text
stringlengths
2
806k
meta
dict
Obesity has risen dramatically in the U.S. and foreign countries during the past 30 years and the explanations therefore have ranged from the prevalence of fast-food, the lack of physical activity resulting from increased computer and TV use, etc. But certain data indicates that these factors are not the root cause of the obesity statistics. While the rise in caloric intake and decreased physical activity may play a part in the rise in obesity around the world, another significant factor that has not been adequately addressed is the incidence of obesity due to infection by certain bacterial or viral agents. The present invention is the first to appreciate this connection in a manner that provides a non-pharmaceutical (and thus safe) way to inexpensively address a root cause of obesity. There are a number of weight control systems and methods to lose weight. A person can select a particular program designed to control the weight of that individual, including protocols involving exercise and diet activities. Such programs are difficult for individuals to adopt due to many factors, ranging from the need for persistent positive behaviors, economic wherewithal to join work-out establishments, the inability to maintain a healthy diet, etc. As a result, such programs often fail the individual, who then often subsequently become more despondent about weight and health issues. Knowing what causative factors may be involved in the weight gain of particular individuals could assist them in addressing how best to address their specific situation and to avoid ineffective regimens in an effort to reduce weight and obesity related diseases. The problem of overweight individuals and obesity has now become a nation-wide problem for the USA. More than 60% of Americans (about 127 million adults) are overweight (see websites of American Obesity Association www.obesity.org, Centers for Disease Control www.cdc.gov, etc.). There has also been a dramatic simultaneous increase in the prevalence of obesity and of certain types of cancer. A worldwide epidemic of obesity accelerated dramatically starting about 1980. In the USA the prevalence of obesity in adults more than doubled in the 20 years from 1980 to 2000 (from 15% to 31%), whereas the prevalence increased only slightly in the prior 20 years from 1960 to 1980 (from 13.5% to 15%). The prevalence of obesity in children tripled from about 1970 to 2000. Likewise, cancers of the breast, prostate, colon, and liver have also rapidly increased in prevalence in recent years. On any given day people accumulate germs on their hands from a variety of sources. This can include many sources of germs such as direct contact with other people, contaminated surfaces such as tables, escalator handholds, foods, and even animals such as the family dog or cat. Subsequent to these contacts, if people don't wash their hands frequently and use the correct technique, they can easily infect themselves by touching their eyes, nose, mouth, or food. Further, failure to wash their hands will render a person a carrier who spreads germs to others by touching those people directly or by touching surfaces which others contact, such as doorknobs, faucets, counters, etc. As a consequence of inadequate hand hygiene, especially in children, infectious diseases are commonly spread from one person to another. Everything from the common cold and flu to gastrointestinal disorders, such as infectious diarrhea, are easily communicated from one person to the next. Influenza (the flu) is a contagious disease that is caused by 3 viruses, influenza A, B and C. It attacks the respiratory tract (nose, throat, and lungs). The flu is different from a cold. While both are caused by viruses, high fever, headaches and extreme exhaustion are much more common with the flu. The flu can also cause serious complications such as bronchitis and pneumonia for certain high-risk groups. Influenza outbreaks occur in each hemisphere of the globe at least once a year and are responsible for hundreds of thousands of deaths around the world every year. Currently, between three and five million cases of severe illness and up to 500,000 deaths worldwide are attributable to the flu. Tens of millions of people died from flu epidemics in the 20th century. New strains of flu virus appear almost every year or so. Approximately 36,000 deaths and more than 200,000 hospitalizations are directly associated with influenza every year in the United States. If a strain with similar virulence to the 1918 flu epidemic emerged today, experts predict that it could kill between 50 and 80 million people. In April 2009 a novel flu strain evolved that combined genes from human, pig, and bird flu. On Jun. 11, 2009, the World Health Organization officially declared the outbreak to be a pandemic. Every year in the US, 5% to 20% of the population gets the flu, and over 200,000 are hospitalized. The economic ramifications of the flu and colds are enormous. Up to a billion colds a year occur in the U.S. alone, causing about 60 million lost days of school and 50 million lost days of work—adding up to $25 billion in lost productivity. Americans alone spend around $5 billion on over-the-counter remedies every year. The President's Council of Advisors on Science and Technology reports that of the expected 60 to 120 million Americans who will suffer from H1N1 symptoms, half of those cases are expected to seek medical attention, with as many as 1.8 million leading to hospitalization. Inadequate hand hygiene and improper hand washing techniques also contribute to food-related illnesses, such as salmonella and E. coli infection. According to the Centers for Disease Control and Prevention (CDC), as many as 76 million Americans get a food-borne illness each year. Of these, about 5,000 die as a result of their illness. Others experience the annoying signs and symptoms of nausea, vomiting and diarrhea. This chilling statistic could easily be reduced if food handlers and people eating prepared food, washed their hands using proper techniques and for sufficient time periods. The common cold is in general initiated by viral infections by the so-called cold viruses, such as rhino virus, corona virus, coxsackie virus, RS-virus, echovirus or other cold viruses. On average, all human beings suffer 2 to 3 times a year from infections in the upper respiratory passages. The majority of common colds in the Fall are caused by rhinovirus infection, whereas the majority of common cold occurring in January, February and March are caused by Coronavirus infections. (The converse is true in the Southern hemisphere.) Allergic syndromes, for example asthma, may be initiated by common cold viruses, especially the rhinovirus. Up to 70-75% of all patients suffering from common colds have rhinovirus infections ongoing either as a single infection or co-infection. In humans, adenoviruses infections are common and cause acute upper respiratory tract infections, enteritis or conjunctivitis, as well as other diseases. The average pre-school child experiences 6-10 upper respiratory infections or common colds per year whereas the average adult experiences 2-4. The effects of the common cold can be uncommonly disruptive, forcing otherwise normal persons to stay away from work, school, etc. Individuals who are at increased risks, such as individuals suffering from bronchitis or asthma, may also experience a life-threatening exacerbation of their underlying conditions. The average annual expenditure for various cold treatments exceeds USD $2 billion in the United States, with similar amounts being expended each year in Europe. Most colds are viral and are the leading cause of visits to the doctor. Antibiotics are prescribed for more than 60 percent of common colds, despite bacteria being involved in less than a few percent of the cases. The over prescription of unwarranted antibiotics has lead to antibiotic-resistant bacteria so that when truly needed to treat a bacterial infection, antibiotics may not be able to treat it. Some contend that antibiotics actually make colds worse by killing ‘friendly’ bacteria and creating an environment more hospitable to viral infections. Antibiotics can also have side effects such as diarrhea and yeast infections. Despite repeated contentions, herbal remedies, such as Echinacea, for colds and the flu have yet to be supported with scientific studies. Individuals infected with the flu virus are potentially contagious for the length of time one has symptoms, up to 7-10 days following the beginning of illness, and the initial incubation period is 24-48 hours. Influenza is spread by coming into contact with mucus membranes. The flu may be spread when a person touches a surface that has flu viruses on it, such as a doorknob, and then touches their nose or mouth. A single cold virus can have 16 million offspring within 24 hours. In the past, individuals were taught to “cover their mouths” when they sneezed or coughed, resulting in viruses being transferred to one's hands where they can survive for a significant amount of time. Thus, this social practice of a courtesy actually promulgated the spread of disease, rather than avoiding its spread. According to the Mayo Clinic, the transfer of germs from hands to eyes, nose and mouth is the primary source for getting sick. Wearing face masks has been tried in order to limit transmission of colds and flu viruses. With the exception of certain Asian cultures, however, this practice has not been well received. Respirators, which are tight-fitting masks that filter airborne particles, are also beneficial, but they can be uncomfortable to wear for long periods of time and are expensive and cumbersome. Rhinovirus infections in normal persons are initiated by selected events, which can be considered to occur sequentially. The steps in the rhinovirus pathogenesis are believed to include viral entry into the outer nose, mucociliary transport of virus to the posterior pharynx, and initiation of infection in ciliated and non-ciliated epithelial cells of the upper airway. Viral replication peaks on average within 48 hours of initiation of infection and persists for up to 3 weeks; Infection is followed by activation of several inflammatory mechanisms, which may include release or induction of interleukins, bradykinins, prostaglandins and possibly histamine, including stimulation of parasympathetic reflexes. The resultant clinical illness includes rhino sinusitis, pharyngitis, and bronchitis, which on average lasts one week. A secondary bacterial or microbial infection may follow subsequently to the viral infection and a sustained and more serious inflammation may result. Air-way infections or allergic rhinitis and/or asthma may pose serious health problems as it can be potentially life-threatening for susceptible groups such as elderly people with chronic airway problems or persons suffering from a deficient immunity, such as AIDS-patients, cancer patients etc. In view of the long felt but unsolved needs related to the above description of viral and bacterially related health concerns, there is a desperate need for a simple and effective system and method of avoiding the undesired infections, occurrences, and symptoms/syndromes associated with hand-to-face transmissions of disease. In particular, a long felt but unsolved need relates to preventing infection with viral agents that cause obesity and/or cancer.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to the field of suspensions for disk drives. More particularly, this invention relates to the field of structures and methods for grounding a microactuator to a suspension in a dual stage actuated (DSA) suspension. 2. Description of Related Art As the track densities of hard disk drives (HDDs) continue to increase, the need to position the data read/write head over the spinning disk platter quickly and accurately has likewise increased. Dual stage actuated (DSA) suspensions have been developed in order to accommodate the demand for more expedient and accurate positioning of the read/write head. In a DSA suspension, as for example in U.S. Pat. No. 7,459,835 issued to Mei et al. as well as many others, in addition to a voice coil motor which moves the entire suspension, at least one additional microactuator is located on the suspension in order to effect fine positional movements of the magnetic head slider keeping it properly aligned over the correct data track on the spinning disk. The microactuator(s) provide much finer control and higher bandwidth of the servo control loop than would a voice coil motor alone, which effects relatively coarse movements of the suspension and hence the magnetic head slider. A piezoelectric element, sometimes referred to simply as a PZT, is often used as the microactuator motor, although other types of microactuator motors are possible. In the discussion that follows, for simplicity the microactuator will be referred to simply as a “PZT,” although it will be understood that the microactuator need not be of the PZT type. DSA suspensions in which the PZT is located at or near the suspension gimbal are called gimbal-based DSA suspensions, or simply GSA suspensions. Generally speaking, GSA suspensions provide higher servo bandwidth than do DSA suspensions in which the PZT is located at the base plate or on the body of the load beam. Without admitting that FIG. 1 is “prior art” within the legal meaning of that term, FIG. 1 is a bottom plan view of a prior GSA suspension 10 designed by the assignee of the present application, and FIG. 2 is a cross sectional view of the suspension of FIG. 1 taken along section line A-A′, showing the details of the PZT mechanical and electrical bonding to the flexure. As used herein the term “bottom” refers to the side of a suspension or part thereof that faces the data storage disk, and “top” refers to the side of a suspension or part thereof that faces away from the data storage disk. The bottom side of a suspension is sometimes referred to as the slider side. The bottom side of the suspension and its components are therefore oriented toward the top of FIG. 2, and the top side of the suspension and its components are oriented toward the bottom of the figure. Additionally, as used herein the term “proximal” means toward to the actuator arm to which the suspension is mounted, and “distal” means toward the cantilevered end of the suspension to which the head slider is mounted. In the figure, suspension 10 includes a load beam 12 and a flexure 20 affixed at the distal end 11 of load beam 12, typically by laser spot welding. Flexure 20 typically includes a metal support layer 24 which is typically stainless steel, an insulating layer 28 which is typically polyimide, and a signal conducting layer 30 of copper or copper alloy that includes various individual traces carrying information signals and voltages. Gold plating 32 over an exposed portion of the copper signal conducting layer 30 defines a gold contact pad 32 which carries the driving voltage for a PZT 70. A read/write head slider 60 is attached at a distal end 11 of suspension 10, on a gimbal tongue 62 which is part of a gimbal 40 on flexure 20. Gimbal 40 is formed from the stainless steel support layer 24, and includes PZT connector arms 42. Gimbal 40 allows head slider 60 to pitch, yaw, and roll freely as it travels over the disk platter to accommodate disk surface irregularities and vibrations. PZT motor 70 includes a PZT element 74 together with top and bottom metallized surfaces on their respective top and bottom faces which form ground electrode 78 and driven electrode 76, respectively. Driven electrode 76 on the bottom of PZT 70 is connected to gold plated contact pad 32 which provides the PZT driving signal or voltage, through conductive adhesive 48 which forms an electrically conductive bridge. Conductive adhesive 48 is typically a flowable hardenable conductive adhesive such as silver-containing conductive epoxy. Non-conductive adhesive 46, typically a non-conductive epoxy, provides the primary structural bonding and provides electrical insulation. PZT top electrode 78 is electrically connected to the flexure's stainless steel layer 24 which is connected to ground, through conductive epoxy 50. Conductive epoxy 50 is sandwiched between PZT 70 and the gold plated pad 25 on stainless steel layer 24 of flexure 20. Bottom electrode 76 of PZT 70 is thus the driven electrode which is connected to the driving voltage through a conductive epoxy bridge 48, and the top electrode 78 is the ground electrode that is connected to the grounded stainless steel body of flexure 20 through conductive epoxy 50 sandwiched between PZT 70 and stainless steel 24. Conductive epoxies 48 and 50 are typically cured by convection, and more typically by a heated air stream, although other types of adhesive such as UV-cured epoxy can be used. When an actuation voltage is applied at gold contact pad 32, PZT 70 expands or contracts depending on whether the applied voltage is positive or negative. The proximal end of PZT 70 which is on the left side in the figure is relatively fixed, and the distal end which is on the right side of the figure is relatively freely moving. Actuation of PZT 70 thus causes the distal end of the PZT to move, which effects fine positional movements of head slider 60.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an LED module, and a method of manufacturing LED modules. 2. Description of the Related Art An example of conventional LED modules is disclosed in FIG. 6 of JP 2011-176264 A. The LED module disclosed therein includes three primary leads arranged on the right side and three cooperating or secondary leads arranged on the left side. The conventional LED module also includes three LED chips mounted on the three primary leads, respectively, and these LED chips are connected via wires to the three secondary leads, respectively. In the conventional LED module, the primary leads are spaced from the corresponding secondary leads by the same distance in the X-direction, so that there is a gap of the same width formed between each one of the primary leads and the corresponding one of the secondary leads (three gaps in total). As shown in the figure, the three gaps of the same width are elongated in the Y-direction and aligned straight in the Y-direction. The conventional leads with the above arrangements can be formed from a metal plate by a relatively simple process including presswork such as stamping. However, the mount locations of the three LED chips and the bonding positions of the wires may unduly be limited in variation, which is not suitable to produce a compact LED module.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to lithographic plates. More particularly, it relates to a colored positive-acting, radiation-sensitive composition, useful in the preparation of lithographic printing plates, whose color is extinguished or greatly reduced in intensity upon exposure to radiation thereby providing great contrast between image and non-image areas on said plates prior to development, comprising at least one acid-free resin, at least one acid-sensitive dyestuff and at least one positive-acting component which generates an acidic product upon irradiation. It also relates to a positive-acting, radiation-sensitive element comprising a support material at least one surface of which has been coated with the above composition. It also relates to a lithographic printing plate of high contrast between the deeply colored image areas before development, prepared from said element, wherein the support material is lithographically suitable by imagewise exposure. Said image areas are highly stable to moisture and alkali developers and more highly colored than the revealed substrate surface after development. Depending upon the nature of the radiation-sensitive coating employed a lithographic printing plate may reproduce the image to which it is exposed, in which case it is termed a positive-acting plate, or produce an image complementary to the one to which it is exposed in which case it is termed a negative-acting plate. A positive-working printing plate is then, generally, one in which the non-image area is the portion of the radiation-sensitive composition exposed to radiation and thereby rendered more developer soluble than the unexposed portions which are inherently, or are chemically hardened and rendered, oleophilic and, therefore, ink receptive. It is highly desirable, in the art of preparing positive-working lithographic printing plates, to prepare an image which is easily visible to the plate maker immediately after exposure to radiation, but before development, so that the skilled worker can see and compose the letters, numbers, and symbols on the plate after each exposure and make such alterations and modifications as may be necessary. This would not be possible if the image were not visible immediately after exposure. Such visibility depends upon differences in the intensities and/or colors of room light reflected from the exposed and unexposed areas of the plate. It is well known in the art to obtain such differentials in positive-working plates where the exposed, or non-image, areas of the plate become darker upon irradiation resulting in a greater image visibility as compared to the unexposed, image areas which retain the original color of the composition as prepared by the manufacturer. However, in general, those differentials are not the most desirable since the background or non-image areas are in effect more intense in color than the unexposed areas which will form the actual image to be printed. It is, therefore, more desirable to obtain a visibility differential between the background and the image wherein the characteristics are reversed; that is, where the image is rendered more intense in color than the exposed non-image areas. This has the additional advantage of providing for great contrast between the image and non-image areas of the subsequently developed plate. One attempt at producing a positive-working lithographic printing plate wherein the exposed, non-image areas are rendered lighter than the unexposed, originally colored, image areas, thereby creating the desired difference in visibility is described in U.S. Pat. No. 3,969,118. According to that method, a positive-working, radiation-sensitive ester of naphthoquinone-(1,2-)-diazide-(2)-5-sulfonic acid is blended with an organic dyestuff and a halide of naphthoquinone-(1,2)-diazide-(2)-4-sulfonic acid. However, such a system suffers from inter alia, being very sensitive to moisture and alkalies, e.g., developers. Thus, while the color differential between the image and non-image areas rises as the concentration of the sulfonyl halide increases, the hardness of the printing surface decreases and it is more easily attacked by the alkaline developers. The resultant plate, consequently, yields fewer prints than a lower contrast plate. If, however, the sulfonyl chloride is eliminated it is found that the composition, throughout the coating, is partially decolorized prior to exposure thereby yielding a product of decreased contrast between the exposed and unexposed areas thereof. It is believed that this result is due to the presence of acid in the resin components of the composition which has remained from the process of preparing said resins. It has now been found that the above disadvantages may be overcome by the use of the composition according to the instant invention, in the preparation of the lithographic printing plates, which results in exposed, but undeveloped plates, of more stable and intense color contrasts and, additionally, longer running and more stable developed plates.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a thermoelectric power generator and more particularly to a thermoelectric power generator capable of generating power not only from solar heat and geothermal heat but also from a heat source of medium or low temperature which has been impossible to be utilized by conventional arts, with high efficiency of thermoelectric conversion. 2. Description of the Related Art At the present time, heat energy is converted into electric power mainly by a heat engine in which the process is: heat energyxe2x86x92high pressure steamxe2x86x92turbinexe2x86x92generatorxe2x86x92electric power. This method of converting heat energy into electric power have greatly contributed as power sources for supporting people""s life in society, but there is a problem that it accompanies a large waste heat with its thermal efficiency of 45% at the best. To combine a gas turbine to this method has already been attempted to good purpose, and it is applicable to thermal power generation using fossil fuels but not applicable to nuclear power generation. Power generation by fuel cells seems like a promising one from a point of view of largely improving thermal efficiency, however at present the usable fuel is limited to hydrogen which is comparatively expensive and there still remain problems. On the other hand, the conversion of heat energy into electric power using devices based on Seebeck effect is already established, but its thermal efficiency is 20% at the best and not in the state of general use on a large scale. Electric power will continue without doubt to be necessary as an important energy to support people""s life in society in the future. A requisite for the process of obtaining electric power from heat energy is to attain thermal efficiency as high as possible now that global environment crisis is strongly acknowledged. However, there is a theoretical upper limit which can not be exceeded in thermal efficiency of each process of converting heat energy into electric power, and in any of the processes its thermal efficiency has reached near the upper limit by continued effort. Therefore, a leap in the concept of the method of thermoelectric conversion itself is necessary to get a quantum leap in thermal efficiency. The inventors have investigated the operating mechanism of already-existing solar cells and devices utilizing Seebeck effect and worked toward development of a thermoelectric conversion device which operates at room temperature and moreover without large temperature difference in the device. Two inventions made heretofore were applied for patent; the first one is disclosed Japanese Unexamined Patent Publication 6-151978 and the second is disclosed Japanese Unexamined Patent Publication 8-306964. Here, the idea and invention obtained through a series of studies made previously will be described, in which mention will also be made of the significance of the present invention. The basic configuration of the thermoelectric power generator according to the present invention is as follows: Basic operation is as follows: 1) Electrons are thermally excited from valence band to conduction band in the semiconductor. 2) When an appropriate electric field exists in the semiconductor, the thermally excited electrons gather in region (C) of conduction band while holes gather in the region (A) of valence band. This is charge separation by the built-in electric field. 3) However, in the state cited above, the electrons and holes are in the state of thermal equilibrium, therefore the Fermi level is the same between region (A) and region (C). 4) If the electrons gathering in region (C) of conduction band can rise to higher Fermi level than that in region (A), then the electrons obtain the capability of flowing in an external circuit from cathode to anode and working electrically at the load. Thus, the heat for thermal excitation of electron from valence band to conduction band in the semiconductor is converted into electric power. A temperature difference between both electrodes is not necessary, which is different from the case of Seebeck effect. Therefore, as the heat energy flowed into the body does not flow out to anywhere but converted into electric power, thermal efficiency would be 100%. This is the idea of thermoelectric conversion that occurred to the inventors. The inventors have made repeated studies to realize the idea, and made several key inventions cited below. The band gap of semiconductor is desirable to be equal or under 1 eV in order to induce the thermal excitation of electrons in between the energy bands at room temperature or a little higher temperature, which is well known. The condition for building in an appropriate internal electric field to separate the carriers excited in on the energy bands is also publicly known. That is, in the configuration of an device shown below, the condition for building in appropriate internal electric field to gather holes to region (A) of valence band and electrons to region (C) of conduction band is: with n-type semiconductor; xcex94xcfx86A=xcfx86ANxe2x88x92xcfx86n greater than (Egxe2x88x920.2)/qxe2x80x83xe2x80x83[1] xcex94xcfx86C=xcfx86nxe2x88x92xcfx86CA greater than 0xe2x80x83xe2x80x83[2] with p-type semiconductor; xcex94xcfx86A=xcfx86ANxe2x88x92xcfx86p greater than 0xe2x80x83xe2x80x83[3] xcex94xcfx86C=xcfx86pxe2x88x92xcfx86CA greater than (Egxe2x88x920.2)/qxe2x80x83xe2x80x83[4] where symbols denote xcfx86 work function (v) Eg band gap (eV) q charge of an electron A position (A) C position (C) n n-type semiconductor p p-type semiconductor AN anode CA cathode. The present invention establishes a Fermi level difference between region (A) and (C) by increasing the minority carrier density in either plane of a semiconductor beyond the thermal equilibrium state by external action. The configuration of a device the inventors proposed as a means for realizing the idea mentioned above is that, tellurium (Te) is used as a semiconductor, copper (Cu) as an anode, aluminum (Al) as a cathode, The anode and cathode each is brought into close contact with the solid tellurium, and further glycerol is contacted to the cathode side. Properties of matter are as follows: These values of properties suffice the required conditions [3] and [4]. Further, electrons liberated by the reaction of Al with glycerol are injected into tellurium (Te) at the cathode. According to the idea of the inventors, the electron, which is minority carrier in tellurium (Te), externally injected with high electrochemical potential exceed the equilibrium state in both energy level and density, and would raise the Fermi level in region (C). The idea was verified by the experiments and the inventors disclosed it in Japanese Unexamined Patent Publication 6-151978. Though the invention enabled the device for thermoelectric conversion, further increase of power output was required. Further, crystalline semiconductor such as tellurium is not suitable for producing a sheet-like semiconductor of large area. Producing a semiconductor in a sheet of large area is necessary for mass production of thermoelectric power generator, and a semiconductor suitable for this purpose should be selected. The inventors hit upon an idea of using sulfide semiconductor. This is based on the characteristic that sulfide semiconductor is of ionic bonding and is functioning well by a comparatively easy production method. An idea of producing a sheet of large area is that the fine particles of sulfide semiconductor obtained by liquid phase reaction at normal temperature are shaped into a solid matter and hardened using an appropriate supporting material and binder. It is necessary that the sulfide semiconductor is in a state of low hydration, and the fact that it contains water achieves an important role as mentioned later. The electron affinity x of sulfide semiconductor was assumed to be 3.6xcx9c3.8 V, and further the following materials and the like which were semiconductors having band gap Eg of equal or smaller than 1 eV we re selected as constituent of the device: Cu2S(p-type, assumed Eg=0.6eV) FeS(n-type, assumed Eg=0.7eV) The power output of the device mentioned before using tellurium as semiconductor is small because of small difference of Fermi level between region (A) and (C). Thus, an idea occurred to th e inventors was: electrochemical reaction having low Fermi level is allowed to exist steadily in region (A); on the other hand electrochemical reaction having high Fermi level is allowed to exist steadily in region (C); the difference of both Fermi levels is applied to the semiconductor as minus bias voltage; and a large difference in Fermi level is established between region (A) and (C). Here exist two preconditions. The first is that the reaction potential generated in region (A) and that generated in region (C) should be linked. To realize the linkage, the semiconductor layer existing between region (A) and (C) is required to be in the state of a salt bridge. A semiconductor in the hydrated state is necessary for salt bridge formation and is attained only by the method, as mentioned above, in which fine particles of semiconductor are formed to a solid body while containing water. A crystalline semiconductor can not meet this requirement. The second is that excessive diode current should not flow in the state when the minus bias is applied. This is attained by allowing sufficiently high schottkey barrier to exist in region (A), or allowing potential barrier due to p-n junction to exist in the central region between region (A) and (C). In the thermoelectric power generator prepared by this invention, the potential barrier existing internally for separating the thermally exited carriers in between energy bands contributes advantageously to restrain the diode current. The inventors began by selecting a redox reaction system composed of an aqueous solution of {Cu+(NH3)2xcx9cCu2+(NH3)2+n(n=0, 1, 2)}. The reaction potential of this reaction group exists in the favorable region as follows: E0=0.06V vs NHE (Normal hydrogen electrode) (where n=2) "psgr"A=xe2x88x924.49V vs Vacuum Further, the reaction system has charge transport ability as a characteristic of redox reaction, which is also a preferable feature. Then, the inventors thought of allowing the reaction between S2xe2x88x92 constituting semiconductor and metal cathode having reaction affinity with S2xe2x88x92 to exist in the region (C) in equilibrium state. Cathode material+S2xe2x88x92Sulfide+2exe2x88x92 In the above reaction equation, rightward progress consuming cathode material and S2xe2x88x92 should be suppressed. This is realized by eliminating strange electrophilic centers which force rightward progress via irreversible consumption of electrons liberated in the reaction. A redox reaction comprising an electrophilic center does not consume electrons irreversibly so long as both reactions, reduction and oxidation are in dynamically balanced state. The reaction potential difference obtained by linking electrochemical reaction in region (A) and that in region (C) is sufficiently large as shown in Table 1. To provide a redox reaction system to an anode side is well known in the art of wet-type solar cell. However, the finding that a Fermi level difference can be established by allowing reaction potential of electrochemical reaction to exist at both the anode side and the cathode side and by allowing the difference between both reaction potentials to impress on a semiconductor layer as a minus bias voltage is a new discovery obtained by the inventors, by which the possibility of utilizing the thermal excitation phenomenon for a thermoelectric conversion was opened. The inventors have applied for patent with a series of the inventions mentioned above as disclosed in Japanese Unexamined Patent Publication 8-306964. However, there remained a problem that the corrosion of cathode material should be suppressed in the method according to Japanese Unexamined Patent Publication 8-306964. The corrosion is caused by the fact that the redox reaction liquid existing in the anode region osmoses gradually into the semiconductor layer and intrudes into the cathode region where it reacts with the cathode material. As a natural result, the damage of cathode deteriorates the durability of the device. To cope with this problem, the inventors tried at first to lower the liquid permeability of the semiconductor layer as low as possible but did not succeed in achieving at the same time two mutually contradictory requirement, i.e. to link the reaction potentials generated at both planes of the semiconductor layer and to decrease the liquid permeability of the layer. As a next approach, the inventors hit upon an idea in that the aqueous solution of {Cu+(NH3)2xcx9cCu2+(NH3) 2+n(n=0, 1, 2)} is occluded in a suitable adsorbent, a necessary amount of binder is added, and further a sufficient amount of ammonium salt is added for the reason mentioned later to solidify and harden the reaction liquid for depriving it of fluidity in order that no reaction liquid may intrude into the cathode range. The inventors found that active carbon showed a superior performance among a variety of existent adsorbents and succeeded in solidifying redox reaction liquid. Further, the electrolyte aqueous solution room was eliminated from the cathode region in correspondence with the solidification of the anode reaction liquid, because if electrolyte aqueous solution remains in the cathode region the liquid intrudes into the anode region to allow the elution of the redox reaction system solidified resulting in the loss of effect of the solidification. The inventors thus succeeded in generating large continuous power output by the thermoelectric power generator in which a solidified redox reaction system is provided in the region of an anode and further the region of a cathode is reduced to the semi-dried state where the cathode contacts a semiconductor. Moreover, this solid state construction is simple, free from trouble such as leakage of liquid, and suitable for commercialization. The invention cited above is the skeleton of the present application.
{ "pile_set_name": "USPTO Backgrounds" }
An oligonucleotide is a short polymer consisting of a linear sequence of four nucleotides in a defined order. The nucleotide subunits are joined by phosphodiester linkages joining the 3'-hydroxyl moiety of one nucleotide to the 5'-hydroxyl moiety of the next nucleotide. An example of an oligonucleotide is 5'>ApCpGpTpApTpGpGpC<3'. The letters A, C, G, and T refer to the nature of the purine or pyrimidine base coupled at the 1'-position of deoxyribose: A, adenine; C, cytosine; G, guanine; and T, thymine. "p" represents the phosphodiester bond. The chemical structure of a section of an oligonucleotide is shown in Structure 1. ##STR1## Synthetic oligonucleotides are powerful tools in modern molecular biology and recombinant DNA work. There are numerous applications for these molecules, including a) as probes for the isolation of specific genes based on the protein sequence of the gene product, b) to direct the in vitro mutagenesis of a desired gene, c) as primers for DNA synthesis on a single-stranded template, d) as steps in the total synthesis of genes, and many more, reviewed in Wm. R. Bahl et al, Prog. Nucl. Acid Res. Mol. Biol. 21, 101, (1978). A very considerable amount of effort has therefore been devoted to the development of efficient chemical methods for the synthesis of such oligonucleotides. A brief review of these methods as they have developed to the present is found in Crockett, G.C., Aldrichimica Acta 16(3), 47-55 (1983), and "Oligonucleotide Synthesis: A Practical Approach", ed. Gait, M.J., IRL Press, Oxford, England (1984). The best methodology currently available utilizes the phosphoramidite derivatives of the nucleosides in combination with a solid phase synthetic procedure, Matteucci, M.D. and Caruthers, M.H. J. Am. Chem. Soc. 103, 3185, (1981); and Beaucage, S.L., and Caruthers, M.H., Tet. Lett. 22(20), 1858-1862 (1981). In this chemistry, the 3'-nucleoside of the sequence to be synthesized is attached to a solid support via a base-labile linker arm. Subsequent nucleosides are attached sequentially to the previous nucleoside to generate a linear polymer of defined sequence extending off of the solid support. The general structure of a deoxyribonucleoside phosphoramidite is shown in Structure 2: ##STR2## and the chemical steps used in each cycle of oligonucleotide synthesis are shown in Structure 3: ##STR3## Oligonucleotides of length up to 40 bases may be made on a routine basis in this manner, and molecules as long as 106 bases have been made. Machines that employ this chemistry are now commercially available. There are many reasons to want a method for covalently attaching other chemical species to synthetic oligonucleotides. Fluorescent dyes attached to the oligonucleotides permit one to eliminate radioisotopes from the research, diagnostic, and clinical procedures in which they are used, and improve shelf-life and availability. As described in the assignees co-pending application for a DNA sequencing machine Ser. No. 570,973, filed Jan. 16, 1984) the synthesis of fluorescent-labeled oligonucleotides permits the automation of the DNA sequencing process. The development of appropriate techniques and instrumentation for the detection and use of fluorescent-labeled oligonucleotides allows the automation of other currently laborious laboratory and clinical techniques. The attachment of DNA cleavage chemicals such as those disclosed by Schultz et al, J. Am. Chem. Soc. 104, 6861 (1982); and Hertzberg, R.P., and Dervan, P.B., J. Am. Chem. Soc. 104, 313 (1982) permits the construction of synthetic restriction enzymes, whose specificity is directed by the oligonucleotide sequence. There are several reports in the literature of the derivitization of DNA. A modified nucleoside triphosphate has been developed wherein a biotin group is conjugated to an aliphatic amino group at the 5-position of uracil, Langer et al., Proc. Nat. Acad. Sci. U.S.A. 78, 6633-6637 (1981). This nucleotide derivative is effectively incorporated into double stranded DNA in a process referred to as "nick translation." Once in DNA it may be bound by anti-biotin antibody which can then be used for detection by fluorescence or enzymatic methods. The DNA which has had biotin-conjugated nucleosides incorporated therein by the method of Langer et al is fragmented into smaller single and double stranded pieces which are heterogeneous with respect to the sequence of nucleoside subunits and variable in molecular weight. Draper and Gold, Biochemistry 19, 1774-1781 (1980), reported the introduction of aliphatic amino groups by a bisulfite catalyzed transamination reaction, and their subsequent reaction with a fluorescent tag. In Draper and Gold the amino group is attached directly to a pyrimidine base. The amino group so positioned inhibits hydrogen bonding and for this reason, these materials are not useful in hybridization and the like. Also, this method does not permit amino groups to be inserted selectively at a desired position. Chu et al, Nucleic Acids Res. 11(18), 6513-6529 (1983), have reported a method for attaching an amine to the terminal 5'-phosphate of oligonucleotides or nucleic acids. This method involves a number of sequential reaction and purification steps which are laborious to perform and difficult to scale up. It also is restricted to the introduction of a single amino group at the 5'-terminus of the oligonucleotide. Subsequent to the filing of the original patent application of which the present case is a Continuation-In-Part, Takea and Ikeda, Nucl. Acids Res. Symp. Series 15, 101-104 (1984) have reported the synthesis and use of phosphotriester derivatives of putrescinyl thymidine for the preparation of amino-derivatized oligonucleotides. These materials differ from those reported herein in that the amino containing moiety is attached to the base moiety and not to the sugar moiety of the oligonucleotides, and also in that the DNA synthetic chemistry used was phosphotriester and not phosphoramidite. The present invention presents a general method for the introduction of one or more free aliphatic amino groups into synthetic oligonucleotides. These groups may be selectively inserted at any desired position in the oligonucleotide. They are readily and specifically reacted with a variety of amino reactive functionalities, and thereby permit the covalent attachment of a wide variety of chemical species in a position specific manner. This is illustrated by the preparation of a number of fluorescent oligonucleotide derivatives. The materials prepared in this fashion are effective in DNA hybridization methods, as illustrated by their use as primers in DNA sequence analysis, and also by a study of their melting behaviour in DNA duplex formation. According to the present invention, aliphatic amino groups are introduced into an oligonucleotide by first synthesizing a 3'-0-phosphoramidite derivative of a nucleoside analogue containing a protected aliphatic amino group attached to the sugar moiety of the nucleoside. This phosphoramidite is then reacted with the oligonucleotide being synthesized on a solid support. If the amino protecting group is base-labile, the process of oligonucleotide cleavage from the solid phase and deprotection of the base moieties and aliphatic amino group yields the amino-derivatized oligonucleotide. If the amino protecting group is acid-labile, it may be removed by treatment with anhydrous or aqueous acid prior to cleavage of the oligonucleotide from the support and deprotection of the base moieties, or it may be retained during cleavage and deprotection to simplify and improve the chromatographic purification of the oligonucleotide, and then removed subsequently by treatment with aqueous acid, yielding the amino-derivatized oligonucleotide in either case. More specifically, the present invention concerns modified deoxynucleoside phosphoramidites in which an aliphatic amino group, which has been suitably protected, is attached to the sugar moiety of the nucleoside. The chemical structure of a typical nucleoside is shown in Structure 4. ##STR4## It is characterized by a heterocyclic pyrimidine or purine base (B) linked by a carbon-nitrogen bond to the furanose (sugar) ring of ribose (R=R'=R"=OH) or deoxyribose (R=R'=OH; R"=H). The numbering of the sugar carbon atoms is 1' to 5' as indicated in the figure; thus, the base is connected to C-1' of the sugar. An aliphatic amino group may be attached in principle to any of the five ring carbons. It also comprises the respective phosphoramidite derivatives which are synthesized by reacting an appropriate phosphine with the free 3'-hydroxyl group of the suitably protected amino nucleosides.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to self-contained cleaning system and more particularly to a self-contained cleaning system especially suited to motor vehicles that enables hand free operation. The self-contained cleaning system of the present invention addresses the needs of a user who desires a cleaning system with its own supply of cleaning fluid when running water may not be available and that can deliver the water or cleaning fluid in a forceful spray without the need for an external power supply, which might also not be at hand. The self-contained cleaning system of the present invention meets these needs by providing a system with its own storage tank for cleaning fluids and a battery operated motor and pump which can deliver a forceful spray through a pistol shaped sprayer head. Moreover, the sprayer head can be locked to emit a spray of cleaning fluid without the need of further hand pressure and an internal magnet enables the sprayer head to be secured to a steel surface, such as a car body , so that hands free operation is possible. An external power cord is also provided so that an auxiliary power source can also be used. These advantages and full details of the invention are discussed below.
{ "pile_set_name": "USPTO Backgrounds" }
Some vehicles have a roof rack for carrying cargos such as luggage or a bicycle. A conventional roof rack includes two parallel longitudinal rails fixed on a roof panel of the vehicle. A cargo can be secured to the rails via a rope or other fixing tools. DE patent application No. DE10200753A1 discloses a roof rack, including two longitudinal rails and at least two lateral beams. Each lateral beam is received in a longitudinal recess in the corresponding longitudinal rails at a stowed position, and rotated out from the longitudinal rails at a deployed position such that the longitudinal rails and lateral beams form a supporting structure to hold a large cargo like a skateboard, a bicycle, or a luggage case. The inventors of the present disclosure have recognized that the roof rack can provide other functions in addition to carry a cargo.
{ "pile_set_name": "USPTO Backgrounds" }
It has been proposed heretofore to tag an explosive by enclosing within a blasting cap a source of sulfur hexafluoride (SF.sub.6) vapor absorbed in a fluoropolymer. Such a taggant is described in U.S. Pat. No. 3,991,680 issued Nov. 16, 1976 to R. N. Dietz et al. While this technique avoids the prior reliance upon physical searches, X-Rays, and dogs trained to sniff out the presence of certain types of explosive materials, its usefulness has been limited by major disadvantages. Sulfur hexafluoride vapor is present in ambient air in readily detectable amounts (0.5.+-.0.1 parts per trillion). It is used to a large extent by commercial and industrial processes. Thus electronic detectors or "sniffers" used to detect the presence of SF.sub.6 often produce misleading indications of the presence of explosives, when none are present. Furthermore, the high background concentrations of SF.sub.6 might limit the detection of explosives containing this taggant in certain detection situations. Secondly, the high intrinsic vapor pressure of SF.sub.6 (343 psia at 25.degree. C.) interfers with the delayed timing mechanisms of blasting cap detonators, thus precluding the use of SF.sub.6 as a vapor taggant in timed blasting cap detonators.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a stapling device for stapling a stack of sheets by means of staples that are cut off from a staple wire supply and shaped in the stapling head region, the stapling device comprising a staple wire transport device which transports the staple wire a corresponding length as a function of the thickness of a sheet stack to be stapled, and further comprising a movable staple wire cutting element which positions the staple wire, as a function of the thickness of the sheet stack to be stapled, centrally with respect to a staple shaping element on the stapling head, in which: the staple wire transport device can be driven by a stepping motor whose drive direction is reversible and which can be activated by a measuring device which determines the thickness of the stack to be stapled; the stepping motor is coupled to the staple wire transport device by means of a coupling that is effective only in the staple wire transport direction; the stepping motor is continuously coupled to a movable peripheral cam or radial cam unit which controls a displacement of the staple wire cutting element; and the peripheral cam or radial cam unit has control segments which are associated with different sheet stack thicknesses, as defined by U.S. Ser. No. 09/044,191. In the case of the stapling device as defined in U.S. Ser. No. 09/044,191, the staple wire is transported by a pair of transport rollers, of which one transport roller is driven. A radial cam unit, joined to the driven transport roller, is coupled to a staple wire cutting element in such a way that the radial cam unit can be moved back and forth. In order to allow the staple wire to be transported continuously forward, an overrunning clutch is interposed, which allows reversal of the rotation direction of the drive in order to move the radial cam unit back without changing the transport direction of the staple wire. With this device, however, it is not possible for the staple wire that has already been transported and is ready for staple shaping to be pulled back again, so that, for example, in the event of a malfunction, the staple wire can be transported back into its starting position.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the general field of gas turbines and more particularly to a gas turbine operating in more than one pressure mode. A gas turbine would include a turbine, a compressor, and a combustor, plus a recuperator (heat exchanger) where higher efficiencies are desired in low pressure ratio gas turbines. Basically, air is compressed in the compressor, heated in the recuperator, mixed with fuel and burned in the combustor, and then expanded in the turbine. The turbine drives the compressor and the turbine exhaust or discharge provides the heat for the recuperator to heat the compressed air from the compressor. With high power-to-weight ratios, high reliability, and low maintenance, gas turbines dominate commercial and military aircraft propulsion. They also dominate aircraft auxiliary power units and large military tank propulsion. But when it comes to commercial and personal land vehicles, such as buses, trucks and passenger cars, gas turbine applications have been extremely limited. While virtually every automobile and small gas turbine manufacturer in the United States, Europe and Japan has built and tested gas turbine propulsion prototypes, none have seen production in commercially viable quantities. The problems have always been initial cost, fuel consumption, and response time. When a gas turbine is used with an electrical generator, the combination is generally referred to as a turbogenerator; with the smaller versions called a microturbine. In a microturbine, the generator would normally be a permanent magnet rotor rotatably driven by the turbine within an electrical winding stator. Microturbines are being successfully used in production commercial land vehicles. The Capstone Turbine Corporation of Chatsworth, Calif. now produces a microturbine, which is the primary source of power in hybrid electric buses and similar vehicles. These microturbines are economically sound while demonstrating long life with dramatically reduced maintenance and emissions. While production of these vehicles is still limited today, it is increasing and the microturbine is being proven in over-the-road revenue service. However, to reach high production in a broad range of vehicles, including passenger cars, it is recognized that certain improvements will be needed. These include lower initial cost, significantly faster response time, and higher efficiency into the forty percent (40%) range at both full load and part load. So why are microturbines successful in hybrid electric buses? First of all, cost is far less of an issue because electric buses are expensive and microturbines are a small percentage of the cost. In addition, electric buses have limited range, especially when air-conditioned. They must carry batteries that are typically one third of the weight of the bus. Microturbines provide essentially unlimited range, even when the air conditioning is on, and allow for a smaller, lighter, less expensive battery pack. Next, the traditional problem of fuel consumption is greatly ameliorated because the microturbine can always operate at its most efficient point. Even when the bus is stopped, the output can be used to charge the batteries. In addition, the microturbine can be relatively small as it need only provide the average power. Most of the peak power required to accelerate the bus comes from the battery. The net result is that fuel consumption is typically one half and sometimes one third of that of conventional buses. Additionally, the problem of response time is eliminated because the battery provides the surge of power necessary to accommodate sudden loads. It must also be recognized that the single most important attribute of the microturbine is its low emission levels. The California Air Resources Board (CARB) has approved fourteen manufacturers to sell heavy-duty diesel engines under 400 hp in California. NOx emissions of the best of these engines range between 3.2 and 3.8 g/bhp/hr CARB has certified the diesel-fueled Capstone Turbine microturbine at less than one quarter of these levels or 0.7 g/bhp/hr using no catalysts or after treatment, where xe2x80x9cgxe2x80x9d represents grams, xe2x80x9cbhpxe2x80x9d is brake horsepower and xe2x80x9chrxe2x80x9d is hours. Similarly, CARB has certified ten manufacturers to sell natural gas and LPG fueled engines. The NOx emissions of the best of these engines range between 1.3 and 2.4 g/bhp/hr or roughly double that of the Capstone Turbine microturbine operating on diesel. CARB has certified the Capstone microturbine at 0.53 g/bhp/hr on LPG and 0.26 g/bhp/hr on natural gas. Microturbines have also been successfully applied in a wide range of applications other than hybrid vehicles with over one thousand seven hundred Capstone Turbine units delivered to date. Capstone has shipped more than 1,700 microturbines to customers worldwide and these microturbines have logged more than 1,000,000 hours of commercial operation. Individual units have run for more than 20,000 hours in non-vehicular applications, such as distributed generation, with no maintenance other than fuel filter and air filter changes, with some of these runs at maximum output. Considering if these units were powering automobiles at only 80 kph (50 mph), this would be the equivalent of running 1,600,000 kilometers (1,000,000 miles) with essentially zero maintenance. Existing microturbines drive permanent magnet generators that are integrated into the basic design and therefore have no mechanical drive capabilities. Fortunately, electric propulsion systems are now well developed and very efficient over a broad range of speeds. In any event, much and sometimes most of the energy consumed by a bus is for auxiliaries such as air conditioning, air compressors, lights and fans that can be driven electrically. And the thrust in all vehicles, including automobiles, is towards larger electric loads as all-electric power steering, power brakes and other auxiliaries are developed. Hybrid electric buses are an excellent application for existing microturbines and batteries. However, if production of microturbines is to reach automotive quantities, the bulk, weight and cost of the battery pack must go. When the microturbine has to operate without an energy storage system (battery), higher efficiency at full load will be needed. But, even more important, with no battery, much higher efficiency at part load will be critical. In addition, the response time must be improved and the initial cost must drop. For purposes of discussion, all calculations will be based on the following assumptions unless otherwise noted: No allowance is made for change in pressure drop due to differences in recuperator effectiveness, as this is a function of recuperator design. A microturbine using the above parameters would produce 74.3 kW at thirty-one and one half percent (31.5%) efficiency. While the microturbine is a very simple device conceptually, in practice, it has very sophisticated engineering. Thus, except for the fuel pump and possibly a cooling fan for the electronics, the only moving part is the rotor group, which includes the turbine wheel, compressor wheel and permanent magnet rotor. When the rotor group or spool is mounted on compliant foil fluid film bearings, there is no lubrication system and, indeed, no oil, no oil pump, no oil cooler and no need for oil servicing. As the microturbine is air cooled, there are no fluids in the machine other than fuel, and no turbine-driven accessories. This creates a compact package that operates over a limited speed range and is well suited to vehicles using electric propulsion. In large gas turbines, the roads to high power and efficiency are: 1) increasing component efficiencies, 2) increasing pressure ratios, and 3) increasing turbine inlet temperatures. Unfortunately for small gas turbines such as microturbines, efficiencies of small components will never be as high as those of large components. Also compressors with small airflows cannot be designed with as high a pressure ratio as compressors with large airflows, and still be efficient. Finally, the turbine inlet temperature is limited by the use of the recuperator that small gas turbines must use if they wish to have competitive efficiencies. Using a recuperator, a heat exchanger that transfers heat from the gas turbine""s exhaust to the compressor discharge air before this air goes into the combustor, microturbine efficiency can be improved by reducing the fuel required. The ratio of recuperator air inlet temperature minus compressor discharge temperature to turbine discharge temperature minus compressor discharge temperature is known as recuperator effectiveness. Eighty-five percent (85%) is a typical goal and in a typical small gas turbine, this will halve the fuel consumption or double the efficiency. The disadvantages to using recuperators are: 1) they are heavy, often doubling the weight of the microturbine, 2) they are expensive, far and away the most expensive component in the microturbine and 3) they are limited in the temperature that they can take. As the recuperator inlet temperature is the same as the turbine discharge temperature, the turbine discharge temperature must also be limited. As the turbine inlet temperature is related to the turbine discharge temperature by the pressure ratio and turbine efficiency, the turbine inlet temperature must also be limited. This effect is even more pronounced at part loads where the rpm is reduced thus lowering the pressure ratio. Limiting the turbine inlet temperature limits the power and efficiency of the microturbine. The present invention is directed to a gas turbine that operates in more than one pressure mode. During various system operating requirements, the gas turbine may operate in a positive pressure mode, a transatmospheric pressure mode, or a subatmospheric pressure mode. Valving is provided to control the particular pressure mode of operation in response to system requirements and to switch between pressure modes as required. The gas turbine may include a single fixed spool, multiple fixed spools, or a combination of fixed spool(s) and a free turbine.
{ "pile_set_name": "USPTO Backgrounds" }
Near field communication (NFC) is the set of protocols that enables smartphones and other devices to establish radio communication with each other by touching the devices together or bringing them into proximity to a distance of typically 10 cm (3.9 in) or less.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention relates to a molding method of a liquid elastomer, and more particularly to a method of molding a molded article constructed by a liquid elastomer by using a metal mold. The molded article constructed by the liquid elastomer is, for example, a gasket for a fuel battery or the other general gasket or a packing. Description of the Conventional Art For future popularization of the fuel battery, downsizing and cost reduction of a separator and a gasket are necessary. With regard to the gasket, it is possible to reduce an amount of disposal of a molding material (a liquid elastomer) by employing an injection molding, however, in the case that a plurality of gaskets are simultaneously molded by using the metal mold, the metal mold is enlarged in size by arranging a plurality of product cavity spaces on the same plane of the metal mold (in a direction which is orthogonal to a mold clamping and mold opening direction of the metal mold). As a result, a manufacturing efficiency is not good. A technique of simultaneously molding a plurality of molded articles by using a metal mold is described in Japanese Unexamined Patent Publication No. 2006-026923, however, the prior art is not provided for an injection molding, but a molding machine for a compression molding.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a novel crystal modification of a fluoran compound, a process for its preparation and recording materials that use it. More specifically, this invention relates to a novel crystal modification of a fluoran compound that is useful as an electron donating color former in recording materials such as a pressure-sensitive recording material and a thermal recording material. The invention also relates to a process for preparing said novel crystal modification, as well as recording materials that contain said crystal modification and which exhibit superior characteristics. Recording materials that make use of the color forming reaction between colorless or pale-colored electron donating color formers (hereunder referred to simply as "color formers") and organic or inorganic electron accepting color developers (hereunder referred to simply as "color developers") are well known and classified as pressure-sensitive recording materials, thermal recording materials, electrothermal recording materials, etc. Pressure-sensitive recording materials which are typically described in Japanese Patent Publication No. 20144/1967, etc. are used in such fields as vouchers and printers on computers. Thermal recording materials which are typically described in Japanese Patent Publication No. 14039/1970, etc. have a broad range of applications including recorders for instrumentation, facsimile, printers and automatic ticket vending machines. Such recording materials are required to exhibit high performance in various respects including whiteness of background, storage stability of the background, color rendition, sensitivity for color formation, initial color density and storage stability of a color image, and it is essential to use color formers that specifically suit these purposes. Color formers for use in pressure-sensitive recording materials must satisfy an additional important characteristic requirement for high solubility in inner-phase solvent(s) (encapusulation oil(s)). Fluoran compounds are extensively used as color formers in various type of conventional recording materials. While many compounds have already been known as fluoran compounds, one which has the same structural chemical formula as the fluoran compound according to the present invention [formula (1)] is disclosed in Japanese Patent Publication No. 17490/1974 and Japanese Patent Public Disclosure (Laid-Open) No. 34422/1972, which state that the compound has a melting point in the neighborhood of 158.degree.-165.degree. C. (this known fluoran compound is hereunder referred to as the ".alpha.-type crystal modification"). Pressure-sensitive recording materials using this .alpha.-type crystal modification exhibit low whiteness and lightfastness of the CB surface and the color image formed on those materials is also low in lightfastness. Thermal recording materials using this .alpha.-type crystal modification are low not only in background whiteness but also in the fastness of the color image formed on those materials. ##STR1## Fluoran compounds of formulas (2) and (3) are also known to have chemical structures similar to that of the fluoran compound according to the present invention and they are described in Japanese Patent Publication Nos. 32767/1974 and 17490/1974: ##STR2## The fluoran of formula (2), however, has the problem that it has too low a solubility in inner-phase solvent(s) to be effectively used as a color former in pressure-sensitive recording materials. Pressure-sensitive recording materials using this fluoran exhibit low whiteness and lightfastness of the CB surface and the color image formed on those materials is also low in lightfastness. Thermal recording materials using the fluoran (2) are low not only in the lightfastness of the background but also in the dynamic sensitivity for color formation and the storage stability of the color image formed on those materials. As a further problem, if the fluoran under consideration is used in common pressure-sensitive recording materials which use a zinc salt of a salicylic acid derivative as a color developer (which recording materials are hereunder referred to as "conventional pressure-sensitive recording materials") and in common thermal recording materials which use bisphenol A as a color developer (which recording materials are hereunder referred to as "conventional thermal recording materials"), the color rendered is purplish black and additional toning is necessary to attain a pure black color. The fluoran of formula (3) has the problem that it has too low a solubility in inner-phase solvents to be effectively used as a color former in pressure-sensitive recording materials. Pressure-sensitive recording materials using this fluoran exhibit not only low whiteness of the CB surface but also insufficient lightfastness; in addition, the color image formed on those materials is low in lightfastness. Thermal recording materials using the fluoran (3) exhibit not only low whiteness and lightfastness of the background but also poor dynamic sensitivity for color formation; in addition, the storage stability of the color image formed on those materials is by no means sufficient. As a further problem, if the fluoran under consideration is used in conventional pressure-sensitive and thermal recording materials, the color rendered is greenish black and additional toning is necessary to attain a pure black color.
{ "pile_set_name": "USPTO Backgrounds" }
When viewed worldwide, the number of hard-of-hearing persons is supposed to be increasing. Hearing loss is categorized into conductive hearing loss, sensorineural hearing loss and mixed hearing loss that includes both thereof, depending on a part of disorder in the auditory system. A character given as common to these categories of hearing loss is incapability of or difficulty in sensing a certain frequency band of sounds that a hard-of-hearing person wants to hear. The miniaturization and speed-up of digital signal processing processors (DSP) in recent years have enhanced freedom in designing hearing aids, and thus have caused the mainstream of the hearing aids to shift from analog to digital. Currently, a method commonly used in audio signal processing for digital hearing aids is a multi-channel method using the conventional signal processing theory. In this method, first, an analog audio signal that comes in from a microphone is passed through a microphone amplifier, and then is subjected to an AD-conversion process. Secondly, a digital signal resulting from the AD conversion is first split into a multiple frequency bands by bandpass filters, and then at each frequency band the signal is processed via a digital filter with a gain being increased or decreased according to the auditory characteristics of a hard-of-hearing person. The divided frequency bands are then resynthesized. And finally, the signal undergoes a DA-conversion process and then is outputted as an analog audio signal from a speaker by way of a speaker amplifier. In relation to this, references related to the present invention include patent literature 1, 2 as cited below. The patent literature 1, 2 below are attributable to the present inventor(s), where the patent literature 1 discloses a method for designing a digital filter according to sampled-data H∞ control theory, whereas the patent literature 2 discloses a sampling rate conversion device designed according to sampled-data H∞ control theory. [Citation List] [Patent Literature] Patent Literature 1 Japanese Patent Gazette No. 3,820,331 Patent Literature 2 Japanese Patent Gazette No. 3,851,757
{ "pile_set_name": "USPTO Backgrounds" }
This invention pertains to agriculturally suitable compositions containing an advantageous combination of certain fungicidal oxazolidinone compounds with another fungicide, and methods for the use of such compositions to control fungus disease in certain plants. Fungicides that effectively control plant diseases are in constant demand by growers. Plant diseases are highly destructive, difficult to control and quickly develop resistance to commercial fungicides. Combinations of pesticides are often used to facilitate disease control, to broaden spectrum of control and to retard resistance development. It is recognized in the art that the advantages of particular pesticide combinations can often vary, depending on such factors as the particular plant and plant disease to be treated, and the treatment conditions. WO 90/12791 discloses certain oxazolidinone compounds as fungicides including 5-methyl-5-(4-phenoxyphenyl)-3-phenylamino-2,4-oxazolidinone (i.e., the Formula I compound defined herein). U.S. Pat. No. 3,954,992 discloses cymoxanil as a fungicide. Synergistic combinations of cymoxanil and oxazolidenylacetamides such as oxadixyl are disclosed in U.S. Pat. No. 4,507,310. These references neither disclose nor suggest synergistic compositions comprising an oxazolidinone and cymoxanil.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention This invention relates to blood pressure measuring equipment and, more particularly, to a system that utilizes a cuff that is extended around a limb of a user to controllably restrict blood flow in the user's limb as blood pressure measurements are being taken. Background Art The focus on improved personal health worldwide has led to the development of many different types of instruments that can be used, without the assistance of medical personnel, to take a measurement that relates to a person's state of health. Among these instruments are those used to measure blood pressure. Most blood pressure measuring systems utilize the same basic model—that being to controllably restrict, blood flow through pressure application on a user's limb. With a manometer and other components, a user can detect and display his/her blood pressure as the flow impeding pressure is changed. A growing trend is to provide health related measuring equipment, such as blood pressure measuring equipment, in non-medical, public settings, such as food stores, pharmacies, etc. Typically, a blood pressure measuring system is incorporated into a kiosk. The kiosk has a platform for supporting a cuff configured to be used in conjunction with one of a user's left or right arms. These kiosks are designed so that an individual can either sit on a support, or use a wheelchair, to comfortably align to deploy the cuff. As a result, these kiosks become dedicated left- or right-handed. This construction has some significant limitations. If a user has lost his/her arm on the side for which the kiosk is dedicated, it may be impossible for him/her to utilize the blood pressure cuff. Alternatively, the user must contort him-/herself to improvise and take a measurement utilizing the cuff. This may be a particular problem in the event that the individual is seated in a wheelchair. A further problem with the above-described construction is that it may also limit the user's ability to take an accurate measurement. Recent medical research has suggested that blood pressure measurements may vary between a user's left and right arms. Still further, a most accurate measurement is believed to be taken by averaging blood pressure measurements for a user's left and right arms. With existing systems, it is essentially impossible, or at best very difficult, to attempt to measure blood pressure on left and right arms with a conventional kiosk arrangement that is left- or right-hand dedicated. This limitation alone may make the kiosk usage less than desirable. In light of the continuing trend to make self-assessment of certain health states without the intervention of medical personnel, the need for better systems to allow users to measure their blood pressure is increasingly important in what is becoming a highly competitive area. Designers in this area continue to seek such improvements out.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a bearing device and a pin for the bearing device, and more particularly, relates to a bearing device of a crawler track or the like that is used for a travel device of a construction machine and a pin for the bearing device. 2. Description of the Related Art Generally, a travel device of a construction machine is configured as a result that a crawler track is winded around an idler and a sprocket. Then, as shown in FIG. 13, a crawler track 53 is configured by a plurality of links 54 to be endlessly coupled with each other and a plurality of shoe plates (its illustration is herein omitted) or the like to be attached to these links 54. In other words, in the crawler track 53, the opposed links 54 are coupled in a longitudinal direction through a pin 57 and bushes 58 and 59, respectively to form a pair of endless bodies 60, and the shoe plates are attached to these endless bodies 60. In this case, end portions 61 and 62 of the adjacent links 54 are superposed with each other, unilateral bushes 58 are pressed into holes 61a of the end portions 61 at the inside of the opposed links 54, and the pin 57 is rotatably inserted in the bushes 58. On this occasion, the end portions of the pin 57 are pressed into holes 62a of the end portions 62 at the outside of the opposed links 54. In addition, between the end portions 61 at the inside of the opposed links 54, the other bush 59 is externally fit in the pin 57. Further, lubrication oil is supplied between the pin 57 and the bushes 58 and 59. In addition, seal devices 64 and 65 are disposed between the bushes 58 and 59, and between the bush 58 and the end portion 62 of the link 54, respectively. Accordingly, when the sprocket is rotatably driven, the crawler track 53 that is configured as described above is driven while maintaining an oval form. On this occasion, a unidirectional tractional force acts on the crawler track 53, and furthermore, when the crawler track 53 is travelling around the idler and the sprocket, a bearing device configured by the pin 57 and the bush 58 or the like may rotate around the idler and the sprocket. As a result, the bush 58 and the pin 57 are relatively rocked, and as shown in FIG. 14, conventionally, a slidable range H is formed, in which the outer peripheral face of the pin 57 and the inner peripheral face of the bush 58 partially and slidably contact with each other. In other words, under the condition that a pin axial center O of the pin 57 is decentered against a bush axial center O1 of the bush 58 in a certain direction, and then, the slidable range H is formed. In this slidable range H, a center angle A centering on the pin axial center O is within the range of 70 degrees to 90 degrees. In addition, in the case that a strong tractional force acts on the pin 57 and the bush 58, a rocking angle (α/2+α/2) of the pin 57 with respect to the bush 58 is about 30 degrees. Therefore, a no-lubrication portion C (a center angle C1), to which the lubrication oil is not supplied even when the pin 57 and the bush 58 are rocked, is formed. Therefore, if the operation is continued under such a condition, the burn-in may occur between the pin 57 and the bush 58 even with a relatively low load (tension), so that this involves a problem with durability.
{ "pile_set_name": "USPTO Backgrounds" }
Tumor necrosis factor alpha, (TNF-α) is a cytokine that is released primarily by mononuclear phagocytes in response to immunostimulators. TNF-α is capable of enhancing most cellular processes, such as differentiation, recruitment, proliferation, and proteolytic degradation. At low levels, TNF-α confers protection against infective agents, tumors, and tissue damage. But TNF-α also has a role in many diseases. When administered to mammals or humans, TNF-α causes or aggravates inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states. Enhanced or unregulated TNF-α production has been implicated in a number of diseases and medical conditions, for example, cancers, such as solid tumors and blood-born tumors; heart disease, such as congestive heart failure; and viral, genetic, inflammatory, allergic, and autoimmune diseases. Adenosine 3′,5′-cyclic monophosphate (cAMP) also plays a role in many diseases and conditions, such as but not limited to asthma and inflammation, and other conditions (Lowe and Cheng, Drugs of the Future, 17 (9), 799-807, 1992). It has been shown that the elevation of cAMP in inflammator leukocytes inhibits their activation and the subsequent release of inflammatory mediators, including TNF-α and NF-κB. Increased levels of cAMP also leads to the relaxation of airway smooth muscle. It is believed that the primary cellular mechanism for the inactivation of cAMP is the breakdown of cAMP by a family of isoenzymes referred to as cyclic nucleotide phosphodiesterases (PDE) (Beavo and Reitsnyder, Trends in Pharm., 11, 150155, 1990). There are eleven known PDE families. It is recognized, for example, that the inhibition of PDE type IV is particularly effective in both the inhibition of inflammatory mediator release and the relaxation of airway smooth muscle (Verghese, et al., Journal of Pharmacology and Experimental Therapeutics, 272 (3), 1313-1320, 1995). Thus, compounds that inhibit PDE4 (PDE IV) specifically, may inhibit inflammation and aid the relaxation of airway smooth muscle with a minimum of unwanted side effects, such as cardiovascular or anti-platelet effects. Currently used PDE4 inhibitors lack the selective action at acceptable therapeutic doses. Cancer is a particularly devastating disease, and increases in blood TNF-α levels are implicated in the risk of and the spreading of cancer. Normally, in healthy subjects, cancer cells fail to survive in the circulatory system, one of the reasons being that the lining of blood vessels acts as a barrier to tumor-cell extravasation. But increased levels of cytokines have been shown to substantially increase the adhesion of cancer cells to endothelium in vitro. One explanation is that cytokines, such as TNF-α, stimulate the biosynthesis and expression of a cell surface receptors called ELAM-1 (endothelial leukocyte adhesion molecule). ELAM-1 is a member of a family of calcium-dependent cell adhesion receptors, known as LEC-CAMs, which includes LECAM-1 and GMP-140. During an inflammatory response, ELAM-1 on endothelial cells functions as a “homing receptor” for leukocytes. Recently, ELAM-1 on endothelial cells was shown to mediate the increased adhesion of colon cancer cells to endothelium treated with cytokines (Rice et al., 1989, Science 246:1303-1306). Inflammatory diseases such as arthritis, related arthritic conditions (e.g., osteoarthritis and rheumatoid arthritis), inflammatory bowel disease (e.g., Crohn's disease and ulcerative colitis), sepsis, psoriasis, atopic dermatitis, contact dermatitis, and chronic obstructive pulmonary disease, chronic inflammatory pulmonary diseases are also prevalent and problematic ailments. TNF-α plays a central role in the inflammatory response and the administration of their antagonists block chronic and acute responses in animal models of inflammatory disease. Enhanced or unregulated TNF-α production has been implicated in viral, genetic, inflammatory, allergic, and autoimmune diseases. Examples of such diseases include but are not limited to: HIV; hepatitis; adult respiratory distress syndrome; bone-resorption diseases; chronic obstructive pulmonary diseases; chronic pulmonary inflammatory diseases; asthma, dermatitis; cystic fibrosis; septic shock; sepsis; endotoxic shock; homodynamic shock; sepsis syndrome; post ischemic reperfusion injury; meningitis; psoriasis; fibrotic disease; cachexia; graft rejection; auto-immune disease; rheumatoid spondylitis; arthritic conditions, such as rheumatoid arthritis and osteoarthritis; osteoporosis; Crohn's disease; ulcerative colitis; inflammatory-bowel disease; multiple sclerosis; systemic lupus erythrematosus; ENL in leprosy; radiation damage; asthma; and hyperoxic alveolar injury. Tracey et al., 1987, Nature 330:662-664 and Hinshaw et al., 1990, Circ. Shock 30:279-292 (endotoxic shock); Dezube et al., 1990, Lancet, 335:662 (cachexia); Millar et al., 1989, Lancet 2:712-714 and Ferrai-Baliviera et al., 1989, Arch. Surg. 124:1400-1405 (adult respiratory distress syndrome); Bertolini et al., 1986, Nature 319:516-518, Johnson et al., 1989, Endocrinology 124:1424-1427, Holler et al., 1990, Blood 75:1011-1016, and Grau et al., 1989, N. Engl. J. Med. 320:1586-1591 (bone resorption diseases); Pignet et al., 1990, Nature, 344:245-247, Bissonnette et al., 1989, Inflammation 13:329-339 and Baughman et al., 1990, J. Lab. Clin. Med. 115:36-42 (chronic pulmonary inflammatory diseases); Elliot et al., 1995, Int. J. Pharmac. 17:141-145 (rheumatoid arthritis); von Dullemen et al., 1995, Gastroenterology, 109:129-135 (Crohn's disease); Duh et al., 1989, Proc. Nat. Acad. Sci. 86:5974-5978, Poll et al., 1990, Proc. Nat. Acad. Sci. 87:782-785, Monto et al., 1990, Blood 79:2670, Clouse et al., 1989, J. Immunol. 142, 431-438, Poll et al., 1992, AIDS Res. Hum. Retrovirus, 191-197, Poli et al. 1990, Proc. Natl. Acad. Sci. 87:782-784, Folks et al., 1989, PNAS 86:2365-2368 (HIV and opportunistic infections resulting from HIV). Pharmaceutical compounds that can block the activity or inhibit the production of certain cytokines, including TNF-α, may be beneficial therapeutics. Many small-molecule inhibitors have demonstrated an ability to treat or prevent inflammatory diseases implicated by TNF-α (for a review, see Lowe, 1998 Exp. Opin. Ther. Patents 8:1309-1332). One such class of molecules are the substituted phenethylsulfones described in U.S. Pat. No. 6,020,358.
{ "pile_set_name": "USPTO Backgrounds" }
Digital information transmitted from a sending station to a receiving station may be protected from errors by developing code related to the individual bits comprising a message, appending the code to the original message and transmitting the message and the code to the receiving station, and then generating code at the receiving station to check for corrupted data. Because the code is related to the original message bits through a generating polynomial, the code bits are considered redundant to the message bits used to generate them. Therefore, a process which uses polynomial division to generate redundant bits is referred to as cyclical redundancy code (CRC). Typically, messages are coded bitwise in hardware, the CRC generating polynomial function provided for by utilizing linear feedback shift registers. CRC generation in software utilizes CRC generating lookup tables, instead of shift registers, to generate the applicable CRC code. Message bits are analyzed and compared to a CRC value contained in the CRC generating lookup table, the corresponding value representing the CRC checkbit value that is appended to the original message. However, CRC generation in software is inherently slower than the hardware implementation, even when performed over several message bits concurrently. Further, prior art methods for CRC generation in software are subject to the restriction that the degree of the generating polynomial cannot exceed the size of the message unit to which it is applied.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a movable cover or roof for covering crops such as orchard trees and protecting them from frost damage. Frost can kill or injure crops and is an especially grave danger in orchards where the fruit itself is exposed during periods of cold weather. Methods of protecting crops against frost include smudge pots, university return stack heaters, liquid fuel heaters and wind machines all of which consume expensive fuel as well as portable covers which act to retain warm air or to block cold drafts. Portable covers may be used to cover individual plants or all the plants on a plot of land to retain warm air and to block cold air radiation. Protective coverings for agricultural plots found in the prior art include movable protective covering for orchards disclosed in U.S. Pat. No. 1,106,624 to Cadwallader et al. In Cadwallader a framework of static rigging is formed by vertical uprights, carrying guy wires. A flexible fabric covering is extended over the framework by turning large drums located at opposite ends of the framework that operate as take-up reels for the fabric and for the cable which draws the fabric across the crossbars and rollers and along the support wires. Movable fabric panels are found in U.S. Pat. No. 2,051,643 to Morrison which discloses a cloth house for protecting plants. In Morrison an insect-proof fabric house composed of numerous strips joined edge to edge is supported over a framework of posts, guy wires and supporting cables. Some fabric joints incorporate weight supporting wires and the lowermost edges of the fabric are held fast to a framework by wires within the fabric edge which connect to gourmets located on baseboards of the framework. Morrison's cloth house was improved by adding the transverse cords disclosed in U.S. Pat. No. 2,143,659 to Morrison to the top surface of the house. Another form of portable plant protection is disclosed in U.S. Pat. No. 3,100,950 to Heuer in which a cover is suspended between or across rows of posts. The cover can be folded back by manually drawing it back in a direction along the row. While the devices disclosed in the identified patents and other devices in the prior art were satisfactory for their intended use, they were not intended to be adapted for use with lightweight synthetic materials. Thus there existed a need for a plant protecting cover which could selectably be placed over the crops to protect them or be withdrawn to allow light and water to enter the orchard. Ideally the cover should be easily operated by one man, should be able to be quickly opened or retracted, should be relatively inexpensive to fabricate and should be able to be exposed to the elements for a long period of time without damage. The present invention fulfills these requirements.
{ "pile_set_name": "USPTO Backgrounds" }
Network switches, routers, and the like are used to distribute information through networks by sending the information in segments such as packets. A packet typically includes a “header” that stores a destination address for routing the packet and a “payload” that stores an information segment being sent through the network. To forward the packet to its intended destination, some network switches include application-specific integrated circuits (ASICs) that receive the packet on a port and send the received packet on another port to route the packet for delivery. As the number of packets being sent on a port increase, the probability increases of the port becoming congested and packets being dropped and not transmitted to their intended destinations.
{ "pile_set_name": "USPTO Backgrounds" }
It is commonplace to use certain accessories with terrariums that house reptiles and/or aquariums that contain fish. These accessories include objects that are intended to simulate the natural environment of the reptile or fish. Such objects include plastic foliage, wood pieces, stones or the like. Aquariums also commonly utilize a heater typically having a tube-like shape for heating the water in the aquarium or tank. An animal rest assembly is disclosed in U.S. Pat. No. 4,234,780 issued Nov. 18, 1980 to McCarthy and entitled "Resting Place for Reptiles in Captivity." The assembly comprises simulated natural rock formed with an uneven surface that rests on the bottom of the enclosure containing the animal. A heater is provided within the body of the assembly and includes a resistive element. A shelf system attached to the inside wall of an aquarium or terrarium using suction devices is described in U.S. Pat. No. 4,820,556 issued Aug. 11, 1989 to Goldman et al. and entitled "Decorative Shelf System for Aquarium or Terrarium." The shelf system may resemble a rock or stone cliff. Columns are preferably provided under the shelves and extend from the bottom surface of the fish tank. U.S. Pat. No. 4,318,945 issued Mar. 9, 1982 to Goldman et al. entitled "Underwater Aquarium Decoration Assembly" illustrates matable pieces for forming a rock-like decorative assembly. The pieces have an outer surface intended to simulate the appearance of rocks.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to electric switches and more particularly to bistable, snap action electric switches. Still more particularly, the invention relates to electric switches of the aforementioned type commonly known as sump pump switches which control the starting and stopping of electric motors which operate pumps in response to the rise and fall of the level of water or other liquid. A particular sump pump switch is shown in U.S. Pat. No. 4,196,325 issued Apr. 1, 1980 to S. A. Povilaitis and assigned by mesne assignments, to the assignee of this application. The disclosure of U.S. Pat. No. 4,196,325 is hereby incorporated by reference into this application. Disclosed in that patent is a two-pole overcenter snap action switch having a lever operator pivotally mounted in the housing and connected to a pivotally mounted U-shaped movable insulating contact carrier by a compression spring. The movable contacts for each pole are mounted on a common movable insulating contact carrier for simultaneous closing or opening with the stationary contacts of the two poles. To this end, it is important that the movable contacts be mounted to the movable insulating contact carrier for pivotal motion relative thereto in the general plane of the contact carrier to permit self-alignment of the movable contacts to the terminal members on which the movable contacts pivot. Previous methods for attaching the movable contacts to the contact carrier in a manner that would provide the self-alignment pivoting feature have proven costly and not entirely effective. In the aforementioned patent, the movable contacts are loosely attached to the U-shaped insulating movable contact carrier by rivets. When properly riveted, the movable contact is able to pivot about the rivet in the general plane of the contact carrier or the primary plane of the movable contact. However, it is difficult to maintain a consistent degree of looseness of a riveted connection from one contact to another. Riveting also represents an additional step in the manufacturing process. A more recent commercial offering of the sump pump switch described above has provided clip-on movable contacts as shown in FIGS. 2 and 3 of the drawings. A U-shaped clip 42 is provided at one end of the movable contact 40 for mounting the contact to a movable insulating contact carrier 44. The insulating contact carrier is U-shaped and provided with a round hole 46 near the distal end of each of the outer legs. The contact 40 is provided with a semi-circular tab 48 which is sheared into the contact to mate with the round hole 46. Precise and consistent forming of the spring clip 42 is difficult to maintain. Moreover, semicircular tab 48 is preferably angularly offset to automatically snap into round hole 46 in the contact carrier 44 upon assembly. However, the relative short length of the tab compared to the length of the U-shaped clip renders the tab substantially more rigid than the clip. When inserting the contact carrier 44 into the spring clip 42, the tab 48 raises the contact carrier as it is inserted, causing the carrier 44 to rise up on the tab 48 and deflect the U-shaped clip 42 more widely open. Depending on the amount of deflection, the spring clip 42 can be unacceptably deformed. If the tab 48 is formed low enough not to cause deformation of the spring clip 42 upon assembly, it then provides insufficient engagement with the contact carrier 44 to retain the movable contact 40 on the carrier. This problem was resolved by an additional operation whereby the tab 48 was sheared into the contact 40, but not angularly offset upon fabrication of the movable contact and was subsequently deflected into the round hole 48 by an additional staking operation to increase the reliability of the engagement of the movable contact 40 to the contact carrier 44. Such additional manufacturing operations increase the cost of the switch. The contact element 50 of the prior art movable contact shown in FIGS. 2 and 3 is riveted through a hole in the distal end of the movable contact 40. The height of the back portion of the rivet, i.e. the portion which is deformed over in the riveting process, also determined the amount of overtravel of contact carrier 44 after the movable contact element 50 engaged the respective stationary contact. The height dimension of the riveted portion of contact element 50 was difficult to maintain consistent so as to provide the desired overtravel and simultaneous contact closure or separation. Moreover, riveting the contact element represents yet another additional step and cost in the manufacturing process.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a formation method for forming finely-structured parts, using an isotropic etching process. Also, the present invention relates to a finely-structured part formed by the formation method, and a product using such a finely-structured part. 2. Description of the Related Art With the recent advance of fine-structure-formation technology, it has attempted to provide higher function, higher performance, and additional value for various existing products, using the fine-structure-formation technology. Especially, at present, since it is possible to perform processing of finely-structured parts on a fine scale corresponding to the order of light wavelength, the trials are promising in various fields in which the finely-structured parts are necessitated. For example, in the field of liquid crystal displays equipped with a back light unit, in order to increase brightness of the liquid crystal display, and in order to decrease electric power consumption of the back light unit, it is proposed that an array of micro-lenses be associated with a glass substrate of the liquid crystal display, with a size of each micro-lens being on the order of a pixel size of the liquid crystal display. In particular, in the liquid crystal display, an aperture is formed in each pixel area to thereby introduce the light therethrough, but an area of the aperture is inevitably restricted due to an arrangement of wiring patterns and electrode patterns. Especially, in a TFT (thin film transistor) liquid crystal display of active matrix type, an aperture rate of the aperture area to each pixel area is less than 60%. Of course, the smaller the aperture rate, the darker the brightness of the liquid crystal display. Thus, before the brightness of the liquid crystal display can be made higher, it is necessary to increase the amount of light to be introduced into each pixel area, and thus the electric power consumption of the back light unit becomes larger. However, if the micro-lens array is associated with the liquid crystal display so that the aperture rate is virtually increased at each pixel area, i.e. if the amount of light to be introduced into each pixel area is increased by the micro-lens array, it is possible to make the brightness of the liquid crystal display higher without the increase of the power consumption of the back light unit. Also, it is proposed that an array of micro-lenses be assembled in a liquid crystal projector which may be used in a relatively light environment. In particular, in the liquid crystal projector, a liquid crystal display is used as a light-valve device having an array of light valves, and it is necessary to increase an amount of light passing through each light valve of the light-valve device before a projected image can be distinctly observed in the relatively light environment. Japanese Laid-Open Patent Publication (KOKAI) No. 2001-201609 discloses a two-piece formation method as a process for forming an array of micro-lenses used in the liquid crystal projector. In particular, the micro-lens array is press-molded from a suitable uncured photo-curable resin on a suitable glass substrate, using a glass mold or matrix having an array of hemisphere-like micro-recesses formed in a molding face thereof. Then, the glass substrate carrying the molded micro-lenses is exposed to radiation of ultraviolet rays, thereby setting of the molded micro-lenses on the glass substrate. Thereafter, the glass matrix is removed, and the molded micro-lenses are left on the glass substrate, resulting in production of the micro-lenses arrayed on and adhered to the glass substrate. Japanese Laid-Open Patent Publication (KOKAI) No. 2001-246599 also discloses another type two-piece formation method for forming an array of hemisphere-like micro-lenses. In this two-piece type formation method, a matrix for molding the hemisphere-like micro-lens array is made from a silicon substrate exhibiting a superior flatness and an excellent processability. Further, Japanese Laid-Open Patent Publication (KOKAI) No. 2001-074913 discloses a transferring formation method including a heating process and a dry etching process to form an array of hemisphere-like micro-lenses used in the liquid crystal projector. In particular, an array of circular masks, composed of a suitable thermal deformable material, is formed on a suitable glass substrate, and is subjected to the heating process such that each circular mask is thermally deformed into a hemisphere-like shape. Then, the glass substrate carrying the hemisphere-like masks is subjected to the dry etching process, so that an array of hemisphere-like micro-lenses is formed in the glass substrate as if the array of hemisphere-like masks are transferred to the glass substrate. Furthermore, Japanese Laid-Open Patent Publication (KOKAI) No. 2001-147305 discloses an isotropic-etching formation method including a wet etching process to form an array of hemisphere-like micro-lenses used in a liquid crystal projector. In particular, a silicon mask layer is formed on a quartz glass substrate, and an array of circular openings is formed in the silicon mask layer. Then, the quartz glass substrate having the mask layer is subjected to the wet etching process, whereby a hemisphere-like recess is formed in the quartz glass substrate at each circular opening of the silicon mask layer. Thereafter, the silicon mask layer is removed, thereby obtaining a hemisphere-like micro-lens array. Although the micro-lens array is used in the liquid crystal display of the liquid crystal projector whereby the projected image can be distinctly observed in a relatively light environment, it is proposed that the array of micro-lenses is assembled in a semi-permeation type liquid crystal display which is operated in either a permeation-display mode or a reflection-display mode, as disclosed in Japanese Laid-Open Patent Publication (KOKAI) No. 2000-298267. The semi-permeation type liquid crystal display includes a reflection plate associated with a back light unit, and an array of apertures is formed so as to be registered with an array of pixels of the liquid crystal display, an area of each aperture being smaller than a size of each pixel. In the permeation-display mode, a displayed image is based on the light emitting from the back light unit and passing through the apertures of the reflector plate. In the reflection-display mode, a displayed image is based on the light reflected from the reflection plate. Accordingly, in the semi-permeation type liquid crystal display, since an aperture rate of the aperture area to the pixel area is considerably restricted, it is advantageous to intervene the micro-lens array between the reflector plate and the back light unit to make the brightness higher in the permeation-display mode. As another example of the finely-structured parts, there is a planar light wave circuit device as disclosed in “Optical Switching And Optical Interconnection”, written by Kenichi YUKIMATSU and published by KYORITSU PUBLISHING COMPANY. The planar light wave circuit device includes a quartz glass substrate having optical light guide paths, optical switches, optical couplers, optical splitters and so on formed therein. When the planar light wave circuit device is too miniaturized, light-transmission losses becomes larger, and wavelength-separation characteristics are deteriorated. Namely, the planar light wave circuit device has a limitation of miniaturization. Thus, the formation of the various optical elements must be performed by processing the quartz glass substrate having a relatively large area size. Japanese Laid-Open Patent Publication (KOKAI) No. EHI-06-082832 discloses an active-matrix type liquid crystal display which includes a TFT (thin film transistor) substrate as a finely-structured part. In this TFT substrate, a wiring pattern is buried in the TFT substrate to smooth the surface of the TFT substrate, whereby liquid crystal molecules are more uniformly oriented, resulting in an improvement of display performance in the liquid crystal display. Japanese Laid-Open Patent Publication (KOKAI) No. EHI-11-283751 discloses an organic electroluminescence device which includes a diffraction grating as a finely-structured part. The diffraction grating is assembled in the electroluminescence device to efficiently take out light from a luminescence layer of the electroluminescence device. The diffraction grating comprises a suitable substrate in which a plurality of fine grooves is regularly formed at a pitch corresponding to the order of a light wavelength. Namely, before the diffraction grating can be produced, it is necessary to process the substrate such that a sub-wavelength periodic structure is formed in the substrate. Japanese Laid-Open Patent Publication (KOKAI) No. 2000-081625 discloses a liquid crystal display which includes a pair of alignment layers as a finely-structured part. In the liquid crystal display, a liquid crystal is confined in a space defined between the alignment layers such that the molecules of the liquid crystal are regularly oriented. Usually, the alignment layer is made of a suitable organic film, such as a polyimide film, and is produced by a rubbing method. In this method, the polyimide film is rubbed with, for example, a cotton cloth in a given direction, such that a plurality of fine grooves are regularly formed in a surface of the polyimide film. The rubbing method has drawbacks in that the polyimide film is susceptible to scratches and dust particles while being rubbed with the cotton cloth. Therefore, it is proposed that the alignment layer be made of an inorganic material. Namely, before the inorganic alignment layer can be produced, it is necessary to process an inorganic layer such that a submicron periodic structure is formed in the inorganic layer. Japanese Laid-Open Patent Publication (KOKAI) No. 2001-074935 discloses an optical polarization element as a finely-structured part. Although the optical polarization element is usually made of an optical material exhibiting a polarization-anisotropy, it is possible to make the optical polarization element of an optical isotropic material. In particular, the latter optical polarization element includes a substrate made of the optical isotropic material, and an ultra-fine birefringence structure formed in the optical isotropic substrate. For the formation of the ultra-fine birefringence structure, it is possible to utilize a fine-structure-formation technology as disclosed in, for example, Applied Optics Vol. 39, No 20, 2000). As still yet another example of the finely structured parts, there is a chemical microchip used in a chemical analysis system, such as μTAS (Micro Total Analysis Systems) LOC (Laboratory On Chip) or the like, as disclosed in “Nano-Technology And Macromolecule” published by THE SOCIETY OF POLYMER SCIENCE, JAPAN. The chemical microchip includes a suitable substrate in which grooves and recesses are formed in the order of microns or tens of microns. As discussed above, the fine-structure-formation technology can be applied to the various technical fields. In all cases, a substrate is processed to form a fine structure therein, thereby producing a finely-structured part. The processing of the substrate should be uniformly and equally performed before the fine structure can be formed in the substrate at high precision to thereby obtain the finely-structured part having a high-quality. Also, in order to inexpensively supply the finely-structured parts to a market, it is necessary to efficiently perform the production of the finely-structured parts at low cost. The efficient production of the finely-structured parts is possible by using a large-sized substrate in which a plurality of fine structures are simultaneously formed. Namely, after the plurality of fine structures are formed in the large-sized substrate, it is divided into respective substrate sections having the fine structures, and thus it is possible to lower production cost of the individual finely-structured parts. However, conventionally, the large-sized substrate is not utilized for the reasons stated below. For example, in the aforesaid two-piece formation method for forming the micro-lens array, it is difficult to produce a large-sized glass mold or matrix having a plurality of micro-recess arrays formed in a molding face thereof. Although the large-sized matrix is produced, when there is a thermal expansion difference between the large-sized matrix and the large-sized substrate, it is necessary to strictly control a processing-temperature during the production of the plurality of micro-lens arrays, such that thermal strains, based on the thermal expansion difference, can be eliminated from the plurality of micro-lens arrays as much as possible. Of course, it is very troublesome to strictly control the processing-temperature. Also, in the two-piece formation method, the plurality of micro-lens arrays is press-molded from a suitable uncured photo-setting resin on the large-sized substrate, using the large-sized matrix, and it is difficult to uniformly exert a pressure to the large-sized matrix. In the aforesaid transferring formation method including the heating process and the dry etching process to form the micro-lens array, although it is possible to uniformly and equally process the large-sized substrate so as to form a plurality of micro-lens arrays in the large-sized substrate, facilities for performing the transferring formation method must have a large-scale for processing the large-sized substrate. Of course, large-scale facilities are very expensive, resulting in an increase of a production cost of the micro-lens arrays. Also, the facilities include a vacuum chamber for performing the dry etching process, and it takes too much time for evacuating the vacuum chamber, resulting in a lowering of production efficiency of the micro-lens arrays. Furthermore, it is practically impossible to process more than one large-sized substrate in the vacuum chamber. In the aforesaid isotropic-etching formation method including the wet etching process to form the micro-lens array, it is possible to process the large-sized substrate to form a plurality of micro-lens arrays in the large-sized substrate at a relatively low cost, because an etching cell for the wet etching process is merely made larger such that the large-sized substrate is sufficiently received in an etching solution held therein. However, it is very difficult to properly control the wet etching process such that a whole of the large-sized substrate is uniformly subjected to the etching process. Namely, for example, it is difficult to maintain the entire etching solution at a given constant etching temperature when the large etching cell is used. Also, it is necessary to make the large-sized substrate of an expensive material containing substantially no impurities, such as quartz glass, silicon or the like, before the wet etching process can be properly controlled. Similar matters are substantially true for the other finely-structured parts, i.e. the planar light wave circuit device, the active-matrix type liquid crystal display, the organic electroluminescence device, the orientation film, the optical polarization element as a finely-structured part, and the chemical microchip.
{ "pile_set_name": "USPTO Backgrounds" }
DE 103 10 115 A1 discloses an arrangement for remotely controlling a mobile radio telephone in a motor vehicle. This arrangement comprises an independent interface module which, as an output unit, also establishes a standardized interface to a CAN bus, the interface module also comprising a communication management unit in which the data formats are converted between the radio telephone and the output unit. The disadvantage of this arrangement is that the communication management unit must have the device-specific instruction sets for data transmission, so that the unit can convert the data formats between the radio telephone and the input and output units. In this arrangement according to the prior art, the interface module is used to translate between the language of the vehicle bus and the language of the mobile radio telephone using computation power. Nowadays, a control device which is permanently installed in a vehicle and is designed as a gateway unit or an interface unit must support vehicle-related applications on an electronic device, in particular a mobile telephone, over the entire service life of the vehicle, in which case it must be taken into account that new and more complex applications may thoroughly overtax the computation power and hardware configuration of the control device permanently installed in the vehicle.
{ "pile_set_name": "USPTO Backgrounds" }
Patients at hospitals and other care centers regularly require controlled drug intake as a part of the patient's prescribed therapy. One form of controlled drug intake is accomplished by infusing fluidic drugs with a medical infusion pump. Medical infusion pumps, in general, provide regulated drug delivery to a patient. These pumps are used to deliver a selected drug or other therapeutic agent to a patient at a predetermined rate that is programmed into the pump. However, programming and managing such pumps can be difficult and cumbersome. Programming typically includes preloading a pump program into a pump and then entering pump parameters or data into the pump through a keypad that is directly in the pump. Each time the pump is programmed, the data must be reentered by hand. Managing the status and locations of pumps also can be difficult. A single pump can be us programmed for delivering different fluids in different therapies and in different locations within a hospital. Similarly, the status of a pump and alarms can be difficult to monitor because the pumps are often in locations other than where the caregiver is located and have small displays on which information can be difficult to see.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The genus Trichogramma represents a vast array of endoparasitic species of minute wasps found in diverse habitats throughout the world. Their life cycle initiates with the adult female wasp ovipositing eggs into the eggs of a host insect. Hatching larvae feed on the host egg, pupate, and emerge within approximately 10 days of oviposition as mature adult parasites. These parasites are commercially reared and released in many countries for use as biological control agents against a plurality of agricultural pests, particularly those which attack economically important food and fiber crops. All existing programs for mass rearing Trichogramma depend upon providing an ample supply of viable host eggs. As a result of the several handling steps and the requirement for fairly elaborate facilities, host egg production accounts for more than 90% of the rearing costs. It is envisioned that a substantial reduction in the overhead attributed to maintaining a host population would greatly enhance the role of Trichogramma in the control of agricultural pests. This invention relates to a cultivation method by which such a cost reduction can be realized. 2. Description of the Prior Art The conventional procedure for propagating Trichogramma initiates with production and collection of an abundance of host eggs such as those of the Angoumois grain moth. The collected eggs are enchambered with a predetermined number of parasitized eggs so that the emerging wasps will infest the remainder of the lot. The infested eggs may either be refrigerated to retard hatching or else directly transferred to an incubation chamber for further development. Release of adult parasites typically occurs prior to or immediately after emergence. Because of the manual handling of both the host and the parasite, this procedure is unduly labor intensive and economically unfeasible. Attempts to improve upon the conventional technique have centered upon optimization of conditions, automation, and implementation of a continuous flow principle from one stage to the next. For example, Andreev et al., U.S. Pat. No. 3,893,420 teaches a method wherein host eggs are collected by a pneumatic separator and are attached in symmetrical arrays on uniformly sized cards for subsequent transfer to each rearing station. While the method of Andreev et al. facilitates the production and handling of the eggs, it does little to offset the expense of concurrently rearing the host.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to patient monitoring and/or treatment. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with electrodes, the system methods and device described herein may be applicable to many applications in which patient monitoring and/or treatment is used, for example long physiological monitoring and/or treatment with implantable devices. Patients are often treated for diseases and/or conditions associated with a compromised status of the patient, for example a compromised physiologic status. In some instances, a patient may report symptoms that require diagnosis to determine the underlying cause. For example, a patient may report fainting or dizziness that requires diagnosis, in which long term monitoring of the patient can provide useful information as to the physiologic status of the patient. In some instances a patient may have suffered a heart attack and require care and/or monitoring after release from the hospital. One example of a device to provide long term monitoring of a patient is the Holter monitor, or ambulatory electrocardiography device. In addition to measuring heart signals with electrocardiograms, known physiologic measurements include impedance measurements that can be used to assess the status of the patient. Patients who have sufficiently compromised status may be treated with implantable devices, such as pacemakers, that can provide therapy with electrical pulses delivered through electrodes. Although current methodologies have been somewhat successful in monitoring and/or treating patients, work in relation to embodiments of the present invention suggests that known methods and apparatus may be less than ideal. In at least some instances, devices for patient monitoring and/or therapy can be expensive, such that some patients do not have access to the these treatments and/or therapies. Also, some of the devices for monitoring and/or treating patients can be complex, such that proper use of the device may be complicated and/or time consuming and may place a burden on the health care provider. In some instances, devices may be complex for a patient to install, such that mistakes may be made and some patients may not be able to use the devices properly for long term at home monitoring. Therefore, a need exists for improved patient monitoring. Ideally, such improved patient monitoring would avoid at least some of the short-comings of the present methods and devices. 2. Description of the Background Art The following U.S. patents and Publications may describe relevant background art: U.S. Pat. Nos. 4,121,573; 4,498,479; 4,955,381; 4,981,139; 5,080,099; 5,353,793; 5,511,553; 5,544,661; 5,558,638; 5,673,704; 5,724,025; 5,772,586; 5,836,990; 5,862,802; 5,935,079; 5,949,636; 6,047,203; 6,117,077; 6,129,744; 6,225,901; 6,385,473; 6,416,471; 6,454,707; 6,527,711; 6,527,729; 6,551,252; 6,569,160; 6,595,927; 6,595,929; 6,605,038; 6,645,153; 6,821,249; 6,824,515; 6,980,851; 7,020,508; 7,027,862; 7,054,679; 7,153,262; 2003/0092975; 2004/0243018; 2005/0113703; 2005/0131288; 2006/0010090; 2006/0020218; 2006/0031102; 2006/0089679; 2006/122474; 2006/0155183; 2006/0224051; 2006/0264730; 2007/0021678; 2007/0038038; and 2007/0038078.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of Invention The invention relates to a separator for a low temperature type fuel cell, especially, a polymer electrolyte fuel cell (hereinafter referred to as PEFC), and more particularly, to a metal plate of the separator, to which different types of surface treatment is applied. 2. Description of Related Art The PEFC is formed by stacking an MEA (Membrane-Electrode Assembly) and separators. The MEA includes an electrode or anode (fuel electrode) formed of an electrolyte membrane as an ion-exchange membrane and a catalytic layer formed on one surface of the electrolyte membrane, and an electrode or cathode (air electrode) formed of the electrolyte membrane as the ion-exchange membrane and a catalytic layer formed on the other surface of the electrolyte membrane. Diffusion layers are provided between the MEA and the separators at the anode side and the cathode side, respectively. The separator has a fuel gas passage for supplying the fuel gas (hydrogen) to the anode, and has an oxide gas passage for supplying oxide gas to the cathode. The separator also has a refrigerant passage through which a refrigerant or cooling water is supplied. A unit cell is formed by interposing the MEA between the separators. At least one unit cell is used to form a module, and a plurality of modules are further stacked into a fuel cell stack. Terminals, insulators and end plates are provided at both sides of the fuel cell stack in the stack direction such that the cells are tightened in the stack direction so as to be fixed with fastening members, for example, a tension plate that is disposed outside the fuel cell stack and extends in the stack direction, and bolt/nut into the fuel cell stack structure. At the anode side of each cell, a reaction occurs for decomposing hydrogen into a hydrogen ion (proton) and an electron. The resultant hydrogen ion moves toward the cathode side through the electrolyte membrane. At the cathode side of each cell, the hydrogen ion and the electron (generated in the anode of the adjacent MEA through the separator, or generated in the anode of the cell at one end in the stack direction moving to the cathode of the cell at the other end through the outer circuit) are reacted to generate water as follows: anode: H2→2H++2e− cathode: 2H++2e−+(½)O2→H2O.The cell voltage by each cell or a group of cells is monitored so as to make sure if power is normally generated in the cell, to control the flow rate of reaction gas, and to guide the motor in case of abnormal voltage. For example, JP-A-11-389828 discloses a cell voltage monitor for the fuel cell. JP-A-2001-283880 discloses application of carbon coat to a whole surface of the metal separator so as to improve the corrosion resistance of the gas passage portion thereof. If the carbon coat is applied to a contact portion of the metal separator, which is brought into contact with a terminal of a cell voltage monitor, the contact resistance of such contact portion becomes unstable. As a result, the accuracy in detecting the voltage generated in the cell is degraded. If the carbon coat is not applied to the metal separator, the corrosion in the gas passage portion may rapidly progress. It is difficult for the aforementioned technology to stabilize the contact resistance of the contact portion while improving the corrosion resistance of the gas passage.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the field of dial impulse relay circuits which upon receiving a dial impulse generated by a first circuit, repeat that dial impulse onto a second circuit. These relay circuits find utility in repeating impulses generated in a telephone set, but may find use in a variety of equipments requiring electrical isolation between a first circuit in which an impulse is generated and a second circuit to which the impulse is to be applied. Prior relay circuits in the telephone apparatus arts have generally used a single two-winding relay as a repeating relay. These circuits have had the disadvantage of introducing relay response time distortions caused by differences between the relay operate time and the release time when the relay is used to supply current to a talking path or when used to repeat dial impulses on a talking path. An object of the invention described herein is to provide a dial impulse relay circuit which substantially eliminates these relay response time distortions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a piezoelectric material and more particularly to a lead-free piezoelectric material. The present invention also relates to a piezoelectric element, a multilayered piezoelectric element, a liquid discharge head, a liquid discharge apparatus, an ultrasonic motor, an optical apparatus, a vibratory apparatus, a dust removing device, an image pickup apparatus, and electronic equipment, each including the piezoelectric material. 2. Description of the Related Art In general, piezoelectric materials are ABO3 perovskite-type metal oxides, such as lead zirconate titanate (hereinafter referred to as “PZT”). However, PZT contains lead as an A site element, and its effect on the environment is regarded as a problem. Thus, there is a demand for piezoelectric materials of lead-free perovskite-type metal oxides. One known piezoelectric material of a lead-free perovskite-type metal oxide is barium titanate. In order to improve the characteristics of barium titanate, materials based on barium titanate are being developed. Japanese Patent No. 4039029 discloses a piezoelectric material in which part of the A site of barium titanate is replaced by Ca in order to reduce the temperature dependence of the piezoelectric property of the barium titanate. Japanese Patent Laid-Open No. 2010-120835 discloses a piezoelectric material in which Mn, Fe, or Cu is added to a material prepared by replacing part of the A site of barium titanate by Ca in order to improve the mechanical quality factor of the barium titanate. However, such known piezoelectric materials have a low piezoelectric constant in a high temperature region and a low mechanical quality factor in a low temperature region in a device operation temperature range (−30° C. to 50° C.). The present invention addresses these problems and provides a lead-free piezoelectric material having a high piezoelectric constant and a high mechanical quality factor in a device operation temperature range. A piezoelectric material according to the present invention contains Sn and Bi and thereby has a high mechanical quality factor particularly at low temperatures. The present invention also provides a piezoelectric element, a multilayered piezoelectric element, a liquid discharge head, a liquid discharge apparatus, an ultrasonic motor, an optical apparatus, a vibratory apparatus, a dust removing device, an image pickup apparatus, and electronic equipment, each including the piezoelectric material.
{ "pile_set_name": "USPTO Backgrounds" }
Bovine leukemia virus (BLV) is a blood-borne disease primarily transmitted mechanically by vectors and fomites. Straub, O. C. in Enzootic Bovine Leukosis and Bovine Leukemia virus, eds. Burny, A. & Mammerickx, M. (Martinus Nijhoff, Boston, Mass.), pp. 229-249 (1987). Approximately 30% of infected cattle develop persistent lymphocytosis, a polyclonal expansion of B lymphocytes. Ferrer, J. F. et al., J. Amer. Vet. Med. Assoc. 175:705-708 (1979); Kettmann, R. et al., Proc. Natl. Acad. Sci. USA 79:2465-2469 (1982) and Miller, L. D. et al., J. Nat. Cancer Inst. 48:423-428 (1972). The development of persistent lymphocytosis, in which the absolute number of lymphocytes (International Committee on Bovine Leukosis J. Nat. Cancer Inst. 41:243-263 (1968)) and the percentage of infected lymphocytes are dramatically increased (Burny, A. et al., Adv. Vet. Sci. Comp. Med. 32:149-170 (1988) and Kettmann, R. et al., Proc. Natl. Acad. Sci. USA 77:2577-2581 (1980)), markedly enhances the probability of transmission. Mammerickx, M. et al., Leuk. Res. 11:353-358 (1987). The critical importance of persistent lymphocytosis to transmission of this blood-borne disease was demonstrated by experiments showing that less than 0.3 .mu.l of blood from cattle with persistent lymphocytosis was capable of transmitting BLV, while more than 1 ml of blood was necessary to transmit from infected cattle which did not have persistent lymphocytosis. Mammerickx, M. et al., Leuk. Res. 11:353-358 (1987). Moreover, vertical transmission from BLV-infected dams to their calves has been shown to be strongly correlated with persistent lymphocytosis. Agresti, A. et al., Amer. J. Vet. Res. 54:373-378 (1993). In cattle, the ability to transmit BLV varies (Mammerickx, M. et al., Leuk. Res. 11:353-358(1987) and Weber, A. F. et al., Amer. J. Vet. Res. 44:1912-1915(1983)), and expression of antigen after in vitro culture has been shown to correlate with infectivity. Miller, L. D. et al., Amer. J. Vet. Res. 46:808-814 (1985). The level of BLV expression in the animal also may correlate with the probability of development of persistent lymphocytosis. Dropulic, B. et al., J. Virol. 66:1432-1441 (1992) and Cockerell, G. L. et al., Leuk. Res. 12:465-469 (1988). Moreover, persistent lymphocytosis is a strong risk factor for development of lymphoma. In 1-10% of the animals with persistent lymphocytosis, B cell clones undergo neoplastic transformation, leading to leukemia or lymphoma (Ferrer, J. F. et al., J. Amer. Vet. Med. Assoc. 175:705-708 (1979)), and cattle with persistent lymphocytosis are three times more likely to develop lymphoma than infected cattle without persistent lymphocytosis. Ferrer, J. F. et al., J. Amer. Vet. Med. Assoc. 175:705-708 (1979). BLV infection is thus a costly impediment to cattle production. Currently, BLV is controlled by testing and slaughtering infected animals. Spread to newborn calves is reduced by raising them apart from their infected dams. However, in the United States, up to 66% of dairy herds are affected, and 13-48% of individual dairy cows carry the virus. Losses due to slaughter condemnation of cattle with tumors exceeds $42 million per year. In addition, the cattle industry suffers considerable losses due to inability to export cattle from BLV-positive herds to many foreign countries. BLV, which causes the disease, is a retrovirus structurally similar to human T-cell leukemia viruses -I and -II (HTLV-I and -II). Burny, A. et al., Adv. Vet. Sci. Comp. Med. 32:149-170 (1988) and Miller, J. M. et al., J. Dairy Sci. 65:2194-2203 (1982). After initial infection, BLV expresses a doubly-spliced transcript which encodes the regulatory proteins, Tax and Rex. Sagata, N. et al., FEBS Lett. 192:37-42 (1985). Tax trans-activates the viral long terminal repeat (LTR) and cellular promoters, including those of c-fos and somatostatin, and may be involved in tumorigenesis. Katoh, I. et al., EMBO J. 8:497-503 (1989). Co-transfection experiments have demonstrated that Tax is necessary for viral expression in vitro. Willems, L. et al., EMBO J. 6:3385-3389 (1987); Rosen, C. A. et al., EMBO J. 5:2585-2589 (1986) and Derse, D., J. Virol. 62:1115-1119 (1988). Rex regulates the transition from early expression of the doubly-spliced transcript encoding regulatory proteins to the later expression of singly-spliced or unspliced transcripts which express the env gene or the gag and pol genes. Derse, D., J. Virol. 62:1115-1119 (1988). Recently, the 3' region of HTLV-I and BLV has been shown to encode RNA with alternative splice patterns which may express other regulatory proteins. Ciminale, V. et al., J. Virol. 66:1737-1 745 (1992); Koralnik, I. J. et al., Proc. Natl. Acad. Sci. USA 89:8813-8817 (1992) and Alexandersen, S. et al., J. Virol. 67:39-52 (1993). Some success has been achieved in targeting RNA for cleavage and inactivation by means of antisense sequences. Haseloff, J. et al., Nature 334:585-591 (1988). Specific antisense sequences can be used to flank the hammerhead motif, first identified in plant RNA pathogens, which has been demonstrated to cleave the phosphodiester bond downstream of a GUC triplet. Also, ribozymes, particular forms of RNA, which can be targeted to attach to other RNAs and then enzymatically cleave them have been targeted to cleave a variety of sites of human immunodeficiency virus (HIV). Sarver, N. et al., Science 247:1222-1225 (1990); Heidenreich, O. et al., J. Biol. Chem. 267:1904-1909 (1992); Dropulic, B. et al., J. Virol. 66:1432-1441 (1992); Weerasinghe, M. et al., J. Virol. 65:5531-5534 (1991); Sioud, M. et al., Proc. Natl. Acad. Sci. USA 88:7303-7307 (1991) and Lo, K. M. S. et al., Virology 190:176-183 (1992). It would thus be desirable to inhibit regulatory proteins in the BLV group of viruses. It would also be desirable to develop a ribozyme capable of cleaving rex/tax mRNA. It would further be desirable to develop expression plasmids containing such ribozyme DNA for transfection of BLV-infected cells and cleavage of BLV RNA. It would also be desirable to provide transgenic cattle which are resistant to BLV-induced persistent lymphocytosis and lymphoma.
{ "pile_set_name": "USPTO Backgrounds" }
For example, following development of a higher degree of integration of a semiconductor integrated circuit or the like, a photomask used in a micromachining process contained in a semiconductor manufacturing process is required to have a high pattern accuracy. In photomasks currently used, a chromium-based material is generally used as a light-shielding film in view of machinability of a high-accuracy pattern. However, such a demand for a higher-resolution pattern of the photomask following the development of a higher degree of integration of the semiconductor integrated circuit can not be met by an existing patterning method of patterning a chromium-based light-shielding film using a resist pattern as an etching mask. It has been revealed that, in this method, as a fine opening pattern (hole) has a higher resolution, an influence of degradation in size and shape of the fine opening pattern (hole) due to a microloading effect can not be neglected and becomes an obstacle in practical use. Specifically, as the existing patterning method of patterning the chromium-based light-shielding film by the use of the resist pattern as the etching mask, use is mainly made of a method of forming a Cr pattern by dry etching using a gas composition predominantly containing a Cl2+O2 mixed gas and using a resist pattern on a Cr film as a mask (see Japanese Unexamined Patent Application Publication (JP-A) No. 2001-183809). For the dry etching, an RIE (Reactive Ion Etching) apparatus is typically used. However, in order to meet the recent demand for finer patterns and a higher pattern accuracy, an ICP (Inductive Coupling Plasma) system is considered (see “SPIE”, Vol. 3236, C. Constantine et al, 1997, pp. 94-103, hereinafter referred to as the first prior art). In this case, etching is generally performed at a high plasma density using an ICP power higher than an ICP power which causes electron density jump (i.e., a condition achieving stable plasma discharge) (see Journal of “SPUTTERING & PLASMA PROCESSES”, Vol. 13, No. 4 (entitled: “Production and Physics of High-Density Plasma”, written by: Hidero Sugai, p. 7), Oct. 9, 1998, published by Sputtering and Plasma Technology Department of Japan Technology Transfer Association, hereinafter referred to as the second prior art). However, the first and the second prior arts mentioned above have three problems which will be described hereinunder. As a first problem, there is a large difference in size between a resist pattern after development and a Cr pattern after etching (hereinafter referred to as a conversion difference between a resist and Cr or simply as a conversion difference). Heretofore, use has been made of a method in which development and etching conditions anticipating the conversion difference are adopted to improve an accuracy with respect to designed pattern data. However, in recent years, a pattern having a fine and complicated shape, such as an optical proximity correction (OPC) pattern, is used. Further, there is a demand for high-accuracy formation of a pattern having a size difference and a density difference in a mask plane. Under the circumstances, it is difficult to form a high-accuracy pattern by using the existing method. Specifically, Cr recession by isotropic etching of the resist causes the following problem. Comparing square patterns of the same size, the square opening pattern (removed portion) is increased in size and its corners are rounded. On the other hand, the square shielding pattern (remaining portion or Cr portion) is decreased in size and its corners are kept at substantially right angles. This results in differences in size and in corner shape between these patterns. The above-mentioned problem exerts the following influence on a mask manufacturing process and a mask quality. First, the corners of the square opening pattern being rounded induces occurrence of a suspected defect, resulting in a serious obstacle to an inspection process. Further, the pattern shape is not formed in exact conformity with designed pattern data, resulting in reduction in margin in a lithography process in a semiconductor manufacturing process and a large number of steps required in condition setting. Further, the above-mentioned conversion difference becomes an obstacle to fine pattern formation on the mask. It is possible to accommodate the above-mentioned conversion difference by data sizing. In this case, however, the sizing amount increases so that a conversion time increases. As a second problem, because of the microloading effect, the conversion difference between the resist and Cr widely changes depending on the size of the opening pattern (hole). As the opening pattern is a finer opening pattern having a smaller size, a finished size is smaller and the conversion difference has a greater absolute value. The relationship of a shift amount from a designed pattern size with respect to a change in designed pattern size is called CD linearity. If a change in shift amount from the designed pattern size is large with respect to the change in designed pattern size, the expression that the CD linearity is inferior is used. The change in shift amount from the designed pattern size being large with respect to the change in designed pattern size represents that variation in conversion difference between the resist and Cr is large. This problem exerts the following influence on the mask manufacturing process and the quality. At first, because of this problem, the conversion difference varies depending on the size of the opening pattern so that CD accuracy (particularly, the CD linearity) is degraded. This results in reduction in margin in the lithography process in the semiconductor manufacturing process and a large number of steps required in condition setting. The reason is as follows. Although the CD accuracy may be compensated by another process such as exposure, a condition therefor may not be an optimal condition considering other CD accuracy than the CD linearity. As a third problem, the sectional shape of Cr depends on the size of the opening pattern (hole). If the opening pattern is decreased in size to become a fine opening pattern, the sectional shape is tapered. This problem exerts the following influence on the mask manufacturing process and the quality. At first, because of this problem, the sectional shape of Cr may be changed in the plane. In this event, due to an electromagnetic optical effect, an optical size variation as large as several times a variation resulting from the sectional shape is caused to occur. This results in reduction in margin in the lithography process in the semiconductor manufacturing process and a large number of steps required in condition setting. Further, in case where the length of the mask is measured by an optical length meter, length measurement accuracy is degraded. It is therefore a first object of the present invention to provide a method of manufacturing a photomask, which is capable of reducing a conversion difference regardless of the shape of a pattern (opening pattern (hole), light shielding pattern (dot), line and space, etc.), a size difference, or a density difference (particularly regardless of hole or dot) and of reducing a difference in shape between a hole or a dot. It is a second object of the present invention to provide a method of manufacturing a photomask having excellent CD linearity (constant conversion difference) even if a hole has a small size. It is a third object of the present invention to provide a method of manufacturing a photomask in which the sectional shape of a hole does not depend upon the size and is excellent even if the size is small.
{ "pile_set_name": "USPTO Backgrounds" }
Vacuum infusion or VARTM (vacuum assisted resin transfer moulding) is one method, which is typically employed for manufacturing composite structures, such as wind turbine blades comprising a fibre reinforced matrix material. During the manufacturing process, liquid polymer, also called resin, is filled into a mould cavity, in which fibre material priorly has been inserted, and where a vacuum is generated in the mould cavity hereby drawing in the polymer. The polymer can be thermoset plastic or thermoplastics. Typically, uniformly distributed fibres are layered in a first rigid mould part, the fibres being rovings, i.e. bundles of fibre bands, bands of rovings or mats, which are either felt mats made of individual fibres or woven mats made of fibre rovings. A second mould part, which is often made of a resilient vacuum bag, is subsequently placed on top of the fibre material and sealed against the first mould part in order to generate a mould cavity. By generating a vacuum, typically 80 to 95% of the total vacuum, in the mould cavity between the first mould part and the vacuum bag, the liquid polymer can be drawn in and fill the mould cavity with the fibre material contained herein. So-called distribution layers or distribution tubes, also called inlet channels, are used between the vacuum bag and the fibre material in order to obtain as sound and efficient a distribution of polymer as possible. In most cases the polymer applied is polyester or epoxy, and the fibre reinforcement is most often based on glass fibres or carbon fibres. During the process of filling the mould, a vacuum, said vacuum in this connection being understood as an under-pressure or negative pressure, is generated via vacuum outlets in the mould cavity, whereby liquid polymer is drawn into the mould cavity via the inlet channels in order to fill said mould cavity. From the inlet channels the polymer disperses in all directions in the mould cavity due to the negative pressure as a flow front moves towards the vacuum channels. Thus, it is important to position the inlet channels and vacuum channels optimally in order to obtain a complete filling of the mould cavity. Ensuring a complete distribution of the polymer in the entire mould cavity is, however, often difficult, and accordingly this often results in so-called dry spots, i.e. areas with fibre material not being sufficiently impregnated with resin. Thus dry spots are areas where the fibre material is not impregnated, and where there can be air pockets, which are difficult or impossible to avoid by controlling the vacuum pressure and a possible overpressure at the inlet side. In vacuum infusion techniques employing a rigid mould part and a resilient mould part in the form of a vacuum bag, the dry spots can be repaired after the process of filling the mould by puncturing the bag in the respective location and by drawing out air for example by means of a syringe needle. Liquid polymer can optionally be injected in the respective location, and this can for example be done by means of a syringe needle as well. This is a time-consuming and tiresome process. In the case of large mould parts, staff have to stand on the vacuum bag. This is not desirable, especially not when the polymer has not hardened, as it can result in deformations in the inserted fibre material and thus in a local weakening of the structure, which can cause for instance buckling effects. Often the composite structures comprise a core material covered with a fibre reinforced material, such as one or more fibre reinforced polymer layers. The core material can be used as a spacer between such layers to form a sandwich structure and is typically made of a rigid, lightweight material in order to reduce the weight of the composite structure. In order to ensure an efficient distribution of the liquid resin during the impregnation process, the core material may be provided with a resin distribution network, for instance by providing channels or grooves in the surface of the core material. Resin transfer moulding (RTM) is a manufacturing method, which is similar to VARTM. In RTM the liquid resin is not drawn into the mould cavity due to a vacuum generated in the mould cavity. Instead the liquid resin is forced into the mould cavity via an overpressure at the inlet side. Prepreg moulding is a method in which reinforcement fibres are pre-impregnated with a pre-catalysed resin. The resin is typically solid or near-solid at room temperature. The prepregs are arranged by hand or machine onto a mould surface, vacuum bagged and then heated to a temperature, where the resin is allowed to reflow and eventually cured. This method has the main advantage that the resin content in the fibre material is accurately set beforehand. The prepregs are easy and clean to work with and make automation and labour saving feasible. The disadvantage with prepregs is that the material cost is higher than for non-impregnated fibres. Further, the core material need to be made of a material, which is able to withstand the process temperatures needed for bringing the resin to reflow. Prepreg moulding may be used both in connection with a RTM and a VARTM process. Further, it is possible to manufacture hollow mouldings in one piece by use of outer mould parts and a mould core. Such a method is for instance described in EP 1 310 351 and may readily be combined with RTM, VARTM and prepreg moulding. WO03/008800 describes a number of prefabricated strips arranged in sequence in the periphery. The strips consist of fibrous composite material, preferably carbon fibres. In additionally an aluminium mesh is arranged within a blade shell for lightning protection. As for instance blades for wind turbines have become bigger and bigger in the course of time and may now be more than 60 meters long, the impregnation time in connection with manufacturing such blades has increased, as more fibre material has to be impregnated with polymer. Furthermore, the infusion process has become more complicated, as the impregnation of large shell members, such as blades, requires control of the flow fronts to avoid dry spots, said control may e.g. include a time-related control of inlet channels and vacuum channels. This increases the time required for drawing in or injecting polymer. As a result the polymer has to stay liquid for a longer time, normally also resulting in an increase in the curing time. Additionally, the wind turbine industry has grown at a nearly exponential rate over the past few decades, thereby increasing the demand for throughput of manufactured wind turbine blades. This increased demand cannot be satisfied by building new factories alone, but also requires that the manufacturing methods are optimised.
{ "pile_set_name": "USPTO Backgrounds" }
Embodiments of the present invention relate to the formation of a passivation layer comprising silicon nitride on high aspect ratio features used to fabricate electronic circuits on substrates. Electronic circuits, such as integrated, display, memory, power, and photovoltaic circuits, are becoming ever denser and more complex. The dimensions of the features of these circuits are becoming smaller to allow greater aerial densities across the substrate. These features include connector bumps, interconnects, semiconducting or oxide features, gates, electrodes, resistors, vias and many others. The aspect ratio of such features increases as the width or horizontal dimension of the features becomes smaller because the vertical dimension of the features has to be larger to provide the same cross-sectional area. The aspect ratio, which is the ratio of the height to the width of the feature, is a particular problem when the features are covered by a passivation layer to protect or electrically isolate the features. As an example, a passivation layer 10 can be used to cover features 12, as shown in FIGS. 1A and 1B, to prevent oxidation of the metal-containing surface of the features 12 before or during coating of the features with other materials. The features 12 include interconnects 13 (FIG. 1A) and connector bumps 14 (FIG. 1B). Interconnects 13 are used to connect the active and passive devices on a substrate 15. Connector bumps 14 are used, for example, in flip chip packaging to serve as interconnection points between an integrated circuit chip and the external environment. The connector bumps 14 are formed on bonding pads to allow the die to be “flipped” circuit-upside- down and directly soldered to a connector or circuit board, thereby saving the time and expense of conventional wire bonds and foil connectors. Both the interconnects 13 and connector bumps 14 are covered by a passivation layer 10. However, as the aspect ratio of the interconnects 13 or connector bumps 14 increases to values above 0.2, it becomes increasingly difficult to deposit a continuous, conformal, and substantially defect-free passivation layer 10 around the features 12, especially the re-entrant corners 17 of the features. Referring to FIG. 1A, the passivation layer 10 forms defects 11, such as the seams 16, which split open the passivation layer 10 at the corners 17 of the interconnects 13. The passivation layer 10 on the connector bumps 14 can also form seams 16 at the corners 17 around the base of the connector bumps 14. The seam problem is often aggravated by the geometrical elements of the re-entrant corners 17 in chip packaging, re-distribution layers (RDL), or through-silicon-via (TSV) copper or tungsten vias. For example, high aspect ratio features 12 such as silicon vias 18, as shown in FIG. 1C, comprise apertures formed through a dielectric layer 19, which are filled with an electrical conductive material to form a connection between an underlying feature such as an interconnect 13 and overlying feature such as a connector bump 14. When the silicon via 18 and overlying connector bump 14 are coated with a passivation layer 10, seams 16 often occur at the re-entrant corners 17 formed at the intersection of the passivation layer 10 with the connector bump 14 and the silicon via 18. Still another example of high aspect ratio features 12 comprises oxide structures (not shown) covered with a passivation layer 10. Oxide structures can include silicon dioxide containing structures, such as oxide liner layers formed in through-silicon vias, or oxide layers formed on top of the copper pillars of through-silicon-vias which allow revealing the via connection at the backside of the substrate. Again, defects 11 form in the passivation layer 10 covering such features 12. The defects 11 within the passivation layers 10 at regions of the features 12 which have a complex geometry, especially with re-entrant corners 17 that have sharp edges and angles, can also be of other types such as micro-cracks, hairline cracks, and still others. However, it is not apparent how to form features 12 with these high aspect ratios and maintain the geometry and other dimensions of these features, while still preventing defects from occurring in such passivation layers 10. Thus, for various reasons that include these and other deficiencies, and despite the development of various methods of depositing passivation layers around features, further improvements in the deposition of passivation layers are continuously being sought.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a directly heated cathode for electron tubes, particularly transmitting tubes, with coaxial design of the electrodes and their lead-ins, which cathode exhibits a hollow cylinder which is secured at one end to an annular cathode lead, and at the other end is secured to a cathode cap which is mounted at a power supply lead extending coaxially in the hollow cylinder. Such a cathode is known, for example, from the German AS No. 24 15 384. It further proceeds as known from this German AS that one uses tungsten wire as carrier for the manufacture of cathodes which are directly heated and exhibit a metal film as the emission layer, for example tungsten carbide with thorium film. The required surface and mechanical stability is achieved by means of an appropriate arrangement of the wires, in mesh or needle form in transmitting tubes. An inhomogeneous cathode surface which has effects on the electrode system follows of necessity from the design of the cathodes. There are also difficulties in the manufacture of cathodes with narrow wire intervals. In transmitting tubes with narrow grid-cathode intervals and meshed cathodes, the different intervals (outer wire and inner wire of the meshed cathode) have a deletorious effect on the electrical performance of the electron tubes. Cathodes with a homogeneous surface are known up to now only as oxide matrix or dispenser cathodes. Specific operating relationships of electron tubes, particularly transmitting tubes of greater output, forbid the employment of such cathodes.
{ "pile_set_name": "USPTO Backgrounds" }
This invention concerns a elevator car with a special maintenance window. The elevators must be inspected and maintained regularly. For this, the following elements are essentially checked and maintained: The rail mountings, the carrying ropes, the carrying ropes mounting, the grooves of the driving pulleys or of the drive tube of a traction drive, the pulleys, the limit switches, the safety brake cable and its mounting and the guides of the chassis or the car as well as the counterweight. These jobs are usually carried out for most of the elevators while the elevator mechanic stands on the roof of the elevator car. This roof must be built according to specification and be provided with a balustrade. For the inspection and maintenance, the elevator car is moved slowly or in slow steps over the entire track so that the elevator mechanic sees all elements with his eyes and has access to all elements on which he must carry out maintenance activities with his hands, retighten some screws, lubricate rotating parts, verify mechanical tensions, test the function of limit switches etc. As additional maintenance option, it is possible in some elevators to swing down the car roof or an opening in the roof into the car after which a work platform can be swung down from the car roof so that it hangs vertically. The elevator mechanic can then climb on this platform via a ladder from the elevator car or from the storey floor through the open elevator car. In another embodiment, he can reach the car roof from the next higher storey floor and from there climb down to this platform with a ladder. If the elevator mechanic stands on this work platform, he will protrude sufficiently out above from the elevator car to such an extent that he can carry out the necessary jobs in the elevator shaft. In still further embodiments, the car walls are equipped with windows, whose window sashes can be swung open into the car interior or sliding windows are provided so that the access to the elevator shaft is made available on the side of this window. Such a solution arises for example from WO01/79104, JP 10-231074 or EP 1 031 528 B1. There, an access opening is revealed, which is provided on that sidewall of the car, which is facing the conveyor of the elevator so that the hoisting device is accessible for maintenance from the inside of the car through this access opening. However, not all the maintenance jobs can be carried out consistently from the car interior by the solutions proposed there. The drive unit lies above the car in the case of WO01/79104 and also JP 10-231074, the guide rails for the car themselves lie outside the area accessible from the car in the case of EP 1 031 528 B1, namely in such side areas of the car that cannot be opened. The fixing and the condition of these guide rails cannot be therefore checked from the car. Often, even the rope guides and their mountings are so situated that they cannot be checked from the car.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to a system and method for connecting materials that are typically difficult to connect together, and particularly to assembling sections of a bicycle frame that can be disassembled for convenient transport and storage. In typical applications where it is desirable to connect two different materials together, it is often not attempted due to the problems ensuring a good connection. In one example, a bicycle frame may have one or more different pieces that are made of different materials, such as metal parts that need to be connected to carbon fiber parts. Typically, it is necessary to bond the carbon fiber parts to the metal part although the bonding process is not very strong and tends to break. The bonding process is also susceptible to corrosion and requires the builder to have specialized skills and equipment. Thus, the typical bonding process has undesirable drawbacks including a weak connection between the two different parts that is susceptible to breakage. Thus, it is desirable to provide a system for connecting parts of two different materials, such as different parts of a bicycle frame, and it is to this end that the present invention is directed. FIG. 14 shows a conventional bicycle 1 which generally includes a front wheel 2, pedals 4, a rear derailleur 6 for moving a chain 5 over a sprocket cassette 7 attached to a rear wheel 3, and hand brakes 9 attached to handlebars 10. These components are in fixed positions relative to one another and to a triangular bicycle frame that includes a top tube 12, a down tube 13, and a seat tube 16. The seat tube 16, the down tube 13, and the pedal assembly 4 meet at a bottom bracket shell that is not shown in the figure. The “pedal assembly,” as used herein, includes a crank, pedals, and various peripheral components that make the pedals function properly. Also extending from the bottom bracket is a pair of chain stays 15a. The chain stays 15a, of which only one is shown, connect the pedal assembly to the hub of the rear wheel 3 on both sides of the rear wheel 3. A pair of seat stays 150 connect the hub of the rear wheel 3 to the top of the seat tube 16 on both sides of the rear wheel 3. The chain stays 15 and the seat stays 150 connect at the hub of the rear wheel 3 so as to form a V-shape on either side of the bicycle 1. The angled portion of the V-shaped chain stay 15 is attached to an area near the hub of the rear wheel 3 and the two ends connect to the hidden bottom bracket and the seat tube 16, respectively. The seat tube 16 supports the bicycle seat 18 by holding up the seat post 17. A rider uses the handlebars 9 to steer the bicycle in the desired direction. Located near the handlebars 9 are hand brakes 8 and gear shifter 10. The hand brakes 8 are coupled to the brakes by a rear wheel brake cable 112a and a front wheel brake cable 112b. Similarly, the gear shifter 10 shifts gears by activating the rear derailleur 6 and a derailleur 19 to which it is connected by two respective derailleur cables. Only part of the derailleur cables are shown as derailleur cable 113 in order to avoid cluttering the figure. The triangular bicycle frame is typically a one-piece member so that it occupies a large space and is inconvenient to be carried and stored. The one-piece frame also increases the space required to store the frame and incurs airline cargo charges. A bicycle frame that is easy to store and transport while being at least as sturdy and reliable as the one-piece bicycle is necessary.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention Embodiments disclosed herein relate to methods and systems for analysis of image data generated at multiple reference points, and particularly to image and sequence data generated during DNA sequencing. Description of the Related Art The analysis of image data presents a number of challenges, especially with respect to comparing images of an item or structure that are captured from different points of reference. One field that exemplifies many of these challenges is that of nucleic acid sequence analysis. The detection of specific nucleic acid sequences present in a biological sample has a wide variety of applications, such as identifying and classifying microorganisms, diagnosing infectious diseases, detecting and characterizing genetic abnormalities, identifying genetic changes associated with cancer, studying genetic susceptibility to disease, and measuring response to various types of treatment. A valuable technique for detecting specific nucleic acid sequences in a biological sample is nucleic acid sequencing. Nucleic acid sequencing methodology has evolved significantly from the chemical degradation methods used by Maxam and Gilbert and the strand elongation methods used by Sanger. Today, there are a number of different processes being employed to elucidate nucleic acid sequence. A particularly popular sequencing process is sequencing-by-synthesis. One reason for its popularity is that this technique can be easily applied to massively parallel sequencing projects. For example, using an automated platform, it is possible to carry out hundreds of thousands of sequencing reactions simultaneously. Sequencing-by-synthesis differs from the classic dideoxy sequencing approach in that, instead of generating a large number of sequences and then characterizing them at a later step, real time monitoring of the incorporation of each base into a growing chain is employed. Although this approach might be viewed as slow in the context of an individual sequencing reaction, it can be used for generating large amounts of sequence information in each sequencing cycle when hundreds of thousands to millions of reactions are performed in parallel. Despite these advantages, the vast size and quantity of sequence information obtained through such methods can limit the speed and quality of analysis of sequence data. Thus, there is a need for methods and systems which improve the speed and accuracy of analysis of nucleic acid sequencing data.
{ "pile_set_name": "USPTO Backgrounds" }
The microwave spectrum is generally defined for a range of frequencies between 0.3 and 1000 Gigahertz (GHz). For a frequency of use between 1 and 100 GHz, the term hyperfrequency is generally used. The hyperfrequency range is divided into several bands according to the various technical applications associated with them. These bands include the Q band, the frequency range of which is situated approximately between 30 and 50 GHz, and the V band, the frequency range of which is situated approximately between 50 and 75 GHz. Hyperfrequency monolithic integrated circuits, also known by the name of MMIC (Monolithic Microwave Integrated Circuits) chip, are components used in electrical circuits having an application in the microwave field. These components are for example used in communication and navigation systems. Each MMIC chip can include several circuits such as amplifier circuits, mixers or oscillators for example. An MMIC chip includes contact pads on its upper surface, around the edge, in order to provide the interface between hyperfrequency signals and low-frequency signals. MMIC chips are generally mounted on a support surface, also called substrate, including metallization to ensure interconnection with the MMIC chip. The interconnection between the contact pads on the surface of the MMIC chip and the interconnection metallization of the substrate is generally achieved by wiring or microstrip. At hyperfrequency, the connection between MMIC chips is generally made by means of wires or strips of gold. It should be noted that the invention does not apply to MMIC chips only, but more generally to active and/or passive components (for example planar filters, various transitions) present in microelectronic hybrid technology. The waveguide is a hollow mechanical part serving to propagate electromagnetic waves (the hyperfrequency signal) with a minimum of distortion, unlike planar devices and worse still, with a wired device that in this case has a considerable discontinuity, severely degrading the propagation of the wave. The main defect of these waveguides is their compatibility with components (active or passive) which are generally made using planar technology. In hyperfrequency applications, a high interconnection density is required to allow the transmission of the requisite information. Moreover, the chips must be interconnected by means of connections that preserve the quality of the transmission line, i.e. which ensure the maintenance of the impedances of the transmission line and avoid any discontinuity causing undesirable reflections, and which are of relatively short length to minimize signal distortion. The rise in frequency, notably in the Q and V bands, requires a considerable effort to be expended on the interconnection technology in order to limit adjustments that are generally expensive and difficult to implement. Moreover, the integration of hyperfrequency functions requires the use of heterogeneous technologies, i.e. components of different heights are integrated, which leads to consequent step heights which are unfortunately often crippling to the rise in frequency. More precisely, conventional interconnections between planar components can generate considerable electrical paths (for example up to 1 millimeter) with respect to the wavelength only in cases where the frequencies are lower. Several interconnection technologies are known. Mention may notably be made of wired technology, which allows the connection of two components by wiring, but which has the consequence of severely limiting the bandwidth. It is also possible to use so-called “interposer” technology, but the interconnection this offers is not very reliable. Mention may be made of “flip chip” technology, which consists in flipping the chip in such a way that the contact surfaces are face to face. Flip chip technology poses technical and industrial problems that are hard to solve. Notably, control of the electromagnetic environment is problematic and spatial control and heat management are difficult. Moreover, flip chip technology does not allow for compensation for large step heights between components (typically greater than 100 μm).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of Use This invention relates generally to apparatus for making double-conductor wire leads having a two-pronged plug at one end and having untwisted or twisted bare or tinned wires with or without terminals at the other end. In particular, the apparatus includes an improved wire shaping mechanism for shaping and positioning the wires at the plug end of the lead prior to plug attachment. 2. Description of the Prior Art Prefabricated wire leads having a plug at one end and bare or terminated wires at the other end are used as power supply cords for electrical appliances and the plug has prongs adapted to fit wall-mounted electrical outlets. European electrical outlets differ from United States outlets and require a plug which typically comprises a pair of spaced apart cylindrical electrically conductive prongs each having a hollow crimpable portion for receiving a bare wire end which is crimped therein. In U.S. Pat. No. 3,999,289, which discloses prior art apparatus and method for making a wire lead having a European-type plug at one end thereof, cable lengths are prepared to receive a plug at one end by a process wherein cable lengths are moved stepwise through stations, in which each cable length is turned and orientated as to its wire leads therein; in which the lead ends are stripped, tin-plated and shaped in sequential stations, followed by connecting preassembled plug prongs to the lead ends. The plug body is then extruded around the prong-lead connections. The lead orientation is electro-optically servo-controlled and the prong-to-lead connection is made by a funnel for threading the leads into the hollow prongs followed by squeezing the prongs to fasten the leads thereto. U.S. Pat. No. 3,999,289 teaches processing one end of a short cable of circular cross section and, therefore, provides means to initially turn the cable so that the two leads therein have the proper orientation for further processing. U.S. Pat. No. 3,999,289 also teaches tinning the bare tips of the wire leads to strengthen them prior to shaping and prior to insertion and crimping them in the prongs of the plug.
{ "pile_set_name": "USPTO Backgrounds" }
Information retrieved from electronic databases, e.g., information displayed on the Internet, such as by way of the World Wide Web, may be organized and presented according to hierarchically arranged categories. For example, many web sites include “site maps” that display an organization of web pages in a web site according to a hierarchical index. Further, numerous known web sites allow users to search for items, such as items in a directory, and present search results in a hierarchy. Displaying information in a flat list, with each element having a descriptive name, is one approach for displaying information. Such a layout generally takes up a minimum of vertical space on a graphical user interface such as a computer screen. However, this method has the disadvantage of being generally difficult to scan for relevant information due to the length of the descriptive names, which can be long or otherwise cumbersome. Additionally, a user will likely not be able to understand how various pieces of information are related in a simple list format, e.g., how each piece of information is classified in relation to the other pieces of information that may be displayed. Lists therefore generally require users to read through the entirety of the list, including the entire length of each descriptive name for each element. This may be particularly cumbersome for larger lists of information covering broad categories of interest. An alternative to a “flat” list is displaying information in a hierarchy. In a hierarchical layout, information may generally be presented in a structure which shows relationships between various pieces of information by grouping elements together in categories and subcategories. Displaying a hierarchy of information is generally useful for helping a user quickly understand how information is organized and which categories and subcategories of information in the hierarchy might be most beneficial and relevant. A user can generally scan higher-level categories in a hierarchically arranged list to decide which higher-level categories are most relevant, without having to look at every subcategory displayed in the hierarchy. However, displaying information hierarchically generally consumes a large amount of vertical space on any graphical user interface through which the searcher may be viewing a hierarchically arranged set of information, because a hierarchical arrangement generally requires a separate line of text for each category and subcategory presented. Information displayed in a hierarchy of information may therefore require excessive scrolling or additional sorting by a user, who may find it burdensome to view a lengthy and detailed hierarchy of information, and further may find it difficult to determine which information in the hierarchy is of greatest interest. Such difficulties are particularly acute where a large quantity of search results is presented in a hierarchy. Accordingly, there is a need for the ability to provide for displaying information in a hierarchical arrangement that presents categories and sub-categories of information most likely to be of interest to a user, thereby facilitating the user obtaining information that is, or is likely to be, of the greatest interest. Further, it would be beneficial to present information to users in a hierarchical arrangement while consuming as little space as possible on a display so as to minimize the need for scrolling or additional sorting by users.
{ "pile_set_name": "USPTO Backgrounds" }
Modern wound dressings are designed to promote healing by providing a moist, warm or heated, wound environment. Warming a wound promotes healing by increasing blood flow to the area. Moisture in a wound is also very important to the healing process because it helps cells grow and divide, and reduces scarring. Available modern dressings may be dampened or moistened and then heated, for example, by microwave heating. Concurrent with the development of these dressings is the concern regarding a potential for microbial colonization of the wound. Antibiotics are available to combat infections but many people are allergic to certain antibiotics and antibiotic usage can cause gastrointestinal upset or other side effects. Further, excessive use of antibiotics has been blamed for the occurrence of treatment-resistant bacteria. Moist heat therapy applied by an area compress may also be beneficial to the treatment of arthritic or sprained joints, strained muscles, back pain, rheumatoid arthritis, or in any treatment where heat might be applied through or to the skin to promote circulation therein and thereunder. In such applications where no wound exudates contaminate therapy materials, reusability of the compress is an attractive cost-efficient design feature. Bacterial presence can cause dermatological problems to the treated area and further, a growing microbial colony in a reusable compress can cause the spread of infection through cross contamination when handled. This may represent a particular threat to therapy patients, many of whom have persistent or slow-healing injuries or compromised immunity systems. A growing strategy for reducing the potential for infection or bacterial growth in a wound or on skin tissue under moist heat therapy is the incorporation of noble metal antimicrobials into the therapeutic wound dressing. The most prevalent such metal in use is silver due to its relative lack of cytotoxic effects and wide spectrum of antimicrobial effectiveness. Medical materials and instruments are available which provide the emission of silver metal or silver compounds to provide an antimicrobial effect. Such available dressings, once moistened, release silver into the surrounding liquid. The dressing thereby becomes an effective antimicrobial barrier. The silver, however, is consumed and lost in the process. Such products are inherently not conveniently reusable. In both moist heat therapy wound dressings and compresses, bacterial and fungal growth can also cause unpleasant odor and unsightly discoloration which may adversely affect the morale of the patient. Thus there is a need in general for dressings and compresses designed to maintain sterility therein and to also provide microbial free moisture.
{ "pile_set_name": "USPTO Backgrounds" }
A paint system is applied to a commercial aircraft prior to customer delivery. The paint system may include a decorative coating, which enhances the aircraft's appearance, provides operator markings, etc. The paint system may also include a protective coating in certain areas to prevent corrosion. On composite aircraft, the protective coating also prevents ultra violet radiation, erosion, and moisture ingress. The paint system may include a primer, which is applied to an exterior surface of the fuselage. In addition to covering composite skin, the primer covers fasteners. One or more coats of paint is applied over the primer. “Halos” sometimes appear around countersunk fasteners. The halos appear as visible circular or semi-circular depressions in the paint around the fasteners. These halos are undesirable, as they detract from the aircraft's appearance.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to diabetes mellitus, and in particular to compositions and methods for the diagnosis, prognosis and treatment of type 2 diabetes. Type 2 diabetes mellitus, or xe2x80x9clate onsetxe2x80x9d diabetes, is a common, degenerative disease affecting 5 to 10 percent of the population in developed countries. The propensity for developing type 2 diabetes mellitus (xe2x80x9ctype 2 DMxe2x80x9d) is reportedly maternally inherited, suggesting a mitochondrial genetic involvement. (Alcolado, J. C. and Alcolado, R., Br. Med. J. 302:1178-1180 (1991); Reny, S. L., International J. Epidem. 23:886-890 (1994)). Diabetes is a heterogeneous disorder with a strong genetic component; monozygotic twins are highly concordant and there is a high incidence of the disease among first degree relatives of affected individuals. Current pharmacological therapies for type 2 DM include injected insulin, and oral agents that are designed to lower blood glucose levels. Currently available oral agents include (i) the sulfonylureas, which act by enhancing the sensitivity of the pancreatic beta cell to glucose, thereby increasing insulin secretion in response to a given glucose load; (ii) the biguanides, which improve glucose disposal rates and inhibit hepatic glucose output; (iii) the thiazolidinediones, which improve peripheral insulin sensitivity through interaction with nuclear peroxisome proliferator-activated receptors (PPAR, see, e.g., Spiegelman, 1998 Diabetes 47:507-514; Schoonjans et al., 1997 Curr. Opin. Lipidol. 8:159-166; Staels et al., 1997 Biochimie 79:95-99), (iv) repaglinide, which enhances insulin secretion through interaction with ATP-dependent potassium channels; and (v) acarbose, which decreases intestinal absorption of carbohydrates. At the cellular level, the degenerative phenotype that may be characteristic of late onset diabetes mellitus includes indicators of altered mitochondrial respiratory function, for example impaired insulin secretion, decreased ATP synthesis and increased levels of reactive oxygen species. Studies have shown that type 2 DM may be preceded by or associated with certain related disorders. For example, it is estimated that forty million individuals in the U.S. suffer from impaired glucose tolerance (IGT). Following a glucose load, ciruculating glucose concentrations in IGT patients rise to higher levels, and return to baseline levels more slowly, than in unaffected individuals. A small percentage of IGT individuals (5-10%) progress to non-insulin dependent diabetes (NIDDM) each year. This form of diabetes mellitus, type 2 DM, is associated with decreased release of insulin by pancreatic beta cells and a decreased end-organ response to insulin. Other symptoms of diabetes mellitus and conditions that precede or are associated with diabetes mellitus include obesity, vascular pathologies, peripheral and sensory neuropathies and blindness. It is clear that none of the current pharmacological therapies corrects the underlying biochemical defect in type 2 DM. Neither do any of these currently available treatments improve all of the physiological abnormalities in type 2 DM such as impaired insulin secretion, insulin resistance and/or excessive hepatic glucose output. In addition, treatment failures are common with these agents, such that multi-drug therapy is frequently necessary. Due to the strong genetic component of diabetes mellitus, the nuclear genome has been the main focus of the search for causative genetic mutations. However, despite intense effort, nuclear genes that segregate with diabetes mellitus are rare and include, for example, mutations in the insulin gene, the insulin receptor gene and the glucokinase gene. By comparison, although a number of altered mitochondrial genes that segregate with diabetes mellitus have been reported (see generally e.g., PCT/US95/04063), relationships amongst mitochondrial and extramitochondrial factors that contribute to cellular respiratory and/or metabolic activities as they pertain to diabetes remain poorly understood. Clearly there is a need for improved diagnostic methods for early detection of a risk for developing type 2 DM, and for better therapeutics that are targeted to correct biochemical and/or metabolic defects responsible for this disease, regardless of whether such a defect underlying altered mitochondrial function may have mitochondrial or extramitochondrial origins. The present invention provides compositions and methods related to indicators of altered mitochondrial function that are useful for determining the risk and degree of progression of type 2 DM and for treating this disease, and offers other related advantages. In one aspect, the present invention provides a method for identifying a risk for Type 2 diabetes in a human subject, comprising comparing the level of at least one indicator of altered mitochondrial function in a biological sample from the subject with a control sample; and therefrom identifying the risk for Type 2 diabetes. It is another aspect of the invention to provide a method for determining a degree of disease progression in a human subject having Type 2 diabetes, comprising: comparing the level of at least one indicator of altered mitochondrial function in each of first and second biological samples, the first and second biological samples being obtained from the subject at a first time point and a second time point, respectively; and therefrom determining the degree of progression of Type 2 diabetes. In yet another aspect the invention provides a method of identifying an agent suitable for treating a human subject suspected of being at risk for having type 2 diabetes, comprising: comparing the level of at least one indicator of altered mitochondrial function in one or more biological samples obtained from the subject in the presence and absence of a candidate agent; and therefrom determining the suitability of the candidate agent for treating type 2 diabetes. In still another aspect of the invention, there is provided a method of determining the suitability of an agent for treating a subject suspected of being at risk for having type 2 diabetes, comprising: comparing the level of at least one indicator of altered mitochondrial function in a biological sample obtained from the subject before and after administering to the subject a candidate agent; and therefrom determining the suitability of the candidate agent for treating type 2 diabetes. Turning to another aspect, the invention provides a method of determining the suitability of an agent for treating a human subject suspected of being at risk for having type 2 diabetes, comprising comparing the level of at least one indicator of altered mitochondrial function in at least one biological sample obtained from a plurality of subjects before and after administering to each of the subjects a candidate agent; and therefrom determining the suitability of the candidate agent for treating type 2 diabetes. It is another aspect of the present invention to provide a method of stratifying human subjects according to type 2 diabetes subtypes, comprising: comparing the level of at least one indicator of altered mitochondrial function in at least one biological sample obtained from each of a plurality of subjects; and therefrom stratifying the subjects according to type 2 diabetes subtype. In yet another aspect the invention provides a method of stratifying human subjects according to type 2 diabetes subtypes, comprising: comparing the level of at least one indicator of altered mitochondrial function in a biological sample obtained from each of a plurality of subjects before and after administering to each of the subjects a candidate agent; and therefrom stratifying the subjects according to type 2 diabetes subtype. According to certain embodiments within any of the above aspects of the invention, the indicator of altered mitochondrial function is a mitochondrial electron transport chain enzyme. In certain embodiments the step of comparing comprises measuring electron transport chain enzyme catalytic activity. In certain embodiments the step of measuring comprises determining enzyme activity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining enzyme activity per unit of protein in the sample. In certain embodiments the step of comparing comprises measuring electron transport chain enzyme quantity. In certain embodiments the step of measuring comprises determining enzyme quantity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining enzyme quantity per unit of protein in the sample. In certain embodiments the mitochondrial electron transport chain enzyme comprises at least one subunit of mitochondrial complex I. In certain embodiments the mitochondrial electron transport chain enzyme comprises at least one subunit of mitochondrial complex II. In certain embodiments the mitochondrial electron transport chain enzyme comprises at least one subunit of mitochondrial complex III. In certain embodiments the mitochondrial electron transport chain enzyme comprises at least one subunit of mitochondrial complex IV. In certain embodiments the at least one subunit of mitochondrial complex IV is COX1, COX2 or COX4. In certain embodiments the mitochondrial electron transport chain enzyme comprises at least one subunit of mitochondrial complex V. In certain embodiments the at least one subunit of a mitochondrial complex V is ATP synthase subunit 8 or ATP synthase subunit 6. According to certain other embodiments of the above aspects of the invention, the indicator of altered mitochondrial function is a mitochondrial matrix component. In certain embodiments the indicator of altered mitochondrial function is a mitochondrial membrane component. In certain embodiments the mitochondrial membrane component is a mitochondrial inner membrane component. In certain embodiments the mitochondrial membrane component is adenine nucleotide translocator (ANT), voltage dependent anion channel (VDAC), malate-aspartate shuttle, calcium uniporter, UCP-1, UCP-2, UCP-3, a hexokinase, a peripheral benzodiazepine receptor, a mitochondrial intermembrane creatine kinase, cyclophilin D, a Bcl-2 gene family encoded polypeptide, tricarboxylate carrier or dicarboxylate carrier. In certain embodiments the indicator of altered mitochondrial function is a Krebs cycle enzyme. In certain embodiments the step of comparing comprises measuring Krebs cycle enzyme catalytic activity. In certain embodiments the step of measuring comprises determining enzyme activity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining enzyme activity per unit of protein in the sample. In certain embodiments the step of comparing comprises measuring Krebs cycle enzyme quantity. In certain embodiments the step of measuring comprises determining enzyme quantity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining enzyme quantity per unit of protein in the sample. In certain embodiments the Krebs cycle enzyme is citrate synthase. In certain embodiments the Krebs cycle enzyme is aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-coenzyme A synthetase, succinate dehydrogenase, fumarase or malate dehydrogenase. In certain other embodiments of the above aspects of the invention, the indicator of altered mitochondrial function is mitochondrial mass per cell in the sample. In certain embodiments mitochondrial mass is determined using a mitochondria selective agent. In certain embodiments mitochondrial mass is determined using nonylacridine orange. In certain embodiments mitochondrial mass is determined by morphometric analysis. In certain embodiments the indicator of altered mitochondrial function is the number of mitochondria per cell in the sample. In certain embodiments the step of comparing comprises measuring a mitochondrion selective reagent. In certain embodiments the mitochondrion selective reagent is fluorescent. According to certain other embodiments of the above aspects of the invention, the indicator of altered mitochondrial function is a co-predictor of altered mitochondrial function comprising the amount of mitochondrial DNA per cell in the sample and the step of comparing further comprises comparing at least one additional indicator of altered mitochondrial function. In certain embodiments the step of comparing comprises measuring mitochondrial DNA by contacting a biological sample containing mitochondrial DNA with an oligonucleotide primer having a nucleotide sequence that is complementary to a sequence present in the mitochondrial DNA, under conditions and for a time sufficient to allow hybridization of the primer to the mitochondrial DNA; and detecting hybridization of the primer to the mitochondrial DNA, and therefrom quantifying the mitochondrial DNA. In certain embodiments the step of detecting comprises a technique that may be polymerase chain reaction, oligonucleotide primer extension assay, ligase chain reaction, or restriction fragment length polymorphism analysis. In certain embodiments the step of comparing comprises measuring mitochondrial DNA by contacting a sample containing amplified mitochondrial DNA with an oligonucleotide primer having a nucleotide sequence that is complementary to a sequence present in the amplified mitochondrial DNA, under conditions and for a time sufficient to allow hybridization of the primer to the mitochondrial DNA; and detecting hybridization of the primer to the mitochondrial DNA, and therefrom quantifying the mitochondrial DNA. In certain embodiments the step of detecting comprises a technique that may be polymerase chain reaction, oligonucleotide primer extension assay, ligase chain reaction, or restriction fragment length polymorphism analysis. In certain embodiments the mitochondrial DNA is amplified using a technique that may be polymerase chain reaction, transcriptional amplification systems or self-sustained sequence replication. In certain embodiments the step of comparing comprises measuring mitochondrial DNA by contacting a biological sample containing mitochondrial DNA with an oligonucleotide primer having a nucleotide sequence that is complementary to a sequence present in the mitochondrial DNA, under conditions and for a time sufficient to allow hybridization of the primer to the mitochondrial DNA; and detecting hybridization and extension of the primer to the mitochondrial DNA to produce a product, and therefrom quantifying the mitochondrial DNA. In certain embodiments the step of comparing comprises measuring mitochondrial DNA by contacting a sample containing amplified mitochondrial DNA with an oligonucleotide primer having a nucleotide sequence that is complementary to a sequence present in the amplified mitochondrial DNA, under conditions and for a time sufficient to allow hybridization of the primer to the mitochondrial DNA; and detecting hybridization and extension of the primer to the mitochondrial DNA to produce a product, and therefrom quantifying the mitochondrial DNA. In certain embodiments the mitochondrial DNA is amplified using a technique that may be polymerase chain reaction, transcriptional amplification systems or self-sustained sequence replication. In certain embodiments the amount of mitochondrial DNA in the sample is determined using an oligonucleotide primer extension assay. In certain embodiments of any of the above aspects of the invention, the indicator of altered mitochondrial function is the amount of ATP per cell in the sample. In certain embodiments the step of comparing comprises measuring the amount of ATP per mitochondrion in the sample. In certain embodiments the step of comparing comprises measuring the amount of ATP per unit protein in the sample. In certain embodiments the step of comparing comprises measuring the amount of ATP per unit mitochondrial mass in the sample. In certain embodiments the step of comparing comprises measuring the amount of ATP per unit mitochondrial protein in the sample. In certain embodiments the indicator of altered mitochondrial function is the rate of ATP synthesis in the sample. In certain embodiments the indicator of altered mitochondrial function is an ATP biosynthesis factor. In certain embodiments the step of comparing comprises measuring ATP biosynthesis factor catalytic activity. In certain embodiments the step of measuring comprises determining ATP biosynthesis factor activity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining ATP biosynthesis factor activity per unit mitochondrial mass in the sample. In certain embodiments the step of measuring comprises determining ATP biosynthesis factor activity per unit of protein in the sample. In certain embodiments the step of comparing comprises measuring ATP biosynthesis factor quantity. In certain embodiments the step of measuring comprises determining ATP biosynthesis factor quantity per mitochondrion in the sample. In certain embodiments the step of measuring comprises determining ATP biosynthesis factor quantity per unit of protein in the sample. In certain embodiments of any of the above aspects of the present invention, the indicator of altered mitochondrial function is free radical production. In certain embodiments the indicator of altered mitochondrial function is reactive oxygen species, protein nitrosylation, protein carbonyl modification, DNA oxidation, mtDNA oxidation, protein oxidation, protein carbonyl modification, malondialdehyde adducts of proteins, a glycoxidation product, a lipoxidation product, 8xe2x80x2-OH-guanosine adducts or TBARS. In certain embodiments the indicator of altered mitochondrial function is reactive oxygen species. In certain embodiments the indicator of altered mitochondrial function is protein nitrosylation. In certain embodiments the indicator of altered mitochondrial function is DNA oxidation. In certain embodiments the indicator of altered mitochondrial function is mitochondrial DNA oxidation. In certain embodiments the indicator of altered mitochondrial function is protein carbonyl modification. In yet other certain embodiments of any of the above aspects of the instant invention, the indicator of altered mitochondrial function is a cellular response to elevated intracellular calcium. In certain other embodiments the indicator of altered mitochondrial function is a cellular response to at least one apoptogen. In certain other embodiments the at least one indicator of altered mitochondrial function is a co-indicator of altered mitochondrial function and the step of comparing further comprises comparing at least one additional non-enzyme indicator of altered mitochondrial function. In certain embodiments the at least one additional non-enzyme indicator of altered mitochondrial function is a level of mitochondrial protein in the sample. In certain embodiments the co-indicator of altered mitochondrial function is citrate synthase, hexokinase II, cytochrome c oxidase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, glycogen phosphorylase, creatine kinase, NADH dehydrogenase, glycerol 3-phosphate dehydrogenase, triose phosphate dehydrogenase or malate dehydrogenase. Turning to another aspect, the invention provides a method of treating a human patient having type 2 diabetes mellitus, comprising administering to the patient an agent that substantially restores to a normal level at least one indicator of altered mitochondrial function. In certain embodiments the indicator of altered mitochondrial function is a mitochondrial electron transport chain enzyme, a Krebs cycle enzyme, a mitochondrial matrix component, a mitochondrial membrane component or an ATP biosynthesis factor. In certain embodiments the indicator of altered mitochondrial function is mitochondrial number per cell or mitochondrial mass per cell. In certain embodiments the indicator of altered mitochondrial function is an ATP biosynthesis factor. In certain embodiments the indicator of altered mitochondrial function is the amount of ATP per mitochondrion, the amount of ATP per unit mitochondrial mass, the amount of ATP per unit protein or the amount of ATP per unit mitochondrial protein. In certain embodiments the indicator of altered mitochondrial function comprises free radical production. In certain embodiments the indicator of altered mitochondrial function comprises a cellular response to elevated intracellular calcium. In certain embodiments the at least one indicator of altered mitochondrial function is a co-indicator of altered mitochondrial function. In certain embodiments the co-indicator of altered mitochondrial function is citrate synthase, hexokinase II, cytochrome c oxidase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, glycogen phosphorylase, creatine kinase, NADH dehydrogenase, glycerol 3-phosphate dehydrogenase, triose phosphate dehydrogenase or malate dehydrogenase. In certain embodiments the at least one indicator of altered mitochondrial function is a co-predictor of altered mitochondrial function. In certain embodiments the co-predictor of altered mitochondrial function is an amount of mitochondrial DNA per cell in the patient. These and other aspects of the present invention will become evident upon reference to the following detailed description and attached drawings. In addition, various references are set forth herein which describe in more detail certain aspects of this invention, and are therefore incorporated by reference in their entireties.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field Of The Invention Reclamation of solid refuse is playing an increasingly important role in modern waste disposal systems. Beyond the obvious ecological advantages of salvaging recyclable materials, the monetary value of certain commonly discarded materials makes solid waste reclamation economically feasible. However, such a reclamation system requires hand or other sorting of the desired valuable materials, such as aluminum, ferrous metals, and the like, from the undesired materials. The sorting operation is often located at the site of a landfill. Typically, solid waste is dumped onto a conveyor which transports the refuse through a sorting area. The desired materials are removed from the conveyor and placed in appropriate storage areas while the undesired materials remain on the conveyor and are delivered to the landfill pit. A major problem encountered in these sorting operations is that much of the refuse to be sorted is packaged in standard plastic or paper refuse carrier bags. The openings of such carrier bags are tightly closed, usually by a wire or plastic tie member or simply by knotting the open end. In any event, the carrier bags are designed to resist any attempt to tear or otherwise open them to expose the contents therein. Such carrier bags, therefore, interpose a considerable time and energy-consuming delay in a reclamation operation which relies upon the rapid and efficient sorting of materials for economic feasibility. Accordingly, it would be desirable to provide a simple and efficient means for opening carrier bags containing refuse to expose the contents therein. 2. Description of The Prior Art The common method of opening carrier bags is simply to cut the bags open with a knife blade of some sort. In some instances, a person is provided on the conveyor line to cut open the bags and expose the refuse therein before it reached the sorting area. However, the requirement of an additional person in the reclamation system decreases the efficiency of the operation. In other instances, a machine is provided with cutting blades to chop open the carrier bags. Such cutting machines suffer from frequent breakdowns caused by the striking of the cutting blade against unyielding solid objects within the carrier bag. Trommels and shredders have also been utilized in the past to tear open carrier bags. However, such devices destroy the original shape of the articles of refuse contained in the carrier bags, making sorting of the articles quite difficult. U.S. Pat. No. 3,074,534 to Thiele discloses a material handling apparatus for distributing livestock feed to a plurality of spaced feeding bins. The apparatus includes a feed receiving hopper, a cylindrical auger tube extending outwardly from the hopper above the bins and having discharge openings in the lower side thereof above each bin, and a conveying auger extending from the hoppers through the tube. Rotary driving means rotate the auger to displace material from the hopper through the auger tube to each of the discharge openings. U.S. Pat. No. 3,176,832 to Wilkes discloses a bulk feeder having an elongated auger tube assembly with a continuous slot extending from one end to the other end with a lower lip over which material may be discharged. An auger flighting is provided within the tube assembly. Track structures extend around the tube assembly and outwardly thereof. Each of the track structures has a continuous outer track spaced from the tube assembly and radial flange extending inwardly from the track and fixed to the surface of the tube assembly. The radial flange has a radially outward recess formed across the expanse of the slot. U.S. Pat. No. 3,232,419 to Rasmussen discloses a screw conveyor including a casing having an inlet open to a region at one pressure and an outlet open to a region at a different pressure. A shaft extends through the casing from the inlet to the outlet. A first screw impeller on the shaft advances material through the casing from the inlet towards the outlet. Means are provided for defining a chamber above and open to the casing between the inlet and the outlet. A second screw impeller on the shaft of a hand opposite to that of the first impeller is provided to backup the material to form a pile of material in the chamber thereby sealing the casing at the upstream side of the chamber. The second screw impeller has an inclined surface down which the material slides into the casing near the downstream side of the chamber. U.S. Pat. No. 3,312,329 to Hokana discloses a feed processing assembly including a gravity feed tank having a least one separator arranged longitudinally of the gravity feed tank to divide it into a plurality of elongated compartments. Each of the compartments has an inclined bottom terminating in a gate means. The gate means leads to a receiving area for dispensing the feed. An enclosed screw conveyor is positioned substantially longitudinally and centrally of the gravity feed tank. One end of the conveyor extends beyond the gravity feed tank to the receiving area. The conveyor is open at one end to collect and remove material from the area to a processing mill. U.S. Pat. No. 4,310,089 to Bondeson et al. discloses a conveyor for transporting bags of refuse including a feed tube in which bags of refuse are introduced and transported from one end to the other and a feed screw in the tube for driving the bags of refuse through the tube. The feed screw is constructed as a helix forming successive spaced flanges. The pitch of the helix is such that the space between successive flanges will accommodate a bag of refuse of predetermined maximum overall size. The feed screw is eccentrically journalled in the feed tube and is in tangential contact at the bottom thereof.
{ "pile_set_name": "USPTO Backgrounds" }
A Hybrid Fiber-Coaxial (HFC) network is a broadband network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators. In a hybrid fiber-coaxial cable network, television channels are sent from a cable system's distribution facility to local communities through optical fiber trunk lines. At the local community, a box translates the signal from a light beam to electrical signal, and sends it over cable lines for distribution to subscriber residences. The optical fiber trunk lines provide adequate bandwidth to allow future expansion and new bandwidth-intensive services.
{ "pile_set_name": "USPTO Backgrounds" }
Mobile computing devices have been developed to increase the functionality that is made available to users in a mobile setting. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on. Some mobile computing devices may incorporate multiple antennas to support various wireless subsystems and communications. The multiple antennas may include for example one or more Wi-Fi, Bluetooth, global navigation satellite system (GNSS), near field communication (NFC) and/or cellular antennas. Arranging antennas within a small form factor device, such as a tablet presents a significant challenge. This problem may be compounded as the number of antennas increases. To avoid interference between different antennas, traditional devices may separate antennas by utilizing multiple edges of the device for antenna placements. In order to provide acceptable antenna performance, though, the materials and other features (metal components/cases, connectors, buttons, speakers, etc.) that may be placed along the multiple edges may be limited in this approach, which is a substantial restriction on product design. Moreover, common hand positions used with tablets and other mobile devices may adversely affect antenna performance for antennas placed at or near these hand positions. Thus, traditional placements may be inadequate for some devices and antenna combinations.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to touch sensitive displays. Touch sensitive screens (“touch screens”) are devices that typically mount over a display such as a cathode ray tube. With a touch screen, a user can select from options displayed on the display's viewing surface by touching the surface adjacent to the desired option, or, in some designs, touching the option directly. Common techniques employed in these devices for detecting the location of a touch include mechanical buttons, crossed beams of infrared light, acoustic surface waves, capacitance sensing, and resistive materials. For example, Kasday, U.S. Pat. No. 4,484,179 discloses an optically-based touch screen comprising a flexible clear membrane supported above a glass screen whose edges are fitted with photodiodes. When the membrane is flexed into contact with the screen by a touch, light which previously would have passed through the membrane and glass screen is trapped between the screen surfaces by total internal reflection. This trapped light travels to the edge of the glass screen where it is detected by the photodiodes which produce a corresponding output signal. The touch position is determined by coordinating the position of the CRT raster beam with the timing of the output signals from the several photodiodes. The optically-based touch screen increases the expense of the display, and increases the complexity of the display. Denlinger, U.S. Pat. No. 4,782,328 on the other hand, relies on reflection of ambient light from the actual touch source, such as a finger or pointer, into a pair of photosensors mounted at corners of the touch screen. By measuring the intensity of the reflected light received by each photosensor, a computer calculates the location of the touch source with reference to the screen. The inclusion of the photosensors and associated computer increases the expense of the display, and increases the complexity of the display. May, U.S. Pat. No. 5,105,186, discloses a liquid crystal touch screen that includes an upper glass sheet and a lower glass sheet separated by spacers. Sandwiched between the glass sheets is a thin layer of liquid crystal material. The inner surface of each piece of glass is coated with a transparent, conductive layer of metal oxide. Affixed to the outer surface of the upper glass sheet is an upper polarizer which comprises the display's viewing surface. Affixed to the outer surface of glass sheet is a lower polarizer. Forming the back surface of the liquid crystal display is a transflector adjacent to the lower polarizer. A transflector transmits some of the light striking its surface and reflects some light. Adjacent to transflector is a light detecting array of light dependent resistors whose resistance varies with the intensity of light detected. The resistance increases as the light intensity decreases, such as occurs when a shadow is cast on the viewing surface. The light detecting array detects a change in the light transmitted through the transflector caused by a touching of viewing surface. Similar to touch sensitive structures affixed to the front of the liquid crystal stack, the light sensitive material affixed to the rear of the liquid crystal stack similarly pose potential problems limiting contrast of the display, increasing the expense of the display, and increasing the complexity of the display. Touch screens that have a transparent surface which mounts between the user and the display's viewing surface have several drawbacks. For example, the transparent surface, and other layers between the liquid crystal material and the transparent surface may result in multiple reflections which decreases the display's contrast and produces glare. Moreover, adding an additional touch panel to the display increases the manufacturing expense of the display and increases the complexity of the display. Also, the incorporation of the touch screen reduces the overall manufacturing yield of the display. Accordingly, what is desired is a touch screen that does not significantly decrease the contrast ratio, does not significantly increase the glare, does not significantly increase the expense of the display, and does not significantly increase the complexity of the display. The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
The most dynamic segment of orthopedic and neurosurgical medical practice over the past decade has been spinal devices designed to fuse the spine to treat a broad range of degenerative spinal disorders. Back pain is a significant clinical problem and the annual costs to treat it, both surgical and medical, is estimated to be over $2 billion. Motion preserving devices to treat back and extremity pain have, however, created a treatment alternative to or in combination with fusion for degenerative disk disease.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure is related to battery systems. In the recent years, with shortage of fossil-fuel based energy and adverse environmental effects from the consumption of fossil fuel, both public and private sectors have poured valuable resources into clean technologies. An important aspect of clean technologies is energy storage, or simply battery systems. Over the past, many battery types have been developed and used, with their respective advantages and disadvantages. For its chemical properties, including high charge density, lithium material has been used in various parts of a battery. For example, in a rechargeable lithium-ion battery, lithium ions move from negative electrode to the positive electrode during discharge. In the basic operations of a lithium battery, a conversion material undergoes a conversion reaction with lithium, and the performance of the conversion material is an important aspect of a battery. Unfortunately, conventional battery systems and their manufacturing and processes result in relatively high cost, low energy density batteries that do not meet market demands for many applications. Therefore, it is desirable to have new systems and techniques for batteries.
{ "pile_set_name": "USPTO Backgrounds" }
Electric motors are used in a wide range of industries for converting kinetic energy into electrical energy. Traditional electric generators convert all the kinetic energy received into electric energy for a subsequent use in various applications, regardless of the effective need of electrical energy of these applications and variation thereof through time. Traditional systems comprising electric motors are open loop systems using an input unit of energy to generate an output unit of energy. This generally results in an inefficient use of energy when used in applications having a fluctuation need of energy through time.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a new semiconductor integrated circuit device, and more specifically, relates to a semiconductor integrated circuit device including a shift register. In the semiconductor integrated circuit device, a shift register is one of the most important element. Usually, when a shift register having a plurality of register stages is formed on the semiconductor substrate, said stages are arranged straightly in a numerical order. For example, as shown in FIG. 5, when the first shift register is comprised of 8 stages A1, A2, A3, A4, A5, A6, A7 and A8, such stages are arranged straightly from the 1st stage A1 to the 8th stage A8. Likewise, as to the second shift register, 8 stages B1, B2, B3, B4, B5, B6, B7 and B8 are arranged straightly from the 1st stage B1 to the 8th stage B8. When the first shift register is used as a circular type shift register, input data from the input/output terminal A is supplie to the 1st stage A1 and then transferred to the 2nd stage A2 and then transferred to the 3rd, 4th, 5th, 6th, 7th and 8th stages in sequence along the arrrowed lines shown in FIG. 5. The output data from the 8th stage A8 is fed-back to the 1st stage A1 and the input/output terminal A. Also the second shift register, input data from the input/output terminal B is supplied to the 1st stage B1 and then transferred to the 2nd, 3rd, ..., 7th and 8th stages in sequence, and the output data from the 8th stage B8 is fed-back to the 1st stage B1 and the input/output terminal B. However, the above mentioned arrangement of the stages on the semiconductor substrate causes the following problems. The first problem is that the load capacitance of each data line between the register stages becomes unequal. For example, in FIG. 5, the length of the data line from the 8th stage A8 to the 1st stage A1 is longer than that of other data lines. Consequently, the load capacitance of the former is bigger than the latter. As shown in FIG. 6, each stage is basically composed of two transfer gates Q1, Q2 and two buffers (inverter circuits) I1, I2. Therefore, in a semiconductor device shown in FIG. 5, it is necessary for the load driving capability of the output buffer I2 of the 8th stage A8 to be greater than that of the other stages. For this purpose, the size and circuit constants of the 8th stage have to be larger than that of the other stages. However, it is rather difficult to form a plurality of stages of different sizes on the semiconductor substrate. It is also possible that the size and the circuit constants of the 8th stage are designed so that the 8th stage has enough load driving capability, and the size and the circuit constants of other stages are designed so as to be equal to that of the 8th stage. However, in this case, other problems, such as total size and total power consumption cannot be reduced, etc., are caused. The second problem is that the functional balance among several shift registers cannot be maintained. For example, in FIG. 5, the delay time of the data from the terminal A to the 1st stage A1 of the first stage register is shorter than the delay time of the data from the terminal B to the 1st stage B1 of the second shift register. This problem becomes much more serious when a shift register has a lot of stages or a lot of shift registers are arranged straightly for a long length.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates, in general, to a diffractive light modulator and, more particularly, to an open hole-based diffractive light modulator, which includes a lower micromirror positioned on a silicon substrate and an upper micromirror provided with open holes spaced apart from the silicon substrate, thus allowing the upper and lower micromirrors to form pixels. 2. Description of the Related Art Generally, an optical signal processing technology has advantages in that a great amount of data is quickly processed in a parallel manner unlike a conventional digital information processing technology in which it is impossible to process a great amount of data in real time. Studies have been conducted on the design and production of a binary phase filter, an optical logic gate, a light amplifier, an image processing technique, an optical device, and a light modulator using a spatial light modulation theory. The spatial light modulator is applied to optical memory, optical display device, printer, optical interconnection and hologram fields, and studies have been conducted to develop a display device employing it. The spatial light modulator is embodied by a reflective deformable grating light modulator 10 as shown in FIG. 1. The modulator 10 is disclosed in U.S. Pat. No. 5,311,360 by Bloom et al. The modulator 10 includes a plurality of reflective deformable ribbons 18, which have reflective surface parts, are suspended on an upper part of a silicon substrate 16, and are spaced apart from each other at regular intervals. An insulating layer 11 is deposited on the silicon substrate 16. Subsequently, a sacrificial silicon dioxide film 12 and a low-stress silicon nitride film 14 are deposited. The nitride film 14 is patterned by the ribbons 18, and a portion of the silicon dioxide film 12 is etched, thereby maintaining the ribbons 18 on the oxide spacer layer 12 by a nitride frame 20. In order to modulate light having a single wavelength of λ, the modulator is designed so that thicknesses of the ribbon 18 and oxide spacer 12 are each λ/4. Limited by a vertical distance (d) between a reflective surface 22 of each ribbon 18 and a reflective surface of the substrate 16, a grating amplitude of the modulator 10 is controlled by applying voltage between the ribbon 18 (the reflective surface 22 of the ribbon 18 acting as a first electrode) and the substrate 16 (a conductive layer 24 formed on a lower side of the substrate 16 to act as a second electrode). In an undeformed state of the light modulator with no voltage application, the grating amplitude is λ/2 while a total round-trip path difference between light beams reflected from the ribbon and substrate is λ. Thus, a phase of reflected light is reinforced. Accordingly, in the undeformed state, the modulator 10 acts as a plane mirror when it reflects incident light. In FIG. 2, the reference numeral 20 denotes the incident light reflected by the modulator 10 in the undeformed state. When proper voltage is applied between the ribbon 18 and substrate 16, the electrostatic force enables the ribbon 18 to move downward toward the surface of the substrate 16. At this time, the grating amplitude is changed to λ/4. The total round-trip path difference is a half of a wavelength, and light reflected from the deformed ribbon 18 and light reflected from the substrate 16 are subjected to destructive interference. The modulator diffracts incident light 26 using the interference. In FIG. 3, reference numerals 28 and 30 denote light beams diffracted in +/− diffractive modes (D+1, D−1) in the deformed state, respectively. However, the light modulator by Bloom adopts an electrostatic method to control the position of a micromirror, which is disadvantageous in that operation voltage is relatively high (usually 30 V or so) and the relationship between the applied voltage and displacement is not linear, thus resulting in poor reliability in the control of light. Meanwhile, the light modulators described in the patents of Bloom can be used as devices for displaying images. In this case, a minimum of two adjacent elements may form a single pixel. Of course, three elements may form a single pixel, or four or six elements may form a single pixel. However, the light modulators described in the patents of Bloom have a limitation in achieving miniaturization. That is, the light modulators have a limitation in that the widths of the elements thereof cannot be formed to be below 3 μm and the interval between elements cannot be formed to be below 0.5 μm. Furthermore, a minimum of two elements is required to constitute a diffraction pixel, thus having a limitation in the miniaturization of a device. In order to solve such problems, a light modulator capable of achieving miniaturization by forming a plurality of protrusions on a micromirror layer is disclosed in Korean Pat. No. P2004-29925 entitled “Hybrid light modulator.” In the disclosed hybrid light modulator, a plurality of protrusions is provided on the micromirror layer that diffracts incident light by reflecting the incident light. The protrusions are formed in square pillar (bar) shapes, and are arranged to be spaced apart from each other by a regular interval (e.g., the same as the width of the protrusions) along the longitudinal side of the element passing through a recess. Furthermore, each of the protrusions includes a support the bottom of which is attached to the top surface of the micromirror of the element, and a mirror layer that is formed on the top of the support and adapted to diffract incident light by reflecting the incident light. In this case, the single mirror layer of one of the protrusions and the portion of the micromirror layer of the element positioned between protrusions form a single pixel. However, in order to manufacture the hybrid light modulator having such protrusions, a process of separately forming protrusions on the micromirror layer is required, thus incurring additional costs at the time of manufacturing the hybrid light modulator.
{ "pile_set_name": "USPTO Backgrounds" }
In spite of the advances in health care and particularly perinatology, the preterm delivery of babies continues to be a major public health problem because of its association with infant morbidity and mortality. For example, the results of a multicenter trial spanning several years of experience showed that infants born prematurely, i.e., between 20 and 36 weeks gestation, accounted for 9.6% of births (Copper et al. Amer. J. Obstet. Gynecol. 168: 78, 1993). In that study, 83% of infant deaths occurred in gestations delivering prior to 37 weeks, and 66% involved gestations of less than 29 weeks. Serious neonatal complications also decrease as the period of gestation increases. The incidence of neonatal respiratory distress syndrome decreases markedly after 36 weeks of gestation. Likewise, the incidence of neonatal patent ductus arteriosus and necrotizing enterocolitis decreases markedly after 32 weeks of gestation. According to Creasy, "high grade intraventricular hemorrhage diminishes rapidly after 27 weeks and is virtually absent after 32 weeks" (Creasy, Amer. J. Obstet. Gynecol. 168: 1223, 1993). Thus, extending the length of pregnancy beyond 32 weeks and preferable beyond 36 weeks could reduce the incidence of neonatal morbidity and virtually eliminate major causes of neonatal mortality. According to Creasy, the incidence of preterm delivery in the United States is rising. When preterm delivery is defined as births occurring before 37 weeks of gestation, the incidence has risen from 9.4% in 1981 to 10.7% in 1989, accounting for approximately 425,000 of the 4,000,000 annual births in the United States of America. There are several problems related to the rising incidence of preterm delivery in the United States. One problem is that physicians are unable to accurately predict which pregnancies are at risk. Factors known to be associated with elevated chronic risk of preterm delivery in otherwise asymptomatic women are low maternal socioeconomic status, lack of prenatal care, illicit drug use during pregnancy, previous preterm delivery, assisted reproductive techniques used in the current pregnancy (such as in vitro fertilization or gamete intra-fallopian transfer), smoking, uterine anomalies, and stress. (Morrison, Amer. J. Obstet. Gynecol. 168:538, 1993; Creasy, Amer. J. Obstet. Gynecol. 168:1223, 1993). Unfortunately, the majority of preterm births cannot be related to obvious causes, and even known causes may not necessarily be detectable or correctable. In fact, approximately one half of all preterm births occur in women who are pregnant for the first time and have no known risk factors for preterm delivery. Even when women complain of symptoms frequently associated with acute risk of preterm delivery, it is often difficult to distinguish harmless symptoms from those associated with imminent prematurity. Many symptoms such as uterine contractions, change in vaginal discharge, abdominal discomfort, pelvic heaviness or change in cervical dimensions (effacement and dilatation) may harmlessly occur as normal variants in some pregnancies, while similar symptoms in other pregnancies can be associated with impending preterm delivery. The majority of pregnant women who seek unscheduled emergency obstetrical care have complaints of excessive or painful uterine contractions of the uterus. Another frequent complaint is a tightening or pressure sensation which can indicate Braxton Hicks contractions of the uterus. Thus, physicians are often faced with the diagnostic dilemma of differentiating "true" from "false" labor with clinical information of limited diagnostic value. (Pircon et al., Amer. J. Obstet. Gynecol. 161:775, 1989) Copper et al. attempted to diagnose preterm labor using uterine activity (4 contractions/20 minutes or 8 contractions/60 minutes) coupled "with at least one of the following: ruptured membranes, cervical changes, cervical dilatation .gtoreq.2.0 cm, or cervical length .ltoreq.1.0 cm." Copper reported that this assessment was complicated by the fact that "contractions, regardless of the measure of frequency," normally increase during pregnancy. The presence of advanced cervical dilatation (or effacement) is clinically important for determining risk of delivery (Morrison, Obstet. Gynecol. 76 (Suppl. 1) 55, 1990). Many clinical studies have demonstrated that cervical dilatation of greater than 3 cm is frequently associated with imminent delivery regardless of gestational age. Unfortunately, not all women with symptoms of threatened preterm delivery who ultimately deliver prematurely have advanced cervical dilatation when they present for emergency obstetrical care (Lockwood, N. Engl. J. Med. 325:669, 1991). Moreover, among the many clinical symptoms and signs associated with preterm labor or delivery, cervical dilatation is not necessarily the first clinical change noted. Typically, women with preterm labor who ultimately deliver prematurely seek obstetrical care for non-specific symptoms such as uterine activity, change in vaginal discharge, or abdominal discomfort which frequently precede cervical dilatation. Given the poor predictive power of these clinical signs and symptoms, "clinicians do not have a good discriminator of false versus true labor", resulting in as many as 50% of patients with "false" labor delivering early (Morrison et al., Amer. J. Obstet. Gynecol. 168:538, 1993). In contrast, a more potent method of diagnosing patients at risk for preterm delivery is emerging. The presence of fetal fibronectin in cervical or vaginal secretions has been shown to be an accurate predictor for preterm delivery in women with symptoms suggestive of threatened preterm delivery (Lockwood et al., ibid.). A control group of women with uncomplicated pregnancies who delivered at term rarely had cervicovaginal concentrations of fetal fibronectin greater than 50 ng/ml at weeks 21-37 of gestation. In contrast, approximately 94% of women with preterm rupture of amniotic membranes had significantly elevated fetal fibronectin concentrations. But more importantly, about 50% of women with intact amniotic membranes and preterm uterine contractions had elevated concentrations of fetal fibronectin and more than 80% of these women delivered prematurely. Conversely, greater than 80% of women with intact membranes who did not have detectable cervicovaginal fetal fibronectin delivered at term. Thus, fetal fibronectin was demonstrated to be both a sensitive and specific predictor of preterm delivery. Not surprisingly, the lack of available specific and sensitive indicators of preterm delivery risk among symptomatic women limits the ability of physicians to appropriately treat women judged to be at risk. In addition, there is considerable controversy in the obstetrical community regarding the therapeutic efficacy of available treatment regimens. Of course, assessment of any treatment regimen is complicated by the fact that perhaps as many as half of women diagnosed with preterm labor may not have the disease. Effective and judicious treatment of preterm labor, especially in earlier gestation, is critical to the development of the fetus. As discussed above, births after 32-34 weeks of gestation are associated with lower rates of neonatal mortality and severe neonatal morbidity. Thus, prolongation of pregnancy and subsequent reduction of preterm delivery rates might be expected to lower neonatal morbidity and mortality. Unfortunately, in spite of the fact that obstetricians have identified more women as candidates for preterm labor treatment (known as tocolysis) over the last decade, the incidence of preterm delivery has actually increased over the same time span (Creasy, Amer. J. Obstet. Gynecol. 168:1223, 1993). The fact that the preterm delivery rate has not improved over the past decade is due not only to the inability of physicians to accurately identify patients truly in need of treatment but also to the failure of commonly available tocolytic drugs to impede the progress of labor. Numerous controlled, clinical trials have been conducted to evaluate the clinical merits of various treatment regimens including bedrest, hydration, antibiotics, beta-adrenergic agonists, prostaglandin inhibitors, and calcium antagonists. The cumulative experience of these trials has clearly shown that common strategies for tocolytic intervention do not reproducibly prevent preterm delivery although they may be modestly effective for prolongation of pregnancy. Unfortunately, modest gains do not necessarily translate into improved neonatal outcome. As Creasy has noted, "numerous trials of prophylactic beta-adrenergic tocolytic usage with relatively low doses of medication have also not shown benefit in either singleton or multiple gestation". The role of infection in preterm labor and use of antibiotics has been studied extensively, particularly in the context of premature rupture of the membranes (PROM). For example, a controlled clinical trial of antibiotic treatment with the broad spectrum erythromycin and ampicillin was associated with prolongation of gestation compared to the absence of antibiotics (McGregor and French, Obstet. Gynecol. Clin. North Amer. 19:327-38, 1992). In contrast, a controlled study of prophylactic erythromycin therapy showed no decrease in the incidence of maternal or neonatal infectious morbidity; however, in patients "destined to have chorioamnionitis and oligohydramnios", pregnancy was significantly prolonged (Mercer et al., Amer. J. Obstet. Gynecol. 166:794, 1992). Only four trials evaluating the effect of antibiotics in treatment of women with preterm labor and intact membrances have been conducted. "Three of the four groups report an apparent prolongation of pregnancy with antibiotic therapy without impact on aggregate birth weight or perinatal mortality of the resultant infants" (Kirschbaum, Amer. J. Obstet. Gynecol. 168:1239, 1993). The results of these trials are difficult to interpret due to the use of different antibiotics, different clinical criteria for diagnosis of preterm labor and small numbers. More promising strategies for reducing the incidence of preterm birth and lowering rates of neonatal morbidity and mortality may involve use of combination therapies, i.e., simultaneously using multiple, independent drugs. Kanayama (Nihon Sanka Fujinka Gakkai Zasshi. 44:110-15, 1992) reported a clinical study of women who showed signs of impending premature delivery. None of the patients had PROM, all were between the 24th and 35th weeks of pregnancy, and all had a "tocolysis index of 3-4", which was described as "imminent premature delivery of an intermediate degree." The tocolysis index is a relative index of delivery risk in which various risk factors for preterm delivery including status of amniotic membranes (rupture versus intact membranes), presence or absence of vaginal bleeding, estimation of cervical dilatation, and frequency of uterine contractions are semi-quantitatively assessed and scored, as indicated below. ______________________________________ Tocolysis Index 0 pts 1 pt 2 pts 3 pts ______________________________________ Cervical Dilation 0 cm 1 cm 2 cm 3 cm Vaginal Bleeding none -- spotting bleeding Ruptured Membranes intact -- -- rupture Uterine Activity none irreg. regular -- ______________________________________ The final tocolysis score represents the sum of each factor's "score" and hypothetically correlates to risk for preterm delivery as well as potential for successful tocolytic treatment. A tocolysis score of less than 3 indicates minimal risk for preterm delivery (and high probability of tocolytic success) while increasingly higher scores are associated with greater risk for preterm delivery (and lower probability of successful tocolytic intervention). While the tocolysis index is a modestly accurate method for assessing crude risk, it is neither reproducible between physicians (inter-observer error) nor a consistent predictor among individuals. Kanayama and co-workers evaluated the effect of four therapeutic strategies on preterm delivery rate as well as cervical expression of granulocyte elastase, a putative mediator of the labor process. The four therapeutic regimens evaluated included ritodrine infusion only (Group A), daily urinastatin vaginal suppositories (Group B), combination of ritodrine infusion and vaginal urinastatin suppositories (Group C), and combination of ritodrine infusion, vaginal urinastatin suppositories, and systemic antibiotic therapy (Group D). When patients were treated with urinastatin (groups B, C and D), the elastase in vaginal secretions decreased. The time required for the number of uterine contractions (UC) to decrease to less than 1 per 30 minutes was about an hour for groups A, C and D; whereas this same UC decrease took an average of about 6 hours in group B (urinastatin alone). When UC had been depressed for 4 days, therapy was discontinued. Approximately 60% of the patients in group A experienced a recurrence; whereas, only 11-17% of the other groups experienced recurrent UC. In group A, 25% of women had premature deliveries, compared to no premature deliveries for groups B and D (9 and 8 patients, respectively) and only 1/14 in group C. However, in the above studies, no subjects with PROM or with tocolytic scores over 4 were tested. The authors suggested that "in more advanced cases of imminent premature delivery, further studies will be needed, since it is believed that localized therapies alone are insufficient." Moreover, there was no difference between group C (ritodrine and urinastatin) and group D (ritodrine, urinastatin and antibiotic). Fuzishiro et al. reported that a patient with history of habitual abortion was observed to have a protruding amniotic sac at 20 weeks of gestation. She was treated with vaginal antibiotics and urinastatin, tocolytics and bed rest. Her pregnancy was maintained up to 36 weeks. Japan. J. Obstet. Gynecol. Neonatal. Hematol. 2:107-10, 1992. Urinastatin, whose use is described above, is purified from human urine. It has been reported to suppress IL-1.beta.-induced reduction of proteoglycan synthesis, superoxide generation, and inhibit a variety of serine proteases, such as trypsin, .alpha.-chymotrypsin, plasmin, leukocyte elastase and leukocyte cathepsin G. Because urinastatin inhibits many chemical mediators in inflammation, urinastatin has been evaluated as an anti-inflammatory drug. Hence, urinastatin has been proposed for use in a variety of conditions, such as pancreatitis, septic shock, operative stress, arthritis, thrombosis and preterm delivery. It also has been proposed for use in disseminated intravascular coagulation. Inaba et al., Folia Pharmacol. Japon. 88: 239, 1986. What is needed is an effective method to prolong pregnancy, prevent preterm delivery and reduce rates of neonatal morbidity and mortality in women with clinical signs of preterm labor.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an air-cooled oil-free screw compressor in which lubricating oil is air-cooled. 2. Description of the Prior Art In the past, an air-cooled oil-free screw compressor shown in FIG. 2 has been well known, which comprises a first stage compressor body 12 and a second stage compressor body 13, each of which encases therein a pair of male and female screw rotors 11 meshed with each other, and a gear box 14 which encases therein a gear for transmitting a driving force of a motor not shown to each screw rotor 11 to increase speed. There is further provided a cooling water circulating flowpassage 19 which extends from a cooling jacket 15 provided within the compressor body 12 to a cooling jacket 16 provided within the compressor body 13 and returning to the cooling jacket 15 via a water heat exchanger 17 for cooling cooling water and a pump 18. The compressor bodies 12 and 13 are cooled through the cooling jackets 15 and 16. There is still further provided a lubricating oil circulating flowpassage 25 which extends from an oil tank 20 via an oil pump 21, an air heat exchanger 22 for cooling lubricating oil and an oil filter 23 to lubricating oil supplied parts such as the gear box 14, a bearing and a shaft seal part not shown and returning to the oil tank 20, cooled lubricating oil being supplied to said lubricating oil supplied parts. In the aforementioned conventional apparatus, the compressor bodies 12 and 13 are cooled by cooling water. On the other hand, there are some users who cannot secure cooling water. For such users, there is considered an apparatus which circulates lubricating oil instead of water in the cooling water circulating flowpassage 19. However, the apparatus having the aforementioned configuration has a problem in that two separate and independent flowpassages for circulating the same lubricating oil are to be provided, two pumps for delivering lubricating oil are required, and consuming power through an amount for the increased number thereof increases. The present invention has been achieved to overcome the aforesaid problem encountered in prior art, and provides an air-cooled oil-free screw compressor which is simple in construction and enables reduction of consuming power.
{ "pile_set_name": "USPTO Backgrounds" }
Generally known dosage forms for oral solid preparations include tablets, capsules, granules and powders. However, these dosage forms are largely hard to handle and ingest. For example, tablets and capsules have a problem in that larger ones are harder to swallow, and granules and powders also have a problem in that they are easy to choke on and likely to get stuck between the teeth upon their ingestion. In addition, these dosage forms need to be taken with some water, and thus have difficulty in ingestion in the case of an emergency and for bedridden patients with severe illness. Known dosage forms that can be taken without water include chewable tablets, which are designed to be ingested by chewing. Currently available chewable tablets have poor disintegrability and thus are hard to take for elderly people, children, preschool children, patients with dysphagia, bedridden patients and others. Under such circumstances, there is a desire for the development of orally fast disintegrating tablets which can be easily taken without water and can be conveniently taken anytime and anywhere. Known techniques for producing such orally fast disintegrating tablets include a method involving filling a mold (resin film sheet for PTP) with a suspension of an active ingredient and a saccharide in an aqueous agar solution, and solidifying the suspension into a jelly-like form, followed by reduced pressure drying or aeration drying (Patent Literature 1); and a method involving compressing tablet materials in a dry state containing a pharmaceutical agent, a water soluble binder and a water soluble excipient with a minimum pressure necessary for formation of tablets having a hardness enough to keep their shapes during the transition to the next step, wetting the resulting tablets, and drying the wet tablets (Patent Literature 2). However, these methods are disadvantageous because they require special production equipment and thus are complicated as a production process. Under such circumstances, there is a desire for the development of preparations that are producible by a simple process with simple production equipment, excellent in oral disintegrability, and practically satisfactory in moldability.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to fluid delivery systems for supplying fluids during medical diagnostic and therapeutic procedures, further, to fluid transfer sets and flow controlling and regulating devices associated therewith used with fluid delivery systems for conducting and regulating fluids flows. 2. Description of Related Art In many medical diagnostic and therapeutic procedures, a physician or other person injects a patient with a fluid. In recent years, a number of injector-actuated syringes and powered injectors for pressurized injection of fluids, such as contrast media, have been developed for use in procedures such as angiography, computed tomography, ultrasound, and NMR/MRI. In general, these powered injectors are designed to deliver a preset amount of contrast media at a preset flow rate. Angiography is used generally in the detection and treatment of abnormalities or restrictions in blood vessels. In an angiographic procedure, a radiographic image of vascular structure is obtained through the use of a radiographic contrast medium, sometimes referred to simply as contrast, injected through a catheter. The vascular structures in fluid connection with the vein or artery in which the contrast is injected are filled with contrast. X-rays passing through the region of interest are absorbed by the contrast, causing a radiographic outline or image of blood vessels containing the contrast. The resulting images can be displayed on, for example, a monitor and recorded. In a typical angiographic procedure, a physician places a cardiac catheter into a vein or artery. The catheter is connected to either a manual or to an automatic contrast injection mechanism. A typical manual contrast injection mechanism, as illustrated, for example, in FIG. 1, includes a syringe in fluid connection with a catheter connection. The fluid path also includes, for example, a source of contrast fluid, a source of saline, and a pressure transducer P to measure patient blood pressure. In a typical system, the source of contrast is connected to the fluid path via a valve V1, for example, a three-way stopcock. The source of saline and pressure transducer P may also be connected to the fluid path via additional valves V2 and V3, respectively. The operator of the manual system of FIG. 1, manually controls the syringe and each of the valves V1 and V2 to draw saline or contrast into the syringe and to inject the saline or contrast into the patient through the catheter connection. The pressure transducers used in such procedures are extremely sensitive to even moderately high pressures generated during activation of the syringe, so the operator must close valve V3 to isolate pressure transducer P from the fluid path when the syringe is activated to prevent damage to pressure transducer P. While the syringe is not activated, valve V3 is usually open to monitor patient blood pressure. The operator of the syringe of FIG. 1 may adjust the flow rate and volume of injection by altering the force applied to the plunger of the syringe. Manual sources of fluid pressure and flow used in medical applications such as syringes and manifolds thus typically require operator effort that provides feedback of the fluid pressure/flow generated to the operator. The feedback is desirable, but the operator effort often leads to fatigue. Thus, fluid pressure and flow may vary depending on the operator's strength and technique. Automatic contrast injection mechanisms typically include a syringe connected to a powered injector having, for example, a powered linear actuator. Typically, an operator enters settings into an electronic control system of the powered injector for a fixed volume of contrast material and a fixed rate of injection. In many systems, there is no interactive control between the operator and the powered injector, except to start or stop the injection. A change in flow rate in such systems occurs by stopping the machine and resetting the parameters. Automation of angiographic procedures using powered injectors is discussed, for example, in U.S. Pat. Nos. 5,460,609, 5,573,515 and 5,800,397. U.S. Pat. No. 5,800,397 discloses an angiographic injector system having high pressure and low pressure systems. The high pressure system includes a motor-driven injector pump to deliver radiographic contrast material under high pressure to a catheter. The low pressure system includes, among other things, a pressure transducer to measure blood pressure and a pump to deliver a saline solution to the patient as well as to aspirate waste fluid. A manifold is connected to the syringe pump, the low pressure system, and the patient catheter. A flow valve associated with the manifold is normally maintained in a first state connecting the low pressure system to the catheter through the manifold, and disconnecting the high pressure system from the catheter and the low pressure system. When pressure from the syringe pump reaches a predetermined and set level, the valve switches to a second state connecting the high pressure system/syringe pump to the catheter, while disconnecting the low pressure system from the catheter and from the high pressure system. In this manner, the pressure transducer is protected from high pressures, (see column 3, lines 20-37 of U.S. Pat. No. 5,800,397). However, compliance in the system components, for example, expansion of the syringe, tubing, and other components under pressure, using such a manifold system can lead to a less than optimal injection bolus. Moreover, the arrangement of the system components of U.S. Pat. No. 5,800,397 results in relatively large amounts of wasted contrast and/or undesirable injection of an excessive amount of contrast when the low pressure, typical saline system, is used. The injector system of U.S. Pat. No. 5,800,397 also includes a handheld remote control connected to a console. The control includes saline push button switches and a flow rate control lever or trigger. By progressive squeezing of the control trigger, the user provides a command signal to the console to provide a continuously variable injection rate corresponding to the degree of depression of the control trigger. U.S. Pat. No. 5,916,165 discloses a handheld pneumatic controller for producing a variable control signal to control a rate of fluid dispersement to the patient in an angiographic system. U.S. Pat. No. 5,515,851 discloses an angiographic system with a finger activated control pad to regulate the injection of fluids. Unlike manual injection systems, however, there is little if any feedback to the operator of system pressure in the systems disclosed in the U.S. patents identified previously. There are potential advantages to such feedback. In the use of a manual syringe, for example, excessive back pressure on the syringe plunger can provide evidence of occlusion of the fluid path. U.S. Pat. No. 5,840,026 discloses, an injection system in which an electronic control system is connected to the contrast delivery system and a tactile feedback control unit. In one embodiment, the tactile feedback control unit includes a disposable syringe that is located within a durable/reusable cradle and is in fluid connection with the fluid being delivered to the patient. The cradle is electrically connected to the electronic control system and is physically connected to a sliding potentiometer that is driven by the plunger of a disposable syringe. During use of the injection system of U.S. Pat. No. 5,840,026, the operator holds the cradle and syringe and, as the operator depresses the sliding potentiometer/syringe piston assembly, the plunger is moved forward, displacing fluid toward the patient and creating a pressure in the syringe. A sliding potentiometer tracks the position of the syringe plunger. The electronic control system controls the contrast delivery system to inject an amount of fluid into the patient based on the change in position of the plunger. As the fluid is injected, the pressure the operator feels in his or her hand is proportional to the actual pressure produced by the contrast delivery system. The force required to move the piston provides the operator with tactile feedback on the pressure in the system. The operator is able to use this feedback to ensure the safety of the injection procedure. Unlike the case of a manual injection system, the injection system of U.S. Pat. No. 5,840,026 does not require the operator to develop the system pressure and flow rate. The operator develops a smaller, manually applied pressure that corresponds to or is proportional to the system pressure. The required manual power output (that is, pressure×flow rate) is decreased as compared to manual systems, whereas the tactile feedback associated therewith is retained. While manual and automated injectors are know in the medical field, a need generally exists for improved fluid delivery systems adapted for use in medical diagnostic and therapeutic procedures where fluids are supplied to a patient during the procedure. A specific need generally exists for an improved fluid delivery system for use in fluid injection procedures, such as angiography. Additionally, a need generally exists for fluid transfer sets and flow controlling and regulating devices associated therewith that may be used with fluid delivery systems for conducting and regulating fluids flows. Moreover, a continuing need exists in the medical field to generally improve upon known medical devices and systems used to supply fluids to patients during medical procedures such as angiography, computed tomography, ultrasound, and NMR/MRI.
{ "pile_set_name": "USPTO Backgrounds" }
Single-instruction multiple-data (SIMD) processors are characterized by having an array of processors that perform the same operation simultaneously on every element of a data array. Vector processing, an application of SIMD processors, uses vector instructions, which specify the operation to be performed and specify the list of operands, i.e., the data vector, on which it will operate. The use of processor arrays and vector processing can result in extensive parallelism, resulting in high execution speeds. Yet, despite impressive execution speeds, getting data in and out of the processor can be a problem. Execution speeds are less useful if input/output speeds cannot keep up. In many applications, such as video processing, real-time processing speed is desirable. Yet, a stumbling block to real-time processing is the large amount of data that must be processed to generate the pixels, lines, and frames of a video picture. A need exists for an easily manufactured SIMD processor that maximizes data input rates without increasing manufacturing costs. Although the need for such processors is not limited to television, digital television processing involves processing tasks, such as scan rate conversion, for which a processor with a fast throughput is desirable. With regard to scan rate conversion, television relies on the concept that a picture can be broken down into a mosaic suitable for transmitting and then reassembled to produce a television picture. This process is accomplished with linear scanning. The television picture is scanned in a sequential series of horizontal lines, at both the transmitting and receiving end of the television system. Various geopolitical regions have different scanning standards. The United States uses the National Television Systems Committee (NTSC) standard. Each picture, i.e., frame, has 525 lines. These lines are interlaced to make two fields having 262.5 lines each, and each field is scanned at a rate of 60 fields per second. Some countries use a Phase Alternate Line (PAL) system, which has similar characteristics. Other countries use a Sequential Color and Memory (SECAM) system, in which 625 lines make up a frame. The lines are interlaced to make two fields having 312.5 lines each, and each field is scanned at a rate of 50 fields per second. If a scan rate is too slow, the viewer will notice a large area flicker. The 60 Hz and 50 Hz standard scan rates are intended to exceed a rate at which flicker is annoyingly noticeable, but not place expensive technological demands on the receiving system. Nevertheless, faster scan rates are desirable for improved viewing. In addition to scan rates, another factor in picture quality is the number of lines per frame, i.e., vertical resolution. If there are too few lines, the distinction between each line is perceptible. Like scan rate standards, the selection of a standard number of lines per field is intended to surpass the viewer's annoyance level without unduly burdensome technological costs. Yet, like faster scan rates, higher line per field ratios are desirable for improved viewing. Recent developments in television systems include digital processing within the receiver to convert scan characteristics, such as scan rates and lines per field. Yet, existing digital receivers process data serially, and because of processing throughput limitations of serial systems, the pixel resolution is limited. A need exists for a television receiving system that receives an incoming signal with one set of scan characteristics and generates a picture with different scan characteristics. The processing throughput should not unduly constrain the level of pixel resolution.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a radio unit, and in particular to an improvement of a planar antenna for radio apparatuses such as digital mobile telephones and other portable radio transceivers. 2. Description of the Related Art A planar inverted-F antenna which can be miniaturized has been widely used in mobile communication apparatuses such as portable radio telephones. Since the frequency range which provides acceptable antenna gains is relatively narrow (generally, 4-5%), however, there have been proposed several antenna structures which can be used in a plurality of frequency bands or a wider frequency range. In an example of conventional antennas, two antennas having different resonance frequencies are used to provide two usably frequency bands. In another antenna, the volume of a element is doubled to substantially widen the frequency range. Further, a patch antenna has been disclosed in Japanese Patent Unexamined publication No. 62-188504. This conventional antenna is provided with an adjuster for connecting two radiation elements or adjusting the amount of overlapped areas of the two radiation elements to achieve a wider frequency range where acceptable antenna gains are obtained. However, the above conventional antennas need a plurality of radiation elements or the doubled volume of a radiation element. Such a large element cannot be suitable for mobile apparatuses such as portable telephones. On the other hand, the patch antenna needs a mechanical means for moving the radiation elements. Therefore, it is difficult to obtain a stable antenna characteristic and rapid switching of antenna frequency bands. Further, since the large amount of energy is required to move the radiation elements, the power consumption of a portable telephone is increased.
{ "pile_set_name": "USPTO Backgrounds" }
A touch sensor may detect the presence and location of a touch or the proximity of an object (such as a user's finger or a stylus) within a touch-sensitive area of the touch sensor overlaid on a display screen, for example. In a touch-sensitive-display application, the touch sensor may enable a user to interact directly with what is displayed on the screen, rather than indirectly with a mouse or touch pad. A touch sensor may be attached to or provided as part of a desktop computer, laptop computer, tablet computer, personal digital assistant (PDA), smartphone, satellite navigation device, portable media player, portable game console, kiosk computer, point-of-sale device, or other suitable device. A control panel on a household or other appliance may include a touch sensor. There are a number of different types of touch sensors, such as (for example) resistive touch screens, surface acoustic wave touch screens, and capacitive touch screens. Herein, reference to a touch sensor may encompass a touch screen, and vice versa, where appropriate. When an object touches or comes within proximity of the surface of the capacitive touch screen, a change in capacitance may occur within the touch screen at the location of the touch or proximity. A touch-sensor controller may process the change in capacitance to determine its position on the touch screen.
{ "pile_set_name": "USPTO Backgrounds" }
There is great desire to incorporate photon-counting detectors also known as energy discriminating X-ray detectors in computed tomography (CT). The photon-counting detectors have some potential to improve image quality, reduce dose and enable new clinical applications of CT. The photon-counting detectors acquire data including extra spectral information for providing material classification, improving quantitative imaging and reducing beam-hardening artifacts. Despite the above advantages over widely used energy-integrating detectors, the photon-counting detectors have certain disadvantages. The photon-counting detectors are generally limited by the high costs and their count-rate. Furthermore, although the signal-to-noise ratio (SNR) in the photon-counting detectors is reduced at low flux levels for a small pixel size, the photon-counting detectors experience an increased level of inter-pixel interference due to the small pixel size. On the other hand, the photon-counting detectors such as CdTe/CdZnTe sensors have poor performance at high flux levels, and consequently the SNR deteriorates. For these reasons, the photon-counting detectors have not yet replaced the energy-integrating detectors currently utilized in clinical CT systems. Because of the above described issues of the photon-counting detectors, a dual-tube CT system has been proposed to utilize a combination of photon-counting detectors and integrating detectors. In one exemplary dual-tube CT system, one source projects X-ray towards a photon-counting detector while the other source projects X-ray towards a conventional detector that is placed at a predetermined angle with respect to the photon-counting detector. In order to cope with the high flux rates used in the exemplary dual-tube CT system, the pixel-size of the photon-counting detector was made substantially small, but charge sharing and K-escape rates have been increased to a point where the above described advantages of the photon-counting detector have substantially diminished. Because of the above described prior art, there remains a desire to improve CT imaging using photon-counting detectors without suffering from the known disadvantages such as the high cost and the low sampling rate.
{ "pile_set_name": "USPTO Backgrounds" }
Conversion layers on metals are extensively used in industry, inter alia, to increase the resistance to corrosion, as a pretreatment for subsequent painting, to facilitate non-cutting cold working and running-in operations (reduction of sliding friction) and for electrical insulation. Layers based on the phosphates of Zn, Mn, Fe, Ca, Ni, Mg, and other cations have achieved special significance, and the layer may contain one or more of these cations. An important parameter of the conversion layers is their weight per unit of area (also referred to herein as wt/A, specific weight, basis weight) because different ranges of that parameter will give optimum results in different fields of application and that parameter must be kept within a more or less narrow range for a trouble-free series production. The weight per unit of area, which is also a measure of thickness for a given layer composition, is usually stated in grams of the layer material per square meter of the surface area (g/m.sup.2) and can be measured by the stripping method (dissolution method) involving differential weighing or by a determination of one or more components of the layer by chemical analysis, X-ray fluorescence, infrared absorption, GDOS (glow discharge optical spectroscopy) and/or other methods. The stripping method is a destructive test and for this reason is less suitable for production control. X-ray fluorescence, infrared absorption and glow discharge optical spectroscopy require expensive analyzing apparatus. Probing devices that make use of the weakening of the adhesive force of a permanent magnet, or the influencing of the magnetic flux or the weakening of the induction effected by a high-frequency alternating current are less suitable, as a rule, for determining basis weight of conversion layers because the sensing heads may locally damage the layer and because the accuracy of the measurement is low in the range of the thicknesses of the conversion layers used.
{ "pile_set_name": "USPTO Backgrounds" }
In digital color publishing applications it is often desirable to distribute the rendering of a job on multiple devices which may or may not be physically co-located. In this patent, the term “devices” generally refers both hardcopy devices (i.e. printers) and softcopy display devices. For example, in cluster printing a color job might be split among multiple co-located printers in order to meet deadlines, reduce cost, or optimize overall print shop capacity. Distributed printing from a centralized repository close to the final site of delivery is another scenario where rendering is split among multiple printers; which are not physically co-located. It will often be crucial that color reproduction amongst separate devices be highly consistent as color characteristics vary widely across devices and device controllers. Proper color management is thus needed to ensure color consistency. One approach is to associate color correction (e.g., ICC) profiles with each output device. The profiles are derived independently for each device and loaded statically into the job management system. The colors of the input job are mapped to a device-independent color space (e.g., CIELAB) and color-corrected to the output device's profile prior to rendering. Such an approach can be found in U.S. Pat. Nos. 6,043,909 and 6,157,735 wherein a system for controlling and distributing color in a networked environment is disclosed. Both teach the concept of a “Virtual Proof”, an abstract data structure that contains and manages the color profiles for each device in the system as well as the associated color-correction transformations to be applied to the input job. Although the use of device-independent color specification and profiles for color rendition on an output device is an improvement in the arts for device specific representation, this does not guarantee consistent color reproduction in certain applications involving multiple output devices. Another problem arises from the fact that different output devices have different color gamuts. The gamut of an output device is defined as the region of colors in a device independent color space that can be reproduced on that device. In addition, the effective color gamut of a printer is often dependent on the various choices of image path elements such as ink-limit, gray component replacement (GCR), and halftones in instances where printers with different sets of image path elements represent different output devices. Standard color management approaches can only guarantee consistent color reproduction for colors in the job that are already within a color gamut common to all the output devices. The common gamut is the intersection of the individual device gamuts computed in a device independent color space. It is common for jobs to contain colors outside this common gamut. For example, consider a business graphic containing the primary colors of a display to be reproduced on multiple printers. Typically these colors are outside the gamut of all the printers and the application of independent color correction transforms does not guarantee consistent output among the devices. Differences can also be seen in saturated colors in pictorial images. One potential solution to the problem of color consistency across multiple devices is to define a universal consistent color mode for all devices that ensures consistency across the different devices. For example, a universal consistent color mode may be achieved by restricting the colors for all output devices to the common gamut of the universe of devices employed. In order to be more useful, temporal variations among devices and differences across devices should be comprehended in computing the common gamut. Color critical jobs may then be rendered using the consistent mode to ensure that some inter-device differences do not unduly affect the color rendering of the job. This approach however has several limitations. One is that the restriction to the common gamut over time and across devices often exacts an unnecessary penalty in image quality. Even for a single device family, a significant region of the dynamic range may need to be sacrificed in order to achieve consistency over the fleet and over time. In addition, this does not scale well as new devices are introduced or older devices are removed. The introduction of a new device or removal of an existing device often requires an upgrade of the “consistent-mode” correction at all existing devices. Lastly, upon re-calibration and re-characterization of a device, each existing device should be updated.
{ "pile_set_name": "USPTO Backgrounds" }
This invention belongs to the field of agricultural chemistry, and provides new herbicidal compounds to the art. The growth of weeds, which are often defined as plants growing where they are not wanted, has well-known deleterious effects on crops which are infested with such plants. Unwanted plants growing in cropland, as well as in fallow land, consume soil nutrients and water, and compete with crop plants for sunlight. Thus, weed plants constitute a drain on the soil and cause measurable losses in the yield of crops. The compounds of this invention are new to organic chemistry. Some compounds which have a relationship to the present invention, however, are known in the herbicidal art. Earlier workers have found herbicides among the pyridazinones, for example, U.S. Pat. No. 3,644,355. Some pyrimidinone herbicides have also been disclosed in the agricultural chemical art, such as the 6-alkyl-2,5-dihalo-3-phenyl-4pyrimidonones of U.S. Pat. No. 3,823,135. Some diphenyl-5-pyrazolinones have been disclosed, for example, the 3-methyl-1,4-diphenyl compound of Beckh, Ber. 31, 3164 (1898) and the 2-methyl-1,3-diphenyl compound of Knorr et al., Ber. 20, 2549 (1887). A pharmaceutical pyrazolinone is 2,3-dimethyl-1-phenyl-3-pyrazolin-5-one, called antipyrine, which was formerly used as an analgesic. Merck Index, 93 (8th ed. 1968).
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention relates to an IC testing apparatus for testing a semiconductor integrated circuit device (hereinafter referred to as an "IC"), more particularly relates to a tray transfer arm, a tray transfer apparatus using the arm, an IC testing apparatus, and a tray handling method. This type of IC testing apparatus, called a "handler", conveys a large number of ICs held on a tray to the inside of a testing apparatus where the ICs are made to electrically contact a test head, then the IC testing apparatus is made to perform the test. When the test is ended, the ICs are conveyed from the test head and reloaded on trays in accordance with the results of the tests so as to sort them into categories of good ICs and defective ones. In a conventional IC testing apparatus, the trays for holding the ICs to be tested or the tested ICs (hereinafter referred to the "customer trays") and the trays conveyed through the IC testing apparatus (hereinafter referred to as the "test trays") are different in type, so the ICs are reloaded before the test and after the test. When reloading the ICs finished being test from the test tray to the customer tray, a number of empty customer trays corresponding to the different categories, such as "good ICs" and "defective ICs", are prepared and the ICs reloaded there from the test tray. When a customer tray becomes full, it is necessary to convey it out and prepare a new empty tray. Therefore, a device called a "tray transfer arm" is built into the IC testing apparatus. In such a conventional IC testing apparatus, however, a large number of operation steps were required to convey the full customer tray out and set the next empty tray. In particular, since the setting of the next tray was the last step, there was the problem that the operation of reloading the ICs ended up being stopped during that interval and the throughput (number of ICs processed by the handler per unit time) falls.
{ "pile_set_name": "USPTO Backgrounds" }
Users are able to locate relevant websites and other content using a search engine. There are different types of searches. Some searches seek a particular answer to a question (e.g., what is the largest city in Kansas?) and other searches seek to learn about a topic (e.g., how does a space elevator work?). Some searches may want an entertainment suggestion, such as nearby restaurants or movie theaters. Some search engines may take the user's present location into account when determining a result's relevance to the user. Other search engines may take geographic information indicated within the query into account when determining a result's relevance.
{ "pile_set_name": "USPTO Backgrounds" }
The goal of plant breeding is to combine, in a single variety or hybrid, various desirable traits. For field crops, these traits may include resistance to diseases and insects, resistance to heat and drought, reducing the time to crop maturity, greater yield, and better agronomic quality. With mechanical harvesting of many crops, uniformity of plant characteristics such as germination, stand establishment, growth rate, maturity, plant height and ear height, is important. Traditional plant breeding is an important tool in developing new and improved commercial crops.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a game and method of playing, and more particularly relates to a game utilizing traditional Mah Jongg playing units adapted for play in a casino or other wagering or playing location. 2. Description of the Related Art The Chinese game of Mah Jongg has been played in various forms for centuries. In its traditional form, a plurality of tiles are provided and distributed to four players, who then take and discard tiles to try to obtain a winning Mah Jongg hand. Winning hands are determined by having certain combinations of tiles. Traditional rules of playing are described in xe2x80x9cThat""s Itxe2x80x94How to Play Mah Jonggxe2x80x9d by Dorothy S. Meyerson (1965), the entirety of which is hereby incorporated by reference. The traditional forms of playing Mah Jongg are limited to four players, with only one player capable of winning per round. Players compete only against each other, so that every player is not able to win for every hand played. Accordingly, what is needed is an improved game of Mah Jongg which gives every player the opportunity to win. In additional, because of the immense popularity of the traditional Mah Jongg game, what is needed is a new game and method of playing that is profitable for a casino or other wagering location providing such game. The preferred embodiments of the present invention satisfy the above needs by providing a new game incorporating Mah Jongg playing tiles or cards for use in a casino or other wagering or playing location. This game preferably gives every participating player the opportunity to win for every hand dealt. Players may compete against a dealer or xe2x80x9cthe house,xe2x80x9d or may simply wager against the probability of obtaining certain hands. Games may be played for money or other stakes. Winning hands are preferably determined by obtaining certain designated combinations of playing units, and comparing these combinations against the hand of the dealer, or by determining whether the player""s hand contains a predetermined group of winning combinations which provide winnings based on the odds of probability of obtaining such combinations. In one aspect of the present invention, a game and a method of playing a game are provided. The method comprises providing a plurality of cards, at least some of the cards being numbered in consecutive order, wherein for each numbered card in consecutive order, there are a plurality of substantially identical cards. A designated number of cards are distributed to at least one player. A designated number of cards are distributed to a dealer. It is then determined whether the cards distributed to the at least one player constitutes a winning hand, a winning hand being determined at least in part by: (1) determining the number of winning sets contained in the cards distributed to the at least one player, wherein a winning set is selected from the group consisting of: four substantially identical cards; three substantially identical cards; three consecutively numbered cards; and two substantially identical cards. (2) determining the number of winning sets contained in the cards distributed to the dealer; and (3) comparing the winning sets of the at least one player with the winning sets of the dealer. In another aspect of the present invention, the game is played by providing a plurality of cards having traditional Mah Jongg symbols thereon. A designated number of the cards are distributed to at least one player. A designated number of the cards are distributed to a dealer. The cards of the at least one player are compared with the cards of the dealer to determine a winner. The winner has cards including at least one winning set, wherein a winning set is selected from the group consisting of four substantially identical cards, three substantially identical cards, three consecutively numbered cards, and two substantially identical cards. In another aspect of the present invention, the game is played by providing a plurality of cards having traditional Mah Jongg symbols thereon and distributing a designated number of the cards to at least one player. It is determined whether the cards distributed to the at least one player constitutes a winning hand, a winning hand being determined at least in part by comparing the cards distributed to the at least one player against a predetermined list of winning hands and the probability of obtaining such hands. A sum of money or other prize is paid to the at least one player if the player has a winning hand. In another aspect of the present invention, the game comprises a plurality of cards having traditional Mah Jongg symbols thereon. The plurality of cards includes a plurality of consecutively numbered cards, there being four substantially identical cards for each number, and a plurality of non-numbered cards, there being four substantially identical cards for each of said non-numbered cards. The game is played by distributing a designated number of cards to at least one player and a dealer. At least one winner is determined between the at least one player and the dealer by determining which of the at least one player and the dealer has more winning sets of cards or has a higher value winning set of cards as defined on a predetermined list of winning hand rankings. A winning set of cards may include, but is not limited to, four substantially identical cards, three substantially identical cards, three consecutively numbered cards and two substantially identical cards. When the at least one player is a winner, the at least one player is paid an amount by the dealer commensurate with a bet placed by the player. Additionally the winning amount may be increased by an amount based on the odds of obtaining the winning hand. When the dealer is a winner, the dealer collects from the player a bet placed by the player. In one embodiment, when the at least one player and the dealer have no winning hands or hands ranking below a certain level based on a predetermined list of winning hand rankings, neither the player or dealer would collect bets or winnings. In one embodiment, the game is further played by distributing a designated number of cards to a plurality of players. The consecutively numbered cards are preferably numbered one through nine. The game in one embodiment is played by distributing an initial number of cards to the at least one player and the dealer, wherein in one embodiment, the initial number of cards is seven. In one embodiment, the at least one player is distributed an additional card after being distributed the initial number of cards. The additional card may be selected from previously undealt cards, or may be a card discarded by another player. In one embodiment, the at least one player is allowed to discard a card after being distributed an additional card. A second additional card can be distributed to the at least one player, and may be selected from previously undealt cards and may be a card used by all players. In one embodiment, when all of the cards distributed to the at least one player forms part of a winning set, the at least one player is an automatic winner. In another embodiment, when all of the cards distributed to the at least one player forms part of a winning set, the at least one player receives a bonus award based on a bonus bet placed by the player.
{ "pile_set_name": "USPTO Backgrounds" }
Electronic devices with large screen play an excellent role in improving user experience and visual effect, and possess obvious advantages particularly in business communication, playing games, watching movies and the like. Currently, a foldable electronic device may have a large display panel. The large display panel can satisfy demand of a user for larger screen. The large display panel can be folded so that a size of the foldable electronic device is reduced. Thus, it is convenient for a user to carry the foldable electronic device with small size. Generally, the foldable electronic device includes a first body and a second body and a connecting member. The connecting member is located between and connected to the first body and the second body. The first body is rotated relative to the second body by the connecting member so that the folded electronic device is folded.
{ "pile_set_name": "USPTO Backgrounds" }
It is well known that coordination anionic polymerization using catalyst systems represented by a Ziegler-Natta catalyst allows for homopolymerization of olefins and dienes. However, it was difficult to provide efficient copolymerization of olefins and dienes using such polymerization reaction systems. Particularly, applying a copolymer of a conjugated diene and a non-conjugated olefin to the compounded rubber results in fewer double bonds in the conjugated diene unit in the copolymer as compared with the conjugated diene polymer, and therefore, improves ozone resistance of the rubber composition. In addition, one of the characteristics other than ozone resistance required when a rubber composition is applied to various applications (such as tires, conveyor belts or anti-vibration rubber) includes good crack growth resistance. For example, JP 2000-154210 A (PTL 1) discloses a catalyst for polymerizing conjugated dienes that contains a transition metal compound of group IV of the periodic table having cyclopentadiene ring structure, and also refers to an α-olefin such as ethylene as an exemplary monomer copolymerizable with this conjugated diene. However, PTL 1 does not provide a specific description of copolymerization of a conjugated diene compound and a non-conjugated olefin. Obviously, there is no description or suggestion of improving ozone resistance and crack growth resistance by controlling the cis content, or, by arranging a copolymer of a conjugated diene and a non-conjugated olefin so that the non-conjugated olefin is contained in an amount of 20 mol % or more and the conjugated diene has a cis-1,4 bond content of 50% or more. For example, JP 2006-249442 A (PTL 2) discloses a catalyst for polymerizing olefins that consists of a transition metal compound such as a titanium compound and a co-catalyst, and also discloses a copolymer of an α-olefin and a conjugated diene compound. However, specific manufacture and use were ensured only if the non-conjugated olefin, α-olefin, is contained in an amount within a range of 66.7 mol % to 99.1 mol %. That is, PTL 2 does not provide any specific description or suggestion of the conjugated diene compound/non-conjugated olefin copolymer containing the non-conjugated olefin in an amount of 0 mol % to 50 mol %, nor of improving ozone resistance and crack growth resistance by controlling the cis content, or, by arranging a copolymer of a conjugated diene and a non-conjugated olefin so that the non-conjugated olefin is contained in an amount of 20 mol % or more and the conjugated diene has a cis-1,4 bond content of 50% or more. In addition, JP 2006-503141 A (PTL 3) discloses a copolymer of ethylene and butadiene resulting from polymerizing ethylene and butadiene as starting materials using a special organic metal complex as a catalytic component. However, the copolymer of PTL 3 has a structure different from that of the copolymer of the present invention in that butadiene, which is a monomer, is inserted in the copolymer in the form of trans-1,2-cyclohexane. In addition, specific manufacture and use were ensured only if the non-conjugated olefin, ethylene, is contained in an amount within a range of 69.6 mol % to 89.0 mol %. In this case, the ethylene content was determined by 100 mol % minus the molar content of those units derived from butadiene with a known molar content. That is, PTL 3 does not also provide any specific description or suggestion of the conjugated diene compound/non-conjugated olefin copolymer containing the non-conjugated olefin in an amount of 0 mol % to 50 mol %, nor of improving ozone resistance and crack growth resistance by controlling the cis content, or, by arranging a copolymer of a conjugated diene and a non-conjugated olefin so that the non-conjugated olefin is contained in an amount of 20 mol % or more and the conjugated diene has a cis-1,4 bond content of 50% or more.
{ "pile_set_name": "USPTO Backgrounds" }
Existing technologies such as x-ray imaging systems have been used to investigate the internal structure and properties of a range of objects including food products and the human body. However, systems employing X-rays (or other ionizing radiation) suffer from a range of health and safety concerns. Ionizing radiation is known to be capable of causing damage to tissue and other materials. Consequently, equipment employing x-ray radiation must be provided with sufficient screening to ensure operating and other personnel are not exposed to the radiation. In addition, the size of an x-ray system is large, and consequently not appropriate in certain manufacturing situations. A further drawback of X-ray systems is the relatively high cost of an X-ray imaging system. Terahertz imaging systems have also been employed for imaging an internal structure of an article. However, imaging water-containing samples using these systems is challenging due to the high attenuation of terahertz frequency signals by water molecules.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an electronic still camera device that is capable of recording and reproducing image and sound signals. 2. Description of the Prior Art Electronic still camera devices are generally large in size due the to incorporation of magnetic disk devices, and there is an increasing demand for a reduction in the size of this type of camera. There also is a demand for electronic still camera devices that are capable of recording not only images, but also sounds. In known electronic still camera devices of this type, sound signals are recorded on a magnetic disk in a time-base-compressed manner. During play back, the read sound signals are time-base-expanded to reproduce the original sound. Thus, the electronic still camera device of this type essentially has many devices and elements which are used specifically for recording and reproducing sounds, including a large capacity memory, an A/D converter, a D/A converter, a CPU, a timing control circuit, a sound collecting operation switch, a sound recording operation switch, a sound level indicator, and so forth. In consequence, the size of electronic still camera devices having a sound recording/reproducing function is inevitably large, failing to meet the demand for reduction in the camera device size. In some cases, the user may wish to record only images while omitting sounds. It is also conceivable that the user wishes to first an image and then record sounds. In addition, the supplier of camera devices of this kind have to produce different types of camera devices, i.e., camera devices with and without the sound recording functions because the sound recording/playback function is not necessary for some users, so that the cost of production of the electronic still camera device is undesirably raised. Known electronic still camera devices are generally designed such that the recording of sounds is possible only for a predetermined period after the pressing of an exposure release button. Thus, recording of sounds is often hindered due to the presence of undesirable noise sounds at the time of exposure. Even if the sound recording itself is not impossible, the quality of the recording is seriously impaired due to the noise sounds. The noise sound may occur suddenly. The recorded sound, therefore, may include undesirable noises which has started after the commencement of the audio recording.
{ "pile_set_name": "USPTO Backgrounds" }
Typically, in the construction of homes it is important to protect roofs from leaks due to ice and rain. Traditionally, felt paper was secured to wooden roofs underneath shingles. The felt paper would absorb ice or water that penetrated the shingles, preventing it from reaching the underlying wood. Nailing the felt paper to the roof, however, caused spaces around the nail through which water could seep. The water could follow the nail into the wood, causing leaks in the home. To solve this problem, water shields began to include an adhesive backing to fasten the shield to the wood, instead of using nails. The adhesive backing includes a peel-able strip which, when removed, exposes the adhesive layer for affixing the water shield to the unprotected wooden roof. The top of these water shields were made of a rubberized asphalt material, which created a gasket effect on the shaft of the nail driven through it. These water shields were successful in preventing many types of leaks. In colder climates, however, ice dams can form and allow water to penetrate or flow under the water shield. For example, an ice dam can prevent melt-water from flowing downward off the roof, which can result in the water seeping into the house above the ice and water shield coverage area. Ice dams occur when snow accumulates on the roof of a house with inadequate insulation. Heat conducted through the insufficiently insulated roof, and warm air from the space below, warms the roof and melts the snow on areas of the roof that are above living spaces. It does not, however, melt the snow over cold areas, such as roof overhangs. In these situations, melt-water from the heated areas of the roof flows down the roof, under the blanket of snow, onto the overhang and into the gutter, where colder conditions permit it to freeze. Eventually, ice accumulates along the overhang and in the gutter. Snow that melts later cannot drain properly, backs up on the roof and can result in damaged ceilings, walls, roof structure, and insulation. To avoid this many building codes require a water shield covering the roof two feet into the living space.
{ "pile_set_name": "USPTO Backgrounds" }
The subject matter herein relates generally to wire lug connectors. Power connectors are used to connect power wires to substrates, such as circuit boards or bus bars. Typically, the power connectors are plugged into a complementary power header that is mounted to the circuit board or bus bar. Such systems are expensive because two connectors are needed. Additionally, multiple interfaces are provided between the substrate, power header, power connector and power wire. To overcome the problems associated with such systems, at least some systems use wire lugs that are soldered or bolted to the circuit board or bus bar. However, both of these solutions require special operations or tooling and add cost. A need remains for a wire lug connector that may be terminated to a substrate in a cost effective and reliable manner.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a liquid pressure transfer method, and more particularly to a liquid pressure transfer printing method for applying a pattern for decoration specifically intended for a workpiece such as a steering wheel for an automobile or the like which includes a rod-like element curved to form a predetermined apparent plane to the workpiece. For example, a steering wheel for an automobile has a core made of a metal material so as to exhibit strength of at least a predetermined level. The core is provided therearound with a grip surface, which is formed of a material such as a plastic material, a wooden material, a leather material or the like, which is selected depending on requirements such as operability of the steering wheel, decorative characteristics thereof and the like. For example, a steering wheel provided thereon with a wooden surface is evaluated to be a high-quality article, because it exhibits both satisfactory operability and decorative characteristics and requires considerable labor and time for manufacturing. However, a recent tendency to reconsider the easygoing use of a natural material in view of protecting the natural environment, and a demand for reduction of a manufacturing cost had led to development of liquid pressure transfer printing techniques. These techniques involve transfer printing on a plastic steering wheel material in place of a wooden steering wheel material to apply a woodgrain pattern for decoration thereto. Application of a decorative pattern to a workpiece by liquid pressure transfer permits formation of a natural pattern which exhibits satisfactory conformability to a configuration of the workpiece, resulting in the technique being extensively practiced on a variety of workpieces. However, application of such liquid pressure transfer to, for example, a steering wheel encounters some important problems. A conventional steering wheel made of a wooden material is manufactured by subjecting two wooden rod-like materials which are semicircular in section to a treatment by moistening and heating to bend them into an annular shape, and then bonding them to each other while interposing a core therebetween. Thus, of course the wooden materials are each so arranged that a straight grain extends in a circumferential direction of the steering wheel. Such arrangement of the straight grain permits a user to have a sense of security or a sense of reliability. Unfortunately, in application of a decorative pattern to a workpiece by liquid pressure transfer, a transfer film having a transfer pattern formed thereon is supported on a surface of a transfer liquid while being floated thereon, so that exact positioning or registration between the transfer film and the workpiece is relatively difficult. Thus, in the prior art, a continuously-formed decorative pattern such as a woodgrain pattern, a natural stone pattern, or a carbon fiber pattern is arranged all over the transfer film so as to allow misregistration which occurs between the transfer film and the workpiece. Consequently, a decorative pattern similar to a natural material is provided irrespective of a portion of the pattern transferred to the workpiece. Nevertheless, development of techniques of reproducing a transfer pattern specifically intended for a desired product such as, for example, techniques of arranging a straight grain pattern in a circumferential direction of a steering wheel, are still demanded. The present invention has been made in view of the foregoing disadvantage of the prior art. Accordingly, it is an object of the present invention to provide a liquid pressure transfer method which is capable of applying a decorative pattern specifically intended for a specific or desired workpiece such as a steering wheel or the like to the workpiece. It is another object of the present invention to provide a transfer film which is capable of facilitating application of a decorative pattern specifically intended for a workpiece such as a steering wheel or the like to the workpiece. It is a further object of the present invention to provide a product decorated according to the liquid pressure transfer method described above. In accordance with one aspect of the present a liquid pressure transfer method for carrying out liquid pressure transfer printing on a workpiece such as a steering wheel is provided. The liquid pressure transfer method includes the step of supporting a transfer film on a surface of a transfer liquid while floating it thereon. The transfer film has a transfer pattern for decoration printed thereon. The liquid pressure transfer method also includes the step of downwardly immersing a workpiece in the transfer liquid to transfer the transfer pattern to a surface of the workpiece, to thereby decorate the workpiece. The workpiece includes a rod-like element curved into a loop-like shape, resulting in it being formed in an apparent geometric plane which permits the workpiece to be recognized as a whole. The transfer pattern is formed to have a configuration corresponding to a configuration of the apparent plane of the workpiece, and is arranged on a required position of the transfer film. The workpiece is handled so as to approach the transfer film from a position above the transfer pattern corresponding to the transfer pattern and is then immersed in the transfer liquid. Therefore, the transfer film bonds to the rod-like element of the workpiece in a manner to circumferentially surround the rod-like element continuously from a bottom of the rod-like element to a top thereof on the basis of a diametric section of the rod-like element, resulting in the transfer pattern being transferred to at least the rod-like element of the workpiece. The liquid pressure transfer method thus constructed permits the workpiece, such as a steering wheel or the like which includes the rod-like element curved to form a predetermined apparent plane, to be readily and positively decorated with a transfer pattern specifically intended for the workpiece. In a preferred embodiment of the present invention, an approach attitude angle defined between the apparent plane of the workpiece and the surface of the transfer liquid is set to be within a range of xc2x115xc2x0. This permits the optimum approach attitude angle to be set depending on a type of the transfer pattern, as well as a size of the workpiece, a configuration thereof and the like. In a preferred embodiment of the present invention, the workpiece is immersed in the transfer liquid in a substantially vertical direction. Such vertical lowering of the workpiece to the surface of the transfer liquid facilitates transfer of the transfer pattern to the workpiece. In a preferred embodiment of the present invention, the transfer film is provided thereon with reference position marks for enabling relative registration between the transfer pattern and the workpiece. This permits positioning or registration between the transfer pattern and the workpiece to be readily attained while preventing misregistration of the transfer film. In accordance with another aspect of the present invention, a transfer film is provided. The transfer film includes a film body which has a transfer operation surface defined thereon. The transfer operation surface has a predetermined transfer pattern previously printed thereon in transfer ink. When transfer is to be carried out, the transfer operation surface is coated thereon with an activator to permit a portion of the transfer operation surface to which the transfer ink is applied to exhibit stickiness. The transfer film is supported on a surface of a transfer liquid while being floated thereon. The transfer pattern is transferred to a surface of a workpiece by a liquid pressure produced when the workpiece is downwardly immersed in the transfer liquid. The transfer film is applied to the workpiece including a rod-like element curved into a loop-like shape, resulting in the workpiece being formed with an apparent plane which permits the workpiece to be recognized as a whole. The transfer pattern is formed to have a configuration corresponding to a configuration of the apparent plane of the workpiece and arranged on a required position of the transfer film. The transfer film thus constructed permits the transfer pattern specifically intended for the workpiece to be readily applied to the workpiece, to thereby facilitate decoration of the workpiece. In a preferred embodiment of the present invention, the workpiece is a steering wheel. The transfer pattern is formed to have a substantially annular shape in correspondence to the apparent plane of the steering wheel. Thus, in the present invention, although distortion of the pattern is varied depending on a position on a circumference of a diametric section of the rod-like element of the workpiece, the pattern distortion in a circumferential direction of the whole steering wheel is substantially the same irrespective of a position on the rod-like element in the circumferential direction thereof. Thus, the transfer printing may be carried out while rendering the pattern distortion inconspicuous. In a preferred embodiment of the present invention, the transfer pattern is formed to have a substantially annular shape by taking in pattern data having a plane rectangular shape and then converting the pattern data into pattern data having a round shape. This permits the transfer pattern specifically intended for the workpiece to be more exactly reproduced on the workpiece. In accordance with a further aspect of the present invention, there is provided a decorated product to which a predetermined decorative pattern is applied by subjecting a workpiece such as a steering wheel or the like including a rod-like element to liquid pressure transfer printing in which the workpiece is downwardly immersed in a transfer liquid which supports a transfer film having a transfer pattern for decoration printed on a surface thereof while floating it on the transfer liquid. Therefore, the transfer pattern is applied to at least the rod-like element of the workpiece. The workpiece is operated so as to permit the transfer pattern to be printed on the rod-like element of the workpiece in a manner to circumferentially surround the rod-like element continuously from a bottom of the rod-like element to a top thereof on the basis of a diametric section of the rod-like element. Consequently, transfer of the transfer pattern to the workpiece is carried out according to the above-described liquid pressure transfer method while ensuring exact reproducibility of the transfer pattern. Such construction permits the transfer pattern to be more exactly reproduced on a variety of workpieces of a closed loop shape or an open loop shape including, for example, a hula hoop, rings in gymnastic, a towel ring, a chair back, a handrail and the like in addition to the steering wheel while minimizing distortion of the transfer pattern.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, the Global Positioning System (GPS) has provided a significant advancement in satellite communications. Aircraft of various types are major users of the GPS system, and high speed aircraft have unique antenna requirements. The equipment that is required on the aircraft in order to efficiently utilize the GPS signals includes an antenna that must provide a right hand circular polarization and a uniform pattern coverage over virtually all of the upper hemisphere. By providing a uniform amplitude response over a wide coverage region, the receiver is able to maintain a signal lock to the GPS satellites with a useful signal to noise ratio. High speed aircraft that maneuver extensively often abruptly change their look angles to the GPS satellite. Thus, a wide beam width coverage is necessary for the receiver to be able to track as many satellites as possible while still maintaining a proper Geometric Dilution of Precision (GTOP). Avoiding aerodynamic drag is an essential feature of most high speed aircraft, and it is equally important in many cases to provide an antenna that does not require significant structural modification of the aircraft. Slot antennas have been developed and used in GPS applications, largely in recognition of the characteristics that GPS antennas must exhibit when installed in high speed aircraft. Slot antennas are particularly desirable where low profile or flush installations are needed, as they are in high speed aircraft. A variety of slotted antennas have been proposed, including cylindrical slot antennas that are provided with helical slots. The prior antennas have included four slots and have generally been described as a quadrifilar slot antennas that have used micro strip feed systems. While this type of antenna has been found to be generally satisfactory in many applications, it is less than ideal in some respects, particularly in its horizon coverage and antimulti-path capabilities.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a circulating fluidized bed combustor or gasifier for application in pressurized combustion or gasification systems, the systems comprising at least one upright combustion chamber and one particle separator connected thereto enclosed in a common external upright pressure vessel. In conventional circulating fluidized bed processes high flow velocity and excellent mixing of particles and gases leads to efficient heat transfer and improved combustion efficiency. SO2 and NOx emissions are low due to desulphurizing sorbents used and due to staged combustion. Various fuels and refuse derived wastes may be burned or gasified and utilized in circulating fluidized bed combustion. The temperature is very stable and the heat transfer rate is high. In pressurized circulating fluidized bed processes principally all advantages from atmospheric circulating fluidized bed processes are maintained, whereas some additional advantages are achieved. The size of a pressurized steam generation plant, including combustion chamber and particle separators, can be made much smaller than a corresponding conventional atmospheric steam generation plant. Significant savings in material and investment costs are achieved. Further pressurized steam generation systems provide increased total efficiency compared to atmospheric steam boilers. Pressurizing of a circulating fluidized bed process provides a considerable increase in efficiency/volume ratio. In pressurized circulating fluidized bed systems fuel is combusted or gasified in a combustion chamber at high temperatures and high pressure. The external vessel provides pressure containment, which is cooled or insulated to enhance material strength and to thereby minimize costs of the pressure vessel. Combustion air pressurized in a compressor is directed into the pressure vessel into the space between the combustor and the peripheral wall of the pressure vessel. The pressurized air thereby provides for cooling of the walls of the pressure vessel. In the vessel the pressurized air is further directed through a grid into the combustion chamber for fluidizing and combusting of material therein. The pressure in the pressure vessel may be 8-30 bar, typically 10-14 bar. In a circulating fluidized bed system particles are separated in a particle separator, such as a cyclone or hot gas filter, from the hot gases produced in the combustion chamber and the separated particles are recycled into the combustion chamber. In a combined gas/steam power plant the hot gases discharged from the particle separator may be further cleaned and utilized in a gas turbine, thereby increasing the electrical efficiency of the power plant considerably compared with a conventional steam generation plant. The gas turbine may be connected to the compressor feeding pressurized air into the combustor. The peripheral walls of the combustion chamber are cooled by recovering heat in a water/steam circulation. Additional heating surfaces, such as superheaters, reheaters and economizers, connected to the water/steam circulation are usually arranged in the combustion chamber. In circulating fluidized bed combustors the additional heating surfaces are arranged in the upper part of the combustion chamber. A multitude of steam piping, including risers and downcomers, thereby have to be arranged within the pressure vessel. Steam generation systems for power plants are therefore large even if pressurized. The external pressure vessel can be a variety of shapes. Two common shapes are cylindrical and spherical. The price of a pressure vessel itself is high and the space inside the vessel must be utilized as advantageously as possible. The diameter of the pressure vessel should be kept as small as possible to minimize costs. The vessel wall thickness and hence material costs increase with the diameter of the vessel. When pressurizing a circulating fluidized bed combustor system all of the combustion chamber, particle separator, fuel feeding and ash discharge arrangements, as well as the piping for the water/steam circulation are preferably arranged in one single pressure vessel. A conventional combustion chamber, having a square, rectangular or circular cross section, leads to a very space consuming arrangement, which needs a large diameter pressure vessel, leaving a large volume of unused space in the vessel. The cost of the pressure vessel is a determining factor when calculating the total costs of the pressurized system. The bigger the system the more significant is the price of the pressure vessel. It is therefore an object of the present invention to provide a pressurized circulating fluidized bed combustion or gasification system in which the size of the pressure vessel is minimized. This is achieved, according to the present invention, by utilizing in the pressurized combustion or gasification system a combustion chamber comprising a nonsymmetrical horizontal cross section, whereby at least two adjacent walls in the combustion chamber form an angle > 90.degree., or the horizontal cross section of the combustion chamber is hemispherical. The arrangement of combustion chamber equipment within the pressure vessel together with related auxiliary equipment including cyclones, filters, steam piping, fuel feeding or other equipment can be enhanced by utilizing unconventional combustion chamber shapes. According to the present invention a trapezoidal, semi-cylindrical, hybrid trapezoidal/semi-cylindrical, or other semicylindrical-approaching multisided (e.g. five or more sides) polygonal cross section is provided to better conform the shape of the combustor to the external vessel. Advantages of the combustion chamber cross section of the invention include: Optimal utilization of plan area within the external pressure vessel, thereby minimizing the size, cost, and space requirements of the vessel. Minimization of the height of the combustor or gasifier, and of the external pressure vessel, by alternative configurations of the heat transfer surfaces. Such configurations include angling internal surfaces and maximizing wall area per unit height. Maximization of the perimeter area of the combustor or gasifier, enhancing circulation characteristics of the combustor or gasifier if it is cooled. Optimizing the cross sectional area of the combustor or gasifier, increasing the amount of usable space for location of heat transfer surfaces. Reducing the potential effects of erosion by increasing the angle and/or rounding edges and corners within the combustor or gasifier to reduce eddies. Increased wall area on the rear combustor wall for location of cyclone inlets, solids feeding or removal, and heat transfer surfaces.
{ "pile_set_name": "USPTO Backgrounds" }
Modern electronic equipment such as televisions, telephones, radios and computers are generally constructed of solid state devices. Solid state devices are preferred in electronic equipment because they are extremely small and relatively inexpensive. Additionally, solid state devices are very reliable because they have no moving parts, but are based on the movement of charge carriers. Solid state devices may be transistors, capacitors, resistors and the like. These devices are fabricated on a substrate and interconnected to form integrated circuits. Device fabrication typically includes depositing, patterning and etching conductor, semiconductor and insulator layers that make up features of the device. Etching of metal and poly-metal gate structures is known to damage the underlying gate oxide, degrading its integrity and leading to device failure. To restore gate oxide integrity (GOI), post-gate-etch oxidation processes have been used. These processes, however, can oxidize the metal and poly-metal gate structures, resulting in high sheet resistance. To prevent gate oxidation, a selective oxidation process that uses N.sub.2 diluted in H.sub.2 /H.sub.2 0 ambient has been proposed. Selective oxidation is unproven for use in large scale manufacturing and impractical because of the difficulty in achieving sufficient oxidation at the bottom of the gate to remove etch damage while preventing the gate from oxidizing.
{ "pile_set_name": "USPTO Backgrounds" }
Medical instruments for endoscopic surgery generally have a hollow shaft, at the proximal end of which a handle is arranged, and at the distal end of which a tool is arranged that is composed of two jaw parts movable relative to each other. The tool, designed as a gripping, holding and/or cutting instrument, can be actuated via the handle. To be able to provide the greatest possible range of action within the often confined working conditions in which the tool is used, many endoscopic instruments are designed such that the tool can be angled with respect to the longitudinal axis of the shaft and also such that the tool is rotatable about the longitudinal axis of the shaft. A problem presented by the medical instruments known from the prior art, with these numerous possible adjustments of the tool tip and/or of the distal tool, is that the angled positioning of the tool tip relative to the proximal shaft region results in a forced movement of the jaw parts relative to each other and/or a rotation movement of the tool tip. To deal with this forced movement, various elaborate compensation mechanisms are known in practice. Although these compensation mechanisms ensure that the tool tip can be angled in a manner substantially free from forced movement, the structure is very complex and runs counter to the compact configuration that is required particularly in endoscopic instruments. A medical instrument of the type in question is known, for example, from DE 103 14 823 B3. In this known surgical instrument, a movement compensation element is provided which ensures that a rotation caused by the angled positioning of the tool tip is compensated.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, the reduction of weight of automobile bodies has increasingly been demanded with the aim of improving the fuel efficiency of automobiles. One of the measures to reduce an automobile body weight is to use a steel material having a high strength. However, as the strength of a steel material increases, the press forming of the steel material becomes increasingly difficult. This is because, generally, as the strength of a steel material increases, the yield stress of the steel material increases and, further, the elongation thereof decreases. To cope with the above problem, a steel sheet that makes use of strain induced transformation of retained austenite (hereunder referred to as “TRIP steel”), and the like, have been invented to improve elongation and these technologies are disclosed in Japanese Unexamined Patent Publications No. S61-157625, and No. H10-130776, for example. However, an ordinary TRIP steel sheet inevitably requires a large amount of Si to be contained, as a result the performance of chemical conversion treatment and hot-dip galvanization on the surface of the steel sheet deteriorates and, therefore, the members to which the steel sheet is applicable are limited. In addition, in a retained austenite steel, a large amount of C must be added in order to secure a high strength and, as a result, problems of welding, such as nugget cracks, arise. With regard to the performance of chemical conversion treatment and hot-dip galvanization on the surface of a steel sheet, inventions that aim to reduce the Si amount in a retained austenite TRIP steel are disclosed in Japanese Unexamined Patent Publications No. H5-247586 and No. 2000-345288. However, through the inventions, though an improvement of the performance of chemical conversion treatment and hot-dip galvanization, as well as ductility, can be expected, an improvement in the aforementioned weldability cannot be expected. Moreover, in the case of a TRIP steel of 980 MPa or more in tensile strength, the yield stress is very high and, therefore, the problem has been that the shape freezing property of the steel deteriorates at the time of pressing or the like. Further, in the case of a high strength steel sheet of 980 MPa or more in tensile strength, the occurrence of delayed fracture is a concern. Another problem is that, as a TRIP steel sheet contains a large amount of retained austenite, voids and dislocations are formed, in quantity, at the interface between a martensite phase formed by strain induced transformation and other phases in the vicinity of the martensite phase, hydrogen accumulates the interface and, then, delayed fracture occurs. Further, as a technology of reducing a yield stress, a dual phase steel (hereunder referred to as “DP steel”) containing ferrite has so far been known as disclosed in Japanese Unexamined Patent Publication No. S57-155329. However, the technology requires that a cooling rate after recrystallization annealing is 30° C./sec. or more and the cooling rate is insufficiently achieved in an ordinary hot-dip galvanizing line. Furthermore, the target tensile strength of the steel sheet is 100 kg/mm2 at the highest and therefore a high strength steel sheet having sufficient formability has not always been realized.
{ "pile_set_name": "USPTO Backgrounds" }
(a) Field of the Invention The present invention relates to a thin film transistor substrate for a liquid crystal display and a method for repairing the substrate. (b) Description of the Related Art Liquid crystal displays are at present the most commonly used flat panel displays. The liquid crystal display (LCD) is structured to have liquid crystal material injected between two substrates. A voltage of a different potential is applied to electrodes of the substrates to form an electric field such that the alignment of liquid crystal molecules of the liquid crystal material changes. Accordingly, the transmittance of incident light is controlled to enable the display of images. Among the different types of LCDs, the thin film transistor (TFT) LCD is the most typically applied configuration. In the TFT-LCD, thin film transistors and pixel electrodes are formed on one of the two substrates, and a color filter, a black matrix and a common electrode are formed on the other substrate, with the common electrode being formed over an entire surface of this substrate. The thin film transistors switch the voltage applied to the electrodes of the substrates. To improve the brightness of the TFT-LCD, a high aperture ratio of the substrates must be obtained. However, the black matrix with a large width in order to compensate for differences in alignment of the two substrates reduces the aperture ratio.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to an edge card connector, and deals more specifically with an improved housing design and compatible ejector mechanism for maintaining the ejector in a locked condition. Edge card connectors which electrically connect a daughter board to a mother board within the limited space of a computer or other like electronic device are well known. Usually the connector includes a housing provided with contacts which effect an electrical connection between the circuits of the connected mother and daughter boards. Mounted to the housing is at least one ejector mechanism which serves as a lever for moving the daughter board out of the housing upon pivoting of the ejector in a downward direction. However, such ejectors have a dual purpose in that located at the top end of each ejector is a cantilevered extension which is received within a correspondingly sized and shaped slot in the daughter board when the ejector is in its locked or upright condition. The ejector thus has dual purposes in that it also functions to mechanically lock the daughter card to the connector and hence to the mother board. It therefore plays an important role in keeping the mother and daughter boards locked, and preventing the boards from being inadvertently disconnected in the event that the daughter board is accidentally moved relative to the mother board. Accordingly it is an object of the present invention to provide an improved edge card connector of the type wherein the ejectors are configured for positive locking engagement with the housing when in a locked condition. Still a further object of the present invention is to provide an improved ejector and housing configuration whereby the housing and ejector are complimentarily configured to provide coacting overtravel stop surfaces disposed between a section of the ejector and the housing which with efficiency of space.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, a radiation imaging unit that is capable of not only storing a shot image as digital data but also shooting a moving image has been in wide spread use instead of a so-called X-ray imaging unit that uses a film in the medical industry. The radiation imaging unit uses a radiation called X-ray, for example. It is therefore necessary to reduce an exposure dose of X-ray with respect to a human body to be shot as much as possible. Accordingly, it is desired for an imaging section that detects the X-ray to have high sensitivity with respect to the X-ray and to have a high S/N ratio. Incidentally, Patent Literature 1 is a prior art literature that discloses a technology that is considered to be similar to the present disclosure.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to the field of performing downhole functions in a well, and is particularly applicable to downhole well completion tools. In completing a product recovery well, such as in the oil and gas industry, several downhole tasks or functions must generally be performed with tools lowered through the well pipe or casing. These tools may include, depending on the required tasks to be performed, perforating guns that ballistically produce holes in the well pipe wall to enable access to a target formation, bridge plug tools that install sealing plugs at a desired depth within the pipe, packer-setting tools that create a temporary seal about the tool and valves that are opened or closed. Sometimes these tools are electrically operated and are lowered on a wireline, configured as a string of tools. Alternatively, the tools are tubing-conveyed, e.g. lowered into the well bore on the end of multiple joints of tubing or a long metal tube or pipe from a coil, and activated by pressurizing the interior of the tubing. Sometimes the tools are lowered on cables and activated by pressurizing the interior of the well pipe or casing. Other systems have also been employed.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to an electrical connector terminal for use with an electrical connector. More particularly, the present invention relates to an electrical connector terminal which can be inserted firmly into an electrical connector and, once inserted, is unlikely to be easily pulled out of the electrical connector. 2. Description of Related Art Connecting devices for use in signal and/or electricity transmission and their fittings are generally referred to as electrical connectors. Nowadays, electrical connectors are extensively used in different industries so that the desired signals and/or electric power can be transmitted rapidly. In order to connect a cable to an electrical connector, an electrical connector terminal coupled with the cable is inserted into the electrical connector, which in turn provides protection for the terminal. While there are a good number of factors that influence the quality of an electrical connector, the key factor lies in the secureness of engagement between the connector and the terminal. Please refer to FIG. 1 for a conventional electrical connector terminal 30 to be engaged in an electrical connector by means of a plurality of resilient members 31. The resilient members 31—each having a cantilever configuration—must not be too long; otherwise, the resilient members 31 are subject to deformation which will compromise the strength of contact. Should the resilient members 31 be deformed, the terminal 30 is very likely to get loose and have problem engaging with the electrical connector firmly. Such incomplete engagement between the terminal 30 and the electrical connector tends to aggravate if the inner periphery of the electrical connector has a less than perfect circularity attributable to the processing process. In an extreme case, the terminal 30 and the cable coupled thereto may be exposed from and thus left unprotected by the electrical connector. Hence, it is an important research and development goal in the related industries to overcome the aforementioned drawbacks of the conventional electrical connector terminals and design an improved electrical connector terminal that can be inserted securely into an electrical connector and, once inserted, cannot be easily pulled out.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure is directed to an inside corner construction and more particularly to an inside corner insert which excludes water. To provide the context, consider residential construction in which an inside corner of exterior walls is defined at the front porch. The inside corner is formed at the vertical intersection of two side walls. Typically, the side walls are formed with planking, and the planking, whether horizontal or vertical, is terminated at the inside corner with some sort of decorative bead, strip or other added cover thereby enabling relatively neat construction. Ordinarily, the structure is framed with wood framing, typically 2.times.4 framing members being installed for support on the backside of the planking. Wood, however, in many parts of the U.S., is susceptible to termite destruction. In all parts of the country, wood is susceptible to rotting with age. To be sure, a high quality coat of paint with appropriate caulking applied at the seams will reduce the wood rot with water and might slow termite entry. However, both risks pose an aging problem. Recently, new types of planking have been furnished which have a much greater life. Indeed, the life of the planking has been extended by many years by the construction of the planking in sheet form which is generally known as fiber-cement siding. One brand of such siding is the product known as HARDIPLANK.RTM. lap siding, a registered trademark of James Hardie & Coy. Pty. This is a very successful product which is formed as 4.times.8 sheets in selected widths of up to 12' length lap siding. Primarily, it is formed of cement and has imbedded fibers in it which provide strength. It is a product furnished with a 50 year warranty. It has the advantage of being stable in size and will not swell or shrink with water content. Because it is stable in size, the paint on the skin is therefore maintained stable and there is substantially longer life to the paint because it will not crack or craze with dimensional changes inherent in wood. This is a very great advantage. Moreover, it is not digestible to termites and therefore can be deemed as a termite proof material. The enhanced life for the external, wood appearing planking which is formed of the fiber-cement product is especially attractive. Because it is a non-combustible product, resists moisture, is not susceptible to cracking, rotting or other deterioration, and is immune to termite invasion, the product has been substantially accepted and is able to cover most of the exterior of a building. Troubles, however, arise at wet areas where water gets behind the fiber-cement exterior, and starts a rotting problem. The inside corner of exterior walls at a porch or other inside corners about residential construction pose such a risk. Water splashed on the inside corner can readily enter at the corner and damage the wood framing members behind the corner. Then, problems arise ultimately requiring some kind of repair at the corner. Even where the repair is relatively simple, it cannot be done easily because there is an access problem. Access can be obtained by removing the fiber-cement planking on the exterior. Whether it is provided in the form of a board or large sheet, it is not easily removed and restored. Therefore, water damage repair is highly detrimental and usually expensive. Positioning a wood strip in the corner provides only superficial help. The strip can be a simple 1.times.2 trim strip, or 2.times.4 or other wood piece(s). Those strips, while not load bearing, are still exposed and will ultimately deteriorate and require replacement. Even with the addition of caulking material on the adjacent seams (one on the left and the second on the right), and caulking with high quality resilient caulk, protection can be obtained but only for a short while. Eventually, the caulking material will dry and become brittle allowing water to penetrate the wood components of the inside corner and cause the structure to rot The present disclosure sets forth an inside corner shield for exterior walls which can be incorporated at that location. Cosmetically, the shield is mostly not in view but, where in view, it can readily be painted or otherwise colored so that it provides the desired attractive nature. Moreover, the inside corner construction of the present disclosure excludes water entry so that the wood framing members on the backside of the walls and especially at the corner are protected from water damage. This protection is highly desirable so that the life of the frame will match the 50 year life of the fiber-cement planking on the exterior walls. The present apparatus comprises a W-shaped strip as more precisely defined below and is formed of vinyl, preferably PVC, and is fabricated with a color pigment in it (normally white). It is inserted at the corner so that the planking on the two corner walls overlaps secure the W-shaped strip firmly in place. It can readily be nailed but the nails do not define water entry points because the nails are covered after the planking has been installed. This will protect on the interior and prevent subsequent water entry. As will be detailed, the corner strip of the present disclosure is effective in all circumstances and will especially succeed in excluding rain, and yet can be used successfully with any color finish and any type of outer surface planking on the walls defining the inside corner.
{ "pile_set_name": "USPTO Backgrounds" }
In a continuously variable transmission for use in automotive vehicles (see, for example, Japanese Unexamined Utility Model Publication No. H3-84459) for example, a pair of conical pulleys (sheaves) 51, 52 are mounted to a driving shaft 50 shown in FIG. 10. One 51 of the conical pulleys is capable of being axially moved by a cylinder piston unit 53. The width of a groove defined between the conical pulley pair 51, 52 may be increased or decreased by such a movement of the pulley. A belt-like power transmission chain 56 is entrained between the conical pulley pair 51, 52. The groove width is increased or decreased whereby the power transmission chain 56 is moved toward the center of the conical pulleys 51, 52 or pushed toward outer sides of the pulleys, as making sliding contact with conical surfaces 51a, 52a of the conical pulleys 51, 52. The power transmission chain 56 is formed by bendably interconnecting unit members into an endless belt form by means of load pins 55 (pins for use in power transmission chain), the unit member having a structure wherein thin plates called link plates 54 are overlapped on one another. The load pin 55 is formed by machining opposite ends of a flat-plate member in conformity to the conical surfaces 51a, 52a of the pulleys 51, 52. The load pin is adapted to make contact with the conical surfaces 51a, 52a of the pulleys 51, 52 at the opposite end faces thereof when the power transmission chain 56 is entrained between the conical pulley pair 51, 52. The power transmission chain 56 is adapted to transmit power by way of frictional force based on the contact between the load pins and the conical surfaces. All the load pins 55 must be finished in an exact length and must have the opposite end faces finished in predetermined configurations. Therefore, the load pin 55 is subjected to a grinding process using a grinding wheel. FIG. 11 schematically shows the locations of members involved in the grinding process. FIG. 11(a) is a plan view and FIG. 11(b) is a side view. The grinding process is performed as follows. First, a bundle of load pins 55 are retained on a support portion 58 by means of a jig 57. In this state, one end face of each load pin is ground by a grinding wheel 59. Subsequently, the bundle is turned over and the other end face of each load pin is ground.
{ "pile_set_name": "USPTO Backgrounds" }
Many different types of digitally controlled printing systems have been invented, and many types are currently in production. These printing systems use a variety of actuation mechanisms, a variety of marking materials, and a variety of recording media. Examples of digital printing systems in current use include: laser electrophotographic printers; LED electrophotographic printers; dot matrix impact printers; thermal paper printers; film recorders; thermal wax printers; dye diffusion thermal transfer printers; and ink jet printers. However, at present, such electronic printing systems have not significantly replaced mechanical printing presses, even though this conventional method requires very expensive setup and is seldom commercially viable unless a few thousand copies of a particular page are to be printed. Thus, there is a need for improved digitally controlled printing systems, for example, being able to produce high quality color images at a high-speed and low cost, using standard paper. Ink jet printing has become recognized as a prominent contender in the digitally controlled, electronic printing arena because, e.g., of its non-impact, low-noise characteristics, its use of plain paper and its avoidance of toner transfers and fixing. Ink jet printing mechanisms can be categorized as either continuous ink jet or drop on demand ink jet. Continuous ink jet printing dates back to at least 1929. See U.S. Pat. No. 1,941,001 to Hansell. Conventional continuous ink jet utilizes electrostatic charging tunnels that are placed close to the point where the drops are formed in a stream. In this manner individual drops may be charged. The charged drops may be deflected downstream by the presence of deflector plates that have a large potential difference between them. A gutter (sometimes referred to as a "catcher") may be used to intercept the charged drops, while the uncharged drops are free to strike the recording medium. U.S. Pat. No. 3,878,519, which issued to Eaton in 1974, discloses a method and apparatus for synchronizing droplet formation in a liquid stream using electrostatic deflection by a charging tunnel and deflection plates. U.K. Patent Application GB 2 041 831A discloses a mechanism in which a deflector steers an ink jet by the Coanda (wall attachment) effect. The degree of deflection can be varied by moving the position of the deflector or by changing the amplitude of perturbations in the jet. In commonly assigned, co-pending U.S. patent application Ser. No. 08/954,317 entitled CONTINUOUS INK JET PRINTER WITH ASYMMETRIC HEATING DROP DEFLECTION filed in the names of Chwalek, Jeanmaire, and Anagnostopoulos on Oct. 17, 1997, now U.S. Pat. No. 6,079,821, an ink jet printer includes a delivery channel for pressurized ink to establish a continuous flow of ink in a stream flowing from a nozzle bore. A heater having a selectively-actuated section associated with only a portion of the nozzle bore perimeter causes the stream to break up into a plurality of droplets at a position spaced from the heater. Actuation of the heater section produces an asymmetric application of heat to the stream to control the direction of the stream between a print direction and a non-print direction. It was also disclosed in the above-cited co-pending application that, using semiconductor VLSI fabrication processes and equipment, and by incorporating addressing and driving circuits on the same silicon substrate as the nozzles, a dense linear array of nozzles can be produced. Such arrays can be many inches long and contain thousands of nozzles, thus eliminating the need to scan the print head across the page. In addition, ink jet printers may contain multiple arrays, all of which may be located on the same silicon substrate. Each array could then emit a different color ink. Full width and full color ink jet printers can thus be manufactured, which can print at high speeds and produce high quality color prints.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to exercise devices and, more particularly, to an exercise system that includes weight devices attachable to a shoe for providing physiological benefits to a wearer of the augmented shoe. Individuals desiring to strengthen and train the muscles in their ankles and legs may engage in weight training using a weight system in a gym or home. If, however, the desire is for aerobic exercise, the person may engage in running, jogging, or other sports. Despite the efficacy of each of these training regimens, a person desiring both results may find it difficult to find the time to participate in both weight training and aerobic exercise. Various devices have been proposed in the art for attaching weights to shoes in order to provide weight exercise to a person's legs both during athletic training or just casual activity. Although assembly effective for their intended purposes, the existing devices or proposals either require attachment in a way that actually inhibits normal walking/running or do not provide means for quickly and removably anchoring an attachment member to the shoe and attaching varying weights and quantities of weight members to the attachment strip. Therefore, it would be desirable for a person to obtain physiological benefits by exercising and performing everyday tasks with weighted footwear. Further, it would be desirable to have an exercise system of weight training that attaches to athletic shoes. In addition, it would be desirable to have an exercise system that enables a variable amount of weight to be attached or removed easily and quickly.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to systems for interlocking two parts, and more specifically, it relates to a part retention system for easily locating and affixing an end cap to a bracket of a slidably adjustable seat position adjuster. Retaining systems for interlocking mating parts of an assembly play an important role in the manufacture of many everyday items. Such systems are utilized in a wide variety of applications. Many industries, particularly the automotive industry, employ retaining systems to interlock parts of an assembly, secure ancillary components to a larger assembly, and add decorative or trim pieces to various more functional components. For example, automotive manufacturers often add trim pieces to cover a seat adjuster mounting bracket and bolt. The trim cover enhances the overall appearance of the seat adjuster track, and also covers up any damaging sharp edges or protrusions of the bracket and/or attaching bolt. Many types of retaining systems are known and disclosed in the prior art. For example, Japanese Patent 3-55331 discloses a retaining system including locking detents which are attached to a non-visible side of a cover. This type of arrangement exhibits two inherent drawbacks: a) unsightly sink marks can appear on the visible surface of a molded part due to the abundance of material concentrated in one area, and b) tolerances must be tightly controlled to maintain appearance and proper fit between the parts. A retaining system disclosed in Japanese Patent 4-123739 utilizes detents formed on flexible ribs to lock to both sides of a tab. However, the locking tab has a triangular cross-section with a complex shape and the flexible ribs are connected at their ends. Product of this structure requires a complex manufacturing process. A retaining system which incorporates a dual detent locking device is disclosed in Japanese Patent 63-117619. This system requires a mating part having a cut out or separately inserted portion to interlock with a part incorporating the dual detents. Thus, it would be desirable to provide a retaining system which minimizes the tolerance precision and the amount of material concentrated behind the visible surfaces of molded parts, resulting in cost savings per part. It would also be desirable to provide a retaining system which permits easy installation for areas of low clearance and which is self-locating. The present invention is directed to a part retainer system for attaching an ancillary part to a component or part of an assembly. The part retainer includes a cap having a pair of flexible guide ribs formed on the inner surface of the cap. Detents extend from the guide ribs to engage a tab formed on the component to which the cap is attached. The guide ribs are deformable. At installation, the guide ribs slide along the tab to permit the detents to pass over the tab. Once the tab passes the detents, the ribs flex toward each other, such that the detents lock the tab in place, resulting in the secure attachment or interlocking of the components. The present invention alleviates the concern for critical tolerance control, through application of flexible ribs which, by their nature, do not require the strict tolerances of the prior art in order to achieve the same objective. These ribs extend normally along the non-visible surface of the cap, allowing the detents, and their inherent high mass concentration, to be spaced away from the visible appearance-tuned surface. This arrangement reduces the potential in molded parts for unsightly sink marks. Moreover, the need for tight tolerances in the present invention is reduced because an imprecise fit between the guide ribs and locking tab on the mating part would be accommodated by a greater variable spacing between the flexible ribs. The present invention combines all of the aforementioned advantages while bypassing the difficulties. The present invention incorporates self-locating features, secure retention, and efficient manufacture in a low-cost fashion by integrating the retention system directly into the attached or interlocked parts. The result is a retaining system with reduced costs, both in the manufacture and assembly of the interlocked parts.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates generally to beam members used on concrete forming apparatus and, more specifically, to a lightweight steel beam member of trapezoidal cross section having a top portion that is penetrable by a hand driven nail for the attachment of sheeting to the beam member. Concrete forming systems are well known and widely used in the construction of diverse concrete structures. Certain of these systems make use of beam sections or soldiers as upright and horizontal structural members, inclined braces, columns, shores, walers, and the like. One such beam section or soldier is described in U.S. Pat. No. 4,964,256. In concrete forming systems utilizing beam sections and in a large variety of other types of concrete forming systems, sheeting or decking is frequently used to create a substantially flat concrete forming surface for the forming of horizontal floor or roof sections and vertical wall sections. Such forms employ a plurality of beam members placed across and secured to other structural members of the concrete forming system such as the beam sections or soldiers described above. An example of a typical prior art beam member is described in U.S. Pat. No. 3,899,152. The described prior art beam member is formed of extruded aluminum and has an upper, inverted top hat shaped portion which receives a strip of wood into which the sheeting or decking is nailed or screwed. While the extruded aluminum beam members are lightweight and, with the inclusion of the wooden nailing strip, have satisfactory deflection resistance, aluminum is expensive and the wooden nailing strip adds to the weight of the assembled beam member.
{ "pile_set_name": "USPTO Backgrounds" }
Non-volatile memory modules are commonly found in computing devices for recording the usage of components, including consumable components having a limited life span. For instance, non-volatile memory modules are common in imaging and printing devices, such as in multifunction printers, for recording the use of components such as fusers, accumulation belts, and the like, and for recording the use of consumables such as print cartridges. In imaging or printing devices, for instance, usage may be recorded based upon the number of pages printed by the device, or based upon the partial or full depletion of the print cartridges. Such usage counts are helpful in a variety of ways, including for billing purposes and in monitoring the status and/or use of consumable components. As computing devices have advanced and become more complex, the number of non-volatile memory modules included within each device has increased. The speed with which each non-volatile memory module must be updated or read in a computing device has also increased. Continuing with the illustrative example of printing and imaging devices, the speed and page rates of these devices are constantly improving. Therefore, not only do the contents of a greater number of non-volatile memory modules have to be updated, but the contents of these memory modules must be updated in a shorter amount of time to keep up with the faster page rates. In imaging and printing devices, because conventional many memory modules have relatively long wait times for updating, faster page rates present difficulties in updating each of the non-volatile memories in a device in a timely manner. In addition, non-volatile memory modules (e.g., EEPROM, NOR flash memory, NAND flash memory, etc.) in computing devices may experience degradation during operation, thereby necessitating error handling to mitigate interruption of operation of the memory modules. Further, non-volatile memory modules may be physically part of removeable and/or consumable components of a computing device, such as printer cartridges. Because such removable and/or consumable components should be easily installed and removed by users, there is a cost premium associated with each electrical connection between the computing device and it's removeable and/or consumable component, as exists, for instance, with a printing device and a printer cartridge. By utilizing multi-level or analog level communication techniques appropriately, the number of these electrical connections can be minimized, thereby helping to increase reliability and decrease cost. Conventional protocols do not sufficiently handle all of these problems discussed. Thus, there remains an unsatisfied need in the industry for addressing schemes, command protocols, and electrical interfaces for quickly updating non-volatile memories, such as in non-volatile memory modules utilized in imaging and printing devices.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method of treating retrovirus infections, such as HIV and also herpesvirus infections such as human cytomegalovirus (HCMV) infections, and diseases caused by such infections, such as AIDS, ARC and related expressions of human immunodeficiency virus (HIV), such as lymphadenopathy, by administering triciribine, triciribine 5xe2x80x2-monophosphate, the DMF adduct of triciribine, or a pharmaceutically acceptable salt thereof to a patient suffering from HIV infection. 2. Discussion of the Background Acquired immunodeficiency syndrome (AIDS) and AIDS related complex (ARC) result from infection with human immunodeficiency virus (HIV). The need for an effective treatment of AIDS, ARC and lymphadenopathy is great, due to the continuing increase of HIV infections and consequent opportunistic infections such as HCMV in the population. Current epidemiologic data show that infection with HIV leads to AIDS in over 90% of affected individuals within a ten-year period. Tragically, the number of individuals already infected means that the number of AIDS cases will continue to increase for the foreseeable future. AZT (zidovudine) has been recommended for the treatment of AIDS and ARC. However, results are less than satisfactory. In particular, AZT therapy is known to cause severe side effects, such as anemia. In addition, there are strains of HIV-1 which are resistant to treatment with AZT. Thus, there remains a need for an effective treatment of HIV infection and AIDS, ARC, and lymphadenopathy. Human cytomegalovirus (HCMV) is responsible for many life-threatening infections in immunosuppressed patients such as those receiving organ or tissue transplants, cancer patients, burn patients and those afflicted with AIDS. In addition, intrauterine HCMV infections are second only to Down""s syndrome as a known cause of mental retardation. Ganciclovir (DHPG) is the only drug available for treatment of some of those infections including CMV gastrointestinal infections and CMV retinitis. Unfortunately, prolonged therapy with ganciclovir causes serious side effects, such as neutropenia, which limits its use. Recently, ganciclovir-resistant resistant strains of HCMV have been isolated from AIDS patients undergoing ganciclovir treatment. Thus, there also remains a need for an effective treatment of HCMV infection. Accordingly, one object of the present invention is to provide a novel method for the treatment of retrovirus infections. It is another object of the present invention to provide a method of treating HIV infection. It is another object of the present invention to provide a method of treating HCMV infection. It is another object of the present invention to provide a method of treating AIDS. It is another object of the present invention to provide a novel method for treating ARC. It is another object of the present invention to provide a novel method for treating lymphadenopathy. These and other objects, which will become apparent during the following detailed description have been achieved by the inventors"" discovery that AIDS, ARC, and lymphadenopathy may be treated by administering an effective amount of triciribine, triciribine 5xe2x80x2-phosphate, the DMF adduct of triciribine, or pharmaceutically acceptable salts thereof, to a patient in need thereof. Triciribine (TCN), triciribine 5xe2x80x2-phosphate (TCN-P), and the DMF adduct of triciribine (TCN-DMF) are known compounds having the formulae: wherein: TCN may be synthesized as described in Tetrahedron Letters, vol. 49, pp. 4757-4760 (1971), which is incorporated herein by reference. TCN-P may be prepared as described in U.S. Pat. No. 4,123,524, which is incorporated herein by reference. TCN-DMF is described in INSERM, vol. 81, pp. 37-82 (1978). Triciribine is currently in phase II clinical trials as an anticancer drug. Thus, the present invention relates to a method of treating retrovirus infections, such as HIV and HCMV infections, and diseases, such as AIDS, ARC, and lymphadenopathy, said method comprising or consisting of administering an effective amount of TCN, TCN-P, TCN-DMF, or a pharmaceutically acceptable salt thereof to a patient in need thereof. Although the exact dosage of TCN, TCN-P, TCN-DMF, or a pharmaceutically acceptable-salt thereof to be administered will vary according to the size and condition of the patient, a suitable dosage range is 15 to 350 mg/m2 of body surface, preferably 15 to 96 mg/m2 of body surface, most preferably 25 to 50 mg/m2 of body surface. The TCN, TCN-P, TCN-DMF, or pharmaceutically acceptable salt thereof may be administered according to the present invention by any suitable route, such as intravenously, parenterally, subcutaneously, intramuscularly, or orally. The TCN, TCN-P, TCN-DMF, or pharmaceutically acceptable salt thereof may be administered in any conventional form such as a pharmaceutical composition. Suitable pharmaceutical compositions are those containing, in addition to TCN, TCN-P, TCN-DMF, or pharmaceutically acceptable salt thereof, a pharmaceutically acceptable carrier, such as water, starch, sugar, etc. The composition may also contain flavoring agents and may take the form of a solution, tablet, pill, capsule, etc. The ratio of the weight of TCN, LCN-P, TCN-DMF, or pharmaceutically acceptable salt thereof to the weight of the pharmaceutical composition may, of course, vary but is suitably within 1:1 to 1:5000. It is to be understood that the present method includes embodiments in which TCN, TCN-P, TCN-DMF, or pharmaceutically acceptable salt thereof is administered to a patient who is also receiving AZT. The present compound(s) and AZT may be administered to the patient in a single composition comprising both the present compounds and AZT. Alternatively, the present compounds) and AZT may be administered separately. Further, the present method includes embodiments in which AZT is administered, without TCN, TCN-P, TCN-DMF, or a pharmaceutically acceptable salt thereof, for a suitable time period of hours, days, or weeks, and the AZT therapy is either preceded or followed by administration of TCN, TCN-P, TCN-DMF, or a pharmaceutically acceptable salt, either with or without AZT. For purposes of the present invention, the term pharmaceutically acceptable salt thereof refers to any salt of TCN, TCN-P, or TCN-DMF which is pharmaceutically acceptable and does not greatly reduce or inhibit the activity of TCN, TCN-P, or TCN-DMF. Suitable examples for TCN and TCN-DMF include acid addition salts, with an organic or inorganic acid such as acetate, tartrate, trifluoroacetate, lactate, maleate, fumarate, citrate, methane sulfonate, sulfate, phosphate, nitrate, or chloride. Suitable examples of salts for TCN-P include those in which one or more of the acidic phosphate hydrogens has been replaced with an ion, such as sodium, potassium, calcium, iron, ammonium, or mono-, di- or tri-lower-alkyl ammonium, in addition to the acid addition salts described above. It is to be further understood that the terms TCN, TCN-P, TCN-DMF, and pharmaceutically acceptable salts thereof include all the hydrated forms of these compounds as well as the anhydrous forms. The present method has been found to exhibit the following advantages: 1) Like zidovudine, triciribine is active against both clinical and laboratory stains and isolates of HIV-1 and HIV-2 at concentrations which are not overtly cytotoxic in uninfected cells. 2) Triciribine is active against strains of HIV-1 which have become resistant to zidovudine as a consequence of long term use of zidovudine in patients. 3) Triciribine is active against both HIV and HCXV whereas zidovudine is only active against HIV and ganciclovir is only active against HCKV and other herpesviruses. 4) Triciribine acts by a biochemical mechanism totally different from zidovudine and other antivirals active against HIV and HCMV. 5) The cytotoxicity of triciribine is not synergistic with that of zidovudine in clinically useful dose ranges. Thus, TCN, TCN-P, and TCN-DMF have been found to inhibit HIV-1 induced RT, p24 core antigen, and infectious virus production in a dose dependent manner using acutely infected H9 and chronically infected H9-IIIB and U1 cells. In a microtiter XTT assay, TCN exhibits an IC50 of 0.26-0.46 xcexcM against HIV-1RF, HIV-IIIB, and HIV-1MN while TCN-P has an IC50 of 0.02-0.03 xcexcM against these isolates. TCN and TCN-P also are active against a panel of HIV-1 and HIV-2 isolates measured by XTT assay. Activity was also demonstrated in fresh human peripheral blood lymphocytes and macrophages infected with clinical isolates of HIV-1, TCN and TCN-P inhibited HIV in chronically infected cells (U1 and CEM) as measured by a reduction in the number of syncytia formed in microtiter assays. HIV resistant to AZT inhibition did not show cross resistance to TCN or TCN-P. In vitro activity was similarly detected against Rauscher MuLV in an UV-XC plaque reduction assay with an observed IC50 of 0.12 xcexcM for TCN and 0.07 xcexcM for TCN-P. RT inhibition assays utilizing TCN, TCN-monophosphate, and TCN-triphosphate have demonstrated that the compounds do not act via inhibition of this enzyme. Of course, the present invention may be practiced in various embodiments which exclude any step or element not expressly described herein. Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.
{ "pile_set_name": "USPTO Backgrounds" }
Surface mount device (SMD) and thru-hole component packages that dissipate high power levels, such as Light Emitting Diodes (LEDs), present unique thermal problems in the design of printed circuit boards (PCBs). Component manufacturers provide tabs, slugs, or other metal protrusions from their packages to help remove the heat from the junction of the device. The challenge at the next level of design is sinking the heat away from the component to a metal heat sink. When designing PCBs to include devices such as surface-mounted LEDs, designers may be forced to use more expensive metal core boards in order to dissipate the heat generated by the LEDs. What is needed is a method of manufacturing a non-metal core board with equivalent or superior thermal performance to be able to sink away the large amounts of heat associated with SMD components such as LEDs with high power levels.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method for local application of an active preventive and/or therapeutic agent on teeth and the tissues surrounding the teeth in the oral cavity, and a composition for use with this method. By experimental investigations and practical application it has been proved that certain chemical substances when applied locally are effective agents in preventing the occurrrence or reducing the spreading of pathological alterations in the teeth and surrounding tissues. An example of such a substance is fluorine which is used to a great extent in odontology, for instance for painting the teeth with the object of preventing caries. Another example is chlorohexidine which is used locally for both therapeutic and preventive purposes. For fluorine treatment, for example, limited sections of the dental arch, usually a quadrant corresponding to 8 - 5 teeth in the upper or lower jaw, are painted or coated using pieces of cotton or gauze which have been dipped in a fluorine solution of suitable concentration, after which the fluorine solution applied in this way is permitted to influence the tooth tissue for a certain period of time. During this time of exposure it is necessary to prevent mouth saliva and lips, cheeks and tongue from coming into contact with the area which has been treated. For this purpose special drying arrangements are used such as the mounting of saliva suction means, the application of wadding dryer or other steps such as the application of cofferdam. These steps are extremely uncomfortable for the patient and are used to prevent saliva from reaching the tooth surfaces since by diluting or rinsing off the active substance the saliva reduces or destroys the intended effect of the treatment. This effort to avoid saliva coming into contact with the tooth surfaces thus also involves keeping the patient under constant observation during the treatment. Another drawback with the described method of application is that there is also a risk of the patient swallowing the fluorine solution or of the fluorine solution coming into contact with other parts of the mouth than those parts intended for treatment. Only after treatment of one section has been completed can preparations for and treatment of the next section be undertaken until all teeth have been treated with the fluorine solution. It will be understood from the above that the method of application described above which has been in general use hitherto is both timeconsuming and laborious. There is also a factor of uncertainty as to the result of the treatment, particularly in the case of patients who are generally difficult to treat or children who are very lively.
{ "pile_set_name": "USPTO Backgrounds" }
This invention, which has both civilian and military values, pertains to a stealth, layer-effective (or layer-effect), sealing-reaction (stealth-reaction) liner, useable adjacent the inner surface area of a vehicle's synthetic-fuel tank, and structured to provide a rapid and robust, self-sealing, anti-leakage reaction to a tank-wall puncture wound, such as a bullet wound. More specifically, this invention pertains to such a liner which is designed, until such a puncture wound, or breach, occurs, and although always in direct “normal” contact with synthetic fuel, to be normally “dormant” within the fuel-containing tank environment in what might be thought of as a “stealth mode”, but which is effective immediately, through interactive reaction to and with breach-produced, leaking fuel, to react, in a realm within the liner formed as an inner, or central, initially shrouded layer region containing synthetic-fuel-reactive liquid-imbiber beads, to such leakage quickly to seal such a wound. A preferred and best-mode embodiment of the invention is described herein generally in a military setting, and in relation to a particular, illustrative, synthetic vehicle-motor fuel referred to as FT synthetic fuel, made by a South African company named Fisher-Tropsch—a fuel which is now being used in many military-vehicle fuel tanks. The invention specifically takes its very useful place in an environment where, as is now progressively the case, conventional “natural” motor fuels are being replaced by synthetic fuels. It has been conventional practice in the past to line military fuel tanks with an inside lining, or bladder, formed of a defined-thickness natural rubber material, and always, heretofore, in the context of the relevant container being one which holds conventional, or “natural” engine fuel. In such a setting, it is the practice to furnish an additional barrier layer which resides between the natural-rubber lining, or bladder, and the fuel, and specifically a barrier layer formed of a material which is nonreactive with regard to conventional natural motor fuel, in order to isolate the natural-rubber lining from direct, normal contact with fuel contained in such a tank. With regard to puncture wounds created in such a setting, i.e., one where natural petroleum-based fuel is employed, it is definitively the case that, when a puncture breach occurs (a) in such a tank, (b) in the natural-rubber tank lining structure, per se, and (c) in the lining-protective barrier-layer material (thus to expose the natural-rubber lining structure to direct contact with that fuel), leaking fuel successfully reacts with the natural-rubber lining to initiate a reaction which is usually effective to seal such a wound. However, and as has been suggested above, there has recently been developed a synthetic fuel, such as the synthetic fuel known as the above-mentioned FT synthetic fuel which changes the picture regarding this conventional fuel-leakage issue. To the surprise of everyone involved with decisions implemented to utilize this synthetic fuel, this fuel does not react with conventional natural-rubber-based anti-leakage liners on the occurrence of a puncture wound to invoke the anticipated liquid-imbibing and material-swelling wound-sealing action. Explaining at this point certain terminology and phraseology which we employ herein, and to some extent have already employed above, the terms “stealth” and “stealth-reaction” are used to emphasize the fact that our liner, i.e., its body, is, until breached by a wound which exposes the above-mentioned, special, normally shrouded, internal “layer region” possessing the also-mentioned liquid-imbiber beads, inherently “silent” about its capability to respond to the onset of a fuel leak. Normal direct exposure of the un-breached (i.e., not yet penetrated) liner body does not trigger a response reaction. The liner does not, as distinguished sharply from structures in the prior art, require the added material cost, the added labor cost, and/or the added fuel-tank room-occupancy “cost” of any additional “guard” barrier against normal fuel contact. Additionally, we refer to our liner as being “layer-effective”, or as possessing a “layer-effect”, in order to point out that while the liner body can be viewed as possessing layers, or regions, (preferably three) which furnish distinct, differential, but layer-cooperative, performances, the internal interfaces between these regions preferably (though not absolutely necessarily) take form of material continuities (i.e., no discontinuities) respecting the main elastomeric material which defines the principal, constituent element of the liner body. An important consequence of this preferred, “material-continuity” construction is that the entire body of elastomeric material responds with cooperative, distributed compression and tension, as dictated by wound-healing circumstances, when a wound exposes the central liquid-imbiber beads to fuel contact, with such contact producing the immediate result of rapid fuel imbibing and material swelling by the beads to seal the wound and stop fuel leakage. The entire transverse (across the layer regions) body portion of liner elastomeric material adjacent such a wound is, under leak-reaction circumstances, in compressive and tensive cooperation in aid of wound closure and sealing. Layer regions on opposite sides of the central, imbiber-bead-containing region, function as cooperative, compression-aiding regions enhancing the swelling, leak-sealing action which is created in the central liner region. The present invention addresses the synthetic fuel-leak situation by proposing a unique, inside-tank (container), rubber-based (pure natural, or blended), or alternatively polyurethane-based or polyurea-based, liner which is designed specifically to react, as a result of a puncture wound, with synthetic FT fuel to create the desired liquid-imbibing and material-swelling wound-sealing actions. This newly proposed lining has the mentioned “stealth” characteristic, which, without requiring any additional barrier-layer material, and with the liner per se thus normally being fully in contact with tank-held synthetic fuel, prevents the liner from reacting normally, unexpectedly, and undesirably with such fuel, and does so until a leak-creating puncture breach occurs in the relevant tank wall and the liner body. The liner of this invention fundamentally, and in its preferred and best-mode form, takes the form of a functionally layered (a layer-effective) body structure, preferably without any distinct inter-layer discontinuity boundaries, or distinct interfaces, which includes (a) at least two outer layer regions formed of pure natural rubber (or a natural rubber blend) without any additives, and (b), effectively sandwiched between these outer layer regions, an intermediate layer region which (1) utilizes the same outer-layer-region “rubber” material, but which (2) also includes an embedded plurality of synthetic-fuel-reactive liquid-imbiber beads, such as those identified with the product designator IMB230300, made by Imbibitive Technologies America, Inc. in Midland, Mich. In this newly proposed liner structure, since the basic liner material per se, that is, the material other than the embedded imbiber-bead material, is nonreactive directly to synthetic fuels, it may be placed, without any additional barrier structure, directly inside a fuel tank, normally against the inside surface, or surfaces, of the wall of that tank, and be normally fully exposed to synthetic fuel contact, without there being any risk of an undesirably triggered interaction between the synthetic tank fuel and the liner. An extra installation of a protective barrier structure is, accordingly, not required. It is only when a puncture wound occurs that exposes the inner (imbiber-bead) layer region of this liner to fuel leakage, that a reaction occurs between leaking fuel and the then exposed imbiber beads. This reaction triggers a liquid-imbibing and material-congealing swelling action which rapidly functions to close the leak-initiating wound. The layer regions of liner material which are disposed on opposite sides, so-to-speak, of the central layer region which contains the liquid-imbiber beads, function, once a fuel-contact reaction begins with the liquid-imbiber beads, to furnish a compressive pressure around the area where reaction is occurring, thus enhancing the sealing ability of the liner structure. As an illustration of one of a variety of appropriate manufacturing ways, an expanse of this newly proposed liner material may be created by the production of (1) independent, suitably thick mats of pure natural (or blended) rubber material, and (2) independent, suitably thick mats of the same natural or blended rubber material which are imbiber-bead-imbedded, which independent mats are then pressure-and-heat-consolidated into a unified, three-effective-layer lining structure. Pressure and heat consolidation function to “weld” the three layer regions into a unit lacking material discontinuities between the layer regions The assembled liner structure is then edge cut to appropriate shapes for fitting against the inside wall(s) of a selected fuel tank/container. Another production approach which could be used, and which will create a modified form of liner, involves the use of not necessarily a natural (or blended) rubber material, but rather of an elastomeric polyurethane or polyurea material, and particularly such a material which is susceptible to casting in stages that are effective to build a layered structure such as that which has just been generally described where natural, etc. rubber is employed. Casting of plural layer regions, with appropriately shortened timings maintained between casting “pours”, results in chemical interfacial bondings occurring between these regions to create the preferred, desired liner-body material continuity. The various features and advantages which are offered by the liner structure of the present invention will now become more fully apparent as the description which shortly follows is read in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
In a motor vehicle, an onboard speech recognition system can be provided, for example, for voice control of vehicle components. A user can then speak a voice command, for example, which is provided to the onboard speech recognition system as voice input. The system then generates a recognition result for the voice input, which describes or indicates speech content identified in the voice input, which is to say the voice command. However, due to limited processing resources, the recognition vocabulary of an onboard speech recognition system is restricted. Moreover, the statistical recognition model, for example a hidden Markov model (HMM), is also limited by the processing power available to the motor vehicle. For this reason, what is known as hybrid speech recognition may be provided in a motor vehicle, in which an online speech recognition service is additionally used via a communication link. This service is likewise provided with the voice input via the communication link. The online speech recognition service can be implemented by a server of the Internet, for example. The recognition result of the speech recognition service is then provided in the motor vehicle again via the communication link. However, two recognition results are now available in the motor vehicle, these being that of the onboard speech recognition system and that of the online speech recognition service. These two recognition results are provided to a decision unit or an arbiter unit, which initially, based on a comparison, ascertains a comparison result that indicates whether the two recognition results deviate from one another. Depending on this comparison result, a decision can then be made as to whether one of the recognition results is to be used. In general, the recognition result of the online speech recognition service is more reliable, and thus to be preferred, since the online speech recognition service has more processing resources, and consequently a more extensive recognition vocabulary, as well as a more complex statistical recognition model available than the onboard speech recognition system. In this way, an incorrect recognition result of the onboard speech recognition system can be identified and suppressed when a communication link exists. Still, it may be necessary at times to rely exclusively on the onboard speech recognition system in the motor vehicle since the communication link has been interrupted or is not available. The communication link can be formed, for example, based on a mobile communication connection and/or a wireless local area network (WLAN) connection. If such a wireless connection is presently not possible, the online speech recognition service also cannot be utilized in the motor vehicle. Onboard speech recognition systems for voice control are known from DE 10 2009 051 508 A1 and DE 10 2008 025 532 A1, for example. So as to conduct a plausibility check of a recognition result of an onboard speech recognition system, it is known from DE 10 2005 018 174 A1 to select the result that provides the best match to entries of a database from multiple possible recognition results. It is the object of the present disclosure to conduct a plausibility check for a recognition result of an onboard speech recognition system of a motor vehicle when it is presently not possible to check the result by way of an online speech recognition service. The object is achieved by the subject matter of the independent claims. Advantageous embodiments of the present disclosure are described by the dependent claims, the following description, and the figures.
{ "pile_set_name": "USPTO Backgrounds" }
Embodiments of the present invention relate to printers and, more particularly to a printhead for a printer. Printers typically have a printhead mounted on a carriage that scans back and forth across the width of a sheet of paper, as the paper is fed through the printer. Fluid from a fluid reservoir, either on-board the carriage or external to the carriage, is fed to fluid ejection chambers on the printhead. Each fluid ejection chamber contains a fluid ejection element, such as a heater resistor or a piezoelectric element, which is independently addressable. Energizing a fluid ejection element causes a droplet of fluid to be ejected through a nozzle to create a small dot on the paper. The pattern of dots created forms an image or text. Hewlett-Packard is developing printheads that are formed using integrated circuit techniques. A thin film membrane, composed of various thin film layers, including a resistive layer, is formed on a top surface of a silicon substrate, and an orifice layer is formed on top of the thin film membrane. The various thin film layers of the thin film membrane are etched to provide conductive leads to fluid ejection elements, which may be heater resistor or piezoelectric elements. Fluid feed holes are also formed in the thin film layers. The fluid feed holes control the flow of fluid to the fluid ejection elements. The fluid flows from the fluid reservoir, across a bottom surface of the silicon substrate, into a trench formed in the silicon substrate, through the fluid feed holes, and into fluid ejection chambers where the fluid ejection elements are located. The trench is etched in the bottom surface of the silicon substrate so that fluid can flow into the trench and into each fluid ejection chamber through the fluid feed holes formed in the thin film membrane. The trench completely etches away portions of the substrate near the fluid feed holes, so that the thin film membrane forms a shelf in the vicinity of the fluid feed holes. One problem faced during development of these printheads is that the conductive leads in the thin film membrane extend over the trench and can develop cracks when the printhead is flexed or otherwise subjected to stress. Stresses can occur during assembly and operation of the printhead. When cracks propagate and intersect active resistor lines, they can cause a functional failure in the printhead. A crack that initially incapacitates a single resistor allows fluid to access the aluminum conductor. Aluminum corrodes quickly in fluid, particularly when supplied with an electrical potential to drive galvanic reactions. As a result, the problem that started with a single resistor can quickly spread to multiple nozzles or the entire printhead, as the corrosive fluid attacks the power bus. Thus, there is a need for an improved printhead that maintains its reliability throughout assembly and operation. Described herein is a printhead having a printhead substrate and a thin film membrane. The printhead substrate has at least one opening formed therein for providing a fluid path through the substrate. The thin film membrane is formed on a second surface of the substrate and extends over the opening in the substrate. The thin film membrane includes a plurality of fluid feed holes. Each fluid feed hole is located over the opening in the substrate. The thin film membrane further includes a plurality of fluid ejection elements and a plurality of conductive leads to the fluid ejection elements. All portions of the fluid ejection elements and conductive leads overlie the substrate.
{ "pile_set_name": "USPTO Backgrounds" }