text
stringlengths 2
806k
| meta
dict |
---|---|
An oxime-substituted amide compound represented by the formula (I), or its N-oxide or salt, as the first active ingredient compound in the fungicidal or bactericidal composition of the present invention, is a known compound, and its activities as a pesticidal agent have been known (see Patent Document 1).
Further, a compound being active ingredient B as the second active ingredient in the fungicidal or bactericidal composition of the present invention, is a known compound having fungicidal activities or bactericidal activities (see Non-Patent Document 1). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a heat treating basket comprising a closed or grate-shaped bottom containing upright posts with end pins integrally formed with rims and a frame resting on said posts and undetachably fixed thereto via flexible eye connections through which the pins protrude. A lug prevents the eye connection from sliding off the pins.
Heat treating baskets for the passage of material through annealing furnaces and for quenching hot material in a quenching bath are subjected to high temperature fluctuations and local differences in temperatures so that they suffer from high thermal stress, with the maximum thermal stress occurring at the frame which forms the upper rim of the heat treating basket.
In a known heat treating basket of the above mentioned type (German laid open patent application No. 28 17 718), the bottom together with the upright posts integrally formed thereto is a casting of one piece. The frame produced separately and seated in grooves at the upper ends of the posts is fixed to the posts by means of eyes or small framings which project downwardly from outside the frame to engage the lugs of the posts. When the frame is manufactured, only two bars are cast for each eye, the third bar closing the eye being applied later by welding to form the final element after the frame has been set on the ends of the posts. Due to the welding of the final elements, two welding spots at each eye and, furthermore, foreign material for the final element are required, with a resultant high expenditure in manual finish and production costs.
Accordingly, it is the object of the present invention to provide an improved heat treating basket of the foregoing type with simplified manufacturing techniques.
The problem is solved, according to the present invention, in that the eyes are integrally cast to the posts or to the frame and are aligned horizontally and the lugs are welded to the vertically extending pins.
In the heat treating basket of the present invention, the eyes are not completed by a final element in a later manufacturing step, but they are integrally formed to the bottom or frame during the casting step. When the frame is assembled to the ends of the posts of the bottom, the vertical pins are inserted into the horizontal eyes. Subsequently, by welding the lugs to the pin ends protruding through the eyes, the system is locked. One sole welding operation is necessary only to lock each eye connection. Preferably, the lugs consist of welding spots produced by using a welding material. No foreign material is needed in addition to the welding material, and the welding spots may be simply realized by selectively applying a welding electrode to the pins. The welding spots are spaced from the eye which should not be clamped so as to maintain the expansion mobility of the eye connection.
Preferably, the eyes are integrally formed to the frame, while inside portions of the post are provided with horizontal bases for supporting the frame which, towards the basket inside, are not limited by upright elements, thus allowing frame movements relative to the bottom or to the posts. Further, the inside of the frame is substantially flush with the inner post boundaries so that a wire grid mounted in the heat treating basket cannot be deflected at the transition between the posts and the frame.
The upper frame which may be made in one piece suitably consists of separate frame bars. In such a case, the latter may move and expand themselves independently from one another. Further, it is easier to produce the frame bars in separate casing molds than as a single-part frame. According to a preferred further embodiment of the invention, the posts at the corners of the bottom traverse two eyes of the two adjacent frame posts, with the two eyes being arranged at different heights. This permits, in case of a multipart frame, a simple corner connection design.
The heat treating basket of the present invention is not only favorably characterized by a simple construction but also by the fact that it can be stacked and displayed on the furnace floor. The play in all directions and the expansion mobility between bottom and frame are ensured by the eye connections which are provided. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method and a device for testing a plurality of electronic components.
When electronic components, in particular semiconductor modules, chips or the like, are manufactured, it is necessary for the quality assurance of the production to test and evaluate the manufactured electronic components both in terms of their basic method of operation and freedom from faults and with respect to concealed quality differences. For this purpose, particularly within the scope of mass production of electronic components, the components are subjected to joint hardware and/or software testing methods. When this is done, the electronic components are also to be subjected to specific environmental conditions within the scope of the test which is to be carried out, such as raised temperature, overvoltage or the like. The tests, in particular under the specific environmental conditions, are carried out for a specific predefined time period. As a result of the test which is carried out it is possible not only to eliminate electronic components which have failed or which do not comply with specific specifications, but also, by virtue of the test result, it may, under certain circumstances, be possible to arrive at statistical conclusions relating to the entirety of the production.
In known test methods for testing a plurality of electronic components, in particular semiconductor modules, chips or the like, at least one test is carried out on a plurality of electronic components. After the respective tests are completed, the electronic components are made to output output data which relate to the test or the test result, and these output data are then recorded and fed to further processing devices for evaluating the test.
In order to do this, a plurality of electronic components are usually provided on a device for testing, and the test or tests are then carried out. The outputting of the output data by the individual, tested electronic component is usually brought about by feeding an output initiation signal to each component provided on the device through the use of an individual line provided for this component, the output initiation signal causing the addressed component to output, after the test carried out on it has been completed, the output data which relate to the test or test result on a perspective output line from where the output data are then recorded or tapped for further processing.
It is customary here that a common line device, for example a bus or the like, is provided for outputting the output data for a plurality of electronic components. Consequently, the individual electronic components must be made to output their output data in such a way that a data collision on the common bus is avoided.
Particularly within the scope of mass production it is necessary for a common test device to be equipped simultaneously with the largest possible number of electronic components in order to keep the efficiency of the test method with respect to yield and time period as high as possible, as is usually already also provided when the respective electronic components are produced.
In known methods and devices, the electronic components which are to be tested with respect to the initiation of the outputting of the output data are, however, each addressed individually via a separate line using a separate output initiation signal, with the result that the testing capacity of respective test devices or test boards is as a rule limited by the plurality of individual lines which have to be provided to make available the output initiation signals because these lines take up a considerable amount of space on a test board and consequently constitute a basic obstacle to further increasing the capacity.
It is to be borne in mind here, in particular, that the tester is basically limited in terms of channels. This means that only a limited number of I/O channels or input/output channels is available. The more scan signals or chip select signals are necessary, the more I/O channels are allocated to or seized by the tester. This is also a factor which could limit the maximum number of electronic components on a test board.
It is accordingly an object of the invention to provide a method and a device for testing a plurality of electronic components which overcome the above-mentioned disadvantages of the heretofore-known methods and devices of this general type and which can be implemented for a particularly high capacity and at the same time a high level of reliability.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for testing semiconductor components, in particular semiconductor modules, chips or the like, the method includes the steps of:
carrying out at least one test of a plurality of electronic components;
causing the electronic components to output output data relating to a respective test result;
recording the output data which are output by the electronic components;
starting the recording of the output data by feeding a primary output initiation signal to a first one of the electronic components in order to cause the first one of the electronic components to output a first portion of the output data; and
continuing the recording of the output data for further ones of the electronic components by feeding a respective output initiation signal, which is not directly dependent on the primary output initiation signal and corresponds to a status signal of a preceding one of the electronic components, to a following one of the electronic components in order to induce the following one of the electronic components to output a further portion of the output data, such that the output data of the electronic components is recorded, in response to the primary output initiation signal, until the output data of all the electronic components are output and recorded.
In other words, the method according to the invention, includes the following steps:
at least one test of the electronic components is carried out,
the electronic components are made to output data relating to a respective test result,
the output data which are output by the electronic components are recorded such that the recording of the output data is begun by feeding a primary output initiation signal to a first one of the electronic components in order to cause its output data to be output, and such that the recording of the output data is continued for the further electronic components by feeding in each case one output initiation signal, which is not directly dependent on the primary output initiation signal and corresponds to a status signal of a preceding electronic component, to each following electronic component in order to initiate the outputting of its output data, with the result that the output data of the plurality of the electronic components is recorded in response to the primary output initiation signal until the output data of all of the electronic components are output and recorded.
In the method according to the invention for testing a plurality of electronic components, in particular semiconductor modules, chips or the like, provision is made for the recording of output data to be begun by feeding a primary output initiation signal to a first electronic component of the plurality of electronic components in order to bring about the outputting of its output data. For the further electronic components the recording of the respective output data is continued by in each case feeding an output initiation signal corresponding to a status signal of a preceding electronic component to each following electronic component in order to initiate the outputting of its output data. Here, according to the invention the recording of the output data of the plurality of electronic components is carried out in response to the primary output initiation signal until the output data of the entirety of the plurality of electronic components have been output and recorded.
A basic idea of the method according to the invention is thus to record the output data by causing a first electronic component of the plurality of electronic components to begin to output its output data. This is effected in that a primary or first output initiation signal is fed to this first electronic component, in response to the reception of which signal this addressed first electronic component starts to output its output data.
The following further electronic components are read out according to the invention in that an output initiation signal is also fed to each of them in order to initiate the outputting of the respective output data. It is also a basic idea of the method according to the invention that the respective output initiation signal for the further following electronic components corresponds in each case to a status signal of a preceding electronic component, and is not made available centrally as is the case with conventional methods.
This may advantageously be in each case the respective status signal of a preceding electronic component, which specifies that, on the one hand, the test which is to be carried out on the preceding component has been concluded and/or that the data of the preceding component which are to be output have already been output, with the result that no collision may occur on the respective bus or line system.
The outputting of the output data is carried out until the output data of the entirety of the plurality of electronic components has been output in response to the primary output initiation signal for the first electronic component, and the respective output data of the plurality of electronic components have been output, and thus recorded.
In a preferred embodiment of the method according to the invention, the outputting of the output data for the plurality of electronic components, in particular for the following electronic components for each electronic component, is brought about individually and successively. This ensures that collisions between the output data of different components do not occur during the outputting, and consequently on the line device or on the bus for recording the output data of the electronic components, because just a single electronic component is made to output its output data.
It is particularly advantageous here if the recording of the output data is continued for the further electronic components by individually and successively feeding in each case one output initiation signal corresponding to a status signal of the specific directly preceding electronic component to each specific following electronic component in order to initiate or bring about the outputting of its output data. This in particular ensures that the output data of the plurality of electronic components are recorded in response to the primary output initiation signal until the output data of the entirety of the plurality of electronic components are output and recorded individually and successively. This procedure also ensures that no collisions whatsoever occur during the outputting of the output data.
In terms of controlling the timing of the initiation or bringing about of the outputting of the output data it is particularly advantageous if the signal used as status signal is in each case one which represents the conclusion of the outputting of the output data of thexe2x80x94in particular directlyxe2x80x94preceding electronic component because superimposition of output data from various electronic components is then avoided.
Under certain circumstances, various tests or various test sections are to be carried out successively on the electronic components. When this is the case, the individual test results from successive tests can then also be respectively read out after the conclusion of a section or test. It is particularly advantageous here if an initiation signal corresponding to a status signal of the last electronic component is used to bring about a further test, test section or the like for the plurality of electronic components. This makes it possible to determine directly the conclusion of the outputting of data by the last electronic component, and consequently immediately start a further test, test section or the like so that time delays are avoided.
For carrying out both the testing of the electronic components and the outputting and recording of the output data of the electronic components it is particularly advantageous if a clock signal is used as the basis for the initiation of the outputting and/or for the outputting of the output data themselves. Such a clock signal is as a rule customary in any case in all the processing steps so that a clock signal which is already available can also be used for the initiation of the outputting and/or for the outputting of the output data themselves.
A device for testing a plurality of electronic components, in particular semiconductor modules, chips or the like, is configured to carry out at least one of the tests to be carried out on the electronic component and to record that output data which are output by the electronic components, and is used in particular to perform the method according to the invention.
Therefore, with the objects of the invention in view there is also provided, a device for testing a plurality of electronic components, including:
a testing configuration for performing at least one test to be carried out on a plurality of electronic components, the testing configuration including a first line device and further line devices;
the first line device to be connected to a first one of the electronic components and providing a primary output initiation signal to the first one of the electronic components for causing the first one of the electronic component to output first output data; and
the further line devices being provided for further ones of the electronic components, each of the further line devices supplying, to a respective following one of the electronic components, an output initiation signal, which is not directly dependent on the primary output initiation signal and corresponds to a status signal of a preceding one of the electronic components, for causing the following one of the electronic components to output further output data such that output data of all of the electronic components is output to be recorded in response to the primary output initiation signal provided from the first line device.
In other words, the device according to the invention for testing a plurality of electronic components, in particular semiconductor modules, chips or the like, in particular according to the method of the invention, is configured to perform at least one test which is to be carried out on the electronic components, and to record output data which have been output by the electronic components and which relate to a respective test result, wherein a first line device is provided through the use of which a primary output initiation signal can be fed to a first electronic component of the plurality of electronic components in order to bring about the outputting of its output data, and wherein a line device is provided for the further electronic components for each following electronic component, through the use of which line device in each case an output initiation signal corresponding to a status signal of a preceding electronic component can be fed to the following electronic component in order to bring about the outputting of its output data, with the result that the output data of the entire plurality of electronic components can be output and are recorded in response to the primary output initiation signal at the first line device. The electronic components are to be understood as workpieces to be tested and are not claimed elements of the device according to the invention.
The device according to the invention provides a first line device through the use of which a primary output initiation signal can be fed to a first electronic component of the plurality of electronic components in order to bring about the outputting of its output data. In addition, for the further electronic components for each following electronic component a line device is provided through the use of which an output initiation signal corresponding to a status signal of a preceding electronic component can be fed to the following electronic component in order to bring about the outputting of its output data. As a result, the invention enables the output data of the entirety of the plurality of electronic components to be output and recorded in response to the primary output initiation signal on the first line device.
A basic idea of the device according to the invention is that, in contrast to the plurality of chip select lines or scan signal lines in the prior art, now just a single external line device is provided, with which line device the process of the outputting of the output data for a firstxe2x80x94in particular predefinedxe2x80x94component is carried out. The further and following electronic components are then caused to output their respective output data through the use of internal line devices, specifically through the use of respective output initiation signals which are fed to a respective following component through the use of a line device provided specifically for this component, the respective output initiation signal corresponding to a status signal of a preceding component and being derived, under certain circumstances, from this status signal. Of course, the status signal itself can also be used as an output initiation signal for a following electronic component.
The invention thus ensures that all the output data of the entirety of the plurality of electronic components can be output and recorded in response to a single primary output initiation signal, to be specific on the first line device. This means that the plurality of conventional chip select lines or scan select lines is obsolete. As a result, space is saved on the respective devices for testing because the respective external lines are eliminated and the number of electronic components to be tested on a respective device is ultimately restricted by the space requirements of the electronic components themselves and by the signal losses, which occur under certain circumstances, on the internal lines.
Furthermore, the invention also ensures that the limiting of the tester in terms of the I/O channels which can be addressed does not constitute an actual limitation on the number of electronic components which can be tested because, according to the invention, just a single I/O channel is seized with one scan signal, to be specific with the primary initiation signal, through the use of which the outputting of the output data of a first electronic component is brought about.
In an advantageous development of the method according to the invention there is provision for just one line device to be provided for each specific following electronic component, through the use of which line device in each case an output initiation signal corresponding to a status signal of the respective specific directly preceding electronic element can be fed to the specific following electronic component in order to bring about the outputting of its output data, and that, as a result, the output data of the entirety of the plurality of electronic components can be output and recorded individually and successively in response to the primary output initiation signal on the first line.
A core idea of this embodiment of the device according to the invention is that the plurality of electronic components are each successively separately connected to one another in serial fashion with just one line device so that, starting from a predefined first electronic component, the following electronic components are individually caused to output the output data through the use of the respectively provided individual line devices. Thus, on the basis of the formation of the individual line devices, it is precisely determined in a predefined way which specific electronic component from among the plurality of electronic components will be used to cause a specific following electronic component to output the output data. The sequence in which the bringing about of the outputting of the output data is thus determined in its entirety on the basis of the circuit configuration of the respective line devices so that the output data of the entirety of the plurality of electronic components can be output and recorded individually and successively in response to the first and primary output initiation signal on the first line device for the predefined first electronic component.
The device for testing a plurality of electronic components can be configured so as to be particularly simple and well structured if an accommodation device is provided which is configured to place the electronic components on the device for testing the plurality of electronic components and make contact with the electronic components on the device for testing the plurality of electronic components.
Furthermore, according to the invention a control device is provided which is configured at least to control the test which is to be carried out on the electronic components. In addition, the control device is configured also to generate and/or to output the primary output initiation signal to the first line device. To do this, the control device must be electrically connected in particular to the first line device for the predefined, first electronic component.
In order to evaluate and/or also to control the tests to be carried out, an evaluation device is also provided which is configured at least to record the output data output by the electronic components.
It is also advantageous if a line device is provided through the use of which at least a clock signal which is made available can be fed at least to the electronic components in order to control the outputting of the output data. Generally, in a device for testing electronic components, it is already standard practice to provide a clock device through the use of which the tests and test sections are also processed in clocked form. Consequently, it does not require any particular effort, but rather constitutes a simplification, if the clock signal which is already provided is also fed to the electronic components via an appropriately embodied line device in order to bring about the outputting of the respective output data in a clocked form in response to the respective output initiation signals.
In order to carry out a plurality of successive tests or test sections, a line device is advantageously provided through the use of which an initiation signal which corresponds to a status signal of the last electronic component can be made available and/or fed to the control device in order to bring about a further test, test section or the like for the plurality of electronic components. This ensures that, directly after the conclusion of the outputting of the output data of the last electronic component to be addressed, a further test or test section can be initiated without a time delay.
A particularly simple way of implementing the successive initiation of the successive electronic components is obtained in a preferred embodiment of the device according to the invention by providing a flip-flop device for each successive electronic component, which flip-flop device can be provided with the status signal of thexe2x80x94in particular directlyxe2x80x94preceding electronic component, in particular to generate the respective following output initiation signal. By inserting or interconnecting the flip-flop devices it is possible to generate, independently of the form of the respective status signals, an output signal which is standardized in a specific way and which can then be suitably used as an output initiation signal.
Here, it is also advantageous if the flip-flop device is embodied in each case in the line device of the respective following electronic component. If this respective line device is substantially located on the accommodation device of the device for testing, it is advantageous if the respective flip-flop devices are also embodied on the accommodation devicexe2x80x94for example on the circuit board of the test board. On the other hand, the respective flip-flop devices may already also be provided in the actual electronic components to be tested.
The flip-flop devices, formed in this way, of the plurality of successive electronic components advantageously form a shift register in which the activated state is thus passed on successively and individually from the first electronic component to the following electronic components via the respective flip-flop devices and the line devices in response to the primary initiation signal until all the electronic components have been successively activated and output their output data.
The invention thus permits, both in method terms and device terms, the activation of electronic components to be tested in terms of the output of the output data after a test has been carried out without additional scan line or chip select lines having to be provided in the devicexe2x80x94for example a test board. In method terms this means that only the first electronic component has to be actually caused to output its output data, while all the following electronic components are addressed inherently by the method according to the invention, individually and successively one after another.
As a result of the method and device according to the invention, the maximum addressable number of electronic components is no longer restricted by the scan lines or chip select lines which are necessary in the prior art, but rather is now restricted essentially only by the size of the electronic components themselves and also by the respective losses on the lines.
The tests themselves can be carried out serially or in parallel through the use of an appropriate clock and/or a test initiation signal. The output data are read out after the conclusion of the testsxe2x80x94as has already been described abovexe2x80x94in a serial fashion in order to avoid collisions on the data lines. As a result of the device and method according to the invention, just one serial input pin and one serial output pin and a corresponding clock pin are now required for the electronic components to be tested. As a result, the number of addressable electronic components on the device or the test board becomes independent of the number of scan lines or chip select lines which have to be provided conventionally.
The method and device according to the invention can be applied in the same way with all chip generations. There is basically no need for adaptation for new chip generations.
Although the additional flip-flops which are to be provided can be embodied between the serial output pin and the serial input pin of successive electronic components in the device, it is possible, for example, also to provide respective flip-flops internally in the components, in particular for future chip generations.
In specific electronic componentsxe2x80x94in particular in the case of DRDRAMs (Direct Rambus DRAM)xe2x80x94serial input pins (SIO0) and serial output pins (SIO1) are frequently already present. In other electronic components, if appropriate pins which are not used in the test have to be appropriately remapped as serial input pins and output pins in order to be able to implement the successive wiring of the plurality of electronic components.
The method and device according to the invention can be applied in particular in component burn-in testing of SDRAMs and DRDRAMs. In such cases it is suitable to test a plurality of identical electronic components simultaneously in numbers of up to several thousands and perform a serial read out, a pulse being applied to the input of a first electronic component or chip, and the pulse then being shifted further in the serial chain by one electronic component or one chip at each available clock period, in order to activate the respective electronic component or chip.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method and device for testing electronic components, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some computer networks support data in-flight (DIF) services, a set of attributes, transformations, or manipulations that apply to data being transferred between nodes of the network. For example, DIF services may be used to provide data integrity, data isolation, data quality of service (QoS), and/or data security (e.g., encryption). In the context of a storage area network (SAN), data generated by software applications is transmitted through a fabric of network nodes to a consolidated data store. The nodes may include, for example, initiators (e.g., host bus adapters, HBAs), network switches, and/or storage controllers in the SAN.
DIF services implementations generally include multiple network nodes working in tandem to accomplish desired results. For example, to provide a QoS guarantee (e.g., a minimum bandwidth and/or a maximum latency), a QoS policy may be enforced by all nodes between a source node and the datastore. Accordingly, a number of DIF services standards have been developed for use by devices along the path of data transmission. However, at least some of these standards do not support virtualization technology and may be unable to distinguish between software applications, such as virtual machines (VMs), executed by a single host. DIF services may therefore be applied to a host based on the DIF services desired for any application executed by that host. For example, if encryption is desired for a first application at a host and QoS is desired for a second application at the host, an operator may apply both encryption and QoS to the host. As a result, both services are applied to the first and second applications, even though the operator has no desire to apply QoS to the first application, or to apply encryption to the second application. Such over-application of DIF services may increase operating overhead in the form of computing resource (e.g., processor time, memory, and/or network bandwidth) utilization at the host and/or elsewhere within the network while providing little or no benefit to the operator.
Conceivably, computing resources may be more efficiently utilized by updating existing standards to apply DIF services to individual applications, and modifying the nodes in a network to support the updated standards. However, modifying multiple network nodes, potentially provided by different vendors, to support updated standards may be infeasible or impossible. For example, modifying the network nodes may impose significant configuration and testing effort. Further, some device vendors may be reluctant to invest the effort to support such updated standards. | {
"pile_set_name": "USPTO Backgrounds"
} |
A lot of oceanic life, such as blue mussels, common turtle limpets, mosses, diatoms, oysters, pearl oysters, poriferans, turban shells, sea lettuces, sea squirts, and so on, live in the seawater, and the oceanic life conglutinate on undersea equipments, ships, life belts, harbor facilities, nurseries, fishing nets, and so on, which damages the sea equipments. Particularly, if the oceanic life conglutinate on the bottom of ship, the surface of ship becomes coarse, and requires frequent repair works. In addition, when the surface of ship becomes coarse by 0.01 mm, the fuel consumption of the ship increases by 0.3˜1.0%. This may cause a more serious problem for a large vessel, in which 50% of the vessel operating costs is the fuel expenses.
To prevent such fouling of the sea equipments, an antifouling paint composition prepared by mixing a rosin, a plasticizer, and an antifouling agent with vinyl chloride resin or vinyl resin is conventionally used. However, the conventional antifouling paint composition also induces the seawater contamination because the composition includes mercury or organic tin compound as the antifouling agent. As other antifouling paint composition, U.S. Pat. No. 4,191,579 and British Patent No. 1,457,590 disclose a self-polishing antifouling paint composition in which an organic tin compound such as tributyl tin oxide binds to an unsaturated monomer such as acrylic acid or methacrylic acid to form an ester linkage therebetween. Due to the ester linkage, the antifouling paint composition is slowly hydrolyzed in seawater, and the organic tin compound is slowly released from the antifouling paint composition. The carboxylic group produced by releasing the organic tin compound forms a salt, which makes the antifouling paint to be water-soluble and to be swelled. Thereby, the surface of the antifouling paint is scaled off to reveal a new surface. Such antifouling paint composition is most commonly used for antifouling of the seawater equipments. However, the organic tin compound continuously released from the antifouling paint has a non-target toxicity, which not only induces the seawater contamination, but also destroys the ecosystem. Therefore, it is required to develop a new antifouling paint composition which is effective in preventing the fouling of the seawater equipment induced by the various oceanic life and microorganism, and does not have drawbacks in environmental and hygienic aspects. | {
"pile_set_name": "USPTO Backgrounds"
} |
The integrity requirements for personal computer systems have grown rapidly in the past few years. At the present time, newer operating systems and applications require a great deal of memory. Also, the amount of memory which can be accommodated in personal computer systems continues to increase rapidly. Such personal computer systems have in the past typically been provided only with the capability of writing and checking parity with many recent systems altogether eliminating parity. Computer memory comes in two basic forms: Random Access Memory (hereinafter RAM) and Read-Only Memory (hereinafter ROM). RAM is generally used by a processor for reading and writing data. ROM is generally used for storing data which will never change, such as the Basic Input/Output System (hereinafter BIOS).
Generally, RAM makes up the bulk of the computer system's memory, excluding the computer system's hard-drive, if one exists. RAM typically comes in the form of dynamic RAM (hereinafter DRAM) which requires frequent recharging or refreshing to preserve its contents. Organizationally, data is typically arranged in bytes of 8 data bits. An optional 9th bit, a parity bit, acts as a check on the correctness of the values of the other eight bits. Within a computer system, it is important that data transmitted between the central processing unit, "CPU" and the memory is being transferred accurately. In order to ensure that data transmission is error free, a data transmission attribute known as parity may be used. Data is grouped together in 8 bit chunks called bytes. Error detection methods such as parity add additional data bits in order to verify if the data byte has been transmitted intact. With parity, an additional data bit, called a parity bit, is generated and added onto each data byte. The parity bit may be set to a 1 or 0 depending on the number of 1 data bits found in the byte. If even parity is selected, the parity bit that is added will make the total number of "1" bits in the byte equal an even number. However, if odd parity is selected, the parity bit that is added will make the total of "1" bits in the byte equal an odd number. In the case of either "even" or "odd" parity, if a memory bit is corrupted, the bad parity condition will be flagged, and generally, the system will crash when the error is detected. In the case of systems which do not write and check parity, corrupted data can cause malfunction of the system. Moreover, with the advent of large applications which normally require large amounts of memory, these are the most exposed to such crash and data corruption.
Many personal computers have the feature that additional memory can be added to the computer system. Typically, Dynamic Random Access Memory ("DRAM") can be added by a user who requires additional storage. A popular device for accomplishing an addition of DRAM is a memory card known as a Single Inline Memory Module ("SIMM"). A SIMM (Single Inline Memory Module) is a printed circuit board having, among other things, memory chips and connection points or pins. SIMMs are inserted into special sockets on the computer system's motherboard or memory carrier card. A central characteristic of SIMMs is that although there are connection pins on both sides of the SIMM's printed circuit board, these connections are not singular. That is, pin 1 on the front side of the printed circuit board is connected to pin 1 on the backside of the printed circuit board. Therefore, although most SIMMs have a total of 144 pins, only 72 are available for electrical connection.
A DIMM (Dual Inline Memory Module) is also a printed circuit board having, among other things, memory chips and connection points or pins. DIMMs are also inserted into special sockets on the computer system's motherboard or memory carrier card. However, the DIMM includes a dual row of contacts, one on each side of the printed circuit board, which are available for electrical contact. Most general DIMMs include a total of 168 pins, with 84 pins on the front side and 84 pins on the back side of the printed circuit board. Each pin is available for electrical contact.
Many computer systems do not provide means for error detection. Also, many of today's memory modules do not store parity bits. DRAM memory cards in non-parity systems can fail with no indication of where the problem is located being given to the operator. In other words, a DRAM on a SIMM or DIMM could fail, and the operator would be unable to determine which DRAM on the memory module is responsible for the failure. This failure of memory cards in a non-parity system can potentially create errors in operation, can cause system lock-up or both. Currently, a common solution when operation errors or system lock-up occur is to swap the entire system memory for a new system memory. This approach is wasteful and expensive, but since memory card failures are a primary source of computer system failures, it is quicker to swap an entire failed memory with a new memory than to systematically examine and determine which memory card in the memory system is causing the problem.
Furthermore, the typical memory chip has a 4, 8 or 16 bit wide data field. To add parity, such a system must use either a x9 chip or two x4 chips plus a x1 chip or any such equivalent of a x9 chip or x1 chip such as a quad CAS chip added as an extra chip. In an effort to reduce the number of chips needed for a computer system--which reduces cost, the extra chip required for parity is eliminated. Accordingly, SIMMs designed to accommodate a parity system are difficult to find, if not totally unavailable. Therefore, current systems can neither generate nor check parity, and the entire memory must be replaced when memory cards fail. Thus, a need exists for inline memory modules which accommodate parity and provide for indication of a failed module.
Due to the importance of insuring data is accurately transmitted between the CPU of a computer system and the system's memory, techniques other than parity can be used to ensure that data transmission is error free. One such technique is error correction code ("ECC"). ECC is similar to parity in that ECC takes the existing data and generates a special series of bits which code for what the data byte should be. In a system utilizing ECC, both single bit errors and double bit errors are detected. Furthermore, beyond merely detecting the errors as in a parity system, ECC can correct the errors during data transmission. Typically, ECC circuitry and logic is provided in the motherboard of a computer system, but many computer systems do not have ECC capabilities. Thus, a need exists for inline memory modules which generate ECC for non-ECC systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
A disc refiner generally comprises two opposed refining discs, which are provided with exchangeable refining elements which constitute the refining surfaces of the refiner. In disc refiners in which wood chips are to be refined into paper-making pulp, the refining is carried out between the two refining discs, which are thus kept at a definite distance from each other. Depending on the type of refiner being utilized, one or both of the refining discs are mounted on a rotary axle. These axles are driven by motors which are intended to rapidly rotate the refining discs, and the distance between the refining discs (gap) is adjusted by means of hydraulics, and is measured by means of specialized measuring systems. Due to faulty functioning during operation, the refining surfaces may contact each other. If this occurs, breakdown may result, or in any event, the refining surfaces will be subjected to considerable wear, which can significantly reduce the operating time for these refiners. It is, therefore, very important to accurately control the gap between the refining discs.
In order to accurately measure the distance between the refining surfaces, measuring systems have been employed which require preliminary adjustment of the zero point; for example, immediately after the refining elements have been exchanged or replaced. In order to so determine the zero point of the measuring system, it is important that the contact position be determined. It has been known that the contact position can be detected by utilizing sound measuring apparatus. This method requires that a transmitter be mounted on one of the two refining surfaces. When the refining surfaces then contact each other, vibrations are propagated through the refining disc to the transmitter, which can constitute a microphone, impact pulsometer or vibrometer.
One disadvantage of this method is that the transmitter also measures other sources of interference, such as the axle bearings. It is therefore difficult to detect a slight contact, and it is necessary for the signal to "drown" out other sources of interference. This technique is also incapable of measuring or determining the phase position of the contact point, i.e., the point or location where the refining surfaces first come in contact with each other. Another disadvantage of these techniques is that they presume that one of the two refining surfaces is stationary. Therefore, there are no present day methods for detecting the contact point in the case of a pair of rotating refining surfaces. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a power board, an on-board connector, a lighting device, a display device and a television receiver.
2. Description of the Related Art
An example of a lighting device capable of functioning as a backlight for a liquid crystal display device is disclosed in JP-A-2004-294592. The lighting device has a construction in which relay terminals are mounted into through holes formed on a chassis that has a substantially flat plate-shaped configuration and functions as a reflector plate. An electrode portion of a discharge tube arranged on the front side of the chassis and a power board arranged on the back side of the chassis are connected to each relay connector, so that the discharge tube can receive the power supply from the power board via the relay terminal.
In the power board described in JP-A-2004-294592, electronic components are mounted on the surface of a circuit board on the opposite side of the chassis, while an output terminal to be fitted to the relay terminal is mounted on the chassis-facing surface. In the case that components are thus mounted to both surfaces of the circuit board, there is no choice but to use reflow soldering as a soldering method for fixing the components to the circuit board, because solder dipping that involves dipping of the circuit board in a molten solder bath cannot be applied.
However, the reflow soldering cannot be applied to a circuit board formed of a material sensitive to high temperature (e.g., a phenolic paper-base copper-clad laminated board), because a reflow oven is heated to a high temperature. That is, in the case of a circuit board formed of a material sensitive to high temperature, components cannot be mounted to both surfaces of the circuit board, and therefore the components should be mounted on one surface of the circuit board.
In this case, in order to achieve an output terminal provided on the chassis-facing side of the circuit board as in JP-A-2004-294592 for connection to the relay terminal, the components on the circuit board are limited to being mounted on the chassis-facing surface. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Use
This invention relates generally to a hydraulic steering clutch and single pedal brake control system for steering and braking vehicles such as crawler tractors.
2. Description of the Prior Art
In some prior art crawler tractors the hydraulic control system for the steering clutches and the track brakes includes a pair of manually operated steering clutch levers which actuate the valves for the steering clutches which transmit motive power from the tractor transmission to the tracks. A pair of brake pedals are used to selectively actuate a pair of brake cylinders which, in turn, control a pair of brakes for the tracks. Straight line vehicle movement is accomplished by engaging both clutches so as to drive both tracks in the same direction at the same speed. Steering is accomplished by operating one steering clutch lever so as to disengage its associated steering clutch and thereby slow down or stop its associated track while continuing to drive the other. Braking is accomplished during straight line vehicle movement by using both brake pedals and, during steering, by using the brake pedal for that track whose clutch is disengaged.
In such prior art tractors the steering clutches and the brake actuators are sometimes embodied in separate control systems which are supplied from separate hydraulic pumps. Aside from increased costs of such systems resulting from redundancy of components, such prior art systems often lack various automatic control functions which, if provided, would simplify and provide for safer tractor operation. The following U.S. Pat. Nos. disclose various types of prior art steering and braking control systems for vehicles: 3,437,184; 3,358,786; 3,386,523; 3,351,149; and 2,375,959. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to digital phase discrimination.
2. State of the Art
Phase discrimination is important in digital radio communications, in particular in any angle modulation digital radio receiver. Phase discrimination and frequency discrimination are closely related. Frequency discrimination is typically performed using analog circuitry, e.g. an IQ frequency discriminator. Analog frequency discriminators have substantial drawbacks. In the case of an IQ frequency discriminator, the discriminator requires a number of analog components, two A/D conversions and a numerical arctangent operation, rendering the circuit quite complex.
Known methods exist for producing a value representing the instantaneous phase of a signal using only digital logic elements. Various such methods are described in U.S. Pat. No. 5,084,669, incorporated herein by reference. In particular, the foregoing patent describes a digital circuit for determining the instantaneous phase of a signal, from which the instantaneous frequency may be obtained if desired. Although the implementation of the circuit is all digital, it is quite involved. An improved method and apparatus for determining in a simple, all-digital manner the instantaneous phase of a signal would therefore likely be well-received by those skilled in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a writing implement comprising a housing, a writing cartridge movably arranged in the housing, and a control unit form moving the writing cartridge between a first position in which the cartridge tip is extended out of the housing for writing, and a second position in which the writing cartridge is retracted within the housing, wherein in the first position the writing implement has an overall length suitable for writing and in the second position the writing implement is shortened.
A writing implement of this general type is disclosed in EP 402,558A. This writing implement comprises a housing, a depressor configured as an extension of the housing, and a control unit with a first switching cam by which the writing cartridge can be extended into its first writing position or moved into the housing in its second retracted position. The control unit further comprises a second switching cam that interacts with the depressor. To push the writing cartridge out of the housing into the writing position, the depressor must be pulled backward out of the housing. This xe2x80x9cpulling motionxe2x80x9d to displace the writing cartridge forward into its writing position makes handling more difficult, especially since this motion is in inverse direction of the desired forward motion of the writing cartridge out of the housing toward the front. In the writing position, the writing cartridge is secured against being pushed back into the housing by a pin that engages a rearward pointing part of the first cam. To shorten the writing implement and move the writing cartridge into the second retracted position, the depressor is pushed in the direction of the housing, i.e., against the aforementioned xe2x80x9cpulling motion.xe2x80x9d In its telescoped, short position, the depressor is not fixed relative to the housing, so that when the writing implement is taken out of a holder, for example, the depressor could be accidentally pulled backward and the writing cartridge pushed forward out of the housing. The writing implement is difficult to handle in that to set the writing position, a user must hold the housing with one hand to be able to pull the depressor backward out of the housing with the other hand.
EP 968,843A furthermore discloses a variable writing implement whose rear housing part including a depressor is coupled to the front housing part via a gear-type connection with racks and an engaging pinion. To extend the shortened writing implement and push out the writing cartridge, the depressor together with the rear housing part must be pulled out of the front housing part.
Furthermore, U.S. Pat. No. 2,627,843 discloses a writing instrument whose housing is made of two parts that can be telescoped into one another. Disposed in the front part is a writing cartridge, which can be axially displaced by a control unit in such a way that in a first position, the tip of the cartridge protrudes from the front part for writing and in a second position, the tip of the cartridge is retracted into the front part. The control unit includes an axially displaceable and partially rotatable first sleeve in which the writing cartridge is inserted and from which the writing cartridge can be removed when required after removal of a housing tip. A pin of the front part engages a short spiral groove in the outer surface of the rotatable control sleeve, so that the first sleeve is axially displaced as it is rotated and the writing cartridge is thereby displaced into the first or the second position. The interior of the rear part of the housing contains an additional sleeve with an axial slot in which a projection provided on the rear end of the front part engages. This additional sleeve of the rear part further has an axially inwardly pointing projection that engages a second long spiral groove of the control sleeve of the front part. When the front part and the rear part are telescoped, the first sleeve is rotated by the projection of the additional sleeve, which is non-rotatably arranged in the rear part and engages the long spiral groove. In cooperation with the short front spiral groove, the first sleeve is pushed axially rearward and the tip of the cartridge is thus retracted into the housing, its second position. In this second position, the two housing parts are telescoped into one another so that the total length of the housing is shorter overall. To bring the writing cartridge or the writing point into its first or writing position, the front part of the housing and the rear part of the housing are axially pulled apart. The above-described functions then proceed in the reverse direction and the first sleeve, including the writing cartridge, is axially displaced forward and the tip of the cartridge is pushed out of the housing into the first or writing position. After the two housing parts have been fully pulled apart, the writing instrument has its maximum length. The writing instrument is difficult to handle in that both hands are required to pull it apart to adjust the writing position and to telescope the two housing parts in an opposite movement to adjust the second position. Furthermore, there is no mutual locking device of the two housing parts either in the writing position or in the second position. If the two housing parts are accidentally moved relative to one another, proper writing can be affected or the tip of the cartridge can be moved out of its second position, with the risk that articles of clothing or the like may be stained by the writing agent.
It is therefore an object of the present invention to provide an improved writing implement of the aforedescribed type.
Another object of the invention is to provide a writing implement without major structural modification which will exhibit improved handling.
A further object of the invention is to provide a writing implement in which the writing cartridge can be extended into its functional or writing position and the writing implement itself simultaneously lengthened with a single manual action.
An additional object is to provide a writing implement which is operable with one hand and is extendable into the size that is suitable for writing with the same type of movement that is required to shorten it and to retract the writing cartridge into its standby position.
Yet another object of the invention is to provide a writing implement in which the two positions of the writing cartridge are reliably defined and any accidental actuation is reliably avoided.
These and other objects are achieved in accordance with the present invention by providing a writing implement comprising a housing, a writing cartridge movably arranged in said housing, a depressor configured as an extension of the housing, and a control unit having a first switching cam for displacing the writing cartridge between a first position in which the cartridge tip is extended out of the housing for writing, and a second position in which the writing cartridge is retracted within the housing, wherein the writing implement in the first position has an overall length suitable for writing and in the second position is shortened; wherein the control unit has a second switching cam which interacts with the depressor; wherein the depressor can be actuated in the same pressing direction to displace the writing cartridge both into the first position and into the second position, wherein the second switching cam is configured to fix the depressor in the second, telescoped and shorted position, and wherein the second switching cam is configured in such a way that, starting from the telescoped position, the depressor is unlocked when the depressor is actuated in the pressing direction and can be extended out of a rear end of the housing into the first position.
The writing implement according to the invention is distinguished by its functionally reliable design and its simple handling. The two positions are actuated and defined exclusively by a pressing motion. The writing implement has a control unit that is actuated by means of a depressor so that the writing cartridge can be optionally brought into its writing position or into its retracted position. Synchronously with the corresponding actuation, the writing implement is lengthened to the size adapted for writing or shortened for stowing or storing. This creates a small writing implement that is suitable for stowing and storing in small containers, pockets, particularly trouser pockets, notepads, small pocket calendars, small planners or the like.
The control unit comprises a cam element with two preferably inline switching cams. These cams are arranged in such a way that the writing cartridge can be brought into the writing position or the retracted position by means of the first switching cam while the depressor, which is configured as an extension, is displaced out of the housing or retracted into the short position by means of the second switching cam. The first switching cam for the writing cartridge is preferably configured in such a way, and especially as a heart-shaped cam, to ensure that the writing cartridge is reliably blocked in the two possible positions. The switching cam for the depressor is preferably configured as an unlocking control cam.
The depressor, starting from the locked position when the writing implement is shortened, is extended into its lengthened position after unlocking, particularly under the action of a spring force. Advantageously, the cam element is rotatable and axially displaceable inside the housing and, depending on its position, can either prevent the depressor from being extended or can release and unlock it.
Further advantageous aspects and preferred features and embodiments of the invention are described in additional detail in the following. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
Various embodiments relate to vehicle roof module assemblies.
2. Background Art
Vehicle roof module assemblies are mounted on vehicle bodies to enclose interiors of vehicle bodies. Roof module assemblies may include fixed panels or moveable panels where the panels slide or tilt relative to the vehicle to create an opening in the roof. Conventional panoramic roof modules are typically designed for a specific vehicle and may include fixed panels. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a conversation control apparatus, conversation control method, and programs therefor, and in more detail relates to a conversation control apparatus, conversation control method, and programs therefor, for carrying out conversation control constituting a reply to a caller originating a call, using environment recognition information for a caller's facial recognition, position, characteristics and voice recognition etc.
2. Description of the Prior Art
In recent years, with increase in speed of digital signal processing developed and advanced as information processing means centered on computers, high level integration LSI manufacturing technology, and ultrafine high precision manufacturing technology for disk media such as DVDs as a background, conversation control technology has been provided making it possible to give machines natural sounding voices, and to understand words spoken by a person and to make an appropriate reply. An example of this type of conversation control technology is disclosed in Japanese Patent Laid-open No. 2002-358304.
With this type of conversation control technology, speech of a user (speaker) is acquired via a keyboard or the like, and conversation control is carried out based on only the content of the speech.
On the other hand, there is also provided technology for carrying out behavior control in a self-sustaining manner based on information other than speech content, such as voice and image of a user, etc. Technology for carrying out this type of self sustaining behavior control is disclosed, for example, in Japanese Patent Laid-open No. 2002-111981.
With this type of conversation control technology, making a reply considering factors other than speech content, for example, user expression, characteristics, age, etc., is not carried out.
Also, in technology for carrying out behavior control in a self sustaining manner based on information other than speech content, there is behavior control based on only recognition results obtained from outside, but with this technology past speech content is not taken into consideration, which results in unnatural behavior control. For example, in the event that the result of recognition obtained from outside is information saying “angry face”, even if the conversation up until that point indicated a good relationship, behavior control will be carried out based only on “angry face”.
The object of the present invention is to provide conversation control technology that carries out conversation control based on both speech content and conversation state, and information obtained from outside, and makes a more natural response. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to mufflers used in vehicles to reduce the noise associated with engine exhaust gases. More particularly, the present invention relates to stamp-formed mufflers.
Internal combustion engines produce noise that must often be quieted in some manner to satisfy vehicle drivers and state regulations. Mufflers are generally included in vehicle exhaust systems to attenuate this noise to acceptable levels. Such mufflers are often formed of metal components coupled together in a configuration suitable to attenuate the exhaust noise.
According to the present invention, a muffler body is provided that is formed from a single sheet of material. The sheet of material includes first, second, and third folds that partition the sheet into first, second, third, and fourth portions. The first and fourth portions define first and second outer shells that cooperate to define a chamber therebetween. The second and third portions cooperate to define first and second inner plates that define a baffle. The baffle defines an exhaust passage and partitions the chamber into first and second subchambers.
According to a preferred method of the invention, a method is provided for producing a muffler body. The method includes the step of providing a sheet of material and three steps for folding the sheet. The sheet has a first, second, third, and fourth portions. The first folding step includes folding the sheet so that the first portion of the sheet defines a first outer shell and the second portion defines a first inner plate that cooperates with the first outer shell to form a subchamber therebetween. The second folding step includes folding the sheet so that the third portion of the sheet defines a second inner plate and the fourth portion of the sheet defines a second outer shell that cooperates with the second inner plate to define a second subchamber. The third folding step includes folding the sheet so that first inner plate is positioned to lie against the second inner plate.
Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to an ink jet recording method.
2. Related Art
In the related art, an ink jet recording apparatus which ejects minute ink droplets from nozzles of a recording head and causes the ink droplets to adhere to a recording medium to record images and characters is known. As an ink composition used for such recording, a water-based (aqueous) ink composition obtained by dispersing or dissolving pigment, resin, or the like in water is known. Furthermore, a non-water-based (oil-based) ink composition obtained by dispersing or dissolving pigment, resin, or the like in an organic solvent without water has been developed.
Among such ink compositions for ink jet recording, the non-water-based ink composition is suitably used since it is possible to form images with satisfactory fixability and abrasion resistance on a film of vinyl chloride or the like and to suppress occurrence of curl and the like of papers such as an ordinary paper.
For example, JP-A-2012-12432 discloses usage of an oil-based ink jet ink, which contains a solvent such as a hydrocarbon-based solvent, diester, or higher alcohol, to perform printing on an ordinary paper such as a PPC sheet, and there is a description that by using the oil-based ink jet ink, it is possible to enhance permeability of the ink and to suppress contamination of a printed object which occurs during roller transfer. In addition, JP-A-2012-46671 discloses a non-water-based or water-based ink jet ink which contains an amide-based solvent, and there is a description that by using the ink jet ink, it is possible to obtain an image with a satisfactory drying property. Moreover, JP-A-2010-18730 discloses usage of a solvent-based ink jet ink composition, which contains three types of alcohol-based solvents with different boiling points, to perform printing on a non-absorbable material, and there is a description that by using the ink composition, it is possible to obtain an image with satisfactory drying property.
However, although it is possible to enhance the drying property of the obtained image by using the aforementioned solvents disclosed in JP-A-2012-12432 and JP-A-2010-18730, a meniscus portion of each nozzle in a recording head is easily affected by dryness, which brings about deterioration in recording stability. In addition, the solvent disclosed in JP-A-2012-46671 degrades the drying property of the image due to high moisture absorbency over time. As described above, enhancement of a drying property of a recorded image and maintenance of excellent recording stability, due to which nozzle clogging and the like can be suppressed, are in a trade-off relationship, and it is difficult to satisfy both the performances in high levels.
Here, it is possible to reduce occurrence of ejection failures of a nozzle, which ejects ink for forming an image, from among nozzles in a recording head to some extent since the nozzle continuously ejects the ink. In contrast, a nozzle which does not eject ink for forming an image particularly tends to cause an ejection failure with an increase in viscosity of the ink which adheres to the nozzle.
Incidentally, there is a case where abrasion resistance of a recorded image deteriorates depending on a type of a solvent contained on a non-water-based ink or a type of a recording medium used. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a security device.
A large number of security devices are provided in relation to high-security documents, in particular identity documents like passports, identity cards, driving licenses and the like as well as payment means like credit cards, bank notes and the like. This involves, for example, the provision of security devices which are visible to the human eye like holograms. In addition, there are also provided security devices which are not visible to the human eye or which are visible only under special light and which are produced, for example, by dye pigments introduced into the high-security document.
WO 94/28444 A1 and WO 95/02200 A1 describe the production and function of diffractive security features produced by the combination of various conventional diffractive security features like pixelgrams, kinegrams, mathematical holograms and the like. In the case of WO 95/02200 A1 the combination is generated by the superpositioning of the associated grating structures in at least one part of the surface of the combined security feature. WO 94/28444 A1 in contrast relates to a pixelated security feature whose individual pixels are subdivided into subpixels, wherein each individual one of those subpixels is configured in accordance with precisely one of the original security features. The totality of the subpixels is thus subdivided into groups of subpixels, wherein each group represents precisely one of the original security features. In that case the arrangement of the subpixels of a group follows a regular pattern as the association of the subpixels with the respective group remains the same within the higher-level pixels of the combined security feature.
Both WO 94/28444 A1 and also WO 95/02200 A1 thus describe possible ways of superpositioning various diffractive security features in such a way that the viewer can perceive those features on the same surface, wherein the visibility of the individual features is influenced by the combination of illumination and observation angles.
WO 2010/115936 discloses a security device which is particularly suitable for payment means. It has a reflection layer like an aluminum film on the top side of which is arranged a multiplicity of diffractive surface elements. The individual surface elements have a sinusoidal surface structure for producing a diffraction grating. The individual surface elements in that case are of such a configuration that incident light is diffracted in such a way as to give the observer an impression similar to natural asterism. An observer thus sees, for example, a star-shaped symbol which rotates about itself in an image plane.
A security device with another movement effect is described in WO 02/03109. This involves a holographic optically variable image which is produced by a grating structure which is continuously variable as a function of location. The representation of that image follows a predetermined path when the security device is tilted in a first direction. To achieve a sharp image when viewing under white light in that case only a narrow wavelength range is shown in the manner of a rainbow hologram, the wavelength range depending on the rotation of the security device perpendicularly to the first direction. In the case of a tilting movement in that second direction therefore no movement is observed, but instead a change in color. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an inkjet printing apparatus and more particularly to an inkjet printing apparatus in which the contents of an ink tank are stirred.
2. Description of the Related Art
An inkjet printing apparatus may use pigment ink for printing. If the pigment ink is left as it is, pigment ingredients are settled out in an ink tank, resulting in uneven concentration distribution in the ink tank. Printing using the ink tank in which the concentration distribution is uneven may cause unevenness in density in a printed image and hence image quality degradation.
Japanese Patent Laid-Open No. 2010-208151 discloses a technique for a printing apparatus including a sub tank and a main tank, in which the contents of an ink tank filled with pigment ink are stirred at regular intervals. In the printing apparatus disclosed in Japanese Patent Laid-Open No. 2010-208151, the sub tank is provided with an atmosphere communicating passage communicating with the atmosphere, and an air chamber is provided in the atmosphere communicating passage so as to prevent the ink from leaking through the atmosphere communicating passage. In addition, an atmosphere communicating valve is disposed in an opening communicating with the atmosphere in the atmosphere communicating passage. In such a printing apparatus, the atmosphere communicating valve is closed, and an open/close valve in an ink flow path is opened and closed to produce a flow of the ink in the ink tank and the sub tank and thereby stir the ink.
According to Japanese Patent Laid-Open No. 2010-208151, as described above, the flow of the ink in the main tank and the sub tank is utilized to stir the ink in the ink tank, thereby suppressing unevenness in density due to unevenness of concentration distribution in the ink tank.
In the inkjet printing apparatus disclosed in Japanese Patent Laid-Open No. 2010-208151, however, air is always present between the sub tank and the atmosphere communicating valve. Therefore, even if an attempt is made to stir the ink by producing the flow in the main tank and the sub tank by opening and closing the open/close valve, the air between the sub tank and the atmosphere communicating valve acts as a damper to reduce stirring efficiency.
Consequently, there exists a problem of the flow taking place unsuccessfully in the ink tank, resulting in insufficient stirring. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to semiconductor devices and methods of manufacturing thereof. More particularly, the present invention relates to a semiconductor device with an isolation insulator capable of being miniaturized and highly integrated without deterioration in the electric characteristics, and a method of manufacturing thereof.
2. Description of the Background Art
Semiconductor devices represented such as by DRAMs (Dynamic Random Access Memories) are conventionally known. FIG. 31 is a schematic cross sectional view showing a conventional semiconductor device.
Referring to FIG. 31, the semiconductor device includes a field effect transistor formed at a main surface of a semiconductor substrate 101. At the main surface of semiconductor substrate 101, an LOCOS (Local Oxidation of Silicon) isolation oxide film 129 is formed to isolate conductive regions. The source/drain regions 103a, 103b of the field effect transistors are formed in the conductive regions. In channel regions adjacent to source/drain regions 103a, 103b, gate insulation films 104a, 104b are formed on the main surface of semiconductor substrate 101. Gate electrodes 105a to 105c are formed on gate insulation films 104a, 104b and isolation oxide film 129. Gate electrode side walls 107a to 107dare formed on the side surfaces of gate electrodes 105a to 105c. An interlayer insulation film 109 is formed on gate electrodes 105a to 105c and gate electrode sidewalls 107a to 107d. In a region on source/drain regions 103a, 103b, contact holes 110a, 110b are formed in interlayer insulation film 109. In contact holes 110a, 110b and on interlayer insulation film 109, interconnections 111a, 111b are formed to electrically connect to source/drain regions 103a, 103b. A second interlayer insulation film 112 is formed on interlayer insulation film 109 and interconnections 111a, 111b.
In recent years, miniaturization and integration of semiconductor devices have increasingly been demanded. Recently, the gate length of a field effect transistor in the semiconductor device as shown in FIG. 31 has been required to be as small as about 0.18 xcexcm. The inventors found out that problems as described below occur as semiconductors continue to be highly integrated and miniaturized. Referring to FIG. 32, the problems will be described in detail below.
FIG. 32 is a schematic cross sectional view for describing a method of manufacturing the semiconductor device shown in FIG. 31. As shown in FIG. 32, isolation oxide film 129 and source/drain regions 103a, 103b are formed at the main surface of semiconductor device 101 by a method similar to conventional methods of manufacturing a semiconductor device. Similarly, gate insulation films 104a, 104b, gate electrodes 105a to 105c, gate electrode sidewalls 107a to 107d and first interlayer insulation film 109 are formed on the main surface of semiconductor substrate 101. Then, a resist pattern 123 is formed on interlayer insulation film 109. By removing interlayer insulation film 109 through etching using resist pattern 123 as a mask, contact holes 110a, 110b are formed.
When the gate length of the field effect transistor is as fine as 0.18 xcexcm, the positioning accuracy of contact holes 110a, 110b are required to be higher than ever. However, the positions of contact holes 10a, 110b may be shifted from their prescribed positions such as by mask alignment errors in forming resist pattern 123 and the like. As shown in FIG. 32, ends 134a, 134b of isolation oxide film 129 may be removed during etching for forming contact holes 110a, 110b.
After the step shown in FIG. 32, resist pattern 123 is removed. Then, interconnections 111a, 111b (see FIG. 33) formed of doped polysilicon, for example, are formed in contact holes 110a, 110b and on first interlayer insulation film 109. By forming second interlayer insulation film 112 (see FIG. 33) on interconnections 111a, 111b and first interlayer insulation film 109, the semiconductor device as shown in FIG. 33 can be obtained. Here, FIG. 33 is a schematic cross sectional view showing the semiconductor device manufactured by the manufacturing method shown in FIG. 32.
Referring to FIG. 33, the ends of isolation oxide film 129 are partially removed during etching for forming contact holes 110a, 110b, and the width W of isolation oxide film 129 is made smaller than a designed value. Here, a parasitic transistor is formed of which gate electrode is gate electrode 105c, which gate insulation film is isolation oxide film 129, and which source/drain regions are source/drain regions 103a, 103b. The width of isolation oxide film 129 corresponds to the gate length of the parasitic transistor. Since the gate length is made smaller than a desired value, the threshold voltage of the parasitic transistor becomes lower than a designed value. Accordingly, a junction leakage current in this semiconductor device becomes undesirably larger than a designed value. A large junction leakage current causes a malfunction of a semiconductor device circuit as an example, a cause of deteriorating the electric characteristics of a semiconductor device. These problems have become serious as semiconductor devices continue to be miniaturized and integrated.
One object of the present invention is to provide a semiconductor device capable of suppressing increase in the junction leakage current and preventing deterioration in the electric characteristics even when the device is miniaturized.
Another object of the present invention is to provide a method of manufacturing a semiconductor device capable of suppressing increase in the junction leakage current and preventing deterioration in the electric characteristics even when the device is miniaturized.
A semiconductor device according to a first aspect of the present invention includes a semiconductor substrate, an isolation insulator, a gate electrode, a coating film, an interlayer insulation film, and a sidewall coating film. The semiconductor substrate has a main surface. The isolation insulator is formed at the main surface of the semiconductor substrate and isolates a conductive region. The gate electrode is formed in the conductive region. The coating film is formed on the isolation insulator, has a sidewall, and has a film thickness of at most that of the gate electrode. The interlayer insulation film is formed on the coating film. The sidewall coating film is formed on the sidewall of the coating film and includes a material having an etching rate different from that of the interlayer insulation film.
Accordingly, even when a contact hole is to be formed in a region adjacent to the sidewall coating film by removing part of the interlayer insulation film, the sidewall coating film serves as a protection film for preventing damage to the isolation insulator by etching. Thus, even if the position of a mask for etching is varied in the step of forming the contact hole, damage to the isolation insulator by etching can be prevented. As a result, removal of part of the isolation insulator by etching can be prevented, which can prevent reduction in the width of the isolation insulator. Thus, increase in the junction leakage current in the semiconductor device, which is due to reduction in the width of the isolation insulator, can be prevented. Therefore, deterioration in the electric characteristics of a semiconductor device, which is due to increase in the junction leakage current, can be prevented.
If the sidewall of the contact hole has its bottom partially including the sidewall coating film, the bottom area of the contact hole can be changed by changing the film thickness of the sidewall coating film. The film thickness of the sidewall coating film can be changed by changing the height of the coating film sidewall, which is brought out by changing the film thickness of the coating film. As a result, the bottom area of the contact hole can be changed arbitrarily by changing the film thickness of the coating film.
Since the film thickness of the sidewall coating film can be changed even by changing an angle formed by the sidewall of the coating film and the main surface of the semiconductor substrate, the bottom area of the contact hole can be changed arbitrarily similarly to the above case.
Since the coating film is formed on the isolation insulator, the planarity of the upper surface of the interlayer insulation film can be improved compared with a case where the coating film is not formed, even when the interlayer insulation film is to be formed to extend from the coating film to the gate electrode. As a result, a step portion can be prevented from being formed at the upper surface of the interlayer insulation film due to existence of the gate electrode. Thus, interconnections and the like formed on the interlayer insulation film can be prevented from being disconnected due to the step portion.
In the semiconductor device according to the first aspect, it is preferred that the angle formed by the sidewall of the coating film and the main surface of the semiconductor substrate is at least 60xc2x0 and at most 90xc2x0.
In this case, the sidewall coating film can be formed reliably.
In the semiconductor device according to the first aspect, it is preferred that the distance between the main surface of the semiconductor substrate and the upper surface of the coating film is at least 50 nm and at most 100 nm.
In this case, especially in the semiconductor device including a minute field effect transistor with a gate length of approximately 0.18 xcexcm, the sidewall coating film can be formed reliably and the planarity of the upper surface of the interlayer insulation film can be improved.
In the semiconductor device according to the first aspect, the isolation insulator may include an insulation film that is filled in a trench formed at the main surface of the semiconductor substrate.
In the semiconductor device according to the first aspect, the isolation insulator may include an oxide film that is formed by thermally oxidizing the main surface of the semiconductor substrate.
In the semiconductor device according to the first aspect, the conductive region may include a silicide layer.
In this case, the coating film can be used as a mask for forming the silicide layer as described in the method of manufacturing a semiconductor device below. Even when the coating film is to be formed, therefore, increase in the number of manufacturing steps can be suppressed. As a result, increase in the manufacturing cost of a semiconductor device can be prevented.
A semiconductor device according to a second aspect of the present invention includes a semiconductor substrate, an isolation insulator, an interlayer insulation film, and a sidewall coating film. The semiconductor substrate has a main surface. The isolation insulator is formed at the main surface of the semiconductor substrate, has a sidewall, and isolates a conductive region. The interlayer insulation film is formed on the isolation insulator. The sidewall coating film is formed on the sidewall of the isolation insulator and includes a material having an etching rate different from that of the interlayer insulation film. The isolation insulator includes upper and lower insulators. The upper insulator is placed over the main surface of the semiconductor substrate and has the sidewall. The lower insulator connects to the upper insulator and is placed under the main surface of the semiconductor substrate. The film thickness of the upper insulator is at least that of the lower insulator.
Accordingly, even when a contact hole is to be formed in a region adjacent to the sidewall coating film by removing part of the interlayer insulation film, the sidewall coating film selves as a protection film for preventing damage to the isolation insulator by etching. Thus, even if the position of a mask for etching is varied in the step of forming the contact hole, damage to the isolation insulator by etching can be prevented. As a result, removal of part of the isolation insulator by etching can be prevented, which can prevent reduction in the width of the isolation insulator. Thus, increase in the junction leakage current in the semiconductor device, which is due to reduction in the width of the isolation insulator, can be prevented. Therefore, deterioration in the electric characteristics of the semiconductor device, which is due to increase in the junction leakage current, can be prevented.
Since the film thickness of the upper insulator is at least that of the lower insulator, the sidewall coating film can be formed easily on the sidewall of the upper insulator.
If the sidewall of the contact hole has its bottom partially including the sidewall coating film, the bottom area of the contact hole can be changed by changing the film thickness of the sidewall coating film. The film thickness of the sidewall coating film can be changed by changing the height of the upper surface of the upper insulator, which is brought about by changing the film thickness of the upper insulator. As a result, the bottom area of the contact hole can be changed arbitrarily by changing the film thickness of the upper insulator.
Since the film thickness of the sidewall coating film can be changed even by changing an angle formed by the sidewall of the upper insulator and the main surface of the semiconductor substrate, the bottom area of the contact hole can be changed arbitrarily similarly to the above case.
In the semiconductor device according to the first or second aspect, the sidewall coating film may include a silicon nitride film.
In this case, the sidewall coating film includes a silicon nitride film having an etching rate different from that of a silicon oxide film that is generally used as an interlayer insulation film. Accordingly, the isolation insulator can be protected reliably by the sidewall coating film even during etching for forming a contact hole.
In the semiconductor device according to the first or second aspect, the sidewall coating film may include non-doped silicate glass.
In this case, the sidewall coating film includes non-doped silicate glass having an etching rate different from that of a silicon oxide film that is generally used as a interlayer insulation film. Accordingly, damage to the isolation insulator during etching for forming a contact hole can be prevented more reliably.
In the semiconductor device according to the first or second aspect, the sidewall coating film may include a low pressure TEOS oxide film.
In this case, the sidewall coating film includes a low pressure TEOS (low-pressure Tetra Ethyl Ortho Silicate) oxide film having an etching rate different from that of a silicon oxide film that is generally used as an interlayer insulation film, damage to the isolation insulator by etching can be prevented more reliably.
In a method of manufacturing a semiconductor device according to a third aspect of the present invention, an isolation insulator for isolating a conductive region is formed at a main surface of a semiconductor substrate. In the conductive region, a gate electrode is formed on the main surface of the semiconductor substrate. On the isolation insulator, a coating film is formed which has a sidewall and a film thickness of at most that of the gate electrode. A sidewall coating film is formed on the sidewall of the coating film.
Accordingly, a semiconductor device having a sidewall coating film can be formed easily.
Even when a contact hole is to be formed in a region adjacent to the sidewall coating film by forming an interlayer insulation film on the conductive region and removing part of the interlayer insulation film, the sidewall coating film can be used as a protection film for protecting the isolation insulator. Thus, partial removal of the isolation insulator by etching can be prevented. As a result, increase in the junction leakage current, which is due to partial removal of the isolation insulator, can be prevented. Therefore, deterioration in the electric characteristics of the semiconductor device can be prevented.
In the method of manufacturing a semiconductor device according to the third aspect, the step of forming the isolation insulator may include forming a resist pattern on the semiconductor substrate, forming a trench at the main surface of the semiconductor substrate by removing part of the main surface of the semiconductor substrate using the resist pattern as a mask, and filling an insulation film in the trench.
In the method of manufacturing a semiconductor device according to the third aspect, the step of forming the isolation insulator may include forming an antioxidant film on a region to be a conductive region, and thermally oxidizing the main surface of the semiconductor substrate in a region other than the region where the antioxidant film is formed.
The method of manufacturing a semiconductor device according to the third aspect of the present invention may include the step of forming a silicide layer in the conductive region using the coating film as a mask.
In this case, the coating film is used as a mask and there is no need to separately prepare a mask for forming the silicide layer. As a result, the number of manufacturing steps of a semiconductor device can be reduced compared with a case where a mask is separately prepared.
In the method of manufacturing a semiconductor device according to the third aspect, the gate electrode may have a side surface, and the step of forming the sidewall coating film may include forming a sidewall insulation film on the side surface of the gate electrode.
In this case, the sidewall insulation film and the sidewall coating film can be formed simultaneously and the number of manufacturing steps of a semiconductor device can be reduced.
In a method of manufacturing a semiconductor device according to a fourth aspect of the present invention, an isolation insulator isolating a conductive region and having a sidewall is formed at a main surface of semiconductor substrate. A sidewall coating film is formed on the sidewall of the isolation insulator. The isolation insulator includes upper and lower insulators. The upper insulator is placed over the main surface of the semiconductor substrate and has the sidewall. The lower insulator connects to the upper insulator and is placed under the main surface of the semiconductor substrate. The film thickness of the upper insulator is at least that of the lower insulator.
Accordingly, a semiconductor device that has an isolation insulator including a sidewall coating film can be formed easily.
Even when a contact hole is to be formed in a region adjacent to the sidewall coating film by forming an interlayer insulation film on the conductive region and removing part of the interlayer insulation film through etching, the sidewall coating film can be used as a protection film for the isolation insulator during etching. Thus, partial removal of the isolation insulator by etching can be prevented. As a result, increase in the junction leakage current in the semiconductor device, which is due to partial removal of the isolation insulator, can be prevented. Therefore, deterioration in the electric characteristics of the semiconductor device can be prevented.
The method of manufacturing a semiconductor device according to the fourth aspect may include, prior to the step of forming the isolation insulator, the processing step of making the main surface of the semiconductor substrate in a region where the conductive region is formed lower than the main surface of the semiconductor device in a region where the isolation insulator is formed.
In this case, the main surface of the semiconductor substrate in the region where the isolation insulator is formed can be made higher than the main surface of the semiconductor substrate in the region where the conductive region is formed in the step of forming the isolation insulator. Thus, the film thickness of the upper insulator of the isolation insulator can reliably be made to have the film thickness of at least that of the lower insulator.
Further, an angle formed by the main surface of the semiconductor substrate and the sidewall of a step portion between the region where the isolation insulator is formed and the region where the conductive region is formed can be changed in the processing step. When the isolation insulator is to be formed by thermally oxidizing the main surface of the semiconductor substrate, change in the angle formed by the sidewall of the step portion and the main surface of the semiconductor substrate also changes an angle formed by the sidewall of the isolation insulator and the main surface of the semiconductor substrate. As a result, the angle formed by the sidewall of the isolation insulator and the main surface of the semiconductor substrate can be change easily.
The method of manufacturing a semiconductor device according to the fourth aspect may further include the step of forming a gate electrode having a side surface in the conductive region. The step of forming the sidewall coating film may include forming a sidewall insulation film on the side surface of the gate electrode.
In this case, the sidewall insulation film can be formed simultaneously with the sidewall coating film, and increase in the number of manufacturing steps of a semiconductor device can be prevented. Thus, increase in the manufacturing cost of a semiconductor device can also be prevented.
In the method of manufacturing a semiconductor device according to the third or fourth aspect, the sidewall coating film may include a silicon nitride film.
In this case, the sidewall coating film includes a silicon nitride film having an etching rate different from that of a silicon oxide film that is generally used as an interlayer insulation film. Thus, the sidewall coating film serves as a protection film for the isolation insulator even during etching for forming a contact hole in the interlayer insulation film. As a result, damage to the isolation insulator by etching can be prevented reliably.
In the method of manufacturing semiconductor device according to the third or fourth aspect, the sidewall coating film may include non-doped silicate glass.
In this case, non-doped silicate glass of which etching rate is different from that of a silicon oxide film used as an interlayer insulation film more than it is from that of a silicon nitride film is used as the sidewall coating film. Thus, damage to the isolation insulator by etching can be prevented more reliably.
In the method of manufacturing a semiconductor device according to the third or fourth aspect, the sidewall coating film may include a low pressure TEOS oxide film.
In this case, the low pressure TEOS oxide film of which etching rate is different from that of a silicon oxide film used as an interlayer insulation film more than it is from that of a silicon nitride film is used as the sidewall coating film. Thus, damage to the isolation insulator by etching can be prevented more reliably during etching for forming a contact hole.
In a method of manufacturing a semiconductor device according to a fifth aspect of the present invention, an isolation insulator isolating a conductive region and having a sidewall is formed at a main surface of a semiconductor substrate. A gate electrode having a side surface is formed in the conductive region. A sidewall coating film is formed on the sidewall of the isolation insulator. The step of forming the sidewall coating film includes forming a sidewall insulation film on the side surface of the gate electrode.
Accordingly, the sidewall insulation film can be formed simultaneously with the sidewall coating film, and increase in the number of manufacturing steps of a semiconductor device can be prevented. Therefore, increase in the manufacturing cost of a semiconductor device can also be prevented.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
An image forming apparatus includes a base on a main body, a joint at a distal end of the base, an arm fixed to the joint, and a panel surface at a distal end of the arm. The image forming apparatus holds the panel surface on the arm using a tilt mechanism. An operation panel is allowed to move in a certain degree of a range by the joint and the tilt mechanism.
Further, an image forming apparatus with a finisher includes paper discharge destinations on both the left and right sides. The image forming apparatus discharges a sheet onto a tray on the right side and discharges a sheet onto a tray on the upper side of the finisher on the left side.
The paper discharge destination for a print by the image forming apparatus is selected by a user input to the operation panel. An attribute of a sheet, designation of a side of a sheet to be discharged, and the like are switched and input to the operation panel.
However, a moving range of the operation panel is limited. A position of panel operation and a position where a sheet is discharged are far apart from each other. Operability of the operation panel by the user is not high. This is inconvenient for the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
Embodiments of the present disclosure relates to circuit simulating systems and methods, and more particularly, to a system and a method for checking the distance between two differential pairs in a printed circuit board (PCB) layout.
2. Description of Related Art
In a PCB layout, for high-speed differential lines, the distance between two differential pairs laid in two adjacent signal layers should satisfy design standards. However, checking the distance between two differential pairs laid in two adjacent signal layers is often done visually by a technician, which is not only time-consuming, but also error-prone. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to a tantalum capacitor and a method of manufacturing the same.
A tantalum (Ta) material is a metal widely used in various industrial fields such as space and military fields, and the like, as well as electrical, mechanical, and chemical fields due to mechanical or physical properties thereof such as a high melting point, excellent flexibility and corrosion-resistance, and the like.
Since such a tantalum material may form a stable anodic oxide film, the tantalum material has been widely used as a positive electrode material of a small capacitor. Recently, in accordance with the rapid development of information technology (IT) industries such as electronic and info-communications industries, the amount of tantalum used has been rapidly increased every year.
Generally, a capacitor refers to a condenser temporarily storing electricity therein and is a component in which two flat plate electrodes insulating from each other are allowed to approach each other, while having a dielectric substance interposed therebetween, and electrical charges are charged and accumulated therein by attractive force. Such a capacitor may store electric charges and electrical fields in a space formed by two conductors, and may be used to obtain capacitance.
A tantalum capacitor using the tantalum material has a structure using an empty gap generated at the time of sintering and hardening a tantalum power and may be completed by forming a tantalum oxide (Ta2O5) on a tantalum surface using an anodic oxidation method, forming a manganese dioxide (MnO2) layer, which is an electrolyte, on the tantalum oxide serving as a dielectric substance, forming a carbon layer and a metal layer on the manganese dioxide layer to form a body, forming positive and negative electrodes on the body to mount the electrodes on a circuit board, and forming a molding part.
A tantalum capacitor according to the related art has a structure in which a terminal is exposed to the outside using an internal lead frame or without the frame in order to connect the tantalum material and an electrode to each other.
In the case of a structure using internal lead frames, a space occupied by the tantalum material in the molding part may be decreased by the internal lead frames configuring the positive and negative electrodes, and a limitation in capacitance may be caused since the capacitance is in proportion to a volume of the tantalum material.
In the case of the structure in which the terminal is exposed to the outside without the frame, since a plurality of materials in contact with the tantalum material are present, contact resistance is increased by the plurality of contact materials, such that equivalent series resistance (ESR) of the capacitor may be increased.
Further, in the case of the structure in which the terminal is exposed to the outside without the frame, since a negative electrode terminal is positioned at a side of a product, a welding distance for forming a solder needs to be secured between the tantalum material and the negative electrode terminal, such that an internal volume ratio of the tantalum material may be decreased. Therefore, the capacitance may be decreased. | {
"pile_set_name": "USPTO Backgrounds"
} |
Systems for holding tableware to a table or support surface are known. Particularly, U.S. Pat. No. 425,768; and Published Applications US20130098924 and US20130105492, describe magnetic systems for holding tableware and drinking vessels to tables, particularly for holding these to the table in environments where external forces such as the rolling of a ship at sea or high winds during outdoor dining, would otherwise cause the tableware to be tipped over or thrown off the table.
The present inventor has recognized that it would be desirable to provide an improved system that held tableware to a table or support surface that is easy to use, easy to make compatible with existing dishes, that was flexible to make the dishes able be used in a microwave oven and cleaned in a dishwasher. | {
"pile_set_name": "USPTO Backgrounds"
} |
The domestic treatment of fabric is a problem known in the art to the formulator of laundry compositions. Hence, It is well known that alternating cycles of using and laundering fabrics and textiles, such as articles of worn clothing and apparel, will inevitably adversely affect the appearance and integrity of the fabric and textile items so used and laundered. Fabrics and textiles simply wear out over time and with use. Laundering of fabrics and textiles is necessary to remove soils and stains which accumulate therein and thereon during ordinary use. However, the laundering operation itself, over many cycles, can accentuate and contribute to the deterioration of the integrity and the appearance of such fabrics and textiles.
Deterioration of fabric integrity and appearance can manifest itself in several ways. Short fibers are dislodged from woven and knit fabric/textile structures by the mechanical action of laundering. These dislodged fibers may form lint, fuzz or “pills” which are visible on the surface of fabrics and diminish the appearance of newness of the fabric. Such a problem of fabric abrasion is even more acute after multiwash cycles.
There exists a long felt need for compositions which provide fabric with protection against damage done due to fabric abrasion. In addition, there is a long felt need to provide compositions which provide a remedy for fabric abrasion damage. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are many known types of replacement heart valves. The selection of a particular type of replacement heart valve depends on factors such as the location of the valve, the age and other specifics of the patient, and the surgeon's experiences and preferences. Commonly used replacement heart valves can be classified in the following three groups: mechanical valves; allograft tissue valves; and xenograft tissue valves.
Mechanical heart valves, including, for example and without limitation, caged-ball valves, bi-leaflet valves, and tilting disk valves are typically attached to a sewing ring so that the valve prosthesis can be sutured to the patient's native tissue to hold the mechanical valve in place postoperatively. Although mechanical heart valves have advantageous long-term durability, these mechanical valves also have a propensity to cause the formation of blood clots in a patient. If such blood clots form on the mechanical valve, they may preclude the valve from opening or closing correctly or, more importantly, may disengage from the valve and embolize to the brain, causing an embolic stroke. Thus, the patients who receive such mechanical valves are typically required to take systemic anticoagulant drugs for the rest of their lives. In addition to being expensive, these anticoagulant drugs can themselves be dangerous in that they can cause abnormal bleeding in the patient that can lead to a hemorrhagic stroke.
Allograft tissue valves are harvested from human sources, such as human cadavers. Unlike mechanical heart valves, allograft tissue valves typically do not promote blood clot formation and, therefore, avoid the need for prescribing an anticoagulant medication for the patient. However, allograft tissue valves are not available in sufficient numbers to satisfy the needs of all patients who need new heart valves. Furthermore, there have been significant complications when allograft tissue valves have been used to replace atrioventricular (AV) valves within a subject. Moreover, allograft tissue valves can be more difficult to implant than mechanical valves or xenograft valves. Because of these difficulties in implantation, the operative risk associated with allograft tissue valves is often greater than the operative risks associated with mechanical valves and xenograft valves.
Xenograft tissue valves are formed from non-human tissue sources, such as cows or pigs. Most known xenograft tissue valves are constructed by sewing and/or constructing valve leaflets from a non-human tissue source and then securing the leaflets within a patient's heart using a stent and/or a sewing ring. These xenograft tissue valves are less likely to cause blood clot formation than comparable mechanical valves, and therefore, patients that receive xenograft tissue valves are not always required to take anticoagulant medications. However, xenograft tissue valves are prone to calcification and lack the long-term durability of mechanical valves and, consequently, require frequent replacement as compared to mechanical valves. One factor that may contribute to these failures is the chemical treatment that the xenograft tissue valves typically undergo to reduce antigenicity of the animal tissue. Without these chemical treatments, xenograft tissue valves can trigger an immune response in a patient, which can lead to rejection of the tissue valve by the patient. Another factor that may contribute to the lack of durability of the xenograft tissue valves is the presence of a stent and/or sewing ring, which can prevent the xenograft tissue valve from accurately approximating the anatomy of a normal heart valve.
Known tissue conduits, including those described in U.S. Pat. Nos. 5,480,424 and 5,713,950, both of which are expressly incorporated herein by reference in their entirety, suffer from various limitations, including many of the limitations of known xenograft tissue valves. For example, known tissue conduits suffer from antigenicity of the conduits, which is typically addressed using chemical treatments that lessen post-implantation durability of the conduit. Additionally, these known conduits are rapidly degraded within a patient's heart such that they can only serve as competent heart valve replacements for a matter of months.
Thus, what is needed in the art is a readily available, highly durable, and affordable tissue prosthesis that can be easily implanted to regenerate an anatomically accurate AV valve within the heart of a subject. There is a further need in the art for a sterile, acellular tissue prosthesis that can be implanted to regenerate an AV valve within the heart of a subject. | {
"pile_set_name": "USPTO Backgrounds"
} |
In many industrial processes, control of film thickness is of critical importance. For example, the manufacture of photographic film requires the generation of a uniform layer of emulsion on a backing. From the point of view of process control, it is advantageous to be able to measure the film thickness during the film generation process rather than measuring the film in a laboratory after the film has been manufactured. If samples are measured off-line, correction of any machinery malfunction cannot be performed until after a considerable volume of defective material has been processed. This leads to waste. For the purposes of the present discussion, the term "film" includes sheets and webs.
Prior art methods for measuring film thickness may be divided into contact and non-contact methods. In one contact method, a micrometer that comes in physical contact with both sides of the film is employed. These methods have the disadvantage of physically deforming the film during the measurement leading to inaccurate measurements and possible damage to the film from pitting or scratching. In addition, the methods are difficult to apply for the on-line measurement of fast moving film webs.
Non-contact methods based on the attenuation of a beam of subatomic particles or radiation such as beta particles or gamma rays are also known to the prior art. For example, the attenuation of a beam of electrons by the film is used to determine the film thickness in one prior art method of this type. This methodology has four disadvantages. First, the system must be calibrated for each type of film, since the attenuation depends on the chemical composition and density of the film. Second, the system typically relies on a radioactive source to generate the particle beam. It is generally desirable to limit the use of radioactive material for cost, safety, and psychological reasons. Third, access is normally required to both sides of the film so that the source can be placed on one side and the detector on the other. Finally, this method cannot determine the individual thicknesses in a multi-layer film.
Methods for measuring the thickness of films using an optical autocorrelator are also known to prior art. For the purposes of this discussion, an optical autocorrelator is defined to be an interferometer having a variable differential time delay. One embodiment of an optical autocorrelator is described, for example, in chapter 5 of Statistical Optics, by Joseph W. Goodman (John Wiley & Sons, 1985, pp. 157-170). Those skilled in the art are aware of the principles of operation of an optical autocorrelator, but certain principles will be clarified here because of their relevance to this patent. In an autocorrelating interferometer wherein light is split into two different paths and then recombined and directed to a photodiode, the detected light intensity is measured as a function of a parameter. This parameter can be the differential optical path length .DELTA.L of the interferometer or it can be the differential time delay .DELTA.t of the interferometer. These parameters are related by .DELTA.L=nc.DELTA.t, where c is the speed of light in vacuum and n is the group index of the medium (usually air) of the differential optical path. The detected light intensity expressed as a function of the differential time delay is called the coherence function of the input light. Hence, a receiver which determines the time delay between light reflected from different surfaces of a film performs the same function as a receiver which determines the path delay between light reflected from different surfaces of a film. Determining the spacing between peaks in the coherence function of the reflected light is yet another way to describe the same function. For the purposes of the present discussion, the term differential time delay shall include differential path delay.
A Michelson interferometer is an example of such an autocorrelator. An example of an apparatus for measuring film thickness which utilizes a Michelson interferometer is taught in U.S. Pat. No. 3,319,515 to Flournoy. In this system, the film is illuminated with a collimated light beam at an angle with respect to the surface of the film. The front and back surfaces of the film generate reflected light signals. The distance between the two reflecting surfaces is then determined by examining the peaks in the autocorrelation spectrum generated in a Michelson interferometer that receives the reflected light as its input. Unfortunately, this method can determine only the product of the group index and the film thickness. If a variation is detected in this quantity, additional measurements must be made to determine if the film composition has changed or the thickness has changed. The group index is defined to be the ratio of the propagation velocity of a light pulse in the medium relative to the velocity of propagation of the pulse in a vacuum.
If the film consists of a number of layers having different thicknesses or indicies of refraction, the above method cannot always provide an unambiguous answer with respect to the product of the thickness and index of refraction for each layer. The output of the autocorrelating interferometer consists of a number of peaks whose locations depend n the difference in optical path length for each possible pair of reflecting boundaries. As the number of boundaries increases, the number of peaks increases rapidly. For example, a three layer film will generate an output having 13 peaks corresponding to the various "single pass" reflections in the system described above. There will be additional peaks corresponding to light that is reflected more than once in the film.
Broadly, it is the object of the present invention to provide an improved apparatus and method for measuring the thickness and index of refraction of a thin film.
It is a further object of the present invention to a system that does not require contact between the film and the measuring device.
It is a still further object of the present invention to provide a system that is independent of length variations in the fiber leads and, in the case of a single layer film, can also accommodate flutter in the film.
It is yet another object of the present invention to provide a system that can determine both the group index and the film thickness independently.
It is a still further object of the present invention to provide a system that can determine the thicknesses of the various layers in a multi-layer film.
These and other objects of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) are molecules produced by a variety of cells, such as monocytes and macrophages, which have been identified as mediators of inflammatory processes. Cytokines, including TNF, regulate the intensity and duration of the inflammatory response which occurs as the result of an injury or infection. Elevated levels of TNF play an important role in pathologic inflammation. TNF also referred to as (TNFα) has been implicated in the pathophysiology of a variety of human diseases and disorders, including sepsis, infections, autoimmune diseases, transplant rejection and graft-versus-host disease (see e.g., Moeller et al. (1990) Cytokine 2:162; U.S. Pat. No. 5,231,024 to Moeller et al.; European Patent Publication No. 260 610 B1 by Moeller, A. et al.; Vasilli (1992) Annu. Rev. Immunol. 10:411; Tracey and Cerami (1994) Annu. Rev. Med. 45:491).
TNF has been implicated in psoriasis. Expression of TNF-induced proteins and the presence of activated T lymphocytes in psoriatic plaques but not uninvolved skin, suggest their involvement in the pathogenesis of the disease. There are several types of psoriasis according to cutaneous manifestations: plaque psoriasis, guttate psoriasis, erythrodermic psoriasis, generalized pustular and localized pustular psoriasis. Plaque psoriasis is the most common type, however. Treatment of psoriasis depends on the extent of the disease. Topical corticosteroids are commonly used for mild to moderate localized cases. Keratolytic agents and coal tar are also used as topical medications, and phototherapy is commonly used for more widespread disease. Other systemic therapy, such as methotrexate cyclosporine and synthetic retinoids are effective, but are often administered in rotation due to their possible cumulative toxic effect.
TNF has also been implicated in Crohn's disease. Crohn's is diagnosed on the basis of clinical, endoscopic, radiographic, and histologic criteria. The treatment of Crohn's disease is challenging. Treatment is based on location, extent, and severity of disease. Current compounds and regimens do not completely abate the inflammatory process and have significant side effects. | {
"pile_set_name": "USPTO Backgrounds"
} |
With the emergence of 3G mobile telephony, new packet-based communication technologies have been developed to support multimedia communication. For example, GPRS (General Packet Radio Service) and WCDMA (Wideband Code Division Multiple Access) technologies support wireless multimedia telephony services involving packet-switched communication of data representing images, text, documents, animations, audio files, video files, etc., in addition to traditional circuit-switched voice calls.
Multimedia services typically entail transmission of encoded data representing text, documents, images, audio files and video files in different formats and combinations. The term “multimedia” will be used in this description as generally referring to any choice of media communicated by using the packet based IP (Internet Protocol) transport technology.
A network architecture called “IP Multimedia Subsystem” (IMS) has been developed by the 3rd Generation Partnership Project (3GPP) as an open standard for handling multimedia services and sessions in the packet domain. IMS is a platform for enabling services based on IP transport, more or less independent of the access technology used, and is neither restricted to any specific services. Thus, an IMS network controls multimedia sessions but is not used for the actual transfer of payload data which is routed over access networks and any intermediate transport networks.
FIG. 1 is a simplified schematic illustration of a basic network structure for providing multimedia services by means of an IMS service network. A first mobile terminal A is connected to a first radio access network 100 and communicates with a second mobile terminal B connected to a second radio access network 102, in a communication session S involving one or more multimedia services. There may also be an intermediate backbone network, not shown, as well linking the access networks 100 and 102.
An IMS network 104 is connected to the first radio access network 100 and handles the session with respect to terminal A. In this figure, a corresponding IMS network 106 handles the session on behalf of terminal B, and the two IMS networks 104 and 106 may be controlled by different operators. Alternatively, terminals A and B may of course be connected to the same access network and/or may belong to the same IMS network. Terminal A may also communicate with a fixed terminal or computer or server instead, e.g. for downloading some media over the Internet, as long as the other party is capable of SIP communication. Moreover, if a terminal is roaming in a visited access network, multimedia services are handled by the terminal's “home” IMS network.
The session S shown in FIG. 1 is managed by specific nodes in each IMS network, here generally referred to as “session managing nodes” 108. These nodes typically include S-CSCF (Serving Call Session Control Function), I-CSCF (Interrogating Call Session Control Function) and P-CSCF (Proxy Call Session Control Function). Each IMS network 104,106 also includes one or more application servers 110 for enabling various multimedia services. Further, a main database element HSS (Home Subscriber Server) 112 stores subscriber and authentication data as well as service information, among other things. IMS network 106 is basically similar to network 104. The various specific functions of the shown network elements 108-112 are generally known in the art, but are not necessary to describe here further to understand the context of the present invention. Of course, the IMS networks 104,106 contain numerous other nodes and functions not shown here for the sake of simplicity.
A specification for handling sessions in IMS networks has been defined called “SIP” (Session Initiation Protocol, according to the standard IETF RFC 3261). SIP is an application-layer control protocol for signalling, to create and generally handle sessions over a packet-switched logic. The SIP standard is thus used by IMS systems and SIP-enabled terminals to establish and control IF multimedia communications. SIP itself does not provide multimedia services, but rather makes available a set of primitives that other protocols or applications can use to actually implement such services.
For example, a message called “INVITE” is defined in SIP to initiate a multimedia session during session set-up, when a certain application has been invoked. The SIP INVITE message typically includes, among other things, a description of the session, i.e. information on required codec(s) and other communication parameters needed for the forthcoming session.
SIP uses an additional protocol called Session Description Protocol, SDP, for describing multimedia sessions, which can be embedded as a self-contained body within SIP messages. SDP can be used by terminals to exchange information regarding their specific capabilities and preferences, in order to negotiate and agree on which session parameters, codec's in particular, to use during a forthcoming multimedia session, as is well-known in the art. Preferred or required session parameters may be indicated as attributes referred to as “preconditions” in the SDP information.
Many mobile applications require a certain Quality of Service QoS in order to provide a satisfying result to end-users. For UMTS networks, four main traffic classes have been defined: “conversational class”, “streaming class”, “interactive class” and “background class”, in order to classify different needs regarding bit rates and delays. These traffic classes are primarily distinguished by their requirements regarding transfer delays, such that applications of the conversational class tolerate only small delays, sometimes also referred to as “real-time”, whereas the background class is applied to the least delay-sensitive applications, sometimes also referred to as “best effort”.
The selection of a UMTS traffic class for an application is used for assigning a suitable physical channel in the access network, generally referred to as a RAB (Radio Access Bearer), in order to optimise the scarce radio recourses in the access network, whilst maintaining acceptable quality for the end-user.
Mobile terminals capable of multimedia are typically configured to identify for each inherent application, a UMTS traffic class, as schematically illustrated in FIG. 2. Thus, a mobile terminal may hold a number of applications 200, denoted as A1, A2, A3, A4, A5 . . . . A mapping function 202 in the terminal translates each application to a certain UMTS traffic class 204, of which only two are shown here. In this case, applications A1, A2 and A4 are mapped to the same UMTS traffic class 2, since they have similar requirements regarding bit rate and delay, whereas applications A3 and A5 are mapped to UMTS traffic class 1. In this way, several applications with similar characteristics may be mapped onto the same RAB, fulfilling their requirements.
However, before a mobile terminal can exchange any SIP messages with the IMS network, a “PDP (Packet Data Protocol) context” must be established for the terminal. Basically, a PDP context can be activated once the terminal has been powered on. Activating a PDP context for a mobile terminal includes allocating a temporary IP address to the terminal, to be able to communicate data packets with the terminal. A PDP context also means that a physical channel is allocated in the access network, generally referred to as a RAB (Radio Access Bearer), for IP communication. Thus, SIP messages can only be sent over a PDP context.
FIG. 3 illustrates the gradual activation of a mobile terminal A about to communicate multimedia with another party B, involving basically five stages 3:1-3:5 as illustrated, each comprising various messages back and forth. These messages are well-known in the art and will not be described in any detail. Terminal A is located under radio coverage of a mobile access network 300, which is divided into a radio network part 300a and a core network part 300b.
The core network 300b shown in FIG. 3 includes a GGSN (Gateway GPRS Switching Node) 304 and a “policy unit” 306, often referred to as PDF (Policy Decision Function) or PCRF (Policy and Charging Rule Function). The policy unit is basically responsible for authorising communication sessions. Of course, network 300 contains numerous other nodes and elements that are not necessary to describe to understand the context of the present invention. For simplicity, the IMS network of terminal A is here merely represented as an “IMS core” 308, containing various nodes, not shown, involved in the procedures to be described below.
In a first stage 3:1, a basic PDP context, referred to as “primary”, is activated to obtain an IP connection. Activating the primary PDP context includes obtaining a RAB, for packet-switched SIP signalling messages over IP. The PDP context is created by GGSN 304. This RAB is typically based on so-called “best effort” communication with no particular requirements regarding bit rate and delay, since it is only intended to occasionally carry limited SIP messages.
In a next stage 3:2, terminal A registers with the IMS core 308, as basically handled by an S-CSCF node and HSS therein, not shown. The IMS registration involves a certain amount of SIP-based signalling over the primary PDP context.
Next, a multimedia session is to be established with party B in a following stage 3:3. In this stage, the above-mentioned protocol SDP is used within the SIP messages, such as INVITE, to communicate session-specific parameters including codec's, wherein some parameters may be indicated as preconditions.
Typically, a calling terminal proposes one or more codec's, along with other parameters, to use during the session, as specified in an INVITE message, and the called terminal responds by confirming a suitable proposed codec, and any other proposed parameters, in an “OK (invite)” message. Stage 3:3 further includes authorising the session in the policy unit 306, based on the session data and stored subscriber data. Stage 3:3 also includes a procedure for reserving communication resources in the mobile network 300 that are adapted to the forthcoming session with party B and according to parameters confirmed by both parties in their SIP dialogue.
The session establishment and resource reservation entail that a secondary PDP context is activated for terminal A, here indicated as a separate stage 3:4, which should be adapted for the media type(s) involved in the forthcoming session. The following QoS parameters may be indicated in the secondary PDP context: Traffic class, Maximum bit rate (uplink/downlink), Guaranteed bit rate (uplink/downlink), Transfer delay (uplink/downlink), Delivery order, Maximum SDU (Service Data Unit) size and a Source Statistic Descriptor.
The secondary PDP context is handled by GGSN in the same manner as for the primary PDP context in stage 3:1. Thus, the secondary PDP context should be defined so as to fulfil the requirements of the session with respect to the QoS parameter information as well as other factors, in order to obtain a proper RAB for media to be communicated. The new RAB is thus more stable and reliable as compared to the first one associated with the primary PDP context, and should provide a “guaranteed” QoS.
When the secondary PDP context has finally been established, the session must be acknowledged and the reserved resources be activated, as illustrated in a stage 3:5, before commencing the actual session in a final illustrated stage 3:6, over the secondary PDP context. Activating network resources is sometimes referred to as “opening of gates”.
The process of establishing a session, reserving network resources, activating the secondary PDP context and activating the reserved resources, as illustrated in stages 3:3-3:5, requires a significant amount of sequential signalling as dictated by standardised protocols. Moreover, a similar procedure must take place for the other party, at least if the other party is also a mobile terminal. In particular, stage 3:3 cannot be executed simultaneously at both sides, since the B-side in this case will reserve network resources before confirming session parameters to the B-side, according to prevailing standards. Thus, reserving network resources at the A-side must wait until confirmed session parameters have been received from the B-side.
The communication of media is thus delayed by the extensive sequential signalling required according to conventional set-up procedures for multimedia sessions. In the field of mobile communication, it is generally desirable to minimise such delays to make multimedia services more attractive to mobile end-users. For example, when using the service called “Push-to-talk over Cellular (PoC)”, which emulates a walkie-talkie service, users wish to talk immediately after pressing a push-to-talk button or similar, although this basically triggers the entire process of stages 3:3-3:5 above.
Further, the reservation of network resources is initiated by the mobile terminal and is therefore partly out of control for a network operator. It is thus generally desirable for network operators to gain full control of the allocation of network resources to different users. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to trunked radio communications systems, and in particular to a method and apparatus for trunked radio repeater communications with new and existing protocols.
Mobile radio communication systems provide for two way radio communications between a central control station and a fleet of cars, trucks, or other vehicles. Typical users of mobile radio communication systems include, for example, police departments, fire departments, taxi services and delivery services. Present mobile radio communication systems can be configured to provide for radio communications between the control station and all vehicles in a fleet, between the control station and selected vehicles in the fleet, or between different individual vehicles or groups of vehicles within a fleet.
Conventional mobile radio communication systems are typically organized with a number of vehicles and a control station assigned to a single common channel for a given coverage zone. A user assigned to the common channel must wait until no one else is transmitting on that channel before sending a message, because only one transmission at a time can be processed by a single channel. Even when a transmission is addressed to only one user in a conventional system (and therefore not heard by other users), the other users in the system must wait until that transmission is completed before they can use the system to communicate.
Mobile radio communication systems using transmission trunking are an improvement over conventional mobile radio communication systems in that trunked systems enable two or more users to communicate on the system at the same time. For instance, the dispatch console in a transmission trunked communication system can be communicating with one of the vehicles in the fleet; while, at the same time, two other vehicles in the fleet can be using the same trunked system to communicate with each other. Transmission trunked communication systems group a number of channels for the same coverage zone together into a single audio communication system, with each channel accessible to each user in the system. Because each user will only need to communicate over the trunked system part of the time, and because it is unlikely that all users will need to communicate at precisely the same time, the number of channels assigned to a trunked system group can always be less than the number of users allocated to that trunked system group.
The United States Federal Communications Commission (FCC) has assigned 600 channels in the 800 MHZ band for trunked land mobile use. Each channel is comprised of a pair of assigned frequencies, a mobile transmit frequency and a repeater transmit frequencies. Mobile transmit frequencies are 806-821 MHZ, with the repeater transmit frequencies exactly 45 MHZ above the corresponding mobile transmit frequency, or 851-866 MHZ. Channel spacing is 25 KHz, with the maximum allowed deviation between channels being xc2x15 KHz. In September 1987, the FCC also allocated 399 channels in the 900 MHZ band for trunked land mobile use. Mobile transmit frequencies are 896-901 MHZ, with the repeater transmit frequencies exactly 39 MHZ above the corresponding mobile transmit frequency, or 935-940 MHZ. Channel spacing is 12.5 KHz, with the maximum allowed deviation between channels being xc2x12.5 KHz.
In transmission trunked communication systems, a signaling protocol is used to send and receive control signals among users on each channel in the trunked system and a switching protocol is used to establish which channels those users will be communicating over. The preferred conventional transmission trunked communication system uses a signaling protocol that transmits the control signals in the subaudio band simultaneously with the transmission of voice or data information signals. Signaling protocols that can communicate control signals within the constraints of the subaudio band are preferred, because use of the subaudio band precludes the need for using a dedicated channel for transmitting the control signals (thereby reducing the number of available channels in the trunked system for voice and data communications). A switching protocol is used by the trunked system to automatically find and engage an open channel when a user initiates a transmission. To maximize the trunking capabilities of such a system, the switching protocol must efficiently allocate channels in the trunked system and avoid channels that are already in use at the time the transmission is initiated. For further explanation of the preferred conventional transmission trunked communication systems, reference is made to the description of the operation of the ClearChannel LTR(copyright) system contained in the manual entitled xe2x80x9cE. F. Johnson ClearChannel LTR Application Notexe2x80x9d, Part No. 009-0001-020 (Rev. 5, October 1988), available from E. F. Johnson Company, Waseca, Minn., which is fully incorporated by reference herein.
A substantial amount of LTR-compatible equipment is currently in use, however, the LTR system does not provide modem network-based communication functionality. For example, the LTR protocol is limited and does not support new and special functions for network-based communications. Furthermore, the LTR protocol does not support advanced channel selection functions.
Another drawback of the LTR system is that LTR communications are conducted on a predetermined set of fixed transmission frequencies. Therefore, the number of communication channels available at any given time in an LTR system are fixed. Additionally, the receive and transmit channels in an LTR system are always at a predetermined offset frequency. Therefore, the LTR protocol does not provide flexible use of communications bandwidth.
Yet another drawback of the LTR system is that it was designed to accommodate a limited number of subscribers and a predetermined number of commands. Modern communication networks provide a number of new features which cannot be exercised using mature communication protocols, such as LTR.
New transmission trunked communications systems have been proposed which incorporate advances in network communications. For example, the E. F. Johnson MULTINET(tm) system, part of which is described in U.S. Pat. No. 5,159,701 to Barnes, et al., provides for, among other things, distributively interconnecting a plurality of land mobile trunked transmission communication systems into a wide area network. However, this system is not compatible with traditional LTR systems.
There is a need in the art for a trunked radio repeater communication system which provides sophisticated network-based communications. This system should provide flexibility to channel assignments for both reception and transmission frequencies. The system should also provide for a large number of subscribers. Also, the system should support a variety of new commands and features. Finally, the system should support and allow for LTR communications such that existing LTR subscribers can communicate in the system with minimal interference issues.
The present invention satisfies the aforementioned and other needs by providing a trunked radio communication repeater system including a protocol for communications by a large number of users. In one embodiment, the protocol includes a plurality of word formats for communications between one or more repeaters and the or more subscribers, each word format including a synchronization code for receiver synchronization, a type code indicating a first word format and a second word format and compatible with protocols using an area code to identify subscribership to a particular repeater site, and a checksum code to error check communicated words; where the first word format further includes a channel in use code to identify a channel in use, a home code identifying a home channel, a group code providing a code for one or more groups of subscribers, and a free code identifying a free channel; and wherein the second word format further includes function specific codes to perform a plurality of functions. In one embodiment, the communications protocol is compatible with Logic Trunked Radio (LTR) communications. In one embodiment, the first word format supports Logic Trunked Radio (LTR) communications. In yet another embodiment, the channel in use code is used to provide receive channels and transmit channels. In another embodiment, the receive channels and transmit channels have programmable relative offsets. In one embodiment, a checksum is inverted for identification of communications between subscribers and repeaters.
In one embodiment, the communications protocol provides for communications by subscribers and/or repeaters incorporating either the logic trunked radio (LTR) protocol or one embodiment of the present protocol.
In one embodiment, the type code comprises a type bit matching a Logic Trunked Radio (LTR) AREA code of a repeater site for transmissions of words according to the first word format, the type bit inverted for transmissions of the second word format. In yet another embodiment, the type code comprises a type bit matching a Logic Trunked Radio (LTR) AREA code of a repeater site for transmissions of words according to the second word format, the type bit inverted for transmissions of the first word format.
Alternate embodiments provide a number of additional features. For example, one embodiment of the system provides home channel aliasing. One embodiment of the system provides call grouping.
This summary is not exhaustive or complete and the embodiments described herein are too numerous to mention in the summary. Furthermore, the scope of the present invention is determined by the appended claims and their equivalences. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a passivation composition and a method of forming a conductive pattern by using the passivation composition. Specifically, the present invention relates to a passivation composition comprising an oxidizing agent and an inorganic base and a method of forming a conductive pattern by using the passivation composition.
2. Descriptions of the Related Art
Recently, with vigorous development of flat displays such as liquid crystal displays, plasma display panels, and touch screens, the development of the transparent electrode material for these devices has gained increasing attention. Generally, the material of transparent electrodes could be roughly divided into two categories, i.e., conductive metal oxides and conductive polymers. The examples of conductive metal oxides include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), etc. Even these metal oxides have superior conductivities, but their applications are still limited due to their poor flexibility (i.e., poor elasticity and crisp character), high price (especially ITO) and high production costs. Especially, they are not suitable for flexible displays. The examples of conductive polymer include polythiophene, polyaniline, polyacetylene, polypyrrole, etc. The conductive polymer has gained increasing prominence due to their low-price and superior flexibilities.
Conventional methods for forming an electrode pattern of a display device using a conductive polymer may be roughly divided into etching and passivating methods. The etching method comprises the steps of forming a conductive polymer layer on a (transparent) substrate, covering a predetermined circuit area (i.e. a conductive area) with a mask, and then removing the conductive polymer at the non-circuit area (i.e. a non-conductive area) by using an etching agent to provide a patterned circuit. However, the product prepared by an etching method usually encounters problems such as height drop and dark lines resulting from different optical contrast because the conductive polymer only remains on a part of the substrate (only on the conductive area but not on the non-conductive area). In view of this, passivating methods are developed.
A conventional passivating method comprises passivating the conductive polymer material of non-circuit area to significantly reduce the conductivity of the non-circuit area to provide a desired patterned circuit by using an oxidizing agent. Although the conventional passivating method could solve the problems of height drop and optical contrast difference, it still has some deficiencies, such as insufficient passivating effect and poor durability of the product.
For example, TW 552591 discloses a method of manufacturing conductive pattern, which prints a solution with an oxidizing agent (as a passivating agent) onto the conductive polymer layer on the substrate to passivate the printed conductive polymer material to form a non-conductive area. However, the above described process has the following defects. First, the oxidizing agent is provided with flowability. The circuit area is not protected or isolated. The oxidizing agent may also etch the conductive material of the circuit area and as a result, distort the conductive pattern. The conductive pattern may be further etched during the subsequent washing and removal process of the oxidizing agent. Second, the viscosity of the oxidizing agent is usually increased to reduce its flowability to lower the influence of the oxidizing agent to the conductive pattern. However, this will inevitably slow down the spread of the oxidizing agent. There is, therefore, a contradiction between the passivating time and the passivating effect. In addition, in the conventional passivating method, the oxidizing agent only passivates the superficial part of a conductive polymer layer, the passivated part tends to be worn out to thereby expose the un-passivated part of the conductive polymer layer after a long-term use, and this will cause a short circuit. JP 2011-054617A discloses another one method of forming a conductive pattern, comprising providing a pattern film containing a passivating agent, and then forming conductive pattern by contacting the pattern film with a conductive polymer layer to passivate the contacted conductive polymer material. However, the method still can only passivate the superficial part of the conductive polymer layer. The problem of durability still exists, and moreover, the passivating effect is not sufficient because the level of the difference of the conductivities between the passivated area and the un-passivated area are merely about 105 to 106 times high.
The present invention provides a passivation composition for forming a conductive pattern and a method of using the passivation composition to form a conductive pattern. The passivating speed of the passivation composition of the present invention is fast. The passivating time therefore could be shortened, while the passivating effect provided by the passivation composition of the present invention is excellent because the variation of the conductivities before and after the passivating process reaches at least about 1012 times high. The passivation composition of the present invention could especially passivate the deep material of a conductive polymer layer and thereby, could improve the durability problem encountered due to the wear of the passivated material. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to digital communication networks. More particularly, this invention relates to testing and discovery of configuration faults in communication networks.
2. Description of the Related Art
The meanings of some acronyms and terminology used herein are given in Table 1.
TABLE 1ASPApplication Service ProviderATFActive Testing FrameworkCQCustom Queueing. A queueing discipline.DHCPDynamic Host Configuration ProtocolDiffServIETF Differentiated ServicesDMZDemilitarized zone. A DMZ network is a second networkbehind a firewall.DNSDomain Name SystemDSCPDifferentiated Services Code Point. Classificationof packets into traffic classes that receivespecified behavior in a switch or router.DSLDigital Subscriber LineFIFOFirst-In, First-Out. A queueing discipline.GPSGlobal Performance ServicesICMPInternet Control Message ProtocolIETFInternet Engineering Task ForceIPInternet ProtocolISDNIntegrated Services Digital NetworkISPInternet Service ProviderLLQLow Latency QueueingMOSMean Opinion ScoreMSPManagement Service ProviderNAPNetwork Access PointNICNetwork Interface CardPBXPrivate Branch eXchangePcapPacket CaptureQoSQuality of ServiceRMONRemote MonitoringRTPRealtime Protocol. An IETF standard designed forthe end-to-end transport of multimedia data.SNMPSimplified Network Management ProtocolTATraffic AgentTCPTransmission Control ProtocolTFTPTrivial File Transfer ProtocolTTLTime To LiveUDPUser Datagram ProtocolVcoIPVideo-conference-over-Internet ProtocolVoIPVoice-over-Internet ProtocolWANWide Area NetworkWFQWeighted Fair Queueing. A queueing discipline.
Deployment of a Voice-over-IP (VOIP) telephony system on an IP network can enhance telephone service at a fraction of the cost of a traditional PBX. Before reaping the benefits of VOIP and other emerging realtime applications such as Video-Conference-over-IP (VCoIP), it is necessary to ascertain that the network has sufficient bandwidth to deliver high quality realtime traffic without adversely affecting other data services. In particular, it is desirable to know how many voice calls a network can safely support.
Only a small minority of present-day corporate networks are actually capable of handling realtime traffic such as VoIP without modification. Moreover, converged IP networks are likely to be inadequate whenever a new realtime service is added. This makes pre-deployment testing of the network an absolute necessity.
Assuring continued success of VoIP and other realtime services requires that network testing be repeated in a continuous systematic manner. It is important to assess the impact of the various types of changes in the network traffic loads, topology and functions that inevitably occur over time. The addition of new applications, the extension of the network to new locations, and the inexorable increase in network utilization can all potentially impact VOIP and other realtime applications quality.
A good network and an application monitoring program that operates repeatedly over the life cycle of a network provides diagnostics that are sufficiently granular to pinpoint the exact nature and location of problems that can jeopardize data transport quality on the network. For example, in the converged network environment the network gear needs to be configured to a proper Quality of Service (QoS) setting that allocates the network resources among multiple applications. A QoS setting that allocates too few resources for Realtime Protocol (RTP) packets will undermine VOIP communications, even when the overall VoIP traffic load on the network is adequate. Overly simplistic network performance reports would not reveal the root cause of such a problem. A competent testing program is capable of detecting and identifying such problems, determining if corrective actions have achieved a solution, and identifying any new problems or undesirable side effects that may have been created.
The need for iterative testing is further emphasized by the reality that first attempts to solve many network problems are typically only partially effective. This sets up a requirement for a further round of testing in order to evaluate incremental attempts at solution. A tool used for this kind of iterative, analytic testing must clearly be capable of providing granular diagnostics about specific network links or a set of targeted end-to-end realtime sessions.
Another aspect of network testing involves assurance that business applications and services other than VOIP service remain unimpaired as the network is optimized for good voice quality. Various applications running on an IP network all impact each other. Thus, effective QoS testing must take into account the full range of services operating across the enterprise.
Network monitoring tools have been attempted to be used for evaluation of VoIP quality. However, such tools are directed to describing traffic conditions on the network generally. Thus, they lack the facility to diagnose incipient realtime service degradation and the underlying causes of that degradation.
Various methods are known in the art for testing network performance and localizing problems in the network. For example, U.S. Pat. No. 5,812,529, whose disclosure is incorporated herein by reference, describes a system and method for acquiring network performance data, built around a “mission server”, which interfaces with clients to receive requests for missions. A typical mission includes operations such as transmission and reception of data packets among devices connected to segments of the network. The mission is performed or supported by “sentries,” typically software agents running on stand-alone network devices or endpoints. The sentries carry out mission operations in response to commands from the mission server, and report to the mission server on the mission results.
U.S. Pat. Nos. 5,838,919 and 5,881,237, whose disclosures are incorporated herein by reference, describe methods, systems and computer program products for testing of network performance using test scenarios that simulate actual communications traffic between network endpoints. Specific test protocols are assigned to endpoint nodes on the network. Typically, the nodes are paired, and one of the nodes in the pair communicates the protocol to the other, associated node. A console node sets up the test protocols, initiates their execution and receives data on the test performance from the endpoint nodes.
U.S. Pat. No. 6,269,330, whose disclosure is incorporated herein by reference, describes a method and apparatus for testing a network having a plurality of nodes. The method includes sending commands to one or more traffic agents connected to the network and to at least one network management agent coupled to a respective node of the network, transmitting data from at least one of the traffic agents over the network responsive to the commands, determining network information at the at least one network management agent responsive to the commands and to transmission of the data through the respective node, and receiving and evaluating the network information to assess a state of the network.
Aspects of the methods described in U.S. Pat. No. 6,269,330 are embodied in an Active Testing Framework (ATF) known as NetAlly®, available from Viola Networks, of Yokneam, Israel. NetAlly integrates the following components:
Test Center—orchestrates all NetAlly components to render network tests at scheduled or event-triggered times, or interactively. In addition, it generates reports and triggers alerts when faults are detected.
Test Directory—contains a set of predefined tests that can be parameterized manually or automatically.
Traffic Agents—located at network junctions and end-points. Traffic agents are controlled by the test center and can inject traffic that follows specific patterns into the network, simultaneously intercept traffic from the network and other traffic agents, and then report to the test center. Traffic agents can be installed as software agents on workstations or servers. They can also take the form of dedicated hardware probes, or can be built into network communication equipment.
NetAlly includes unique Web browser-based traffic agents, called NetRegard™ agents. Identical in functionality to NetAlly's standard traffic agent, these virtual devices can be deployed by simply clicking a link in a standard Web browser. Thus, true end-to-end network path testing can be quickly and easily accomplished to any end user desktop on the network without any software or hardware installation whatsoever. NetRegard agents also make it possible to perform ad hoc testing anywhere on the network without the need to send technicians to remote locations; any end user can be asked to enter a URL in his browser and may leave the browser open for as long as testing needs to continue.
NetAlly leverages existing network management technology, including SNMP, RMON and telnet-based device access, to obtain monitored network data and for configuration of active testing.
NetAlly includes a server-based software component called NetAlly Proxy that is able to traverse firewalls. While maintaining complete network security, NetAlly Proxy allows the NetAlly test center to communicate with traffic agents, Web-based NetRegard agents, and SNMP-equipped devices located beyond firewalls, whether within a DMZ, an extranet, or the global Internet.
Traffic agents are disclosed in further detail in commonly assigned U.S. Patent Application Publication No. 20020133575, the disclosure of which is herein incorporated by reference.
The ATF test directory includes tests that can be used for various forms of network testing and diagnosis. Some of these tests emulate different types and classes of traffic between users or between users and application servers. Such tests measure the network performance in terms of loss, jitter, throughput, round trip delay, out-of-order packets or other factors. Some tests use standard network management interfaces, such as RMON, to read applicable attributes from network equipment and to conduct realtime correlation between the equipment readings and NetAlly test traffic. Other tests check the availability and performance of higher level network services and protocols, such as electronic mail, Web, DNS, FTP and DHCP. The combination of emulated traffic tests and tests of services can be used to identify whether a problem is due to a network fault or to a server. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a flashlight or area table lamp having a flexible neck. Further, the present invention relates to an illumination device functioning as both a flashlight and an area table lamp.
Portable illumination devices such as flashlights and lanterns have gained wide acceptance for a variety of uses. Such portable illumination devices are very useful for camping, hiking, and performing common household and automotive maintenance tasks. Portable illumination devices take various forms including a directive illumination device, such as a flashlight or directive lantern and an area light or area lantern of the type which typically includes a strap or handle above the light source and emits illumination 180-360 degrees radially from the light source. Such area lights may include incandescent or fluorescent light sources or may include a gas burner element. Due to the diverse manners in which such portable illumination devices may be used in any one environment, one type of illumination device may be more suitable for one particular use than the other type of illumination device. For example, directive lights (i.e., flashlights) are better suited for hiking along a trail because they provide greater illumination intensity in a particular direction, whereas area lights are better suited for providing area illumination of a campsite. Thus, campers typically resort to purchasing and using separate flashlights and area lights. When used for hiking, the need to pack two separate illumination devices takes up precious space in the hiker's backpack and adds additional weight that must be carried.
To eliminate the need for two separate portable illumination devices, portable illumination devices have been developed that function as both a flashlight and an area light. Such combination portable illumination devices may include two separate light sources such as an incandescent flashlight bulb and a fluorescent tube for area illumination, or they may include a single incandescent light source that is dynamically movable between two positions so as to emit illumination from behind one of two different lenses.
Another form of portable illumination device is a flashlight formed with a flexible core. Examples of such flashlights are disclosed in U.S. Pat. No. 3,393,311 issued to F. L. Dahl on Jul. 16, 1968, entitled ADJUSTABLE TROUBLE LAMP MEANS; U.S. Pat. No. 5,517,392 issued to John G. Rousso et al. on May 14, 1996, entitled SLEEVE RETENTION FOR FLEXIBLE CORE OF A FLASHLIGHT; and U.S. Pat. No. 5,521,803 issued to Lee H. Eckert et al. on May 28, 1996, entitled FLASHLIGHT WITH FLEXIBLE CORE. Such flashlights utilize a flexible core to enable the flashlight head to be positionally manipulated to illuminate a desired location. Some of these flexible core flashlights further enable the flashlight to be wrapped around a pole or the like to enable hands-free manipulation of the object that is being illuminated. Such flashlights, however, are not particularly well-suited for illuminating a wide area due to their optical elements that direct the illumination primarily in a single direction. These flexible core flashlights are particularly ill-suited for area illumination of a table top when the only location to place the flashlight is on the same table top. Further, when such flexible core flashlights are placed on a surface and the flashlight head is moved, the flashlight head exhibits an undesirable bouncing effect. | {
"pile_set_name": "USPTO Backgrounds"
} |
The patent application US 2015/0021135 discloses a hydrodynamic torque converter comprising an impeller wheel intended to be coupled to a crankshaft and adapted to hydrokinetically rotate a turbine wheel, through a reactor. The impeller wheel is rotationally coupled to a cover wherein the impeller wheel, the turbine wheel and/or the damping means are at least partially accommodated. The turbine wheel is adapted to be axially moved between an engaged position in which the turbine wheel and the impeller wheel are axially moved closer to each other and rotationally coupled together, and a disengaged position in which the turbine wheel and the impeller wheel are axially moved away from each other and rotationally uncoupled.
The hydrodynamic torque coupling device further comprises a hub intended to be coupled to a transmission input shaft, connected to the turbine wheel through damping means.
The damping means comprise an annular wheel disc integral with the hub, two guiding washers axially positioned on either side of the annular wheel disc, and first elastic members acting on the circumference mounted between the annular wheel disc and the guiding washers. The first elastic members are adapted to act against the pivoting of the guiding washers relative to the annular wheel disc. The damping means further comprise second elastic members acting onto the circumference and mounted between a linking member attached to the turbine wheel and one of the guiding washers. The second elastic members are adapted to oppose the pivoting of the guiding washers relative to the turbine wheel.
In operation, in the disengaged position of the turbine wheel, the torque is transmitted from the crankshaft of the vehicle engine to the cover and to the impeller wheel, with such torque being then transmitted to the turbine wheel through the hydrokinetic coupling means formed by the impeller wheel, the turbine wheel and the reactor. The torque is then transmitted to the hub through the damping means.
When the turbine wheel is in the engaged position, the torque is directly transmitted from the cover and from the impeller wheel to the turbine wheel, without any action from the hydrokinetic coupling means. The torque is then transmitted to the hub through the damping means.
The turbine wheel moving between the engaged and disengaged positions thereof thus makes it possible to activate or deactivate the hydrokinetic coupling.
Additionally, the torque converter is adapted to operate in a so-called direct mode, wherein the torque is transmitted from the impeller wheel to the turbine wheel. More specifically, in the disengaged position of the turbine wheel, i.e. when the hydrokinetic coupling is activated, the impeller wheel turns faster than the turbine wheel. Conversely, in a so-called back operation, the turbine wheel can turn faster than the impeller wheel.
The back operation mode is used for instance when the motor brake is used or when the user suddenly takes his/her foot off the accelerator pedal.
In some operation cases, specifically in the back mode and when the hydrokinetic coupling is activated, the turbine wheel may be axially pushed back opposite the impeller wheel. It is important to limit such a motion of the turbine wheel so as to prevent a possible damage to the torque converter and to enable the motion of the turbine wheel to the engaged position thereof, if necessary.
In the torque converter disclosed in the patent application US 2015/0021135, the radially internal periphery of one of the guiding washers comprises a large rest area adapted to rest on a radial part of the cover, so as to limit the motion of the turbine wheel-damping means assembly.
In this embodiment, the turbine wheel indirectly axially rests on the radial part of the cover through a large number of parts. The accurate position of the turbine wheel is not easily controlled because of the dimension tolerance of each part belonging to the corresponding chain of dimensions.
Besides, the large area whereon the mentioned above guiding washer rests on the cover generates a significant frictional torque in operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus for loading biological material containers in a conveying system.
2. Discussion of the Related Art
The Laboratory Medicine progress noticed during the last twenty years led analysis laboratories to promote the use of machines directed to automate the laboratory tests, thus obtaining several advantages such as an acceleration of tests and a greater safety for the laboratory operators who are less and less involved in directly handling potentially infected biological materials to be analysed, since they simply have to manage the machines. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a micromirror configured to tilt a mirror in minute quantity by causing electrostatic attraction between adjacent electrodes.
Recently, various types of micro devices are in practical use with development of MEMS (Micro Electro Mechanical Systems) technology. Among such micro devices is a micromirror which can be used, for example, as a scanner adapted for a barcode reader, a laser printer, and etc. Examples of such a micromirror are disclosed in U.S. Pat. No. 6,057,952. The micromirror disclosed in U.S. Pat. No. 6,057,952 is an electrostatic driving type device configured to tilt a mirror in a minute quantity by electrostatic attraction acting between electrodes.
An example of a micromirror disclosed in U.S. Pat. No. 6,057,952 is configured such that a reflection mirror is able to tilt around two rotation axes so that two-dimensional scanning can be performed on a surface of an object. In this example, the reflection mirror is pivotably supported by a first pair of torsion bars. The first pair of torsion bars are supported by a first gimbal part formed around an outer shape of the reflection mirror, and the first gimbal part is pivotably supported by a second pair of torsion bars formed to extend in a direction which perpendicularly intersects with a direction in which the first pair of torsion bars are extended.
The second pair of torsion bars are supported by a second gimbal part formed around an outer shape of the first gimbal part. Two electrodes are formed on the reflection mirror, and two electrodes are also formed on the first gimbal part. Further, an electrode is located oppositely to the above mentioned electrodes.
When a voltage is applied between the electrode on the reflection mirror and the opposed electrode, electrostatic attraction is caused between these electrodes and thereby each of the first pair of torsion bars twists. As a result, the reflection mirror torsionally rotates about a first rotation axis. When a voltage is applied between the electrode on the first gimbal part and the opposed electrode, electrostatic attraction is caused between these electrodes and thereby each of the second pair of torsion bars twists. As a result, the reflection mirror torsionally rotates about a second rotation axis which is perpendicular to the first rotation axis. By thus applying voltages to the electrodes, it is possible to rotate the reflection mirror about two rotation axes.
By directing a beam to be incident on the reflection mirror torsionally rotating about the two rotation axes, the beam reflected by the reflection mirror swings in two dimensions. By directing the reflected beam to illuminate an objection, two-dimensional scanning can be achieved on the object.
In the micromirror disclosed U.S. Pat. No. 6,057,952, patterns are formed on the first and second pairs of torsion bars to electrically connect the electrodes on the reflection mirror to the electrodes on the second gimbal part. Patterns are also formed on the second pair of torsion bars to electrically connect the electrodes on the first gimbal part to the electrodes on the second gimbal part. The term “pattern” means a conductive pattern which is made of a thin leaf of metal (e.g. copper) and is formed on a substrate.
The micromirror is a device having a microstructure. In particular, the torsion bar is formed to have a miniscule width. Further, in general, the width of a pattern is designed considering a manufacturing error. Therefore, the width of a pattern formed on a torsion bar is designed to be narrower than the width of the torsion bar. That is, the width of a pattern on the torsion bar is extremely narrow. Since, in the micromirror in U.S. Pat. No. 6,057,952, it is necessary to form two patterns on each second torsion bar, the width of the pattern on the second torsion bar needs to be narrower than the width of the pattern on the first torsion bar.
Use of a high-precision pattern formation technology makes it possible to form fine patterns on a semiconductor substrate. However, such a high-precision pattern formation technology necessarily increases manufacturing cost of a micromirror. In addition, if a high accuracy is required for forming patterns, tolerance is decreased, which may lead to decrease of a yield of micromirrors. The decrease of a yield of micromirror may also cause decrease of the production efficiency and increase of the cost of production management.
Since a load is put on the torsion bars when the micromirror is in a driven state, if the width of a pattern is extremely narrow, the pattern formed on the torsion bar may exhibit a tendency to be easily broke during the driven state depending on material of which the pattern is made (e.g., brittle material). In other words, in order to narrow the width of a pattern to be formed on a torsion bar, a selectable range of material of the pattern is narrowed.
In addition, if the width of the pattern is narrowed, electrical resistance of the pattern increases. In this case, it is required to increase a driving voltage for driving each electrode.
If a micromirror for one-dimensional scanning is formed to have a base part which includes a torsion bar and is made of conductive material, the base part itself is able to serve as a conductive pattern. That is, in this case, formation of patterns on the micromirror is not required. Therefore, a high-precision pattern formation technology is not required. Use of the conductive base part also resolves the above mentioned problem of rupture of patterns on the torsion bar.
However, in the case of a micromirror for two-dimensional scanning, the number of signal lines to be routed to the outside of the micromirror (i.e., to a driving volage supply unit) is larger than that of the micromiorror for one-dimensional scanning. More specifically, the micromirror for two-dimensional scanning has the number of signal lines to be routed to the outside larger than the number of second pair of torsion bars (i.e., two). It is understood that, in order to configure a micromirror so that a conductive base part thereof serves as conductive patterns, the number of signal lines to be routed to the outside needs to be smaller than or equal to the number of outer torsion bars (i.e., the second pair of torsion bars in the above mentioned example of the micromirror having the two rotation axes). Therefore, it is not possible to use the design scheme of the micromirror for one-dimensional scanning to design a micromirror for two-dimensional scanning. | {
"pile_set_name": "USPTO Backgrounds"
} |
1) Field of the Invention
The present invention relates to an image display apparatus, an image display method, and an image display program.
2) Description of the Related Art
Recently, swallowable capsule endoscopes have been produced as a type of endoscopes. The capsule endoscopes are provided with an imaging capability and a radio capability. A capsule endoscope is configured to sequentially take images of organs such as the stomach and the small intestine within an observation period from the time it has been swallowed through the mouth of a patient for observation (examination) to its natural excretion from the human body (see Japanese Patent Application Laid-open No. H11-225996 Publication).
During the observation period, image data taken in a body by the capsule endoscope is sequentially transmitted outside through radio communication and is stored in a memory. Since a patient carries around a receiver having a radio communication capability and a memory capability, the patient can freely perform normal actions during the observation period from swallowing of the capsule endoscope to its excretion. After observation, a doctor or a nurse can display the images of organs on a display based on the image data stored in the memory and use it to make a diagnosis.
As the above type of capsule endoscope, “M2A (registered trademark)” by Given Imaging Ltd. of Israel, and “NORIKA (registered trademark)” by RF SYSTEM lab. of Japan are presently available, and they have already come to practical applications.
However, unlike an ordinary endoscope, the capsule endoscope described above takes images of each organ within a period from the time a subject swallows to its natural excretion, meaning an extended period of observation (examination), for example, more than ten hours. Therefore, the number of images to be taken in time sequence is correspondingly huge.
At the stage of diagnosis or the like, no particular consideration is given to improving the ability to retrieve a desired image from the vast amount of images taken over a long period of time, or providing a display screen allowing easy recognition of what time in the overall imaging period the displayed image was taken, of which organ is being shown, and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates, in general, to a method of routing a communication at a local level and its associated signalling scheme, and is particularly, but not exclusively, applicable to the routing of a communication within a cellular communicaton network. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to contraceptive vaccines based on cloned zona pellucida genes and the strategy of alloimmunization with zona pellucida polypeptides. In particular, the present invention relates to a contraceptive vaccine for use in a mammalian female comprising a polypeptide which displays at least one epitope for binding of an antibody that inhibits fertilization of an oocyte by a sperm. This epitope is from a zona pellucida protein of the species in which the said vaccine is used.
This invention relates, more particularly, to such vaccines wherein the zona pellucida protein is either the mouse ZP2 protein, the mouse ZP3 protein, the human ZP2, the human ZP3 protein, or homologues of these proteins found in other mammalian species. Further, this invention includes vaccines comprising a synthetic peptide that displays an epitope for such an antibody that inhibits fertilization. In addition, this invention relates to cloned DNA segments variously encoding the mouse ZP3 or ZP2 proteins, or the human ZP2 or ZP3 proteins.
2. Background Information
There is currently much interest in the development of a safe and effective contraceptive vaccine for control of diverse mammalian populations. Contraceptive vaccines would be useful under certain circumstances where relatively long-term but not permanent contraception is desired without the need for frequent intervention, for example, in pets including cats and dogs, in agriculturally important livestock such as cattle and pigs, and in human beings. A contraceptive vaccine preferably should have an effect which is long-lasting and highly specific. Further, to minimize possibilities for birth defects in the event of failed contraception, the antigen which is selected as the immunogen should produce contraceptive antibodies that inhibit fertilization of the egg by a sperm rather than by an abortifacient mechanism involving disruption of early development. In addition, the vaccine preferably should induce an immunological response that is sufficient to be effective for contraception without eliciting a cytotoxic response that might result in abnormal reproductive function.
The mammalian zona pellucida, which surrounds growing oocytes and ovulated eggs, has been recognized as a potential immunogen for a contraceptive vaccine (C. J. Henderson, et al., J. Reprod. Fert. 83:325-343 (1988); B. S. Dunbar, 1983, Mechanisms and Control of Animal Fertilization, J. F. Hartmann, ed., pp. 140-175, Academic Press, New York; A. T. Sacco, Am. J. Reprod. Immunol. Microbiol. 15:122 (1987); Millar et al., Targeting of zona pellucida for immunocontraception, in Immunology of Reproduction, Naz, R. K. (ed.), pp. 293-313 (1993)). At birth the mouse ovary contains 10,000-15,000 oocytes in the prophase of the first meiotic division. As cohorts (10-15) of these oocytes enter into a two week growth phase, they synthesize and secrete zona proteins to form the extra-cellular zona pellucida which ultimately reaches a thickness of 7 .mu.m in the fully grown oocyte. The zona is unique to the ovary, being highly antigenic and accessible to circulating antibody during the two week intra-ovarian oocyte growth phase prior to meiotic maturation and ovulation.
Passive immunization of mice or hamsters with anti-zona sera has been shown to produce reversible contraception without obvious side effects. For example, U.S. Pat. No. 3,992,520 to Gwatkin discloses, inter alia, an anti-serum composition for short-term control of fertility comprising antibody obtained by immunizing an animal with water solubilized zona pellucida of a distinct donor species. This method requires isolation of large amounts of a relatively scarce natural antigen which would not be feasible for certain mammals such as humans. Further, long-term administration of antibodies from a foreign (i.e., "heterologous") species leads to induction of reactive antibodies that will inhibit the contraceptive action of the contraceptive antibodies. Further, administration of serum or products isolated from serum carries inherent risks of transmission of blood-born diseases.
Structural information about the zona pellucida has been available for some years. The mouse zona, for instance, is composed of three sulfated glycoproteins, designated ZP1, ZP2 and ZP3, (J. D. Bleil et al., Dev. Biol. 76:185 (1980); S. Shimizu et al., J. Biol. Chem. 258:5858 (1983)) which play important roles in fertilization and early development and have average M.sub.r s of 200,000, 140,000, and 85,000, respectively. ZP2 and ZP3 appear to be complexed into long filaments which are cross-linked by ZP1 in the zona matrix providing structural integrity to the zona pellucida. Sperm initially bind to ZP3 via O-linked oligosaccharide chains and continued binding involves ZP2 as a secondary sperm receptor. Subsequently, ZP3 induces lysis of the sperm's acrosome which releases enzymes (such as glycosidases and proteases) which are thought to be important for the penetration of the zona pellucida by sperm. Following fertilization, both ZP2 and ZP3 are biochemically modified to prevent additional sperm binding and thereby to facilitate the post-fertilization block to polyspermy.
The zona pellucida in other mammals besides the mouse is known to comprise several distinct glycoproteins components with apparent sizes and, hence naming terminologies, that do not necessarily correspond directly to the mouse ZP1 (185-200 kDa), ZP2 (120-140 kDa) and ZP3 (83 kDa) proteins. The human zona pellucida is composed of three proteins designated ZP1 (90-110 kDa), ZP2 (64-76 kDa) and ZP3 (57-73 kDa) (Shabanowitz et al., J. Reprod. Fertil. 82:151-61 (1988); Shabanowitz, 43:260-70 (1990)) and other species in which zona proteins have been characterized include hamster (Moller et al., 137:276-86 (1990), pig (Dunbar et al., Biol. Reprod. (1981); Hedrick et al., Dev. Biol. 121:478-88 (1987); Yurewicz et al., J. Biol. Chem. 262:564-71 (1987), rabbit (Dunbar et al., Biol. Reprod. 24:1111-24 (1981) and horse (Millar et al., J. Reprod. Fert. 96:815-25 (1992)). The correspondence of specific zona proteins among different species is becoming clearer as additional information on the primary amino acid sequence is deduced from cloned zona pellucida genes (Ringuette et al., Proc. Natl. Acad. Sci. U.S.A. 83:4341-45 (1986); Ringuette et al., Dev. Biol. 127:287-95 (1988); Chamberlin et al., Proc. Natl. Acad. Sci. U.S.A. 87:6014-18 (1990); Chamberlin et al., Dev. Biol. 131:207-14 (1989); Liang et al., Mol. Cell. Biol. 10:1507-15 (1990); Liang et al., Dev. Biol. 156:399-408 (1993); Kinloch et al., Dev. Biol. 142:414-21 (1988); Schwoebel et al., J. Biol. Chem. 266:7214-19 (1991); Kinloch et al., Dev. Biol. 142:414-21 (1990)) and direct sequencing of peptides derived from zona pellucida proteins (Ringuette et al., supra (1986); Yurewicz et al., Mol. Reprod. Dev. 33:182-88 (1992)).
In light of the identification of the distinct murine zona pellucida polypeptides, ZP1, ZP2 and ZP3, further experiments on passive immunization with contraceptive antibodies have been conducted. Specifically, rat anti-mouse ZP2 and anti-mouse ZP3 monoclonal antibodies were injected into female mice and were found to bind specifically to the zonae surrounding growing, intra-ovarian oocytes. After ovulation, the binding of the antibody to the zona persisted; and the presence of these antibodies precluded fertilization by preventing sperm from penetration of the zona pellucida. This contraceptive effect was long-term, lasting approximately 15 mouse estrus cycles, but was eventually reversible. There was no evidence of any adverse effect on the development of fertilized embryos to term and no evidence of abnormal ovarian histology or function. However, the antibody binding sites (i.e., "epitopes") recognized on mouse ZP2 and ZP3 by five different rat anti-mouse monoclonal antibodies that were tested are not present on other mammalian zonae pellucidae (East et al., J. Cell Biol. 98:795-800 (1984); East et al., Dev. Biol. 104:49-56 (1984); and East et al., Dev. Biol. 109:268-73 (1985)). This species specificity limits the usefulness of these particular antibodies as contraceptive agents essentially to murine species. In addition, even if analogous murine anti-ZP2 or anti-ZP3 antibodies that inhibit fertilization could be identified for ZP2 or ZP3 of non-murine species, there are inherent side-effects from the repeated administration of heterologous antibodies, as noted above.
There have been several studies on active immunization using preparations of isolated zona pellucidae to immunize rodents, rabbits, and primates (C. J. Henderson, et al., J. Reprod. Fert. 83:325 (1988); R. B. L. Gwatkin, et al., 1977, Fert. Steril. 28:871 (1977); Drell et al., Biol. Reprod. 30:435-44 (1984); Sacco et al., Biol. Reprod. 36:481-90 (1987); Jones et al., J. Reprod. Fertil. 95:513-25 (1992)).
Further, the U.S. patent to Gwatkin cited above (U.S. Pat. No. 3,992,520) also discloses a vaccine for the immunological control of fertility in female mammals that consists of an aqueous solution of water solubilized zona pellucida prepared by heating mammalian zone pellucida at 65.degree.-100.degree. C. in an aqueous medium. One example therein describes a bovine antigen preparation intended for use in humans.
U.S. Pat. No. 4,996,297 of Dunbar is limited to three rabbit cDNA sequences S1, P2, and P3 thought to encode rabbit zona proteins, to the use of these cDNAs to produce polypeptides that contain epitopes on three rabbit zona proteins (50 kDa, 75 kDa, and 80 kDa), and to the use of the recombinant polypeptides to vaccinate other mammals in order to elicit antibodies that bind to that mammal's zona pellucida for contraception (i.e., heteroimmunization).
Japanese Patent 63,150,299 discloses a pig zona pellucida antigen for use as a contraceptive vaccine for pigs or humans that is characterized as a glycoprotein of 20 to 30 kDa in molecular weight which can be extracted from soluble pig zona pellucida with 8.5M urea and 2% 2-mercaptoethanol.
Despite positive results under experimental conditions, methods of preparing a vaccine from natural zona pellucida materials are clearly difficult if not outright impractical for commercial use, particularly in the human case, due to limited sources of antigen and to difficulties in quality control of such poorly defined vaccines. Further, wide-spread ovarian histopathology and dysfunction were reported in rabbits, dogs and primates after active immunization with zonae pellucidae or extracted antigens (see, for example, R. B. L. Gwatkin, et al., Gamete Res. 1:19 (1980); A. T. Sacco, Am. J. Reprod. Immunol. Microbiol. 15:122 (1977)). Several studies have suggested that both the dose and the purity of the immunogen contributed to these abnormalities, two properties that are particularly difficult to control in such relatively crude antigen preparations.
The effect of the genetic origin of the zona pellucida antigen on its ability to immunize a given species against conception has been examined in several studies. For instance, the efficacies of contraceptive immunizations with pig and rabbit zonae pellucidae on fertility in rabbits was compared. This comparison of results with "alloimmunization" (literally "self-immunization", using antigen from the same species, i.e., an "alloantigen") with those of "heteroimmunization" (using antigen from another species, i.e., an "heterologous" antigen) suggested (D. M. Wood et al., Biol. Reprod. 25:439-450 (1981)) that heteroimmunization of rabbits with porcine zonae is more effective in reducing fertility than alloimmunization with rabbit zonae. More recent work using immunoaffinity purified antibodies to zona pellucida to compare immune responses in alloimmunization of male and female rabbits has continued to support the greater effectiveness for contraception of heteroimmunization with zona pellucida antigens. (S. M. Skinner, et al., J. Reproductive Immunology 12:81-92 (1987)).
Another general approach toward providing a vaccine related to any antigen involves the use of a particular type of antibody, called an "anti-idiotypic" antibody, as an immunogen to actively immunize an animal. Anti-idiotypic antibodies are antibodies directed to the antigen binding site of another antibody; accordingly, the antigen binding site of the anti-idiotypic antibody mimics or represents an image of the site on the antigen that is bound by the other antibody. U.S. Pat. No. 4,795,634 to Grimes et al. (equivalent of WO 87/05,516) discloses a vaccine that comprises anti-idiotypic antibodies to anti-zona pellucida antibodies to express images of zona pellucida antigens. This vaccine suffers from drawbacks including the fact that anti-idiotypic antibodies are generally difficult and expensive to prepare in amounts and purity satisfactory for vaccine usage, particularly in human applications. Further, heteroimmunization with antigens comprising antibodies from another species may induce predominantly antibodies to sites on the antibody other than the desired target, the antigen binding site. In other words, the desired antigen binding site may not constitute an "immunodominant" antigenic site (or "determinant") for the vaccine antibody protein in a species different from that which produced the vaccine protein (see below for a discussion on the basis of immunodominance). (See also U.S. Pat. No. 4,996,297 of Dunbar et al.)
Another technique for producing vaccines that is known generally in the art is the use of specific isolated polypeptides as antigens, or of peptides representing portions of such polypeptides, in place of crude antigen preparations comprising aqueous extracts of target tissues. Accordingly, European Patent EP-0117934 to Stevens discloses a modified antigen for use in fertility control comprising an unspecified antigen from the zona pellucida, or a peptide having a sequence corresponding to at least part of the sequence of such a zona pellucida antigen, which antigen or peptide has been chemically modified outside the body of the animal. The modified antigen has a greater capacity to induce antibodies than the unmodified antigen from which it is derived. According to the specification and claims, such modification includes coupling the antigen or peptide through a maleimido linkage to a suitable "carrier" protein that is biologically foreign to the animal to be vaccinated and of size sufficient to elicit antibody response. Neither this European application nor any related applications, as yet published, teaches specific zona pellucida polypeptides or peptides that are suitable for use as contraceptive vaccines.
In light of the complexities, difficulties and uncertainties of all the contraceptive vaccines described above, there is yet a need for a simpler, safer, cheaper, more defined and effective contraceptive vaccine. The present invention is based on the premise that vaccination with a "self" zona protein (alloimmunization) is most likely to elicit antibodies that will cross-react with the native zona pellucida and prevent fertilization. Furthermore, by using relatively short peptides as immunogens, the adverse effects on ovarian structure and functions, at least some of which can result from a T cell mediated autoimmune response, can be avoided. However, the success of this approach depends on knowledge of the primary amino acid sequence of the zona pellucida proteins. Because of the paucity of biological material, this sequence information can only be obtained by cloning cDNAs encoding the zona proteins and deducing the amino acid sequence from the nucleic acid sequence. Toward this end, the present inventor and associates have recently constructed a mouse ovarian cDNA expression library and isolated two overlapping ZP3 cDNA clones (M. J. Ringuette et al., Proc. Natl. Acad. Sci. U.S.A. 83:4341 (1986)), one of which expresses a fusion protein recognized by an anti-ZP3 monoclonal antibody (East et al., Dev. Biol. 109:268 (1985)).
The identity of these clones was confirmed by a comparison of the amino acid sequence encoded by a 60 nucleotide stretch of their nucleic acid sequence with the terminal amino acid sequence (20 amino acids) of a large internal fragment isolated from the ZP3 protein (Ringuette et al., supra 1986)). This fragment was isolated from purified ZP3, following digestion with a protease, by affinity chromatography using an anti-ZP3 monoclonal antibody. Therefore, it was clear that this fragment was capable of expressing an epitope for a contraceptive antibody; however, the location of that epitope within scores of amino acid residues was not known, and as disclosed herein, is distinct from the 20 amino acid sequence obtained. More importantly, the ability of this proteolytic cleavage fragment to serve as an immunogen in a vaccine was not known, nor was there any practical means for preparing sufficient material from natural sources to test that cleavage fragment further.
A first attempt to utilize the cloned mouse ZP3 cDNA described above to produce a vaccine was unsuccessful (S. M. Chamow and J. Dean, 1987, abstract of presentation to the American Society of Biological Chemists). This effort involved testing of the recombinant ZP3-.beta.-galactosidase fusion protein, which contained most of the ZP3 amino acids as well as a larger portion of .beta.-galactosidase and was generated according to well known methods in genetic engineering that have successfully produced other antigens with native immunoreactivity. Immunization with this particular fusion protein, however, failed to induce detectable antibodies that would react with native ZP3; reactivity was detected only after reduction of disulfide bonds and denaturation.
The basis of this failure to induce anti-ZP3 contraceptive antibodies, despite that fact that the cDNA clearly encoded a proteolytic cleavage fragment that reacted with such an antibody, is not entirely clear. It may be that, under the conditions of immunization, the portion of the fusion protein that encoded the contraceptive antibody epitope did not assume the proper conformation to react with such antibodies. In other words, although the fusion protein surely encoded the amino acids that formed the epitope in the native ZP3 protein, it may be that those amino acids did not exhibit (i.e., did not "display") that epitope in this instance. It is also possible that epitopes for other antibodies, which were located on the .beta.-galactosidase moiety of the fusion, may have been immunodominant over the contraceptive antibody epitopes and thus prevented a detectable contraceptive antibody response (see discussion of immunodominance below). Finally, a combination of these effects and others may have united to prevent the desired contraceptive antibody response to the fusion product of the recombinant DNA which expressed most of the ZP3 polypeptide. These results clearly illustrate the unpredictability of the immunogenicity of a polypeptide under any given set of conditions, no matter how efficacious they may be for other antigens, and the need for experimental determination of the necessary physical form of the amino acids that encode an epitope (e.g., polypeptide size and nature of attached amino acid sequences) to display that epitope and, further, to induce antibodies to it.
Accordingly, it is an object of the present invention to find an efficacious way to use contraceptive antibodies and cloned genes encoding zona pellucida proteins to develop contraceptive vaccines for use in a mammalian female. More particularly, it is an object of this invention to provide such vaccines comprising polypeptides that include defined amino acid sequences that are selected for their ability to display epitopes for contraceptive antibodies.
Additional immunological analyses of the individual ZP polypeptide components have been carried out. For example, specific monoclonal and polyclonal antibodies have been employed to define distinct antigens of the porcine zonae pellucidae, leading to the suggestion that there are both unique and shared antigenic determinants present in the individual components of the zona pellucida, but that the immunodominant determinants appear to be unique to each glycoprotein (T. M. Timmons, et al., Biology of Reproduction 36:1275-1287 (1987)).
Finally, there has been a report of an effort to molecularly clone cDNAS encoding specific antigenic sites from rabbit ZP proteins using antibodies that recognize determinants found on ZP antigens of several species (P. Cheung et al., 1987, abstract of a presentation at the twenty-seventh annual meeting of the American Society for Cell Biology, St. Louis, Mo., November 16-20, J. Cell Biol. 105, no. 4 part 2, 334A). This abstract reported in part that:
"These studies demonstrated that cross-species affinity purification of antibodies is an effective method for isolating cDNA clones expressing antigens which are shared among different mammalian species."
However, no specific nucleotide or amino acid sequences were disclosed in this abstract, nor was the contraceptive potential of the antibodies discussed; indeed, there was no mention of any contraceptive vaccine.
In a speculative exposition on the use of recombinant DNA and synthetic peptide technologies for development of a human contraceptive vaccine from porcine zona pellucida antigens (C. J. Henderson, et al., J. Reprod. Fert. 83:325 (1988)), the identification of amino acid sequences displaying epitopes for contraceptive vaccines on a particular porcine polypeptide is anticipated, although absolutely no sequences of the polypeptide are disclosed. Nevertheless, this reference goes on to hypothesize that known vaccine technologies, including synthetic peptides and vaccinia virus expression vectors, will provide successful human vaccines based on this particular porcine polypeptide that is known to be immunologically related to human zona pellucida antigens. Furthermore, while asserting that monoclonal antibodies to this polypeptide that exert a contraceptive effect "will be extremely important in defining the epitopes with contraceptive potential . . . ", this report also notes that, despite obtaining monoclonal antibodies reactive with this polypeptide, the authors "have failed to generate a monoclonal antibody with contraceptive effect; this is in accord with other published reports . . . "
Although a complete exposition of the current theoretical basis of immunogenicity and antigenicity of polypeptides is beyond the scope of the present disclosure, a brief discussion of selected principles and terms of this active art will facilitate further understanding of the instant invention. [In this application, absent an express statement to the contrary, each use of the term "polypeptide" encompasses any polymer comprising two or more amino acids coupled by peptide linkages (i.e., dipeptides, oligepeptides, peptides, polypeptides) as well as proteins consisting of multiple polypeptide subunits.]
Accordingly, it should be noted, first, that the necessary and sufficient properties of a poplypeptide for inducing antibodies cannot be predicted for any given set of conditions (e.g., for a particular species, or for presentation in a certain form). Nevertheless, much mere has been learned about this subject in the past decade than is reflected in any of the art cited so far herein, and it is a further object of the present invention to exploit aspects of this knowledge for design of advantageous contraceptive vaccines.
In particular, comprehension of the present invention will be aided by the now widely held view that the nature and level of the immune response to a polypeptide depends on its interactions with at least two distinct classes of immune system cells, namely B-cells and T-cells. In simple terms, the role of B-cells in immunity may be thought of as recognition of the specific sites on macromolecules to which antibodies are produced and subsequent production of those antibodies. These B-cell recognition sites, which provide the main basis for immune recognition of non-self molecules and are also called B-cell epitopes, are of a size corresponding to about that of the antigen binding site on an antibody, typically of a diameter equivalent to the length of a peptide containing about four to six amino acids.
[It may be noted here that there exists a formal distinction between the epitope for a B-cell and that of its related antibody. In other words, due to complex biological mechanisms that intervene between the recognition by a B-cell of a given site on an antigen and the consequent production of antibodies to that site, it is possible that the ultimate antibody recognition site may not be precisely identical to the initially recognized B-cell epitope. However, for the present purposes, a B-cell epitope may be considered to be essentially the same structure as the binding site for the corresponding antibody.]
The functions of T-cells, on the other hand, relate in large measure to helping to activate antibody production by B-cells upon initial exposure to an antigen, as well as to enhancing their antibody response upon subsequent reexposures (i.e., to "immune memory" or the "amnestic" response). To play their roles in immunity, T-cells must also recognize specific sites on an antigen to which antibodies are produced, and such T-cell epitopes are about the same size as B-cell epitopes.
B-cell and T-cell epitopes on any given polypeptide, however, need not comprise the same amino acid residues. In fact, it will be appreciated by those of ordinary knowledge in the current art of peptide immunology at the molecular level, that even in a peptide consisting of only half a dozen amino acids, there may coexist several different B-cell epitopes (comprising, for instance, from two to four atoms that contact complementary structures on the antibody) and one or more distinct T-cell epitopes which may or may not include atoms of amino acids also included in a B-cell epitope.
It is also well known that the vast majority of small peptides (containing six to twenty amino acids, for instance) that have been tested for induction of antibodies are considerably less potent immunogens than the larger proteins from which they have been derived, despite ample ability of the peptides to bind to antibodies directed against those larger proteins. Certain chemical modifications of a peptide, particularly coupling of the peptide to a larger proteinaceous "carrier", generally enhance the immune response to a small peptide.
Although the role of such a carrier still may not be fully understood in all respects, it has been clearly established, in particular, that there is no specific minimum size requirement for peptides in general to induce a substantial immune response. Rather, it is now widely believed that a major function of the carrier is to provide T-cell epitopes in close association with the B-cell epitopes on the short peptide which is statistically unlikely to contain both T-cell and B-cell sites recognized by the immune system of any given individual.
It may also be noted here that it has been shown that a T-cell epitope taken from one protein, in the form of a short peptide, may be combined with a short peptide comprising a B-cell epitope of another protein, to form a single peptide that induces a more complete and higher level immune response than either peptide alone.
More broadly, it is now widely accepted that the capability of any individual to mount any immune response to a given epitope, as defined by a precise configuration of a small number of atoms, depends ultimately on the genetic make-up of the immune system genes which separately control the specificities of antigen recognition by B-cells and T-cells. Further, it is understood that the ability of a given B-cell epitope to induce cognate antibodies (i.e., antibodies which recognize that epitope) also depends upon the context within which that epitope is presented to the immune system, in terms of both associated T-cell epitopes and other B-cell epitopes. The latter sites may be "immunodominant" relative to the selected B-cell epitope of interest, that is, they may contend more effectively for the attention of the immune system than the selected B-cell epitope and thereby distract limited system resources from mounting the desired response to that selected epitope. In other words, B-cell epitopes that do not induce detectable antibodies in the presence of other, so-called immunodominant epitopes, which frequently occur in large polypeptides, often do induce significant levels of cognate antibodies when presented in a different context that lacks such immunodominant sites, on a short peptide, for example.
In conclusion, it is a further object of the present invention to exploit various consequences of the above noted characteristics of and distinctions between B-cell and T-cell epitopes, as well as methods for predicting and actually detecting amino acid sequences that serve as T-cell or B-cell epitopes. These will be discussed further below, as needed, in relation to the description of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Liquid crystal display (hereinafter, simply referred to as ‘LCD’) is a display device that displays a desired image by selectively enabling light emitted from a backlight unit to penetrate into respective pixels with the polarization of liquid crystals.
Among the liquid crystal displays, an in plane switching liquid crystal display (IPS-LCD) has advantages in that its view angle is wider than those of widely used twisted nematic (TN) LCDs. That is, the IPS-LCD has liquid crystals that are not vertically aligned but aligned in parallel with a transverse surface of the electrode by disposing on the same plane electrodes of cells in which liquid crystal are aligned. That is, when an electric filed is formed as shown in FIG. 1, the alignment direction of liquid crystals is changed on a screen of the liquid crystal display
FIG. 1 shows the movement of liquid crystal molecules in each liquid crystal pixel of widely used IPS-LCD. As shown in FIG. 1, when no electric filed is formed between a common electrode 10 and a pixel electrode 20, the liquid crystal molecules are disposed in each pixel so that they can be in parallel to a rubbing direction of the liquid crystal molecules. When the rubbing direction is parallel to the absorption axis of a polarizer adjacent to a backlight unit, this display device is called an O-mode IPS-LCD. Also, when the rubbing direction is vertical to the absorption axis of the polarizer adjacent to the backlight unit, this display device is called an E-mode IPS-LCD. An observer-side polarizer has an absorption axis vertical to the absorption axis of a polarizer adjacent to the backlight unit regardless of the modes. FIGS. 2 and 3 show the O-mode IPS-LCD. As shown in FIGS. 2 and 3, the IPS-LCD has polarizers formed both sides of liquid crystal cells so that their absorption axes can be vertical to each other. Since the light passed through a light source-side polarizer reaches an upper polarizer in IPS-LCD without causing any phase retardation when an electric filed is not formed in the polarizers, the light is not passed through the upper polarizer. As a result, pixels are in a dark state, generally called a normally black mode. As shown in FIGS., attention should be paid to the fact that the term ‘IPS-LCD’ used in the present invention includes Super-IPS, fringe field switching (FFS), reverse TN IPS, etc.
In the other case, when an electric filed is formed between the common electrode and the pixel electrode, an alignment direction of the liquid crystals is changed by the rotation of the liquid crystals. Therefore, the light that is passed through the light source-side polarizer is also passed through the observer-side polarizer, thus to allow pixels to emit light.
These liquid crystals in the IPS-LCD has more improved visibility than TN-LCD when the light is emitted aslant, that is, when the light is observed aslant by an observer. This is why the TN LCD has liquid crystal alignment layers disposed on and down the liquid crystal cells; and electrodes disposed on and down the liquid crystal cells. When the liquid crystals are aligned by an electric filed, a zone where the liquid crystals are aligned aslant to a vertical direction is formed, and thus the high phase retardation may be caused according to the alignment of the inclined liquid crystals. As a result, the light passed through the liquid crystals is not completely linearly polarized but elliptically polarized to cause light leakage where some light is leaked or not completely passed through the liquid crystals. When the light leakage occurs, the contrast ratio is deteriorated, which leads to the severely low visibility.
In the case of the IPS-LCD, a zone where the liquid crystals are aligned aslant to the vertical direction is not formed when the liquid crystals are re-aligned, and thus the changes in phase retardation according to the alignment of the inclined liquid crystals are not too high. Therefore, the IPS-LCD has been widely used as a liquid crystal display with a wide view angle.
However, a light path in the liquid crystal cells is lengthened in the case of the IPS-LCD when the light is emitted aslant, and the emitted light is more weakly elliptically polarized than when the light is emitted to the front side. Also, since the aslant emitted light is leaked on the polarizer, it is necessary to compensate for the phase retardation.
A view angle compensating film has been widely used to compensate for the phase retardation. Here, the view angle compensating film refers to a film having a phase retardation opposite to the phase retardation of the aslant emitted light so that its phase retardation can be induced inversely with respect to the phase retardation of the aslant emitted light.
However, since the phase retardation of the aslant emitted light is not uniform according to the emission angle or conditions of light, the kind or level of the phase retardation of a retardation film is generally determined by much minute research.
The retardation film functions to inversely compensate for the phase retardation which may be caused in liquid crystals or polarizers, and films having a phase retardation are generally used as the retardation film. The retardation film may be divided into an A plate, a C plate and a B plate, depending on the kinds of the retardation film.
Herein, the expression ‘A plate and C plate’ is meant to be divided according to refractive index anisotropy of the respective plates. Hereinafter, detailed descriptions of the A and B plates are as follows.
That is, materials through which the light is passed have refractive indexes (nx, ny, nz) with respect to x, y and z axes, respectively. Here, when a material has the same refractive indexes, this material is called isotropic, and when a material has partially or completely different refractive indexes, this material is called anisotropic. For convenience' sake, when it is assumed that a thickness direction of a film is z direction, one of two plane directions of the film is x direction, and the other of the plane directions is y direction, the refractive indexes are represented by refractive indexes in the directions as shown in FIG. 6, respectively.
Here, when a film has the same refractive indexes in two directions but different refractive indexes in one direction, this film is called a uniaxial film. Also, when a film has different refractive indexes in all three directions, this film is called a biaxial film.
Among the uniaxial films, when a film has different refractive indexes in a plane direction, this film is called an A plate. In this case, a refractive index of the A plate may be represented by the following Equation 1, and an in-plane phase retardation (Rin) in the A plate may be represented by the following Equation 2.nx≠ny=nz Equation 1Rin=d×(nx−ny) Equation 2
wherein, d represents a thickness of a plate (a film).
In Equation 1, when a film satisfies the requirements of Equation: nx>ny, this film is called a +A plate, and when a film satisfies the requirements of Equation: nx<ny, this film is called a −A plate.
Also among the uniaxial films, when a film has different refractive indexes in a thickness direction, this film is called a C plate. In this case, a refractive index of the C plate may be represented by the following Equation 3, and a thickness-direction phase retardation (Rth) in the C plate may be represented by the following Equation 4.nx=ny≠nz Equation 3Rth=d×(nz−ny) Equation 4
In Equation 2, when a film satisfies the requirements of Equation: nx<ny, this film is called a +C plate, and when a film satisfies the requirements of Equation: nx>ny, this film is called a −C plate.
Also, the biaxial film is referred to as a film whose in-plane and thickness-direction phase retardations are all varied. Among the biaxial films, a −B plate has a relationship of Equation: nx>ny>nz.
Since IPS liquid crystal cells themselves function as a +A-plate having a high phase retardation value, there has been proposed a technique using a −A plate as a view angle compensating film in order to compensate for the phase retardation in the prior art. The −A plate is manufactured by aligning discotic liquid crystals at constant alignment. Manufacturing the −A plate using the discotic liquid crystals as described above is difficult to be realized, and this manufacturing method has problems regarding the optical axis deviation, etc. Therefore, the −A plate has no sufficient performance. In consideration of the recent technologies, it is also impossible to manufacture a −A plate using the nematic liquid crystals.
As an alternative, there has been proposed a view angle compensating film that compensates for the phase retardation caused in IPS liquid crystal cells by stacking a +C plate on a −B plate, as shown in FIG. 4. However, this manufacturing method also has problems in that it is difficult for the view angle compensating film to secure a sufficient contrast ratio according to various view angles, and pixel colors may be generally tinged with red.
Furthermore, the conventional view angle compensating film was attached as a separate layer to a polarizer, and then used to compensate for the phase retardation caused in the IPS-LCD. However, this separate layer such as the view angle compensating film may cause an increase in the total thickness of a panel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. FIELD OF THE INVENTION
The present invention relates to a method of cleaning roller blade wheel bearings that utilizes a cleaning solvent and a kit comprising a modular stacking unit which has the proportions and dimensions to fit firmly within the interior of a holding container.
2. DESCRIPTION OF THE RELATED ART
Roller blade skates are well known to be used by younger children and adults alike. Each roller blade skate includes multiple bearings well known to those who skate. Although bearing cleaning methods and devices are abundant and often have extreme ease of use as their primary aim, many individuals nonetheless have difficulty cleaning roller blade wheel bearings, because of age, time constraints, or lack of mechanical abilities. Therefore it would be useful to have a roller blade wheel bearing cleaning method, and accompanying apparatus, which could be easily understood and manipulated by any individual, regardless of age or skill.
Typically, roller blade wheel bearings are uniform, each having an outer cylindrical body and a concentrically disposed inner cylindrical body defining a central cylindrical aperture. The concentrically disposed bodies define a through-race circumscribing the central aperture. The through-race contains lubricated ball bearings exposed from both sides of the wheel bearing, which accumulate dirt, whether sealed by a gasket ring or not. Ordinarily when cleaning such wheel bearings, an individual must clean each wheel bearing individually, resulting in an inconvenient and time consuming process. In addition, cleaning solvents for bearings are generally offensive compounds that can cause a reaction if they come in contact with an individual's skin. Further, when attempting to clean a plurality of bearings simultaneously within one container, the bearings are often scratched or damaged through violent contact with one another. Finally, bearings that reside in contact during cleaning, one on top of the other, do not permit access by the solvent to the entire surface area of the bearings.
Apparatus for cleaning bearings including containers having caps for enclosing a plurality of bearings and a solvent fluid are known. The Racetec.TM. bearing holder kit adapted for cleaning roller blade wheel bearings includes a single and unitary frame having several slots within which a plurality of bearings can be inserted one on top of the other. The closed unitary structure differs dramatically from the modular and open structure of the instant invention which allows unimpeded passage of a solvent directly through a bearing race.
Devices for cleaning bearings that employ a modular stacking unit held firmly within the interior of a container or that prevent relative motion of and therefore limit damage to bearings are not known. Nor does any of the previously known art show a device which allows a user to facilely dry the roller blade wheel bearings by allowing a plurality of bearings to be rolled over an absorbent surface as a single unit while being held by the device.
None of the above references, taken either singularly or in combination, is seen to describe the instant invention as claimed. Thus a bearing cleaning device solving the aforementioned problems is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field
This disclosure relates generally to integrated circuits, and more particularly, to memories that have characteristics of random access memories (RAMs) and non-volatile memories (NVMs).
Related Art
The promise of a single memory type that has all of the desirable characteristics of a non-volatile memory (NVM) and a random access memory (RAM), such as a dynamic random access memory (DRAM) or a static random access memory (SRAM), has not been fulfilled but there has been some success in combining NVMs and RAMs to achieve some characteristics of a RAM while still being non-volatile. The desire is to achieve the speed, both read and write, of an SRAM while still being truly non-volatile and having very high endurance while being the same size as a flash memory. Technologies such as MRAM and other resistance RAMs have come closer to the speed objective but still, especially in writing, are slower than SRAMs and DRAMs although much faster than floating gate memories which are by far the most common type of NVM in current production. Thus, the newer NVM technologies have some advantages over floating gate such as endurance but are still not as fast as RAMs. Thus, the typical solution remains using SRAM or DRAM where needed for speed and floating gate as needed for non-volatility.
Accordingly, there is a need to provide further improvement in obtaining a memory that has the speed of RAM while also being non-volatile. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The nutritional value of milk is associated predominantly with its protein and fat contents. While historically pricing has been based only upon the level of fat, increasing emphasis is now being placed on the percentage of protein as well. Accordingly, milk producers, dairy cattle breeders, and organizations such as the Dairy Herd Improvement Association (DHIA) require a quick and reliable method for determining the protein and fat contents of milk. The method should be applicable to assaying bulk lots as well as to samples collected daily from individual cows. For the on-site monitoring of individuals and small test groups, economics dictate a relatively simple procedure employing inexpensive and compact instrumentation. This invention relates to an automated assay method and apparatus designed specifically for this purpose.
2. Description of the Prior Art
An early batch-type photometric procedure for the determination of fat content in milk is taught by Borg in U.S. Pat. No. 2,844,067. A beam from a filtered light source is passed through emulsified samples and detected by a photoelectric cell. The percent fat is displayed on a meter as a function of the cell's output voltage. Calibration of the system is accomplished by regulation of the lamp intensity.
In U.S. Pat. No. 3,960,493, Beitz et al. provides a nephelometric method for the sequential determination of protein and fat in a milk sample. By addition of selective reagents, the protein and fat are alternately converted to colloidal dispersions, and each measured as a function of turbidity independent of the other.
Huang et al. [J. Food Sci. 41: 1219-1221 (1976)] report on a colorimetric procedure for assaying milk protein based on a modification of the Lowry method. Samples with and without the color-developing reagent are sequentially pumped into a flow-through cuvette, and in each case the absorbance is measured by means of a single-beam spectrophotometer. The difference in the respective absorbances null out the effect of the fat without any provision for determining its level.
While each of these prior art procedures are useful for its intended purpose, none combine the speed, accuracy, and versatility of multicomponent analysis presently demanded by many of the research and marketing activities of the dairy industry. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a specimen testing apparatus for testing a specimen collected from a subject, a test information management apparatus for managing information relating to a test, and a test information output method in the specimen testing apparatus.
2. Description of the Related Art
In an analyzing apparatus for analyzing clinical specimens, analysis results which were obtained by testing specimens collected from subjects and personal information such as names, which can specify each of the subjects, are stored. It is necessary to prevent the personal information, with which each of the subjects can be specified, from leaking externally in order to protect the personal information.
JP-laid open patent 2008-020309 discloses an analyzing system provided with an analyzing apparatus to be installed in a facility such as a hospital or the like and a management server installed outside the facility has been disclosed. JP-laid open patent 2008-020309 discloses a technique in which an analysis result is transmitted while keeping the personal information confidential at the time of transmitting the analysis result from the analyzing apparatus in the facility to the management server outside the facility has been disclosed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The rapidly growing use of mobile devices such as laptops, tablets and cellphones has greatly diversified the modes of media consumption. For live online video, the interactive and connected nature of these devices naturally encourages customizations of the viewing experience to include mixed media, social interaction, and various types of content modification or selection. One potential option is to enable individuals to choose their own camera angle during a live event broadcast. While this is technically feasible, the potentially large latency jump a viewer may experience switching from one live stream to another presents an annoyance. Here, latency may be characterized as the delay from the time a video frame is broadcast to the time it is presented on a mobile device. While streamed video latency can be long, often 30 seconds or more, it's nearly unnoticeable if maintained steadily throughout the broadcast. However, when using a live streaming protocol, such as Apple's HTTP Live Streaming (HLS), a switch to an alternate view on a mobile device may result in upwards of 10 seconds random shift in latency, a potentially frustrating experience. | {
"pile_set_name": "USPTO Backgrounds"
} |
The advent of integrated circuits has clearly demonstrated the benefits which can be achieved by making electrical devices smaller and smaller. In a similar way, structures like weak-link devices which include microbridges and Josephson tunnelling devices also benefit from being made smaller and smaller. On a less exotic level, to the extent that metal lines having submicron dimensions are now being made, interconnections between levels of such metal layers must also be of a size which are compatible with the line dimensions. Presently used approaches are sometimes less than satisfactory in that the implementation of the resulting structures requires a good deal of chip area and may require several photolithographic masking and etching steps. As will be seen from a consideration of the prior art discussed hereinbelow, a number of different approaches have been used which incorporate electron beam or other type resists. In another approach, holes are simply formed in insulation layers and conductive material deposited therein to form a conductive interconnection.
U.S. Pat. No. 4,197,332 filed Feb. 12, 1979 shows the fabrication of contamination resist cones. The technique of this patent in the formation of contamination resist cones is utilized in the present application and is herewith incorporated by reference.
U.S. Pat. No. 4,224,630 filed Aug. 25, 1978 shows a SQUID comprised of two superposed superconductive layers with an insulating layer therebetween. A plurality of holes through the insulating layer filled with superconductive material form weak links between the layers. The structure is formed using standard photoresist procedures to pattern the holes in the insulation layer. Thereafter, superconducting material is formed over the insulator and in the holes.
U.S. Pat. No. 4,430,790 filed July 21, 1982 shows a triple layer superconducting device which comprises a superconductor-insulator-superconductor laminar arrangement on a substrate. A weak-link extends from one of the superconductor layers to the other across the thickness of the intervening separator. The resulting structures are characterized as "quasi-planar" devices as opposed to the structures of the present invention which are totally planar.
U.S. Pat. No. 3,689,780 filed Aug. 14, 1969 shows a number of weak-link structures which are formed between layers of superconducting materials. FIG. 8 of this reference shows a conical superconductor over which a weak-link material is formed. A pair of superconductive elements then contact the weak-link material on opposite sides thereof.
U.S. Pat. No. 3,846,166 filed Sept. 25, 1972 shows a pattern conductive layer over which an insulating layer is formed. The insulating layer is etched forming a truncated cone-like structure. A final layer of conductive material is deposited in the etched holes and over the top of the insulation forming interconnections between two levels of conductive material.
It is, therefore, a principle object of this invention to provide an interconnection device wherein the interconnection means may be an element of normal metal, an element of superconducting metal, an element of low bandgap insulator material, an element of semimetal material or an element of semiconductor material.
Another object is to provide an interconnection structure which is planar and therefore suitable for integrated circuit applications.
Still another object is to provide a fabrication method which utilizes contamination resist cones or portions thereof to provide interconnection structures with nanometer dimensions.
It is yet another object of the present invention to provide a fabrication method wherein the thickness of a conductor sandwiched insulation layer determines the length of the interconnection means. | {
"pile_set_name": "USPTO Backgrounds"
} |
Along with the commercialization progress of electric vehicles, a vehicle-mounted charger of the electric vehicles has become one of important components in the electric vehicles.
There are many methods for charging the whole vehicle and for discharging outwards from the whole vehicle via the vehicle-mounted charger. A monophase H bridge control method is mostly adopted in related arts, which includes a dual-polarity control method and a mono-polarity control method.
However, when the dual-polarity control method is adopted, 4 switch tubes in an H bridge are all in a high frequency ON/OFF state, resulting in higher switching loss and larger heat loss; when the mono-polarity control method is adopted, although the heat loss of the switch tubes that is generated when the dual-polarity control method is adopted can be solved to some extent, the four switch tubes in the H bridge are controlled according to a fixing manner during a charging process or a discharging process of the whole vehicle, some switch tubes in the H bridge need to be switched off with current, so that the overheat problem of the switch tubes switched off with current is not effectively solved.
Therefore, no matter the dual-polarity control method or the mono-polarity control method is adopted, the heating problem of the switch tubes in the H bridge cannot be effectively solved, and the service life of the switch tubes is affected. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor laser comprising an active layer of a Group II-VI compound for generating a biaxial compressive strain.
2. BACKGROUND ART
Recently, optical detection devices such as MO discs and printers have been in greater demand. To meet such a demand, a great deal of efforts have been made for developing semiconductor lasers.
As an example of such semiconductor lasers, there is a semiconductor laser made of a Group II-VI compound of the Periodic Table of Element semiconductor which is illustrated in FIG. 1. As shown in FIG. 1, the semiconductor laser has a multi-layered structure comprising a n.sup.+ -GaAs substrate 10, a n-Zn Se layer 11, a n-ZnSSe cladding layer 12, a CdZnSe active layer 13, a p-ZnSSe cladding layer 14, a p-ZnSe layer 15 and a p.sup.+ -GaAs layer 16, all layers being formed in order over the n.sup.+ -GaAs substrate 10. The CdZnSe active layer 13 forms a lattice alignment with the ZnSSe cladding layers 12 and 14 and thus have a double-heterostructure (DH structure). The active layer 13 and the cladding layers 12 and 14 can be formed by a crystal growth of ZnSe. The Group II-VI compound semiconductor laser with the above-mentioned structure operates in a manner that the active layer 13 and the cladding layers 12 and 14 are in a lattice alignment state. Such an operation manner is the same as the operation principle of the Group III-V compound semiconductor lasers which have been commonly used already.
Semiconductor laser oscillating a wave with a green color wavelength of wide use have been also developed which has an active laser for oscillating a wave having a green color wavelength of 480 nm to 550 nm. However, these semiconductor lasers have a difficulty in manufacture. That is, it is difficult to make such semiconductor lasers by using a semiconductor compound of a Group III-V compound. On the other hand, a Group II-VI compound semiconductor not only makes it difficult to make the semiconductor lasers, but also requires a complex refinement. In particular, the Group II-VI compound semiconductor is poor in optical gain characteristic which is the most important characteristic of semiconductor lasers, as compared with the Group III-V semiconductor compound. This makes it difficult to use practically the Group II-VI compound semiconductor. The Group II-VI compound semiconductor itself has an optical gain lower than a GaAs compound semiconductor by three times to five times under the same condition. As a result, it exhibits a high critical current density and thereby requires a current of several amperes for an operation at a room temperature. The most known techniques are at such a level that the semiconductor lasers are operated at a low temperature of about 700.degree. K. For achieving operations of semiconductor lasers at a room temperature, new methods capable of providing an improvement in optical gain are strongly needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a throttle valve control apparatus for controlling a flow amount of intake air of an internal combustion engine and a motor vehicle.
2. Description of the Prior Art
An electrical control type throttle apparatus opening and closing a throttle valve of an internal combustion engine by a motor-driven actuator (for example, a direct current motor, a stepping motor, a torque motor and a brushless motor) is put into practice.
The electrical control type throttle apparatus is structured such as to control an optimum throttle valve angle (throttle valve opening degree) corresponding to an engine state on the basis of an opening degree signal of an accelerator pedal and a traction control signal. For this purpose, a sensor for detecting an angle of the throttle valve, so-called a throttle sensor (which may be sometimes called as an opening degree meter or a throttle position sensor) is attached to a throttle body.
A potentiometer system is generally employed in the throttle sensor, and a brush (a sliding element) rotating together with a throttle valve shaft slides on a resisting body, thereby outputting a potential difference signal (a sensor detecting signal) corresponding to a throttle valve opening degree (for example, refer to Japanese Unexamined Patent Publication No. 9-32588).
This kind of conventionally used throttle sensor is structured such that the brush is in contact with a variable resistance and a conductor formed on a resistance base plate so as to slide thereon. Accordingly, a service life of the sensor is short and the sensor is frequently in trouble. A double route of sensor is employed so as to detect a trouble of sensor and mutually back up, however, this can not basically solve the problem.
Further, since the trouble mentioned above is generated in the conventional motor vehicle at a high possibility, and a control parameter is controlled by an output of the sensor having a short service life, an accuracy for operating and controlling the internal combustion engine is low.
There has been known Japanese Patent No. 2845884 as a structure for detecting the opening degree of the throttle valve in a non-contact manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a light irradiating device, manufacturing method thereof and lighting apparatus using the light irradiating device, more particularly, the technology of achieving the improvement in the light irradiation efficiency and the improvement in the reliability of the device.
First, in case the light must be irradiated in great quantities, normally the electric lamp, etc. are employed. However, for the purpose of the reduction in weight, thickness, and size and the saving of electricity, sometimes the light emitting elements 2 are mounted on the printed circuit board 1, as showing FIG. 21.
The light emitting diode formed of the semiconductor is mainly employed as this light emitting element. But the semiconductor laser, etc. may also be employed.
The light emitting diode 2 has two leads 3, 4. One lead 3 is adhered to the back surface of the light emitting diode chip 5 (the anode electrode or the cathode electrode) with the solder, etc., while the other lead 4 is electrically connected to the electrode on the chip surface (the cathode electrode or the anode electrode) via the metal thin wire 6. Also, the transparent resin sealing member 7 for sealing the leads 3, 4, the chip 5, and the metal thin wire 6 is formed to be used as a lens.
Meanwhile, the electrodes 8, 9 for supplying the power supply to the light emitting diode 2 are provided to the printed circuit board 1. The above leads 3, 4 are inserted into the through holes provided in the printed circuit board 1, and the light emitting diode 2 is fixed/mounted onto the printed circuit board 1 via the solder, etc.
For example, the light irradiating device employing the light emitting diodes is explained in Japanese Patent Application Publication No. H09-252651.
However, since the above light emitting diode 2 is formed as the package into which the resin sealing member 7, the leads 3, 4, etc. are incorporated, there is the drawback such that the size of the packaged substrate 1 is increased. Also, since the radiating characteristic of the substrate itself is inferior, there is the problem such that the temperature rise is brought about as a whole. Therefore, there are the problems such that the temperature rise of the semiconductor chip itself is caused and thus the driving capability is lowered.
In addition, the light emitting diode chip 5 also emits the light from its side surface of the chip. Thus, there exists the light that is directed toward the substrate 1. However, since the substrate 1 is formed of the printed circuit board, there is the problem such that the highly effective emission in which all the lights are emitted upward cannot be achieved.
The present invention has been made in view of the above problems, and can implement a light irradiating device, in which back surfaces of the conduction paths can be connected to the outside to thus eliminate through holes and which has the good radiation characteristic, can be implemented, since there is comprising the steps of preparing a conductive foil and then forming a plurality of electrode forming portions respectively having a plurality of conductive paths by forming isolation trenches, which are shallower than a thickness of the conductive foil, in the conductive foil except at least areas serving as the conductive paths, fixing respective photo semiconductor chips on desired conductive paths of the electrode forming portions, sealing with a resin which can transmit a light to cover the photo semiconductor chips and to fill the isolation trenches, and removing the conductive foil on the side on which the isolation trenches are not provided.
Also, there is provided a light irradiating device manufacturing method that comprises the steps of preparing a conductive foil and then forming a plurality of electrode forming portions respectively having a plurality of conductive paths by forming isolation trenches, which are shallower than a thickness of the conductive foil, in the conductive foil except at least areas serving as the conductive paths, fixing a plurality of photo semiconductor chips onto desired conductive paths of the electrode forming portions, forming connecting member which electrically connects electrodes of each of the photo semiconductor chip and other desired conductive paths, sealing with a resin which can transmit a light to cover the plurality of photo semiconductor chips individually and to fill the isolation trenches, removing the conductive foil on thickness portions on which the isolation trenches are not provided, and separating the photo semiconductor chips into an individual light irradiating device by cutting the areas that are not sealed with the resin. Therefore, the bowing generated when respective light irradiating devices are sealed with the resin can be prevented.
In addition, when the conductive foil is bent to surround at least the areas, to which the photo semiconductor chips are adhered respectively, of the conductive foil, such conductive foil is bent to have an inclination angle that enables the light emitted from the photo semiconductor chip to reflect upwardly. Therefore, the irradiation efficiency can be improved.
Further, the conductive foil is bent by the press machine, etc. in the situation that the corrosion-resistant conductive film is formed on the conductive paths. Therefore, the gloss appears on the conductive film, and thus the irradiation efficiency can be much more improved.
In this case, unless the conductive foil is bent as described above, the surface of the conductive film can be made substantially evenly by applying the pressure to the conductive foil by the press machine, etc. in the situation that the corrosion-resistant conductive film is formed on the conductive paths. Therefore, the gloss appears on the conductive film, and thus the improvement of the irradiation efficiency can be achieved.
Also, there are provided the step of removing the conductive foil on the side, in which the isolation trenches are not provided, up to a predetermined position after the light irradiating devices are covered with the light transparent resin to fill the isolation trenches, and then the step of separating the light irradiating devices that are covered with the light transparent resin. Therefore, respective light irradiating devices are not separated up to the final stage, and accordingly the conductive foil can be provided to respective steps as one sheet, and thus the workability becomes good.
Further, every light irradiating device is individually sealed with the resin by the transfer molding using the mold. Therefore, the generation of the bowing can be suppressed in contrast to the case where the overall conductive foil is sealed. In addition, the workability can be improved and also the proper lens shape can be formed.
Also, in the case that the individual light irradiating devices that are sealed with the light transparent resin are separated by the press machine, the process of removing the flash generated on the end portions of the light irradiating devices is not needed and thus the productivity can be improved.
Further, by using the conductive foil including the slit, the generation of the bowing can be suppressed since the stress-strain is distressed by the slit.
Also, since the arranging positions of the slits are specified not to form the slits at least in the direction intersected with the resin pouring direction, the resin never comes into the back surface of the conductive foil 61 via the slits in the transfer molding using the mold, and thus the workability can be improved. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to multi-axis tube bending. More particularly, the invention is directed to the dies used in a multi-axis tube bender.
Multi-axis tube benders provide a precise means for continuously bending a curvature into a metal tube as it moves through the bender along an X-axis. Benders generally include a fixed die and a moveable die axially spaced from the fixed die along the X-axis. Each die closely surrounds the exterior cross-section of the tube being bent. A powerful feed mechanism with a pushing tool forces the tube through both dies. As the tube moves through the dies, the moveable die swings through a preprogrammed set of motions relative to the fixed die to bend the tube into a desired curvature.
The fixed die is so-called due to the fact that it is generally rigidly attached to the machine base and its position is only changed during set up of the machine. During set up, the fixed die is positioned to suit the range of radii that will be bent for the specific part to be formed. The moveable die is generally capable of being positioned in two translation directions perpendicular to the direction the tube being bent is moving along the X-axis. A moveable die is generally also capable of rotating about three axial directions.
The axial distance along the X-axis between the fixed die and the moveable die, having been predetermined and locked in during set up of the machine, acts to limit the possible variations in bend radii that can be produced. This distance is a factor in controlling the radius of the bend that is formed in the tube by each movement of the moveable die. Generally, in order to adjust the distance along the X-axis between the two dies, the machine must be taken out of operation and the fixed die relocated. Therefore, the only time the distance between the fixed and moveable die is changed is when an adjustment is being made to run a particular part during machine set up.
It is desirable to provide a machine that is capable of producing a maximum range of bend radii in a part being formed while at the same time providing adequate support for the tube along the X-axis to prevent the tube being formed from buckling or kinking. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an elbow or proximal radioulnar joint prosthesis. The elbow joint includes three bones—the humerus, which extends from the shoulder to the elbow, and the radius and ulna, which lie parallel to each other and form the forearm, which extends from the elbow to the wrist. Currently, when the proximal head (the upper end as seen in FIG. 1) of the radius bone is damaged or destroyed, the standard procedure is to excise the damaged portion of the radius and, if deemed necessary, to insert a prosthesis into the radius bone to replace the radial head. This radial head replacement relies on the annular ligament to hold the radius in position as it did prior to the procedure. If this ligament is damaged as part of the incident which caused the damage to the radial head (such as a dislocation or a fracture of the radial head), which is typical, then the prosthesis may become dislocated from the proximal ulna and or humerus and unable to transmit any axial loads from the hand, via the forearm and the elbow, to the humerus. As a result, the patient is not able to transmit axial loads to the radius. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inflatable bladders are sometimes used as mandrels to produce enclosed fiber reinforced polymer parts. Multiple plies of fiber reinforced polymer plies are laid up over the mandrel in order to form the plies into a desired part shape. The mandrel may be removed from the layup either after the layup is compacted and/or cured by deflating the bladder which allows the mandrel to collapse.
A problem sometimes exists in removing the collapsed mandrel which typically has flexible walls, because the mandrel may widen or expand along natural folding points. This widening effect may have the consequence of locking the mandrel within the inside walls of the compacted layup or the cured part. This mandrel lock-in may be particularly problematic in layups or parts having non-uniform cross sections presenting features such as joggles and/or bends that engage and interfere with drawl of the widened mandrel. Mandrel lock-in may also be a problem in applications where the part has a uniform cross section but is relatively long, such as without limitation, an aircraft fuselage or a stringer, and may be due to the friction between the mandrel and the part.
Accordingly, there is a need for a collapsible mandrel that may not widen as it is being collapsed, thus allowing it to be more easily removed after a part has been laid-up and/or cured. There is also a need for a method of fabricating composite parts using such a mandrel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to intervertebral discs and vertebrae and methods of hypothermia therapy applied thereto to relieve pain and restore function.
2. Description of the Related Art
Low back pain afflicts more than 10 million people in the United States annually. It impacts the individual sufferer""s life physically, emotionally and financially, restricting his or her activities and often leading to depression and absenteeism from work. As a nation, the United States spends more than $50 billion dollars in direct and indirect medical expenses related to back pain, making it one of the leading healthcare expenditures overall.
The intervertebral disc consists of the annulus fibrosus, nucleus pulposus, and the endplates of the superior and inferior vertebral bodies. The annulus and endplates contain the nucleus as the disc is pressurized during normal activities. The posterior annulus is thinner in cross-section than the anterior annulus and is correspondingly the site most frequently affected by injury.
Deterioration of the structure of the intervertebral disc is one of the leading causes of low back pain. The intervertebral disc is formed from a tough, outer annulus fibrosus surrounding a softer, gelatinous nucleus pulposus. The annular fibers attach securely to the endplates of the vertebral bodies superiorly and inferiorly, trapping the nucleus and creating an isobaric environment. As load is applied through the spinal column, pressure within the nucleus increases and is distributed across the vertebral endplates and annulus. These structures flex and strain until the spinal load is equilibrated by intradiscal pressure allowing the disc to act as a xe2x80x9cshock absorberxe2x80x9d. Lack of significant vascularity in the annulus and nucleus limits their healing potential.
Small nerve endings penetrate the outer annulus. As a person ages, rents in the inner or central layers of the annulus can create focal regions of high pressure in the outer annulus that mechanically stimulates these nerve endings resulting in pain. There is also an increasing body of evidence suggesting an inflammatory response in and around nerves within the annulus and within the epidural space behind the disc induced by chemicals within the nucleus, vertebral endplates, and vertebral bodies. Passage of these chemicals through the annulus can also occur because of damage to the annulus through physical trauma, progressive aging, or degenerative disc disease. Under normal loading, portions of the nucleus or its degenerative byproducts may be forced into and through rents in the annulus, such chemicals are thought to be transported into proximity with these sensitive nerves resulting in inflammation and pain.
Therapeutic methods involving decreasing the temperature of the body or tissues thereof have a long history in medicine. Cold has been used successfully to bring about localized tissue necrosis, for cryoblation of tissue, as an anesthetic, and as a technique for inducing angiogenesis as a part of an overall healing response to the cold injury. Cryotherapy can be defined as the therapeutic use of cold and is not limited by any particular range of temperatures. Cryosurgery or cryocautery is usually more narrowly defined not merely as the use of cold in surgical applications but as the technique of exposing tissue to extreme cold in order to produce well demarcated areas of cell injury and destruction. Cryosurgical temperatures are typically below xe2x88x9220xc2x0 C. On the other hand, hypothermia therapy involves a technique of lowering body or tissues thereof below body temperature, usually between 26xc2x0 C.-32.5xc2x0 C. Cryosurgery is distinguishable from the other two methods in that tissue is cut or ablated or otherwise destroyed with precision whereas cyrotherapy and hypothermia therapy techniques utilize cold or extreme cold to improve the health of tissue through stimulation. Accordingly, for purposes of this disclosure, hypothermia therapy includes cryotherapy or the therapeutic use of cold and extremely cold temperatures well below normal body temperature. Also, to the extent that related instrumentation such as hypothermia needles, cryogenic catheters, and cryoprobes (flexible or rigid) can be used to apply cryoenergy or cool tissue to a broad range of temperatures below normal body temperature, use of a specific type of instrument in a method of the invention disclosed herein does not necessarily imply a certain range of therapeutic temperatures. For instance, cryoprobes and cryocatheters may be used interchangeably according to various embodiments of the present invention.
Various embodiments of the present invention relate to devices and methods for treating the tissue in and around the intervertebral disc through localized hypothermia therapy to reduce pain or restore function in the disc and surrounding tissue. Hypothermia therapy is defined as the reduction of tissue temperature to below that of the equilibrium temperature. Target therapeutic temperature ranges from about xe2x88x92272xc2x0 C.-37xc2x0 C. for at least one period of up to about an hour depending upon the desired treatment effect.
According to various methods of the invention, hypothermia therapy of the intervertebral disc and adjacent vertebral bodies may be used to reduce painful pathological states of the spine. Various embodiments of the disclosed method may involve exposure of tissues including the annulus fibrosus, nucleus pulposus, and adjacent vertebral bodies including their respective nerve fibers to a range of low temperatures over a period of time. Depending on the temperatures and exposure time, this can lead to structural or chemical denaturation of tissue including selective cell death and cryoblation. The therapy may also involve temporary or permanent deadening of the nerves within or surrounding the disc. Also, hypothermia therapy may be used for the induction of a healing response, angiogenesis, or accelerated degeneration and/or drying of the nucleus pulposus and/or annulus fibrosus. Various effects can be achieved by reaching different temperatures for differing periods of time or by the proximity of the hypothermia therapy device to the treatment target. Accordingly, it is an object of one or more the embodiments of the invention to provide hypothermia therapy to selected locations within an intervertebral disc.
In one or more embodiments of the invention, the therapy may be delivered via a flexible, elongated catheter, by a flexible or rigid probe, or by a cooling element extending along at least a portion of a length of an articulated segment of a therapy delivery probe. The devices may be delivered through an open surgical approach or via percutaneous approaches to the intervertebral disc and surrounding structures.
Various embodiments of the invention may be practiced with a cryoprobe having a blunt tip or a retractable blunt or curved tip surface capable of deflecting off of the annular surface as the probe is advanced into the disc or along the surface of an annular lamella. Such a tip may also be used to deflect off of a vertebral endplate or the interior surface of a vertebral body.
The method of applying hypothermia to the disc may be accompanied by concurrent measurement of the local tissue temperature. This may be done through the use of thermocouples in the probe itself or by the use of secondary devices positioned within the tissues in or around the disc capable of temperature measurement. The region of therapy may also be monitored non-invasively through the use of ultrasound or comparable imaging technique capable of identifying the formation and extent of ice within living tissue. This technique is commonly referred to as cryomapping. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates in general to the field of computer systems, and in particular, to an apparatus and method for performing multi-dimensional graphic transformations in an SIMD environment.
2. Description of Related Art
Due to high demands in multimedia applications, multi-dimensional graphic transformations are becoming popular, especially three-dimensional (3-D) graphic and image processing. Real-time applications such as animation, scientific visualization, image modeling, video game, typically require extremely fast computations. To meet such a high demand for computations, several parallel architectures have been developed.
Among these parallel architectures, the single instructions multiple data (SIMD) model has become popular recently. A typical SIMD model processes multiple data elements simultaneously. However, the coding of an SIMD machine to solve a 3-D transformations in graphics still presents a number of problems.
First, due to the limited number of registers in an SIMD processor, the manipulation of data usually involve memory-referencing instructions, which require many clock cycles for memory accesses. Second, pipelined functional units in SIMD architecture can have long latencies. Third, most current implementations of 3-D transformations only process one vertex at each iteration.
Therefore, there is a need in the technology for providing an apparatus and method to efficiently perform 3-D transformations in a pipelined SIMD environment.
An apparatus and method for performing 3-D transformations using computer-implemented steps is described. The present invention discloses a method and apparatus for optimizing three-dimensional (3-D) transformation on N vertices of a data object based on a transformation matrix of size Kxc3x97K. The method comprises: storing coordinates of the N vertices in K data items, each of the K data items having N elements; and scheduling a sequence of M operations with a set of P storage elements, the sequence of M operations performing a matrix multiplication of the transformation matrix with the K data items to produce transformed K data items, the set of P storage elements storing a plurality of intermediate results produced by the sequence of M operations. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known to apply a ceramic insulating material over the surface of a component that is exposed to gas temperatures that exceed the safe operating temperature range of the component substrate material. Metallic combustion turbine (gas turbine) engine parts (e.g. nickel, cobalt, iron-based alloys) are routinely coated with a ceramic thermal barrier coating (TBC), for example as described in U.S. Pat. No. 6,365,281 issued to the present inventor, et al., and assigned to the present assignee. Such coatings are generally deposited by a vapor deposition or thermal spray process.
The firing temperatures developed in combustion turbine engines continue to be increased in order to improve the efficiency of the machines. Ceramic matrix composite (CMC) materials are now being considered for applications where the temperature may exceed the safe operating range for metal components. U.S. Pat. No. 6,197,424, assigned to the present assignee, describes a gas turbine component fabricated from CMC material and covered by a layer of a dimensionally stable, abradable, ceramic insulating material, commonly referred to as friable grade insulation (FGI). Hybrid FGI/CMC components offer great potential for use in the high temperature environment of a gas turbine engine, however, the full value of such hybrid components has not yet been realized due to their relatively recent introduction to the gas turbine industry. | {
"pile_set_name": "USPTO Backgrounds"
} |
Telephony services are offered through a variety of avenues, such as landline phones, cellular phones, and more recently, Voice-Over-Internet Protocol (VoIP). In the most common telephony services, there is a first user of the service (the dialer) and a second user of the service (the called party). In order for the dialer to establish communications with a desired party, the dialer is required to input a telephony identifier that corresponds to the called party. One example of such a telephony identifier is a telephone number.
VoIP is a relatively new telephony service that provides communications using Internet protocols rather than the traditional phone service. One such Internet protocol is Session Initiation Protocol (SIP). SIP is a signaling protocol used for Internet conferencing, telephony, events notification, and instant messaging. Communications devices use SIP to establish a connection with each other.
As mentioned above, SIP can be used for telephony communications, such as telephone and video calls. Current implementations of SIP for telephone calls require the dialer to enter the telephone number of the party to be contacted using a communications device. When the caller has completed entering the telephone number, the communications device attempts to initiate the call. In response to an attempted connection, SIP provides status codes that can indicate different information, such as whether a connection was successful.
When attempting to initiate a call, the communications device sends the telephone number to the communications facility. The communications facility uses the telephone number to determine the party with which to establish a connection. Once the connection is established, the dialer and the called party are able to communicate with each other. Under this process of establishing a connection, it is desirable that the communications device allows enough time for the caller to enter the entire telephone number while initiating a connection attempt soon after the entering of the telephone number has been completed. These seemingly competing goals are complicated by a number of issues. For instance, telephone numbers can vary in length depending upon different factors such as the location of the caller and the called party (e.g., whether the call is local, long distance, or international). Due to this variance in the length of the telephone number, the communications device cannot readily determine whether the dialer has completed entering the telephone number based solely upon the length of telephone number.
Various approaches are employed to facilitate such VoIP telephone calls. These approaches, however, leave room for improvement. For example, some SIP communication devices implement a timed delay before initiating the telephone call to ensure that the dialer has completed entering the telephone number. Generally, the timer begins running after a digit is pressed and is reset every time a new digit is pressed. The delay must be long enough to account for the manual entering of digits so as to avoid initiating a connection before the dialer has finished entering the entire telephone number. This method, however, results in a delay between the time the caller finishes entering the telephone number and the time the call is initiated.
Another approach involves allowing the user to indicate that they have completed the entering of information. For example, the caller may press a special character or button that indicates the number is believed to be complete. While this approach can sometimes speed the dialing procedure, the practical application often exhibits problems. First, dialers must be made aware of how to utilize the method. Second, even if aware of how the method functions, dialers may be unwilling to implement it or they may simply forget about the method.
These and other issues have presented challenges to the implementation of telephony communications, including those involving SIP and similar applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
Prior to the present invention the conventional porcelainic tower packing material contained silica, feldspar and clay. While adequate for many applications the resistance of such ceramic to severe acid conditions is inadequate for some applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an LED backlight including LEDs (light-emitting diodes) and a liquid crystal display device using the LED backlight.
2. Description of the Related Art
Conventionally, a backlight has been widely used to illuminate a display panel which is not self-luminous. For example, since a liquid crystal panel used in a liquid crystal display device is not self-luminous, a backlight is used to illuminate a back surface of the liquid crystal panel. The term “backlight” used herein refers to a device which has a function of illuminating a display panel with the use of a light source.
In recent years, an LED backlight including LEDs (light-emitting diodes) has been used as a light source of a backlight.
Generally, the LED backlight mainly includes (i) LEDs, (ii) an LED substrate on which the LEDs are mounted, (iii) an LED driver substrate which generates a power supply and a signal for driving and controlling the LEDs, respectively, (iv) a chassis panel on which the LEDs, the LED substrate, the LED driver substrate are fixed with respect to one another so as to define one LED backlight, and (v) wires used for, for example, connecting the substrates.
Various techniques have been proposed for the LED backlight. For example, Japanese Patent Application Publication, Tokukai, No. 2006-128125 A discloses a technique in which an LED and an LED driving element are mounted on a light-emitting unit printed board.
Further, as shown in FIG. 6, Japanese Patent Application Publication, Tokukai, No. 2005-353498 A discloses a technique in which a light-emitting block 100 including a back panel 105 (corresponding to the above-mentioned chassis panel) on which LEDs 110 have been mounted is arranged such that connectors 115 for connecting the LEDs 110 to a control circuit package (not shown, corresponding to the above-mentioned LED driver substrate) are provided on that surface of the back panel 105 on which the LEDs 110 have been mounted. According to this technique, the control circuit package is provided on a rear surface of the back panel 105, and is connected to the LEDs 110 by lead wires 120 (corresponding to the above-mentioned wires) connected to the connectors 115. The lead wires 120 connect both surfaces of the back panel 105 through an extraction hole 125 formed in the back panel 105 so as to be positioned in a place where substrates 119 are not mounted.
Note that FIG. 6, showing a conventional device, illustrates an arrangement of the light-emitting block 100 disclosed in Japanese Patent Application Publication, Tokukai, No. 2005-353498 A. | {
"pile_set_name": "USPTO Backgrounds"
} |
WO 95/00649 (SmithKline Beecham plc) describes the phospholipase A2 enzyme Lipoprotein Associated Phospholipase A2 (Lp-PLA2), the sequence, isolation and purification thereof, isolated nucleic acids encoding the enzyme, and recombinant host cells transformed with DNA encoding the enzyme. Suggested therapeutic uses for inhibitors of the enzyme included atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, reperfusion injury and acute and chronic inflammation. A subsequent publication from the same group further describes this enzyme (Tew D et al, Arterioscler Thromb Vas Biol 1996:16;591-9) wherein it is referred to as LDL-PLA2. A later patent application (WO 95/09921, Icos Corporation) and a related publication in Nature (Tjoelker et al, vol 374, 6 Apr. 1995, 549) describe the enzyme PAF-AH which has essentially the same sequence as Lp-PLA2 and suggest that it may have potential as a therapeutic protein for regulating pathological inflammatory events.
It has been shown that Lp-PLA2 is responsible for the conversion of phosphatidylcholine to lysophosphatidylcholine, during the conversion of low density lipoprotein (LDL) to its oxidised form. The enzyme is known to hydrolyse the sn-2 ester of the oxidised phosphatidylcholine to give lysophosphatidylcholine and an oxidatively modified fatty acid. Both products of Lp-PLA2 action are biologically active with lysophosphatidylcholine, in particular having several pro-atherogenic activities ascribed to it including monocyte chemotaxis and induction of endothelial dysfunction, both of which facilitate monocyte-derived macrophage accumulation within the artery wall. Inhibition of the Lp-PLA2 enzyme would therefore be expected to stop the build up of these macrophage enriched lesions (by inhibition of the formation of lysophosphatidylcholine and oxidised free fatty acids) and so be useful in the treatment of atherosclerosis.
A recently published study (WOSCOPS—Packard et al, N. Engl. J. Med. 343 (2000) 1148-1155) has shown that the level of the enzyme Lp-PLA2 is an independent risk factor in coronary artery disease.
The increased lysophosphatidylcholine content of oxidatively modified LDL is also thought to be responsible for the endothelial dysfunction observed in patients with atherosclerosis. Inhibitors of Lp-PLA2 could therefore prove beneficial in the treatment of this phenomenon. An Lp-PLA2 inhibitor could also find utility in other disease states that exhibit endothelial dysfunction including diabetes, hypertension, angina pectoris and after ischaemia and reperfusion.
Furthermore, Lp-PLA2 inhibitors may also have a general application in any disorder that involves lipid oxidation in conjunction with Lp-PLA2 activity to produce the two injurious products, lysophosphatidylcholine and oxidatively modified fatty acids. Such conditions include the aforementioned conditions atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, ischaemia, reperfusion injury and acute and chronic inflammation.
In addition, Lp-PLA2 inhibitors may also have a general application in any disorder that involves activated monocytes, macrophages or lymphocytes, as all of these cell types express Lp-PLA2. Examples of such disorders include psoriasis.
Furthermore, Lp-PLA2 inhibitors may also have a general application in any disorder that involves lipid oxidation in conjunction with Lp-PLA2 activity to produce the two injurious products, lysophosphatidylcholine and oxidatively modified fatty acids. Such conditions include the aforementioned conditions atherosclerosis, diabetes, rheumatoid arthritis, stroke, myocardial infarction, ischaemia, reperfusion injury and acute and chronic inflammation.
Patent applications WO 01/60805, WO 02/30911, WO 02/30904, WO 03/016287, WO 03/042218, WO 03/042206, WO 03/041712, WO 03/086400, and WO 03/87088 disclose inhibitors of the enzyme Lp-PLA2. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a scroll type compressor having a seal at the tip of the spiral element. More specifically, the present invention relates to a sealing mechanism to improve durability of the seal.
2. Description of the Related Art
Gaseous fluid compressors have a wide variety of applications such as in an automobile air conditioning system and/or a refrigeration system. A variety of compressor architectures are available for application compatibility. Among those compressors, scroll type compressors have superior work efficiency and are suitable to be employed in a system requiring a small discharge displacement. Japanese Unexamined Patent Publication No. 3-92591 discloses a typical scroll type compressor.
As shown in FIGS. 7 and 8, a conventional scroll type compressor generally includes a fixed scroll 60 having a spiral element 50 that is formed on a end plate 55 and an orbiting scroll 61 is interfitted with the scroll 60. The fixed and orbiting scrolls 60, 61 include spiral elements 50, 51 that are formed on and continuous with the end plate, respectively. The orbiting scroll 61 is eccentrically disposed with respect to the center axis of the fixed scroll 60, and orbits around the above-described axis without self-rotation around its axis while both spiral elements 50, 51 are interfitted to form line contacts. Refrigerant gas is introduced into compression chambers P1, P2 defined by the spiral elements 50, 51 and the end plates 55, respectively. The air-tight compression chambers P1, P2 successively move toward the center portions of the spiral elements 50, 51 according to orbital rotation of the orbiting scroll 61. During the orbiting motion of the scroll 61, the volume of the compression chambers P1, P2 decrease. The compressed gas is discharged to a discharge chamber through a discharge port 54 that is formed in the central portion of the end plate 55 of the fixed scroll 60.
A groove 53 is formed in a tip end surface of the orbiting spiral element 51 that contacts with the fixed end plate 55. A seal 52 is accommodated in the groove 53 for improving air tightness within the compression chamber P1 that is defined by both spiral elements 50, 51. While the refrigerant gas is being compressed, the seal 52 is urged against the surface of the fixed end plate, in order to prevent the refrigerant gas leakage from the high pressurized compression chamber P1 to the low pressurized compression chamber P2. Further, as the compression chamber P1 approaches the discharge port, internal pressure thereof increases. Therefore, the seal 52 includes an enlarged portion 52a that is formed at the central end portion thereof. The enlarged portion 52a improves the air tightness of the compression chamber that is approaching the discharge port.
As shown in FIG. 7, the center of the discharge port 54 of the above-described conventional scroll type compressor is located on a line H that passes through an initial point E of inner peripheral surface S of the fixed spiral element 50 and a center point O.sub.2 of involute generating circle K for generating an involute curve. The line H is perpendicular to the tangent line drawn at the initial point E of the inner peripheral surface S. Therefore, the compressed refrigerant gas is efficiently discharged from the minimized compression chamber P1 in the final compression stage through clearance defined in the vicinity of the initial point E of the discharge port 54.
However, the discharge port 54 is assigned to the fixed location such that the entire discharge port is enabled to be fit within the involute generating circle K. Therefore, a tip portion of the spiral element 51 that forms the minimized compression chamber P1 in the final compression stage covers almost the entire discharge port 54. At this moment, the entire tip portion of the enlarged tip portion 52a confronts against the discharge port 54. The tip portion of the enlarged tip portion 52a tends to bend inward into the discharge port 54 as indicated by a double dotted line in FIG. 8, based upon the suctional action of compressed gas flow. If the tip portion of the seal is repeatedly bent, the tip portion thereof is stressed so that the durability thereof may be lowered. Further, if the above-described case occurs, the tip portion of the enlarged tip portion 52a may hit to the edge of wall portion of the discharge port 54, and may be damaged. | {
"pile_set_name": "USPTO Backgrounds"
} |
With the development of the future service, next generation wireless communication systems, such as 3GPP (third Generation Partnership Project) LTE (long term evolution) and beyond system, IMT-A (International Mobile Telecommunications-Advanced) system etc. are introduced to satisfy high speed, large capacity, and a high QoS (Quality of Service) for billions of subscribers. The D2D communication is introduced as a key feature to be supported by the next generation wireless communication systems. In a D2D communication, traffics are transported directly between two user equipments via a D2D communication path without using any network infrastructure (e.g. comprising the radio access network and the core network). In comparison with a cellular communication in which traffics are transported between two user equipments via an infrastructure communication path using the network infrastructure, a D2D communication can bring in the following advantages: power saving, capacity improvement, higher bit-rate and lower service cost etc. for end user perspective; offload of the core network, higher revenue, larger market penetration and new services for network operator.
As such, when radio link conditions for a D2D communication is favorable, for example if two user equipments are close to each other, and/or if a D2D communication actually offers higher throughput than a cellular communication, it would benefit the end users and the network operator by using a D2D communication path for transporting traffic directly between the two user equipments, instead of using an infrastructure communication path. Then, there exist a need to switch from an infrastructure communication path to a D2D communication path. Furthermore, when two equipments are in a D2D communication, transport conditions for the D2D communication may become unfavorable. For example, if one of two user equipments leaves, and/or if a cellular communication can achieve higher throughput than a D2D communication, there may exist a need to switch from the D2D communication path to an infrastructure communication path.
Generally, using a D2D communication path or an infrastructure communication path is transparent to the end user (i.e., the end user does not have to select a special option for using whether a D2D communication path or an infrastructure communication path). Thus, it is desired to not cause the service interruption when switch between a D2D communication path and an infrastructure communication path, to guarantee user satisfaction.
From this issue, it would be advancement in the art to provide solutions that allow for seamless switch between a D2D communication path and an infrastructure communication path. | {
"pile_set_name": "USPTO Backgrounds"
} |
Users of mobile devices (e.g., cell phones) often desire to retrieve data (e.g., Web pages) from a centralized computer (e.g., a server). A common technique for a mobile device to retrieve data from a centralized computer is to generate and send a data request that causes a connection to be established between the mobile device and the centralized computer. The centralized computer may then assemble the data that is responsive to the data request and send the data to the mobile device in a data response. The mobile device can present the data to a user once the data arrives.
Unfortunately, mobile devices often have relatively limited display sizes. For example, while many personal computer displays are about seventeen inches in diagonal, many mobile device displays are about four inches in diagonal. Thus, if a centralized computer sends a data response to a mobile device that is typically sent to a personal computer, the data will typically fill many display screens. The user, however, is typically still able to access the data by using a scrolling technique. Of course, the responsive data could be so large that it would even overflow a personal computer display. | {
"pile_set_name": "USPTO Backgrounds"
} |
VTR cassette tapes are used for such applications as sales promotion and product demonstration, and some tapes used for such applications are much shorter than general commercially-available recording and reproduction tapes such as 30- and 60-minute tapes. Thus, the inventor invented and applied for a cassette tape wherein the diameter of a reel is reduced for shorter tapes to form an extra space inside the cassette body, in which a section for accommodating a small article is provided (Japanese Patent Application No. 9-194973).
This conventional invention of a cassette tape has a structure wherein a recess section is provided in the top surface of the cassette body to accommodated a small article in the recess section, and wherein the recess section is closed by a cover. The inventor also improved this structure in which a small article is accommodated in the cassette body, in order to develop and apply for an invention wherein an opening in the accommodation section can be opened and closed (Japanese Patent Application No. 10-82987).
According to the latter invention, however, the cover is journaled into the body via a single vertical shaft so as to be laterally opened and closed, and is pushed back to a closed position by a spring. Thus, something may be caught in the tape to prevent the cover from being completely closed, and in this case, the cassette tape cannot be inserted in a video tape recorder. In addition, this invention requires the spring that pushes the cover and an engagement means having a complicated structure for closing the cover, thereby increasing the number of required parts and assembly steps. These are the problems with this invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to communication systems, in particular, to data caching and coherency maintenance for an accelerated processor architecture for packet networks.
2. Description of the Related Art
Network processors are generally used for analyzing and processing packet data for routing and switching packets in a variety of applications, such as network surveillance, video transmission, protocol conversion, voice processing, and internet traffic routing. Early types of network processors were based on software-based approaches with general-purpose processors, either singly or in a multi-core implementation, but such software-based approaches are slow. Further, increasing the number of general-purpose processors diminished performance improvements, or actually slowed down overall network processor throughput. Newer designs add hardware accelerators to offload certain tasks from the general-purpose processors, such as encryption/decryption, packet data inspections, and the like. These newer network processor designs are traditionally implemented with either i) a non-pipelined architecture or ii) a fixed-pipeline architecture.
In a typical non-pipelined architecture, general-purpose processors are responsible for each action taken by acceleration functions. A non-pipelined architecture provides great flexibility in that the general-purpose processors can make decisions on a dynamic, packet-by-packet basis, thus providing data packets only to the accelerators or other processors that are required to process each packet. However, significant software overhead is involved in those cases where multiple accelerator actions might occur in sequence.
In a typical fixed-pipeline architecture, packet data flows through the general-purpose processors and/or accelerators in a fixed sequence regardless of whether a particular processor or accelerator is required to process a given packet. This fixed sequence might add significant overhead to packet processing and has limited flexibility to handle new protocols, limiting the advantage provided by using the accelerators. Network processors implemented as a system on chip (SoC) having multiple processing modules might typically classify an incoming packet to determine which of the processing modules will perform operations for the particular packet or flow of packets.
A network processor in a switching network might provide transport of received data packets from an input port to one (unicast) or more (multicast) output ports of the network. Received data packets are provided to one or more output ports according to a scheduling algorithm. Traditionally, a network processor includes a traffic manager to schedule packets for transmission by the network processor based on a scheduling hierarchy. A scheduling hierarchy might be a tree structure of queues and schedulers. Each scheduler performs arbitration to pick an eligible child node for transmission in each scheduling cycle such that a packet is typically scheduled for transmission in each scheduling cycle of the network processor. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention is related to vinyl ether ester oligomers useful for coatings and related applications. More particularly, it relates to new methods of preparing such oligomers which provide a range of useful molecular weight materials.
Vinyl ether ester oligomers are disclosed in a group of U.S. Pat. Nos. assigned to Allied-Signal Inc., namely U.S. Pat. Nos. 4,749,807, 4,775,732, and 4,845,265. These patents disclose methods for making the vinyl ether ester oligomers which are not considered commercially useful in preparing oligomers. Where acid chlorides are used, the oligomer contains HCl which must be removed. Where esters are used, the vinyl ethers may be converted in substantial amounts to compounds having an acetal moiety, preventing higher molecular weight oligomers from being formed and potentially interfering with the formation of polymers in subsequent processing. Consequently, new methods for producing vinyl ether ester oligomers have been sought by the present inventors and their improved methods will be disclosed below. | {
"pile_set_name": "USPTO Backgrounds"
} |
Adenosine A2a Receptors
Adenosine is a purine nucleotide produced by all metabolically active cells within the body. Adenosine exerts its effects via four subtypes of cell-surface receptors (A1, A2a, A2b and A3), which belong to the G protein coupled receptor superfamily (Stiles, G. L. Journal of Biological Chemistry, 1992, 267, 6451). A1 and A3 couple to inhibitory G protein, while A2a and A2b couple to stimulatory G protein. A2a receptors are mainly found in the brain, both in neurons and glial cells (highest level in the striatum and nucleus accumbens, moderate to high level in olfactory tubercle, hypothalamus, and hippocampus etc. regions) (Rosin, D. L.; Robeva, A.; Woodard, R. L.; Guyenet, P. G.; Linden, J. Journal of Comparative Neurology, 1998, 401, 163).
In peripheral tissues, A2a receptors are found in platelets, neutrophils, vascular smooth muscle and endothelium (Gessi, S.; Varani, K.; Merighi, S.; Ongini, E.; Borea, P. A. British Journal of Pharmacology, 2000, 129, 2). The striatum is the main brain region for the regulation of motor activity, particularly through its innervation from dopaminergic neurons originating in the substantia nigra. The striatum is the major target of the dopaminergic neuron degeneration in patients with Parkinson's Disease (PD). Within the striatum, A2a receptors are co-localized with dopamine D2 receptors, suggesting an important site for the integration of adenosine and dopamine signaling in the brain (Fink, J. S.; Weaver, D. R.; Rivkees, S. A.; Peterfreund, R. A.; Pollack, A. E.; Adler, E. M.; Reppert, S. M. Brain Research Molecular Brain Research, 1992, 14, 186).
Neurochemical studies have shown that activation of A2a receptors reduces the binding affinity of D2 agonist to their receptors. This D2R and A2aR receptor-receptor interaction has been demonstrated in striatal membrane preparations of rats (Ferre, S.; von Euler, G.; Johansson, B.; Fredholm, B. B.; Fuxe, K. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7238) as well as in fibroblast cell lines after transfected with A2aR and D2R cDNAs (Salim, H.; Ferre, S.; Dalal, A.; Peterfreund, R. A.; Fuxe, K.; Vincent, J. D.; Lledo, P. M. Journal of Neurochemistry, 2000, 74, 432). In vivo, pharmacological blockade of A2a receptors using A2a antagonist leads to beneficial effects in dopaminergic neurotoxin MPTP(1-methyl-4-pheny-l,2,3,6-tetrahydropyridine)-induced PD in various species, including mice, rats, and monkeys (Ikeda, K.; Kurokawa, M.; Aoyama, S.; Kuwana, Y. Journal of Neurochemistry, 2002, 80, 262). Furthermore, A2a knockout mice with genetic blockade of A2a function have been found to be less sensitive to motor impairment and neurochemical changes when they were exposed to neurotoxin MPTP (Chen, J. F.; Xu, K.; Petzer, J. P.; Staal, R.; Xu, Y. H.; Beilstein, M.; Sonsalla, P. K.; Castagnoli, K.; Castagnoli, N., Jr.; Schwarzschild, M. A. Journal of Neuroscience, 2001, 21, RC143).
In humans, the adenosine receptor antagonist theophylline has been found to produce beneficial effects in PD patients (Mally, J.; Stone, T. W. Journal of the Neurological Sciences, 1995, 132, 129). Consistently, recent epidemiological study has shown that high caffeine consumption makes people less likely to develop PD (Ascherio, A.; Zhang, S. M.; Hernan, M. A.; Kawachi, I.; Colditz, G. A.; Speizer, F. E.; Willett, W. C. Annals of Neurology, 2001, 50, 56). In summary, adenosine A2a receptor blockers may provide a new class of antiparkinsonian agents (Impagnatiello, F.; Bastia, E.; Ongini, E.; Monopoli, A. Emerging Therapeutic Targets, 2000, 4, 635). | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to telephone line equipment and more particularly to equipment for use in an electromechanical or electronic telephone exchange. It comprises a two-wire to four-wire conversion circuit, a circuit for supplying d.c. (at 48 V) to the subscriber's line, and a closed loop detection circuit. The equipment may also, in a known manner, comprise a ringing signal transmission circuit (70 V and 50 Hz) and a device for limiting the ringing current in the event of a short-circuit on the subscriber's line.
In conventional subscriber's line equipment, two-wire to four-wire conversion is normally accomplished by a telephone transformer, or sometimes by a (different kind of) transformer which is simpler and less bulky than a telephone transformer, together with a 48 V supply bridge, a current-limiting device, a closed loop detecting means, a switching relay on the ringing current circuit, and a device for limiting the last-mentioned current. The aforementioned equipment has the disadvantages of being bulky and expensive.
The equipment according to the invention does not have any of the aforementioned disadvantages, since it does not comprise a telephone transformer or any other kind of transformer, but uses a chopper, which is compact and less expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is about an adjustable measuring and pointing tool to be used for measurements in building and metallic carpentry.
In carpentry works, in particular but not necessarily in the building field, exact measurements of building materials should often been done, before the installation of the same building materials. Before the realization of the present invention, the measurements for the lumber installation, for instance to build roof coverings in building field, took place directly cutting a wooden template in the yard. With such a system, a measuring tool primarily little precise and also little practical was obtained, as it was necessary to realize a new template, then thrown away when finished its use, whenever a new construction was started, or for each element having a different measure.
Object of the present invention is thus to provide for a carpentry measuring tool which solves the aforesaid problems, by a practical, precise, light and durable adjustable measuring and pointing tool. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a field test kit and method of on-site testing for the presence of contaminants and chemicals and, more particularly, to a micro spot method for detecting the presence of a variety of chemicals and environmental contaminants.
2. Description of the Prior Art
In view of biological hazards associated with toxic chemicals and environmental contaminants, regulations have been established by legislatures and environmental agencies to monitor a wide variety of chemicals and their byproducts. As a result, it is often necessary to conduct on-site inspections and analyses of various chemical spills, dump sites, and manufacturing facilities to detect environmental contaminants, hazardous conditions and to assure compliance with environmental regulations
Advantages of on-site inspection and analysis of chemical sites include resolving ambiguities during the inspection, reducing the potential for contamination and cross-contamination of samples during travel to off-site testing laboratories, and providing a convenient method of performing a large number of preliminary tests to detect and screen for chemical contaminants. On-site inspection also provides a rapid indication of those samples which may possibly contain compounds that must be identified using more sophisticated laboratory analytical techniques. On-site testing also allows the level of concentration and spread of contamination from chemical spills to be readily surmised.
Reagent-based chemical detection and chromatographic methodologies are attractive for on-site testing and screening because many tests can be run in a short period of time and they are capable of providing visual presumptive evidence of the presence of a chemical substance in a sample. One methodology comprises classical spot tests that are normally carried out in depressions or wells of a porcelain spot plate. Conventionally, small amounts of a solution, which may contain chemical contaminants, are placed in the wells of the spot plate. Small quantities of different reagents are then added to the solution samples and a positive test is normally signified by a color change in the well of the spot plate. An advantage with these tests is that a number of tests can be carried out on a single plate. For example, as many as 12 different spot tests can be carried out on a small 3.5xc3x974.5 inch spot plate. Another advantage is that it is possible to rapidly screen a large number of samples during a short period of time. However, as the concentration of the chemical substances become more dilute, it becomes more difficult to reliably detect the presence of the chemical substances. In most cases, the lower limit of detection is in the 1-100 microgram range.
Another methodology for screening samples and detecting target analytes in samples involves the use of thin layer chromatography (or TLC), which conventionally utilizes a plate having a surface layer formed of a sorbent material or gel. In order to separate the components of the analyte obtained from a sample, a drop of solution is carefully applied above the bottom edge of a thin layer chromatography plate. Solutions suspected of containing target analytes are preferably deposited onto the surface of a TLC plate in the form of a drop to avoid a streaking pattern that would result if the device for applying the drop actually contacts the surface of the plate while a sample solution is being deposited. After the solvent evaporates, the residue on the plate is eluted with another solvent or solvent mixture (also known as the eluant) thereby causing the chemical components of the sample to migrate towards the top or opposite edge of the plate. When the proper conditions and eluant are chosen, each analyte migrates across the plate at a rate that is different from the other analytes. The elution step results in the different analytes separating from each other and settling at different regions as diffuse spots along the path of migration. After the elution step, the plates are allowed to dry and then they are sprayed with a solution of a visualization reagent (detector reagent). A persistent concern with thin layer chromatography is that the elution step of waiting for the solvent to completely wet the plate and for the analytes to migrate and separate is relatively time-consuming. In many instances, proper completion of the elution phase may exceed an hour and warrant involved techniques and quality control steps to assure adequate separation of the different analytes. Another concern involves situations where the analytes are present in such low concentrations that the detection signals obtained in the tests are weak and can possibly be misread. In summary, with thin layer chromatography the analytes in the sample migrate and separate into localized regions, as opposed to remaining concentrated at spots or points.
In testing a sample solution for the presence of an analyte, much effort is often expended in preparing the reagent solutions used to detect the analyte. In order to maximize shelf-life storage stability, the detector reagents required for the tests are stored in the dry state and preferably in an inert atmosphere. When a reagent solution is required, a predetermined amount of dry reagent is mixed with an appropriate solvent to form a reagent solution having a particular concentration. In conducting tests at field sites that are remote from a laboratory, the time required to prepare several reagent solutions, take precautions to avoid spillage and dispose of excess reagent solutions after completing the tests may exceed the time actually devoted to testing a sample solution for an analyte.
For various tests, reagents have been pre-deposited in suitable mediums. Litmus paper is an example. Other examples are disclosed in U.S. Pat. No. 4,301,027 assigned to Dynamit Nobel AG and a divisional patent, U.S. Pat. No. 4,436,823 assigned to Dragerwerk Aktiengesellschaft where silica gel materials incorporate insolubilized reagents for colorimetric testing. A further example is set forth in U.S. Pat. No. 5,308,495 where doped sol-gel glasses contain colorimetric reagents. A more recent example is set forth in U.S. Pat. No. 5,824,526, which discloses that sol-gel glass forms a solid support for reagents which are trapped therein. Examples of literature related to the use of dry reagents and chemical testing include: Dry Reagent Chemical Tests, Analytical Communications, 34, 1H-3H (1997) by T. E. Edmonds, J. M. Lee, and J. D. Lee; Solid Phase Chemistry: Its Principles And Applications In Clinical Analysis, Talanta 31, 863(1984) by A. Zipp and W. E. Hornby; Chemistry On A Stick (Part 1), Chemtech 21, 462 (1991) by E. Diebold, M. Rapkin and A. Usmami; and Chemistry On A Stick (Part 2), Chemtech 21, 547 (1991) by A. Burke, J. DuBois, A. Azhar and A. Usmani. To improve shelf-life stability of detector reagents predeposited on a test medium, such as a plate containing a chromatographic silica gel medium with different reagents pre-deposited in the silica gel, the test medium can be sealed, preferably in an inert atmosphere, to prevent oxidation, hydrolysis or other types of degradation of the dry detector reagents. This may include sealing the silica gel plates in a plastic bag under a vacuum and in an inert atmosphere, as discussed for example in U.S. Pat. No. 5,837,288.
Other disclosures generally related to dry reagent tests include U.S. Pat. Nos. 4,729,959, 4,755,472, 4,843,377, 5,190,863, 5,326,697, 5,330,715, 5,418,141, 5,498,547, 5,510,245, 5,610,072, 5,656,739, 5,739,305, 5,756,296, 5,801,061, 5,824,491, 5,846,754, 5,856,199, and 5,848,797.
The micro spot test system and methodology of the present invention relates to an apparatus and method for the testing of analytes contained in a sample by dissolving the analytes in a solvent and utilizing capillary deposition techniques to concentrate the analytes on sorbent materials. Detector reagents are pre-deposited on the sorbent materials to form different reaction sites or regions for receiving the solution containing the analytes. Detection sensitivity and accuracy for a range of concentrations of analytes is provided by applying by capillary deposition a solution containing the analytes to different regions of the sorbent layer that contain detector reagents so that the analytes in the solution become concentrated at the particular spot or point of deposition on the sorbent layer. The solutions are deposited by placing small diameter tubes containing the analyte solution in contact with the surface of the sorbent material so that the solutions are drawn from the small diameter tubes by capillary action. The detector reagents in the different reaction sites of the sorbent layer are pre-deposited on the sorbent to detect the presence of the analytes that are concentrated at the spot of the reaction sites where the small diameter tube contacts the sorbent layer.
A system for chromogenically detecting the presence of chemical analytes includes a means for obtaining a sample solution containing the analytes; a device for the capillary deposition of the sample solution; chromatographic sorbent materials; and chromogenic detector reagents which have been pre-deposited on the sorbent materials. Storage devices may be provided for the samples and for the sample solutions, capillary deposition devices, and the chromatographic sorbent materials containing the chromogenic detector reagents.
Accordingly, one object of the present invention is to provide a compact chemical screening apparatus which is of a self-contained, efficient design for rapid screening of solutions for the presence or absence of target analytes.
Another object of the present invention is to provide a chemical screening device which is relatively simple to use for sample solutions containing a wide range of analytes in a wide range of concentration levels.
These, together with still other objects of the invention, along with the various features which characterize the invention, are pointed out with particularity in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to magnetic fluids. Magnetic fluids are defined as Newtonian liquids that retain their fluidity in the presence of an external magnetic field. These fluids comprise stable colloidal suspensions of magnetic particles in such liquid carriers as hydrocarbons (kerosine, heptane, etc.), silicones, water, and fluorocarbons.
While the term "ferrofluid" was used to designate a magnetic colloid in which the dispersed phase is a magnetic ferrous material, the more general term "magnetic fluid" is preferred because these fluids may contain ferromagnetic particles other than iron--i.e. cobalt, nickel, gadolinium, and dysprosium. They may also contain ferrimagnetic substances other than magnetite (Fe.sub.3 O.sub.4) or maghemite (.gamma.-Fe.sub.2 O.sub.3). Examples are the magnetic ferrites of manganese, cobalt, nickel, copper, and magnesium. Further discussion of magnetic fluids, their properties and their uses may be found in an article by S. E. Khalafalla published in Chemical Technology, Volume 5, September 1975, pp. 540-546 and in the bibliography therein.
In preparing magnetite for use in magnetic fluids, one usually starts with an aqueous solution of ferric and ferrous salts from which the magnetite particles are precipitated. Accordingly, the preparation of a water-based magnetic fluid appears desirable. Several methods have been proposed for the preparation of such water-based systems. In one system, dodecylamine is used as a dispersing agent. While this material can be used to prepare a water-based magnetic fluid, the fluid is not dilution stable. When diluted, flocculation occurs. Although these dilution sensitive fluids are suitable for some applications, they are unsuitable for other applications, such as mineral beneficiation, in which dilution occurs. Another water-based system, utilizing petroleum sulfonate dispersing agent, is described in U.S. Pat. No. 4,019,994. That fluid, however, is also not dilution stable.
It is an object of the present invention to provide a dilution stable water-based magnetic fluid and a further object is to provide a method of making same. | {
"pile_set_name": "USPTO Backgrounds"
} |
The 2003 Presidential Commission Report on the Future of the USPS concluded that the Postal Service should continue to develop effective mailstream merging systems that optimize efficiency, e.g., maximize the number of mailpieces shipped with each mile traveled, while minimizing the labor content associated with mailpiece handling. With respect to the latter, all elements of the mail stream (letters, flats, periodicals, post cards, etc,) should be sorted, merged, and/or sequenced with the expectation that no subsequent handling would be required at each of the local postal branch offices, i.e., other than the physical delivery to the recipient address.
Most postal services are actively exploring opportunities to reduce the overall cost of processing mail by investing in postal automation equipment, particularly in postal automation associated with mailpiece sorting processes. While significant progress has been made sorting conventional letter-size mailpieces, the remaining mailpieces, e.g., magazines, periodicals, newspapers, catalogues and other flats-size mailpieces, often are not machinable and must be hand sorted. While only twenty-percent (20%) of the mailstream may be catagorized as “non-machinable”, the time required to handle and sort such mailpieces is equal to or greater than the time spent sorting the other eighty percent (80%) of the mailstream.
Certain mailpieces are deemed non-machinable for two principal reasons. First, singulating mailpieces such as magazines and newspapers can present difficulties inasmuch as a portion of these mailpieces are unbound or unconstrained, that is, they have free-edges. As such, even small shear forces applied for the purpose of separating the mailpieces, can cause individual sheets or pages to be wrinkled, torn or otherwise damaged. Secondly, when such mailpieces are handled in the feeder, individual sheets or pages are prone to jam during sorting operations.
To combat the difficulties associated with handling these mailpieces, the mail entering automated postal equipment must be “prepared”, before sorting operations can begin. Preparation may include a process of culling mailpieces which are likely to stall or jam the sorting equipment, or, alternatively, packaging mailpieces so as to facilitate separation and/or reduce the propensity for jamming. For example, magazines or newspapers may be wrapped or enclosed within a larger envelope to capture or contain the free-edges of the mailpiece. While these activities can prepare mailpieces for automated processing, the labor expense can completely offset or nullify the fiscal benefits derived by such automated handling equipment.
The following documents disclose various systems and subsystems of a mail sorter capable of handling all varieties of mail, i.e., a mixed-mail sorter: WO 2006/063204, WO 2006/063121, WO 2006/063125, WO 2006/110486, WO 2006/110465, and WO 2006/110484. One of the most essential features of the mixed mail sorter relates to the use of a clamping assembly operative to secure, transport, divert, sort and release the mailpieces. in addition to its principle mechanical functions, the clamps also include a means to uniquely identify the clamp and its associated mailpiece. As such, the sorting operation may be performed by a combination of requisite information, i.e., electronically scanned information in connection with the mailpiece (e.g., its destination address) together with the unique identifier of the clamp. Further, the sorting process may be performed without altering/marking the mailpiece, such as via a printed barcode symbology or other identification mark.
Having described the functional significance of the clamping assembly, it will also be appreciated that a mailpiece should be centered within a clamp assembly to obviate certain handling difficulties/inconsistencies. More specifically, it will be understood that the gravitational center of the combined clamp/mailpiece assembly will rotate about the overhead conveyor bar (i.e., acting as a support pivot) such that all moments/forces are in equilibrium. When the centroid of the mailpiece is misaligned relative to the centerline of the clamp assembly, the combined clamp/mailpiece assembly may assume a skewed orientation (i.e., relative to the vertical) when the assembly is hung from the overhead conveyor bar. As such, difficulties may arise when attempting to divert the mailpiece to a subsequent conveyor bar or release the mailpiece into a bin/container.
While, in prior art mail sorters, it is generally known to align mailpieces along one or two edges, e.g., in register along adjacent edges or along a corner thereof, no methods or systems are currently available to accurately center a mailpiece within a clamp assembly. That is, there has been no physical requirement, heretofore, to align the geometric center or centroid of a mailpiece with the gravitational center of the clamp assembly.
A need, therefore, exists for an apparatus and method for positioning or centering an object/mailpiece to a desired reference position so as to ensure predictable conveyance and release of objects/mailpieces while being manipulated by automated handling equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
The evolution of networks, such as the internet, cellular, wireless, broadband, and other communication technologies, has led to an explosion in the variety of ways that children can be placed at risk For example, on-line predators, such as pedophiles and other would-be abusers, often use the internet to gather information from and about children. Access to this information by unscrupulous people places the children at risk of exploitation and/or abuse. In many circumstances, the child voluntarily posts personal information that can be used to further the goal of exploitation. Further, children can be contacted and/or encouraged to contact potential miscreants using cellular telephones or other mobile communication devices. Because child predators frequently instruct the child not to inform their parents, the child may use a cellular telephone to make calls to or receive calls from an individual that that may present a risk to a child.
As the communications networks become more pervasive, the access to these networks becomes more commonplace, and thus, more available to children. In this regard, parents are faced with additional challenges in managing the risks that children are subjected to through and with the networks. The monitoring task may be complicated in the circumstance where a parent lacks the technological sophistication to personally manage, monitor, and/or limit the network access points. | {
"pile_set_name": "USPTO Backgrounds"
} |
In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50% has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operational speed-load range, and a propulsion system that can enable these speed changes.
Rotorcraft propulsion is a critical element of the overall rotorcraft. Unlike fixed wing aircraft, the rotor propulsion system provides lift and control as well as forward thrust. As a result, the rotorcraft engine-gearbox system must be highly reliable and efficient. In addition, the gearbox system must be kept at minimum weight. Presently, the propulsion system accounts for up to 25% of empty vehicle weight. The drive system accounts for up to 72% of the total propulsion system weight. Future rotorcraft trends call for more versatile, efficient, and powerful aircraft, all of which challenge state-of-the-art propulsion system technologies. Variable speed rotors have been identified as having a large impact on many critical rotorcraft issues.
Currently, rotor speed can only be varied a small percentage by adjusting the speed of the engine. The variation in rotor speed is generally limited by engine efficiency and stall margin, permitting speed changes limited to approximately 15% when used in current tilt-rotor applications.
There is a need for a transmission with a high-range ratio (1:1) for hover mode operation and low-range reduction ratio, such as for example 50% (2:1), through a speed change mechanism, for cruise mode operation. A transmission of this type could be incorporated as an element within the overall propulsion system resulting in overall ratios of 50:1 to 100:1 in the aircraft.
It is commonly recognized that variable speed propulsion is required for the design of future advanced rotorcraft. Reductions in rotor speed are required to limit the advancing rotor tip speed and reduce rotor noise. | {
"pile_set_name": "USPTO Backgrounds"
} |
PTL1 discloses a washer nozzle for jetting liquid, such as washing liquid, against a glass window to wash the glass window of a vehicle, such as an automobile.
As shown in FIG. 1 for example, an automobile 90 includes washer nozzles 10Z. The washer nozzles 10Z are configured to jet washing liquid against a windshield 91. The washing liquid is not jetted as spray, but jetted as a cluster of liquid current 81Z. This enables to hit the washing liquid to required positions of the windshield 91 with no influence from crosswinds or the like.
The jet direction of the liquid current 81Z repeatedly goes and returns between two jet limit directions 83 and 84, which are around a jet central direction 82 as a center. This causes to jet the washing liquid within a range having angles ±θ around the jet central direction 82 as a center. Liquid bundles 85 and 86 are then formed at the jet limit directions 83 and 84. In other words, areas are formed where much washing liquid is hit than the other areas.
The washer nozzle 10Z includes a body 11Z and a jet nozzle 12Z. The body 11Z is configured to supply washing liquid, which is supplied from the automobile 90, to the jet nozzle 12Z. The jet nozzle 12Z is configured to jet the washing liquid, which is supplied from the body 11Z, to the outside.
As shown in FIGS. 2 and 3, the jet nozzle 12Z has a basically sphere-like shape. The jet nozzle 12Z is fitted to a space with a basically spherical shape, not shown, provided in the body 11Z, to be fixed with minor adjustability of the jet direction of the washing liquid. The jet nozzle 12Z includes a case 21Z, and a chip 22. The case 21Z has a recess provided from B side toward F side. The chip 22 is engaged to the recess of the case 21Z, to be fixed to the case 21Z.
The chip 22 has a supply port 25 in B side. The supply port 25 is configured to receive supply of the washing liquid from the body 11Z. An oscillation chamber 24 is defined between the case 21Z and the chip 22. The oscillation chamber 24 is configured to oscillate the washing liquid supplied through the supply port 25. The case 21Z has a jetting section 23Z in F side. The jetting section 23Z is configured to jet the washing liquid oscillated in the oscillation chamber 24 to the outside.
The oscillation chamber 24 is a space with a basically rectangular-parallelepiped-like shape, having two partition walls 41 therein. The two partition walls 41 divide the oscillation chamber 24 to a main channel 42 and two sub channels 43. The washing liquid supplied through the supply port 25 enters the main channel 42, and is attracted to one of the partition walls 41 by Coand{hacek over (a)} effect. This prevents the washing liquid from travelling along a reference axis, which passes through a center of the supply port 25 and a center of the main channel 42, and makes it travel toward a slant direction from the reference axis to L side or R side. Part of the washing liquid passing through the main channel 42 is jetted from the jetting section 23Z to the outside. And the rest hits an F-side inner wall of the oscillation chamber 24, goes behind the partition walls 41, passes through the sub channels 43, returns to B side of the oscillation chamber 24, and joins sideways the washing liquid entering the oscillation chamber 24 from the supply port 25. For example, assuming that the washing liquid passing through the main channel 42 is attracted toward the L-side partition wall 41, the washing liquid flows back through the L-side sub channel 43. The returning washing liquid joins the washing liquid passing through the main channel 42. This bends the travelling direction of the washing liquid passing through the main channel 42. When the washing liquid passing through the L-side sub channel 43 joins the washing liquid passing through the main channel 42, the travelling direction of the washing liquid passing through the main channel 42 is bent toward R side, and slants from the reference axis to R side. This causes the washing liquid passing through the main channel 42 to be attracted toward the R-side partition wall 41, and thereby the washing liquid flows back through the R-side sub channel 43. This, in turn, bends the travelling direction of the washing liquid passing through the main channel 42 toward L side, and thereby it slants from the reference axis to L side. This cycle is repeated, and produces oscillation of the travelling direction of the washing liquid passing through the main channel 42. In other words, the direction leans toward L side within some periods, and the direction leans toward R side within other periods. It repeatedly and reciprocatedly changes around F direction, which is parallel with the reference axis, as a center.
The jetting section 23Z includes a passage connecting the oscillation chamber 24 and the outside. The passage has in B side an entrance 31Z where the washing liquid flows in from the oscillation chamber 24. The passage has in F side an exit 32Z where the washing liquid passing through the passage is emitted to the outside. The width of the exit 32Z is greater than that of the entrance 31Z. Guides 34Z are provided between the entrance 31Z and the exit 32Z. The L-side and R-side guides 34Z meet F direction at the angle θ. The washing liquid oscillated in the oscillation chamber 24 enters the jetting section 23Z through the entrance 31Z, guided by the guides 34Z, and jetted through the exit 32Z to the outside. Since the travelling direction of the washing liquid entering the jetting section 23Z through the entrance 31Z is oscillated around F direction as a center, the jet direction of the washing liquid jetted through the jetting section 23Z repeatedly and reciprocatedly varies within a range regulated by the guides 34Z, which is a range between the angles ±θ around F direction as the center.
To enhance the area where the washing liquid hits, a plurality of the washer nozzles 10Z may be provided as shown in FIG. 4.
A washer nozzle 10Y shown in FIG. 5 includes one body 11Y, and a plurality of the jet nozzles 12Z. Each of the jet nozzles 12Z is arranged toward a different direction from others, to jet the washing liquid toward a different direction from others. This enables the washer nozzle 10Y alone to enhance the area where the washing liquid hits, as shown in FIG. 6. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to methods and compositions for culturing human pluripotent stem cells, and, more particularly, to methods and compositions having thermostable fibroblast growth factor (FGF) proteins for improved culture efficiency.
Human pluripotent cells, such as human embryonic stem (ES) cells and human induced human pluripotent stem (iPS) cells have the potential to proliferate indefinitely and to differentiate into cells of all three germ layers (Lowry et al., PNAS 105: 2883-2888, 2008; Park et al., Nature 451:141-U141, 2008; Reubinoff et al., Nat. Biotechnol. 18:399-404, 2000; Takahashi et al., Cell 131:861,872, 2007; Thomson et al., Science 282:1145-1147, 1998; Yu et al., Science 318:1917-1920, 2007). These properties make human pluripotent cells invaluable for studying embryogenesis, for drug discovery, and for clinical applications.
Current in vitro culture methods for human ES and iPS cells require the addition of exogenous growth factors (Amit et al., Nat. Rev. Drug Discov. 8:235-253, 2004; Ludwig et al., Nat. Biotechnol. 24:185-187, 2006; Sato et al., Nat. Med. 10:55-63, 2004; Vallier et al., J. Cell Sci. 118:4495-4509, 2005; Wang et al., Blood 110:4111-4119, 2007). It is presently thought that three growth factors are sufficient to maintain pluripotency and self-renewal of human ES and iPS cells through activation of the FGF, TGF/Nodal, and Insulin/IGF pathways (Bendall et al., Nature 448:1015-1021 (2007); Eiselleova et al., Stem Cells 27:1847-1857 (2009); Vallier et al., J. Cell Sci. 118:4495-4509 (2005)).
The FGF pathway has been implicated in many stages of human pluripotent cell regulation, cell survival, proliferation, pluripotency, and lineage determination during differentiation (Eiselleova et al., Stem Cells 27:1847-1857, 2009; Lanner and Rossant, Development 137:3351-3360, 2010; Levenstein et al., Stem Cells 24:568-574, 2006; Vallier et al., J. Cell Sci. 118:4495-4509, 2005; Xu et al., Nat. Meth. 2:185-190, 2005). The FGF pathway is activated through the binding of FGF proteins to FGF receptors, which triggers MAP kinase cascades to regulate downstream events (Lanner and Rossant, 2010).
FGF-1-9 are 150-250 amino acid proteins with approximately 30-70% sequence homology in their 120-amino acid core region (Ornitz et al., Genome Biol. 2:3005.1-3005.12 (2001); Itoh et al., Trends Genet. 20:563-569 (2004)). Because of their substantial sequence homology, new members of the FGF family were identified in several species, from Caenorhabditis elegans to Homo sapiens (Itoh et al.), using homology-based methods. Twenty-two FGF family members have been identified in humans and mice (Ornitz et al., 2001; Itoh et al., 2004).
While different FGF proteins are used for various applications in cell culture, qualitative differences in cell responses elicited by the various FGF proteins remain ill-defined and poorly understood. The functional difference between FGF proteins that can and cannot support human pluripotent stem cells might be attributable to (1) the different affinity of the various FGF proteins to each of the four FGF receptors (FGFR) that lead to the activation of specific pathways (Eswarakumar et al., Cytokine Growth Factor Rev. 16:139-149, 2005; Mohammadi et al., Cytokine Growth Factor Rev. 16:107-137, 2005; Zhang et al., J. Biol. Chem. 281:15694-15700, 2006); and (2) the differential expression of FGFs and FGFRs in specific tissues (Beenken and Mohammadi, Nat. Rev. Drug Discov. 8:235-253, 2009). However, these factors insufficiently explain the functional differences between FGF-2 and other FGF proteins in human ES cell culture.
FGF-2 is routinely used for human ES and iPS cell culture (Levenstein et al., Stem Cells 24:568-574, 2006). Interestingly, FGF-1 did not support hESC pluripotency or cell survival, even though FGF-1 targets the same set of receptors as FGF-2 (Zhang et al., J. Biol. Chem. 281:15694-15700, 2006).
While FGF-2 supports pluripotency in defined long-term human pluripotent cell cultures, high FGF-2 concentrations (e.g., 100 ng/ml) are required, which significantly increases culture cost. It has been suggested that high FGF-2 concentrations might be required to satisfy specific dose-dependent signaling thresholds, and to overcome obstacles such as protein degradation (Levenstein et al., Stem Cells 24:568-574, 2006). Heparin and heparan sulfate can facilitate binding between FGF and FGFR to stimulate downstream activation (Levenstein et al., Stem Cells 26:3099-3107, 2008; Mohammadi et al., Curr. Opin. Struct. Biol. 15:506-516, 2005). Heparin and heparan sulfate promote pluripotency (Fume et al., PNAS 105:13409-13414, 2008; Levenstein et al., Stem Cells 26:3099-3107, 2008), although it is unclear whether they do so via the FGF pathway. Heparin appears to increase the stability of FGF-1 and might be important in the formation of FGF-1-FGFR complexes (Zakrzewska et al., J. Biol. Chem. 284:25388-25403 (2009)). While FGF-2 from zebrafish is capable of supporting self-renewal (Ludwig et al., Nat. Meth. 3:637-646, 2006), effective mammalian FGFs that can be used as an alternative to mammalian wild type FGF-2 are desirable.
There is a need in the art for more efficient growth factors that can support human pluripotent stem cells in culture. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an electrically conductive member for use in electrically connecting a plurality of solid oxide fuel cells to assemble a fuel-cell stack, and a fuel-cell stack using the same.
2. Background Art
Solid oxide fuel cells are expected as fuel cells that are operated at elevated temperatures (800 to 1000° C.) with high efficiency. The solid oxide fuel cells are usually used in the form of a structure called a stack comprising a plurality of solid oxide fuel cells (one fuel cell unit being hereinafter often referred to as “fuel cell”) which have been electrically connected in series and/or parallel and bundled.
In forming the stack structure, a plurality of fuel cells should be electrically connected, and, to this end, a felt of nickel has been used as an electrically conductive member. For example, Japanese Patent Laid-Open No. 25999/1999 proposes a fuel-cell stack using an electrically conductive member formed by folding a metallic fiber assembly composed mainly of nickel, that is, an electrically conductive sheet formed of a nickel felt, a plurality of times. According to this publication, the claimed advantage of the electrically conductive member having this construction is to have cushioning properties satisfactory for stress relaxation between fuel cells.
So far as the present inventors know, however, there is still room for improvement in cushioning properties of the felt structure. The nickel felt is highly elastic. Since, however, it is formed of a plurality of fibers which have been entwined with each other, once compressive force is applied, the elasticity or restoring force becomes often unsatisfactory. As a result, after the felt structure is once placed between fuel cells and is pressed to a given shape, it is difficult to re-regulate the thickness in the regulation of the spacing between fuel cells. This is because, in the re-regulation of the spacing between the fuel cells, waste fibers disadvantageously occur, leading to a fear of causing energization across the electrodes. Further, after baking or power generation is once carried out, fibers in the nickel felt become complicatedly entwined with each other. In addition, the contact area between the fibers is so large that the fibers are disadvantageously integrally sintered in a hard state, making it difficult to replace a part of the fibers after that. As a result, the maintainability and the like are poor, and, thus, there is room for improvement. | {
"pile_set_name": "USPTO Backgrounds"
} |
As diseases associated with the activity of vanilloid receptor (Nagy et al., 2004, Eur. J. Pharmacol. 500, 351-369) pain such as acute pain, chronic pain, neuropathic pain, post-operative pain, rheumatic arthrodynia, osteoarthritis pain, postherpetic neuralgia, neuralgia, headache, and migraine (Petersen et al., 2000, Pain, 88, pp 125-133; Walker et al., 2003, J. Pharmacol. Exp. Ther., 304, pp 56-62); nerve-related diseases such as neuropathies, HIV-related neuropathy, nerve injury, neurodegeneration, and stroke (Park et al., 1999, Arch. Pharm. Res. 22, pp 432-434; Kim et al., 2005, J. Neurosci. 25(3), pp 662-671); diabetic neuropathy (Kamei et al., 2001, Eur. J. Pharmacol. 422, pp 83-86); fecal urgency; irritable bowel syndrome (Chan et al., 2003, Lancet, 361, pp 385-391); inflammatory bowel disease (Yiangou et al., 2001, Lancet, 357, pp 1338-1339); disease of digestive organ such as stomach-duodenal ulcer and Crohn's disease (Holzer P, 2004, Eur. J. Pharm. 500, pp 231-241; Geppetti et al., 2004, Br. J. Pharmacol., 141, pp 1313-1320); disease of respiratory organ such as asthma, chronic obstructive pulmonary disease (Hwang et al., 2002, Curr Opin Pharm pp 235-242; Spina et al., 2002, Curr Opin Pharm pp 264-272); urinary incontinence (Birder et al., 2002, Nat. Neuroscience, 5, pp 856-860); urinary bladder hypersensitiveness (Birder et al., 2001, Proc. Natl. Acad. Sci. 98, pp 13396-13401); neurotic/allergic/inflammatory skin disease such as psoriasis, pruritus and prurigo (Southall et al., 2003, J. Pharmacol. Exp. Ther., 304, pp 217-222); irritation of skin, eye or mucous membrane (Tominaga et al., 1998, Neuron 21 pp 531-543); hyperacusis; tinnitus; vestibular hypersensitiveness (Balaban et al., 2003, Hear Res. 175, pp 165-70); cardiac disease such as inotropic ischemia etc. (Scotland et al., 2004, Circ. Res. 95, pp 1027-1034; Pan et al., 2004, Circulation, 110, pp 1826-1831) can be enumerated.
The vanilloid receptor (VR1) is the receptor for capsaicin (8-methyl-N-vanillyl-6-nonenamide), a pungent ingredient in hot peppers. The molecular cloning thereof was also reported in 1997 (Caterina et al., 1997, Nature 389, pp 816-824). This receptor is a non-selective cation channel composed of 6 transmembrane domains and belongs to the TRP channel family. Recently, it was named TRPV1. On the other hand, it is known that the vanilloid receptor is activated by stimuli such as capsaicin, resiniferatoxin, heat, acids, anandamide, lipid metabolites or the like; thus it plays a crucial role as a molecular integrator of physico-chemically noxious stimuli in mammals (Tominaga et al., 1998, Neuron 21 pp 531-543; Hwang et al., 2000, PNAS, 97, pp 6155-6160). Activation of the vanilloid receptor by endogenous/exogenous stimuli leads to not only transmission of noxious stimuli, but also liberation of neuropeptides such as substance P, CGRP (Calcitonin Gene-Related Peptide) and the like, thereby causing neurogenic inflammation. The vanilloid receptor is highly expressed in primary afferent sensory neurons. It is also reportedly expressed in various organs and tissues such as the bladder, kidney, lungs, intestines and skin, and in the central nervous system (CNS) including the brain and non-neuronal tissues (Mezey et al., 2000, PNAS, 97, pp 3655-3660; Stander et al., 2004, Exp. Dermatol. 13, pp 129-139; Cortright et al., 2001, BBRC, 281, pp 1183-1189). In particular, TRPV1 receptor knock-out mice exhibit a normal response to harmful physical stimuli, but show a reduction in pain responses and sensory sensitivity to thermal stimuli by vanilloid, and exhibit little hyperalgesia to thermal stimuli even in an inflammatory state (Caterina et al., 2000, Science 288, pp 306-313; Davis et al., 2000, Nature 405, pp 183-187; Karai et al., 2004, J. Clin. Invest., 113, pp 1344-1352). Lately, an additional role of the vanilloid receptor is also anticipated by presentation of possibility that the vanilloid receptor may be present in the form of a heteromultimer with TRPV3, another TRP channel (Smith et al., 2002, Nature, 418, pp 186-190).
As mentioned above, the vanilloid receptor knock-out mice exhibited reduced responses to thermal or noxious stimuli, thus raising the possibility that vanilloid receptor antagonists may be utilized for prevention or treatment of various pain conditions. Recently, this possibility is supported by the report that the well-known vanilloid receptor antagonist, capsazepine also decreases hyperalgesia caused by physical stimuli in models of inflammatory and neuropathic pain (Walker et al., 2003, JPET, 304, pp 56-62; Garcia-Martinez et al., 2002, Proc. Natl. Acad. Sci. 99, 2374-2379). In addition, treatment of the primary culture of afferent nerve cells with the vanilloid receptor agonist, capsaicin etc., results in damage to nerve functions and furthermore death of nerve cells. The vanilloid receptor antagonist exerts defense actions against such damage to nerve functions and nerve cell death (Holzer P, 1991, Pharmacological Reviews, 43, pp 143-201; Mezey et al., 2000, PNAS, 97, 3655-3660). The vanilloid receptor is expressed in all regions of the gastrointestinal tract, for example, ganglia of tensor, tunica muscularis, mucosa and epithelial cells. In particular, the vanilloid receptor is highly expressed in inflammatory disorders of the colon and ileum.
In addition, activation of the vanilloid receptor stimulates sensory nerves, which in turn causes release of neuropeptides which are known to play a critical role in pathogenesis of bowel disorders. The role of the vanilloid receptor in development of gastrointestinal disorders is well elucidated and documented in recent scientific papers and journals, for example, Holzer P, 2004, Eur. J. Pharm. 500, pp 231-241; Geppetti et al., 2004, Br. J. Pharmacol., 141, pp 1313-1320. According to such references, it seems that the vanilloid receptor antagonists will be effective for prevention or treatment of gastrointestinal diseases such as gastro-esophageal reflux disease (GERD) and gastroduodenal ulcer (DU). It has been reported that the number of sensory nerves expressing the vanilloid receptor is increased in patients suffering from irritable bowel syndromes and such increased expression of the vanilloid receptor is known to be involved in the development of the disease (Chan et al., 2003, Lancet, 361, pp 385-391). Other investigations showed that expression of the vanilloid receptor is significantly increased in patients suffering from inflammatory bowel disorders. Taken together, it appears that the vanilloid receptor antagonist may also be therapeutically effective for such bowel disorders (Yiangou et al., 2001, Lancet, 357, pp 1338-1339). The vanilloid receptor-expressing afferent nerves are abundantly distributed in airway mucosa. Bronchial hypersensitivity is very similar to hyperalgesia, and protons and lipoxygenase products, known as endogenous ligands for the vanilloid receptor, are well known as crucial factors responsible for development of asthma and chronic obstructive pulmonary diseases (Hwang et al., 2002, Curr. Opin. Pharm. pp 235-242; Spina et al., 2002, Curr. Opin. Pharm. pp 264-272). Further, it has been reported that air-polluting substances, which are a kind of asthma-causing substances, i.e., particulate matter specifically acts on the vanilloid receptor and such action is inhibited by capsazepine, thus suggesting the possible applicability of vanilloid receptor antagonists to respiratory diseases (Veronesi et al., 2001, NeuroToxicology, 22, pp 795-810). Urinary bladder hypersensitiveness and urinary incontinence are caused by various central/peripheral nerve disorders or injury, and capsaicin-responsive sensory nerves play an important role in bladder function control and inflammation. In addition, immunoreactivity of the vanilloid receptor was reported in urinary bladder epithelium (urothelium) in rats and it was found that bladder overactivity induced by capsaicin was due to stimulation of vanilloid receptors present in nerve fibers, or various transmitters which are released by vanilloid receptors (Birder et al., 2001, Proc. Natl. Acad. Sci. 98, pp 13396-13401). Further, VR1 (TRPV1) −/− mice are anatomically normal, but exhibit non-excretory bladder contractions by low contractile force, as compared to normal mice, thus indicating that the vanilloid receptor affects functions of the bladder (Birder et al., 2002, Nat. Neuroscience, 5, pp 856-860). Some of vanilloid agonists are recently under development as therapeutics for treating bladder diseases. Vanilloid receptors are distributed in human epidermal keratinocytes as well as in primary afferent sensory nerves (Denda et al., 2001, Biochem. Biophys. Res. Commun., 285, pp 1250-1252; Inoue et al., 2002, Biochem. Biophys. Res. Commun., 291, pp 124-129), and are then involved in transmission of various noxious stimuli and pains such as skin irritation and pruritus, thereby having close correlation with etiology of dermatological diseases and disorders such as skin inflammation, due to neurogenic/non-neurogenic factors. This is supported by the report that the vanilloid receptor antagonist, capsazepine inhibits inflammatory factors in human skin cells (Southall et al., 2003, J. Pharmacol. Exp. Ther., 304, pp 217-222).
Based on the above-mentioned information, development of various vanilloid receptor antagonists is under way, and some patents and patent applications relating to vanilloid receptor antagonists under development were recently published, in which the above mentioned information is described well (Rami et al., 2004, Drug Discovery Today: Therapeutic Strategies, 1, pp 97-104).
As a result of extensive and intensive studies based on the theoretical background discussed above, the present inventors have synthesized novel compounds having antagonistic activity by selective action on a vanilloid receptor and thus completed the present invention. Surprisingly, it has been identified that compounds having either a dibenzyl urea structure with at least two substituent on one of the phenyl rings or a benzylcinnamoylamide structure with an either unbranched or more than onefold branched backbone are particularly active modulators of the vanilloid receptor.
Therefore, it is an object of the present invention to provide novel compounds useful as a potent antagonist for a vanilloid receptor, isomer thereof and pharmaceutically acceptable salts thereof; and a pharmaceutical composition comprising the same. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to systems for providing a fluid a seal between a rotating and a stationary portion of a fluid container.
Circular clarifier systems and other large diameter process equipment are important in water treatment, wastewater treatment and mining. In some existing circular clarifier systems, a rotating sludge removal mechanism typically includes a series of pipes which rapidly remove sludge from the bottom of the clarifier. In such sludge removal systems, sludge removal pipes are used to draw the sludge up from the bottom of the clarifier tank and then discharge the sludge to a circular chamber, referred to as a xe2x80x9claunderxe2x80x9d, which typically includes both a rotating portion and a stationary portion. The rotating portion is typically connected to the sludge removal pipes which rotate around the bottom of the clarifier, and the stationary portion is typically connected to a discharge pipe from which the sludge is pumped away from the clarifier for disposal or further processing. Essentially, such a xe2x80x9claunderxe2x80x9d typically resembles an annular shaped fluid drum.
An example of such an existing sludge removal system is seen in U.S. Pat. No. 3,951,819 to Shaffer et al., entitled Sludge Removal System. FIG. 1 is a simplified sectional side elevation view of such a system, and FIG. 2 is a simplified top plan view of such a system. As can be seen in FIGS. 1 and 2, system 10 comprises a launder 12 having an outer rotating portion 12A and a central stationary portion 12B. As can also be seen, water level L1 (outside of launder 12) is higher than water level L2 (inside of launder 12). This differential water level (i.e.: L1-L2) provides the force to cause the sludge to flow from the bottom of the clarifier up through conduits 14, and into launder 12. Specifically, water pressure is created by L1 being higher than L2 such that fluid flows upwardly through conduits 14 (entering at end 13 and exiting into launder 12 through end 15). As such, sludge which has settled to the bottom of clarifier 10 is essentially siphoned from the bottom of the clarifier tank, and is then removed from the clarifier through discharge conduit 18. As portion 12A of the launder rotates in direction R, conduits 14 also rotate in direction R, thereby siphoning sludge from the bottom of the clarifier in a circular fashion. (In a typical clarifier system, a plurality of conduits 14, each having their ends 13 disposed at different radial distances from the center of the clarifier, are used to siphon sludge across the entire bottom surface of the clarifier).
As can be appreciated, a problem with this existing clarifier systems is the problem of providing an effective fluid seal between outer rotating portion 12A and a central stationary portion 12B of launder 12. Specifically, existing clarifier launder seals have tended to suffer from numerous deficiencies, including poor sealing efficiency and rapid wear and tear of the sealing surfaces, due to the fact that center portion 12A of the clarifier launder remains stationary as the outer portion 12B rotates therearound. As it is necessary that water level L2 in launder 12 be kept lower than water level L1 in the rest of clarifier 10, it is necessary to maintain an effective seal between the stationary portion 12B and the rotating portion 12A of launder 12.
FIG. 3 shows a sectional elevation view of a typical existing sealing system 20 adapted for use between rotating portion 12A and stationary portion 12B of launder 12. System 20 comprises a flat horizontal flexible strip 22 which may by annular (or circular) in shape such that it extends across and seals gap 33. Typically flexible strip 22 is made of an elastomer (for example, rubber) which is bent at its outer perimeter by about 90 degrees between inner end 21 and outer perimeter 23. Flexible strip 22 will tend to bounce back or straighten itself such that end 23 pushes against edge 24 of rotating portion 12B of launder 12. As such, flexible strip 22 will thus provide a seal between rotating portion 12B and stationary portion 12A of launder 12. As can be seen, a circular hose 26 can be held in position by a plurality of hose clips 28 to provide further support to flexible strip 22.
Flexible strip 22 deflects to accommodate limited relative lateral motion in direction L between the rotating 12B and fixed 12A portions of launder 12. Unfortunately, the amount of such lateral motion in direction L that can be accommodated is quite limited (typically to fraction of an inch, even for a large diameter seal). Moreover, the rubber portion of the seal (i.e.: flexible strip 22) tends to deteriorate over time and eventually fail. Deterioration of this seal reduces the motive force for sludge withdrawal and dilutes the sludge, reducing the overall clarifier performance.
The present invention provides a fluid seal assembly, which in preferred aspects prevents movement of fluid through an annular gap between an inner edge of a circular hole passing through a first member and a second member having a circular outer perimeter.
As such, the present system is ideally suited for use in wastewater treatment clarifier launders. Specifically, in preferred aspects, the present invention provides a seal which substantially restricts or prevents fluid movement through an annular gap between the rotating and stationary portions of a wastewater clarifier launder. However, the application of the present invention is not so limited. Rather, the present invention can be used to provide a fluid seal across an annular gap between any two members, including any system wherein the first and second members are rotatably positionable with respect to one another.
In various aspects, the present invention can be used to provide a seal across an annular gap between a first and a second member wherein the first member is rotated while the second member remains stationary; or wherein the second member is rotated while the first member remains stationary; or wherein the first and second members are rotated, but at different speeds or in different directions.
In a first aspect of the invention, a first contacting member is positioned to span across the gap, with the first contacting member being attached to either one or the other of the first and second members. A plurality of support assemblies are attached to the same member to which the contacting member is attached. These support assemblies are specifically adapted to bias the first contacting member into contact against the other member to which the contacting member is not attached.
Various modifications are possible. For example, the first contacting member and the various support assemblies may together be attached to the member disposed on either the inner or the outer edges of the gap (i.e.: attached to either the first or second members).
In preferred aspects, the various support assemblies comprise a biasing mechanism, a pivot member and a sealing support assembly. The sealing support assembly pivots about the pivot member with the biasing mechanism urging the sealing support assembly against the first contacting member. This is turn either urges the first contacting member directly against the member to which the first contacting member is not attached, or alternatively, the first contacting member is urged directly against a second contacting member (which is positioned between the first contacting member and the member to which the first contacting member is not attached).
Preferably, the first contacting member, and the optional second contacting member are made of a suitably tough but flexible low friction material, which may optionally include ultra-high molecular weight polyethylene. When a second contacting member is not used, the member to which the first contacting member is not attached (i.e.: the member which the first contacting member is instead biased against) is preferably made of a suitably tough but flexible low friction material, which may optionally include ultra-high molecular weight polyethylene.
Accordingly, in a first aspect of the invention, the first contacting member pushes against, and slides along the surface of, the member to which the first contacting member is not attached. In a second aspect of the invention, the first contacting member pushes against, and slides along the surface of a second contacting member which is attached to the member to which the first contacting member is not attached. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor device and a manufacturing method thereof.
2. Description of the Related Art
Field Effect Transistors (FETs) have a characteristic in that strain in channel regions improves carrier mobility. “Strain generating techniques” for causing strain in channel regions are attracting increased interest for application to super speed FETs having a gate length of 100 nm or less. FIG. 1A illustrates an example of strain generating methods. According to this method, a silicon (Si) layer having an N-channel region is formed on the surface of a silicon-germanium (SiGe) layer. Thus, a biaxial tensile stress is applied to the N-channel to cause strain therein. FIG. 1B illustrates another example of strain generating methods. According to this method, SiGe layers are embedded into a silicon (Si) layer. Thus, a uniaxial compressive stress is applied to a P-channel region to cause strain therein (see Reference 1: A. Shimizu et al., Tech. Dig. of 2001 IEDM, IEEE, 2001, pp. 443-436; and Reference 2: K. Goto et al., Tech. Dig. of 2004 IEDM, IEEE, 2004, pp. 209-212). In these strain generating methods, the difference between the Si lattice constant and the SiGe lattice constant is a factor in generating a stress.
When a crystal shown in FIG. 2A is strained as illustrated in FIG. 2B, dislocation (FIG. 2C) is activated and expanded in the crystal under high temperature and high stress conditions. The term “dislocation” indicates line crystal defects. The types of dislocation include edge dislocation and screw dislocation. When the dislocation is activated and expanded in the strained crystal, the strain in the crystal is relieved by the dislocation.
The dislocation is not caused by self-nucleation. There is always a source that causes initial dislocation. In the case of the strain generating method of FIG. 1A, the dislocation source may be, for example, through penetration that has occurred when the SiGe layer or the Si layer is formed. In the case of the strain generating method of FIG. 1B, the dislocation source may be, for example, a lattice defect due to etching damage caused when grooves for layer embedment are formed. The (111) facet produced during the etching process also causes lattice defects. When the wafer is processed at high temperature, the initial dislocation is activated in the Si layer or the SiGe layers and expanded in the Si layer or the SiGe layers, as illustrated in FIG. 3. The quantity of strain ΔX after dislocation is produced is expressed asΔX=ΔX0−A|b|N where X0 is an initial strain, N is a density of dislocation in the system, A is a constant of proportion, and b is a Burger's vector (|b| denotes the size of the Burger's vector).
The dislocation thus relieves the strain in the channel region, thereby lowering the strain effect in the channel region for carrier mobility enhancement. This results in degradation of the performance of semiconductor devices, and increased fluctuation and variation in device characteristics. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a data communication apparatus for use in communicating video and audio data, and in particular to a data communication apparatus such as a facsimile apparatus, having a memory which is used in common for temporarily storing video and audio data which have been received or are to be transmitted.
2. Description of the Related Art
In the prior art, as described for example in Japanese Patent Laid-open No. 3-36868, a data communication apparatus is known whereby a single memory is used in common for storing video data and audio data that have been received or are to be transmitted. Diagram (a) of FIG. 1 illustrates the memory arrangement of such a prior art apparatus. The memory space is divided into a video region A and an audio region B which are respectively reserved for temporarily storing video and audio data. The user of the apparatus can establish a boundary address X in accordance with the memory usage condition, whereby the respective sizes of the video region A and audio region B can be increased or decreased.
For example in the case of a user who does not use an unattended telephone message recording function with such an apparatus, the boundary address X could be set to the highest address value of the memory, so that the entire memory space is allocated to the video region A. Conversely in the case of a user who does not use video data sending and receiving (e.g. facsimile) functions with such an apparatus, but who makes frequent use of an unattended telephone message recording function, the boundary address X can be set as the lowest address of the memory, so that the entire memory space is allocated as the audio region B.
It should be understood that the term xe2x80x9crecordingxe2x80x9d as used herein refers to the storage of an audio telephone message in a memory, after conversion to digital data.
When the video region A is completely empty, and the memory is to be used for video data sending or receiving operations, then the video data of document pages which have been received or document pages which are to be transmitted are thereafter stored in a set of addresses successively extending from the lowest address number of the memory. If at the stage when such video data have not yet been outputted from the memory it becomes necessary to store new video data (i.e. for document pages which have been received or are to be transmitted) then the new data are stored in addresses which successively increase from the highest one of the addresses in which video data have already been stored.
If the audio region B is completely empty and audio data are received, then that data are stored at addresses which successively extend from the lowest address of the audio region B. When audio data are received thereafter, the new data are stored in addresses which successively increase following the highest one of the addresses in which audio data have already been stored.
Diagram (b) of FIG. 1 illustrates a condition in which sets of video data a1 and a2, and the set of audio data b1 have been stored in the memory. The memory control section of such a data communication apparatus is provided with a memory management table for use in managing the utilization of the memory. The management information consists of the initial address and final address of each set of video data which have been stored in the memory (or, for each set of video data, the initial address and the number of bytes constituting the video data), flags for distinguishing different types of data (i.e. video or audio), the amount of usable storage capacity of the memory which remains available for storing video data and audio data, and the boundary address X. Each of these items of memory management information is registered in the memory management table. When data stored in the memory are outputted (i.e. to be transmitted, recorded or reproduced), the memory management information relating to that data are deleted from the memory management table. Thus the amount of remaining memory capacity, as registered in the management table, is increased by an amount corresponding to the storage range of the outputted data. The memory control section can thus manage memory write and read operations by looking up the management table.
However with such a prior art configuration, the following problems arise:
(a) Even if the user attempts to set the boundary address X at an optimum position with regard to the usage conditions of the apparatus, problems arise because there is no clearly defined target value for setting the boundary address. Moreover there is no simple way for the user to confirm that the position which has been set (within the memory space) for the boundary address is appropriate.
(b) When data transmission or receiving is being executed using the memory, then in order to prevent communications from being interrupted as a result of insufficient memory space, it would be convenient for the user to be able to confirm the amount of remaining memory capacity. However with such a prior art type of data communication apparatus, the user is not provided with information to enable the remaining memory capacity to be easily confirmed.
Moreover as shown in diagram (c) of FIG. 1, in a case in which the video region A has become insufficient, but there is some available memory capacity remaining in the audio region B, it is not possible to obtain additional video data storage capacity by going beyond the memory region A.
It is an objective of the present invention to provide a data communication apparatus having a memory which is used in common for storing video data and audio data, whereby setting of a boundary address at an appropriate position for defining a video region and an audio region within the memory and also confirmation of amounts of remaining memory capacity, can be easily performed, and further whereby the efficiency of utilization of the common memory can be improved by comparison with the prior art.
To achieve the above objectives, a data communication apparatus according to the invention converts an amount of memory space which can be used for storing video data into an equivalent number of standard document pages, and displays that number of pages. Similarly, an amount of space that can be used for storing audio data is displayed as an equivalent number of telephone calls, i.e. telephone messages. The user without specialized knowledge can thereby more readily understand the amounts of memory space when thus expressed as a number of pages and number of telephone calls, than would be the case if these amounts were displayed in the usual units of bytes or kilobytes.
More specifically the present invention provides, in a data communication apparatus including communication means for transmitting and receiving video data and audio data, the video data being derived from documents, a memory for storing at least video data and audio data received by the communication means, memory control means for executing management of utilization of the memory and for controlling data write and read operations of the memory, and data display means, the improvement comprising display control means for controlling the data display means to display first memory capacity information representing an amount of capacity available in the memory for storing video data and second memory capacity information representing an amount of capacity available in the memory for storing audio data;
the improvement whereby the display control means comprising means for expressing the first memory capacity information as a number of first data units, each of the first data units consisting of an amount of data corresponding to one standard document page, and to express the second memory capacity information as a number of second data units, each of the second data units consisting of an amount of data corresponding to one fixed-duration telephone message, and means for controlling the display means to display the number of first data units and the number of second data units.
With such an apparatus, the memory space of the memory can be divided into a video region which is reserved for storing video data and an audio region which is reserved for storing audio data, with a boundary between the video region and audio region being defined by a boundary address, with the first memory capacity information being an amount of capacity of the video region and the second memory capacity information being an amount of capacity of the audio region.
Moreover such an apparatus can further include means for establishing a boundary address setting mode of operation wherein one of a plurality of respectively different values of the boundary address can be selectively established by a user, and wherein the display means is controlled to display during the boundary address setting mode, for each of the plurality of boundary address values, a corresponding amount of capacity of the video region, expressed as a number of the units of document pages, and a corresponding amount of capacity of the audio region, expressed as a number of the units of telephone messages, the display means being further controlled to indicate the boundary address value which is currently selected.
Such an apparatus may also include means for establishing a residual capacity display mode of operation wherein an amount of capacity that is currently vacant in the video region is displayed in the units of standard document pages and an amount of capacity that is currently vacant in the audio region is displayed in the units of telephone messages.
In general, the units of telephone messages will respectively correspond to standard recording intervals for storing audio data in the memory, and the apparatus may further comprise means for establishing a recording interval setting mode of operation wherein one of a plurality of respectively different values of the standard recording intervals can be selectively established by a user, and wherein the display means is controlled by the display control means to display during the recording interval setting mode, in correspondence with each of the different standard recording interval values, a corresponding value of the second memory capacity information, expressed as a number of the units of telephone messages, and to display an indication of one the standard recording interval value which is currently selected.
Such an apparatus can alternatively be operated such that video data which are successively written into the memory are written into addresses which successively change in a direction from a first one of a highest address and a lowest address of the memory towards a second one of the highest and lowest addresses, and wherein audio data which are successively written into the memory are written into addresses which successively change in a direction from the second one of the highest and lowest addresses of the memory towards the first one of the highest and lowest addresses. In that case, since there is no fixed boundary between the video and audio storage regions, greater flexibility of memory utilization becomes possible. | {
"pile_set_name": "USPTO Backgrounds"
} |
As integrated circuit fabrication technology improves, manufacturers are able to integrate additional functionality onto a single silicon substrate. As the number of the functions increases, so does the number of components on a single Integrated Circuit (IC) chip. Additional components add additional signal switching, in turn, generating more heat and/or consuming more power. The additional heat may damage components on the chip by, for example, thermal expansion. Also, the additional power consumption may limit usage locations and/or usage models for such devices, e.g., especially for devices that rely on battery power to function. Hence, efficient power management can have a direct impact on efficiency, longevity, as well as usage models for electronic devices.
Moreover, current parallel graphics data processing includes systems and methods developed to perform specific operations on graphics data such as, for example, linear interpolation, tessellation, rasterization, texture mapping, depth testing, etc. Traditionally, graphics processors used fixed function computational units to process graphics data; however, more recently, portions of graphics processors have been made programmable, enabling such processors to support a wider variety of operations for processing vertex and fragment data.
To further increase performance, graphics processors typically implement processing techniques such as pipelining that attempt to process, in parallel, as much graphics data as possible throughout the different parts of the graphics pipeline. Parallel graphics processors with single instruction, multiple thread (SIMT) architectures are designed to maximize the amount of parallel processing in the graphics pipeline. In an SIMT architecture, groups of parallel threads attempt to execute program instructions synchronously together as often as possible to increase processing efficiency. A general overview of software and hardware for SIMT architectures can be found in Shane Cook, CUDA Programming, Chapter 3, pages 37-51 (2013) and/or Nicholas Wilt, CUDA Handbook, A Comprehensive Guide to GPU Programming, Sections 2.6.2 to 3.1.2 (June 2013). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a semiconductor device, a high-frequency power amplifying device (high-frequency power amplifying module) and a wireless communication apparatus with the high-frequency power amplifying device built therein. The present invention relates to, for example, a technology effective for application to a cellular telephone of a multiband communication system, which has a plurality of communication functions different in communication frequency band.
An AMPS (Advanced Mobile phone Service) of an analog system, which has heretofore been used and covers the North America all over the land, and a so-called dual mode cellular telephone wherein digital systems such as TDMA (time division multiple access), CDMA (code division multiple access), etc. are built in one cellular phone, have recently been used in a North American cellular market.
On the other hand, a GSM (Global System for Mobile Communication) system and a DCS (Digital Cellular System) system both using a TDMA technology and an FDD (frequency division duplex) technology have been used in Europe and the like. “Nikkei Electronics” issued by Nikkei Business Publications, Inc., the July 26 issue in 1999 [no. 748], P140 to P153 has described a dual mode cellular phone wherein a GSM whose use frequency ranges from 800 MHz to 900 MHz, and a PCN (another name for DSC) whose use frequency ranges from 1.7 GHz to 1.8 GHz, are integrated into one. The same reference has described a multi-layered ceramics-device in which passive parts are brought into integration to downsize the whole circuit.
A dualband-oriented RF power module has been described in “GAIN”, No. 131, 2000.1 issued by the Semiconductor Group of Hitachi, Ltd. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to pasty organopolysiloxane compositions, and, more especially, to such compositions which can be readily transferred or circulated by means of pumps, comprising organic peroxide cross-linking agents and which can be conveniently thermoset to form elastomers possessing good mechanical properties.
2. Description of the Prior Art
Pasty organopolysiloxane compositions consisting of diorganopolysiloxane oils, fillers and organic peroxides, and which can be subjected to thermosetting to form elastomers, are described in U.S. Pat. No. 3,791,998. The objective of this patent is to obtain, in a simple manner, good adhesion between the organopolysiloxane elastomers and fabrics which are to be used as insulators for electrical conductors; this objective is achieved by the use of compositions which are sufficiently plastic to penetrate into the mesh of the fabrics. Thus, said patent does not suggest any method for obtaining elastomers possessing good mechanical properties from pasty organopolysiloxane compositions.
Organopolysiloxane compositions which can have a sufficiently low viscosity to be circulated, and then harden to form elastomers, in low-pressure molding devices or apparatus (such as the so-called liquid injection-molding machines), are described in U.S. Pat. No. 4,173,560. Same consist of diorganopolysiloxane oils having, per mol, about 2 vinyl radicals bonded to the silicon atoms, finely divided silicas treated with vinylic amidoorganopolysiloxanes, and, as cross-linking agents, organic peroxides or more complex systems comprising combinations of organohydrogenopolysiloxanes and platinum derivatives.
These compositions harden to form elastomers having proper mechanical properties; however, the treatment of the finely divided silicas entails the use of organopolysiloxane compounds which are not readily available on the silicone market; moreover, the examples in the patent reflect that, in order to pursue this treatment, it is first necessary to dry the finely divided silicas for a prolonged period of time and then to carry out the process in an anhydrous solvent medium.
U.S. Pat. No. 4,173,560 also teaches (column 7, Example 1A and column 8, Example 3) that the usual treatment of the silicas by means of organosilicon compounds which donate (CH.sub.3).sub.3 SiO.sub.0.5 groups, such as hexamethyldisilazane, leads to elastomers possessing mechanical properties which are on the whole inferior (in particular from the point of view of Shore A hardness) to those of the elastomers produced from compositions containing silicas treated with the vinylic amidoorganopolysiloxanes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cisapride is one of a class of compounds known as benzamide derivatives, the parent compound of which is metoclopramide. U.S. Pat. Nos. 4,962,115 and 5,057,525 (collectively “Van Daele” and incorporated by reference in their entireties) disclose N-(3-hydroxy-4-piperidenyl) benzamides of cisapride. Van Daele discloses that these compounds, the pharmaceutically acceptable acid addition salts thereof and the stereochemically isomeric forms thereof, stimulate the motility of the gastrointestinal system.
As a class, these benzamide derivatives have several prominent pharmacological actions. The prominent pharmacological activities of the benzamide derivatives are due to their effects on the neuronal systems which are modulated by the neurotransmitter serotonin. The role of serotonin, and thus the pharmacology of the benzamide derivatives, has been broadly implicated in a variety of conditions for many years. Thus, research has focused on locating the production and storage sites of serotonin as well as the location of serotonin receptors in the human body in order to determine the connection between these sites and various disease states or conditions.
In this regard, it was discovered that a major site of production and storage of serotonin is the enterochromaffin cell of the gastrointestinal mucosa. It was also discovered that serotonin has a powerful stimulating action on intestinal motility by stimulating intestinal smooth muscle, speeding intestinal transit, and decreasing absorption time, as in diarrhea. This stimulating action is also associated with nausea and vomiting.
Because of their modulation of the serotonin neuronal system in the gastrointestinal tract, many of the benzamide derivatives are effective anti-emetic agents and are commonly used to control vomiting during cancer chemotherapy or radiotherapy, especially when highly emetogenic compounds such as cisplatin are used. This action is almost certainly the result of the ability of the compounds to block the actions of serotonin (5HT) at specific sites of action, called the 5HT3-receptor, which was classically designated in the scientific literature as the serotonin M-receptor. Chemotherapy and radiation therapy may induce nausea and vomiting by the release of serotonin from damaged enterochromaffin cells in the gastrointestinal tract. Release of the neurotransmitter serotonin stimulates both afferent vagal nerve fibers (thus initiating the vomiting reflex) and serotonin receptors in the chemoreceptor trigger zone of the area postrema region of the brain. The anatomical site for this action of the benzamide derivatives, and whether such action is central (CNS), peripheral, or a combination thereof, remains unresolved (Barnes et al., J. Pharm. Pharmacol. 40: 586-588, 1988). Cisapride, like the other benzamide derivatives would appear to be an effective anti-emetic agent based on its ability to modulate the activity of serotonin at the 5HT3 receptor.
A second prominent action of the benzamide derivatives is in augmenting gastrointestinal smooth muscle activity from the esophagus through the proximal small bowel, thus accelerating esophageal and small intestinal transit as well as facilitating gastric emptying and increasing lower esophageal sphincter tone (Decktor et al., Eur. J. Pharmacol. 147: 313-316, 1988). Although the benzamide derivatives are not cholinergic receptor agonists per se, the aforementioned smooth muscle effects may be blocked by muscarinic receptor blocking agents such as atropine or neuronal transmission inhibitors of the tetrodotoxin type which affect sodium channels. Similar blocking activity has been reported for the contractile effects of serotonin in the small intestine. It is currently believed that the primary smooth muscle effects of the benzamide derivatives are the result of an agonist action upon a new class of serotonin receptors referred to as 5HT4 receptors which are located on interneurons in the myenteric plexus of the gut wall. Activation of these receptors subsequently enhances the release of acetylcholine from parasympathetic nerve terminals located near surrounding smooth muscle fibers, and it is the combination of acetylcholine with its receptors on smooth muscle membranes which is the actual trigger for muscle contraction.
A discussion of various 5HT receptors, including the 5HT4 receptor can be found in, for example, U.S. Pat. Nos. 6,331,401 and 6,632,827, which are incorporated by reference herein in their entirety.
Cisapride has been used primarily to treat gastroesophageal reflux disease (GERD). This disease is characterized as the backward flow of the stomach contents into the esophagus. One of the most important factors in the pathogenesis of gastroesophageal reflux disease is a reduction in the pressure barrier due to the failure of the lower esophageal sphincter. Failure of the lower esophageal sphincter can arise due to a low basal pressure, sphincter relaxation, or to a non-compensated increase in intragastric pressure. Other factors in the pathogenesis of the disease are delayed gastric emptying, insufficient esophageal clearing due to impaired peristalsis and the corrosive nature of the reflux material which can damage esophageal mucosa. Cisapride is thought to strengthen the anti-reflux barrier and improve esophageal clearance by increasing the lower esophageal sphincter pressure and enhancing peristaltic contractions.
Because of its activity as a prokinetic agent, cisapride would also appear to be useful to treat dyspepsia, gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction. Dyspepsia is a condition characterized by an impairment of the power or function of digestion that can arise as a symptom of a primary gastrointestinal dysfunction or as a complication due to other disorders such as appendicitis, gallbladder disturbances, or malnutrition. Gastroparesis is a paralysis of the stomach brought about by a motor abnormality in the stomach or as a complication of diseases such as diabetes, progressive systemic sclerosis, anorexia nervosa or myotonic dystrophy. Constipation is a condition characterized by infrequent or difficult evacuation of feces resulting from conditions such as lack of intestinal muscle tone or intestinal spasticity. Post-operative ileus is an obstruction in the intestine due to a disruption in muscle tone following surgery. Intestinal pseudo-obstruction is a condition characterized by constipation, colicky pain, and vomiting, but without evidence of physical obstruction.
Drug toxicity is an important consideration in the treatment of humans and animals. Toxic side effects (adverse effects) resulting from the administration of drugs include a variety of conditions which range from low grade fever to death. Drug therapy is justified only when the benefits of the treatment protocol outweigh the potential risks associated with the treatment. The factors balanced by the practitioner include the qualitative and quantitative impact of the drug to be used as well as the resulting outcome if the drug is not provided to the individual. Other factors considered include the physical condition of the patient, the disease stage and its history of progression, and any known adverse effects associated with a drug.
Drug elimination is typically the result of metabolic activity upon the drug and the subsequent excretion of the drug from the body. Metabolic activity can take place within the vascular supply and/or within cellular compartments or organs. The liver is a principal site of drug metabolism. The metabolic process can be categorized into synthetic and nonsynthetic reactions. In nonsynthetic reactions, the drug is chemically altered by oxidation, reduction, hydrolysis, or any combination of the aforementioned processes. These processes are collectively referred to as Phase I reactions.
In Phase II reactions, also known as synthetic reactions or conjugations, the parent drug, or intermediate metabolites thereof, are combined with endogenous substrates to yield an addition or conjugation product. Metabolites formed in synthetic reactions are, typically, more polar and biologically inactive. As a result, these metabolites are more easily excreted via the kidneys (in urine) or the liver (in bile). Synthetic reactions include glucuronidation, amino acid conjugation, acetylation, sulfoconjugation, and methylation.
More than 90% of a dose of cisapride is metabolized by oxidative N-dealkylation at the piperidine nitrogen or by aromatic hydroxylation occurring on either the 4-fluorophenoxy or benzamide rings.
The administration of cisapride to a human has been found to cause serious adverse effects including CNS disorders, increased systolic pressure, interactions with other drugs, diarrhea, and abdominal cramping. Further, it has been reported that intravenous administration of cisapride demonstrates the occurrence of additional adverse effects not experienced after oral administration of cisapride (Stacher et al. [1987] Digestive Diseases and Sciences 32(11):1223-1230). It is believed that these adverse effects are caused by the metabolites that result from the oxidative dealkylation or aromatic hydroxylation of the compound which occurs in the cytochrome P450 detoxification system. Cisapride is also subject to a number of undesirable drug/drug interactions that are also a result of metabolism by the cytochrome P450 system.
Between July 1993 and December 1999, cisapride (PROPULSID, Janssen Pharmaceutica Products, L.P.) was reportedly associated with at least 341 serious cardiac arrhythmias. These arrhythmias include ventricular tachycardia, ventricular fibrillation, torsades de pointes, and QT prolongation. Eighty (80) deaths have been reported. As a result of these adverse effects, the product was voluntarily withdrawn from the open market in the United States; however, the drug is available through an investigational limited access program.
The safety of 5HT4 receptor agonists with gastrointestinal (GI) prokinetic activity has been limited due to cardiac effects (prolongation of QTc intervals, tachycardia, torsades de pointes) and adverse drug interactions due to hepatic cytochrome P-450 metabolism. A GI prokinetic agent of this class that lacks these liabilities would be very valuable in several therapeutic areas including GERD and gastric emptying disorders. Certain cisapride derivatives have been described in U.S. Pat. No. 6,552,046 and WO 01/093849 (incorporated by reference herein in their entireties), however further compounds with even more advantageous properties would be desirable.
It has now been discovered that certain stereoisomers of one such esterified structural and/or functional analog of cisapride have distinct and particularly advantageous properties. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to electrical power tools, and more particularly to a multipurpose alternating, direct current combination tool with a main body portion connectable to different types of interchangeable tool head portions.
The electric tool is a common tool with very widespread applications in households and factories. In the past, it has often been necessary to purchase multiple tools in order to perform multiple processes or tasks such as drilling, planing, shearing, grinding, and like, resulting in high purchase cost and carrying inconvenience. In order to overcome the drawbacks of high purchase expense and carrying inconvenience, many patents and documents have covered various forms of combination electric tools.
Chinese Patent No. ZL93220617.4, for example, discloses a type of electric tool assembly, wherein a main machine part of an electric motor is coupled with multiple different tool heads to drive different kinds of tools, so as to provide multipurpose functioning with one machine. However, that patent does not disclose how the tool head is coupled with the main machine part.
Chinese Patent No. ZL96217802.0 discloses a universal electric tool wherein two spring-biased round head pins are provided on the output shaft of an electric motor to couple the tool with the tool head. Although this arrangement is very convenient for replacing tool heads, the power transmission between the motor and tool head is through two contact points on the two round head pins. Hence, the power transmission efficiency will be affected to a certain degree and, due to repeated mounting and dismounting, the round head pins may become worn, and may result in injury to users.
Chinese Patent No. ZL97201237.0 discloses a combination type multipurpose electric tool, and sets forth a method of coupling the main machine part with a tool head. It can be noted from the technique disclosed by that patent, that the main machine part and tool head utilize male and female screw threads to make the coupling. This kind of coupling method is very inconvenient when replacing tool heads, and may easily damage the output shaft or electric motor.
It can be noted from the above-mentioned prior art that the coupling and power transmission of the main body with the tool head of multipurpose combination electric tools have disadvantages associated with their method of coupling and power transmission, and may cause injury to users. Hence, there continues to be a need for a multipurpose combination electric tool that is safe, reliable, and performs for users at an acceptable level of expectation.
It is an object of the present invention to provide a multipurpose combination electric tool with a locking mechanism for coupling a main body portion with a tool head portion to overcome the above-mentioned drawbacks of the prior art. The combination electric tool may be adapted to receive alternating and/or direct current.
The present invention divides the existing electric power tool into a main body portion and a tool head portion. The main body portion includes an electric motor, a speed control switch, a battery or other power source, and the like components. The tool head portion includes a speed control device, a direction change device, a transmission mechanism and the like components. The above-mentioned components are known in the prior art and therefore will not be further described.
According to the invention, the main body portion couples with the tool head portion through a locking mechanism and a power transmission device for transferring power from the main body portion to the tool head portion.
The locking mechanism comprises a thrust ring provided on the main body portion that is rotatable over a preset distance and a locking head provided on the tool head portion. A locking ring and a locking pad are also provided on the main body portion and are operably associated with the thrust ring.
The thrust ring is an annular ring with an outside rim and thrust ring levers extending from the outside rim and out of the housing of the main body portion. At least one fixing element is located on the thrust ring for fixing the locking ring against relative rotation. The outside diameter of the thrust ring should be sized to be received within the housing of the main body portion, so as to enable the thrust ring to rotate inside the housing.
The locking ring is an annular ring with an inner rim and inclined wedges provided on the inner rim. When the thrust ring is rotated, the locking ring can also rotate therewith due to the at least one fixing element.
The locking pad is an annular ring that is located adjacent one side of the locking ring. Bosses are provided on the annular ring and are inserted into slots in the housing of the main body portion to fix the locking pad to the housing.
A washer can be provided between the locking ring and locking pad for adjusting clearance.
The thrust ring, locking ring, locking pad and washer are all provided on a forward end portion of the main body portion and sleeved at the outer side of the electric motor output shaft.
The locking head is located at the rear end portion of the tool head portion and includes coupling lugs and a wedging slot located forward of the coupling lugs. The wedging slot receives the inclined wedges of the locking ring during rotation of the locking ring in one direction to tightly couple the main body portion with the tool head portion. Likewise, the inclined wedges of the locking ring can be removed from the wedging slot during rotation of the locking ring in the opposite direction to separate the main body portion from the tool head portion.
The power transmission device comprises an external spline fixed on the output shaft of the electric motor and an internal spline located inside the tool head portion. The internal and external splines are provided with guiding faces to mate with each other. In use, the internal spline is inserted through cooperation of the guiding faces into the external spline to transmit power from the output shaft to the tool head portion.
The present invention can form different tools with a single main body portion and different interchangeable tool head portions by merely changing one tool head portion for another. The tool head portions can be in the form of an electric drill head assembly to be rapidly used as an electric drill; the tool head portion can be in the form of a triangular sanding head assembly to be used as a sanding machine; the tool head portion can be in the form of an angular grinding machine head assembly to be used as angular grinding machine; the tool head portion can be in the form of a cement or concrete is mixing assembly to be used as a cement or concrete mixing machine; the tool head portion can be in the form of a reciprocating-type sawing machine to be used as reciprocating sawing machine, and so on. The various tool head portions mentioned above are well known and, in accordance with the present invention, can be easily connected to and disconnected from the main body portion. | {
"pile_set_name": "USPTO Backgrounds"
} |
Dynamic host configuration protocol (DHCP) is defined by the Internet Engineering Task Force (IETF) in RFC2132. This protocol provides a means whereby a client, such as a mobile computer or the like, may establish a connection with an access node of a communications network. For example, this may be at a wireless hotspot, at a home network, at a university campus or at an Enterprise intranet. Typically a network location awareness process takes place whereby the mobile computer recognizes or identifies the communications network to which it is connected.
Network location awareness (NLA) refers to the ability of a computer or other communications network node to recognize or identify a communications network to which it is connected. For example, network location awareness enables mobile computers to recognize home, work and public networks and wireless hotspots and as a result the mobile computer is able to behave differently depending on which network it is participating in. The mobile computer may use the network information to change settings such as firewall rules, or other parameters.
Unfortunately, some existing network location awareness technology is insecure. For example, in some situations, adversaries are able to cause a computer to believe that it is at a private network and so cause it to use weak security settings, such as opening vulnerable ports at a host firewall. Thus there exists a need to improve security whilst keeping costs down and minimizing the need for adaptations to be made to existing communications network equipment and protocols. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a catheter for draining urine from the bladder of a user, and which is composed of a flexible tube and an insertion aid secured to the insertion end of the tube for inserting it into the urethra and guiding it therethrough into the bladder, and with the tube having at least one orifice in the region adjacent the insertion aid.
The invention further relates to a catheter for draining urine which is composed of a flexible tube for inserting it into the urethra and guiding it therethrough into the bladder, with the tube being made of plastic and having at least one orifice adjacent its insertion or free end or in the region preceding the free end.
For managing incontinence of male persons, in particular in the case of paraplegia, one applies, among other things, the so-called intermittent self-catheterization (ISK), by which the incontinent male person catheterizes himself four to six times a day. To remain continent between catheterization phases, the treating physician normally prescribes a medication that deactivates or sedates the bladder.
However, the known catheters for draining urine are problematic in practice, inasmuch as during the introduction of the catheter into the urethra and while guiding the catheter tip through the urethra into the bladder, it is necessary to overcome pockets, folds, bends, or the like. If one pushes the catheter with a corresponding force against the existing impediments in the urethra, one will face a considerable risk of injury
For example, in the art, one may refer to EP 0 384 476 BE1, which provides as an insertion aid a very special catheter tip. While this catheter tip is made flexible or elastic, it conically tapers toward its free end, and is rounded at its front or free end. Although this specific configuration permits pushing the catheter through the urethra into the bladder, while overcoming the aforesaid problem locations, it also presents in this instance a significant risk of injury because of the necessary application of force.
It is therefore an object of the present invention to improve and further develop a catheter, in particular a disposable catheter, in such a manner that it is easy to be handled by the user, and which reduces the normal risk of injury quite considerably, when being pushed into and through the urethra. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to apparatus capable of feeding marginally punched record material and, more particularly, to a bi-directional pin feed apparatus for use with a printing machine of the type comprising a main frame and a printing station past which record material is fed.
When feeding marginally punched record material, such as computer forms paper, it is generally necessary to use a feeding apparatus different than the conventional platen-lower pressure roller arrangement, due to the thickness of the multicopy paper variety and the use of periodic perforations for tearing purposes. The two most common feeding apparatus for this type of record material are the pin feed apparatus and the tractor feed apparatus. An exemplary pin feed apparatus is disclosed in U.S. Pat. No. 4,033,493, whereas an exemplary tractor feed apparatus is disclosed in U.S. Pat. No. 4,042,091.
Recently, it has become necessary to provide a record material feed apparatus with a bi-directional feeding capability. This is especially true when computer forms paper is used to print graphical data and the like. A pin feed apparatus having a bi-directional feeding capability is disclosed in the above-referenced U.S. Pat. No. 4,033,493, whereas a bidirectional record material feed apparatus employing both pin feed and tractor drive mechanisms is disclosed in copending U.S. Application Ser. No. 917,233 filed in the names of Leo Levinson and William Rempel on June 20, 1978 for BIDIRECTIONAL RECORD MATERIAL FEED APPARATUS and assigned to the assignee of the present invention.
One problem with bi-directional pin feed apparatus in general has to do with the ease of loading the record material, as well as the ease with which such record material may be torn along a perforation above the writing line of the record material remaining in the printer without impediment due to the upper projecting pins or without requiring repositioning or reloading of record material. In this respect, and as shown in U.S. Pat. No. 4,033,493, it is normally the case in bi-directional pin feed apparatus for the pins of the pin wheel feeding devices to project from two segments of their path of circumferential movement, i.e., generally upwardly to primarily control positive forward feeding of the record material, and generally downwardly to primarily control reverse feeding.
I have recognized that the record material could be more easily loaded onto the pin wheel feeding devices and about the platen, as well as more easily torn along its perforations very close to the upper writing line of the record material remaining in the printer by eliminating the upper projecting pins. However, in order to maintain reversibility, this would require redesigning the segment along which the lower pins project. More specifically, and as shown in U.S. Pat. No. 4,033,493, the lower pins generally project along a segment which extends quite a bit upwardly in the front of the platen. If these pins were left positioned as is and the upper pins that are normally used for forward feeding were eliminated, problems would arise during forward feeding such as buckling of the record material or having the record material disengage from the feed apparatus. In order to avoid these problems, I have discovered that the lower pins should be shifted in position to project more straight downwardly in order positively feed record material in both directions from the curved area of the record material as engaged about the lower area of the platen.
One problem with so repositioning the lower pins has to do with the present mechanical arrangement at the lower area of the platen. Such arrangement includes the lower bail-bar, pressure roller assembly and the conventional paper guide pan. The presence and location of these components makes repositioning of the lower pins to the desired location above described virtually impossible.
It would be desirable, therefore, to provide a bi-directional pin feed apparatus free of upper projecting pins thereby enabling the easy tearing of record material segments just above the writing line of the record material remaining in the printer, wherein the lower pins project along a desired curved area of the record material's engagement about the platen. It would further be desirable if such pin feed apparatus was capable of easily loading the record material thereon and into the printer about the platen. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method for the separation of phonograph record labels in an automatic, repeated operation, from a stack of phonograph record labels provided with center holes and stacked on a centering pin. The method involves bringing the successively outermost label, as considered in the feed-out direction, out of adhesive engagement with the adjacent label in the stack and presenting the outermost label in a preparatory position for being picked off from the stack. After pickoff the outermost label is conveyed to and delivered at a label-receiving station by means of a conveying means provided with suction means.
Previously, when separating a pliant sheet-like article from a stack of such articles and bringing said article into a position in which it is ready for separate transport to a working station where the article is applied to an intended surface the article has been removed from the stack by means of a collecting device which is brought into direct contact with the article lying outermost at the end of the stack. A disadvantage with such collecting or pick up devices is that, at least in the case of certain types of pliant sheet-like articles, it is difficult to prevent more than one article at a time from accompanying said device, thereby causing a high degree of wastage and uneconomical stoppages in production.
Particularly with respect to labels intended for phonograph records, the labels have hitherto been carried from a stack of such labels to a labelling station by means of one or more suction cups connected to a vacuum source, said suction cups being urged against the outermost label in the stack and then moved to said labelling station while maintaining a suction force in said cups. It is essential that the cups exert only that suction force required to remove a single label at a time from the stack of labels. If the suction force is excessively high then two or more labels may be removed at a time from the stack of labels, while on the other hand if the suction is excessively low then the label is liable to fall from the cup or the cup may fail to pick up a label from the stack. The percentage of phonograph records which must be rejected owing to the fact that a label has not been correctly applied thereto when using such suction cups is relatively high. As a result faulty labelling constitutes the major cause for rejection of phonograph records in the manufacture thereof using fully automatic apparatus.
It is also previously known, e.g. through the German patent specification No. 1,779,967, to suck out phonograph record labels from a stack of labels through a circular feed-out opening having a limiting surface which converges in the feed-out direction and which, as viewed in section, presents a toothed profile. The purpose of this construction is that the labels shall be urged to drag with their peripheral edges over the circular ridges thus formed in said profiled limiting surface in order to be shaken apart before being finally fed out. In practice, however, this method does not constitute any beneficial solution of the problem since the labels frequently have a tendency to adhere to each other at different places of the abutting surface, which consequently results in considerable incalculabilities in operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an image projection apparatus comprising a display system having at least a display panel for generating an image to be projected, a projection lens system for projecting the image formed by the display system on a projection screen, a focus-error detection system provided with an auxiliary radiation source which supplies a focus measuring beam, and a detection unit for converting the focus measuring beam radiation reflected by the projection screen into a focus-error signal.
The term image projection device is considered to have a wide meaning and comprises a device for displaying, for example a video image, a graphic image, numerical information or a combination thereof. The images may be both monochrome and color images. In the latter case the display system may comprise three chrominance channels for, for example the primary colors red, green and blue, each accommodating a display panel. A display panel may be constituted by the display screen of a cathode ray tube but is preferably a liquid crystalline panel. In the latter case the display system comprises an illumination unit for illuminating the panel or the panels.
In the current image projection devices which comprise one projection lens system in the form of a zoom lens for projecting a magnified image on a projection screen which is present at, for example several meters from the projection device, each change of the projection distance necessitates refocusing of the image by readjusting the zoom lens manually or possibly via a remote control unit. Moreover, optical elements of the image projection device may be displaced with respect to each other due to, inter alia temperature variations, so that the projected image may be refocused. The known image projection devices thus require an additional quantity of time, attention and expertise of the user. The convenience of use of an image projection device would be enhanced considerably if it were provided with an autofocus system, i.e. a system with which the distance between a display panel and the projection screen is measured and the focus of the projection lens system is automatically adjusted with reference to said measurement.
An image projection device in which an auxiliary radiation source emits an invisible, infrared measuring beam to the screen and in which the radiation beam reflected by the screen is received by a position-sensitive detector is described in the published Japanese Patent Application (Kokai) 3-149538. The distance between the screen and a reference plane, the plane of the radiation source and/or the detector can be determined by means of this system which is referred to as triangulation system. This information is used to displace the entire projection lens system along the optical axis so that the distance between this system and the screen can be adapted to the focal length of the projection lens system. This system has the drawback that the measuring beam is optically not coupled to the projection lens system and the display panel so that it is not ensured that the focal length of the projection lens system is always adapted to the distance between the screen and the display panel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to stowable table systems and particularly to a stowable table assembly that includes a tabletop deployable to a horizontal position of use in which position the tabletop is prevented from being lifted for stowing unless the tabletop is in a proper fore-and-aft position.
2. Description of the Related Art
The tabletops of table assemblies of the kind that are stowable in a storage compartment formed, for example, in the armrest of a seat, are typically mounted for pivotal movement about a hinge to a horizontal position of use. The tabletop may then be moved fore-and-aft to a comfortable position of use. To stow the table assembly, the tabletop must first be moved to a predetermined fore-and-aft position to allow the tabletop to be pivoted upwardly to a vertical position. The table assembly can then be slid down into the storage compartment. Failure to properly position the tabletop in the fore-and-aft direction before lifting the table can result in interference between the tabletop and the compartment structure when an attempt is made to lift the tabletop. Such interference may cause damage to the compartment structure and/or the table assembly. | {
"pile_set_name": "USPTO Backgrounds"
} |
Since the first integrated circuit appeared, the semiconductor industry has experienced continuous rapid growth due to constant improvements in the integration density of various electronic components and semiconductor packages. For the most part, these improvements in integration density have come from repeated reductions in minimum feature size, allowing more components to be integrated into a semiconductor chip or package. One approach for allowing more components to be integrated into a semiconductor structure is the adoption of three dimensional integrated circuit (3D IC) stacking techniques, in which silicon wafers and/or dies are stacked on one another. A technique for stacking semiconductor wafers and/or substrates in a semiconductor package employs the use of direct bonding between metal interconnection structures (e.g., direct copper to copper (Cu—Cu) bonding) of two substrates. However, to achieve successful bonding, precise alignment between two substrates and high co-planarity of interconnection structures on each substrate are involved to directly bond the interconnection structures of one substrate to the interconnection structures of another substrate. Moreover, warpage of the two substrates during the thermal cycle (due to, e.g., the relatively high temperature for direct bonding) may result in failure of bonding. Additionally, conventional Cu—Cu bonding is performed in an environment with high temperature, high pressure and/or a high degree of vacuum. Therefore, there is a need for, among other things, a semiconductor package that has a high tolerance for misalignment and a lack of co-planarity of interconnection structures during a bonding process. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mobile computing devices, such as mobile or wireless stations, cellphones, radios, laptops, wireless communication devices and the like, operate with a power storage device with a limited energy supply, such as a battery, fuel cell or the like. A mobile computing device needs a power source and, in many cases, this power source is a battery. For instance, cellular phones use various types of batteries to operate. The amount of time a mobile station can typically operate before the energy of the battery is consumed (which is often referred to as “battery life”), is often an important criteria that consumers use in choosing one brand or type of mobile computing device over another brand. The terms battery, energy storage device and power storage device are used interchangeably herein.
While the power storage device is generally rechargeable, it may not be convenient or even possible for a user to recharge. Accordingly, there is a need to maximize the useful operational time of a wireless computing device.
Additionally, different operating environments can cause the user to be surprised and/or frustrated when the battery runs out much more quickly than would typically be expected by the user. Thus, a variation or unexpected short battery life is very undesirable from a user perspective.
This is a particularly relevant problem for mobile computing devices running applications supported by an applications server because of the power drain due to the wireless data exchange between the mobile device and the server, since each upload or download causes the consumption of energy in the mobile device and server. The problem is especially acute in the mobile device, which is typically battery powered and has finite energy available. For example, a mobile device may employ an email server for uploading and downloading email in support of an email application, a contact server for uploading and downloading contact status in support of a social networking application, an information server for downloading movies, news, music, etc. in support of a media playing application, and a back-up/storage server for uploading mobile device data in support of a data back-up application. Typically, the mobile device and application server synchronize on a regular or periodic basis, i.e. they communicate, upload, download or exchange information at essentially regular or fixed time intervals, and in this document, the exchange of data between and mobile device running an application and an application server is referred to as “synchronization”, and the amount of time between data exchanges is referred to as the “synchronization interval” or “sync interval”, for a given application and application server. Thus, there is a need for increasing a length of a synchronization interval, in order to conserve energy in a power storage device of a wireless computing device, such as a mobile station, in order to prolong useful power storage device or battery life.
Generally, there is a tradeoff between good application performance which requires more frequent data exchanges, i.e. a short synchronization interval, and good battery life which requires less frequent data exchanges, i.e. a long synchronization interval. For example, performance of an email application may be determined by the amount of time it takes to receive an email, and performance of a social networking application may be determined by the delay in receiving a change in a social contact's status.
It is known to vary the synchronization interval according to a schedule, such that the period between downloading increases when certain applications are less likely to require frequent downloads. However, the power drain due to the wireless data exchange with the application server is variable. The available wireless networks may be such that only data transmission methods requiring high power consumption are available. For example, network conditions may be such that the mobile device transmitter may operate at a high power level, or the mobile device receiver may operate with a high level of bit errors resulting in retransmission. The available networks or network conditions may be varying with time due to device mobility into and out of network coverage. Even when the device is not in motion, variable network conditions such as network traffic level, network interference, and channel fading can cause power drain due to the wireless data exchange to vary with time. Hence, the optimum download period cannot always be predicted and scheduled.
Thus, there is a need to provide a longer downloading synchronization interval or period for drawing less energy consumption when the energy required for synchronization is higher, while also providing shorter downloading synchronization interval when the energy required for synchronization is lower, thereby taking advantage of favorable network conditions which may be temporary.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
Automated analyzers are used in clinical laboratories to measure various chemical constituents of body fluids, such as whole blood, blood serum, blood plasma, cerebral spinal fluid, urine, and the like obtained from patients. Automated analyzers reduce the number of trained technicians required to perform the analyses in a clinical laboratory, improve the accuracy of the testing, and reduce the cost per test.
Typically, an automated analyzer includes an automated fluid moving system which aspirates a sample of body fluid from a patient's specimen container and dispenses the sample into a reaction cuvette. The fluid moving system typically includes a pipette or sample probe on a robotically controlled arm to perform the aspiration and dispensing functions.
Chemical reagents, which are specific to the test being performed, are disposed into the sample-containing cuvette, thereby mixing the sample with the chemical reagents. By examining the reaction products resulting from the mixing of the sample and reagents, the automated analyzer determines the concentration of the specific chemical constituent being tested. Upon completion of the test, the automated analyzer typically prints the results of the test, including a sample identifier, a numerical result of the test, and a range of values for the chemical constituent as measured by the test.
During an aspiration operation, the robotic arm, under the command of a system controller, positions the sample probe above a specimen container and moves the probe into the container until the probe reaches the fluid in the container. A syringe type pump is activated to draw sample fluid from the specimen container into the probe. To ensure that accurate results are obtained in the tests, a consistent known volume of the sample must be accurately aspirated and delivered to the reaction cuvette. Under ideal conditions, motorized syringes can deliver the volume at the needed accuracy. However, conditions are not always ideal, so a method of verifying sample volume is needed.
Prior art methods have focused on detecting non-ideal conditions. In one method, pressure is measured after each increment of aspiration. A pressure value outside a predetermined pressure range signals a heterogeneity in the sample. Khalil, Omar S. et al., "Abbott Prism: A Multichannel Heterogeneous Chemiluminescence Immunoassay Analyzer," Clin. Chem., 37/9, 1540-47 (1991). European Patent Application No. 341,438 describes a system in which pressure is also monitored during aspiration. Bubbles, a clot, or a pressure leak are shown on a display screen as one or more spikes. European Patent Application No. 215,534 describes a system in which pressure after a suction operation is measured and compared to an expected normal value. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pre-press color-proofing is a procedure that is used mainly by the printing industry for creating representative images of printed material without the high cost and time that is required to actually produce printing plates and set up a high-speed, high volume, printing press to produce an example of an intended image. An image may require several corrections and be reproduced several times to satisfy or meet customers requirements resulting in a large loss of profits and ultimately, higher costs to the customer.
One such commercially available image processing apparatus is arranged to form an intended image on a sheet of print media. Dye is transferred, from a sheet of dye donor material to the print media by applying a sufficient amount of thermal energy to the dye donor sheet material to form the intended image. This image processing apparatus generally includes a material supply assembly or carousel, and a lathe bed scanning subsystem or write engine, which includes a lathe bed scanning frame, translation drive, translation stage member, printhead, load roller, imaging drum, print media exit transport, and dye donor sheet material exit transport.
Operation of the image processing apparatus includes metering a length of the print media (in roll form) from the material assembly or carousel. The print media is then cut into sheet form of the required length and transported to the imaging drum. It is then wrapped around and secured onto the imaging drum. A load roller, which is also known as a squeegee roller, removes entrained air between the imaging drum and the print media or the print media dye donor material. Next, a length of dye donor material (in roll form) is metered out of the material supply assembly or carousel, and cut into sheet form of the required length. It is then transported to the imaging drum and wrapped around the periphery of the imaging drum. The load roller removes any air entrained between the imaging drum, print media, and the dye donor material. The dye donor material is superposed in the desired registration with respect to the print media, which has already been secured to the imaging drum.
After the dye donor sheet material is secured to the periphery of the imaging drum, the scanning subsystem or write engine, provides the scanning function. This is accomplished by retaining the print media and the dye donor sheet material on the imaging drum while it is rotated past the printhead to form an intended image on the print media. The translation drive then traverses both the printhead and translation stage member axially along the axis of the imaging drum in coordinated motion with the rotating imaging drum. These movements combine to produce the intended image on the print media.
After the intended image has been formed on the print media, the dye donor sheet material is removed from the imaging drum without disturbing the print media beneath it. The dye donor sheet material is then transported out of the image processing apparatus to a waste bin. Additional dye donor sheet materials are sequentially superimposed with the print media on the imaging drum, further producing an intended image. The completed intended image on the print media is then unloaded from the imaging drum and transported to an external holding tray on the image processing apparatus.
Various patents are considered relevant to this invention including commonly owned U.S. Pat. Nos. 5,777,658 and 5,755,520, which is hereby incorporated by reference.
Although the presently known and utilized image processing apparatus is satisfactory, a need exists to improve the capability of the imaging drum to hold print media at high rotational speeds thus improving throughput of utilized image processing apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a disk array apparatus, a method for controlling the disk array apparatus, and a program, and is preferably applied to a disk array apparatus using a disk with low reliability as a system disk.
In recent years, a so-called disk array apparatus in which a plurality of hard disk devices is managed and operated using a RAID (Redundant Array of Inexpensive Disks) system has been widely used as a storage apparatus for data storage in corporations and government offices.
With the recent fall in price of disk array apparatuses, the use of a SATA (Serial AT Attachment) disk, which is less expensive than a conventionally used Fibre Channel disk, has been proposed. (See JP-A-2004-348876). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to an information processor. It, more particularly, relates to a desktop personal computer incorporating a motherboard of ATX (including Micro ATX) into which electronic-parts-implementing boards for extension of functionality of the motherboard are incorporated, and a method for incorporating the electronic-parts-implementing boards.
2. Description of Related Art
In recent years, the information processor such as the desktop personal computer has been increasingly used. Such the computer incorporates an electronic-parts-implementing board that implements a central processing unit, a memory IC chip and the like and electronic parts such as an interface card, a power supply unit, a CD-RW driver, a floppy (R) disc (FD) driver. In addition to them, the computer has a slot for extension of functionality on a back surface of its housing The slot is available for incorporating into the computer a communication and network riser (CNR) expansion card. An opening formed on a front surface of the housing is available for incorporating into the computer a peripheral component interconnect (PCI) expansion card.
Japanese Patent Publication No. 2002-108503 discloses the incorporation of electronic parts such as PCI expansion card and CNR expansion card of the above types, particularly, information processors. The Patent Publication discloses a configuration of this information processor wherein a motherboard implementing a connector for interface card and the like is screwed to a frame chassis, and an electronic-parts-implementing board such as PCI expansion card and CNR expansion card is capable of being incorporated (page 3 FIG. 5 thereof). The motherboard may incorporate an electronic-parts-implementing board that conforms to ATX (including Micro ATX) standards and the like.
The ATX standards are standards for a motherboard for PC/AT converter that Intel Corp. has presented in 1995. In the ATX standards, the shape and dimension of the board and the locations of the respective parts and slots are strictly determined. Before the presentation of the ATX standards, the respective manufactures have manufactured motherboards in accordance with their own respective standards. The ATX standards, however, determine detailed rules. This causes the compatibility between parts to be increased, thereby allowing a larger number of manufactures to participate in the market. The Micro ATX standards determine a size of board smaller than that of the ATX standards, and have a modified upper limit of the number of extension slots from the ATX specification. Flex ATX standards determine a specification of further smaller-sized board than that of the Micro ATX standards.
In a method for incorporating an expansion card in a computer of a conventional system, there are problems as follows:
(1) For example, a slot at the lowest position in the motherboard of ATX standards and the like is exclusively usable at only either one of a back surface of the housing or a front surface of the housing for the following reason. That is, even if the PCI expansion card and the CNR expansion card are structured so as to be usable simultaneously in terms of electric circuits, the brackets of these cards spatially overlap with each other. Therefore, the bracket of only either one of these cards can be inserted into the slot and the inserted bracket completely occupies the parts attachment space in the motherboard.
(2) Therefore, when the bracket of the standard in either the PCI expansion card or the CNR expansion card is used, the bracket of the standard in the remaining card cannot be used. For this reason, it is impossible to simultaneously use the electronic-parts-implementing boards for expansion at the back surface of the housing and at the front surface of the housing.
(3) It is conceivable that the PCI expansion card and the CNR expansion card are mounted to the connector for an interface card in a state where the parts packaging surfaces of the PCI expansion card and the CNR expansion card are opposed to each other. However, if electronic parts are mounted so as to be opposed to each other without making any special arrangement, tall electronic parts such as capacitors hit against each other at the time of transportation to cause connectors to loosen or to cause connection failure.
The present invention has solved the problems in the above related arts, and an objective thereof is to provide an apparatus allowing electronic-parts-implementing boards to be incorporated thereinto in which electronic-parts-implementing boards for extension of functionality can be simultaneously used at a back surface of the housing and at a front surface of the housing, although such the boards have been usable either at the back surface of the housing or the front surface of the housing, and a method for incorporating the electronic-parts-implementing boards.
According to one aspect of the invention, the apparatus allows the electronic-parts-implementing boards to be incorporated into the apparatus. The apparatus comprises a housing having at least a front surface and a back surface.
The apparatus also comprises a first electronic-parts-implementing board, for example, a motherboard, having multiple board connection terminals each being arranged apart at a specific interval thereon. The first electronic-parts-implementing board is incorporated in the housing.
The apparatus further comprises a second electronic-parts-implementing board, for example, a PCI expansion board and CNR expansion board, having a group of electrodes. The second electronic-parts-implementing board is connected with one of the multiple board connection terminals of the first electronic-parts-implementing board with the group of electrodes of the second electronic-parts-implementing board being inserted into one of the multiple board connection terminals of the first electronic-parts-implementing board. The apparatus still further comprises a third electronic-parts-implementing board, for example, a PCI expansion board and CNR expansion board, having a group of electrodes. The third electronic-parts-implementing board is connected with other one of the multiple board connection terminals of the first electronic-parts implementing board with the group of electrodes of the third electronic-parts-implementing board being inserted into other one of the multiple board connection terminals of the first electronic-parts-implementing board.
Each of the front and back surfaces of the housing has an opening for allowing an operation surface of one of the second and third electronic-parts-implementing boards to be exposed to the outside.
In the second and third electronic-parts-implementing boards, the respective groups of electrodes of the second and third electronic-parts-implementing boards are inserted to the corresponding board connection terminals of the first electronic-parts-implementing board with an electronic-parts-implementing surface of the second electronic-parts-implementing board and an electronic-parts-implementing surface of the third electronic-parts-implementing board being faced to each other.
According to the apparatus of the present invention, at the time of incorporating the electronic-parts-implementing board for extension of functionality to a specific housing, the housing has openings for allowing the operation surfaces of the electronic-parts-implementing boards to be exposed to the outside at its front surface and the back surface. In the housing, a first electronic-parts-implementing board having multiple board connection terminals arranged at specific intervals is incorporated.
Under the conditions described above, the electronic-parts-implementing surface of the second electronic-parts-implementing board having a group of electrodes for connecting the second electronic-parts-implementing board with the first electronic-parts-implementing board and the electronic-parts-implementing surface of the third electronic-parts-implementing board having a group of electrodes for connecting the third electronic-parts-implementing board with the first electronic-parts-implementing board are opposed to each other. Then, the respective groups of electrodes of the second and third electronic-parts-implementing boards are inserted to the corresponding board connection terminals of the first electronic-parts-implementing board inside the housing while the operation surface of the second electronic-parts-implementing board is exposed from the opening at the front surface of the housing and the operation surface of the third electronic-parts-implementing board is exposed from the opening at the back surface of the housing.
According to the invention, the second electronic-parts-implementing board of which operation surface for the electronic parts is exposed at the front surface of the housing and the third electronic-parts-implementing board of which operation surface for the electronic parts is exposed at the back surface of the housing can be implemented to the first electronic-parts-implementing board inside the housing by use of one and the same electronic-parts-implementing space. This allows the second electronic-parts-implementing board such as a PCI expansion card and the third electronic-parts-implementing board such as a CNR expansion card to be simultaneously used at the front and back surfaces of the housing, respectively, although only either one of such the boards has been exclusively usable at the back surface of the housing or the front surface of the housing in a conventional system.
A method according to the invention allows an electronic-parts-implementing board to be incorporated with an operation surface of the electronic-parts-implementing board being exposed to the outside through an opening previously formed in a specific housing at its front surface and its back surface. The method comprises the step of incorporating a first electronic-parts-implementing board having multiple board connecting terminals each being arranged apart at a specific interval to an inside of the housing.
The method also comprises the step of preparing a second electronic-parts-implementing board having a group of electrodes for connecting the second electronic-parts-implementing board with the first electronic-parts-implementing board and preparing a third electronic-parts-implementing board having a group of electrodes for connecting the third electronic-parts-implementing board with the first electronic-parts-implementing board. In this step, at the same time, locating the second and third electronic-parts-implementing boards with an electronic-parts-implementing surface of the second electronic-parts-implementing board and an electronic-parts-implementing surface of the third electronic-parts-implementing board being faced to each other.
The method further comprises the step of connecting the group of electrodes of the second electronic-parts-implementing board with one of the board connection terminals of the first electronic-parts-implementing board, and connecting the group of electrodes of the third electronic-parts-implementing board with other one of the board connection terminals of the first electronic-parts-implementing board.
In this case, the respective groups of electrodes of the second and third electronic-parts-implementing boards may be electrically connected with the board connection terminals of the first electronic-parts-implementing board with the operation surface of the second electronic-parts-implementing board being exposed from the opening at the front surface of the housing and the operation surface of the third electronic-parts-implementing board being exposed from the opening at the back surface of the housing.
According to the method of the present invention, the second electronic-parts-implementing board of which operation surface for the electronic parts is exposed at the front surface of the housing and the third electronic-parts-implementing board of which operation surface for the electronic parts is exposed at the back surface of the housing can be simultaneously incorporated to the first electronic-parts-implementing board inside the housing. This allows the electronic-parts-implementing boards for extension of functionality to be simultaneously used at the back surface of the housing and at the front surface of the housing, respectively, although only either one of such the boards has been exclusively usable at the back surface of the housing or the front surface of the housing in a conventional system.
The concluding portion of this specification particularly points out and directly claims the subject matter of the present invention. However those skill in the art will best understand both the organization and method of operation of the invention, together with further advantages and objects thereof, by reading the remaining portions of the specification in view of the accompanying drawing(s) wherein like reference characters refer to like elements. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the recycling of resin-coated steel pipes collected as waste, whether actually previously used or not, and, in particular, relates to a method for separating steel pipe from its resin coating for effective recycling of such material.
The object of the invention is to provide an effective method of easily separating steel pipe from its resin coating in such a manner that the separated resin is scraped off into chips or long strips convenient for recycling and, containing no moisture or other foreign matter, can be used in an ensuing recycling process without any preprocessing, and which is suited for large-scale industrialized processing.
Resin-coated steel pipe 4, as shown in FIG. 1, which consists of steel pipe having a thickness of 0.8 mm and an outer diameter of 26-40 mm and a coating 10 of thermo-plastic synthetic resin such as AAS acrylonitrile acryl styrene or ABS acrylonitrile butadiene styrene, having a uniform thickness of about 1 mm fixed on the steel surface with an adhesive applied there as a thin film, is rust-free, comfortable to the touch, colorful and is mechanical strong. It is widely utilized as a frame member for shelves and trolleys that are exposed to sea water in marine-related industries; as a frame member for chairs, tables, beds and stands in ordinary households; or as a frame member for benches, flowerpot stands and wisteria trellises outdoors.
The processes and equipment for manufacturing such resin-coated steel pipes are disclosed, for example, in the specifications and drawings of Japanese Patent publication S57-2498 or U.S. Pat. No. 3,941,087, and are well known.
Resin-coated steel pipes used as frame members for the various products mentioned above become, in due course, industrial waste as the products are, for some reason, no longer used or are simply discarded after losing durability. The scraps or pieces generated when pipes are cut for the construction of the various products mentioned above also become industrial waste if no use can be found for them.
The conventional method of disposing of resin-coated steel pipe waste consists of nothing better than cutting the pipes to pieces of about 15 cm in length, flattening them with a press to reduce their volume and burying them in reclaimed land, because heretofore it has been very difficult to separate the resin coating from the pipe surface due to the firm adhesion between them. This is a very easy method of disposal; however, this method precludes the recycling of otherwise useful resource, and only increases the volume of disposed waste, requiring additional land for burial.
When it has become necessary to dispose of a small quantity of waste resin-coated steel pipes, it has also been a practice to cut the pipes to a suitable length, to incinerate the resin coating in a furnace and to recycle the remaining steel pipes. This method is also easy to put into practice, but if the coating material is vinyl chloride, the incineration process produces noxious chlorine gas that causes air or other environmental pollution and badly damages the furnace walls. Further, the steel pipes that are heated undergo composition changes and produce more rust that is detrimental for the recycling process.
Another method used consists of separating the coating resin and steel pipe from waste resin-coated steel pipe pieces and recycling such materials. This method employs a super-high-pressure water jet of about 200MPa(200N/mm.sup.2) to separate the resin coating from the steel pipe. If, however, the resin pieces separated from the steel pipes and containing significant amounts of moisture are used directly for recycling, products produced therefrom are likely to develop mold. First, patterns of silver color appear on the surface of the product and badly impair the outward appearance. Second, the product does not attain a certain degree of inner strength due to the presence of moisture between the resin pieces constituting the product. The simplest and most direct method to solve this problem is to dry the resin pieces, which, however, involves a large investment for the drying equipment and a high energy cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention:
This invention relates to mooring bumpers and fenders.
2. Description of the Prior Art:
Mooring bumpers and fenders have been employed to protect deck pilings and piers as well as the sides of boats from damage caused by inadvertent contact of the boat with the piling as the boat enters a boat well or while the boat is moored in the boat well.
Typically, an elongated, wooden plank is attached to the piling above water level and extends the entire length of the boat well to distribute any force of impact by a boat along the entire length of the plank rather than on a single piling. This is done to prevent damage to the piling and to the sides of the boat itself. However, such planks are heavy and lack sufficient cushioning characteristics to absorb impact without damage to the boat. Further, unless other protective measures are taken, such wooden planks are susceptible to deterioration due to exposure to the wet marine environment thereby requiring frequent replacement.
To overcome these problems, it has been proposed to construct such bumpers from resilient material, such as rubber, etc. Attachment of such bumpers to dock pilings or piers is achieved by means of lines or ropes which are secured at one end to each piling and either tied around the bumper or secured through a bore formed at predetermined locations in the bumper and knotted at one end. However, the spacing between pilings is not always uniform such that the connection to the bumpers may vary from dock to dock thereby requiring a bumper to be specifically constructed for each particular dock.
Variable length bumpers formed of a plurality of interconnectable, identical members have also been proposed. However, such variable length bumpers are mounted on the boat rather than the dock and require time consuming assembly and positioning on the boat each time the boat approaches a dock.
Thus, it would be desirable to provide a marine bumper which overcomes the deficiencies encountered in previously devised marine bumpers. It would be desirable to provide a marine bumper which can be easily constructed in any length to suit any length of dock or boat well. It would also be desirable to provide a protective marine bumper which is formed completely of waterproof materials for a long, useful life. It would also be desirable to provide a marine bumper which can be easily disassembled for storage in a compact form or for ease of transport. Finally, it would be desirable to provide a marine or dock well protective bumper which is resilient and yet strong enough to resist damage caused by impact of a boat thereon. | {
"pile_set_name": "USPTO Backgrounds"
} |
Chronic hepatitis B virus (HBV) infection is a significant global health problem, affecting over 5% of the world population (over 350 million people worldwide and 1.25 million individuals in the U.S.).
Despite the availability of a prophylactic HBV vaccine, the burden of chronic HBV infection continues to be a significant unmet worldwide medical problem, due to suboptimal treatment options and sustained rates of new infections in most parts of the developing world. Current treatments do not provide a cure and are limited to only two classes of agents (interferon and nucleoside analogues/inhibitors of the viral polymerase); drug resistance, low efficacy, and tolerability issues limit their impact. The low cure rates of HBV are attributed at least in part to the presence and persistence of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. However, persistent suppression of HBV DNA slows liver disease progression and helps to prevent hepatocellular carcinoma. Current therapy goals for HBV-infected patients are directed to reducing serum HBV DNA to low or undetectable levels, and to ultimately reducing or preventing the development of cirrhosis and hepatocellular carcinoma.
There is a need in the art for novel therapeutic agents that treat, ameliorate or prevent HBV infection. Administration of these therapeutic agents to an HBV infected patient, either as monotherapy or in combination with other HBV treatments or ancillary treatments, will lead to significantly improved prognosis, diminished progression of the disease, and enhanced seroconversion rates. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method and system of collecting and processing signal data. More specifically, the present invention relates to a method and system for enhancing a reflection wave signal in the background of a direct wave.
2. Description of Related Art
To obtain hydrocarbons such as oil and gas, boreholes or wellbores are drilled through hydrocarbon-bearing subsurface formations. The drilling of horizontal or deviated wellbores can create some difficulties of downhole imaging due to bed boundaries or dipping beds that are encountered downhole. To overcome this problem three dimensional borehole profiles have been developed. These three dimensional borehole profiles can change direction along the way.
A well bore drilled through earth formations encounters various geological structures intersecting the borehole. Borehole acoustic measurements can be used to obtain an image of the formation structural changes away from the borehole (Hornby, B. E. 1989, Imaging Near-Borehole of Formation Structure Using Full-Waveform Sonic Data, Geophysics, 54 747-757; Esmersoy et al., 1998, Acoustic Imaging of Reservoir Structure from a Horizontal Well, The Leading Edge, 17, No. 7, 940-946; Li et al., 2002, Single Well Imaging with Acoustic Reflection Survey at Mounds, Oklahoma, , USA: 64th EAGE Conference & Exhibition, Paper P141; Tang, 2004, Imaging Near-Borehole Structure Using Directional Acoustic-Wave Measurement: Geophysics, 69, 1-10; Zheng and Tang, 2005, Imaging Near Borehole Structure Using Acoustic Logging Data with Pre-Stack F-K Migration: 75th Ann. Internation. Mtg.: Soc. Of Expl. Geophys.) provided that the acoustic wave phenomena in the near borehole region are properly understood and utilized.
Data collection arrays, i.e. a collection of more than one single position point data recorders, are used in the collection of a myriad of data. Examples of array collected data include radar, seismic, acoustic, sonar, radio waves, to name but a few. Often the data received and recorded by such arrays can include unwanted signals that intermingle with the desired data and distort the final recordings thereby providing skewed results. Moreover, when dealing with arrays of data recording devices, the time lag between signals of the individual recorders is especially important.
Downhole sensors can be provided with a downhole tool for measuring downhole conditions. The downhole tool can include a sonde insertable within the wellbore as well as any subterranean drilling devices. Also included can be apparatuses for detecting inclination. These measurements are useful to determine hydrocarbons and water presence proximate to the downhole tool. These measurements can also be used to steer a downhole tool. However, the depth that these devices can monitor within the formation is limited and they typically do not provide bed boundary or dipping bed information. One example of a borehole imaging apparatus and method is found in U.S. Application No. 20040158997 (Ser. No. 10/353,330), published Aug. 19, 2004, which is incorporated by reference herein in its entirety. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.