text
stringlengths 2
806k
| meta
dict |
---|---|
The invention relates to an endoscopic device, in particular to an instrument for endoscopic subfascial discision of perforans veins (ESDP). About 10% to 15% of the adult suffer from a distinct varix of the lower extremities, up to 16% of these patients have insufficient perforans veins. In the course of the medical treatment of a primary varix and of trophic skin disorders due to a post-thrombosis or to a varix these insufficient perforans veins are subfascially eliminated. In the course thereof the previous surgical methods require an extended uncovering of the perforans veins and very often suffered from post-surgical wound healing troubles or they are disadvantageous due to low precision.
In the course of the Minimal Invasion Surgery the endoscopic subfascial discision of perforans veins (ESDP) was developed by Dr. G. Hauer which is up to now considered as the most effective therapeutical principle. The instruments developed in connection with the aforesaid (refer to Jugenheimer, M; Junginger, Th.: PHLEBOLOGY, 4th. annual 8/92, p. 540ff.) comprises cold light operation robes of different diameter, a conventional laparoscope and accessories such as bi-polar coagulation forceps and endoscopic scissors. These standard components from different fields of endoscopy have only slightly been modified so that the instrumentation naturally shows a number of essential disadvantages. A later installed means for locking the instruments to the surgical laparoscope was not very successful in practice. A simultaneous working with the tube, the endoscope, and with the instrument just in use requires the helping hand of an assistant. For the comparatively power consuming manipulation of the tube the handle thereof is considered as being not stable enough. An essential disadvantage is the insufficient quality of the optical system of the surgical laparoscope, the low aperture of which sometimes renders the reproduction by conventional CCD--endo-cameras questionable due to the poor illumination conditions at the surgical situs (high absorption by severe bleeding). The direction of sight which usually is 5.degree. to 10.degree. with surgical laparoscopes generally does not ensure a sufficient sight of the instrument inserted. The manipulation is additionally impeded by the equipment lines for the camera, the high frequency devices, the fiber-optical illumination means, and for the coagulation gas exhaust which run in different directions relative to the axis of instrument. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is often necessary for devices constructed in the same substrate to be electrically isolated from each other. Various structures have been used to provide such an isolation. For example, different dielectric materials have been formed in semiconductor substrates about active and passive elements that need to be isolated and there have been several methods for forming dielectric materials for such applications. Some of these methods involve the oxidation of porous silicon layers to form isolation regions. Method for using such an approach have been disclosed in U.S. Pat. No. 3,640,806 issued on Feb. 8, 1972 to Y. Watanabe et al, U.S. Pat. No. 3,919,060 issued on Nov. 11, 1975 to H. B. Pogge et al, U.S. Pat. No. 4,016,017 issued on Apr. 5, 1977 to J. A. Aboaf et al and U.S. Pat. No. 4,104,090 issued on Aug. 1, 1978 to H. B. Pogge, the later three of which are assigned to the assignee of the present application. The Watenabe et al patent discloses a process which in general consists of masking a silicon substrate, anodizing the substrate to form porous silicon regions in the unmasked areas and exposing the heated substrate to an oxidizing ambient. The porous silicon oxidizes at a rapid rate to form an insulator around monocrystalline silicon regions. The Pogge et al patent describes a method for producing dielectrically isolated regions in a silicon substrate by forming in the substrate high conductivity regions of an opposite conductivity type to that of the substrate to define the areas where dielectric regions are needed. These regions are then anodically etched using a hydrofluoric acid solution to produce regions of porous silicon in the high conductivity regions. These porous silicon regions are then exposed to an oxidizing ambient at an elevated temperature to oxidize the porous silicon regions to form a complete isolation of the monocrystalline silicon regions.
The Aboaf et al patent describes a process for making in a semiconductor structure a pattern of oxidized and densified porous silicon regions for dense isolation. The process involves forming a pattern of porous silicon regions in the surface of a silicon substrate and oxidizing the structure at a temperature sufficient to completely oxidize the porous silicon. The oxidation is selected so that the oxidized porous silicon extends above the surface of the silicon body. The oxidized porous silicon regions are then subjected to a temperature higher than the oxidizing temperature utilized in the previous step to cause the oxidation of the porous silicon.
The Pogge patent discloses a process which includes forming on a P type substrate a P.sup.+ layer and in this P.sup.+ layer an N or P type surface layer and forming openings in the N or P surface layer which reach at least down to the P.sup.+ layer. The structure is then subjected to anodic etching techniques which preferentially attack the P.sup.+ layer to form porous silicon throughout the P.sup.+ layer. The structure is then placed in a thermal oxidation ambient until the porous silicon layer has been fully oxidized to silicon dioxide. The openings through the surface layer are then filled up with oxide to fully isolate the N or P surface layer.
The inventions disclosed and claimed in the aforementioned patents represent truly significant advances in this art as explained in said patents. Our present invention extends the developments in this area of technology and has many advantages and flexibilities. For example, it produces structures having a buried oxidized porous silicon layer which is substantially uniform in thickness and can be made relatively thin and with improved uniformity of silicon porosity under the preselected Si islands. | {
"pile_set_name": "USPTO Backgrounds"
} |
As smart phones and other portable devices increasingly become ubiquitous, and data usage increases, macrocell base station devices and existing wireless infrastructure in turn require higher bandwidth capability in order to address the increased demand. To provide additional mobile bandwidth, small cell deployment is being pursued, with microcells and picocells providing coverage for much smaller areas than traditional macrocells.
In addition, most homes and businesses have grown to rely on broadband data access for services such as voice, video and Internet browsing, etc. Broadband access networks include satellite, 4G or 5G wireless, power line communication, fiber, cable, and telephone networks. | {
"pile_set_name": "USPTO Backgrounds"
} |
Representation and distribution of real time traffic information may be data intensive. Mobile navigation devices (e.g., car or personal navigation devices) may not be connected to or in communication with a network for real time traffic updates. In other cases, the mobile navigation device may be bandwidth constrained. For example, the mobile navigation device may only be able to receive and/or transmit up to a few kilobytes per second.
Current techniques designed to transmit traffic information to a mobile navigation device having bandwidth constraints include radio data system-traffic message channel (RDS-TMC) based location referencing, Agora-C map based location referencing, or transport protocol experts group (TPEG) methods. For example, a RDS-TMC or HD radio system may use an AM or FM radio signal to send highly compressed bit streams of traffic data to a car or personal navigation system. Unfortunately, these current standards and techniques involve “coding up” as many of the road segments as possible in terms of predefined identifications or using latitude/longitude based representations. Therefore, there is a continuing effort to provide improved systems and methods for providing traffic data for a navigation system in a limited bandwidth environment. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to electronic controls used to control fuel supplied to a diesel engine and more particularly pertains to a new cruise control economizer used as an accessory to an electronic cruise control for selectively setting throttle for a vehicle traveling on an incline to gain momentum with minimum fuel consumption.
2. Description of the Prior Art
Known inventions in the prior art include U.S. Pat. No. 5,205,161; U.S. Pat. No. 5,148,789; U.S. Pat. No. 4,915,072; U.S. Pat. No. 5,105,150; U.S. Pat. No. 4,062,230; and U.S. Pat. No. 5,267,159.
While these devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not disclose a new cruise control economizer. The inventive device includes a housing, vehicle speed and brakes and clutch pressed cables from the cruise control, at least one optionally two POM (prolongation of momentum) switch(es), a microcontroller, a serial port, a throttle setback control and an optional mercury tilt switch.
In these respects, the cruise control economizer according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of selectively adding throttle boost to a vehicle traveling down an incline or following to gain momentum with minimum fuel consumption and prolong the momentum for maximum fuel efficiency. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a photoelectron beam converting device and, more particularly, to a photoelectron beam converting device for use in a solid-state electron beam generating apparatus and to a method of driving such a device.
2. Related Background Art
As a solid-state electron beam generating apparatus, there has been known an apparatus in which an electric field is applied to a hetero junction formed in a semiconductor, thereby allowing an electron beam to be emitted from the surface of the semiconductor to the outside.
For example, in Japanese Patent Publication No. 30274/1979, there has been disclosed an apparatus in which a forward voltage is applied to the n-p junction formed in the mixed crystal of AlP and GaP, thereby allowing the electrons to be emitted from the surface of a p-type region. In Japanese Patent Application Laid-open No. 111272/1979, there has been disclosed a solid-state electron beam generating apparatus in which a reverse voltage is applied to the p-n junction at least a part of which is exposed in the opening formed in an insulating layer of the surface of a semiconductor and an accelerating electrode is provided for the insulating layer until the edge of the opening. On the other hand, in Japanese Patent Application Laid-open No. 15529/1981, there has been disclosed a semiconductor apparatus in which an accelerating electrode is provided for the edge portion of the opening portion formed in an insulating layer of the surface of a semiconductor, and a reverse voltage is applied to the p-n junction which extends in the opening in parallel with the surface of the semiconductor, thereby allowing the electrons to be emitted to the outside of the semiconductor. In addition, an electron beam generating apparatus laminated on the semiconductor substrate has been disclosed in each of Japanese Patent Application Laid-open No. 111272/1979 and Japanese Patent Application Laid-open No. 15529/1981. On the other hand, in Japanese Patent Application Laid-open No. 38528/1982, there has been disclosed a multi cool electron emitting cathode in which a device for emitting the electrons from the surface of a semiconductor by applying a forward bias voltage to the p-n junction is laminated on the semiconductor substrate.
Those solid-state electron beam generating apparatuses have many advantages such that the sizes are small, the emission of the electrons can be modulated by the voltage which is applied to the p-n junction, and the like. An apparatus which is constituted by arranging a plurality of electron beam generating devices is considered by use of the advantage of miniaturization. However, another problem occurs because the wirings to drive the electron beam generating apparatus are complicated.
On the other hand, in D. J. Barteling, J. L. Moll, N.I. Meyer, et al., "Phys. Rev. "Vol. 130, No. 3 (1963), pages 972 to 985, they have reported that in the case where a reverse voltage is applied to the p-n junction and the electron avalanche is caused to thereby generated the electrons, the light is irradiated to the p-type region and the electrons are excited, thereby enabling the electron beam to be driven. However, according to this method, the light to excite the electrons enters from the electron beam emitting side. Therefore, if this method is applied to the apparatus using the electron beam such as electron beam converting device or the like, a structure of the apparatus becomes complicated, causing a problem in manufacturing of the apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to heat sinks and more particularly, to a memory module and heat sink arrangement, which uses clamps to secure two sink sinks and a memory module in between the two sink sinks for allow quick dissipation of heat energy from the memory module during the operation of the memory module.
2. Description of the Related Art
Following fast development of computer technology, sophisticated and high operation speed computers have been continuously created. During the operation of a computer, many computer internal electronic devices and memory modules will emit heat. From early PC100 with bandwidth 800 MB/s to the modern DDR500 with bandwidth 4.0 GB/s or the advanced dual-rank design, memory working time-pulse or transmission bandwidth is developing toward a high speed to fit the high speed operation of the processor. During a high speed operation of a memory module, the temperature of the heat energy emitted by the memory module will increase continuously, and an excessive high temperature will affect the performance or normal functioning of the memory module.
In order to dissipate heat from a memory module during its operation, heat sinks may be used. FIG. 6 shows a conventional heat sink and memory module arrangement. According to this arrangement, two heat sinks A are respectively attached to two opposite sides of a memory module D, two heat transfer bonding pads C are respectively sandwiched between the two opposite sides of the memory module D and the two heat sinks A, and two clamps B are respectively clamped on the two heat sinks A to secure the heat sinks A, the heat transfer bonding pads C and the memory module D together. According to this design, the two heat sinks A each have a plurality of hooks A2 and hook holes A3. By engaging the hooks A2 of one of the two heat sinks A into the hook holes A3 of the other of the two heat sinks A, the two heat sinks A are fastened together. Further, each of the two heat sinks A has a plurality of substantially U-shaped locating grooves A4 raised from an outside wall A1 for securing the clamps B. This design of heat sink and memory module arrangement still has drawbacks as follows:
1. The hooks A2 may be forced away from the associating hook holes A3 by an external force accidentally, causing displacement of the two heat sinks A relative to the memory module D.
2. The two heat sinks A are bonded to the two opposite sides of the memory module D by the heat transfer bonding pads C, and the clamps B are engaged in the U-shaped locating grooves A4 on the outside wall A1 of each of the two heat sinks A. When wishing to detach the two heat sinks A from the memory module D, a pry or like tool must be used to damage the U-shaped locating grooves A4 for allowing removal of the clamps B from the heat sinks A so that the two heat sinks A can be further detached from the memory module D.
Therefore, it is desirable to provide a memory module and heat sink arrangement that eliminates the aforesaid drawbacks. | {
"pile_set_name": "USPTO Backgrounds"
} |
A conventional technology is described hereinafter with reference to FIG. 12.
To start with, a structure according to a first example of the conventional technology is described. FIG. 12 is a circuit configuration diagram of a liquid crystal display using the conventional technology. Respective pixels of a display section 216 include a pixel switch 211 and a liquid crystal capacitor 212, and an opposite electrode of the liquid crystal capacitor 212 is connected to a common power supply line 217. The gate of the pixel switch 211 is connected to a vertical scanning circuit 215 via a gate line 214, and one end of the pixel switch 211 is connected to a DA conversion circuit 209 via a signal line 213.
An output of a latch circuit 208 is delivered to the digital/analogue (DA) conversion circuit 209 and an output of a sense amplifier 207 is delivered to the latch circuit 208. A signal from one end of a data line 203 is delivered to the sense amplifier 207. The data lines 203 are provided with the memory cells 221, respectively, the memory cells 221 being arranged in matrix fashion. As with memory cells of a DRAM (Dynamic Random Access Memory), the memory cells 221 each include one transistor switch and one capacitor (hereinafter referred to as “a 1T 1C configuration”), that is, a memory switch 201 and a memory capacitor 202, and the gate of the memory switch 201 is connected to a memory select circuit 205 via a memory gate line 204. The other end of the data line 203 is connected to a data input circuit 206.
Next, an operation of the first example of the conventional technology is described.
As a result of the memory select circuit 205 turning ON the memory switches 201 in a predetermined row via the memory gate line 204, memory data is read, and a signal thereof is amplified by the sense amplifier 207 to be subsequently written into the latch circuit 208. At this point in time, the memory select circuit 205 repeatedly reads the memory cells 221 corresponding to n-rows, thereby enabling the latch circuit 208 to read image data of n-bits.
The image data of n-bits as read is outputted from the latch circuit 208 to the DA conversion circuit 209, which converts the image data of n-bits into one analogue signal voltage to be then outputted to the signal line 213. At this point in time, the vertical scanning circuit 215 turns ON the pixel switch 211 at a predetermined address via the gate line 214, whereupon the analogue signal voltage is written into the liquid crystal capacitor 212 of the pixel as selected, thereby optically effecting image display.
In this connection, because the signal amplified by the sense amplifier 207 is written into the data line 203 as well, refresh operations of the memory cells are concurrently executed at this point in time.
With the conventional technology, image display can be effected without new input of image data from outside, so that low power consumption display can be effected with a peripheral drive circuit kept in a sleep condition.
Such an example of the conventional technology as described, is disclosed in detail in, for example, JP-A No. 085065/1999.
Further, with the example of the conventional technology, a memory cell layout is described again with reference to FIG. 13. FIG. 13 is a layout plan of the memory cells according to the first example.
One analogue image signal is stored by use of the memory cells 221 for n pieces (six pieces in FIG. 13), disposed in the column direction along each of the data lines 203. Accordingly, at the time of outputting data on one analogue image signal, corresponding to one word, it is necessary to output n pieces of data by scanning n lengths of the memory gate lines 204.
The memory cell layout according to the example of the conventional technology is disclosed in, for example, JP-A No. 085065/1999, and so forth, as described in the foregoing.
Meanwhile, another memory cell layout according to a second example of the conventional technology is described with reference to FIG. 14.
FIG. 14 is a layout plan of memory cells according to the second example of the conventional technology.
It represent the case where one analogue image signal is stored by use of the memory cells 221 for n pieces (six pieces in FIG. 14), disposed in the row direction along each of the memory gate lines 204. Accordingly, at the time of outputting data on one analogue image signal, corresponding to one word, it is necessary to obtain n pieces of data outputted to n lengths of the data lines 203.
The memory cell layout according to the example of the conventional technology, as described above, is disclosed in detail in, for example, JP-A No. 082656/2002, and so forth. | {
"pile_set_name": "USPTO Backgrounds"
} |
As shown in Patent Document 1, there is a known screw expander system in which a generator is driven by an oil-feed type screw expander (screw turbine). As shown in FIG. 6, this screw expander system 100 includes a generator main body 105 in which a rotor shaft 103 of a screw rotor 102 of a screw expander 101 is coupled to a generator 104, an oil separating tank 106, a condenser 107, an operating medium pump 108, an evaporator 109, an oil service tank 110, an oil tank 111, and an oil pump 112.
The screw expander 101 expands an operating medium sent through an operating medium inlet 113 by the screw rotor 102, and discharges from an operating medium outlet 114. In the screw expander 101, oil is supplied from an oil inlet 115 to a bearing 116 supporting the rotor shaft 103, the oil is discharged from the operating medium outlet 114 communicating with an oil outlet 117, the oil is supplied from an oil inlet 120 communicating with the operating medium inlet 113 to an outer circumferential surface of the screw rotor 102, and the oil is discharged from the operating medium outlet 114. The operating medium and the oil discharged from the operating medium outlet 114 become a mixture, which is sent to the oil separating tank 106. In the oil separating tank 106, the mixture is separated into the oil and the operating medium. The operating medium separated in the oil separating tank 106 is liquefied in the condenser 107, and sent to the evaporator 109 by the operating medium pump 108. The operating medium is evaporated by the evaporator 109, and sent to the operating medium inlet 113 of the screw expander 101. The oil is sent from an oil discharge port 118 of the oil separating tank 106 to the oil tank 111. The oil is sent by the oil pump 112 from the oil tank 111 to the bearing 116 and the outer circumferential surface of the screw rotor 102 through the oil inlets 115, 120 of the screw expander 101. In the screw expander system 100, the oil service tank 110 is disposed in an oil supply line 119 connected so as to be branched from the upstream side of an inlet of the oil separating tank 106 and merged with the downstream side of the oil discharge port 118, and the oil is supplemented from the oil service tank 110 to the oil tank 111 in accordance with a pressure difference between the upstream side of the inlet of the oil separating tank 106 and the downstream side of the oil discharge port 118.
However, since the oil outlet 117 of the screw expander 101 has a low pressure in comparison to the oil inlets 115, 120, the oil pump 112 is required for supplying the oil from the oil tank 111 on the downstream of the oil outlet 117 to the screw expander 101. Size of the oil separating tank 106 depends on flow speed of a gas or a volume flow rate (for example, substantially proportional to the flow speed of the gas or the volume flow rate). As described above, the operating medium outlet 114 of the screw expander 101 has a low pressure in comparison to the operating medium inlet 113, and the volume flow rate of the gas flowing into the oil separating tank 106 is increased. Thus, there is a need for increasing the size of the oil separating tank 106, and there is a problem that size of the screw expander system 100 is increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
In traditional network flow management systems, network flows have been identified based on known protocol types. For example, such network flows are often classified based on known good and known bad protocols, for management purposes. However, identifying network flows based merely on known good and known bad protocols has generally exhibited various limitations. Just by way of example, identifying network flows based on known good and known bad protocols is sometimes ineffective in managing network flows in peer-to-peer systems. This has occasionally been because peer-to-peer systems deploy various levels of protocol obfuscations, encryption, and other advanced stealth techniques specifically to evade firewalls and network traffic shaping devices from classifying them as known bad. Given the lack of traffic-shaping of these file-sharing protocols, a large fraction of the network bandwidth, in an enterprise or ISP environment, is consumed by these obscure protocols.
There is thus a need for addressing these and/or other issues associated with the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of a voltage-controlled oscillator (VCO) in phase-locked loop (PLL) designs is well known in the art and such designs are widely employed in radio, telecommunication, computer, and other electronic applications. In electronic systems that use PLLs, the time required for a PLL to tune, that is to achieve lock, is usually important to its operation.
The time for a PLL to tune is dependent upon a number of factors, such as the loop's bandwidth, voltage slew, damping factor, frequency step size, etc. In particular, voltage slew time on the PLL can impose a hard limit on how fast tuning can take place, which is especially troublesome with VCOs that have a large voltage range on the tune line. In addition, fast tuning capabilities may introduce multiple types of noise on the VCO tune line, including filtering noise, VCO interferences, phase noise, and spurs. In general, as tuning time decreases, the sensitivity of the PLL increases, and thus, becomes more susceptible to low noise levels and spurs.
Attempts have been made to improve PLL tuning time without introducing excess noise in the output signal. For example, several existing PLL designs use a coarse tuning technique in which a coarse tuning circuit provides the majority of voltage slew and a fine tuning circuit provides the remaining voltage slew. However, many existing coarse tune circuits require a VCO having two tune lines (a coarse tune line and a fine tune line) and/or other additional circuitry, which may be expensive. In addition, existing coarse tune circuits are vulnerable to imposing excess phase noise on the VCO tune line. | {
"pile_set_name": "USPTO Backgrounds"
} |
Active agents (or drugs) are most conventionally administered either orally or by injection. Unfortunately, many active agent are completely ineffective or have radically reduced efficacy when orally administered, since they either are not absorbed or are adversely affected before entering the bloodstream and thus do not possess the desired activity. On the other hand, the direct injection of the agent intravenously or subcutaneously, while assuring no modification of the agent during administration, is a difficult, inconvenient, painful and uncomfortable procedure that sometimes results in poor patient compliance.
Hence, in principle, transdermal delivery provides for a method of administering active agents that would otherwise need to be delivered via hypodermic injection or intravenous infusion. The word “transdermal”, as used herein, is generic term that refers to delivery of an active agent (e.g., a therapeutic agent, such as a drug or an immunologically active agent, such as a vaccine) through the skin to the local tissue or systemic circulatory system without substantial cutting or penetration of the skin, such as cutting with a surgical knife or piercing the skin with a hypodermic needle. Transdermal agent delivery includes delivery via passive diffusion as well as delivery based upon external energy sources, such as electricity (e.g., iontophoresis) and ultrasound (e.g., phonophoresis).
Passive transdermal agent delivery systems, which are more common, typically include a drug reservoir that contains a high concentration of an active agent. The reservoir is adapted to contact the skin, which enables the agent to diffuse through the skin and into the body tissues or bloodstream of a patient.
As is well known in the art, the transdermal drug flux is dependent upon the condition of the skin, the size and physical/chemical properties of the drug molecule, and the concentration gradient across the skin. Because of the low permeability of the skin to many drugs, transdermal delivery has had limited applications. This low permeability is attributed primarily to the stratum corneum, the outermost skin layer which consists of flat, dead cells filled with keratin fibers (i.e., keratinocytes) surrounded by lipid bilayers. This highly-ordered structure of the lipid bilayers confers a relatively impermeable character to the stratum corneum.
One common method of increasing the passive transdermal diffusional agent flux involves pre-treating the skin with, or co-delivering with the agent, a skin permeation enhancer. A permeation enhancer, when applied to a body surface through which the agent is delivered, enhances the flux of the agent therethrough. However, the efficacy of these methods in enhancing transdermal protein flux has been limited, at least for the larger proteins, due to their size.
There also have been many techniques and devices developed to mechanically penetrate or disrupt the outermost skin layers thereby creating pathways into the skin in order to enhance the amount of agent being transdermally delivered. Illustrative is the drug delivery device disclosed in U.S. Pat. No. 3,964,482.
Other systems and apparatus that employ tiny skin piercing elements to enhance transdermal agent delivery are disclosed in U.S. Pat. Nos. 5,879,326, 3,814,097, 5,250,023, 3,964,482, Reissue No. 25,637, and PCT Publication Nos. WO 96/37155, WO 96/37256, WO 96/17648, WO 97/03718, WO 98/11937, WO 98/00193, WO 97/48440, WO 97/48441, WO 97/48442, WO 98/00193, WO 99/64580, WO 98/28037, WO 98/29298, and WO 98/29365; all incorporated herein by reference in their entirety.
The disclosed systems and apparatus employ piercing elements of various shapes and sizes to pierce the outermost layer (i.e., the stratum corneum) of the skin. The piercing elements disclosed in these references generally extend perpendicularly from a thin, flat member, such as a pad or sheet. The piercing elements in some of these devices are extremely small, some having a microprojection length of only about 25-400 microns and a microprojection thickness of only about 5-50 microns. These tiny piercing/cutting elements make correspondingly small microslits/microcuts in the stratum corneum for enhancing transdermal agent delivery therethrough.
The disclosed systems further typically include a reservoir for holding the agent and also a delivery system to transfer the agent from the reservoir through the stratum corneum, such as by hollow tines of the device itself. One example of such a device is disclosed in WO 93/17754, which has a liquid agent reservoir. The reservoir must, however, be pressurized to force the liquid agent through the tiny tubular elements and into the skin. Disadvantages of such devices include the added complication and expense for adding a pressurizable liquid reservoir and complications due to the presence of a pressure-driven delivery system.
As disclosed in U.S. patent application Ser. No. 10/045,842, now U.S. Pat. No. 7,537,795, which is fully incorporated by reference herein, it is possible to have the active agent that is to be delivered coated on the microprojections instead of contained in a physical reservoir. This eliminates the necessity of a separate physical reservoir and developing an agent formulation or composition specifically for the reservoir.
As is well known in the art, osteoporosis is a bone disorder characterized by progressive bone loss that predisposes an individual to an increased risk of fracture, typically in the hip, spine and wrist. The progressive bone loss, which typically begins between the ages of 30 and 40, is mainly asymptomatic until a bone fracture occurs, leading to a high degree of patient morbidity and mortality. Eighty percent of those affected by osteoporosis are women and, based on recent studies, during the six years following the onset of menopause, women lose one third of their bone mass.
As is also well known in the art, parathyroid hormone (PTH) is a hormone secreted by the parathyroid gland that regulates the metabolism of calcium and phosphate in the body. PTH has stirred great interest in the treatment of osteoporosis for its ability to promote bone formation and, hence, dramatically reduced incidence of fractures. Large-scale clinical trials have shown that PTH effectively and safely reduces the percentage of vertebral and non-vertebral fractures in women with osteoporosis.
PTH-based agents have also stirred interest in the treatment of bone fractures (in both men and women) by virtue of their ability to accelerate bone healing.
To this end, various stabilized formulations of PTH-based agents have been developed that can be reconstituted for subcutaneous injection, which, as discussed below, is the conventional means of delivery. Illustrative are the formulations disclosed in U.S. Pat. No. 5,563,122 (“Stabilized Parathyroid Hormone Composition”) and U.S. Patent Application Pub. No. 2002/0107200 (“Stabilized Teriparatide Solutions”), which are incorporated by reference herein in their entirety.
A currently approved injectable PTH-based agent is FORTEO™ (an rDNA derived teriparatide injection), which contains recombinant human parathyroid hormone (1-34), (rhPTH (1-34)). FORTEO™ is typically prescribed for women with a history of osteoporotic fracture, who have multiple risk factors for fracture, or who have failed or are intolerant of previous osteoporosis therapy, based on a physician's assessment. In postmenopausal women with osteoporosis, FORTEO™ has been found to increase bone mineral density (BMD) and reduce the risk of vertebral and non-vertebral fractures.
FORTEO™ has also been found to increase bone mass in men with primary or hypogonadal osteoporosis who are at high risk for fracture. These include men with a history of osteoporotic fracture, or who have multiple risk factors for fracture, or who have failed or are intolerant to previous osteoporosis therapy. In men with primary or hypogonadal osteoporosis, FORTEO™ has similarly been found to increase BMD.
In addition to subcutaneous injection, other means of delivering PTH-based agents have also been investigated. For example, various pulmonary delivery (i.e., inhalation) methods are discussed in “Pulmonary Delivery of Drugs for Bone Disorders,” Advanced Drug Delivery Reviews, Vol. 42, Issue 3, pp. 239-248 (Aug. 31, 2000), Patton, “Bioavailability of Pulmonary Delivered Peptides and Proteins: —Interferon, Calcitonins and Parathyroid Hormones,” Journal of Controlled Release, Vol. 28, Issues 1-3, pp. 79-85 (January 1994), Patton, et al., “Impact of Formulation and Methods of Pulmonary Delivery on Absorption of Parathyroid Hormone (1-34) from Rat Lungs,” Journal of Pharmaceutical Sciences, Vol. 93, Issue 5, pp. 1241-1252 (May 2004), Codrons, et al., “Systemic Delivery of Parathyroid Hormone (1-34) Using Inhalation Dry Powders in Rats,” Journal of Pharmaceutical Sciences, Vol. 92, Issue 5, pp. 938-950 (May 2003) and Pfützner, A, et al., “Pilot Study with Technosphere/PTH (1-34)—A New Approach for Effective Pulmonary Delivery of Parathyroid Hormone (1-34)”, Horm. Metab. Res., Vol. 35(5), pp. 319-23.
Various methods of active transdermal delivery of PTH-based agents are also discussed in “The Effect of Electroporation on Eontophoretic Eransdermal Delivery of Calcium Regulating Hormones,” Journal of Controlled Release, Vol. 66, Issues 2-3, pp. 127-133 (May 15, 2000) and Chang, et al., “Prevention of Bone Loss in Ovariectomized Rats by Pulsatile Transdermal Iontophoretic Administration of Human PTH (1-34),” Journal of Pharmaceutical Sciences, Vol. 91, Issue 2, pp. 350-361 (February 2002).
Despite the efficacy of PTH in treating disorders such as osteoporosis, there are several drawbacks and disadvantages associated with the disclosed prior art methods of delivering PTH, particularly, via subcutaneous injection. A major drawback is that subcutaneous injection is a difficult and uncomfortable procedure, which often results in poor patient compliance.
Intracutaneous administration of agents, such as hGH, using microprojection systems has previously been documented to provide a pharmacokinetic profile of hGH similar to that observed following subcutaneous administration. See, e.g., Cormier, et al., U.S. Patent Application Pub. No. 2002/0128599, entitled “Transdermal Drug Delivery Devices Having Coated Microprotrusions”.
Continuous infusion of a PTH-based agent in vivo results in active bone resorption. It is therefore of critical importance that the PTH-based agent be administered in a pulsatile fashion. Based on the efficacy results from the once daily subcutaneous injection, any alternative route of PTH delivery should provide blood concentration of PTH no slower than that for subcutaneously injected PTH.
It would thus be desirable to provide an agent delivery system that facilitates minimally invasive administration of PTH-based agents. It would further be desirable to provide an agent delivery system that provides a pharmacokinetic profile of the PTH-based agent similar to that observed following subcutaneous administration.
It is therefore an object of the present invention to provide a transdermal agent delivery apparatus and method that provides intracutaneous delivery of a PTH-based agent to a patient.
It is another object of the invention to provide a transdermal agent delivery apparatus and method that provides a pharmacokinetic profile of the PTH-based agent similar to or fatter than that observed following subcutaneous administration.
It is another object of the invention to provide a transdermal agent delivery apparatus and method that provides pharmacologically active blood concentration of a PTH-based agent for a period of up to eight hours.
It is another object of the invention to provide a PTH-based agent formulation for intracutaneous delivery to a patient.
It is another object of the present invention to provide a transdermal agent delivery apparatus and method that includes microprojections coated with a biocompatible coating that includes at least one biologically active agent, preferably, a PTH-based agent. | {
"pile_set_name": "USPTO Backgrounds"
} |
Heat exchangers are used, inter alia, in motor vehicles such as trucks and passenger cars, in the form of vehicle coolers, for the purpose of cooling the engine block by means of circulating liquid.
A conventional vehicle cooler consists partly of two tanks, partly of a heat-exchanger assembly which is situated therebetween and is connected to the tanks. The one tank serves as a collecting point for the heated-up liquid arriving from the engine block, while the other tank collects the cooled liquid from the heat-exchanger assembly and leads it out to the engine block. There are also heat-exchanger constructions having only one tank, in which case the liquid is led into and out of the same tank.
A conventional and very common type of vehicle cooler has tanks consisting of a plastics cover and an end plate made from an aluminum alloy, while the rest of the cooler, like the end plate, is manufactured in aluminum. The cover forms an upward-facing and downward-facing trough, which is situated on top of an end plate belonging to a heat-exchanger assembly forming part of the vehicle cooler, a gasket, for sealing purposes, being placed between the plastics trough and the end plate.
The above-stated construction has the major drawback that two totally different materials are required for the creation of the vehicle cooler tank. The design of the vehicle cooler tank and hence the entire vehicle cooler in two different materials has negative consequences in terms of the recoverability of the vehicle in which the cooler is placed. Since plastic and metal are recovered under totally different processes, the cover of the tank would have to be separated from the other part of the vehicle cooler prior to recovery, this entailing extra costs which make rational recovery more difficult.
The drawback of designing the vehicle cooler tank in two different materials is eliminated by means of a conventional type of vehicle cooler in which both the heat-exchanger assembly and the tank are manufactured in brass. The tank is formed by a cover in the form of an upward-facing and downward-facing trough, which is placed on top of an end plate of the heat-exchanger assembly. The edges of the trough are fitted into a V-shaped groove extending along the edge portions of the end plate. The joining-together of the trough and the end plate is further realized by means of soft-soldering, by a solder material, preferably tin, filling the space between the edge portions of the cover and the walls of the groove.
The above-stated construction of the vehicle cooler tank has, however, a number of other drawbacks. As a result of the trough being placed in the groove of the end plate, various fixtures are required to detain the trough during the soldering procedure. The soldering operation is also time-consuming, since a solder material which is applied from outside would constantly have to be supplied in order to obtain the soldered joints. Furthermore, it is not very favorable to design the tank, and also the rest of the cooler moreover, in brass, since this results in a heavy construction, having an adverse effect upon the performance and fuel consumption of the vehicle, and in a construction having deficient corrosion characteristics.
There is therefore a need for a solution which is better relative to the two above-presented constructions.
The object of the invention is to eliminate the drawbacks with the latter constructions and, at the same time, to enable a heat exchanger to be produced in one and the same material. | {
"pile_set_name": "USPTO Backgrounds"
} |
The problem of recognizing people depicted in an image from the appearance of their face has been studied for many years. Face recognition systems and processes essentially operate by comparing some type of model of a person's face to an image or characterization of the person's face extracted from an input image. These face models are typically obtained by training a face recognition systems using images of a person's face (or a characterization thereof). Thus, a database of training face images or characterizations is typically needed to train a face recognition system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to wearable healthcare sensors, and more specifically, to manufacture of flexible electronics for wearable health care sensors.
Health care sensors can present challenges in manufacture. For example, healthcare sensors or biosensors, in many applications, are to be applied to nonplanar or curvilinear surfaces, such as the surface of a finger or arm. One approach for manufacturing sensors capable of conforming to such surfaces involves the investigation of new materials, such as nanowires, carbon nanotubes, or nanocomposites. However, the complexity, reliability, and performance of such materials can be relatively poor compared to the performance of conventional solid-state electronics on a bulk substrate. The use of conventional semiconductor materials, such as silicon, offers potentially better performance and reliability in healthcare applications. However the use of conventional materials can pose challenges in manufacture when attempting to achieve a thickness that can sufficiently withstand the mechanical deformation needed to conform the semiconductor materials to nonplanar surfaces. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to electronic systems for transmitting and receiving data, and more particularly relates to systems and components which accept asynchronous parallel format data as input; which transmit said data in a format acceptable to synchronous serial transmission media; and which convert the transmitted data back to parallel format for output.
2. Description of the Related Art
Many devices, including standard telecommunication interface devices such as universal asynchronous receiver transmitters (UARTs) and modems, employ asynchronous parallel input/output (I/O) criteria to simplify their internal architecture and permit high speed operation. It is often necessary to transfer or transmit parallel I/O to, from and/or between such devices. One method in current use is to employ parallel cable as the transmission media, where each conductor of the cable is dedicated to one of the parallel inputs or outputs. This arrangement has proven to be unsatisfactory, particularly as line length and number of inputs and outputs increases, because of wiring interconnect hardware requirements, increased conductor count, increased cost and poor reliability.
Furthermore, parallel format message traffic and control information travelling between host systems (e.g. between two microprocessors) typically each occupy individual conductors of a parallel cable even though this nonhomogeneous type of parallel data run at different data rates. This further increases hardware requirements which has a negative impact on both reliability and cost.
It has been recognized that multiplexing nonhomogeneous parallel data and converting the multiplexed data to serial format for transmission over a single serial interface is desirable to reduce the aforementioned problems and allow for greater distances between communication nodes.
Devices are known and in use which permit asynchronous parallel I/O to be interfaced with a serial communications link. The known methods and apparatus fall into two broad categories, those using asynchronous serial interfaces and those using synchronous serial interfaces.
The asynchronous serial interfaces are difficult to work with because each byte of data communicated over the media must be resynchronized, limiting maximum data rate. Existing synchronous serial interfaces, for example, on Universal Synchronous Asynchronous Receiver Transmitters (USARTs), are problematic because they require synchronizing data. This data can be supplied by a host system or the interface device, and is usually specified by an interface protocol. This represents an added constraint when designing a parallel/serial interface rendering the interface "nontransparent" to the designer.
In addition to the aforementioned problems the multiplexing and demultiplexing of nonhomogeneous parallel data for serial transmission is typically performed external to an interface device. These external processes further increase system complexity, cost and nontransparency by virtue, of the need to insert additional hardware between the host system and the interface device. Further complications in known systems which multiplex data sources from several sending systems over the same wire (typical in tri-state bus architectures in computer systems) are the need for bus controller/arbitrators, software resources, and line drivers that can be switched on and off.
Finally, many commercially available UARTs, USARTs, modems, etc. have eight bit data inputs and outputs. It is sometimes desirable to transmit and/or receive longer data patterns which then require either special purpose hardware or the sending of several "words" to pass the pattern. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a dynamic random access memory having improved capability for accessing memory cells located along a common row.
2. Description of the Prior Art
A dynamic random access memory (DRAM) comprises individual memory locations, referred to as "cells", arranged in an array of rows and columns. A given memory cell is located in the vicinity of the intersection of a row conductor and a column conductor. The cell is "accessed" to perform a data read or write operation when the corresponding row and column conductors are activated. Referring to FIG. 1, a typical DRAM design utilizes a row decoder to select a given row by placing a voltage thereon, which is positive in the case of n-channel field effect access transistors. This row conductor voltage allows all of the access transistors in the selected row to conduct charge between an information storage capacitor and the column conductor associated with each selected cell. Similarly, a column decoder is utilized to select a given column of memory cells for connection to data output (DQ and DQ) lines.
For example, if row R1 and column conductor C1 are selected, then data may be written (stored) or read (retrieved) from capacitor 11 by conduction through access transistor M11. Note that a given column conductor (e.g., C1) typically has associated with it a complement column conductor (e.g., C1) that is also selected for the given column. The complement column conductor provides a reference voltage during read operations so that the sense amplifier for the selected column (e.g., sense amp 1) can rapidly determine whether a high voltage, referred to as a "1", or a low voltage, referred to as a "0", is stored in the selected memory cell. The column functions are interchangeable, so that C1 may be selected to read a given cell (e.g., M21-21), with C1 then serving as its complement conductor, as when row conductor R2 is selected. The selected column conductor (e.g., C1) communicates the data to the DQ line, and the selected complement column conductor (e.g., CI) communicates the complement data to the DQ line. The Q buffer then provides valid data output when a strobe signal (CQL) is present, assuming the Q buffer is not placed in the "tristate" condition by a high level on CE or the clock early write (CEW) signal.
In order to select the desired row and column, address bits are supplied to the row and column decoders. For example, to select one row out of 256 rows, 8 address bits (A1 . . . A8) are supplied to the row decoder, since 2.sup.8 =256. Similarly, to select one of 256 columns, 8 other address bits (A9 . . . A16) are supplied to the column decoder. This provides access to any one of 256.times.256=65,536 memory cells. Other array sizes may be provided for by using different numbers of address bits.
In typical DRAMs, the address bits are time multiplexed into two groups, with the row address bits being applied first to the address terminals, and then the column address bits. In this way, the number of integrated circuit terminals can be reduced. For example, the exemplary array of FIG. 1 needs only 8 address terminals when thus multiplexed, instead of 16. To accomplish this address multiplex function, the first group of 8 bits (row bits A1 . . . A8) are placed on the address terminals by the circuitry requesting memory access, and then latched into the row decoder by a "row enable" signal, RE, also referred to as "row access strobe", RAS, in the art. Next, the column bits (A9-A16) are placed on the address terminals, and latched into the column decoder by a "column enable" signal, CE, also known as the "column access strobe", CAS, in the art. After a short delay, referred to as the "access time" (T.sub.ACC), the desired memory cell is selected, and in the case of a read operation, the stored data appears on the DQ line (and its complement on the DQ line). This sequence of operations is illustrated in FIG. 2. Note that the row and column address bits are maintained valid for the times indicated on the "ADR" graph, and similarly for the data bits on the "Q" graph.
In one conventional mode of memory operation, the RE signal is again applied (e.g., a high to low transition), followed by the CE signal, when the next memory data bit (e.g., data bit 2) is to be accessed for a read operation. This data bit 2 assumes a high or low voltage level, depending upon whether a "1" or "0" is stored at the selected location, during a second period of valid data time. However, note that the first and second valid data periods are separated by a minimum time interval, T.sub.INV, when the data output is invalid. This is accomplished by allowing the Q output of the Q buffer to assume a high impedance state, referred to as the "tristate" condition. The tristate condition effectively disconnects the Q output, and hence the data input/output (I/O) terminal of the memory, from the memory array information.
The purpose of the tristate interval is to allow two or more memory arrays, typically implemented on separate integrated circuit chips, to connect via a common input/output conductor, referred to as a "data bus"; see FIG. 3. Then, when one of the memories, for example memory 1, is providing a valid data output in response to an access request, the other memories connected to the bus (memories 2 . . . N) are in the tristate condition. This ensures that these other memories do not interfere with the accessed memory. Such interference could occur, for example, if memory 1 was providing a "1" data bit to the data bus, and another of the memories was providing a "0" data bit. During the next memory cycle, another of the memories, say memory 2, may be selected to provide the data output, with the other memories then being placed in the tristate condition. Note that which of the memories is providing the valid data, and which of the other memories are in the tristate condition, can be controlled by the individual CE signal applied thereto, since a high CE signal places a given memory in the tristate condition in a typical memory design.
Other modes of memory operation have also been utilized, generally in an attempt to reduce the time to access a desired memory location. For example, the above-noted address multiplex scheme requires twice as much time to input the necessary address bits than if both row and column address bits were presented simultaneously to the memory, as is the case with most static memory designs. Various schemes have been used to reduce this time penalty. In particular, the "page mode" scheme allows any of the memory cells along a selected row to be accessed by simply supplying the desired column address and the CE signal to the memory for each data access request. That is, the row address and the RE signal is supplied only once, as long as the desired memory cells are located in the selected row. Hence, a significant time saving can be achieved. However, prior art page mode schemes have retained the tristate period between valid data output periods.
A more recent "static column" technique is somewhat similar to page mode, except that even the column enable (CE) signals are not required when accessing cells located along a selected row. Rather, the column address bits themselves (e.g., A9-A16 above) are detected by means of transition detectors, which then select a new column when these bits are changed. That technique eliminates the tristate period, since a new cell provides valid output data (allowing for an unavoidable transition period) as soon as it is selected by a new address. However, the column address bits then must be maintained valid on the address terminals at least as long as valid output data is desired.
Another technique, referred to as "ripple mode", is similar to page mode, with one significant difference being that the column address bits begin to flow into the (static) column decoders when the CE signal goes high. Then, the addresses are latched into the address buffers when CE goes low. This technique allows somewhat greater latitude in the available time window between the RE low and CE low signals; see "C-MOS 256-K RAM with Wideband Output Stands by on Microwatts", A. Mohsen et al, Electronics, June 14, 1984, pp. 138-143. (In contrast, in page mode the column address bits must be valid when CE goes low, and for a fixed hold time thereafter. This allows the column decoder time to sample and latch the column addresses.)
Still another addressing technique, referred to as "nibble mode", provides four data output bits when a given memory location is specified. The four bits are time-multiplexed onto a single I/O terminal, and the data remains valid (except for transition times) during the four-bit output period. However, the output is then tristated when a new location is specified. Furthermore, the four data bits are typically not all obtained from the same row of memory cells per access request. | {
"pile_set_name": "USPTO Backgrounds"
} |
Light emitting diode (LED) lighting devices provide the advantages of low power consumption and long service life. Thus, LED lighting devices may be used as general lighting equipment to replace, for example, fluorescent lamps, bulbs, halogen lamps, and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
Squeak and rattle is an audible phenomenon, typically high frequency, which results from various forms of unexpected noise. One form of such noise is caused by elements in friction under forced excitation, which can be described as buzzes, squeaks, or groans. Such noise can result in the automotive setting when a vehicle is driven over a rough road. Other types of noise are those caused by loose or flexible components with the potential for impact with other components, sometimes called rattle.
The mechanisms involved in generating squeak and rattle noise are complex and often intermittent, depending on the source of excitation. For example, squeak and rattle in a vehicle may be present when driven over a first rough road, but may not be present when driven over a second rough road with different characteristics. Thus, when a vehicle driver complains to a service technician that a squeak and rattle noise exists, it may be difficult, if not impossible, for the service technician to recreate the noise so as to identify and fix it. Furthermore, there may be other noise sources present while driving the vehicle, such as engine noise and wind noise, which make identifying the squeak and rattle difficult. Although stationary vehicle vibration systems have been developed which shake an entire vehicle in an attempt to recreate squeak and rattle, such systems are expensive, space and time consuming, and difficult to operate. The results from such systems are often no better than driving the vehicle over a road.
Therefore, a method and system which can inexpensively and accurately recreate squeak and rattle noise in a stationary vehicle would greatly facilitate the identification and repair of such noise. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to a photonic bandgap fiber, and more particularly, to a laser device operative to emit an optical beam comprising multiple wavelengths.
In conventional optical fiber, total internal reflection is responsible for the guiding of light therein. Based on the principle of total internal reflection (TIR), an optical fiber typically consists of a central core surrounded by a cladding layer whose index of refraction n2 is slightly lower than that n1 of the core. The optical fiber is characterized by a normalized frequency as a function of the radius of the core and the core-cladding index difference, which is itself a function of the wavelengths of the guided optical beam. The normalized frequency determines the number of modes supported by the fiber. The dependence on wavelength indicates that conventional filter can maintain single-mode propagation area over a limited wavelength range. The wavelength range is material dependent, and is typically between 10% and 50% of the central wavelengths. For example, if the central wavelength at which the fiber propagates only single mode is 3 micrometers, the range is typically between 0.3 and 1.5 micrometers, which indicates 2.85 to 3.15 micrometers on one extreme and 2.25 to 3.75 micrometers on the other. Beneath the low end of the wavelength range, propagation of multiple modes is supported. Above the high end of the wavelength range, no modes are supported without very high losses or very stringent restrictions on bending, vibration, and micro-discontinuities in the fiber.
In contrast to conventional fibers, photonic bandgap fibers do not depend on reflection from slight differences in index of refraction of material; but rather, they depend on reflection from “bandgaps” created by microstructures (holes) in the fiber. Such fibers are called “photonic bandgap fiber” (PBG). The wavelength dependence of the modal propagation in photonic bandgap fibers is based on different phenomena and equations than total internal reflection. This renders photonic bandgap fibers to allow “endlessly single-mode” propagation which theoretically supports single-mode propagation over an infinite wavelength range. Practical single-mode propagation is then limited to the transparency range of the photonic bandgap fiber material.
Among various optical non-linear characteristics, Raman scattering is an important nonlinear process that shifts the input optical wavelength to longer wavelength. Such process is called as Stokes shift. In a typical fiber Raman laser, a single-mode fiber is placed inside a Fabry-Perot cavity formed by partially reflecting mirrors. Also, a prism can be installed between the mirrors to allow tuning of the laser wavelength by dispersing spatially various Stokes wavelengths which can be selected by rotating the mirror at the output side of the single-mode fiber. The threshold of the fiber-Raman laser is as large as about 500 W when a short fiber length, for example, 1.9 m is used. To reduce the threshold of the fiber-Raman laser to about 1 W, a fiber as along as 10 m is required. In addition to the length requirement, although the output wavelength is tunable in a broad range, the fiber-Raman laser is only operative to output a single wavelength at one time.
Various approaches, for example, diode-pumped solid state lasers frequency-shifted by optical parametric oscillators, and semiconductor (optically- or electrically-pumped heterojunction and quantum well) lasers, have been made to realize a simultaneous multiple-wavelength output, but have various drawbacks such as limited wavelength range, fixed wavelength and large divergence angle instead of near-diffraction-limited, which is typically the convergence of a beam required in many system. The optical parametric oscillator laser includes an optically nonlinear crystal to convert a pumped laser wavelength into a signal wavelength and an idler wavelength. The output of the semiconductor diode layers is typically less monochromatic (wider spectral output range) than other types of lasers; however, because of the small aperture size, the output beam divergence angle is as much as 20°.
As discussed above, the conventional fiber lasers require relatively long fibers to lower the threshold, and the output is monochromatic rather than multiple wavelengths. The heterojunction and quantum well lasers, though output multiple wavelengths, have beam divergence as much as 20°. Therefore, to obtain a near-diffraction-limited optical beam of multiple simultaneous, coaxial wavelengths with a compact volume inexpensively, a new design of laser system is required. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is generally known to provide a handle for scanning device such as a portable scanner for logistics environments. However, such known handles are typically either molded as an integral portion of the housing of the scanning device, or are connected to the housing fasteners and corresponding tools. In either case of a fastened handle, detachment of the handle from the scanning device is at best problematic, depending upon the tools available in the field to a user of the scanning device. In the case of an integral or otherwise permanently bonded handle to the housing of the scanning device, desired removal of the handle is not possible without potentially damaging the housing. Accordingly, current scanner handles may not allow for easy removal (e.g., for replacement, repair, cleaning, alternative configuration of the scanning device, etc.). Further, attaching the handle to the housing in a releasable fashion, while providing for a control connection between a trigger of the handle and electronic components of the scanning device, is problematic.
A further disadvantage of current portable scanning devices is hidden storage of a stylus for interacting with a user interface of the scanning device. Typically the stylus of the device is attached (e.g. via a cord) and fastened to an external surface of the device housing or handle, when not in use by the user of the device. Unfortunately, these external storage techniques of stylus can result in damage to the housing of the device, misplacement (e.g. loosing) of the stylus by the user, and/or positioning of the stylus in an awkward location on the device/handle that may interfere with the user when operating the scanning device without the current need for the stylus.
Further, triggers of current handles may not be ergonomically comfortable for operation by many different users having different sized hands. As such, the known handles and triggers can provide a non-contoured/ergonomic grip configuration, which tends to make such known triggers uncomfortable to use (e.g. premature fatigue felt by the hand of the user). | {
"pile_set_name": "USPTO Backgrounds"
} |
An electrophotographic photosensitive member having a photosensitive layer using an organic photoconductive substance (an organic electrophotographic photosensitive member) can be produced more easily than an electrophotographic photosensitive member having a photosensitive layer using an inorganic photoconductive substance (an inorganic electrophotographic photosensitive member). In addition, the organic electrophotographic photosensitive member has an advantage that it has a high degree of freedom of function design because of its diversity of material selection. Thus, the organic electrophotographic photosensitive member has been widely used in the market owing to recent rapid proliferation of laser beam printers.
An electrophotographic photosensitive member having a lamination type layer structure has gone mainstream as the photosensitive layer of the organic electrophotographic photosensitive member from the viewpoint of durability, the lamination type layer structure being obtained by laminating, from a support side, a charge-generating layer comprising a charge-generating substance and a charge-transporting layer comprising a charge-transporting substance in this order.
In many cases, a layer is arranged between the support and the charge-generating layer, which is intended for, for example, covering a defect on the surface of the support, improving adhesive property between the support and the photosensitive layer, preventing interference fringes, protecting the photosensitive layer from electrical breakdown, and preventing the injection of charge from the support into the photosensitive layer (see, for example, JP-A 58-095351 (Patent Document 1) and JP-A 02-082263 (Patent Document 2)). Hereinafter, a layer arranged between a support and a charge-generating layer is referred to as an “intermediate layer”.
The intermediate layer has the merit described above and a demerit that charge is apt to accumulate. For this reason, when images are printed (output) continuously, a large change in potential occurs, so an output image may have a problem.
For example, when an electrophotographic photosensitive member having an intermediate layer is used for an electrophotographic apparatus currently adopted widely in printers which uses a dark-area potential portion as a non-development portion and a light-area potential portion as a development portion (a so-called reversal development type), the sensitivity of a site irradiated with light at the time of the preceding printing increases owing to a reduction in light-area potential or in residual potential. Therefore, when a totally white image is output at the time of the subsequent printing, a ghost phenomenon (positive ghost) may occur, in which the preceding print portion is embossed with a black color.
In contrast, when a totally black image is output at the time of the subsequent printing when the sensitivity of a site irradiated with light at the time of the preceding printing decreases owing to an increase in light-area potential, a ghost phenomenon (negative ghost) may occur, in which the preceding print portion is embossed with a white color.
Various methods of reducing a change in potential such as an increase in residual potential or a reduction in initial potential when continuous printing is performed by using an electrophotographic photosensitive member having the intermediate layer have heretofore been proposed (see, for example, JP-A 62-269966 (Patent Document 3), JP-A 58-095744 (Patent Document 4), JP-A 04-310964 (Patent Document 5), JP-A 07-175249 (Patent Document 6), JP-A 08-328284 (Patent Document 7), JP-A 09-015889 (Patent Document 8), and JP-A 09-258468 (Patent Document 9)).
However, there may be cases involving problems such as a reduction in initial sensitivity and a reduction in chargeability. Therefore, continuous printing using the electrophotographic photosensitive member having the intermediate is susceptible to additional improvement.
In addition, demands for an electrophotographic photosensitive member have become more and more severe owing to recent trends toward high image quality and colorization. That is, an electrophotographic photosensitive member has been demanded, which shows no changes in properties due to a change in environment where the electrophotographic photosensitive member is used, and which causes no deterioration of an output image such as a change in potential or a ghost even in durable use.
In particular, in a high-temperature-and-high-humidity environment, solutions to: a reduction in dark-area potential (charging potential) or in light-area potential resulting from a reduction in resistance; a change in light-area potential due to durable use; and the promotion of a positive ghost; have been demanded.
In addition, in a low-humidity environment, solutions to: an abrupt increase in light-area potential resulting from an increase in resistance at an initial stage (about a period from a first revolution to a 500th revolution); a change in density of an output image due to such abrupt increase; and the promotion of a ghost due to durable use have also been demanded.
A method of suppressing a ghost involving adding a ghost alleviating agent to the intermediate layer has been proposed as one method of solving the above problems (see, for example, JP-A 2003-295489 (Patent Document 10) and JP-A 2003-316049 (Patent Document 11)).
However, durable use in a high-temperature-and-high-humidity environment or a low-humidity environment is still susceptible to improvement.
Further, an electrophotographic photosensitive member which allows the use of laser whose oscillation wavelength is a short wavelength (380 to 450 nm), and is adapted to high resolution has also been demanded.
[Patent Document 1] JP-A 58-095351
[Patent Document 2] JP-A 02-082263
[Patent Document 3] JP-A 62-269966
[Patent Document 4] JP-A 58-095744
[Patent Document 5] JP-A 04-310964
[Patent Document 6] JP-A 07-175249
[Patent Document 7] JP-A 08-328284
[Patent Document 8] JP-A 09-015889
[Patent Document 9] JP-A 09-258468
[Patent Document 10] JP-A 2003-295489
[Patent Document 11] JP-A 2003-316049 | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years, a trend towards electronic trading has become well-established, causing one major exchange after another to replace or at least supplement the traditional open outcry, where a trade is done face to face, with automated, electronic systems which automatically match bids and offers. While the motivation behind using electronic trading may vary from market to market, greater efficiency and volume are some of the considerations.
Electronic trading is generally based on a host exchange, one or more computer networks and client devices. In general, the host exchange includes one or more centralized computers to form the electronic heart. The exchange allows a trader to participate in trading at least one electronic market, and conducts matching of bids and offers being placed by the subscribing traders for that market. Typically, subscribing traders connect to an exchange by way of a communication link and through an application program interface to establish real-time electronic messaging between the exchange and their terminals. The real-time electronic messaging includes market information that is sent from an electronic market to the traders.
An electronic exchange can list any number of tradeable objects. Often times, traders will trade simultaneously in more than one tradeable object, and they may trade simultaneously tradeable objects that are listed at more than one exchange. Ordinarily, each tradeable object has its own electronic market, and therefore, its own separate stream of market information. Therefore, in these instances, the traders will generally receive more than one stream of market information such that each stream of market information attempts to characterize a given market. In addition to receiving market information from exchanges, a trader might subscribe to news feeds to receive real-time quotations that may assist the trader in making his trading decisions.
Generally, when a trader submits an order to a host exchange, the host checks the conditions associated with the order, for example, price and quantity, and prioritizes the order with other orders of the same price. When the order conditions are satisfied in the market, a trade occurs and trade information is then relayed in some fashion to one or more client devices. In fact, the host exchanges typically publish a data feed to the client devices so that the traders can have access to the most current market information.
Market information commonly includes information regarding the inside market and market depth. The inside market is the lowest sell price in the market and the highest buy price in the market at a particular point in time. Market depth refers to quantities available at the inside market and may also refer to quantities available at other prices away from the inside market. The quantity available at a given price level is usually provided by the host exchange in aggregate sums. In other words, a host exchange usually provides the total buy or the total sell quantity available in the market at a particular price level in its data feed. The extent of the market depth available to a trader usually depends on the host exchange. For instance, some host exchanges provide market depth for all or many price levels, while some provide only quantities associated with the inside market, and others may provide no market depth at all. Additionally, host exchanges can offer other types of market information such as the last traded price (“LTP”), the last traded quantity (“LTQ”), and order fill information.
The costs of electronic trading are in general much lower than those being incurred by traders who trade at the open outcry exchanges. Unlike open outcry systems, electronic trading no longer requires brokers or clerks, and reduces overhead costs including building, staffing, and back-office costs associated with the open outcry exchanges. Regardless of the type of matching algorithm used by the electronic market and charges that are applied by exchanges, traders have limited means to control order positions in an order queue at an electronic exchange even if they are willing to pay higher trading costs. Thus, it is still desirable for electronic trading applications to offer tools that can assist a trader in trading in an electronic trading environment, help making profitable trades in a speedy and accurate manner, while allowing the trader to control his/her order positions at an exchange at least for some orders being submitted by the trader. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to nuclear reactors and more particularly to a method of removing residual or decay heat from the core of a liquid metal cooled breeder reactor.
A nuclear reactor is designed and operated for the purpose of initiating and maintaining a nuclear fission chain reaction in a fissile material for the generation of heat, usually for power purposes. In the type of nuclear reactor described herein, fissile materials are contained within fuel rods or elements. A plurality of fuel elements or rods comprises a fuel assembly and a plurality of such assemblies comprises the heat generating nuclear reactor core which is structurally supported within a sealed pressure vessel. In a breeder reactor, the core also will include a fertile material contained in similar rods or elements which are combined to form an assembly. This fertile material, upon irradiation by fast neutrons, is converted to a fissile material suitable for use as fuel. A liquid metal coolant, such as liquid sodium or a mixture of sodium and potassium, is circulated into the reactor vessel and through the assemblies comprising the nuclear reactor core. There, the heat generated by nuclear fission is transferred from the fuel assemblies to the reactor coolant. The heated coolant exits from the pressure vessel and flows to a heat exchanger where the heat previously acquired is transferred by indirect heat exchange to another coolant coupled in sealing arrangement with the heat exchanger. The cooled liquid sodium exits from the heat exchanger and returns to a pump, where it is again circulated into the pressure vessel.
The system comprising the nuclear reactor core, reactor vessel, heat exchanger, circulating pump and the associated connecting piping is commonly referred to as the primary system. In a liquid metal cooled fast breeder reactor there generally is provided two or more coolant circulation loops in the primary system.
One of the accidents which must be guarded against in a nuclear reactor is a rupture of the connecting piping interconnecting a primary coolant pump and the reactor vessel. If the rupture is transverse to the axial centerline of the pipe, coolant will be discharged out of both ends of the ruptured pipe until the reactor is shut down and the pumps can be slowed down sufficiently so that no more coolant is being pumped through the ruptured pipes. Obviously, during this time, a considerable amount of coolant, normally supplied to the reactor core, is diverted out of the ruptured pipe and does not cool the core. This situation may cause extremely high core temperatures resulting in a failure of the fuel cladding and subsequent melting of the nuclear fuel contained within the core. It has been suggested that the entire system comprising the nuclear core, reactor vessel, heat exchanger, circulating pump, and connecting piping, all be placed within a housing and immersed in a pool of liquid coolant to minimize the risk of a loss-of-coolant accident.
Another potential hazard which must be guarded against is a complete loss of power. The nuclear reactors are designed such that in the unlikely event of a total power failure, the control rods will, nonetheless, automatically be reinserted into the core to shut the reactor down. The pumps have sufficient mass such that inertia of the rotating parts will continue to supply coolant long enough for full insertion of the control rods. However, even after the reactor is shut down by insertion of the control rods, the core will continue to produce heat, generally referred to as decay heat, even though the core is now subcritical. The decay heat is sufficient to produce temperatures that ultimately could melt the cladding around the fuel and perhaps even destroy the integrity of the pressure vessel.
Reactors generally are provided with an auxiliary power system, usually diesel-powered generators. However, upon starting a diesel engine, a finite amount of time is required to warm up the engine before a load can be placed upon it. Further, there is always the possibility that, for some reason, the engine will not start. Moreover, even after the diesel engine is started, the cooling pumps must be brought up to speed; and in view of the relatively large rotating masses involved, this can require a significant amount of time. During the time that the diesels are being started, warmed up, and the pumps being put back on line, the core is increasing in temperature. The temperature may be so great that fuel rod swelling and other deformation of the core could take place before the cooling system is returned to normal operation.
It has been proposed that if the reactor system is immersed in a large pool of liquid coolant, some means could be provided for cooling the core by convection currents. This, of course, requires some means for admitting the coolant from the pool into the pipes of the circulatory cooling system, either by the use of check valves or remotely controlled valves. However, these introduce yet another variable to the system in that the valves require moving parts and provide no assurance that they will work when needed. Thus, to increase the reliability of the system, redundancy is required, which, in turn, greatly enhances the cost and complexity of the system.
Obviously, there is need for an emergency core cooling system which could remove the decay heat from the reactor and which does not require the use of moving parts within the reactor vessel. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to surgical devices for assisting in the implantation of prostheses and more particularly to devices for assisting the surgeon in performing osteotomy or bone cutting in preparation for humeral prosthetic device implantation.
Prosthetic implant devices for use in reconstructing the proximal area of the human humerus are typically designed so as to closely mimic the natural bone anatomy of the proximal end of the humerus. The surgeon who is equipped with such humeral prosthetic devices is thus confronted with the task of performing as precise an osteotomy or bone cutting as possible which will accomodate the size and structure of the prosthetic device to be implanted. Prior techniques for performing an osteotomy to accomodate implantation of a humeral prosthesis have simply involved the careful and painstaking attention of the surgeon by eyesight to determine an appropriate site on the proximal end of the humerus for performance of the osteotomy.
It is an object of the invention therefore to provide a device for assisting the surgeon in the performance of a humeral osteotomy. It is a further object of the invention to provide a device which defines a proximal humeral osteotomy line and which guides the surgeon in the performance of the bone cutting. | {
"pile_set_name": "USPTO Backgrounds"
} |
In many cases, it is necessary for a plurality of electronically commutated motors to rotate at the same speed. In such a case, each motor usually has its own electronics system, e.g. for controlling the currents in its stator winding arrangement, and a computer is provided which centrally controls these various electronic systems and suppresses deviations in speed. High costs for corresponding hardware arise in this context, however, and interference noise occurs if the motors do not run in exactly synchronous fashion, especially when those motors are driving gearboxes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This invention relates to direct access storage devices (DASD) and more particularly to a system and method for supporting user specification of physical file formats for files.
2. Description of the Related Art
A disk drive is a data storage device which utilizes at least one rotatable disk with a magnetic medium on a major surface of the disk. Data are represented on the medium as a series a physical transformations of portions of the magnetic medium. The physically transformed regions are arrayed as data tracks at defined locations.
In magnetic disk hard drive systems, a transducer used to read and write data to the disk forms a portion of a body called a slider. The slider flies just off the surface of a rotating disk. The slider is attached on its backside to a suspension system which in turn is connected to an actuator arm. The actuator arm is used to selectively position the head over a desired track or track location during a read or write operation. The slider itself may be moved radially inward or outward to change the track over which the slider is positioned. Movement of the slider between concentric data tracks takes time both for the movement and for damping motion of the slider at the end of a movement.
The term format embraces several aspects of arranging and interpreting items recorded on the storage media. For example, digital data may be recorded using one of several coding schemes. Coding is a type of logical format. Physical formats for data tracks relate to physical location and arrangement of data, e.g. in concentric and spiral tracks.
The use to which the digital data is put has consequences for the physical format chosen for storage. For example, image data of both the still or video type implies demand for large quantities of data storage space. For video it can further be anticipated that there will be large bandwidth demands due to real time reproduction requirements. For video data, the order in which data is recovered is also highly predictable. It is good design to arrange tracks of video data in such a way as to coordinate movement of the slider (or other transducer) with simultaneous readout of data. Spiral tracks work best for this. Using spiral tracks and storing data in the order for recovery along the spiral tracks allows the slider to be kept moving continuously inward or outward along the tracks during reading. No time is lost moving the slider between tracks or for stabilizing position of the slider after movement between tracks.
Text files and other similar coded material are typically smaller than still image and video files. Records formed from text files need not be contiguous, allowing maximum utilization of available space. Concentric tracks aid in locating all such portions of such records quickly during a read operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an optical article provided with an optical coating and having excellent heat resistance.
2. Description of the Prior Art
In order to impart various desired properties to an optical article, it is common to employ an optical interference coating prepared by laminating a single layer or multi-layers of dielectric material having a high, intermediate or low refractive index.
For instance, there may be mentioned an antireflection coating as an example of commonly employed optical interference coatings. As an antireflection coating, there has been known a single-layered antireflection coating prepared by forming MgF.sub.2 (material having a low refractive index) on a substrate in an optical layer thickness of .lambda./4, or an antireflection coating having a three-layered structure prepared by forming on a substrate Al.sub.2 O.sub.3 (material having an intermediate refractive index), ZrO.sub.2 +TiO.sub.2 (material having a high refractive index) and MgF.sub.2 in an optical layer thickness of .lambda./4, .lambda./2 and .lambda./4, respectively, in this order from the substrate side. Further, as an optical filter, there has been known a filter prepared by laminating MgF.sub.2 and TiO.sub.2 (material having a high refractive index) alternately.
These optical interference coatings have sufficient mechanical strength, i.e. adhesion and hardness, for use at a temperature around room temperature, if they were formed by vapor deposition on substrates at e.g. 300.degree. C. However, there has been a problem such that if they are subjected, after the vapor deposition, to heat treatment e.g. at 450.degree. C. for 2 hours in air, and then they are used at a temperature around room temperature, the mechanical strength of the above-mentioned conventional coating structure tends to deteriorate.
For instance, as shown in FIG. 1, a glass plate with an antireflection coating is prepared by forming on a float glass substrate surface 1 an Al.sub.2 O.sub.3 layer 2 (thickness: 780 .ANG.) as the first layer, a ZrO.sub.2 +TiO.sub.2 layer 3 (ratio of ZrO.sub.2 /TiO.sub.2 : about 9, thickness: 1200 .ANG.) as the second layer and a MgF.sub.2 layer 4 (thickness: 940 .ANG.) as the third layer in this order by a vacuum vapor deposition method. Non-treated Sample 5 thereby obtained and Sample 6 obtained by the heat treatment thereof at 450.degree. C. for 2 hours in air, are subjected to abrasion resistance tests (eraser test and kaolin test) and scratch resistance test, as mechanical strength tests. The results are as shown in Table 1, and a distinct deterioration is observed in the heat-treated Sample 6 as compared with the non-treated Sample 5.
As a result of extensive researches on this deterioration mechanism, the present inventors have found the following facts. Namely, this deterioration is observed at the first interface from the air side, i.e. at the interface between the outermost MgF.sub.2 layer 4 and the ZrO.sub.2 +TiO.sub.2 layer 3 therebeneath. It is believed that such deterioration is caused by the difference in the thermal expansion coefficient between the MgF.sub.2 layer and the ZrO.sub.2 +TiO.sub.2 layer. In general, most of oxides have a thermal expansion coefficient not higher than 10.times.10.sup.-6 deg.sup.-1 (temperature range: room temperature to 450.degree. C.), while fluorides such as MgF.sub.2 have a thermal expansion coefficient of at least 20.times.10.sup.-6 deg.sup.-1 (temperature range: room temperature to 450.degree. C.) This difference in the thermal expansion coefficient is believed to cause slipping of the interface at the time of the heat treatment, whereby the bondage at the interface will be broken, and the bond strength at the interface will be weakened.
In the above-mentioned multi-layer type optical interference coatings, such disadvantages may be solved by employing, instead of the highly heat-expansive material MgF.sub.2, a material having a heat expansion coefficient smaller than that of MgF.sub.2. However, no other materials have so far been known which have adequate mechanical strength and durability by itself and chemical stability, and yet has a low refractive index comparable to MgF.sub.2. On the other hand, for the same reason, it is obliged to use an oxide material as a material having a high refractive index, whereby it is impossible to eliminate the difference in the heat expansion coefficient. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates in general to a device for driving a light emitting diode string, and more particularly to a device for driving a light emitting diode string for applying in a backlight module.
2. Description of the Related Art
Conventionally, backlight modules are provided as the light sources for LCD panels, where the light can be produced by LEDs. LEDs are solid state semiconductor light sources, and have the following advantages: extra-long lifetime, low power, low operating voltage, low operating temperature, and quick response time. These are advantages that can not be matched by cold cathode fluoresce lamps (CCFL), and are the reasons to the wide use of LEDs in various illuminations and small scale backlight modules of cellular phones. It is becoming apparent that LEDs will gradually replace CCFLs in many applications.
FIG. 1 (Prior Art) shows circuit diagram of a conventional driving device for LEDs. The driving device 100 includes a DC voltage source 102, a DC chopper 104, a filtering device 106, and a LED string 108. The DC chopper 104 is used for controlling the electrical connection between DC voltage source 102 and LED string 108, and the LED string 108 is controlled to turn on or turn off accordingly, i.e. to light up or shut off. Since filtering circuit 106 has an inductance, the waveform of current I of LED string 108 forms triangular waves, as shown in FIG. 1B. As a result, the LED string 108 can not operate with a fixed conducting current. Even if a voltage-stabilizing capacitor is connected to the LED string in parallel to stabilize current I, the problem of long capacitor charging and discharging time prevents LED string 108 from able to be quickly turned on or off. | {
"pile_set_name": "USPTO Backgrounds"
} |
Waterfree urinals (urinals that do not require flushing with water to block odors from emitting from the drain) utilize a cartridge attached to a drain, the drain leading to a sewer or septic system. Within the cartridge is a trap to contain liquid to prevent gases coming through the drain and escaping through the cartridge. Over time, precipitants from urine slow the draining ability and capacity of the cartridge. Over time, the cartridge drains too slowly to be useful, causing urine to back-up onto the top of the cartridge, as comprising an excessive amount of liquid. At this point, the entire cartridge must be replaced.
It is an object of the invention to provide a waterfree cartridge having a visual indicator to signal the end of its useful life.
It is another object of the invention to provide a waterfree cartridge having an indicator that may be removed and reused with a new cartridge.
These and other objects of the invention will become apparent to one of ordinary skill after reading the disclosure of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
Serving food outdoors is a great American tradition. However, containers of open food are often an invitation to annoying insects which light upon the food and render it unappetizing to unsanitary. Also, the wind can dry out many foods, particularly breads and cakes, rendering them hard or unappetizing. At picnics, tables are decked with covered food containers which are suddenly uncovered to allow guests access to the food within a short window. Typically, the covers are solid (e.g., foil) or opaque plastic or heavy glass. The former two do not allow sight of the food until removed. The latter cover, while allowing sight of the food, is heavy, often the size of the serving container, and must be moved to a location other than the serving table for lack of room to set it down while accessing the food. Otherwise, one needs a cooperative guest to hold the cover while one accesses the food underneath. When the covers are removed, it is often a battle between the guests and the insects as to who gets the food. This causes the foods to be recovered and one has to peak under the many covers to rediscover that dish from which one seeks seconds. At large commercially catered events, the problem becomes even more exaggerated. It is an object of the present invention to provide a device that displays food under a clear sanitary cover, that allows one to single handedly tilt the cover to gain access to the food, and to retilt the cover down to reprotect the food while offering visual access and decision making to the next guest. In this way, all the guests do not have to eat as soon as the food is opened and can access food and desserts at their palates desire.
A second problem at such gatherings is cleaning and storing all of the food containers. Food covers for plates and desserts add another dimension to the storage needs of the homeowner. On a commercial scale, the storage needs for such covers, which largely occupy open space, becomes immense. Accordingly, it is another object of the present invention to provide a food guard that is readily collapsible to a substantially planar (space saving) shape during non-use. This planar shape also facilitates cleaning, particularly in a mechanical washer. A further object is that the space saving (substantially planar) shape must readily reassemble into its curved (space encompassing) shape when needed for duty. A further object is that assembly must be simple and not require tools to affect completion.
U.S. Pat. No. 5,542,560, entitled “Protective and Warming Bonnet for Food,” issued to Gerster, et al., on Aug. 6, 1996. The '560 patent teaches a collapsible food cover that is a “folding bellows . . . made of pleated paper, in the manner of a Chinese lanterns.” U.S. Pat. No. 4,422,441, entitled “Disposable Stackable Splatter shield and Frame Thereof,” issued to Schoeppe on Dec. 27, 1983, discloses a collapsible splatter shield that is a pleated metal foil. However, neither of these devices has any permanency, neither is cleanable, and neither allows one to visualize what is underneath when in an operative position.
Des. Pat. 259,690, entitled “Dish with Hinged Cover,” issued to Buchsteiner nee Fetzer on Jun. 30, 1981. The '690 patent discloses a non-collapsible fixed shape dish with a transparent hinged cover. While the '690 patent allows one to see the food under the cover, the device is an assembled unit that is not collapsible and thus occupies substantial space when stored en mass. Thus, there is an unsolved need for a space saving device that allows one to visualize and access food on a congested table, and that after use is readily collapsible to facilitate storage in a minimal amount of space. | {
"pile_set_name": "USPTO Backgrounds"
} |
Typically, website developers test websites under construction as part of a multiphase process. Specifically, websites under construction are typically tested in a “test” phase using test data. The websites are then transitioned (through a variety of test phases) to a “production” phase, where the production phase utilizes real-time transaction data and is exposed to the public as a live website. Errors may occur during the initial launch period. Thus, systems and methods for mitigating or minimizing such errors are desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a printing apparatus, a printing system, and a prediction method of the usage of a printing agent that can be configured to predict, prior to the development processing of a printing image (to-be-printed image), the usage of the printing agent (e.g., ink) required for the printing.
2. Description of the Related Art
A printing apparatus requires a printing agent (e.g., ink) in order to provide printing to a printing medium. One ink supply method is, for example, an on-demand supply method (also called as pit in method) for a serial scan type printing apparatus in which a carriage having a reciprocating movement in a main scanning direction includes an ink jet printing head. This method is a method in which, only when ink needs to be supplied to a tank included in the carriage (sub tank), ink is supplied from a tank (main tank) in a printing apparatus body to the sub tank by allowing the sub tank to communicate with the main tank.
Generally, when such an ink supply method is practically used, the sub tank has a capacity for retaining the ink amount for providing the printing (printing of solid image for one to two page(s) or more) based on full address data for one to two page(s) or more of a printing medium, for example. When the ink amount in the sub tank is reduced, ink is appropriately supplied from the main tank.
A conventional method for controlling the timing at which ink is supplied in such an ink jet printing apparatus is disclosed in Japanese Patent Application Laid-open No. 7-032606 (1995). In this method, printing data to be printed next printing is previously read to count, based on the printing data, a planned ejection number of ink droplets at the next printing, thereby calculating, based on the count value, a planned ink use amount at the next printing. Then, the planned ink use amount is compared with the amount of ink currently remaining in the sub tank. When the former amount is smaller than the latter amount, ink is supplied to the sub tank.
Japanese Patent Application Laid-open No. 2002-059569 also suggests a method in which the time required for the processing for developing image data is saved by using an easier processing to predict the ejection number of ink droplets at the next printing. In this method, the attribute information regarding image contents previously specified at the printing is referred so that the ejection number of ink droplets is predicted based on this information. The ejection number is used for determining whether ink supply is required or not.
Recently, improvement of a processing function of a printer and diversification of data formats that can be processed by a printer have gradually enabled the printing processing having a more complicated layout than that assumed by the above conventional techniques.
For example, there have been an increased number of cases in which, when a digital camera or a cell phone or the like is connected to use various image sources for printing, the printing must be performed in accordance with an arbitrary layout (e.g., index layout, seal layout, home page layout). In such a case, a single page in particular must have thereon a plurality of pieces of information for image, character, and/or graphic object information. Thus, it has been difficult to estimate the contents of the image to be printed when only the attribute information of the image is available.
In the case of a layout in which a single page has thereon such a plurality of pieces of object information, when all of these pieces of object information are developed to be previously processed so that the planned ink use amount is calculated more accurately, a factor such as the speed of a communication interface causes the significant increase of the printing time. This causes a risk in which the printing operation may be performed for such a long time that deteriorates the practicality. An increased printing resolution and an improved image quality of image source preparation machines (e.g., digital camera) in particular have allowed the size of data (e.g., image data) to increase continuously. Due to this reason, an index layout in which these images are arranged for example requires an enormous amount of time for merely reading the image data.
On the other hand, regular printing operations have a tendency where a time required for the printing for one page has been reduced continuously. Thus, the long-time processing as described above is a demerit to a user, causing the corresponding product specification to be not suitable for a practical use. The same particularly applies to a printing apparatus using an on-demand ink supply method as described above.
Specifically, in the printing apparatus using the on-demand ink supply method, the number of times at which ink is supplied from a main tank to a sub tank is increased (i.e., the number of times at which communication and blocking between these tanks are performed is increased), which causes an increase in the amount of ink consumed for operations other than the image printing. In order to suppress such ink consumption for operations other than the image printing, the sub tank needs to have an increased capacity. However, this causes a carriage driving mechanism including therein the sub tank to have a larger size and/or causes the limitation to a high-speed driving of the carriage. In order to minimize the number of times at which ink is supplied from the main tank to the sub tank to suppress the consumption of ink used for operations other than the image printing, planned ink use amount may be accurately calculated by using the processing time for a longtime. However, in this case, the long-time processing is a demerit to a user, causing the corresponding product specification to be not suitable for a practical use. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to tubular knit fabric articles having an end of reduced tubular size, and to a method and knitting machine attachment for producing such reduced size ends in tubular knit fabric articles.
Various knit articles are manufactured with ends of reduced size to suit particular uses. For example, tubular knit hosiery is closed at the toe end. This is conventionally accomplished by either seaming or "looping" of the initially open toe end of the tubular hosiery blank in a separate operation after the tubular blank has been knit, which requires additional handling, equipment and processing that add significantly to the overall cost of production as compared with a closing operation that could be accomplished during knitting of the tubular blank.
A toe closing operation accomplished during the overall knitting process on a circular knitting machine is disclosed in Currier U.S. Pat. No. 3,327,500, issued June 27, 1967, which teaches the knitting of a tubular welt-like toe portion that is rotationally twisted prior to completion by effecting relative rotation between the fabric supporting dial and the needle cylinder. This twisting produces a restriction of the tubular opening in the fabric intermediate the dial and needle cylinder, which restriction is disposed as a substantially closed outer end of the toe portion when the welt-like toe portion is completed by transferring. To produce this closed end by twisting, however, it is necessary to modify significantly the construction and operation of the dial drive mechanism of the circular knitting machine, and the resulting toe portion is characterized by an undesirable twisted and bulky appearance.
In contrast, the present invention provides a substantially closed end in the toe portion of hosiery without the disadvantage of twisting and with a simple attachment that can be mounted on a circular knitting machine without modification of the existing machine parts or their operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to color video signal reproducing apparatuses, and more particularly to a color video signal reproducing apparatus capable of performing reproduction by converting the system of a
system color video signal to an artificial NTSC system color video signal.
Presently, the television system is not unified worldwide, and apparatuses for recording and reproducing a video signal is matched to the television system of that particular region. Hence, in principle, recording and reproduction of a video signal of another region which is of a different television system, cannot be performed. Moreover, television receivers generally sold are similarly made exclusively for a particular television system.
Therefore, in a case where a recording medium which is to be reproduced by a video signal recording and reproducing apparatus is recorded in a region where the television system is different from that of the above video signal recording and reproducing apparatus, a reproduced picture cannot be obtained in the general color television receiver just by simply reproducing the recorded video signal as it is. Accordingly, in order to obtain the reproduced picture in the above case, a so-called system conversion of signal must be performed to convert the television system of the recorded signal to the television system of the above video signal recording and reproducing apparatus.
Various types of systems for converting signals have been proposed conventionally recently, a conversion apparatus has been developed and reduced to practical use in broadcasting stations which mainly comprises a frame memory using digital memory elements of large memory capacity. However, the above conversion apparatus is expensive and the scale of the apparatus is too large for general use. Accordingly, in a video signal recording and reproducing apparatus for home use, there are no simple effective means for obtaining a reproduced picture from a recording medium recorded with a video signal of a television system different from that of the video signal recording and reproducing apparatus. Therefore, a color television receiver and a video signal recording and reproducing apparatus exclusively for the signal of the above particular television system, must be separately prepared. Since the apparatus were required in duplicate, the cost of the system as a whole became high, and it was a waste in that two apparatuses were required to reproduce signals of two different television systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention:
The present invention relates to a union joint assembly suitable for use in a refrigeration system to join two pipes end to end.
2. Prior Art:
There are known various union joint assemblies of the type described in which a union and a nut, which are fitted respectively around opposed end portions of two pipes, are fastened together to join the pipes with an O-ring sealingly interposed between a flared end of one pipe and an outer circumferential ridge on the other pipe whose end portion is fitted in the end portion of said one pipe. While it is prevented from moving beyond the flared end, the union is allowed to move along the pipe in a direction away from the flared end. With this construction, when joining two pipes to install a cooler unit on an automobile, for example, the union must be moved onto the flared end with the result that assembling of a union joint and hence installation of the cooler unit becomes tedious and time-consuming.
Japanese Utility Model Laid-open Publication No. 57-174214 discloses a somewhat successful union joint assembly which includes an outer circumferential ridge formed on a pipe adjacent to a union carried thereon so as to restrict axial movement of the union to a limited extent between the ridge and a flared end of the pipe. The disclosed union joint assembly is, however, still unsatisfactory in that the union has to be manually brought into engagement with the flared pipe end and held in this condition until the union and the nut is tightly fastened together. The union, if not so threaded with the nut, would corotate with the nut. Another disadvantage of this assembly is in that since the ridge is located near the union, it is difficult to provide a bend adjacent to the union. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
The invention relates to a tripod head, in particular for a medical monitoring and supply device, a carrier profile for such a tripod head and an appliance trolley.
(2) Description of Related Art
Medical monitoring and supply devices are known comprising a ceiling support with a tripod head attached thereto, which carries medical appliances and suchlike and via which feeds for electricity, gas, etc. are fed to the appliances. Equipping with appliances differs in the size of appliance and also in the number of appliances to be used. In order to enable variability in equipping with appliances, tripod heads of this kind are often of large dimensions. However, in general there is little space available in rooms for diagnosis and therapy of seriously ill patients. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electrohydraulic lithotripsy, both intracorporeal (“IEHL”) and extracorporeal (“ESWL”), has been used in the medical field, primarily for breaking concretions in the urinary or biliary track. Conventional ESWL lithotripsy produces a focused or reflected shockwave that radiates axially from a distal end of the lithotripsy electrode. This form of treatment has been adapted for generating a shockwave projected to a specific spot within an organism, or at the surface of an organism. Those adaptations utilize various wave shaping methods, usually in the form of elliptical reflection, to project the maximum power to a focal point inside an organism or on the surface of an organism. The focal point receives the largest impact from the shockwave, with degradation in the strength of the shockwave taking the form of an hourglass-type shape on both sides of the focal point, the largest impact occurring at the narrowest part of the hourglass shape.
Techniques for shaping shockwaves produced by electrohydraulic lithotripsy are complex and costly. Significant factors in the focusing and shaping of the shockwave include the shape and positioning of a lithotripsy electrode, as well as the power supplied to the electrodes. For these reasons, known ESWL electrohydraulic lithotripters utilize a single electrode to insure that the impact of the shockwave is maximized at the intended focal point. However, use of a single focused electrode has a number of performance limitations, including for example, the size of generated wave fronts. Known devices are therefore limited by complexity of design, cost, and performance capabilities. Accordingly, improved electrohydraulic lithotripters are desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a steer-by-wire steering system.
2. Description of Related Art
In a vehicle steering system that is described in Japanese Patent Application Publication No. 2001-114123 (JP 2001-114123 A) as a steer-by-wire steering system, a rotating operation member and wheels are not mechanically coupled to each other. A steering actuator, which is controlled on the basis of a rotating operation amount of the rotating operation member, steers the wheels. In the above-described steer-by-wire steering system, a configuration for detecting the rotation of the rotating operation member is important. When a malfunction occurs in the above-described configuration, steering is disabled even if the steering actuator is properly operable. In the configuration for detecting the rotation of the rotating operation member, which is described in JP 2001-114123 A, only one angle sensor is provided. In a steering system described in Japanese Patent Application Publication No. 10-278826 (JP 10-278826 A), in order to increase the redundancy of the above-described configuration, a main steering angle sensor and a backup steering angle sensor are provided. Therefore, with the steering system described in JP 10-278826 A, even if a malfunction occurs in the main steering angle sensor, it is possible to continue steering with the use of the backup steering angle sensor.
In the steering system described in JP 10-278826 A, the two identical steering angle sensors are provided in order to make it possible to continue steering even if a malfunction occurs in one of the steering angle sensors. As a result, the number of components and the cost are unnecessarily increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to gesture input to computer systems, and more particularly to visually tracking a device capable of being deformed, wherein the deformation triggers an action on the part of the computer system.
2. Description of the Related Art
There has been a great deal of interest in searching for alternatives to input devices for computing systems. Visual gesture input devices are becoming more popular. Generally speaking, gesture input refers to having an electronic device such as a computing system, video game console, smart appliance, etc., react to some gesture captured by a video camera that tracks an object.
Tracking of moving objects using digital video cameras and processing the video images for producing various displays has been known in the art. For example, one such application, for producing an animated video version of a sporting event, has been disclosed by Segen, U.S. Pat. No. 6,072,504. According to this system, the position of a tennis ball during play is tracked using a plurality of video cameras, and a set of equations relating the three-dimensional points in the court to two-dimensional points (i.e. pixels) of digital images within the field of view of the cameras are employed. Pixel positions of the ball resolved in a given digital image can be related to a specific three-dimensional position of the ball in play and, using triangulation from respective video images, a series of image frames are analyzed by a least-squares method, to fit the positions of the ball to trajectory equations describing unimpeded segments of motion of the ball.
As described in some detail by Segen, once a three-dimensional description of position and motion of an object has been determined, various methods exist which are well known in the art for producing an animated representation thereof using a program which animates appropriate object movement in a video game environment. That is, Segen is concerned with determining the three-dimensional position of an object in motion from a plurality of two-dimensional video images captured at a point in time. Once the three-dimensional position of the “real” object is known, it is then possible to use this information to control a game program in any number of different ways which are generally known to game programmers.
However, the system of Segen relies on a plurality of video cameras for developing positional information about the object based on triangulation. Moreover, the detected object of Segen is a simple sphere which does not require information about the orientation (e.g. inclination) of the object in space. Thus, the system of Segen is not capable of reconstructing position and orientation of an object, whether moving or at rest, from a two-dimensional video image using a single video camera.
It is common for game programs to have virtual objects formed from a combination of three-dimensional geometric shapes, wherein during running of a game program, three-dimensional descriptions (positions and orientations) of the objects relative to each other are determined by control input parameters entered using an input device such as a joystick, game controller or other input device. The three-dimensional position and orientation of the virtual objects are then projected into a two-dimensional display (with background, lighting and shading, texture, and so forth) to create a three-dimensional perspective scene or rendition by means of the rendering processor functions of the game console.
As an example, there can be “virtual object” that forms a moving image in a game display corresponding to how one moves around the “real” object. To display the virtual object, the calculated three-dimensional information is used for fixing the position and orientation of the “virtual object” in a memory space of the game console, and then rendering of the image is performed by known processing to convert the three-dimensional information into a realistic perspective display.
However, in spite of the above knowledge and techniques, problems continue to hinder successful object tracking, and a particularly difficult problem is extracting precisely only those pixels of a video image which correspond unambiguously to an object of interest. For example, although movement of an object having one color against a solid background of another color, where the object and background colors vary distinctly from one another, can be accomplished with relative ease, tracking of objects, even if brightly colored, is not so easy in the case of multi-colored or non-static backgrounds. Changes in lighting also dramatically affect the apparent color of the object as seen by the video camera, and thus object tracking methods which rely on detecting a particular colored object are highly susceptible to error or require constant re-calibration as lighting conditions change. The typical home use environment for video game programs demands much greater flexibility and robustness than possible with conventional object tracking computer vision systems.
Thus, an alternative input device must be able to be tracked under the home use environment by a single relatively inexpensive camera in order to become widely accepted. Additionally, the alternative input device must be convenient to use. While a glove worn on the hand of a user, where the glove includes sensors that are tracked by a camera to capture input, has been trialed, users have not embraced the glove. One of the reasons for the lack of enthusiasm for a glove is the inconvenience of having to continually remove and put on the glove.
Thus, there is a need to solve the problems of the prior art to provide an input device capable of being tracked by a single video camera, wherein the input device is convenient for the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to high pressure bellows assemblies and more particularly to an improved restraining means for limiting the expansion of tandem bellows segments in high pressure installations.
The bellows assemblies to which the present invention relates are those employed to maintain a high pressure seal between relatively movable parts. For example, in a high pressure valve which includes a housing having inlet and outlet ports connected by a passageway, a plug fixed to a movable stem is movable into and out of engagement with a valve seat in the passageway to alternately block and allow passage of pressurized fluid from the inlet to the outlet. The valve stem extends through a pressure chamber in the housing and outwardly thereof for manual manipulation. A packing seal surrounds the stem to prevent loss of pressure from the chamber past the valve stem.
Because of the high pressures involved and the sudden surge of pressure into the chamber occurring when the valve is first opened, it has become customary to employ a bellows seal connected at opposite ends to the housing and the movable valve stem to confine the pressurized fluid to the valve chamber. Any pressurized fluid leaking past the bellows seal is easily handled by the stem packing.
One of the problems which has arisen in these bellows seals, particularly where the bellows has considerable length, is non-uniform expansion and contraction of the bellows convolutions which occurs during valve stem movement. The end convolutions are the first to expand when the valve stem is moved in a direction expanding the bellows and are consistently exposed to greater fluid pressure (and more rapid wear) than the intermediate convolutions.
Also, high pressure in the system can cause some of the bellows convolutions to remain stacked (contracted) so that when the valve stem is moved in a direction requiring bellows expansion, other convolutions are caused to overextend. Again, fluid pressure and wear concentrate at the overextended convolutions and result in premature bellows failure.
One approach to solving these problems is to replace the single bellows length with shorter, individual, tandemly arranged bellows segments which are connected by floating collars. To insure that each bellows segment expands properly and to limit the maximum expansion for each bellows segment, the valve housing and stem are both formed with stop surfaces which, during bellows expansion, cooperate with corresponding ones of the floating collars. The shorter length of the tandemly arranged bellows segments and the insurance that each segment expands properly and that no convolutions overextend greatly enhance the life expectancy of the bellows assembly.
However, this arrangement requires that both the valve housing and valve stem be specially designed with stop surfaces which are positioned to cooperate with the floating collars in the bellows assembly. This involves several expensive machining operations of both the valve housing and valve stem and requires careful matching of bellows assemblies to valve housings and stems.
It has also been proposed to use bellows assemblies provided with headed elongated rods which are freely (floatingly) disposed within tandem bellows segments. Here, the headed rods abut the floating collars and limit the expansion of each bellows segment. The disposition of the rods internally of the bellows segments makes this construction difficult to build and to service and repair. Furthermore, the floating or loose mounting of the rods relative to the floating collars results in noisy operation and a device which is susceptible to failure in use. | {
"pile_set_name": "USPTO Backgrounds"
} |
In known methods for producing fuselage cells for aircraft, first, shell parts and the floor grid are assembled to form an essentially annular fuselage section with a relatively small length dimension, for example of up to 8 m, by means of the closing of the longitudinal seams. Subsequently, the mountings required for the technical line systems are attached at least partially in the fuselage section. Thereafter, a plurality of fuselage sections are aligned with one another to form longer fuselage portions and are connected to one another by means of the closing of the transverse seams. Finally, outfitting assembly takes place, in which a multiplicity of technical systems are introduced into the fuselage section. These may be, for example, thermal insulation, hydraulic, electrical and air-conditioning lines and further technical devices or appliances. Before outfitting assembly, as a rule, the production or application of surface protection is carried out. In this case, inter alia, the longitudinal and transverse seams are subjected to surface protection treatment.
Particularly the installation of the technical systems into the fuselage sections is complicated in the known methods, since, for example, a multiplicity of clumsy pipelines have to be introduced into the fuselage section which is closed along its, for example, essentially circular circumferential contour. In particular, the maximum handlable lengths of the pipelines and of the further lines limit the length of the already closed fuselage section to be fitted out with the technical systems. Moreover, during this operation, no heavy/complex manufacturing aids, such as, for example, lifting devices, handling systems, scaffolds or the like, can be used, since, for example, the floor grid should not be exposed to any increased mechanical loads. Furthermore, a multiplicity of technical outfitting systems have to be installed in the fuselage section in unfavourable working positions, for example overhead in the case of the air-conditioning lines, this being ineffective in ergonomic and economic terms. Finally, due to the hitherto relatively small length dimensions and to the confined installation conditions on account of a multiplicity of floor supporting bars, etc. in the individual fuselage sections, a multiplicity of weight-increasing connection points occur in the case of the technical line systems, after the fuselage sections have been assembled into longer fuselage portions, and also increase the probability of technical malfunctions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a solid state imaging device capable of suppressing generation of a dark current, a method of manufacturing the same, and an imaging apparatus.
Solid state imaging devices, such as a CCD (charge coupled device) and a CMOS image sensor, are widely used in a video camera, a digital still camera, and the like. Improvement in sensitivity and noise reduction are important issues in all kinds of solid state imaging devices.
In particular, a dark current, which is detected as a very small current when an electric charge (electron) generated from a minute defect in a substrate interface of a light receiving surface is input as a signal, or a dark current generated due to the interface state on the interface between the light sensing section and an upper layer even though there is no pure signal charge generated by photoelectric conversion of incident light in a state where there is no incident light is a noise to be reduced in the solid state imaging device.
As a technique of suppressing generation of a dark current caused by the interface state, for example, an embed type photodiode structure having a hole accumulation layer 23 formed of a P+ layer on a light sensing section (for example, a photodiode) 12 is used as shown in (2) of FIG. 42. Moreover, in this specification, the embed type photodiode structure is referred to as an HAD (hole accumulated diode) structure. As shown in (1) of FIG. 42, in a structure where the HAD structure is not provided, electrons generated due to the interface state flow to the photodiode as a dark current. On the other hand, as shown in (2) of FIG. 38, in the HAD structure, generation of electrons from the interface is suppressed by the hole accumulation layer 23 formed on the interface. In addition, even if electric charges (electrons) are generated from the interface, the electric charges (electrons) do not flow to a charge accumulation section, which is a potential well in an N+ layer of the light sensing section 12, but flow to the hole accumulation layer 23 of the P+ layer in which many holes exist. Accordingly, the electric charges (electrons) can be eliminated. As a result, since it can be prevented that the electric charges generated due to the interface are detected as a dark current, the dark current caused by the interface state can be suppressed.
As a method of forming the HAD structure, it is common to perform ion implantation of impurities for forming the P+ layer, for example, boron (B) or boron difluoride (BF2) through a thermally oxidized layer or a CVD oxide layer formed on a substrate, to activate injected impurities by annealing, and then to form a p-type region near the interface. However, heat treatment in a high temperature of 700° C. or more is essential in order to activate doped impurities. Accordingly, formation of the hole accumulation layer using ion implantation is difficult in a low-temperature process at 400° C. or less. Also in the case of desiring to avoid long-time activation at high temperature in order to suppress diffusion of dopant, the method of forming a hole accumulation layer in which ion implantation and annealing are performed is not preferable.
Furthermore, when a silicon oxide or a silicon nitride formed on an upper layer of the light sensing section is formed in a low-temperature plasma CVD method, for example, the interface state is reduced compared with an interface between of a light receiving surface and a layer formed at high temperature. The reduction in interface state increases a dark current.
As described above, in the case of desiring to avoid ion implantation and annealing process at high temperature, not only the hole accumulation layer cannot be formed by known ion implantation but also a dark current is further reduced. In order to solve the problem, it becomes necessary to form a hole accumulation layer in another method that is not based on ion implantation in the related art.
For example, there is disclosed a technique in which charged particles having the same polarity as an opposite conduction type are embedded in an insulating layer formed of a silicon oxide on a photoelectric conversion element having a conduction type opposite a conduction type of a semiconductor region formed within a semiconductor region to thereby pull up an electric potential of a surface of the photoelectric conversion section and form an inversion layer on the surface and as a result, generation of a dark current is reduced by preventing depletion of the surface (for example, refer to JP-A-1-256168). However, in the above technique, a technique of embedding the charged particles into the insulating layer is needed, but it is not known which kind of embedding technique is used. In addition, in order to inject electric charges into the insulating layer from the outside as normally used in a nonvolatile memory, an electrode used to inject electric charges is needed. Even if electric charges can be injected from the outside in a non-contact state without using an electrode, the electric charges trapped in the insulating layer are not detrapped. Accordingly, an electric charge holding property becomes a problem. For this reason, since a high-quality insulating layer having a high electric charge holding property is requested, it has been difficult to realize the insulating layer. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates in general to an apparatus for binding loose sheets to form brochures or books, and in particular, to a device for feeding strips coated with a fusion adhesive on one of their surfaces to a sheet-stack binding apparatus.
Apparatus, for binding loose sheets to form brochures or books of the type using strips coated with a fusion adhesive, are described, for example, in DE-PS 2 144 101, as well as in the European Patents EP O 186 080 and EP O 412 742. A sheet stack held between clamping elements is pressed in the usual manner onto a fusion-adhesive coated strip which is arranged directly on or above a heated platen. As shown in EP O 186 080, an adhesive element cut to be adapted to the sheet format can also be pressed by means of a pressure device against the spine of the sheet stack from below and then heated. Using heated lateral pressure elements, the adhesive strip is then folded and pressed against the cover sheets. EP O 320 056 describes a device for binding a stack of loose sheets by strips having a fusion-adhesive coating, in which selectively activatable means are provided for removing the adhesive layer during a binding operation. In the case of these known apparatus, the strip is fed sequentially by one or several strip transport units from a supply station through a cutting unit to a binding apparatus. Such apparatus are disadvantageous in that the sheet-stack binding operation has to be completed before another strip can be fed for the subsequent binding operation of the binding apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
The fabrication of silicon-based photovoltaic solar cells from thin silicon wafers, typically 140-180 micrometers thick, requires multiple processing steps, including a 2-stage diffusion process to create a semi-conducting “p-n”, junction diode layer, followed by screen-printing “solder paste” coatings on the wafer front and back sides which are fired into the p-n junction or back contact layer, where they act as ohmic collectors and grounds, respectively.
The diffusion process includes coating the wafer with a phosphoric or/and boric acid composition, followed by firing in a diffusion furnace to create a P-doped p/n junction photovoltaic layer on the front side, or/and a B-doped contact layer on the back side. After diffusion and various cleaning steps, the wafers are coated with an Anti-Reflective Coating (ARC), typically silicon nitride (SiN3) which renders the wafers deep blue or brown, depending on the ARC coating used.
To form a back contact ground layer, the wafer back surface is coated with an Al-based paste. The wafer top surface is screen printed with a fine network of Ag-based paste lines connected to larger buss conductors to “collect” the electrons generated. After these pastes have been dried, they are “co-fired” at high temperature in an IR lamp-heated conveyor-type metallization furnace.
Currently available IR conveyor furnaces for such processing steps are single line, that is a single conveyor belt or roller system that conveys the wafers through the processing step, single file. All wafers are processed according to the same processing schedule and dwell time in each processing zone. To double production requires buying and installing a second line of a multiplicity of modules arranged end-to-end. Each module has its own drive, its own transport system, its own framework including sides top and bottom, and requires the same factory floor-space foot print. To double production requires double the factory real estate and double the capital equipment for the processing machinery and the operating personnel.
For example, in the case of diffusion firing processes, the furnaces have a long heating chamber in which a plurality of IR lamps are substantially evenly spaced apart (typically 1.5″ apart) both above and below the wafer transport system (wire mesh belt or ceramic roller conveyor). The heating zone is insulated from the outside environment with various forms of insulation, compressed insulating fiber board being the most common. The infra-red (IR) lamps increase the temperature of the incoming silicon wafers to approximately 700° C. to 950° C. This temperature is held for the 30-minute duration of the diffusion process, after which the wafers are cooled and transferred to the next downstream process operation and equipment.
Currently available conveyor-type liquid dopers (as distinct from the muffle tube and carrier-type POCl3 gas dopers) employ solid or elastomeric band conveyors on which the wafers travel. The wafers are adhered to a peel-off disposable paper backing to protect the wafer back side against doping chemical exposure. These are non-conductive conveyor systems, which involve the extra step of wafer handling to remove the paper backing.
Currently available diffusion furnaces typically employ one of two types of wafer transport systems: 1) a plurality of static (not-longitudinally moving), solid ceramic, rotating rollers; or 2) active (longitudinally moving) wire mesh belts, to convey the wafers through the furnace firing zone. Static, ceramic rotating-roller furnaces currently are preferred in order to minimize or prevent metallic contamination of the back surface of the wafers.
A typical conventional diffusion furnace is on the order of 400″ long, having 160, 36″-wide IR lamps placed above the rollers, with from 100-160 placed below. The total mass of the conveyor rollers is on the order of 800 lbs, and is classified as a high-mass conveyor system.
As the demand for solar cells increases, the rates of production must increase, either by process improvements or adding furnaces into service. With respect to adding furnaces, conventional furnaces have a large footprint. Thus, adding furnaces requires increased capital outlay, for buildings, the furnaces themselves, and related service facilities.
In the case of wire mesh belts used in the metallization furnaces, the mesh belts must be supported beneath the belts to prevent sagging. Long-standing practice in the industry is to provide supports comprising pairs of opaque, white quartz tubes, typically on the order of 2-3 cm in diameter, placed with their long axes parallel-to or slightly canted to the direction of travel of the belt, e.g. in a staggered converging or diverging (herringbone) pattern. The quartz tubes are smooth, and provide line contact surfaces on which the underside of the belt slides as it conveys the printed wafers through the metallization furnace processing zones. To minimize shadowing by the tubes, the practice has long been to angle the tubes, either converging or diverging along the line of travel so that the same portion of the wafer was not shadowed the entire duration of travel through the furnace. The shadow effect is reduced by this long-used trick of angling the support tubes, but not eliminated, because now the entire wafer is in shadow at least some of the duration of transport through the furnace. In effect, the shadow lines are there, less pronounced and more diffuse, but broader.
In addition, the contact of the back side of the wafer with the many wires of the conveyor belt contributes to abrasion and contamination of the back contact layer paste during the metallization firing process. In an attempt to minimize this problem, current conveyor belts employ “pips”, which raise the wafer a few millimeters above the belt. The pips are made by bending a plurality of loops of the wire mesh belt upward of the top plane of the belt. However, the wafer bottom still rests directly on the pips, on the order of 10-20 per wafer, and they still move laterally and forward or back on the order of a millimeter in each direction during the transport of the wafers through the processing zones. This results in reduced throughput, due to discarding pip-damaged and contaminated wafers
Thus, the need for faster production and greater throughput, while curbing facility capital outlay, is not met by the current state of the art quartz tube-supported metal belts having wafer support pips. In order to compensate, conveyor-type dopers and furnaces have been made laterally wider, so that multiple lines of wafers can be processed in each process zone. In the case of furnaces, this in turn requires longer, more expensive lamps which typically experience a substantially shorter mean time to failure, thus significantly increasing operating costs.
Since there are dimensional and IR lamp cost constraints, increasing lamp density in the furnace is not generally a feasible solution. Likewise, increasing the power to the lamps is not currently feasible because higher output can result in overheating of the lamp elements, as a result of the thermal mass of the furnace, principally in the high mass solid ceramic roller conveyor system. Overheating particularly affects the external quartz tubes of the lamps. Most furnaces are thermocouple controlled. Since the IR lamps are placed side by side, on the order of 1.25″ apart, each lamp heats lamps adjacent to it. When the thermocouples detect temperatures approaching the selected diffusion or sintering temperature set point in the 700-950° C. range, they automatically cut back power to the lamps by an amount that depends on the thermal mass of the transport system (rollers or metal mesh belts and quartz tube supports). This lower power density is accompanied by substantial changes in the spectral output of the IR lamp emissions (hence a lower light flux and energy output). In turn, this reduced light flux results in the need to slow down the conveyor belt speed or lengthen the furnace (while maintaining the original belt speed), thus slowing processing. Overheating of lamps, e.g., due to thermocouple delay or failure, can cause the lamps to deform, sag and eventually fail. Lamp deformation also affects uniformity of IR output delivered to the wafers.
Accordingly, there is an unmet need in the wafer processing art to increase production at costs that are less than the unit cost of duplication of process lines. In addition, in the diffusion to and metallization furnace and firing process art there is an unmet need to significantly improve net effective use of firing zone(s) by reduction in wafer pip damage and contamination, permit-ting improved utilization of firing energy, improving the speed and uniformity of the firing process, reducing furnace size while retaining or improving throughput, and accomplishing these goals on a reduced furnace footprint, and lower energy, operating and maintenance costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus for processing optional programs in electronic equipment and a method therefor, and more particularly, to an apparatus for controlling optional functions in electronic equipment, in which various functions are executed using a single hardware circuit, and a method therefor.
2. Description of the Related Art
Function printed circuit boards (PCB) are typically used in electronic equipment such that based on the presence or absence of optional diodes in a key metric, one or more optional functions can be selected from a group of optional functions. That is, optional functions corresponding to the specifications of a particular product model can be selected according to the combination of diodes in a key metric connected between the scan out port and the scan in port of a microprocessor.
Therefore, since the design of the key metrics of the scan in and scan out ports of the microprocessor varies in each specification, the function PCB of a front panel is designed so that different key metric designs are applied according to the optional functions of produced models.
Since the PCB is managed according to models having different optional functions when the products are produced, the number of PCBs increases. Accordingly, it is difficult to manage materials for production. Also, when a changed PCB is applied according to the change of the specification, the PCB mis-operates in a selected model.
To solve the above problem, it is an object of the present invention to provide an apparatus for controlling optional functions of electronic equipment, designed to have the same hardware of a microprocessor, regardless of the optional functions of products.
It is another object of the present invention to provide a method for controlling optional functions of electronic equipment.
Accordingly, to achieve the first object, there is provided an apparatus for controlling optional programs corresponding to the mode type of electronic equipment, including a data base for storing all optional programs, comprising a memory for storing a selected optional program in a specific region, a controller for generating a control command for selecting the optional program, a central processing unit (CPU) for decoding the control command, controlling the display of an optional function selecting menu screen with respect to a selected level, reading the optional program selected according to an input selection command, storing the selected optional program in the memory, and executing only the optional program stored in the specific region of the memory according to an input optional program execution command, and a displayer for displaying the optional program selecting menu screen.
To achieve the second object, there is provided a method for controlling optional functions of electronic equipment, by which the same hardware circuit structure is used regardless of different optional functions, comprising the steps of (a) selecting the program of an optional function corresponding to the product specification of the electronic equipment and storing the program in a memory, (b) determining whether a command input to the CPU of the electronic equipment corresponds to an optional function related command, (c) determining whether the command input to the CPU corresponds to an optional program execution command stored in the step (a) after determining in step (b) that the command input to the CPU corresponds to the optional function related command, and (d) fetching and executing the optional program when the inputted command is the optional program execution command stored in the step (a) as determined in step (c) and preventing the execution of a concerned command when the input command is not the optional program execution command stored in step (a). | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an ionizer and its use in an exhaust gas purification system for moisture-laden gases.
The ionizer is used for the charging of liquid and solid particles in process gases. In accordance therewith, reference is made in the specification to wet electric filters and dry electric filters.
DE 101 32 582 discloses an apparatus for the electrostatic cleaning of gases, specifically a wet electric filter apparatus. The apparatus is installed in the gas flow channel through which the gas to be cleaned is conducted into the apparatus. When the arrangement was reversed so that the gas flows from the bottom to the top it has been found that a water film is pushed from the bottom nozzle end to the upper nozzle end whereby the flow cross-section is narrowed. As a result, sparking occurs before the high voltage has reached such a value that sufficient ionization current can flow. This effect occurs particularly in connection with condensing and droplet-laden gases at speeds of 3 m/s of the gas flowing from the bottom upwardly through the nozzle. In addition, it has been observed that additionally the negatively charged center electrode pulls the water film floating at the edge practically weightlessly inwardly in the form of a torus which causes arcing.
U.S. Pat. No. 4,449,159 discloses a conical cylinder nozzle, a so-called venturi nozzle which is oriented horizontally and into which an electrode pin is inserted deep into the throat thereof. The electrode pin carries an ionization disc at the circumference of which the corona current flows to the anode by way of the gas. The thicker electrode pin serves at the same time as a focusing electrode.
In U.S. Pat. No. 4,247,307, the vertical spray wires of a wet tube electric filter are provided along the flow direction with serially arranged spray discs. The spray discs may have saw-tooth like structures at their circumference.
U.S. Pat. No. 5,254,155 furthermore discloses a central spray tube arranged in a hexagonal tube and provided with 6-cornered rings whose ends point in the direction of the corners of the hexagonal tube.
JP 200 11 98488 discloses an arrangement wherein alternatively discs and 8-toothed stars are disposed on a central spray wire.
The horizontal venturi nozzle of U.S. Pat. No. 4,449,159 is not suitable for droplet laden moist gas, since a water film is always carried along into the nozzle or, at lower gas speeds, water drips in the throat from the top onto the ionization disc and causes arcing. For a uniform current distribution over the circumference the disc must be accurately adjusted. This is however almost impossible in the hostile operation of the apparatus. Since the electrode pins must be inserted into the nozzle, assembly is expensive. The spray discs of U.S. Pat. No. 4,247,307 are intended to increase the ionization at their circumference whereas the ionization along the wire becomes smaller. By discs arranged in a row along the wire in the flow direction, the particle deposition is to be improved. The discs in connection with the increased ionization in that area however lead to an increased turbulence and renewed transverse mixing which does not improve the fine droplet extraction. If the disc is provided at its circumference with a saw-tooth structure providing for a large number of ionization points, the additional ionization effect is not essential because the equally charged zones located at short distances from one another are mutually repulsive. Furthermore, with respect to the gas flow direction, a serial arrangement of ionization zones is not effective since particles which are already in the vicinity of the wall of the deposition electrode are again entrained by the turbulence and the electrical wind so that, in the end, the probability of particle deposition is not improved.
In U.S. Pat. No. 5,254,155, in place of cylindrical tubes, hexagonal tubes are used together with six-corner rings arranged one after the other in the gas flow direction which cause the same problem.
For JP 200 11 98488, the same arguments apply—the subject matter differs only in that 8-corner stars are used alternatingly with discs.
Experiments have shown that the gas speed in the nozzle can be reduced to values below 3 m/s with a concurrent increase of the diameter and a reduction of the number of nozzles if, at the same time, the electrode is changed from a single point structure to a multi-point structure, for example, a seven point star electrode. If, for example, 1600 cubic meter per hour (Bm3/hr) of wet gas are conducted through 166 conical cylinder nozzles with a diameter of 24 mm an average nozzle gas speed of 5.9 m/sec and a maximum voltage at the electrode of 9 kV and about 30 μA ionization current per nozzle, corresponding to a total current of 5 mA are established. Per Bm3/h of gas only about 0.028 watts of ionizer power can be introduced in this way. Because of the effect of the raising water film as described above, arcing occurs from about 9 kV whereby the ionization is interrupted and the high-voltage power supply is highly strained.
It is the object of the present invention to prevent water films from raising along the nozzle walls. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for manufacturing a semiconductor device.
2. Description of the Related Art
As disclosed in JP2007-311385A, JP2004-363573A and JP2008-251964A, efforts are being made to develop a semiconductor device in which a plurality of semiconductor chips is stacked through through-hole electrodes, in order to cope with the miniaturization of electronic apparatus equipped with semiconductor chips. In such a semiconductor device, connecting terminals need to be disposed respectively at one and the other ends of each through-hole electrode to form a strong junction therebetween and fix the through-hole electrodes to one another, in order to stack a plurality of semiconductor chips.
FIGS. 13 to 16 are schematic cross-sectional views used to explain a method for manufacturing a related semiconductor device. Hereinafter, a description will be given by defining a surface in which semiconductor elements are formed as a front surface, and defining a surface opposite to the front surface as a rear surface, in a semiconductor substrate (wafer). In FIG. 13 to FIG. 16, only one through-hole electrode is shown for purposes of illustration. In addition, a part from the rear surface side of the semiconductor substrate to first interconnect layer 53 in the through-hole electrode is omitted from the figures.
First, as illustrated in FIG. 13, interlayer insulating film 52, first interconnect layer 53, and second interconnect layer 55 are formed on and above the front surface of semiconductor substrate 51. This interlayer insulating film 52 is formed of silicon dioxide (SiO2) or the like. A connection is made between first interconnect layer 53 and second interconnect layer 55 by contact plug 54.
In FIG. 13, trench 64 is formed so as to surround the through-hole electrode provided in semiconductor substrate 51. An insulator, such as silicon dioxide or the like, is filled inside trench 64. This trench 64 prevents through-hole electrodes disposed in abutment with each other from short-circuiting to each other. In addition, trench 64 is previously formed on the front surface side of semiconductor substrate 51 prior to a step of forming semiconductor elements. Trench 64 need not necessarily penetrate to the rear surface of the semiconductor substrate.
Reference numeral 56 denotes a protective film formed of polyimide or the like and an opening is created therein, so as to expose part of the upper surface of second interconnect layer 55. Reference numeral 57 denotes a metal seed film provided so as to cover the upper surface of protective film 56. Metal seed film 57 is provided in order to form a projecting electrode (bump) using an electrolytic plating method. Metal seed film 57 is in contact with an exposed surface of second interconnect layer 55. Metal seed film 57 is formed using a laminated film (film thickness: approximately 700 nm) in which a titanium (Ti) film and a copper (Cu) film are successively laminated. Reference numeral 58 denotes a resist film (film thickness: 15 to 20 μm) including an opening in a position thereof where the projecting electrode is to be formed.
Next, as illustrated in FIG. 14, projecting electrode 59 made of copper is formed in the opening not covered with resist film 58 to a thickness of approximately 10 μm using an electrolytic plating method. Sn—Ag alloy film 60 made of tin (Sn) and silver (Ag) is formed on the upper surface of projecting electrode 59 to a thickness of 2 to 3 μm using an electrolytic plating method. After that, resist film 58 is removed, and then metal seed film 57 is removed using a chemical solution containing sulfuric acid (H2SO4) and nitric acid (HNO3). A titanium film in which metal seed film 57 remains is removed using a chemical solution containing potassium hydroxide (KOH).
Side surfaces of projecting electrode 59 made of copper are also removed partially by etching at the time of removing this metal seed film 57, but Sn—Ag alloy film 60 is not etched. There is therefore formed an overhanging shape in which Sn—Ag alloy film 60 protrudes over an outer circumference of projecting electrode 59.
Next, as illustrated in FIG. 15, supporting substrate (support plate) 62 is bonded onto the front surface side of semiconductor substrate 51 through a adhesion layer 61. As supporting substrate 62, a transparent glass substrate or a hard resin substrate can be used. After this, the rear surface side of semiconductor substrate 51 is polished (back-grind) until a predetermined thickness is reached, thereby thinning the substrate and exposing the edges of previously-formed trench 64.
After this, a metal plug (not illustrated) made of copper is formed from the rear surface side of the semiconductor substrate, so as to connect to first interconnect layer 53. A thin-film plating layer made of gold (Au) is provided in an exposed part of the metal plug. After the formation of the metal plug, supporting substrate 62 is removed.
Supporting substrate 62 is removed by previously irradiating ultraviolet light from the front surface side and thereby reducing the fixing strength of adhesion layer 61.
As illustrated in FIG. 16, the other process may be used. In this process, an Sn—Ag alloy film may be formed on projecting electrode 59 on the front surface side. Then, this film may be completely reflowed at a temperature of approximately 250 to 300° C. Reflowed Sn—Ag alloy film 60a is reshaped into a dome-like shape due to surface tension, and the overhanging shape is thus eliminated. This process prevents projecting electrode 59 from being pulled by supporting substrate 62 and dropping off, due to an overhanging shape at the time of removing supporting substrate 62. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an analog-to-digital converter and, more particularly, to an analog-to-digital converter for converting an analog signal into a digital value in multiple steps.
2. Description of the Related Art
In recent years, a variety of additional functions are built in mobile appliances such as a mobile telephone set, including image pick-up function, image playback function, moving image pick-up function and moving image playback function. In association with this, there is an increasing demand for miniaturization and power saving of an analog-digital converter (hereinafter, referred to as an AD converter). One mode of AD converter that addresses this demand is known as a cyclic AD converter that cycles through stages (see, for example, patent document No. 1). Patent document No. 1 discloses an AD converter of a pipeline type comprising two blocks that include a conversion block of a cyclic type.
[patent document No. 1]
JP 4-26229
In the AD converter shown in FIG. 1 of patent document No. 1, a first switch SW1 is provided between a sample and hold circuit S/H2 of a first AD/DA block and a sample and hold circuit S/H3 of a second AD/DA block, and between the sample and hold circuit S/H2 and a parallel A/D converter AD2.
We have identified a problem associated with an AD converter of this type. Namely, if the sample and hold circuit S/H 3, for example, is embodied by a circuit with a capacitively coupled input such as a switched capacitor operational amplifier, the output of the operational amplifier used in the sample and hold circuit S/H2 is adversely affected by charges stored in a capacitor connected to the input terminal of the operational amplifier, causing settling time to be extended. | {
"pile_set_name": "USPTO Backgrounds"
} |
Within the medical industry, there is a need for holding a variety of medical instruments for various purposes. For example, a surgeon needs to be able to access medical instruments for surgery quickly, a dentist needs to be able to access his or her dental tools, and virtually all medical instruments must be placed within a holder during a sterilization process. Conventional holding containers may include a variety of bases holding insertable trays that have specifically-designed areas for holding specific tools. However, with smaller tools, such as small dental tools, it is frequently inefficient to store them in these containers, since they're prone to being moved around and jostled as the container is moved. This may result in a grouping of smaller tools in one area, which means that the surgeon or medical staff member must sift through the grouping to locate a specific tool.
Conventionally, medical instruments are often held in containers or trays with holes and grommets. The grommets may be positioned within the hole and provide a secure interface between the medical instrument and the hole within the container or tray. Often, the grommets are sized to match a certain shaft size of a medical instrument, and a container or tray may include a variety of different sized grommets, each specifically engineered and designed to hold one of a variety of medical instruments. These medical instruments have varying shaft sizes and it often becomes tedious to search for the appropriately sized grommet that matches a particular shaft size of the medical instrument. It is not uncommon for a medical tray to have fifty or more grommets, with a dozen or more different sizes. Thus, the time it takes to match a specific medical instrument to a specifically sized grommet may result in inefficient use of valuable time.
Most grommets in use today are intended to be permanent fixtures in medical sterilization trays, in that they are not designed to be removed on a regular basis. This is due to the high risk of harboring bacteria and other contaminants within the spaces, crevices and other areas exposed when the grommet is removed from the tray. When the grommets are permanently installed within the holes, with the surfaces of the grommets forming tight seals with the container or the tray. This may prevent bacteria from becoming lodged within cracks, crevices or other areas, which may prevent complete sterilization of the medical tool. However, users often try and remove the grommets when they become damaged, or when they desire to reposition the grommet in a new location. This removal of the grommet may result in damage to the grommet structure itself, as well as present additional areas for harboring bacteria.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates in general to an improved method for efficient information retrieval in data processing systems and in particular to an efficient method for managing access to frequently utilized network sites such that the user can access a sequence of predetermined network locations utilizing a single user input. Still more particularly, the present invention relates to a recirculating list of frequently utilized addresses which can be scrolled and selected utilizing a single user input.
2. Description of the Related Art
The development of computerized information resources, such as interconnection of remote computer networks, allows users of dataprocessing systems to link with other "servers" and networks, and thus retrieve vast amounts of electronic information heretofore unavailable in an electronic medium. A server provides interconnection among communicating networks. Such electronic information is increasingly displacing more conventional means of information transmission, such as newspapers, magazines, and even television. Often, users desire quick access to specific information on a re-occurring basis. It is therefore desirable to maximize efficiency and minimize complexity when retrieving information from predetermined locations utilizing a computer.
In computer communications, a set of computer networks which are possibly dissimilar from one another are joined together by "gateways". Gateways provide data transfer and conversion of messages from the sending network to the protocols and data type utilized by the receiving network. A gateway is a device utilized to connect dissimilar networks or, networks utilizing different communication protocols, such that electronic information utilizing different standards can be processed and transmitted from network to network. Gateways convert information to a form compatible with the protocols utilized by other networks for transport and delivery.
One type of remote network commonly utilized in recent years is the Internet. The term "Internet" is an abbreviation for "Internetwork," and is commonly utilized to describe the collection of networks and gateways which are compatible with the TCP/IP suite of protocols. TCP/IP protocols are well-known in the art of computer networking. TCP/IP is an acronym for "Transmission Control Protocol/Internet Protocol," a software protocol developed by the Department of Defense for communication between computers. The Internet can be described as a system of geographically distributed remote computer networks interconnected by computers which provide an interface that allow users to interact and share information over the networks. Because of such wide-spread information sharing, remote networks such as the Internet have thus far generally evolved into an "extensive" system which developers can provide information or services, essentially without restriction.
Electronic information transferred between data-processing networks is usually presented in "hypertext", a metaphor for presenting information in a manner in which text, images, sounds, and actions become linked together in a complex non-sequential "web" of associations. The web of associations permits a user to "browse" or "navigate" through related topics, regardless of the presented order of the topics. These links are often established by both the author of a hypertext document and by the user, depending on the intent of the hypertext document. For example, traveling among links to the word "iron" in an article displayed within a graphical user interface, in a data-processing system, might lead the user to the periodic table of the chemical elements (i.e., linked by the word "iron"), or to a reference to the utilization of iron in weapons in Europe in the Dark Ages. The term "hypertext" was coined in the 1960s to describe documents, as presented by a computer, that express the nonlinear structure of ideas, as opposed to the linear format of books, film, and speech. The term "hypermedia," on the other hand, more recently introduced, is nearly synonymous with "hypertext," but focuses on the non-textual components of hypertext, such as animation, recorded sound, and video.
A typical networked system which utilizes hypertext and hypermedia conventions follows a client/server architecture. The "client" is a member of a class or group that utilizes the services of another class or group to which it is not related. Thus, in computing, a client is a process (i.e., roughly a program or task) that requests a service provided by another program. The client process utilizes the requested service without having to "know" any working details about the other program or the service itself. In a client/server architecture, particularly a networked system, a client is usually a computer that accesses shared network resources provided by a server (i.e., another computer).
A request for information by a user is sent by a client application program to a server. A server is typically a remote computer system accessible over a remote network, such as the Internet. The server scans and searches for raw (e.g., unprocessed) information sources, for example, newswire feeds or newsgroups. Based upon the user's request, the server presents filtered electronic information as a server response to the client process. The client process may be active in a first computer system, and the server process may be active in a second computer system. The client and server communicate with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of a single server.
Free or relatively inexpensive computer software applications, such as Internet "search engines," allow a user to locate sites where an individual can obtain information on a topic of interest. A person utilizing a graphical user interface of a computer system may enter a subject or key word which generates a list of network sites (i.e., web sites). Thus, with "home pages" published by thousands of companies, universities, government agencies, museums, and municipalities, the Internet can be an invaluable information resource.
A client and server can communicate with one another utilizing the functionality provided by Hypertext-Transfer Protocol (HTTP). The World Wide Web (WWW) or, simply, the "web," includes those servers adhering to this standard (i.e., HTTP) which are accessible to clients via a computer or data-processing system network address, such as a Universal Resource Locator (URL). A network location can be directly accessed by utilizing a Universal Resource Locator address.
Active within the client is a first process, known as a "browser," which establishes the connection between the client and the server and presents information to the user on a graphical user interface. The server itself executes corresponding server software which presents information to the client in the form of HTTP responses. The HTTP responses correspond to "web pages" constructed from a Hypertext Markup Language (HTML), or other server-generated data. A client and a server may be coupled to one another via a Serial Line Internet Protocol (SLIP) or TCP/IP connections for high-capacity communication.
Generally, a client displays a browser and data received from the network via a graphical user interface. A graphical user interface is a type of display format that enables a user to choose commands, start programs, and see lists of files and other options by pointing to pictorial representations (icons or selectable buttons) and/or lists of menu items on the display. User selections are generally activated either with a keyboard or a mouse.
A graphical user interface (GUI) can be employed by a user to start processes, view file content and to select tools. Additionally, a GUI allows a user to command many selectable tools by pointing to a desired selection and depressing a push button typically utilizing a mouse. A desired selection might be a textual reference, a toolbar button, or a selection from a list of menu items on a computer display screen.
A user selectable choice can generally be activated by either a keyboard or a push button switch located on a pointing device, such as a mouse. A mouse is a commonly utilized pointing device, generally containing more than one button. A pointing device allows a user to interact with a product or operating environment, such as a graphical user interface. In many graphical user interfaces, a vertical or horizontal bar at the side, bottom or top of a graphical user interface window can be utilized in conjunction with a pointing device, such as a mouse, trackball, or stylus to quickly select features of the application program.
Additional vertical and horizontal bars may contain "selectable buttons." Selectable buttons are commonly called "icons" by those familiar with graphical user interfaces. An icon is a selectable button viewable within a graphical user interface, typically containing a pictorial representation or a mnemonic of a selectable feature.
Generally, the pictorial representation contained within an icon is a graphic symbol allowing a user to associate an icon with a particular selectable function. An icon can be selected by pointing to the icon utilizing a pointing device and activating a push-button on the mouse when the icon is pointed to. Pointing to a selection and depressing a mouse button is commonly referred to by those having skill in the art as "pointing and clicking" on the icon or on the menu item. Pointing and clicking is a user friendly way to select a particular function or software application. Generally, an icon contains a visual mnemonic which allows a user to identify a selection without having to remember commands or type in commands utilizing a keyboard as is required in a disk operating system (DOS) environment.
Horizontal or vertical bars containing textual menu category headings are commonly referred to as menu bars. Horizontal or vertical bars containing icons are commonly referred to as toolbars. Toolbars are a well known part of graphical user interfaces which simplify access to files and allow the user to perform complicated system commands by pointing and clicking on a selectable item within the graphical user interface. Toolbar selectable user commands provide efficient interface between the user and a computer system. Often, user selectable commands located on a toolbar are duplicated in the menu bar.
It is easier and more efficient to activate selections within a toolbar than to locate and select menu headings and corresponding menu items. Menu items and sub-menu items are not continuously displayed and a menu heading must be selected to view a list of menu items contained under the menu heading.
Individual users utilize a networked computer to retrieve different information due to each individual's diverse interests in information. Different users also have different informational requirements. It is often difficult to locate a desirable information resource, or web page, and locating a pertinent resource can consume a substantial amount of time. Locating an information resource is typically done by keyword searching. Keyword searching is accomplished when a user provides a keyword and instructs the client via a server to search for information resources having the keyword or information resources linked to the keyword. Typically, the user receives voluminous information from the internet when a keyword search is performed. Next, the user must sort through the received information for desirable data.
Web pages or network locations can also be accessed by a client which specifies a unique network address (i.e., Universal Resource Locator). A Universal Resource Locator has two basic components, the protocol to be utilized and the object pathname. For example, the Universal Resource Locator address, with the pefix "http://" and the body "www,uspt.gov" is the home page for the U.S. Patent and Trademark Office. This address specifies a hypertext-transfer protocol ("http") and a pathname of the server ("www.uspto.gov"). The server name is associated with a unique numeric value (TCP/IP address).
The graphical portion of the World Wide Web itself is usually stocked with more than twenty-two million "pages" of content, with over one million new pages added every month. With a little practice, a user can skim millions of web pages or thousands of newsgroups, not only for topics of general interest, but also to access desirable and meaningful data. However, locating and scanning web pages can consume hours and hours of a users time. The market for Internet access and related applications is explosive and utilization of the Internet is growing faster than expected, doubling in size approximately every three months. Because of the growth of the "Internet" and the so-called "World Wide Web" in recent years, the amount of data which must be screened to get desirable data is overwhelming.
In order to avoid the inefficiencies of relocating a resource after it is has been initially located, a "bookmark" or "hotlist" function is typically offered as part of the graphical user interface within a web browser application. Generally, a bookmark is a universal resource locator address which is stored by the browser. When a bookmark is selected, the corresponding URL address is sent to a server by a client, then the desired location is accessed and corresponding information is retrieved efficiently with minimal user input and effort.
A typical user stores a considerable quantity of bookmark locations. However, limited space is available on the computer display to display bookmarks. Typically, a user places bookmark locations in folders, menus and sub-menus. Locating bookmarks in folders, menus and/or sub-menus complicates bookmark access. Additionally, many users have particular network locations which they desire to visit on a regular basis and management of access to the desired locations for information gathering would also be advantageous.
For example, an investor in the stock market might want to ensure he visits an investors advisory location, a location having information on how foreign markets closed and any comments made by the Federal Reserve Chairman on a daily basis. An automated system for quickly and directly accessing related information resources and controlling or ensuring a specific access routine would be highly desirable. Accessing, and tracking the access of all desired bookmark or hotlist locations is an inefficient process. Management of a daily list of URLs currently must be done manually.
Currently, bookmark or hotlist features require the user to click on the menu item entitled "bookmark" or "hotlist" to display pull down menus containing folders or URLs. To select a bookmark location, the user must traverse the pull down menu with the mouse button depressed and select a menu item in the pull down menu, such as a folder. Next, the folder must be selected and opened, and finally a URL address or bookmark must be selected. Minimal user input would be desirable to efficiently select frequently utilized locations and to provide a user friendly interface.
Currently, bookmark or hotlist utilization in browser programs requires opening files and performing multiple steps, such as selecting through a series of menu or sub-menu items to activate a bookmark. With known graphical user interfaces, each time a folder within a sub-menu is selected, which is listed under a menu heading, user precision is required to highlight the menu heading, traverse the newly displayed sub-menu items while keeping the mouse button depressed, and then releasing the mouse button or double clicking the mouse button on the desired selection. A computer operator is required to perform abrupt changes in the motion of the mouse in coordination with a mouse button to select a concealed menu item that resides within a folder. During menu item selection, a user cannot be clumsy or inattentive, because a menu item selection might be made which was not desired.
A sub-menu item is typically less than quarter of an inch in height on a typical display or monitor. Therefore, substantial dexterity is required to traverse menus and select desired menu items utilizing a pointing device, further coordinated with mouse button activation. In contrast, items within a toolbar or a single pull down menu do not require a series of activations and user inputs, such as traversing menus and/or traversing of sub-menus. Erroneous menu selections results when a user over-shoots his intended menu item selection by only a fraction of an inch.
Based on the foregoing it can be seen that a need exists for fast and efficient access to frequently utilized web sites. It would, therefore, be desirable to devise a method of minimal complexity which allows users to efficiently command a computer to access frequently utilized computer network locations. It would be further advantageous to devise a method to allow a user to manage a sequential list of networks locations such that the user can determine if he has visited all locations within the list. Additionally, it would be advantageous if the method would retain current toolbar behavior, but extend user functionality and decrease visual complexity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention is in the field of bridges for string musical instruments.
2. Description of the Prior Art
The terms "sonic" and "sound" are used herein to mean the complete spectrum of compression wave frequencies including audio frequencies and frequencies above and below the audio range.
It is traditional for string instruments such as guitars to have wooden bridges which are mounted on the face portion of the guitar and coupled to the strings by means of an ivory, bone or plastic saddle. The saddle was utilized as a string contact member since it was much harder than wood and would consequently last longer under string tension.
As is quite apparent in inexpensive guitars, the decay of a note is not uniform, but rather has an undulating or a decreasing and increasing sound pattern, which sometimes will be referred to as "rollover." Rollover is thought to be associated with a feedback between the guitar body and the strings themselves via the bridge and saddle members. In guitars of excellent or outstanding quality, the design improvements such as discretely formed and positioned wood bracings on the inside of the top plate of the guitar have the effect of reducing the rollover to some extent thereby providing a somewhat more uniform sound decay. However, a significant random, uncontrolled, vibratory feedback from the body to the strings still exists, and an undulating sound decay is still present even in the best quality instruments.
The conventional stringed instrument bridge presents an unstable platform for the strings which tends to vibrate with the strings, thereby having a muting effect on the upper partial frequencies, so that the strings may only vibrate in the fundamental and first few harmonics. Thus, the desired full spectrum of overtone frequencies is never produced in the instrument, and the quality of musical sounds produced by the instrument is seriously limited. This also causes an undesirably large proportion of low frequency sonic energy output of the instrument, with consequently generally poor carrying power.
The feedback of a flexural nature which occurs through the bridge of a guitar or other stringed instrument involves an undesired phase modulation which causes a cancellation effect that is detrimental not only to the dynamic amplitude and frequency, but also to the timbre. Timbre is affected in at least two ways: (1) the sine wave component of the sound is distorted, and (2) the formant of the tone is altered periodically during the decay. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a projector.
2. Related Art
In the related art, a projector is provided with a circulation-type liquid-cooling device to circulate cooling liquid along a flow path such that a cooling target such as a liquid crystal panel is effectively cooled down by the circulated cooling liquid.
In such a liquid-cooling device, cooling liquid may evaporate as the cooling liquid has been used over the years. In this case, bubbles may occur in the flow path. Furthermore, when the amount of bubbles increases, it makes it difficult for the cooling liquid to circulate along the flow path. As a result, the cooling efficiency for the cooling target may decrease.
Therefore, in the related art, a technique in which a reserve tank (liquid storage unit) captures bubbles so as to remove bubbles in the flow path has been adopted (refer to JP-A-2005-331928).
Specifically, the liquid storage unit disclosed in JP-A-2005-331928 includes a tank which temporarily stores cooling liquid therein and inflow and outflow nozzles through which cooling liquid flows into and out of the tank.
When cooling liquid containing bubbles flows into the tank, the bubbles move to the upper space inside the tank due to their buoyancy. At this time, the bubbles are captured in the space, and only the cooling liquid flows to the outside through the outflow nozzle.
The liquid storage unit disclosed in JP-A-2005-331928 has been designed on the assumption that a projector projects an image at a normal posture such that the image is projected in a substantially horizontal direction. At the normal posture, the projector is loaded on an installation surface of a desk or the like. In other words, the liquid storage unit is designed in such a manner that when the projector is installed at the normal posture, bubbles are captured in the tank and only the cooling liquid flows out of the tank.
Therefore, when the projector is installed at an upward projection posture where the projector projects an image upward or a downward projection posture where the projector projects an image downward, bubbles may flow out of the tank. At the upward projection posture, a projection lens is positioned upward. At the downward projection posture, the projection lens is positioned downward.
Specifically, the liquid storage unit disclosed in JP-A-2005-331928 is constructed in such a manner that the outflow nozzle is provided in a direction along the projection direction with respect to the tank, and the cooling liquid flows out to the opposite side of the projection direction. Therefore, when the projector is installed at the downward projection posture, the liquid storage unit is postured in such a manner that the outflow nozzle is positioned on the upper side wall in the tank, and the cooling liquid flows out from the upper side through the outflow nozzle. That is, bubbles flowing with the cooling liquid into the tank move to the internal space of the tank at the upper side (where the outflow nozzle is positioned) due to their buoyancy, and then flows to the outside through the outflow nozzle.
Therefore, a technique is being demanded, which prevents bubbles captured by the liquid storage unit from flowing out of the liquid storage unit, and effectively cools down a cooling target using cooling liquid, even when the projector is installed at various postures. | {
"pile_set_name": "USPTO Backgrounds"
} |
The analysis of ion(s) present in water at concentrations below the 100 ppb level is generally inaccurate and/or difficult. This analysis problem is compounded when other ions are present in the same solution at much greater concentrations. Previously, we have submitted patent applications J. S. Bradshaw, R. M. Izatt and J. J. Christensen, PROTON IONIZABLE MACROCYCLIC COMPOUNDS AND SELECTIVE COMPETITIVE SEPARATION OF DESIRABLE METAL IONS FROM MIXTURES THEREOF WITH OTHER IONS. U.S. patent application, Ser. No. 07/036,664 filed Apr. 8, 1987 as continuation-in-part of U.S. patent application, Ser. No. 06/859,308 filed May 5, 1986; and J. S. Bradshaw. R. M. Izatt, J. J. Christensen, and R. L. Bruening, MACROCYCLIC LIGANDS BONDED TO SILICA AND THEIR USE IN SELECTIVELY AND QUANTITATIVELY REMOVING AND CONCENTRATING IONS PRESENT AT LOW CONCENTRATIONS FROM MIXTURES THEREOF WITH OTHER IONS, U.S. patent application, Ser. No. 07/240,689, filed Sep. 6, 1988, which disclosed the bonding of macrocycles, which do not contain electron withdrawing groups, to silica via a side chain which is not connected to one of the electron rich macrocycle donor atoms (the compounds of FIG. 1). These bonded macrocycles have been shown to selectively form strong bonds with particular ions or groups of ions similar to the behavior of the same macrocycles present as solutes in solution. We have also discovered in our research that plain silica gel selectively binds certain cations present as solutes in solution. Prior researchers who have studied the analytical applications of silica gel and macrocycle-bonded silicas have confined their investigations to chromatographic applications where ions are present in concentrations greater than the ppb range. The concentration and subsequent analysis of selected ions requires quantitative and selective complexation of the ions so that the ions may be sufficiently concentrated. The extent of macrocycle-ion or silica gel-cation interaction is particularly important when ions present in solution at low concentrations need to be complexed. The greater the value of the equilibrium constant for ion-macrocycle or cation-silica gel interaction, the lower the initial concentration of the ion in solution can be and still be efficiently and quantitatively complexed, and therefore removed from the solution. Silica gel forms strong bonds with only a few selected cations. However, various macrocycles form strong and selective bonds with numerous ions, when the macrocycles are present as solutes in solution. An extensive compilation of the association constants between macrocycles and various cations is found in an article by R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen, and D. Sen, THERMODYNAMIC AND KINETIC DATA FOR CATION-MACROCYCLE INTERACTION, Chem. Rev., 1985, Vol. 23, 271-339. The ability to attach these macrocycles to silica without reducing the ability of the macrocycle to complex ions is of the utmost importance in their use as a concentrator for analytical purposes. In this patent we report the successful use of bonded macrocycles and in certain instances plain silica gel for this purpose. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to a liquid discharging apparatus.
2. Related Art
As a liquid discharging apparatus, an ink jet type printer which prints an image on a medium (for example, paper) by discharging ink that is one type of liquid onto the medium is known. As such a printer, a printer which prints a painting, a graphic, a symbol (a character), a bar-code, or the like on a label is also known (refer to JP-A-2-58366, for example). Further, in such a printer, print processing is sometimes repeatedly performed on the same printing area (page) of the medium. For example, there is a case where after an image is formed by color ink, by applying colorless and transparent ink (clear ink) onto the image, coating of the surface of the image is performed.
Incidentally, in the above-mentioned label printing or the like, a plurality of images is sometimes printed on one print side (page) and a site (a common image portion) common to the plurality of images and a site (a variable image portion) which differs in each of the plurality of images are sometimes included. In the case of printing such an image over plural pages, there is concern that the printing speed may be decreased, as described later. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to methods and apparatus for providing multi-user access to devices and the Internet.
2. Description of the Related Art
It is increasingly desirable to couple computer and digital devices together and to the Internet using TCP/IP protocols. One instance of this is multiple computers provided with radio modems providing wireless communication. Wireless communication between users and a network provides some significant advantages over the similar communication networks utilizing completely hardwired connections. Since there are no permanent wires or cables connecting users to a hub or router in the network, the costs of installing wire and cable are eliminated, as are any costs associated with expanding or changing the office or workplace facility in the future. Wireless solutions also provide mobility for users who must take their PC to various locations on the job site and cannot be tied to a single, non-mobile workstation.
Currently, wireless communication between users and a network may take place via a wireless network access point. This access point is simply an adapter device that converts the incoming radio communications from users' PCs to signals understood by a network, and gives the remote PC users access to all devices connected (hard wired) to the network beyond the access point. This concept is illustrated in FIG. 1A of the prior art. Users may have portable 10A or desktop 10B PCs equipped with wireless modems. These modems transmit to and receive from wireless access point 12 which has a single ethernet connection 14 to a local area network 16. This access point 12 is a dedicated hardware device specifically designed to provide multi-user wireless communication with a single ethernet LAN connection.
Once a user is connected to the LAN 16, they would have access to a number of peripheral devices such as printers, network hard drives, scanners, cable modems, telephone modems, etc. But all of these devices normally require a second interface to connect to the LAN. For example, a printer connected to the network would require an interface device that has an ethernet connection input (from the LAN) and a standard UART (universal asynchronous receiver transmitter) driven LPT (line printer terminal) parallel port (to be connected to the printer). In addition, the LAN usually requires various servers and switching hubs designed to identify and route traffic to end target devices.
FIG. 1B (prior art) illustrates a similar system marketed by Compex, that allows a standard PC 18 to be converted to an access point for an ethernet based LAN 16. A “kit” provided by the manufacturer includes a wireless transceiver pair; one for a user's PC 10A or 10B, and a mating compatible PCI bus interface circuit card that is installed in PC 18. Also included in the “kit” is software that enables the network communication between user's PC 10 and LAN 16. Connection to peripheral devices attached to LAN 16 would have to be made through LAN 16. Connection to peripheral devices attached to the LAN 16 would have to be made through interface adapters, as discussed previously.
FIG. 1C (prior art) illustrates another current product manufactured by companies like Lucent, 3Com, and Cisco Systems. A wireless residential gateway 20 provides an access point for an ethernet 14 based LAN 16, along with a standard V.90 modem connection 22 that can communicate via standard telephone lines 14, and RS232 serial port connections 26. This device provides connectivity to other communication technologies besides a LAN, but access to any peripheral device attached to the RS232 serial port 26, for example, will still require another piece of hardware or additional components to connect to the widest variety of devices, since most will not provide compatible connectivity via a serial port.
FIG. 1D (prior art) illustrates a product that provides wireless communication between users 10 and a USB (universal serial bus) based network. A wireless USB adapter 28 can be connected to a USB hub 30, which in turn is connected to multiple USB devices 32. Currently, a wide variety of USB devices exists such as scanners, DVD/CD readers/writers, removable storage, and printers. But not all devices are compatible with USB systems, and USB is not desirable for high speed data transfers, as might be required for hard disk drives or full color scanners.
FIG. 1E (prior art) illustrates a product that provides wireless communication to a cable modem or DSL (digital subscriber line) connection. Wireless base station and cable router 34 is connected to cable ort DSL line 36, and is designed exclusively for this purpose. Other types of peripherals cannot be executed.
FIG. 1F (prior art) illustrates a product that provides wireless communication between users 10 and a IEEE 1394 (Fire Wire) based network. A wireless IEEE 1394 adapter 200 can be connected to a IEEE 1394 hub 210, which in turn is connected to multiple IEEE 1394 devices 220. A wide variety of IEEE 1394 devices are available such as scanners, DVD/CD readers/writers, removable storage, and printers. But not all devices are compatible with IEEE 1394 systems, and IEEE 1394 is not a cost-effective solution when a high transfer rate is not required, such as when connecting a keyboard and a mouse to a computer.
As illustrated in the examples cited above, a wireless PC user has a large number of adapters to purchase if they want to connect to a multiplicity of devices. They can connect to a multiplicity of devices. They can purchase discrete adapters to connect directly to each end use device (such as a printer or scanner), or purchase a single access point adapter to connect to a LAN, then a number of discrete adapters to connect the end use devices to the LAN. While the current methodologies offer the highest degree of flexibility in configuring the system, it is at a penalty of high cost and significant complexity. The complexity aspect is also reflected in the software needed to run such a network, especially if numerous adapters from a number of different manufacturers are present.
It would be of further interest to have users, connected to the Internet, to also have access to a multiplicity of multi-media peripheral devices, without the expense and complexity of an ethernet based LAN system equipped with discrete adapters to support a multiplicity of peripheral device protocols.
What is needed is an apparatus and method that allows multiple users to connect via wireless modems and the Internet to a single multiple access router, which enables the shared communication with a number of multi-media and peripheral devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
Applicant has previously disclosed and patented a commercially significant improvement upon those prior plastic and metal closures for bottles and containers which are designed to include a tamper-evident feature. In most cases, this tamper-evident feature had comprised a lower shoulder or skirt portion of the closure, which was in some way intended to fracture or break upon removal of the closure from the container, so that it then became evident that the container had been opened. A large number of these closures had been known in the past, including even several which were used on a commercial basis, particularly in connection with carbonated beverage bottles and other such containers maintained under significant pressures. Up until quite recently, metal closures had predominated in this respect. However, applicant's prior invention, as set forth in U.S. Pat. No. 4,343,408, has been quite successful in replacing these prior closures.
In that regard, applicant's patented closure has significantly improved upon these prior closures, particularly in that applicant's device has now permitted the closure to be removed cleanly and efficiently, and to obtain the fracture of the lower skirt portion in a highly reliable manner. Furthermore, applicant has provided a commerical closure which can be applied in a single step to a container or bottle, and one which can at the same time result in highly efficient breaking or fracturing upon closure removal.
Applicant has also patented a further improvement on this closure, which includes juxtaposed parallel intermediate side wall surfaces which help to maintain the upper and lower intermediate side wall portions of these closures in alignment with each other upon collapse of the frangible bridge means as the closures are applied to the containers, and thus more efficiently operate such systems. These improved devices are set forth in U.S. Pat. No. 4,461,390. Again, all of these closures have been highly successful in commercially adapting these closures to these types of containers.
Furthermore, in U.S. Pat. No. 4,479,586 the applicant has set forth yet another improvement in these closures, in this case relating to the inclusion of means for insuring that the portion of the closure which remains on the container after the closure has been removed now separates from the upper portion of the container so as to visibly reveal fracture thereof. In this patent, this is accomplished by including an inwardly directed non-locking tapered surface on the container itself so that when the closure fractures the depending lower skirt portion is caused to move downwardly along the non-locking tapered surface away from the annular collar portion of the contained to provide such visual evidence.
While all of these closures and containers have provided commercial products which can not only provide the tamper-evident function, but which can also visibly demonstrate same, the search has nonetheless continued for even greater improvements in these devices, and most particularly to provide a structure which is fool-proof in connection with highly repetitious operations. It must be recognized in this regard that in applying these closures to bottles or other containers many hundreds of thousands of applications are carried out repetitiously. It is nevertheless important that each such application result in the clean and uniform application of the closure to the container, without prematurely fracturing the bridges on the closure, and in a manner such that when the closure is subsequently removed these bridges will then cleanly and uniformly fracture with relative ease. Thus, even if only a few percent of the closures thus applied do not perfectly meet these requirements, in many situations this will not be an acceptable result in the particular commercial operation involved. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus for aiding escape of passengers to the outside of a vehicle if the vehicle comes into collision.
2. Description of the Related Art
An apparatus has been known (refer to Japanese Patent Laid-Open No. 5-139246) which detects stop of a vehicle and interruption of an engine, when the vehicle has come into collision, so as to unlock doors and release seat belts.
Another apparatus has been known (refer to Japanese Utility Model Laid-Open No. 60-51267) which unlocks a child safety lock when the vehicle has come into collision. Note that the child safety lock is an apparatus for permitting the door to be opened only from the outside of the vehicle in order to prevent an accident that the door is unintentionally opened by a child.
Recently, vehicles are equipped with a power window, a sun roof, a trunk opener and an automatic driving position system in order to improve safety, enhance operation facility and realize comfortableness. The power window is an apparatus for moving the door windows by actuators so that the windows are opened/closed in accordance with the operations of corresponding switches. The sun roof is an apparatus for causing an actuator to move a sun roof lid disposed in the ceiling of the vehicle to open/close the sun roof lid in accordance with the operations of corresponding switches. The trunk opener is an apparatus for causing an actuator to move the trunk lid to open/close the trunk lid in accordance with the operations of corresponding switches. The automatic driving position system is an apparatus for moving the driver's seat rearwards and tilting up and contracting the steering wheel when the driver on the driver's seat gets off the vehicle to facilitate getting in and out of the vehicle. Moreover, after the driver gets in the vehicle, the automatic driving position system restores the seat and the steering wheel to the previously stored positions.
The vehicle equipped with the foregoing units are required to have a total system including a conventional unit for unlocking the door locks, the child safety lock and releasing the seat belts and an apparatus for aiding escape of the passengers when the vehicle has come into collision. | {
"pile_set_name": "USPTO Backgrounds"
} |
Banking systems employing automatic transaction terminals for handling cash dispensing and depository requests are being increasingly employed by banks and other financial service organizations as a means for reducing labor expense and providing extended banking hours and enhanced convenience to customers.
In handling deposit transactions in which a customer enters an envelope or other deposit container into the terminal, difficulties have been encountered with the depository apparatus in these systems in that the physical opening which necessarily must be provided into the system for the purpose of entering deposit containers can be used for inserting probes and other devices into the confines of the terminal safe. This leads to fouling of the mechanism and can also result in theft of stored deposit containers. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the business environment of today, many tasks are now automated by computers. For instance, a word processor enables the reorganizing and rewriting of documents without the retyping known in the past. In addition, various documents may be organized and stored by a computer filing system which allows retrieval by name, by chronological or alphabetical order, or by other user-desired identification. Another example is a mail system on a network of computer terminals which allows messages to be sent to and from users of the network. Also, a phone system may be connected to a mail system which in turn enables phone messages to be stored and later forwarded to users. These and other computer devices enable various daily office tasks to be accomplished more quickly and more efficiently.
However, most computer devices require the user to be computer literate and to learn commands to direct the computer to perform a certain task. In more recent computer developments, menus (a series of commands from which to choose) are displayed to the user at appropriate decision junctures during the use of a computer device. The menus are considered to make the computer device more "user friendly". Generally the choices on a menu are descriptive phrases written in terms which are more common to our everyday language rather than in a coded or technical computer language. Even so, the descriptive phrases may not initially have meaning, or at least the proper meaning, to a first-time user or a user who is not computer literate. Thus, many office personnel do not make use of computer devices because of the time and complexity required to learn to operate these devices.
Accordingly, there is a need to make computer devices, and particularly those for office use, more initially "user friendly" or readily useable especially to first-time and computer illiterate users. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the present invention generally relate to x-ray tubes. In particular, some example embodiments relate to an x-ray tube bearing assembly having a two-piece hub and shaft.
2. Related Technology
The x-ray tube has become essential in medical diagnostic and inspection imaging, medical therapy, and various medical testing and material analysis industries. Such equipment is commonly employed in areas such as medical and industrial diagnostic examination, therapeutic radiology, semiconductor fabrication, and materials analysis.
An x-ray tube typically includes a vacuum enclosure that contains a cathode assembly and an anode assembly. The vacuum enclosure may be composed of metals, glass, ceramic, or a combination thereof, and is typically disposed within an outer housing. A cooling medium, such as a dielectric oil or similar coolant, can be disposed in the volume existing between the outer housing and the vacuum enclosure in order to dissipate heat from the surface of the vacuum enclosure. The cathode assembly generally consists of a metallic cathode head assembly and a source of electrons highly energized for generating x-rays. The anode assembly, which is generally manufactured from a refractory metal such as tungsten, includes a focal track that is oriented to receive electrons emitted by the cathode assembly.
Some x-ray tubes include a rotating anode. Rotating anode x-ray tubes often utilize a precision high performance bearing assembly coupled to the anode assembly to allow rotation of the anode. Such bearing assemblies can be comprised of one or more bearing rings, ball sets, a shaft, and a hub. In some cases, the hub is made from different material(s) than the shaft. The difference in material(s) between the hub and the shaft may put a considerable amount of stress on the shaft-to-hub interface.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
A process for making or repairing ion exchange membranes from a solution of fluorinated polymers is disclosed. The solution comprises perfluoro cycloalkane, perfluorinated aromatic compounds or perfluorotrialkyl amine solvents and fluorinated polymers having carboxyl groups and an equivalent weight greater than 900. The solvents have a critical temperature greater than 150.degree. C.
2. Technical Background
The present invention relates to electrolytic cells and particularly to electrolytic halogen generating cells in which an ion exchange membrane separates the anode and cathode within the electrolytic cell. Specifically, this invention relates to methods for making and for repairing these ion exchange membranes. More specifically, this invention concerns a process for making ion exchange membranes from solutions of fluorinated polymers having carboxyl groups and an equivalent weight greater than 900. The solutions are made from novel solvents which dissolve certain alkyl carboxylate forms of fluorinated polymers which are copolymers of tetrafluoroethylene ("TFE") and certain perfluorovinylether comonomers. The solvents readily dissolve such polymers more completely and at lower temperatures than previously disclosed solvents, an advantage in equipment utilization and other manufacturing concerns. The ion exchange membranes are particularly useful in an electrolytic cell such as a chloralkali cell or a fuel cell. The solutions are also useful as corrosion resistant spray coatings for a multitude of materials.
The prior art generally discloses the solubility of certain fluorinated polymers but there is no mention of full solutions of carboxylic fluorinated polymers having high equivalent weights in this class of inventive solvents, particularly at low temperatures. There is also no mention of a process to make or repair ion exchange membranes from such solutions.
Generally, ion exchange membranes are between 0.5 and 150 mil in thickness. Being thin, these membranes, while strongly resistant to the chemical environment within the electrolytic cell or fuel cell, are often subject to physical damage: tears, punctures and flex fatigue cracking. One past proposal has been to repair this physical damage using low equivalent weight copolymer solvated with an alcohol. It is difficult to fully dissolve the polymers in an alcohol solvent. In addition, the repaired areas have not offered desirable membrane performance characteristics normally associated with higher density copolymeric material, resulting in decline of the overall performance of the membrane. These repairs often have achieved less than desirable adhesion to the membrane because mechanical bonding not solvent molding is a significant factor in adhesion.
The use of alcohols to solvate particularly low equivalent weight perfluorocarbon copolymers is known. However, as yet, proposals for formation of perfluorocarbon composite electrodes and for solvent welding the composites to perfluorocarbon membranes where the perfluorocarbons are of relatively elevated equivalent weights desirable in, for example, chlorine cells, have not proven satisfactory. Dissatisfaction has been at least partly due to a lack of suitable techniques for fully solvating these higher equivalent weight perfluorocarbons.
Some solvents are known in the prior art for this class of carboxylic fluorinated polymers; however, some of the solvents are very expensive or require high temperature to dissolve the polymer. The prior art teaches solvents for carboxylic fluorinated polymers with equivalent weights below about 900 and solvents for such polymers which require elevated temperatures or pressures. There is no teaching of a solvent for the ester form of carboxylic fluorinated polymers with an equivalent weight greater than 900 at low temperatures.
For example, U.S. Pat. Nos. 4,650,551; 4,778,723 and 4,784,900 disclose solutions near room temperature of highly swollen dispersions of resins which are copolymers of TFE and perfluorovinylether comonomers with acidic end groups having low equivalent weights less than 850. Heavily fluorinated alkanes, like 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane were used as "solvents". Examples of room temperature solutions were also given using polyhalogenated alkyl ethers with boiling points less than 190.degree. C.; the equivalent weight for these resins was exceedingly low at 690 or lower.
Fluorinated polymer resins commercially known as NAFION.RTM. (available from E. I. du Pont de Nemours and Company) with an equivalent weight greater than about 1000, must be dissolved at elevated temperatures and pressures due to the presence of crystallinity. U.S. Pat. Nos. 4,266,036; 4,272,560 and 4,298,697 discuss the use of high boiling perhalogenated alkyl ethers and perhalogenated alkanes as solvents at elevated temperatures. The examples describe the dissolution of 1050 to 1200 equivalent weight resins in oligomers of chlorotrifluoroethylene ("CTFE") at temperatures of about 225.degree. to 250.degree. C.; however, the polymers are more likely to decarboxylate at high temperatures. Chemical degradation of the polymer may occur in solutions of CTFE oligomer at 200.degree. C.
U.S. Pat. No. 4,535,112 describes a method of repairing ion exchange membranes using dispersions or partial solutions of 1050 to 1200 equivalent weight polymers in a wide variety of heavily fluorinated liquids for purposes of repairing cation exchange membranes. These liquids include perfluorodecanoic acid, perfluorotributylamine, pentafluorophenol, pentafluorobenzoic acid, perfluoro-1-methyldecalin and decafluorobiphenyl. There is no mention of full solutions of carboxylic fluorinated polymers having high equivalent weights at low temperatures.
An article entitled "Solubility Characteristics of Perfluorinated Polymers with Sulfonyl Fluoride Functionality" by McCain and Covitch discusses the solubility of so-called sulfonyl fluorinated polymers, but does not mention alkyl carboxylate forms of fluorinated polymers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an actuating device for opening and closing a cover of a folding top compartment of a convertible vehicle.
2. Background Art
DE 600 29 213 T2 (corresponds to U.S. Pat. No. 6,619,720) describes a convertible vehicle having an actuating device for opening and closing a cover of the trunk of the vehicle. The folding top of the vehicle is movable between a closed position and an opened position in which the top is stored in the trunk. The actuating device opens the cover from the trunk when the top is moving in or out of the trunk and closes the cover over the trunk when the top is stored in the trunk. The actuating device has two units arranged on respective longitudinal sides of the trunk. Each unit has levers and drive mechanisms which cooperate with main bearings situated on corresponding longitudinal sides of the vehicle body.
DE 101 60 406 A1 describes a convertible vehicle having a roof kinematic system for opening and closing a cover of a folding top compartment of the vehicle as the roof kinematic system moves the folding top of the vehicle between a closed position and an opened position in which the top is stored in the compartment. A lock cooperates with the roof kinematic system via a coupling element and fixes the cover in place when the cover is closed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Polypropylene is a popular thermoplastic resin because it is lightweight, yet stiff, resistant to chemicals and heat, and can withstand repeated flexing. Equally important, polypropylene is less expensive than many other thermoplastics. As manufacturers look to new materials, polypropylene remains a front runner in thermoplastic applications. To improve strength, polypropylene has been reinforced with glass fibers. In automotive applications, polypropylene has been used for fan shrouds and battery cases. But, as government mandated fuel economy standards become more stringent, auto makers are looking for ways to reduce weight while simultaneously increasing the crash worthiness of their vehicles. One way companies are meeting the government and consumer mandates is by using polypropylene to replace metal and other plastics in automotive interiors and exteriors. This strategy has helped reduce both weight and cost while actually improving the recyclability of the vehicle.
Although polypropylene is known for its low cost and light weight, it has lagged behind metal and other plastic materials in terms of strength. While reinforcement with glass fibers can dramatically increase the strength and stiffness of polypropylene, its use in certain areas has been limited. Researchers have sought ways to further improve the properties of reinforced polypropylene. Despite glass fibers being an excellent source of reinforcement, a major drawback is attributed to the lack of interaction between the polar surfaces of the glass fibers with the non-polar polypropylene. The result is a very weak filler/polymer interface. After analyzing failures in composites of polypropylene and glass, it has been determined that the site of the failure is this weak interface. To combat this problem manufacturers have treated glass fibers, shortly after they are formed, with a composition, often called a size, which provides lubricating and protective properties to the fibers, and assists in providing strength and other properties to the reinforced polymers and the products made therefrom. These sizing agents help to hold the glass bundles and reduce surface polarity of the glass.
One area where reinforced polypropylene has not done as well as other plastics is in the area of automotive bumper beams. Traditionally, automotive bumpers have been made of metal, and until the low speed impact requirements were passed into law for the 1974 model year most bumpers were made of metal. Once the new standards were passed, manufacturers started looking for ways to meet these new requirements. An attractive alternative proved to be bumpers made of plastic. These new bumpers offered good protection from damage as well as having reduced weight and improved corrosion resistance.
Automotive manufacturers sought improved bumper material which is strong, light and can retain its shape even when large units are molded. Thermoplastics in the polyolefin family are a favorite with molders, especially polypropylene. However, when molded into a large piece such as a bumper beam or a fascia, polypropylene is not sufficiently stiff to withstand a 5 mph impact from a vehicle. Although polypropylene can be reinforced with glass fibers to improve its performance, even when reinforced, polypropylene falls short of meeting impact requirements demanded by auto manufacturers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Socket ratchet wrenches are extremely useful tools which have become almost universally used by professional as well as amateur mechanics, especially automobile and truck mechanics. Such conventional tools do have a drawback in starting a nut onto a threaded shaft or a short bolt into a threaded hole. Normally, the nut or bolt must be tightened sufficiently to provide back pressure to the ratchet, or else the ratchet won't operate. That is, when rotated backward (counter to the tightening direction, say, counterclockwise), the loose nut or bolt just travels (counterclockwise) with the socket, and a return (clockwise) of the wrench just puts the nut back where it started.
One prior art solution is to hand-spin the nut on the threaded shaft until it is finger-tight. Or to hand-turn the socket (the cylindrical replaceable element that receives the nut and fits into the square ratchet projection) to the same end. Lately, a thin "turner" device or disc has been provided. This is sandwiched between the socket and the ratchet wrench and is of such a diameter that it sticks out beyond the sides of the socket. Its knurled edge or rim is more easily hand-turned than is the smooth socket.
It has also been suggested to make special wrenches which drive the drive stud (which receives the socket) from inside the handle. See, e.g., U. S. Pat. Nos. 3,707,893; 4,258,594; 4,406,183; 4,406,184; 4,532,832 and 4,453,437. Or to provide an additional gear wrench to be used with the ratchet wrench to drive a socket as in U.S. Pat. No. 4,242,931.
Such prior approaches are expensive to make and tend to limit the usefulness of the primary socket wrench. They are often inconvenient to use since they require special set-up procedures and extra removal steps needed, e.g., to switch from driving the socket without pivoting the handle to the conventional mode of use. | {
"pile_set_name": "USPTO Backgrounds"
} |
A distributed application includes a plurality of services. Each of the services performs a task or tasks as part of the distributed application. Often the distributed application is placed on a network of computers. The network of computers forms a distributed resource infrastructure where each of the computers forms a node. Performance of the distributed application depends on optimizing a placement of the services onto the nodes.
A method of the prior art uses parameters for individual nodes to determine a placement of the services onto the nodes. Such parameters include processing and storage capabilities of the nodes. This method, however, does not consider relationships among the nodes or among the services in the determination of the placement of the services onto the nodes.
Another method of the prior art considers topologies between the services and between the nodes. This method, however, requires that the topologies be fixed in certain configurations.
What is needed is an improved technique for determining a placement of services of a distributed application onto nodes of a distributed resource infrastructure, particularly, one that takes into account arbitrary topologies between the nodes and between the services. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the use and charging of rechargeable batteries. More particularly, the invention concerns an unattended battery monitoring system that detects battery conditions such as low charge and impending end-of-battery-life, and responds by taking actions such as sending messages to a remote site and/or shutting down various battery-powered electrical components.
2. Description of the Related Art
Along with increased computing power, portability has been an important hallmark of the electronic age. Some electronic products are manufactured in handheld packages today, where the same component in past years occupied an entire room. Such portability would be meaningless without the availability of similarly portable power supplies, so it is no surprise that batteries have also undergone significant development in storage capability, compactness and other features.
One especially significant development in this area is the rechargeable battery. With rechargeable batteries, an electrically powered device can run for longer without the inconvenient and sometimes expensive task of removing and replacing batteries. In fact, many devices permit battery recharging without removing the batteries. And, if a source of occasional recharging is naturally available, rechargeable batteries can be used to power unattended or remotely located devices, thereby offering even greater convenience and longevity. One such example includes devices that are occasionally recharged with electricity generated by solar or wind energy.
Another example is the cellular untethered TrailerTRACS® product of Qualcomm Inc. The untethered TrailerTRACS product includes a self-contained freight module installed at a freight car such as a semi-tractor trailer. The freight module senses and transmits various status reports regarding trailer position, load, door status, and the like. Each TrailerTRACS module automatically receives recharging power when it is attached to a tractor, and consumes power when it is unattached or “untethered.” Rechargeable batteries provide the TrailerTRACS modules with a greater degree of longevity and self-sufficiency than would be otherwise possible. In some cases, untethered trailers sit dormant for months while their TrailerTRACS modules continue to provide various trailer-related status reports.
Although the TrailerTRACS product yields a number of significant benefits, and even enjoys widespread commercial use today, engineers at Qualcomm Inc. are nonetheless interested in improving the performance and efficiency of the battery monitoring and recharging processes in TrailerTRACS and other unattended products that use rechargeable batteries. Some areas of possible focus concerns improving the ability to monitor and manage battery use, and thereby ensure the availability of sufficient battery power for unattended battery-powered equipment. Monitoring and carefully managing battery use are important because the consequences of poor battery monitoring and management can be severe. For instance, if an unattended TrailerTRACS battery unexpectedly runs out of power, the TrailerTRACS equipment stops transmitting its normal position reports and therefore disappears from remote monitoring equipment, defeating one important benefit normally enjoyed by TrailerTRACS customers. Furthermore, if a battery reaches the end of its life, subsequent recharging cannot prevent the battery from quickly returning to a low charge condition in a relatively fast time, such as one day, thus increasing the possibility of an unexpected, future power loss. Furthermore, technicians must be immediately dispatched to remove and replace the expired battery, despite the resultant inconvenience and labor costs.
As mentioned above, poor battery monitoring and management can result in higher operating costs, inconvenience, and loss of services. Unfortunately, engineers face numerous challenges in trying to develop improved battery monitoring and management techniques. For example, manufacturers' product data sheets often lack accurate information concerning battery charging requirements. In some cases, product data sheets specify battery replacement after a specific number of years of operation. However, depending upon the manner of battery operation, batteries can last notably shorter or longer than expected. If battery life is shorter, the user can suffer an unexpected, premature battery failure. If battery life is longer than expected, the user may replace the battery sooner than necessary, incurring unnecessary replacement costs.
Consequently, known rechargeable battery monitoring and management schemes are not always adequate due to certain unsolved problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Use
The present invention relates to microprocessing systems and, more particularly, to a control store system for executing commands received from a data processing system.
2. Prior Art
In general, there are a number of arrangements for programmed control units for executing commands. These units normally include a separate scratch pad memory used for storing parameter information in addition to providing temporary storage for control and data handling operations. An example of this type of arrangement may be found in U.S. Pat. No. 3,913,074, invented by John A. Homberg et al., which is assigned to the same assignee as named herein.
The main disadvantage of these types of arrangements is that they require additional storage circuits to provide the necessary scratch pad storage locations. Also, such arrangements require circuits to insure that the cycle times of the control store and scratch pad memories are properly synchronized to one another. This can increase the complexity of the control and timing of the microprogrammed processing unit.
Accordingly, it is a primary object of the present invention to provide an improved microprogrammed control unit.
It is a further object of the present invention to provide a microprogrammed control unit which requires a minimum of apparatus for storing signals required for transferring data between a main memory unit and a utilization device. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to modems and communication systems for the transmission of data over a switched network. More particularly, this invention relates to an intelligent synchronous modem and a communication system incorporating an intelligent synchronous modem which will permit the interface of a microcomputer or personal computer with a mainframe computer requiring synchronous communication.
Both synchronous modems and intelligent asynchronous modems are known in the art. Typically, database services utilize mainframes which communicate in an asynchronous mode. Thus, with an intelligent asynchronous modem, a user could insert a disk with communication software into his PC and start the program. The software, in command mode, then instructs the modem to dial the telephone number keyed in by the user with the command: ATD (xxx) xxx-xxxx; where "AT" means "attention", and "D" means "dial the following number". The modem will then dial the given number and interrupt the PC with the message "CONNECT" when the connection with the remote computer has been accomplished. The modem will then leave its "command mode" and enter its "data mode". Once in the data mode, the modem simply acts as a modulator/demodulator for whatever information is being transmitted between the computers. After data transmission is completed, the computer will then use command mode to instruct the modem to "hang up". Because the modem can understand when it is being commanded to enter the command and data modes, it is called an "intelligent" modem. Those skilled in the art will understand that the nature of asynchronous communication permits the implementation of such an intelligent modem, as asynchronous data is sent at whatever rate it is received, and it is not enveloped with excess information which must be stripped to understand the data. Thus, the appearance of particular control language, in any location and at any time in the data stream, will cause the intelligent modem to enter or leave command mode.
Often, in large corporations, computer systems are arranged for synchronous communication, and synchronous modems have long been available to facilitate transmission of synchronous messages. Synchronous data is sent according to a particular protocol and according to a clock. Because a protocol is used, a PC must be arranged to talk according to that protocol. Typically, a "SYNC card" is used to generate the proper protocol and thus translate the information being output by the PC into properly formatted information. The information may then be sent via the modem to the mainframe computer. The modem's function in such an arrangement is simply to convert each bit of information into phone line compatible information. Because the information is being sent according to a complex protocol, the modem (without the use of expensive and sophisticated hardware) is incapable of determining whether any of the information is meant for it rather than the distant computer. Thus, the synchronous modems of the art are non-intelligent. They act in "data mode" only and simply pump the information through the line. Typically, all "command mode" information is accomplished manually such that operators place the calls to the mainframe and manually transfer the line to the modem of the PC. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wear-resistant, superabrasive materials are traditionally utilized for a variety of mechanical applications. For example, polycrystalline diamond (“PCD”) materials are often used in drilling tools (e.g., cutting elements, gage trimmers, etc.), machining equipment, bearing apparatuses, wire-drawing machinery, and in other mechanical systems.
Conventional superabrasive materials have found utility as superabrasive cutting elements in rotary drill bits, such as roller cone drill bits and fixed-cutter drill bits. A conventional cutting element typically includes a superabrasive layer or table, such as a PCD table. The PCD table is formed and bonded to a substrate using an ultra-high pressure, ultra-high temperature (“HPHT”) process. The cutting element may be brazed, press-fit, or otherwise secured into a preformed pocket, socket, or other receptacle formed in the rotary drill bit. In another configuration, the substrate may be brazed or otherwise joined to an attachment member such as a stud or a cylindrical backing. Generally, a rotary drill bit may include one or more PCD cutting elements affixed to a bit body of the rotary drill bit.
Conventional superabrasive materials have also found utility as bearing elements in thrust bearing and radial bearing apparatuses. A conventional bearing element typically includes a superabrasive layer or table, such as a PCD table, bonded to a substrate. One or more bearing elements may be mounted to a bearing rotor or stator by press-fitting, brazing, or through other suitable methods of attachment. Typically, bearing elements mounted to a bearing rotor have superabrasive faces configured to contact corresponding superabrasive faces of bearing elements mounted to an adjacent bearing stator.
Superabrasive elements having a PCD table are typically fabricated by placing a cemented carbide substrate, such as a cobalt-cemented tungsten carbide substrate, into a container or cartridge with a volume of diamond particles positioned on a surface of the cemented carbide substrate. A number of such cartridges may be loaded into a HPHT press. The substrates and diamond particles may then be processed under HPHT conditions in the presence of a catalyst material that causes the diamond particles to bond to one another to form a diamond table having a matrix of bonded diamond grains. The catalyst material is often a metal-solvent catalyst, such as cobalt, nickel, and/or iron that facilitates intergrowth and bonding of the diamond grains.
In one conventional approach, a constituent of the cemented-carbide substrate, such as cobalt from a cobalt-cemented tungsten carbide substrate, liquefies and sweeps from a region adjacent to the volume of diamond particles into interstitial regions between the diamond particles during the HPHT process. In this example, the cobalt acts as a catalyst to facilitate the formation of bonded diamond grains. Optionally, a metal-solvent catalyst may be mixed with diamond particles prior to subjecting the diamond particles and substrate to the HPHT process.
The metal-solvent catalyst may dissolve carbon from the diamond particles and portions of the diamond particles that graphitize due to the high temperatures used in the HPHT process. The solubility of the stable diamond phase in the metal-solvent catalyst may be lower than that of the metastable graphite phase under HPHT conditions. As a result of the solubility difference, the graphite tends to dissolve into the metal-solvent catalyst and the diamond tends to deposit onto existing diamond particles to form diamond-to-diamond bonds. Accordingly, diamond grains may become mutually bonded to form a matrix of polycrystalline diamond, with interstitial regions defined between the bonded diamond grains being occupied by the metal-solvent catalyst.
In addition to dissolving diamond and graphite, the metal-solvent catalyst may also carry tungsten and/or tungsten carbide from the substrate into the PCD layer. Following HPHT sintering, the tungsten and/or tungsten carbide may remain in interstitial regions defined between the bonded diamond grains.
The presence of the solvent catalyst in the diamond table is believed to reduce the thermal stability of the diamond table at elevated temperatures. For example, the difference in thermal expansion coefficient between the diamond grains and the solvent catalyst is believed to lead to chipping or cracking in the PCD table of a cutting element during drilling or cutting operations. The chipping or cracking in the PCD table may degrade the mechanical properties of the cutting element or lead to failure of the cutting element. Additionally, at high temperatures, diamond grains may undergo a chemical breakdown or back-conversion with the metal-solvent catalyst. At extremely high temperatures, portions of diamond grains may transform to carbon monoxide, carbon dioxide, graphite, or combinations thereof, thereby degrading the mechanical properties of the PCD material.
Accordingly, it may be desirable, for some applications, to remove a metal-solvent catalyst from a PCD material in situations where the PCD material may be exposed to high temperatures. Chemical leaching is often used to remove metal-solvent catalysts, such as cobalt, from regions of a PCD article that may experience high temperatures, such as regions adjacent to the working surfaces of the PCD article. Conventional chemical leaching techniques often involve the use of highly concentrated, toxic, and/or corrosive solutions, such as aqua regia and mixtures including hydrofluoric acid (HF), to dissolve and remove metal-solvent catalysts from polycrystalline diamond materials. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a traction control device for a vehicle.
2. Description of the Related Art
In a known engine, when the engine is accelerated, the occurrence of slippage of the driven wheel is detected by the difference between the speed of rotation of the free running wheel and the speed of rotation of the driven wheel, and when slippage of the driven wheel occurs, the output torque of the engine is reduced by stopping the supply of fuel fed to some of the engine cylinders (see Japanese Unexamined Patent Publication No. 58-8436). In this engine, the number of the engine cylinders in which the supply of fuel is stopped is increased as the slippage of the driven wheel becomes greater, and thus the output torque of the engine is controlled in accordance with the severity of the slippage.
However, when the severity of the slippage fluctuates within a relatively short time, the number of engine cylinders in which the supply of fuel is stopped fluctuates within a relatively short time, and accordingly, the supply of fuel and the prohibition of the supply of fuel to the engine cylinders are alternatively repeated at a high frequency.
When the prohibition of the supply of fuel for the engine cylinder is started, fuel accumulated on the inner wall of an intake manifold gradually flows into the engine cylinders in which the supply of fuel is stopped. Therefore, when the supply of fuel and prohibition of the supply of fuel to the cylinders are alternatively repeated at a high frequency, a large amount of unburned HC is discharged into the exhaust passage. Furthermore, if the supply of fuel for the engine cylinder is prohibited, a large amount of oxygen is discharged into the exhaust passage from the engine cylinders, and consequently, since a large amount of unburned HC is burned in the exhaust passage, a problem arises in that parts of the exhaust system, for example, the catalyst, are damaged due to the heat from the burning of the unburned HC.
In addition, where the supply of fuel and prohibition of the supply of fuel to the cylinders are alternatively repeated at a high frequency, when the supply of fuel for the engine cylinder is started, since a large amount of fuel adheres to an intake port, the amount of fuel fed into the cylinder in which the supply of fuel is started is small. Therefore, the burning time becomes long and continues until next intake stroke in the cylinder. Consequently, when the intake valve is opened, the burning gas flows back to the intake manifold, and thus a problem arises in that an air-fuel mixture in an intake pipe is ignited and burned, i.e., a backfire occurs. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an electrochemical sensor which is indwelled subcutaneously in human being and an animal and continuously measures (monitors) a physical quantity of components within a living organism.
An RT-CGM (Real-Time Continuous Glucose Monitoring) apparatus performs a Continuous Glucose Monitoring (CGM) process for continuously measuring (monitoring) a concentration of glucose contained in a subcutaneous interstitial liquid by employing a biosensor, which has an electrode and an enzyme reacting on the glucose, indwelled subcutaneously.
The RT-CGM device includes, as a basic configuration, a sensor unit and a data receiver which performs data communications with the sensor unit. The sensor unit includes a biosensor and a measuring (monitoring) instrument to which the biosensor is attached. A part of the biosensor is fitted in a fixed state within a housing of the monitoring instrument.
The biosensor is formed in a sheet-like or board like shape. Also, the biosensor has a one end portion formed on a plurality of electrodes and another end portion fixed within the housing for the monitoring instrument. The biosensor is fitted in the monitoring instrument in a state where the one end portion thereof protrudes from the housing for the monitoring instrument. The other end portion of the biosensor is inserted into a living organism of an examinee and is indwelled subcutaneously when the monitoring instrument is attached to the examinee for monitoring the glucose.
Electronic components composing a sensor control unit and a data transmitter are disposed within the housing for the monitoring instrument. The sensor control unit is electrically connected to a plurality of electrodes provided on the biosensor. The sensor control unit controls application of a voltage to between the plurality of electrodes and detection of an inter-electrode current (called a response current) derived from enzyme reaction caused by this voltage application. The data transmitter converts, e.g., a value of the detected response current into a predetermined data communication format and transmits the thus-converted data to a data receiver.
The data receiver includes an computing unit (computer) which computes a glucose concentration by a known technique such as monitoring the glucose concentration in a way that uses a calibration curve on the basis of the response current value received from the data transmitter of the monitoring instrument, and a display device which displays the computed result. The computed result (glucose concentration) is displayed by the display device, thereby the glucose concentration in an interstitial liquid is presented.
The RT-CGM device is capable of continuously acquiring the response current while the biosensor is kept indwelling subcutaneously. Therefore, the data transmitter transmits anytime the response current value per predetermined time (unit time) to the data receiver, and the display device of the data receiver may continuously display time-based variations of the glucose concentration.
There has hitherto existed a biosensor of which the other end portion is formed with portions (called contact pads) serving as electric contacts between the plurality of electrodes and the electronic components within the housing for the monitoring instrument (refer to, e.g., Patent document 1). The contact pad is formed on a per-electrode basis. The other end portion of the biosensor is fixed within the housing in the way of being interposed between components or portions within the housing. On this occasion, the respective terminals (contacts) of the electronic components installed within the housing contact the contact pads, thereby connections between the individual electrodes and the electronic components is established. [Patent document 1] U.S. Pat. No. 6,973,706 (FIG. 2)
The one end portion of the biosensor is indwelled subcutaneously in the examinee when monitoring the response current, and hence external force is applied depending on how the examinee moves. According to the conventional technology described above, the other end portion is fixed by interposing the other end portion of the biosensor in interior of the housing. Thus, the conventional technology is not structured to absorb the external force applied to the one end portion of the biosensor through the movement of the biosensor. Therefore, there is a possibility that tissues around the one end portion are damaged.
Moreover, if the external force is applied to the one end portion indwelled subcutaneously due to a muscular movement, force acting in a rotating direction occurs on the flat surface of the other end portion with the result that the one end portion deviates in position, whereby the contact between the contact pads and the terminals might lose its preferable state. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention broadly relates to communication services, and more particularly, to a telecommunication service that offers information about the identity of a mobile subscriber to a third party without disclosing the location of the subscriber to the third party.
2. Description of the Related Art
Telephone communication has seen a phenomenal growth since its inception because of its extreme usefulness in today's world. It is hard, and almost impossible, to conceive of a world without telephones. Telephones have become an integral part of a civilized society. Modern telephones include generic desk-top telephone units, cordless telephones and more advanced cellular telephones (or “cell phones”). In contrast to a cordless telephone unit, a cellular telephone allows portability in that a cell phone operator can use the cell phone many miles away from home and the use is supported by a sophisticated telecommunications system.
Because a cell phone imparts mobility to the user while on the phone, quick detection of the location of the cell phone is important in the event of fraud or when there is a need to locate a cellular telephone (and, hence, its user) that placed a phone call for emergency assistance, e.g., a “911 call.” It is also desirable to locate the cell phone operator or mobile subscriber (MS) for marketing reasons, e.g., for targeting location-specific advertisements to the cell phone operator upon determining the location of the cell phone operator. For example, one or more stores in a shopping complex (e.g., a mall) may wish to inform the cell phone operator about any current promotions or offers when the cell phone operator is found to be in the vicinity of the shopping complex.
In a cellular telephone network operated by a wireless service provider (SP), a mobile switching center (MSC) may serve more than one cell-site. Therefore, to locate a cellular phone within the network, a switch engineer may need to manually visit the MSC location and identify the cell-site within which the cellular phone is operative. Such a process may not be efficient when there are a large number of cell phone operators and in the event of frequent fraudulent or “911” calls. Further, it is also possible that the cell phone operator may swiftly change cells if the detection of the cell phone location takes more than a few minutes and especially when the cell phone operator is located near a cell boundary. In such an event, the earlier cell identification may prove wrong and the whole process may be repeated to identify the new cell site to which the cell phone operator has moved.
It is known to locate a cellular telephone having a predetermined telephone number by using time difference of arrival measurements (on signals transmitted from the specific cell phone) at a multiplicity of cell-phone base-stations. However, a GPS (Global Positioning System) antenna and a corresponding GPS receiver need to be added to each base station for use in locating the cell phone in this manner.
It is also known to locate the source of radio transmissions (including cellular phone transmissions) within a multipath signal environment. A hand-held sensor unit with a built-in non-directional or omnidirectional antenna can be used to capture signal transmissions from the source of radio transmissions to be located. Phase change measurements and other calculations are performed during processing of the captured signals and the signal-emitting source (e.g., a cell phone) is then located based on the outcome of the processing.
Furthermore, the identity of the cell phone operator may already be known to the wireless service provider serving the cell phone. For example, the wireless service provider may request information about the identity of the mobile subscriber (e.g., name, gender, age, employment information, etc.) when the mobile subscriber signs up to operate the cell phone in the wireless service provider's network. In another configuration, the identity of the cell phone operator may be available to an Internet world wide web advertiser with the help of, for example, cookies. The web advertiser may employ cookies to store information about and preferences of individual mobile subscribers who access particular websites on the Internet using web browser-equipped cell phones. It is known that cookies are digital text files placed in the cell phone's memory by a web server when the cell phone operator visits a web site served by the web server. Cookies are commonly used to store registration data such as the user's (here, the mobile subscriber's) name and address, the user's preferences, and so on. Cookies make it possible for web servers to personalize information to fit the user's specific needs and preferences when the user is visiting a web site on the Internet.
A wireless service provider may wish to supply a mobile subscriber's location information to a third party (e.g., a web advertiser) as part of the service provider's marketing activity. Also, a web advertiser (or any other marketing entity) may send location-specific advertisements to a mobile subscriber upon being informed of the current location of the subscriber. Because of various reasons (e.g., privacy concerns), it may be desirable that the wireless service provider not disclose the mobile subscriber's identity to the third party when sending the subscriber's location information to the third party. It may also be desirable that the web advertiser not transmit the mobile subscriber's identity information when communicating with the mobile subscriber over the Internet.
Alternatively, it may be desirable that the wireless service provider block the mobile subscriber's location information while supplying the subscriber's identity information to a third party. For example, a cell phone operator may wish to receive operator-specific advertisements over the cell phone from the third party without having the third party know of the physical location of the operator. Similarly, it may further be desirable that the web advertiser block any reference to the mobile subscriber's current physical location when sending any subscribe-specific advertisements to the mobile subscriber over the Internet. It may also be desirable for any other (i.e., non-Internet) advertiser to not disclose the cell phone operator's current location in or through the messages communicated between the advertiser and the cell phone. | {
"pile_set_name": "USPTO Backgrounds"
} |
Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect systems and organs throughout the body. The pathogenesis is unknown, but in the numerous cases, it is considered to be an autoimmune rheumatic disease activated by polyclonal B cell in vivo and autoantibodies against autoantigens. Western medicine treatment of SLE currently mainly involves glucocorticoids and cytotoxic drugs or immunosuppressive agents; Even though these methods can prolong a patient's survival, long-term usage or high-dosages of such hormones can cause gastrointestinal bleeding, osteoporosis, infections and other complications, which cause many complications for the treatment. Therefore, it is urgent to study an effective and reliable, minimal side-effect and economical drug treatment, to meet the different needs of patients.
As2O3, commonly called arsenic trioxide, is highly toxic, but is a compound with a wide range of functions. It has a long medical history in China, and has been used for the treatment of psoriasis, syphilis, rheumatism, and certain maladies. As a traditional Chinese medicine, arsenic was first an invention and contribution of great significance in the field of drug development and treatment of leukemia, and was universally acknowledged. In recent years, because As2O3 plays a significant role in acute promyelocytic leukemia treatment, many scholars have conducted in-depth studies on the drug which has demonstrated that As2O3 can treat a broad range of tumors. Not only does it have excellent inhibitory effect on leukemia cells, but it also is effective against many solid tumors, including lung cancer, pancreatic cancer, esophageal cancer, ovarian cancer, stomach cancer, colon cancer and so on.
Many scholars in China and abroad have intensely studied the structure of arsenic through the scope of modern medicine. Studies have shown that arsenic, in a trivalent state, works in vivo. Trivalent arsenic is a complexing agent of thiol (—SH), and can inhibit metabolic?? activity (of what) after interaction with thiol in the interior of enzyme molecule, which induces apoptosis through a number of pathways, demonstrating that As2O3 is very effective against tumors. Wei Yaming etc. (Northwest Military Medical Journal, 2002, 23 (5): 324-326.) reported dual effects of As2O3 on apoptosis and differentiation of leukemia cells. As2O3 is found that lower concentration of As2O3 has no effect on expression of differentiation antigen of NB4 and HL-60 cell lines, and only high concentration of As2O3 treated for more than 72 h could play effects of both apoptosis and differentiation. Meanwhile, mechanism of action of As2O3 on cytokines and immunomodulatory has also caused extensive concerns, some studies: Zhu Xiaochun, etc. (Chinese Journal of Internal Medicine, 2001, 40 (11): (764-765); (Chinese Journal of Rheumatology, 2002, 6 (5):343-346) postulated that As2O3 could control or reduce autoimmune responses by inducing apoptosis of autoreactive lymphocytes and play an important role in inhibiting the pathogenesis of SLE.
However, there are still many problems in the traditional clinical application of As2O3, such as high toxicity, and low bioavailability, etc. At present, the clinically used preparation is through an arsenious acid injection made from As2O3. After intravenous administration, as elevated arsenic concentrates in plasma and rapidly diffuses into the surrounding tissue, side effects including but not limited to: gastrointestinal symptoms, peripheral neuritis, dry skin, pigmentation, even renal damage or ascites can occur in the patient. Since safe dose of As2O3 systemic administration is very limited and the difference between a safe dose and a toxic dose is infinitesimally small, which limits its application as a chemotherapeutic agent.
Therefore, when seeing the clinical value of As2O3 medicine, if we can improve the traditional preparation process, and adopt modern technology to prepare new As2O3 nanoparticles, thereby increasing the bioavailability, reducing drug dosage and toxicity, and improving efficacy, it will have important clinical significance.
The existing preparing process of nanoparticles preparation containing As2O3:
1. Zhou Jie et al (Chinese Journal of New Drugs 2005 14 (1) 54) disclosed a process for preparing arsenic trioxide-albumin microspheres through a method of emulsion-glutaraldehyde solidification; this method not only uses a large amount of organic solvent and oil, but also requires more chemical crosslinking agents-glutaraldehyde, the residual of which will bring some potential safety hazard to the application of preparations. 2. Chenhua Jiang (Second Military Medical University 2007.28 (6) 644) disclosed a process for preparing arsenic trioxide albumin microspheres by an emulsification-heat solidification method; 3. Yang Zhiwen, etc. (Traditional Chinese Medicine 2007 25 (8) 115) disclosed a process for preparing arsenic trioxide albumin microspheres by a emulsification-heat-stabilization method, which requires castor oil, cottonseed oil, and large amounts of organic solvent for removing the oily residue. The latter two methods, either an emulsion-glutaraldehyde solidification method or an emulsification—heat-stabilization method, have complicated technical processes and are unsuitable techniques for mass-production.
In the initial research phase of preparing arsenic compound-loaded nano-particles it was found, through many trials, that the particle size of nanoparticles prepared by a emulsion-heat-solidification method using castor oil could vary greatly, with a complicated technical process; and then it is switched to a desolvation-glutaraldehde chemical solidification method, but due to a large specific surface area of nanoparticles, the nanoparticles having not been solidified easily merge into big grains large clumps during stirring, which increases the likelihood of cross-linking between nanoparticles. The prepared particle will be too large, have a relatively short release time, contain residual glutaraldehyde chemical reagents, and require complicated technical processes, making it unviable for industrial production.
In summation, the prior art has complicated technical processes; hidden danger from residual toxic reagent glutaraldehyde; and a short release time, poor stability, poor storage stability, etc. There is an urgent need to develop a new process for preparing As2O3 loaded nanoparticles preparation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to a printed circuit board and a method for manufacturing the same, and more particularly to a printed circuit board having conductive members and a method for manufacturing the same.
The recent design trend in integrated circuit chips is miniaturization. As the size of an integrated circuit chip is decreased the integration level of an integrated circuit chip increases accordingly, and therefore the number of circuits that can be located on a chip is increased as well. This increase in the number of circuits that can be located on a chip means that an increased number of signals can be inputted to and outputted from the integrated circuit chip. Therefore, due to this miniaturization, it is necessary to locate an increased number of input and output pins within a limited area of a semiconductor package.
A ball grid array (BGA) package has been developed and used to provide an increased number of input and output pins within a limited area of a semiconductor package. The BGA package uses mounting technology that employs a printed circuit board having high mounting density and high precision so that an increased number of parts, (i.e., semiconductor chips) can be mounted.
In order provide light, compact and slim electronic appliances, techniques for finely forming parts are required, and a printed circuit board for enabling high density mounting of parts must be provided.
In general, a printed circuit board includes line patterns made of a conductive material, such as copper, which are formed on an insulation layer immediately before mounting electronic parts. More specifically, a printed circuit board includes an insulation layer, metal lines, which are formed on surfaces of the insulation layer, and via metal lines, which are formed through the insulation layer so as to electrically connect the metal lines formed different surfaces of the insulation layer.
Conventional lead frame package include input and output pins that are one-dimensionally arranged along the edges of a chip. In contrast to the conventional lead frame package, in the BGA package solder balls are used as input and output pins. The solder balls are arranged two-dimensionally on a surface of a chip, and as such, pins can be located more efficiently than in the conventional lead frame package. Hence, in a printed circuit board to be used in a package such as the BGA package, ball lands should be necessarily formed on the surfaces thereof in order to attach solder balls.
In BGA packages, which use printed circuit boards having ball lands, slight modifications are made to the design of a BGA package in order to make similar printed circuit boards using the same or similar semiconductor chips.
However, in the conventional BGA packages, it may be difficult to manufacture a printed circuit board by bonding solder balls in conformity with the kinds of various packages on the same printed circuit board.
For example, in the case of a flip chip BGA package, which includes bumps for connecting bonding pads on a semiconductor chip with a printed circuit board in one-to-one correspondence, a slight design change may be possible by partially removing portions of the bumps.
Nevertheless, in the flip chip BGA package, the potential for design change is quite limited, and limitations necessarily exist in moving circuit lines connected between solder balls and bumps or changing the circuit lines by selectively connecting solder balls connected with various respective different signals to one bonding pad.
That is to say, a design change of circuit lines by selectively bonding solder balls connected with respective different signals to one ball land in conformity with the types of respective desired packages may be impossible to perform on the same printed circuit board.
Accordingly, even though printed circuit boards having basically the same design of circuit lines are adopted for respective types of packages, in the conventional BGA packages, printed circuit boards suitable for the respective packages must be newly designed and manufactured. Due to this fact, when changing the design of a printed circuit board, masks for forming the newly designed circuit lines, etc. must also be manufactured.
Further, due to the limitations of the conventional BGA packages, small changes result in increased costs because the printed circuit board must be newly designed and the processing time is increased due to the required manufacture of the newly designed printed circuit board. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention concerns a method for starting a motor vehicle on an inclined route. In particular, the invention concerns driver-independent support for starting a motor vehicle on an inclined route.
Systems which support the processes of stopping and starting a motor vehicle on a downhill or uphill gradient are known. Some of these systems generate a brake force, independently of the driver, by means of a brake system of the motor vehicle, when the motor vehicle comes to a standstill on an inclined route, or maintain a brake force generated by the brake system, independently of the driver, after the motor vehicle reaches a standstill. Whether the motor vehicle reaches the standstill because of brake actuation by the driver, brake actuation independently of the driver or the motor vehicle coasting is insignificant here.
Such a system is known, for instance, by the name “Hill Assist”. This system is constructed so that if, after the standstill is reached, the driver does not actuate the brake system, it maintains the brake force for a specified holding time (typically about 0.6-2 seconds), to make it easier for the driver to start on the inclined route. After the predetermined holding time expires, if no successful starting occurs, the brake force of the motor vehicle is continuously or abruptly withdrawn. Consequently, the motor vehicle begins to roll downhill in an uncontrolled manner, at a more or less quickly increasing speed.
The introduction of such an uncontrolled driving state may not, or not until later, be noticed by the driver of the motor vehicle, so that the motor vehicle can cause damage during its uncontrolled downhill movement. In particular, abrupt release of the brake actuation, independently of the driver, can result in the driver being taken by surprise by the changed driving situation and losing control of the motor vehicle. Accordingly, it would be desirable to avoid an uncontrolled driving state of a motor vehicle when a driver-independent hill holding function ends. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an improvement in microwave miltigate junctions or circulators especially for radar applications.
More specifically, the present invention has as its object to provide multigate junctions in which the adaptation between the TEM (Transverse Electro Magnetic Wave) modes of propagation along the transmission lines and the peripheral modes are accomplished by means of magnetic tapering.
As is well known in the prior practice in the field of application of microwave devices, and even more especially in that of the radar applications, there have been proposed multigate junction systems in which the width of the useful band, however, was not sufficient, in many cases to allow satisfactory service. In order to eliminate or substantially to reduce that drawback, there have been suggested and there have been described in the literature, as for example U.S. Pat. No. 3,555,459, systems in which the widening of the useful band is obtained through the elimination of the undesired modes by dissipation of the energy. Such a solution, however, means an appreciable loss of useful signal. Another solution of the problem of attempting to improve the efficiency of the system, is based on the use of very gradual "taperings" in the adaption geometry between the transmission lines and the peripheral mode structure. In this case, also, the solution is not free from drawbacks, because it deprives the component of those miniaturization characteristics which, on the contrary, it must have.
The principal object of the present invention is that of providing a multigate junction, which possesses a satisfactory width of useful band.
Another object of the present invention is that of providing a component in which the losses of energy are appreciably reduced.
Still another object of the present invention is that of providing a component the dimensions of which are appreciably reduced.
The described embodiment of the present invention makes possible the simultaneous achieving of the stated objects, eliminating, in the meanwhile, the disadvantages of the prior art techniques, which have been mentioned. Recently, the use of peripheral waves, or peripheral modes, in the field of ferrite devices operating at microwave frequency, has excited much interest. These are discussed for example in: Hines M.E., "A New microstrip Isolater and Its Application to Distribution Diode Amplification," IEEE G-NIT 1970. International Microwave Symposium, Newport Beach (Cal.), Digest of papers, pp. 304-307; Hines M.E., "Ferrite Phase Shifters and Multiport Circulators in Microstrip and Strip Line," IEEE G-MTT 1971, International Microwave Symposium, Washington D.C., Digest of papers, pp. 108-109; De Santis P., Pucci F., "Novel Type of M.I.C. Symmetrical 3-Port Circulator" Electronics Letters Vol. 8, No. 1, pp. 12-13, January, 1972; De Santis P., Pucci F., "Experiments on the Optimization of a Novel M.I.C. Symmetrical Three Port Circulator," IEEE G-MTT 1972, International Microwave Symposium, Chicago, Illinois, Digest of papers, pp. 238-240.
In order to better illustrate the significance of the present invention, there will briefly be summarized the characteristics of the functioning of the peripheral wave devices. A peripheral wave is a wave which propagates itself along the edge of the radio-frequency conductor in a microstrip on a ferrite member magnetized perpendicularly to the plane of the mass. This is a unidirectional wave in that for a given orientation of the magnetic field of polarization, it has a given manner or direction of propagation. By reversing the orientation of the magnetic field of polarization, there is also reversed the line or direction of propagation. This property of being unidirectional may be taken advantage of to build non-reciprocal multigate junctions or circulators. In a typical structure, the electromagnetic energy is introduced into one gate and withdrawn from the successive gates through lines of transmission (for example isotropic lines in microstrip, in line with strip or in coaxial conductor the characteristic impedance of which must be suited to the impedance of the peripheral wave circuit. This adaptation of impedance generally is obtained by means of tapered sections in the microstrip. In other words it can be said that the TEM waves or modes which propagate themselves along the transmission lines are converted into peripheral waves or modes through the use of tapered arms in the microstrip.
It is the specific object of the present invention to provide a peripheral wave or mode excited multigate junction having a tapered arm conductive structure on a magnetized ferrite, magnetized perpendicularly to the plane of its mass, characterized by the fact that it presents, through the adaptation between the TEM wave or mode and said peripheral wave or mode, a distribution of the effective permeability of the ferrite, spatially non-uniform in correspondence with the tapering zones or arms which are adapted for connection with the transmission lines. Henceforth, such spatial non-uniform distribution of the magnetic permeability will be indicated by the expression "magnetic tapering." Said magnetic tapering is obtained, according to the present invention, through the use of magnetic fields, of spatially non-uniform polarization. Said magnetic fields of polarization in their turn are obtained by the use of permanent magnets and possibly with the addition of a ferro-magnetic element inserted into the magnetic circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an external force detecting sensor formed by using a semiconductor micro-processing technique or the like.
2. Description of the Related Art
Generally, acceleration sensors and angular velocity sensors are known as external force detecting sensors. Each of these external force detecting sensors is provided with a movable portion which is displaced in accordance with an external force, such as acceleration, angular velocity, or the like applied to the external force detecting sensor. The displacement is electrically detected to obtain an acceleration signal or angular velocity signal. For example, as shown in FIG. 5, an acceleration sensor using a piezoelectric element described in Japanese Unexamined Patent Application Publication No. 10-104263 has a movable portion 1, which includes a weight portion 4 supported on a supporter 2 by beams 3 in the central portion thereof. A supporting substrate 5 and a cap substrate 6 having recesses 5a and 6a, respectively, are mounted to the supporter 2 so as to sandwich the supporter 2 from the top and bottom. In addition, a cavity is formed at the central portion thereof using the recesses 5a and 6a of the supporting substrate 5 and the cap substrate 6, respectively, such that the movable portion 1 can be displaced. In addition, piezoelectric elements 7 are provided on the beams 3, and when acceleration is applied to the weight portion 4 to cause a stress on the beams 3, the piezoelectric elements 7 generate acceleration signals.
However, when the recesses 5a and 6a respectively provided on the supporting substrate 5 and cap substrate 6 are shallow, gaps between the weight portion 4 and a top surface 6b and bottom surface 5b become narrower, and when the weight portion 4 is rapidly displaced, a large phase lag or an output signal occurs. This is due to air damping due to the viscosity of the air sealed in the cavity. As a result, responsiveness of the acceleration sensor deteriorates. Therefore, in the above-described acceleration sensor, in order to eliminate the influence of the air damping, the recesses 5a and 6a of the supporting substrate 5 and cap substrate 6, respectively, are made higher (deeper), and thereby the vertical space in the cavity for the weight portion 4 is increased, thus improving the responsiveness of the acceleration sensor.
The influence of the air damping is the same in an external force detecting sensor which electrostatically detects an external force. Such an external force detecting sensor described in Japanese Unexamined Patent Application Publication No. 2000-22170 is described with reference to FIGS. 6 and 7. By processing a silicon substrate, two weight portions 8 and 9 are combined with supporters 11 and 12 via beams 11a and 12a, respectively, to compose a movable portion 10. The two weight portions 8 and 9 respectively have a plurality of plate-shaped movable interdigitated electrodes 8a and 9a outwardly provided thereon. Fixed portions 13 and 14 are provided at positions respectively opposing the weight portions 8 and 9. The fixed portions 13 and 14 have a plurality of plate-shaped fixed interdigitated electrodes 13a and 14a provided thereon which protruded toward the weight portions 8 and 9, respectively, and are interdigitated with the movable electrodes 8a and 9a, respectively. A frame 15 is provided so as to surround the movable portion 10 and the fixed portions 13 and 14. A functional element composed as described above is supported by a supporting substrate 18 and cap substrate 19 made of Pyrex glass so as to sandwich it from the top and the bottom. In addition, inside the functional element, a cavity is formed by recesses 18a and 19a respectively provided on the supporting substrate 18 and the cap substrate 19, so as to enable displacement of the movable portion 10. On the bottom surface of the recess 18a of the supporting substrate 18, detecting electrodes 16 and 17 are provided beneath the weight portions 8 and 9, respectively, via gaps.
Now, an operation of the external force detecting sensor of the configuration is described when it is used as an angular velocity sensor. When a voltage is applied across the supporters 11 and 12 and the fixed portions 13 and 14, the two weight portions 8 and 9 vibrate in mutually opposing directions due to electrostatic forces exerted between the movable interdigitated electrodes 8a and 9a and the fixed interdigitated electrodes 13a and 14a. In such a vibrating state, when a rotational force is applied to the external force detecting sensor about an axis in a direction connecting the supporters 11 and 12, the two weight portions 8 and 9 experience inverse Coriolis forces in the perpendicular direction. For example, when the weight portion 8 of one side receives a downward Coriolis force, the weight portion 9 of the other side receives an upward Coriolis force, and the two weight portions 8 and 9 vibrate in vector directions respectively determined by the electrostatic force and the Coriolis forces. Due to the vibrations, electrostatic capacitances between the two weight portions 8 and 9 and the detecting electrodes 16 and 17 are differentially altered, and outputs of the two detecting electrodes 16 and 17 are converted into voltages, which are differentially amplified by a differential amplifier to obtain an angular velocity signal.
Now, an operation is described of the external force detecting sensor of the above configuration when it is used as an acceleration sensor. In a state where a D.C. voltage is applied across the supporters 11 and 12, the fixed portions 13 and 14, and the detecting electrodes 16 and 17, when an acceleration is applied to the weight portions 8 and 9, namely from a vector component in a direction connecting the two fixed electrodes, directly opposite acceleration signals are obtained from the two fixed portions 13 and 14. In other words, one of the acceleration signals increases the electrostatic capacitance and the other decreases the electrostatic capacitance. From a vector component in the vertical direction, acceleration signals are obtained from the detecting electrodes 16 and 17. Accordingly, accelerations in two directions can be detected.
In the above-described external force detecting sensor, since the movable portion 10 is displaced in a sealed cavity, the acceleration sensor is strongly influenced by air damping when the movable portion 10 is vertically displaced. In addition, in such a case, when the movable portion 10 is driven to continuously vibrate at a fixed vibration frequency, such as in the angular velocity sensor, air damping exerts an undesirable influence on the operation of the movable portion 10, such as deterioration of the mechanical quality factor of the driving vibration of the movable portion 10, or the like.
Furthermore, when the cap substrate 19 having the recess 19a formed thereon is mounted on the movable portion 10 in a manufacturing process of the external force detecting sensor, a frame 15, the supporters 11 and 12, the fixed portions 13 and 14, and the supporting substrate 18 and the cap substrate 19 are bonded together by an anodic bonding method using a high voltage; this, however, can cause the movable portion 10 to be drawn by a strong electrostatic attraction to the bottom surface of the supporting substrate 18 or the top surface of the cap substrate 19, thus rendering the movable portion 10 inoperable. Accordingly, to avoid this problem, the recesses 18a and 19a of the supporting substrate 18 and the cap substrate 19, respectively, comprising the cavity accommodating the movable portion 10 are preferably formed deep.
However, if the recesses 18a and 19a of the supporting substrate 18 and the cap substrate 19 respectively are formed too deep, the range of vertical movement of the movable portion 10 is increased, and when an external force such as an impact force or the like is applied to the external force detecting sensor from the outside, the movable interdigitated electrodes 8a and 9a of the movable portion 10 exceed the limit of natural return by resiliency of the beams 11a and 12a, thus causing the movable interdigitated electrodes 8a and 9a to ride on the fixed electrodes 13a and 14a, or to jump over the fixed electrodes 13a and 14a and stay there, thus rendering the external force detecting sensor inoperable.
In view of the above-described situations, it is an object of the present invention to provide an external force detecting sensor in which a displacement limit is defined for a movable portion in order to ensure the reliable operation thereof.
In order to solve the above-described problems, an external force detecting sensor according to a first aspect of the present invention comprises a functional element including a supporter, a movable portion having a movable interdigitated electrode, rectangular in cross-section, coupled with the supporter by a beam, and a fixed portion having a fixed interdigitated electrode, rectangular in cross-section, opposing the movable interdigitated electrode via a micro-gap; a supporting substrate for supporting the functional element from one surface side thereof; and a cap substrate mounted on the functional element from the other surface side; wherein a cavity which enables displacement of the movable portion is formed at a portion including the beam and the movable portion, and a height D from the fixed interdigitated electrode to the top surface and bottom surface of the cavity satisfies the following expression where the micro-gap is g, a width of the movable interdigitated electrode is W1, a width of the fixed interdigitated electrode is W2, and a height of the movable interdigitated electrode and fixed interdigitated electrode is h, namely: D ≤ h g ( g + W1 + W2 ) .
By this configuration, the height in the cavity from the fixed interdigitated electrode to the top and bottom surfaces thereof becomes a height at which the movable portion is not influenced by air damping due to a gas in the cavity, and in addition, even if an impact is applied to the external force detecting sensor to cause the movable portion to jump, and as the result, the movable interdigitated electrode falls on the fixed interdigitated electrode, the movable interdigitated electrode securely returns to the standstill position due to the resiliency of the beam.
An external force detecting sensor according to a second aspect of the present invention comprises a functional element including a supporter, a movable portion having a movable interdigitated electrode, rectangular in cross-section, coupled to the supporter via a beam, and a fixed portion having a fixed interdigitated electrode, rectangular in cross-section, opposing the movable interdigitated electrode via a micro-gap; a supporting substrate for supporting the functional element having a first recess which enables displacement of the movable portion provided; and a cap substrate for protecting the functional element having a second recess which enables displacement of the movable portion provided; wherein a height D of the first recess and the second recess satisfies the following expression where the micro-gap is g, a width of the movable interdigitated electrode is W1, a width of the fixed interdigitated electrode is W2, and a height of the movable interdigitated electrode and fixed interdigitated electrode is h, namely: D ≤ h g ( g + W1 + W2 ) .
Accordingly, the cavity in which the movable portion is displaced is composed of the first recess formed on the supporting substrate and the second recess formed on the cap substrate, and the height (depth) of the first recess and the second recess is set at a threshold limit value which promotes the natural return of the movable portion. Accordingly, even if the movable portion receives an impact force, the movable portion naturally returns to the original position, and the external force detecting sensor can continuously operate.
An external force detecting sensor according to a third aspect of the present invention comprises a functional element including a supporter, a movable portion having a movable interdigitated electrode, rectangular in cross-section, coupled to the supporter via a beam, and fixed portion having a fixed interdigitated electrode, rectangular in cross-section, opposing the movable interdigitated electrode via a micro-gap; a supporting substrate for supporting the functional element; and a cap substrate mounted on the functional element from the opposite side of the supporting substrate; wherein a cavity is formed by processing any two of the functional element, the supporting substrate, and the cap substrate at a portion including the beam and the movable portion, and a height D of the recesses and the cavity satisfies the following expression where the micro-gap is g, a width of the movable interdigitated electrode is W1, a width of the fixed interdigitated electrode is W2, and a height of the movable interdigitated electrode and fixed interdigitated electrode is h, namely: D ≤ h g ( g + W1 + W2 ) .
Since the cavity is a space which enables displacement of the movable portion, the cavity can be formed on the functional element itself when the functional element is processed. Therefore, when either of the supporting substrate or the cap substrate, including the functional element, is processed, spaces are formed above and beneath the movable portion. Even in this case, since the movable portion functions sufficiently, and the supporting substrate and cap substrate work as stoppers even if the movable portion jumps due to an impact force, the movable interdigitated electrode never remains riding on the fixed interdigitated electrode.
An external force detecting sensor according to a fourth aspect of the present invention comprises a functional element including a fixed portion, a supporter, and a movable portion coupled to the supporter by a beam; a supporting substrate for supporting the functional element; and a cap substrate for protecting the functional element; wherein the supporting substrate and the cap substrate are arranged so as to sandwich the functional element from both surfaces of the functional element while forming a cavity, which enables displacement of the movable portion, at a portion including the beam and movable portion, the movable interdigitated electrode, rectangular in cross-section, is provided on the movable portion and the fixed interdigitated electrode, rectangular in cross-section, which is provided with the movable interdigitated electrode via a common micro-gap is provided on the fixed portion, and the height from the movable portion to the top surface and the bottom surface of the cavity is set to be the same as or lower than a height of a surface of the movable interdigitated electrode at a far side from the fixed interdigitated electrode when the movable interdigitated electrode is moved along a straight line passing through peaks of corners diagonally positioned on opposing sides of the movable interdigitated electrode and the fixed interdigitated electrode which are adjacent across the micro-gap, and when surfaces of the movable interdigitated electrode and the fixed interdigitated electrode on sides which are not opposed are positioned in the same plane.
According to the present invention, independence of the size of the impact force applied to the external force detecting sensor, since the movable portion inevitably collides with the top or bottom surface of the cavity, the top or bottom surface works as a stopper, thereby even if the movable portion collides with the top or bottom surface and the movable interdigitated electrode falls on the fixed interdigitated electrode, the movable interdigitated electrode is securely drawn back to the original standstill position, thus facilitating continuous use of the external force detecting sensor.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Aspects of embodiments of the present invention are directed toward cache management, such as web caching.
2. Description of Related Art
Current client-server systems, such as web applications, can leverage caching at various points to optimize performance, such as at the end user computer or somewhere in the network. These web caching solutions generally provide for a shared cache in which content from multiple users and/or sites share the same space on disk and/or in memory to store content for faster retrieval on subsequent access. A shared cache results in competition for the same limited cache space between content accessed across different sites and/or by different users.
These web caching solutions also do not provide for a way to centrally customize caching behavior based on the application. For example, a large company may have multiple servers running a particular web application, such as separate ones for different departments or business units. These approaches may target specific domains and/or URLs, so they are unable to apply caching policies based on an application type. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an optical waveguide type microplate for use in biochemical testing, clinical testing, and the like.
2. Description of the Related Art
For example, an enzyme-linked immuno adsorbent assay method (ELISA method) adopted in clinical testing uses a microplate made of a glass or synthetic resin substrate on the surface of which a plurality of wells are formed. That is, an antibody is immobilized on the well inner surface of this microplate, and a solution to be tested containing an antigen is placed in this well to cause an antigen antibody reaction. Subsequently, an enzyme-labeled antibody is placed in the well and labeled by combining the antibody with the antigen. In addition, a color reagent is placed in the well and allowed to develop color by causing the reagent to react with the enzyme-labeled antibody. The degree of this color development is proportional to the amount of antigen in the solution to be tested. Accordingly, the antigen amount in the solution to be tested can be detected by measuring the coloration degree by an absorbance method by which light is sent in the direction of depth of the solution which has colored.
The reagent used in the ELISA method described above is expensive. To reduce the testing cost, therefore, it is being demanded to reduce the use amount of reagent. However, in the conventional microplate with which light is incident in the direction of depth of a solution to be tested which has colored, the optical path to the colored solution is shortened if the reagent is reduced and the solution to be tested itself is reduced accordingly. This makes accurate absorbance measurement difficult, leading to a decrease in the detection accuracy.
The present invention provides an optical waveguide type microplate capable of accurately measuring absorbance and hence capable of detecting an antigen, antibody, and the like in a solution to be tested, even if the amount of reagent to be added to the solution is reduced. | {
"pile_set_name": "USPTO Backgrounds"
} |
Arslanian U.S. Pat. No. 3,232,516 discloses a paperboard container having side walls defined by vertical score lines. A series of score lines, described as shock absorbing score lines, extend outwardly from each of these vertical score lines.
The Arslanian patent explains that the continuous vibrations and shock situations in the bottling plant and during transportation create a fatigue and cracking of the container coating because the side walls of the container are subject to pressure from the contained liquid which causes either constant or abrupt breathing of the side walls. Breathing is an in and out movement of the side walls. The effect is greatest at the bottom corners of the carton.
The placement and number of the score lines are shown in the drawings of the Arslanian patent. The score lines are shown extending completely across a side panel in FIGS. 7 and 8 or only partially across a side panel in FIGS. 1-6. The score lines are shown parallel to the bottom wall in FIGS. 1-4 and 7, at an angle to the bottom wall in FIG. 5 or as a combination of score lines parallel to the bottom wall and at an angle to the bottom wall in FIGS. 6 and 8. In each of the embodiments shown, there are a plurality of score lines at each location. There are 5 score lines at a location if the score lines are parallel to the bottom wall or 4 score lines at a location if the score lines are at an angle to the bottom wall.
The placement and number of the score lines are also described in the claims and the specification of the Arslanian patent.
The claims require that the score lines be located solely in the area more than 10% and not more than 25% of the height of a side panel of the carton, and the length of the score lines be at least 10% and not more than 25% of the width of a side panel of the carton. Claims 2 and 5 require the score lines to be at least 4 in number. Claim 2 requires and claim 5 appears to require the score lines to be at least 1/8" apart. In column 4 of the specification the score lines are described as being 1" long and approximately 5/16" apart, and starting 1" above the bottom of the container.
The patent indicates that this placement of the score lines keeps them in non-critical areas of the container walls, areas in which the vibrational forces will oppose each other. The purpose of the score lines is to prevent the smiles 58, shown in FIG. 14, forming at the bottom corners of the container by reducing the concentration of forces in the bottom corners of the side panels. | {
"pile_set_name": "USPTO Backgrounds"
} |
The field of the invention is inhibition of accelerated atherosclerosis.
Accelerated atherosclerosis is a proliferative process leading to vascular stenosis which commonly occurs following percutaneous transluminal coronary angioplasty (PTCA), heart transplantation, and coronary vein graft. The process is characterized by platelet activation, thrombus formation, and smooth muscle cell hyperproliferation. Accelerated atherosclerosis leads to vascular stenosis in 35-50% of the patients who have undergone PTCA.
Injury of the vascular endothelium is thought to be the initiating event in both spontaneous and accelerated atherosclerosis. Accelerated atherosclerosis commonly occurs following denuding endothelial injury; such injury can be caused by transluminal coronary angioplasty, heart transplantation, and coronary vein graft and is sometimes accompanied by damage to the intima and media. In contrast, spontaneous atherosclerosis is thought to be caused by functional impairment of the endothelium caused by non-denuding, chronic damage of the vascular wall. In both cases, smooth muscle cell hyperproliferation is one of the primary causes of vascular stenosis.
In accelerated atherosclerosis, endothelial damage is followed by accumulation of platelets, monocytes, and lymphocytes; thrombosis; smooth muscle cell migration and proliferation; and lipid accumulation. Interactions between blood borne cells and injured endothelial tissue are thought to create an environment conducive to smooth muscle cell proliferation. Important contributors to this process include, the loss of the inhibitory effect of an intact endothelial layer; release of mitogenic factors by platlets monocytes/macrophages, injured endothelial cells, and smooth muscle cells; activation of T-lymphocytes and monocytes/macrophages; and thrombosis.
Each of the cell types involved in accelerated atherosclerosis may play a role in smooth muscle cell proliferation. Platelets produce platelet-derived growth factor (PDGF), a potent smooth muscle cell mitogen; damaged endothelium, monocytes/macrophages, and smooth muscle cells can all generate a PDGF-like growth factor. Activated monocytes/macrophages, stimulated endothelial cells, and stimulated smooth muscle cells produce interleukin-1, a factor which stimulates proliferation of endothelial cells and smooth muscle cells. Other factors produced by platelets and atheroma cells which are mitogenic for myocytes include: .alpha.-fibroblast growth factor, .beta.-fibroblast growth factor, serotonin, and thrombospondin.
Activated T-lymphocytes are present in atherosclerotic plagues and may play a role in several of the processes involved in accelerated atherosclerosis. They release lymphokines and interleukins which can regulate lipoprotein uptake by monocytes/macrophages and which may up-regulate expression of growth factor receptors on smooth muscle cells. Activated T-lymphocytes also release chemotactic factors which enhance migration and adhesion of monocytes/macrophages.
Methods for prevention of accelerated atherosclerosis are generally designed to decrease either thrombogenesis or cell proliferation. Using a baboon vascular graft model, Hanson et al. (J. Clin. Invest. 81:149, 1988) demonstrated that anti-glycoprotein IIb/IIIa monoclonal antibodies reduced acute graft closure secondary to thrombosis by 72%. Using the same monoclonal antibody, Bates et al. (Circulation 78:II-289, 1988) demonstrated a reduction in coronary thrombosis after coronary angioplasty in dogs. Badimon et al. (J. Am. Coll. Cardiol. II Supl. A:30A, 1988) demonstrated an 81% reduction in platelet deposition on de-endothelialized vessel wall in swine treated with a monoclonal antibody directed against von Willebrand factor. Heras et al. (Circulation 79:657, 1981) found that recombinant hirudin significantly decreases platelet and fibrinogen deposition in swine subjected to balloon angioplasty. Sarenbock et al. reported similar results following air desiccation injury in rabbits (Circulation 82:III-208, 1990). Thrombin inhibitors have been shown to reduce thrombosis following carotid artery endarterectomy in baboons (Schneider et al., Circulation 78:II-311, 1988; Jang et al., Circulation 78:II-311, 1988). Acetylsalicylic acid pre-treatment has been shown to reduce platelet accumulation in patients who have undergone coronary angioplasty (Cunningham et al., Radiology 151:487, 1984). A placebo controlled study in 376 patients demonstrated that while an aspirin-dipyridamide "antiplatelet regimen before and after PTCA did not reduce the six-month rate of restenosis after successful coronary angioplasty, it markedly reduced the incidence of transmural myocardial infarction during or soon after PTCA" (Schwartz et al., N. Engl. J. Med. 318:1714, 1988).
Heparin is commonly used following coronary angioplasty to reduce the incidence of acute thrombotic occlusion. Heparin may also have antiproliferative activity, and thus may be useful in prevention of restenosis. Heparin has been shown to reduce platelet accumulation on denuded neointima (Mustard, Ann. R. Coll. Physicians Surg. Can. 14:22, 1981). A study found that intravenous heparin in doses large enough to cause continuous anticoagulation reduced myointimal thickening in rats whose carotid arteries had been injured (Clowes et al., Nature 265:625, 1977). An in vivo study found that heparin inhibits smooth muscle cell proliferation which occurs after denudation of endothelium by air-drying the rat carotid artery; this effect does not depend on anticoagulant activity (Guyton et al., Circ. Res. 46:625, 1980). In vitro studies of cultured rat smooth muscle cells demonstrated that heparin, in either its high anticoagulant form or its non-anticoagulant form, significantly inhibits cell proliferation (Hoover et al., Circ. Res. 47:578, 1980). Gordon et al. (Circulation 76:IV-213, 1987) demonstrated that arterial smooth muscle cell proliferation following balloon catheter injury in rats was significantly reduced by administration of low molecular weight heparin.
Methotrexate and azathioprine have been investigated as antiproliferative agents for treatment of restenosis (Murphy et al. Circulation 82:III-429, 1990; Muller et al. Circulation 82:III-429, 1990).
Wai et al. (Circulation 82:III-208, 1990) found that a hybrid protein consisting of the ribosome inhibitor, saponin, fused to basic fibroblast growth factor (FGF) killed proliferating, FGF receptor-expressing smooth muscle cells, but not quiescent receptor negative cells; this same hybrid protein inhibited intimal thickening following vascular injury. | {
"pile_set_name": "USPTO Backgrounds"
} |
Anionic polymerization techniques have been used to synthesize polymers that are useful in the manufacture of tires. Using these techniques, certain organometallic compounds can be used to initiate the polymerization of monomer such as conjugated diene monomer. Due to the mechanism by which the initiation and polymerization proceeds, the organometallic compound adds to monomer to form a polymer chain wherein the organo substituent of the initiator is attached as the head group of the polymer. Common initiators include organo lithium species such as n-butyl lithium.
Certain initiators impart a functional group to the polymer. These functional groups may include a heteroatom or metal that can have a desirable impact on the polymer or compositions containing the polymer. For example, where the polymers are employed in the manufacture of tire treads, the functional group can lower the hysteresis loss of the tread vulcanizate. This lowering of hysteresis loss may result from interaction between the functional group and the filler, although other mechanisms have also been proposed.
Tributyl tin lithium compounds have been used to initiate conjugated dienes (optionally together with copolymerizable monomer) to form vulcanizable polymers (i.e., rubber) that, when used in treads, has a desirable impact on the performance of the tread. Likewise, lithiated cyclic imines (e.g., lithio hexamethyleneimine) have also been used to initiate the polymerization of similar polymers and provide rubber with desirable performance in tire treads. Still other examples include lithiated thioacetals (e.g., 2-lithio-1,3-dithianes). Still further, the use of lithium dialkylphosphines in conjunction with phosphine oxide modifiers have been proposed.
The selection of useful initiator compounds, however, is not trivial. This is especially true where there is a desire to select initiator compounds that have a desirable impact on filled rubber compositions or vulcanizates, such as tire treads. Indeed, the prior art only includes a few types of compounds that are useful. This difficulty derives from several factors. For example, the anionic polymerization of conjugated dienes is sensitive, and many compounds or substituents can poison the polymerization system. And, the selection of substituents or functional groups that can impact filled compositions, such as tire treads, is difficult to predict.
Because functional initiators remain desirable, particularly for the synthesis for functionalized polymers that are used in the manufacture of tires, there is a continued desire to identify initiators that can lead to technologically useful polymers and that have desirable impact on filled rubber compositions and/or vulcanizates. | {
"pile_set_name": "USPTO Backgrounds"
} |
Superconductivity is a phenomenon occurring at very low temperatures in many electrical conductors, in which the electrons responsible for conduction undergo a collective transition to an ordered state, of which superconductivity is a characteristic. This ordered state exhibits several unique and remarkable properties: disappearance of resistance to the flow of electric current, appearance of a large diamagnetism and other unusual magnetic effects, substantial alteration of many thermal properties, and the occurrence of quantum effects otherwise observable only at the atomic and subatomic level. The temperature below which a conductor begins to exhibit superconductivity is called the transition temperature or "critical temperature," usually designated T.sub.c. Below the critical temperature, electrical resistance of low-temperature superconductors drops sharply to levels at least 10.sup.12 times less than at normal temperatures. In high-temperature superconductors in the microwave and millimeter wave regions, the resistance drops sharply to levels on the order of 10.sup.3 to 10.sup.4 times less than at normal temperatures.
Other phenomena beside the disappearance of electrical resistance are displayed by superconductors. One of these is the Meissner-Ochsenfeld effect, in which an applied magnetic field is excluded from the interior of the superconductor. As long as the magnetic flux in a superconductor is low, the superconductor will remain completely superconducting in an applied magnetic field. If the magnetic field becomes too large, however, the superconductor will become partially or totally normal. That is, when the magnetic field exceeds a "critical field," designated H.sub.cl, the superconductor reverts to the normal state and its resistance to electric current rises sharply.
Related to the Meissner-Ochsenfeld effect is the phenomenon of penetration depth. The way in which a superconductor excludes from its interior an applied magnetic field smaller than the critical field H.sub.cl is by establishing a persistent supercurrent on its surface and inside the material to the penetration depth which exactly cancels the applied field inside the superconductor. This current flows in a very thin layer of thickness .lambda., which is called the penetration depth. The external magnetic field also penetrates the superconductor within the penetration depth. Lambda depends on the material and on the temperature, and is typically very small, on the order of 2000 to 5000 Angstroms.
The existence of the critical field leads to another property of superconductors which is of importance. A supercurrent flowing in a superconductor will itself create a magnetic field, and this field will drive the superconductor normal at some critical value of the current, called the critical current density, designated J.sub.c. When the current in the superconductor exceeds the critical current density, the superconductor becomes normal and its resistance increases sharply.
These phenomena of superconductors can be put to practical applications. For example, a superconductor can be used as a switching device if it can be driven from the normal to the superconducting state and back again as desired. One way to change the state of a superconductor from superconducting to normal is to change the critical field. This approach is disclosed in U.S. Pat. No. 3,327,273, which discloses a gate element composed of a thin-film superconductor whose resistance is controlled by the application of an external magnetic field. By controlling the external magnetic field, the gate element can be driven from the superconducting to the normal state, and vice-versa.
These phenomena have also been exploited to create a variable resistance superconducting device, as shown in U.S. Pat. No. 2,978,664. This patent shows a tapered conductor of superconducting material which operates partially in the superconducting state and partially in the normal state. By tapering the conductor, there will eventually be a point at which the current density through it exceeds the critical current density, at which point the conductor becomes normal. By locating tap points along the tapered length of the conductor, different resistance behaviors can be obtained.
The present invention differs from the approaches shown in these patents in that the invention does not require any complex geometries or associated field generating apparatus such as coils and windings. The present invention provides a simple superconducting non-linear device that can be used for switching and other applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
The escalating demands for high density and performance associated with non-volatile memory devices, such as electrically erasable programmable read only memory (EEPROM) devices, require small design features, high reliability and increased manufacturing throughput. The reduction of design features, however, challenges the limitations of conventional methodology.
One particular problem with non-volatile memory devices involves charge leakage from contacts. For example, as device dimensions become smaller and chip sizes decrease, charge leakage from a contact to the charge storage element of a memory cell may occur. The charge leakage may occur when electrons travel laterally from the contact through a dielectric layer into the charge storage element or vice versa. Charge leakage currents may make it difficult for the memory device to be efficiently programmed or erased. In addition, the charge leakage may also make it difficult for the memory device to meet the expected data retention requirements and, ultimately, may lead to device failure. | {
"pile_set_name": "USPTO Backgrounds"
} |
FBMC is a multi-carrier modulation technology. Compared with orthogonal frequency division multiplexing (OFDM), the FBMC has lower out-of-band radiation and higher spectrum efficiency, and has promising prospects of application. An important characteristic of the FBMC is that mutual interference, to different extents, exists between adjacent subcarriers and between adjacent FBMC symbols. For example, a transmitted symbol on any time-frequency resource generates an additional received signal at a position of an adjacent time-frequency resource, thereby causing interference to a wanted received signal.
A typical FBMC implementation solution is using an OFDM/offset quadrature amplitude modulation (OQAM) technology. A difference of OFDM/OQAM from the OFDM lies in that pure-real-number or pure-imaginary-number OQAM symbols are transmitted in an OFDM/OQAM system, and are mapped onto time-frequency resource elements by using a law of real-imaginary alternation. However, interference caused by a transmitted symbol to a received signal always occurs on an imaginary part or real part that is corresponding to the transmitted symbol. Therefore, if a channel can keep unchanged in time-domain and frequency-domain ranges, the interference can be canceled by performing an operation of separating the real part from the imaginary part after channel equalization is performed.
However, in an actual application, generally, the channel cannot be unchanged in the time-domain and frequency-domain ranges. If the channel changes significantly in a time-domain or frequency-domain dimension, mutual interference is still generated between transmitted symbols in a time-domain border or frequency-domain border in which the channel changes. In a broadband multi-carrier system, a change of a channel in a frequency domain is relatively sharp, and the broadband multi-carrier system widely uses a frequency division multiple access technology, which also leads to a significant change of the channel in the frequency domain. Therefore, how to cancel mutual interference in the frequency-domain border is still pending. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a wide variety of support stands, particularly to provide support for printers and other computer and office-type equipment. Typical printer stands comprise a pair of spaced-apart legs, with the printer adapted to be placed on the upper surface of the spaced-apart support legs. The support legs may be adjusted to fit the desired width of the printer, and usually provide for a space beneath the printer to store paper. Optionally, the upper surface of such printer stands may be equipped with a friction-type tape or antislip surface, particularly where the upper surface of the printer stand is tapered, so as to provide for a firm, nonslip arrangement of the printer on the support stand. Such support stands, comprising a pair of spaced-apart support legs, also may be employed in conjunction with a paper-tray receiver or other means, typically placed or attached in the back of the support stand, to receive paper generated from the supported printer.
A printer-support stand, comprising a pair of support legs, is shown, for example, in U.S. Pat. No. Des. 290,717, issued Jul. 7, 1987. In addition, adjustable printer support legs, used in conjunction with an adjustable paper a stand for a paper-discharging device, are illustrated in U.S. Pat. No. 4,938,447, issued Jul. 3, 1990.
It is desirable to provide for a new and improved support stand, particularly a printer-support stand composed of a pair of support legs, which is easily and inexpensively manufactured and structured to be conveniently shipped and displayed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention concerns a support structure in a roll workshop for holding the work rolls of a rolling stand, a method for handling/transporting work rolls in a roll workshop with a support structure for holding work rolls, and a method for handling back-up rolls in a roll workshop with a support structure for holding work rolls.
JP 60-196211 A discloses a roll-changing pit that connects a mill hall with a roll workshop. A locomotive, which is located in the roll-changing pit, is used to move the rolls.
JP 05-115908 A describes a roll workshop in which a relatively large number of rolls is stored.
WO 03/099 479 A1 describes a device for changing pairs of work rolls and/or pairs of back-up rolls in rolling stands, in which the back-up rolls and the work rolls are guided in the housing frame in respective chocks that can be lifted or lowered, and the pair of work rolls can be moved out by a linear actuator while being supported on the chocks. The pair of back-up rolls can be moved in or out by means of a lower back-up roll supported on a track and wheels and a roll-changing frame, which supports the upper back-up roll and is supported on the lower back-up roll. In this regard, the pair of work rolls can be coupled on the drive side of the rolling stand with a hydraulic piston-cylinder actuator that is dimensioned in its stroke length for the removal or installation distance and can be uncoupled when it has been withdrawn the required distance. Furthermore, a roll-changing frame, which has been moved in at a height level between the back-up rolls, can be coupled to the same piston-cylinder actuator, and, when the upper back-up roll and the roll-changing frame are supported on the lower back-up roll, the pair of back-up rolls can be moved out or moved back in. The cited document also describes a corresponding method.
WO 2004/039 512 A1 discloses a tractor, with which the sets of rolls are pulled into a roll workshop (RW) and moved back again. The tractor is moved by gear wheels of the tractor that engage racks.
DE 43 21 663 A1 describes a rolling mill with support plates, which are arranged on the operating side of the rolling stands, are supported on carriages, can be displaced transversely to the roll axes, and are equipped with at least two pairs of rails, which are arranged side by side for receiving sets of work rolls supported on rollers, and with changing pits arranged in front of each rolling stand, with the bottom of each changing pit being equipped with runout rails for sets of back-up rolls. In this regard, the pits are covered between the stands and the support plates with cover plates that extend the length of the pit, which can be fixed in their initial position and can be swiveled out of this initial position to change the back-up rolls, and each cover plate is provided with a . . . for moving out sets of work rolls and transferring them to one of the pairs of tracks of the respective support plates assigned to it.
WO 03/015 949 A1 describes an apparatus for changing work rolls and back-up rolls of a strip rolling mill, in which a roll-changing carriage, which can be displaced transversely to the rolling stand and holds the old sets of rolls that have been removed, makes it possible to replace the old sets of rolls with new sets of rolls. The apparatus consists of a stationary changing cylinder mounted at the floor level of the mill, whose piston rod can move in and out transversely to the rolling stand, and of an extraction carriage connected to the forward end of said piston rod and movable on said roll-changing carriage, said extraction carriage being connectable with said roll-changing carriage such that said extraction carriage and said roll-changing carriage are movable together by said changing cylinder transversely to the longitudinal path of said strip mill. In addition, a side shift cylinder that is independent of the roll-changing carriage can move a side shift table, which is installed in said roll-changing carriage, transversely to the direction of movement of the roll-changing carriage, in order to move the sets of rolls to be changed in or out of a changing position which is aligned with the center of the rolling stand.
WO 2005/089 972 A1 describes a method for changing sets of rolls in rolling stands of a mill train with several rolling stands, each of which has back-up rolls and work rolls, by supporting them on each other and then moving them out in the axial direction of a set of work rolls or a set of back-up rolls on the operating side into a roll workshop and then moving new sets of rolls back and mounting them. During this operation, the sets of worn work rolls transported by a number of separate side shift carriages that corresponds to the number of rolling stands on the operating side are successively moved by a single locomotive on a single connecting track to the roll workshop, and from there the new sets of work rolls are driven back and at changing intervals are set down on the respective side shift carriages between the rolling stands, and after clearance of the operating side by the side shift carriages, after each dismounted worn set of work rolls, the worn back-up rolls are moved out, moved to the roll workshop by crane, serviced, transported back and remounted in the assigned rolling stands. The cited document also describes a device for carrying out this method.
JP 05-123719 A discloses a support structure for holding work rolls of a rolling stand. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to production and purification of organic acids and more particularly to an improved processes for the production and purification of succinic acid from succinate salts that result from the fermentation of carbohydrates.
Succinic acid [110-15-6] (butanedioic acid), C.sub.4 H.sub.6 O.sub.4, is a naturally occurring constituent in plant and animal tissues, see, e.g., Winstrom, L. O. "Succinic Acid and Succinic Annydride", Kirk and Othmer Encyclopedia of Chemical Technology, Vol. 1, 4.sup.th Ed., (1978), the contents of which are incorporated herein by reference. It has therefore been affirmed as GRAS by the FDA. This status enables it to be used for various purposes, such as, but not limited to, a flavor enhancer, a pH control agent in foods such as condiments and for use in meat products. It is also widely used in scientific applications including uses in radiation dosiometry, standard buffer solutions, agriculture, foods, medicines, cosmetics, textiles, plating and waste-gas scrubbing.
Numerous patents discuss the production of carboxylic acids, such as succinic acid via fermentation. (See, e.g. U.S. Pat. No. 5,168,055 to Datta, the contents of which are incorporated herein by reference.) However, a major factor involved in industrial scale production using fermentation is the cost involved in downstream processing necessary to concentrate and purify the product. For example, it has been determined that fermentation proceeds best at an approximately neutral pH. However, the acid produced will eventually lower the pH. In order to avoid low pH fermentation broths that are injurious to the microorganisms driving the fermentation process, the pH of the broth should be raised by the addition of a base. However, the added basic material generally reacts with the acid and leads to the production of a salt of the carboxylic acid rather than the desired free acid product itself.
Thus, downstream processing typically involves both conversion of the salt into the free acid and the purification of the acidified product. Additionally, insoluble materials from the fermenter, such as the dead cells, generally need to be removed. Therefore, for fermentation to be economically viable, a technique for the production of relatively pure acid and an efficient recovery process is desirable.
U.S. Pat. No. 5,168,055 to Datta et al., the contents of which are incorporated herein by reference, proposed a process that combines the fermentation of carbohydrates to produce calcium succinate and the subsequent conversion to and purification of the succinic acid product. The succinate salt is acidified into the pure acid with sulfuric acid and gypsum, CaSO.sub.4, is produced as a by-product. The succinic acid produced is then processed through a series of steps designed to purify the product. However, it has been found that for every mole of succinic acid product produced, an equal amount of gypsum by-product is produced. This gypsum by-product has little value, in part, because the odor and color contamination from the fermentation process renders it unsuitable for commercial use. In addition, reagents such as calcium oxide or calcium hydroxide and sulfuric acid are consumed and are not regenerated within the process.
U.S. Pat. No. 5,143,834 to Glassner et al., the contents of which are incorporated herein by reference, proposes a similar combination of fermentation and purification processes for the production of succinic acid from disodium succinate that is formed in the fermentation step. Succinic acid is produced by using a combination of electrodialysis and water splitting steps that ultimately separate the base, and produce pure acid. Further purification is achieved by passing the product stream through a series of ion-exchange columns. However, this process has disadvantageously high costs, such as membrane costs and the electrical energy costs associated with electrodialysis.
U.S. Pat. No. 5,034,105 to Berglund et al., the contents of which are incorporated by reference, proposes a process for obtaining a carboxylic acid of high purity by using water splitting electrodialysis to convert an undersaturated aqueous solution of disodium succinate into a supersaturated solution of succinic acid that facilitates in crystallizing the product carboxylic acid. However, this process also suffers from the high costs associated with the Glassner et al. patent.
Accordingly, it is the objective of this invention to provide an improved method of producing and purifying carboxylic acids, such as succinic acid, which result from fermentation processes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Iron-molybdate catalysts have been manufactured from the coprecipitation of aqueous solutions of FeCl.sub.3 and ammonium heptamolybdate. Both of these reagents are expensive and significant amounts of water are required in the commercial manufacture of the iron-molybdate catalysts in accordance with prior manufacturing methods. In addition, during the calcination step required to form the active Fe.sub.2 (MoO.sub.4).sub.3 and MoO.sub.3 components, significant amounts of pollutants, such as nitrous oxides (NO.sub.x), ammonia (NH.sub.3) and hydrochloric acid (HCl) are formed.
Thus, the synthesis of iron-molybdate catalysts prior to the present invention has a number of significant problems. In view of these significant problems, there is a need for new methods of formation for these catalysts. More specifically, there is a need for methods of manufacture of iron-molybdate catalysts that involve more common and less expensive reagents, do not require water, and reduce the formation of pollutants. The present invention fulfills all of these needs. These and other benefits of the present invention are described below. | {
"pile_set_name": "USPTO Backgrounds"
} |
Proper fertilization equipment can assist in improving and maintaining the quality of outdoor landscaping and turf, and can increase agricultural yields. While fertilizer can be dispensed by hand, such a process may have a number of shortcomings such as an increased time required to apply the fertilizer, a lack of uniformity in the quantity of fertilizer dispensed to a given area, and the like. Accordingly, spreader sprayer machines can be used to assist in dispensing the fertilizer. However, even when using spreader sprayer machines, rough and/or uneven landscaping environments can result in uneven dispersion of fertilizer. Additionally, uneven terrain can cause these machines to become unbalanced and unstable, and thus can result in an unpleasant user experience. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mobile aerial towers or lifts conventionally comprise a pair of elongated booms which are articulated or pivotally joined together. The lower end of one of the members is pivotally mounted upon a mobile platform while the opposite end of the other boom pivotally carries a bucket in which the operator rides. The platform is supported for rotation about a vertical axis to thereby provide for lateral swinging movement of the bucket, and the booms pivot about horizontal pivot axes to facilitate vertical movement of the bucket as well as fore and aft movement of the bucket. Three hydraulic or other suitable motors are provided for effecting three different movements of the articulated booms. One hydraulic motor is operative to control rotary motion of the platform about the vertical axis of rotation. Another of the hydraulic motors comprises a cylinder operative to swing the lower boom about its pivotal connection with the platform. The third hydraulic motor comprises a hydraulic cylinder which functions to cause pivotal movement of the upper boom with respect to the lower boom.
Hydraulic control valves are used to control the operation of the three hydraulic motors to thereby effect movement of the booms. The prior art structures have also included a hydraulic control system mounted with the bucket and connected to the control valves to permit the operator in the bucket to control operation of the boom. A preferred control mechanism is illustrated in the Myers U.S. Pat. No. 3,133,471 issued May 19, 1964. The control mechanism of that patent provides a plurality of hydraulic control valves operably connected by a plurality of pairs of hydraulic lines extending along the length of the boom to the valves controlling the hydraulic motors. One of the advantages of the arrangement provided by the Myers patent is that it permits the operator to precisely control movement of the articulated booms. Movement of the booms either horizontally or vertically tends to cause the operator's weight to be shifted. The control arrangement of Myers prevents feedback by providing controlled movement of the control handle such that the operator's momentum during movement of the bucket does not cause the operator to move the control handle too far thereby causing overreaction or overtravel of the bucket.
One of the disadvantages or drawbacks of the prior art constructions is that each hydraulic control function of the control valve requires a pair of hydraulic control lines extending the full length of the booms and connected to the valves. Accordingly, it is common to have at least six hydraulic lines extending the length of the boom.
Another feature of the prior art control arrangements is that the functions which can be accomplished by the control arrangement at the bucket are limited by the complexity of those systems having a pair of hydraulic fluid lines extending the full length of the boom for each control function. Other arrangements have a captive air system for each function, such air systems being very cumbersome and inaccurate due to the inherent compressive nature of air. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a refractory or ceramic assembly including outer and inner refractory or ceramic members, the outer member having therein a cavity or opening within which is inserted the inner member. More particularly, the present invention is directed to such a refractory assembly wherein there is formed an interference shrink fit between an inner surface of the outer member and an outer surface of the inner member, thereby forming a mortarless joint between the two members.
It is known to form various refractory assemblies of the type wherein an inner refractory member is positioned within an opening in an outer refractory member. This type of assembly is common, for example, in the various wear parts of sliding gates or sliding closure units employed on metallurgical vessels, for example in the stationary and movable plates thereof, inlet and outlet nozzle bricks thereof, discharge spouts thereof, as well as refractory members for the introduction of various media into molten metal within the metallurgical vessel, as well as on various types of ceramic heat exchanger members, for example recuperators. In the past, the joint between such outer and inner refractory members has been formed by a refractory mortar, cement, etc.
However, this type of prior art joint always creates a weak point of the refractory assembly. This often leads to the joint failing and allowing destructive molten metal breakthrough. This can be caused due to eddies operating on such joint and due to the pressure and erosive capabilities of the molten metal flow. Such disadvantage results in undesirable operational uncertainties and often requires replacement of the various elements earlier than otherwise would be necessary. Additionally, the durability of such prior art joints is not satisfactory with regard to stresses due to high temperature variations. At any rate, in the prior art it normally is necessary to attempt to precisely adapt the particular joint material to be used to the stress to be expected in a given installation. Furthermore, it also is necessary to ensure that the joints are formed by a relative attentive manual joining operation, and this of course involves increased costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a new refrigerator system and to a control device for such a system or the like as well as to a method of making such a control device.
2. Prior Art Statement
It is known to provide a refrigerator system having a frozen food compartment and a fresh food compartment operatively interconnected together by a control device having a housing means provided with a passage interconnecting the compartments together, the housing means having a movable damper valve member controlling the passage and a temperature responsive unit operatively interconnected to the valve member to move the valve member between open and closed positions thereof in relation to the temperature sensed by the unit. The temperature responsive unit comprises a bellows construction and the housing means has a cylindrical casing surrounding the bellows construction. The temperature responsive unit senses the ambient temperature in the fresh food compartment so that when the temperature in the fresh food compartment rises above a predetermined temperature, the valve member is opened to permit lower temperature air from the frozen food compartment to flow to the fresh food compartment to lower the temperature in the fresh food compartment to the predetermined temperature whereby the valve member is closed by the control device.
It was suggested to the applicant by another that perhaps the damper valve member could be electrically operated, such as with a solenoid, to control the flow of air from the frozen food compartment to the fresh food compartment in response to an electrical signal from an electrical circuit, such as a microprocessor controller for the refrigeration system.
It is also known to provide a temperature responsive device for operating certain structure by disposing an electrical heater means adjacent the temperature responsive device and energizing the heater means to cause the temperature responsive device to move a plunger thereof and thereby operate a part interconnected to the plunger. For example, see the U.S. Patent to Manecke et al, U.S. Pat. No. 4,206,780 wherein the plunger of the temperature responsive device moves a selector member when the device is heated by an electrical heater means disposed adjacent the device.
It is also known to provide an electric valve wherein a temperature responsive bellows construction is surrounded by a cylindrical casing of a housing means, an electrically operated heater means being carried on the casing for heating the bellows construction. For example, see the U.S. patent to Kreuter, U.S. Pat. No. 3,414,231. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method for correcting the radial runout of a tire and rim wheel assembly. More specifically, the method allows to minimize the radial runout of tires and of the tire and rim assembly without dismounting the assembly from the vehicle or dismounting the tire from the rim. The method allows further to correct ride vibration problems associated with large tires and rims specifically designed for off-road or agricultural use.
The wheel assembly runout is due to a combination of the tire""s runout, the rim""s runout and the tractor""s hub runout. These three runouts increase the total assembly runout if they are in phase or they may decrease the total assembly runout if their phasing is optimized. Bouncing or vertical shaking oscillations the tractor""s driver experiences when running at speeds above 20 km/h on roads is directly related to the tire wheel assembly radial runout.
Large tires for tractors and the like vehicles may be mounted on large one or two piece rims. The rim is adapted to hold the tire. The rim has a 5xc2x0 bead seat, a pair of axially outer flanges, and a drop center portion to facilitate mounting the tire over the flange portions.
In case of one piece rims, the prior art methods to correct the tire wheel assembly vibration characteristics involve the steps of locating the maximum radial runout of the tire-rim assembly, the minimum radial runout of the rim, deflating the tire, breaking down the beads and rotating the tire to a distinct, precise location on the rim, remounting the tire rim assembly and reinflating the tire. This method of vibration reduction is commonly referred to as match mounting. The match mounting method is inherently time consuming, requires the tire beads to be detached from the rim, and after completing this procedure no positive result can be guaranteed. Furthermore the measurements only provide information on the tire-rim assembly and not on the tire itself, which information could help in choosing another rim wherein the tire would perform correctly.
In case of two piece rims, the radially outer portion is an annular ring. This annular ring further has a radially inner flange with a plurality of clearance holes to which the second portion of the rim is attached. The second portion of the rim is a disk which has a central opening which preferably is tapered, this central opening engages the drive axle of the vehicle to which it is attached. Radially outward of the central opening is a plurality of holes which can be aligned with the openings of the rim and bolted to the rim by means of threaded fasteners. These attachment holes in both the rim and the disk portion each have a clearance or relatively larger opening to accept the threaded fasteners. The dimensional tolerances permit the mounted tire and rim assembly to have their respective axis of rotation to be shifted relative to the common axis of the vehicle axle and wheel disk assembly. This ability to shift the relative position of the mounted tire and rim assembly relative to the disk portion can be positively beneficial in reducing tire and rim assembly vibration on tractors.
WO-A-97/39325 relates to a method for minimizing the radial runout of such two piece rims. The method can be summarized by the following steps:
locating the position of maximum radial runout and measuring the amount of maximum radial runout;
loosening the threaded fasteners;
moving the disk radially toward the location of the maximum radial runout a distance one-half the measured maximum runout amount, and then tightening the threaded fasteners thereby securely attaching the disk to the tire and outer rim of the assembly.
The present invention has as object to determine in the field the individual tire runout and the rim runout. A further object is to give indications on the contribution of the tire and rim assembly to the bouncing of the assembly. A still further object is to predict the match mounting for the tire on the rim and the remaining optimized assembly radial runout after match mounting.
The invention provides a method for minimizing the radial runout of a tire and rim assembly, as defined in the claims which are summarized as follows.
A method for minimizing the radial runout of a tire and rim assembly, has the steps of:
a) measuring the amount of radial runout along the radially outer portions of the tread lugs by rotating the tire rim assembly around its axis;
b) measuring the radial runout of the axially inner portions of the rim by rotating the tire rim assembly around its axis;
c) calculating the first and second harmonics of the rim;
d) subtracting point by point the first and second harmonic of the rim from the radial runout of the assembly;
e) analyzing the data obtained under step (d) as representing the runout of the tire alone;
f) discarding the tire if the data obtained under step (e) fall outside a given range.
g) discarding the rim if the data obtained under step (b) fall outside a given range.
In step (b), two axially inner portions of the rim facing both tire beads can be measured; and the average value determined and used in the calculation based on step (b).
Under step (d), the maximum of the first harmonic can be considered as representing the maximum runout of the tire; and the tire is marked at that location.
The first harmonic of the data obtained under step (b) can be used such that the minimum of the first harmonic is considered as representing the minimum runout of the rim; and wherein the rim can be marked at that location.
The markings on the tire and on the rim can be aligned so as to match-mount the assembly.
The data obtained under step (d) can be used to represent the curve of the runout of the tire alone and to determine the maximum runout of the tire, and the sum of the first and second harmonic of the rim can be considered to represent the curve of the radial runout of the rim alone and from that curve one can determine the minimum runout of the rim. By matching the obtained maximum runout of the tire with the minimum runout of the rim one can consider the result as representing the match mounted tire and rim assembly and can thus predictively calculate point by point the curve of the radial runout of the assembly. Alternatively, by matching the calculated minimum runout of the tire with the maximum runout of the rim one can consider the result as representing the match mounted tire and rim assembly.
The method enables one to select a different rim, make the measurements under step (b) and predictively calculate point by point the radial runout of the assembly without ever making the assembly.
The advantages of the invention are that its implementation is fast and easy. The farmer obtains within a short time an answer on the cause of the bouncing, an indication of what exactly must be done to at least partly remove such as well as what ride behavior can be expected after match mounting.
For ease of understanding this disclosure the following terms are used:
xe2x80x9cAspect Ratioxe2x80x9d means the ratio of the tire""s section height to its section width.
xe2x80x9cAxialxe2x80x9d and xe2x80x9caxiallyxe2x80x9d mean the lines or directions that are parallel to the axis of rotation of the tire.
xe2x80x9cBouncexe2x80x9d or xe2x80x9cHopxe2x80x9d means the vertical acceleration related to first Harmonic Radial Runout or Force Variation of each tire and rim assembly interacting with the other tire and rim assemblies of the vehicle.
xe2x80x9cCircumferentialxe2x80x9d means lines or directions extending along the perimeter of the surface of the annular tire parallel to the equatorial plane EP and perpendicular to the axial direction.
xe2x80x9cDesign Rimxe2x80x9d means a rim having a specified configuration and width. For the purposes of this specification, the design rim and design rim width are as specified by the industry standards in effect in the location in which the tire is made. For example, in the United States, the design rims are as specified by the Tire and Rim Association. In Europe, the rims are as specified in the European Tyre and Rim Technical Organizationxe2x80x94Standards Manual and the term design rim means the same as the standard measurement rims. In Japan, the standard organization is The Japan Automobile Tire Manufacturer""s Association.
xe2x80x9cEquatorial Plane (EP)xe2x80x9d means the plane perpendicular to the tire""s axis of rotation and passing through the center of its tread.
xe2x80x9cFootprintxe2x80x9d means the contact patch or area of contact of the tire tread with a flat surface at zero speed and under normal load and pressure.
xe2x80x9cInnerxe2x80x9d means toward the inside of the tire and xe2x80x9couterxe2x80x9d means toward its exterior.
xe2x80x9cLateral Edgexe2x80x9d means the axially outermost edge of the tread as defined by a plane parallel to the equatorial plane and intersecting the outer ends of the axially outermost traction lugs at the radial height of the inner tread surface.
xe2x80x9cLeadingxe2x80x9d refers to a portion or part of the tread that contacts the ground first, with respect to a series of such parts or portions, during rotation of the tire in the direction of travel.
xe2x80x9cLopexe2x80x9d means once per revolution fore and aft acceleration/deceleration related to first harmonic radial runout or force variation of tire and rim assembly.
xe2x80x9cNet-to-gross Ratioxe2x80x9d means the ratio of the surface area of the normally loaded and normally inflated tire tread rubber that makes contact with a hard flat surface, divided by the area of the tread, including noncontacting portions such as grooves as measured around the entire circumference of the tire.
xe2x80x9cNormal Inflation Pressurexe2x80x9d means the specific design inflation pressure assigned by the appropriate standards organization for the service condition for the tire.
xe2x80x9cNormal Loadxe2x80x9d means the load assigned by the appropriate standards organization for the service condition for the tire when inflated to the normal inflation pressure.
xe2x80x9cRadialxe2x80x9d and xe2x80x9cradiallyxe2x80x9d mean directions radially toward or away from the axis of rotation of the tire.
xe2x80x9cShakexe2x80x9d means higher frequency lug induced vibration felt in cab or steering wheel or seen in movement of the exhaust stack (no particular acceleration).
xe2x80x9cShudderxe2x80x9d means a lug induced vibration at low frequency, resulting in a vertical acceleration felt through the floor of the cab.
xe2x80x9cTrailingxe2x80x9d refers to a portion or part of the tread that contacts the ground last, with respect to a series of such parts or portions during rotation of the tire in the preferred direction of travel.
xe2x80x9cTrampxe2x80x9d means side-to-side motion, or lateral acceleration, induced by first harmonic radial runout or force variation of each tire and rim assembly interacting with each other.
xe2x80x9cTread Arc Widthxe2x80x9d (TAW) means the width of an arc having its center located on the equatorial plane (EP) and which substantially coincides with the radially outermost surfaces of the various traction elements (lugs, blocks, buttons, ribs, etc.) across the lateral or axial width of the tread portions of a tire when the tire is mounted upon its designated rim and inflated to its specified inflation pressure but not subject to any load.
xe2x80x9cUnit Tread Pressurexe2x80x9d means the radial load borne per unit area (square centimeter or square inch) of the tread surface when that area is in the footprint of the normally inflated and normally loaded tire.
xe2x80x9cVibration Ratingsxe2x80x9d mean the subjective ride terminology wherein xe2x80x9cslightxe2x80x9d means rely noticeable; xe2x80x9cmoderatexe2x80x9d means noticeable but not objectionable; xe2x80x9cseverexe2x80x9d means objectionable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to telecommunications, Voice Over Internet Protocol (VoIP), cellular communications, and location based systems. More particularly, it relates to security and privacy levels in wireless, mobile and telecommunications.
2. Background of the Related Art
The incorporation of tracking technology in today's handheld mobile devices has led to a vast emergence of location based services. These tracking technologies generally include a precise, satellite-enabled Global Positioning System (GPS), as well as cell tower positioning and network access points, among others, capable of delivering approximate location of a wireless device. Such tracking devices were initially deployed in mobile communications as a result of a 2002 US Federal Communications Commission (FCC) mandate to incorporate such technology in mobile devices in the event users need to be located throughout use of emergency services, such as in Enhanced 911 (E911).
Location based services enable user-permitted software applications on internet-enabled wireless devices. These wireless devices often encompass a particular tracking technology, most often the Global Positioning System (GPS). Location technologies are also and/or alternatively network based, e.g., Position Determining Entities (PDE).
Location based applications obtain a particular device's geographical position, and then provide services accordingly. Example location based services include standard navigation and emergency applications, as well as those attributed with business and entertainment. For instance, use of location based pull services allow users to locate other individuals or objects of interest. Businesses may use push services to send promotional information upon user consent, e.g., based upon a user's proximity to a particular site of interest.
As location based services become increasingly prevalent and useful, location services also begin to raise concern for user privacy. In fact, as more applications begin to track and record individuals' whereabouts, some people wonder whether or not true privacy is possible anymore. After all, all recorded data concerning a user's location is owned by the network to which the user subscribes.
To mitigate consumer concern, certain privacy measures have been enacted by the industry. For instance, a Location Privacy Checking Protocol (PCP) defines location privacy settings using five distinct states of privacy.
FIGS. 9-12 show the conventional use of visual “radio-button” type controls to communicate the five (5) different privacy states included in the Privacy Checking Protocol (PCP).
FIG. 9 depicts exemplary POSITION_NOT_ALLOWED 130 and POSITION_WITHOUT_NOTIFY 132 privacy profiles defined by the Privacy Checking Protocol (PCP).
In particular, FIG. 9 portrays two basic Privacy Checking Protocol (PCP) privacy options that may be set by the user, usually in a settings' menu, to either allow or disallow a location server to disclose the location of that user's wireless device to any requesting application. These options form POSITION_NOT_ALLOWED 130 and POSITION_WITHOUT_NOTIFY 132 privacy profiles. The POSITION_NOT_ALLOWED 130 privacy profile disallows location based services to be notified of the whereabouts of a user's wireless device altogether. On the other hand, the POSITION_WITHOUT_NOTIFY 132 privacy profile allows any location based application to receive knowledge of the geographical position of a user's wireless device, and also indicates that the user does not wish to be notified about the release of this location information.
FIG. 10 depicts an exemplary NOTIFY_POSITION 138 privacy profile defined by the Privacy Checking Protocol (PCP).
In particular, FIG. 10 builds upon the two basic Privacy Checking Protocol (PCP) privacy settings by taking them one step further, introducing a “Receive Notification” option. Use of the “Receive Notification” option introduces a NOTIFY_POSITION 138 privacy profile that allows the location of a user's wireless device to be disclosed as long as the user is notified that this exchange of information is taking place.
FIG. 11 depicts an exemplary NOTIFY_POSITION_IF_GRANTED 146 privacy profile defined by the Privacy Checking Protocol (PCP).
In particular, FIG. 11 introduces a Privacy Checking Protocol (PCP) “Require Authorization” privacy option. If a user checks the “Yes” radio button indicating that they would appreciate this service, a user must provide authorization before a location server may divulge the whereabouts of a particular wireless device. This leads to a new privacy profile, NOTIFY_POSITION_IF_GRANTED 146.
FIG. 12 depicts an exemplary NOTIFY_POSITION_IF_NO_RESPONSE 154 privacy profile defined by the Privacy Checking Protocol (PCP).
In particular, FIG. 12 indicates the addition of a Privacy Checking Protocol (PCP) “If No Response, Locate Anyway” privacy option. If a user selects the “Yes” radio button pertaining to this setting, then location information is sent to the appropriate location server in the absence of a user response to user authentication. This setting leads to yet another privacy profile, NOTIFY_POSITION_IF_NO_RESPONSE 156. On the other hand, if the “No” radio button is selected in accordance with this privacy option, then location information may only be disclosed by the location server if it is authorized to do so by the user. Therefore, the geographical position of a user's wireless device will not be revealed if that user fails to respond to an authorization message. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to hand tools with foldout blades, and, more particularly, to such hand tools with multiple foldout locking blades.
Hand tools with multiple deployable blades have long been known and used in the home, in the workplace, and in sporting applications. A folding pocket knife having two blades is an example. The blades are carried inside a handle for storage, and are selectively opened, one at a time, when required to perform specific functions.
Pocket-knife-like devices, such as those produced by Wenger and Victorinox and commonly called xe2x80x9cSwiss Armyxe2x80x9d knives, use this same principle extended to a plurality of tools carried within the body of the knife on axles located at either end of the knife. Such implements typically incorporate a variety of types of blade-type tools, such as one or more sharpened blades, a screwdriver, an awl, a file, a bottle opener, a magnifying glass, etc. Generally, Swiss Army knives are designed to be sufficiently small and light for carrying in a pocket and are therefore limited as to the strength and robustness of their structure.
In recent years, devices known generically as xe2x80x9ccombination toolsxe2x80x9d have been developed and widely marketed. A combination tool is built around a jaw mechanism such as a full-size pliers head. The pliers head has handles fixed thereto. To make the combination tool compact yet capable of use in situations requiring the application of large forces, the handles are made deployable. To make the combination tool more useful, a number of blade tools, generally of the type found in the Swiss Army knife, are received in a folding manner within the handles themselves.
One useful feature of some conventional folding knives is the ability to positively lock the blade in the open position to prevent an unintentional closure during service that could cut the hand of the user. Lockbacks, sidelocks, axle locks, and other types of locks are known in the art. Another useful feature is the biasing of the blade toward its closed position from angular orientations close to the closed position. Such a biasing acts as a detent to prevent the blade from unintentionally folding open when carried or when another blade is already open and in use. The blade may also be biased toward its open position from angular orientations close to the open position. In either case, the biasing effect gives a secure feel to the closing and opening of the blades. Cam, backspring, ball detent, and other types of biasing structures are known in the art.
Positive locks used in conjunction with biasing structures are desirable features of knives, but they have not been successfully utilized in knives having multiple blades rotating in the same direction on a common axle. (When the term xe2x80x9cbladexe2x80x9d or xe2x80x9cblade toolxe2x80x9d is used herein in reference to deployable tools received into the handle of the combination tool, knife, or other type of tool, it refers to any relatively thin tool that is folded into the handle, regardless of the utilization of the tool. Such a xe2x80x9cbladexe2x80x9d therefore includes, but is not limited to, a sharpened knife blade, a serrated blade, a screwdriver, an awl, a bottle opener, a can opener, a saw, a file, etc.) Existing approaches have internal structures that require too much space when adapted for use on several side-by-side blades, or the locking release controls take up too much space or are inconvenient. For example, a typical combination tool has four or more blades folding from a common axle in each handle, where the width of the handlexe2x80x94the required envelope size within which the entire structure must fitxe2x80x94is on the order of about 1 inch or less. The sides of the handle, the blades, and any locking and biasing mechanism must fit within that width, and the externally accessible lock releasing structure must also fit on the outside of the handle within that width. If the width of the handle of the hand tool is increased significantly above about 1 inch, the combination tool will no longer be comfortable in the hand. There have been some attempts to provide a positive lock for the blades of a combination tool, but they have been highly inconvenient to use in practice.
There is a need for an approach to locking and biasing multiple, side-by-side blades of combination tools, knives, and other types of hand tools where the blades pivot on a common axis. The present invention fulfills this need, and further provides related advantages.
The present invention provides a hand tool wherein multiple blades pivot on a single axle. The blades are each positively locked into their open positions by a single strong locking mechanism. The blades are also biased toward their closed positions and their open positions. When one blade is opened, the others stay in their closed positions. The opened blade is positively locked and later unlocked without moving the other blades from their closed positions. The locking and biasing mechanism fits within the envelope size required for a hand tool, and has been demonstrated operable for four blades within a space of less than 1 inch width.
In accordance with the invention, a hand tool comprises a tool body having a pair of oppositely disposed sides, an axle extending transversely between the sides of the body at one end of the tool body, and at least two blades supported on the axle. Each blade includes a blade base having a peripheral surface and an implement extending outwardly from the blade base, and further has a bore through the blade base with the axle extending through the bore so that the blade base and thence the blade is rotatable on the axle between a closed position wherein the blade is contained within the tool body and an open position wherein the blade extends from the tool body. There is a notch in the peripheral surface of the blade base. A single rocker is supported on the tool body and has a locking finger extending therefrom. The locking finger is dimensioned and positioned to engage the notch of each blade base when the blade is in the open position. A biasing spring reacts against the single rocker in a direction so as to force the locking finger against the peripheral surface of the blade base.
There is, additionally, means for biasing one of the blades toward the open position while biasing all others of the blades toward the closed position. This biasing means preferably takes the form of a first cam surface on the peripheral surface of each blade base at a location adjacent to the notch, having a first cam maximum surface height and a first cam maximum surface height angular position, and a second cam surface on the peripheral surface of the blade base at a location remote from the notch, having a second cam surface height less than the first cam surface height and a second cam maximum surface height angular position located about 110 to about 120 degrees from the first cam maximum surface height angular position. The first cam maximum surface height is preferably slightly smaller than the second cam maximum surface height.
Thus, the invention provides a locking/biasing mechanism that positively locks any one of the blades into its open position while biasing the remaining blades toward their closed positions. The locking mechanism has a single release that releases the blade that is locked into the open position. As the selected blade is opened or closed against its biasing force, the other blades remain in their closed positions under the influence of their biasing forces. Subsequently, a different blade may be selected for opening, with the same results and performance.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention. The scope of the invention is not, however, limited to this preferred embodiment. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an X-ray computerized tomography apparatus. The present invention relates, more particularly, to a technique for achieving a prompt and real-time display of a display image of a desired arbitrary target object within a subject by easily detecting a position of the object at a high speed, and for improving the efficiency of the operation in a navigation of an operation or the like, for example.
2. Description of the Background
In the application field of an X-ray computerized tomography apparatus, there has been known so-called a CT fluoroscopy or a real-time CT (hereinafter referred as a CT fluoroscope) utilizing a real-time reconstructing method for reconstructing and displaying acquired projection data in real time. By utilizing this CT fluoroscopy technique, it is possible to carry out a navigation of an operation including a biopsy for collecting an organization of a target object such as a tumor from a subject, and an insertion of a catheter
In this case, a photographing of a tomographic image of the subject is carried out first, by using an X-ray computerized tomography apparatus. Then, an insertion object such as a catheter or a puncture needle is inserted into the subject, and this insertion object is reached to a target object like a tumor existing inside the subject, while confirming the tomographic image displayed on the screen.
As a conventional X-ray computerized tomography apparatus for carrying out an operation support, there has been known an operation supporting system disclosed in U.S. patent application Ser. No. 5,848,126, xe2x80x9cRadiation Computed Tomography Apparatusxe2x80x9d. According to this operation supporting system, an image reconstructing of a subject is carried out after scanning the subject, to generate image data consisting of data of a plurality of slices. Then, a position of an insertion object is detected from this image data, and a tomographic image including a slice having a tip of the insertion object is displayed on the screen.
The above-described conventional art, however, has the following problems.
FIG. 1 shows a procedure of reaching a target object inside a subject by a biopsy or the like according to the conventional art. At first, an operator inserts a puncture needle into the subject while watching a display image (step S101). In this case, according to the image display based on the conventional X-ray computerized tomography apparatus, as the insertion object is inserted into the subject, the tip of the insertion object is deviated from the image of a slice displayed, so that the tip (probe tip) of the insertion object is lost from the view field. When the insertion object such as puncture needle tip is deviated from the image (step S102Y), a doctor (or the operator) moves a gantry or a couch to change a slice to be displayed on the screen while observing the image (step S103). Until the image of the puncture needle tip is confirmed (step S104Y), the move of the gantry or the couch in step S103 has to be repeated, and then the puncture needle reaches a target position (step S105Y), these processes have to be repeated. In other words, the operator always needs to move the gantry or the couch in search of the tip of the insertion object, which work has required a considerably large word load.
Further, according to the above-described operation supporting system, it has been necessary to provide an insertion object supporting member having a position detecting function (sensor function), for detecting the tip of the insertion object. The provision of the insertion object supporting member for the insertion object has made it difficult to carry out a free operation of the insertion object.
Furthermore, according to the above-described operation supporting system, after the subject has been scanned, image reconstructing is carried out for the data acquired by the scanning, to thereby prepare image data. The insertion object is detected from this reconstructed image data. However, the series of the Image reconstructing and the image data preparation processing takes long hours. Therefore, it has not been possible to detect and display the insertion object in real time.
On the other hand, the photographing of a target organ in the subject has required the following complex operation.
FIG. 2 shows a procedure for photographing a target organ inside a subject.
At first, the operator lays a patient on the couch (step S601), and photographs a whole scanogram of this patient (the subject) (step S602). Next, the operator determines a scan position for photographing the target organ on the image (step S603) while observing the photographed scanogram image. The operator operates to start the scanning (step S604), and obtains a tomographic image of the target organ.
The series of the above procedure takes long hours, and the operation required therefor has been complex
The present invention has been made to overcome the above-described problems of the conventional art. It is an object of the present invention to provide an X-ray computerized tomography apparatus capable of real-time reconstructing and displaying an image of a slice in which a target object such as an insertion object inside a subject exists so as to accurately and promptly carry out a navigation of an operation.
It is another object of the present invention to provide an x-ray computerized tomography apparatus capable of decreasing an unnecessary exposure of a subject to X-rays, by real-time acquiring transmission data of only a slice in which a target object such as an insertion object inside the subject exists.
Further, it is still another object of the present invention to provide an X-ray computerized tomography apparatus capable of improving the operation efficiency of the photographing of a target organ inside a subject.
In order to achieve the above objects, a first feature of the present invention resides in directly detecting a position of an object inside a subject from transmission data acquired (i.e., projection data). Based on the information of the detected position, it is possible to determine a range in which an image should be reconstructed, a range in which an image should be displayed (visualized), or a range in which a subject should be scanned, and to carry out a prompt processing in a necessary range.
Further, a second feature of the present invention resides in displaying arbitrary data among acquired transmission data, together with a display image of a reconstructed image. By displaying this transmission data, It is possible to easily understand in real time the progress state of an insertion object three-dimensionally.
According to one aspect of the present invention, there is provided, as shown in FIG. 3, an X-ray computerized tomography apparatus, comprising: an X-ray detection unit 23 for detecting transmission X-rays from a plurality of directions Irradiated from an X-ray beam generation source 21 and transmitted through a subject; a data acquisition unit 27 for acquiring transmission data according to the transmission X-rays detected by the X-ray detection unit; an object position detection unit 31 for detecting a position of an object inside the subject, according to a part of the transmission data acquired by the data acquisition unit; a reconstructing range determining unit 46 for determining a slice to be image-reconstructed, according to the position detected by the object position detection unit; and an image reconstruction unit 45 for reconstructing a tomographic image of a slice in which the object exists, according to the transmission data acquired by the data acquisition unit, the transmission data being acquired in the slice determined by the reconstruction range determining unit.
The object position detection unit 31 may include a transmission data extraction unit 33 for extracting transmission data at a predetermined tube position of the X-ray beam generation source, for each slice, from the transmission data acquired by the data acquisition unit, whereby to detect a position of the target object according to the extracted transmission data.
As shown in FIG. 14, the X-ray computerized tomography apparatus may further comprise a tube position determining unit 39 for determining the predetermined tube position of the X-ray beam generation source, based on the transmission data of a plurality of slices from a plurality of directions acquired by the data acquisition unit, and for sending data showing a determined tube position to the transmission data extraction unit.
Further, according to another aspect of the present invention, there is provided, as shown in FIG. 3, an X-ray computerized tomography apparatus, comprising: an X-ray detection unit 23 for detecting transmission X-rays from a plurality of directions irradiated from an X-ray beam generation source 21 and transmitted through a subject; a data acquisition unit 27 for acquiring transmission data according to the transmission X-rays detected by the X-ray detection unit; an object position detection unit 31 for detecting a position of an object inside the subject, according to a part of the transmission data acquired by the data acquisition unit: a visualizing-range detection unit 48 for determining a slice in which an image should be visualized, according to the position detected by the object position detection unit; an image reconstruction unit 45 for reconstructing a tomographic image, according to the transmission data acquired by the data acquisition unit; and a display unit 47 for visualizing the tomographic image of a slice determined by the visualizing-range detection unit.
Further, according to still another aspect of the present invention, there is provided, as shown in FIG. 24, an X-ray computerized tomography apparatus, comprising: an X-ray detection unit 23 for detecting transmission X-rays from a plurality of directions irradiated from an X-ray beam generation source 21 and transmitted through a subject; a data acquisition unit 27 for acquiring transmission data according to the transmission X-rays detected by the X-ray detection unit; an object position detection unit 31 for detecting a position of an object inside the subject, according to a part of the transmission data acquired by the data acquisition unit: and a scanning range determining unit 49 for determining a range in which the subject is to be scanned, according to the position detected by the object position detection unit.
The scanning range determining unit may alternatively be structured as a collimator controlling unit 59a shown in FIG. 19 or a collimator controlling unit 59b shown in FIG. 20, for controlling an X-ray Irradiation quantity by a shielding plate.
Further, according to still another aspect of the present invention, there is provided, as shown in FIG. 21, an X-ray computerized tomography apparatus, comprising: an X-ray detection unit 23 having detecting elements laid out in a plurality of rows in a slice direction, for detecting transmission X-rays from a plurality of directions irradiated from an X-ray beam generation source 21 and transmitted through a subject: a data acquisition unit 27 for collecting transmission data according to the transmission X-rays detected by the X-ray detection unit; an image reconstruction unit 45 for reconstructing a tomographic image of a slice in which an object inside the subject exists, according to the transmission data acquired by the data acquisition unit; and a display unit 47 for displaying an image of transmission data at a predetermined tube position of the X-ray beam generation source from among the transmission data acquired by the data acquisition unit, together with a tomographic image reconstructed by the image reconstruction nit.
Further, according to still another aspect of the present Invention, there is provided, as shown in FIG. 3, an X-ray computerized tomography apparatus, comprising: an X-ray detection unit 23 having detecting elements laid out in a plurality of rows in a slice direction, for detecting transmission X-rays for a plurality of slices from a plurality of directions irradiated from an X-ray beam generation source 21 and transmitted through a subject; a data acquisition unit 27 for acquiring transmission data according to the transmission X-rays detected by the X-ray detection unit: an object position detection unit 31 for detecting a position of an object inside the subject, according to transmission data at a predetermined tube position of the X-ray beam generation source out of the transmission data for a plurality of slices acquired by the data acquisition unit; a visualizing-range detection unit 48 for determining a slice in which an image should be visualized, according to the position detected by the object position detection unit; an image reconstruction unit 45 for reconstructing a tomographic image, according to the transmission data acquired by the data acquisition unit; and a display unit 47 for visualizing the tomographic image of a slice determined by the visualizing-range detection unit 48. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to conduits for apical cannulation of the heart, and more specifically, to inflow cuffs for cannulation of the heart for ventricular assist device placement.
2. Description of Related Art
In the past, a patient requiring a heart transplant was forced to wait and hope that a suitable heart became available before he or she became too sick to undergo a transplant procedure. More recently, devices known as ventricular assist devices (VADs) have been developed. These devices are implantable, programmable pumps that assist the ventricles of the heart, usually the left ventricle, in pumping blood. The VAD presents both the physician and the patient with an alternative to the wait-and-hope approach of the past by allowing patients to be temporarily supported while awaiting transplant. Patients in whom a VAD has been implanted are typically healthy enough to undergo a transplant when a suitable heart becomes available. Studies have also shown that a VAD may be used for longer periods of time, e.g., more than a year.
However, the procedure to implant a VAD is a cardiothoracic surgical procedure, and as such, presents its own risk of complications. In a typical VAD implantation procedure, a xe2x80x9cside-bitingxe2x80x9d clamp is applied to the aorta and the outflow conduit from the VAD is sewn into the aorta. A vascular clamp is placed across the distal portion of the outflow conduit after the xe2x80x9cside-bitingxe2x80x9d clamp is removed in order to de-air the outflow conduit. Once the VAD outflow conduit is attached to the aorta, the inflow conduit is inserted into the apex of the heart. To place the inflow conduit, a hole is cored in the apex of the heart, and pericardial sutures are placed around the hole. After pericardial sutures are placed around the hole cored in the apex, an inflow cuff is inserted into the hole.
The inflow cuff is a short, relatively rigid connector that serves as an interface between the inflow conduit of the VAD and the ventricle. The inflow cuff is usually made of a biocompatible elastomer or plastic, such as silicone, which has been reinforced with a woven mesh. The woven mesh may be comprised of, e.g., woven polyester strands, and serves to rigidify the inflow cuff. A sewing ring made of synthetic felt (e.g., felt composed of poly(tetrafluoroethylene) or polyester strands) is typically provided around the external diameter of the inflow cuff so that the inflow cuff can be secured in the apex hole using the previously positioned pericardial sutures.
After the inflow cuff has been sewn into the apex of the heart, the inflow conduit from the VAD is passed through the inflow cuff and into the ventricle. The inflow cuff and inflow conduit are sized so that the inflow cuff has an internal diameter only slightly larger than the external diameter of the inflow conduit. Once the inflow conduit is inserted into the inflow cuff, the two form a snug fit such that there is essentially no clearance between the inflow conduit and inflow cuff. A simple tie-down is secured around the outer diameter of the inflow cuff to hold the inflow conduit in place.
Following the successful insertion of the inflow conduit into the inflow cuff, blood is permitted to egress the VAD via the outflow conduit and the heart is de-aired. Once the heart has been de-aired, the VAD is turned on and begins to operate.
Although the typical VAD implantation procedure uses an inflow cuff, as described above, to cannulate the apex of the heart, various other devices are known for apical cannulation of the heart, establishing access to the coronary vessels, or controlling blood flow from the heart.
For example, U.S. Pat. No. 4,769,031 to McGough et al. discloses a ventricular access device which is comprised of a conduit and grommet that are inserted into the base of the heart and fed though to the apex such that the left ventricle is cannulated in an inside-to-outside manner. The conduit includes a sharpened, retractable, conical end to facilitate penetration of the left ventricle and a grommet to hold the conduit in place. The grommet disclosed by this patent is complex, and the device has found little clinical applicability.
U.S. Pat. No. 6,053,896 to Wilson et al. discloses an apparatus suitable for a left ventricular drain line. The apparatus includes a duck-bill check valve to avoid pressure overload. The check valve opens in an outward direction to prevent blood from flowing back towards the heart. The apparatus is designed for extracorporeal use only; it does not include structure suitable for cannulation of the left ventricle.
Other devices available include that disclosed by U.S. Pat. No. 5,984,956 to Tweden et al., which describes an alternate type of apparatus for establishing blood flow between a chamber of the heart and one of the coronary vessels. The apparatus is a rigid conduit tube with a beveled end to aid in the penetration of cardiac tissue. It includes neither valve nor trocar, and there is no mention that backflow of blood into the heart may be a problem.
A more generally applicable device is disclosed by U.S. Pat. No. 5,830,222 to Makower, which describes a device and method for transvascular access. The disclosed method and device allow the vascular system to be used as a conduit for other procedures. Additionally, a number of hemostasis-type valves are known for arterial catheterization. However, none of these devices appears to designed for implantation directly into the heart.
A major difficulty with the typical VAD implantation procedure, and most other procedures requiring apical cannulation, is that the heart must be stopped, which requires that the patient be placed on cardiopulmonary bypass (CPB). If the heart is beating while the procedure is performed, the patient will exsanguinate (i.e., a large volume of blood will escape through the inflow cuff before the inflow conduit can be placed). Unfortunately, CPB carries with it an inherent risk of mortality, a risk that is especially acute in a critically ill patient requiring a VAD. Therefore, a need exists for an improved means of implanting a VAD without requiring the use of CPB.
One aspect of the claimed invention relates to an inflow cuff for beating-heart apical cannulation of a heart. The inflow cuff comprises a tube having a first end and a second end. The first end of the tube is constructed and adapted to be inserted into the heart. A sewing ring is disposed on an exterior surface of the tube proximate to the first end. The sewing ring is constructed and adapted to be sutured to an exterior wall of the heart and to retain the first end of the tube at a selected position in the heart. The inflow cuff also comprises a valve disposed on and integral with the interior of the tube. The valve has two or more compliant leaves constructed and adapted to form a releasable seal with one another. The valve prevents blood flow out of the heart when closed and opens in response to pressure directed towards the heart. The valve is disposed further from the first end of the tube than the sewing ring. Additionally, the inflow cuff is constructed and arranged to allow the passage of a trocar through its lumen, wherein the trocar is constructed and arranged to form a hole in the heart of sufficient size to admit the first end of the inflow cuff. The inflow cuff is further constructed and arranged to permit the withdrawal of the trocar and the insertion of a conduit through the lumen of the inflow cuff to establish a route for blood flow out of the heart.
Another aspect of the claimed invention relates to a medical device which may be inserted into the heart of a patient to provide a passageway for bloodflow, specifically bloodflow in a conduit. The medical device comprises an inflow cuff with a valve. The valve prevents blood from flowing out of the heart when closed and opens in response to pressure in the lumen of the inflow cuff directed inward toward the heart. The claimed invention also includes a trocar which is inserted longitudinally through the lumen of the inflow cuff and extends beyond the end of the inflow cuff. The trocar is removable from the lumen of the inflow cuff. The lumen of the inflow cuff is sized to allow the insertion of a conduit into the heart.
A further aspect of the claimed invention relates to a method for providing a passageway for bloodflow out of the heart of a patient. The method comprises inserting an inflow cuff according to the claimed invention into the heart, retracting the blade of the trocar and removing it from the inflow cuff and inserting an inflow conduit through the lumen of the inflow cuff to open the valve. The valve may be a unidirectional or an omni-directional valve. The inflow conduit inserted may be the inflow conduit of a ventricular assist device (VAD). | {
"pile_set_name": "USPTO Backgrounds"
} |
Mammalian protein kinases are important regulators of cellular functions. Because dysfunctions in protein kinase activity have been associated with several diseases and disorders, protein kinases are targets for drug development.
The tyrosine kinase receptor, FMS-like tyrosine kinase 3 (FLT3), is implicated in cancers, including leukemia, such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and myelodysplasia. About one-quarter to one-third of AML patients have FLT3 mutations that lead to constitutive activation of the kinase and downstream signaling pathways. Although in normal humans, FLT3 is expressed mainly by normal myeloid and lymphoid progenitor cells, FLT3 is expressed in the leukemic cells of 70-80% of patients with AML and ALL. Inhibitors that target FLT3 have been reported to be toxic to leukemic cells expressing mutated and/or constitutively-active FLT3. Thus, there is a need to develop potent FLT3 inhibitors that may be used to treat diseases and disorders such as leukemia.
The Abelson non-receptor tyrosine kinase (c-Abl) is involved in signal transduction, via phosphorylation of its substrate proteins. In the cell, c-Abl shuttles between the cytoplasm and nucleus, and its activity is normally tightly regulated through a number of diverse mechanisms. Abl has been implicated in the control of growth-factor and integrin signaling, cell cycle, cell differentiation and neurogenesis, apoptosis, cell adhesion, cytoskeletal structure, and response to DNA damage and oxidative stress.
The c-Abl protein contains approximately 1150 amino-acid residues, organized into a N-terminal cap region, an SH3 and an SH2 domain, a tyrosine kinase domain, a nuclear localization sequence, a DNA-binding domain, and an actin-binding domain.
Chronic myelogenous leukemia (CML) is associated with the Philadelphia chromosomal translocation, between chromosomes 9 and 22. This translocation generates an aberrant fusion between the bcr gene and the gene encoding c-Abl. The resultant Bcr-Abl fusion protein has constitutively active tyrosine-kinase activity. The elevated kinase activity is reported to be the primary causative factor of CML, and is responsible for cellular transformation, loss of growth-factor dependence, and cell proliferation.
The 2-phenylaminopyrimidine compound imatinib (also referred to as STI-571, CGP 57148, or Gleevec) has been identified as a specific and potent inhibitor of Bcr-Abl, as well as two other tyrosine kinases, c-kit and platelet-derived growth factor receptor. Imatinib blocks the tyrosine-kinase activity of these proteins. Imatinib has been reported to be an effective therapeutic agent for the treatment of all stages of CML. However, the majority of patients with advanced-stage or blast crisis CML suffer a relapse despite continued imatinib therapy, due to the development of resistance to the drug. Frequently, the molecular basis for this resistance is the emergence of imatinib-resistant variants of the kinase domain of Bcr-Abl. The most commonly observed underlying amino-acid substitutions include Glu255Lys, Thr315Ile, Tyr293Phe, and Met351Thr.
MET was first identified as a transforming DNA rearrangement (TPR-MET) in a human osteosarcoma cell line that had been treated with N-methyl-N′-nitro-nitrosoguanidine (Cooper et al. 1984). The MET receptor tyrosine kinase (also known as hepatocyte growth factor receptor, HGFR, MET or c-Met) and its ligand hepatocyte growth factor (“HGF”) have numerous biological activities including the stimulation of proliferation, survival, differentiation and morphogenesis, branching tubulogenesis, cell motility and invasive growth. Pathologically, MET has been implicated in the growth, invasion and metastasis of many different forms of cancer including kidney cancer, lung cancer, ovarian cancer, liver cancer and breast cancer. Somatic, activating mutations in MET have been found in human carcinoma metastases and in sporadic cancers such as papillary renal cell carcinoma. The evidence is growing that MET is one of the long-sought oncogenes controlling progression to metastasis and therefore a very interesting target. In addition to cancer there is evidence that MET inhibition may have value in the treatment of various indications including: Listeria invasion, Osteolysis associated with multiple myeloma, Malaria infection, diabetic retinopathies, psoriasis, and arthritis.
The tyrosine kinase RON is the receptor for the macrophage stimulating protein and belongs to the MET family of receptor tyrosine kinases. Like MET, RON is implicated in growth, invasion and metastasis of several different forms of cancer including gastric cancer and bladder cancer.
The Aurora family of serine/theronine kinases is essential for mitotic progression. Expression and activity of the Arurora kinases are tightly regulated during the cell cycle. A variety of proteins having roles in cell division have been identified as Aurora kinase substrates. Based on the known function of the Aurora kinases, inhibition of their activity is believed to disrupt the cell cycle and block proliferation and therefore tumor cell viability. Harrington et al., Nature Medicine, advanced publication online (2004).
3-Phosphoinositide-dependent kinase 1 (PDK1) is a Ser/Thr protein kinase that can phosphorylate and activate a number of kinases in the AGC kinase super family, including Akt/PKB, protein kinase C (PKC), PKC-related kinases (PRK1 and PRK2), p70 ribobsomal S6-kinase (S6K1), and serum and glucocorticoid-regulated kinase (SGK). The first identified PDK1 substrate is the proto-oncogene Akt. Numerous studies have found a high level of activated Akt in a large percentage (30-60%) of common tumor types, including melanoma and breast, lung, gastric, prostate, hematological and ovarian cancers. The PDK1/Akt signaling pathway thus represents an attractive target for the development of small molecule inhibitors that may be useful in the treatment of cancer. Feldman et al., JBC Papers in Press. Published on Mar. 16, 2005 as Manuscript M501367200.
Because kinases have been implicated in numerous diseases and conditions, such as cancer, there is a need to develop new and potent protein kinase inhibitors that can be used for treatment. The present invention fulfills these and other needs in the art. Although certain protein kinases are specifically named herein, the present invention is not limited to inhibitors of these kinases, and, includes, within its scope, inhibitors of related protein kinases, and inhibitors of homologous proteins. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.