application having a different function from the camera application, the function different from the pre-installed application can be enjoyed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Typically, the body of a glenoid component is not very thick, the two opposite primary faces of said body respectively being adapted to cooperate in a ball-and-socket manner with a humeral head, either natural or prosthetic, and to be pressed against the socket of a shoulder blade so as to be immobilized there. To that end, the first aforementioned face includes a joint surface, generally spherical, while the second face includes a bearing surface, which is also spherical or planar, in the central region of which often at least one bone anchoring element protrudes in the socket, such as a keel or pins. Such glenoid components may be provided in different sizes, but the glenoid components of different sizes often have identical bearing surfaces.
Thus, depending in particular on the patient's morphology, the surgeon has the option of choosing the glenoid component of which the size seems best suited to the patient. As a result, the articular performance of the patient's prosthetic shoulder is quite often satisfactory. At the same time, it has, however, been observed that, during use of glenoid components which did not best suit the patient, the implanted glenoid component tends gradually to come unsealed from the socket, through wear or mechanical alteration of the interface between the body and the socket. | {
"pile_set_name": "USPTO Backgrounds"
} |
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
It is generally known to use certain selective herbicides with fertilizers. The combination is so useful that there are a number of products that combine selective herbicides with fertilizers, including for example Scott's Step 1 Crabgrass Preventer Plus Fertilizer which contains about 1.22% pendimethalin. For solid herbicides, this selective herbicide is either included in the fertilizer as a separate granular material admixed with the fertilizer or even as very small particulates of herbicide coating fertilizer granules, where said particulates are adhered to the fertilizer using a “white oil,” that is, an inert sticky oil. Said product has several drawbacks, including the need to mill solid herbicide to less than 10 microns, often as little as 1 micron, and the propensity of a small amount of the herbicide to wipe off and adhere to hands, clothes, or fertilizer spreaders.
What is needed is an alternative herbicide for combination with fertilizer for use on turf. Further, what is needed is a manufacturing process to prepare single applications of the selective herbicide/fertilizer mixture that addresses the issues of small herbicide particles disposed on larger granules. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to reaction with distillation columns wherein mass transfer and chemical reaction occur within the same general region and, more particularly, to a structure within that region for containing solid catalyst particles which cause the chemical reaction to occur. The invention also relates to a reaction process employing a plurality of such structures.
Conventional catalytic reaction structures include containers which are filled with solid catalyst particles and are arrayed within a distillation column reactor. One example of a structure of this type, as disclosed in U.S. Pat. No. 4,307,254, comprises a cloth belt having a plurality of pockets which contain the catalyst particles and which are supported within the reactor by a steel wire support structure. The hydraulic characteristics of a reaction with distillation process which employs the cloth belt can be desirable because the liquid stream is free to flow through the open areas surrounding the cloth belt. The catalyst effectiveness or reactivity, however, may be inadequate in certain applications because the liquid is not forced to flow through the catalyst but instead merely diffuses through the catalyst after soaking through the cloth covering.
In other applications in which the cloth belt is used, the column region containing the cloth belt may be flooded with liquid to a preselected level in order to enhance the catalytic reaction of the liquid stream. Because the flooded conditions produce a large volume of backmixed liquid in that portion of the column, mass transfer between the liquid and vapor streams is substantially impeded. Provisions must then be made for allowing distillation to occur elsewhere within the column. The cloth belt in those applications thus functions primarily as a reaction structure and not a combination reaction with distillation structure.
Other types of catalytic distillation structures are disclosed in U.S. Pat. No. 5,057,468. The structures disclosed in that patent generally comprise cylindrical containers which hold catalyst and are provided with variously shaped openings for allowing passage of liquid and vapor through the containers. While the cylindrical containers can be more durable and easier to position than the cloth belt structures previous described, catalytic reaction still typically occurs primarily on the outer portions of the catalyst bed within each container because no mechanism is provided for forcing the liquid stream through the catalyst. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the field of refining and petrochemistry and, for example, in catalytic reforming or selective hydrogenation reactions with respect to petrol, it is sometimes appropriate to reduce the activity of the catalysts. An example is nickel catalysts, which are e.g. excellent hydrogenation catalysts for aromatics to such an extent that they can cause runaway reaction during the start-up with new or regenerated catalysts, which may even lead to start-up incidents and to the destruction of the reactor. It is therefore necessary to carry out passivation treatments making it possible to avoid a runaway reaction. These treatments generally consist of irreversibly poisoning by sulphur the most virulent active sites of the nickel existing on the new or regenerated catalyst.
Thus, with more particular regard to refining and hydrotreatment or hydrogenation catalysts based on iron, cobalt, molybdenum, tungsten or nickel, adequate catalysts are marketed and loaded into reactors in the form of oxides, whereas their activated and stable form is the metallic form. Thus, in the prior art, the first stage consisted of reducing the oxides in the metallic state in the reactor (in situ) with hydrogen and then, for obviating the aforementioned disadvantages, in a second stage, there is an in situ catalyst activity reduction by introducing a given quantity of sulphur, generally representing 0.1 to 1.2% by weight of sulphur, based on the catalyst weight. This is generally carried out with the aid of a sulphur-containing compound, such as carbon sulphide, mercaptan, hydrogen sulphide, thiophene compounds, sulphides and disulphides, e.g. dimethyl sulphide DMS or dimethyl disulphide DMDS. In these prior art processes, the reduction with hydrogen (first stage) is performed at a relatively high temperature for a relatively long time (e.g. for reducing nickel oxide to nickel, at approximately 400.degree. C. for 14 hours). | {
"pile_set_name": "USPTO Backgrounds"
} |
The optimization of space for storing different kinds of material is the main benefit of mobile storage systems. However, using a mobile storage system implies security issues. When the need to open an aisle explicitly requires closing another aisle, it is very important to detect the presence of an object in the aisle before closing it.
Several detection systems have been developed and installed in mobile storage systems but two types of detection systems are currently in use. The first one uses motion sensors and assesses changes in ambient temperature produced by a moving subject. It is therefore not designed to detect a moving object since its temperature is the same as the ambient temperature. Also, motion sensors are not capable of detecting a stationary person. The second type of detection system utilizes an infrared source and an infrared receiver. Detection occurs when a subject or an object interferes with the reception by the receiver of the emitted infrared signal. Even if several sources and receivers are installed to cover the surface of the aisle, gaps can exist, leaving zones not covered by the detection system. Thus, there is a need for improvements in the detection of moving and stationary subjects and objects in mobile storage systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inclined rafters are commonly used to support conical-shaped roof panels on the upper edge of a circular grain bin wall. A variety of brackets have been used to interconnect the wall to the rafters. Existing brackets are complicated in construction, often difficult to install, and do not efficiently transfer loads from rafters to columns or sidewalls without creating additional bearing stresses.
It is therefore a principal object of this invention to provide a bracket for connecting roof rafters to corrugated bin sidewalls that will efficiently transfer loads from rafters to columns and sidewalls without creating any additional bearing stresses.
A further object of this invention is to provide a bracket for connecting roof rafters to corrugated bin sidewalls that is easy to install, and economical to manufacture.
These and other objects will be apparent to those skilled in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.