text
stringlengths 2
806k
| meta
dict |
---|---|
Phase change materials (“PCM”) have been added to compositions for a number of years, predominantly in the field of thermal energy storage. For example, Chahroudi et al., in U.S. Pat. No. 4,259,401, discloses both structural and non-structural building products incorporating phase change materials. These products are made of a rigid porous matrix structure that is impregnated with the phase change material or which may otherwise contain the phase change material. Three classes of phase change materials are disclosed by Chahroudi et al.: hydrated salts; waxes; and clathrates. Cements, plasters or thermosetting materials are said to be able to form the rigid matrix.
Salyer in a number of patents discloses materials for use in thermal energy storage in buildings. For example, U.S. Pat. No. 4,797,160 issued to Salyer describes compositions for use in thermal energy storage of buildings which contain crystalline, straight chain, alkyl hydrocarbons as phase change materials. The materials of Salyer include cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.
Salyer in U.S. Pat. No. 5,053,446 discloses a composite said to be useful in thermal energy storage. The composite is formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein and the polyolefin is thermally form stable. The composite of Salyer is said to be useful in forming pellets, sheets or fibers having thermal energy storage characteristics.
U.S. Pat. No. 5,565,132 issued to Salyer describes a thermoplastic, moldable, non-exuding phase change material in the form of a composite useful for thermal energy storage. The composite is said to be preferably a solidified melt mixture of a polyolefin resin, and ethylene copolymer, silica particles and a fatty acid, fatty acid ester, primary alcohol or hydrocarbon phase change material. For a microwave heating capability, a microwave absorbing additive may be added as a fifth major ingredient. The composite of Salyer is said to be able of being formed into a variety of configurations such as pellets, sheets, rods, tubes, plugs for hollow core cement blocks, films, and fibers, all for thermal energy storage uses.
Salyer in U.S. Pat. No. 5,885,475, describes a fiber composition made of a fiber forming polymer and a phase change material integrally incorporated throughout the fiber forming polymer which is either a polyalkylene oxide, polyalkylene ether or mixture of various polyolefins.
U.S. Pat. No. 6,265,457, issued to Dolgopolsky et al., discloses an isocyanate-based polymer foam matrix having disposed therein a particulate material having an enthalpy of endothermic phase transition of at least about 50 J/g. The particulate material is said to act as a heat sink and undergo an endothermic phase change by absorbing a significant portion of the heat of reaction liberated during the process of producing the foam. This heat absorption is said to improve the safety of the process by lowering the maximum exotherm experienced by the foam. There is no teaching or suggestion of utilizing the material of Dolgopolsky et al. with other polymers.
Wolf, in EP 1 493 777 A1, discloses a material for molded articles made of a polymeric base material mixed with porous particles of a filler, the cavities of which are filled with a phase transfer material. Also disclosed by Wolf is a process for the production of the molded article by filling porous particles with phase transfer material, introducing the particles into a polymer and processing the material by injection molding, extrusion, foaming or forming into textiles or other structures.
A web page that may be found at http://www.acmanet.org/bsa/overview-materials.cfm and entitled “Boy Scouts of America Composites Merit Badge-Overview of composite materials” lists a number of inert fillers that may be added to modify the properties of resins and reduce cost. Among those fillers on the list which includes everything from minerals to walnut shells to corn cobs, is “Thermoplastic spheres”. However, no guidance is provided as to how to select the proper filler to modify the desired property.
A copending, U.S. patent application Ser. No. 11/257,226, commonly assigned to one of the present assignees describes infrastructure repair and geo-stabilization processes with a low-exotherm polyurethane foam, grout or elastomer containing an organic particulate material capable of absorbing heat. There is no teaching or suggestion of utilizing that organic particulate material with polymers other than polyurethane.
Thermosetting polymers are commonly found in grouts, molded parts, void-filling materials, concrete-anchoring materials and castings. Because such materials are used and/or produced in places where the buildup of heat could not only be undesirable, but in some cases may be potentially dangerous, a need exists in the art for compositions such as polymer grouts, molded plastic parts, void-filling plastic materials, concrete-anchoring materials and polymeric castings that reduce the generation and accumulation of heat. | {
"pile_set_name": "USPTO Backgrounds"
} |
In cases of chronic kidney failure, various methods of extra-corporeal blood treatment are used to remove substances needing to be excreted and to withdraw fluid. Whereas in haemodialysis (HD), the movement of substances of low molecular weight through the semi-permeable membrane (in the form of diffusion) is determined essentially by the differences in concentration between the dialysis fluid and the blood, in haemofiltration (HF), substances dissolved in the plasma of the blood, and particularly substances of higher molecular weight, are removed effectively by a high rate of fluid flow (convection) through the membrane of the dialyser. In haemofiltration, the dialyser acts as a filter. Haemodiafiltration (HDF) is a combination of these two methods.
In haemodiafiltration, some of the ultrafiltrate withdrawn through the membrane of the dialyser or filter is replaced by a sterile substitute fluid (a substituate) which is fed into the extra-corporeal blood circuit either upstream or downstream of the dialyser. The infeed of substituate upstream of the dialyser is referred to as pre-dilution, and the infeed downstream of the dialyser is referred to as post-dilution.
There are known pieces of apparatus for haemodiafiltration in which the dialysis fluid is produced on-line from fresh water and a concentrate and the substituate is obtained on-line from the dialysis fluid. In the known pieces of haemodiafiltration apparatus, the substituate in the extra-corporeal blood circuit is fed in from the dialysis fluid system of the apparatus via a substituate line. Pieces of haemodiafiltration apparatus are described, for example, in European Application Nos. EP 0 974 371 A3 and EP 1 595 560 A1.
In individual cases, complications may occur in dialysis due to shifts in the levels of electrolytes, leading to headaches or psychomotor disorders in patients. These complications are known as disequilibrium syndrome.
Disequilibrium syndrome is described in German Application No. DE 32 23 051 A1. German Application No. DE 32 23 051 A1 describes a dialysis apparatus in which the composition of the dialysis fluid is regulated during the dialysis treatment as a function of the electrolyte content of the dialysis fluid upstream and downstream of the dialyser. The electrolyte content of the dialysis fluid is measured by sensors arranged upstream and downstream of the dialyser. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to portable cases, and more particularly to cases for personal digital assistants.
2. Background Information
Personal digital assistants are compact computers designed to be carried easily in a purse, brief case or pocket. In recent years, they have become an essential item for both business and non-business users. Personal digital assistants (PDAs) typically include a grayscale or color screen capable of displaying a variety of graphical user interface buttons that can be activated and/or manipulated using a finger or small stylus with a blunted point. PDAs are adapted to perform a variety of functions including organizing, computing, paging, cellular communication, Internet browsing and even global positioning.
The versatility and size of PDAs makes it easy to carry them virtually every where. As such, they are likely to encounter bad weather, rough handling, sand, dirt and dust. To prevent permanent damage to the screen, buttons and various communication ports, it is common to place the PDA into a closable case. The case affords reasonable protection when the PDA is not in use.
Presently, cases are limited in function to simply protecting the PDA when not in use. Providing additional functions that would aid the user in employing his or her PDA are highly desirable.
This invention overcomes the disadvantages of the prior art by providing a case for a personal digital assistant (PDA) that allows the PDA to be elevated in an angled standing position when the case is opened. In this manner, the PDA is presented to the user in an easily accessed orientation without the need to remove the personal digital system from the case or to attach any separate stand or bracket.
In an illustrative embodiment, the case includes a base section and a cover that is attached in a hinged manner to the base section. The cover can be folded back to reveal the enclosed PDA screen and buttons. When the cover is rotated back to a predetermined position, at which the base and cover form an acute angle, a securing strap is attached between the base and the cover preventing the base and cover from spreading apart beyond the predetermined acute angle.
The securing strap can be attached to the same attachment point when the base and cover are in a closed position. A male and female snap or another appropriate inter-engaging closure assembly can define the attachment point. The side of the case can include an elastic webbing pocket for receiving the stylus and additional pockets in the form of moveable flaps can be provided within the interior of the case. These flaps can be moved toward and away from the PDA via a hinged attachment to the interior of the case. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a method for reducing metal artifacts in computed tomography (CT), and more particularly, to a method for reducing metal artifacts in CT, which restores an original image of an area generated by a metal in an X-ray sinogram by extracting pre-information from an image restored to a small size.
2. Description of the Related Art
Computed tomography (CT) provides 2-dimensional and 3-dimensional high-resolution tomographic images of a human body from a measured X-ray projection image.
Although there is a controversy over dangers related to exposure to X-ray emission, CT has been widely used for the purpose of diagnosis and treatment as a powerful tool for investigating an inside of the human body and as various medical imaging techniques for disease. A metal object transplanted into the human body can cause serious side effects in a CT image and can deteriorate quality of a reconstructed CT image.
Generally, metals strongly attenuate an X-ray beam and measured attenuation of the metal given X-ray beam on the detector suffer from severe photon starvation. Thus, after-image projection data becomes inaccurate.
Metal artifact reduction (MAR) for improving quality of the CT image is one issue of CT application in clinical practice, and several MAR algorithms have been proposed over the past 30 years. R. M. Lewitt and R. H. T. Bates developed the first MAR image reconstruction method using an incomplete projection image (R. M. Lewitt and R. H. T. Bates 1978 Image reconstruction from projections: IV: Projection completion methods (computational examples), Optik 50, pp. 269-278). Here, projection measurement through metal is presumed to be omitted and is restored by polynomial interpolation. In addition to linear and polynomial interpolation, wavelet interpolation, sinogram interpolation and normalized MAR interpolation techniques have been proposed to fill the omitted projection data. These MAR algorithms can be classified into projection and sinogram completion methods. Over the last 10 years, iterative methods of modeling a physical phenomenon of metal artifacts have established another class of MAR algorithm, wherein noise and beam hardening are modeled. As compared with the projection completion methods, model-based iterative methods are computationally intensive and have a limitation in clinical application.
In the projection completion method, omitted projections for a metal trace can be filled by seriating flow of undamaged projections adjoining the metal trace using various restoration algorithms such as interpolation and total variation. Such typical methods, in which gaps of the omitted projections for an area of the metal trace in a sinogram are filled with the undamaged projections, can distort an attenuation coefficient outside the metal object.
FIGS. 1(a), 1(b) and 1(c) show a phantom model including two metals placed in a white area, a sinogram thereof, and a sinogram area in which a projection passing through a red point corresponds to an angle range surrounded by a metal area, respectively. As the point approaches the metal area, the angle, range, in which the projection passing through the point is disturbed by the metal, becomes larger. Therefore, existing filling methods can cause inaccurate information on the projections passing through the red point. As a result, a CT image reconstructed from such a corrected sinogram by a filtered back projection (FBP) method can be less efficient in restoring details of a true image of the phantom model. Efficiency of the projection completion method has a high dependency on accuracy of synthesized data.
FIG. 1 (a) shows the phantom model including the two metals placed in the white area, and FIG. 1 (b) is the sinogram thereof. Blue and red curves in FIG. 1 (b) show traces of projections passing through blue and red points placed outside the metal area in FIG. 1 (a), respectively. FIG. 1 (c) shows a zoomed-in image of an area surrounded by a box in FIG. 1 (b). The projections passing through the red point are blocked in a projection angle range by the metal. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a walnut seed cake extract. It also relates to a cosmetic composition comprising said extract. Its subject is also various applications of the extract and therefore of the cosmetic composition.
In the remainder of the description and in the claims, xe2x80x9cwalnut seed cakexe2x80x9d designates the residue from the pressing of walnut seed after extraction of the oil which it contains, commonly called xe2x80x9cwalnut oilxe2x80x9d.
Walnut trees belonging to the Juglandaceae family are widely distributed and cultivated in temperate countries. This includes in particular Juglans regia which is found in Europe or Juglans regia which is found in America, which are the subject of a number of applications.
There has thus been described, in the document RO-A-103 270, a cosmetic composition used for washing hair and comprising, in combination, a salicylate and an alcoholic extract of walnut tree of the Juglans regia type. However, nothing is indicated regarding the part of the tree from which the extract is obtained.
There has also been described, in the document EP-A-0306853, a cosmetic composition exhibiting germicidal properties, containing extracts of barks of roots of trees of the Juglandaceae family.
Likewise, certain parts of the walnut have been identified as having advantageous properties.
This is for example the case for the walnut hull constituting the outer fleshy part of the walnut, which contains a naphthoquinone compound (juglone) used as hair dye.
On the other hand, the residue from the pressing of the walnut seed constituting the cake has never been upgraded and has consequently not received any particular application.
The Applicant has sought to isolate a walnut seed cake extract and has observed that it exhibits a number of advantageous properties.
The invention therefore relates to a seed cake extract of walnuts produced by a walnut tree of the genus Juglans which can be obtained by a step of aqueous extraction of the cake followed by a concentration step.
Advantageously, the concentration is carried out by reverse osmosis.
The preparation of an aqueous extract can be accomplished by any of the techniques known to persons of skill in the art, including maceration, percolation, digestion, microwave, and ultrasonic waves. The temperature can vary depending on the process. Indeed, the extraction can be conducted at ambient or higher temperature, although high temperatures and long exposure times will result in partial destruction of active ingredients. The period of contact may vary depending on which extraction process is used. If the extraction is conducted using microwaves and the weight of seed cake is small in comparison to the power of the microwave, the period of contact can be as short as a few seconds. There is an inverse relationship between time and temperature. The ratio of walnut seed cake to solvent (water) is a balance between the amount of solvent needed for efficient extraction and the amount of solvent that must be subsequently removed. Typical reasonable ratios fall between 1/99 and 20/80 (by weight). Ratios falling outside this range will work, but they sacrifice process efficiency. We have found that 5:95 is a good ratio. The optimal extraction process is maceration, carried out at a temperature between 3 and 10xc2x0 C., advantageously at about 4xc2x0 C. A temperature less than 3xc2x0 C. may cause the formation of ice; a temperature greater than 10xc2x0 C. risks causing a decline in the activity of the extract. When the extraction process is maceration at 3 to 10xc2x0 C. for less than 40 hours, exposure time determines only the efficiency of the extraction, not the nature of the extract. We have found that about 20 hours is optimal.
The extract obtained is provided in the form of a concentrated aqueous solution.
To obtain the extract in powdered form, the concentration step is followed by a drying or freeze-drying step.
Advantageously, the walnuts from which the cake extract is derived are produced by a walnut tree (Jugans regia).
As already stated, the walnut cake extract of the invention has a number of advantageous properties, such that it can be used for various applications, in particular in cosmetic compositions.
The experimental approach used for this evaluation is based on the measurement of the intracellular oxidation level, after exposure to LVB radiation, of human keratinocytes cultured in the absence and in the presence of the extract of the invention.
Methods
Normal human keratinocytes isolated from foreskins obtained during surgical operations are cultured in xe2x80x9cserum-freexe2x80x9d KGM medium at 37xc2x0 C., in a humid air-CO2 (95-5%) atmosphere.
After cytotoxicity studies, three concentrations of extract were selected for evaluation: 10 xcexcg/ml, 100 xcexcg/ml, 250 xcexcg/ml.
Principle of the Test
The principle of the test is based on the measurement of the degree of intracellular oxidation with the aid of a specific probe: DCFH-DA (2xe2x80x2,7xe2x80x2-trichlorodihydrofluorescein diacetate).
DCFH-DA, a nonfluorescent probe, penetrates by passive diffusion into the cells. After cleavage of the acetate groups by intracellular esterases, DCFH accumulates in the cytosol. The intracellular oxidation of DCFH by various Reactive Oxygen Species (ROS) leads to the formation of a fluorescent product.
The measurement of the fluorescence intensities makes it possible to evaluate the degree of oxidation of the cells subjected to an oxidative stress.
After having been detached from their support, the suspensions of keratinocytes are inoculated into 24-well plates. The cells are incubated at 37xc2x0 C. for 24 hours with the medium containing the extract to be studied.
After incubation with the various concentrations of extract to be tested, the cultures are rinsed with a PBS solution and then exposed to UVB radiation, through a PBS solution.
After irradiation of the cells, the PBS solution is replaced with a solution of DCFH-DA. After incubation of the fluorescent probe, the cellular lawns are abundantly rinsed with PBS and the cells are then reincubated at 37xc2x0 C. for 24 hours with fresh culture medium.
At the end of the assay, the suspended keratinocytes are transferred into thermostatted vessels and the fluorescence intensities (Abs=502 nm, Em=520 nm) are measured and expressed in percentage relative to the nonirradiated control cultures.
The results are expressed in the following table:
Under the conditions of this study, the extract of the invention protects in a dose-dependent manner the cell against oxidative stress induced by UVB irradiation. The extract is therefore capable of regulating the level of reactive oxygen species (ROS) which form. The extract possesses the capacity to protect the cell from oxidative stress, that is to say to block the formation of ROS and/or to inhibit their reactivity by a xe2x80x9ctrappingxe2x80x9d process.
In a first application, the extract of the invention may therefore be used to protect skin cells from oxidative stress induced by UVB irradiation.
ROSs capable of reacting directly with DNA can introduce into this constituent multiple chemical modifications. These modifications, which have the consequence of disrupting the genetic program of the cell, are as a whole corrected by so-called repair enzymes.
However, when this repair is not complete, the cell enters into a program of programmed cell death or apoptosis leading to their elimination.
Evaluation of the Activity for Protecting Cells Against Apoptosis Induced by UVB Radiation
This protective power against apoptosis induced by TVB radiation was evaluated on monolayer keratinocyte cultures by determining the percentage of apoptotic cells by means of the APOPTAG(copyright) kit (semi quantitative test).
Method
The keratinocytes are obtained from primary cultures of foreskins and are allowed to proliferate in a xe2x80x9cserum-freexe2x80x9d conditioned medium (KGM).
After having been detached from their support, the suspensions of keratinocytes are cultured in 24-well plates. The cells are cultured in Iscove medium supplemented with antibiotics and fetal calf serum (5%). They are exposed to the extract of the invention for 24 hours at two concentrations (10 and 100 xcexcg/ml), and then stimulated by UVB radiation.
The number of apoptotic cells is determined 72 hours after irradiation in treated and untreated media using the APOPTAG(copyright) kit. The DNA breaks are visualized by fluorescence emission. The number of cells undergoing apoptosis is evaluated by counting the number of fluorescent cells out of a total of 200 cells.
The percentage reduction in apoptotic cells under the action of the extract of the invention is determined.
The results are expressed in the following table.
Under the influence of the extract of the invention, the amount of apoptotic cells generated by UV radiation (70%) is reduced in a dose-dependent manner.
The results of this study demonstrate that the extract of the invention possesses antiapoptotic properties at low concentrations, resulting from its capacity to limit the formation and/or the action of ROSs.
In vivo, environmental stress and in particular UV radiation, by stimulating the formation of free radicals, promote the expression of numerous epidermal mediators capable of determining the development of an inflammation.
The Applicant has observed that the walnut seed cake extract was effective for limiting the development of the inflammatory reaction.
This activity was evaluated in vitro on keratinocytes and macrophages.
The keratinocytes are obtained from primary cultures of foreskins and are allowed to proliferate in a conditioned medium for two weeks. At the end of this period, the keratinocytes are cultured in 24-well plates.
The macrophages are obtained from blood samples after centrifugation. After the usual treatment, they are allowed to adhere to the Petri dish.
The extract of the invention is tested at a defined concentration. A batch of control culture, not treated with the extract of the invention, is performed in parallel.
The keratinocytes and macrophages obtained are then subjected to the following two stimuli.
The first stimulus consists in triggering a specific inflammatory reaction by activating the keratinocytes and macrophages by IL4 (10 nanograms per milliliter) for 48 hours, so as to induce the production of CD23 (receptor with low affinity for IgE), which are then activated with the IgE-containing immune complexes.
The second stimulus consists in triggering, in the cells, a nonspecific inflammatory reaction by activating the keratinocytes and macrophages with a mixture of IFNxcex3(1000 units per milliliter) and of extract of lipopolysaccharide LPS (10 micrograms per milliliter).
The cells thus stimulated are maintained in culture for 48 hours before removing the supernatants, which are then tested by colorimetry or the ELISA method to determine their respective contents of nitro (NO) derivatives and of TNFxcex1, constituting the pro-inflammatory mediators.
The results of the test are presented in the table below.
The results of this test demonstrate the capacity of the extract of the invention to modulate the release of the proinflammatory mediators in response to various stimuli.
Indeed, in the case of inflammation dependent on IgE, triggered by IL4, the extract of the invention exhibits anti-inflammatory activity on the keratinocytes (reduction of the synthesis of NO and of TNFxcex1). An enhanced activity of the same type is noted on the macrophages.
In the case of nonspecific inflammation triggered by the IFNxcex3/LPS combination, only the keratinocytes are capable of producing both TNFxcex1 and nitro derivatives. In this specific case, the extract of the invention also exhibits a significant anti-inflammatory activity.
The extract of the invention may be advantageously incorporated into cosmetic compositions intended to be applied to sensitive skins, which are hyper reactive skins which are therefore very receptive to environmental stress such as UV radiation, irritant chemical agents, heat shock, pollution, allergenic agents and the like.
In this case, it will be possible to protect the skin from any environmental stress and in particular from UV radiation according to a method consisting in applying to the skin an effective quantity of the extract of the invention or of a composition comprising said extract.
The extract of the invention may also be incorporated into cosmetic compositions having an irritant potential such as those comprising surfactants or xcex1-hydroxy acids, so as to limit the impact of certain pro inflammatory reactions linked to these components.
It was also observed that the walnut seed cake extract of the invention was effective in combating skin ageing by virtue of its:
stimulatory activity on protein synthesis in the keratinocytes of the epidermis and fibroblasts of the dermis;
anti collagenase activity;
antielastase activity.
The extract can therefore be used in cosmetic compositions intended for combating skin ageing.
Skin ageing results from a programmed senescence leading to atrophy of the skin tissue, which appears particularly pronounced in the dermis. This atrophy results from a slowing down in cell metabolism and is responsible for the appearance in particular of wrinkles.
The dermis is a connective tissue composed of an extracellular matrix ECM) synthesized by the fibroblasts. The ECM, which is responsible for the mechanical properties of the skin, consists of various proteins, including collagen (type I and type III), elastin and glycosaminoglycans (essentially hyaluronic acid and dermatan sulfate).
Both qualitative and quantitative impairment of the extracellular matrix occur over time. This impairment results in degeneration of the collagen network, of the elastin network and in a decrease in the content of glycosaminoglycans and more particularly of hyaluronic acid. These modifications result both from a decrease in the capacity of the fibroblasts to synthesize the extracellular matrix and from a disequilibrium in the expression of certain proteinases, in particular the proteinases called Matrix Metallo proteinases and the proteinases called Tissue Inhibitor Metallo proteinases.
In this way, during ageing, the mechanical properties of the skin regress and a decrease in the tensile force or in stiffness (loss of the collagen network), and a decrease in elasticity and resilience (degeneration of the elastin network) are observed, the whole accompanied by a collapse in hydration (decrease in the hyaluronic acid level) responsible for a loss of skin turgescence.
Tests were carried out to demonstrate the anti-age activity of the extract of the invention toward the skin.
Stimulatory Activity of the Extract of the Invention on Protein Synthesis in the Keratinocytes of the Epidermis and the Fibroblasts of the Human Dermis
a)Cytotoxicity
A cytotoxicity trial was first of all carried out for the extract of the invention on fibroblasts to determine the maximum dose of extract which does not cause cytotoxicity.
Cell viability is evaluated, at the end of the trial, by a calorimetric test with MTT. The principle of this test results from the conversion, by mitochondrial succinyl dehydrogenase of metabolically active cells, of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (soluble substrate which is yellow in the oxidized state) to violet-blue formazan. The optical density of the violet-blue solution obtained at the end of the trial is proportional to the number of living cells.
The cytotoxicity of the extract of the invention was evaluated using nine different concentrations of extract of between 0.01 and 10 mg/ml. A first evaluation was carried out after 24 hours.
A second evaluation was carried out after 48 hours on concentrations of between 0.05 and 5 mg/ml.
The results are presented in the table below.
After 24 hours of contact, the concentrations of extract of less than or equal to 1 mg/ml induced no significant decrease in cell response toward MTT. Likewise, the results after 48 hours confirm the nontoxicity of concentrations of less than or equal to 1 mg/ml. Accordingly, the concentration of walnut seed cake extract of 1 mg/ml was selected as maximum noncytotoxic dose for the remainder of this study.
b) Study on the Keratinocytes of the Epidermis
Keratinocytes are cultured in monolayers. At D-1, the keratinocytes are detached from their support by gentle trypsinization. After centrifugation, the cells are resuspended in an optimum culture medium. The cellular suspensions are then inoculated.
24 hours after inoculation (D0), the culture media are removed and replaced with a different medium containing various concentrations of walnut seed cake extract.
Once treated, the keratinocytes are again placed in the oven at 37xc2x0 C. and incubated for 72 hours in an air-CO2 (95/5%) atmosphere.
At the end of the trial, the total cellular proteins are assayed by the Coomassie blue method. This test consists, first of all, in rinsing the cells with PBS at the end of the treatment. A solution of NaOH (50 xcexcl) is then added to each well. After 10 minutes of incubation, 200 xcexcl of a dilute Biorad solution is added to each of the wells. The absorbance of the solutions at 570 nanometers is then measured after five minutes of incubation. A calibration series is constructed in parallel with the aid of BSA (Bovine Serum Albumin) which makes it possible to convert the optical densities obtained to microgram equivalents of proteins per well.
Various concentrations of walnut cake extract were thus tested, respectively 0.1 mg/ml and 0.25 mg/ml, in the suboptimum medium. A suboptimum control batch and an optimum control batch were also produced.
The proteins were assayed at D0 and at D3. The results are reproduced in the table below.
A very marked increase in the mass of cellular proteins is observed in the keratinocytes treated with the extract of the invention.
Accordingly, the extract of the invention therefore indeed has a stimulatory effect on cellular metabolism, that is to say protein synthesis in the keratinocytes.
c) Study on Fibroblasts
The effects of the extract of the invention on the incorporation of leucine into various protein fractions newly synthesized by human fibroblasts in monolayer culture were studied in this test.
After culture of the human skin fibroblasts until the cells become confluent, the culture medium is replaced by a medium containing 2% FCS (Fetal Calf Serum) with:
either the extract of the invention at 4 different concentrations, respectively 0.25 mg/ml, 0.1 mg/ml, 0.05 mg/ml and 0.01 mg/ml;
or vitamin C (reference product).
A batch of untreated control culture is performed in parallel.
After 24 hours of incubation at 37xc2x0 C., labeled leucine (3H-leucine) is added to the culture medium and the medium is left to incubate for an additional 48 hours. The following are recovered separately:
on the one hand, the culture medium,
on the other hand, the cell lysate after cellular lysis,
and finally the insoluble fraction (membranes, matrix deposited).
The macromolecules are extracted and then the incorporation of the radioactive precursor of these molecules is measured by liquid scintillation.
The results are presented in the table below.
It is observed that the extract, at a concentration of 0.25 mg/ml, significantly stimulated the incorporation of leucine into the soluble secreted protein, fraction (identical to the reference product vitamin C).
It is also observed that, at a concentration of 0.1 mg/ml, the extract still stimulates the incorporation of leucine into this fraction.
Likewise, the stimulatory activity of the extract of the invention at 0.25 mg/ml and 0.1 mg/ml was observed in the insoluble protein fraction.
On the other hand, it is noted that the extract of the invention does not significantly modify the incorporation of leucine into the soluble cellular fraction, which confirms that the extract does not stimulate the multiplication of fibroblasts in culture.
In conclusion, as the extract of the invention stimulates the incorporation of leucine by the fibroblasts, it can be deduced therefrom that the extract significantly increases the synthesis of proteins and more specifically the proteins secreted by the fibroblasts, namely the proteins of the extracellular matrix (collagens, glycosaminoglycans, and the like).
Anti Elastase Activity of the Extract of the Invention
This activity is evaluated on cellular extracts of fibroblasts of human dermis, isolated from the foreskin and cultured according to routine techniques at 37xc2x0 C., in a humid air-CO2 (95/5%) atmosphere.
The fibroblasts are cultured in DMEM medium supplemented with fetal calf serum (10% FCS) and passaged regularly until a sufficient biomass is obtained.
To carry out the test, the cells are detached from their support by trypsinization. After centrifugation and suitable treatment, the cellular extracts are recovered.
The elastase activity of the cellular extracts was evaluated using Suc-(L-Ala)3-p-nitroanilide (SANA) as substrate. Aliquots of the cellular extract are preincubated at 37xc2x0 C. in TEA (triethanolamine) buffer at pH=7.8, alone or in buffer containing various concentrations of extracts.
After incubation, a solution of SANA is added to the reaction mixture. The catalytic activity of the cellular extract is assessed by measuring the level of release of p-nitroanilide, which exhibits a maximum absorption at 405 nm.
The optical densities at 405 nm are recorded for 1 hour 30 min to 2 hours.
The effects of the extract of the invention on the elastase activity were studied for five different concentrations, respectively 0.5 mg/ml, 1 mg/ml, 2 mg/ml, 5 mg/ml and 10 mg/ml. A positive control was introduced into the trial (dichloroisocoumarin at 2 mM).
The results are grouped together in the following table.
The results obtained show that the extract of the invention is capable of inhibiting the elastase activity in a dose-dependent manner.
Under the selected experimental conditions, the median inhibitory concentration of the extract was evaluated at 5.6 mg/ml.
Anti Collagenase Activity of the Extract of the Invention
The effect of the extract of the invention on the anti collagenase activity was studied.
This activity was evaluated by the fluorescamine method.
The test is based on the formation of fluorescent compounds between fluorescamine and primary amines, amino acids and peptides. In practice, the increase in the fluorescence emission obtained after incubation of a solution of collagen type I and of collagenase in the presence of fluorescamine is measured.
The evaluation of the catalytic activity of the collagenase is carried out in the absence or in the presence of various concentrations of the extract, respectively for 0.5 mg/ml, 1 mg/ml, 2 mg/ml, 5 mg/ml and 10 mg/ml.
The results are reproduced in the table below.
As the results show, an inhibitory effect is observed on the collagenase activity.
As already stated, the invention also relates to a cosmetic composition comprising a walnut seed cake extract as described above.
To obtain a cosmetic composition exhibiting the abovementioned properties, the cake extract of the invention is used in the form of a solution having a concentration of between 10 and 40 grams of dry matter per liter of solvent, advantageously 30 g/l.
In practice, the composition contains between 0.5 and 10%, advantageously between 2 and 5%, by weight of the abovementioned solution of extract of the invention of walnut seed cake. Of course, the extract will be incorporated into the cosmetic composition with any customary formulation excipient.
The cosmetic composition may be provided in particular in the form of a cream, a milk, a gel, sera, microemulsions and the like.
As already stated, this composition may be used in cosmetics for the treatment of skin ageing or alternatively as agent for protecting the skin against environmental stress induced in particular by UV radiation.
The invention finally relates to a method of cosmetic treatment for combating skin ageing, characterized in that it consists in applying to the skin an effective quantity of the cosmetic composition described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
For a conventional driving force controller for an electric vehicle, a motor torque command value set based on a request from a driver (target driving force) is corrected to suppress a vibration (a torsional vibration) generated from a torsion of a drive system. For example, the driving force controller calculates vehicle speed as target vehicle speed, vehicle speed which is obtained when a motor torque command value is applied to an ideal vehicle model in which a drive system is assumed to be a rigid body that does not generate torsion. Then, the driving force controller obtains deviation between the target vehicle speed and actual vehicle speed, and calculates a correction value to reduce the deviation. The driving force controller thus obtains a final motor torque command value by adding the correction value to the motor torque command value.
In the conventional ideal vehicle model, disturbance torque such as: running resistance torque such as air resistance; and braking torque caused by braking, is not inputted. Thus, such disturbance torque is not reflected on the target vehicle speed outputted from the vehicle model and the correction value computed based on the target vehicle speed. As a result, although the torsional vibration can be suppressed by the correction value, there is a problem that the request from the driver and actual driving force are diverged because, at moments of running resistance generation and braking, such excessive driving force is generated as to cancel out the running resistance torque or the braking torque caused by braking.
As a method for suppressing such increase of the driving force resulting from the disturbance torque, an external input estimator has been proposed for estimating the disturbance torque, subtracting the disturbance torque from motor request torque in advance when computing the target vehicle speed, and computing the target vehicle speed with the disturbance torque taken into consideration (see Patent Literature 1). | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject matter disclosed herein relates generally to composite systems, articles incorporating the composite systems, and methods for the in-situ non-destructive testing of the composite systems.
In many, if not all, manufacturing industries, the goods manufactured and the methods of manufacturing them are often impacted by the costs associated with parts and the shipping thereof. For example, in many industries, it may be desirable to produce parts on as large a scale as possible, e.g., pipelines for drilling applications, or blades for wind turbines, but yet doing so would present perhaps insurmountable shipping challenges or costs. On the other hand, manufacturing parts for such applications on a smaller scale then presents the challenge of having to assemble them in the field, with the difficulties attendant therewith, including at least the possibility of failure of any bonds formed in the assembly of the finished product.
Many physical methods of bonding may be preferable for forming such bonds from a strength, integrity and longevity perspective, but can present unwanted cost for the parts themselves as well as their shipping costs. And, physical bonding methods are not infallible.
Chemical bonding methods can prove advantageous in those applications where physical bonding methods prove suboptimal. However, chemical bonds may, in general, be less reliable, and so may require thorough nondestructive evaluations prior to utilization of articles incorporating the bonds. In the applications wherein assembly and chemical bonding occurs in the field, nondestructive assessment of the strength and/or integrity of the bond can be very difficult. Furthermore, conventional methods for doing so are generally time-consuming or otherwise costly, often requiring the utilization of highly-skilled experts in nondestructive testing (NDT). In certain applications, the materials being bonded can interfere with conventional NDT methods. Further, because many conventional NDT methods are not suitable for in-situ testing, real-time correction of any detected anomalies is not a possibility and so the use of NDT is not feasible during process development, manufacturing and joint assembly.
It would therefore be desirable to provide chemical-bonding systems capable of being effectively interrogated by means useful in a field situation, so that their integrity can be evaluated in-situ. The ability to conduct the evaluation in-situ (e.g., during application or curing of the resin) provides the opportunity to implement real-time correction strategies or to assess bond integrity during use. Such systems would provide additional advantages over conventional systems if expert implementation was not required, and/or they were suitable for use with a wide variety of materials typically contraindicated for NDT methods. | {
"pile_set_name": "USPTO Backgrounds"
} |
Humoral immune responses to tumors occur in a relatively high frequency in (1, 2). This phenomenon was exploited to identify a variety of tumor-associated antigens (taa) by screening autologous expression libraries with serum from cancer patients (1). Several of these taa now serve as T cell antigens for the induction of anti-tumor CTL-responses in patients (3, 4). This preference for the cellular-, in most cases cytotoxic immune response as therapeutic strategy is now being reconsidered and novel vaccines are designed to also induce antibody responses. In part, this change of concept may have been influenced by the recent success of various monoclonal antibodies for tumor therapy such as trastuzumab (Herceptin) and bevacizumab (Avastin) (5). While these monoclonal antibodies had been specifically raised against targets of presumed oncological relevance, antibodies occurring in cancer patients, either spontaneously or upon vaccination form a different class of molecules the therapeutic significance of which had been difficult to assess. This is mostly due to the lack of straightforward experimental approaches for their isolation and subsequent characterization in vitro and in animal models of human cancer.
Thus, there is a need to overcome the above-described limitations and to provide a therapeutic and diagnostic antibody against antigens involved in cancer. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed generally to waterbeds and more specifically to a waterbed apparatus for more efficiently heating the water contained therein.
Waterbeds have in recent years, come into widespread use throughout the country. A typical waterbed consists of a water filled mattress supported within a rigid frame. Although early users of waterbeds were primarily younger people attracted by the novelty and low cost of the apparatus, the use of waterbeds has now spread to a wider range of consumers. Perhaps the most important reason for the popularity of waterbeds is that waterbed mattresses provide uniform sleeping support and eliminate pressure points on which most of a person's weight rests when reclining on conventional sleeping surfaces. In addition, the co-action of the water and the waterbed mattress produces a floating sensation that enables greater comfort and more restful sleep.
Waterbed manufacturers have been very innovative in providing improvements such as waterbed heaters, elevated frames, and improved bedding material which make waterbeds much more acceptable in the conventional bedding market. However, a problem with waterbed mattresses presently on the market is the inefficiency of heaters in raising the temperature of the water contained within the mattress. This inefficiency is a result of the way in which current mattresses utilize the water heaters. Currently a heating mat (analogous in many respects to a conventional heating pad) is placed below the waterbed mattress, between the mattress and the frame. Consequently, the heating mat is simultaneously in heat transfer contact with both the frame and the mattress. As a result of this simultaneous contact, a significant portion of the heat generated by the mat is absorbed by the frame. Since the heat absorbed by the frame is wasted, additional energy is required to heat the water in the mattress to the desired temperature. The consumer is penalized for this inefficiency with higher electric rates and a longer wait for the water temperature to reach the desired level. The cost of heating the water is therefore lowered and the time required to raise the temperature of the water is decreased.
Further objectives of the present invention are to provide a heating apparatus which is easy to install and use, which is durable but which is inexpensive to construct. | {
"pile_set_name": "USPTO Backgrounds"
} |
The effects of prostaglandins are mediated by their G protein-coupled receptors which are located on the cell surface. Prostaglandin E2 (PGE2) is of particular interest, having a wide variety of cellular effects through binding to functionally different receptor subtypes, namely the EP1, EP2, EP3 and EP4 receptors, all of which respond to PGE2 but differ in their actions.
Dendritic cells (DC) are the most potent antigen-presenting cells of the immune system. Cytokine production by mature antigen-carrying DC within lymph nodes is strongly influenced by PGE2 during their activation in peripheral tissues. Inflammatory cytokines such as IL-1β and TNF-α activate antigen-carrying DC to secrete IL-12 and promote the development of T-helper type 1 (Th-1) cytokine expression-biased cells. In contrast, DC activated in the presence of PGE2 show impaired IL-12 production and promote the development of T-helper type 2 (Th-2) cytokine expression-biased cells [Hilkens C M et al., J. Immunol. 156:1722-27 (1996)]. The difference in the ability to produce IL-12 in response to PGE2, established during DC activation in the peripheral tissues, is stable to the removal of cytokines and PGE2.
Increased production of cytokines triggers inflammation, a normal response by the body to help fight a virus. However, when cytokine production becomes prolonged or excessive it can inflame airways, making it hard to breathe, which in turn can result in pneumonia and acute respiratory distress; and it can injure other organs, which can result in severe life-threatening complications.
It has recently been demonstrated that influenza A subtype H5N1 viruses associated with the recent outbreaks of avian flu in Asia are more potent inducers of inflammatory cytokines and chemokines in primary human alveolar and bronchial epithelial cells in vitro in comparison to the more common, less virulent human flu virus H1N1. Levels of cytokines and chemokines were from 3 times to more than 10 times higher in the human cells infected with the H5N1 virus than those infected with H1N1 (N C W Chan, et al. Respiratory Research 2005, 6:135; article URL: http://respiratory-research.com/content/6/1/135).
These test data correlate with the high levels of cytokines and chemokines seen in patients afflicted with the avian flu, indicating that the hyper-induction of cytokines and/or chemokines is likely relevant to the pathogenesis of human H5N1 disease. Standard steroid anti-inflammatory therapy against avian flu has been of little therapeutic value. Tamiflu® has shown efficacy in that mice infected with H5N1 influenza virus survived when treated. For cases of human infection with H5N1, Tamiflu® may improve prospects for survival but clinical data are limited. Concerns have been recently raised about the safety of Tamiflu® treatment to patients having the avian flu.
It would therefore be desirable to have a therapeutic agent that inhibits the release of overstimulated cytokines and chemokines, especially TNFα interferon gamma (IFN-γ) and Interferon gamma. It would also be desirable to have a therapeutic agent that would treat diseases associated with human H5N1 and other influenza A subtype viruses while being well-tolerated by the patients. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to a sealing member for a container having an easy to grab tab on the top thereof for closing the mouth of a container.
It is often desirable to seal a bottle, jar or other container with a closure to maintain freshness of the contents thereof or to indicate whether the container has been tampered with. However, it is also desirable that the closure be easy to remove by the user. For example, U.S. Pat. No. 5,433,992, the contents of which are incorporated herein by reference, describes a top-tabbed closure for a container which has a membrane for sealing the container and a sheet which is bonded to the top of the membrane, in a manner which leaves a tab portion of the sheet free. A user seeking to gain access to the contents of the container simply grips the tab with their fingers and by pulling on the tab, which is connected to the sheet, can remove the entire closure and access the contents of the container in a relatively convenient manner.
Referring generally to FIG. 1, a conventional top-tabbed closure is shown generally at the top of a bottle 10 as container seal 100. A cross sectional view of seal 100, taken along line 2—2 of FIG. 1 which is not drawn to scale, is shown in FIG. 2.
Seal 100 includes a lower section 101, comprising a lower layer 110, which is formed of an adhesive, such as a hot melt adhesive or other sealants, for securing seal 100 to the top of bottle 10. Lower section 101 also includes a foil layer 120 and a PET layer 130 between foil layer 120 and sealant 110. Seal 100 also includes an upper section 102. Upper section 102 includes an ethylene vinyl acetate (EVA) layer 170 having a PET top layer 180 disposed thereon. A bottom surface 150 of EVA layer 170 is surface treated and bonded to foil layer 120. Lower surface 150 also bonds a paper release layer 140 to EVA layer 170. Thus, release layer 140 prevents EVA layer 170 from being completely bonded to foil layer 120 at lower surface 150. Lower surface 150 only bonds EVA layer 170 to foil 120 up to a boundary line 160 so as to permit a tab portion 200 to be graspable. However, this bond between upper section 102 and lower section 101 is strong enough, so that pulling tab portion 200 can remove all of seal 100 in one piece.
Conventional container seals can exhibit disadvantages. For example, a paper release or information layer can be sensitive to exposure to moisture. Use of PET release layers alone do not provide a fully satisfactory seal. Corrosion of foil layers can also present a problem. Also, conventional closures typically require containers to have smooth surfaces to insure proper bonding and release. Uneven heating during heat sealing steps has also occurred. Many closures will not separate from the container satisfactorily when the tab is pulled and tearing and unsatisfactorily incomplete removal has occurred.
Accordingly, it is desirable to provide an improved container seal which overcomes drawbacks and provides advantages compared to conventional container seals. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present invention relates generally to processing of seismic data to remove artifacts and particularly to artifacts resulting from near surface filtering effects and ghost reflections.
2. Background
During the last 25 years, the oil and gas industry has sought to gain more subsurface property information from seismic data. In particular, it is desirable to obtain detailed information about subsurface pore fluids, porosity, lithology, pressure and geometry. In order to glean this information from seismic data, it is necessary to compensate for a variety of effects that tend to obscure the nature of the subsurface properties under investigation.
Among the effects of interest are those that are due to near surface conditions including, for example, ghosts or layering contrasts. For near offset measurements, the reflected signal should undergo near surface filtering in conformance with a convolutional model of seismic data (i.e., it should be possible to model the received signal as a time invariant wavelet convolved with the earth reflectivity). Where larger offsets are involved, each arriving reflection undergoes a different near surface filtering effect that is determined by local near surface geology and the initial and arrival angles of wavefronts at the source and receiver locations.
Existing models generally make use of an assumption that near surface filters have effects that are independent of wavefront takeoff/arrival angles. Other methods may be limited by spatial aliasing and truncation effects of the 2D or 3D common source and receiver gather transforms (tau-p or slant stack, for example) that directly estimate emergence angle responses for all angle event.
Accordingly, the inventors have determined that the present invention may allow for an improved compensation for near surface effects when analyzing seismic data representative of subsurface geological structures and properties. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to cardiac pacers and more particularly to a rate adaptive pacer which alters the pacing escape interval in response to the physiologic demand of the patient.
2. Description of the Prior Art
Implantable medical devices for the therapeutic stimulation of the heart are well known in the art. Initially these cardiac pacers were asynchronous in operation providing stimulating pulses to the heart at a fixed rate independent of the physiologic demand of the patient.
Subsequently, demand pacemakers were developed as exemplified by U.S. Pat. No. 3,478,746 to Greatbatch. These devices provide stimulating pulses to the heart only in the absence of naturally occurring cardiac activity. This form of pacer permits the patient's underlying cardiac rhythm to inhibit the pacemaker if the patient's intrinsic heart rate is above the preset escape interval of the pacer. However, if the patient's intrinsic cardiac activity drops below the minimum rate set by the escape interval of the pacer, stimulating pulses will be supplied to the heart. In this fashion the demand pacemaker provides a lower boundary rate below which the patient's heart will not be permitted to drop. The therapeutic benefit of such demand pacemakers was enhanced by the development of the hysteresis type pacer known from U.S. Pat. No. RE. 28,003 to Gobeli, which provides two escape intervals.
The hysteresis pacemaker permits the heart to inhibit the pacemaker down to a sentinel rate set by the hysteresis pacemaker. However, if no intrinsic cardiac activity is detected during the sentinel escape interval, the patient's heart will be stimulated at a nominal escape interval which is somewhat shorter than the lower hysteresis rate. In operation, the hysteresis pacer alters the escape interval in response to detected cardiac events.
More recently, pacers have been disclosed which rely upon a historical average of detected cardiac activity to set the escape interval. An example of one such pacer is taught by U.S. Pat. No. 3,921,642 to Preston.
Other forms of rate adaptive pacers have also been proposed. These pacers rely on the sensing of atrial activity, blood PH, respiratory rate and QT interval data to alter the pacer's escape interval. Discussions of some of these prior art proposals may be found in Relation Between the QT Interval and Heart Rate, Rickards and Norman, Britt Heart J., 1981; 45; 56-61 and A Physiologically Controlled Cardiac Pacemaker, Krasner, Voukydis and Nardella, J.A.A.M.I., Volume I, No. 3, 1966; 14-20.
This historical progression indicates the desire to provide a pacer which alters the escape interval in response to the physiologic demand or needs of the patient.
The structure of the present invention includes a force sensor located within the pacer itself. A prior art example of a related structure is known from U.S. Pat. No. 3,777,762 to Nielsen. | {
"pile_set_name": "USPTO Backgrounds"
} |
Natural food supplements are typically designed to compensate for reduced levels of nutrients in the modern human and animal diet. In particular, useful supplements increase the function of tissues when consumed. It can be particularly important to supplement the diets of humans and particular classes of animals whose normal diet may be deficient in nutrients available only from meat and animal products (e.g. human vegetarians and other animals consuming an herbivorous diet).
In addition, in the sporting and athletic community, natural food supplements which specifically improve athletic ability are increasingly important, such as supplements that promote or enhance physical prowess for leisure or employment purposes. In another example, anaerobic (e.g., lactate producing) stress can cause the onset of fatigue and discomfort that can be experienced with aging. Anaerobic stress can also result from prolonged sub-maximal isometric exercise when the local circulation is partially or totally occluded by the increase in intra-muscular pressure (e.g., during rock climbing) or from exercise involving prolonged breath holding (e.g., free diving, or synchronized swimming). Excessive lactate production can result in the acidification of the intracellular environment.
Previous work demonstrated that carnosine is significantly increased in muscle following administration of beta-alanine or a biological source of beta-alanine (e.g., carnosine) supplementation. The dosing schedule that has been preferred for such administration (i.e., 8 times daily), however, leads to compliance issues and problems with paraesthesia. Thus, there is a need for improved supplements containing free beta-alanine or a biological source thereof in a sustained release formulation to increase compliance and decrease paraesthesia events. | {
"pile_set_name": "USPTO Backgrounds"
} |
Throughout this specification, various publications are referenced by Arabic numerals within parentheses. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this specification in order to more fully describe the state of the art to which this invention pertains.
Naturally occurring carboxypeptidase B Peptidyl-L-lysine (-L-arginine) hydrolase EC 3.4.17.2! is a zinc-containing pancreatic exopeptidase which specifically removes C-terminal Arg, Lys or Orn from peptides (1,2).
Naturally occurring rat carboxypeptidase B is produced from a precursor protein, preprocarboxypeptidase B, containing a 108 amino acid long N-terminal fragment which includes the signal sequence (13 amino acids) and an activation peptide (95 amino acids). Preprocarboxypeptidase B is enzymatically inactive.
During transport of preprocarboxypeptidase B to the endoplasmatic reticulum, the signal peptide is cleaved off; the resulting enzymatically inactive procarboxypeptidase B precursor is secreted from the cell. The enzymatically active carboxypeptidase B is then formed by cleavage of the activation peptide by trypsin (7).
Mature rat carboxypeptidase B contains 307 amino acids (5) and has an apparent molecular weight of 35 kD. It contains seven cysteine residues, six of which are paired into S--S bonds.
Carboxypeptidase B is widely used for commercial and research purposes, such as in the production of insulin and other biologically active polypeptides, and in protein sequence analysis.
Commercially available carboxypeptidase B purified from porcine pancreas is very expensive and is not totally free of other proteases.
The partial amino acid sequence of porcine precursor procarboxypeptidase B and the complete amino acid sequence of bovine carboxypeptidase B have been published (3, 4 respectively). In addition, the complete nucleotide sequence of the rat gene and the human cDNA have been published (5, 6 respectively).
Yamamoto et al. (6) have reported the recombinant expression of enzymatically inactive human procarboxypeptidase B lacking the first 11 amino acids of the activation peptide. They also report the recombinant expression of an enzymatically inactive .beta.-galactosidase-procarboxypeptidase B fusion protein wherein the procarboxypeptidase is lacking the first 11 amino acids of the activation peptide.
European Publication No. 588118 A2 discloses a bone-related carboxypeptidase-like protein named OSF-5. It is speculated that OSF-5 acts as an adhesion molecule or a growth factor and that it can be used as an agent for treating bone metabolic diseases. However, no actual function or activity for OSF-5 has been disclosed and no production of either naturally-occurring or recombinant biologically active protein has been demonstrated.
The subject invention discloses the production of recombinant, highly purified, enzymatically active and non-expensive carboxypeptidase B. Production of enzymatically active carboxypeptidase B has not been previously reported and the disclosure here is novel. | {
"pile_set_name": "USPTO Backgrounds"
} |
With a rapid development of display techniques, the emergence of Touch Panel (abbreviated to “TP”) makes peoples' life more convenient. Nowadays, an in-cell capacitive touch technique has been widely applied to a display field.
The in-cell capacitive touch technique can be divided into a self-inductance in-cell capacitive touch technique and a mutual-inductance in-cell capacitive touch technique. The self-inductance in-cell capacitive touch technique is advantageous over the mutual-inductance in-cell capacitive touch technique due to a high Signal to Noise Ratio (SNR) and low costs.
For the self-inductance in-cell capacitive touch technique, a touch electrode can have a fundamental touch performance only if a driving frequency for the touch electrode reaches a certain value. Additionally, a value of the driving frequency of the touch electrode is closely related with signal delays of a touch electrode line connected with the touch electrode. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method for the rounding of edges of an injection hole duct in a nozzle body and to a nozzle body for a fuel injection nozzle. Such a method and such a nozzle body are known from German Patent DE 195 07 171 C1.
A fuel injection nozzle is formed of essentially two parts, a nozzle body and a nozzle needle, the nozzle needle being inserted axially moveably in the nozzle body.
The nozzle body is generally configured cylindrically with an inner bore and, at its end located on a combustion space side, has a conically tapering dome region which is closed off by a blind hole. The nozzle needle carries, at its lower end, a sealing cone which, in a state of rest, is pressed onto a conical sealing face in the dome region of the nozzle body. Depending on the type of injection nozzle, at least one injection hole duct leads from the blind hole or the conically tapering dome region of the nozzle body, downstream of the sealing seat, through the nozzle body into the combustion space of an engine. When the moveable nozzle needle is lifted off with its sealing cone from the sealing seat in the nozzle body, the injection hole duct is exposed and fuel is injected in the combustion space.
In the nozzle body illustrated in German Patent DE 195 07 171 C1, the injection hole duct is configured as a rectilinearly continuous bore which is introduced in the nozzle body obliquely to the inner bore according to the desired injection hole cone angle. The result of the oblique orientation of the injection hole duct is that the fuel introduced into the inner bore with very high pressure has to be deflected sharply in order to be injected into the combustion space via the injection hole duct. This leads to a reduction in the fuel velocity and consequently to undesirable throttling of the fuel jet injected into the combustion space and, furthermore, a strength-reducing notch effect.
In order to achieve an improved fuel injection jet characteristic, German Patent DE 195 07 171 C1 proposes to round off, edgeless, the injection hole duct in the entry region at the transition into the sealing seat of the nozzle body, an upper entry region which faces the fuelflow direction having a larger rounding radius than a lower entry region which faces away from the flow direction. Despite the rounding off of the entry region, the fuel stream continues to be subjected, at the transition from the inner bore of the nozzle body into the injection hole duct, to a sharp deflection which markedly reduces the throughflow coefficient of the fuel stream and thus leads to injected fuel suffering flow-around and velocity losses. Furthermore, the limited throughflow coefficient of the fuel stream in the injection hole duct also restricts the throughflow quantity and therefore the volume injected into the combustion space of the engine.
It is accordingly an object of the invention to provide a nozzle body for a fuel injection nozzle with an optimized injection hole duct geometry that overcome the above-mentioned disadvantages of the prior art methods and devices of this general type, which ensure an improved injection jet characteristic.
With the foregoing and other objects in view there is provided, in accordance with the invention, a shape forming method, which includes, first providing a fuel injection nozzle having a nozzle shank with an inner bore formed therein and with a conically tapering dome region. The dome region has an injection hole duct formed therein and the injection hole duct is formed laterally into the dome region. The injection hole duct has an entry region being funnel-shaped with differently rounded-off edges. Second, there is the step of forming a degree of rounding of the edges of the entry region of the injection hole duct in dependence on a distribution of a fuel stream around the entry region. An edge portion of the entry region being more rounded a greater the fuel stream is at the edge portion.
In accordance with an added feature of the invention there are the steps of determining the distribution of the fuel stream around the entry region of the injection hole duct by a simulation calculation; and carrying out the degree of rounding of the edges of the entry region on a basis of the simulation calculation.
In accordance with an additional feature of the invention, there is the step of carrying out the degree of rounding of the edges of the entry region of the injection hole duct by hydroerosive grinding.
According to the invention, the edges at an injection hole duct in a nozzle body are rounded in such a way that the degree of rounding of the edges of the entry region is coordinated with the distribution of the fuel stream around the entry region. The edge portions being the more rounded, the greater the fuel stream at these edge portions is.
By this optimization of the entry region of the injection hole duct, the deflection angle, which results from the alignment of an inner bore and a seat cone in the nozzle body and a desired injection angle in a combustion space of an engine, is reduced to a minimum. As a consequence of which the throughflow coefficient of the fuelflow and therefore the velocity of the fuel injected out of the injection hole duct into the combustion space can be increased. Moreover, by the reduced deflection angle, turbulences in the fuel are also reduced as far as possible, so that the injection jet acquires an optimized flow profile.
According to the invention, the entry region of the injection hole duct in the nozzle body has essentially the form of an ellipse. A major axis of the ellipse coinciding with a direction of the fuelflow through the inner bore of the nozzle body, and the edges of the entry region being more rounded in a vertex region of the major axis of the ellipse than in the vertex region of a minor axis of the ellipse. This embodiment of the entry region of the injection hole in the nozzle body ensures an optimized fuel deflection, with the result that undesirable turbulences in the injected fuel and throttling of the flow velocity are prevented.
With the foregoing and other objects in view there is further provided, in accordance with the invention, a nozzle body for a fuel injection nozzle, which includes a nozzle shank having an inner bore formed therein and a dome region with at least one injection hole duct formed therein. The dome region has an entry region leading into and defining an entry of the at least one injection hole duct. The entry region has differently rounded-off edges and the injection hole duct being a substantially ellipse shaped injection hole duct with a minor axis and a major axis coinciding with a direction of fuel flow through the inner bore of the nozzle shank. The edges of the entry region being more rounded in a vertex region of the major axis of the ellipse shaped injection hole duct than in a vertex region of the minor axis of the ellipse shaped injection hole duct.
In accordance with an added feature of the invention, the entry region has a form of a degenerate ellipse. An edge in the vertex region of the major axis of the degenerate ellipse facing the inner bore of the nozzle shank is more rounded than an edge in the vertex region of the major axis facing away from the inner bore of the nozzle shank.
In accordance with another feature of the invention, the edges of the entry region are rounded in a range of 10 xcexcm to 70 xcexcm.
In accordance with a concomitant feature of the invention, the entry region includes a first entry region part, a second entry region part and a third entry region part. A degree of rounding of the edges of the entry region, as a percentage, is defined as follows:
rounding of the first entry region part=[Dxc3x97(30 to 40)]/Sxc3x97100;
rounding of the second entry region part=[Dxc3x97(10 to 20)]/Sxc3x97100; and
rounding of the third entry region part=[Dxc3x9725]/Sxc3x97100;
where D corresponds to a hydraulic throughflow through the nozzle body after a rounding and S to a number of injection holes.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a nozzle body for a fuel injection nozzle with an optimized injection hole duct geometry, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a storage apparatus for recording/reproducing information to/from a magnetic disk medium, and more particularly to a storage apparatus for a high speed data transfer, mounted with a head IC on its actuator side which connects to its fixed side by way of a flexible printed circuit.
2. Description of the Related Arts
Recent magnetic disk apparatuses tend to have a remarkably increased recording density. This needs a higher data transfer speed. FIG. 1 illustrates a conventional magnetic disk apparatus having a transmission system for read signals and write data in the form of a bidirectional transmission cable 206 of 1 to 2 meters in length connecting a head disk assembly (HDD) 200 and a control board 202 within a gate attached to a rocker. The head disk assembly 200 is provided with a head actuator for positioning a plurality of heads relative to a plurality of magnetic disks rotated by a spindle motor. The head actuator has a plurality of arms carrying at their extremities a plurality of magnetic heads 212-1 to 212-n for read and write and serves to position the magnetic heads 212-1 to 212-n by a voice coil motor (VCM). Between the head actuator and a circuit board 218 on the fixed side there are interposed a plurality of flexible printed circuits (hereinafter, referred to as FPCs) 214-1 to 214-n each having a predetermined length required for a motion of the actuator and having connectors 216-1 to 216-n for the connection to the circuit board 218. For this reason, the heads 212-1 to 212-n and the circuit board 218 are connected to one another by way of a differential signal line pattern (balanced line pattern) on the FPCs 214-1 to 214-n for the bi-directional transmission of analog read signals and digital write data.
The head ICs 210-1 to 210-n are mounted on the FPCs 214-1 to 214-n, respectively, attached to the arms of the head actuator. The head ICs 210-1 to 210-n incorporate a write amplifier for switching the polarity of a recording current through the magnetic heads 212-1 to 212-n in response to write data, and a preamplifier for amplifying a read analog voltage from the heads 212-1 to 212-n. The transmission lines from the head ICs 210-1 to 210-n are connected to one another in parallel on the circuit board 218. The circuit board 218 is provided with terminating resistors 220 and 222 for write data transmission and with a series circuit consisting of an inductance 226 and a resistor 228, for compensating for the frequency characteristic upon the read signal transmission. The circuit board 218 is connected to a read channel on the control board 202 by way of the bi-directional transmission cable 206. A sending/reception end on the read channel is provided with terminating resistors 230 and 232 for read signal transmission and with a driver 204 and a receiver 205.
With the increase in the data transfer speed, such a conventional magnetic disk apparatus requires a broader frequency band of the analog read signal. If the frequency band of the read signal is not broadened, a distortion in the waveform attributable to the attenuation of the high-frequency components may occur, preventing a correct reading, resulting in a reduction of the reproducing margin and hence in a reduction in the data reliability. A barrier to a broader read signal band is a degradation of the frequency characteristics attributable to the stray capacitance occurring between the transmission lines formed on the FPC 214-1 to 214-n and attributable to the stray capacitance occurring between the transmission lines and the ground. The FPC 214-1 to 214-n need a predetermined length for allowing a motion of the actuator, posing a limitation to the reduction of the electrostatic capacity. An output circuit of the preamplifier incorporated in the head ICs 210-1 to 210-n uses an open collector type differential amplifier as a driver for driving the bi-directional cable 206. However, this allows a connection of a plenty of stray capacitance parasitic on the wiring pattern of the FPC 214-1 to 214-n since the fixed side circuit board 218 bears a multiplicity of parallel-connected transmission lines from the FPC 214-1 to 214-n. This stray capacitance causes a remarkable degradation of the frequency characteristics of the analog read signal. In order to compensate for the degradation of the frequency characteristics attributable to the FPC 214-1 to 214-n, the inductance 226 and the resistor 228 are connected to each other in series between the transmission lines of the circuit board 218. In case of receiving the write data from the driver 204 of the control board 204, this compensation circuit may cause a reflection attributable to the mismatching of the impedance and deteriorate the write data transmission characteristics, posing a limitation to the improvement of the data transfer speed. It is also conceivable to change the output circuit of the preamplifier provided in the head IC 210-1 to 210-n from the high impedance open collector type to the low impedance emitter follower type subjected to less influence of the stray capacitance. However, this emitter follower type suffered from a problem that oscillation often takes place when a capacitive load is driven. The stray capacitance impairing the broadening of the read signal band may exist in not only the FPC 214-1 to 214-n provided on the disk head assembly 200 serving as the sending end of the bi-directional transmission cable 206 but also in the input circuit portion of the control board 202 serving as the reception end of the bidirectional transmission cable 206, allowing the stray capacitance at the receiving end to cause a further degradation of the frequency characteristics of the read signals. | {
"pile_set_name": "USPTO Backgrounds"
} |
The end portions of optical waveguides must be arranged, for example in plug pins concentrically to their outer cladding surface, possibly with low eccentricity and angular displacement values. It must be possible to check the actual position of the optical waveguide in a ready-made plug pin (See for example Patent application DE-A No. 38 10 057.6).
In the manufacture of plugs the concentricity of the optical waveguide can be achieved in that the plug pin is aligned in such a way that the optical axis of the optical waveguide is aligned coaxially with an axis of rotation of a clamping device, after which the outer cladding surface of the plug pin can be cut coaxially with the optical waveguide and finished (See for example EP-A No. 207 552).
A method of the type described in the opening paragraph is known from GB-A 20 82 342. In this method the angular and lateral positions of an optical waveguide are adjusted relative to an axis of a lens. While the lateral position can be detected and readjusted by means of a four-quadrant diode, the angular position must be adjusted by observing the image of the short range field of a light beam passed through the optical waveguide. Complicated optical components are required for this purpose. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to sectional overhead doors commonly used to selectively close openings in residential and commercial buildings. More particularly, the present invention relates to sectional overhead doors that are designed to withstand substantially greater wind-loading conditions than conventional doors. More specifically, the present invention relates to design features that may be incorporated in or added to sectional overhead doors to resist damage from extreme wind-load conditions or to at least minimize damage to such an extent that a door so configured remains operative after excessive wind-loading conditions.
Due to the relatively high incidence of severe weather conditions where high winds have caused a considerable amount of damage to residential and commercial structures, there has recently been a greater awareness that door systems, if strengthened, could prevent damage to the structures. This can have the effect of greater safety for occupants of the structure in terms of a reduced likelihood of injury to the occupants, as well as providing an avenue for escape from the structure, if necessary. Building code officials have been influenced by this public awareness, as well as by insurance company interests, to increase building code requirements for resistance to high wind-velocity pressures to reduce damage, loss of property, and loss of lives. Thus, the wind-load requirements for overhead sectional doors in higher risk areas are in the process of being, or have been, increased.
Over the years attention has been given, due in part to code requirements, to increasing resistance of doors to wind-velocity pressures. Most commonly, these efforts have resulted in proposals for increasing the thickness of the door and/or adding trusses and beams to the back or inner side of the door as strengthening members. Due to conservation of material considerations, supplementing strength has normally taken the form of beams and struts that are attached to and extend horizontally of the door structure on the inner face of the door. Such beams and struts are designed to create a stiffer or more rigid door section by positioning them such that the stresses generated by wind-velocity pressures against the door section are transmitted to the beams and struts and subsequently to the jambs, header, or even the floor of the building as stress forces operating primarily parallel to the direction of the wind. These beams and struts are variously made of materials such as solid wood beams and U-shaped or C-shaped channels of steel. As these components are normally sizeable, they have significant weight, and to provide adequate reinforcement, it is common to employ six to eight beams or struts on a door.
The use of such beam or strut-reinforcing members is disadvantageous in numerous respects. The weight of the beams, along with the components necessary to effect attachment to the door, often doubles or triples the weight of the door. The cost of the beam and strut materials is normally quite high due to the size and weight of the components involved. The substantial additional weight also makes a door more difficult to install and necessitates two installers. Further, struts and beams are commonly two to six inches in height and, thus, protrude a substantial distance from the inner surface of the door, such that they are aesthetically unsightly and take up space inside the building. As a result, additional clearance is required when closing the door behind a vehicle, and when the door is in the open position, the beams protrude downwardly into the headroom area to an extent that may prevent the parking of taller vehicles, such as sport utility models, in garages having relatively limited overhead height.
A main operational disadvantage of using conventional beams and struts is that an adequate number of the substantial size normally employed causes the door to become rigid by adding beam strength to the door panels. As a result, the bending moment operative on the panels when wind loaded puts one side of a door section into greater tension and the other side of the door section into greater compression due to the greater size and thus greater moment arm created by the beams. This achieved rigidity, therefore, does not allow the door to flex without severely compression loading one side of the door section, which leads to the failure of the door sections by way of buckling. When buckling commences, the first thing that fails is the channels or struts, which rupture dramatically, thus causing the door sections to become permanently deformed, normally to such an extent that the door will not operate. This is because the substantial sized channels, struts, or bars used to prevent failure are of sufficient strength such as to preclude recovery adequate to allow the door to be operable once buckling occurs.
Another type of design that is employed to resist wind load in doors is referred to in the art as windlocks. Windlocks are locking devices located on the end portions of door sections that lock the door to the track system or to the jamb when the door is closed. Windlocks allow stresses generated by wind-velocity pressure that is exerted on door sections to be transferred to the doorjamb or other building structure. Windlocks have been employed primarily in relation to rolling doors since the slats of a rolling door cannot feasibly be reinforced with beams or struts because they would interfere with or render excessively large the rolled up condition of the rolling door when it is in the open or stored position. Further, with the narrow slat configuration necessarily employed in rolling doors, sizeable beams or struts are impractical and would create the possibility of binding or jamming of the door in the stored position. Efforts to employ windlocks on sectional doors require accurate alignment of the interengaging elements; otherwise, interference can readily occur. In addition, only a very limited number of windlocks can be employed on the jamb of a conventional sized door without the necessity for employing oversized reinforcing elements or intricately-configured interconnection elements.
Another design area for reinforcing sectional overhead doors that has gained interest in recent years relates to the utilization of vertical reinforcing posts. In such designs, a plurality of vertical posts are provided that divide the horizontal span of the door into reinforced areas with increased rigidity, and the wind-velocity pressure loads are transferred to the floor and the header above the door. Some of these designs employ vertical posts that can be retrofitted to an existing door but render the door inoperable after installation. These vertical post designs, if permanently attached to the door, add additional weight to be counterbalanced and also protrude into the interior space in the closed and opened positions in the same manner as horizontal struts or bars. Since vertical reinforcing posts require attachment to the header of the garage door opening, problems may be presented, particularly in retrofitting, because in many instances, garage door headers are not structurally designed to accommodate stresses of the magnitude that may be imparted. Similarly, the bottom of the post must be attached to the floor, and in many cases, the foundation is not designed to handle the stresses that may develop, which can result in cracking of the foundation slab. In the instance of dirt floors in a building, it is necessary to pour pilings in the floor to provide an adequate anchoring point for such vertical post anchoring. In some instances, the floor-anchoring structure protrudes above the surface of the floor and, thus, becomes a surface obstruction in the floor. In instances where holes are provided in the floor to effect engagement with the vertical posts, the holes may collect dirt or debris, thus rendering them inoperative for their intended purpose.
In longer door applications, header locks have been employed primarily to preclude separation of the door from the header during wind loading. Conventionally, these header locks take the form of opposed flat plates that move into overlapping, parallel but spaced relation when the door moves into the closed position. As a door deflects under wind loading, the header lock engages and limits further deflection of the top door panel in the area where the header lock is mounted. Such header locks also prevent the top door panel from rotating, which is an inherent tendency due to the substantially greater deflection of a door proximate its horizontal and vertical medial area. As a result, torsional stress concentrations may be created in the areas where such a header lock attaches to the door, whereby otherwise premature buckling of the panel may occur.
Therefore, existing approaches to the reinforcement of sectional overhead doors to withstand high wind-velocity pressures, both positive and negative, have embraced the concept of reinforcement of the door sections to render their construction as stiff or rigid as possible. This is coupled with the usage of beams, bars, or posts of substantial dimension, which, in varying fashions, transmit stresses to the jambs, header, or floor of the building structure proximate to the door. These existing wind-resistant systems have all embodied sufficient limitations and/or disadvantages, such that no existing structures have achieved widespread acceptance in the industry.
Accordingly, an object of the present invention is to provide a wind-resistant sectional overhead door wherein the door sections are tensioned by utilizing one or more of the tensile strength of the steel skins or outer steel skin, the core, and the inner substrate as may be incorporated in a door as flexible members that transfer the windimparted forces to the guide rollers, roller track, and jambs of a door opening. Another object of the present invention is to provide such a door wherein the door sections are tension loaded, and preferably pre-loaded, when the door is in the closed position. It is a further object of the present invention to provide such a door wherein the structural elements of the door are closer to the centroid of the section profile, such that the bending moment produced by wind forces acting on the door produce less compression in the door section components. Yet another object of the present invention is to provide such a door wherein the door sections retain their flexibility due to the absence of reinforcing members, which permits the door to undergo substantial elastic or flexible deformation, either outwardly or inwardly, as a result of negative or positive pressures, respectively, yet to return sufficiently close to the original configuration such as to remain operable after high wind-loading conditions.
Another object of the present invention is to provide a wind-resistant sectional overhead door wherein the wind-load components can be factory installed and shipped in the door packaging without additional packaging requirements. Yet another object of the present invention is to provide such a door that is a standard door with a separate wind-load kit that may be employed where necessary to meet requirements of building codes, which may vary due to location, even within relatively small geographic areas. Yet another object of the invention is to provide such a door having wind-load features that can be added to different door constructions to provide different levels of wind-load protection as a result of different structural characteristics of the basic doors. Still a further object of the present invention is to provide such a door wherein fewer parts are required to construct a wind-loaded door in terms of both major components and hardware, fasteners, straps, and the like. Still another object of the present invention is to provide such a door that can be installed in less time than conventional wind-load doors and reduces manpower requirements to a single installer.
Still a further object of the invention is to provide a wind-resistant sectional overhead door that is of substantially lighter weight than conventional wind-load doors, thereby resulting in reduced shipping and handling costs. Yet another object of the present invention is to provide such a door wherein the reduced weight permits the use of conventional counterbalance systems for lightweight doors. Still another object of the present invention is to provide such a door that, although employing standard track and hinges, is of substantially lesser weight than a conventional wind-load door, which results in retention of operational longevity. Yet a further object of the present invention is to provide such a door that may employ plastic rollers rather than heavy-duty steel rollers, which are conventionally employed for wind-load door configurations.
Another object of the present invention is to provide a wind-resistant sectional overhead door having a header lock that avoids stress concentrations and prevents premature buckling of the door, thereby increasing the probabilities of maintaining the integrity of a building during high winds and reducing the probabilities of the need for replacing a door in whole or in part. Still another object of the invention is to provide such a header lock for a door that is operative any time the door is closed and the components do not significantly protrude into the building space. Yet a further object of the invention is to provide such a header lock for a door that is low cost, can be factory installed on a door, and can be shipped without the necessity for additional packaging.
Yet a further object of the present invention is to provide a wind-resistant sectional overhead door that is safer in numerous particulars than conventional wind-load doors. Yet a further object of the invention is to provide such a door that is always wind-load active when it is closed and requires no action by a building occupant to prepare or activate the wind-resistant features of the door for high wind conditions. Yet a further object of the present invention is to provide such a door wherein components of the door do not protrude into the building, thus reducing risk of injury to people or damage to vehicles or other objects within the building, as well as providing more space for vehicles of larger dimensions. Yet a further object of the present invention is to eliminate the safety hazard of conventional wind-load doors produced by beams or struts, which may be misused as standing or gripping elements, particularly by adolescents. Yet a further object of the present invention is to provide such a door that avoids surges normally produced by a heavy door, which may require unsafe full force adjustment of a door operator to prevent reversal when closing the door.
In general, the present invention contemplates a wind-resistant sectional overhead door selectively moveable between an open position and a closed position relative to a door opening defined by spaced vertical jambs and a horizontal header extending therebetween including, a plurality of elongate horizontal panels pivotally connected at the top and bottom edges of adjacent of the panels, roller tracks mounted on the vertical jambs to either side of the door, roller shafts mounted at the ends of the panels, guide rollers carried by the roller shafts and engaging the roller tracks, and restraining members for limiting axial movement of the roller shafts, whereby the roller shafts and the panels are tension-loaded when the door is in the closed position to prevent buckling of the panels under applied wind forces. Another facet of the present invention contemplates a header lock for interconnecting the top panel of a sectional overhead door to the header of a door frame including, a panel bracket attached to the top panel of the door, a header bracket attached to the header of the door frame, an extending arm on the panel bracket having a curved section with a first engaging surface, a return arm on the panel bracket having a second engaging surface positioned rearwardly of the first engaging surface permitting pivotal movement of the top panel of the door relative to the header while restraining separating of the top panel from the header. | {
"pile_set_name": "USPTO Backgrounds"
} |
Asphalt-based roofing systems and products are well known. They include, for example, asphalt shingles and asphalt roll roofing. Many conventional materials are utilized as raw materials in the manufacture of asphalt roofing systems and products.
Asphalt roofing systems and products generally comprise a substrate which is filled and coated with various asphalt materials. Generally, the substrate is filled with a "saturant" asphalt. A saturant asphalt is oil-rich and relatively non-viscous, to provide maximum waterproofing and saturation of the substrate. The saturant asphalt serves as a preservative, a waterproofing agent and an adhesive agent.
The saturated substrate is sealed by application of a harder, more viscous "coating" asphalt to both sides of the substrate. Coating asphalts generally contain finely divided minerals therein as stabilizers or fillers. Such compounds as silica, slate dust, talc, micaceous materials and dolomite have been utilized as fillers to render the coating asphalt more shatter-proof and shock-proof in cold weather.
The exterior, outer, or exposed surface of asphalt roofing systems and products is generally provided with a covering of granular material or roofing granules embedded within the coating asphalt. The granular material generally protects the underlying asphalt coating from damage due to exposure to light, in particular ultraviolet (UV) light. That is, the granules reflect light and protect the asphalt from deterioration by photodegradation. In addition, such granular material improves fire resistance and weathering characteristics. Further, colors or mixtures of colors of granular material may be selected for aesthetics.
In general, the mineral materials, particles or granules are embedded within the coating asphalt under pressure and are retained therein by adherence to the asphalt. With respect to each granule, the asphalt may be viewed as a "hot sticky mud" into which the granules are pressed. When the asphalt cools, pockets having the granules retained therein are formed.
Good adherence of the roofing granules to the roofing product is beneficial. Loss of granules reduces the life of the roof, since it is associated with acceleration of photodegradation of the asphalt. In addition, the aesthetics of the roofing system may be compromised if granules are lost. Further, reduction of granule loss during installation improves safety conditions on the roof.
Granule loss can also occur due to physical abrasion of the granular surface. This may occur any time a person walks on an installed roof for maintenance, during installation of the roofing surface or by such environmental conditions as tree branches rubbing on the granular surface and the physical contact of rain or hail with the roofing surface.
It has been found that adherence between the roofing granules and the coating asphalt is subject to deterioration by moisture. Granule-asphalt adhesion is not well understood. However, it is probable that secondary bonding interactions contribute to adhesive bond strength. Disruption of this secondary bonding by moisture may lead to decreased adhesion of granules to asphalt. Although water run-off from a slanted roof is generally sufficient to avoid prolonged exposure to moisture and thus to avoid substantial degradation by moisture to the granule/asphalt bond or interface, problems from moisture deterioration nevertheless pose substantial risk. For example, deterioration may be substantial in humid environments or in relatively flat portions of roofs where water can collect. Further, in many instances bundles of shingles (or similar roofing material) are stored in plastic wraps or containers prior to installation. Moisture trapped within such wraps or containers may cause substantial deterioration of the granule/asphalt bond, with resultant reduction in the integrity of the later installed roofing surface.
Prior to applicants' improvements to the adhesion of roofing granules to the roofing product, it was generally felt that granule asphalt adhesion was satisfactory. It is, however, clear from the above discussion that beneficial results may be achieved by improving the granule asphalt adhesion in roofing products. What has been needed has been a method of improving asphalt-based roofing systems having granular material embedded therein with respect to granule loss due to moisture attack compromising the granule/asphalt bond or interface. In addition, improved roofing materials with respect to photodegradation of the asphalt layer by preventing granule loss by physical abrasion have been desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a wireless packet data communication system, and in particular, to a method and apparatus for transmitting/receiving a Channel Quality Indicator (CQI) feedback channel in a wireless packet data communication system.
2. Description of the Related Art
Generally, the mobile communication system is evolving from the early voice communication system for mainly providing voice services into the high-speed, high-quality wireless packet data communication system for providing data services and multimedia services. Recently, various mobile communication standards such as High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) by the 3rd Generation Partnership Project (3GPP), High Rate Packet Data (HRPD) by the 3rd Generation Partnership Project 2 (3GPP2), Institute of Electrical and Electronic Engineers (IEEE) 802.16, etc. have been developed to support high-speed, high-quality wireless packet data transmission services.
The current 3G wireless packet data communication system, such as HSDPA, HSUPA, HRPD, etc., uses an Adaptive Modulation and Coding (AMC) technique and a channel-sensitive scheduling technique to improve the transmission efficiency. With use of the AMC technique, a transmitter can adjust the amount of transmission data according to the channel state. That is, the transmitter reduces the amount of transmission data to adjust the reception error probability to a desired level if the channel state is poor, and increases the amount of transmission data to adjust the reception error probability to the desired level if the channel state is good, thereby improving the data transmission efficiency. With use of the above channel-sensitive scheduling resource management method, the transmitter selectively services the user with a good channel state among several users, increasing the system capacity compared to the method of allocating a channel to a single user and servicing the user with the allocated channel. The system capacity increase is referred to as a ‘multi-user diversity gain’. In short, in the AMC technique and the channel-sensitive scheduling technique, the transmitter receives partial channel state information fed back from a receiver, and applies the appropriate modulation and coding technique at the most efficient time determined depending on the received channel state information.
To realize the AMC technique and the channel-sensitive scheduling technique, the receiver should feed back the channel state information to the transmitter. The channel state information the receiver feeds back to the transmitter is referred to as a Channel Quality Indicator (CQI).
Recently, extensive research is being conducted to replace Code Division Multiple Access (CDMA), the multiple access scheme used in the 2nd Generation and 3rd Generation mobile communication systems, with Orthogonal Frequency Division Multiple Access (OFDMA) in the next generation mobile communication system. 3GPP and 3GPP2 have started standardization work on the OFDMA-based Evolved system. It is known that OFDMA, compared to CDMA, can contribute to the greater capacity increase. One of the several causes of the capacity increase in OFDMA is to perform scheduling in the frequency domain (know as ‘frequency-domain scheduling’). As the capacity gain was obtained through the channel-sensitive scheduling technique according to the characteristic that the channel varies with the passage of time, a greater capacity gain can be obtained with the use of the characteristic that the channel varies according to the frequency. However, to support the frequency-domain scheduling, the transmitter should previously have the channel state information for each individual frequency. That is, CQI feedback is needed separately for each frequency, increasing the CQI feedback load.
In the next generation system, research is being conducted to introduce a Multiple Input Multiple Output (MIMO) technology using multiple transmit/receive antennas. The term ‘MIMO’ as used herein refers to a technology for simultaneously transmitting multiple data streams via multiple transmit/receive antennas using the same resources. It is known that transmitting multiple low-modulation order data streams, compared to increasing the modulation order in a good channel state, is a better way to increase the throughput at the same error probability.
In the MIMO technology, the dimension over which an individual data stream is transmitted is called a ‘layer’. A method of separately applying AMC according to the channel state of the layer is efficient in increasing the capacity. For example, Per Antenna Rate Control (PARC) is a technology for transmitting different data streams via every transmit antenna, and here, the layer is the transmit antennas. Multiple transmit antennas undergo different channels, and the PARC technique applies AMC such that a greater amount of data can be transmitted via transmit antennas with a good channel state and a lesser amount of data can be transmitted via transmit antennas with a poor channel state. As another example, there is Per Common Basis Rate Control (PCBRC), and in this technology, the layer is a fixed transmission beam. Therefore, the PCBRC technique transmits a greater amount of data over transmission beams with a good channel state, and transmits a lesser amount of data over transmission beams with a poor channel state.
Space Division Multiple Access (SDMA), a technology for allocating different users to multiple transmission beams, can increase the capacity through space-domain scheduling, as OFDMA can increase the capacity through frequency-domain scheduling.
The MIMO and SDMA technologies are also referred to as Single-User MIMO and Multi-User MIMO, respectively. That is, data streams are transmitted separately over individual layers, and the transmission is classified into Single-User MIMO and Multi-User MIMO depending on whether they head toward a single user or multiple users.
FIG. 1A illustrates the concept of Multi-User MIMO.
Referring to FIG. 1A, an Access Network (AN) 10 transmits a data stream to two Access Terminals (ATs) 11 and 12. Here, because the data stream is transmitted over the same frequency/time resources, it should be transmitted over separated space resources. Therefore, the data stream being transmitted to the access terminal #1 11 is transmitted with one beam 14, and the data stream being transmitted to the access terminal #2 12 is transmitted with another beam 15.
FIG. 1B illustrates the concept of Single-User MIMO.
Referring to FIG. 1B, unlike in Multi-User MIMO, an access network 10 transmits multiple data streams to one access terminal 11. Therefore, the beams 17 and 18 formed by the access network 10 both head for one access terminal 11.
There is a difference between CQI calculation in Single-User MIMO and CQI calculation in Multi-User MIMO. In Single-User MIMO, a receiving access terminal can apply a layer-based interference cancellation technique because it is designed to receive signals of all layers. However, in Multi-User MIMO, the receiving access terminal cannot perform decoding and interference cancellation on the signals of some layers transmitted to another user. Therefore, the access terminal should calculate a CQI with the inter-layer interference cancelled, when the access terminal operates in Single-User MIMO. However, the access terminal should calculate a CQI with the inter-layer interference considered, when the access terminal operates in Multi-User MIMO.
If a scheduler of the access network has a freedom to select operations of Single-User MIMO and Multi-User MIMO, the access terminal should feed back a CQI supporting the both operations. However, the access terminal, when it already applies MIMO, feeds back a CQI of each individual layer (hereinafter referred to as layer-based CQI). Therefore, in the state where the amount of feedback has already increased, if the access terminal feeds back all CQIs supporting the both operations, the feedback overhead may excessively increase. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present disclosure relates to methods and devices for creating special purpose computers whose hardware and programming enable dynamic and efficient data retrieval when navigating hyperlinks.
2. Background
Breadcrumbs are a navigation aid used in user interfaces. Breadcrumbs allow users to keep track of their locations within programs or documents. In the case of a Web browser, for instance, breadcrumbs are navigation shortcuts of prior websites a user visited. In this case, breadcrumbs may appear as icons on a ribbon located within the browser window. A user may return to a previously visited website by clicking on one of these icons, also known as breadcrumbs. However, breadcrumbs are not limited to Web browsing, and may be present in the user interfaces of other types programs and, perhaps, also in documents. | {
"pile_set_name": "USPTO Backgrounds"
} |
In facilities, e.g. buildings or installations, where a significant amount of power is used among a variety of units, it would be desirable to allow the building owner to allocate energy costs to the different units, i.e. consumers, within the facility. For a commercial office building, these units may include the different tenants within the building or the common loads for the facility, such as the elevators or HVAC systems. For an industrial facility, these units may include the different production lines, machines or processes within the facility. As opposed to allocating costs based on a fixed or formulaic approach (such as pro-rata, e.g. dollars per square foot or based on the theoretical consumption of a process/machine), an allocation based on actual measurements using appropriate monitoring devices may result in more accurate and useful information as well as a more equitable cost distribution.
Both installation and ongoing, i.e. operational and maintenance, costs for these monitoring devices are important considerations in deciding whether a monitoring system is worth the investment. While monitoring devices may be read manually, which does not increase the installation cost, manual data collection may increase on-going/operational costs. Alternatively, monitoring devices may be interconnected and be automatically read via a communications link. However, typical communication links require wiring to interconnect the devices which increases the installation cost. In addition, a particular tenant in the building may wish to verify that they are being billed correctly by reading the energy meter or other energy monitoring device that is accumulating their energy usage. This may be a straightforward, although labor intensive and cumbersome, process with a typical energy meter which provides a display viewable by the tenant.
Emerging wireless mesh (or ad-hoc) networking technologies can be used to reduce the installation costs of monitoring devices while providing for automated data collection. Also called mesh topology or a mesh network, mesh is a network topology in which devices are connected with many redundant interconnections between network nodes. Effectively, each network node acts as a repeater/router with respect to received communications where the device is not the intended recipient in order to facilitate communications between devices across the network. Using wireless interconnections permits simpler and cost-effective implementation of mesh topologies wherein each device is a node and wirelessly interconnects with at least some of the other devices within its proximity using RF based links. Mesh networking technologies generally fall into two categories: high-speed, high bandwidth; and low speed, low bandwidth, low power. The first category of devices are typically more complex and costly that the second. Since energy monitoring does not typically require high speed/high bandwidth communication, the second category of devices is often sufficient in terms of data throughput.
Energy monitoring devices may include electrical energy meters that measure at least one of kWh, kVAh, kVARh, kW demand, kVA demand, kVAR demand, voltage, current, etc. Energy monitoring devices may also include devices that measure the consumption of water, air, gas and/or steam. | {
"pile_set_name": "USPTO Backgrounds"
} |
Compositions and methods for planarizing or polishing the surface of a substrate are well known in the art. Polishing compositions (also known as polishing slurries) typically contain an abrasive material in an aqueous solution and are applied to a surface by contacting the surface with a polishing pad saturated with the slurry composition. Typical abrasive materials include silicon dioxide, cerium oxide, aluminum oxide, zirconium oxide, and tin oxide. U.S. Pat. No. 5,527,423, for example, describes a method for chemically-mechanically polishing a metal layer by contacting the surface with a polishing slurry comprising high purity fine metal oxide particles in an aqueous medium. Alternatively, the abrasive material may be incorporated into the polishing pad. U.S. Pat. No. 5,489,233 discloses the use of polishing pads having a surface texture or pattern, and U.S. Pat. No. 5,958,794 discloses a fixed abrasive polishing pad.
Conventional polishing systems and polishing methods typically are not entirely satisfactory at planarizing semiconductor wafers. In particular, polishing compositions and polishing pads can have less than desirable polishing rates, and their use in the chemical-mechanical polishing of semiconductor surfaces can result in poor surface quality. Because the performance of a semiconductor wafer is directly associated with the planarity of its surface, it is crucial to use a polishing composition and method that results in a high polishing efficiency, uniformity, and removal rate and leaves a high quality polish with minimal surface defects.
The difficulty in creating an effective polishing system for semiconductor wafers stems from the complexity of the semiconductor wafer. Semiconductor wafers are typically composed of a substrate, on which a plurality of transistors has been formed. Integrated circuits are chemically and physically connected into a substrate by patterning regions in the substrate and layers on the substrate. To produce an operable semiconductor wafer and to maximize the yield, performance, and reliability of the wafer, it is desirable to polish select surfaces of the wafer without adversely affecting underlying structures or topography. In fact, various problems in semiconductor fabrication can occur if the process steps are not performed on wafer surfaces that are adequately planarized.
Various metals, metal oxides, metal nitrides, metal alloys, and the like have been used to form electrical connections between interconnection levels and devices, including titanium, titanium nitride, aluminum-copper, aluminum-silicon, copper, tungsten, platinum, platinum-tungsten, platinum-tin, ruthenium, tantalum, tantalum nitride, and combinations thereof. Noble metals present a particular challenge in that they are mechanically hard and chemically resistant, making them difficult to remove efficiently through chemical-mechanical polishing.
The following patents disclose polishing compositions for noble metals. U.S. Pat. No. 5,691,219 discloses a semiconductor memory device comprising a noble metal conductive layer and a polishing composition comprising a halo-compound for polishing the noble metal. U.S. Pat. No. 6,274,063 discloses polishing compositions for nickel substrates comprising a chemical etchant (e.g., aluminum nitrate), abrasive particles, and an oxidizer. U.S. Pat. No. 6,290,736 discloses a chemically active polishing composition for noble metals comprising an abrasive and a halogen in basic aqueous solution. JP 63096599 A2 discloses a method of dissolving metallic ruthenium. JP 11121411 A2 discloses a polishing composition for platinum group metals (e.g., Ru, Pt) comprising fine particles of an oxide of the platinum group metal. JP 1270512 A2 discloses a dissolving solution for noble metals comprising hydrogen peroxide, alkali cyanide, and phosphate ion and/or borate ion. WO 00/77107 A1 discloses a polishing composition for noble metals (e.g., Ru, Rh, Pd, Os, Ir, Pt) comprising abrasive, a liquid carrier, an oxidizer, and a polishing additive including EDTA, nitrogen-containing macrocycles (e.g., tetraazacyclotetradecanes), crown ethers, halides, cyanides, citric acid, phosphines, and phosphonates. WO 01/44396 A1 discloses a polishing composition for noble metals comprising sulfur-containing compounds, abrasive particles, and water-soluble organic additives which purportedly improve the dispersion of the abrasive particles and enhance metal removal rates and selectivity.
In addition, chemical-mechanical polishing of tantalum-containing surfaces, such as tantalum removal in barrier film applications, typically utilize an oxidizing agent. Hydrogen peroxide is by far the most common oxidizing agent used in tantalum CMP. Hydrogen peroxide is a strong oxidizing agent that can react with other slurry components limiting pot-life stability of the polishing slurry composition. Electron transfer catalysts such as Fe, Os, or Ru can be added at low pH to act cooperatively with hydrogen peroxide to accelerate oxidation and removal of the metals present on the surface being polished. At elevated pH values, these metal electron transfer catalysts precipitate as oxide and hydroxide compounds, and lose their effectiveness as electron transfer catalysts. It is often also desirable to selectively oxidize tantalum in the presence of copper. Many common oxidizing agents are not selective between tantalum and copper.
The introduction of porous low-k materials in microchip devices has made “low down-pressure” (low-P) planarization an extremely important factor. Although low-P operation is difficult to incorporate in the currently available framework of CMP, it is possible to combine electrochemically controlled material removal with low-P mechanical polishing where the main role of the latter step is to provide uniform planarization across the sample surface (that is, to facilitate selective material removal from protrusions over recess regions of the surface). This approach, introduced by Applied Materials for industrial applications, is referred to as electrochemical mechanical planarization (ECMP), and can potentially lead to a more efficient planarization technology than the currently practiced chemical mechanical planarization (CMP).
In most applications of ECMP, the mechanical abrasion step involves removal of thin passive films of oxides and/or surface complexes (not of the underlying bulk metal), and hence can be performed at a low down pressure (<1 psi). Electrochemical techniques are often used only as a “probe” of CMP mechanisms to analyze corrosion/erosion behaviors of various CMP systems, but these techniques are not frequently applied to the actual CMP process. In ECMP, electrochemical techniques can be used to both activate and understand the mechanism(s) of material removal. In addition to its low-P processing capability, another major feature of ECMP is that it can be performed using electrolytes with no or very low concentrations of abrasive particles. This helps to eliminate several disadvantages of CMP that are associated with the use of slurries containing high concentrations of abrasive particles, such as lack of within-wafer uniformity, particle coagulation, slurry-handling and waste disposal. The task of endpoint detection is relatively straightforward in ECMP where simply controlling the applied voltage or current can accurately control the extent of planarization. Often it might also be possible to eliminate the need for certain expensive, unstable and/or side-reacting chemicals (oxidizers, surfactants, etc.) in ECMP.
A need remains, however, for polishing systems and polishing methods that will exhibit desirable planarization efficiency, uniformity, and removal rate during the polishing and planarization of substrates, while minimizing defectivity, such as surface imperfections and damage to underlying structures and topography during polishing and planarization. Improved polishing compositions and methods are needed for the polishing of tantalum-containing substrates, particularly compositions and methods that can selectively oxidize tantalum in the presence of copper during chemical-mechanical polishing (CMP).
The present invention provides such improved chemical-mechanical polishing compositions and methods. These and other advantages of the invention will be apparent from the description of the invention provided herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present inventor, experienced in the design and manufacture and mechanism of wrist watches, particularly of a solid state type, is aware of expensive inventory necessary to be carried with regard to the push-button mechanism thereof in order to have necessary sizes for all of varying different wrist watches which often differ in the distance between the watch interior space in which the modular works is mounted, and the outer surface of the watch casing. There are major differences in the length of a conduit of one watch as compared to the length of the conduit of another watch, in which conduits push-button mechanisms are mountable prior to insertion of the works or modular works are mountable. Heretofore, it has been the universal practice to prefabricate or manufacture the push-button mechanism in advance in its entirety, and accordingly there have been designed for different watch casings push-button mechanisms having different lengths of shafts, as well as the button non-shifting mechanism having to be elaborate at times in order to have a workable and durable mechanism. | {
"pile_set_name": "USPTO Backgrounds"
} |
At present, few products on the market can detect touch pressures (such as finger press strength), especially those that are easy to be implemented for detecting touch pressures on a mobile terminal such as a mobile phone. An existing apparatus for detecting the touch pressure mainly applies a piezoresistive detection solution, whose principle is: a piezoresistor sensor is mounted on a bottom of a target detection panel, when the panel is pressed, the panel will endure a tiny stroke under the press strength, thereby rendering a change on the resistance of the piezoresistor sensor mounted on the bottom thereof. As such, the touch pressure is quantified according to the change of the resistance.
The above-mentioned detection solution has following problems:
1. Difficulty in implementation structure: a tiny stroke is required for the sensor to detect the pressure changes, and the sensor needs to be mounted flatly enough below the panel, thereby rendering the method for implementing this structure very difficult.
2. Influence of device arrangement: if the apparatus for detecting the pressure is mounted on the mobile phone, when a relative gravity line of the mobile phone panel changes, a measuring error may occur due to the influence of the gravity on the panel.
3. High cost: sensor cost and structure cost may lead to a high cost of the final solution.
In summary, the existing solution for detecting the touch pressure has the problems such as complex structures and assembling, high costs, low detection sensitivities and large volumes, thereby rendering it difficult to be implemented on the mobile terminal. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to devices for holding tubular items, particularly tubular items such as intravenous tubing utilized in the field of medicine for the intravenous injection of liquids.
The most commonly used method of securing injection cannula, infusion tubes and other tubular items of equipment during intravenous injections, has been to strap such items to the patient with ordinary adhesive tape. This has proven unsatisfactory because the tape must be removed each time the held item is changed, causing discomfort to the patient and possible skin damage. Moreover, the items are usually not held sufficiently secured and are likely to move relative to the patient each time the patient moves, again causing pain and possible injury, or even complete dislodgement of the item.
One prior art tubing support system in a related field is that found in U.S. Pat. No. 3,726,280 to Lacont for a "Catheter Support" in which en elongated elastic band is used to encircle the limb and then to double back upon itself to capture the catheter tubes by a system of VELCRO (a Registered Trademark of Velcro Corporation, New York, N.Y.)-type hook and loop fasteners. Another prior art supporting system is that found in U.S. Pat. No. 3,834,380 to Boyd for a "Holder For Intravenous Injection Cannula and Tubing" which discloses a holder comprising a strip of adhesively backed tape to which is attached a longitudinally split clamping tube of flexible plastic material which receives the IV tube and over which a flap of hook and loop fastener is secured to retain the tubing within the clamping tube. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a light emitting device. More specifically, the present invention relates to an organic electroluminescence light emitting device.
In recent years, attention has been paid to an organic electroluminescence display apparatus (hereinafter sometimes abbreviated simply as “organic EL display apparatus”) using an organic electroluminescence device (hereinafter sometimes abbreviated simply as “organic EL device”) as a display apparatus which is a replacement for a liquid crystal display apparatus. The organic EL display apparatus is a self-luminous type and has such a characteristic that a consumed electrical power is low, and it is considered to have sufficient responsiveness to high-speed video signals with a high definition. Its development and commercialization toward practical implementation are being extensively advanced.
In general, the organic EL device has a structure in which a first electrode, an organic layer having a light emitting layer made of an organic light emitting material provided therein and a second electrode are successively laminated. In the organic EL device, it is attempted to control light emitted in the light emitting layer through an enhancement of color purity of luminous color or an increase of luminous efficiency or the like by introducing a resonator structure, namely, by contriving to optimize a thickness of each of layers constituting the organic layer (see, for example, WO 01/39554).
Here, there may be the case where a problem is caused in viewing angle dependency of chromaticity or luminance, namely, there may be the case where a problem that as a viewing angle becomes large, a peak wavelength in a spectrum of light from an organic EL display apparatus largely moves, or light intensity is greatly lowered is caused; and therefore, it is desirable that the intensity of resonance is suppressed to a lower level as far as possible, namely, the thickness of the organic layer is made thin as far as possible (see, for example, the above-cited WO 01/39554). However, in the case where the thickness of the organic layer is thin, as schematically shown in FIG. 14, when a particle (foreign matter) or a protruding part is present on the first electrode, coverage of the organic layer does not become complete so that there is a concern that a short circuit is caused between the first electrode and the second electrode. Then, when such a short circuit is caused, in an organic EL display apparatus of an active matrix system, a pixel including the short circuit becomes a defect, thereby deteriorating the display quality of the organic EL display apparatus. Also, in an organic EL display apparatus of a passive matrix system, such a pixel including the short circuit becomes a missing line, thereby deteriorating the display quality of the organic EL display apparatus, too. Such a problem becomes a remarkable problem especially in a large-sized organic EL display apparatus. That is, this is because the viewing angle characteristic becomes severer, whereby a tolerable number of defects per unit area becomes small.
Up to date, grappling with decreasing the short circuit between the first electrode and the second electrode has been made in all sorts of ways. For example, JP-A-2001-035667 discloses a technology in which in an organic EL display apparatus of a bottom emission system, a highly resistive layer is inserted between an anode electrode and an organic film. Also, JP-A-2006-338916 discloses a technology in which in an organic EL display apparatus of a top emission system, an anode electrode is divided into two layers, and the layer constituting the anode electrode close to an organic layer is made highly resistive. Furthermore, JP-A-2005-209647 discloses a technology in which in an organic EL display apparatus of a bottom emission system, a cathode electrode is divided into two layers, and the layer constituting the cathode electrode close to an organic layer is made highly resistive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to semiconductor devices and more particularly to a fabrication process of a semiconductor device having a matrix array of contacts including a pin grid array or a ball grid array and a fabrication process thereof.
With the advancement in the art of device miniaturization, recent highly integrated LSI chips generally carry a very large number of contact electrodes thereon for external interconnection. For example, there are LSI chips that carry the contact electrodes with a number of several hundreds or even one thousand.
FIG. 1A shows an example of such an LSI chip 1 of the so-called BGA (ball grid array) type in which a number of solder balls 30 are provided on a principal surface 1a thereof in a row and column formation as the contact electrodes. There are LSI chips of this type in which the number of the solder balls 30 exceeds 500. The solder balls 30 on the chip 1 includes power supply terminals 31 and input/output terminals 32.
It should be noted that the fabrication process of a semiconductor device such as an LSI chip 1 includes a testing process of the chip 1, wherein the testing process includes the step of mounting the LSI chip 1 on a testing board in the state that the solder balls 30 are connected electrically to test terminals on the testing board via corresponding contact pins. In the case of recent LSI chips carrying a very large number of solder balls 30 on the chip principal surface 1a, it should be noted that the number of the solder balls 30 can exceed the number of the test terminals provided on the testing board, and there arises a problem in that the testing is not possible for all of the solder balls 30 on the chip 1.
In order to overcome the shortcomings of such a conventional testing process, it is proposed to carry out the testing process according to the process shown in the flowchart of FIG. 2.
Referring to FIG. 2, a number of regions R1-R4 are defined in the step S21 on the principal surface 1a of the LSI chip 1 by boundaries L1 and L2 as indicated in FIG. 1B, such that the number of the solder balls 30 does not exceed the number of the test terminals of the testing board in any of the regions R1-R4. As will be explained later in detail, the test of the LSI chip 1 is conducted for each of the regions R1-R4, while the regions R1-R4 are defined arbitrary. This means that the number or arrangement of the solder balls 30 as well as the type of the terminals provided by the solder balls may be different in each of the regions R1-R4.
Next, one of the regions R1-R4 is selected for testing in the step S22, and a testing board 2a for the region R1 is mounted on a testing apparatus in the step S22b, as will be explained with reference to FIG. 3A. Further, a test program corresponding to the selected region is loaded in the step S23 on a computer cooperating with the testing board.
After the step S23, the LSI chip 1 is mounted on the testing board in the step S24.
FIGS. 3A and 3B show the examples of mounting the LSI chip 1 on the testing board 2a in a bottom view, wherein FIG. 3A shows the LSI chip 1 mounted on the testing board 2a while FIG. 3B shows the LSI chip 1 mounted on a testing board 2b.
Referring to FIG. 3A, the testing board 2a carries thereon test terminals 33 corresponding to the power terminals 31 or the input/output terminals 32 on the selected region R1 of the LSI chip 1, along a periphery of the testing board 2a in electrical connection with contact pins that are provided on the testing board 2a or 2b in rows and columns in correspondence to the solder balls 30 on the LSI chip 1, and the testing is conducted in the step S25 in the state of FIG. 3A while using the test program loaded in the test computer previously in the step S23 of FIG. 2. In FIG. 3A, it should be noted that the contact pins on the testing board 2a are connected to respective, corresponding test terminals 33 via a wiring pattern 34.
Based on the result of the testing in the step S25, a discrimination step S26 is conducted for discriminating whether or not the tested region R1 of the LSI chip 1 is defect-free, and if the result is NO, the chip 1 is discarded in the step S27.
Next, in the step S28, a discrimination is made whether or not all the LSI chips 1 are tested, and if the result is NO, the tested LSI chip 1 is dismounted from the testing board 2a and a next LSI chip 1 is mounted such that the region R1 of the next LSI chip 1 is tested.
Further, in the step S29, a discrimination is made whether or not all the regions R1-R4 of all the LSI chips 1 are tested, and if the result is NO, the first LSI chip 1 is mounted on the second testing board 2b of FIG. 3B for testing of the region R2. It should be noted that the testing board 2b is designed for testing the region R2 and carries a wiring pattern 34′ different from the wiring pattern 34 provided on the testing board 2a for testing the region R1. Thereby, the steps S22-S29 are repeated for the all the regions R2-R4.
However, the foregoing testing process has a drawback in that it is necessary to provide a number of testing boards 2a and 2b in correspondence to arbitrarily defined regions R1-R4. It should be noted that the wiring pattern 34 has to be changed in each of the testing boards in correspondence to the selected regions R1-R4 even though the testing boards may have the same row and column arrangement of the contact pins. Further, the testing program has to be changed in each of the regions R1-R4 and hence in each of the testing boards. Thereby, the cost of the testing of the LSI chip increases inevitably.
Further, the foregoing testing process has a drawback in that it requires a large number of testing steps including loading and unloading of the testing programs, mounting and dismounting of the LSI chips, and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
Enclosures are used in a number of applications and have a number of different sizes and configurations. Such enclosures have one or more electrical devices and/or mechanical devices disposed therein. An example of such a device is a GFCI breaker. The breaker portion of the device is a switch that controls when power is sent to downstream devices. The GFCI portion of the device is a fail-safe feature that automatically opens the breaker when a ground fault is detected. In many cases, an enclosure can have multiple GFCI breakers disposed therein. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to polypeptides having carboxypeptidase activity and isolated nucleic acid sequences encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid sequences as well as methods for producing the polypeptides. The present invention further relates to methods of obtaining protein hydrolysates useful as flavor improving agents.
2. Description of the Related Art
Various food products, e.g., soups, sauces and seasonings, contain flavoring agents obtained by hydrolysis of proteinaceous materials. This hydrolysis is conventionally accomplished using strong hydrochloric acid, followed by neutralization with sodium hydroxide. However, such chemical hydrolysis leads to severe degradation of the amino acids obtained during the hydrolysis, and also to hazardous byproducts formed in the course of this chemical reaction. Increasing concern over the use of flavoring agents obtained by chemical hydrolysis has led to the development of enzymatic hydrolysis processes.
Enzymatic hydrolysis processes aim at obtaining a high degree of hydrolysis (DH), and this is usually attained using a complex of unspecific acting proteolytic enzymes (i.e., unspecific acting endo- and exo-peptidases). For example, WO 94/25580 describes a method for hydrolyzing proteins by use of an unspecific acting enzyme preparation obtained from Aspergillus oryzae. Specific acting proteolytic enzymes have not been used for this purpose because such enzymes only lead to an inadequate degree of hydrolysis.
Acid carboxypeptidases (EC 3.4.16) are serine exopeptidases which catalyze the removal of amino acids from the C-terminus of peptides, oligopeptides or proteins. These carboxypeptidases generally have a narrow substrate specificity, i.e., they can cleave only few amino acids.
Acid carboxypeptidases of Aspergillus oryzae have been reported previously. For instance, Nakadai, Nasuno, and Iguchi, 1972, Agricultural and Biological Chemistry 36: 1343–1352, disclose a carboxypeptidase I with a molecular weight of 120 kDa (gel filtration) and optimal activity in the pH range 3.0 to 4.0. Nakadai, Nasuno, and Iguchi, 1972, Agricultural and Biological Chemistry 36: 1473–1480, disclose a carboxypeptidase II with a molecular weight of 105 kDa (gel filtration) and optimal activity at pH 3.0. Nakadai, Nasuno, and Iguchi, 1972, Agricultural and Biological Chemistry 36: 1481–1488, disclose a carboxypeptidase III with a molecular weight of 61 kDa (gel filtration) and a pH optimum of 3.0. Nakadai, Nasuno, and Iguchi, 1972, Agricultural and Biological Chemistry 37:1237–1251, disclose a carboxypeptidase IV with a molecular weight of 43 kDa (gel filtration) and optimal activity at pH 3.0. Tekeuchi and Ichishima, 1986, Agricultural and Biological Chemistry 50: 633–638, disclose a carboxypeptidase O with a molecular weight of 73 kDa (SDS-PAGE). Tekeuchi, Ushijima, and Ichishima, 1982, Current Microbiology 7: 19–23, disclose a carboxypeptidase O-1 and a carboxypeptidase O-2 both with a molecular weight of 63 kDa (gel filtration) and optimal activity at a pH in the range of 3.7 to 4.0. Ichishima et al., 1972, Journal of Biochemistry 72:1045–1048, disclose a comparison of the enzymatic properties of several Aspergillus acid carboxypeptidases. Azarenkova et al., 1976, Biokhimiya 41: 20–27, disclose the isolation of an acid carboxypeptidase from Aspergillus oryzae with a molecular weight of 37 kDa (SDS-PAGE) and a pH optimum of 4 to 5.
The production of protein hydrolysates with desirable organoleptic properties and high degrees of hydrolysis generally requires the use of a mixture of peptidase activities. It would be desirable to provide a single component peptidase enzyme which has activity useful for improving the organoleptic properties and degree of hydrolysis of protein hydrolysates used in food products either alone or in combination with other enzymes.
It is an object of the present invention to provide improved polypeptides having carboxypeptidase activity as well as methods of obtaining protein hydrolysates with desirable organoleptic qualities and high degrees of hydrolysis. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally, the present invention is directed to methods and apparatus for hazardous gas detection. More particularly, the present invention is directed to systems for detecting hazardous gases in inclement environmental conditions which may include conditions such as rain, and directed fluid streams such as splashed or hosed water.
In many types of gas-detection systems for hazardous gases, such as combustible hydrocarbons and hydrogen sulfide, hazardous gas sensors are positioned at locations at which hazardous gas monitoring is necessary or appropriate. Such sensors typically interpose a porous metal flame arrestor between electrical gas sensor elements and the environment, for safety purposes. An output or controller device may be combined with the sensor, or may be positioned remotely from the sensor for monitoring the sensor output. Such sensors are conventionally located in and around factories, pilot plants, refineries and chemical process plants, where they may be continuously or intermittently subjected to undesirable environmental operating conditions such as dust, dirt, rain and directed fluid streams. In this regard, water sprays, mists or streams from repair, maintenance or cleaning operations, as well as leakage, breakdown or faulty operation of equipment or manufacturing processes may adversely affect the performance and reliability of a hazardous gas sensor unless the sensor is protected from such conditions. Similarly, hazardous gas sensors which are located in unprotected outside areas will be exposed to rain and other adverse environmental conditions which may also degrade or defeat sensor performance. Excessive moisture can damage gas sensors by causing the sensor to short, by causing thermal shock to sensors operated at elevated temperatures, by combining with corrosive gases to chemically attack the sensor, and may interact with ambient dust or dirt to permanently plug up porous flame arrestors which will inhibit sensor performance. Of course, water alone will typically fill the pores of the flame arrestor of a hazardous gas sensor having such an arrestor, thereby at least temporarily inhibiting sensor performance until it is dried from the arrestor Moreover, hydrogen sulfide sensors are adversely affected by moisture, which can defeat or degrade sensor performance. As indicated, hazardous gas sensors should be protected from such excess moisture, which can temporarily or permanently interfere with the ability of such sensors to detect the presence, or measure the quantity of hazardous gas. However, because such sensors are intended to measure and detect hazardous gases, and because rapid sensor response to the environment is important for safety or process control reasons, it is important that sensor protective apparatus should not significantly interfere with free and ready access and exposure to the atmosphere in the zone to be protected by the sensor.
Typically, hazardous gas sensors are protected from fluid contamination or interference such as rain, splashed water or hosed water by protective splash guard devices made from a plurality of slotted tubes of varying diameters, arranged concentrically, with respective slots of adjacent consecutive tubes angularly displaced from each other, to present a cylindrical labyrinth passageway to water flow. Water entering the slots in an external tube may be deflected by the internally adjacent tube surface, and water passing through the internal tube slots may again be deflected by the next internally adjacent tube surface. Each deflection slows the water, so that it may drain from the bottom of the concentric tube splash guard before reaching the porous metal flame arrestor or hazardous gas sensor. However, conventional, concentric tubular splash guard devices may have a number of disadvantages. In this regard, if designed to permit rapid gas diffusion to the sensor, concentric tubular splash guard devices may not effectively keep water away from the sensor, and may be ineffective in protecting the sensor from water sprays or streams directed along the axes of the tubes. However, if such concentric slotted tube splash guard assemblies are designed to most effectively prevent water impingement on the sensor, the access of the sensor to the ambient atmosphere may be significantly impeded, and the time necessary for hazardous gas to diffuse around the labyrinth passageway to reach the sensor is increased, thereby increasing the time necessary for the sensor to be capable of detecting a hazard. Moreover, such concentric tube splash guard devices are typically designed to be screwed onto the sensor, which may present assembly or maintenance difficulties for hazardous gas sensors which are not positioned in readily accessible locations.
Accordingly, there is a need for improved hazardous gas sensor assemblies and sensor protection systems, and it is an object of the present invention to provide such improved hazardous gas sensor assemblies and sensor protection systems. These and other objects will be apparent from the following detailed description and the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
A color liquid crystal display device widely used in recent years among color display devices users has several hundred thousands to several million pixels. Each pixel is composed of R (red), G (green) and B (blue) sub-pixels. In order to display the R, G and B for each sub-pixel, R, G and B color filters are used in many cases, and a full color image is obtained by combining displays of the sub-pixels using these color filters. In the case of using such color filters, two-thirds of a light is absorbed by these color filters, and theoretically, approximately one-third of the light is only usable. In this connection, a color filterless display device performing color display without using the color filters is under study.
The following documents are considered herein: [Patent Document 1] Gazette of Japanese Patent Laid-Open No. 2000-241812 (pp. 3 to 4, FIG. 1) [Patent Document 2] Gazette of Japanese Patent Laid-Open No. Hei 9 (1997)-311329 (p. 6, FIG. 1) [Patent Document 3] Specification of US Patent Application Publication No. 2002-0075427
FIG. 13 is a view showing an example of a color filterless liquid crystal display device, a configuration of a conventional color filterless and direct view liquid crystal display device using a spectral element (for example, refer to Patent Document 1). The device shown in FIG. 13 includes a light source 401 using, for example, a white fluorescent tube, an incidence optical system 402, a reflection sheet 403, a wedge-shaped light guide plate 404, a diffraction grating 405, and a cylindrical lens sheet 406 that is an optical element including a plurality of cylindrical lenses. Moreover, the device includes polarization films 407 sandwiching a liquid crystal cell 408 there-between, a liquid crystal layer 410 sandwiched between glass 409 and glass 409, all three of which compose the liquid crystal cell 408, and a diffusion/viewing angle correction film 411 made of a light diffusion film, a transmission diffraction grating film or the like.
In this color filterless and direct view liquid crystal display device, a white light incident from the light source 401 is guided by the wedge-shaped light guide plate 404, and a planer light is emitted in the vicinity of a desired incident angle. The white light incident from the wedge-shaped light guide plate 404 is separated by an optical element (spectral element) such as the diffraction grating 405 (and an optical hologram). By this light separation, three-color diffracted light of the R, G and B is emitted at angles where the blue (B) light and the red (R) light are arrayed to be substantially symmetric bilaterally with respect to the green (G) light diffracted to a frontal direction as a center. The diffracted light of the respective colors is made incident onto the cylindrical lens sheet 406. Here, one pixel among the display pixels is composed of three sub-pixels of the R, G and B. With regard to the light incident onto the cylindrical lens sheet 406, for the liquid crystal cell 408, the R light is made incident onto a sub-pixel for the R, the G light is made incident onto a sub-pixel for the G, and the B light is made incident onto a sub-pixel for the B. Then, transmission and cutoff of the light is controlled for each sub-pixel. On a surface of the liquid crystal cell 408, an emitted light from the liquid crystal cell has emission angles different depending on the wavelengths due to diffraction angles depending on wavelengths of the colors. Accordingly, in order to widen a viewing angle of the liquid crystal cell 408, the light diffusion/viewing angle correction by the diffusion/viewing angle correction film 411 is performed. Note that, also in other color display devices such as a color filterless liquid crystal projection device, lights of the respective colors, which is made incident onto a liquid crystal cell in a state of being emitted from a white light source, separated by a dichroic mirror, a diffraction grating or the like, and condensed by a lens element, has different incident angle for each of the respective colors of the R, G and B.
However, in the conventional color filterless and direct view liquid crystal display device as shown in FIG. 13, a problem remains in terms of an effect of such a viewing angle correcting function member. By use only of the usual diffusion/viewing angle correction film 411, the emission angles from the liquid crystal cell, which depend on the wavelengths, are maintained even after the emitted light transmits through the diffusion/viewing angle correction film 411. In order to equalize color reproductivity and color balance and to widely secure the viewing angle, it is desired to add a far more improvement. Accordingly, it is also conceivable to separately use a transmission diffraction grating film as the viewing angle correcting function member. However, film design to control diffraction efficiencies different depending on the wavelengths and to correct intensity of the incident light of every wavelength with high accuracy into a distribution of the equalized viewing angles is accompanied with difficulty. Moreover, a significant lowering of a peak value of luminance to the frontal direction cannot be avoided. For example, a relative value of luminance of the emitted light on the front in comparison to the incident light onto the correction film is undesirably lowered to 30 to 40%. Furthermore, because of a combination of the materials having the different refractive indices, fabrication itself of a film into a shape combining high diffraction efficiency and a smooth surface is difficult. For example, in a diffraction grating having a triangular cross-sectional shape and using materials with refractive indices of 1.42 and 1.57, arithmetically, such a shape incapable of being fabricated, as in which an inner inclination angle between the two layers is 70 to 80 degrees, is needed.
FIGS. 14(a) and 14(b) are graphs showing distributions of the emitted light in the color filterless and direct view liquid crystal display device. FIG. 14(a) shows a distribution of the emitted light in the case where the viewing angle correcting diffraction grating is not provided, and FIG. 14(b) shows a distribution of the emitted light in the case where the transmission diffraction grating film is concurrently used as the viewing angle correcting function member. In each of the graphs, an abscissa axis represents an output angle, an ordinate axis represents transmissivity, and the distributions of the emitted light of the respective colors R, G and B are shown. In comparison with the case where the viewing angle correcting diffraction grating is not provided, which is shown in FIG. 14(a), in the case where the viewing angle correcting diffraction grating is provided, which is shown in FIG. 14(b), each center of the emitted light R, G and B comes close to a frontal direction of a panel. However, deviations among the lights of the respective colors are not removed, and the viewing angle correcting function member does not necessarily have a sufficient viewing angle correcting function.
The following should be noted. It has been measured that the color reproductivity (an area of a region displayable by the color display device in a chromaticity diagram) in the frontal direction in the case of concurrently using the transmission diffraction grating film as the viewing angle correcting function member becomes, for example, approximately 38% at the NTSC rate, which remains equal to or less than 42% at the NTSC rate of a direct view liquid crystal display device added with an existing 13.3-inch color filter. Moreover, if a condition of a viewing angle at which chromaticity is regarded as uniform is defined such that an error between a subject emitted component and an emitted component to the frontal direction falls within a range equal to or less than 0.02 in both chromaticity coordinates x and y, it has been confirmed that an emission angle range meeting the condition remains within, for example, a narrow range from −5 to +7 degrees. Because of these defects, with the transmission diffraction film, it is difficult to accomplish a sufficient viewing angle correcting function in luminance/chromaticity. Accordingly, a new viewing angle correcting method for improving viewing angle performance is required. Moreover, with regard to the luminance, from an observation of the inventors of the present invention, it is grasped that, for example, a luminance value on the front side before adding the transmission diffraction grating film is approximately 217 cd/m2, and a luminance value on the front side thereafter is approximately 85 cd/m2, both of which are results of attenuation to 40% or less in such an insufficient state of the color reproductivity. Therefore, an improvement for enhancing the luminance is also necessary.
Here, as the conventional viewing angle correcting function member, a structure has been proposed, in which lens-shaped or prism-shaped concave portions are processed and formed in a size corresponding to opening portions of the respective sub-pixels of the R, G and B on a black matrix-side surface of an emission-side glass substrate of the liquid crystal cell, and polymer having a refractive index higher than that of the glass substrate is injected into the concave portions, thus planarizing the surface (for example, refer to Patent Document 2). Moreover, the inventors of the present invention have proposed a technology in which a simple prism structure or a Fresnel-type microprism structure is introduced to the color filterless and direct view liquid crystal display device (refer to Patent Document 3).
In the above-described technology described in Patent Document 2, a viewing angle correction effect to the frontal direction by refraction can be expected to some extent. However, a cycle of a lens/prism structure is designed while corresponding to an amount of one pixel, that is, of three sub-pixels, and accordingly, in terms of paralleling the emitted light by restricting an angle expansion phenomenon itself thereof, which is caused by the condensing function element between a backlight and the liquid crystal cell, a diffusion suppression effect cannot be expected. Particularly, though an R light and a B light, which are made incident onto ends of a lens portion (denoted by a reference numeral 30 in FIG. 1), are illustrated as if both of the light became parallel to each other when being emitted in the content illustrated in FIG. 1 of Patent Document 2, the incident light is actually emitted to a diffusing direction on such illustrated ends of the lens portion. Therefore, a sufficient angle correction cannot be performed.
Moreover, in the technology proposed in Patent Document 3, far more problems to be solved for practical use are left. For example, a light travels from a low refractive layer to a high refractive layer in the technology proposed in Patent Document 3, and in order to perform the angle correction, it is necessary to improve a prism structure described in Patent Document 3. Particularly, it is necessary to study more in order to make it difficult to produce “shading” for the incident light. | {
"pile_set_name": "USPTO Backgrounds"
} |
Time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA) are techniques which allow a communications system to accommodate a large number of system users. CDMA has recently been used in the United States for digital cellular telephone systems, and is being adopted for this purpose in other regions such as Japan and Europe through a variation of CDMA known as wideband CDMA (WCDMA). CDMA uses a spread spectrum modulation technique, in which the signal energy of each channel is spread over a wide frequency band, and in which multiple channels each corresponding to a different system user occupy the same frequency band. CDMA offers the advantage of efficient use of the available frequency spectrum, but at the cost of being computationally intensive.
In order to demodulate a received signal, a mobile CDMA receiver must identify and synchronize to a local base station in a timely manner. This process is known as acquisition. During acquisition, the mobile receiver determines the spreading code sequence and spreading code phase of a suitable base station. To make it easier for the mobile receiver to acquire the spreading code sequence and phase of the base station, the base station transmits several pilot signals. The pilot signals are helpers which allow the mobile receiver to more easily determine the spreading code sequence and spreading code phase. In order to synchronize to the base station, the mobile station selects a possible synchronization point and tests whether the signal energy using this synchronization point exceeds a threshold. This process is called hypothesis testing. The mobile receiver must perform hypothesis testing using different possible synchronization points until it finds one with a very high probability of being correct. The mobile receiver also continually searches for other base stations as call handoff candidates.
Thus acquisition in a mobile CDMA receiver requires many computations. These computations tend to decrease battery life. A searcher receiver which performs faster searches and therefore consumes less power would be desirable. Such a searcher receiver is provided by the present invention, whose features and advantages will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Among the numerous wireless access systems, the core element of the communication facilities is the RF front-end chip. The RF front-end is mainly used for amplifying, frequency converting, filtering and quantizing the weak signal received from the antenna of the receiver, and demodulating it to the baseband signal. Thus, design of the RF front-end circuit shows significant importance to the design of the whole receiver and has direct influence on the performance of the wireless receiving device.
A conventional RF front-end of a communication terminal is structurally constructed of: superheterodyne structure, zero intermediate frequency (IF) structure, double-conversion wide IF structure, double-conversion low IF structure, and the like. Wherein, the superheterodyne structure, due to its optimal sensibility, high selectivity and large dynamic range, is considered to be the most reliable topological structure of receiver and the preferred high-performance receiver. The typical superheterodyne structure, as shown in FIG. 1, employs mixer for converting the HF signal to a lower IF and then going through the channel filtering, amplifying and demodulating, to effectively overcome the problems when dealing with the HF signal. However, an IF filter with high-quality factor is necessity of filtering the image interference effectively, which is unrealizable in the existing CMOS process. Furthermore, as shown in FIG. 2, the IF of the superheterodyne structure is normally lower than the frequency of the RF signal, which leads to the existence of a fatal defect of image interference for the receiver. The superheterodyne structure is commonly applied to the RF front-end of the narrow-band communication system, when applied in the broad-band, such as receiving the 900 MHz RF signal in the 100 MHz to 1.2 GHz range with the superheterodyne structure, providing the IF frequency is of 13.56 MHz. In fact, the receiver receives not only the useful signal at 900 MHz, but also the image interference at 927.12 MHz. The image interference frequency of the RF front-end of the conventional superheterodyne structure totally falls in a narrow range around the useful channel, which has the defects of difficulty in distinguishing the two kinds of signals. The structure has a low sensitivity and is hard to integrate. Besides, when introducing the superheterodyne structure in the broad-band communication, the first local oscillator (LO) is strictly demanded. In the above-mentioned example, the tuning range of the frequency synthesizer is from 113.56 MHz to 1213.56 MHz, which has a lower center frequency and a tuning ratio of 85%. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a zoom lens system with the function of preventing image shake, and particularly is suitable for a photographic zoom lens system.
2. Related Background Art
There are known a zoom lens system as disclosed in U.S. Pat. No. 5,270,857 wherein any lens unit in a zoom lens system comprised of two or more lens units is displaced in a direction perpendicular to the optical axis thereof to correct image shake, and a zoom lens system as disclosed in U.S. Pat. No. 5,040,881 wherein some lenses in a first lens unit fixed during zooming are displaced in a direction perpendicular to the optical axis thereof to correct image shake.
However, in the prior art as described above, it has been impossible to secure a back focal length sufficient for a single-lens reflex camera (SLR) and thus, it has been impossible to realize a desired great zoom ratio. Therefore, the zoom lens systems as described above are unsuitable as lenses for a compact and high-performance 35 mm photographic SLR. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a customer support system, an office system, a customer support center, a supply center and a customer support method.
2. Description of the Related Art
In conventional information centers of office systems and the like, usage information relative to office apparatuses is stored for each manufacturer of the apparatuses. However, there are no systems that offer management of office apparatuses of a plurality of manufacturers in a comprehensive manner.
Further, office users have to take care of resupplying consumption items of the office apparatuses, and each manufacturer looks after recycling of used materials only of the manufacturer.
The problem to be solved is in that a conventional office system does not offer management of office apparatuses of a plurality of manufacturers, although an office usually uses office apparatuses of different makers. That is, the office system management is not optimized.
Further, ordering and recycling of consumption items have to be arranged per manufacturer, causing office management of consumption items to be a time-consuming problem.
The present invention is made in view of the above-mentioned problems, providing a more desirable office system that looks after various office apparatuses of a plurality of manufacturers, and simplifying the resupplying of consumption items, and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to a scheme for stabilizing the operation of an adjustable speed a-c electric motor that is driven by static electric power conversion apparatus. More particularly, the invention relates to method and apparatus for stabilizing the operation of a current fed induction motor drive system, and it is also applicable to voltage fed induction motors and to drive systems employing synchronous or synchronous-reluctance motors.
The background of this invention is the same as the "Background of the Invention" set forth in the above-reference concurrently filed patent application Ser. No. 729,042, which application is incorporated herein by reference in its entirety. That application discloses an improved a-c motor stabilizing scheme comprising suitable means for deriving an angle feedback signal representative of the actual phase angle between electric current and electromagnetic flux that interact to produce torque in the motor when excited and means responsive to the angle feedback signal for controlling the power conversion apparatus so as to control the stator excitation frequency of the motor as a function of the angle feedback signal. | {
"pile_set_name": "USPTO Backgrounds"
} |
THE FIELD OF THE INVENTION
This invention relates to voltage regulating circuits and more particularly to that class designed to operate from various magnitudes of A.C. voltage supply cources. | {
"pile_set_name": "USPTO Backgrounds"
} |
Galanin receptors (GalRs) are G-protein-coupled receptors (GPCRs) that mediate signaling of galanin and other neuropeptides in the galanin family. So far, three subtypes of GalRs have been identified, namely GalR1, GalR2 and GalR3. With relatively low sequence similarity between one and other. However, their sequences are highly conserved among different vertebrate species.
Widely expressed in the brain and peripheral tissues, GalRs are involved in the regulation of a number of biological functions, including nociception, cognition, mood control, neuroendocrine function, reproduction, feeding control, energy and osmotic homeostasis, and metabolism. They have also been implicated in many human diseases, including neurological and metabolic disorders, inflammation, and cancers. However, understanding the roles of GalRs in health and disease, and clinical translation have been hindered by the lack of metabolically stable and receptor-specific probes.
Spexin (SPX) is a newly identified, GalR-cognate neuropeptide. Expressed centrally and peripherally, SPX can regulate gastrointestinal motility, adrenocortical cell proliferation, cardiovascular and renal function, nociception, reproduction, and feeding. It has also been implicated in a number of human disorders, including obesity, type-II diabetes, nonalcoholic fatty liver disease, and constipation.
Containing 14 amino acids and amidated at C-terminal, SPX is similar to the N-terminal sequence of galanin. Nevertheless, receptor recognition profiles of these two neuropeptides are different: galanin activates GalR1, GalR2 and GalR3. Whereas, SPX only activates GalR2 and GalR3. For GalR2, SPX and galanin have comparable activity; while for GalR3, SPX has much better activity than galanin.
Elucidating the biological role of GalRs in health and disease, and clinical translation of this knowledge to new methods of medical treatment has been hindered by the lack of metabolically stable and receptor-specific probes. Thus, there is a need to develop new agonists receptor selective probes of GalR2 and GalR3 with improved metabolic properties. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to mass storage systems for digital computers, and in particular to a method for providing a static snapshot or image of a mass storage system.
2. Description of Related Art
It is desirable during the operation of a computer system with a mass storage system, such as a magnetic disk, to periodically make a backup copy of the data stored on the mass storage system to allow for recovery in the event of a failure of the mass storage system. This is commonly done by reading the data stored on the mass storage system and writing it to a magnetic tape.
However, if the data stored on the mass storage system is being updated by other programs as the backup copy is being made, the image of the data on the mass storage system written to tape may be inconsistent. This is because normal backup techniques either copy the blocks from the mass storage system sequentially to the linear-access tape, or walk the file system stored on the mass storage system, starting with the first block of the first file in the first directory and proceeding in order to the last block of the last file of the last directory. The backup program is not aware of updates performed to a block of the mass storage system after that block has been written to tape.
This problem of inconsistent data being written to tape is particularly likely to occur if the mass storage system is being used by a database management system, where an update may involve changing information stored on different parts of the mass storage system. If a database update is made while the backup tape is being written, the image of the database management system written to tape will have the old values for any data already written to tape at the time of the database update, and the new values for any data written to tape following the database update. A restoration based on the tape image of the database would yield an inconsistent database.
Horton et al., U.S. Pat. No. 5,089,958, which is hereby incorporated by reference in its entirety for the material disclosed therein, discloses a technique for producing an image of a mass storage system at any point in time after the technique is started. This is done by establishing a base image of the mass storage system at the start of the technique and a log indicating each change made to the mass storage system. An image at any point in time can then be produced by starting with the base image and making all the changes indicated in the log up to that point in time. To improve performance, the Horton system also provides for differential images so that the compilation of changes to form an image does not have to start with the base image.
There are two difficulties with using the technique of Horton to provide an image for backup operations. First, the technique is not designed to provide a static snapshot or image of the mass storage system, but to allow an image from any point in time to be created at some later time. This increases the complexity of the technique and requires the compilation of changes whenever a virtual image is desired.
The second difficulty with using the technique of Horton is that the log must store a copy of each change made to the mass storage system in order to produce an image of the mass storage system as it was at a specified time. This means that the size of the log can grow without bound, eventually exhausting the space available for its storage. At this point, updates to the mass storage system are not possible without compromising the ability to produce an image from any previous point in time.
With many database systems or file systems, certain key blocks (such as master directory blocks) are frequently updated, perhaps with every update to any other block. A copy of these blocks must be written to the log each time they are changed. This will, of course, result in a very large log file, with many of the entries being copies of the key blocks as they changed over time.
Another approach to creating a static image of a mass storage system is possible if the mass storage system has the ability to produce a mirror, or identical copy, of one disk's data on a second disk. At the time the static image is needed, mirroring of data is stopped and the mirror disk is used as the static image. When the static image is no longer necessary (for example, when the tape backup has been completed), the two disks are resynchronized, by copying any changes made during the time mirroring was not active to the mirror disk, and mirroring is resumed.
This approach also has problems. Unless there are three or more disks mirroring the information on the main disk, when mirroring is stopped to produce the static image there is no longer the redundancy of mirrored disk or disks and updates can be lost if there is a disk failure. Furthermore, it requires an entire disk to be devoted to the storage of the static image.
But the major disadvantage of this mirror disk approach is the time necessary to restart mirroring after the static image is no longer needed. This requires updating the mirror disk with all the changes that have been made since mirroring was stopped. If a log of these changes is not available, this means that all the data on the mirror disk must be copied from the disk which has been updated. For large disks such as would be found on a database system, this could take many hours. | {
"pile_set_name": "USPTO Backgrounds"
} |
Three dimensional packaging, such as a package-on-package (PoP) devices, presently require through mold interconnects in order to provide adequate stand-off heights. FIG. 1A, is an example of a prior art solution for providing the needed stand-off height. As shown, the through mold vias formed through a molding layer 160 are filled with solder bumps 144 to form the through mold interconnects. The solder bumps 144 block the opening and there is no path for moisture outgassing. As a result, the pressure below the solder bump increases until the pressure is finally able to lift the solder bumps 144 off of the substrate 101, as shown in FIG. 2B. Current solutions to prevent the solder bumps 144 from lifting off of the substrate 101 include overdrilling the cavity around the top side of the solder balls. However, overdrilling requires a larger pitch between through mold interconnects.
Furthermore, as the thicknesses of dies and substrates decrease, thermal effects are amplified, and the package becomes more susceptible to warpage. The use of through mold vias produces a non-continuous mold layer 160. Without mechanical continuity, the mold layer is not as effective at preventing warpage. Additionally, the mold layer 160 is typically a polymeric or epoxy material. Such materials have a large coefficient of thermal expansion (CTE) and a low elastic modulus. Accordingly, a thick layer is needed in order to provide mechanical support to the package in order to minimize warpage. | {
"pile_set_name": "USPTO Backgrounds"
} |
A cylinder injection engine configured to directly inject a fuel into a cylinder has been known. In the cylinder injection engine, the degree of freedom of injection timing, that is, the degree of freedom of an air-fuel mixture production is improved as compared with a conventional port injection engine. For example, during catalyst early warm-up at the time of cold start of an engine, a fuel injection is performed during an intake stroke and immediately before ignition (a compression stroke or an expansion stroke) to produce a rich (air excess ratio λ<1.0) air-fuel mixture in the vicinity of an ignition plug, and further an ignition timing is greatly retarded than a normal ignition timing. This makes it possible to raise an exhaust temperature and accelerate the warm-up of a catalyst.
In the cylinder injection engine, a rich portion is locally produced in a combustion chamber, and a particulate matter (PM) is produced due to the occurrence of oxygen deficiency in the rich portion, and the adherence of the fuel onto a cylinder wall surface or a piston upper surface.
For example, when the rich air-fuel mixture is produced in the vicinity of the ignition plug, a PM emission amount is increased due to the oxygen deficiency. For that reason, it is desirable that the fuel injection amount immediately before the ignition is reduced in a range where combustion stability can be maintained. However, a reduction in the fuel injection amount immediately before the ignition leads to an increase in the injection amount during the intake stroke, and in that situation, the fuel adhered to the cylinder wall surface or the piston upper surface increases. Therefore, it is difficult to sufficiently reduce the PM.
In the engine disclosed in Patent Literature 1, the fuel injection is divided in three or more times, and implemented to thereby produce a stratified air-fuel mixture within the combustion chamber. In performing the fuel injection for each combustion cycle, a lean air-fuel mixture higher in local air-fuel ratio (air excess ratio) than 1.0 is produced in the combustion chamber due to a first injection, and thereafter the air-fuel mixture equal to or smaller than 1.0 in the local air-fuel ratio is produced in the combustion chamber due to a second injection. Further, a third injection for producing the ignitable air-fuel mixture locally rich in a region of the ignition plug is performed immediately before the ignition timing.
However, in both of the second injection and the third injection subsequent to the first injection, the air-fuel mixture of the rich air-fuel ratio is produced, and an air-fuel mixture ratio of the rich air-fuel ratio naturally becomes higher in the combustion chamber. In that case, there arises such a problem that the emission amount of the PM is rapidly increased on the border of a theoretical air-fuel ratio. On the other hand, from the viewpoint of ensuring a combustion stability, it is desirable to properly provide a rich air-fuel mixture in the vicinity of the ignition plug. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various abnormalities of the neurological system, such as brain and spinal tumors, cysts, lesions, or neural hematomas, can cause severe health risks to patients afflicted by them, including deterioration in motor skills, nausea or vomiting, memory or communication problems, behavioral changes, headaches, or seizures. In certain cases, resection of abnormal tissue masses is required. However, given the complexity and importance of the neurological system, such neurosurgical procedures are extremely delicate and must be executed with great precision and care. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a connector, and more particularly to an electrical connector.
2. The Related Art
Along with the development of modern information technology, people use multimedia devices with increasing frequency, so people demand for flash drives and other electronic products increases, at the same time the quality of the docking products are increasingly high requirements. Manufacturers in order to guarantee the production of the docking qualified product quality, so it is necessary to test compliance of the production of the docking connector.
However, in test, the existing test connector in the process of detecting docking connector, when inserted into the test connector for testing, electrical terminals of the docking connector and electrical terminals of the detection connector interfere with each other in contact, electrical terminals of the product and the electrical connector interfere with each other so that often easily scrapes the product under test. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a magnetic recording and reproducing apparatus. More particularly, the present invention relates to an improved cassette housing assembly and a magnetic recording and reproducing apparatus having the same.
2. Description of the Related Art
Magnetic recording and reproducing apparatuses, such as video cassette recorders (VCR) and digital versatile camcorders (DVC), use a magnetic tape as a recording medium, and include a deck for withdrawing and running the tape from a cassette tape to record or reproduce certain information, a photographing unit having a viewfinder, and a signal processing unit.
The deck includes a deck chassis that includes a reel table for rotating a tape reel of the cassette tape, a loading motor, a capstan motor, a plurality of guide rollers constituting a tape running system and a head drum, and a cassette housing assembly mounted to move vertically with respect to the deck chassis to mount the cassette tape. A locking unit fixes the cassette housing assembly in a down position.
FIGS. 1 and 2 are schematic views of the structure of the cassette housing assembly employed in a conventional magnetic recording and reproducing apparatus, respectively showing up and down positions of the cassette housing assembly. Reference numeral 10 denotes a cassette housing, 20 denotes an X-lever, and 30 denotes a locking unit.
The cassette housing 10 is mounted to the deck chassis (not shown) to be vertically moved by the X-lever 20. The X-lever 20 consists of a first lever 21 and a second lever 22 connected across each other. One end of each of the levers 21 and 22 is connected to a flank of the cassette housing 10, respectively, while the other end of each of the levers 21 and 22 is connected to the deck chassis (not shown).
The locking unit 30 fixes the cassette housing 10 to the deck chassis to maintain the down position of the cassette housing 10. The locking unit 30 includes a locking lever 31 having a hook 31a formed on the flank of the cassette housing 10 and a locking member 32 integrally formed with the deck chassis by partly bending the flank of the deck chassis.
In the up position of the cassette housing 10, as shown in FIG. 1, when a cassette tape (not shown) is loaded in the cassette housing 10 and the cassette housing 10 mounting the cassette tape is pressed down to the deck chassis, the cassette housing 10 descends by the operation of the X-lever 20. Therefore, the hook 31a of the locking lever 31 is caught by the locking member 32 of the deck chassis, thereby maintaining the down position of the cassette housing 10, as shown in FIG. 2. If an end 31b of the locking lever 31 is pushed in the direction indicated by the arrow in FIG. 2, the locking lever 31 is released from the locking member 32, and accordingly, the cassette housing 10 goes to the up position to remove the cassette tape, as shown in FIG. 1.
Recently, steel electrolytic commercial cold (SECC), which is inexpensive and superior in processibility, has been used to manufacture the deck chassis in consideration of low manufacturing costs. Generally, however, the locking lever 31 is made of steel use stainless (SUS) while the locking member 32 is made of SECC (as is the deck chassis).
When the locking lever 31 is made of SUS and the locking member 32 is made of SECC, the cassette housing 10 may be unstably received since the locking member 32 has a relatively lower strength and is subject to abrasion. Such an unstable mounting of the cassette housing 10 may cause malfunction of the tape running operation.
Accordingly, a need exists for a magnetic recording and reproducing apparatus having an improved cassette housing that is stably inserted in and withdrawn from the deck chassis to improve quality and reliability of the magnetic recording and reproducing apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a visual display device, and an electronic solid state printer using a liquid crystal or electroluminescent display direct imaging strip in cooperation with a copy machine, to produce a finished copy.
More specifically, this invention relates to an electronic printer which uses either a liquid crystal transmissive display strip or an electroluminescent display strip with light pipe valves for direct imaging on a copy machine, whereby the electroluminescent or liquid crystal light pipe strip is scrolled in synchronism with the sweep of the copy machine to produce a printed copy.
Word processing machines, such as typewriters with stored memories first became available to the public during the middle 1960's. IBM Corporation developed the MTST Model having a single or dual tape drive, which was capable of receiving programmed information from a typewriter and allowing corrections to be made to the program before the final copy was typed. A number of other manufacturers, such as Remington, Redactron, Sabin, as well as IBM, also began producing magnetic card typewriters having single and dual card capability. The typed information was stored on one or more magnetic cards, and could be recalled by inserting the card into a card reader at any time. Suitable corrections could be made to the text of the card, so that the machines removed the necessity of expensive proof reading of the final material, once minor corrections were made to the original copy. More sophisticated word processing machines have also been developed, using a particular full-page CRT (cathode ray tube) display, such as the Vydec and Wang apparatus. This allow a full video display of the typed information before it is transcribed on paper.
There is also a Xerox 1200 Model, which consists of a binary-information-fed or serially-fed photocopy machine which, however, employs many moving parts, including a character-generating drum moving at high speed inside the selenium reproduction drum. The character drum works in combination with a photo-optical generator for reproducing the images on the reverse side of the selenium drum, so that they can be printed after suitable dusting and heat. The images produced by this Xerox method are blurred; and this differs from the present invention, which does not have any moving parts or any noise, since it is entirely electronic in its character generation.
Almost all of the above machines require the use of a mechanical printing device for transcribing the recorded information onto a printed page. Some of the word processing devices use a heavy duty IBM Selectric typewriter, whereas others use a high speed daisy wheel printer capable of printing approximately 500 words per minute. Newer printers are now available using an ink spray deposit method in an attempt to improve the speed of the printout. However, where a large number of pages have to be reproduced from stored information, the operator of the word processing machine remains idle for long periods of time until the mechanical printing device can complete the transfer of the information from a memory disc or tape to the printed page.
The conventional word processing machines also suffer from the disadvantage that the mechanical printers are subject to breakdown and require frequent repairs or adjustments during a heavy duty operation. The mechanical printing portion of the word processing machines also represents a substantial cost of the word processor, so that the price to purchase some of the conventional word processors runs between $10,000 to $18,000. Moreover, the average cost of typewriter ribbons for each mechanical printer runs between $200.00 to $500.00 per year, an expense that is eliminated by the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to an upholstery button and more particularly relates to a watertight upholstery button for use in a seat or other cushion which may be exposed to water.
2. Description of the Related Art
Upholstery buttons are well known for ornamental purposes and for securing the cover of a seat or cushion to the foam core of the cushion. One such button is disclosed in U.S. Pat. No. 3,449,802, which issued to W. Mackey on Jun. 17, 1969. Referring to FIG. 10, this button 11 includes a collet 12 and a retainer 14. The collet 12 includes a head 16 which engages a cover 18 of a seat cushion 20. A shank 22 is connected to the head 16 of collet 12 and extends through the seat cushion 20. The retainer 14 lockingly engages a groove 24 formed in shank 22 and stresses the shank against a back cover 26 of cushion 20, thus compressing the cushion in the vicinity of head 16 and securing the cover 18 to the cushion 22.
In another known construction (not shown), an upholstery button includes a head, an eye hook or a pair of prongs extending from the bottom of the head, and an anchor including a string having a first end connected to the eye hook or prongs and a second end connected to a metal tee. In this construction, the head is seated on the front cover of the seat, and the string and metal tee are pulled through the cushion. The string is selected to be somewhat shorter than the thickness of the cushion so that the cushion is compressed when the string is pulled through it. The metal tee is then seated on a washer interposed between the washer and the back surface of the seat, thus anchoring the button hook in position.
While each of the devices described above satisfactorily connects a seat or cushion cover to the foam cushion of the seat, they are poorly suited for motorcycle seats or for any other applications in which a seat or cushion is exposed to the environment or may be exposed to moisture. More particularly, because the button of each of these devices engages the front cover of the seat only under the stress imposed on the button by the anchor cooperating with the back cover of the seat, there is considerable play between the button and the front cover of the seat. Accordingly, water may seep between the button and into the foam cushion under the seat cover. This water may subsequently be compressed back out of the cushion upon occupancy of the seat by the user, thus leading to considerable discomfort of the user. This play and the resulting susceptibility to water seepage is the most pronounced in the second type of button described above because the string-type anchor of this device permits more movement of the head of the button than does the rigid shank of the anchor of the first type of device. However, the string-type anchor of the second type of device is simpler and less expensive to manufacture and install than is the rigid anchor of the first type of device.
The problem of susceptibility to water seepage becomes especially pronounced in both devices described above if the anchor is rendered inoperative through loss of the retainer or through breakage of the string. When such an anchor is rendered inoperative, the stress between the head of the button and the front cover of the seat is removed, thus permitting even more seepage between the cover and the foam interior of the seat. In fact, since there would be in this situation no means whatsoever of retaining the head of the button in position, the head may very well be lost, thus leaving an unsightly hole in the seat cover which is very susceptible to water seepage both into and out of the seat. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an ink jet recording method which can produce a high-quality printed image on plain papers and specialty recording media for ink jet recording, and an ink jet recording apparatus for the ink jet recording method.
2. Background Art
Ink jet recording is a method wherein an ink is ejected as a droplet through a fine nozzle to record letters or figures onto the surface of a recording medium. Ink jet recording systems which have been put to practical use include: a method wherein an electric signal is converted to a mechanical signal using an electrostrictive strain to intermittently eject an ink reservoired in a nozzle head section, thereby recording letters or symbols on the surface of a recording medium and a method wherein an ink, reservoired in a nozzle head section, in its portion very close to the ejection portion is rapidly heated to create a bubble and the ink is intermittently ejected by volume expansion created by the bubble to record letters or symbols on the surface of a recording medium.
Various properties are required of inks in the ink jet recording, and examples of such properties include fast drying of the printed image, freedom from feathering in the printed image, even printing on various recording media, freedom from color-to-color intermixing in the case of multi-color printing, and good waterfastness and lightfastness of the print.
What is further important in the ink jet recording is to realize a good image on various recording media. In particular, formation of a good image not only on a specialty recording medium optimized for ink jet recording but also on inexpensive, easily available plain paper has been desired in the art. In order to realize the formation of an image having good quality on plain paper, for example, Japanese Patent Laid-Open No. 41171/1991 proposes use of a black ink, which is less likely to penetrate a recording medium, and a color ink which easily penetrates the recording medium. Likewise, in order to realize the formation of an image having good quality on plain paper, Japanese Patent Laid-Open No. 128514/1994 proposes a recording method which comprises depositing a first liquid containing a water-soluble resin having in its molecule at least one carboxyl group or an anhydride thereof or a sulfone group onto a recording medium and then incorporating a dye-containing ink into the liquid-deposited area.
Further, various ink compositions using a pigment as the colorant have also been proposed in the art. Using the pigment as the colorant aims to realize a good image on plain papers. However, it has been found that realization of high quality on plain papers makes it difficult to realize a high-quality image on specialty papers for ink jet recording. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the art of the gas black process, aromatic hydrocarbons, such as for example, coal tar naphtha or pyrolysis residual oils are vaporized under defined conditions in a carrier gas stream and are pyrolyzed in special carbon black producing apparatuses with the help of special gas black burners in a multiplicity of relatively small diffusion flames, whereby a part of the raw material burns. The flames impinge agianst a water filled, slowly rotating hollow iron roller, which serves as the deposition surface. The carbon black deposited there is removed by scrapers and conveyed to the processing plant. Filter arrangements separate the portion of carbon black carried along in the exhaust gases.
From Ullmann's Encyclopedia of Chemical Engineering, 3rd Edition, Volume 14, Page 799 (1963), a carbon black producing apparatus is knwon wherein a gas black burner and a deposition roller are disposed jointly in a housing. The water cooled deposition roller has a diameter of 0.5 m and a length of 5 m, it rotates at about 1 rpm. At the upper part of the housing, the exhaust gas is sucked off and is guided by way of pipe lines to the filter plant. The combustion air enters through the open underside of the housing.
In this known gas black apparatus, individual cast iron burners disposed side by side are used which produce a fanshaped diffusion flame by means of a flat nozzle disposed perpendicularly to the axis of the deposition roller. These burners are positioned onto connections located in the jacket of the gas supply pipe. The gas supply pipe is disposed below the cooling roller in parallel to its axis. The distance of the burner nozzles is selected such that the flames burn against the rotating roller and are chilled thereby.
These known burners suffer the disadvantage that the narrow opening of the flat nozzles which has a width of below 1 mm, require cleaning several times daily during operation and must be milled out after an operating time of about 3 weeks. This expensive cleaning and reprocessing procedure is necessary as a result of the scaling and deformation of the burner material which takes place, and a result of carbonization in the orifice of the nozzle, the latter being partially closed. The useful life of such a burner is limited thereby to about 3-4 months. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, "Non-Impact Printing: Introduction and Historical Perspective", Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
Ink Jet printers themselves come in many different types. The utilization of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.
U.S. Pat. No. 3,596,275 by Sweet also discloses a process of continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilised by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al)
Piezoelectric inkjet printers are also one form of commonly utilised inkjet printing device. Piezoelectric systems are disclosed by Kyser et. al in U.S. Pat. No. 3,946,398 (1970) which utilises a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element.
Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed disclose by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclose ink jet printing techniques that rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of the ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present application relates to a display panel such as liquid crystal display panel and a display device having the same.
Various types of displays have been proposed which have sensor capability and permit so-called touch-panel entries.
For example, Japanese Patent Laid-Open No. 2005-275644 proposes a method of detecting light reflected from a target in proximity using an optical sensor formed integrally with the panel.
Further, Japanese Patent Laid-Open No. 2001-75074 (hereinafter referred to as Patent Document 2) describes a method of detecting the pressed position of the panel as a result of direct contact between electrodes formed inside the panel when the panel is pressed.
Still further, Japanese Patent Laid-Open No. 2007-52369 (hereinafter referred to as Patent Document 3) proposes a method of forming gaps between electrodes based on height differences between different colors of the color filter. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present technology relates to a driving apparatus, an image forming apparatus, a method of driving control and a program.
2. Description of the Related Art
For example, in an electrophotographic image forming apparatus, units such as a developing device or a fixing device are provided detachably from a main body so that the units can be replaced upon a failure occurring. The respective units are coupled with the main body through a pair of couplings that are disposed at respective driving shafts and fitted into each other, and a developing roller or a fixing roller, etc., included in the respective units are rotated upon receiving driving-force from the main body through the couplings.
A structure is disclosed in which a deformable coupling part covered with an elastic member is provided so that vibration or degradation of durability due to collisions of the couplings caused by attaching/detaching the units can be prevented (for example, Patent Document 1).
However, according to a structure disclosed in Patent Document 1, manufacturing cost for parts and assembly may be increased since the deformable coupling part is required. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wholly aromatic polyester resins have long been known. For instance, 4-hydroxybenzoic acid homopolymer and copolymers have been provided in the past and are commercially available. Such polymers commonly are crystalline in nature, relatively high melting or possess a decomposition temperature which is below the melting point, and when molten frequently exhibit an isotropic melt phase. Molding techniques such as compression molding or sintering may be utilized with such materials. Representative publications which discuss these wholly aromatic polyesters include: (a) Polyesters of Hydroxybenzoic Acids, by Russell Gilkey and John R. Caldwell, J. of Applied Polymer Sci., Vol. II, Pages 198 to 202 (1959), (b) Polyarylates (Polyesters From Aromatic Dicarboxylic Acids and Bisphenols), by G. Bier, Polymer, Vol. 15, Pages 527 to 535 (Aug. 1974), (c) Aromatic Polyester Plastics, by S. G. Cottis, Modern Plastics, Pages 62 and 63 (July 1975), and (d) Poly(p-Oxybenzoyl Systems): Homopolymer for Coatings: Copolymers for Compression and Injection Molding, by Roger S. Storm and Steve G. Cottis, Coatings Plast. Preprint, Vol. 34, No. 1, Pages 194 to 197 (April 1974). See also, U.S. Pat. Nos. 3,036,990; 3,039,994; 3,169,121; 3,321,437; 3,553,167; 3,637,595; 3,651,014; 3,662,052; 3,668,300; 3,723,388; 3,759,870; 3,767,621; 3,773,858; 3,787,370; 3,790,528; 3,829,406; 3,857,814; 3,884,876; 3,890,256; 3,974,250; and 3,975,487; and U.K. Patent Application No. 2,058,102A.
In U.S. Pat. No. 3,637,595 a relatively high melting polymer is disclosed which may comprise 4-oxybenzoyl moiety, dioxyaryl moiety (e.g., p,p'-dioxybiphenylene), and terephthaloyl moiety.
It has been disclosed that certain polyesters may be formed which exhibit melt anisotropy. See, for instance, (a) Polyester X7G-A Self Reinforced Thermoplastic, by W. J. Jackson, Jr., H. F. Kuhfuss, and T. F. Gray, Jr., 30th Anniversary Technical Conference, 1975 Reinforced Plastics Composites Institute, The Society of the Plastics Industry, Inc., Section 17-D, Pages 1-4; (b) Belgian Patent Nos. 828,935 and 28,936; (c) Dutch Patent No. 7505551; (d) West German Nos. 520819, 2520820, 2722120, 2834535, 2834536 and 2834537; (e) Japanese Nos. 43-223; 2132-116; 3017-692; and 3021-293; (f) U.S. Pat. Nos. 3,991,013; 3,991,014; 4,057,597; 4,066,620; 4,067,852; 4,075,262; 4,083,829; 4,093,595; 4,118,372; 4,130,545; 4,130,702; 4,146,702; 4,153,779; 4,156,070; 4,159,365; 4,161,470; 4,169,933; 4,181,792; 4,183,895; 4,184,996; 4,188,476; 4,201,856; 4,219,461; 4,224,433; 4,226,970; 4,230,817; 4,232,143; 4,232,144; 4,238,598; 4,238,599; 4,238,600; 4,242,496; 4,245,082; 4,245,084; 4,247,514; 4,256,624; 4,265,802; 4,267,304; 4,269,965; 4,272,625; 4,279,803; 4,284,757; 4,285,852; 4,287,332; 4,294,955; 4,299,756; 4,311,824; 4,314,073; 4,318,841; 4,318,842; 4,332,759; 4,333,907; 4,335,232; 4,337,191; 4,339,375; 4,341,688; 4,346,208; 4,347,349; 4,351,917; 4,351,918; 4,355,132; 4,355,133; 4,355,134; 4,359,569; 4,360,658; 4,362,777; 4,370,466; 4,371,660; 4,374,288; 4,375,530; 4,473,682; 4,522,974; 4,684,712; and 4,746,694; (g) U.K. Application No. 2,002,404; (h) British Patent No. 1,568,541; and (i) European Patent Application Nos. 24,499, 45,499, and 92,843.
Representative disclosures of anisotropic melt-forming polyesters, poly(ester-amides), or poly(ester-carbonates) which may include 6-oxy-2-naphthoyl moiety are present in U.S. Pat. Nos. 4,161,470; 4,219,461; 4,256,624; 4,279,803; 4,299,756; 4,318,841; 4,318,842; 4,330,457; 4,337,190; 4,347,349; 4,351,917; 4,351,918; 4,355,133; 4,359,569; 4,362,777; 4,371,660; 4,375,530; 4,473,682; 4,522,974; 4,684,712; and 4,746,694.
In U.S. Pat. No. 4,219,461 a polyester is disclosed which comprises substantial concentrations of 6-oxy-2-naphthoyl and 4-oxybenzoyl moieties, and symmetrical dioxyaryl and symmetrical dicarboxyaryl moieties. The 6-oxy-2-naphthoyl moieties are provided in a concentration of approximately 20 to 40 mole percent in all instances. Also, while a 4,4'-dioxybiphenyl moiety is illustrated, no polymer is exemplified which incorporates this moiety. In the Example the polymer while in fiber form exhibited a substantially lower modulus than that commonly observed with the specifically defined polymer of the present invention.
In U.S. Pat. No. 4,299,756 a polyester is disclosed which comprises 6-oxy-2-naphthoyl moiety, 3-phenyl-4-oxybenzoyl or 2-phenyl-4-oxybenzoyl moiety, 1,3-dioxyphenylene moiety, and terephthaloyl moiety.
In U.S. Pat. No. 4,318,841 a polyester is disclosed which comprises 6-oxy-2-naphthoyl moiety, 4-oxybenzoyl moiety, the non-symmetrical 1,3-dioxyphenylene moiety, and terephthaloyl moiety.
In U.S. Pat. No. 4,370,466 a polyester is disclosed which comprises about 2.5 to 15 mole percent of 6-oxy-2-naphthoyl moiety, about 40 to 70 mole percent of 4-oxybenzoyl moiety, at least about 10 mole percent of 1,3-dioxyphenylene moiety, and at least 10 mole percent of isophthaloyl moiety. The polymer there reported while in fiber form is indicated to exhibit a substantially lower modulus than that commonly observed with the specifically defined polymer of the present invention.
In U.S. Pat. No. 4,473,682 a polyester is disclosed which comprises approximately 3 to 10 mole percent of 6-oxy-2-naphthoyl moiety, approximately 20 to 70 mole percent of 4-oxybenzoyl moiety, approximately 7.5 to 38.5 mole percent of 4,4'-dioxybiphenyl moiety, and approximately 7.5 to 38.5 mole percent of terephthaloyl moiety. The polyester of the present invention represents an improvement over such polyester. More specifically, the melting temperature of the polyester advantageously is decreased while surprisingly making possible the substantial maintenance of a highly attractive heat deflection temperature in molded articles formed from the same.
It is an object of the present invention to provide a novel melt-processable polyester which forms a highly tractable anisotropic melt phase.
It is an object of the present invention to provide a novel melt-processable polyester which forms an anisotropic melt phase and which has been found to be capable of melt extrusion to form quality high performance fibers, films, three-dimensional molded articles, etc. without the necessity to use a highly elevated melt-processing temperature.
It is an object of the present invention to provide a polyester which is capable of yielding quality fibers which exhibit a relatively high modulus.
It is an object of the present invention to provide a novel melt-processable polyester which forms a melt phase below approximately 375.degree. C. and which is capable of forming a molded article which exhibits a heat deflection temperature of at least 250.degree. C.
It is an object of the present invention to provide a novel melt-processable polyester which can be formed on a more economical basis than those disclosed in U.S. Pat. Nos. 4,219,461 and 4,473,682 since the more costly 6-oxy-2-naphthoyl and 4,4'-dioxybiphenyl moieties are present in lesser concentrations.
These and other objects, as well as the scope, nature and utilization of the invention will be apparent to those skilled in the art from the following detailed description. | {
"pile_set_name": "USPTO Backgrounds"
} |
Historically float actuated automatic driptraps tend to be designed with the axis of the float in the horizontal position so that as it rises and falls typically with a pivotal movement in response to the liquid level within the float chamber, its horizontal actuating shaft applies force to a pivotal valve actuator lever to provide for seating and unseating forces of a valve element such as a valve plunger which seats against an internal valve seat. The sealing components of such automatic driptraps are typically constructed of steel and are arranged to form a metal-to-metal seal. The maximum working pressure of driptrap valves of this type is normally about 5 PSIG, and on special applications up to 25 PSIG. With the metal-to-metal seat design that is typically used in conventional driptraps, leakage is typically expected and accepted in the waste water treatment industry. At the higher working pressures, i.e. in the range of 25 PSIG, conventional driptrap valve mechanisms will not operate properly to achieve absolute sealing capability and thus will leak a considerable amount. This is also considered acceptable at the present time in the waste water treatment industry.
It is desirable to provide a float energized automatic driptrap mechanism that is capable of providing improved performance in comparison with existing float operated automatic driptrap devices, specifically related to achieving bubble tight sealing capability and providing for efficient and effective valve operation even when the valve is subjected to relatively high working pressure. | {
"pile_set_name": "USPTO Backgrounds"
} |
A liquid developer that is used in electrophoretic printing is used as an example of such a dispersion. This has as particles toner particles that are dispersed in a carrier fluid as a fluid. In the following the preferred embodiment is essentially explained using a liquid developer, without therefore limiting the preferred embodiment to liquid developer.
For single-color or multicolor printing of a printing substrate (for example a single sheet or a belt-shaped recording material), it is known to generate image-dependent charge images on a charge image carrier, which charge images correspond to the images to be printed (comprising regions to be inked and regions that are not to be inked). The regions of the charge images that are to be inked are revealed as toner images on the charge image carrier via toner particles with a developer station. The toner image that is thereby generated is transported via a transfer station to the printing substrate and transfer-printed onto the printing substrate at a transfer printing point. The toner images are fixed on the printing substrate in a fixing station.
A liquid developer having at least charged toner particles and carrier fluid can be used to ink the charge images. A method for such an electrophoretic printing in digital printing systems is known from U.S. 2006/0150836 A1 or U.S. 2008/279597 A1, for example. After the charge images of the images to be printed have been generated on the charge image carrier, these are inked with toner particles into toner images via a developer station. A carrier fluid including a silicone oil as a liquid developer with color particles (toner particles) dispersed therein is thereby used here. The supply of the liquid developer to the charge image carrier can take place via a developer roller that is supplied with liquid developer from a reservoir with liquid developer. The image film generated in the development on the charge image carrier is subsequently accepted by the charge image carrier via a transfer unit and transferred onto the printing substrate in a transfer printing zone.
In this printing method, using the liquid developer the process of electrophoresis is employed to transfer toner particles to the printing substrate in the carrier fluid. The solid, electrically charged toner particles thereby migrate through the carrier fluid as a transport medium, wherein the transport can be controlled via an electrical field between the transfer roller and the printing substrate. In addition to the toner particle charge and the electrical field, the provision of a sufficiently thick carrier fluid layer through which the toner particles can migrate and a sufficient concentration of the toner particles in the carrier fluid are a requirement for this.
The liquid developer used in the printing apparatus can be mixed together in the developer station (in a mixing unit, for example) from a toner concentrate (comprising toner and carrier fluid) carrier fluid. For a trouble-free print image it is necessary that sufficient toner particles are included in the liquid developer, and thus the toner mass concentration in the liquid developer has the provided value. It must thereby be taken into account that, in the printing operation, liquid developer is removed from the mixing unit and is partially applied to the printing substrate.
A defined toner mass concentration and electrophoretic mobility of the toner particles in the carrier fluid is required for a successful and uninterrupted development of the charge images.
The adjustment of the toner mass concentration and mobility of the toner particles in the carrier fluid requires that the toner mass concentration and the mobility of the toner particles can be determined in the developer station. Given a relevant toner mass concentration (for example in the range of 2% to 40% of the liquid developer), electroacoustic methods for the determination of the electrophoretic mobility of toner particles are known that, however, assume a precise knowledge of the toner mass concentration.
From U.S. 2011/058838 A1 a method is known according to which the toner mass concentration in a liquid developer can be determined. For this the liquid developer is charged with at least one ultrasound wave. It is thereby assumed that the sound velocity of the sound propagating in the liquid developer essentially depends on the proportion of the toner particles in the carrier fluid within predetermined temperature limits and constant carrier fluid. The delay of an ultrasound wave in the liquid developer is accordingly measured along a predetermined measurement path, and the sound velocity—which is a measure of the toner mass concentration in the liquid developer—can be determined from this. By measuring the delay of the sound wave in the liquid developer, its toner mass concentration can thus be determined. Given a plurality of liquid developers with known toner mass concentrations, the correlation between the delay of an ultrasound wave and the toner mass concentration can be determined via calibration processes under consideration of the temperature of the liquid developer, and the determined values with regard to delay and toner mass concentration can be stored in a table, for example. By measuring the delay of a sound wave through a liquid developer, this table can be used in order to determine its toner mass concentration. If necessary an interpolation can be made between the values in the table. Comparable methods to determine the mass concentration in dispersions are known from U.S. Pat. Nos. 6,817,229 B2, 5,121,629 A or 7,764,891 B2, for example.
A measurement apparatus to determine the electrophoretic mobility of electrically charged particles in a fluid is known from U.S. Pat. No. 5,245,290 A. A dispersion to be tested that includes electrically charged particles whose mobility should be established is contained in a measurement cell. An alternating electrical field that excites the particles in the fluid to oscillate is applied to the measurement cell. The oscillating particles generate sound waves whose velocity can be assessed. The electrophoretic mobility of the particles can be concluded from the electrical field and the average velocity of the particles in the fluid. A formula to calculate the dynamic mobility of particles in a dispersion can be learned from R. W. O'Brien et al./Colloids and Surfaces A: Physiochem. Eng. Aspects 218 (2003) P. 89-101.
In the known measurement methods, either the mass concentration or the electrophoretic mobility of particles is measured in various measurement cells and with various sample volumes, wherein concentration and temperature differences lead to a reduced measurement precision. | {
"pile_set_name": "USPTO Backgrounds"
} |
From 1953 through 1982, Chevrolet™ manufactured its Corvette™ automobiles in its manufacturing facility in St. Louis, Mo. (Chevrolet™ and Corvette™ are trademarks of General Motors Corporation, Detroit, Mich.). Beginning in 1955, Chevrolet™ incorporated a plan to address potential quality issues that might arise during the manufacturing process of particular engine options. Consequently, Chevrolet implemented the practice of stamping information on each engine manufactured. This information was individually hand stamped into each engine using a hammer and a stamping device 1 like the one illustrated in FIG. 1.
As shown in FIG. 2A, the engine code information was stamped onto an engine pad 10 of each engine 100. The use of these stamped engine codes began in both of the Chevrolet™ Corvette's™ V8 engine assembly plants beginning in 1955. One plant was located in Flint, Mich., while the other was in Tonawanda, N.Y. Both plants stamped a code relating to the specific manufactured application of the engine. In addition to engine assembly information stamped at Flint and Tonawanda, the car-line plant in St. Louis, Mo., Chevrolet™ stamped a derivative of the vehicle identification number (VIN), again using a hammer and a stamping device like the one shown in FIG. 1.
For example, in 1967 the Tonawanda factory built many V8 engines including Corvette™ specific 427 cubic inch versions. If one of these engines was to be assembled in the 390 horse power (hp) configuration for use in a car that had a 4-speed transmission and smog equipment, an assembly line operator at the factory would stamp the assembly code into engine pad 10 of engine 100 including a suffix of “IM” using stamping device 1. (see arrow 5 of FIG. 2A) This would confirm to workers in the Tonawanda or St. Louis engine manufacturing facility all of the specific sub-components needed for that engine assembly. The stamped assembly code was used to identify the specific application of every engine manufactured. Therefore, versions specific to Corvette™ would have its own suffix code designation.
Thus, Chevrolet™ used the engine stampings as a way to communicate assembly information as the engine and automobile was being built. Once the automobile left the factory, this information had served its intended purpose and was no longer used by Chevrolet™.
Today the Chevrolet™ Corvettes™ manufactured in the 1960's and 1970's are considered by many to be collector items. Like many collector items, the value of a piece depends, often in great part, on its condition and its originality. Given the rarity and popularity of these automobiles, many of these automobiles have become very expensive which, in turn, has created a motivation for some to forge or alter some automobiles in an effort to increase their value. Thus, there is a continuing need to be able to determine if the engine in an automobile is original or a reproduction. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an inverter device comprising a parallel circuit of a charging device and a switching device connected between a DC power source and an inverter, and to an inverter module comprising a switching element group provided in a mold package to convert a DC voltage into a three-phase pseudo AC voltage by switching.
2. Description of the Related Art
Recently, an air conditioner equipped with an electrically driven compressor driven by a battery power source has been developed as an air conditioner for an electric automobile. This air conditioner comprises, as shown in FIG. 7, a battery (DC power source) 401, an inverter device 408 and an electrically driven compressor 410.
The inverter device 408 comprises a switch 402 as a switching device connected in serial to the battery 401; a charging device 411 connected in parallel to this switch 402 and including a resistor 404 and a switch 403; an inverter module 405 configured by molding, into a mold package 415, a switching element group 412 including a switching element 414 and an unshown diode to absorb a switching surge; and a capacitor 406. The switching element group 412 of the inverter module 405 converts a DC voltage from the battery 401 into a three-phase pseudo AC voltage, and applies it to the electrically driven compressor 410 to drive a motor of the electrically driven compressor 410.
The capacitor 406 stably supplies a voltage to the switching element group 412. The resistor 404 of the charging device 411 restricts an incoming current through the capacitor 406 when the DC voltage of the battery 401 is applied. That is, the presence of the resistor 404 makes it possible to, when the battery 401 is connected, open the switch 402, close the switch 403, and pass a current via the resistor 404, thereby restricting the incoming current produced when the voltage of the battery 401 is applied (e.g., refer to Japanese Patent Publication Laid-open No. 3341327).
On the other hand, in such an air conditioner, the switch 402 might be welded to remain in a closed state despite a command being issued by an unshown controller to open the switch 402. Thus, heretofore, voltage dividing resistors have been provided before and after the switch 402, and terminal voltages of these voltage dividing resistors have been detected to check the occurrence of welding of the switch 402. That is, voltage detection circuits are respectively connected between a positive line 416 that is located between the switch 402 and the previous battery 401, and a negative line 418, and between the positive line 416 that is located between the switch 402 and the subsequent switching element group 412, and the negative line 418 of the battery 401, and the voltage detected by each of the voltage detection circuits is input to the controller.
Here, in a state where the battery 401 is connected, the voltage input from the voltage detection circuit before the switch 402 to the controller is substantially the voltage of the battery 401, regardless of whether the switch 402 is opened or closed. The voltage input to the controller from the voltage detection circuit after the switch 402 will be zero if the switch 402 is opened, and the voltage will be substantially the same as the voltage from the voltage detection circuit before the switch 402 (with a slight voltage drop) when the switch 402 is closed. This makes it possible to detect whether the switch 402 is opened or closed from the voltages of the voltage detection circuits before and after the switch 402 input to the controller. It is thus possible to judge the state where the switch 402 is closed even though the switch 402 is controlled to be opened by the controller, the so-called welding of the switch 402.
However, the high-capacity capacitor 406 is placed in the inverter device 408 as described above, and a measured voltage is not immediately reduced due to a discharge voltage of the capacitor 406, so that it has not been possible to detect the welding of the switch 402 in early stages.
On the other hand, in such an air conditioner, when the battery 401 is reversely connected, the capacitor 406 and the switching element group 412 are damaged. Further, there is a disadvantage that when a person touches a terminal on the battery 401 side, the person gets an electric shock because of the charged capacitor 406. In order to prevent this, conventionally, a diode directed forward to the capacitor 406 side has sometimes been attached to the charging device 411.
However, the addition of the diode leads to an increase in size of the entire device. On the other hand, especially in the air conditioner for the electric automobile, because the inverter device is installed on a vehicle to drive the electrically driven compressor, it has to be placed in a small engine room having limited installation space, so that the size increase is not allowed, and a further size reduction has been needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The prior art sharpening devices for crayons and similar marking instruments typically included a conical housing with two flat, angled walls provided with symmetrical sharpening elements extending from the base of the housing substantially to its apex. These sharpening elements usually comprised rectangular openings sized so that the edges of the openings engaged and shaved the surface of a crayon pressed into the openings.
To sharpen a crayon in the prior art devices, one inserted the crayon into the sharpener and rotated the crayon while simultaneously pressing the crayon into the sharpening openings. As the crayon rotated, the edges of the sharpening openings removed a thin layer of wax, plastic or similar material from the surface of the crayon, giving the crayon a smooth, pointed, conical shape suitable for marking or coloring. The shavings would then pass through the sharpening openings into an optional collection receptacle. An example of such a sharpener is illustrated in FIG. 12 herein.
Crayons and similar marking instruments are sold in a wide variety of sizes. For example, the CRAYOLA brand round wax crayons sold by Binney & Smith Inc. range from 0.360 inches to 0.570 inches in diameter. The prior art sharpeners, however, were not designed to sharpen all crayon sizes within such a range. On the contrary, the prior art sharpeners were usually limited to a predetermined crayon size. They could not accommodate crayons with a larger diameter and did not satisfactorily sharpen crayons with a smaller diameter.
In particular, sharpeners designed for relatively large crayons often lacked sufficient means for ensuring that small crayons were held in the proper sharpening position. Thus, it was frequently difficult to sharpen small crayons to the proper dimensions without breaking or cracking their tips during the sharpening process. Simply expanding the dimensions of sharpeners intended for small diameter crayons to accommodate larger diameter crayons was also unsuccessful as these devices lacked the structural strength to resist the forces and stresses generated while sharpening large crayons.
As a result, a number of separate and individual sharpening devices tailored for each crayon size, or a series of such sharpening devices mounted in a single unit, were required to sharpen the range of commercially available crayons. This was both inconvenient and impractical, particularly for young children (frequently heavy crayon users) who were required to identify and keep track of the particular sharpener which matched each of the presently available crayon sizes.
The present invention provides a single, universal crayon sharpener which, unlike those of the prior art, will sharpen from relatively large diameter crayons (e.g. 0.570 inches in diameter) to relatively small diameter crayons (e.g. 0.360 inches in diameter). The sharpener of the invention employs asymmetrical sharpening means and internal guide means to ensure that crayons of many different sizes may be efficiently and properly sharpened to the correct dimensions, thus eliminating the need for multiple sharpeners of different sizes.
The invention, in addition, provides a universal sharpener that may be reinforced to withstand the pressures and forces generated during the sharpening of relatively large crayons or other difficult to sharpen marking instruments. Furthermore, the invention provides a sharpener that is cost efficient and simple to manufacture. | {
"pile_set_name": "USPTO Backgrounds"
} |
(A) Field of the Invention
The present invention relates to an electrostatic discharge protection apparatus. More particularly, it relates to an electrostatic discharge protection apparatus employing a silicon control rectifier.
(B) Description of Related Art
Problems of electrostatic discharge (ESD) are often encountered while in the use and manufacture of integrated circuit (IC). With scaling to down beyond 0.13 um, even 0.1 um, and the increase of demand of high-speed and wide-band wireless ICs, the tiny devices within IC are easy to be destroyed by an instant electrostatic discharging. Therefore, as the IC process continuously forges ahead, highly impact of ESD to the quality of IC is becoming a crucial problem.
The international standard specification of the protection capability of current commercialized IC ESD protection contains 3 categories for regulating the endurance of ESD as from Human Body Model (HBM), Machine Model (MM) and Charged Device Model (CDM), in which the testings must be higher than 2000, 200, 1000 volts in respect of HBM, MM and CDM respectively.
As usual, ESD occurs at an instance of 10 ns to 100 ns. Therefore, an on-chip ESD protection apparatus or circuitry to prevent a chip from being damaged by ESD is extremely necessary.
An excellent ESD protection apparatus has to meet the following requirements: (1) The ESD protection apparatus is off in normal operation; and (2) Instant activation of the ESD protection apparatus once an ESD event happens.
Usually, an ESD protection apparatus is constituted of a main protection apparatus and a secondary protection apparatus. The main protection apparatus undertakes most of the amount of current when an ESD event happens, and the secondary protection apparatus is a circuitry for providing an adequate protection when the main protection apparatus is not completely activated. The main protection apparatus may be a field transistor, an NMOS transistor, a PN diode or a silicon controlled rectifier (SCR), and the secondary protection apparatus may be an MOS transistor with a gate grounded or a diode.
The SCR apparatus is the most efficient one among the aforementioned ESD protection apparatus and provides an efficient ESD protection mechanism to IC chips. When an ESD occurs, the SCR apparatus reduces its impedance instantly and is switched on to share most of the amount of current for providing a reliable and an on-chip protection. Additionally, heat generated under conduction by the SCR can be distributed evenly; therefore the device damage due to localized heat accumulation can be avoided.
The U.S. Pat. No. 5,012,317 discloses an SCR ESD protection apparatus. Referring to FIG. 1, the circuit of the SCR ESD protection apparatus 10 is connected to a bonding pad 102, and a parasitic bipolar pnp transistor 104 is coupled to a resistor 106. When the voltage between the base and emitter of a parasitic bipolar npn transistor 108, coupled to a resistor 110, is greater than a threshold voltage, the parasitic bipolar npn transistor 108 is turned on and conducts current grounding. The current flowing through the parasitic bipolar npn transistor 108 would turn on the parasitic bipolar pnp transistor 104. In return, the current flowing of the parasitic bipolar pnp transistor 104 also accelerates that of the parasitic bipolar npn 108. The kind of positive feedback current between the parasitic bipolar pnp transistor 104 and the parasitic bipolar npn transistor 108, is similar to a characteristic of a pnpn silicon controlled rectifier, which is the well-known latch-up effect. It can be applied in ESD protection apparatus to discharge the electrostatic charge of the bonding pad 102 rapidly.
The structure of the SCR ESD protection apparatus 10 is shown in FIG. 2. An N-well 202, an N+ region 204 and a P+ region 206 are formed in a P-substrate 20, and the N-well 202 contains an N+ region 208 and a P+ region 210. The N+ region 204 and P+ region 206 are grounded, and the N+ region 208 and P+ region 210 are in connection with the bonding pad 102. The pnp bipolar transistor 104 shown in FIG. 1 is constituted of the P+ region 210, the N-well 202 and the P-substrate 20, and the npn bipolar transistor 108 shown in FIG. 1 is constituted of the N+ region 204, the P-substrate 20 and the N-well 202. The base of the pnp bipolar transistor 104 is connected to the collector of the npn bipolar transistor 108, i.e. using the common N-well 202, in forming the aforementioned pnpn silicon controlled rectifier.
FIG. 3 shows a current vs. voltage (I-V) characteristic curve of the SCR ESD protection apparatus 10. The SCR ESD protection apparatus 10 is off before the latch-up occurs. When an applied voltage is higher than a xe2x80x9ctriggering voltagexe2x80x9d, the latch-up is activated to reduce the voltage to a xe2x80x9cholding voltagexe2x80x9d as a protection mechanism. Most of the amount of current is rapidly discharged by virtue of the pnpn structure.
Obviously, the triggering voltage and the holding voltage are two main factors relative to the characteristics of the SCR ESD protection circuit 10. (1) If the triggering voltage is too high, the device to be protected may be damaged because the SCR ESD protection apparatus 10 is not activated in time; (2) if the triggering voltage is too low, the SCR ESD protection apparatus 10 is easily activated by an exterior noise of the device; (3) if the holding voltage is too high, the device to be protected may be damaged due to heat concentration caused by the high power consumption at the high holding voltage; and (4) if the holding voltage is too low, the SCR ESD protection apparatus 10 is easily activated by an exterior noise of the protected device.
The U.S. Pat. No. 6,172,404 discloses an SCR which separates the parasitic bipolar pnp transistor 104 and the parasitic bipolar npn transistor 108 to increase the holding voltage, thereby inducing the parasitic bipolar pnp transistor 104 not turned on completely.
The U.S. Pat. No. 5,465,189 discloses a low triggering voltage SCR ESD protection circuitry, whose triggering voltage is equivalent to the breakdown voltage of the IC and normally is around 12 volts.
To sum up, the importance of the triggering voltage and holding voltage is well acknowledged, but their implementations are troublesome due to various requirements of different chips.
The object of the present invention is to provide an adjustable electrostatic discharge apparatus to prevent the device damage caused by inadequate triggering voltage and holding voltage. The electrostatic discharge apparatus employs an SCR, a triggering voltage adapter network for triggering voltage adjustment and a holding voltage adapter network for holding voltage adjustment to change the I-V characteristic of the protected device. The SCR ESD protection apparatus of the present invention provides the capability of adjustment so as to meet various requirements of different kinds of chips.
The first embodiment of an electrostatic discharge apparatus of the present invention comprises a first conductive type substrate, a gate, a triggering voltage adapter network and a holding voltage adapter network, and a holding voltage adapter network in which the substrate including a first region exhibiting a second conductive type, a second region exhibiting the first conductive type, a third region exhibiting the second conductive type, a fourth region of the first conductivity within the first region, a fifth region exhibiting the second conductive type contained in the first region and a sixth region exhibiting the second conductive type on the boundary of the first region and between the third region and the fifth region. The gate is on the surface of the substrate between the third region and the sixth region. The triggering voltage adapter network is in connection with the second region, the third region, the fourth region and the gate, and the holding voltage adapter network is in connection with the second region, the third region, the fourth region and the fifth region.
The first embodiment of an electrostatic discharge apparatus of the present invention may further comprise a seventh region of a second conductive type within the first region to be the second embodiment, in which the triggering voltage adapter network and the holding voltage adapter network are further electrically connected to the seventh region.
The third embodiment of an electrostatic discharge apparatus of the present invention comprises a substrate exhibiting a first conductive type, a gate, a triggering voltage adapter network and a holding voltage adapter network, in which the substrate including a first region exhibiting a second conductive type, a second region exhibiting the first conductive type, a third region exhibiting the second conductive type, a fourth region exhibiting the first conductive type within the first region and a fifth region exhibiting the second conductive type positioned on the boundary of the first region and between the third region and the fourth region. The triggering voltage adapter network is in connection with the second region, the third region, the fourth region and the gate. The holding voltage adapter network is in connection with the second region, the third region, the fourth region and the fifth region.
The third embodiment of an electrostatic discharge apparatus of the present invention may further comprise a sixth region of a second conductive type within the first region to be the fourth embodiment, in which the triggering voltage adapter network and the holding voltage adapter network are further electrically connected to the sixth region.
In the above embodiments, the first conductivity is P-type and the second conductivity N-type. The triggering voltage and holding voltage adapter networks are constituted of a circuit of resistor-capacitor (RC) coupling type, capacitor type or diode type.
The triggering voltage and holding voltage adapter network can be used in combination or individually to adjust the triggering voltage and holding voltage in accordance with various requirements. | {
"pile_set_name": "USPTO Backgrounds"
} |
The search for new therapeutic agents has been greatly aided in recent years by a better understanding of the structure of enzymes and other biomolecules associated with diseases. One important class of enzymes that has been the subject of extensive study is protein kinases.
Protein kinases constitute a large family of structurally related enzymes that are responsible for the control of a variety of signal transduction processes within the cell. Protein kinases are thought to have evolved from a common ancestral gene due to the conservation of their structure and catalytic function. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The kinases may be categorized into families by the substrates they phosphorylate (e.g., protein-tyrosine, protein-serine/threonine, lipids, etc.).
In general, protein kinases mediate intracellular signaling by effecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. These phosphorylation events are ultimately triggered in response to a variety of extracellular and other stimuli. Examples of such stimuli include environmental and chemical stress signals (e.g., osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, and H2O2), cytokines (e.g., interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α)), and growth factors (e.g., granulocyte macrophage-colony-stimulating factor (GM-CSF), and fibroblast growth factor (FGF)). An extracellular stimulus may affect one or more cellular responses related to cell growth, migration, differentiation, secretion of hormones, activation of transcription factors, muscle contraction, glucose metabolism, control of protein synthesis, and regulation of the cell cycle.
Many diseases are associated with abnormal cellular responses triggered by protein kinase-mediated events as described above. These diseases include, but are not limited to, autoimmune diseases, inflammatory diseases, bone diseases, metabolic diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies and asthma, Alzheimer's disease, and hormone-related diseases. Accordingly, there remains a need to find protein kinase inhibitors useful as therapeutic agents. | {
"pile_set_name": "USPTO Backgrounds"
} |
An open drain bus, such as an Inter-Integrated Circuit (I2C) bus, a System Management Bus (SMBus), and others, usually includes a data line and a clock line. Such a data line and a clock line can each be referred to individually as a bus line, or simply as a line. As shown in FIG. 1a, each bus line (e.g., 101) is connected to a pull-up resistor R, pull down transistors Q1, Q2 and Q3 (each associated with an interface device) and a capacitance C. The capacitance C represents distributed capacitance of the bus line and the total input capacitance of interface devices 111, 112 and 113. Data transfer rate depends on how fast the resistor R can charge the capacitance C.
To increase the maximum data transfer rate, a bus line 101 can be separated into segments (e.g., 101A, 101B and 101C), each having a reduced capacitance, as shown in FIG. 1b. FIG. 1b also shows that bi-directional buffers 102 can be used to transfer data between these segments. Each segment has its own pull-up resistor connected between the segment and a voltage supply rail. The bi-directional buffer 1021 is used to transfer data between the segments by making levels on node B track the level on node A and vise-versa—depending on the direction of data flow. Similarly, the bi-directional buffer 1022 is used to transfer data between the segments by making levels on node C track the level on node B and vise-versa—depending on the direction of data flow. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure relates to surgical fastener applying apparatus and more particularly to surgical fastener appliers for sequentially applying a plurality of surgical fasteners to body tissue.
2. Discussion of Related Art
Surgical devices wherein tissue is first grasped or clamped between opposing jaw structures and then joined by means of surgical fasteners are well known in the art. In some such instruments a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples however, other surgical fasteners may also be utilized, for example, clips or two part polymeric surgical fasteners.
Instruments for applying surgical fasteners typically include two elongated beam members which are respectively used to capture or clamp tissue therebetween. Typically, one of the beam members carries a disposable cartridge which houses a plurality of staples arranged in at least two lateral rows while the other beam member comprises an anvil which defines a surface for forming the staple legs as the staples are driven from the cartridge. Where two part fasteners are used, this beam member carries the mating part, e.g. the receiver, to the fasteners driven from the cartridge. Generally, the staple formation process is effected by the interaction between a longitudinally moving camming surface and a series of individual staple pusher member. As the camming surface travels longitudinally through the cartridge carrying member, the individual pusher members are biased laterally acting upon the staples to sequentially eject them from the cartridge. A knife may travel with the pusher between the staple rows to longitudinally cut the tissue between the rows of formed staples. Examples of such instruments are disclosed in U.S. Pat. No. 3,079,606 and U.S. Pat. No. 3,490,675.
A later stapler disclosed in U.S. Pat. No. 3,499,591 applies a double row of staples on each side of the incision. This is accomplished by providing a cartridge assembly in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam to effect ejection of the staples. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Exercising device for wheel chair confined persons.
2. Description of the Prior Art
Numerous persons that have free and unimpaired use of their arms, but have a physical disability in their legs are confined to wheel chairs. For the well being of such persons it is essential that they exercise, and in the past, such exercising has been difficult to achieve.
The primary purpose in devising the present invention is to supply a portable device that may be assembled into a first configuration whereby a person confined to a wheel chair may manipulate the wheel chair to a position adjacent thereto, and by use of his arms pull himself into an upright position on the device where he is supported by crutch like members, and when so supported the person is capable of carrying out exercises that are not possible when he is confined to a wheel chair.
Another object of the invention is to supply an exercising device for wheel chair confined persons that is of relatively simple mechanical structure, can be fabricated from standard commercially available materials, is simple and easy to use, may be readily transported from one location to another when in a dismantled second configuration, and one that may be retailed at a sufficiently low price as to encourage the widespread use thereof by persons that have a need for the same. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method and a device for locating the position of a wheel with respect to the right or on the left side of a vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
As smart phones and other portable devices increasingly become ubiquitous, and data usage increases, macrocell base station devices and existing wireless infrastructure in turn require higher bandwidth capability in order to address the increased demand. To provide additional mobile bandwidth, small cell deployment is being pursued, with microcells and picocells providing coverage for much smaller areas than traditional macrocells.
In addition, most homes and businesses have grown to rely on broadband data access for services such as voice, video and Internet browsing, etc. Broadband access networks include satellite, 4G or 5G wireless, power line communication, fiber, cable, and telephone networks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the field of variable gain amplifiers and the control thereof.
2. Prior Art
Many applications require a variable gain amplifier with a gain versus control voltage characteristic that is log-linear. Such control characteristic, often also referred to by other names, may be characterized by a gain control characteristic wherein the output of the gain controlled amplifier in db is a substantially linear function of the gain control voltage, preferably over as much of the gain control range of the amplifier as possible.
One prior art gain control method includes a control loop that is difficult to stabilize. A simpler prior art variable gain amplifier is a transconducter loaded with a pair of devices operated as a current steering mechanism, but generating a log-linear characteristic with this variable gain amplifier has not been demonstrated. By way of example, U.S. Pat. No. 5,572,166 discloses a Linear-In-Decibel Variable Gain Amplifier for an RF signal variable gain amplifier, though the technique disclosed therein is not applicable to current steered variable gain amplifiers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a multilayer capacitor having a capacitor element in which dielectric layers and internal electrodes are alternately stacked and more particularly to a shape of a capacitor element.
Recently, electronic equipment has rapidly advanced in size reduction because of sophistication of ICs (integrated circuits), LSIs (large scale integrated circuits) and so on. With the advance in size reduction, a capacitor that is an electronic component is also advancing in size reduction, and thus a demand for a multilayer capacitor is growing sharply. For example, known is a multilayer capacitor comprising a capacitor element in which dielectric layers and internal electrodes are alternately stacked and also having terminal electrodes formed in the capacitor element. The capacitor element is generally formed in the following manner using a dielectric paste containing a dielectric material blended with an organic vehicle and an internal electrode paste containing a conductive material blended with an organic vehicle: that is, the dielectric paste and the internal electrode paste are alternately stacked, then the stacked pastes are integrated by applying pressure to the pastes, and finally the integrated pastes are fired.
In the case of the above-mentioned capacitor element, the internal electrode has to be made of a material that does not react with a material of the dielectric layer even if the internal electrodes are fired simultaneously with the dielectric layers, because the internal electrodes integrated with the dielectric layers are fired simultaneously. Therefore, a noble metal such as platinum (Pt) or palladium (Pd) has been heretofore used as the internal electrode. However, the noble metal is expensive and results in a rise in the price of the multilayer capacitor. Therefore, studies are conducted for the purpose of using an inexpensive base metal as the internal electrode, so that a dielectric capable of being fired in a reducing atmosphere in which nickel (Ni) does not oxidize is developed, thereby making it possible to use nickel as the internal electrode and thus achieving a substantial reduction in cost.
When nickel is used as the internal electrode, the internal electrode is, however, prone to break because the internal electrode becomes spherical and thick as sintering proceeds. Thus, a problem exists: that is, the multilayer capacitor expands in a stacking direction and a width direction, so that cracks occur in the multilayer capacitor. This problem becomes more noticeable as the number of dielectric layers increases, and the problem has been serious particularly in recent years in which, to meet demands for a smaller size and a larger capacity, the dielectric layer has become thinner and increased in number and therefore the number of dielectric layers has increased.
As the related art pertaining to the internal electrode paste, addition of a carbon compound is described in, for example, Japanese Patent Application Publication No. Hei 2-94618, but the addition of the carbon compound takes place in order to inhibit oxidation of the internal electrode, and this publication gives no description about the correlation between the addition of the carbon compound and the occurrence of expansion and cracks of the multilayer capacitor.
The invention is designed to overcome the foregoing problem. It is an object of the invention to provide a multilayer capacitor capable of preventing the occurrence of cracks by inhibiting the multilayer capacitor from expanding in the stacking direction or the width direction.
There is provided a multilayer capacitor of the invention comprising a capacitor element in which dielectric layers and internal electrodes are alternately stacked, wherein an expansion coefficient x of the capacitor element in a stacking direction lies between xe2x88x920.05xc3x97i (%) and 0.05xc3x97i (%) inclusive, where i denotes the number of dielectric layers, each of which is sandwiched between the internal electrodes.
There is provided another multilayer capacitor of the invention including a capacitor element in which dielectric layers and internal electrodes are alternately stacked, wherein the expansion coefficient x of the capacitor element in the stacking direction lies between xe2x88x920.10 (%) and 0 (%) inclusive.
In the above-described multilayer capacitors of the invention, the expansion coefficient x of the capacitor element in the stacking direction falls within a predetermined range, so that the occurrence of cracks is prevented, and therefore a fraction defective is reduced.
Preferably, in the multilayer capacitor of the invention, the expansion coefficient x lies between xe2x88x920.05xc3x97i (%) and 0 (%) inclusive. Preferably, in the above-described multilayer capacitors of the invention, the capacitor element has the dielectric layer in an outermost portion in the stacking direction, and the dielectric layer located in the outermost portion has a thickness of 100 xcexcm or less. In the above-described multilayer capacitors, the internal electrode may include nickel.
The capacitor element is obtained by stacking and firing a dielectric paste layer containing a dielectric material and an internal electrode paste layer containing a conductive material, and the internal electrode paste layer may comprise at least one of a carbon compound and a lithium-containing compound. Preferably, the internal electrode paste layer contains the carbon compound in such a manner that the content of carbon lies between 0.5 and 16 parts by weight inclusive to 100 parts by weight of a metallic element in the conductive material. Preferably, the internal electrode paste layer contains the lithium-containing compound in such a manner that the content of lithium (Li) lies between 0.005 and 10 parts by weight inclusive to 100 parts by weight of the metallic element in the conductive material. Preferably, the lithium-containing compound is lithium-containing salt.
There is provided still another multilayer capacitor of the invention comprising a capacitor element in which dielectric layers and internal electrodes are alternately stacked, wherein an expansion coefficient y of the capacitor element in a width direction lies between xe2x88x920.05xc3x97i (%) and 0 (%) inclusive, where i denotes the number of dielectric layers, each of which is sandwiched between the internal electrodes.
In the above-mentioned multilayer capacitor of the invention, the expansion coefficient y of the capacitor element in the width direction falls within a predetermined range, so that the occurrence of cracks is prevented, and therefore the fraction defective is reduced. In the multilayer capacitor, the internal electrode may include nickel.
The capacitor element is obtained by stacking and firing a dielectric paste layer containing a dielectric material and an internal electrode paste layer containing a conductive material, and the internal electrode paste layer may contain a lithium-containing compound. Preferably, the internal electrode paste layer contains the lithium-containing compound in such a manner that the content of lithium lies between 0.005 and 10 parts by weight inclusive to 100 parts by weight of the metallic element in the conductive material. Preferably, the lithium-containing compound is lithium-containing salt.
Other and further objects, features and advantages of the invention will appear more fully from the following description. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to providing management, maintenance, and support of both hardware and software on computers. In particular, it relates to a method and system that enable individual computers to be compared with peer group computers to speed up and to improve the quality of troubleshooting, maintenance, and support.
As the cost of PCs and servers falls lower and lower, and as more and more PCs and servers are placed into service within businesses and organizations of all kinds, the problem of managing the configurations of and diagnosing the problems within those computers, repairing them, upgrading them, and keeping them running becomes more and more difficult. Increasingly, particularly with respect to servers which are often used in very large numbers, the complexity and the cost of the service needed to keep computers running is coming to be an important issue.
In recent years, several steps have been taken to cut the cost of managing computers. For example, a user may now click on an icon and type out a “trouble” message on the screen of a PC or workstation. That message, together with a record of the configuration of the computer and the identity (name, telephone number, e-mail address) of the user is then automatically routed to a central site where service technicians are presented not just with the user's message but also with a detailed report of the current status of the computer. The service representative can then respond with an e-mail message, with a telephone call, or with a live, on-screen “chat.” The service representative may also take over control of the user's computer just as if the service representative were seated at the computer, rather then being at a central site many miles away.
Another advance has been the ability to have software data collectors installed on computers within an enterprise. These can run all manner of software (programs and script files) on each computer within an enterprise, gather all manner of data concerning how the computers are configured, and transmit records containing this data to a central site where sophisticated analyzers can sift through all of this data looking for anomalous conditions or other issues which can then be automatically reported in special reports. Centrally located auditors also may ask for the one-time execution of special sets of collectors to gather data for inclusion in special types of reports. Thus, the configuration and operative state of remotely-located computers can be determined quickly and in an automated fashion.
Computers can also be clustered into groups of computers that back each other up in a fully-automated fashion, with a computer that fails or that is not performing properly automatically switched out of service and replaced with another backup computer. This can keep critical services fully operative even when some computers are placed out of service because of technical problems. Computers can also be arranged to monitor themselves continuously, checking for problems, and reporting any problems developed in essentially the same manner described above whereby users report problems, but this process can be fully automated.
Still, the task of diagnosing the problems in a computer that is malfunctioning remains a difficult and time-consuming one, one that requires considerable ingenuity, and one that also requires considerable experience on the part of service personnel. When faced with a problem the solution to which is not obvious, service personnel frequently guess at possible causes and then try various fixes, continuing this process until a problem finally disappears. This may take a long time and may involve replacing hardware components or re-installing software components or installing software patches that were not actually needed, wasting both time and materials.
What is desired, for example, is some way to enable service personnel to take advantage of the expertise represented by the hundreds and thousands of computers that are operating in the field and that are properly configured, as is indicated by their generally acceptable performance. For example, if a first machine is malfunctioning and a second machine of the same type, having more or less the same system configuration, and performing the same business function in a similar industry is available to serve as a properly functioning model, then the configurations of the two machines, as well as their comparative performance, could be compared. Any differences between them would suggest possible causes of the malfunction. But comparing two machines in this manner is not without its risks, for any given machine might possibly be mis-configured even though it appears to be fully operative. And it is difficult to find a comparably configured computer to be used for comparative purposes. Accordingly, the present invention proposes new methods and systems for determining whether a computer is properly configured and performing normally. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a TCP semiconductor device using solder resist having appropriate flexibility and a liquid crystal panel display using such a device, and also concerns a testing method for disconnection of the wiring pattern thereof.
The TCP (Tape Carrier Package) semiconductor device having a flexible bending property is referred to as a flex TCP semiconductor device. The flex TCP semiconductor device is used as a package for driver semiconductors especially in a liquid crystal panel which has a small frame portion.
Recently, there has been a strong trend toward large-size liquid crystal panels, and at present, those panels exceeding 13 inches have been produced for use in notebook PCs (Personal Computers). Therefore, there are ever-increasing demands for the development of flex TCP semiconductor devices used for large-size liquid crystal panels.
FIG. 7(a) is a plan view that shows a schematic construction of a bicolor flex TCP semiconductor device 101 in which two types of solder resists are formed, and FIG. 7(b) is a cross-sectional view taken along line A-Axe2x80x2 in FIG. 7(a).
In the construction of the bicolor flex TCP semiconductor device 101, a driver IC chip 104 is electrically connected to a tape carrier 103 that has been formed by using a film-shaped polyimide substrate 102.
The tape carrier 103 has a copper wiring pattern that is constituted by a pair of slits 105, inner leads 106, input-side outer leads 107, output-side outer leads 108 and a test pad 109, pieces of epoxy solder resist 110, pieces of polyimide solder resist 111 and pieces of polyimide solder resist 112 that insulate and coat the slits 105 and the copper wiring pattern, and sprocket holes 113 that are used for leading and positioning the polyimide substrate 102.
In particular, on the copper wiring pattern are provided two types of solder resists, that is, the hard epoxy solder resist 110 with a young""s modulus of 380xc2x180 kgf/mm2 and the polyimide solder resist 111 having flexibility with a young""s modulus of 50xc2x120 kgf/mm2.
By utilizing its great young""s modulus, the epoxy solder resist 110 plays two roles for preventing the occurrence of bleed (flowing of solder resist mainly constituted by its solvent ingredients, after the printing process) in the polyimide solder resist 111, and for preventing the peeling of the edge of the polyimide solder resist 111 in a tin-plating formation process upon manufacturing the tape carrier 103, which will be described later. With this arrangement, the patterning precision of the polyimide solder resist 111 can be improved.
Moreover, the pieces of polyimide solder resist 112 with a young""s modulus of 50xc2x120 kgf/mm2 are formed on the undersurface (the back side of the surface on which the copper wiring pattern is formed) of the slits 105.
The driver IC chip 104 is electrically connected to the inner leads 106 through Au bumps 114, and the junctions and their adjacent portions are sealed with resin 115.
Next, referring to FIG. 8, an explanation will be given of manufacturing processes of the tape carrier 103 in the bicolor flex TCP semiconductor device 101 having the above-mentioned construction.
First, the surface of the polyimide substrate 102 (Upilex: Trademark of Ube Industries, Ltd.) is coated with a bonding agent (process 1), and a device hole, a pair of slits 105 and sprocket holes 113, etc. are formed by punching out the polyimide substrate 103 with a die (process 2).
Next, the polyimide substrate 102 is laminated with copper foil having a thickness of either 18 xcexcm, 25 xcexcm or 35 xcexcm (process 3). Moreover, pieces of polyimide solder resists 112 are formed over the pair of slits 105 from the side opposite to the surface on which the copper wiring pattern is to be formed later (process 4).
Then the copper-foil surface is coated with photoresist serving as an etching mask (process 5). Further, the photoresist is printed as a desired pattern through exposure (process 6), and developed (process 7). Here, photoresist serving as an etching mask is also formed over the device hole (process 8). Thereafter, the desired copper wiring pattern is formed by dipping the entire copper foil into a copper-foil etching liquid (process 9). After the copper wiring pattern has been formed in this manner, all of the photoresist is separated by an organic solvent or dry etching (process 10).
Next, on the surface of the polyimide substrate 102 on which the copper wiring pattern has been formed, pieces of epoxy solder resist 110 with a thickness of approximately 25 xcexcm are formed by printing at positions in which two pieces of polyimide solder resist 111, which will later be formed, are sandwiched from both sides (process 11). Thereafter, in a manner so as to cover the slits 105 serving as bending portions, pieces of polyimide solder resist 111, made of the same material as used in process 4, are formed by printing with a thickness of approximately 25 xcexcm (process 12).
Next, tin plating is applied to the surface of the exposed copper foil by the electroless plating method with a thickness of approximately 0.2 xcexcm to 0.6 xcexcm. Further, this tin plating is subjected to a curing process (heating process) so as to prevent the occurrence of whisker (process 13). Whisker refers to a needle-shaped crystal which develops in many kinds of metal when it is subjected to a stress, etc. In particular, whisker tends to develop in tin plating. When whisker develops, short circuits may be exerted between the terminals.
Lastly, the tape carrier 103, which has been manufactured through the above-mentioned processes, is shipped (process 14).
Moreover, another TCP semiconductor device, which has a construction different from the above-mentioned bicolor flex TCP semiconductor device 101, has been known. FIG. 9(a) is a plan view showing a schematic construction of a mono-color flex TCP semiconductor device 121 in which only one kind of solder resist is formed on the copper wiring pattern, and FIG. 9(b) is a cross-sectional view taken along line B-Bxe2x80x2 in FIG. 9(a).
As illustrated in FIG. 9(a) and FIG. 9(b), pieces of one kind of solder resist 123 are formed on a copper wiring pattern. The solder resist 123 is made of a hard epoxy solder resist having a young""s modulus of 200xc2x150 kgf/mm2. The mono-color flex TCP semiconductor device 121 can be produced at very low costs since the number of processes for forming solder resist is fewer than that of the bicolor flex TCP semiconductor device 101. However, because of the use of the solder resist 123 having a greater young""s modulus as described above, the mono-color flex TCP semiconductor device 121 is inferior to the bicolor flex TCP semiconductor device 101 in flexibility to bending upon assembly.
FIG. 10 shows manufacturing processes of a tape carrier 122 in the mono-color flex TCP 121. The manufacturing processes are different from those of the tape carrier 103 in the bicolor flex TCP semiconductor device 101 in that, as described above, only one kind of the hard epoxy solder resist 123 having a young""s modulus of 200xc2x150 kgf/mm2 is formed on the copper wiring pattern, and the other processes are carried out in the same manner as described above; therefore, the description thereof is omitted.
Next, referring to FIG. 12(a), an explanation will be given of a packaging method of the bicolor flex TCP semiconductor devices 101 onto a liquid crystal panel 201 and a PWB (Printed Wiring Board) 202. In general, for example, in the case of a liquid crystal panel of the 12.1-inch size having 1024 dotsxc3x97768 dots, upon packaging the bicolor flex TCP semiconductor devices onto the liquid crystal panel, approximately thirteen bicolor flex TCP semiconductor devices are mounted on the source side of the frame edge on one side in the liquid crystal panel 201 as drivers.
First, an ACF (Anisotropic Conductive Film), which is an anisotropic conductive bonding agent, is temporarily press-bonded onto the liquid crystal panel 201. The ACF, which has some kinds in width ranging from 1.2 mm to 3 mm, is properly selected so as to fit the size of the frame edge of the liquid crystal panel 201. Therefore, for example, if the width of the frame edge is narrow, an ACF with a narrow width is selected. Upon temporarily press-bonding the ACF, while the ACF is being affixed onto the liquid crystal panel 201, a tool, heated to 90xc2x0 C., is pressed thereon for approximately 2 seconds. At this time, the ACF reacts due to the heat and is cured, but is not completely cured so that an actual press-bonding process can be carried out later.
Upon completion of the temporary press-bonding process of the ACF, spacers, which have adhered to the ACF, are separated, and outer leads 108 on the output side of the bicolor flex TCP semiconductor devices 101 are temporarily press-bonded thereto. In this case, the bicolor flex TCP semiconductor devices 101 and the liquid crystal panel 201 are positioned by using alignment marks that have been respectively formed thereon. Prior to this temporary press-bonding process, the bicolor flex TCP semiconductor devices 101, which are connected in a reel shape, are punched out into respective pieces by using a die. Then upon temporarily press-bonding, a tool, heated to 100xc2x0 C., is pressed thereon with a load of 10 kgf/cm2 for 3 seconds; however, the ACF is not completely cured.
After the temporary press-bonding process of the bicolor flex TCP semiconductor devices 101, an actual press-bonding process is carried out. In the actual press-bonding process, a tool, heated to 200xc2x0 C., is pressed with a load of 35 kgf/cm2 for 20 seconds onto all the bicolor flex TCP semiconductor devices 101 which have been temporarily press-bonded to the liquid crystal panel 201, at one time.
After the bicolor flex TCP semiconductor devices 101 have been packaged onto the liquid crystal panel 201, outer leads 107 on the input side of the bicolor flex TCP semiconductor devices 101 are joined to the PWB 202. With respect to the packaging method of the bicolor flex TCP semiconductor devices 101 onto the PWB 202, a soldering method and a method using an ACF are applied. In the packaging method by using the ACF, all the bicolor flex TCP semiconductor devices 101 are packaged at one time onto the PWB 202 which has been aligned. At this time, a thermal stress, exerted due to a difference in coefficient of thermal expansion between the PWB 202 and a glass substrate constituting the liquid crystal panel 201, is concentrated on the bicolor flex TOP semiconductor devices 101.
The bicolor flex TCP semiconductor devices 101 have to be bent with the thermal stress being applied thereon so that the PWB 202 is placed on the back side of the liquid crystal panel 201. Consequently, the stress is further concentrated on the copper wiring pattern of the flex TCP semiconductor devices 101. In particular, the thermal stress increases as the liquid crystal panel 201 becomes larger.
Moreover, there is another method in which a straight TCP semiconductor device 121 without slits, as illustrated in FIG. 11, is packaged without being bent as illustrated in FIG. 12(b). In this method, however, unlike the bicolor flex TCP semiconductor device 101, it is not possible to minimize the frame-edge size of the liquid crystal panel 201. Therefore, this packaging method has a disadvantage in the case when a liquid crystal panel, which is as large as possible, is installed inside an apparatus having a limited space, such as a notebook PC.
Next, referring to FIGS. 13(a) and 13(b), an explanation will be given of a testing method for disconnection in the copper wiring pattern of the flex TCP semiconductor device 101. Conventionally, a TEG (Test Element Group) 131 serving as a testing pattern, as illustrated in FIG. 13(a), was manufactured, and the TEG 131 was bent through the MIT (Massachusetts Institute of Technology) method as shown in FIG. 13(b) so as to test the copper wiring pattern 132 for disconnection.
The following description will discuss one example of this testing method. A weight of 100 g was mounted on the TEG 131 that was pinched by jigs 135 at both sides thereof, and the portion of a slit 133 having a width of 1 mm was bent to 0xc2x0 via 90xc2x0 with a bending radius of 0.3 mm to 0.4 mm, and further bent so as to return to 180xc2x0. When it was bent from 0xc2x0 to 180xc2x0, this was counted as one bending process. These processes were repeated until disconnection had occurred in the copper wiring pattern 132 formed on the slit 133, and the number of bending processes up to the disconnection was calculated. The greater the number of the bending processes up to the disconnection, the better the resistance to bending was considered to be. The resistance varied depending on the solder resist 134 used as the TEG 131, and conventionally, solder resist 134, which did not suffer disconnection even under the MIT tests of 20 times, was conventionally used.
However, in the bicolor flex TCP semiconductor device 101 using two types of solder resist as shown in FIG. 7, solder resist having a great young""s modulus is adopted. For this reason, when the bicolor flex TCP semiconductor devices 101 are packaged on a large-size liquid crystal panel of not less than 17 inches, the stress onto the bicolor flex TCP semiconductor devices 101, exerted due to a difference in coefficient of thermal expansion between the liquid crystal panel 201 and the PWB 202, increases, and is concentrated on the copper wiring pattern, making the copper wiring pattern susceptible to disconnection.
In this case, the portion that is most likely to have disconnection is in the vicinity of the outer leads 108 on the output side at which the liquid crystal panel 201 and the bicolor flex TCP semiconductor devices 101 are joined by the ACF, as illustrated in FIG. 13. The larger the size of the liquid crystal panel 201, the more conspicuous the occurrence of disconnection becomes, raising a serious problem in production of the liquid crystal display device.
Moreover, in the bicolor flex TCP semiconductor device 101, the patterning precision of the pieces of epoxy solder resist 110, first formed, is xc2x10.2 mm, and the patterning precision of the pieces of polyimide solder resist 111, formed thereafter, is xc2x10.3 mm. Therefore, at portions in which the two types of solder resist contact, the patterning precision becomes xc2x10.5 mm, which is a comparatively bad value.
Furthermore, in the bicolor flex TCP semiconductor device 101, since the hard epoxy solder resist 110 is used, the bicolor flex TCP semiconductor device 101 itself becomes harder, thereby losing its flexibility. In addition, when hard solder resist is formed on the bicolor flex TCP semiconductor device 101, warping occurs in the bicolor flex TCP semiconductor device 101, failing to smoothly transport the bicolor flex TCP semiconductor device 101 in the assembling process. The warping is more likely to occur in particular when the width of the bicolor flex TCP semiconductor device 101 exceeds 48 mm.
Furthermore, in the bicolor flex TCP semiconductor device 101, since two types of solder resist are formed, two dedicated printing machines for printing these two types are required, and the management of solder resist becomes more complicated. The resulting problem is an increase in the production cost of the tape carrier 103.
In contrast, when only polyimide solder resist is formed as the solder resist, two problems, that is, warping of the flex TCP semiconductor device and an increase in the production cost of the tape carrier, can be solved. However, since polyimide solder resist has a low thixotropy, bleeding 142 occurs on the pattern edge 141 as shown in FIG. 14. Thixotropy refers to a scale for estimating the property of a substance in which stirring causes a reduction in viscosity while standing causes an increase in viscosity is estimated. For example, when the thixotropy of the solder resist is high, the patterning precision becomes better upon printing because of a reduction in viscosity, and the occurrence of bleeding is reduced after printing because of an increase in viscosity. Here, FIG. 14 is an enlarged view in which one portion of the upper surface of a TCP semiconductor device suffering bleeding 142 is shown in an enlarged manner.
Therefore, when the thixotropy is low, the pattern edge 141 of the solder resist 143 is not printed accurately, resulting in failure to properly manufacture the tape carrier. Moreover, solder resist 143 flows to reach the inner leads 144 inside the device holes of the tape carrier, resulting in a problem in which no bonding is available during an ILD (Inner Lead Bonding) process.
Moreover, another problem with the conventional bicolor flex TCP semiconductor device 101 is that pieces of polyimide solder resist 112, formed on the back side of the slits 105, have their pattern edge separated during the tin plating process and that the separated solder resist causes dusts, thereby contaminating the tape carrier 103.
Furthermore, in the flex TCP semiconductor device in which only polyimide solder resist is used as the solder resist, during the process for sealing the inner leads with resin, since the polyimide solder resist merely has a low adhering property to liquid epoxy resin, it becomes difficult to manufacture the flex TCP semiconductor device.
In addition to the above-mentioned problems, the MIT testing method for testing disconnection of the copper wiring pattern of the flex TCP semiconductor device 101 also has the following problem: In the MIT test, although disconnected portions, which are to be tested, are located in the vicinity of the edge of the slit 133 as shown in FIG. 13(b), these portions are different from actual disconnected portions that occur upon being bent after the flex TCP semiconductor devices 101 have been packaged on the liquid crystal panel 201 and the PWB 202. The disconnected portions occurring due to the bending after the packaging are located in the vicinity of the edges of portions at which the flex TCP semiconductor devices 101 are joined to the liquid crystal panel 201 as shown in FIG. 15.
Moreover, as the size of the liquid crystal panel becomes larger, the stress to the flex TCP semiconductor devices 101, which is exerted due to a difference in coefficient of thermal expansion between the liquid crystal panel 201 and the PWB 202, increases, and the stress is concentrated on the copper wiring pattern, making it more susceptible to disconnection. For example, although defects due to disconnection seldom occur in the case of the liquid crystal panel of 10.4 inches, they become conspicuous in the case of the large-size liquid crystal panel exceeding 11.3 inches.
In other words, although the MIT test can detect failure due to disconnection in the slit 133, it fails to properly evaluate the resistance to bending of the flex TCP semiconductor devices 101 upon packaging. Therefore, for example, even when, in the MIT test, a better result is obtained in flex TCP semiconductor devices using one type of epoxy solder resist than in flex TCP semiconductor devices using two types of solder resist, it sometimes happens in an actual packaging process on a liquid crystal panel that those device using one type of epoxy solder resist are more susceptible to disconnection.
As described above, in the conventional disconnection-testing method, it is not possible to determine a manufacturing method for flex TCP semiconductor devices which would be suitable for large-size liquid crystal panels. Moreover, even if the evaluation is made by actually packaging the flex TCP semiconductor devices on a liquid crystal panel, the possibility of occurrence of defects due to disconnection in the liquid crystal panel packaging process is normally in the order of PPM, that is, very low, failing to allow rational evaluation in a short period. Therefore, it is not possible to easily find a method for producing large-size liquid crystal displays exceeding 15 inches, which are more likely to have defects due to disconnection, with high yield.
The objective of the present invention is to provide a tape carrier package semiconductor device which is highly flexible and less susceptible to disconnection in the metal wiring pattern upon packaging, a liquid crystal display using such a device, and a disconnection-testing method for such a device.
In order to achieve the above-mentioned objective, the tape carrier packaging semiconductor device of the present invention, which has a tape carrier and semiconductor devices that have been packaged on the tape carrier, is characterized in that the tape carrier is provided with an insulating tape, a metal wiring pattern installed on one surface of the insulating tape, a through hole that is provided in a manner so as to penetrate the insulating tape so that the insulating tape is allowed to bend, a first insulating protective film for insulating and covering the metal wiring pattern and the through hole on the metal-wiring-pattern side, and a second insulating protective film for insulating and covering the through hole on the side opposite to the metal-wiring-pattern side, and also characterized in that the first and second insulating protective films are made of solder resist whose young""s modulus is in the range of 5 kgf/mm2 to 70 kgf/mm2.
With the above-mentioned construction, since the young""s modulus is set in the range of 5 kgf/mm2 to 70 kgf/mm2, the solder resist functions as a very flexible insulating protective film.
Therefore, for example, even if the tape carrier package semiconductor devices are packaged on a liquid crystal panel, the metal wiring pattern is hardly susceptible to disconnection. Further, the occurrence of warping in the tape carrier package semiconductor devices is reduced, and the manufacturing cost of the tape carrier can be reduced.
Moreover, the liquid crystal panel display of the present invention, which is provided with a tape carrier package semiconductor device having a tape carrier and semiconductor devices for driving a liquid crystal panel that are installed on the tape carrier and the liquid crystal panel, is characterized in that the tape carrier is provided with an insulating tape, a metal wiring pattern installed on one surface of the insulating tape, a through hole that is provided in a manner so as to penetrate the insulating tape so that the insulating tape is allowed to bend, a first insulating protective film for insulating and covering the metal wiring pattern and the through hole on the metal-wiring-pattern side, and a second insulating protective film for insulating and covering the through hole on the side opposite to the metal-wiring-pattern side, and also characterized in that the first and second insulating protective films are made of solder resist whose young""s modulus is in the range of 5 kgf/mm2 to 70 kgf/mm2.
With the above-mentioned construction, since the first and second insulating protective layers are made of solder resist whose young""s modulus is set in the range of 5 kgf/mm2 to 70 kgf/mm2, the liquid crystal display is allowed to have a tape carrier package semiconductor device with high flexibility.
Therefore, for example, even if the tape carrier package semiconductor devices are packaged on a liquid crystal panel display, the metal wiring pattern is not susceptible to disconnection. Further, the warping in the tape carrier package semiconductor devices is suppressed, and the manufacturing yield of the liquid crystal panel display can be improved.
Moreover, the testing method for disconnection of the present invention, which is a testing method for disconnection in a tape carrier which constitutes a tape carrier package semiconductor device and in which a metal wiring pattern and an insulating protective film for insulating and coating the metal wiring pattern are placed on an insulating tape, is characterized by the steps of: manufacturing a testing tape carrier having a construction identical to the tape carrier; connecting both of the ends of the testing tape carrier to plate-shaped substrates; aligning the substrates face to face with each other so that the testing tape carrier is brought into a bent state; and exposing the testing tape carrier to temperature environments which change with a predetermined cycle so as to count the number of cycles until the metal wiring pattern in the testing tape carrier has been disconnected.
In the above mentioned method that is a testing method for disconnection in the metal wiring pattern of a tape carrier constituting a tape carrier package semiconductor device, a testing tape carrier having a construction identical to the tape carrier is manufactured, and this is brought into a bent state with the liquid crystal panel and the circuit board being aligned face to face with each other, and in this state, the testing tape carrier is exposed to temperature environments which change with a predetermined cycle so as to find the number of cycles until it has been disconnected.
By bringing the testing tape carrier into the above-mentioned bent state, it becomes possible to create a state close to the state in which the tape carrier package semiconductor device is actually packaged on a liquid crystal panel. When the testing tape carrier is exposed to the temperature environments which change with a predetermined cycle in this state, possible disconnected portions coincide with disconnected portions occurring in an actual liquid crystal panel packaging process, and the occurrence of the possible disconnected portions is accelerated.
Therefore, by carrying out the above-mentioned test for disconnection, it becomes possible to positively confirm defects due to disconnection occurring in the liquid crystal panel packaging process of the tape carrier package semiconductor device in a short time.
For a fuller understanding of the nature and advantages of the invention, reference should be made to the ensuing detailed description taken in conjunction with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
In microprocessors of recent years, a high-speed cache memory with low storage capacity composed of, for example, a Static Random Access Memory (SRAM), has been installed within or near the microprocessor, and by storing a part of data in the cache memory, memory access speed of the microprocessor is increased.
Various techniques which aim to increase cache efficiency (to enhance a hit ratio and reduce cache miss latency) are known conventionally. One of such techniques is preloading (or prefetching), by which data to be used in the near future is filled in advance into the cache before a cache miss occurs (for example, Patent Reference 1). This technique can reduce cache misses by loading a line that includes a designated address into the cache by a prefetch instruction.
Patent Reference 1: Japanese Unexamined Patent Application No. 7-295882 | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a keratotic plug remover which excellently removes keratotic plugs formed in the pores of the skin, and a method of removing keratotic plugs from the skin utilizing such a keratotic plug remover.
2. Discussion of the Background
Having conspicuous pores in the skin is-a serious skin problem, especially for women, and is mainly caused, by keratotic plugs formed in the pores of the skin. Keratotic plugs are dead epidermal cells keratinized together with sebaceous matters and dirt which plug the pores of the skin. If proper treatment is not given; not only conspicuous pores but also various skin troubles result. Accordingly, removal of keratotic plugs is advisable in view-of the health and beauty of the skin.
Ordinary face detergents, make-up removers, however, cannot sufficiently remove the keratotic plugs.
Pack preparations, which are applied to the skin and, peeled off after dried, and which generally contain a nonionic polymer such as polyvinyl alcohol and polyvinyl pyrrolidone as a major component of a film forming agent, are still not sufficiently effective for removing dirt from the skin pores and especially for removing keratotic plugs.
Thus, there remains a need for a keratotic plug remover which can effectively remove keratotic plugs formed in the pores of the skin and a method of removing keratotic plugs from the skin utilizing such plug removers.
Accordingly, it is one object of the present invention to provide novel keratotic plug removers which effectively remove keratotic plugs from the skin.
It is another object of the present invention to provide a method for removing keratotic plugs from the skin which utilized such keratotic plug removers.
These and other objects which will become apparent during the following detailed description have been achieved by the inventors discovery that a keratotic plug remover which comprises a synthetic polymer having a salt forming group can effectively remove keratotic plugs and dirt from the pores of the skin.
The salt forming group of the polymer which is useful in the present invention is not particularly limited as long as it can form a salt in the presence of an acid or a base, and anionic, cationic and amphoteric groups are suitable. Examples of the salt forming group are carboxyl, sulfonic acid group, sulfuric acid residual group (xe2x80x94OSO3H), phosphoric acid residual group (xe2x80x94OPO3H2), nitric acid residual group (xe2x80x94NO2), amino group, ammonium group, and the like. Two or more of these groups maybe present in one compound.
The polymer compound which is useful in the present invention is preferably water-soluble from the viewpoint of good appearance, but it is not necessarily water-soluble for the purpose of achieving the effects of this invention. The compounds which are not water-soluble may take the form of dispersion and/or emulsion.
Examples of the polymers useful in the present invention include: hyaluronic acid, sodium hyaluronate, sodium chondroitin sulfate which are mucopolysaccharides; alginic acid, sodium alginate, ammonium alginate, sodium carboxylmethylcellulose, and carboxymethyl amylose which are hemicelluloses. These are of natural origin or semisynthesized polymers. In this invention, synthesized polymers are more preferable. Examples of the synthesized polymers include (A) polymers of one or more monomers listed in (1) to (3) below, (B) copolymers of the monomers as listed in (1) to (3) and another monomer which has no salt forming group, such as vinyl esters of aliphatic carboxylic acid such as vinyl acetate, (meth)acrylic esters such as methyl methacrylate, alkyl vinyl ethers such as methyl vinyl ether, N-vinyl cyclic amides such as N-vinylpyrrolidone, styrene and alkyl-substituted styrene, and (C) mixtures of the above-mentioned polymers.
(1) Anionic monomers:
Acrylic acid (AA), Methacrylic acid (MA), Malaic acid, itaconic acid and the like, which are unsaturated carboxylic acid monomers or their anhydrides or their salts;
Styrene sulfonic acid, 2-Acrylamide-2-methyl propane sulfonic acid (AMPS) and the like, which are unsaturated. sulfonic acid monomers or their salts;
Vinyl phosphonic acid, Acid phosphoxyethyl (meth) acrylate and the like, which are unsaturated phosphoric monomers.
(2) Cationic Monomers
Dimethylaminoethyl acrylate (DMAEA), Dimethylaminoethyl methacrylate (DMAEMA, Dimethylaminopropylacrylamide (DMAPAAm, Dimethylaminopropyl methacrylamide (DMAPMAAm), and the like, which are (meth)acrylamides or (meth) acrylic acid esters having a dialkylamino group; Dimethylaminostyrene (DMASt), Dimethyaminomethylstyrene (DMAMSt) and the like, which are styrenes having a dialkylamino group;
4-Vinyl pyridine, 2-vinyl pyridine and the like, which are vinyl pyridines;
Quaternarized products of these with a known quatenarizing agent such as alkyl halide, benzyl halide, alkyl or aryl sulfonic acid, or dialkyl sulfate.
(3) Amphoteric Monomers
N-(3-sulfopropyl)-N-acryloyloxyethyl-N,N-dimethylammonium betaine, N-(3-sulfopropyl)-N-methacroylamidepropyl-N,N-dimethylammonium betaine, N-(3-carboxymethyl)-N-methacroylamidepropyl-N,N-dimethylammonium betaine, N-carboxymethyl-N-methacroyloxyethyl-N,N-dimethylammonium betaine.
When the salt forming group of these polymers is not ionized, it is preferred to ionize it via neutralization with known acids such as hydrochloric acid and sulfuric acid which are inorganic acids; acetic acid, propionic acid, lactic acid, succinic acid, glycol acid which are organic acids, or with known bases such as triethylamine, trimethylamine which are tertiary amines; ammonia; or sodium hydroxide.
Among the mentioned polymer compounds, preferred ones in view of the mildness to the skin and high effectiveness for removing keratotic plugs are polymers of one or more cationic monomers, copolymers between one of these polymers and an amphoteric monomer or a monomer having no salt forming groups, and mixtures of these polymers.
Preferable examples of the cationic monomers include dimethylaminoethylacrylate (DMAEA), dimethylaminoethylmethacrylate (DMAEMA), Dimethylaminopropylacrylamide (DMAPAAm), dimethylaminopropyl methacrylamide (DMAPMAAm) and the like, which are (meth)acrylic esters or (meth)acrylamides having a dialkylamino group; and quaternary compound of them which are quaternarized with a known quaternarizing agent such as alkyl halide, benzyl halide, alkyl or aryl sulfonic acid or dialkyl sulfate. Among them, especially preferred are dimethylaminoethylmethacrylate (DMAEMA) and its quaternarized products; quaternarized products of dimethylaminopropyl methacrylamide (DMAPMAAm); polymers of one or more of these monomers; copolymers between one or more of these monomers and the above-mentioned monomers; and mixtures thereof.
The molecular weight (weight average) of these polymers is preferably in the range of from 10,000 to 1,500,000, and especially from 100,000 to 1,000,000. Molecular weights less than 10,000 will result in insufficient film strength and easily breakable films upon peeling-off. Polymers having a molecular weight over 1,500,000 are difficult to manufacture.
The preferable amount of the polymer to be incorporated into the keratotic plug remover preparation according to the invention is from 0.01 to 70% by weight, preferably 5 to 40% by weight based on the total weight of the preparation.
The above-mentioned synthesized polymers are used as dissolved in a solvent. The solvent useful in this invention is volatile and is not particularly limited as long as it can stably dissolve the polymers and is safe to the skin. Examples of such solvents include water, ethanol, isopropyl alcohol (IPA) and the like. They are used singly or in combination. The amount or the solvent is modified depending on the properties of the polymer compounds, optional ingredients and forms of the preparation, and is generally from 30 to 99.99% by weight, and preferably from 60 to 95% by weight, based on the total weight of the composition.
The efficacy of the keratotic plug remover of this invention is enhanced when a pigment is further incorporated together with the mentioned polymers. The pigment is not particularly limited, and both organic and inorganic pigments can be used. Examples of the inorganic pigments are zinc oxide, titanium oxide, silica, alumina, barium sulfate, zirconium oxide, calcium carbonate, calcium silicate, ceramics, hydroxyapatite, boron nitride, sericite, mica, talc, kaolin, montmorillonite, hectorite, saponite, black iron oxide, yellow iron oxide, red iron oxide, prussian blue, ultramarine, carbon black, pearlescent pigments and so on. Examples of the organic pigments are silk powders, cellulose powders, poly (meth)acrylic ester resins, polyamide resins, polyolefin resins, polyimide resins, polyurethane resins, polyester resins, polyether resins, polyvinyl chloride resins, urea resins, polyformaldehyde resins, polycarbonate resins, polyvinylacetate resins, polyvinylidene chloride resins, polyacrylonitrile resins, polysulfone resins, polystyrene resins, polyurea resins, silicone resins, melamine resins, polytetrafluoroethylene resins, rake pigments and azo dyes.
The particle size of the pigments is from 0.001 to 1000 micrometers, and preferably from 0.01 to 500 micrometers. Particle size of less than 0.001 micrometer is not preferred because good dispersibility cannot be obtained. Particle size over 1000 micrometers is not preferred, either, because of an unfavorable sensation to the skin. The mentioned pigments can be used as a complex or a mixture of one or more, if desired. the amount of the pigment is from 0.1 to 70% by weight, preferably from 1 to 40% by weight based on the total weight of the preparation.
When an oil component is further incorporated together with the polymers, the keratotic plug remover of this invention can achieve excellent removal of keratotic plugs without giving irritation to the skin. This is because the strength of the film at which it breaks upon peeling-off can be controlled by the oil component.
The oil component which is useful in this invention is a glycerol derivative represented by formula (I):
wherein one of Z1 and Z2 represents R2xe2x80x94Yxe2x80x94 and the other represents a hydroxyl group or R3xe2x80x94Yxe2x80x94, and R1, R2 and R3 independently represent a hydrocarbon group, the total carbon number of which ranges from 13 to 40, and the hydrocarbon group may or may not be substituted by a silicone residual group, Y and Y independently represent an oxygen atom or a group xe2x80x94COOxe2x80x94, (a carbonyl group in which the C atom is bonded to R1, R2, or R3). Other oily ingredients which are generally incorporated into cosmetic preparations can also be used. Examples of the oil component which is useful in this invention include vegetable oils such as avocado oil, tsubaki oil, macadamia rut oil, olive oil and jojoba oil; animal oils and fats such as beef tallow, lard and egg yolk fat; aliphatic acids such as oleic acid and isostearic acid; alcohols such as hexadecyl alcohol and oleyl alcohol; esters such as cetyl 2-ethylhexanoate, 2-ethylhexyl palmitate, 2-octyldodecyl myristate, neopentyl glycol di-2-ethyl hexanoate, 2-octyldodecyl oleate, isopropyl myristate, glycerol triisostearate, mono-2-ethylhexanoic glyceryl di-paramethoxycinnamate; and hydrocarbons such as dimethylpolysiloxane, dimethyl cyclopolysiloxane, methylphenyl polysiloxane, methylhydrogen polysiloxane, octanethyl cyclotetrasiloxane, octamethyl cyclopentasiloxane, decamethylcyclopentasiloxane, liquid paraffin, squalane, vaseline and solid paraffin.
Among these oil components, glycerol derivatives of formula (1) which are liquid at 20xc2x0 C. are preferred, and particularly, tri-2-ethylhexanoic glycerol, 1-isostearoyl-3-myristoyl glycerol, 2-ethylhexanoic diglyceride, 1-hexyl-3-undecanethylhexasiloxy propynyl glycerol are most preferred.
The amount of the oil components to be incorporated into the keratotic plug remover of this invention is from 0.5 to 30% by weight, preferably, 1 to 15% by weight based on the total weight of composition.
The keratotic plug remover preparation of this invention can further contain optional ingredients which are generally incorporated into cosmetic preparations. Examples of such optional ingredients include ethylene glycol, diethylene glycol, triethylene glycol and higher polyethylene glycols; propylene glycol, dipropylene glycol and higher polypropylene glycols, 1,3-butylene glycol, 1,4-butylene glycol and other butylene glycols; glycerol, diglycerol and higher polyglycerols; sugar alcohols such as sorbitol, mannitol, xylitol and maltitol; ethylene oxides (hereinafter referred to as EO) such as glycerols; addition products of propylene oxide (hereinafter referred to as PO); EO or PO adducts of sugar alcohols; monosaccharides such as galactose, glucose and fructose, and their EO or PO adducts; polysaccharides such as maltose and lactose, and their EO or PO adducts (polyols); surfactants such as POE alkyl ethers (POE is polyol ethylene), POE branched alkyl ethers, POE sorbitan esters, POE glycerol fatty acid esters, POE hydrogenated castor oil, sorbitan ester, glycerol fatty acid esters and polyglycerol fatty acid ester; drugs such as vitamins, antiphlogistics, activators, UV absorbers and the. like; water-swelling clay minerals such as montmorillonite, saponite and hectorite; polysaccharides such as carageenan, xanthangum, sodium alginate, pullulan, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose; synthetic polymers such as carboxyvinyl polymers, polyvinyl pyrrolidones and polyvinyl alcohols. They are incorporated into the preparation of the present invention in such amounts that will not impede the effects of the invention. In particular, when polyols are used, they are preferably incorporated by 0.01 to 50% by weight based on the total preparation. The keratotic plug remover according to this invention may take a form of a poultice using cotton cloth, rayon cloth, tetron cloth, nylon cloth, either woven or non-woven, or using a plastic film sheet, beside pack preparations.
The keratotic plug remover of this invention can be manufactured according to conventional processes for the manufacture of ordinary packs and poultice.
The manner of removing keratotic plugs by the use of the keratotic plug remover of the invention is the same as the manner of using ordinary packs and poultice. Namely, when a pack preparation is used, it is first applied to the part of the skin which has keratotic plugs, particularly likely to the nose, chin and forehead, and after dried, it is peeled off.
Since the keratotic plug remover of this invention effectively removes keratotic plugs, the conspicuousness of the skin pores is mitigated, skin pores are maintained clean, and healthy skin can be obtained. Further, the remover of this invention does not hurt the skin.
Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the invention
This invention relates to breathing apparatus, and more particularly to positive pressure breathing apparatus.
In positive pressure breathing apparatus a positive pressure greater than the ambient pressure is maintained within a protective device such as a face mask or a hood surrounding the respiratory passages of a wearer. The use of positive pressure has the particular advantage that, if there is any leakage, the leakage will all be outward from the protective device thus providing a high degree of protection against the ingress of noxious fumes into the gas which the wearer of the apparatus is breathing.
Positive pressure filter respirators are one form of positive pressure breathing apparatus in which the positive pressure is provided by means of an air mover such as a blower or a fan which delivers air through a filter to the interior of a face mask, helmet or hood. The air mover, which may be a battery-driven electrical device, removes from the wearer the need to overcome the resistance of the filter and so reduces the breathing effort required.
In such conventional positive pressure respirators the positive pressure is maintained by means of a high flow of air, at least 120 liters per minute but preferably of the order of 160 liters per minute. Most of this air is wasted since the 20-40 liters per minute of air which is required for breathing is required during the inhale part of the cycle only, but the air mover continues to supply air during the remainder of the breathing cycle. Whilst in some cases the high flow of air is beneficial in terms of cooling the wearer, it is wasteful in terms of filter life and battery life.
Positive pressure filter respirators for use in highly toxic environments comprise an inner or orinasal mask within an outer protective member, which may be a hood, a helmet or a mask, a barrier layer of filtered gas being maintained in the outer protective member around the inner or orinasal mask.
(2) Description of the prior art
In U.K. Patent Specification No. 2,032,284 A it is proposed to improve the filter life in breathing apparatus of this kind generally by detecting exhalation by the wearer and at least reducing flow of air through the filter during at least part of each exhale part of the breathing cycle of the wearer. It is disclosed that, in breathing apparatus having no inner or orinasal mask, the air mover or pump may be stopped, but it is preferred that the speed of the air mover is reduced. In breathing apparatus having an inner or orinasal mask and an outer mask, the speed of the air mover is regulated in consequence of the build up in pressure in the outer mask following closure of inhale valves in the inner mask during exhalation. This build up is detected by a detector in the outer mask operating in response to the pressure difference between the outer mask and the ambient atmosphere. Because the exhale valve in the inner mask opens directly to atmosphere, the build up in pressure in the outer mask occurs as a result of the continued running of the fan after exhalation commences, and there is consequently a slow response of the detector to the commencement of exhalation and the improvement in the filter life and battery life is significantly less than it might be.
In U.K. Patent Specification No. 2,141,348 A there is disclosed breathing apparatus which is a positive pressure filter respirator having inner and outer masks. The life of the filter in this apparatus is extended by disconnecting the pump means or fan from the power means in response to detection of the pressure of air between the pump means and the filter means by a pressure sensor. Again there is a slow response to the commencement of exhalation because the pressure which is sensed is dependent on the continued running of the pump means after the inhale valves in the inner mask close. There is therefore delay before the pump means or fan is disabled. Also, considerable effort by the wearer is required at the commencement of inhalation in order to reduce the pressure within both the inner and outer masks below atmospheric before the pressure sensor located between the pump means and the filter will reconnect the power means to the pump means or fan. There is therefore considerable risk of noxious gases leaking into the outer mask during this early portion of the inhale part of the breathing cycle. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electronic documentation continues to evolve in content and complexity. Business and government are gradually recognizing this and have begun introducing business systems and processes to take advantage of the additional richness in such documentation. For example, judges are increasingly asking for electronic, hyperlinked briefs on CD-ROM to supplement more traditional static hardcopy and electronic documents that are filed with the courts. Government agencies, such as the United State Patent and Trademark Office, are increasingly allowing applicants to file documents electronically.
The benefits of developing and providing documentation in electronic form are many. Electronic documentation is typically more compact, manageable and easily portable or transmittable, than hard copies. For example, a large document can be carried on a small memory medium, such as a compact disc or a USB Flash Drive. Using electronic references, such as hyperlinks, in an electronic document, a referenced document can be quickly and easily accessed by the reader, without fumbling with numerous hard copies. By contrast, if hard copies are used, the reader must be able to hold his place in a document that references other documents while physically finding and turning to the referenced section(s) of the referenced documents.
However, with electronic documentation come challenges including secure access and version control. For example, in a court trial it is imperative that the court receive the final version of a brief, and that there is no risk of tampering with, or unauthorized editing of, the brief before it is delivered to the court. In addition, all parts of the brief should be included in the delivered electronic form in a way that enables the judge or clerk to quickly access referenced parts of the brief. Judges and other readers will no doubt appreciate electronic references that precisely access the referenced material, rather than references that access an arbitrary place in a referenced document. Furthermore, creators of briefs and other electronic documents need a way to quickly and efficiently generate electronic documents that have multiple parts with confidence that the electronic documents are secure, complete, and accurate.
It is with regard to the foregoing and other problems that embodiments of the invention have been made. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates in particular to cages for constant-velocity rotary ball joints, as are used for example in the automotive industry. These joints have a joint outer part and a joint inner part, in which a plurality of substantially longitudinally running ball races are provided. The balls are fitted between the joint outer part and the joint inner part for the purpose of torque transmission, the positioning of the balls being ensured by a cage arranged between the joint outer part and the joint inner part. The cage has a plurality of cage windows for the balls, so that their movement in the axial direction is restricted.
With regard to the various types of joint, the invention relates in particular to cages for the following joints:
Rzeppa joints, in which the direct control of the balls onto the angle-bisector plane is effected by meridionally running ball races with longitudinally offset center points of the races of the joint inner part and joint outer part.
Undercut-free UF joints, which follow substantially the same principle, the ball races are designed to be undercut-free as seen in the axial direction.
What are known as DO joints, in which spherical guide surfaces with axially offset centers of curvature on the inner and outer sides are provided on the cage, so that in the event of joint inclination, direct control of the cage and therefore indirect control of the balls onto the angle-bisector plane takes place. Joints of this type are designed with curved ball guideways as fixed joints and with ball guideways which run in a straight line as axially displaceable joints.
Finally, reference should also be made here by way of example to what are known as VL joints, which have races which are at least partially associated with one another in the joint outer part and joint inner part and do not run strictly in the longitudinal direction, but rather form an angle with one another and thereby effect direct control of the balls onto the angle-bisector plane and onto half the displacement path.
In all these known joints, the cages are permanently or at least from time to time in sliding contact with the surfaces of the inner and/or outer part of the joint located between the ball races. For reasons of wear, it is in this respect necessary for all the sliding surfaces on the joint outer part, the joint inner part and on the cage to be hardened.
With regard to the cage, there has hitherto been provision for hardening to be carried out in the region close to the surface, in order in particular to avoid wear phenomena caused by friction with the joint outer part and/or joint inner part. In particular in the automotive industry, it is at present being recognized that ever greater forces or torques need to be transmitted using these joints. This imposes particular demands in particular if the joint is not subject to purely axial stresses, but rather the force or torque is transmitted with an inclination angle. This is related in particular to the transmission of force from the balls to the cage. A ball is generally held in position by means of three contact points, namely one with the inner part, another one with the outer part and a third with the cage. As the inclination angle increases, the race forces acting on the ball increase, and these forces then have to be compensated for to a greater extent by means of the cage. This resultant cage force ultimately leads to torque limiting of the joint at relatively high inclination angles. On account of ever increasing market demands for increasing torques, this fact means that ever larger joints have been required. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to receptacle cover devices and trash can covers adapted for the support of objects and simultaneous work thereon.
It is often the case in many work environments that there is a lack of work surfaces and the trash can ends up with boxes or other items laying on top of the trash can so as to free up additional work surfaces. This action then prevents the use of the trash can for disposal of waste. For example, in an office copy room where there are many boxes of supplies and little counter space for work. Or, for example, in an auto mechanic""s garage there is often the need for a nearby waste receptacle and a convenient place for holding tools being used and small parts of the automobile that may have been removed during the process of maintenance of the automobile. In restaurants, there is a need to cut foods and conveniently place the finished food product in containers or on trays. Restaurants often lack adequate work surfaces for such food preparation. There have been a variety of cutting board devices and work tables for food preparation developed for use next to or in conjunction with a sink or trash receptacle with the finished food product placed in a bowl or on a sheet pan, while allowing disposal of waste in the sink or trash receptacle. However, these devices are not intended for use over a receptacle, such as a trash can, nor do they extend the usable work surfaces of the restaurant. There are also a variety of decorative trash can covers, but these devices do not provide additional work space while allowing unhampered access to the interior of the receptacle for waste disposal.
With the foregoing in mind, one aspect of the present invention relates to a receptacle cover that provides a raised work surface while making it possible to dispose of waste in the receptacle without disturbing objects placed on the device. A second aspect of the present invention is that it increases the usable workspace in a work environment. In general, the present invention is a table-like device with fixed or collapsible legs that are attached to the receptacle. The present invention includes a plurality of attachments, such as trays, cutting boards and containers. | {
"pile_set_name": "USPTO Backgrounds"
} |
One of the limiting factors in the continuing evolution toward smaller device semiconductor feature size and higher density has been the stringent requirements placed on photolithographic processes as line width and step heights have decreased. Various resist trimming method methods have been proposed in prior art processes to achieve more finely dimension patterns following a resist exposure and development process.
For example, several different process variables may contribute to unacceptable resist profiles. Typically a photoresist layer is applied to a semiconductor wafer surface, for example, by spin coating a resinous layer over the process surface followed by what is referred to as a ‘soft bake’ to impart structural stability to the photoresist layer. The photoresist layer is then aligned and exposed to activating light through a photomask after which the photoresist undergoes a post exposure baking (PEB) process to improve adhesion and to initiate catalyzed photoresist reactions in chemically amplified photoresists. For example, in many DUV photoresists, a photoacid generated during the exposure process is partially removed in the PEB process to remove a protecting group from the resin thereby rendering the exposed region of the photoresist soluble in a developer.
The temperature and time period of the PEB process is critical to CD control of developed resist profiles. Temperatures must typically be controlled to within about 0.1° C. to prevent CD variations due to undesirable photoresist chemical reactions.
In addition, the development process must be properly controlled to avoid additional factors adversely affecting resist profiles. For example, if the exposed resist region does not become fully soluble, resist profiles are compromised.
Various approaches have been proposed in the prior art for achieving acceptable pattern resolution in finely patterned resists, for example having a resist line width smaller than a wavelength of the exposing light source. Proposed methods have included dry etching or trimming the resist following development, a method which is increasingly limited due to difficulty in controlling the etching rate of resists to form a dimensioned pattern with the required critical dimensions.
In addition, the application of an additional overlayer of resist following development of an underlying resist has been proposed to further render soluble portions of the underlying resist to achieve a smaller underlying resist pattern. While this method has met with some success, the method requires the additional and time-consuming process steps of applying an additional layer of resist with associated baking and developing steps thereby increasing cost and reducing process wafer throughput. In addition, there is a relatively high incidence of defects due to uneven and over development.
There is therefore a need in the semiconductor device manufacturing art for improved resist patterning methods to allow smaller CD's to be achieved with reduced defects and with an improved process flow including increased process wafer throughput.
It is therefore an object of the invention to provide an improved resist patterning method to allow smaller CD's to be achieved with reduced detects and with an improved process flow including increased process wafer throughput, in addition to overcoming other shortcomings of the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is an increasing demand for expediting communication and information transfer in all aspects of modern life, including business, social, and private settings. Among such demands is the desire and the need to remotely participate in a distant environment without being physically present.
There are several apps and software systems currently available such as Google® Hangouts®, Apple® Facetime®, WhatsApp®, Viber®, and Skype® that allows a person to communicate and view another location in real-time with the use of devices such as smartphones that have wireless capabilities, built-in cameras and voice input and output facilities such as microphones, speakers and headphones.
Present real-time communication systems however do not allow the users the freedom to view in the direction they desire. Their view is instead dependent upon the direction where the other device is being pointed to by the other end user. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an interrupt controller for use in a microcomputer, and more specifically to an interrupt controller having an interrupt priority control function.
2. Description of Related Art
In general, an interrupt controller has been located between a central processing unit (CPU) and a plurality of peripheral input/output (I/O) devices, and in ordinary cases, has the following functions:
(1) It is to acknowledge an interrupt request from each of the peripheral devices and to request an interrupt processing to the CPU; PA1 (2) When a plurality of interrupt requests are concurrently generated from a plurality of peripheral devices, it is to select and acknowledge one interrupt request in accordance with the ranking of priority and to request a corresponding interrupt processing to the CPU; and PA1 (3) When the CPU is in the course of execution of an interrupt processing based on an interrupt request, if another interrupt request having a priority higher than that of the interrupt request corresponding to the interrupt processing under execution, it is to acknowledge the interrupt request having the high priority and to request a corresponding interrupt processing to the CPU. This function is called an "interrupt nesting function" based on the priority order control.
In the above mentioned interrupt function, an interrupt request which can be acknowledged in the course of execution of the interrupt processing of the CPU is limited to ones having a priority higher than that of the interrupt request corresponding to the interrupt processing under execution. Therefore, even if there is generated an interrupt request having the same priority as that of the interrupt request corresponding to the interrupt processing under execution, the late generated interrupt is not acknowledged, and therefore, is suspended in a not-yet-treated condition.
Recently, microcomputers have been used in various fields of application, and in some systems to be realized, it is desired to execute the interrupt nesting function for an interrupt request having the same priority as that of the interrupt request corresponding to the interrupt processing under execution. However, an interrupt controller having such a function has not yet been proposed. Therefore, this function has been realized in a software manner based on a program. | {
"pile_set_name": "USPTO Backgrounds"
} |
Contemporary databases are built around the notion of table as the main structural unit of the storage space, designed to store in an organized manner relatively simple data, like numbers, symbols, strings etc. The table has a set of rows and columns, intersection of which forms cells, being the smallest storage units for storage and retrieval of actual data.
When the need arises to store in such a database more complex data, internal structure of which cannot be ignored during database operations, the most popular approach is to spread the complex data components over several table columns specially designated for this purpose. When warranted by the complexity of the data, additional tables can be created as required for accommodating all the data components and relations between them. Various implementations of this idea differ by the way the tables are created, columns are designated and data are spread over them etc., but table still remains the foundation on which the databases are built upon.
Such databases have gained widespread popularity due to a number of advantages they offer. They are built on a solid mathematical foundation, they are powerful and quick on the response to the data request, their size may vary from tiny personal database to a gigantic database, easily serving the needs of a big enterprise, and they are reliable and relatively simple in implementation. A detailed review of the database design can be found, e.g. in a textbook by Deen, S. M. “Fundamentals of Data Base Systems”, The Macmillan Press Ltd., 1977, or in a textbook by Date, C. J. “An Introduction to Database Systems” Volume II, Addison-Wesley Publishing Company, 1985.
However, it is getting more and more evident that some of their features, presumably considered as advantages, in many cases turn out being shortcomings. For example, with ever increasing complexity of data to be stored in the database, fitting complex data into a table quickly becomes awkward and cumbersome to achieve. A table lacks mechanisms for storing complex data, because it was not designed for this purpose. Another shortcoming shows up when there is a need to store data of variable complexity in the database. Normally, when designing a database, users have to decide how many tables is necessary to create, what columns should be in each table, what types of data will be put into them, etc. Unfortunately, in many cases, exact structure of the table(s), e.g. number of columns in the table, cannot be determined at the database design stage it will be known only at run time, i.e. when the database is populated with actual data. For example, some columns of the table might be designated to store names of authors of an article in a scientific journal. The actual number of authors is not known in advance, so the required number of columns in the table cannot be determined until the data entry begins, which is evidently too late. The fact that the number of authors can be different for different articles complicates the situation even further. At some point, the actual number of authors might exceed the number of columns designated for this purpose. As a result, some data should be dropped, or the database has to be redesigned and re-populated again if the complete list of authors needs to be maintained in the database. The above-mentioned example is just one illustration of numerous situations caused by the need of fitting complex data into a simple table structure.
Clearly, there is a need in the industry for the development of alternative database design principles and architecture, which would overcome the above-mentioned and other similar shortcomings of current databases. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Apparatuses and methods consistent with the present general inventive concept relate to a host apparatus connected to an image forming apparatus and an information management method thereof, and more particularly, to a host apparatus and an information management method thereof which stores and manages device information and user information of an image forming apparatus by using an integrated application program integrally managing at least one application.
2. Description of the Related Art
An image forming apparatus forms an image on a print paper. The image forming apparatus may include a printer, a photocopier, a facsimile, a multi-function device which has at least two functions, etc.
Recently, demand for an image forming apparatus as an office automation device performing not only a document print function but also a scanning function and faxing function has increased. Accordingly, the image forming apparatus has extended its original functions to perform various functions with high performance.
To more efficiently manage an image forming apparatus connected in a network, a user (or administrator) uses a host apparatus such as a personal computer (PC) to set and manage devices, i.e., image forming apparatus.
Thus, various applications are installed in the host apparatus to use various functions of the image forming apparatus, enabling a user to use the functions of the image forming apparatus by executing the applications.
The host apparatus manages and stores information corresponding to the image forming apparatus (“device information”) and information corresponding to a user who uses the image forming apparatus (“user information”) for each application.
In case of sharing information which can be shared by a plurality of applications, a conventional host apparatus which stores information per application stores the sharing information in a predetermined area corresponding to an application. Then, the sharing information is copied and stored in another storage area by another application.
Then, the same sharing information is stored in several storage areas of each application. That is, more various the types of applications are, the more storage space is needed to store the same information. | {
"pile_set_name": "USPTO Backgrounds"
} |
Television cameras include large cameras (EFP cameras) mainly used in a studio and the like and small cameras (ENG cameras) mainly used portably for news gathering and the like. Such an EFP camera is used by mounting a large box television lens (EFP lens) thereon, and such an ENG camera is used by mounting a small television lens (ENG lens) thereon.
There are increasing cases of mounting an EFP lens on an ENG camera for use. In such a case, between the ENG camera and the EFP lens, an adaptor (system camera lens adaptor) is used to mechanically and electrically connect them (e.g., see PTL 1).
As a specification for an interface (connector) to electrically connect a television camera and a television lens, both an EFP camera and an EFP lens have a mount provided with a 36-pin connector. Between the EFP camera and the EFP lens, a signal is transmitted through the connectors.
Both an ENG camera and an ENG lens are provided with a 12-pin connector, and the connectors are connected through a cable. Between the ENG camera and the EFP lens as well, a signal is transmitted through the connectors.
In such interface specifications, an EFP lens has been mounted on an ENG camera via a system camera lens adaptor as follows. Conventionally, signal transmission between the ENG camera and the EFP lens has been limited only to parallel communication. In addition, in the system camera lens adaptor, a pin used for parallel communication of a connector of the ENG camera is connected to a pin of a connector of the EFP lens corresponding to the pin used for parallel communication. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinct cultivar of Torenia plant, botanically known as Torenia sp. of the Scrophulariaceae family, hereinafter referred to by the cultivar name ‘Dancatpur’.
The new cultivar originated from a cross made in a controlled breeding program in Moshav Mishmar Hashiva, Israel. The female parent is the Torenia cultivar ‘Dantopkmn’ (patented, U.S. Plant Pat. No. 11,512). The male parent is an unnamed, unpatented bush type Torenia cultivar. ‘Dancatpur’ was discovered and selected by the inventor, Gabriel Danziger, as a single flowering plant within the progeny of the stated cross in a controlled environment in Moshav Mishmar Hashiva, Israel.
Asexual reproduction of the new cultivar by soft tip cuttings was first performed in May, 2002 in Moshav Mishmar Hashiva, Israel, and has demonstrated that the combination of characteristics as herein disclosed for the new cultivar are firmly fixed and retained through successive generations of asexual reproduction. The new cultivar reproduces true to type. | {
"pile_set_name": "USPTO Backgrounds"
} |
Injection molding is a molding technique that can be used for molding small to large objects. A mold can be generated in dedicated injection molding machines comprising a rotating screw in a barrel. The mold can be injected continuously or with a mold buffer by means of pressure.
If the injectable object is large and complicated in shape, the pressure may need to be very high in order to completely fill the cavity. Several hot runners can be used to overcome the high pressure level and to generate an even temperature profile while injecting polyethylene, in order to minimize the warpage of the injected objects.
A material with a desired balance of properties such as stress cracking resistance (FNCT) and impact resistance (Charpy) can be beneficial for injection molding. These properties should be balanced to prevent high warpage of the injection molded article, and may provide a lower injection molding pressure which can be beneficial in the production of large, hollow objects and allowing melt-processing at high values of shear rate without undergoing pressure oscillations and flow-instabilities. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a golf club head. More specifically, the present invention relates to a weight for a golf club head that can be adjusted along a continuous channel.
2. Description of the Related Art
The ability to adjust center of gravity location and weight in the head of driving clubs is useful for controlling performance of the golf club. The prior art includes several different solutions for adjustable weighting, but these solutions do not optimize weight adjustment. There is a need for a weighting mechanism that allows for simple and flexible center of gravity (CG) and moment of inertia (MOI) adjustability. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a position measuring instrument and, more particularly, to a position measuring instrument having two sequences of different reference marks extending in parallel to an incremental division track.
Measuring instruments of this kind are used particularly in machine tools to measure the relative location of a tool. They are also used in coordinate measuring machines to ascertain the location and size of test specimens.
The electrical pulses generated at the reference marks can be used for reproducing reference positions in the counter, for approaching a certain position at the beginning of a measurement or after interruptions, for monitoring and correcting the counter state, and for acting upon a control unit on the output side.
For ascertaining the reference positions in incremental measuring instruments, two fundamental principles are known. By the first principle, a row of identical reference marks is applied at fixed intervals parallel to the incremental division. A switch means is assigned to each reference mark that is intended to become operative in the measuring operation. The electrical outputs of the switch means and of the scanner element for the reference marks are connected to an evaluation unit, which outputs a control pulse to the counter only whenever an electrical signal is present simultaneously both at the scanner element of the reference mark and at the switch means. The result of the control pulse is that a predetermined counter value is set in the counter. A measuring instrument of this kind is disclosed in U.S. Pat. Nos. 4,101,764 and 4,363,964 which are hereby specifically incorporated herein.
By the second principle, at least one reference mark track with identical reference marks is disposed, again parallel to the incremental division. Each reference mark is spaced apart from another reference mark by a special interval that characterizes the reference mark. These different intervals between reference marks are determined by scanning the incremental division by means of counting the measuring steps (increments). One such measuring instrument is known from U.S. Pat. No. 3,982,106 which is hereby specifically incorporated herein. In U.S. Pat. No. 4,793,067 which is hereby specifically incorporated herein two successive intervals between reference marks are used to determine the absolute value of a reference mark.
In German Patent Disclosure DE 42 43 778 A1, a position measuring instrument is again described in which an incremental division is provided to form counting signals, and a further track is provided to determine the absolute position. This further track, in an exemplary embodiment, comprises a sequence of identical reference marks at different intervals, so that the various reference mark positions can be distinguished from one another by the characteristic spacing between two successive reference marks. In another exemplary embodiment, the further track comprises markings, which form a sequential code for generating position-determining code words.
The attempt has already been made to create measuring instruments in which both principles are combined in a single position measuring instrument. One of these measuring instruments is described in U.S. Pat. No. 4,999,623 which is hereby specifically incorporated herein. Parallel to the incremental track, there is a reference mark track in which only identical reference marks are disposed, at successive different intervals. By counting out the increments from one reference mark to the next, the absolute position of these marks is determined. A further track has a row of markings that are disposed at equal intervals. To make a selection of reference marks, these markings are assigned to certain reference marks. From these markings in turn, one can be selected, as a result of which only the reference mark assigned to it is made to become operative. A mode selector toggle switch is also provided, with which the evaluation of all the reference marks by the principle of interval coding, or only the evaluation of the marked reference marks, is enabled.
The disadvantage of this position measuring instrument is that to select reference marks spaced apart by equal intervals, one additional track is needed, as well as a third track for further selection of one of the markings. Moreover, the markings must be assigned precisely to the reference marks, which requires expensive adjustment work. Another disadvantage is that when the lengths to be measured are great, successive reference marks must have a large interval between them, if different intervals over the entire measurement length are to be attained. The shortest possible interval between markings in the second track corresponds, however, to the greatest interval between reference marks, so that the reference marks selected by means of the markings have an overly long interval for actual practice if the second measurement principle is to be employed.
To overcome this last disadvantage, German Patent Disclosure DE 42 44 178 A1 provides at least two tracks that have reference marks. This has the disadvantage that a relatively large amount of space must be available next to the incremental division, and that the scanning unit is very wide.
An object of the present invention is to reduce production and storage costs and to assure broad utility by making the position measuring instrument uniform, and at the same time to attain a low structural height of the position measuring instrument.
Advantages of the invention are that the position measuring instrument can be adapted to the requirements of the user and nevertheless have a low structural height. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to instruments for measuring fluid properties and, particularly, to a piezoelectric transducer for measuring properties of borehole fluids.
2. Description of the Related Art
In underground drilling applications, such as oil and gas exploration and recovery, a borehole is drilled into the earth. The drilling process can include taking measurements of fluids in the borehole while the borehole is being drilled (logging while drilling (LWD)). In some cases, a wireline is used to lower a measurement instrument into the borehole after a stage of the drilling process has been completed to measure properties of fluids in the borehole.
Measured fluid properties can include, for example, the density and viscosity of the fluid. The properties can be measured by placing a mechanical oscillator in the flow path of the fluid. Fluid density is measured primarily by measuring changes in the vibrational frequency of the oscillator while viscosity is determined primarily by monitoring the decay time of the resonance.
Other properties can be measured either directly or indirectly by utilizing speed of sound measurements taken in the fluid. These measurements are typically referred to as “sound speed” measurements and can be used, for example, to determine a gas-to-oil ratio (GOR) of the fluid.
Presently, there exist devices that can measure two of three of sound speed, density and viscosity. In particular, instruments exist that can measure density and viscosity or that can measure density and sound speed. Instruments that can be used to measure all three do not. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a solid-state imaging apparatus having a frame transfer or frame interline type solid-state imaging device.
FIG. 1 is a block diagram showing an imaging apparatus that has a frame transfer type CCD 1 (solid-state imaging device). FIG. 2 is a timing chart illustrating the operation of the imaging apparatus.
The CCD 1 includes a light receiving portion 1a, a storing portion 1b, a horizontal transfer portion 1c, and an output portion 1d. The light receiving portion 1a has a plurality of shift registers arranged parallel to one another in the vertical direction. Each bit of the shift registers forms a light receiving pixel. Each light receiving pixel stores an information charge generated in correspondence with a sensed object. The storing portion 1b has a plurality of shift registers arranged continuously from the shift registers of the light receiving portion 1a. Further, the storing portion 1b temporarily stores information charges that correspond to a single image output by the light receiving portion 1a. The number of bits in each shift register is determined in accordance with the number of bits in the shift registers of the light receiving portion 1a. The horizontal transfer portion 1c has a single shift register, each bit of which is connected to the output of an associated storing portion 1b shift register. Further, the horizontal transfer portion 1c receives the information charges, which correspond to a single image, line by line and sequentially transfers each line of information charges. The output portion 1d has an electrically independent capacitor and an amplifier for extracting fluctuations in the potential of the capacitor. The capacitor receives the information charge from the horizontal transfer portion 1c in units of single pixels. The output portion 1d converts the information charge into a voltage value and generates an image signal Y.
A vertical drive circuit 2, which is operated in accordance with a vertical timing signal VD, generates a vertical transfer clock φv from a reference clock MCK, which has a predetermined cycle, and sends the vertical transfer clock φv to the light receiving portion 1a and the storing portion 1b. When the light receiving portion 1a receives the vertical transfer clock φv, the information charges stored in the light receiving pixels are immediately transferred to the storing portion 1b in units of single images. A horizontal drive circuit 3, which is operated in accordance with a horizontal timing signal HD, generates a storage transfer clock φs from the reference clock MCK. The horizontal drive circuit 3 simultaneously generates a horizontal transfer clock φh. The storage transfer clock φs is provided to the storing portion 1b together with the vertical transfer clock φv. When the storing portion 1b receives the storage transfer clock φs, the information charges stored in the storing portion 1b are transferred to the horizontal transfer portion 1c line by line. The horizontal transfer clock φh is provided to the horizontal transfer portion 1c. When the horizontal transfer portion 1c receives the horizontal transfer clock φh, the information charges transferred to the horizontal transfer portion 1c from the storing portion 1b are sequentially, serially transferred to the output portion 1d.
A timing control circuit 4 includes a horizontal counter and a vertical counter. The horizontal counter divides the reference clock MCK to generate the horizontal timing signal HD. The vertical counter divides this horizontal timing signal HD to generate the vertical timing signal VD. For example, in accordance with the NTSC standards, the timing control circuit 4 divides the reference clock MCK, the frequency of which is 14.32 MHz, by 910 to generate the horizontal timing signal HD and this horizontal timing signal HD by 252.5 to generate the vertical timing signal VD. The horizontal and vertical timing signals HD, VD respectively represent various timing signals related with horizontal scan periods and vertical scan periods.
The CCD 1 repeats imaging operations in cycles corresponding to the vertical timing signal VD and outputs the image signal Y in units of single lines in cycles corresponding to the horizontal timing signal HD during each vertical scan period.
The exposure time of the CCD 1, or the time period during which an information charge is stored in each light receiving pixel, coincides with the vertical scan cycle when an electronic shutter is not operated. Further, the exposure time may normally be varied by discharging the information charges during the vertical scan period, that is, by operating an electronic shutter. If the imaging apparatus does not have television system restrictions, the frequency of the reference clock MCK may be changed to vary the exposure time.
If the sensed object has a low luminance or if the CCD 1 has a low light receiving sensitivity, the frequency of the reference clock MCK is decreased to lengthen the vertical scan cycle in order to obtain sufficient exposure time. However, when the frequency of the reference clock MCK is decreased, the frequency of the vertical transfer clock φv, which is generated from the reference clock MCK, also decreases. This increases the time required for frame transfer from the light receiving portion 1a to the storing portion 1b and increases smear. | {
"pile_set_name": "USPTO Backgrounds"
} |
(a) Field of the Invention
This invention relates to a containment system for collecting and holding in place a leaking hazardous material and more particularly, but not by way of limitation, to a hazardous spill ground containment system. The system used for placing on a ground surface and under and around equipment, tanks and storage containers used during and after an oil and gas drilling operation. Also, the system can be used in other industries for similar applications.
(b) Discussion of Prior Art
Heretofore, little thought has been given to leakage of chemicals and toxic materials in and around an oil and gas drilling operation, tank farms and the like. But, with today's environmental concerns related to the possibility of a hazardous material contaminating a ground surface, leaking into nearby ponds, streams and lakes, migrating into an underground aquifer, killing wildlife and damaging foliage, new environmental laws and regulations, passed by the EPA, now require the oil and gas industry to include some type of ground containment system around a drilling site to collect spillage before it contacts the ground surface or face a large fine and/or stopping the operation.
Currently, ground containment barriers are built with an earth berm or straw bales and the like and disposed around drilling equipment and storage tanks with a heavy tarp spread across the ground surface with the sides of the tarp received over the top of the berm or the straw bales. This type of structure is obviously not portable, reusable or particularly reliable. Also, this type of structure doesn't hold the tarp securely in place on the ground surface.
The subject invention provides for a high strength, light weight metal, portable, variable size, ground containment system that can be quickly assembled for holding a heavy liner securely on the ground surface. The system can then be disassembled for reuse when the drilling operation is completed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to catalysts, a method of producing the catalysts and a process using the catalysts. In another aspect the invention relates to a particularly effective ethylene polymerization catalyst and process.
In the production of polyolefins, such as for example polyethylene, polypropylene, ethylene-butene copolymers etc., an important aspect of the various processes and catalysts used to produce such polymers is the productivity. By productivity is meant the amount or yield of solid polymer that is obtained by employing a given quantity of catalyst. If the productivity is high enough then the amount of catalyst residues contained in the polymer is low enough that the presence of the catalyst residues does not significantly affect the properties of the polymer and the polymer does not require additional processing to remove the catalyst residues. As those skilled in the art are aware, removal of catalyst residues from polymer is an expensive process and it is very desirable to employ a catalyst which provides sufficient productivity so that catalyst residue removal is not necessary.
In addition to productivity of a catalyst, another important aspect of a process and a catalyst is the properties of the polymer particles. It is desirable to produce polymer particles which are characterized by strength, uniformity of size, and relatively low fines. Although polymer fluff having relatively high percentages of fines can be handled with plant modifications, a polymer of high productivity and low fines is highly desirable.
Accordingly, an object of the invention is a catalyst.
Another object of the invention is a polymerization process for using the catalyst capable of providing excellent polymer productivities as compared to prior art catalysts.
Another object of the invention is a catalyst and a polymerization process in which the polymer produced contains catalyst residues in an amount so that catalyst residue removal is unnecessary.
Another object is a catalyst characterized by high productivity and low fines.
Another object is a polymerization process for using the catalyst capable of providing improved polymer productivities with low fines. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention resides in venting arrangement for a crankcase of an internal combustion engine including a centrifugal oil separator with a housing having an inlet passage for the admission of an oil-air mixture and an outlet opening for the discharge of purified air.
Such a venting arrangement is known for example from DE 196 07 919 A1, wherein the oil particles in the oil-air mixture of an engine crankshaft are removed from the mixture and are returned to the crankcase. The venting arrangement includes a centrifugal oil separator with a rotating housing which has several radial inlet passages which lead to a central axially extending exit channel. The oil air mixture is conducted radially from the outside to the inside by way of the inlet passages in which baffles are arranged. Because o:f the centrifugal forces generated by the rotation of the housing, the oil particles of the oil-air mixture are deposited on the baffles and move radially outwardly against the in-flowing oil-air mixture. The air from which the oil particles have been removed exits by way of a discharge conduit and is supplied to the air intake duct of the engine.
This venting arrangement has the disadvantage that, on one hand, the oil air mixture is conducted from the outside radially inwardly and, on the other hand, the oil particles deposited are directed again outwardly against the inward flow of the air-oil mixture so that two opposed flows are formed in the inlet channel. This results in a limited efficiency of the venting arrangement with regard to flow volume as well as the separation effectiveness. The opposite flows inhibit each other and cause re-entrainment of oil particles in the air. Also, an increase in the speed of the centrifugal separator will not lead to an improved efficiency since, with increasing rotational speed, the outwardly flowing oil increasingly carries along the inwardly directed air-oil mixture flow.
It is further disadvantageous that a certain minimum excess pressure must be established in the housing interior to provide for the inward flow of the oil-air mixture. Also, this inwardly directed flow detrimentally affects the purification degree since oil particles which had been deposited but are again thrown outwardly by the centrifugal forces are re-entrained in the oil-air flow and are again carried into the interior of the housing.
It is the object of the present invention to improve the efficiency of a venting arrangement including a centrifugal oil separator by simple means. | {
"pile_set_name": "USPTO Backgrounds"
} |
Unfortunately, each year there are many children deaths related to improper buckling or being left unattended in a vehicle. Children may go quiet after falling asleep or day care centers may lose track of a child in a vehicle while tending to other children. A vehicle operator may subsequently forget a child was left unattended in a vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
2.1. Tumor Cell Antigens and Anti-tumor Antibodies
Tumor cells express certain antigens which are absent from, or present in small amounts on, their normal cellular counterparts. Most of these are differentiation antigens, shared by the tumor and certain embryonic cells. Some of the antigens that appear with sufficient selectivity in tumors may serve as possible targets for therapeutic agents. This has been recently reviewed for malignant melanoma, which is one of the human tumors most studied in this respect (Hellstrom and Hellstrom, in Accomplishments in Cancer Research-194 Prize Year, General Motors Cancer Research Foundation, J. G. Fortner & J. E. Rhoads, eds., J. B. Lippincott Company, Philadelphia 1985, p 216-240, as well as for other tumors (Burchell and Taylor-Papadimitriou, in R. W. Baldwin and V. S. Byers, eds., Monoclonal Antibodies for Tumor Detection and Drug Targeting, Academic Press, 1985, pp. 1-15; Kemshead, ibid, pp. 281-302).
Many antibodies have been made to cell surface antigens that are expressed in greater quantities by human tumors than by normal tissues. It has also been well established that antibodies to cell surface antigens can be cytotoxic to tumor cells in the presence of complement (Hellstrom et al., 1962, Progr. Allergy 9: 158-245), and that some antibodies can mediate antibody-dependent cellular cytotoxicity (Perlmann et al., 1969, Adv. Immunol. 11: 117-193; MacLennan et al., 1969, Immunol. 17: 897-910; Skurzak et al., 1972, J. Exp. Med. 135: 997-1002; Pollack et al., 1972, Int. J. Cancer, 9: 316-323). In the first case, an appropriate source of complement (generally rabbit or guinea pig), and in the latter case a source of effector cells (generally of mouse origin) is needed.
The evidence that antibodies to tumor-associated antigens can kill human tumor cells in the presence of human effector cells is more recent (Hellstrom et al., 1981, Int. J. Cancer 27: 281-285; as is the evidence that antibodies to such antigens can kill tumor cells in the presence of human serum as a source of complement (Hellstrom et al., 1985, Proc. Natl. Acad. Sci. 82: 1499-1502; Hellstrom et al., 1985, Monoclonal Antibodies and Cancer Therapy, USCLA Symposia on Molecular and Cellular Biology, Vol. 27, pp.149-164 Alan R. Liss, Inc., N.Y.). | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates generally to a hockey puck and, more particularly, to a street or inline hockey puck.
Sports are played on many surfaces. As an example, the playing surface for ice hockey is ice. Other types of hockey are played on other playing surfaces. Inline or street hockey, in contrast to ice hockey, is played on playing surfaces other than ice, such as asphalt, plastic, or concrete. The athletes may move across those playing surfaces during a game using inline roller skates. Inline hockey allows athletes to practices hockey skills when ice is not available. Athletes often desire to mimic ice hockey movements when playing inline hockey.
Pucks used for ice hockey are typically rubber. A relatively high sliding friction between rubber pucks and inline hockey playing surfaces prevents rubber pucks from frequent use in street hockey. Simply, a rubber puck does not slide effectively on street surfaces.
Accordingly, specific pucks for street hockey have been developed. Existing street hockey pucks can be difficult to handle and may undesirably move in a way that differs from a rubber puck movement in ice hockey. Undesirable movements can include the inline hockey puck bouncing. | {
"pile_set_name": "USPTO Backgrounds"
} |
At present, most of the drum washing machines on sale in the market have only one washing drum. With the strengthening of people's health awareness, more and more users need to separate the different types of clothing to wash or to wash a small amount of clothing in a timely manner.
With the improvement of people's quality of life, people's health awareness has gradually increased, especially in the family clothing washing, more and more people wash clothes separately. If using the existing washing machine to take multiple laundry, the laundry time is hard to meet the requirements of the users. If buying two or more washing machines to wash separately at the same time, it will not only bring a great waste of energy and water resources but also occupy a large space, which is not suitable for home use. Therefore, the use of multi-drum washing machine will meet the needs above and solve the problem of energy, water and space waste.
A patent No. CN201120326451.6 discloses a washing machine, at least comprising two washing drums. The washing drums are communicated with each other through a connecting pipe, a control valve and a pump are provided on the connecting pipe. The use of the control valve and the pump achieves the mutual use of washing water in the two washing drums. However, it doesn't disclose the control method of water mutual use. In practical application, water in the two washing drums sometimes can be mutual used but sometimes cannot used. If whether the water can be reused is only selected manually, users can only constantly observe the washing machine and operate when they are at home. There are limitations of operational inconvenience and inaccurate flaws of determination. The present disclosure develops an automatic and intelligent water reuse control method of a multi-drum washing machine.
In the view of foregoing, the present disclosure is proposed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a configuration of thin-film transistors (TFTs) formed on a flexible substrate (i.e., having mechanical flexibility) such as a resinous substrate which can be made of engineering plastics. The invention also relates to a method of fabricating such thin-film transistors. Furthermore, the invention relates to an active matrix liquid crystal display fabricated, using these thin-film transistors.
2. Prior Art
Thin-film transistors formed on glass substrates or on quartz substrates are known. Thin-film transistors formed on glass substrates are chiefly used in active matrix liquid crystal displays. Since active matrix liquid crystal displays can display images with high response and with high information content, it is expected that they can supplant simple matrix liquid crystal displays.
In an active matrix liquid crystal display, one or more thin-film transistors are disposed as a switching element at each pixel. Electric charge going in and out of the pixel electrode is controlled by this thin-film transistor. The substrates are made of glass or quartz, because it is necessary that visible light pass through the liquid crystal display.
Liquid crystal displays are display means which are expected to find quite extensive application. For example, they are expected to be used as display means for card-type computers, portable computers, and portable electronic devices for various telecommunication appliances. As more sophisticated information is treated, more sophisticated information is required to be displayed on the display means used for these portable electronic devices. For example, there is a demand for functions of displaying higher information content and moving pictures as well as numerals and symbols.
Where a liquid crystal display is required to have a function of displaying higher information content and moving pictures, it is necessary to utilize an active matrix liquid crystal display. However, where substrates made of glass or quartz are used, various problems take place: (1) limitations are imposed on thinning of the liquid crystal display itself; (2) the weight is increased; (3) if the thickness is reduced in an attempt to reduce the weight, the substrate breaks; and (4) the substrate lacks flexibility.
Especially, card-type electronic devices are required to be so flexible that they are not damaged if slight stress is exerted on them when they are treated. Therefore, liquid crystal displays incorporated in these electronic devices are similarly required to be flexible.
The invention disclosed herein provides an active matrix liquid crystal display having flexibility. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a growing need for supplemental respiratory support for patients in the hospital and home environment. Positive pressure ventilation, in which a supply of pressurized air is delivered to the patient's airway, is often used. Positive pressure ventilation has been used to treat respiratory failure, respiratory insufficiency, and sleep apnea. There are a variety of patient interfaces that can be used to provide positive pressure ventilation including masks and nasal cannula. Mask interfaces are available for home and hospital use with many designs including nasal, oronasal (covering the nose and mouth), and full face masks.
Mask assemblies comprise a shell of rigid or pliable material (e.g., plastic) with a face-contacting cushion (e.g., a gel-filled bladder) that is held in place with headgear (e.g., straps). The shell provides the structure for the headgear connectors and elbow assembly. The cushion provides a seal against the patient's face creating a cavity around the airway through which positive pressure ventilation can be applied. Headgear connectors can be built into the mask or snapped onto the shell. Most headgear connectors center on the elbow assembly.
A common problem with existing mask technologies is the tendency for a broken or ineffective seal. Mechanical forces exerted on the mask when a patient changes position are often enough to break the seal. As the patient changes position, the headgear tends to slip between the patient's head and the bed, exerting a mechanical force on the mask in the opposite direction of the movement. This force tends to pull the mask, causing mask slippage. That slippage is often enough to break the seal. The noise and discomfort, from the broken seal, is usually enough to wake or stir the patient. The patient or attendant then needs to refasten the mask to obtain an effective seal.
If a mask is used for the administration of Continuous Positive Airway Pressure (“CPAP”) treatment for the condition of obstructive sleep apnea, such a leak can drop the pressure, and amount of breathable air, provided to the mask wearer. Thus, treatment becomes ineffective. If the patient does not wake as a result of the leak, the patient can go potentially without treatment for a long period of time. Alternatively, if the mask is used for the treatment of respiratory insufficiency in a hospital environment, the leak will induce alarms from the ventilation device that will alert hospital staff. While there is minimal risk for the patient to be without treatment for a long period of time, the patient will still have disrupted sleep.
There have been numerous attempts, by different manufacturers, to design a mask that will maintain equal pressure on both sides of the mask when the head is rotated from side to side. The earliest attempts resulted in masks that were uncomfortable to wear, reducing the rate of patient compliance. In recent years, manufacturers have focused on comfort when designing masks that can maintain an effective seal during movement. Manufacturers have tried to combat the leak issue by increasing the size of the cushion, changing its shape, or using material (e.g., a gelatinous material inside a thin bladder) that easily conforms to the patient's face. An increased cushion size, for example, can increase comfort and flexibility of the mask allowing it to maintain an effective seal by conforming to the patient's movements. Other manufactures have tried to alter the structure of the mask shell or the materials used to make the headgear connector.
One example of a mask that relies on a larger cushion size is the ResMed Mirage™ SoftGel nasal mask as described in U.S. patent application Ser. No. 12/736,980, Publication No. 2011/0162654, filed by Carroll et al. The Mirage™ mask design includes a gel cushion with two layers. The internal layer of the gel is softer than the outer layer. The outer layer provides structure for the cushion and comprises the face contacting portion. There is a plastic frame attached to the cushion that snaps into the mask shell. The frame fits into grooves on the mask contacting portion of the gel cushion. The cushion provides flexibility, allowing the Mirage™ mask to move somewhat with the patient. Its frame, however, does not hold the cushion securely, especially when a wearer tosses and turns while sleeping. During such movement, the cushion can give way when the patient moves creating a leak between the frame and cushion. This design also contributes to excessive mask weight, which can lead to reduced patient comfort.
Another invention attempts to reduce leaks by adding flexibility within the mask structure. Respironics' TrueBlue™ nasal mask combines a few of the manufacturer's technologies. The mask design relies on an accordion shaped tube (a.k.a. “freeform spring”) between the mask shell and elbow to provide flexibility within the mask structure. It has a “3-point” headgear connector anchored to the mask, with an elbow in the center. There are two points with slots to receive the headgear straps on either side of the elbow. There is one point at the top of the connector attached to a forehead pad with two slots for headgear straps. The headgear connector is rigid, but the mask shell is designed to flex easily, alleviating some tension between the headgear connector and headgear straps. The headgear attaches to talons that snap into the headgear connector, which allows the headgear to have added flexibility. While the freeform spring design may withstand mechanical forces from movement during sleep, the elongated mask shape may cause the patient to have to breathe out with more force to expel unwanted carbon dioxide. A buildup of carbon dioxide in the TrueBlue™ mask could be harmful to the patient.
Another invention attempts to reduce leaks by using a flexible headgear connector (a.k.a. “glider strap”). Fisher & Paykel's Flexfit™ 432 full face mask incorporates a wire headgear connector that snaps in to the front of the mask. The glider strap slides from side to side, providing freedom of movement while maintaining a seal. The sliding movement allows the headgear connector to withstand the mechanical forces from movement when the head is rotated side to side. One issue with the Flexfit™ 432 design is the ease with which the headgear connector can be dislodged from the mask. Once the headgear connector becomes dislodged, it is difficult to reattach.
Accordingly, it is a primary object of the present invention to a headgear connector for CPAP masks that can articulate three dimensionally (i.e., in the X-Y-Z planes) with the force incurred during a patient's movement, thus maintaining an effective seal.
It is another general object to provide a headgear connector design suitable for different types of respiratory masks.
It is another general object to provide a headgear connector, commensurate with the above-listed objects, which is safe and durable to use. | {
"pile_set_name": "USPTO Backgrounds"
} |
With the introduction of compact disks, digital wireless telephone networks, and audio delivery over the Internet, digital audio has become commonplace. Engineers use a variety of techniques to process digital audio efficiently while still maintaining the quality of the digital audio. To understand these techniques, it helps to understand how audio information is represented in a computer and how humans perceive audio.
I. Representation of Audio Information in a Computer
A computer processes audio information as a series of numbers representing the audio information. For example, a single number can represent an audio sample, which is an amplitude value (i.e., loudness) at a particular time. Several factors affect the quality of the audio information, including sample depth, sampling rate, and channel mode.
Sample depth (or precision) indicates the range of numbers used to represent a sample. The more values possible for the sample, the higher the quality because the number can capture more subtle variations in amplitude. For example, an 8-bit sample has 256 possible values, while a 16-bit sample has 65,536 possible values.
The sampling rate (usually measured as the number of samples per second) also affects quality. The higher the sampling rate, the higher the quality because more frequencies of sound can be represented. Some common sampling rates are 8,000, 11,025, 22,050, 32,000, 44,100, 48,000, and 96,000 samples/second.
Mono and stereo are two common channel modes for audio. In mono mode, audio information is present in one channel. In stereo mode, audio information is present in two channels usually labeled the left and right channels. Other modes with more channels, such as 5-channel surround sound, are also possible. Table 1 shows several formats of audio with different quality levels, along with corresponding raw bitrate costs.
TABLE 1Bitrates for different quality audio informationSampleSampling RateRaw BitrateDepth(samples/(bits/Quality(bits/sample)second)Modesecond)Internet telephony88,000mono64,000Telephone811,025mono88,200CD audio1644,100stereo1,411,200high quality audio1648,000stereo1,536,000
As Table 1 shows, the cost of high quality audio information such as CD audio is high bitrate. High quality audio information consumes large amounts of computer storage and transmission capacity.
Compression (also called encoding or coding) decreases the cost of storing and transmitting audio information by converting the information into a lower bitrate form. Compression can be lossless (in which quality does not suffer) or lossy (in which quality suffers). Decompression (also called decoding) extracts a reconstructed version of the original information from the compressed form.
Quantization is a conventional lossy compression technique. There are many different kinds of quantization including uniform and non-uniform quantization, scalar and vector quantization, and adaptive and non-adaptive quantization. Quantization maps ranges of input values to single values. For example, with uniform, scalar quantization by a factor of 3.0, a sample with a value anywhere between −1.5 and 1.499 is mapped to 0, a sample with a value anywhere between 1.5 and 4.499 is mapped to 1, etc. To reconstruct the sample, the quantized value is multiplied by the quantization factor, but the reconstruction is imprecise. Continuing the example started above, the quantized value 1 reconstructs to 1×3=3; it is impossible to determine where the original sample value was in the range 1.5 to 4.499. Quantization causes a loss in fidelity of the reconstructed value compared to the original value. Quantization can dramatically improves the effectiveness of subsequent lossless compression, however, thereby reducing bitrate.
An audio encoder can use various techniques to provide the best possible quality for a given bitrate, including transform coding, rate control, and modeling human perception of audio. As a result of these techniques, an audio signal can be more heavily quantized at selected frequencies or times to decrease bitrate, yet the increased quantization will not significantly degrade perceived quality for a listener.
Transform coding techniques convert data into a form that makes it easier to separate perceptually important information from perceptually unimportant information. The less important information can then be quantized heavily, while the more important information is preserved, so as to provide the best perceived quality for a given bitrate. Transform coding techniques typically convert data into the frequency (or spectral) domain. For example, a transform coder converts a time series of audio samples into frequency coefficients. Transform coding techniques include Discrete Cosine Transform [“DCT”], Modulated Lapped Transform [“MLT”], and Fast Fourier Transform [“FFT”]. In practice, the input to a transform coder is partitioned into blocks, and each block is transform coded. Blocks may have varying or fixed sizes, and may or may not overlap with an adjacent block. For more information about transform coding and MLT in particular, see Gibson et al., Digital Compression for Multimedia, “Chapter 7: Frequency Domain Coding,” Morgan Kaufman Publishers, Inc., pp. 227-262 (1998); U.S. Pat. No. 6,115,689 to Malvar; H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Norwood, Mass., 1992; or Seymour Schlein, “The Modulated Lapped Transform, Its Time-Varying Forms, and Its Application to Audio Coding Standards,” IEEE Transactions on Speech and Audio Processing, Vol. 5, No. 4, pp. 359-66, July 1997.
With rate control, an encoder adjusts quantization to regulate bitrate. For audio information at a constant quality, complex information typically has a higher bitrate (is less compressible) than simple information. So, if the complexity of audio information changes in a signal, the bitrate may change. In addition, changes in transmission capacity (such as those due to Internet traffic) affect available bitrate in some applications. The encoder can decrease bitrate by increasing quantization, and vice versa. Because the relation between degree of quantization and bitrate is complex and hard to predict in advance, the encoder can try different degrees of quantization to get the best quality possible for some bitrate, which is an example of a quantization loop.
II. Human Perception of Audio Information
In addition to the factors that determine objective audio quality, perceived audio quality also depends on how the human body processes audio information. For this reason, audio processing tools often process audio information according to an auditory model of human perception.
Typically, an auditory model considers the range of human hearing and critical bands. Humans can hear sounds ranging from roughly 20 Hz to 20 kHz, and are most sensitive to sounds in the 2-4 kHz range. The human nervous system integrates sub-ranges of frequencies. For this reason, an auditory model may organize and process audio information by critical bands. For example, one critical band scale groups frequencies into 24 critical bands with upper cut-off frequencies (in Hz) at 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, and 15500. Different auditory models use a different number of critical bands (e.g., 25, 32, 55, or 109) and/or different cut-off frequencies for the critical bands. Bark bands are a well-known example of critical bands.
Aside from range and critical bands, interactions between audio signals can dramatically affect perception. An audio signal that is clearly audible if presented alone can be completely inaudible in the presence of another audio signal, called the masker or the masking signal. The human ear is relatively insensitive to distortion or other loss in fidelity (i.e., noise) in the masked signal, so the masked signal can include more distortion without degrading perceived audio quality. Table 2 lists various factors and how the factors relate to perception of an audio signal.
TABLE 2Various factors that relate to perception of audioFactorRelation to Perception of an Audio Signalouter and Generally, the outer and middle ear attenuate higher middlefrequency information and pass middle frequency ear transferinformation. Noise is less audible in higher frequencies than middle frequencies.noise in theNoise present in the auditory nerve, together with noise auditory nervefrom the flow of blood, increases for low frequency information. Noise is less audible in lower frequencies than middle frequencies.perceptualDepending on the frequency of the audio signal, hair cells frequency at different positions in the inner ear react, which affects scalesthe pitch that a human perceives. Critical bands relate frequency to pitch.excitationHair cells typically respond several milliseconds after the onset of the audio signal at a frequency. After exposure, hair cells and neural processes need time to recover full sensitivity. Moreover, loud signals are processed faster than quiet signals. Noise can be masked when the ear will not sense it.detectionHumans are better at detecting changes in loudness for quieter signals than louder signals. Noise can be masked in louder signals.simultaneousFor a masker and maskee present at the same time, the maskingmaskee is masked at the frequency of the masker but also at frequencies above and below the masker. The amount of masking depends on the masker and maskee structures and the masker frequency.temporalThe masker has a masking effect before and after the maskingmasker itself. Generally, forward masking is more pronounced than backward masking. The masking effect diminishes further away from the masker in time.loudnessPerceived loudness of a signal depends on frequency, duration, and sound pressure level. The components of a signal partially mask each other, and noise can be masked as a result.cognitiveCognitive effects influence perceptual audio quality. Abruptprocessingchanges in quality are objectionable. Different components of an audio signal are important in different applications (e.g., speech vs. music).
An auditory model can consider any of the factors shown in Table 2 as well as other factors relating to physical or neural aspects of human perception of sound. For more information about auditory models, see: 1) Zwicker and Feldtkeller, “Das Ohr als Nachrichtenempfänger,” Hirzel-Verlag, Stuttgart, 1967; 2) Terhardt, “Calculating Virtual Pitch,” Hearing Research, 1:155-182, 1979; 3) Lufti, “Additivity of Simultaneous Masking,” Journal of Acoustic Society of America, 73:262 267, 1983; 4) Jesteadt et al., “Forward Masking as a Function of Frequency, Masker Level, and Signal Delay,” Journal of Acoustical Society of America, 71:950-962, 1982; 5) ITU, Recommendation ITU-R BS 1387, Method for Objective Measurements of Perceived Audio Quality, 1998; 6) Beerends, “Audio Quality Determination Based on Perceptual Measurement Techniques,” Applications of Digital Signal Processing to Audio and Acoustics, Chapter 1, Ed. Mark Kahrs, Karlheinz Brandenburg, Kluwer Acad. Publ., 1998; and 7) Zwicker, Psychoakustik, Springer-Verlag, Berlin Heidelberg, New York, 1982.III. Generating Quantization Matrices
Quantization and other lossy compression techniques introduce potentially audible noise into an audio signal. The audibility of the noise depends on 1) how much noise there is and 2) how much of the noise the listener perceives. The first factor relates mainly to objective quality, while the second factor depends on human perception of sound.
Distortion is one measure of how much noise is in reconstructed audio. Distortion D can be calculated as the square of the differences between original values and reconstructed values:D=(u−q(u)Q)2 (1),where u is an original value, q(u) is a quantized value, and Q is a quantization factor. The distribution of noise in the reconstructed audio depends on the quantization scheme used in the encoder.
For example, if an audio encoder uses uniform, scalar quantization for each frequency coefficient of spectral audio data, noise is spread equally across the frequency spectrum of the reconstructed audio, and different levels are quantized at the same accuracy. Uniform, scalar quantization is relatively simple computationally, but can result in the complete loss of small values at moderate levels of quantization. Uniform, scalar quantization also fails to account for the varying sensitivity of the human ear to noise at different frequencies and levels of loudness, interaction with other sounds present in the signal (i.e., masking), or the physical limitations of the human ear (i.e., the need to recover sensitivity).
Power-law quantization (e.g., α-law) is a non-uniform quantization technique that varies quantization step size as a function of amplitude. Low levels are quantized with greater accuracy than high levels, which tends to preserve low levels along with high levels. Power-law quantization still fails to fully account for the audibility of noise, however.
Another non-uniform quantization technique uses quantization matrices. A quantization matrix is a set of weighting factors for series of values called quantization bands. Each value within a quantization band is weighted by the same weighting factor. A quantization matrix spreads distortion in unequal proportions, depending on the weighting factors. For example, if quantization bands are frequency ranges of frequency coefficients, a quantization matrix can spread distortion across the spectrum of reconstructed audio data in unequal proportions. Some parts of the spectrum can have more severe quantization and hence more distortion; other parts can have less quantization and hence less distortion.
Microsoft Corporation's Windows Media Audio version 7.0 [“WMA7”] generates quantization matrices for blocks of frequency coefficient data. In WMA7, an audio encoder uses a MLT to transform audio samples into frequency coefficients in variable-size transform blocks. For stereo mode audio data, the encoder can code left and right channels into sum and difference channels. The sum channel is the average of the left and right channels; the difference channel is the difference between the left and right channels divided by two. The encoder computes a quantization matrix for each channel:Q[c][d]=E[d] (2),where c is a channel, d is a quantization band, and E[d] is an excitation pattern for the quantization band d . The WMA7 encoder calculates an excitation pattern for a quantization band by squaring coefficient values to determine energies and then summing the energies of the coefficients within the quantization band.
Since the quantization bands can have different sizes, the encoder adjusts the quantization matrix Q[c][d] by the quantization band sizes:
Q [ c ] [ d ] ← ( Q [ c ] [ d ] Card { B [ d ] } ) u , ( 3 ) where Card{B[d]} is the number of coefficients in the quantization band d, and where u is an experimentally derived exponent (in listening tests) that affects relative weights of bands of different energies. For stereo mode audio data, whether the data is in independently (i.e., left and right) or jointly (i.e., sum and difference) coded channels, the WMA7 encoder uses the same technique to generate quantization matrices for two individual coded channels.
The quantization matrices in WMA7 spread distortion between bands in proportion to the energies of the bands. Higher energy leads to a higher weight and more quantization; lower energy leads to a lower weight and less quantization. WMA7 still fails to account for the audibility of noise in several respects, however, including the varying sensitivity of the human ear to noise at different frequencies and times, temporal masking, and the physical limitations of the human ear.
In order to reconstruct audio data, a WMA7 decoder needs the quantization matrices used to compress the audio data. For this reason, the WMA7 encoder sends the quantization matrices to the decoder as side information in the bitstream of compressed output. To reduce bitrate, the encoder compresses the quantization matrices using a technique such as the direct compression technique (100) shown in FIG. 1.
In the direct compression technique (100), the encoder uniformly quantizes (110) each element of a quantization matrix (105). The encoder then differentially codes (120) the quantized elements, and Huffman codes (130) the differentially coded elements. The technique (100) is computationally simple and effective, but the resulting bitrate for the quantization matrix is not low enough for very low bitrate coding.
Aside from WMA7, several international standards describe audio encoders that spread distortion in unequal proportions across bands. The Motion Picture Experts Group, Audio Layer 3 [“MP3”] and Motion Picture Experts Group 2, Advanced Audio Coding [“AAC”] standards each describe scale factors used when quantizing spectral audio data.
In MP3, the scale factors are weights for ranges of frequency coefficients called scale factor bands. Each scale factor starts with a minimum weight for a scale factor band. The number of scale factor bands depends on sampling rate and block size (e.g., 21 scale factor bands for a long block of 48 kHz input). For the starting set of scale factors, the encoder finds a satisfactory quantization step size in an inner quantization loop. In an outer quantization loop, the encoder amplifies the scale factors until the distortion in each scale factor band is less than the allowed distortion threshold for that scale factor band, with the encoder repeating the inner quantization loop for each adjusted set of scale factors. In special cases, the encoder exits the outer quantization loop even if distortion exceeds the allowed distortion threshold for a scale factor band (e.g., if all scale factors have been amplified or if a scale factor has reached a maximum amplification). The MP3 encoder transmits the scale factors as side information using ad hoc differential coding and, potentially, entropy coding.
Before the quantization loops, the MP3 encoder can switch between long blocks of 576 frequency coefficients and short blocks of 192 frequency coefficients (sometimes called long windows or short windows). Instead of a long block, the encoder can use three short blocks for better time resolution. The number of scale factor bands is different for short blocks and long blocks (e.g., 12 scale factor bands vs. 21 scale factor bands).
The MP3 encoder can use any of several different coding channel modes, including single channel, two independent channels (left and right channels), or two jointly coded channels (sum and difference channels). If the encoder uses jointly coded channels, the encoder computes and transmits a set of scale factors for each of the sum and difference channels using the same techniques that are used for left and right channels. Or, if the encoder uses jointly coded channels, the encoder can instead use intensity stereo coding. Intensity stereo coding changes how scale factors are determined for higher frequency scale factor bands and changes how sum and difference channels are reconstructed, but the encoder still computes and transmits two sets of scale factors for the two channels.
The MP3 encoder incorporates a psychoacoustic model when determining the allowed distortion thresholds for scale factor bands. In a path separate from the rest of the encoder, the encoder processes the original audio data according to the psychoacoustic model. The psychoacoustic model uses a different frequency transform than the rest of the encoder (FFT vs. hybrid polyphase/MDCT filter bank) and uses separate computations for energy and other parameters. In the psychoacoustic model, the MP3 encoder processes the blocks of frequency coefficients according to threshold calculation partitions at sub-Bark band resolution (e.g., 62 partitions for a long block of 48 kHz input). The encoder calculates a Signal to Mask Ratio [“SMR”] for each partition, and then converts the SMRs for the partitions into SMRs for the scale factor bands. The MP3 encoder later converts the SMRs for scale factor bands into the allowed distortion thresholds for the scale factor bands. The encoder runs the psychoacoustic model twice (in parallel, once for long blocks and once for short blocks) using different techniques to calculate SMR depending on the block size.
For additional information about MP3 and AAC, see the MP3 standard (“ISO/IEC 11172-3, Information Technology—Coding of Moving Pictures and Associated Audio for Digital Storage Media at Up to About 1.5 Mbit/s—Part 3: Audio”) and the AAC standard.
Although MP3 encoding has achieved widespread adoption, it is unsuitable for some applications (for example, real-time audio streaming at very low to mid bitrates) for several reasons. First, MP3's iterative refinement of scale factors in the outer quantization loop consumes too many resources for some applications. Repeated iterations of the outer quantization loop consume time and computational resources. On the other hand, if the outer quantization loop exits quickly (i.e., with minimum scale factors and a small quantization step size), the MP3 encoder can waste bitrate encoding audio information with distortion well below the allowed distortion thresholds. Second, computing SMR with a psychoacoustic model separate from the rest of the MP3 encoder (e.g., separate frequency transform, computations of energy, etc.) consumes too much time and computational resources for some applications. Third, computing SMRs in parallel for long blocks as well as short blocks consumes more resources than is necessary when the encoder switches between long blocks or short blocks in the alternative. Computing SMRs in separate tracks also does not allow direct comparisons between blocks of different sizes for operations like temporal spreading. Fourth, the MP3 encoder does not adequately exploit differences between independently coded channels and jointly coded channels when computing and transmitting quantization matrices. Fifth, ad hoc differential coding and entropy coding of scale factors in MP3 gives good quality for the scale factors, but the bitrate for the scale factors is not low enough for very low bitrate applications.
IV. Parametric Coding of Audio Information
Parametric coding is an alternative to transform coding, quantization, and lossless compression in applications such as speech compression. With parametric coding, an encoder converts a block of audio samples into a set of parameters describing the block (rather than coded versions of the audio samples themselves). A decoder later synthesizes the block of audio samples from the set of parameters. Both the bitrate and the quality for parametric coding are typically lower than other compression methods.
One technique for parametrically compressing a block of audio samples uses Linear Predictive Coding [“LPC”] parameters and Line-Spectral Frequency [“LSF”] values. First, the audio encoder computes the LPC parameters. For example, the audio encoder computes autocorrelation values for the block of audio samples itself, which are short-term correlations between samples within the block. From the autocorrelation values, the encoder computes the LPC parameters using a technique such as Levinson recursion. Other techniques for determining LPC parameters use a covariance method or a lattice method.
Next, the encoder converts the LPC parameters to LSF values, which capture spectral information for the block of audio samples. LSF values have greater intra-block and inter-block correlation than LPC parameters, and are better suited for subsequent quantization. For example, the encoder computes partial correlation [“PARCOR”] or reflection coefficients from the LPC parameters. The encoder then computes the LSF values from the PARCOR coefficients using a method such as complex root, real root, ratio filter, Chebyshev, or adaptive sequential LMS. Finally, the encoder quantizes the LSF values. Instead of LSF values, different techniques convert LPC parameters to a log area ratio, inverse sine, or other representation. For more information about parametric coding, LPC parameters, and LSF values, see A. M. Kondoz, Digital Speech: Coding for Low Bit Rate Communications Systems, “Chapter 3.3: Linear Predictive Modeling of Speech Signals” and “Chapter 4: LPC Parameter Quantisation Using LSFs,” John Wiley & Sons (1994).
WMA7 allows a parametric coding mode in which the audio encoder parametrically codes the spectral shape of a block of audio samples. The resulting parameters represent the quantization matrix for the block, rather than the more conventional application of representing the audio signal itself. The parameters used in WMA7 represent spectral shape of the audio block, but do not adequately account for human perception of audio information. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a power transmission apparatus suitable for use in automotive vehicles.
2. Description of the Prior Art
A front-drive (FF) base four-wheel-drive (4WD) vehicle is disclosed in Japanese Published Unexamined (Kokai) Patent Appli. No. 60-172764, for instance, in which a viscous coupling clutch and a clutch device are both arranged on the propeller shaft. In the case where engine power is intermittently transmitted to the wheels via a relatively long propeller shaft rotating at a high rotative speed, since the inertial moment is large and therefore vibration is easily produced, there exists a problem in that the propeller shaft must be supported by special support members when a power transmission is mounted in connection with the propeller shaft.
Further, a vehicle in which a viscous coupling is provided for a transfer of a 4WD vehicle is disclosed in Japanese Published Unexamined (Kokai) Patent Appli. No. 63-13823. In this case, although it is possible to solve the afore-mentioned vibration problem, since the viscous coupling is constructed separately from a differential gear, there exists another problem in that the propeller shaft supporting structure is rather complicated. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.