text
stringlengths 2
806k
| meta
dict |
---|---|
Over 600 different carotenoids have been described from carotenogenic organisms found among bacteria, yeast, fungi and plants. Currently only two of them, .beta.-carotene and astaxanthin are commercially produced in microorganisms and used in the food and feed industry. .beta.-carotene is obtained from algae and astaxanthin is produced in Pfaffia strains which have been generated by classical mutation. However, fermentation in Pfaffia has the disadvantage of long fermentation cycles and recovery from algae is cumbersome. Therefore, it is desiderable to develop production systems which have better industrial applicability, e.g., can be manipulated for increased titers and/or reduced fermentation times.
Two such systems using the biosynthetic genes form Erwinia herbicola and Erwinia uredovora have already been described in WO 91/13078 and EP 393 690, respectively. Furthermore, three .beta.-carotene ketolase genes (.beta.-carotene .beta.-4-oxygenase) of the marine bacteria Agrobacterium aurantiacum and Alcaligenes strain PC-1 (crtW) [Misawa, 1995, Biochem. Biophys. Res. Com. 209, 867-876] [Misawa, 1995, J. Bacteriology 177, 6575-6584] and from the green algae Haematococcus pluvialis (bkt) [Lotan, 1995, FEBS Letters 364, 125-128] [Kajiwara, 1995, Plant Mol. Biol. 29, 343-352] have been cloned. E. coli carrying either the carotenogenic genes (crtE, crtB, crtY and crtI) of E. herbicola [Hundle, 1994, MGG 245, 406-416] or of E. uredovora and complemented with the crtW gene of A. aurantiacum [Misawa, 1995] or the bkt gene of H. pluvialis [Lotan, 1995][Kajiwara, 1995] resulted in the accumulation of canthaxanthin (.beta.,.beta.-carotene-4,4'-dione), originating from the conversion of .beta.-carotene, via the intermediate echinenone (.beta.,.beta.-carotene-4-one).
Introduction of the above mentioned genes (crtW or bkt) into E. coli cells harbouring besides the carotenoid biosynthesis genes mentioned above also the crtZ gene of E. uredovora [Kajiwara, 1995][Misawa, 1995], resulted in both cases in the accumulation of astaxanthin (3,3'-dihydroxy-.beta.,.beta.-carotene-4,4'-dione). The results obtained with the bkt gene are in contrast to the observation made by others [Lotan, 1995], who using the same experimental set-up, but introducing the H. pluvialis bkt gene in a zeaxanthin (.beta.,.beta.-carotene-3,3'-diol) synthesising E. coli host harbouring the carotenoid biosynthesis genes of E. herbicola, a close relative of the above mentioned E. uredovora strain, did not observe astaxanthin production.
However, functionally active combinations of the carotenoid biosynthesising genes of the present invention with the known crtW genes have not been shown so far and even more importantly there is a continuing need in even more optimized fermentation systems for industrial application. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to housings or cabinets for loudspeakers, and to a method of making loudspeaker housings. More particularly, the invention relates to a method of making a loudspeaker housing and to a loudspeaker housing which is a one-piece or composite casting.
At the present time, housings for electroacoustic transducers (hereinafter called loudspeakers) are made of wood, a plastic material or a ceramic material. The nonlinear distortion factor (also known as relative harmonic content, k-factor or klirrfactor) of wood and plastic material is relatively low, and the damping characteristics of these materials are rather satisfactory when the demands upon the quality of amplified sound are not very high. If the loudspeaker housing is to be used as part of a high-quality sound generating and amplifying equipment, especially as concerns its internal damping characteristics, wood and/or a plastic material cannot meet the requirements and, therefore, the housings of loudspeakers forming part of a high-quality sound generating and amplifying system are often made from a ceramic material. However, it has been found that loudspeakers having housings made of a ceramic material also fail to meet the requirements which are imposed upon high-quality sound generating and amplifying equipment.
In summation, heretofore used materials for the making of loudspeaker housings or cabinets exhibit unsatisfactory damping characteristics (such characteristics are typical of loudspeaker housings which are made of particle board), or the materials are satisfactory acoustic conductors but exhibit a selective sound transmissivity (examples of materials for such loudspeaker housings are concrete, marble and natural stone). In addition, all of the presently utilized materials for the making of loudspeaker housings exhibit the drawback that they "live their own musical life" which is evidently undesirable for a number of reasons. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present disclosure relates generally to communication systems, and more particularly, to selecting access points (APs) capable of link aggregation.
2. Background
In many telecommunication systems, communications networks are used to exchange messages among several interacting spatially-separated devices. Networks may be classified according to geographic scope, which could be, for example, a metropolitan area, a local area, or a personal area. Such networks would be designated respectively as a wide area network (WAN), metropolitan area network (MAN), local area network (LAN), wireless local area network (WLAN), or personal area network (PAN). Networks also differ according to the switching/routing technique used to interconnect the various network nodes and devices (e.g., circuit switching vs. packet switching), the type of physical media employed for transmission (e.g., wired vs. wireless), and the set of communication protocols used (e.g., Internet protocol suite, Synchronous Optical Networking (SONET), Ethernet, etc.).
Wireless networks are often preferred when the network elements are mobile and thus have dynamic connectivity needs, or if the network architecture is formed in an ad hoc, rather than fixed, topology. Wireless networks employ intangible physical media in an unguided propagation mode using electromagnetic waves in the radio, microwave, infra-red, optical, etc. frequency bands. Wireless networks advantageously facilitate user mobility and rapid field deployment when compared to fixed wired networks. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known to palynologists, organic petrologists and others that the thermal history of a sedimentary rock, often referred to as its organic metamorphism or eometamorphism, can be manifested in the color of the organic matter (commonly known as kerogen) that is extracted from a specimen or core sample of the rock. The color of the kerogen, when viewed in transmitted light, provides a type of paleothermometer. It has been recognized that the present state of thermal maturity of the kerogen is a useful indicator of whether it has been heated sufficiently by or during various historical geological events to generate oil and/or natural gas. If so, the kerogen is said to be thermally mature.
During increasing thermal maturity, palynomorphs such as spores, pollen, and plant tissue fragments undergo a variety of changes in color. These substances, when found in a sedimentary rock which is considered to be immature, vary in color from colorless or chartreuse to yellow; in mature sediments they vary in color from yellow-orange and orange-brown to a light brown; in over-mature sediments they vary in color from light brown to brown; in severely altered sediments they vary in color from brown to dark brown; and in sediments that have been metamorphosed they vary in color from dark brown to black.
Sediments that contain organic matter which have generated oil are those characterized above as being thermally mature. Over-mature sediments are likely to contain organics that are in the wet or dry gas phase of hydrocarbon generation, while those classified as severely altered contain organics which may produce dry gas, hydrogen sulfide and/or carbon dioxide. Thus, a precise determination of the color of the kerogen provides a useful indicator of whether oil might be found by drilling into a certain sedimentary layer of rocks, or whether the strata is thermally too young (cold) or old (hot) to warrant the high expenses involved in exploration drilling.
Kerogen materials such as spores, pollen, plant tissue and the like are known to exhibit a variety of colors, even within the same specimen or sample. Previous color analysis systems have relied solely upon visual estimates of spore coloration and have a disadvantage in that they are highly subjective. Because of this, it is extremely difficult to define a particular color, or to erect a color scheme, that is acceptable to everyone. Therefore, different analysts will come up with different thermal maturity estimates based upon the same sample. Another commonly used analytical system uses measurements of percentage vitrinite reflection to estimate thermal maturity. However, these measurements are limited to spot readings of small diameter areas of the specimen, and the system also involves a high degree of subjectivity, particularly where anisotrophy is present. Moreover, even experts have difficulty in picking out the vitrinite in a specimen. This technique also requires that a specimen slide be exactly levelled before a meaningful measurement of reflectivity can be made. Another system described in U.S. Pat. No. 4,971,437 issued Nov. 20, 1990, employs optical spectral analysis with rapid spectral scanning which measures the wavelength of light. Two light sources are used alternatively, one providing a beam of transmitted light that passes through the rock sample held in a plate, and another beam of incidental light that causes the sample to fluoresce. A filter disk is rotated through the light beam which filters the same through a range of wave lengths, and electrical signals are generated which are representative of the intensity of the light to provide a spectral output. This method required specially designed equipment and optical systems which are very expensive to manufacture and, since amorphous debris is the organic component being measured, the analyst does not know precisely what is being measured. Moreover, the method disclosed in the '437 patent does not provide an integrated approach, as does the present invention where measurements are made of an entire spore or pollen grain.
The present invention uses the concept that color is defined by three parameters: hue, saturation and brightness. Hue denotes the particular color which our eyes perceive, for example red, green or blue or various mixtures thereof. Saturation refers to the lack of "whiteness" in a color, or more precisely, how much a color differs from neutral. On the other hand brightness, also called intensity, is a parameter that describes the perceived brilliance of color (hue) of light. For example, the sun at noon appears to have a yellow hue which is strongly saturated and extremely brilliant. However, at sunset the hue shifts to a deep blood-red color, is more highly saturated, and is less brilliant. A certain combination of these three parameters corresponds to a distinctive wavelength of visible light. The use of all of these parameters in accordance with the present invention has been found to provide much more definitive analysis than one based upon an estimated color or a particular color scheme, and even allows an analysts who may suffer from a degree of color blindness to accurately define the color of an organic constituent extracted from a rock sample.
An object of the present invention is to provide a new and improved kerogen color analysis method that obviates the above-mentioned problems and disadvantages with prior art systems and methods.
Another object of the present invention is to provide a new and improved color analysis method which virtually eliminates subjectively on the part of the analyst.
Another object of the present invention is to provide a new and improved color analysis system that is not limited to spot readings, but is based upon overall or truly integrated measurements of color values.
Still another object of the present invention is to provide a color analysis system that relies on measurement and recording of hue, saturation and brightness values which are the coordinates used in universally accepted charts which define color. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to refrigerating devices in general and, in particular, to a new and useful cooling device particularly for heat protective suits which includes a solid refrigerant disposed in heat exchange relationship with a heat exchange surface with a flexible intermediate layer between the solid refrigerant and the surface which is saturated with an intermediate liquid.
Heat protection systems such as used in personal heat protection suits, comprise a solid refrigerant, such as CO.sub.2 ice and a liquid, intermediate cooling agent. The latter is conducted through tubular flow channels incorporated in the suit near the body. It is by means of this intermediate cooling agent that a thermal equilibrium is maintained in which the body temperature cannot change beyond the physiologic limits.
The heat transfer between the solid refrigerant and the fluid intermediate cooling agent is very decisive for the safe functioning of such a system. This transfer can take place in a heat exchanger only at a separating point. The heat exchanger must also adapt to the basic requirement of low weight and volume since the suit is worn by the equipment carrier.
One known cooling vest, used as equipment to be worn individually, contains a circulating liquid cooling agent, such as a silicon oil, in cavities on its inside facing the body. The circulation is formed by cooling vest cavities in conjunction with external system components including a booster pump and a heat exchanger. The heat exchanger contains as the refrigerant, a CO.sub.2 dry ice filling in granulated form which, under sublimation, removes heat absorbed by the cooling vest from the circulating intermediate cooling agent. The CO.sub.2 gas formed thereby is utilized to operate the booster pump.
A contact pressure element ensures good heat transfer at the heat exchanger surfaces, and also in operation independent of position. The contact pressure element, which is moved by a compression spring, pushes the CO.sub.2 dry ice against the heat exchanger surfaces for reliable heat transfer and, at the same time, prevents the formation of a CO.sub.2 gas cushion which impedes the heat transfer. However, it is disadvantageous that, in the granule layer in contact with the heat exchanger surfaces, the interstices between the grains diminish the heat transfer due to the layer's grainy structure. This necessitates larger heat exchanger surfaces which thus become heavier and bulkier than would be necessary if the heat transfer were optimal (Dragerhaft 310, Jan./Apr. 1978, pages 17-24). | {
"pile_set_name": "USPTO Backgrounds"
} |
In current systems, the flexibility resulting from the existing large set of parameters included in the different algorithms cannot be fully used because of its complexity. In the planning stage, homogeneous networks are normally considered, as the large set of parameter makes the detailed planning process on a cell-by-cell basis a time-consuming task. As a consequence, the operators fix parameters to a common set of default values shared between cells, even if no optimum performance in terms of quality/capacity is reached. This homogeneity hypothesis may be far from reality, where interference or propagation severity can vary both in time and space over the network.
Moreover, a few operators extend the parameter optimisation by classifying the cells in accordance with certain scenarios like rural, urban, tunnel, indoors etc. and/or in accordance with the layer/band used (like Macro900/1800, Micro900/1800, Pico1800, Motorway900). So, the cells are divided into scenario groups or layer/band groups, and common default parameter values are shared which, however, are not optimum.
In those cases where new features are enabled, so-called field trials are required. During the tuning process, conclusions from parameter changes are difficult to derive, and final settings are nearly always on the safe side with its limited results. Moreover, such trials are normally focused on global parameters of features under study, and parameter optimisation of adjacent cells is hardly ever done. So, differences between adjacent cells are rarely considered due to a high effort required. Therefore, the potential of so-called adjacency parameters is not fully exploited.
A final limited parameter tuning based on cell/area level performance indicators is normally carried out only over those cells where performance problems are existing.
Even if an optimum value were reached by means of the above-mentioned trials, changes in traffic or environment conditions, like the installation of new cells, changes of interference level by frequency re-planning etc., would force a further re-tuning process of the parameter base, where no automatic reactive process is currently in use. Such a situation could be analysed as a result of slow trends, like the change of the number of user registrations, or fast changes, e.g. of the number of connections, during a short time period, like an hour or a day.
The obvious conclusion is the inability to grasp the full flexibility of the wide set of parameters.
In particular, parameters defining the cell operational area during the idle (camping) mode and the connection mode are not synchronised. In fact, cell attractiveness during connection mode may be completely different from idle mode due to traffic management strategies, causing unnecessary flow of users. The final result will be waste of bandwith in signalling and risk of dropped calls during the handover process.
From this analysis, it is obvious that unnecessary handover may be avoided if users camp on the cell which they are more likely to end-up in. Doing so, a great potential performance gain may be achieved. Moreover, operators may benefit from an automatic individual (i.e. cell based) optimising and tuning process. This would help operators in the tuning process and offer cost savings and improved performance, despite network inhomogeneities both in space (i.e. cell) and time (e.g. day or hour). | {
"pile_set_name": "USPTO Backgrounds"
} |
History of the Technology
In certain industrial applications, heavy, stiff, bulky metal wire rope slings have been replaced by lighter, flexible, synthetic fiber slings. Roundslings and flat slings are preferred by professional riggers when the particular application permits their use. Conscientious riggers are constantly seeking improved sling constructions so that they can safely govern the movement of their payload by controlling the direction of the vector forces acting on the loads which they are lifting, lowering and pulling. Flat sling constructions in which the individual component members, such as the sling and fittings, lie on the same plane are preferred over irregular, multi-dimensional sling constructions which contain bulky, unmanageable coupling members, such as shackles, turnbuckles and the like, which interfere with a connection of the coupling link, the sling, and the load in the same plane. There has been a need in sling technology for a coupling link which is a single fitting that can be adapted for any uses in connecting different load bearing pieces together in the same relative plane.
The prior art fittings were designed to accommodate wire rope or chain, but not synthetic slings, e.g. web, roundsling, and TWIN-PATH.RTM. slings. The flat sling must not be bunched or crimped by the fitting because it loses strength when this happens. It is preferred to present a flat sling with a flat fitting coupler link that is wide enough to support the sling at the sling's greatest width. The prior art fittings did not provide adequate sling bearing surface, they caused the synthetic slings to lose strength where the eye of the payload lifting device was joined to the coupling link. The large, unwieldy prior art fittings also increased the cost of assembly and disassembly of the sling construction. | {
"pile_set_name": "USPTO Backgrounds"
} |
There has been an ongoing global proliferation of lighting products. Typical lighting products use one or more incandescent bulbs. Incandescent bulbs are inexpensive to buy, but generate 90% heat and merely 10% of light, which makes them inefficient and expensive to operate. Further, incandescent bulbs have a very short product life (typically 1000 hours).
Fluorescent lamps are more efficient than incandescent bulbs, but utilize hazardous materials such as mercury. In addition, fluorescent lamps require bulky ballasts that are costly, and make the fluorescent lamps unsuitable for smaller spaces. Further, fluorescent lamps perform poorly in low temperatures. Though fluorescent lamps exhibit longer life than incandescent bulbs, fluorescent lamps are more expensive than incandescent bulbs and still require frequent maintenance, which is fulfilled by intensive labor. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to misting devices and is particularly directed to personal misting devices for use by sunbathers, loungers and the like.
2. Prior Art
Sunbathing and lounging in the backyard, around a swimming pool and at the beach are popular pastimes, especially in warm or hot climates. However, when sunbathing and lounging outdoors, the individual is often exposed to warm or hot climatic air temperatures, which are often uncomfortable and, at times, distressing for the person to experience. This particular discomfort is frequently caused or heightened by the individual experiencing the direct rays of the sun upon his or her skin. In addition, it has been shown that the direct sunrays can cause damage to the person's skin and that this damage can be diminished or eliminated if a moisturizer or sun screening agent is applied to the skin prior to the skin being exposed to the burning rays of the sun. These heretofore mentioned problems can be reduced by periodically spraying or anointing the sunbather or the lounger with a light mist or film of pure water or water containing a skin moisturizer or sun screening agent. Unfortunately, warmth induces a state of relaxation in the sunbather to the point that the sunbather often becomes so relaxed or drowsy that he or she is reluctant to initiate the effort to cool himself or herself off (i.e., cool his or her skin) or initiate the effort to place a moisturizing or sun screening agent on his or her skin. If, however, little effort was required to perform these tasks, the sunbather would be much more likely to initiate these tasks.
Numerous devices have been proposed and developed heretofore to alleviate or overcome these above-mentioned problems. However, many of the prior art devices intended to either cool the sunbather's skin or facilitate application to the sunbather's skin of a moisturizer or sun screening agent require considerable volition and action on the part of the sunbather, which is behavior that tends to be incompatible with the relaxed, lethargic mood of the sunbather, as previously described. In addition, other prior art devices are permanent fixed installations (impossible to move from one location to another), which prevent or greatly restrict the mobility of the sunbather or the outdoors person who is seeking to have the skin on his body cooled. Permanent fixed installations are also expensive to install. Thus, these permanent fixed cooling, misting devices may be useful only in a given location and cannot be moved to other locations. For example, they can be located adjacent a swimming pool, but can not be moved to a beach, park, a desert or any other desirable sun bathing location. In addition, the area in which the sunbather can move his or her lounge chair may be extremely limited and, hence, can restrict the social interaction of a group of sunbathers or limit the use of these permanent fixed cooling devices. Other prior art misting devices have been designed to spray a mist of liquid only in a very limited area, so as to cover, for example, an arm, a chest, a leg or another selected portion of the sunbather's anatomy and have required the sunbather to exert a great deal of gross motor activity and effort in order to be able to spray a mist of water over his or her entire body. Still other prior art misting devices have been complex mechanisms which have required very considerable maintenance. Other prior art misting devices have been relatively expensive. Thus, none of the prior art misting devices have been entirely satisfactory. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to a cleaning implement, and more specifically to a cleaning implement that may be used for household dusting. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention is concerned with the technology of continuous strip annealing furnaces. Such furnaces are used in continuous annealing lines or in continuous galvanizing lines, yet the invention may be applied to other types of installations in which the strips are continuously treated, in particular in varnishing, coating and painting installations.
The method hinges around one or more strip annealing furnaces which consist of several sections equipped to perform consecutively the various phases of the heat-treatment cycle which are, in the simplest case: heating, holding and cooling.
At the end of each of the phases, the temperature reached by the product is determined and must be stabilized in order to obtain the required metallurgical characteristics. In particular, the temperature at the end of heating is very precise.
The operation is easy and is currently executed when the furnace operates in steady-state; it treats a product of given dimensions at a constant speed and according to an established heat-treatment curve.
Known industrial furnaces work daily with strips of different thickness and width in annealing cycles which are also variable.
Inevitably, transitional periods result during which the annealing temperature is difficult to reach and control in current heating chambers. The latter generally use traditional radiation or naked flame sources, and both are characterized by their significant thermal inertia.
The users have introduced measures which make it possible to reduce the duration and amplitude of the variations in annealing temperature during transitional periods of changing strip size.
The use of computers, dedicated to conducting these methods which follow the thermal state of the furnace in real time and control the change in the heating parameters and in the treatment speed, has afforded a partial solution to the problems.
In fact, these procedures introduce variations in treatment speed in the essential heating phase which affect the running and the performances of the other parts of the furnace or of the installation, such as in particular the cooling section or the coating section of a galvanizing line. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to network processor devices, and more specifically to an improved method for defining and controlling the overall behavior of a network processor.
2. Discussion of the Prior Art
In today""s networked world, bandwidth is a critical resource. Increasing network traffic, driven by the Internet and other emerging applications, is straining the capacity of network infrastructures. To keep pace, organizations are looking for better technologies and methodologies to support and manage traffic growth and the convergence of voice with data.
Today""s dramatic increase in network traffic can be attributed to the popularity of the Internet, a growing need for remote access to information, and emerging applications. The Internet alone, with its explosive growth in e-commerce, has placed a sometimes insupportable load on network backbones. It is also the single most important cause of increased data traffic volumes that exceed voice traffic for the first time. The growing demands of remote access applications, including e-mail, database access, and file transfer, are further straining networks.
The convergence of voice and data will play a large role in defining tomorrow""s network environment. Currently, the transmission of data over Internet protocol (IP) networks is free. Because voice communications will naturally follow the path of lowest cost, voice will inevitably converge with data. Technologies such as Voice over IP (VoIP), Voice over ATM (VoATM), and Voice over Frame Relay (VoFR) are cost-effective alternatives in this changing market. However, to make migration to these technologies possible, the industry has to ensure quality of service (QoS) for voice and determine how to charge for voice transfer over data lines. The Telecommunications Deregulation Act of 1996 further complicates this environment. This legislation will reinforce a symbiotic relationship between the voice protocol of choice, ATM, and the data protocol of choice, IP.
Integrating legacy systems is also a crucial concern for organizations as new products and capabilities become available of lowest cost, voice will inevitably converge with data. Technologies such as Voice over IP (VoIP), Voice over ATM (VoATM), and voice over Frame Relay (VoFR) are cost-effective alternatives in this changing market. However, to make migration to these technologies possible, the industry has to ensure quality of service (QoS) for voice and determine how to charge for voice transfer over data lines. The Telecommunications Deregulations Act of 1996 futher complicates this environment. This legislation will reinforce a symbiotic relationship between the voice protocol of choice, ATM, and the data protocol of choice, IP.
Intergrating legacy systems is also a crucial concern for organizations as new products and capabilities become available. To preserve their investments in existing equipment and software, organizations demand solutions that allow them to migrate to new technologies without disrupting their current operations.
Eliminating network bottlenecks continues to be a top priority for service providers. Routers are often the source of these bottlenecks. However, network congestion in general is often mis-diagnosed as a bandwidth problem and is addressed by seeking higher-bandwidth solutions. Today, manufacturers are recognizing this difficulty. They are turning to network processor technologies to manage bandwidth resources more efficiently and to provide the advanced data services, at wire speed, that are commonly found in routers and network application servers. These services include load balancing, QoS, gateways, fire walls, security, and web caching.
For remote access applications, performance, bandwidth-on-demand, security, and authentication rank as top priorities. The demand for integration of QoS and CoS, integrated voice handling, and more sophisticated security solutions will also shape the designs of future remote access network switches. Further, remote access will have to accommodate an increasing number of physical mediums, such as ISDN, Ti, E1, OC-3 through OC-48, cable, and xDSL modems.
Industry consultants have defined a network processor (herein also mentioned as an xe2x80x9cNPxe2x80x9d) as a programmable communications integrated circuit capable of performing one or more of the following functions:
Packet classification xe2x80x94identifying a packet based on known characteristics, such as address or protocol;
Packet modification xe2x80x94modifying the packet to comply with IP, ATM, or other protocols (for example, updating the time-to-live field in the header for IP);
Queue/policy management xe2x80x94reflects the design strategy for packet queuing, de-queuing, and scheduling of packets for specific applications; and,
Packet forwarding xe2x80x94transmission and receipt of data over the switch fabric and forwarding or routing the packet to the appropriate address.
Although this definition is an accurate description of the basic features of early NPs, the full potential capabilities and benefits of NPs are yet to be realized. Network processors can increase bandwidth and solve latency problems in a broad range of applications by allowing networking tasks previously handled in software to be executed in hardware. In addition, NPs can provide speed improvements through architectures, such as parallel distributed processing and pipeline processing designs. These capabilities can enable efficient search engines, increase throughput, and provide rapid execution of complex tasks.
Network processors are expected to become the fundamental network building block for networks in the same fashion that CPUs are for PCs. Typical capabilities offered by an NP are real-time processing, security, store and forward, switch fabric interface, and IP packet handling and learning capabilities. NPs target ISO layer two through five and are designed to optimize network-specific tasks.
The processor-model NP incorporates multiple general purpose processors and specialized logic. Suppliers are turning to this design to provide scalable, flexible solutions that can accommodate change in a timely and cost-effective fashion. A processor-model NP allows distributed processing at lower levels of integration, providing higher throughput, flexibility and control. Programmability can enable easy migration to new protocols and technologies, without requiring new ASIC designs.
Commensurate with design and implementation of network processor-based devices, are the data structures and methods for defining and controlling the overall behavior of an NP, to which this invention is directed.
It is an object of the invention to provide a system and method providing functionality for enabling a General Purpose Processor (GPP) that is acting as a Control Point processor (CP) in a network environment to define and control the overall behavior of a Network Processor (NP).
It is a further object of the invention to provide a method providing functionality for enabling a General Purpose Processor (GPP) that is acting as a Control Point processor (CP) in a network environment to define and control the overall behavior of a Network Processor (NP) to provide supporting functions to frame-forwarding applications running in an NP.
According to the invention, there is provided a system and method for controlling overall behavior of a network processor device implemented in a network processing environment servicing a communications network. The method includes steps of receiving a guided control frame including one or more control functions for configuring various functional devices within the network processor with device control parameter data; a step of forwarding one or more control functions from a received control frame to a functional device within the network processor to be configured; and, executing the control functions as specified in the control frame. A novel control frame data structure and communications infrastructure is implemented whereby any network processor device operating in a distributed network processing environment may be controlled in accordance with executed control functions and device control parameter data. Functional units in a network processor device particularly targeted for control include hardware Guided Frame Handler (GFH) device, and frame-forwarding applications controlled by a hardware Guided Table Handler (GTH) device.
Advantageously, the system and methodology is capable of handling and processing control frames (guided frame flows) in a variety of possible flows through a typical NP system including guided frame flows on a primary blade; guided frame flows on a secondary blade; and, guided frame flows on multiple blades in a network processing environment. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an exhaust timing control system and control unit. More particularly, the present invention relates to an exhaust timing control system and control unit of a snowmobile.
2. Description of Related Art
Snowmobiles are powered by internal combustion engines, particularly two stroke engines. Additionally, small snowmobiles do not have batteries to power electrical accessories when the engine is not operating; such accessories are powered by a generator when the snowmobile engine has been started. Larger snowmobiles may have batteries; however, due to the unusually cold operating environments that these vehicles are subjected to, the batteries may store and retain little power.
The conventional two stroke engines which power snowmobiles generally include an exhaust port provided in each cylinder wall such that spent gases are exhausted through the exhaust port as the piston reciprocates in the cylinder. Exhaust port timing has an important effect on engine performance. Optimum exhaust port timing is dependent, in part, upon engine speed. For instance, to provide an improved engine performance, the exhaust port timing can be advanced during high-speed engine operation relative to the exhaust port timing during engine idling.
One manner of controlling the exhaust port timing is to employ exhaust control valves. Generally, these valves are of the sliding or rotating type, and do not serve to ever completely close the opening or port in each combustion chamber. Instead, each valve moves between a first position, in which the valve does not obstruct, or obstructs very little of, the exhaust port, and a second position, in which the valve partially obstructs the port. Therefore, the exhaust control valve can alter the effective cross-sectional area of the exhaust port by appearing to lower an upper surface of the exhaust port, thereby restricting the flow through the exhaust port.
Because these valves have a relatively small range of movement, and are not continuously moved, they may seize within the guide passage in which they are mounted. Such seizure may result due to deposits that form on the valve bodies. Specifically, because these valves are normally employed in two cycle engines and because oil is typically mixed with the air and fuel charge ported into the combustion chamber, the oil can cause a further problem once the engine is shut off. While the engine is running, the engine temperature will be high enough to avoid any carbonization of the oil byproducts on the valves. However, as a stopped engine cools, residual oil may carbonize, or coke, on the control valves and form deposits which, along with other foreign matter, will make it difficult to operate the valves when the engine is later restarted. In short, these deposits will tend to inhibit smooth operation of the valves. Of course, the aforementioned temperature differences will also further aggravate this situation.
In the past, it has been suggested to exercise the exhaust control valve through a number of cycles between an opened and a closed position to clean any scale, carbon deposits or other debris from the exhaust control valve. In vehicles having sufficient battery power, the control valves are cycled through a cleaning operation under power from the battery before the engine is started. However, in a vehicle such as a snowmobile, which does not have a battery, a cleaning operation may not occur prior to starting.
Additionally, movement of the exhaust control valves typically alters engine performance characteristics such that efficiencies may be obtained at a lower engine speed range without significantly harming engine performance at a higher engine speed range. For instance, closing the exhaust control valves delays the timing of the exhaust cycle such that the compression ratio is increased. This increase enhances low speed engine performance. Again, due to the cold environment in which snowmobiles are used, the cold starting temperature of the engine typically causes difficulties when starting the engine. Moreover, the cold temperature can result in rough idling and rough engine running at low speed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to wagering games, gaming machines and networked gaming systems and methods and, more particularly, to wagering games, gaming machine and networked gaming systems and methods including multiple-progressive wheel games.
2. Description of the Related Art
Reel gaming machines with static reel symbols are known. Current reel games use either mechanical reels or show a video representation reels. Various modifications have been made over the years to create additional interest in standard reel games. An example improvement can be found in U.S. Pat. No. 6,731,313 to Kaminkow, where a player can make manual requests to change reel symbols. Another is U.S. Pat. No. 6,702,675 to Poole, which discloses animal animations on reel symbols.
In the prior art, various types of gaming machines have been developed with different features to captivate and maintain player interest. In general, a gaming machine allows a player to play a game in exchange for a wager. Depending on the outcome of the game, the player may be entitled to an award which is paid to the player by the gaming machine, normally in the form of currency or game credits. Gaming machines may include flashing displays, lighted displays, or sound effects to capture a player's interest in a gaming device.
Another important feature of maintaining player interest in a gaming machine includes providing the player with many opportunities to win awards, such as cash or prizes. For example, in some slot machines, the display windows show more than one adjacent symbol on each reel, thereby allowing for multiple-line betting. Some gaming machines offer a player the opportunity to win millions of dollars by providing progressive jackpots. Additionally, feature games of various types have been employed to reward players above the amounts normally awarded on a standard game pay schedule. Generally, such feature games are triggered by predetermined events such as one or more appearances of certain combinations of indicia in a primary game. In order to stimulate interest, feature games are typically set to occur at a gaming machine on a statistical cycle based upon the number of primary game plays.
While gaming machines including feature games have been very successful, there remains a need for games that provide a player with enhanced excitement and increased opportunity of winning. | {
"pile_set_name": "USPTO Backgrounds"
} |
When off-loading containers and break-bulk cargo from large oceangoing ships (or a dock) onto a variety of lighters (and other small craft), off-loading must be accomplished in all types of weather and in the presence of high sea states. Problems arise both due to the motions of the vessels in inertial space and the motions of the vessels relative to each other.
Existing shipboard cranes use a single cable with a cargo coupling mechanism (or spreader) suspended from an overhead structure. Ship motion may force the cargo (or spreader) into pendulous action, allowing it to swing unchecked. Difficulty may be encountered when trying to mate the spreader with a container that is on the oceangoing vessel itself. Furthermore, depositing a swinging container onto a moving lighter without damage to cargo and hazards to personnel is also difficult. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to rotary cutting tools and specifically to the class of rotary cutting tools which have removable or replaceable blades mounted in a unitary body member.
There are many different kinds of rotary cutters such as dado heads, milling heads, surface planers, molding heads and the like. Typically this type of rotary cutter is adapted to permit changing of the blades, either to present a different molding configuration or to replace worn blades with newly sharpened ones. Nevertheless, these existing tools are intended for use in a single orientation in regard to the workpiece. Thus, when attempting to bore a hole or mill a surface, an entirely different tool must be employed than the one used to cut a molding profile. Some tools have movable bits, such as fly cutters, but is is difficult to firmly affix such bits in the tool. The possibility of the bit becoming loosened during working must be considered, and loosened bits can ruin the workpiece. | {
"pile_set_name": "USPTO Backgrounds"
} |
Testing of integrated circuits is an important part of the integrated circuit manufacturing process. Testing is used not only for preventing defective or unreliable chips from being shipped to customers, but also allows analysis of the fails so as to make adjustments to the design or fabrication steps of the chip. Conventional testing methodologies are based on models at the logic-level (gate-level) of the circuit design, which may not incorporate information about the physical implementation of the design. Tests generated from models may not completely test the circuit, and thus many physical defects may not be found or the failures they cause may be difficult to analyze and diagnose. Therefore, there exists a need for a method of generating test patterns and evaluating the test patterns based on how well the test patterns test the physical features and attributes associated with the features of an integrated circuit.
Further, prior art in this domain has focused on defect modeling techniques and testing for physical defects based on the aforementioned defect models. Defect models are not comprehensive and are often times based on one or a set of defect assumptions. Accordingly, there exists a need in the art to evaluate existing test patterns and generate test patterns to test for selected physical layout features. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to compression of image data while applying corrections to enhance image quality and, more particularly, to the decoding and re-encoding of documents for additional and more extreme data compression to allow economically acceptable long-term storage in rapid access memory and performing such decoding and re-encoding in reduced processing time.
2. Description of the Prior Art
Pictorial and graphics images contain extremely large amounts of data and, if digitized to allow transmission or processing by digital data processors, often requires many millions of bytes to represent respective pixels of the pictorial or graphics images with good fidelity. The purpose of image compression is to represent images with less data in order to save storage costs or transmission time and costs. The most effective compression is achieved by approximating the original image, rather than reproducing it exactly. The JPEG (Joint Photographic Experts Group) standard, discussed in detail in “JPEG Still Image Data Compression Standard” by Pennebaker and Mitchell, published by Van Nostrand Reinhold, 1993, which is hereby fully incorporated by reference, allows the interchange of images between diverse applications and opens up the capability to provide digital continuous-tone color images in multi-media applications.
JPEG is primarily concerned with images that have two spatial dimensions, contain gray scale or color information, and possess no temporal dependence, as distinguished from the MPEG (Moving Picture Experts Group) standard. JPEG compression can reduce the storage requirements by more than an order of magnitude and improve system response time in the process. A primary goal of the JPEG standard is to provide the maximum image fidelity for a given volume of data and/or available transmission or processing time and any arbitrary degree of data compression is accommodated. It is often the case that data compression by a factor of twenty or more (and reduction of transmission time and storage size by a comparable factor) will not produce artifacts or image degradation which are noticeable to the average viewer.
Of course, other data compression techniques are possible and may produce greater degrees of image compression for certain classes of images or graphics having certain known characteristics. The JPEG standard has been fully generalized to perform substantially equally regardless of image content and to accommodate a wide variety of data compression demands. Therefore, encoders and decoders employing the JPEG standard in one or more of several versions have come into relatively widespread use and allow wide access to images for a wide variety of purposes. Standardization has also allowed reduction of costs, particularly of decoders, to permit high quality image access to be widely available. Therefore, utilization of the JPEG standard is generally preferable to other data compression techniques even though some marginal increase of efficiency might be obtained thereby, especially for particular and well-defined classes of images.
Even though such large reductions in data volume are possible, particularly using techniques in accordance with the JPEG standard, some applications require severe trade-offs between image quality and costs of data storage or transmission time. For example, there may be a need to store an image for a period of time which is a significant fraction of the useful lifetime of the storage medium or device as well as requiring a significant amount of its storage capacity. Therefore, the cost of storing an image for a given period of time can be considered as a fraction of the cost of the storage medium or device and supporting data processor installation, notwithstanding the fact that the image data could potentially be overwritten an arbitrarily large number of times. The cost of such storage is, of course, multiplied by the number of images which must be stored.
Another way to consider the storage cost versus image quality trade-off is to determine the maximum cost in storage that is acceptable and then determine, for a given amount of quality, how long the desired number of images can be saved in the available storage. This is a function of the compressed size of the images which generally relates directly to the complexity of the images and inversely with the desired reconstructed image quality.
An example of such a demanding application is the storage of legal documents which must be stored for an extended period of time, if not archivally, especially negotiable instruments such as personal checks which are generated in large numbers amounting to tens of millions daily. While the initial clearing of personal checks and transfer of funds is currently performed using automated equipment and is facilitated by the use of machine readable indicia printed on the check, errors remain possible and it may be necessary to document a particular transaction for correction of an error long after the transaction of which the check formed a part.
Personal checks, in particular, present some image data compression complexities. For example, to guard against fraudulent transactions, a background pattern of greater or lesser complexity and having a range of image values is invariably provided. Some information will be printed in a highly contrasting ink, possibly of multiple colors, while other security information will be included at relatively low contrast. Decorations including a wide range of image values may be included. Additionally, hand-written or printed indicia (e.g. check amounts and signature) will be provided with image values which are not readily predictable.
Even much simpler documents may include a variety of image values such as color and shadings in letterhead, high contrast print, a watermark on the paper and a plurality of signatures. This range of image values that may be included in a document may limit the degree to which image data may be compressed when accurate image reconstruction is necessary. Therefore that cost of storage in such a form from which image reconstruction is possible with high fidelity to the original document is relatively large and such costs limit the period for which such storage is economically feasible, regardless of the desirability of maintaining such storage and the possibility of rapid electronic access for longer periods.
Since such image values must be accurately reproducible and utilization of the JPEG standard is desirable in order to accommodate widespread access and system intercompatibility, substantially the only technique for further reduction of data volume consistent with reproduction with good image fidelity is to reduce the spatial frequency of sampling of the original image. However, sampling inevitably reduces legibility of small indicia, especially at low contrast. Currently, sampling at 100 dots per inch (dpi) or pixels per inch (about a reduction of one-third to one-sixth from the 300 dpi or 600 dpi resolutions of printers currently in common use) is considered to be the limit for adequate legibility of low-contrast indicia on personal checks. The American National Standards Institute (ANSI) standards committee for image interchange recommends 100 dpi as a minimum resolution. Most check applications use either 100 dpi or 120 dpi grayscale images when they are compressed with more than one bit per pixel.
As a practical matter, the needed quality of the image data also changes over time in such an application. For example, within a few months of the date of the document or its processing, questions of authenticity often arise, requiring image quality sufficient to, for example, authenticate a signature, while at a much later date, it may only be necessary for the image quality to be sufficient to confirm basic information about the content of the document. Therefore, the image data may be additionally compressed for longer term storage when reduced image quality becomes more tolerable, particularly in comparison with the costs of storage. At the present time, personal check images are immediately stored for business use on DASD for about 90 days and transferred to tape for archival purposes and saved, for legal reasons, for seven years. Thus, data is available for only a few months in “on-line”, rapid-access storage and some significant processing time is required for transfer to tape.
In this regard, the number of personal checks and other documents produced on a daily basis, itself, presents several problems. The processing required for encoding and/or decoding an image is substantial and may require significant amounts of time even when performed at extremely high speed on general purpose or special purpose processors. Even when an encoding or decoding process may be performed in a fraction of a second (e.g. 1/10 second or less), the sheer number of documents may occupy the entire processing capacity of a large number of processors on a continual basis. To reduce storage costs as reduced image quality becomes increasingly tolerable over time, as discussed above, even more processing has been required. That is, to increase compression of an image from data which has already been compressed, as discussed in the above-incorporated patent application Ser. No. 09/760,383, it is necessary to first decode the image from compressed data and then encode the image again using different quantization tables in order to further reduce the volume of data. This processing time represents a substantial cost which effectively increases the cost of storage over the cost of the reduced amount of storage medium occupied. Conversely, if the cost of processing for further data reduction can be reduced, the data may be stored for a longer period of time and/or in memory having shorter access or retrieval time at an economically acceptable cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a gear selector device for a gearbox intended for motor vehicles and of the type which is maneuvered indirectly via a control unit connected to the gear selector device, provided with a pivotably mounted maneuvering column, and with a locking arrangement for locking the maneuvering column in predetermined positions.
In automotive technology it is becoming more and more common, especially in the case of heavy vehicles such as, for example, lorries and buses, to attempt to make the driver's work easier by reducing and simplifying the effort required for changing gear. This is achieved by means of indirect maneuvering of the gearbox, whereby the driver maneuvering a gear selector device so as to cause the latter to emit, as a function of the position, different signals intended to carry out via the servo the actual maneuvering of the gearbox, i.e. to effect engagement and disengagement of gears.
By having a control unit detect the actual driving conditions, such as, for example, speed, acceleration, engaged gear and engine speed, it is possible to further facilitate the work of the driver. The control unit can then calculate which gear should be engaged and can present its suggestion to the driver on a gear indicator. Then, with the aid of the gear selector device, the driver can change gear according to the suggestion or deviate from the suggestion. The gear selector device may also permit a choice between, for example, different semiautomatic or fully automatic predetermined gear programs.
2. Description of the Prior Art
In order to permit simple adjustment of the gear selector device to desired positions, it is known to use a single maneuvering column and to mount the latter pivotably in different planes, for example in a plane parallel to the longitudinal direction of the vehicle and in planes transverse to this plane.
In one embodiment according to U.S. Pat. No. 4,519,266, of the locking arrangement which holds the maneuvering column in different positions is located in connection with the pivot center of the maneuvering column and permits a gear-changing pattern of the type which is customary in manual gearboxes. There are no non-locking positions.
In another design, according to SE-A-8803674-4, the maneuvering column can be adjusted to different positions in a first plane and can be pivoted non-lockingly from these positions transverse to this plane. The locking arrangement which holds the maneuvering column in different longitudinal positions, is in this case designed with a cam curve in the bottom of the housing of the gear selector device, but there is however no possibility of locking the maneuvering column in the lateral direction. Among the disadvantages associated with these known embodiments is the fact that, when a modified gear-changing pattern is required, it is necessary to alter the housing of the gear selector device internally in order to obtain new positions for the maneuvering column. In addition, the locking arrangement competes for space with the sensors which are required for detecting the different positions of the maneuvering column. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to semiconductor devices and in particular to routing signals through serially connected circuits of semiconductor devices. Still more particularly the present invention relates to a method and circuit design for enabling both shift path and scan path functionality with a single port LSSD latch designed for scan path functionality only.
2. Description of the Related Art
Operation of semiconductor devices entails the passing of one or more input signals through a series of circuit components that are interconnected in a particular design configuration to generate a response (or output signal) within the device. The path through which the input signal propagates is determined by the type of connectivity among the various logic components within the device, and the value of the signal, as well as the accompanying clock signal.
To ensure proper operation of the semiconductor device, current design and fabrication procedures involves some amounts of post-fabrication testing on all or specific portions of the device to ensure that the components are functioning as desired and yield the correct (or expected) outputs at each stage of the device. For example, semiconductors and other similar devices manufactured with a large number of fuse elements are usually tested post-fabrication. Testing of the device may involve selectively blowing fuses within the device by passing an electrical current through the fuse link, depending on the design of the fuse/device. The fuses that are blown are selected via one or more programming methods, which are generally known to those skilled in the art.
The path utilized for post-fabrication testing is often times different from that utilized during normal signal propagation. In semi-conductor terminology, the normal routing path is referred to as the shift path (from the “shifting” of a propagating “1” or “0” signal in a serial manner from one component to another through the device), while the test path is referred to as the scan path.
Present designs provide a separate scan path along with the shift path for completing the testing of the device. The scan paths are utilized to verify the function of the logic and for any scan preconditioning of the latches done at test. The shift path is utilized for functional operation during fuse blow and fuse readout from the fuse sense latches.
FIG. 1 illustrates a prior art schematic of a portion of the input circuit for a device 100 comprising two levels of serially connected latches. For simplicity of description, the upper level (or register) latch and lower level latch are referred to herein as a latch pair. Also, the first pair of latches, are referred to as the input latches and the second (and subsequent) pair of latches, labeled “Repeatable Scan Latch,” are referred to as internal device latches. Only two pairs of sequential latch pairs are illustrated; However, a complete device may comprise a much larger number of sequentially connected latch pairs similar to the second pair of latches.
As labeled in FIG. 1, the first pair of latches 102A, 102B are full LSSD latches and have dual input ports for both shift and scan chain operations. The second pair of latches, 112A, 112B, however, are scan only latches and thus accommodate only one (scan) path at a time. The two chains of latches (fuse latches 103 and pattern latches 113) are connected in serial fashion, with each latch receiving it's shift input from the previous latch and sending it's shift output to the next latch in the chain.
On the standard full LSSD latch 102A, 102B, two clock ports and two data input ports are provided. One port is used for functional operation (serial shifting in this case) and the other is used for scan operations, a test requirement. Each serial register of latches (LSSD scan latches) comprises a dual-phase latch. The first phase in an LSSD scan latch is called the L1 and is loaded with clock signal ACLK 114. The second phase in the LSSD scan latch is called the L2 and is loaded with signal BCLK 118.
Each latch is configured with an L1 and an L2. Both ports load the L1 of the latch. Only one port may be utilized at a time. The input signals include SCANIN0 104, SHIFTIN 106, SCANIN1 108, and SHIFT 120. Clock signals include CCLK signal 116, ACLK signal 114, and BCLK signal 118. A set of logic gates, AND gate 103 and OR gate 105 are provided to select when the shift input 120 would be allowed to load the L1 during operation.
According to FIG. 1, both the upper level and lower level latches are full LSSD (level sensitive scan design) dual port latches designed to enable separate scan and shift paths as illustrated. A first scan pattern, SCANIN0, is loaded into the upper latch, while a second scan pattern, SCANIN1, is loaded into the lower latch. From the perspective of a scan path, particular types of latches are provided to enable a scan chain evaluation for the device. The upper latch receives a SHIFTIN signal, which triggers the beginning of a shift path. Three clock inputs are also provided to transition the scan and/or shift signal along the device. Each path includes separate clocking domain. The shift/scan path are separated by providing separate shift clock (CCLK) and scan clock (ACLK) signal.
With designs where the functional path matches the scan path, it is possible to use a single data port latch along with OR logic and OR the shift clock (CCLK) and scan clock (ACLK) signals together. However, it may also be required that a long shift path be separated into multiple scan paths. At locations where splitting of the paths is desired, typically a full LSSD latch would be inserted between scan only LSSD latch pairs to provide separate shift and scan ports to the L1.
Particular types of devices, such as electrical fuse (eFuse) devices, for example, are typically designed with separate scan and shift paths, from the perspective of the latch circuitry. In eFuse circuit terminology, the upper level latch 102A is referred to as the fuse sense latch (or fuse latch) and is utilized to read the state of the fuse. Upper level latch is also utilized during the fusing process to enable/disable the blowing of the associated fuse. The lower level latch is referred to as the pattern latch and is utilized to store the redundancy solution calculated for the device. The upper (fuse) latches 103 and lower (pattern) latches 113 are serially connected and may be wired into additional circuitry (e.g., fuse and transistor) in the device.
According to the current art, and as illustrated by FIG. 1, the shift and scan paths were normally split with the addition of a full LSSD latch where the paths had to be split. This addition of a full LSSD latch at each split is difficult to manage in a hierarchical design where the first latch has to be nested completely differently from subsequent latches.
In a next implementation, the shift and scan paths are combined on a scan-only latch by logically ORing the shift clock (CCLK) and scan clock (ACLK) to the latches. This can be done wherever the scan path and functional path share the same serial path through the latches. Removal of the above mentioned requirement was critical for the eFuse design since the electrical design of all the fuse sense latches needed to be the same with the same layout for matching purposes. It was also difficult to do the physical design on a tight pitch with a different latch up front.
One primary concern with current designs is the additional area overhead required because of the need to provide OR gates and other logic within the device for each scan path when a single port latch configuration is utilized. With the dual port LSSD latch configuration, the concern involves additional cost as well as real estate in providing the larger dual port LSSD latches rather than the single port LSSD latches. The current method of providing both scan path and shift path operations for a device also presents problems with embedding particular types of circuitry within an ASIC design. LSSD methodology issues have to be solved to allow for all fuse latches to exist on a single shift register but be broken into multiple scan chains or scan paths. This requires “splitting” the scan and shift paths where required to facilitate ASIC design and test methodology. Using scan only latches and full LSSD latches in the fuse latch chain creates a problem because the electrical characteristic of the internal sense node for fuse are not the same in the two different latch designs, and still requires additional real estate within/on the device.
The present invention recognizes the above inefficiencies that exist in the current design and testing of devices that require both scan path and shift path operations. The invention further recognizes that a method and device that enables efficient combination of scan path and shift path functionality in a single port latch without incurring additional internal overhead costs would be a welcomed improvement. Also desirable is a method and device that enables reduced area overhead along within the device's internal circuitry. These and other benefits are provided by the invention described below. | {
"pile_set_name": "USPTO Backgrounds"
} |
Devices for rendering marks upon materials such as paper, cardstock and photographs are generally well known. Such devices, including cutting devices, are typically configured for performing free-form marking or cutting. Many marking devices are also used in conjunction with a template for marking or cutting specific or predetermined shapes from a material. Cutting devices having an adjustable blade are also known and are typically used for cutting materials of varying thicknesses. Other cutting devices can include a swiveling blade which swivel or rotate about a longitudinal axis of the cutting device. Cutting devices typically are elongate members having housings which form a handle for grasping by a user during cutting. The housing usually connects at its lower end to the blade. The angular position of the cutting blade of the cutting device with respect to the material to be cut is typically determined by the user's hand.
Templates are also well known. Templates typically are flat sheets having first and second sides, and one or more openings formed in a variety of different shapes. The cross-sectional shape, of the periphery of the template and the edges of the template at the openings, typically defines straight-cut edges extending perpendicularly from the first side to the second side. Templates are commonly made of semi-transparent, generally flexible material. Templates used to produce geometric or other shapes of varying sizes can also be configured as nested templates. Nested templates include a series of elongate, unconnected slots which form outlines of specific shapes. When using nested templates, the user is required to cut the portions of the material to be cut which extend between the ends of the slots in order to completely outline or cut out the desired shape.
Existing devices for rendering marks and existing templates have a number of drawbacks. Existing rendering or cutting devices are typically not securely orientated in regard to angle with respect to the material. As a result, the angular orientation of the device with respect to the material to be cut (e.g., the blade of a cutting device) is often inadvertently changed causing an error in the desired marking or cutting. Existing devices which do fix the angular orientation of the cutting device with respect to the material are typically configured for free-form cutting only and do not properly function in conjunction with templates. Other devices which fix the angular orientation of the cutting device with the material to be cut are large, expensive devices which are often difficult to operate and to transport.
Further, existing cutting devices are typically formed of non-transparent material which partially obstructs the user's view of the material to be cut. Also, many cutting devices utilize a bottom-load blade connection of the blade to the housing of the device. The bottom-load connection of the blade to the housing makes the blade susceptible to becoming dislodged from the housing during operation. Existing cutting devices also typically do not include blade depth indication which increases the likelihood of blade depth mis-adjustment. Existing cutting devices also typically do not accommodate spare blades or blade assemblies. Those cutting devices, which have a rotatable or swivelable blade, are not typically configured for use with a template. When not in operation, existing cutting devices often have exposed cutting blades which are susceptible to contact by the user.
Additionally, existing cutting devices do no include any mechanism for maintaining the height of the blade and/or the blade assembly relative to the cutting surface when a blade is replaced. In conventional adjustable cutting systems, the cutting blade is held in place by a spring which abuts against an adjustment knob. However, when the blade is removed from the assembly, the tension inside the spring is released, and there is no mechanism to mark the height of the blade relative to the cutting surface. As a result, the user is forced to recalibrate the height of the cutting blade after a new blade is inserted into the device. Furthermore, existing adjustable cutting devices do not include a simple mechanism for quickly and easily accessing the blade and/or the blade assembly for removal and replacement.
Existing templates are not configured for effective operation with cutting devices, and in particular, with cutting devices wherein the housing and the blade assembly are maintained in a generally fixed orientation with respect to the template. The periphery and the edges at the openings of existing templates often cause existing rotatable or swiveling blade assemblies to bind which can result in mis-cuts. Also, existing nested templates produce incomplete shapes and require the user to undertake a secondary cutting or marking operation, typically without the aid of the template, to complete the cutting or marking of the desired shape.
Thus, there is a need for a device for rendering marks or cuts onto a material which maintains the marking assembly in substantially constant angular orientation with respect to the material to be cut and which is configured for use in either a free-form rendering mode or a template rendering mode. There is also a continuing need for cutting device which is configured for single-hand operation and which can be adjusted without the use of tools. What is needed is a cutting device having a blade assembly which is not susceptible to separation from the lower portion of the housing and a cutting device which indicates the depth of the cutting blade. A cutting device configured to prevent contact with the blade when the device is not in use is also needed. Further, there is a continuing need for a cutting device having many of these attributes which also accommodates spare blade assemblies and which enables the replacement of blades without the use of tools. Additionally, there is a need for a template which operates effectively with a rotatable or swiveling cutting blade of a cutting device. In addition, a template is needed which enables the continuous and uninterrupted cutting of shapes of varying sizes. There is also a need for a cutting device and system that includes a mechanism for maintaining the position of the blade adjustment mechanism such that a user can replace the blade and/or blade assembly without “losing” the height of the blade before it is replaced. Furthermore, there is a need for a cutting device and system that provides a simple and effective mechanism for accessing, removing and replacing the blade and/or the blade assembly. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to an embroidery stand for displaying a completed embroidery utilizing the embroidery hoop as a frame.
The art of forming decorative designs in embroidery requires that a cloth be held by an embroidery hoop during the process. Upon the completion of the embroidering, it is the customary fashion to frame the embroidered cloth in a purchaseable frame. Typically, the hoop is comprised of an inner and an outer ring, which receives therebetween the embroidered cloth. | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject invention is directed toward the art of tube couplings and, more particularly, to a device intended to prevent undesired loosening of a threadedly connected tube coupling.
The device of the invention is especially suited for use with union type couplings and will be described with reference thereto; however, the invention can be used with other types of couplings including couplings constituted as an integral part of a flow device such as a valve.
One commonly used type of tube coupling comprises male and female body components joined by cooperating threads that permit connection and disconnection by relative rotation about the tubing centerline (see, for example, U.S. Pat. Nos. 5,135,269 and 5,066,051). The conditions to which the connected coupling is subjected can sometimes, over a period of time, cause loosening and resultant leakage. Although this rarely happens with a properly made-up, fully torqued fitting, in certain environments and when handling certain fluids, any possibility of leakage cannot be tolerated.
Many different types of lock devices have been proposed in the prior art for the prevention of random, undesired loosening of such couplings. However, these prior art devices have generally suffered from one or more disadvantages or defects. For example, certain prior art lock designs require installation prior to coupling makeup, and retro-fitting is not possible without system disassembly. With certain other designs, it has sometimes been necessary to locate the coupling components in a particular aligned relationship before the devices will function properly. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an annular elastomeric track for use in vehicles for civil engineering, construction works and agricultural works.
Molded rubber tracks are in many cases being substituted for conventional metal tracks. Rubber tracks offer better maneuverability, better ride quality in rough fields, better flotation in wet areas, improved side hill stability, excellent traction, low maintenance and versatility compared to steel tracks.
Additionally, rubber tracks are replacing conventional rubber tires on tractors and other agricultural vehicles such as combines, trenchers, snow removers, spreaders, sprayers, wagons and carts, since rubber tracks are more friendly to agricultural fields, offer better flotation and less compaction than rubber tires, resulting in better crop yield. The use of rubber tractor tracks permits farmers to get in and out of fields earlier in the planting season and plant more crops as compared to rubber tire-equipped agricultural vehicles.
In civil engineering applications tracks are employed on many construction equipment type vehicles such as road pavers and the like. These tracks are generally made from steel or steel with urethane or rubber pads. These tracks require much maintenance and in the case of steel tracks the damage to paved surfaces is a serious problem. Also, these construction type tracks can be placed over tires for skid steer equipment. A new advance in this area is the use of an all rubber steel cord track. The Goodyear Tire and Rubber Company provides such a track under the trademark TRACKMAN(copyright), and the Bridgestone/Firestone Company provides a similar track under the name Firetrax(copyright). These tracks have rubber lugs that extend across the entire width of the track.
Rubber tracks are defined by an endless rubber belt or band reinforced with continuous flexible steel cables bonded into the rubber. Presently, a complete rubber track is molded flat in multiple sections, which are sequentially then bonded together during the curing process. Alternatively an endless rubber track can be made in annular form wherein the track is made from an uncured belt and a plurality of drive lugs wherein the drive lugs are urged into cavities formed in inner segments of a molding press, partially final formed and pressed onto the inner periphery of the belt, the belts and drive lugs are positioned in the molding press to be cured and molded together while treads are formed on the outer periphery of the belt. The drive lugs are finally formed and the completed belt is cooled and removed from the molding press forming an annular track as described in U.S. Pat. No. 6,051,178 issued Apr. 18, 2000, to the assignee, The Goodyear Tire and Rubber Company.
In each of the methods of manufacture the outer periphery has a plurality of spaced tread lugs. Generally in the prior farm tire art these tread lugs extend from each lateral edge of the track towards the center of the track terminating at the central location or mid-point of the track. These lugs generally take the appearance of agricultural tire lugs with a generally inclined but slightly more transverse extending inclination relative to the direction of travel. Additionally, these lugs can be staggered or circumferentially offset from one side of the track to the other. This helps insure that the track has sufficient bending moment as the track traverses over the drive wheels and guide wheels at each extremity of the elliptical shape track as it traverses in use. If the tread lugs extend from one side of the tracks"" lateral edge to the opposite side, then it is believed that the lugs should be substantially perpendicular to the direction of the circumferential links of the track in order for the lugs to achieve appropriate bending moment in flexibility as it rotates around the drive wheels. For this reason, it is felt necessary to provide the tracks with two sets of lugs that act somewhat independently relative to the lugs set of the opposite side of the track so that the track itself can bend in a rather flexible nature. Absent this bending, severe loads result in the belt reinforcing structure causing potential separations and other defects in the track itself as has been observed in some of the prior art rubber construction tracks previously mentioned.
The belt reinforcing structure of a track has at least one primary cable for reinforcing the track in the circumferential direction and usually at least an additional two layers of crossed angled cords which provide lateral stability. Each layer of cords is encapsulated in a layer of rubber. The entire belt structure must be very flexible and therefore is designed to be thin in cross-sectional thickness. This thin structure is sometimes cut by debris trapped internally or cut by simply driving over debris such as concrete rubble, steel or trash found at typical construction sites or in the fields.
Once the belt is cut the reinforcing cords are exposed to moisture which can quickly oxidize the steel cords. Typically a thin brass coating is applied to the steel to improve adhesion to the rubber. The reaction of brass coated steel to oxidation is such that the steel preferentially corrodes relative to the brass coating. The brass plating when combined with the steel gives good to excellent rubber adhesion. A secondary failure of a rubber track occurs if the cords separate locally from the rubber. When this situation occurs, the reinforcement cords of the belt progressively separate from the track ultimately making the track useless.
To extend track life great efforts are expended in developing new tread compounds, belt rubbers, and guide lug compounds.
One way to increase track durability would be to improve the corrosion resistance of the belt reinforcing structure while maintaining high cord to rubber adhesion. The following invention discloses a novel construction to achieve this result.
An endless elastomeric track has guide lugs on the inner circumference and rubber tread lugs on the outer circumference and a thin band continuously extending in the circumferential direction. The thin band is circumferentially reinforced by substantially inextensible cords. Preferably the cords are steel reinforced materials.
The track has at least one primary cable of galvanized steel circumferentially reinforcing the thin band. The at least one primary cable is oriented generally circumferentially and is preferably helically wound forming one reinforced layer extending from a first end on a first side of the track to a second end on the opposite end of the track. The at least one primary cable has a diameter of between 2.0 mm and 14.0 mm, preferably about 5.3 mm. The at least one primary cable is galvanized steel and in the preferred embodiment has a wire bundle construction having ((3xc3x970.35 mm)+(6xc3x970.63 mm)+6xc3x97(0.63 mm+6xc3x970.57 mm)).
The primary cable 59 is encapsulated in a rubber 22 having a rubber mixture composition comprising of the following, based upon 100 parts by weight elastomers (phr)
(A) elastomers comprised of 20-100 phr isoprene rubber and corresponding zero to 80 phr of styrene/butadiene rubber;
(B) 30 to 70 phr of reinforcing filler selected from rubber reinforcing carbon black and silica comprised of 20 to 70 phr of said carbon black and from zero to 40 phr silica;
(C) Calcined litharge 2 to 5 phr;
(D) Sulfur from 2 to 5 phr; and
(E) Zinc oxide from 3 to 9 phr.
Optionally the composition may further include a reinforcing resin system such as resorcinol and HMMM in amounts of about 2.2 phr and 3.2 phr, respectively. Alternatively, the calcined litharge can be substituted with cobalt salts in the range of 0.5 phr to 3 phr. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a system of a plurality of series-connected fuel cell converter devices and a method for controlling the system. More particularly, the present invention relates to a system and a method for charging and discharging via a plurality of series-connected fuel cell converter devices.
2. Description of Related Art
Electricity, which has been indispensable to the daily lives of humans since the Industrial Revolution, is generated nowadays mainly by thermal or nuclear power. However, as both of these power generation methods have adverse impacts on the environment, and given the increasing abnormalities in today's global climate, it is imperative to generate electricity by alternative means.
Fuel cells generate electricity through chemical reactions, which do not produce substances harmful to the environment, and therefore fuel cells have been an important developing trend in power generation technology. For instance, a conventional fuel cell-based power generation system typically includes three major parts: a fuel cell stack for generating electricity, a converter for converting the unstable electricity generated by the fuel cell stack into a stable power source for output, and a battery for providing electricity in conjunction with the fuel cell stack when the fuel cell stack alone is insufficient to cope with an increase in the load, wherein the battery stops supplying electricity as soon as the power generated by the fuel cell stack meets the load requirement.
The aforesaid conventional fuel cell-based power generation system is disadvantageous in that the electricity generated by the fuel cell stack will not be output when the converter is damaged, which is extremely inconvenient. Moreover, a desired increase in the output power of the fuel cell stack is not achieved until chemical reactions in the fuel cell stack are completed. Therefore, if the load increases abruptly and goes beyond the capacity of the battery, a shortage of power supply is bound to occur, and the load will be affected as a result.
In addition, when fuel is added to the fuel cell stack, the chemical reactions of the added fuel will upset the stability of the output power temporarily, which is likely to damage the load. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a substantial need for finger touch actuated switches that are rugged and explosion proof, operate in the presence of liquids, have low power consumption, withstand aggressive sterilization procedures and are inexpensive. Known switches that attempt to meet these needs but fail include the following. A Qprox switch made by Quantum Research Group senses the presence of touch through a charge transfer effect. This switch is sensitive to conductive fluids and/or an ionizing atmosphere and can be made inoperable thereby. Further, the enclosure through which touch is sensed cannot be made of an electrically conducting material, so that metals and the like cannot be used. Piezoelectric switches such as supplied by Schurter or Wilson-Hurd, operate by transferring finger pressure via a metal overlay to a piezoelectric element which generates a voltage when compressed. This type of switch is expensive compared to a standard membrane switch and shares the disadvantages of membrane switches in that holes in the housing or enclosure are required to accommodate the switch. Further, the metal overlay is necessarily thin, so that the piezoelectric element is relatively unprotected against blows to the overlay. Another type of switch shown in U.S. Pat. No. 5,149,986 is based on the absorption of sound in a glass, ball-shaped button when the button is touched. In operation, a transducer sends sound waves into the glass balls and then receives back the echoes in a sonar type fashion. A circuit analyzes the echoes to determine whether the echoes have been reduced indicating a touch. This type of switch is relatively expensive and again requires openings in the housing or enclosure in which the switch is to be mounted.
An acoustic wave switch such as shown in U.S. Pat. No. 5,673,041 includes an ultrasonic piezoelectric transducer mounted on a surface of a substrate opposite a touch surface of the substrate. The transducer generates an ultrasonic wave that propagates in a direction across the thickness of the substrate to the touch surface and reflects off of the touch surface back to the transducer. The ultrasonic wave appears to be a compressional wave. A touch on the touch surface changes the acoustic reflectivity of the surface and changes the impedance of the transducer. The acoustic energy in this switch is not confined and spreads out into the plane of the substrate. As such, the ratio of the stored energy to lost or dissipated energy over a complete cycle, referred to as the Q of the switch, is inherently low and an extremely complex touch detection circuit is required to discriminate between a touch and the absence of a touch. Moreover, the use of compressional waves in this switch is undesirable due to their sensitivity to liquids and other contaminants which can render the switch inoperable.
Also known are acoustic wave touch panels that employ reflective gratings or arrays to reflect portions of an acoustic wave across a touch surface along parallel paths of differing lengths. These devices use a transparent substrate that can overlay a display to provide a touch screen or the like. Examples of such touch sensors are shown in U.S. Pat. Nos. 4,645,870 and 4,700,176 which utilize surface acoustic waves. These systems are undesirable, however, because surface acoustic waves are sensitive to liquids, sealing compounds and other contaminants that can render the panel inoperable and difficult to seal effectively. Another acoustic wave touch panel using reflective arrays is shown in U.S. Pat. No. 5,177,327. This touch panel uses shear waves and in particular the zeroth order horizontally polarized shear wave. Although this touch position sensor is insensitive to liquids and contaminants, touch position sensors that use reflective gratings or arrays and the associated touch detection circuitry are, in general, too expensive to use for an individual switch or for a small number of switches on a panel. Moreover, because the shear wave transducer in this latter system is mounted on a side of the panel to generate a shear wave that propagates in the plane of the substrate, an opening in the enclosure or housing is required to accommodate the panel. U.S. Pat. No. 5,573,077 also uses zeroth order horizontally polarized shear waves, but instead of reflective gratings, discrete transducers are used to propagate the shear waves along parallel paths extending across the substrate.
An acoustic wave switch that overcomes the above problems utilizes an acoustic wave cavity and an acoustic wave transducer to generate a resonant acoustic wave that is substantially trapped in the cavity as disclosed in U.S. patent application Ser. No. 09/998,355 filed Nov. 20, 2001. As discussed therein, an analog touch detection circuit includes an oscillator coupled to the acoustic wave transducer wherein the oscillator is configured to oscillate in the absence of a touch. A touch on the touch surface of the acoustic wave cavity causes the transducer impedance to drop so that the oscillator stops oscillating. The state of the oscillator is determined and when the oscillator stops oscillating, a touch is detected. This circuit operates very well to detect a finger touch and a touch by a leather glove, for example. However, because it is desirable to detect a touch by contact of a synthetic blend glove, or the like, with the touch responsive area of the acoustic wave cavity and at the same time to not detect a touch when water alone contacts the touch responsive area, the sensitivity level of this touch detection circuit must be set within very narrow limits to meet these two competing requirements. As a result, small changes in the transducer impedance over time and/or with variations in temperature can result in a change in sensitivity that is outside of the requisite limits of the circuit.
Further, there is a need for a simple circuit that is not effected by drift for detecting sensed events in acoustic wave sensors other than touch detection sensors. | {
"pile_set_name": "USPTO Backgrounds"
} |
Seat belt restraining systems are positioned in automobiles in a standard arrangement that includes a lap belt for securing a passenger's lower torso and a shoulder belt for securing a passenger's upper torso. The lap belt and shoulder belt arrangement ensures that a passenger is safely secured in the automobile. The lap belt, typically, is adjustable thereby permitting passengers of varying sizes to adjust the lap belt for personal comfort. For example, a smaller passenger may tighten his adjustable lap belt to achieve a secure fit between the lap belt and the passenger's lower torso while a larger passenger may loosen his adjustable lap belt to achieve a secure fit between the lap belt and the passenger's lower torso.
Although the standard seat belt arrangement typically includes an adjustable lap belt, the arrangement does not include an adjustable shoulder belt. More particularly, the standard seat belt arrangement does not permit a passenger to adjust the positioning of the shoulder belt across the passenger's chest and neck. For example, a passenger of shorter than average height often has the shoulder belt uncomfortably extending across the passenger's neck when the passenger buckles himself into an automobile. As a result, the passenger may forgo the use of the entire seat belt arrangement because of the discomfort caused by the shoulder belt portion of the arrangement. As can readily be appreciated, such forbearance by the passenger places the passenger at risk when the automobile is in motion.
As a consequence of the above-described situation, there has been a long standing need for a device that can be attached to the standard seat belt arrangement to enable a passenger to adjust the shoulder strap portion of the seat belt arrangement. A few inventions have attempted to meet this long standing need. U.S. Pat. No. 5,080,396 to Vacanti is directed to a clip device for seat belts. The Vacanti device can be attached to the shoulder and lap belts of a seat belt arrangement to adjust the positioning of the lap and seat belts. However, the clips of the Vacanti device are interconnected by a resilient tether member which must be kept taut to ensure that the clips are maintained in the proper positions on the shoulder and lap belts. As can be readily appreciated, if a passenger reaches forward to adjust a control on the automobile's dashboard it is likely that the resilient tether member of Vacanti will loosen thereby permitting the clip members to move. The movement of the clip members will, in turn, cause the shoulder and lap belts to move out of position on the passenger. Therefore, the Vacanti device can be easily moved out of position as a passenger shifts within the automobile.
U.S. Pat. No. 4,826,250 to Ibanez is directed to a seat belt slack adjusting device. The Ibanez device attaches to an upper portion of a shoulder belt adjacent to a support loop through which the shoulder belt passes. The support loop is typically attached to the ceiling or upper door frame of the automobile. In operation, a passenger can pull the shoulder belt until the shoulder belt is slack. Afterwards, the passenger can attach the Ibanez device to an upper portion of the shoulder belt and release the shoulder belt. As the shoulder belt is retracted by a shoulder belt retraction mechanism located near the bottom of the door frame, the Ibanez device comes into contact with the support loop. At this point the Ibanez device prevents the retraction mechanism from pulling any further length of the shoulder belt through the support loop. As a result, the shoulder belt is left in a slack condition which, presumably, enables a user to move the shoulder strap to a desired position. However, there is nothing preventing the slack shoulder belt from being moved out of position. Therefore, the Ibanez device fails to provide a means for maintaining the shoulder belt in the position desired by the passenger.
U.S. Pat. No. 4,832,367 to Lisenby is directed to a belt restraining apparatus that permits a user to adjust the position a shoulder belt. The belt restraining apparatus can be manipulated by a user to form a first loop for engaging a lap belt and a second loop for engaging a shoulder belt. Each loop is formed via hook and loop fasteners such as those sold under the "Velcro" trademark. Although the Lisenby apparatus represents an improvement over the conventional seat belt adjusters discussed above, the Lisenby apparatus has a potentially serious drawback. In particular, the hook and loop fasteners of the Lisenby apparatus are likely to disengage or "sheer" when a large force is exerted against the lap and shoulder belts. Therefore, Lisenby fails to provide a means for maintaining the shoulder belt in the position desired by the user in the event of a large force being asserted against the lap and shoulder belts. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mass storage devices such as hard disk drive systems generally include a magnetic storage media for storing information, a spindle motor for rotating the storage media, a magnetic read/write head for reading information from or writing information to the magnetic storage media, and an actuator for positioning the read/write head over the storage media. A control system associated with the actuator controls the movement of the actuator.
An actuator in a hard disk drive system places the read/write head in an appropriate location over the magnetic storage media before a read or write operation occurs. Moving the read/write head takes time, though, and during that time the mass storage device cannot store or retrieve information. The average time required for the actuator to move the read/write head is referred to as the "seek time" of the storage device. Shorter seek times are preferable to longer seek times.
In moving the read/write head from one position to another, a conventional control system is modeled as a second order system. A problem with conventional control systems is that the second order system model produces a seek time that may be too long for modern applications. The time it takes for the read/write head to move from position to position is longer than desired, which causes the storage device to operate at a lower level of performance than desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a hydrophilic polymer of a block copolymer and/or a graft copolymer having special binding system of a hydrophobic hard segment and a hydrophilic segment having a hydrophilic group connected to thioether bond on a side chain and a process for producing the same. More particularly, it relates to novel hydrophilic polymers which have excellent water swelling property and water absorbing property and are useful as a water repellent, a water retainer, an antistatic agent, a perspiration absorber an antidewer, etc.
The conventional water insoluble hydrophilic polymers such as water swellable polymers and water absorbing polymers include
(1) water insoluble polymers produced by modifying polyethyleneglycol (PEG),
(2) polymers produced by crosslinking water soluble hydrophilic random copolymers or homopolymers by various methods in sigma bond to be water insoluble and if necessary, further chelating the water insoluble polymers, and
(3) polymers produced by grafting acrylonitrile on starch, if necessary, further hydrolyzing the graft copolymer.
These hydrophilic polymers are useful as an anti-water-leakage, a water retainer, an antidewer, an antistatic agent, a cement reinforcing agent, a perspiration absorber etc.
These hydrophilic polymers have been studied for each usage. It has not been known to provide a hydrophilic polymer having high water swelling degree and water swelling force and high gel stability in preservation which can be controlled as desired.
The polymers (1)(modified PEG) have high water swelling degree but have low water swelling force which is remarkably decreased by an addition of a material having high cohesive force. Accordingly, the purpose could not be attained.
In the polymers (2), the water swelling degree is dependent upon the degree of hydrophilic groups and the crosslinking degree which are contradictory each other. The crosslinkage is chemically stable sigma bond, whereby it is not easy to treat in a post-treatment or to disperse it in a medium.
The polymer (3) of acrylonitrile grafted starch or its hydrolyzed ones have high water absorption for absorbing 50 times of water to polymer, however the polymers are perishable in storage and decompose their gel structure. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to lock systems and more particularly pertains to an automatic door locking/unlocking device for an automotive vehicle which is designed to automatically lock and unlock the vehicle's doors.
2. Description of the Prior Art
The use of automatic locking and unlocking devices for vehicles is known in the prior art. For example, U.S. Pat. No. 4,502,718, which issued to Sasaki, et al on Mar. 5, 1985 discloses a door lock/unlock system for an automotive vehicle to include a safety device for preventing a mis-operation thereof. Another patent of interest is U.S. Pat. No. 4,709,776 which issued to Marcus Metz on Dec. 1, 1987 and which is directed to an electrical circuit that automatically locks door locks of a motor vehicle at a predetermined speed. A further patent of interest is U.S. Pat. No. 4,848,114 that issued to Mary Rippe on Jul. 18, 1989 and directed to a locking system for the doors of an automotive vehicle.
While all of these above-mentioned patents illustrate the fact that automatic locking technology is available in the prior art, non of these devices and their associated circuits provide for both automatic locking and unlocking of vehicle doors without any driver input. As such, there appears to be a need for some type of device which would provide both automatic locking and unlocking of vehicle doors without driver input and in this respect, the present invention substantially fulfills this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a great need for energy efficient radiation sources which will perform multiple tasks according to the program needs. Currently in common use are radiation sources with low energy efficiency such as, incandescent lamps. The luminous efficiency of these lamps are no greater than 5% which means that 95% of the energy produced by these lamps is heat. Heat, in most applications, is not welcome. Particularly excessive heat is not needed in summertime or in countries with warmer climates. Animal farms in warmer climates are adversely affected by the lack of energy efficient electromagnetic radiation sources. Electromagnetic radiation is needed in animal farms to keep animals sterile and in sterile/odorless conditions. The excessive heat often kills animals in spite of very extensive ventilation in brooders or other facilities. Other dangers in animal farms are diseases, such as animal flu, that occurs more often in the presence of excessive heat and humidity.
In the last several years, an enormous effort has been made in the development of highly-efficient energy radiation sources, particularly related to electromagnetic radiation sources. Significant progress has been made in the development of highly efficient light emitting diodes (LEDs) whose luminous efficiency is at least twice better than incandescent lamps. LEDs are also much longer lasting light sources than incandescent lamps; therefore modern LEDs are successfully replacing lamps in traffic lights, cars, and medical devices. LEDs could also be applied in many areas of our lives, however there are still limitations in this technology. One of the limitations is the availability of LEDs of different colors. Only recently were ultraviolet LEDs demonstrated, and still there is a lack of LEDs in the far-infrared spectral range. Another continuing limitation of LED technology is their luminous efficiency. Recent advances in LED technology with organic light emitting diodes (OLEDs) show promise for brighter light sources, however there still is a question if the efforts in the development of OLEDs will be focused only on white OLEDs or will super-bright ultraviolet and infrared OLEDs also be developed. Currently, LEDs are applied successfully in dermatology for removal of acne and wrinkles, which is performed with blue and yellow LEDs respectively. Red LEDs are also used to reduce muscle pain and to increase collagen content in body. However, there are still limitations in the use of LEDs, such as using them for sterilization or as broad-band sources of illumination from UV to far-infrared. The energy efficiency of LEDs continues to require improvement in order to use them as a cost-effective choice. | {
"pile_set_name": "USPTO Backgrounds"
} |
The disclosure concerns a valve of a piston pump, in particular for a hydraulic vehicle brake system, with a closing body which can be moved in an axially guided manner against a sealing seat.
DE 199 28 913 A1 discloses a piston pump in which a single pump element or pump unit is formed in a pump housing by a pump piston which is mounted displaceably in a pump cylinder. The pump piston draws brake fluid into the pump cylinder and expels it from the pump cylinder through a valve.
One object of the present disclosure is to create a valve of a piston pump which is economic to produce and install but nonetheless has particularly good opening and closing behavior. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention resides in the field comprising the electrical transfer of electrolytes (including weakly dissociated electrolytes) from a first fluid to a second fluid and more particularly relates to apparatus and processes utilizing the principle of electrodeionization(EDI), i.e. to electrodialysis apparatus and processes in which at least one compartment of said apparatus is packed with particulate ion exchange material.
2. Description of the Prior Art
Electrodeionization (EDI) is a process for transferring electrolytes (including weakly dissociated electrolytes) from a first fluid to a second fluid under the influence of a substantially direct electric potential applied to an electrodialysis apparatus in which at least some of the flow compartments, generally at least some of the diluting compartments, are substantially filled or packed with particulate ion exchange material.
EDI is particularly attractive to deionize waters with low total dissolved solids content, which exhibit low electrical conductivity and which thus limit the current capacity of conventional electrodialysis. The highly conductive ion exchange resin packing in EDI provides a conductive path between ion exchange membranes and also increases the surface area available for removal of ionized dissolved solids from the water.
Although it is not intended that this invention be limited in any way by any theory of electrodeionization (i.e., electrodialysis with compartments packed with particulate ion exchange material) nevertheless the following may help to understand the technology, this invention, and the various functions of the particulate ion exchange material packing.
Referring to FIG. 1(a) it represents schematically and in a simplified way one possible arrangement of such packing. In 1(a) "C" represents a cation selective membrane, i.e. an electrolytically conductive sheet or film in which the electric current is carried substantially exclusively by cations; "A" represents an anion selective membrane, i.e. an electrolytically conductive sheet or film in which the electric current is carried substantially exclusively by anions; "CX" represents particulate cation exchange material and "AX" represents particulate anion exchange material. The mix of particulates may range from all-cation-exchange to all anion-exchange, but for electrodeionization approximately an equinormal mixture of CX and AX is generally preferred. For purposes of illustration in FIG. 1(a) the space between membranes C and A is packed with an approximately equinormal mixture of particulate CX and AX, in one possible random arrangement. There are many different such arrangements of the 8 CX particles and 12 AX particles corresponding to this approximately equinormal example based on typical commercial ion exchange resin capacities, but that shown will serve to illustrate most of the processes occurring in such packed deionization cells.
The chamber represented by the region between membrane C and membrane A is a demineralizing, depleting, or diluting compartment, i.e. if the compartment contains in addition to the ion exchange particulates CX and AX a solution of a dissociated electrolyte in the interstices among the particles CX and AX, then cations from such solution will tend to migrate through membrane C toward electrode E.sup.- and anions through membrane A toward electrode E.sup.+ thereby depleting the electrolyte in the chamber. It is well known (See Heymann and O'Donnell, J. Colloid Sci., 4, 395(1949) ) that strongly dissociated ion exchange materials (including ion selective membranes) have specific electrical resistances of order of magnitude about 100 ohm-cm, i.e. about the same as an aqueous solution containing about 0.1 gram equivalent of sodium chloride per liter. Hence if the solution in the interstices is an aqueous solution of sodium chloride containing much less than about 0.1 gram equivalent per liter (say about 0.01 gram- equivalent per liter) then the electrical resistance of the ion-exchange particulates will be much less than that of the solution. Then the low resistance path for anions will be through anion exchange particulates AX and for cations through cation exchange particulates CX. The first column from the left is such a low resistance cation path. The cation exchange particle in the second column also feeds that path. In the two dimensional pattern of FIG. 1(a) the cation exchange particle in the fourth column is a dead end (but in three dimensions, i.e. in the planes immediately above and below that shown in FIG. 1(a), there could be connections to CX particle paths leading to membrane C. There are no dead-end anion particles in the figure. Some anions pass around cation exchange particles which are in the way. At many contacts between the particles it is possible for a cation to enter a cation exchange path and simultaneously for its "companion" anion to enter an anion exchange path. One can postulate that when the electric current passing through the electrolyte solution in the interstices between the particulates and through the particulates is such that the voltage drop across the interfaces between particulates AX and membrane C and between particulates CX and membrane A approaches a certain threshold voltage value (probably about 0.3 volts in the case of most commercially available anion exchange particulates and anion selective membranes) dissociation of water into hydrogen ions and hydroxide ions will occur at such interfaces, possibly catalyzed by weakly dissociated moieties. In this case, at membrane C, hydrogen ions will pass into the membrane and hydroxide ions will tend toward anode E.sup.+ through anion exchange particulate paths. At membrane A hydroxide ions will pass through the membrane and hydrogen ions will pass into cation exchange particle paths and tend toward cathode E.sup.-. Similarly hydrogen and hydroxide ions can be formed at the junction between the CX and AX particles in the fifth column in the figure as well as between the CX particle in the second column and the AX particle immediately below such CX particle.
Such packed electrodialysis apparatus, operating at current densities which result in generation of hydroxide and hydrogen ions, may be regarded as continuously, electrically regenerated mixed bed ion-exchange deionizers. Cost effective apparatus and processes may be achieved by a judicious choice of ion exchange particles with regard to resin type, particle size and shape, and anion-to-cation ratio and relative positioning in addition to selection of the optimal combination of equipment design and operating process parameters.
Although FIG. 1(a) suggests that particulates AX and CX are beads or spheres they can in fact be any structures which provide fluid interstices and permit flow of such fluid in the interstices, for example irregular granules, thin rods preferably parallel with the surfaces of the membranes, fibers including woven or knitted fibers, saddles, rings, tellerettes, etc. For purposes of this invention beads, spheres, or other granules are highly preferred.
Other possible arrangements of ion exchange particulates in the deionization cells are possible. For instance, FIG. 1(b) illustrates schematically and in a simplified way another possible arrangement of such packing. In this case the low resistance path for anions will be through the anion exchange particulates AX. Cations will be constrained to migrate through the fluid in the interstices between the particulates. The interface between the particulates AX and membrane C will have the possibility of formation of hydrogen and hydroxide ions at that interface, when the applied current is such that the voltage drop between the particulates AX and the membrane C approaches a certain threshold value, as already discussed in connection with FIG. 1(a). Because of the superior conductivity of hydrogen ions relative to other ions, this type of configuration is more suited to acidic fluids, including weakly dissociated acids. The faster hydrogen ions will move through the fluid, and the anions will move through the particulates AX.
FIG. 1(c) represents another possible arrangement of the particulate packing. "S" represents a thin, highly foraminous sheet such as a plastic screen or expanded plastic sheet having openings sufficiently small to prevent contact between the CX and AX particles, but permitting the flow of fluid within and parallel to the plane of the sheet in at least one direction, e.g. from right to left in FIG. 1(c); E.sup.- represents a negatively charged electrode, i.e. a cathode in electrolytic communication with membrane C through electrolytic solution(s) and/or other membranes and/or ion exchange particulates; E.sup.+ represents a positively charged electrode, i.e. an anode similarly in electrolytic communication with membrane A through electrolyte solution(s), other membranes and/or ion exchange particulates. The compartment represented by the region between membrane C and membrane A is a demineralizing, depleting, or diluting compartment.
The system of juxtaposed particulates AX and membrane A on the one hand and particulates CX and membrane C on the other hand will each behave essentially as equipotential extended surfaces, i.e. as membranes having extended surfaces, when the solution in the interstices and in the screen openings contains much less than about 0.1 gram equivalent per liter of electrolyte, because the electrical resistance of the ion-exchange particulates will be much less than that of the solution.
The compartments adjacent to the deionization chambers in the illustrations of FIG. 1 need not be packed with ion-exchange particulates in non-reversal EDI, because the electrical conductivity of the more concentrated solution in those compartments will be much higher than in the deionization compartments. For EDI a screen support in the concentrating compartments is usually satisfactory. When using symmetrical polarity reversal, in which the compartment functions alternate between deionization and concentration, the compartments should all be packed.
The concept of electrodialysis apparatus containing mixed bed ion exchange particulates in deionization compartment was apparently first disclosed by Kunin, et.al. ("Ion Exchange Resins", Wiley, New York, 1950, p 109) but no data were given. Walters, et.al. (Ind. Eng. Chem., 47, 61-67 (1955) and "Ion Exchange Technology", eds. Nachod and Schubert, Academic Press, New York, 1956) were apparently the first to disclose operating data. Other early disclosures were made by Glueckauf, et.al. (e.g., Second United Nations Conference on Peaceful Uses of Atomic Energy, Paper 308 (1958) and Brit. Chem. Eng., 4, 646-651 (1959) ). Kedem, et.al., disclosed filled cell electrodialysis in which the dilute compartments were filled with various knit ion exchange fibers (Desalination, 16, 105-118 (1975) ); such cells in the form of a tank having sealed concentrate compartments, the open dilute compartments being filled with granular anion exchange resin "which can be poured in and pumped out" (Desalination 24, 313-319 (1978) ). In the latter publication the open dilute compartments may also contain knit cation exchange fibers against the cation selective membranes. The flow of fluid through the dilute compartments was by gravity which limited the flow rate and compartment size to uneconomic values. The apparatus had the advantage that it could be easily filled with particulate anion exchanger and such exchanger could be easily removed for cleaning or replacement. The concentrate compartments depended solely on electrical transfer of water through the surrounding membranes. As a result the concentrate was in fact very concentrated and subject to scaling and precipitation of poorly soluble electrolytes. The same author(s) reported on similar electrodialysis stacks in which the dilute chambers were filled solely with a net of multifilament anion exchange material (Desalination 46, 291-299 (1983) ).
There have been many patent publications concerning packed cell electrodialysis including the following U.S. Pat. No.: 2,689,826; U.S. Pat. No. 2,815,320; U.S. Pat. No. 3,149,061; U.S. Pat. No. 3,291,713; U.S. Pat. No. 3,330,750; U.S. Pat. No. 3,515,664; U.S. Pat. No. 3,562,139; U.S. Pat. No. 3,686,089; U.S. Pat. No. 3,705,846; U.S. Pat. No. 3,993,517; U.S. Pat. No. 4,284,492; U.S. Pat. No. 4,632,745; U.S. Pat. No. 4,747,929; and U.S. Pat. No. 4,804,451. Nevertheless, although electrodialysis with packed cells (i.e. electrodeionization) has been known and studied for almost 40 years it has not yet received widespread commercial use. The reasons for this appear to be one or more of the following:
a) the need to fill individual compartments with ion exchange resin particulates, and the need to keep the resin in place while assembling the EDI stack, and the practical difficulties of doing this, especially for relatively large EDI stacks. Until now practical external filling and removal of the resin particulates has not been done because of lack of:
1) an EDI stack designed to be filled with resin after the stack has been assembled; and PA0 2) a process to fill and empty such an assembled stack, by pumping a resin slurry into or out of the stack.
b) the particulate ion-exchange packing is a very good filter medium. The resistance to flow of fluid through the packing is increased by material filtered out during operation. In the case of conventional (chemically regenerated) ion exchange deionization, the ion exchangers are periodically backwashed at flow rates which expand the volume of the particulates, i.e. separating the particulates slightly from each other allowing filtered material to escape. Until now such bed expansion capability has not been a feature of electrodeionization apparatus. Instead electrodeionization has been preceded by fine filtration. The latter is nevertheless seldom completely effective.
c) anion exchange particulates tend to sorb negatively charged colloids and medium molecular weight anions which occur naturally in water. Such sorbed materials (generally termed foulants) interfere with the satisfactory operation of the apparatus, e.g. by increasing the electrical resistance and decreasing the rate of transport of ions to the particulates. In the EDI process the electric current tends to drive such foulants into the anion exchange particulates and thereby accelerate the fouling. Until now EDI stacks have in practice been preceded by scavenging type anion exchange resin and/or activated carbon columns to attempt to remove foulants before they can enter the stacks. Such pretreatment is costly and is seldom completely effective especially in view of often unpredictable breakthroughs of foulants on column exhaustion.
d) precipitates of sparingly soluble inorganic compounds (e.g., calcium carbonate, magnesium hydroxide, calcium sulfate) tend to form within the particulate packing, in the anion exchange membranes, or in the concentrate compartments of the electrodeionization apparatus if precursors of such compounds are present in the fluid processed. Such problem does not exist in conventional ion exchange deionization in which the anion- and cation-exchange particulates are separately regenerated with alkali and acid respectively. In conventional electrodialysis such precipitates are prevented by frequent, regular reversal of the direct electric current, e.g. a few times per hour.
e) at the water dissociating junctions between commercially available anion exchange bodies (i.e. membranes and particulates) and cation exchange bodies, quaternary ammonium moieties (the usual bound positively charged group in commercially available anion exchange bodies) are rapidly converted to tertiary amines and/or non-ionized groups resulting in increased electrical resistance at such junctions. Such conversion may be due to some combination of high alkalinity, high temperature, and high electric field in the junctions. There is not an equivalent phenomenon in conventional ion exchange deionization under normal process conditions. In the case of electrodeionization until now it has been necessary after some months to a year or so to disassemble the packed electrodialysis stack and replace at least the anion selective membranes and preferably also the anion exchange particulates. Some electrodeionization stacks are sealed (i.e. the membranes and filled inter-membrane spacers are glued together) in which case it is necessary to replace the entire stack except for the screen-filled concentrate spacers;
f) the electrical resistance of the packing depends also on the area of contact of the beads, hence on the deformability of the beads, the force causing such deformation, the distribution of bead sizes and any time dependent relaxation of the force, e.g. from cracking of the beads. The overall effect is usually a time dependent increase in electrical resistance requiring eventually repair or replacement of the electrodeionization stack. A similar problem does not exist in conventional ion exchange deionization as there is no electric field.
g) owing to the short distance packed electrodialysis apparatus (e.g. about 0.3 centimeters) substantial channeling of processed fluids can occur resulting in less than expected performance. | {
"pile_set_name": "USPTO Backgrounds"
} |
An RFID (Radio Frequency Identification) label or tag is capable of being read and written in a non-contact manner and resistant to the influence of dirt and dust. Thus, RFID technology is continuously used as a substitute for barcode technologies.
However, there is a demand to use both barcodes and RFID tags practically in stores. To meet such a demand, a RFID tag writing system is provided which is capable of printing basic commodity data such as a commodity name, a price, and a barcode on a label and writing the basic data and other detailed data in a RFID tag embedded in the label.
In a conventional calibration carried out in a RFID writing system, the setting of electromagnetic wave transmission power of and optimal writing position for RFID labels having different features is relatively cumbersome and needs to be manually done by professionals using special tools. Thus, normal users cannot conduct the calibration.
Hence, an automatic calibration device is provided to solve the problem above. The automatic calibration device calculates an optimal writing position by conveying RFID labels by a specific feeding distance. However, the feeding of a whole label takes a long time, and the transmission power of an electromagnetic wave and a dynamic range of an AGC (Automatic Gain Control) unit at a receiving side are not taken into consideration. Thus, the following problems are encountered.
Even though an optimal writing position is calculated through the calibration, if the electromagnetic wave output from a RFID reader-writer is too powerful, the electromagnetic wave will flow through a RFID tag embedded in another label also. Consequentially, the RFID reader-writer receives a response from a plurality of RFID tags. In this case, data are not written to a target RFID tag to which data is to be written or the same information is written to a plurality of RFID tags. In addition, an optimal writing position may not be found if the intensity of the electromagnetic wave output from a RFID reader-writer is too weak. As a result, there is still a problem that optical writing parameters may not be set even if the conventional automatic calibration is carried out.
In addition, in practical use, as the same calibration values are effective for RFID labels having the same specification, in most cases, it may be unnecessary to carry out an automatic calibration.
On the other hand, there is a problem that it cannot be determined whether or not a manually-set calibration value is appropriate without writing data in the RFID tag even if the calibration value is slightly shifted from the originally-set value. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a connector to control the flow of liquids, particularly a vortex connector for liquid flow therethrough.
2. The Prior Art
While couplings for bottles have been disclosed per U.S. Pat. No. 3,028,032 to Jones (1962), U.S. Pat. No. 3,615,150 to Indrunas (1969) and U.S. Pat. No. 4,336,891 to Smith (1982). These disclose the drainage of viscous fluids e.g. creams, lotions, catsup and the like which slowly drain from one container to another through a thin disc or seal and, of course, no vortex can be generated with such slow flow e.g. through a thin disc opening.
Accordingly, there has not been provided a vortex connector that causes a whirlpool effect within a container e.g. a bottle and there is a need and market for such connector which is considerably different from the above prior art drain couplings.
There has now been discovered a vortex connector which generates a vortex flow of liquid passing therethrough. | {
"pile_set_name": "USPTO Backgrounds"
} |
Tyrosine kinases are a family of proteins that catalyze phosphorylation of tyrosine residues in target proteins and play important roles in cellular signaling. Within this large family of proteins is the epidermal growth factor receptor (EGFR) family, which includes the receptor kinases ERBB1 (EGFR1, HER1), ERBB2 (c-Neu, HER2), ERBB3 (HER3), and ERBB4 (HER4). The ERBB kinases regulate a wide range of cellular responses, including cell proliferation, survival, migration and differentiation.
ERBB4 is a receptor tyrosine kinase member of approximately 180 kD. The interaction with its ligand promotes receptor dimerization and autophosphorylation, which leads to the regulation of several key pathways associated with cell proliferation, death and differentiation. Changes in ERBB4 activity through mutations and overexpression are associated with several types of cancers, psychiatric and cardiovascular disorders.
Currently, there are no drugs available for treating diseases that present through over activation of the ERBB4 pathway, such as breast cancer and lung cancer. Further, there are no methods of identifying patients which will be successfully treated with ERBB4 inhibitors, thereby preventing the treatment of patients exhibiting tumors inherently resistant to specific ERBB4 inhibitors.
There remains a great need for drugs that target diseases associated with over activation of the ERBB4 pathway, such as breast cancer and lung cancer, as well as methods of identifying patients likely to be successfully treated with ERBB4 inhibitors. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to heat exchangers and more particularly to a device for scavenging condensate from inside long tubes of a heat exchanger.
When there are a number of tubes condensing in parallel, variations in condensing produces different flow patterns in different tubes, which result in condensate build-up in certain tubes. After the condensate plugs the tubes, the flooded tubes purge themselves and the cycle begins again resulting in thermal shock and stresses, which in time cause failure adjacent the area where the tubes are welded to the tube sheet.
One solution to this problem is to vent a portion of the steam to a lower pressure receptacle, increasing the flow through the tubes and thereby scavenging the condensate which collects in the tubes, however, unless very large quantities of steam are vented, this method is ineffective in keeping all the tubes free from plugs of condensate. From a thermodynamic standpoint, the greater the quantity of vented steam, the lower the thermal efficiency of the system and therefoe, the more costly it is to operate. Ritland et al in U.S. Pat. No. 3,759,319, issued Sept. 18, 1973, and assigned to the same assignee, describes one solution to this problem and this invention describes still another solution. | {
"pile_set_name": "USPTO Backgrounds"
} |
a) Field of the Invention
The present invention relates to a method of manipulating eggs, particularly fertilized eggs.
b) Description of related art
The hard egg shell and large yolky egg of the avian embryo pose a significant obstacle to manipulating the embryo. When laid, the avian embryo consists of a blastoderm containing 30,000-60,000 cells on top of the yolk and encased in a hard calcified egg shell. Immediately below the shell is the egg shell membrane which surrounds the egg white, the egg yolk and the developing embryo. Many procedures, including transgenic modification of the avian genome, require access to the interior of the egg. For example, to modify the genetic material of a chicken, a small volume of liquid containing retroviral transducing particles or transfected donor cells must be injected into the subgerminal cavity of the recipient embryo. In addition, it may be desirable to expose the developing embryo to antigens, viruses, vaccines, or growth factors.
To provide access to the interior of the egg and the embryo, typically a hole or "window" is made in the egg shell. Petitte et al. (Development 108:185-89 (1990)) and Bosselman et al. (Science 243:533-35 (1989); U.S. Pat. No. 5,162,215) use a grinding tool, such as a Dremel, to grind a 5-8 mm hole in the egg shell. The underlying egg shell membrane is then cut away with a scalpel and 2-10 microliters of experimental solution is microinjected into the embryo. The hole is then sealed in one of several ways. Usually, the hole is covered with fresh egg shell membrane from a donor egg, with the membrane applied in the same orientation as in the egg, i.e, albumen-side down. When the membrane dries, it is permanently sealed with plastic model cement or a gas permeable surgical membrane. See also Carsience et al. (Development 117:669-75 (1993)), and Fraser et al. (Int. J. Dev. Biol. .37:381-85 (1993)).
Other similar methods have been used to access the developing embryo. Thoraval et al. (Transgenic Res. 4:369-76 (1995)) remove a triangular piece of shell, inject 10 ul of experimental solution through the opening into the embryo, then seal the egg by replacing the shell piece and covering it with adhesive tape. Marzullo (Nature 225:72-3 (1970)) cuts a hole in the shell, covers it with a glass cover slip, and seals it with paraffin wax.
The hatch rate of viable chicks following egg manipulations is an important concern, for often the objective of the egg manipulation process is the production of a genetically altered chick. For example, transgenic avians may be produced by injecting retroviral transducing particles or transfected donor cells into the embryo, and allowing the embryo to develop normally to hatching. As noted below, it is well known in the field that less than 10% of fertilized eggs hatch following manipulations that require opening of the shell. By contrast, greater than 90% of unmanipulated eggs will hatch if the eggs are from flocks that are at peak production. Work in several laboratories indicates that it is the opening procedure that decreases hatchability, not the injections.
Marzullo (1970) first reported the high mortality associated with opening the egg, noting that only 7% of embryos of windowed and injected eggs reached day 15 of incubation. Thoraval et al. (1995; Poultry Sci. 73:1897-1905 (1994)) also found that 2.3-7.3% of opened and injected eggs hatched; uninjected, windowed eggs had a similar hatching rate, suggesting that the opening procedure caused the low hatching rate. Petitte et al. (1990) reported that 4 out of 53, or 7.6%, of windowed and injected eggs hatched; hatchability was the same without injection, indicating that the windowing procedure per se was responsible for the low hatch rate. Although Bosselman et al. (1989) reported a hatch rate of 38% using essentially the same method as Petitte et al., consistently obtaining hatch rates over 10% continues to be problematic.
Surrogate shell methods have been developed to provide access to embryos and to improve hatch rates. Developing embryos, with or without genetic manipulation, are collected at various ages and transferred to "ex ovo" containers. Generally, 2 or 3 transfers are required as the embryo develops, and the last transfer consists of placing the embryo in a fresh donor egg shell with a large hole cut in the blunt end. Using these methods, Perry (Nature 331:70-73 (1988); U.S. Pat. No. 5,011,780) and Ono et al.(Dev. Biol. 161:126-30 (1994)) observed hatch rates greater than 25% for chicken and quail embryos, respectively. Unfortunately, this method is labor intensive and may prove rate-limiting if very large numbers of injections are necessary to produce viable transgenic chicks.
The surrogate shell method has also been combined with standard egg-opening methods. After windowing and injecting as described by Petitte et al. (1990), eggs are incubated for 3 days in standard incubators and the embryo is transferred to a surrogate shell which is sealed with gas permeable film as described in U.S. Pat. No. 5,011,780. This approach yields hatch rates of greater than 25%; however it is also labor intensive.
It would be desirable to provide an improved method for increasing the hatchability of eggs subjected to manipulation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Polycarbonates derived from reactions involving organic dihydroxy compounds and carbonic acid derivatives have found extensive commercial application because of their excellent mechanical and physical properties. These thermoplastic polymers are particularly suited for the manufacture of molded products where impact strength, rigidity, toughness, thermal stability, dimensional stability as well as excellent electrical properties are required.
In comparison with non-reinforced polycarbonates, glass fiber reinforced polycarbonates have both substantially increased flexural strength and stiffness and a substantially increased E-modulus, but have a decreased impact strength, notched impact strength and elongation at break. This decline in impact and other physical properties is thought to be attributable to the formation of stress concentrations in the vicinity of the individual glass fibers causing propagation of cracks in the molded articles. Improved properties of glass reinforced polycarbonate composites have been reported in U.S. Pat. Nos. 4,056,504; 4,147,707; 4,097,435 and 4,048,133 and in PCT/US79/00371. Polyanhydrides are reported as additives to molding compositions in U.S. Pat. No. 3,586,659 and as an ingredient of a cross-linked polyester in U.S. Pat. No. 3,732,337.
In accordance with the present invention, glass-fiber reinforced aromatic polycarbonates are provided featuring both an improved impact strength and a greater elongation at break. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method for determining a rotor position angle of a synchronous machine. A synchronous machine generally consists of a stator provided with three-phase winding and a magnetised rotor. The rotor is typically magnetised either by means of permanent excitation or separate excitation. In permanent excitation the rotor is provided with permanent magnet blocks, which the magnetic field produced in the stator pulls towards itself, thereby rotating the rotor. Separate excitation of the rotor means that the rotor contains coils of wire to which current is supplied. The coils of wire thus form magnetic poles in the rotor, the poles functioning according to the same principle as poles made of permanent magnets. In addition, the rotor of the synchronous machine may be a salient-pole rotor or a cylindrical rotor. In cylindrical rotor machines the rotor inductance remains almost constant with respect to the stator, whereas in salient-pole machines, the rotor inductance varies greatly due to changes in the air gap between the rotor and the stator, depending on the rotor position angle.
In speed-controlled synchronous machines, it is important for the functioning of the control system that the position angle of the machine's rotor is known as precisely as possible. Particularly in control methods based on direct control of the machine's stator flux the accuracy of angle determination has a great influence on the accuracy of the control. The rotor position angle is usually determined using a pulse encoder or an absolute sensor the information supplied by which allows the rotor angle to be determined.
The measurement result obtained from the angle sensor contains errors caused at least by two different components that can be determined. The first known error-causing component is an incorrect initial angle, which is determined by an angle sensor. Various estimation algorithms have been proposed for estimating the initial angle. However, the rotor can be initially turned in a desired direction, provided that the motor load allows this. The rotor is preferably turned so that it is in the same direction as the coil of a phase, for example. The rotor can be turned by supplying direct current to the desired phase, thus causing the rotor to turn in the desired direction. However, due to the purposes of use of synchronous machines, it is often impossible to determine and correct the initial angle by turning the rotor.
In a salient-pole synchronous machine, such as a separately excited synchronous machine or one comprising permanent magnet magnetisation, or in a synchronous reluctance machine, the stator inductance Ls in stationary co-ordinates varies as a function of the rotor angle θr, as shown by the following equation:Ls=Ls0+Ls2 cos 2θr.
Inductance varies around the basic value Ls0 at twice the rotor angle in a magnitude indicated by the inductance coefficient Ls2. The inductance coefficients Ls0 and Ls2 are defined as follows:
L s0 = L sd + L sq 2 , L s2 = L sd - L sq 2 ,where the inductances Lsd ja Lsq represent the direct-axis and quadrature-axis transient inductances of the synchronous machine.
The utilization of the above equation for determining the initial angle of the rotor is known per se and discussed for example in S. Östlund and M. Brokemper, “Sensorless rotor-position detection from zero to rated speed for an integrated PM synchronous motor drive,” IEEE Transactions on Industry Applications, vol. 32, pp. 1158–1165, September/October 1996 and M. Schroedl, “Operation of the permanent magnet synchronous machine without a mechanical sensor,” in Int. Conf. on Power Electronics and Variable Speed Drives, pp. 51–55, 1990.
According to M. Leksell, L. Harnefors, and H.-P. Nee, “Machine design considerations for sensorless control of PM motors,” in Proceedings of the International Conference on Electrical Machines ICEM'98, pp. 619–624, 1998, sinusoidally altering voltage is supplied to a stator in the assumed direct-axis direction of the rotor. If this results in a quadrature-axis current in the assumed rotor coordinates, the assumed rotor coordinates are corrected such that the quadrature-axis current disappears. The reference states that a switching frequency of the frequency converter supplying the synchronous machine should be at least ten times the frequency of supply voltage. Thus, the maximum supply voltage frequency of a frequency converter capable of a 5 to 10 kHz switching frequency is between 500 and 1000 Hz. This is sufficient for an algorithm to function. Switching frequencies of this magnitude can be achieved by IGBT frequency converters, but with GTO or IGCT power-switch frequency converters, which are required at higher powers; the maximum switching frequency is less than 1 kHz. In that case the maximum frequency of the supply voltage in the initial angle estimation is below 100 Hz. At such a low frequency the machine develops torque and the accuracy of the algorithm is considerably impaired.
In the reference by M. Schroedl, 1990, the initial angle is calculated directly from one inductance measurement or, if more measurements are used, the additional information is utilized by eliminating inductance parameters. A drawback of this method is that an error, which is inevitable in measuring, has a great influence. To measure inductance, a current impulse is supplied to a stator and the flux linkage thereby caused is used to calculate the inductance. Errors may appear because of an error in the current measuring or because the measuring current produces torque, which swings the rotor.
In the method disclosed by S. Östlund, M. Brokemper, the rotor angle is not calculated directly, but the minimum inductance is searched for by starting the measurement of inductances in different directions, first at long intervals and then, as the minimum is being approached, by reducing the angular difference in successive measurements. Although it is not mentioned in the article, the method easily catches fictitious minima resulting from measuring errors and thus an error value may be extremely high. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a uniaxial horizontal sensor having a liquid and a bubble sealed inside a vessel for ascertaining levelness by detecting the position of the sealed bubble by means of an electrical signal, and is used in automatic leveling of machines and devices and in leveling devices, angle gauges, surveying instruments, measuring instruments, aircraft, ships, railway cars, automobiles and other applications where highly accurate levelness is required.
2. Description of the Prior Art
Known uniaxial horizontal sensors of this kind include:
1) those of a construction wherein as shown in FIG. 5 a glass pipe (g) is made in a shape curved in one axial direction, a common electrode plate (h) is disposed in a lower central position and opposite electrode plates (i) are disposed in two locations left-right symmetrically removed from the upper center and an electrolyte (j) with a large surface tension and a bubble (k) are so sealed inside the glass pipe (g) that in a range over which angle can be measured a part of each of the opposite electrode plates (i) makes contact with the bubble (k);
2) those of a construction wherein in a uniaxial inclination bubble pipe the position of the bubble is detected optically;
3) those of a construction wherein using a differential transformer an inductance balance change is detected; and
4) those of a construction wherein an output signal corresponding to the size of an electrostatic capacity is inputted into an arithmetic circuit and converted into a vessel inclination and angle (for example Japanese Unexamined Patent Publication No. H.3-142315).
The uniaxial horizontal sensor of 1) above is for the purpose of inclination angle zero horizontal attitude control, but because the degree of contact of the electrode plates with respect to the electrolyte is small, not only is there an influence on repeatability (repeat accuracy, hysteresis, etc.) but as a result of the construction using a glass pipe slight inclinations other than. in the axial direction to be measured, changes in the amount of contact of the electrolyte with the electrode plates due to expansion and contraction of the electrolyte caused by changes in the surrounding temperature of the sensor, and instability of the contact surfaces caused by the surface tension of the electrolyte become causes of accuracy errors and errors of reproducibility, and also because the surface tension of the electrolyte is large the response speed is slow and there is a risk of a phenomenon of the bubble breaking up as a result of vibration or the like occurring and causing large errors, and furthermore the structure makes mounting difficult, and for such reasons there has been the problem that it cannot be used as a sensor for securing high accuracy.
In the case of the uniaxial horizontal sensor of 2) above there is an influence of errors caused by deformation of the shape of the bubble due to temperature change and optical sensor errors because it depends on an optical sensor, and the sensors of 3) and 4) also have had the problem to be solved that similarly their degree of dependence on outside detecting devices is high and factors causing errors are large. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to text messaging in a telecommunication system and, more particularly, to a method and apparatus for providing text messaging between mobile handsets and TD devices in a telecommunication system.
Telecommunication devices for the deaf (TDD) have been developed that allow deaf persons to communicate by text messaging through the public switched telephone network (PSTN). The most common type of TDD is a telecommunication device (TD) at which a user may type in text messages for transmission and read received messages on a screen printout. A TD is fixed in location and is intended for communication with other TDDs over a landline network in an interactive manner. TDs commonly communicate according to the Electronic Industry Association""s (EIA) xe2x80x9cTelecommunications Devices for the Deafxe2x80x9d PN-1663 Standard (PN-1663).
A TDD, operating according to the PN-1663 Standard, communicates through the PSTN by transmitting and receiving strings of 1s and 0s that are encoded as either Baudot or ASCII codes. For Baudot coding, a 1 is transmitted through the PSTN as a 1400 Hz signal and a 0 is transmitted as an 1800 Hz signal. For ASCII coding, an originating TDD transmits a 1 through the PSTN as a 1270 Hz signal and a 0 as a 1070 Hz signal, and an answering TDD transmits a 1 as a 2225 Hz signal and a 0 as a 2025 Hz signal.
Recent advances in communication technology have resulted in cellular systems and technology that free users from the typical restraints of conventional landline telephone use. These advances include small, lightweight, portable, wireless phones that may be carried and used to communicate anywhere cellular service is provided. Present wireless phones have the capacity to send and receive short-text messages through a short messaging service (SMS). The SMS is standardized according to the standard in which the system operates. Unlike TDD systems using TD devices, SMS systems do not operate interactively over a circuit connection between communicating devices. SMS systems operate according to a store-and-deliver service, and SMS text messages have a fixed character length.
The present invention provides a method and apparatus for providing text messaging between mobile handsets and telecommunication devices in a telecommunication system. The method and apparatus allows short messaging service (SMS) capable mobile handsets to communicate with a telecommunication device (TD). The method and apparatus may be implemented into a mobile network/public switched telephone network (PSTN) as a stand-alone gateway interface without the need to reconfigure or modify the network hardware. A user of an SMS-capable mobile handset may send text messages to a user of a TD device or receive text messages sent by the user of a TD device. The method provides an interface function that allows a deaf person having access to a TD device to communicate with mobile handset users. It also allows a mobile handset user to send communications to a deaf person using a TD device.
The method and apparatus utilizes a gateway interface between the public switched telephone system (PSTN) and cellular network. The gateway interface provides a conversion function between the SMS text messaging protocol and TD device text messaging protocol. The conversion function includes appropriate queuing and timing features that allow the SMS and TD functions to communicate.
In an embodiment of the invention, the method and apparatus is implemented as a stand-alone gateway. The gateway may be implemented anywhere there is access to the public switched telephone network (PSTN) and coverage by a cellular system having short messaging service (SMS) capability. The gateway includes a controller and a transceiver. The controller may be implemented in a personal or similar type of computer. The transceiver operates according to the standard of a cellular system, including the system""s SMS features covering the area in which the transmitter is located. The transceiver is assigned a mobile network phone number and is capable of making and receiving calls under the control of the controller. The transceiver may be a conventional cellular handset connected to the controller through, for example, a bus such as an RS-232, or the transceiver may be a specially constructed transceiver built into the controller. The controller may be connected to the PSTN through a TD modem. The controller is assigned a PSTN phone number and communicates with TD devices that are connected to the PSTN using a TDD protocol. Connections may be provided through the Internet to allow multiple gateways to communicate with one another. The Internet connections allow multiple gateways to bypass the PSTN when communicating.
In order to initiate TD to mobile station communications, the user of a TD device dials the PSTN phone number that is assigned to the gateway. When a connection is made, the gateway then sends the appropriate responses in TDD protocol to prompt the user of the TD to enter the phone number of the mobile station(s) that are to receive a message. As the message is entered at the TD, the gateway buffers and converts the message to an appropriate format for SMS, according to the embodiment. By entering the message and following the prompts, the user is able to have the message sent to a destination mobile through the gateway.
In order to initiate mobile station to TD communications, the user of a mobile station sends a message via SMS to the mobile network phone number of the gateway transceiver. The message includes a phone number for each TD device that is to receive the message. Messages received by the gateway that are intended for a TD are placed in a queue within the gateway. The gateway processes the messages in the queue by dialing the phone number(s) of the message that has been in the queue the longest time. For each TD phone number that is busy, the gateway will retry dialing for a predetermined period of time. If the TD phone number is busy, the gateway will send an SMS message informing the mobile station that the TD is busy, but that the gateway will retry for the predetermined period of time. If the TD answers, the gateway performs appropriate functions so that the message sent to the TD meets TTD protocol requirements. | {
"pile_set_name": "USPTO Backgrounds"
} |
While LCD displays offer a compact, lightweight alternative to CRT monitors, there are many applications for which LCD displays are not satisfactory due to a low level of brightness, or more properly, luminance. The transmissive LCD used in conventional laptop computer displays is a type of backlit display, having a light-providing surface positioned behind the LCD for directing light outwards, towards the LCD. The light-providing surface itself provides illumination that is essentially Lambertian, that is, having an essentially constant luminance over a broad range of angles. With the goal of increasing on-axis and near-axis luminance, a number of brightness enhancement films have been proposed for redirecting a portion of this light having Lambertian distribution toward normal, relative to the display surface, thus providing some measure of reduced angular divergence of light for this illumination. Various proposed solutions for brightness or luminance enhancement for use with LCD displays and with other types of backlit display types have been described.
U.S. Pat. No. 5,592,332 (Nishio et al.) describes the use of two crossed lenticular lens surfaces for adjusting the angular range of light in an LCD display apparatus. U.S. Pat. No. 5,611,611 (Ogino et al.) describes a rear projection display using a combination of Fresnel and lenticular lens sheets for obtaining the desired light divergence and luminance. U.S. Pat. No. 6,111,696 (Allen et al.) describes a brightness enhancement film for a display or lighting fixture. The surface of the film facing the illumination source is smooth; the opposite surface has a series of structures, such as triangular prisms, for redirecting the illumination angle. The film refracts off-axis light to provide a degree of correction for directing light at narrower angles. However, this film design works best for redirecting off-axis light; incident light that is normal to the film surface may be reflected back toward the source, rather than transmitted.
U.S. Pat. No. 5,629,784 (Abileah et al.) describes various embodiments in which a prism sheet is employed for enhancing brightness, contrast ratio, and color uniformity of an LCD display of the reflective type. The brightness enhancement film is arranged with its structured surface facing the source of reflected light for providing improved luminance as well as reduced ambient light effects. Because this component is used with a reflective imaging device, the prism sheet is placed between the viewer and the LCD surface, rather than in the position used for transmissive LCD systems (that is, between the light source and the LCD). U.S. patent application Publication No. 2001/0053075 (Parker et al.) describes various types of surface structures used in light redirection films for LCD displays, including prisms and other structures. U.S. Pat. No. 5,887,964 (Higuchi et al.) describes a transparent prism sheet having extended prism structures along each surface for improved back-light propagation and luminance in an LCD display. However, much of the on-axis light is reflected rather than transmitted with this arrangement. The arrangement is usable only for small, hand-held displays and does not use a Lambertian light source.
U.S. Pat. No. 6,356,391 (Gardiner et al.) describes a pair of optical turning films for redirecting light in an LCD display, using an array of prisms, where the prisms can have different dimensions. U.S. Pat. No. 6,280,063 (Fong et al.) describes a brightness enhancement film with prism structures on one side of the film having blunted or rounded peaks. U.S. Pat. No. 6,277,471 (Tang) describes a brightness enhancement film having a plurality of generally triangular prism structures having curved facets. U.S. Pat. No. 5,917,664 (O'Neill et al.) describes a brightness enhancement film having “soft” cutoff angles in comparison with conventional film types, thereby mitigating the luminance change as viewing angle increases. U.S. Pat. No. 5,839,823 (Hou et al.) describes an illumination system with light recycling for a non-Lambertian source, using an array of microprisms. U.S. Pat. No. 5,396,350 (Beeson et al.) describes a backlight apparatus with light recycling features, employing an array of microprisms in contact with a light source for light redirection in illumination apparatus where heat may be a problem and where a relatively non-uniform light output is acceptable.
FIG. 1 shows one type of prior art solution, a brightness enhancement film 10 for enhancing light provided from a light source 18. Brightness enhancement film 10 has a smooth side 12 facing towards a Light Guiding Plate 14 (LGP) which contains a reflective surface 19, and rows of prismatic structures 16 facing an LCD component 20. This arrangement, as described in U.S. Pat. Nos. 6,111,696 and 5,629,784 (both listed above), and in U.S. Pat. No. 5,944,405 (Takeuchi et al.), generally works well, improving the on-axis luminance by refraction of off-axis light rays and directing a portion of this light closer to the normal optical axis, thereby providing a somewhat collimated illumination. As FIG. 1 shows, off-axis rays R1 are refracted toward normal. It is instructive to note, however, that, due to total internal reflection (TIR), near-axis light ray R3 can be refracted away from normal at a more extreme angle. In addition, on-axis light ray R4 can actually be reflected back toward light guiding plate 14 for diffusion and reflection from reflective surface 19 rather than being directed toward LCD component 20. This refraction of near-axis light and reflection of at least a portion of on-axis light back into light guiding plate 14 acts to adjust illumination luminance with respect to viewing angle, as is described subsequently. By the action of light guiding plate 14 and reflective surface 19, a portion of the light that is reflected back from brightness enhancement film 10 is eventually diffused and again directed outward toward the LCD component at a generally normal angle. There is, of course, some loss of light after multiple reflections, due to inefficiency of reflective surface 19.
The purpose of brightness enhancement film 10, then, is to redirect the light that is provided over a large angular range from light guiding plate 14, so that more of the output light it provides to LCD component 20 is directed toward normal, improving light direction by providing some degree of collimation. By doing this, brightness enhancement film 10 helps to improve display luminance not only when viewed straight-on, i.e. normal to the display surface, but also when viewed from oblique angles.
While it is considered advantageous to enhance on-axis luminance and provide a more uniform light surface, there are additional considerations for providing improved backlight illumination. Off-axis illumination, at incident angles other than normal to the LCD surface, can compromise image quality in a number of ways. The light-angle dependence of the LC device is shown in FIGS. 2A and 2B. In FIG. 2A, light at normal incidence is propagated through a rear polarizer 202, then through a distance d in an LC layer 200, over which its polarization is modulated according to the pixel state. The illumination is then viewed through a front polarizer 204. Off-axis light, as shown in FIG. 2B, passes through the same components, but is modulated over a distance d′, as shown. Depending on the type of LC device and the angle θ, a slightly different optical phase retardation is applied to the off-axis light. Moreover, due to birefringence of LC materials, different indices of refraction apply for light of different polarization states. This behavior can result in color shifts over different viewing angles. In addition, this treatment of off-axis illumination can also degrade contrast due to stray light and reduce the overall grayscale resolution of the LC device. This behavior can be particularly pronounced with conventional Twisted-Nematic TN LCD components.
Optical compensators provide one solution for correcting this difference in handling off-axis light. Referring to FIG. 3, there is shown a display apparatus 100 using a TN LCD device as LC component 20, with supporting compensators 210,212 and polarizers 202, 204. In terms of its structure, compensator 210,212 typically uses an arrangement of discotic LC elements that act to counteract the positive birefringence of light directors in the LC modulator by geometrically mirroring the spatial orientation of a portion of these light directors. In operation, optical compensator 210, 212 provides a compensating negative birefringence to offset the positive birefringence of LCD component 20, shown as a TN LCD modulator in FIG. 3. With conventional TN devices, two compensator 210, 212 films are used, one on each side of the LCD. Using such an arrangement, contrast can be significantly improved over a range of viewing angles.
Since LCD displays were initially introduced, there have been a number of improvements in LC technology. The Vertically Aligned (VA) type of LCD has been shown to provide improved performance over wide viewing angles. Addition of a compensation film to a VA type LCD yields a significant improvement in contrast. For comparison, FIGS. 4A-4D show ISO contrast plots for the following configurations:
FIG. 4A shows an ISO contrast plot for a TN LCD without compensation, with a legend that applies for both FIGS. 4A and 4B;
FIG. 4B shows an ISO contrast plot for a TN LCD with compensation;
FIG. 4C shows an ISO contrast plot for a VA LCD without compensation, with a legend that applies for both FIGS. 4C and 4D;
FIG. 4D shows an ISO contrast plot for a VA LCD with compensation;
More recent types of LCD provide further improvements. The Optically Compensated Birefringence (OCB) LCD, as its name implies, provides a measure of built-in compensation for inherent birefringence, thus not requiring a compensator in many applications. For comparison, FIGS. 5A and 5B show ISO contrast plots for OCB LCDs without compensation and with compensation, respectively.
Another recent development, the In-Plane Switching (IPS) LCD, using a lateral electrical field for each pixel, provides a more uniform directional control of crystal orientation, resulting in reduced viewing angle-related differences in contrast and color. FIGS. 15A and 15B show ISO contrast plots for IPS LCDs without compensation and with compensation, respectively. In FIG. 15B, a first curve 66 indicates a contrast level of 250. A second curve 68 indicates a contrast level of 200. FIG. 17 shows the contrast profile of an IPS LCD.
With the earlier TN and VA types of LCD, some type of compensator film is generally needed in order to improve performance over wide viewing angles, as is shown in FIGS. 4A-4D. With the more recently developed OCB and IPS LCDs, compensator films may still be used; however, with OCB and IPS devices, the performance improvements provided by compensators may be offset by disadvantages of cost and light loss due to these additional films. It would be advantageous to provide improved contrast when using these devices, without requiring a compensation film.
One way to minimize or eliminate the need for a compensation film is to reduce the angle of incident illumination. Reducing the angular divergence of the illumination yields better contrast and color properties of the modulated light. Fully collimated light, having relatively small divergence angle from normal direction in any azimuthal direction, would be ideal. However, while it would be advantageous to provide fully collimated light from any point on light guiding plate 14 (FIG. 1), this proves to be difficult to achieve.
Referring to FIGS. 6A, 6B, and 6C, there are shown perspective, side, and top views respectively of illumination components for an LC display. Two azimuthal directions are defined: x being parallel to light source 18, y being perpendicular. The surface of light guiding plate 14 is the reference x,y plane. Here, light source 18 is a CCFL (Cold-Cathode Fluorescent Light) or similar component, having height dCCFL and length WCCFL.
From considerations of etendue in y, it can be seen that is possible to provide reduced angular divergence along they-direction. In the general case, etendue E is defined using:E=A×Ω (1)where A is the area over which the beam propagates and Ω is the beam divergence angle. Since etendue should increase through the optical system, the following relationship holds for an apparatus using a light guiding plate:dCCFLθCCFL<=LLGPθLGP (2)Where θCCFL is the divergence angle along y of the beam from the CCFL and θLGP is the divergence angle along y from the light guiding plate.
In practice, the value of LLGP is much larger than that of dCCFL so that it is possible to devise a backlight design having θCCFL>>θLGP. This relationship implies that the illumination in y is not divergent over broad angles. However this condition does not hold likewise in the x direction. Instead, since WCCFL and WLGP are close in dimension, it would be difficult to provide good divergence reduction along the x-direction. With respect to etendue, a similar relationship to that of equation (2) holds in this case.WCCFLφCCFL≦WLGPφLGP (3)Where φCCFL is the divergence angle along x of the beam from the CCFL and φLGP is the divergence angle along x from the LGP.
It is difficult to design a backlighting apparatus that would allow φLGP to be much smaller than φCCFL, that is, where good divergence-reduction would be provided if WCCFL and WLGP are close in dimension. This makes it difficult and inefficient to provide illumination that is collimated or, more generally, at reduced divergence with respect to both x and y axes. Thus, because it is difficult to obtain light at reduced divergence along both x- and y-axes, conventional designs typically employ a compensation film or similar compensator component as an aid to contrast improvement.
Thus, it can be seen that there is a need for a backlighting solution that provides illumination at favorable angles for backlit displays, is not significantly compromised with respect to overall light efficiency, and does not require a compensation film. | {
"pile_set_name": "USPTO Backgrounds"
} |
Camera modules are incorporated into a variety of consumer electronic devices, including smartphones, mobile audio players, personal digital assistants, laptop computers, and desktop computers. There is a constant drive to add additional features to these cameras modules while maintaining a compact size. For example, one feature that is desirable in camera modules is an autofocus (AF) feature that automatically adjusts focal distance so that an image captured by the camera module is in sharp focus. Another feature that is desirable in camera modules is an optical image stabilization (OIS) feature that compensates for unintended movement of the camera module when capturing an image/video (e.g., due to user hand shake or other vibration).
OIS is performed by detecting movement of the camera module and then counteracting that movement, for example, by moving the lens carrier of the camera module in an opposite direction of that movement. This can be achieved by suspending the lens carrier using flexible suspension wires that sway so as to allow the lens carrier to move in directions orthogonal to an optical axis of a lens of the camera module. The lens carrier can be moved using a force generated by a magnet and a coil carrying electric current (e.g., a Lorentz force). The flexible suspension wires can also be used to carry the electrical coil current in order to perform AF. | {
"pile_set_name": "USPTO Backgrounds"
} |
One method for protecting an application program includes using a serial number for activation, which is requested during a setup of the application program. This method has some drawbacks, including that the serial number may be copied, intercepted or calculated.
Another method for protecting an application program includes using an activation procedure after installing the program. For example, at a first execution, the application program requires a registration to a web site of a producer or seller and, after registration, an additional activation code is sent via email or phone to a user. The insertion of the additional activation code in the application program allows the program to be used. However, the additional activation code may also be intercepted and recalculated, and thus this method is not secure.
Moreover, in the method described above, once the application program has been installed in a device and registered, it is permanently stored in the memory of the device in executable format. Thus, it is subject to copy or reverse engineering to retrieve the source code. In some cases, the application program in executable form may be copied into a memory of another device and executed therein.
A further method for protecting application programs is based on a dongle or hardware key inserted in a physical port of a device executing the application program. In absence of the dongle or hardware key, the application program cannot be executed. However, the dangle may be duplicated and a duplicated dongle may be used to unlock an application program in other devices. Moreover, dongles are expensive because they are designed for specific purpose devices and for specific hardware configurations.
Yet a further method for protecting software is based on an integrated circuit card (ICC). For example, EP 1,253,503 discloses a method for protecting a source code [X=Y+10]. The method provides a different encoding [X:=Y+(C−T), where C:=decrypt(g(10)+t)] of the source code, including an encrypted parameter [g(10)] and a variable returned from a smartcard [T]. The different encoding of the source code [X:=Y+(C−T)] may be reconstructed only through the smart card [(X:=Y+(10+T−T)→Y+10)]. However, also in this case, when the application program is executed in the device, the memory of the device may be copied to reverse engineer the source code (X:=Y+(C−T)). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus for protecting a rear passenger seated on a rear seat for an automotive vehicle.
2. Description of Related Art
Recent years, in order to meet diversified demands of consumers and provide passengers with wider rear view and more open feeling, automotive vehicles have been provided which have an overall outlook designed in a smoothly curved shape and which is provided with a back window panel having a panel area wider than conventional ones.
As disclosed in Japanese Utility Model Laid-open Publication (kokai) No. 194,037/1988, there is the recently increasing tendency that a rear header is disposed above a rear seat from the point of view of designing or enlarging a space within a vehicle compartment. In other words, for such automotive vehicles, the rear header is disposed above the head of the rear passenger seated on the rear seat, as a reinforcing member located at a rear end of the roof, and the back window panel is disposed to be directed in an obliquely downward direction from the rear header. Hence, the position of the rear header relative to the rear seat is moved to the forward position of the vehicle body as compared with conventional ones.
When the position of the rear header relative to the rear seat is moved in the forward direction as compared with conventional ones, a glass panel area of the back window glass can be made so wider than the conventional ones that an enlarged rear view can be given, thereby providing the passenger with open feeling. It is to be noted, however, that, for example, when the rear passenger seated on the rear seat is caused to be lifted upwards by full rebounding the vehicle body particularly in the event that the automotive vehicle is about to roll, or for other reasons, the head of the rear passenger may come close to the back window panel or a view outside the automotive vehicle may catch an eye of the rear passenger in such a state that the passenger is lifted upwards, so that this provides the rear passenger with psychologically great anxiety.
However, conventional automotive vehicles cannot wipe out such psychological anxiety on the part of the rear passenger due to, among others, a lack of the freedom of arranging for the rear portion of the vehicle body, particularly for the position of the rear header in the longitudinal direction of the vehicle body, i.e. the size of the back window panel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a fuel rod for a nuclear reactor fuel assembly with nuclear fuel which is contained in a cladding tube which is formed of a zirconium alloy.
2. Description of the Prior Art
Such fuel rods are in common use. They are built into the frame of the nuclear reactor fuel assembly. This nuclear reactor fuel assembly is finally inserted into a nuclear reactor, in which it is cooled, for instance, with light water. In this nuclear reactor, the zirconium alloys of the cladding tubes have a relatively small capture cross section for thermal neutrons.
On the outside of the cladding tubes of the fuel rods, corrosion takes place during the operation in the nuclear reactor, which limits the ability of the nuclear reactor fuel assembly to dwell in the nuclear reactor time-wise. The usual dwelling times are three to four years. | {
"pile_set_name": "USPTO Backgrounds"
} |
Recently, touch panels are employed in various electronic appliances to allow a user to input data by touching an image displayed on a display device using an input device, such as a finger or a stylus.
Such touch panels are mainly classified into resistive touch panels and capacitive touch panels. According to the resistive touch panel, an electrode is shorted as pressure is applied thereto from an input device so that a position is detected. According to the capacitive touch panel, capacitance between electrodes is varied as a finger touches the touch panel and a position is detected based on the capacitance variation.
The performance of the resistive touch panel may be degraded if the resistive touch panel is repeatedly used for a long time, and scratch may be generated. For this reason, the capacitive touch panel has been spotlighted due to the superior durability and long life span. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to ferroelectric memories. More particularly, the present invention relates to those memories employing an array of one-transistor, one-capacitor ("1T/1C") ferroelectric memory cells.
This application is related to the following applications assigned to the assignee of the present invention, which are all hereby specifically incorporated by this reference:
Ser. No. 08/970452, entitled "REFERENCE CELL FOR A 1T/1C FERROELECTRIC MEMORY";
Ser. No. 08/97020, entitled "MEMORY CELL CONFIGURATION FOR A FERROELECTRIC MEMORY";
Ser. No. 08/970543, entitled "SENSING METHODOLOGY FOR A 1T/1C FERROELECTRIC MEMORY";
Ser. No. 08/970454, entitled "SENSE AMPLIFIER CONFIGURATION FOR A 1T/1C FERROELECTRIC MEMORY";
Serial No. 08/970454, entitled "COLUMN DECODER CONFIGURATION FOR A 1T/1C FERROELECTRIC MEMORY";
Ser. No. 08/970821, entitled "SENSE AMPLIFIER LATCH DRIVER CIRCUIT FOR A 1T/1C FERROELECTRIC MEMORY";
Ser. No. 08/970522, entitled "PLATE LINE DRIVER CIRCUIT FOR A 1T/1C FERROELECTRIC MEMORY"; and
Ser. No. 08/970448, entitled "PLATE LINE SEGMENTATION IN A 1T/1C FERROELECTRIC MEMORY".
2. Description of the Prior Art
The first designs with ferroelectric capacitors utilized memory cells containing two transistors and two ferroelectric capacitors, ("2T/2C"). Ferroelectric 2T/2C memory products are shown and described in the 1996 Ramtron International Corporation FRAM.RTM. Memory Products databook, which is hereby incorporated by reference. A 2T/2C memory is also described in U.S. Pat. No. 4,873,664 entitled "Self Restoring Ferroelectric Memory", which is also hereby incorporated by reference. The 2T/2C memory cells were arranged in a physical layout such that the transistors and the ferroelectric capacitors were adjacent in the cell.
FIG. 1 is a schematic diagram of a 2T/2C memory cell and also represents the relative proximity of the physical layout of the elements. Ferroelectric memory cell 10 includes a first transistor M1 coupled to a first ferroelectric capacitor CC, and a second transistor M2 coupled to a second ferroelectric capacitor CCb. Ferroelectric capacitors CC and CCb store complementary polarization states, which define a single data state of memory cell 10. The plate line PL, which is coupled to one side of the ferroelectric capacitors CC and CCb runs parallel to the word line WL, which is coupled to the gates of the two transistors M1 and M2. In the arrangement of FIG. 1, the signal propagation delay along the plate line PL across one cell is insignificant compared to the delay in transferring data from the cell to the complementary bit lines BL and BLb, which are coupled to the source/drains of transistors M1 and M2. In the schematic of FIG. 1, the connection between the common electrodes for capacitors CC and CCb is a plate line wire PL. This plate line wire is a highly conductive material, generally a metal conductor. Also, the physical layout of memory cell 10 places these elements in close proximity to each other.
A timing diagram for the operation of a 2T/2C memory cell such as cell 10 is shown in FIG. 3. The control signals necessary to develop charge on the complementary bit lines BL and BLb are the word line signal WL and the plate line signal PL. The word line waveform 12 is a pulse that transitions from ground to the VCC supply voltage. The plate line waveform 14, 16 can either be a shorter or longer pulse, depending upon the desired sensing method. Initially, the word line and plate line waveforms are at ground potential. At time t.sub.0, the word line waveform is taken high to the VCC power supply voltage level, which turns on transistors M1 and M2 and electrically couples the ferroelectric capacitors CC and CCb to the bit lines BL and BLb, respectively. Once the high 15 voltage level has been established on the word line, the plate line is pulsed to "pole" the ferroelectric capacitors at time t.sub.1. Plate line waveform 14 is used for the "up-down" sensing method. With reference to the hysteresis loop 38 of FIG. 10, the "up-down" sensing method senses the charge developed moving from point 1 to point 2 to point 3 of the "switched" ferroelectric capacitor, minus the charge developed moving from point 3 to point 2 back to point 3 in the "unswitched" ferroelectric capacitor. Note that waveform 14 is brought low to ground potential at time t.sub.2. At time t.sub.3 the sense amplifiers (not shown in FIG. 1) are enabled and the differential charge on the bit lines BL and BLb can be sensed and converted into a valid logic state. Plate line waveform 16 is used for the "up-only" sensing method. With reference again to the hysteresis loop 38 of FIG. 10, the "up-only" sensing method senses the charge developed moving only from point 1 to point 2 in the "switched" ferroelectric capacitor minus the charge moving from point 3 to point 2 of the "unswitched" ferroelectric capacitor. Note that plate line waveform 16 remains high at times t.sub.2 and t.sub.3. At time t.sub.3 the sense amplifiers are enabled and the differential charge on the bit lines can be sensed and again converted into a valid logic state. Although the charge in each case is slightly different, the charge from the switched ferroelectric capacitor in cell 10 is always larger than the charge from the unswitched capacitor, so that the correct data state can be sensed.
In the full array of memory cells 10, bit lines are paired as true/complement and connected as illustrated in FIG. 4. Each block 10 is a 2T/2C memory cell as shown in previous FIG. 1. In the arrangement of FIG. 4, there is a multiplicity of paired plate lines PLO through PLN and word lines WLO through WLN extending in the word or row direction. There is a corresponding multiplicity of pairs of true/complement bit lines BLO/BLbO through BLN/BLbN in the column or bit direction.
Using the physical layout corresponding to the array of FIG. 4, the data pattern along the bit lines is always in pairs of true complement data. Therefore, no matter what logical data pattern is written into the array, the bit line data pattern as described by "1's" and "0's" representing the actual high and low voltages on the bit lines is described completely by the pattern "10" plus its complement "01". This is not to be confused with the logical data states of "1" and "0" that refers to a pair of bit lines, such as BLO and BLbO. The "1" or "0" referred to below represents the high "1" and low "0" voltage on each pair of bit (BLO-BLN) and bit bar (BLbO-BLbN) bit lines shown in FIGS. 1 and 4. Any other larger array of cells repeats this basic pattern. Assuming eight columns for the array shown in FIG. 4, corresponding to 16 bit/bit bar pairs, the pattern combinations could be, for example, 1010101010101010, 0101010101010101, 1001100110011001 or 0110011001100110. Because of the nature of the cell layout with true complement data per cell there is never an accumulated pattern of all "1's " or all "0's" or of isolated bits such as all 1's with a single zero or its complement as illustrated by the following 16 bit sequences: 1111111101111111 or 0000000010000000. Again, each individual "1" or "0" represents the voltage on an individual bit line wire.
Patterns such as that described above having single "0's " or "1's " in a field of opposite polarity can be created, however, in a 1T/1C memory design, depending on the chip architecture. These patterns create cumulative noise on the bit lines within an array. When the sense amplifiers are latched, noise generated through capacitive coupling between bit lines reduces the operating margin of the single bit line of opposite polarity. A schematic of a 1T/1C DRAM cell 20 coupled to a single bit line BL for a single storage location is shown in FIG. 5. One side of conventional oxide capacitor CC is connected to the access transistor M1 and the other side is connected to a node 22 that is common to all memory cells in a DRAM array. The common node 22 is usually at a potential of one half of the VCC power supply voltage, for example 2.5 volts for a five volt power supply voltage.
The ferroelectric version of the 1T/1C DRAM memory cell 20 of FIG. 5 is shown in FIG. 2. Ferroelectric memory cell 18 also includes a single access transistor M1, which is coupled to a ferroelectric capacitor CC. A single word line WL is coupled to the gate of access transistor M1 and a single bit line BL is coupled to the source/drain of access transistor M1. Instead of a common node 22 as in the DRAM cell 20, ferroelectric memory cell 18 includes an individual active plate line PL per word line as shown in FIG. 2.
The noise problem described above with reference to a 1T/1C array occurs when an "open bit line" architecture is used. In this configuration, all the true bits are assembled on one side of the sense amplifier and all the complement bit lines are on the opposite side of the sense amplifier. The open bit line architecture is illustrated in FIG. 6. The array shown in FIG. 6 utilizes the DRAM 1T/1C memory cell 20 of FIG. 5. The open bit line array of FIG. 6 includes bit lines BLO through BLN and word lines WLO through WLN in the bottom half of the array, and complementary bit lines BLbO through BLbN and complementary word lines WLCO through WLCN in the top half of the array. The bit lines and complementary bit lines are coupled to a row of sense amplifiers SAO through SAN. In the open bit line configuration it is possible that when a word line is accessed all the data on one side of the sense amplifiers could be all "1's " with a single zero as indicated in the 16 bit sequences described above, generating noise. This noise problem was solved by utilizing a "folded bit line" architecture, described below.
The folded bit line array configuration is illustrated in FIG. 9 utilizing the DRAM memory cell 24 shown in FIG. 7 and the DRAM reference cell 26 shown in FIG. 8. The capacitors, access transistors, word lines, and bit lines of memory cell 24 and reference cell 26 are shown in the approximate locations on the physical layout on the chip. In the folded bit line approach shown in the array of FIG. 9, the array is comprised of odd and even word lines indicated by WLO and WLE, respectively, extending from word lines WLO0 and WLE0 through WLON and WLEN. Whenever an odd or even word line is activated, data is read from the memory cells 24 onto every other bit line. At the same time an even or odd word line is accessed an (opposite) odd, WRO, or even, WRE, reference word line is accessed to apply a reference level to the opposite bit line. Utilizing this folded bit line approach, it can be observed that the data pattern on the respective bit lines is similar to that of the 2T/2C design, previously described with respect to FIG. 4. Each bit line pair BL/BLb alternates data as described above for the 2T/2C design, thus eliminating the cumulative noise pattern described for the open bit line architecture of FIG. 6.
The design of ferroelectric memories is inexorably progressing to ever higher densities. To remain cost competitive with alternative memory technologies, new ferroelectric memories will be based on the 1T/1C ferroelectric memory cell shown in FIG. 2. In a ferroelectric 1T/1C design, there is a reference word line and many corresponding memory word lines. This is the opposite of a 2T/2C design, where each memory cell has in essence its own built-in reference in the pairing of true complement data. This common reference line in a folded bit line architecture for a 1T/1C ferroelectric memory is again analogous to the 1T/1C DRAM designs shown in FIG. 9. The difference between the two being that the ferroelectric memory has an additional wire added for control of the plate line and rewriting the polarization state in the ferroelectric capacitor, rather than a fixed-potential common electrode as in DRAMs. There have been approaches suggested for ferroelectric 1T/1C memory designs that utilize a common electrode such as that of DRAMs, illustrated by common node CP in FIGS. 7 and 8. Each of these approaches, however, have associated problems such as leakage of the internal cell nodes requiring refresh, power up noise issues, and complex circuitry needed to mitigate the aforementioned problems.
Assuming that a 1T/1C folded bit line architecture is used, two new noise issues are introduced that are unique to a ferroelectric memory array. These noise issues result from both the physical interconnections with each memory row having an individual plate line per word line or shared plate line per pair of word lines, and in the sequence of operation.
The first noise problem results from the common plate line along a word line that allows noise to propagate from cell to cell. This first noise problem is data pattern dependent. The noise patterns created are analogous to that described above for the open bit line architecture DRAM. This problem does not exist in 1T/1C DRAM memory cells since the common second electrode of the memory capacitor is shared for the entire array. This common electrode in DRAMs acts as a filter capacitor with a low resistance path to propagate the noise induced into the plate when a word line is accessed. As described earlier there have been proposals for the same architecture (common electrode for the entire array) to be used with ferroelectric designs. There are, however, significant operating problems with these approaches that make their implementation impractical.
The second noise issue results from the operating voltages of the bit lines during the reading of information from the memory cells prior to sensing. In most high density memory designs the sense amplifier used to determine the voltage difference on the bit lines resulting from reading the cells is the cross coupled type as shown in FIG. 21 (sense amplifier 30). Often the constraints of the physical layout pitch of the memory cell in the bit line or column direction require that the nodes labeled "LATCH P" and "LATCH N" are actually a common wire shared across many columns. During the reading of information the bit line voltage can exceed the threshold voltage of a P-channel or N-channel transistor, i.e. the point at which the transistor begins conducting current between source and drain. When these bit line voltages exceed the threshold voltages of the transistors, noise can be transmitted through the cross-coupled P-channel and N-channel devices to the common latch nodes (LATCH P and LATCH N). This noise can then affect the signal margin in other columns.
What is desired, therefore, is a 1T/1T ferroelectric memory architecture, interconnection approach, operating methodology, sensing control sequence, and layout configuration that minimizes the noise issues set forth above. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an overlock sewing machine, and in particular, to an overlock sewing machine having an upper knife which cuts a cloth end edge onto which over-edge darning is performed.
2. Related Art
For example, in an overlock sewing machine, an over-edge chain stitching is applied onto the cloth end edge while cutting a cloth end edge by an upper knife which moves up and down so as to interlock with a sewing machine main shaft.
Then, in a case where this upper knife is not used, an overlock sewing machine in which the upper knife is withdrawn from a cloth edge cutting position by stopping the upper knife on the lower side of the throat plate, that makes it easy to handle cloth on the throat plate has been known (refer to JP-A-2005-168939, for example). In this sewing machine, biasing means for biasing the upper knife always to the lower side of the throat plate is provided, and when the power transmission with a sewing machine main shaft is cut off in order to stop the upper knife, the upper knife is withdrawn to the lower side of the throat plate by the biasing force of the biasing means. | {
"pile_set_name": "USPTO Backgrounds"
} |
The ongoing development of data networks often involves incorporating additional, demand-responsive functionality and/or capacity into networking equipment in order to enable greater connectivity and flexibility. These ends are pursued in part by increasing the number of functional modules included in a network node and/or the capacity of a particular node function (e.g., switching, routing, etc.) by increasing the number of components that contribute to the functional capacity. However, as the number of modules and/or components increases, power supply management issues become more complex in view of competing demands for efficiency, redundancy and sufficiently high power.
For example, it is typically desirable to ensure a reliable power supply to heavily utilized information technology (IT) infrastructure nodes, while also managing efficiency and link stability. Known power distribution systems for networking equipment employ two power supplies that are arranged and operated to supply more power than is utilized at a given instant. The two power supplies are coupled such that each power supply provides some power to a combination of loads (e.g., the modules and/or components of a network node). If one power supply fails, the second power supply remains available to deliver power to the combination of loads. This power distribution system ensures that both power supplies are normally always active in order to provide redundancy and limit packet loss and/or link failures that may result from hard switching between power supplies. However, this power distribution system a number of problems. For example, it susceptible to brown-outs that are caused by rapid increases in demand because the power supplies are not responsive enough to closely track rapid demand changes. In turn, packets or even links can be lost. Conversely, when demand drops suddenly, the overall efficiency suffers because the power supplies are again not responsive enough to closely track demand changes.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to radio communication systems, and more particularly, to a radio communication system, a radio controller and a mobile station in which at least one base station transmits a plurality of the same information to the mobile station via a plurality of radio links.
In this technical field, a radio controller and a base station have UL/DL Node Synchronization functions.
The UL/DL Node Synchronization is performed in order to measure more accurately the transmission delay between the base station and the radio controller when starting and resuming the base station. An explanation of this UL/DL Node Synchronization is given below with reference to FIG. 1.
First, the radio controller transmits a DL Node Synchronization signal to the base station. The DL Node Synchronization signal includes transmission timing information T1 that means the radio controller transmitting time. The Synchronization signal arrives after a transmission delay T2−T1. The T2 means the base station receiving time.
The base station receives the DL Node Synchronization signal and transmits a UL Node Synchronization signal to the radio controller. The UL Node Synchronization signal includes timing information T2 and T3. The T3 means T2+the base station processing delay, and therefore means the base station transmitting time.
The radio controller receives the UL Node Synchronization signal and estimates the timing relation with the base station, based the timing information T1, T2, T3 and T4. The T4 means the radio controller receiving time. The above procedure is repeated at a certain interval, and the timing relation is estimated.
For example, it is defined that Tf is 40960 ms, Tr=Tf−T1, Tb=Tf−T2, and
T_r1=(T1+Tr)modTf;
T_r4=(T4+Tr)modTf;
T_b2=(T2+Tb)modTf; and
T_b3=(T3+Tb)modTf.
Under this situation, a transmission delay T is represented byT={(T—r4−T—r1)−(T—b3−T—b2)}/2
If X1:T2−T1−T, then phase differences (X) between nodes are represented by the following:X=X1+Tf when X1<−Tf/2X=X1 when −Tf/2<=X1<Tf/2X=X1−Tf when X1>=Tf/2
The function of the above explained UL/DL Node Synchronization is not publicly known as of the filing date of this patent application.
The applicant of this patent application has not found any prior art publication relating to the present invention. Therefore, no prior document is disclosed.
However, there is a problem as follows.
In the multicast system, a neighboring cell also transmits the same information. Therefore, mobile stations can receive plural same signals from plural cells via plural radio links, and perform a maximum ratio combining process or a selective combining process. In order to perform such maximum ratio combining process or selective combine process, it is necessary for the mobile station to have the capability of processing plural radio links, including memory, encoding/decoding capability, and so on.
Timing synchronization between cells should not exceed mobile station processing capability. The timing of each cell may vary due to difference in reference clocks. | {
"pile_set_name": "USPTO Backgrounds"
} |
Sinks and similar apparatus for removing grease and oils from parts such as automotive parts are widely used and can be found in most automotive and machine shops.
In the past, parts washers of the sink type utilized toxic cleaning fluids such as petroleum-based solvents and non-biodegradable detergents. The use of such toxic cleaning solutions is environmentally objectionable and, as a result, both State and Federal Regulations either restrict or severely limit the use of these types of solutions. For example, California has passed environmental regulations effective Jan. 1, 1999 which prohibit the use of certain classes of solvents in part washing machines. Accordingly, there has developed a need for environmentally acceptable parts washers which utilize safe, biodegradable cleaning solutions and which are nevertheless effective to remove accumulated grime, particularly hydrocarbon-based contaminants such as oil and grease and which is both simple to use, convenient to service and which complies with local, state and federal environmental regulations.
As indicated above, there are a number of parts washers in the prior art. In the industry, a cabinet type washer has an enclosure which houses a spray system and the cabinet is closed during operation. A sink-type device has an open tub and the parts are cleaned manually using a brush in a bath of cleaning solution. U.S. Pat. No. 5,398,708 discloses a parts cleaning machine which has a cabinet with a rotating carousel for supporting articles to be cleaned. A sink is also provided which receives cleaning fluid from the spray bar network in the cabinet. The cabinet includes a reservoir in the bottom which collects fluid sprayed by the spray bar network.
InstaClean, Inc. of Lake Havasu City, Ariz. also offers a line of degreasers which include a cabinet. The InstaClean IC4 parts cleaner has a large load capacity for accommodating large parts such as transmission cases, engine blocks and the like. This machine is designed to use a nonflammable, biodegradable cleaning compound which is dispersed by a manifold within the cabinet.
Other parts cleaning machines are also available in the prior art such as those manufactured by Landa Water Cleaning Systems as shown in Catalog #96-250.
The patent literature discloses a number of parts washers including the following:
U.S. Pat. No. 2,570,021 - Beach U.S. Pat. No. 4,824,567 - Turman U.S. Pat. No. 2,746,467 - Dempsey U.S. Pat. No. 4,855,023 - Clark U.S. Pat. No. 2,771,086 - Kearney U.S. Pat. No. 4,869,820 - Yee U.S. Pat. No. 2,834,359 - Kearney U.S. Pat. No. 4,954,222 - Durr U.S. Pat. No. 2,842,143 - Kearney U.S. Pat. No. 5,080,791 - Sims U.S. Pat. No. 3,079,286 - Kearney U.S. Pat. No. 5,271,850 - Stutzman U.S. Pat. No. 3,085,948 - Kearney U.S. Pat. No. 5,273,060 - Hill U.S. Pat. No. 3,120,853 - Kearney U.S. Pat. No. 5,349,974 - Mansur U.S. Pat. No. 4,157,096 - Miller U.S. Pat. No. 5,360,027 - Harman U.S. Pat. No. 4,379,467 - Purr U.S. Pat. No. 5,398,708 - Sheldon U.S. Pat. No. 4,392,891 - Meyers U.S. Pat. No. 5,402,806 - Hakeem U.S. Pat. No. 4,651,762 - Bowden U.S. Pat. No. 5,417,851 - Yee U.S. Pat. No. 4,784,169 - Striedieck | {
"pile_set_name": "USPTO Backgrounds"
} |
A method for recognizing a foreign object during an inductive charging procedure with the aid of a temperature sensor is described in PCT Application No. WO2009/040998 A1. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to fluorescent illuminating devices, and, more particularly, to an inductive-resistive fluorescent apparatus and method.
Fluorescent lamps are well known in the prior art. There are three basic types of such lamps. These are the preheat lamp, the instant-start lamp, and the rapid-start lamp. In each type of lamp, a glass tube is provided which has a coating of phosphor powder on the inside of the tube. Electrodes are disposed at opposite ends of the tube. The tube is filled with an inert gas, such as argon, and a small amount of mercury. Electrons emitted from the electrodes strike mercury atoms contained within the tube, causing the mercury atoms to emit ultraviolet radiation. The ultraviolet radiation is absorbed by the phosphor powder, which in turn emits visible light via a fluorescent process.
The differences between the three lamp types generally relate to the manner in which the lamp is initially started. Referring now to FIG. 1, in a preheat lamp circuit, designated generally as 10, a starter bulb 12 is included. Preheat lamp 14 includes first and second electrodes 16 and 18, each of which has two terminals 20. During initial start-up of the preheat lamp, starter bulb 12, which acts as a switch, is closed, thus shorting electrodes 16 and 18 together. Current therefore passes through electrode 16 and then through electrode 18. This current serves to preheat the electrodes, making them more susceptible to emission of electrons. After a suitable time period has elapsed, during which the electrodes 16 and 18 have warmed up, the starter bulb 12 opens, and thus, anelectric potential is now applied between electrodes 16 and 18, resulting in electron emission between the two electrodes, with subsequent operation of the lamp.
A relatively high voltage is applied initially for starting purposes. A lower voltage is used during normal operation. A reactance is placed in series with the lamp to absorb any difference between the applied and operating voltages, in order to prevent damage to the lamp. The reactance, suitable transformers, capacitors, and other required starting and operating components are contained within a device known as a ballast (designated generally as 22). Ballasts are relatively large, heavy and expensive, with inherent efficiency limitations and difficulties in operating at low temperatures. The components within ballasts are typically potted with a thermally conductive, electrically insulating compound, in an effort to dissipate the heat generated by the components of the ballast. Difficulties in heat dissipation are yet another disadvantage of conventional ballasts.
Referring now to FIG. 2, an instant-start lamp circuit, designated generally as 24, is shown. Instant-start lamp 26 includes first and second electrodes 28 and 30. Electrodes 28 and 30 each only have a single terminal designated as 32. In operation of the instant-start lamp, no preheating of the electrodes is required. Rather, an extremely high starting voltage is typically applied in order to induce current flow without preheating of the electrodes. The high starting voltage is supplied by a special instant-start ballast, designated generally as 34. Instant-start type ballasts suffer from similar disadvantages to those of the preheat type. Further, because of the danger of the high starting voltage from the instant-start ballast 34, a special disconnect lamp holder 36 must be employed in order to disconnect the ballast when the lamp 26 is not properly secured in position.
Referring now to FIG. 3, a rapid-start lamp circuit, designated generally as 38, is shown. Rapid start lamp 40 includes first and second electrodes 42 and 44, each of which has two terminals 46, similar to the preheat lamp 14, discussed above. The rapid-start ballast, designated generally as 48, contains transformer windings which continuously provide the appropriate voltage and current for heating of the electrodes 42 and 44. Rapid heating of electrodes 42 and 44 permits relatively fast development of an arc from electrode 42 to electrode 44 using only the applied voltage from the secondary windings present in ballast 48. The rapid start ballast 48 permits relatively quick lamp starting, with smaller ballasts than those required for instant-start lamps, and without flicker which may be associated with preheat lamps. Further, no starter bulb is required. However, ballast 48 is still relatively large, heavy, inefficient, and unsuitable to low ambient-temperature operation. Dimming and flashing of rapid-start lamps are possible, albeit with the use of special ballasts and circuits.
It will be appreciated that operation of the prior art lamps described above is dependant on heating of the electrodes and/or application of a high voltage between the electrodes in order to start the operation of the lamp. This necessitates the use of ballasts and associated control circuitry, having the undesirable attributes discussed above. Recently, there has been interest in employing other physical phenomena to enable efficient starting and operation of fluorescent lamps. For example, EPO Publication Number 0 593 312 A2 discloses a fluorescent light source illuminated by means of an RF (radio frequency) electromagnetic field. However, the device of the '312 publication still suffers from numerous disadvantages, including the complex circuitry required to generate the RF field and the potential for RF interference.
In the parent International Application No. PCT/US97/18650, a ballast-free drive circuit is disclosed which, in one embodiment, employs a direct current (DC) or pulsed DC source (see FIG. 25). It has been found, however, that operating a fluorescent lamp with a DC or pulsed DC source can lead to mercury migration in the lamp and an associated reduction of light output over time. This mercury migration problem may, therefore, substantially shorten the usable life of the fluorescent lamp.
Through experimentation, it was additionally observed that the fluorescent lamp drive circuit disclosed in the parent International Application exhibited unreliable starting of the fluorescent lamp, particularly when used with certain types of fluorescent lamps (e.g., T8 lamps). This starting problem was found to be related, at least in part, to an insufficient voltage being generated across the output capacitors in the drive circuit. In such instances, the capacitors were not always fully charged to an appropriate voltage level necessary to form the arc in the fluorescent medium.
There is, therefore, a need in the prior art for an inductive-resistive fluorescent apparatus which permits simple, economical and reliable starting and operation of fluorescent lamps with low-cost, light weight, low-volume components which are capable of efficiently operating the lamp, even at relatively low ambient temperatures, which afford efficient heat dissipation and which are capable of operating at ordinary household AC frequencies. It is desirable to adapt such an inductive-resistive fluorescent apparatus to substantially eliminate mercury migration in the fluorescent lamp. It is additionally desirable to provide a fluorescent apparatus having the flexibility for enhanced features, including the ability to remotely control the fluorescent apparatus via a proportional industrial controller (PIC) or similar building controller. Furthermore, it is desirable to adapt such an inductive-resistive apparatus to direct "plug-in" replacement of incandescent bulbs. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention describes a system to lure and kill insect such as mosquitoes with an electrocuting killing field and producing carbon dioxide and water vapor in relatively pure form by the combustion of paraffin so as to act as an insect attractant. The method and materials used are especially economical and convenient to use. The killing field can be readily available high voltage bug electrocuter known as a xe2x80x9cbug zapperxe2x80x9d. The intent of the invention is to produce carbon dioxide at an adequate and economical rate for use as an attractant and not optimized for light producing as is described in lantern devices. The invention also details a safe and convenient use method and apparatus for burning and reloading of paraffin candles.
Various devices as disclosed in U.S. Pat. Nos. 6,145,243 and 5,669,176 use more elaborate means such as fuel cells or catalytic conversion for the production of carbon dioxide. These devices when commercialized prove to be expensive and involved for consumer use.
U.S. Pat. No. 6,145,243 generates carbon dioxide by catalytic conversion and feeds the combustion gas to an inlet to a xe2x80x9ctrapxe2x80x9d which requires associated devices such as a fans to have the insects follow a preferred path.
Other devices as disclosed in U.S. Pat. Nos. 4,962,611 and 4,785,573 consume kerosene in a lantern to produce light but because of incomplete or complex combustion products carbon dioxide is added from a supplemental source. In these cases the products of combustion might actually act as an insect repellant. These devices because of the flammable nature of the fuel and the electric circuits involved must include safety interlocks which have economic and convenience of use impact.
U.S. Pat. No. 5,205,064 involves providing carbon dioxide from a pressurized container. The method described in this invention can provide the gas in a much more economical and convenient way.
This invention describes a system for luring and killing insects such as mosquitoes using an economical and effective way of producing carbon dioxide and introducing the attractant to an insect electrocuting killing field.
Combustion is an economical method of producing carbon dioxide. However the products of the combustion should be essentially carbon dioxide and water, and odor free. Visible light also produced can be an added plus even though this feature is not optimized, as an attractant and an indicator to the user of device properly operating. For convenience, safety, simplicity and economy a solid paraffin is normally used. Of course the paraffin is melted prior to actual combustion.
A fuel that meets these requirements is solid paraffin wax. For the purpose of the system device disclosed the paraffin is solid at normal ambient temperatures. It can be used as a candle where the wick helps ensure complete combustion by defining a proper flame. The flame is luminous where solid particles of burning carbon can produce a fairly bright glow. An important aspect of candle use is that it be odorless except for deliberate modification.
It has also been determined that having the candle in an enclosed votive cup holder can produce adequate carbon dioxide attractant for a longer period of time and also makes for convenience and safety in reloading after use. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a driving force transmission device of a vehicle.
2. Related Art
In the related art, for instance, in Japanese Unexamined Patent Application Publication (JP-A) No. 2007-057093, a configuration in which, in a decelerator that uses an electric motor as a driving source and includes a differential gear and a parallel shaft, a bearing is lubricated in an oil passage through a drive shaft including a gear from a catch tank provided above the gear is disclosed.
In addition, in JP-A No. 2012-017764, a configuration in which, in a lubrication structure of a planetary gear mechanism that is used for a drive unit configured to distribute a driving force of a motor and an engine in a hybrid vehicle, oil trapped around the planetary gear lubricates a bearing through an opening guide (a liquid reservoir) of a shaft for the planetary gear is disclosed.
In a unit including a rotating member such as a gear mechanism, if there is insufficient lubricating oil for lubricating the rotating member, there is a possibility of defects such as burning of a gear. In particular, in a method in which a lubricating oil is dispersed by being carried up by a gear and the lubricating oil is supplied, since an amount of lubricating oil dispersed depends on a rotational speed, an amount of lubricating oil dispersed particularly during low speed running decreases and a bearing and the like on a motor shaft at a distance from an oil surface are likely to be insufficiently lubricated. Accordingly, it is desirable to appropriately supply a lubricating oil in accordance with running conditions.
However, in the technology described in JP-A No. 2007-057093, supply of a lubricating oil in accordance with running conditions is not considered at all. In addition, in the technology described in JP-A No. 2012-017764, a lubricating oil is supplied by an oil pump and when lubricating oil is dispersed by carrying up, optimal supply of the lubricating oil in accordance with running conditions is not considered at all. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computers are pervasive in today's society. Large computer systems are often referred to as “mainframe” computers and have the capability of executing numerous tasks, often referred to as jobs, at the same time. Often customers of such a computer system desire certain jobs to be executed at certain times while other jobs may occur at times that are not predetermined. Thus, many computer systems use job schedulers to control when jobs are executed.
One example of such a scheduler is the Computer Associates Unicenter CA-7 Job Manager. In that system, a job manager accesses queue files regarding the status of certain jobs. In one example, the queue files include a request queue, a ready queue, an active queue, a prior run queue, and other miscellaneous queues. The request queue is a “look ahead” queue that includes prerequisites that must occur before a particular job may be executed. An example of a prerequisite is that another job must complete running before the next job is executed, or that a particular data set must be created before a job may be executed. The ready queue stores jobs that are ready for execution but that might have to wait to be executed due to some system requirement, such as waiting for the availability of a tape drive. The active queue stores jobs that are active, and the prior run queue stores jobs that have executed properly.
One problem with the above-described system is the time that is required to access the queue files. It is often time consuming to locate the files stored on disk, read the disks, and to transmit the read information back to the job manager. | {
"pile_set_name": "USPTO Backgrounds"
} |
A typical blowout preventer stack includes a plurality of ram-type preventers surmounted by an annular or bag-type preventer. Typical ram-type preventers are made by Cameron Iron Works, OCT and Schaefer Tool Works. Typical annular preventers are made by Hydril.
In such a stack there are generally at least two ram-type preventers: one with blind rams for closing off communication with the well bore when no pipe extends through the preventers and another with pipe rams for closing off the annulus between the well bore and the pipe. For instance, while the well is being drilled deeper, one of the ram-type preventers have semi-cylindrically concave confronting nose portions capable of being rapidly urged toward one another to circumferentially grip the drill pipe should subterranean pressures suddenly increase to such an extent as to significantly raise the likelihood that the pressure will lift the drill pipe string substantially.
When drilling has reached a depth such that a string of casing is to be run into the well and cemented, it is a wide-spread practice to change out the pipe rams of the respective ram-type preventer and install casing rams in that preventer. The ram-type preventers in widest use are made so that the rams can be exchanged without removing the housing of the preventer from the stack.
Where the driller can afford to tie up more equipment in the drilling of one well, where space permits, or where applicable regulations require it, and where it makes good economic sense, such as in the offshore drilling of wells in deep water with a mudline suspension system, drillers often use a blowout preventer stack which has more than two ram type preventers, for instance one with blind rams, one with rams for drill pipe and others with rams for various diameters of casing to be run.
In former instance, the changing of rams takes time, and each time a set of rams is changed, procedures must be followed to test the integrity of the seals between the peripheries of the rams and the housing of the respective preventer.
It is virtually drilling industry-wide practice to test pipe rams for drilling pipe against a joint of drilling pipe before a stage of drilling is begun, in order to ascertain, before the point of necessity, whether the pipe rams are likely to function properly and hold against a blowout that might happen during the anticipated drilling stage.
This is done by threadably securing a test plug or packer on a joint of drill pipe, lowering this into the well until the test plug or packer is below the blowout preventers, and seating or expanding the test plug or packer into sealing engagement with the well bore. This isolates the preventers from the well for the purpose of testing. Then the pipe rams are closed about the pipe and the annulus outside the pipe, between the test plug and the closed rams is filled with fluid and pressurized. The fluid pressure in the closed volume is monitored over a given period to detect any leakage. A mechanical strain may also be pulled on the pipe at this time to test whether the rams are likely to successfully both contain the pressure and restrain the pipe against upward movement in a blow-out.
The efficacy of the annular preventers is generally similarly tested against the drill pipe. In such a test, the pipe rams are retracted and the toric bag of the annular preventer is radially contracted about the pipe.
It may surprise those not directly connected with well drilling, but it is currently neither the practice nor a specific regulatory requirement that casing rams be similarly tested prior to running a string of casing into a well. (It is a general practice to test the integrity of the seals between the casing rams and the respective blowout preventer body, but that is a matter distinct from testing whether, in the event of a blowout during running and cementing of a string of casing, the casing rams would likely be effective to seal the relevant annulus should the annular preventer also leak, and prevent the casing string from rising).
There are at least two practical reasons why the testing of casing rams has not been routinely practiced.
Prior to the present invention, it would be necessary to run a full joint of casing into the well in order to perform the test. This is impractical.
Test plugs are normally sold with a drill pipe thread on them, because, for years, drillers have run pipe with a test plug in order to test the pipe rams. Drill pipe is typically of relatively small diameter, e.g. 41/2 inches, and has a thread style that is particularly designed to resist twisting off when the drill string is rotated to make a hole. Casing is of varied sizes, a typical well has casing of three different diameters, each being substantially larger in diameter than drill pipe. A typical casing diameter is 103/4 inches.
If drillers were to simply scale the method and apparatus used for testing pipe rams against pipe to the practice of testing casing rams against casing, they would need plugs with casing joint threads, plug they would need to switch to tongs, slips and elevators for handling casing, at a stage when pipe handling tools had been used and would soon need to be used again -- a seeming waste of time, manpower and capital resources. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a foldable bed, and more particularly, to a foldable bed with a simple yet strong structure which is able to be folded and expanded easily.
2. Description of the Prior Art
Shown in FIG. 1 is a conventional foldable bed 8. It has a foldable frame 81 and a soft cover 82 securely attached to the frame 81. The foldable frame has a pair of middle legs 83, and two pairs of end legs 84, 85. One problem of such foldable bed is a longitudinally sway in direction A and B of the frame since the pairs of end legs 84, 85 lacks of a longitudinal reinforcing mechanism.
Another conventional foldable bed 9 shown in FIG. 2 is more stable in terms of longitudinal sway since each pair of end legs 91 or 92 is reinforced with two pairs of tilt bars 93, 94. However, aforementioned two conventional foldable beds 8 and 9 are either longitudinally unstable or complex in structure. Thus, it is desirable that there is provided a simple yet strong foldable bed without sacrificing the easiness of operation of folding and expanding. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a pulse output circuit. Further, the present invention relates to a display device. Furthermore, the present invention relates to an electronic device.
2. Description of the Related Art
In recent years, for the purpose of simplifying the manufacturing process, circuits composed of only transistors having the same conductivity type (also referred to as circuits composed of only n-channel transistors or p-channel transistors) have been developed.
As an example of the circuits composed of only transistors having the same conductivity type, a pulse output circuit included in a shift register can be given.
For example, Patent Document 1 discloses a shift register including a plurality of stages of pulse output circuits that use pulses of a clock signal to generate pulses of a pulse signal. Further, Patent Document 1 discloses a shift register that utilizes bootstrap to prevent the amplitude of an output pulse signal from being lower than the amplitude of a clock signal. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the intention
This invention is related generally to a printer, and more particularly to the improvement of a sheet feed section thereof.
2. Related art
One known sheet feeder used for a conventional printer is disclosed in unexamined Japanese Patent Publication No. Hei. 3-272921 as shown in FIG. 10. The sheet feeder has a hopper table 1 for maintaining a plurality of sheets thereon and three sheet feed rollers 4 for feeding each of the plurality of sheets maintained on hopper table 1. A bottom plate 3, serves as a hopper and is supported by a plurality of springs 2 disposed between bottom plate 3 and hopper table 1, serving as resilient members. Bottom plate 3 is arranged at a portion of hopper table 1 confronting sheet feed rollers 4.
A plurality of sheets S are held on hopper table 1 and are urged toward sheet feed rollers 4 by bottom plate 3, which is itself urged toward sheet feed rollers 4 by the biasing force of springs 2. Each of sheets S is fed toward a print section of a printer (not shown) through the force exerted thereon by the rotation of sheet feed rollers 4.
Since bottom plate 3 supported by springs 2 is arranged at the portion of hopper table 1 confronting sheet feed rollers 4, an edge portion of sheets S confronting and parallel to sheet feed rollers 4 is elevated and urged toward sheet feed rollers 4, so as to extend along sheet feed rollers 4, as shown in FIG. 11. As a result, even if hopper table 1 is not maintained precisely parallel with respect to sheet feed rollers 4, the upper surface of each of sheets S can be maintained in parallel with sheet feed rollers 4. This prevents each of sheets S from contacting less than all of sheet feed rollers 4, and therefore insures that each of sheets S is fed straight and properly by all of sheet feed rollers 4.
While this conventional sheet feeder for a printer has been satisfactory, the following inconvenience has been encountered when sheets S1 whose width is narrower than that of bottom plate 3 are placed on hopper table 1. As shown in FIG. 12, when sheets S1 such as postcards or envelopes or the like whose width is narrower than that of hopper table 1 are placed on hopper table 1 , a side H1 of hopper table 1, holding sheets S1, is maintained at a lower level with respect to a side H2 where no sheets SE are held because sheets S1 force side H1 of hopper table 1 against the bias force of springs 4 while side H2 of hopper table 1 is not so urged. That is, side H2 which holds no sheets S1 rises to a higher level than side H1 which holds sheets S1. Thus, sheet feed rollers 4 come into contact with sheets S1 on an angle with respect to the plane of the sheet S1. As a result, sheets S1 are susceptible to being fed improperly and twisting when being fed. This in turn tends to cause a paper jam because of this defective sheet feed operation.
Thus, it is desired to provide a printer in which even a narrow sheet will be properly fed and will not twist during a sheet feed operation, and in which a paper jam or the like due to this defective sheet feed operation can be prevented. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a so-called front-opening interface mechanical standard (FIMS) system used when wafers held in a transfer container which is called a pod are transferred among semiconductor processing apparatuses in a semiconductor manufacture process or the like. More specifically, the present invention relates to a detecting device for detecting the states of wafers in the FIMS system in which a pod containing the wafers which is called a front-opening unified pod (FOUP) is placed and the wafers are moved using the pod.
2. Related Background Art
Up to now, a semiconductor manufacture process has been conducted in a so-called clean room in which a room in which semiconductor wafers are treated has high cleanliness. However, in order to increase the wafer size and reduce the cost required to maintain the room clean, a method of maintaining the inner portion of a processing apparatus, the pod (wafer container), and a mini-environment for substrate transfer from the pod to the processing apparatus with a high cleanliness state has been employed in recent years.
The pod includes a main body portion having a substantially cube shape and a lid. The main body portion includes a rack capable of holding a plurality of wafers therein with a state in which the wafers are separated from one another in parallel and an opening portion which is provided on a surface of the rack and is used for wafer transfer. The opening portion is closed with the lid. A pod in which a forming surface of the opening portion is located not vertically below the pod but on a side surface of the pod (in front of the mini-environment) is generically called a front-opening unified pod (FOUP). The present invention is mainly for a structure using the FOUP.
The above-mentioned mini-environment includes a first opening portion opposed to the opening portion of the pod, a door for closing the first opening portion, a second opening portion provided on a semiconductor processing apparatus side, and a movable robot that moves from the first opening portion to the inner portion of the pod to hold the wafer and passes through the second opening portion to transfer the wafer to the semiconductor processing apparatus side. The structure for forming the mini-environment includes a mount base for supporting the pod so that the opening portion of the pod is simultaneously opposed to the front surface of the door.
A positioning pin inserted into a positioning hole provided on a lower surface of the pod to regulate a mount position of the pod and a clamp unit engaged with a portion to be clamped which is provided on the lower surface of the pod to hold the pod to the mount base are located on an upper surface of the mount base. The mount base is normally movable in a door direction by a predetermined distance. When the wafers in the pod are to be transferred to the processing apparatus, the pot is moved in a state in which the pod is mounted until the lid of the pod comes in contact with the door. After that contact, the pod is opened by the door and the lid is removed. Therefore, the inner portion of the pod is connected to the inner portion of the processing apparatus through the mini-environment. Subsequently, wafer transfer operation is repeated. A system including the mount base, the door, the first opening portion, a door open-and-close mechanism, and a wall which is a part of the mini-environment including the first opening portion is generally called a front-opening interface mechanical standard (FIMS) system.
When the operation for closing the pod with the lid is to be performed, it is necessary to store all the wafers in the pod at predetermined positions as a precondition. However, for example, there may be a case where one of the wafers is not accurately placed on the rack of the pod from some causes and thus a part of the wafer exists out of the opening portion of the pod. When the normal lid-close operation is performed in such a situation, it is likely to cause a large process problem such as a damage to the wafer. Therefore, normally, a sensor for detecting the slip-out of a wafer from the pod is provided to detect such a situation, thereby preventing, for example, the damage to the wafer. Examples of such a detection device are disclosed in Japanese Patent Application Laid-open No. 2003-273197, Japanese Patent Application Laid-open No. 2003-100852, and Japanese Patent Application Laid-open No. 05-291382.
In recent years, a so-called glass wafer made of quartz or the like is used in the semiconductor manufacture process in many cases. Apparatuses for detecting the slip-out of the wafer as described in Japanese Patent Application Laid-open No. 2003-273197, Japanese Patent Application Laid-open No. 2003-100852, and Japanese Patent Application Laid-open No. 05-291382 include a so-called transmission sensor for detecting the presence or absence of the wafer depending on whether or not light is blocked by the wafer. However, when the glass wafer is used, the wafer transmits the light. Therefore, even when the glass wafer is located on the optical path of the sensor, it is difficult to detect the presence of the glass wafer. In addition, even in the FIMS system connected to a film formation apparatus, it is necessary to detect not only the presence or absence of a transparent wafer before film formation but also the presence or absence of an opaque wafer after the film formation without any change. | {
"pile_set_name": "USPTO Backgrounds"
} |
Ventricular assist devices are receiving ever-increasing attention in our society where 400,000 Americans are diagnosed with congestive heart failure each year (Rutan, P. M., Galvin, E. A.: Adult and pediatric ventricular heart failure, in Quall, S. H. (ed), Cardiac Mechanical Assistance Beyond Balloon Pumping, St. Louis, Mosby, 1993, pp. 3-24). As a result, collaborative efforts among health care professionals have focussed on the development of various systems to assist the failing heart. These comprise both extracorporeal and implantable pulsatile ventricular assist devices (VAD), as well as non-pulsatile assist pumps.
Extracorporeal systems include the Pierce-Donachy VAD and the Abiomed BVS-5000 VAD. The Pierce-Donachy VAD is positioned on the patient's abdomen and propels blood by means of a pneumatically actuated diaphragm. Its use as a bridge to transplant is well-documented (Pae, W. E., Rosenberg, G., Donachy, J. H., et al.: Mechanical circulatory assistance for postoperative cardiogenic shock: A three-year experience. ASAIO Trans 26:256-260, 1980; Pennington, D. G., Kanter, K. R., McBride, L. R., et al.: Seven years' experience with the Pierce-Donachy ventricular assist device. J Thorac Cardiovasc Surg 96:901-911, 1988). The Abiomed BVS-5000, also an extracorporeal device, is fixed vertically at the patient's bedside and is attached to the heart with percutaneous cannulae that exit the patient's chest below the costal margin (Champsaur, G., Ninet, J., Vigneron, M., et al.: Use of the Abiomed BVS System 5000 as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg 100:122-128, 1990).
The most frequently used implantable systems for clinical application include the Novacor VAD (Novacor Division, Baxter Health Care Corp.) and the Heartmate (Thermocardiosystems) (Rowles, J. R., Mortimer, B. J., Olsen, D. B.: Ventricular Assist and Total Artificial Heart Devices for Clinical Use in 1993. ASAIO J 39:840-855, 1993). The Novacor uses a solenoid-driven spring to actuate a dual pusher plate. The pusher plate compresses a polyurethane-lined chamber which causes ejection of blood (Portner, P. M., Jassawalla, J. S., Chen, H., et al: A new dual pusher-plate left heart assist blood pump. Artif Organs (Suppl) 3:361-365, 1979). Likewise, the Heartmate consists of a polyurethane lined chamber surrounded by a pusher plate assembly, but a pneumatic system is used to actuate the pusher plate (Dasse, K. A., Chipman, S. D., Sherman, C. N., et al.: Clinical experience with textured blood contacting surfaces in ventricular assist devices. ASAIO Trans 33:418-425, 1987).
Efficacy of both the extracorporeal and implantable pulsatile systems has been shown (Rowles, J. R., Mortimer, B. J., Olsen, D. B.: Ventricular Assist and Total Artificial Heart Devices for Clinical Use in 1993. ASAIO J 39:840-855, 1993). However, certain complications are associated with the use of extracorporeal systems, including relatively lengthy surgical implantation procedures and limited patient mobility. The use of totally implantable systems raises concerns such as high cost of the device, complex device design, and again, relatively difficult insertion techniques.
Centrifugal pump VADs offer several advantages over their pulsatile counterparts. They are much less costly; they rely on less complicated operating principles; and, in general, they require less involved surgical implantation procedures since, in some applications, cardiopulmonary bypass (CPB) is not required. Thus, an implantable centrifugal pump may be a better alternative to currently available extracorporeal VADs for short- or medium-term assist (1-6 months). In addition, the use of centrifugal pumps in medium-term applications (1-6 months) may allow the more complex, expensive VADs, namely the Novacor and the Heartmate, to be used in longer term applications where higher cost, increased device complexity, and involved surgical procedures may be justified.
Prior art relating to centrifugal blood pumps is Canadian Patent No. 1078255 to Reich; U.S. Pat. No. 4,927,407 to Dorman; U.S. Pat. No. 3,608,088 to Dorman; U.S. Pat. No. 4,135,253 to Reich; Development of the Baylor-Nikkiso centrifugal pump with a purging system for circulatory support, Naifo, K., Miyazoe, Y., Aizawa, T., Mizuguchi, K., Tasai, K., Ohara, Y., Orime, Y., Glueck, J., Takatani, S., Noon, G. P., and Nose', Y., Artif. Organs, 1993; 17:614-618; A compact centrifugal pump for cardiopulmonary bypass, Sasaki, T., Jikuya, T., Aizawa, T., Shiono, M., Sakuma, I., Takatani, S., Glueck, J., Noon, G. P., Nose', Y., and Debakey, M. E., Artif. Organs 1992;16:592-598; Development of a Compact Centrifugal Pump with Purging System for Circulatory Support; Four Month Survival with an Implanted Centrifugal Ventricular Assist Device, A. H. Goldstein, MD; U.S. patent application titled "Radial Drive for Implantable Centrifugal Cardiac Assist Pump", University of Minnesota; Baylor Multipurpose Circulatory Support System for Short-to-Long Term Use, Shiono et al., ASAIO Journal 1992, M301.
Currently, centrifugal pumps are not implantable and are used clinically only for CPB. Examples include the Biomedicus and the Sarns centrifugal pumps. The Biomedicus pump consists of an impeller comprised of stacked parallel cones. A constrained vortex is created upon rotation of the impeller with an output blood flow proportional to pump rotational speed (Lynch, M. F., Paterson, D., Baxter, V.: Centrifugal blood pumping for open-heart surgery. Minn Med 61:536, 1978). The Sarns pump consists of a vaned impeller. Rotation of the impeller causes flow to be drawn through the inlet port of the pump and discharged via the pump outlet port (Joyce, L. D., Kiser, J. C., Eales, F., et al.: Experience with the Sarns centrifugal pump as a ventricular assist device. ASAIO Trans 36:M619-M623, 1990). Because of the interface between the spinning impeller shaft and the blood seal, several problems exist with both these pumps, including excessive wear at this interface, thrombus formation, and blood seepage into the motor causing eventual pump failure (Sharp, M. K.: An orbiting scroll blood pump without valves or rotating seals. ASAIO J 40:41-48, 1994; Ohara, Y., Makihiko, K., Orime, Y., et al.: An ultimate, compact, seal-less centrifugal ventricular assist device: baylor C-Gyro pump. Artif Organs 18:17-24, 1994).
The AB-180 is another type of centrifugal blood pump that is designed to assist blood circulation in patients who suffer heart failure. As illustrated in FIG. 1, the pump consists of seven primary components: a lower housing 1, a stator 2, a rotor 3, a journal 4, a seal 5, an impeller 6, and an upper housing 7. The components are manufactured by various vendors. The fabrication is performed at Allegheny-Singer Research Institute in Pittsburgh, Pa.
The rotor 3 is in the lower housing 1 and its post protrudes through a hole in the journal 4. The impeller 6 pumps blood in the upper housing 7 and is threaded into and rotates with the rotor 3. The impeller shaft passes through a rubber seal 5 disposed between the upper housing 7 and the journal 4, rotor and stator assembly. The upper housing 7 is threaded into the lower housing 1 and it compresses the outer edge of a rubber seal 5 to create a blood contacting chamber. In this manner, blood does not contact the rotor 3, journal 4, or lower housing 1. The upper housing 7 is connected to an inlet and outlet flow tubes 8, 9, called cannulae, that are connected to the patient's circulatory system, such as between the left atrium, LA, and the descending thoracic aorta, DTA, respectively. Through this connection, blood can be drawn from the left atrium, LA, through the pump, and out to the aorta, DTA.
The impeller 6 spins by means of the rotor 3 and stator 2 which make up a DC brushless motor. The base of the rotor 3 has four magnets that make up two north-south pole pairs which are positioned 90 degrees apart. The stator 2 is positioned around the rotor 3 on the lower housing 1. The stator 2 comprises three phases. When it is energized, it creates a magnetic force that counteracts the magnets in the rotor 3 causing the rotor 3 and impeller 6 to spin, as is well known with brushless DC motors.
A peristaltic pump infuses lubricating fluid into a port of the lower housing to lubricate the spinning rotor. The fluid prevents contact between any solid internal pump components during pump activation. It forms a layer of approximately 0.001 inches around the rotor and the impeller shaft. This fluid bearing essentially allows wear-free operation of the pump. The fluid passes around the rotor and flows up along the rotor post. Eventually, it passes out through the rubber seal 5 and into the upper housing 7 at the impeller shaft/seal interface. Fluid does not escape through the outer periphery of the housing seal because the upper housing is tightened down and sealed with a rubber O-ring to prevent leakage.
The spinning impeller 6 within the top housing 7 causes fluid to be drawn from the inlet flow tube 8 toward the eye of the impeller. The impeller 6 then thrusts the fluid out to the periphery of the upper housing 7. At this point, the fluid is pushed through the outlet tube 9 by centrifugal force. The pump typically consumes 3-5 Watts of input power to perform the hydraulic work necessary to attain significant physiologic benefits.
The prior art AB-180 pump has certain drawbacks which limit its efficacy as a cardiac assist device. The present invention describes several discoveries and novel constructions and methods which vastly improve such a pump's operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the electrification of office furniture and the like, and in particular to a modular power distribution system therefore.
Modular furniture units such as for example wall panels are widely used in architectural design, especially for commercial establishments, because of the advantages they provide in ease of installation, convenience of rearrangement of floor plans after installation, attractiveness of appearance, etc. One problem encountered in the use of modular wall panels is the provision of adequate electrical power for the areas enclosed by the panels while still retaining the advantage of flexibility in the location of the panels. This problem has been answered to some extent in prior power distribution systems disclosed, for example, in U.S. Pat. Nos. 4,060,294, issued Nov. 29, 1977 and related U.S. Pat. Nos. 4,370,008, issued Jan. 25, 1983 and 4,199,206, issued Apr. 22, 1980.
In the system of the above-referenced patents, identical power blocks are secured within the bottom edge of each panel unit adjacent the opposite ends thereof. The power blocks are interconnected by three conductors running the length of the panel within the bottom edge and are adapted to receive, on either of their opposite vertical faces, panel-to-panel jumper connectors or a power-in connector through which power is supplied by a three-conductor cable from a branch circuit of the base power distribution system. The power blocks are further adapted to receive, on either vertical face, a duplex outlet connector through which outlet power is available to the areas enclosed by the panels. By these means, a duplex outlet may be provided at each of the opposite ends of a panel unit, and on both sides thereof, along the length of an indefinite run of panel units, limited by the permissible number of outlets that can be connected to a single branch circuit. When the number of outlets installed along a panel run has reached the permissible limit, it is necessary to break the continuity of the system and to begin a new run from a separate power-in connector leading from a different branch circuit of the power main.
Improvements over the three-wire power distribution system for modular panels have been devised to enable the installation of longer panel runs and the placement of a greater number of duplex outlets therein with fewer power-in connections from separate branch lines of the base power distribution system. Such improved systems are exemplified by the systems disclosed in U.S. Pat. Nos. 4,313,646, issued Feb. 2, 1982; 4,367,370, issued Jan. 4, 1983; and 4,740,167, issued Apr. 26, 1988. The systems of U.S. Pat. Nos. 4,367,370 and 4,740,167 employ power blocks at opposite ends of a panel unit which are adapted to receive connectors for panel-to-panel jumper cables, connectors for cables interconnecting the power blocks of a panel unit and for power-in cables, and duplex outlet connectors on the opposite vertical faces. In the system of U.S. Pat. No. 4,313,646, the power blocks are formed integrally with a single duplex outlet.
The feature in common of the '646, '370 and '167 patents is that each of the systems is supplied power through, and the power blocks are interconnected by, a five-wire cable. The base power distribution system may suitably comprise a three-phase system and the five wires provide three lines, one shared neutral and one safety ground. The duplex outlets may be selectively connected between any one of the three available lines and neutral. The five-wire panel distribution systems enable the installation of panel runs having more than one circuit within a panel.
To overcome the limitation imposed by the load capacity of a shared neutral conductor, U.S. Pat. No. 4,781,609, issued Nov. 1, 1988, discloses a seven-wire power distribution system for modular panels providing three lines, three neutrals, one for each of the available lines, and one safety ground.
Increasing the number of conductors in a power distribution system for a panel originally designed to accommodate a three-wire power distribution system presents a challenge as to the manner in which the additional number of conductors are to be fitted into the available space. In the system of U.S. Pat. No. 4,781,609, the power blocks contain seven vertically aligned, parallel conductive plates. Each of the plates is formed with prongs projecting outwardly from both sides of the plate and with two prongs spaced conductors. Thus, these outlets accommodate a limited number of connection variations. The problems resulting from the limited number of connection variations and the limited versatility afforded by known outlets are particularly exacerbated if the power outlets are to be capable of selecting a supply circuit from a power block having more than seven wires installed within the limited confines of existing three-wire raceways. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pressure accumulator plants in which a pressurized stored fluid, in particular air, is stored in a storage volume and when necessary is expanded with the outputting of power in a expansion machine have become known from the prior art. U.S. Pat. No. 5,537,822 has disclosed a pressure accumulator plant in which the stored fluid is heated in a heat exchanger before being expanded. In an embodiment disclosed in said document, exhaust gas from a gas turbine set flows through the heat exchanger on the heat-emitting side. Such a recuperative embodiment of a pressure accumulator plant utilizes the waste heat from the gas turbine set very efficiently. Owing to the indirect heating of the stored fluid, said fluid is not contaminated by aggressive flue gas components. For this reason, for example a derivative of a standard steam turbine, which is only slightly modified, can be used as expansion machine in a highly economical way. In the fixed operating mode of the pressure accumulator plant, such a machine is adapted in the best possible way to the thermal peripheral conditions. However, when the plant starts, there are limits on the temperature gradients which can be implemented in a steam turbine, and this must be allowed for in the starting phase. In an arrangement such as is disclosed in U.S. Pat. No. 5,537,822, for example the gas turbine set must be correspondingly operated over a relatively long time period in accordance with an operating regime which is predefined by the expansion machine, and can therefore only be loaded very slowly, which per se contradicts the operating regime of a gas turbine set, and it is possible to react freely to the power requirements of the electric power network only after a long delay, in order to ensure that the possibility of utilizing waste heat in the expansion machine is capable of coping with the waste heat supply made available by the gas turbine set and the stored fluid expansion machine is not damaged by excessively fast starting up and loading. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an ophthalmological diagnosis method and apparatus, and more particularly to an ophthalmological diagnosis method and apparatus in which the eye fundus is illuminated by a beam of laser light having a predetermined diameter and motion of a laser speckle pattern formed at an observation plane by scattered laser light reflected from tissue in the eye fundus is detected as fluctuation in the speckle light intensity to produce a speckle signal which is evaluated to measure the blood flow state for ophthalmological diagnosis.
2. Description of the Prior Art
Conventional methods that employ laser light to measure the state of the blood flow in the eye fundus include those disclosed in Japanese Patent Laid-open Publications Nos. 55(1980)-75668, 55(1980)-75669, 55(1980)-75670, 56(1981)-125033 and 58(1983)-118730. All of these are methods for determining blood flow velocity based on the laser Doppler effect, so in each case it is therefore necessary to detect the frequency shift of the laser light caused by the Doppler effect. This can be done using either of two arrangements. One comprises splitting the incident laser beam into two beams forming equal angles with respect to the optical axis of the incident laser beam and directing the split beams into the eye to be examined so that they intersect precisely at the position of the eye fundus blood vessel concerned. The other arrangement is to detect laser light scattered by the eye fundus blood cells from two different directions. In both cases the optical system is complex and needs to be high- precision. In addition, the fact that the angle of beam incidence or light detection has to be known in advance makes these methods extremely difficult to apply clinically because of dependency of the eyes to be examined upon patients and impairs the repeatability and reliability of the results thereby obtained. This shows that the laser Doppler method is very useful for application in the industrial field having stable and steady objects because of its precise and sensitive features, but is apt to be influenced by various factors and disadvantageously reduces the repeatability of the results obtained, particularly in the medical field in which biological organisms living in unstable atmospheres and conditions are to be examined.
Further, in actual measurements the results are not obtained as a single Doppler shift frequency but consists of wide-ranging frequency components extending from the low to high frequency side, making it difficult to obtain a reliable absolute velocity value.
Other problems arise from the fact that the laser beam can be directed onto the eye fundus only along path that are perpendicular or nearly perpendicular to the eye fundus. At such angles, the Doppler shift is very small and the beat signals are hard to detect. This is because the laser Doppler method requires the detection of a single beat component. Thus in applications relating to biological tissues, which produce a wide range of irregular interferences, it is preferable to make use of the laser speckle method, the very essence of which is the interference effect of irregularly scattered light.
It is known that when a laser beam strikes an object which causes diffusion or scattering of the beam, the light scattered from the object generally gives rise to a speckle pattern caused by interference between reflected rays of the coherent light. In this case, any movement of the object causing the scattering will cause motion of the speckle pattern which can be detected as a time-course change in light intensity at an observation point. Thus, if the changes in intensity are converted into a signal, it becomes possible to measure the movement of the light-scattering object from the signals. The present invention applies this principle to the measurement of the state of blood flow in living tissue such as, for example, the tissue constituting the eye fundus.
Japanese Patent Laid-open Publications Nos. 60(1985)199430, 60(1985)-203235 and 60(1985)-203236, for example, disclose an application of such speckle phenomena to the measurement of the blood flow. These methods, however, intend to apply in the measurement on the skin surface and thus are inapplicable to the measurement of the blood flow in the eye funds in view of the facts of radiation of a laser beam in a certain intensity and the necessity of a corresponding detection optical system.
For this reason, the inventors have already filed an application for the invention entitled ophthalmological diagnosis method and apparatus (corresponding to U.S. Pat. No. 4,743,107 ) in which a laser speckle pattern is used to measure the blood flow in the eye fundus. In this method, however, a region of the eye is illuminated with a laser beam having a predetermined diameter greater than that of one blood vessel in the eye, and light scattered from a plurality of blood vessels within the illuminated region of the eye is detected at the Fraunhofer diffraction plane at which the scattered light is superimposed to produce a speckle pattern whose motion is detected, thus improving the stability and repeatability of the measurement obtained. Thus, this method is advantageous because its arrangement enables an overall, average evaluation of the state of blood flow in a plurality of blood vessels included within the irradiated region of the eye, but is impractical when the velocity of blood flow in a single specific blood vessel within the irradiated region is to be measured. To overcome this drawback, the same inventors proposed an improved ophthalmological diagnosis apparatus using a laser speckle method which makes use of a new detection system so as to be able to evaluate the blood flow velocity of a specified blood vessel. This apparatus is disclosed, for example, in Japanese Patent Laid-open Publications Nos. 63(1988)242220 and 63(1988)-242221. This, however, disadvantageously requires a detection aperture (for example, pin hole or slit ) which must be set on a blood vessel image to be measured at a magnified image plane in order to select one of the specified blood vessels. This necessitates means for observing the eye fundus image by naked eye for alignment. For this purpose, an observing eyepiece is provided with an indicating mark, which is aligned within its view field to the position of a blood vessel concerned to cause the detection aperture to displace by a mechanical interlocking mechanism in response to the adjustment of the indicating mark for alignment into the position of the corresponding blood vessel image at the magnified image plane. Thus it has been found that the interlocking mechanism is complicated with the total apparatus cost increased, and the mechanical adjustment at the manufacturing between the indicating mark and the detection aperture is also sophisticated. The mechanical interlocking mechanism further includes a mechanical play, causing position setting errors and a poor operational responsibility. Furthermore, there is the necessity of a two-stepped operation to specify blood vessels concerned. One is to carry out positional alignment with the aid of an eye fixation target to illuminate a region including the blood vessels with the laser beam. And the other is to specify one of the blood vessels with the aid of the indicating mark on the eyepiece. This disadvantageously causes a detected position to deviate during the period of the above-mentioned alignment because of the movement of the patient's eye, thus needing renewed alignment or adjustment.
On the other hand, the laser beam is projected on a region of the eye fundus extending over an area greater than the diameter of the blood vessel. This produces light which is scattered from the surrounding tissue outside the blood vessels within the illuminated region of the eye fundus and is greater in intensity than light scattered from the blood flow in the blood vessel, thereby making it difficult to clearly discriminate the blood vessel and the surrounding tissue at the magnified image plane. To overcome this drawback, a filtering at the spatial frequency plane is proposed, but this also disadvantageously causes the optical system to be complicated and the quantity of detected light to be reduced greatly.
Furthermore, a speckle pattern of sufficient intensity can not be detected because the eye fundus has too low reflectivity and because observation and photography optical systems used in an eye fundus camera have a large F-number and this makes detected light intensity too small. However, a too strong laser beam cannot be projected onto the eye fundus from the point of view of safety. Thus, a photon correlation method useful to detect light of a very weak intensity has been proposed as shown in Japanese Patent Laid-open Specifications Nos. 62(1987)-275431 (corresponding to U.S. Pat. No. 4,743,107) and 63(1988)-242220.
This method is, however, impractical in view of the fact that a detection plate having an aperture sufficiently smaller than the average size of the individual speckles must be set at the detection plane so as to be able to detect the changing light intensity distribution of the speckle pattern sharply. This inevitably causes the reduction of the light detected and necessitates a measurement time (so long as ten to several tens seconds) to obtain sufficiently converged and stabilized photon correlation data. For this reason, the quantity of light projected on the patient's eye increases. The patient should further be under heavy burdens that he must be stationary during measurement. This actually causes the eye movement, thus making the measurement incorrect. On the other hand, a method has been proposed in which the diameter of the detection aperture is made greater to increase the light detect ed. This, however, causes an increase in DC component whose rate is much greater than the increase rate of the effective signal components, thus resulting in undesired reduction of an S/N ratio and poor converging stability of photon correlation data. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known that, in image pickup elements, such as CCD sensors and CMOS sensors, a localized sensitivity failure of a semiconductor may occur during a manufacturing process or after the manufacturing process. When such a sensitivity failure occurs, an electric charge output in accordance with an incident light quantity cannot be obtained from a pixel, as a result of which a white spot or a black spot that is unrelated to an object appears on an image pickup screen. Such a pixel that causes a white spot or a black spot unrelated to an object to be output is called a defective pixel. In order to correct image quality degradation caused by such a defective pixel by signal processing, the defective pixel is detected beforehand. First, when manufacturing an image pickup element at a semiconductor factory, any defective pixel in the manufactured image pickup element is detected, and position data of the detected defective pixel is stored in a nonvolatile memory.
Even after installing the image pickup element in an image pickup apparatus, any defective pixel in the image pickup element can be detected. For example, when a mechanical shutter of the image pickup apparatus is in a light-shielding state, a pixel (white-spot defective pixel) whose output level from the image pickup element exceeds a predetermined level is detected. Alternatively, when the shutter is opened, and the incident light quantity is set to a predetermined quantity, any pixel (black-spot defective pixel) at which an output level does not reach the predetermined level is detected. Position data of the detected white-spot defective pixel or the detected black-spot defective pixel is stored in the nonvolatile memory. Because position data of the above-described defective pixels can be stored prior to normal image pickup operation (prior to the imaging apparatus being used for actual imaging of an object), these defective pixels can be referred to as “steady defective pixels”. During normal image pickup operation of the image pickup apparatus, an image signal obtained by imaging an object is corrected with signal processing by taking into account the defective pixels on the basis of the pre-stored position data.
In recent years, the probability with which defective pixels occurs tends to increase due to an increase in the number of pixels of image pickup elements. Further, formation of finer pixels resulting from the increase in the number of pixels of the image pickup elements has caused the recognition of new phenomena that have been hitherto overlooked. For instance, the existence of pixels whose signal levels are read increase or decrease considerably when pixel signals from the image pickup elements are repeatedly read out. Pixels that cause such a phenomena to occur are called blinking defective pixels. There are blinking defective pixels that depend upon temperature and storage time, and blinking defective pixels that do not depend upon temperature and storage time. Blinking defective pixels are variously mechanically generated.
Blinking defective pixels are normal pixels at certain times, and are white-spot defective pixels at other times, so that they act as though they are blinking white-spot defective pixels. Therefore, when a manufacturing process of an image pickup element is performed or when an image pickup apparatus performs a self-measurement operation, all of the blinking defective pixels cannot be detected by detecting each defective pixel once. In addition, the defective pixels are turned on during an actual image taking operation in which an image of a taken object is recorded, as a result of which the blinking defective pixels stand out, thereby degrading the taken image.
In view of such a situation, Japanese Patent Laid-Open No. 2003-37781 discloses a technology in which, on the basis of a plurality of image signals obtained under the same condition, defective pixel addresses of an image pickup element are detected, and the pixel addresses where the number of times by which defects are determined is greater than a predetermined number of times are detected as final defective pixel addresses. | {
"pile_set_name": "USPTO Backgrounds"
} |
Landfills are commonly used to dispose of waste materials of many different types. These waste materials can include paper products, food scraps, yard waste, metal, glass, plastic and a host of other materials. In an attempt to reduce the amount of waste material that is deposited in landfills, source separating efforts in the form of recycling programs have been instituted. To the extent they are used, such recycling programs help reduce landfill dependence. However, it has been found that such recycling programs only result in the removal of a relatively small percentage of the total waste material. In the case of at least some material, such as paper products and others, the relatively small recovery rate can be attributed at least in part to the fact that a large percentage of the products are food-contaminated and thus quite difficult to separate and recycle.
Various proposals have been made in the past to treat waste material prior to its introduction into a landfill in an attempt to recover portions of the material and thereby reduce landfill dependence. However, generally speaking, those proposals have not been well received, as they are not particularly suited for efficiently and effectively treating different types of waste materials such as those commonly found in municipal solid waste (MSW). Municipal solid waste is generally the most complex and mixed material occurring in waste streams. Thus, systems for effectively and efficiently treating municipal solid waste must be capable of treating and breaking down a wide range of different materials.
In addition to being not well suited for handling a wide range of materials, past proposals for treating waste material also suffer from other disadvantages and drawbacks. For example, some proposals require a supply of heated boiler quality water for heating the treated material. However, the need for water of that quality significantly increases the cost and complexity of the treating facility. Moreover, the use of boiler quality water is not needed since the water immediately becomes contaminated once it is introduced into the treated material.
In addition, in situations in which the material being treated has been heated and saturated with hot water for purposes of breaking down the waste material, steam is employed in an attempt to dry the material to a specified degree. However, as might be expected, steam is not very well suited as a drying mechanism since it tends to introduce additional moisture into the material. Thus, past proposals have not been well suited to allowing the material to be dried to any desired degree. Moreover, little effort has been made to recover the heat that is generated during the treatment process.
Accordingly, it would be desirable to have an automated apparatus and system, which is designed to treat municipal solid waste (MSW), and more particularly an automated system, which is designed to treat municipal solid waste (MSW) with wastewater from waste activated sludge (WAS) treatment facility. | {
"pile_set_name": "USPTO Backgrounds"
} |
Elevators generally comprise a holding brake, which is used to keep the elevator car in its position when the car has stopped at a floor level. Usually an electromagnetic e.g. drum brake or disc brake is used as a holding brake.
Conventionally a drum brake is used in elevators, which drum brake comprises at least an active part provided with a brake pad and with an actuator moving the brake pad, and a brake drum, being a passive part, connected to the rotor of the hoisting motor in the hoisting machine and rotating along with said rotor, on the outer rim of which brake drum is a braking surface. The drum brake of an elevator generally operates such that when the brake is closed, the spring comprised in the active part of the brake presses the brake shoe and the brake pad connected to it against the braking surface of the brake drum, in which case the elevator car stays in its position. During a run, current is connected to the electromagnet of the brake and the magnet pulls the brake shoe and the brake pad off the braking surface of the brake drum, in which case the brake is open and the elevator car can move up or down in the elevator hoistway. The brake implementation of an elevator can be e.g. such that the implementation comprises two electromagnetic brakes functioning as the active part, which brakes are disposed outside the rim of a brake drum on opposite sides of the rim of the brake drum to each other as viewed from the front in the direction of the axis of rotation of the brake drum.
There are a number of work phases in the manufacture of an electromagnetic brake. The coil of a brake is manufactured e.g. from glued wire or by winding a copper conductor around a coil former. After this the glued wire/copper conductor of the coil is connected to a supply conductor e.g. by soldering, the supply conductor is threaded out of a machining aperture made in the frame part of the brake, and the machining aperture is sealed. In addition, the supply conductor is tightened and attached to a separate cable clamp, sleeved and connected to a connector fixed to the frame part of the brake.
The joining and connection of the supply conductors occurs as manual work, which creates a quality risk, lengthens the manufacturing time of a brake and increases costs. In addition, the quantity of components needed is quite large, which also has an effect on the reliability of the brake. There is, in fact, a need to simplify the structure of a brake and to raise the degree of automation in connection with the manufacturing process of a brake. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a conventional technique, there has been proposed a rotation detection device for detecting the rotation angle of a rotating body by counting the passage of gear teeth provided on the rotating body (for example, see JP 2015-215342 A).
The rotation detection device disclosed in JP 2015-215342 A includes a cylindrical bias magnet, three magnetoresistive elements to detect the magnetic field which changes when the gear teeth provided on the rotating body passes as the rotating body rotates, a detecting section for detecting differential signals each from two outputs of the three magnetoresistive elements, an amplitude adjusting section for adjusting the amplitudes of the differential signals detected by the detecting section so as to cause the amplitudes of the respective differential signals to coincide with each other, and a difference value acquiring section for acquiring a difference value of each of the differential signals whose amplitudes have been adjusted by the amplitude adjusting section, a determination circuit section for generating a binary signal based on a threshold value from the difference value acquired by the difference value acquiring section, and counts the passage of the gear teeth on the basis of the waveform of the binary signal generated by the determination circuit section and detects the rotation angle of the rotating body. When the three magnetoresistive elements are arranged to be tilted with respect to the symmetry of the magnetic flux generated by the cylindrical bias magnet, the amplitude of one of the differential signals is large and that of the other is small, so that the amplitudes are different. However, since the amplitudes are adjusted to coincide with each other by the amplitude adjusting section, the binary signal accords with the passage of the gear teeth. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a voice activity detector and, in particular, to a circuit that provides a stable indication of voice activity for use in communication systems, such as speaker phones and other applications.
The detector described herein is referred to as a voice activity detector but is not so limited in function. As will be apparent from a complete understanding of the invention, the detector can be adjusted to messages of various kinds, e.g. fax signals, not just voice signals. Calling the detector a “message” activity detector or a “communication” activity detector is not more clear than the more familiar term of voice activity detector and, therefore, these terms are not used.
Anyone who has used current models of speaker phones is well aware of the cut off speech and the silent periods during a conversation caused by echo canceling circuitry within the speaker phone. Such phones operate in what is known as half-duplex mode, which means that only one person can speak at a time. While such silent periods assure that the sound from the speaker is not coupled directly into the microphone within a speaker phone, the quality of the call is poor.
Whether or not to receive (listen) or transmit (talk) is not easily resolved in the particular application of telephone communication. Voices may overlap, so-called “double talk,” particularly if there are more than two parties to a call. Background noise may cause problems if the noise level is a significant percentage of the voice level. Pauses in a conversation do not necessarily mean that a person is finished speaking and that it is time for someone else to speak. A voice signal is a complex wave that is discontinuous because not all speech sounds use the vocal chords. Analyzing a voice signal in real time and deciding whether or not a person has finished speaking is a complex problem despite the ordinary human experience of doing it unconsciously or subconsciously. A variety of electronic systems have been proposed in the prior art for arbitrating send or receive but the problem remains.
U.S. Pat. No. 4,796,287 (Reesor et al.) discloses a speaker phone in which a decremented counter provides a delay to channel switching by the remainder of the circuit. The magnitudes of the line signal and the microphone signal are used in determining whether or not to switch channels.
U.S. Pat. No. 4,879,745 (Arbel) discloses a half-duplex speaker phone that controls the selection of either a transmit or a receive audio path based upon a present state of the speaker phone and the magnitudes of three variables associated with each path. The three variables for each path include signal power, noise power, and worst-case echo.
U.S. Pat. No. 5,418,848 (Armbrüster) discloses a double talk detector wherein an evaluation circuit monitors voice signals upstream and downstream of echo canceling apparatus for detecting double talk. An up-down counter is incremented and decremented at different rates and a predetermined count is required before further signal processing takes place.
U.S. Pat. No. 5,598,466 (Graumann) discloses a voice activity detector including an algorithm for distinguishing voice from background noise based upon an analysis of average peak value of a voice signal compared to the current number of the audio signal.
U.S. Pat. No. 5,692,042 (Sacca) discloses a speaker phone including non-linear amplifiers to compress transmitted and received signals, and level detectors to determine the levels of the compressed transmitted and received signals. The compressed signals are compared in a comparator having hysteresis to enable either transmit mode or receive mode.
U.S. Pat. No. 5,764,753 (McCaslin et al.) discloses a double talk detector that compares the send and receive signals to determine “Return Echo Loss Enhancement,” which is stored as a digital value in a register. The digital value is adjusted over time and is used to provide a variable, rather than fixed, parameter to which new data is compared in determining whether to send or receive.
U.S. Pat. No. 5,867,574 (Eryilmaz) discloses a voice activity detection system that uses a voice energy term defined as the sum of the differences between consecutive values of a speech signal. Comparison of the voice energy term with threshold values and comparing the voice energy terms of the transmit and receive channels determines which channel will be active.
U.S. Pat. No. 6,138,040 (Nicholls et al.) discloses comparing the energy in each “frame” (thirty millisecond interval) of speech with background energy to determine whether or not speech is present in a channel. A timer is disclosed for bridging gaps between voiced portions of speech.
Typically, these systems are implemented in digital form and manipulate large amounts of data in analyzing the input signals. The Sacca patent discloses an analog system using an amplifier with hysteresis to avoid dithering, which, to a large extent, is unavoidable with a simple amplitude comparison. On the other hand, an extensive computational analysis to determine relative power takes too long. The Eryilmaz patent attempts to simplify the amount of computation but still requires manipulation of significant amounts of data. All these systems manipulate amplitude data, or data derived from amplitude, up to the point of making a binary value signal indicating voice.
One can increase the speed of a system by reducing the amount of data being processed. Unfortunately, this typically reduces the resolution of the system. For example, all other parameters being equal, eight bit data is more quickly processed than sixteen bit data. The problem is that resolution is reduced. In an acoustic environment, the quality or fidelity of the audio signal requires a minimum amount of data. Thus, the problem remains of speeding up a system other than by simply increasing the clock frequency.
Some of the prior art systems use historical data, e.g. three occurrences of what is interpreted as a voice signal. Such systems require large amounts of memory to handle the historical data and the current data.
Voice detection is not just used to determine transmit or receive. A reliable voice detection circuit is necessary in order to properly control echo cancelling circuitry, which, if activated at the wrong time, can severely distort a desired voice signal. In the prior art, this problem has not been solved satisfactorily.
In view of the foregoing, it is therefore an object of the invention to provide an improved method for analyzing the energy content of an incoming signal.
Another object of the invention is to provide a simple but effective circuit for detecting voice.
A further object of the invention is to provide a circuit having dynamically adjustable thresholds for analyzing energy content of a speech signal.
Another object of the invention is to provide a voice activity detector that does not require large amounts of data for reliable detection of a voice signal.
A further object of the invention is to provide an apparatus and a method for analyzing the envelope of a signal with minimal computation.
Another object of the invention is to provide an apparatus and a method for analyzing a signal that is less hardware intensive than in the prior art.
A further object of the invention is to provide an apparatus and a method for analyzing a signal that is faster than in the prior art.
Another object of the invention is to reduce the amount of data being processed without reducing the resolution of the system.
A further object of the invention is to provide reliable activation of echo cancelling circuitry. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention pertains to off-highway tractor vehicles provided with a blade attachment which can be raised or lowered at the front of the vehicle.
2. Description of the Prior Art
A skidder uses a blade similar to a dozer blade having an elongated, continuous concave surface called a decking blade for arranging logs on the ground.
Another type of blade is used in site preparation work where the merchantable timber has been removed and it is necessary to doze over the smaller trees and brush to prepare the site for new growth.
In clearing work it is necessary that the blade remain in an elevated position for extended periods. Since the engine draws cooling air in at the side and expels it through the radiator at the front, if the decking blade is used for clearing, it is soon found that with the blade in the raised position it obstructs air flow to the point that the engine becomes overheated.
On the other hand, a clearing blade is generally open in construction so as not to restrict air flow. However, changing from the conventional decking blade to a clearing blade is a time-consuming problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
This invention relates to an optical disc recording apparatus, a computer-readable recording medium recording a file management program, and an optical disc.
(2) Description of the Prior Art
Recently, recording mediums such as magneto optical discs (MO) have been widely used for recording data to be read by computers. Currently, practical uses of DVD (Digital Versatile Disc)-RAM discs are waited for due to general expectation that DVD-RAMs will become a main recording medium of the next generation.
In conventional MOs, like HD (Hard Disc) or FD (Flexible Disc), the minimum unit in accessing data on discs is “sector” having several kilobytes. Each file is recorded in one or more sectors.
Reading and writing of files from/onto discs are executed by computers as functions of a file system which is a part of operating systems (OS). A file system is defined, for example, in ISO/IEC13346.
According to a conventional technique, for example, when recording a file of 200 KB onto a recording medium with 2 KB-sectors, computers must find 100 unassigned sectors on the recording medium. The 100 unassigned sectors need not be physically consecutive. For example, when four separate groups respectively having 30, 30, 30, and 10 unassigned sectors are found on the recording medium, the file is divided into the four groups of sectors. Each part of the file recorded in each group of sectors, namely each group of consecutive sectors, is called “extent”.
In such a conventional technique, files can be divided and recorded into a plurality of extents. This provides a merit that all the sectors on a recording medium can be used efficiently even after recording and deleting of files on the medium are repeated a number of times.
However, conventional recording mediums and file systems have a problem that uninterrupted reproduction of audio/video data (hereinafter referred to as AV data) recorded on the recording mediums cannot be ensured.
More specifically, when recording and deleting of files on a recording medium are repeated several times, the AV data may not be recorded in consecutive sectors. The AV data may be divided and recorded into a plurality of extents, as described above. When this happens, the reproduction apparatus cannot achieve uninterrupted reproduction of the AV data due to a seek operation of an optical pickup that occurs as the optical pickup moves between the plurality of extents.
For example, when a seek occurs between a sector at the innermost periphery and a sector at the outermost periphery of a disc, the seek time amounts to several-hundred milliseconds. In case of moving images, such a seek of several-hundred milliseconds interrupts reproduction since reproducing 30 frames per second is required for reproduction of moving images.
As described above, uninterrupted reproduction may not be ensured by conventional file systems. This is especially a serious problem for mass storages such as DVD-RAM on which, like VTR, a plurality of pieces of AV data (e.g., TV programs) can be recorded, edited, and deleted.
Here, it should be reminded that recording mediums can also record computer data, as well as AV data. Accordingly, particular attention should be paid on how to efficiently store both types of data on a disc. | {
"pile_set_name": "USPTO Backgrounds"
} |
Currently, with regard to window lift motor assemblies for vehicles, customers require both a left hand motor assembly 5 and a right hand motor assembly 6 as shown in FIGS. 1 and 2, respectively. Thus, the customer needs to distinguish between two different motor assemblies. The need for two different motor assemblies increases tooling costs and set-up cost of an assembly line.
An exploded view of a conventional window lift motor assembly is shown in FIG. 3. An electric motor 10 is coupled to a gear housing 12. The gear housing contains a gear axle 14 that carries a gearwheel 16 for rotation. The gearwheel 16 is rotated via a worm 20 the motor 10. Rotation of the gearwheel 16 rotates a driver 18. The driver 18 is coupled to a customer's drumhousing to move a window. A shock absorber 22 between the gearwheel 16 and driver 18 acts as a dampener at the maximum torsional load. With this structure, it is possible that the motor 10 will lock-up if the gear axle 14 bends due to high torque generated from the motor since the center to center distance between the gear axle and worm shaft of the motor increases beyond a given specification.
Further, in the motor assembly of FIG. 3, to provide a leak proof configuration, a coverplate 24 is coupled to the gear housing 12 via an interference fit between plastic and rubber materials. This configuration requires very tight tolerances and thus adds to the cost of the assembly.
Accordingly, there is a need to provide a gear unit for a motor assembly that can be used in place of both left and right hand window lift motor assemblies, that eliminates the gear axle, and that has an improved cover connection. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to metal catalysts, especially to catalysts which comprise platinum, zinc and at least one of nickel and iron, which are useful in fuel cell electrodes and other catalytic structures.
2. Background Information
A fuel cell is an electrochemical device for directly converting the chemical energy generated from an oxidation-reduction reaction of a fuel such as hydrogen or hydrocarbon-based fuels and an oxidizer such as oxygen gas (in air) supplied thereto into a low-voltage direct current. Thus, fuel cells chemically combine the molecules of a fuel and an oxidizer without burning, dispensing with the inefficiencies and pollution of traditional combustion.
A fuel cell is generally comprised of a fuel electrode (anode), an oxidizer electrode (cathode), an electrolyte interposed between the electrodes (alkaline or acidic), and means for separately supplying a stream of fuel and a stream of oxidizer to the anode and the cathode, respectively. In operation, fuel supplied to the anode is oxidized, releasing electrons which are conducted via an external circuit to the cathode. At the cathode, the supplied electrons are consumed when the oxidizer is reduced. The current flowing through the external circuit can be made to do useful work.
There are several types of fuel cells, including those having electrolytes of: phosphoric acid, molten carbonate, solid oxide, potassium hydroxide, and proton exchange membrane. A phosphoric acid fuel cell operates at about 160-220° C., and preferably at about 190-200° C. This type of fuel cell is currently being used for multi-megawatt utility power generation and for co-generation systems (i.e., combined heat and power generation) in the 50 to several hundred kilowatts range.
In contrast, proton exchange membrane fuel cells use a solid proton-conducting polymer membrane as the electrolyte. Typically, the polymer membrane is maintained in a hydrated form during operation in order to prevent loss of ionic conduction which limits the operation temperature typically to between about 70 and about 120° C. depending on the operating pressure, and preferably below about 100° C. Proton exchange membrane fuel cells have a much higher power density than liquid electrolyte fuel cells (e.g., phosphoric acid), and can vary output quickly to meet shifts in power demand. Thus, they are suited for applications such as in automobiles and small scale residential power generation where quick startup is a consideration.
In some applications (e.g., automotive) pure hydrogen gas is the optimum fuel; however, in other applications where a lower operational cost is desirable, a reformed hydrogen-containing gas is an appropriate fuel. A reformed-hydrogen containing gas is produced, for example, by steam-reforming methanol and water at 200-300° C. to a hydrogen-rich fuel gas containing carbon dioxide. Theoretically, the reformate gas consists of 75 vol % hydrogen and 25 vol % carbon dioxide. In practice, however, this gas also contains nitrogen, oxygen, and, depending on the degree of purity, varying amounts of carbon monoxide (up to 1 vol %). Although some electronic devices also reform liquid fuel to hydrogen, in some applications the conversion of a liquid fuel directly into electricity is desirable, as then a high storage density and system simplicity are combined. In particular, methanol is an especially desirable fuel because it has a high energy density, a low cost, and is produced from renewable resources.
For the oxidation and reduction reactions in a fuel cell to proceed at useful rates, especially at operating temperatures below about 300° C., electrocatalyst materials are typically provided at the electrodes. Initially, fuel cells used electrocatalysts made of a single metal, usually platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os), silver (Ag) or gold (Au) because they are able to withstand the corrosive environment—platinum being the most efficient and stable single-metal electrocatalyst for fuel cells operating below about 300° C. While these elements were first used in fuel cells in metallic powder form, later techniques were developed to disperse these metals over the surface of electrically conductive supports (e.g., carbon black) to increase the surface area of the electrocatalyst which in turn increased the number of reactive sites leading to improved efficiency of the cell. Nevertheless, fuel cell performance typically declines over time because the presence of electrolyte, high temperatures and molecular oxygen dissolve the electrocatalyst and/or sinter the dispersed electrocatalyst by surface migration or dissolution/re-precipitation.
Although platinum is the most efficient and stable single-metal electrocatalyst for fuel cells, it is costly and an increase in electrocatalyst activity over platinum is necessary for wide scale commercialization of fuel cell technology. The development of cathode fuel cell electrocatalyst materials faces longstanding challenges. The greatest challenge is the improvement of the electrode kinetics of the oxygen reduction reaction. In fact, sluggish electrochemical reaction kinetics have prevented attaining the thermodynamic reversible electrode potential for oxygen reduction. This is reflected in exchange current densities of around 10−10 to 10−12 A/cm2 for oxygen reduction on, for example, Pt at low and medium temperatures. A factor contributing to this phenomenon include the fact that the desired reduction of oxygen to water is a four-electron transfer reaction and typically involves breaking a strong O—O bond early in the reaction. In addition, the open circuit voltage is lowered from the thermodynamic potential for oxygen reduction due to the formation of peroxide and possible platinum oxides which inhibit the reaction. A second challenge is the stability of the oxygen electrode (cathode) during long-term operation. Specifically, a fuel cell cathode operates in a regime in which even the most unreactive metals are not completely stable. Thus, alloy compositions which contain non-noble metal elements may have a rate of corrosion which would negatively impact the projected lifetime of a fuel cell. The corrosion may be more severe when the cell is operating near open circuit conditions (which is the most desirable potential for thermodynamic efficiency).
Electrocatalyst materials at the anode also face challenges during fuel cell operation. Specifically, as the concentration of carbon monoxide (CO) rises above about 10 ppm in the fuel the surface of the electrocatalyst can be rapidly poisoned. As a result, platinum (by itself) is a poor electrocatalyst if the fuel stream contains carbon monoxide (e.g., reformed-hydrogen gas typically exceeds 100 ppm). Liquid hydrocarbon-based fuels (e.g., methanol) present an even greater poisoning problem. Specifically, the surface of the platinum becomes blocked with the adsorbed intermediate, carbon monoxide (CO). It has been reported that H2O plays a key role in the removal of such poisoning species in accordance with the following reactions:Pt+CH3OH→Pt—CO+4H++4e− (1);Pt+H2O→Pt—OH+H++e− (2); andPt—CO+Pt—OH→2Pt+CO2+H++e− (3).As indicated by the foregoing reactions, the methanol is adsorbed and partially oxidized by platinum on the surface of the electrode (1). Adsorbed OH, from the hydrolysis of water, reacts with the adsorbed CO to produce carbon dioxide and a proton (2,3). However, platinum does not form OH species well at the potentials fuel cell electrodes operate (e.g., 200 mV-1.5 V). As a result, step (3) is the slowest step in the sequence, limiting the rate of CO removal, thereby allowing poisoning of the electrocatalyst to occur. This applies in particular to a proton exchange membrane fuel cell which is especially sensitive to CO poisoning because of its low operating temperatures.
One technique for increasing electrocatalytic cathodic activity during the reduction of oxygen and electrocatalytic anodic activity during the oxidation of hydrogen is to employ an electrocatalyst which is more active, corrosion resistant, and/or more poison tolerant. For example, increased tolerance to CO has been reported by alloying platinum and ruthenium at a 50:50 atomic ratio (see, D. Chu and S. Gillman, J. Electrochem. Soc. 1996, 143, 1685). The electrocatalysts proposed to date, however, leave room for further improvement. | {
"pile_set_name": "USPTO Backgrounds"
} |
Washing containers made of stainless steel have been known for some time now, whereby the whole body structure of the washing container is extruded from a cylindrical sheet and the rear wall of the washing container is attached to the stainless steel body by means of joining methods, such as for example welding. Once the steel washing container is made it is fixed to a so-called assembly base and the necessary equipment such as pump, sieve etc. Are introduced to the steel washing container or the underlying assembly base, where they are fixed in place. Aside from the material costs for stainless steel the method for manufacturing the steel washing container is time- and cost-intensive and is possible only by means of a plurality of different procedural steps, whereby each of the working steps takes place in different special tools. | {
"pile_set_name": "USPTO Backgrounds"
} |
Applicants claim priority under 35 U.S.C. xc2xa7119 of Japanese Application No. 338787 filed Nov. 29, 1999. Applicants also claim priority under 35 U.S.C. xc2xa7365 of PCT/JP00/08206 filed Nov. 21, 2000. The international application under PCT article 21(2) was not published in English.
This invention relates to a tungsten sealing glass to be used for a glass tube in a fluorescent lamp which serves as a light source of a lighting equipment for a liquid crystal display device or the like.
Liquid crystal display devices are broadly classified, depending upon manners for utilizing light sources, into a reflection-type of liquid crystal display devices using natural light or light from room lighting, and a transmission-type of liquid crystal display devices using light from a dedicated lighting equipment, for example, a backlight device. For those applications, such as notebook-type personal computers, TV monitors, and in-vehicle instruments or indicators, which require a high-quality display, the transmission-type liquid crystal display devices with the backlight device are mainly used. For wristwatches, small-sized electronic desk calculators, and the like which are of the type especially low in power consumption, the reflection-type liquid crystal display devices are used. Recently, there are, however, some devices of the low power consumption type which have a frontlight device used by being turned on whenever needed.
The principle of emission of a fluorescent lamp serving as the light source of the backlight device or the frontlight device is similar to that of an ordinary fluorescent lamp for lighting. Specifically, a mercury gas, a xenon gas, or the like enclosed therein is excited by discharge between electrodes so that the excited gas radiates ultraviolet rays to make a phosphor applied on the inner wall surface of a glass tube emit visible light. However, the fluorescent lamp serving as the light source of the backlight device or the frontlight device is greatly different from the ordinary fluorescent lamp in that the diameter of the glass tube is small and the wall thickness thereof is thin.
Conventionally, for the glass tube of the fluorescent lamp of this type, use has been made of a lead-soda soft glass because of easiness in workability and long-period achievements as a glass for illumination. As seal-in metal, use has been made of Dumet which is inexpensive.
As the liquid crystal display devices become smaller in thickness, lighter in weight, and lower in power consumption, the fluorescent lamp is also required to be smaller in diameter and thinner in wall thickness. However, the smaller diameter of the fluorescent lamp is structurally accompanied by a decrease in mechanical strength and an increase in heat generation of the lamp so that the glass tube is required to be high in strength and low in expansion. Further, in order to improve a luminous efficiency, development is made of a lighting circuit operated at a higher frequency. Consequently, the glass tube as an insulator is required to be high in volume resistivity and low in dielectric loss. Therefore, it is no longer possible for the conventional lead-soda soft glass material to satisfy the above-mentioned requirements.
In view of the above, consideration has been made of production of the fluorescent lamps by the use of a borosilicate hard glass which is high in thermal and mechanical strengths and advantageous in respect of electrical insulation in comparison with the lead-soda soft glass. As a result, a fluorescent lamp has been developed and commercialized which use a tungsten sealing glass and a tungsten metal already known as a combination of a hermetically sealable hard glass and a metal.
However, the above-mentioned glass tube of the fluorescent lamp for the backlight device is produced by directly using conventional tungsten sealing glass of a borosilicate material which has been generally used for a xenon flash lamp and simply by shaping and processing the material into a narrow tube, and therefore, has the following problems (i) through (iv).
(i) The glass is discolored by ultraviolet rays radiated from the excited mercury gas or the like (so-called ultraviolet solarization) of the glass. The discoloration of the glass causes decrease in brightness or deviation in luminous colors, leading to deterioration in quality of the liquid crystal display device.
(ii) The glass is a diversion of one originally intended to use for the xenon flash lamp and is, therefore, designed so as to allow transmission of a certain amount of ultraviolet rays in order to endure flashing of the xenon flash lamp. However, in case of use for the fluorescent lamp, such transmission of the ultraviolet rays causes discoloration and deterioration of other component parts in the backlight device or the frontlight device, for example, a light-guiding plate and a reflection plate made of resin.
(iii) Due to extremely high devitrification, the glass is liable to be devitrified and deteriorated during formation of the tube glass. It is therefore difficult to produce the glass tube with high dimensional accuracy. When the glass tube poor in dimensional accuracy is used, uniform application of the phosphor is impossible, resulting in nonuniform brightness. Moreover, in an optical system comprising the fluorescent lamp, the light-guiding plate, and the reflection plate, it is impossible to assemble these component parts together exactly in conformity with designed dimensions. This results in a decrease or a nonuniformity in brightness of a backlight device unit or a frontlight device unit itself.
(iv) Since the volume resistivity of the glass at 250xc2x0 C. is about 108.5 xcexa9xc2x7cm, electrical insulation is not sufficient. In case where the fluorescent lamp has a small diameter, a long size, and a high brightness, a voltage to be applied for lighting is high and reaches several hundred volts. However, in a conventional glass which is not high in electrical insulation, a leakage occurs to cause heat generation. In the worst case, the glass may be melted so that the function as the lamp will be lost completely.
It is therefore an object of the present invention to provide a tungsten sealing glass which is excellent in ultraviolet solarization resistance, ultraviolet shielding, devitrification, and electrical insulation and is therefore suitable for a glass tube of a fluorescent lamp for use in a backlight device or a frontlight device.
According to the present invention, there is provided a tungsten sealing glass for use in a fluorescent lamp, which has a composition of, by mass percent, 65-76% SiO2, 10-25% B2O3, 2-6% Al2O3, 0.5-5.8% MgO+CaO+SrO+BaO+ZnO, 3-8% Li2O+Na2O+K2O, 0.01-4% Fe2O3+CeO2, 0-10% TiO2+Sb2O3+PbO, and 0-2% ZrO2, where Na2O/(Na2O+K2O)xe2x89xa60.6. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is often desirable to sense the location of subsurface objects from outside of the surface of the material in which it is encased (i.e. an object buried underground). For example, sensing the presence of human-scale subsurface objects (both metallic and non-metallic) at relatively near-surface depths (i.e., between zero and 30 meters) can save time, costly explorative excavation, and avoid possible damage to subsurface objects through unguided excavation. Dangers related to digging up objects, such as explosive land mines or gas utility lines, do not have to be contended with or can be reduced if remote sensing from the surface locates the object prior to excavation.
A number of methods have been developed to locate subsurface objects. Subsurface objects, which can be referred to as anomalies, may have various compositions and also include an air pocket or any void or volume uniquely different than the surrounding homogeneous or predictably non-homogeneous material. Metallic objects can be found relatively easily with devices such as metal detectors and through a host of other technologies, such as Ground Penetrating Radar (GPR). It is, however, much more challenging to find non-metallic subsurface objects. The invention described herein is a passive method and apparatus for detecting both metallic and non-metallic subsurface objects, voids and other anomalies using the natural electromagnetic signal emanating from Earth's interior.
The Earth's interior is a highly dynamic structure comprised of multiple layers with a fluid behavior. As the Earth rotates, portions of this fluid move at different velocities and directions. This motion (as well as other factors including lightning, solar wind and flares, etc.) generate low level electromagnetic signals, which then travel outward and pass through the Earth's surface. One example of this phenomena is the well-known core-dynamo effect that creates the quasi-steady state geomagnetic field within the planet. Heating, conduction, and swirling of molten rock can also produce mechanical and electrical signals that travel towards the surface. As these signals travel towards the Earth's surface, they will be affected by the material through which they travel. This effect may show up as variations in signal strength, signal phase, frequency, etc. As the composition of the material varies, so will its effects on the signal passing through it. By monitoring, over an area, the signals emanating from below the Earth's surface, material variations can be detected. This effect can be employed and adapted to locating subsurface objects, voids or other anomalies.
One method of detecting underground structures and other anomalies is audio magneto tellurics (AMT), which monitors AC-signals in the audio frequency range to discover extremely large-scale geological structures. These structures, referred to herein as being of geologic scale, include, by way of example, layers of mineral deposits, rock formations, or other natural resources (such as, for example, coal seams). AMT and other known techniques may not be effective for detecting subsurface objects on smaller scales, at higher resolutions, or at shallower depths.
Another method for detecting underground structures and other anomalies is passive magneto tellurics, which relies on natural, lightening-driven atmospheric noise signals, such as lightening and magnetosphere activities. U.S. Pat. Nos. 4,507,611, 4,825,165 and 5,148,110 to Helms, et al., which are incorporated herein by reference in their entireties, disclose such and other methods for detecting subsurface anomalies. U.S. Pat. No. 6,414,492 to Myers, describes another method for detecting geophysical discontinuities in the Earth by measuring the electrical component of the Earth's electromagnetic field at frequencies below 5 kHz.
These identified methods are capable, to varying degrees, of detecting large, or geologic-scale anomalies at significant sub-surface depths. For example, passive magneto tellurics can detect geological-scale anomalies starting at depths from a few tens of meters to many kilometers, but lacks the resolution to detect small, human-scale objects. Similarly, the passive method disclosed in U.S. Pat. No. 5,414,492 can detect geologic-scale anomalies at depths greater than 22.5 meters. The identified methods are not, however, capable of detecting human-scale anomalies or detecting both metallic and non-metallic anomalies at more shallow, near-surface depths (i.e., between zero and 30 meters). For example, none of these methods is sufficiently capable of detecting human-scale anomalies, such as plastic pipes, storage tanks, land mines, or other man-made objects (referred to herein as human-scale objects), buried at near-surface depths. Moreover, the identified methods are capable of generating only relatively low-resolution representations or images of detected subsurface anomalies and have limited capability for determining characteristics of detected subsurface anomalies, such as composition.
Thus, there exists a need in the art for methods and apparatus to passively detect human-scale anomalies, to detect both metallic and non-metallic anomalies, to detect anomalies at near-surface depths, to provide higher resolution representations or images of detected subsurface anomalies, and to determine characteristics of detected subsurface anomalies, such as composition, than what presently is known or available in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Silk, as the term is generally known in the art, means a filamentous fiber product secreted by an organism such as a silkworm or spider. Silks produced from insects, namely (i) Bombyx mori silkworms, and (ii) the glands of spiders, typically Nephilia clavipes, are the most often studied forms of the material; however, hundreds to thousands of natural variants of silk exist in nature. Fibroin is produced and secreted by a silkworm's two silk glands.
Silkworm silk has been used in biomedical applications for over 1,000 years. The Bombyx mori specie of silkworm produces a silk fiber (known as a “bave”) and uses the fiber to build its cocoon. The bave, as produced, includes two fibroin filaments or “broins”, which are surrounded with a coating of gum, known as sericin—the silk fibroin filament possesses significant mechanical integrity. When silk fibers are harvested for producing yarns or textiles, including sutures, a plurality of fibers can be aligned together, and the sericin is partially dissolved and then resolidified to create a larger silk fiber structure having more than two broins mutually embedded in a sericin coating.
The unique mechanical properties of reprocessed silk such as fibroin and its biocompatibility make the silk fibers especially attractive for use in biotechnological materials and medical applications. Silk provides an important set of material options for biomaterials and tissue engineering because of the impressive mechanical properties, biocompatibility and biodegradability (Altman, G. H., et al., Biomaterials 2003, 24, 401-416; Cappello, J., et al., J. Control. Release 1998, 53, 105-117; Foo, C. W. P., et al., Adv. Drug Deliver. Rev. 2002, 54, 1131-1143; Dinerman, A. A., et al., J. Control. Release 2002, 82, 277-287; Megeed, Z., et al., Adv. Drug Deliver. Rev. 2002, 54, 1075-1091; Petrini, P., et al., J. Mater. Sci-Mater. M. 2001, 12, 849-853; Altman, G. H., et al., Biomaterials 2002, 23, 4131-4141; Panilaitis, B., et al., Biomaterials 2003, 24, 3079-3085). For example, 3-dimensional porous silk scaffolds have been described for use in tissue engineering (Meinel et al., Ann Biomed Eng. 2004 January; 32(1):112-22; Nazarov, R., et al., Biomacromolecules in press). Further, regenerated silk fibroin films have been explored as oxygen- and drug-permeable membranes, supports for enzyme immobilization, and substrates for cell culture (Minoura, N., et al., Polymer 1990, 31, 265-269; Chen, J., et al., Minoura, N., Tanioka, A. 1994, 35, 2853-2856; Tsukada, M., et al., Polym. Sci. Part B Polym. Physics 1994, 32, 961-968).
The desirability of sustained release has long been recognized in the pharmaceutical field. Sustained-release drug-delivery systems can provide many benefits over conventional dosage forms. Generally, sustained-release preparations provide a longer period of therapeutic or prophylactic response compared to conventional rapid release dosage forms. For example, in treatment of pain, sustained-release formulations are useful to maintain relatively constant analgesic drug release rates over a period of time, for example 12-24 hours, so that blood serum concentration of the drug remains at a therapeutically effective level for a longer duration than is possible with a conventional dosage form of the drug. In addition, whereas standard dosage forms typically exhibit high initial drug release rates that can result in unnecessarily elevated blood serum levels of the drug, sustained-release formulations can help maintain blood serum levels of the drug at or slightly above the therapeutically effective threshold. Such reduced fluctuation in blood serum concentration of the drug can also help prevent excess dosing.
Furthermore, sustained-release compositions, by optimizing the kinetics of delivery, also increase patient compliance as patients are less likely to miss a dose with less frequent administration, particularly when a once-a-day dosage regimen is possible; less frequent administration also increases patient convenience. Sustained-release formulations may also reduce overall healthcare costs. Although the initial cost of sustained-release delivery systems may be greater than the costs associated with conventional delivery systems, average costs of extended treatment over time can be lower due to less frequent dosing, enhanced therapeutic benefit, reduced side-effects, and a reduction in the time required to dispense and administer the drug and monitor patient compliance.
Many polymer-based systems have been proposed to accomplish the goal of sustained release. These systems generally have relied upon either degradation of the polymer or diffusion through the polymer as a means to control release.
Polymer-based attempts to develop sustained-release formulations have included the use of a variety of biodegradable and non-biodegradable polymer (e.g. poly(lactide-co-glycolide)) microparticles containing the active ingredient (see e.g., Wise et al., Contracgption, 1:227-234 (1973); and Hutchinson et al., Biochem. Soc. Trans., 13:520-523 (1985)), and a variety of techniques are known by which active agents, e.g. proteins, can be incorporated into polymeric microspheres (see e.g., U.S. Pat. No. 4,675,189 and references cited therein). In addition, various microcapsules, microparticles, and larger sustained-release implants have been used to deliver pharmaceuticals to patients over an extended period of time. For example, polyesters such as poly-DL-lactic acid, polyglycolic acid, polylactide, and other copolymers, have been used to release biologically active molecules such as progesterone and luteinizing hormone-releasing hormone (LH-RH) analogs, e.g., as described in Kent et al., U.S. Pat. No. 4,675,189, and Hutchinson et al., U.S. Pat. No. 4,767,628.
Unfortunately, the successes of current polymer-based sustained delivery systems have been limited. This is due, in large part, to their necessity on using organic solvents during preparation. Even solvents which are well tolerated in vivo, i.e. ethylacetate, may cause immunological reactions or anaphylactic shock. In addition, all organic solvents are volatile and require expensive production processes.
There is, therefore, a need for a biocompatible, biodegradable, sustained-release drug-delivery system. Such products should have the desired mechanical properties of tensile strength, elasticity, formability, and the like, provide for controlled resorption, and be physiologically acceptable. Moreover, such products should allow for ease of administration for a variety of in vivo indications and in best-case scenarios be inexpensive to manufacture. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years, with the rapid progress of information communication technology, various information processing systems for assisting more comfortable and safer living have been proposed. For example, an information system of collecting videos of a plurality of monitoring cameras via a network, analyzing traffic congestion, and using an analysis result for analysis of accidents or crimes has been proposed.
Further, Patent Literature 1 discloses an assistance system in which a server receives a video of a camera installed at an intersection through wireless communication, and informs a pedestrian of the presence of a vehicle or informs a vehicle of the presence of a pedestrian based on an analysis result of a video. | {
"pile_set_name": "USPTO Backgrounds"
} |
Peer-to-peer communication, and in fact all types of communication, depend on the possibility of establishing valid connections between selected entities. However, entities may have one or several addresses that may vary because the entities move in the network, because the topology changes, or because an address lease cannot be renewed. A classic architectural solution to this addressing problem is thus to assign to each entity a stable name, and to “resolve” this name to a current address when a connection is needed. This name to address translation must be very robust, and it must also allow for easy and fast updates.
To increase the likelihood that an entity's address may be found by those seeking to connect to it, many peer-to-peer protocols allow entities to publish their address through various mechanisms. Some protocols also allow a client to acquire knowledge of other entities' addresses through the processing of requests from others in the network. Indeed, it is this acquisition of address knowledge that enables successful operation of these peer-to-peer networks. That is, the better the information about other peers in the network, the greater the likelihood that a search for a particular resource will converge.
However, without a robust security infrastructure underlying the peer-to-peer protocol, malicious entities can easily disrupt the ability for such peer-to-peer systems to converge. Such disruptions may be caused, for example, by an entity that engages in identity theft. In such an identity theft attack on the peer-to-peer network, a malicious node publishes address information for IDs with which it does not have an authorized relationship, i.e. it is neither the owner nor a group member, etc. A malicious entity could also intercept and/or respond first before the good node responds, thus appearing to be the good node.
A malicious entity could also hamper PNRP resolution by flooding the network with bad information so that other entities in the network would tend to forward requests to nonexistent nodes (which would adversely affect the convergence of searches), or to nodes controlled by the attacker. This could also be accomplished by modifying the RESOLVE packet used to discover resources before forwarding it along, or by sending an invalid RESPONSE to back to the requester which generated the RESOLVE packet. A malicious entity could also attempt to disrupt the operation of the peer-to-peer network by trying to ensure that searches will not converge by, for example, instead of forwarding the search to a node in its cache that is closer to the ID to aid in the convergence of the search, forwarding the search to a node that is further away from the requested ID. Alternatively, the malicious entity could simply not respond to the search request at all. The PNRP resolution could be further hampered by a malicious node sending an invalid BYE message on behalf of a valid ID. As a result, other nodes in the cloud will remove this valid ID from their cache, decreasing the number of valid nodes stored therein.
While validation of an address certificate may prevent the identity theft problem, such is ineffective against this second type of attack that hampers PNRP resolution. An attacker can continue to generate verifiable address certificates (or have them pre-generated) and flood the corresponding IDs in the peer-to-peer cloud. If any of the nodes attempts to verify ownership of the ID, the attacker would be able to verify that it is the owner for the flooded IDs because, in fact, it is. However, if the attacker manages to generate enough IDs it can bring most of the peer-to-peer searches to one of the nodes controlled by him. At this point the attacker can fairly well control and direct the operation of the network.
If the peer-to-peer protocol requires that all new address information first be verified to prevent the identity theft problem discussed above, a third type of attack becomes available to malicious entities. This attack to which these types of peer-to-peer networks are susceptible is a form of a denial of service (DoS) attack. If all the nodes that learn about new records try to perform the ID ownership check, a storm of network activity against the advertised ID owner will occur. Exploiting this weakness, an attacker could mount an IP DoS attack against a certain target by making that target very popular. For example, if a malicious entity advertises Microsoft's Web IP address as the IDs IP, all the nodes in the peer-to-peer network that receive this advertised IP will try to connect to that IP (Microsoft's Web server's IP) to verify the authenticity of the record. Of course Microsoft's server will not be able to verify ownership of the ID because the attacker generated this information. However, the damage has already been done. That is, the attacker just managed to convince a good part of the peer-to-peer community to attack Microsoft.
Another type of DoS attack that overwhelms a node or a cloud by exhausting one or more resources is perpetrated by a malicious node that sends a large volume of invalid/valid PACs to a single node, e.g. by using FLOOD/RESOLVE/SOLICIT packets). The node that receives these PACs will consume all its CPU trying to verify all of the PACs. Similarly, by sending invalid FLOOD/RESOLVE packets, a malicious node will achieve packet multiplication within the cloud. That is, the malicious node can consume network bandwidth for a PNRP cloud using a small number of such packets because the node to which these packets are sent will respond by sending additional packets. Network bandwidth multiplication can also be achieved by a malicious node by sending bogus REQUEST messages to which good nodes will respond by FLOODing the PACs, which are of a larger size than the REQUEST.
A malicious node can also perpetrate an attack in the PNRP cloud by hampering the initial node synch up. That is, to join the PNRP cloud a node tries to connect to one of the nodes already present in the PNRP cloud. If the node tries to connect to the malicious node, it can totally be controlled by that malicious node. Further, a malicious node can send invalid REQUEST packets when two good nodes are involved in the synchronization process. This is a type of DoS attack that will hamper the synch up because the invalid REQUEST packets will initiate the generation of FLOOD messages in response.
There exists a need in the art, therefore, for security mechanisms that will ensure the integrity of the P2P cloud by preventing or mitigating the effect of such attacks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an electromagnetic coupling device, for example, to be used for feeding a set of papers in a copying machine.
2. Description of the Prior Art
Heretofore, there has been proposed, for example, an electromagnetic coupling device as disclosed in Japanese Utility Model Examined Publication No. Sho 63 (1988)-29949 having a construction as shown in FIG. 1 of the accompanying drawings with an intention to improve the devices as shown by FIG. 2 of this application, the same as FIG. 4 of the above-mentioned Utility Model Examined Publication No. Sho 63 (1988)-29949, which corresponding to U.S. Pat. No. 4,664,238 shown as one of the prior arts aimed to be improved on. The electromagnetic device as shown by the above-mentioned FIG. 2 is constructed in a manner as explained below.
Referring now to FIG. 2, numeral 1 denotes a stator as a yoke which receives therein a coil 2 and is fixedly engaged with a stationary member (not shown).
Numeral 3 is a rotor as one of a coupling member being fixedly attached with a lining 4 and is forcibly fitted around the outer periphery of a hollow rotary shaft 5 fabricated of an iron series magnetic material.
Numeral 6 designates a hub generally formed as a cylindrical member by plastic molding or by sintering alloy powders and the outer periphery of which is provided with a gear and is directly fitted around the outer periphery of said rotary shaft 5 so as to be permitted for relative slidable rotation.
Numeral 8 is a return leaf spring attached to the hub 6 and the portion which faces the said lining 4 is attached with an armature 9, as the other coupling member by means of a rivet 10.
A predetermined extent of gap g is maintained between the armature 9 and the rotor 3. Numeral 11 is a metal of an iron series alloy inserted between the stator 1 and the rotary shaft 5, 12 a spacer, 13 and 14 are retaining rings fitted around the rotary shaft 5 for positioning the stator 1, rotor 3 and the hub 6 in axial direction.
Numeral 15 in the drawing denotes a set screw for fixing the electromagnetic clutch to a driven shaft 16, which is normally inserted, at the operation site of the user, into the central opening of the hollow rotary shaft of the coupling device assembled and shipped from the manufacturer without placing such a driven shaft.
The electromagnetic coupling device or clutch of modified construction shown in FIG. 1 is constructed in a manner as explained below.
In FIG. 1, the same reference numerals are placed to the parts or components which are substantially the same as or similar to those shown in FIG. 2 and the detailed explanation thereof are omitted.
In FIG. 1, numeral 17 denotes a rotor which differs from the rotor 3 shown in FIG. 2 with respect to its feature that its magnetic pole 18 is formed such that a magnetic flux .PHI. directly flows through an air gap g.sub.1. Numeral 19 denotes a rotary shaft fabricated of a nonmagnetic oil impregnated plastics by molding technique, to which above-mentioned stator 1 and hub 6 are slidably attached.
The outer peripheral surface of the rotary shaft 19 is integrally formed with stepped portions 20 and a groove 21, respectively, as a fixing portion or portions and a straight ridge portion 22 as a fixing portion for positioning the rotor 17 in a circumferential direction.
In addition, the inner surface of the rotary shaft 19 is integrally formed with a fitting face 19a to be fitted onto the so-called D-cut face 23 of the driven shaft 16 so that the rotary shaft 19 will never rotate relative to the driven shaft 16.
Numeral 24 is a retaining ring to be fitted into the above-mentioned groove 21 for positioning the hub 6 in an axial direction.
The modified conventional electromagnetic clutch shown in FIG. 1 and explained above, however, still has several drawbacks as mentioned below.
(1) The rotor 17 can be secured, by virtue of the straight ridge portion 22, with respect to the rotary shaft 19 in the direction of rotation, so that these two members always rotate integrally. However, since they are fixed through the aforesaid straight ridge in axial direction, when the rotor 17 shifts toward the other coupling members 6 and 9, it is liable to be accompanied by an undesired rotation of the rotary shaft 19 following the rotation of the rotor 17.
(2) If the length of the magnetic pole 18 of the rotor 17 is reduced, the rotor 17 would become unstable, since the rotor 17 is liable to incline.
In addition, due to the fact that it necessitates magnetic pole 18, the cost for making the rotor 17 become inevitably expensive.
(3) Two retaining rings 24 and 24' shown in FIG. 1 bring about lengthy man hours in setting work and high production cost.
In other words, both the retaining ring 24 for preventing the hub 6 from escaping from the rotary shaft and the other retaining ring 24' for preventing the rotary shaft 19 from its slipping out from the driven shaft 16, are indispensable, and these two members are liable to increase the production cost as explained above, and
(4) Since the rotary shaft 19 and the rotor 17 are mechanically joined together, there is no such serious problems as in the above items (1) and (2), but the rotary shaft 19 made of magnetic soft iron results in high production cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to wireless telecommunications systems which use spread-spectrum methods.
Background: Spread-Spectrum Methods
One of the most important tools in telecommunications is spread spectrum methods. For example, in a direct-sequence spread-spectrum ("DS-SS") transmission, the signal is modulated by a code word which is known to both the transmitter and receiver. (The code word is merely a long pseudo-random bit sequence, that is, a sequence of bits which appears random but is determined by the input to a generator and is, therefore, reproducible. The sequence is generated identically, at both the transmitter and receiver, by custom hardware.) At the receiving end, digital filtering methods can be used to selectively recognize only the signals which are encoded with the expected pseudo- random bit sequence. Since the code word is used to separate signals which share the same spectrum space, these methods are also known as CDMA (code-division-multiple-access). To distinguish between the bits of the code word and the bits of data, the bits of the code word are referred to as "chips." The chip rate is usually much faster than the bit rate.
The term "spread spectrum" is also used to refer to two other techniques: "frequency-hopping" systems, in which the transmitter frequency changes in some way which the receiver can predict; and "chirp" modulation or Pulse-FM in which a carrier is swept over a wide band during a given pulse interval. Frequency-hopping systems are less important for civilian telecommunications.
CDMA methods are commonly used in cell phone systems. In such a system, adjacent base stations must have different spreading sequences (long pseudo-noise or "PN" codes), and the mobile unit must be able to lock onto the correct long code (spreading sequence) for each base station it may interface to. The mobile unit will already know the set of possible long codes which it may encounter, but will not know a priori which long code it will encounter when switched on. In most systems the mobile unit will also not know what the received long code offset is, that is, the timing of the transmission of the long code is not known. However, it is highly desirable for the mobile unit to acquire the received long code quickly. This is an essential step in the handoff from one base station to another. Base station handoff is particularly a problem as the number of base stations becomes larger.
Thus the acquisition of the long code during initial acquisition or handoff is a critical bottleneck. A technique for accelerating this has been proposed in the NTT DoCoMo ("Nippon Telegraph & Telephone Mobile Communications Network, Inc.") System. In this system, each base station transmits a signal on a "pilot" (or "perch") channel which helps the mobile system to acquire the correct long code for that base station.
The DoCoMo System
The DoCoMo System introduced some features to make the PN acquisition of the long code simpler. In the DoCoMo system, PN acquisition is accomplished by intermittently broadcasting a symbol which is not encoded by the base station's long code.
Thus, a mobile receiver can simply search for the particular short code ("SC0") which is shared by every base station. When the mobile unit finds this short code, SC0, it can also look to see which of the short codes SCk is being broadcast synchronously with the SC0 code. The SCk code will show which group of transmitters the base station belongs to. The receiver then uses this information to shorten its search through the complete set of codes. Once this information has been acquired, there are still two ambiguities which must be resolved: the receiver must still identify which long code, within the reduced group of possible long codes, is being broadcast; and the receiver must still determine the phase of the long code.
That is, within the timing architecture of the DoCoMo system, a long-code-masked symbol is broadcast once in every ten symbols. Since there are 160 symbols in the complete long code, the long-code-masked symbols will be broadcast 16 times before the long code has repeated once. Thus in the DoCoMo system the receiver has to discover which of the 16 repetitions of the short code (within the long code period) has been detected. (Since it is not known which long code is being used, it is necessary to check all possible phases of the reduced set of possible long codes.) See Higuchi et al., "Fast cell search algorithm in DS-CDMA mobile radio using long spreading codes," 1997 IEEE 47th Vehicular Technology Conference vol.3 pp.1430-4, which is hereby incorporated by reference.
Spread-Spectrum Telephony with Accelerated Code Acquisition
The present application discloses an improved mobile communications architecture, in which each base station broadcasts not only data which has been spread by that station's long code word, but also (intermittently) code identification data which has not been spread. The code identification data is a block code which includes multiple symbols, so that multiple intermittent transmissions are required to complete the transmission of the code identification data. This transmission lets the mobile station shorten the search for the base station's long code word in two ways: the code identification data gives at least some information about the long code itself; and the phase of the block code gives at least some information about the phase of the long code word.
This advantageously results in a system where the amount of searching which a mobile unit must do to acquire the correct code for a new base station is greatly reduced. This results in the further advantage of faster acquisition of a new base station during hand off. | {
"pile_set_name": "USPTO Backgrounds"
} |
A semiconductor device such as, for example, a large scale integrated circuit (LSI) or a metal oxide semiconductor (MOS) transistor is manufactured by performing a processing such as, for example, doping, etching, chemical vapor deposition (CVD), or sputtering on a semiconductor substrate (wafer) which is a substrate to be processed.
Here, when doping is performed on the substrate, doping at a low concentration may be required. Japanese Patent Application Laid-Open No. 2004-128209 discloses a technology related to doping at a low concentration on the substrate.
In Japanese Patent Application Laid-Open No. 2004-128209, it is described that, in order to perform low concentration doping, it is required to lower a pressure within a vacuum container, and decrease a partial pressure of a doping gas. Further, in Japanese Patent Application Laid-Open No. 2004-128209, it is described that, when helium (He) that does not cause appreciable ion irradiation damage to a sample is used as a dilution gas, an electric discharge is hardly initiated at a low pressure. Japanese Patent Application Laid-Open No. 2004-128209 discloses a plasma doping method for solving these problems. The plasma doping method includes a first step of placing a sample on a sample electrode within a vacuum container, a second step of exhausting the inside of the vacuum container while supplying a gas into the vacuum container and generating plasma within the vacuum container by supplying a high frequency electrode to a plasma source while controlling the pressure inside of the vacuum container to a first pressure, and a third step of controlling the pressure inside of the vacuum container to a second pressure that is lower than the first pressure while the plasma is generated. In Japanese Patent Application Laid-Open No. 2004-128209, helium is used as a dilution gas and inductively-coupled plasma (ICP) is used as a plasma source. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to a power supply apparatus that wirelessly supplies power and a method of wirelessly supplying power.
Description of the Related Art
In recent years, there is known a power supply system that wirelessly transmits power without connection through a connector. With regard to such a power supply system, there is known a power supply apparatus configured to conduct a data communication for transmitting a command to an electronic device and to transmit power to the electronic device through use of the same antenna (Japanese Patent Application Laid-Open No. 2008-113519).
In such a power supply system, the power supply apparatus is demanded to control power supply to an electronic device based on a status of the electronic device. In that case, it is desired that the electronic device periodically detect the status of the electronic device and that the power supply apparatus periodically acquire information indicating the status of the electronic device detected by the electronic device from the electronic device.
However, in the above-mentioned power supply system, a relationship between a timing at which the electronic device updates the information indicating the status of the electronic device and a timing at which the power supply apparatus acquires the information indicating the status of the electronic device from the electronic device is not taken into consideration. Therefore, the power supply apparatus sometimes acquires the information indicating the status of the electronic device from the electronic device before the information indicating the status of the electronic device is updated. In this case, the information indicating the status of the electronic device which has been acquired from the electronic device may not be correct as information indicating a current status of the electronic device. This may cause a situation in which desired power cannot be supplied to the electronic device even when the power supply apparatus controls power to be supply to the electronic device on the basis of the information indicating the status of the electronic device which has been acquired from the electronic device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a lid latch mechanism for a clean box for transferring and reserving various articles to be processed such as semiconductor wafers in a clean condition in a process for manufacturing semiconductors, electronic part related products, optical discs or the like.
2. Related Background Art
Recently, in a manufacturing process that requires a high level clean environment such as a semiconductor device manufacturing process, a method such as a mini-environment or a local clean space where an entire factory is not kept clean but only the ambient environment for products is kept under a clean condition has been adopted. In brief, only the interior of the respective processing apparatus is kept clean, which is used in the manufacturing process, and the transfer and reservation of the articles to be processed between the respective processing apparatus (clean apparatus) are performed by using containers (i.e., clean boxes) whose interior is kept clean.
The clean box is a substantially rectangular box body opened at one surface, and has a plate-like door (i.e., lid) for closing the opening. In the case where the article to be processed such as a semiconductor wafer received in the clean box is loaded into a processing apparatus, the loading operation is performed through an additional device called a load port, mounted on the processing apparatus. The load port is a device mounted on the processing apparatus for opening and closing the lid of the clean box while keeping the clean box and the interior of the processing apparatus under the clean condition and for making it possible to transfer the article to be processed such as a semiconductor wafer housed in the clean box into the interior of the processing apparatus. The load port is sometimes called an opener because it opens the lid of the clean box.
The clean boxes are categorized into two types in accordance with the types of the associated load ports, i.e., a bottom down type which is opened at the bottom surface, for taking out the housed article in the downward direction of the box and a side open type which is opened at a side surface of the clean box for taking out the housed article in the sideway.
An example of the bottom down type clean box is shown in FIGS. 1A and 1B. FIG. 1A is a side elevational cross-sectional view of the clean box and FIG. 1B is a plan view of the lid (door).
As shown in FIG. 1A, a clean box 100 is composed of a substantially square-shaped box body 101 opened at one side surface (a bottom surface in case of the bottom down type clean box shown in FIGS. 1A and 1B) and a lid 102 for closing the opening of the box body 101. A shelf-like carrier 103 for holding the stacked semiconductor wafers to be received in the box at an equal interval is fixed above the lid 102 in the example shown in FIGS. 1A and 1B. A flange portion 101a expanded outwardly is provided around the bottom surface opening of the box body 101 into which the lid 102 is inserted/engaged.
An annular groove 110 for vacuum suction is formed in a circumferential edge portion of the surface (upper surface) facing the box body 101 of the lid 102 in the example shown in FIGS. 1A and 1B. O-rings used as elastic seal members are mounted along the inside and the outside of the annular groove 110 along the annular groove 110, respectively. Under the condition that the lid 102 closes the opening of the clean box body 101 in FIG. 2, the suction space formed by the annular groove 110 and the flanged portion 101a of the box body 101, i.e., a space of an interior of the annular groove 110 closed at its upper portion by the flanged portion 101a of the box body 101 is evacuated to thereby suck the lid 102 to the box body 101. The evacuation is performed from the back side of the lid by a means (not shown) through a gas passage 112 provided in communication with the annular groove 110. For instance, the vacuum suction method using such a suction groove is described in Japanese Patent Application Laid-Open No. 10-321696.
In such type clean box, there is provided a mechanical latch for preventing the falling off of the lid since there is a fear that the lid would be fallen off in the case where the vacuum suction is broken down due to leakage at the seal portion or the like.
Also, in a conventional clean box where the above-described vacuum suction groove is not provided, a seal member such as an O-ring is mounted so as to surround the opening of the box on the lid 102 or the box body flange portion 101a. Also in this case, although the latch mechanism for latching the lid to the box body is provided, the function of the latch mechanism is not only to prevent the lid from falling off but also to fix the lid to the body under the sealed condition by depressing the lid to the box body and deforming the seal member (O-ring) between the box body and the lid.
An example of the conventional lid latch mechanism to be used for both the clean box provided with the above-described vacuum suction annular groove and the clean box provided with no annular groove is shown in FIG. 2. FIG. 2 is a bottom view of the lid of the clean box 100 shown in FIGS. 1A and 1B.
The latch mechanism has a circular rotary cam plate 201 provided rotatably substantially at a center of the interior of the lid 102. Two cam grooves 201a and 201b are formed in the rotary cam plate 201. The latch mechanism also has slidable latch members 203 and 204. The latch members 203 and 204 are slidable up and down under the guidance of guide members 206 and 207. Cam pins 205 and 206 are implanted in the latch members 203 and 204, respectively, and the cam pins 205 and 206 are engaged with the cam grooves 201a and 201b of the rotary cam plate 201, respectively.
As shown in FIG. 2, the respective cam grooves 201a and 201b are formed into a shape such that a distance from the center of the rotary cam plate 201 is changed depending on the circumferential position thereof. The latch members 203 and 204 are moved up and down in FIG. 2 in response to the clockwise and counterclockwise rotation of the rotary cam plate 201 in accordance with the cam shape. Thus, in response to the rotational position of the rotary cam plate 201, the respective tip end portions 203a and 204a may take positions retracted and projected with respect to the circumference of the lid 102.
In the case where the lid is mounted on the clean box body 101, when the rotary cam plate 201 is rotated in the counterclockwise direction of FIG. 2 so that the tip end portions 203a and 204a of the latch members are projected from the circumference of the lid 102, the tip end portions are engaged with tabs or holes (not shown) formed in the clean box body 101 to thereby latch the lid 102 to the clean box body 101. Inversely, when the rotary cam plate 201 is fully rotated clockwise, the latch members 203 and 204 are slid to the innermost position indicated by two-dot-and-dash lines in FIG. 2. In this case, the tip end portions 203a and 204a of the latch members are retracted from the circumference of the lid to thereby release the engagement with the clean box body.
A latch drive portion 209 is provided at the center of the rotary cam plate 201 for rotatably driving the cam plate 201. A pair of circumferential holes 201c are formed in the latch drive portion 209.
A mechanism for opening/closing the above-described latch is provided in the load port for transferring the article to be processed within the clean box to the processing apparatus. A latch opening/closing mechanism having two pins that engage with the circumferential holes 201c of the above-described latch drive portion 209 of the latch mechanism is provided in the load port table on which the clean box 100 is laid on the load port. The pins are driven to rotate the latch drive portion 209 to thereby open/close the latch of the clean box lid 102.
The above-described conventional lid latch mechanism has the following disadvantage. First of all, the mechanism is complicated and needs a large number of mechanical parts. Accordingly, the cost is increased, and on the other hand, the possibility of breakdown is increased so that the operation would frequently be discontinued. Also, when the latch mechanism is to be closed and opened, a mechanism for opening/closing using a power of a motor, an actuator or the like is required (the latch opening/closing mechanism provided in the load port in the above-described conventional example). Also, this requires the increased cost and increases the possibility of breakdown due to its complicated structure.
Accordingly, there is a high demand to latch the lid to the clean box with a simpler mechanism.
An object of the present invention is to provide a lid latch mechanism for a clean box, which has a simple structure for solving the above-noted defects. According to the present invention, there is provided a lid latch mechanism for latching a lid of a clean box having a box body opening at one surface and the lid for closing the opening, comprising: a latch member that is mounted on the box body and pivotal about a single shaft; a latch engagement portion provided on the lid for engaging the latch member in its predetermined pivotal position; and a biasing member for biasing the latch member toward the latch engagement portion, wherein a guide surface is provided on a portion, facing the outside of the opening of the box body of the latch member, and when the clean box is set on a load port, the guide surface is brought into contact with and pressed by a latch guide provided on the load port so that the latch member pivots to thereby release the latch of the lid.
Also, according to the present invention, there is provided a lid latch system for a clean box in a clean transfer system composed of the clean box having a box body opening at one surface and a lid for closing the opening and a load port for opening the clean box and loading into a clean apparatus an article to be transferred within the clean box, comprising: a clean box latch mechanism including a latch member that is mounted on the box body and pivotal about a single shaft, a latch engagement portion provided on the lid for engaging the latch member kept in a predetermined pivotal position, and a biasing member for biasing the latch member toward the latch engagement portion; and a latch guide mechanism as a projection provided on the load port, wherein when the clean box is set on the load port, the latch member is brought into contact with and pressed by the latch guide mechanism so that the latch member pivots to release the latch of the lid.
In the lid latch mechanism for the clean box and the lid latch system according to the present invention, it is possible to use a structure in which upon dismounting the clean box from the load port, the pressure of the latch mechanism by the latch guide on the load port is released, and then the latch member is forced by the biasing member to pivot to thereby engage with the latch engagement portion of the lid so that the lid is automatically latched.
It is preferable that the latch mechanism be provided in each of two opposite sides of the opening of the box body.
In the lid latch mechanism for the clean box and the lid latch system according to the present invention, it is preferable to use a lid latch mechanism for such a type clean box that the clean box has an annular groove formed so as to surround the opening in at least one of the box body and the lid, so that a vacuum suction annular space is formed between the box body and the lid in a condition where the lid closes the opening of the box body. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the processing of periodic information signals, such as, video signals, and more particularly is directed to apparatus by which time base errors introduced during recording and/or reproducing of such signals may be removed.
2. Description of the Prior Art
Video signals are frequently recorded on magnetic tape and subsequently reproduced for later broadcasting or viewing purposes. During the reproduction of recorded video signals, time base or frequency errors are usually introduced by reason of expansion or contraction of the record medium during or after recording, variation in the speed of the tape relative to the magnetic head or heads during recording or reproduction, variation between the tape recording speed and the tape reproducing speed, and the like. The presence of such time base errors in the reproduced video signals cause a frequency shift of the latter which can result in many observable undesirable effects, particularly when the reproduced video signals are to be transmitted or broadcast and may be mixed with live broadcast material that do not have such time base errors. The observable undesirable effects resulting from relatively small time base errors are a smeared or jittery picture with erroneous intensity variations and, in the case of color video signals, improper color display. When the time base errors are large, the reproduced picture will fail to lock horizontally or vertically.
In an existing time base corrector for substantially removing time base errors from video signals, for example, as disclosed in U.S. Pat. No. 3,860,952, issued Jan. 14, 1975, the incoming video signals are converted from analog to digital form and temporarily stored in a memory. Time base errors are removed from the video signals by writing the digitized signals in the memory at a clocking rate which varies in a manner generally proportional to the time base errors, and by fetching or reading out these stored signals at a standard clocking rate. After such reading out of the digitized video signals, the latter are reconverted to analog form and applied to an output terminal. The memory used in the known time base corrector comprises a plurality of memory units each capable of storing a plurality of horizontal lines of video information. A sequence control unit controls the selection of each memory unit for writing and reading so that the sampled video information is sequentially stored by cyclically enabling the plurality of memory units and serially storing one or more lines of digitized video information in each selected memory unit, and further so that, contemporaneously with the storage of sampled video information in a selected memory unit, and sequence control unit enables the video information stored in a different one of the memory units to be sequentially fetched or read out therefrom, with the enabling of the memory units for the reading out of the information stored therein being also effected in a cyclical manner.
Further, it has been proposed that, in a time base corrector as described above, those line intervals of the incoming video signals in which dropouts occur should be omitted from the output of the time base corrector and replaced by previously stored line intervals of similar video information.
However, problems are encountered in the above described time base correctors, particularly when used for correcting time base errors in NTSC color video signals. More particularly, as is well known, the polarity or phase of the chrominance subcarrier is reversed for successive horizontal or line intervals of NTSC color video signals. Therefore, if the time base corrector is designed, as described above, so as to compensate for dropout by substituting for the line interval or intervals containing dropout, a previously stored line interval or intervals of similar video information, the chrominance subcarrier of each substituted line intervals of video information in the output has to have the same polarity or phase as the chrominance subcarrier of the replaced line interval. Thus, the time base corrector requires a relatively complicated circuit arrangement for detecting the phase or polarity of the chrominance subcarrier and for controlling the phase or polarity of the chrominance subcarrier in the output from the time base corrector so as to ensure that the same is reversed for successive line intervals even when compensating for drop out in the incoming video signals.
Furthermore, in time base correctors, as described above, the time base error of the incoming video signals is usually detected from the burst signals of the latter. Therefore, the frequency of the write clock pulse signal modulated by the time base error, that is, the frequency at which the digitized signals are sampled for writing in the memory, is selected to be a whole multiple of the burst or chrominance subcarrier frequency f.sub.c which, in the case of NTSC color video signals, is about 3.58 MHz. It is also necessary that the write clock pulse frequency be in interleaving relation to the horizontal or line frequency f.sub.h of the incoming video signals which is 15.75 KHz in the case of NTSC color video signals. Such interleaving relation is achieved when the write clock pulse frequency is (2n-1)/2 .times. f.sub.h, in which n is any desired integer. However, since the burst frequency 3.58 MHz of an NTSC color video signal is 15.75 KHz .times. 1/2 .times. 455, the interleaving relation of the write clock pulse frequency to the horizontal or line frequency can be achieved when the write clock pulse frequency is selected to be (2N-1) .times. f.sub.c, in which N is any desired integer. Thus, for example, when the write clock frequency is 10.74 MHz, that is, 3.times.f.sub.c for NTSC signals, the incoming video signals are sampled 682.5 times during each horizontal or line interval thereof. This means that, in alternate horizontal or line intervals of the incoming video signals, 682 and 683 words are respectively written in the memory units which are selectively enabled for the writing operation. The different number of words to be stored in the memory units during successive line intervals of incoming NTSC color video signals may result in complexity of the sequence control unit for controlling the writing and reading operations. | {
"pile_set_name": "USPTO Backgrounds"
} |
Marketplace considerations have placed significant demands on packaging for increased circuit densities. New packaging concepts have evolved to meet these requirements utilizing processes that approach the levels of device technology.
Several new packaging methods have been developed to address this need, and one of them is the use of decals.
Decal technology initially relied on utilization of an adhesive that served a dual purpose: 1) bonding of the metallurgy foil and finished images to the carrier throughout the entire process, and 2) complete release of polymer and metallurgy at time of transfer to the substrate.
Early decals were produced from a three-part laminate. The process laminate was composed of a metallurgy layer in the form of a thin metal or alloy foil which was bonded to a polymer carrier with an adhesive. The adhesive also served as a release agent permitting separation from the carrier at time of transfer. Reliability of conductor release was assured because the surface energy of the polymer layer was much less than that of either the conductor or the substrate onto which the decal was transferred. See, for example, U.S. Pat. No. 4,879,156. These early solid conductors were generated from a photolithography and etching process.
Early work rapidly revealed a limitation of such decal systems to reliably achieve adequate feature locations. Movement of the images when compared to glass artwork was noticeable, and was found to emanate from absorption and desorption of process fluids. The film carriers in some cases either expanded or contracted depending upon their placement on the absorption isotherm when they were subjected to process ambients.
Having identified the limitations of organic polymers as carriers, work centered upon identification of material that maintained dimensional integrity throughout the process and could be used as a carrier.
The material selected to replace the unstable polymer was a metal foil, which was not subject to absorption of process liquids or deformation when exposed to elevated process temperatures.
Using such a metal foil in the laminate structure, it was rapidly learned that release of metallurgy from the metal foil carrier could not be accomplished uniformly. This was a result of equal bonding of the release adhesive to both metal surfaces, i.e., the metallurgy layer and the metal foil carrier.
To overcome this characteristic, the surface energy of the metal carrier was reduced to a level much less than that of the decal metallurgy and the substrate accepting the decal. Reliable release of the conductor metallurgy from the metal carrier would then be provided. The desired bonding characteristics were achieved by coating the surface of the carrier foil with a material, such as a polyimide, to restore the release properties of the original system. The metal carrier with a two-layer release agent was found to perform as well as the original carrier with respect to conductor transfer providing improved capability for feature locational accuracy.
Utilization of additive processes provides an alternate method for formation of conductors directly on a metal carrier. Use of plating or lift-off recesses in conjunction with photolithographic processes allows for conductor generation in an additive manner. This technique provides a means for attaining increased package densities due to the inherent superior image formation capability of additive processes.
A simplified decal structure was developed enabling direct release of conductors from a metal carrier without the use of release agents. This technique was applicable to conductor generation by either additive or subtractive processes, and allowed for wider range of metals and alloys to be utilized as conductors. This has been discussed in U.S. Pat. No. 4,879,156.
Another packaging method is the intaglio printing process. Images are depressed below the surface of the printing plate such that an impression from the design yields an image in relief, as disclosed in U.S. Pat. No. 4,879,156. This technique can be utilized in packaging processes by etching of the conductor pattern into the surface of the metal carrier to a depth equal to the required thickness of the finished metallurgy followed by plating of the required metallurgy to form the conductors. This technique enables generations of conductors formed in a shape defined by the image recessed into the carrier.
There are several other techniques that have been used for packaging interconnection, such as one disclosed in U.S. Pat. No. 3,541,222, where a connector screen for interconnecting adjacent surfaces of boards or modules is disclosed. The connector screen comprises of conducting connector elements that are separated by a web of nonconducting material.
A connector assembly for a circuit board testing machine is disclosed in U.S. Pat. No. 4,707,657. An electrically insulating material having circuit tracks of an electrically conductive material is arranged on opposite side surfaces. The test points are electrically insulated from each other.
A process to form Multilayered Ceramic (MLC) Substrates, having solid metal conductors, is taught in U.S. Pat. No. 4,753,694. The MLC substrate involves, forming a pattern of solid, nonporous conductors to a backing sheet having a release layer, then transferring the pattern to a ceramic green sheet.
U.S. Pat. No. 4,926,549, discloses a method of producing electrical connection members. A carrier is formed on a first electrically conductive member, holes are etched in portions of the carrier to expose the first electrically conductive member and to form recesses therein. The recesses have a diameter larger than the diameter of the corresponding hole. The respective holes formed in the carrier are filled with a second electrically conductive material, and subsequently, the first electrically conductive member is removed from the carrier, thereby, leaving a carrier having a plurality of an electrically conductive material protruding out of the upper and lower surfaces of the carrier. The carrier having the plurality of electrical conducting protrusion can then be used to connect a semiconductor device to a circuit board.
IBM Technical Disclosure Bulletin, Vol. 27, No. 3, pp. 1404-1405 (August 1984) discloses a process for transferring thin-film conductor patterns to a multilayer ceramic substrate. Conductive patterns are formed on a carrier. The conductive patterns are then completely blanketed by an insulator and holes are made in the insulator to expose the upper surface of the conductive pattern. The holes are then filled with an electrically conductive material and after securely attaching this assembly to a multilayer substrate, the carrier is removed.
One of the problems that has arisen in the earlier work is the formation of gaps at the interface between the vias, such as copper vias, and the insulator sidewalls, such as ceramic sidewalls. This kind of gap allows the infiltration and entrapment of fluids, especially during the post-sinter processing. As a remedy for this problem, polyimide backfilling of the gaps has being practiced. This process has its own inherent drawbacks, such as the lack of a good bond between the polyimide and the copper vias, and the difficulty in fully curing the polyimide which has infiltrated the interior of the substrate. These inherent drawbacks cause defects in the thin film redistribution structures which are subsequently deposited on the top surface of the substrate.
The top surface metallization feature sizes are limited by the present processing techniques. Additionally, via gaps are being generated which is leading to a permeation problem in subsequent processing.
This invention provides a TFR (Thin Film Redistribution) decal structure having studs for via registration. This structure is laminated to the MLC substrate, then co-fired, thus providing "hermeticity." The process of this invention does not generate cracks in the substrates, such as in previous top surface processes. Fine line metallization is also achieved. Additionally, ready alignment of the top surface features to vias is achieved.
In this invention a process is also disclosed which does away with the thin film processing on ceramic substrates and utilizes novel etching techniques and decal structures in order to build the equivalent of thin film redistribution (TFR) prior to sintering and which would also survive the sintering cycle.
The decal structure consists of redistribution lines, C4 (Controlled Collapse Chip Connection) pads on top of solid metal studs (acting as electrical interconnects) and EC (Engineering Change) pads. In this process, the only post-sinter processing needed would be to plate Ni and Au with some sort of ball limiting structure for the C4's.
This invention also focuses upon the effort to establish solid conductors that are transferable to substrates as a viable packaging approach.
This invention also describes several unique processing methods associated with the fabrication of solid transferable electrical conductors. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to tertiary alkylphosphorodichloridite and derivatives thereof, including synthesis of such compounds which are further utilized in the synthesizing of compounds such as derivatives of phosphorus acid.
2. Description of the Prior Art
"Organophosphorus Compounds" by G. M. Kosolapoff, published by John Wiley & Sons, Inc. (1950), discloses, on page 180, that compounds of the general class ROPCl.sub.2 are obtained by the addition of the appropriate alcohol to a moderate excess of the stoichiometric amount of the phosphorus trichloride needed to react with the alcohol. Excess phosphorus trichloride is used to suppress the continued substitution of the chlorine atoms of the ROPCl.sub.2 with RO.sup.- groups. Thus, the overall reaction may be represented by the formula: EQU ROH + PCl.sub.3 .fwdarw. ROPCl.sub.2 + HCl (A)
however, when the R group is aliphatic, the reaction is subject to complications which depend on the structure of the alcohol used. Thus, while primary and secondary alcohols yield desired dichlorophosphites, tertiary alcohols yield undesirable alkyl chlorides.
Articles by Gerrard et al., J. Chem. Soc. 1953, p. 1920, and Fertig et al., J. Chem. Soc. 1958, p. 1488 show unsuccessful attempts at forming dichlorophosphites from tertiary alcohols. Gerrard reported that all attempts to form the tertiary alkylphosphorodichloridite by the interaction of phosphorus trichloride and a tertiary alcohol failed.
Also, in the Kosolapoff book, p. 184, it is shown that the reaction of dichlorophosphites with 1 mole of an alcohol in the presence of an equivalent of a tertiary base is the best preparation available for dialkyl chlorophosphites: EQU ROPCl.sub.2 + ROH + Base .fwdarw. (RO).sub.2 PCl + Base .HCl (B)
mark et al., in J. Organic Chemistry, Vol. 29, p. 1006 (1964), show the formation of compounds having the formula: EQU (t - C.sub.4 H.sub.9 O).sub.2 P(O)H
via the thermal decomposition of tri-t-butylphosphite, viz, ##STR4## | {
"pile_set_name": "USPTO Backgrounds"
} |
There are large numbers of known methods of sterilizing materials. Many methods involve heating a material to a temperature at which pathogens are killed or inactivated. Other methods involve exposing the material to compounds which kill or inactivate pathogens which are contacted by the compounds. Still other methods involve irradiating a material with a sufficient amount of a particular type of radiation for a period of time sufficient to inactivate, disrupt or kill pathogens in the material. These methods are generally directed toward killing bacteria and inactivating viruses present in or on the material. Although sterilization methods may be quite affective in killing bacteria or inactivating viruses, they do not generally inactivate pathogenic proteins such as prions which can be responsible for a number of fatal diseases.
There are a considerable number of diseases associated with a conformationally altered protein. For example, Alzheimer's disease is associated with APP, A.beta. peptide, .alpha.1-antichymotrypin, tau and non-A.beta. component. Many of these diseases are neurological diseases. However, type II Diabetes is associated with Amylin and Multiple myeloma-plasma cell dyscrasias is associated with IgGL-chain. The relationship between the disease onset and the transition from the normal protein to the conformationally altered protein has been examined very closely in some instances such as with the association between prion diseases and PrP.sup.Sc.
Prion diseases are a group of fatal neurodegenerative disorders that can occur in hereditary, sporadic, and infectious forms (Prusiner, S. B. Scrapie prions. Annu. Rev. Microbiol. 43, 345-374 (1989)). These illnesses occur in humans and a variety of other animals (Prusiner, S. B. Prions. Proc. Natl. Acag. Sci. USA 95, 13363-13383 (1998)). Prions are infectious proteins. The normal, cellular form of the prion protein (PrP) designated PrP.sup.C contains three .alpha.-helices and has little .beta.-sheet; in contrast, the protein of the prions denoted PrP.sup.Sc is rich in .beta.-sheet structure. The accumulation of PrP.sup.Sc in the central nervous system (CNS) precedes neurologic dysfunction accompanied by neuronal vacuolation and astrocytic gliosis.
The spectrum of human prion diseases includes kuru (Gajdusek, D. C., Gibbs, C. J., Jr. & Alpers, M. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209, 794-796 (1966)), Creutzfeldt-Jakob disease (CJD) (Gibbs, C. J., Jr., et al. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161, 388-389 (1968)), Gerstmann-Straussler-Scheinker disease (GSS) and fatal familial insomnia (FFI) (Goldfarb, L. G., et al. Fatal familial insomnia and familial Crcutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258, 806-808 (1992); Medori, R., et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology 42, 669-670 (1992)), and a new form of human prion disease, new variant CJD (nvCJD), which has emerged in Great Britain and France (Will, R. G., et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925 (1996); Cousens, S. N., Vynnycky, E., Zcidler, M., Will, R. G. & Smith, P. G. Predicting the CJD epidemic in humans. Nature 385, 197-198 (1997); Will, R. G., et al. Deaths from variant Creutzfeldt-Jakob disease. Lancet 353, 979 (1999)). Several lines of evidence have suggested a link between the nvCJD outbreak and a preceding epidemic of bovine spongiform encephalopathy (BSE) (Will, R. G., et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925 (1996); Bruce, M. E., et al. Transmissions to mice indicate that `new variant` CJD is caused by the BSE agent. Nature 389, 498-501 (1997); Hill, A. F., et al. The same prion strain causes vCJD and BSE. Nature 389, 448-450 (1997); Lasmezas, C. I., et al. BSE transmission to macaques. Nature 381, 743-744 (1996)). Although it is too early to predict the number of nvCJD cases that might eventually arise in Great Britain and elsewhere (Cousens, S. N., Vynnycky, E., Zeidler, M., Will, R. G. & Smith, P. G. Predicting the CJD epidemic in humans. Nature 385, 197-198 (1997)), it is clear that effective therapeutics for prion diseases are urgently needed. Unfortunately, although a number of compounds including amphotericins, sulfated polyanions, Congo red dye, and anthracycline antibiotics have been reported as prospective therapeutic agents (Ingrosso, L., Ladogana, A. & Pocchiari, M. Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol. 69, 506-508 (1995); Tagliavini, F., et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276, 1119-1122 (1997); Masullo, C., Macchi, G., Xi, Y. G. & Pocchiari, M. Failure to ameliorate Creutzfeldt-Jakob disease with amphotericin B therapy. J. Infect. Dis. 165, 784-785 (1992); Ladogana, A., et al. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J. Gen. Virol. 73, 661-665 (1992)), all have demonstrated only modest potential to impede prion propagation, and none have been shown to effect the removal of pre-existing prions from an infected host.
The PrP gene of mammals expresses a protein which can be the soluble, non-disease form PrP.sup.C or be converted to the insoluble, disease form PrP.sup.Sc. PrP.sup.C is encoded by a single-copy host gene [Basler, Oesch et al. (1986) Cell 46:417-428] and when PrP.sup.C is expressed it is generally found on the outer surface of neurons. Many lines of evidence indicate that prion diseases result from the transformation of the normal form of prion protein (PrP.sup.C) into the abnormal form (PrP.sup.Sc). There is no detectable difference in the amino acid sequence of the two forms. However, PrP.sup.Sc when compared with PrP.sup.C has a conformation with higher .beta.-sheet and lower .alpha.-helix content (Pan, Baldwin et al. (1993) Proc Natl Acad Sci USA 90:10962-10966; Safar, Roller et al. (1993) J Biol Chem 268:20276-20284). The presence of the abnormal PrP.sup.Sc form in the brains of infected humans or animals is the only disease-specific diagnostic marker of prion diseases.
PrP.sup.Sc plays a key role in both transmission and pathogenesis of prion diseases (spongiform encephalopathics) and it is a critical factor in neuronal degeneration (Prusiner (1997) The Molecular and Genetic Basis of Neurological Disease, 2nd Edition: 103-143). The most common prion diseases in animals are scrapie of sheep and goats and bovine spongiform encephalopathy (BSE) of cattle (Wilesmith and Wells (1991) Curr Top Microbiol Immunol 172:21-38). Four prion diseases of humans have been identified: (1) kuru, (2) Creutzfeldt-Jakob Disease (CJD), (3) Gerstmann-Straussler-Schcinker Disease (GSS), and (4) fatal familial insomnia (FFI) [Gajdusek (1977) Science 197:943-960; Medori, Tritschler et al. (1992) N Engl J Med 326:444-449]. Initially, the presentation of the inherited human prion diseases posed a conundrum which has since been explained by the cellular genetic origin of PrP.
The assembly and misassembly of normally soluble proteins into conformationally altered proteins is thought to be a causative process in a variety of other diseases. Structural conformational changes are required for the conversion of a normally soluble and functional protein into a defined, insoluble state. Examples of such insoluble protein include: A.beta. peptide in amyloid plaques of Alzheimer's disease and cerebral amyloid angiopathy (CAA); .alpha.-synuclein deposits in Lewy bodies of Parkinson's disease, tau in neurofibrillary tangles in frontal temporal dementia and Pick's disease; superoxide dismutase in amyotrophic lateral sclerosis; huntingtin in Huntington's disease; and prions in Creutzfeldt-Jakob disease (CJD): (for reviews, see Glenner et al. (1989) J. Neurol. Sci. 94:1-28; Haan et al. (1990) Clin. Neurol. Neurosurg. 92(4):305-310).
Often these highly insoluble proteins form aggregates composed of nonbranching fibrils with the common characteristic of a .beta.-pleated sheet conformation. In the CNS, amyloid can be present in cerebral and meningeal blood vessels (cerebrovascular deposits) and in brain parenchyma (plaques). Neuropathological studies in human and animal models indicate that cells proximal to amyloid deposits are disturbed in their normal functions (Mandybur (1989) Acta Neuropathol. 78:329-331; Kawai et al. (1993) Brain Res. 623:142-6; Martin et al. (1994) Am. J Pathol. 145:1348-1381; Kalaria et al. (1995) Neuroreport 6:477-80; Masliah et al. (1996) J. Neurosci. 16:5795-5811). Other studies additionally indicate that amyloid fibrils may actually initiate neurodegeneration (Lendon et al. (1997) J Am. Med. Assoc. 277:825-31; Yankner (1996) Nat. Med. 2:850-2; Selkoe (1996) J. Biol. Chem. 271:18295-8; Hardy (1997) Trends Neurosci. 20:154-9).
In both AD and CAA, the main amyloid component is the amyloid .beta. protein (A.beta.). The A.beta. peptide, which is generated from the amyloid .beta. precursor protein (APP) by two putative secretases, is present at low levels in the normal CNS and blood. Two major variants, A.beta..sub.1-40 and A.beta..sub.1-42, are produced by alternative carboxy-terminal truncation of APP (Selkoe et al.(1988) Proc. Natl. Acad. Sci. USA 95:7341-7345; Selkoe, (1993) Trends Neurosci 16:403-409). A.beta..sub.1-42 is the more fibrillogenic and more abundant of the two peptides in amyloid deposits of both AD and CAA. In addition to the amyloid deposits in AD cases described above, most AD cases are also associated with amyloid deposition in the vascular walls (Hardy (1997), supra; Haan et al. (1990), supra; Terry et al., supra; Vinters (1987), supra; Itoh et al. (1993), supra; Yamada et al. (1993), supra; Greenberg et al. (1993), supra; Levy et al. (1990), supra). These vascular lesions are the hallmark of CAA, which can exist in the absence of AD.
Human transthyretin (TTR) is a normal plasma protein composed of four identical, predominantly .beta.-sheet structured units, and serves as a transporter of hormone thyroxin. Abnormal self assembly of TTR into amyloid fibrils causes two forms of human diseases, namely senile systemic amyloidosis (SSA) and familial amyloid polyncuropathy (FAP) (Kelly (1996) Curr Opin Strut Biol 6(1):11-7). The cause of amyloid formation in FAP are point mutations in the TTR gene; the cause of SSA is unknown. The clinical diagnosis is established histologically by detecting deposits of amyloid in situ in bioptic material.
To date, little is known about the mechanism of TTR conversion into amyloid in vivo. However, several laboratories have demonstrated that amyloid conversion may be simulated in vitro by partial denaturation of normal human TTR [McCutchen, Colon et al. (1993) Biochemistry 32(45):12119-27; McCutchen and Kelly (1993) Biochem Biophys Res Commun 197(2) 415-21]. The mechanism of conformational transition involves monomeric conformational intermediate which polymerizes into linear .beta.-sheet structured amyloid fibrils [Lai, Colon et al. (1996) Biochemistry 35(20):6470-82]. The process can be mitigated by binding with stabilizing molecules such as thyroxin or triiodophenol (Miroy, Lai et al. (1996) Proc Natl Acad Sci USA 93(26): 15051-6).
The precise mechanisms by which neuritic plaques are formed and the relationship of plaque formation to the disease-associated neurodegencrative processes are not well-defined. The amyloid fibrils in the brains of Alzheimer's and prion disease patients are known to result in the inflammatory activation of certain cells. For example, primary microglial cultures and the THP-1 monocytic cell line are stimulated by fibrillar .beta.-amyloid and prion peptides to activate identical tyrosine kinase-dependent inflammatory signal transduction cascades. The signaling response elicited by .beta.-amyloid and prion fibrins leads to the production of neurotoxic products, which are in part responsible for the neurodegenerative. C. K. Combs et al, J Neurosci 19:928-39 (1999).
Although research efforts relating to conformationally altered proteins are advancing efforts to sterilize materials to avoid infections with such proteins are not keeping pace. The present invention offers a means of sterilizing materials which contain conformationally altered proteins such as prions. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention is related to the field of nuclear magnetic resonance (xe2x80x9cNMRxe2x80x9d) apparatus and methods. More specifically, the invention is related to methods for conducting NMR measurements in a manner which optimizes the use of electrical power by the NMR instrument and obtains results comparable to those obtained with prior art pulse sequences.
2. Description of the Related Art
NMR instruments adapted for well logging can be used for determining, among other things, the fractional volume of pore space and the fractional volume of mobile fluid filling the pore space of earth formations. Methods for using NMR well logging measurements for determining the fractional volume of pore space and the fractional volume of mobile fluids are described, for example, in, Spin Echo Magnetic Resonance Logging: Porosity and Free Fluid Index Determination, M. N. Miller et al, Society of Petroleum Engineers paper no. 20561, Richardson, Tex. (1990).
NMR well logging instruments known in the art are typically designed to make measurements corresponding to an amount of time for hydrogen nuclei present in the earth formation to realign their spin axes, and consequently their bulk magnetization, either with an externally applied static magnetic field, or perpendicularly to the magnetic field, after momentary reorientation of the nuclear spin axes. The externally applied magnetic field is typically provided by a permanent magnet disposed in the NMR instrument. The spin axes of the hydrogen nuclei in the earth formation, in the aggregate, become aligned with the static magnetic field induced in the earth formation by the permanent magnet. The NMR instrument also includes an antenna positioned near the magnet and shaped so that a pulse of radio frequency (RF) power conducted through the antenna induces a corresponding RF magnetic field in the earth formation in a direction orthogonal to the static field induced by the permanent magnet. This RF pulse (called an xe2x80x9cA-pulsexe2x80x9d hereafter) has a duration and amplitude selected so that the spin axes of the hydrogen nuclei generally align themselves perpendicular both to the RF magnetic field and to the static magnetic field. After the A-pulse ends, the nuclear magnetic moment of the hydrogen nuclei gradually xe2x80x9crelaxxe2x80x9d or return to their alignment with the static magnetic field. The amount of time taken for this relaxation is related to the properties of interest of the earth formation.
Also after the A-pulse ends, the antenna is typically electrically connected to a receiver, which detects and measures voltages induced in the antenna by precessional rotation of the spin axes of the hydrogen nuclei. While the hydrogen nuclei gradually realign their spin axes with the static magnetic field, they do so at different rates because of inhomogeneities in the magnet""s field and because of differences in the chemical and magnetic environment within the earth formation. Different rates of realignment of the spin axes of the hydrogen nuclei result in a rapid decrease in the voltage induced in the antenna. The rapid decrease in the induced voltage is referred to as the free induction decay (FID).
After a predetermined time period following the FID, another, longer RF pulse (called a xe2x80x9cB-pulsexe2x80x9d hereafter) is applied to the antenna. The B-pulse has a duration and amplitude selected to reorient the spin axes of the hydrogen nuclei in the earth formation by an axial rotation of 180xc2x0 from their immediately previous orientations. After the B-pulse, hydrogen nuclear spin axes that were realigning with the externally applied field at a slower rate then are positioned so that they are xe2x80x9caheadxe2x80x9d of the faster realigning nuclear spin axes. This causes the faster realigning axes to be positioned xe2x80x9cbehindxe2x80x9d the slower realigning spin axes. The faster realigning spin axes then eventually xe2x80x9ccatch upxe2x80x9d to, and come into approximate alignment with, the slower aligning spin axes at some time after the B-pulse. As a large number of the spin axes become aligned with each other, the hydrogen nuclei again are able to induce measurable voltages in the antenna. The voltages induced as a result of realignment of the hydrogen nuclear spin axes with each other after a B-pulse is referred to as a xe2x80x9cspin echoxe2x80x9d. The voltage induced by the spin echo is typically smaller than the original FID voltage induced after cessation of the A-pulse, because the aggregate nuclear axial alignment, and consequently the bulk magnetization, of the hydrogen nuclei at the time of the spin echo is at least partially realigned with the static magnetic field and away from the sensitive axis of the antenna. The spin echo voltage itself rapidly decays by FID as the faster aligning nuclear axes again xe2x80x9cdephasexe2x80x9d from the slower aligning nuclear axes.
After another period of time equal to two of the predetermined time periods between the A-pulse and the first B-pulse, another B-pulse of the same amplitude and duration as the first B-pulse can be applied to the antenna. This next B-pulse again causes the slower realigning spin axes to be positioned ahead of the faster realigning axes, and eventually another spin echo will induce voltages in the antenna. The voltages induced by this next spin echo will typically be smaller those induced by the previous spin echo.
Successive B-pulses are applied at regular time intervals to the antenna to generate successive spin echoes, each one typically having a smaller amplitude than the previous spin echo. The rate at which the peak amplitude of the spin echoes decreases is related to the properties of interest of the earth formation, such as the fractional volume of pore space or the fractional volume of mobile fluid filling the pore space. The number of spin echoes needed to determine the rate of spin echo amplitude decay is related to the properties of the earth formation. In some cases as many as 1,000 spin echoes may be needed to determine the amplitude decay corresponding to the particular formation properties of interest.
A limitation of NMR well logging instruments using the just-described RF pulse sequence is that this pulse sequence uses a very large amount of electrical power. Typically the DC power requirement for the NMR logging instruments known in the art is about 1 KW; the peak power required for effective nuclear excitation can be as high as 30 KW in each pulse. As is known in the art, a typical well logging cable has a power transmission capacity of about 1.5 KW. Using NMR pulse sequences known in the art it is impractical to increase the RF power in order to improve signal to noise or to increase the axial speed (xe2x80x9clogging speedxe2x80x9d) at which the instrument is moved through the wellbore (the increased speed being desired by the wellbore operator to save operating time and associated costs). It is also impractical to combine NMR well logging instruments using pulse sequences known in the art with other well logging instruments because the NMR logging instrument uses nearly the entire power transmission capacity of the typical well logging cable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus for automatically winding up a photographic paper that has been subjected to printing or other photographic processes onto a spool.
2. Description of the Related Art
A photographic printer which employs a continuous photographic paper needs to wind up a printed photographic paper onto a spool.
When a printed photographic paper is wound up onto a spool, it is conventional practice to wind up the leading end portion of the photographic paper onto the outer periphery of the spool by a manual operation and then to rotate the spool so as to wind up the paper thereonto. For this reason, even when the other sections of the printer are automated, or a printing operation is effected at high speed, the overall operating efficiency of the printer cannot be satisfactorily increased due to the manual operation required to wind up the photographic paper onto the spool. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to interfaces on a network device.
Network devices have physical interfaces that are subject to failure. When such an interface fails, a network device can be cut-off from the network. This is particularly problematic in the case of a router, where failure of a single physical interface can make a whole branch of the network inaccessible to other devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
Folate (folic acid) is a vitamin that is essential for the life-sustaining processes of DNA synthesis, replication, and repair. Folate is also important for protein biosynthesis, another process that is central to cell viability. The pteridine compound, methotrexate (MTX), is structurally similar to folate and as a result can bind to the active sites of a number of enzymes that normally use folate as a coenzyme for biosynthesis of purine and pyrimidine nucleotide precursors of DNA and for interconversion of amino acids during protein biosynthesis. Despite its structural similarity to folic acid, methotrexate cannot be used as a cofactor by enzymes that require folate, and instead competes with the folate cofactor for enzyme binding sites, thereby inhibiting protein and DNA biosynthesis and, hence, cell division.
The ability of the folate antagonist methotrexate to inhibit cell division has been exploited in the treatment of a number of diseases and conditions that are characterized by rapid or aberrant cell growth. For example, methotrexate is currently one of the most widely prescribed drugs for the treatment of rheumatoid arthritis, psoriasis, and cancer (Weinblatt et al., Eng. J. Med., 312:818-822 (1985); Kremer and Lee, Arthritis Rheum., 29:822-831 (1986)). Although methotrexate is among the best tolerated of the disease-modifying anti-rheumatic drugs, a major drawback of methotrexate therapy is a troublesome inter-patient variability in the clinical response and an unpredictable appearance of side-effects including gastrointestinal disturbances, alopecia, elevation of liver enzymes, and bone marrow suppression (Weinblatt et al., Arthritis Rheum., 37:1492-1498 (1994); Walker et al., Arthritis Rheum., 36:329-335 (1993)). Several studies in well-controlled clinical trials have demonstrated that methotrexate is effective at decreasing functional disability, with the maximum effect occurring after about six months of therapy. However, recent findings from retrospective studies on a large cohort of patients with rheumatoid arthritis have suggested that methotrexate dosage may be suboptimal in some patients (Ortendahl et al., J. Rheumatol., 29:2084-2091 (2002)). Thus, the lack of efficient therapeutic drug monitoring of methotrexate therapy and difficulty of rapidly individualizing methotrexate dose-maximizing response hampers effective patient treatment.
Methotrexate enters cells through the reduced folate carrier (RFC-1) and is intracellularly activated by folylpolyglutamate synthase to methotrexate polyglutamates (MTXPGs) (Chabner et al., J. Clin. Invest., 76:907-912 (1985)). The γ-linked sequential addition of glutamic acid residues enhances intracellular retention of methotrexate (Allegra et al., Proc. Natl. Acad. Sci. USA, 82:4881-4885 (1985)). The polyglutamation process is in competition with deconjugation by gamma glutamyl hydrolase (GGH) (Rhee et al., Mol. Pharmacol., 53:1040-1046 (1998); Yao et al., Proc. Natl. Acad. Sci. USA, 93:10134-10138 (1996); Panetta et al., Clin. Cancer Res., 8:2423-2429 (2002)), a lysosomal enzyme having high affinity towards long chain polyglutamates. (Masson et al., J. Clin. Invest., 97:73-80 (1996)).
The accumulation of MTXPGs is critical to the pharmacological effects of methotrexate. In vivo, the concentration of MTXPGs in lymphoblasts and erythrocytes appear to correlate with the therapeutic response to methotrexate in patients with leukemia (Dervieux et al., Blood, 100:1240-1247 (2002); Dervieux et al., Arthritis Rheum., in press, (2004)) or rheumatoid arthritis (Angelis-Stoforidis et al., Clin. Exp. Rheumatol., 17:313-320 (1999); Allegra et al., Proc. Natl. Acad. Sci. USA, 82:4881-4885 (1985)). Polyglutamation of methotrexate is thought to promote the sustained inhibition of de novo purine synthesis by 5-aminoimidazole carboxamide-ribonucleotide transformylase (ATIC) (Dervieux et al., Blood, 100:1240-1247 (2002); Allegra et al., supra, (1985)), thereby promoting the build-up of adenosine, a potent anti-inflammatory agent (Baggott et al., Biochem. J., 236:193-200 (1986); Morabito et al., J. Clin. Invest., 101:295-300 (1998); Montesinos et al., Arthritis, 48:240-247 (2003); Cronstein et al., J. Clin. Invest., 92:2675-2682 (1993)). Furthermore, MTXPGs are inhibitors of thymidylate synthase (TS) (Allegra et al., J. Biol. Chem., 260:9720-9726 (1985)). TS methylates deoxyuridine monophosphate to produce deoxythymidylate, providing a unique de novo source of thymidylate.
Part of the large inter-individual variability in the response to methotrexate is related to common polymorphisms in genes implicated in methotrexate pharmacokinetics or pharmacodynamics (Relling and Dervieux, Nat. Rev. Cancer, 1:99-108 (2001)). Recently, a G to A transition in exon 1 (position 80) of RFC-1, resulting in an arginine to histidine substitution at codon 27, was identified (Chango et al., Mol. Genet. Metab., 70:310-315 (2000)). However, the functional consequence of this polymorphism on methotrexate transport has remained unclear (Whetstine et al., Clin. Cancer Res., 7:3416-3422 (2001); Laverdiere et al., Blood, 100:3832-3834 (2002)). Moreover, a recent study of children with acute lymphoblastic leukemia has suggested that the A variant may be associated with poor clinical outcomes as compared with patients having the G/G genotype; individuals carrying the A/A genotype presented higher plasma concentrations of methotrexate compared to those with the G/G or G/A genotypes (Laverdiere et al., supra, (2002)).
Because individual differences in pharmacokinetic and pharmacodynamic parameters can be difficult to predict and because patient genotype affects these parameters, methotrexate treatment can be rendered safer and more effective through patient genotyping. Thus, there exists a need for novel correlations between patient genotypes and efficacy of methotrexate therapy. There also exists a need for new methods of determining or optimizing the efficacy of methotrexate therapy by determining MTXPG levels in a patient through genotyping. The present invention satisfies these needs and provides related advantages as well. | {
"pile_set_name": "USPTO Backgrounds"
} |
(i) Field of the Invention
This invention relates to the field of plant breeding. More particularly, the invention relates to a variety of cotton designated as FM 1740B2F, its essentially derived varieties and the hybrid varieties obtained by crossing FM 1740B2F as a parent line with plants of other varieties or parent lines.
(ii) Description of Related Art
Cotton is an important, fiber producing crop. Due to the importance of cotton to the textile industry, cotton breeders are increasingly seeking to obtain healthy, good yielding crops of excellent quality.
Cotton is commonly reproduced by self-pollination and fertilization. This type of sexual reproduction facilitates the preservation of plant and variety characteristics during breeding and seed production. The preservation of these characteristics are often important to plant breeders for producing cotton plants having desired traits. Other methods of producing cotton plants having desired traits are also used and include methods such as genetic transformation via Agrobacterium infection or direct transfer by microparticle bombardment. Examples of such methods are disclosed, for example, in U.S. Pub. No. 20090049564, incorporated by reference herein in its entirety.
Due to the environment, the complexity of the structure of genes and location of a gene in the genome, among other factors, it is difficult to predict the phenotypic expression of a particular genotype. In addition, a plant breeder may only apply his skills on the phenotype and not, or in a very limited way, on the level of the genotype. As a result, a particular plant breeder cannot breed the same variety twice using the same parents and the same methodology. Thus, a newly bred variety is an unexpected result of the breeding process. Indeed, each variety contains a unique combination of characteristics.
By carefully choosing the breeding parents, the breeding and selection methods, the testing layout and testing locations, the breeder may breed a particular variety type. In addition, a new variety may be tested in special comparative trials with other existing varieties in order to determine whether the new variety meets the required expectations. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is already known in the art to coat textiles such as woven or knitted fabrics and non-woven bonded webs with solutions of polyurethanes by the direct or the reversal process. The articles obtained are used for the manufacture of outer-wear garments, upholstery goods, luggage, shoe uppers, tents and tarpaulins, blinds and many other products.
In contrast to the two-component polyurethanes, which have been known for some time, the so-called one-component polyurethanes have been more recently introduced into the art. These products are obtained by the reaction of polyhydroxyl compounds, in practice mainly dihydroxy polyesters or dihydroxy polyethers, in combination with glycols, preferably butane diol-(1,4), and aromatic diisocyanates, preferably 4,4'-diphenylmethane diisocyanate as described in German Patent Specification No. 1,106,959 and German Auslegeschrift No. 1,112,291. Solutions of one component polyurethanes have a practically unlimited pot life. Formation of films from these polyurethanes is a purely physical process which, in contrast to the formation of films from two-component polyurethanes, is not accompanied by any chemical cross-linking reaction.
In contrast to chemical cross-linking, physical cross-linking is reversible, which means that one-component polyurethanes are thermoplastically deformable. This inevitably renders textile coats containing one-component polyurethanes to some extent sensitive to deformation by pressure at elevated temperatures. One consequence of this is that, in certain fields of application, for example in the manufacture of shoe uppers, these materials are insufficiently able to withstand ironing because the coating undergoes thermal deformation by pressure even below its melting range and irreversibly penetrates the fabric ("penetration by ironing" of the fabric structure).
An improvement in the resistance to ironing can generally be obtained by elevating the temperature range at which the polyurethane melts. The usual methods employed for elevating the polyurethane melting range are based, for example, on increasing the proportion of hard segments by using a higher molar proportion of chain-lengthening agents, by incorporating short, compact hard segments by using short chain glycols, preferably ethylene glcyol, as chain-lengthening agent, or by incorporating high melting aromatic hard segments, for example by using 1,4-phenylene-bis-(.beta.-hydroxyethyl ether) as chain-lengthening agent. Unfortunately, this known method of elevating the polyurethane melting range invariably reduces the solubility of the polyurethanes in the usual commercial solvent combinations so that the resulting solutions are more or less viscous and in many cases even tend to be pasty and are difficult or even impossible to process in the usual coating installations.
It is known from German Auslegeschrift No. 2,161,340 and German Offenlegungsschrift No. 2,402,799 which corresponds to U.S. Ser. No. 542,734, filed Jan. 20, 1975 to Thoma et al. that the solubility of one-component polyurethanes can be improved by using an equimolar mixture of at least two different glycols instead of a single glycol as chain-lengthening agent. Unfortunately, however, the use of such mixtures of chain-lengthening agents significantly lowers the polyurethane melting range so that the dimensional stability at elevated temperatures and hence the resistance to ironing of the polyurethane coatings are again reduced. | {
"pile_set_name": "USPTO Backgrounds"
} |
Reverse transcriptase (RT) is an RNA-dependent DNA polymerase that synthesizes DNA using RNA as a template. It has been an indispensible reagent in molecular biology for the study of RNA, and in molecular diagnostics for determining the identity of an organism based on a specific RNA sequence in conjunction with DNA amplification. Commonly used RTs are from avian myeloblastosis virus (AMV) and Maloney murine leukemia virus (M-MuLV) and their derivatives. Although each of these RTs has advantages in certain applications, they also have limitations. For example, in molecular diagnostics, the primary concerns are sensitivity and reaction speed. Sensitivity requires that the RT be able to generate enough cDNA for a given amplification platform; the reaction speed determines how quickly the required cDNA product is produced.
Loop-mediated isothermal amplification (LAMP) has been recently adapted to molecular diagnostics for many pathogens due to its convenience in detection and high sensitivity. When a RT is included in LAMP (reverse transcription-LAMP, RT-LAMP), it can be efficiently applied to detect RNA targets, and it has been successfully used for the detection of a number of RNA viruses with great sensitivity. In RT-LAMP, it is essential that the RT be able to efficiently synthesize DNA using the target RNA under conditions optimized for DNA amplification by a DNA-dependent DNA polymerase. This is a significant hurdle which substantially impacts RT selection in RT-LAMP, because the optimal reaction conditions for most RTs do not match the optimal reaction conditions for DNA amplification by DNA-dependent DNA polymerases. The RT most typically used in RT-LAMP is from AMV, because it affords reasonable sensitivity and reaction speed.
Polymerase chain reaction (PCR) has been a major player in DNA amplification. Similar to RT-LAMP, by inclusion of a RT in a PCR reaction (RT-PCR), it is possible to detect RNA. Traditionally RT-PCR is performed in two steps: the first step is RT in an optimized buffer and then PCR in a second step in another buffer condition optimized for PCR. Although these two steps can theoretically be combined, finding a single set of reaction conditions suitable for both steps is challenging. A critical issue is to find RTs that are sensitive and fast even under conditions optimized for the amplification step.
In addition, there are several other properties that would be desirable in a RT for use in one-step detection of RNA by either RT-LAMP or RT-PCR or other amplification technologies. These include: sensitivity and reaction time of the RT, tolerance to high salt and to other potential inhibitors that might carry over from previous RNA sample preparation; and enhanced thermal stability. For example, enhanced thermal stability of the RT permits reverse transcription at a higher reaction temperature so as to reduce the secondary structure of RNA and thereby increase the detection sensitivity and speed. Due to the high demand for RT in molecular diagnostics, the convenience of production and storage are also important features. For example, AMV RT is commonly produced in chicken embryos and it is well known that its production has certain limitations. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to anodic bonding.
One way a glass material may be bonded to an oxidizable material (e.g., a metal, such as silicon) or another glass material is through a process called anodic bonding. During anodic bonding, heat is applied to the materials to be bonded, and oxygen ions in the heated glass material are drawn across a junction (where the two materials contact each other) to form a chemically bonded oxide bridge between the two materials. To draw the oxygen ions across the junction, an electric field typically is applied to the materials to create a flow of charge through the materials. The materials are heated until the alkali and alkaline earth ions become mobile allowing non-bridging oxygen ions to also diffuse. In this manner, negatively charged oxygen ions flow in one direction across the junction, and positively charged ions (e.g., alkali ions, such as sodium and lithium) flow in the opposite direction across the junction.
Referring to FIG. 1, as an example, anodic bonding might be used to bond a glass substrate 10 to a metal, such as silicon 12. To accomplish this, an electrode 14 is placed on the glass substrate 10 and biased (via a DC source 20) at a negative potential relative to the potential of another electrode 16 that is placed on the silicon 12. If the film of silicon is electrically conductive, electrical contact may be made directly to the film. In this manner, the two electrodes 14 and 16 establish an electric field across the glass substrate 10 and the silicon 12.
This electric field causes the positive ions (e.g., sodium ions) of the substrate 10 to move toward the negative electrode 14 and oxygen ions of the substrate 10 to move toward the positive potential (e.g., either toward the positive electrode 16 or the film of silicon, if conductive). As a result, the oxygen ions diffuse across a junction 18 (where the two materials contact each other) into the silicon 12 and react as follows:
2Oxe2x88x92+Si= greater than SiO2+2exe2x88x92
Thus, the oxygen ions react with the silicon to form silica (SiO2), a stable oxide, which bonds the glass substrate 10 and the silicon 12 together. The amount of silica that is formed depends on the amount of charge that is supplied by the source 20.
Therefore, the rate at which the silica is formed depends on how fast charge is supplied by the source 20, or stated differently, the rate at which the silica is formed is a function of the magnitude of a current (called IBOND) that is provided by the source 20. Although the rate at which the anodic bond is formed depends on the magnitude of the IBOND current, the quality of the bond is also quite often a function of the IBOND current.
When the IBOND current has a large magnitude, the relatively slow flow rate of the glass substrate 10 causes the silica to be formed in a small area. Better bond quality is typically achieved when the IBOND current has a smaller magnitude which allows the silica to form over a much larger area.
Although a minimum amount of silica must be formed to ensure a good bond, too much silica formation may present difficulties. For example, the silicon 12 might be a thin layer that is formed on top of a substrate. As a result, forming too much silica may delaminate, or remove, the silicon layer from the substrate.
Although anodic bonding has traditionally been used to bond small materials (e.g., materials having no dimension greater than six inches) together, anodic bonding may be used to bond materials to a larger substrate. For example, anodic bonding might be used to attach glass spacer rods to oxidizable material of a face plate of a field emission display (FED). Because of the relatively large size (e.g., dimensions greater than 12 inches) of the face plate, temperature gradients cause the magnitudes of the IBOND currents to vary, depending on where the anodic bonding occurs on the face plate. As a result, even if the same potential is used to bond all sites on the face plate, the silica is formed at different rates among the different bond sites.
The invention is generally directed to anodically bonding two materials together by monitoring and controlling the amount of charge used to bond the materials.
The advantages of the invention may include one or more of the following. The amount of oxide used to bond the materials is precisely controlled, and this amount is not affected by temperature. Several pieces of one material can be bonded to another relatively large material at one time. The cost of manufacturing flat panel displays is reduced. The time required to manufacture flat panel displays is reduced. Better quality control is maintained over the anodic bonding.
Generally, in one aspect, the invention features a controller for use with an anodic bonding system that has a charge flowpath for supplying charge to bond materials together. The controller includes a switch and a circuit. The switch is configured to control a flow of the charge through the charge flowpath. The circuit is configured to monitor a rate of the flow, use the rate to determine an amount of the charge supplied for bonding, and based on the amount, operate the switch to control the flow.
Generally, in another aspect, the invention features a system for bonding two materials together at a junction between the materials. The system includes an energy source, electrodes in contact with the materials, and a controller. The controller is configured to connect the energy source to the electrodes to transfer charge from the energy source to the junction, and disconnect the energy source from the electrodes after a predetermined amount of the charge has been transferred to the materials.
Generally, in another aspect, the invention features a system for bonding a number of first materials to a second material near different regions of the second material. The system includes an energy source and electrodes that are configured to establish charge flowpaths. The system also has controllers. Each different controller is associated with a different one of the flowpaths and is configured to cause charge to flow from the energy source through the associated flowpath until a predetermined amount of the charge flows through the associated flowpath.
Generally, in another aspect, the invention features a system for bonding glass spacer rods to a face plate of a flat panel display. The system includes an energy source, electrodes and controllers. The electrodes are configured to establish charge flowpaths. Each different flowpath is associated with a junction located between a different one of the glass spacer rods and the face plate. Each different controller is associated with a different one of the flowpaths and is configured to allow charge to flow from the energy source through the associated flowpath until a predetermined amount of the charge flows to the junction associated with the flowpath.
Generally, in another aspect, the invention features a method for anodically bonding two materials together. The method includes placing the two materials in contact with each other to form a junction between the materials. A current is applied through the materials to transfer charge to the junction. This current is monitored to determine the amount of the charge being transferred to the junction. The current is controlled based on the amount.
Generally, in another aspect, the invention features a method for bonding a number of first materials to a second material at different regions of the second material. The method includes placing each of the first materials in contact with the second material to form junctions between the first and second materials. Currents are applied through the first and second materials to transfer charge to the junctions. The amounts of charge transferred to each of the junctions are monitored, and based on the amounts, the currents are selectively controlled.
Generally, in another aspect, the invention features a method for anodically bonding slices of glass spacer rods to a face plate of a flat panel display. The face plate has a conductive layer for causing the emission of electrons from a base plate. The method includes placing the slices of glass spacer rods in contact with the face plate to create junctions between the slices of glass spacer rods and the face plate. An electrode is place in contact with each group of glass spacer rods to form a charge flowpath between each electrode and the conductive layer. A potential is applied between the electrodes and the conductive layer to cause charge to flow through the charge flowpaths. For each charge flowpath, an amount of charge flowing through the charge flowpath is monitored. The flow of charge through the flowpaths is selectively controlled based on the monitored amounts.
Generally, the invention features a method for bonding glass spacer rods to a face plate of a flat panel display. The method includes connecting electrodes to the face plate and glass spacer rods to establish charge flowpaths. Each different flowpath is associated with a junction located between a different one of the glass spacer rods and the face plate. An energy source is connected to the electrodes. For each flowpath, charge is allowed to flow from the energy source through the flowpath until a predetermined amount of the charge flows into the junction associated with the flowpath.
In implementations of the invention, the circuit may be configured to halt the flow of charge through the flowpath when the amount exceeds a predetermined threshold. The circuit may also be configured to operate the switch to halt the flow when the rate exceeds a predetermined level, and the circuit may also be configured to operate the switch to allow the flow to resume after a predetermined duration expires after the circuit halts the flow.
The circuit may include a timer that is configured to measure the predetermined duration. The circuit may include an integrator that is configured to determine the amount of charge supplied to the materials based on the integration of the rate over time. The circuit may include a comparator that is connected to the integrator and is configured to indicate when the amount of charge exceeds the predetermined threshold.
The materials may include an oxidizable material, such as an oxidizable material that is located on a face plate of a flat panel display. The materials may also include glass spacer rods of a flat panel display.
Other advantages and features will become apparent from the following description and from the claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present disclosure relates generally to the field of semiconductor packaging, and more particularly to a Package-on-Package (PoP) assembly and a method for manufacturing the same.
2. Description of the Prior Art
With recent advancements in the semiconductor manufacturing technology microelectronic components are becoming smaller and circuitry within such components is becoming increasingly dense. To reduce the dimensions of such components, the structures by which these components are packages and assembled with circuit boards must become more compact.
In order to meet the requirements of smaller footprints with higher densities, 3D stacking packaging such as PoP (Package-on-Package) assembly has been developed. Typically, a PoP assembly includes a top package with a semiconductor die bonded to a bottom package with another device die. In PoP designs, the top package may be interconnected to the bottom package through peripheral solder balls or through mold vias (TMVs).
However, the prior art PoP assembly is not able to provide very tight pitch stacking. Further, the prior art PoP assembly has large package form factor and poor warpage control. There is a need in this industry to provide a thin and fine pitch PoP assembly with reduced form factor and manufacture method thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.