text
stringlengths 2
806k
| meta
dict |
---|---|
Cystic fibrosis (CF) is a common lethal genetic disorder affecting approximately 1 in 2000 Caucasians.sup.1. The major pathological manifestations in CF are obstruction of pulmonary, gastrointestinal and pancreatobiliary ducts by accumulation of mucoid secretions ultimately leading to organ failure, particularly in the lung. The basic cellular defect in CF is abnormal chloride transport due to mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.sup.2-7. The CFTR gene encodes a protein required for the normal function of a cAMP regulated chloride channel present in secretory and other cells throughout the body. Despite rapid advances in our knowledge of the structure and function of CFTR, the cellular and physiological basis of the mucus abnormalities in CF remain obscure.
Liver disease is the second leading cause of death in CF, after lung disease .sup.8,9. The major hepatic manifestation of CF is a distinct form of focal biliary cirrhosis, a condition that may be accompanied or preceded by inspissated cosinophilic material resembling the mucoid material found in other organs of CF patients.sup.10. Approximately 20% of surviving adolescents and adults with CF have morphologic evidence of liver disease, and about 10 to 15% of these develop complications of fibrosis, cirrhosis and portal hypertension requiring transplantation.sup.11. Other manifestations of biliary tract disease in CF include biliary sludge and casts, increased incidence of gallstones and common bile duct strictures. Very little is known of the pathogenesis of hepatobiliary disease in CF, and detailed analysis of the inspissated material plugging bile ductules has not been published. The abnormalities in biliary secretion are assumed to be related to the known single gene defect in CF, mutation of the CFTR. Recent studies by Cohen et al.sup.12 have documented that CFTR is localized in liver exclusively to the apical membrane of bile duct cells, but not in hepatocytes. This suggests that the hepatobiliary abnormalities in CF, particularly focal biliary cirrhosis, originate in bile duct cells, possibly by dysregulation of glycoprotein synthesis.
The availability of immortalized human intrahepatic biliary epithelial cells from normal and CF patients allow direct comparison of synthesis and secretion of biliary macromolecules in vitro. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to seals for providing fluid sealing between a housing and a rotating shaft. More particularly, the invention relates to face seals in which a fluid is introduced between portions of the seal faces of the seal.
Conventional mechanical seals are employed in a wide variety of mechanical apparatuses to provide a pressure-tight and fluid-tight seal between a rotating shaft and a stationary housing. The seal is usually positioned about the rotating shaft, which is mounted in and protrudes from the stationary housing. The seal is typically bolted to the housing at the shaft exit, thus preventing loss of pressurized process fluid from the housing. Conventional split mechanical seals include face type mechanical seals, which include a pair of annular sealing rings that are concentrically disposed about the shaft, and axially spaced from each other. The sealing rings each have sealing faces that are biased into physical contact with each other. Usually, one seal ring remains stationary, while the other ring contacts the shaft and rotates therewith. The mechanical seal prevents leakage of the pressurized process fluid to the external environment by biasing the seal ring sealing faces into physical contact with each other. As a result of the repeated physical contact between the faces, abrasion of the seal faces occurs and the seals typically exhibit undesirable wear characteristics and leakage.
The poor wear characteristics of these conventional mechanical face seals necessitate the frequent monitoring and replacement of the seal components, particularly the seal rings. Replacement and repair of damaged seals have been facilitated by seal designs where a portion of the component parts of the mechanical seals are segmented or split. Installation of split or partially split seal components can be performed without necessitating the complete breakdown of the mechanical apparatus and without having to pass the annular seal over an end of the shaft. However, even in split seal designs, significant time is required to replace the seal components, resulting in frequent long periods of down time for the mechanical apparatuses associated with the seal.
The prior art attempted to overcome the above difficulties by employing non-contact mechanical seals that utilize a fluid interposed between the seal ring faces to reduce frictional wear. Conventional mechanical non-contact face seals typically employ spiral type-grooves formed in the hard face of the seal rings to develop a hydrodynamic lifting force that separates the seal faces. The resultant gap allows fluid to be disposed within the gap to prevent abrasion of the seal faces. These types of seals are limited in application because the seals are designed to operate in a unidirectional manner. If the seals are driven in the opposite direction, the seal rings typically do not separate but are pulled or sucked toward each other, thereby increasing wear and ultimately destroying the seals. Other conventional designs employ specially designed spiral grooves that can operate in both directions (bi-directional grooves). These grooves, however, are typically less efficient in separating the seal faces.
Even in mechanical non-contact seal designs a certain amount of seal face abrasion occurs, especially during start-up or during periods in which the shaft is rotating at relatively low speeds. Such abrasion causing wear of the seal components requires the eventual replacement of the seal components.
Few, if any, split-seal designs have been proposed for non-contacting seals. Difficulties have occurred in developing such a seal design due to the increased number of sealing surfaces in a split seal design and the presence of the fluid between the seal faces. The additional seal surfaces between each of the split segments of the seal components, and especially between the seal ring segments, make it difficult to maintain a fluid tight seal throughout the split seal. In addition, the fluid interposed between the seal faces can exert separation forces on the split seal components which can cause separation of the split components and further fluid leakage. For these reasons, there is a need in the art for a split, non-contact mechanical seal design that can provide a fluid-tight seal, while concomitantly providing the advantage of conventional split-seal designs.
As the above described and other prior art seals have proved less than optimal, an object of the present invention is to provide an improved split mechanical seal in which a fluid can be introduced between the seal faces while maintaining a relatively fluid-tight seal.
Another object of the invention is to provide a split mechanical seal operable under a wide range of operating conditions for a wide range of services.
Still another object of the present invention is to provide a split mechanical seal that is relatively easy to assemble or and to disassemble.
Yet another object of the invention is to provide a split mechanical seal that employs fluid at the seal faces to reduce wear while concomitantly preventing or minimizing leakage at the other faces, without compromising seal performance or integrity.
Other general and more specific objects of this invention will in part be obvious and will in part be evident from the drawings and the description which follow. | {
"pile_set_name": "USPTO Backgrounds"
} |
Breast cancer is the most common cancer except for skin cancer among women in the United States. Each year, more than 200,000 American women are diagnosed to have breast cancer. Depending on the type, stage of the cancer and other factors, patients with breast cancer may be treated by surgery, radiation, and other forms of therapy. Surgery involves removal of breast lumps (lumpectomy) or all of the breast tissue (mastectomy). Radiation therapy uses high-energy radiation such as X-rays or gamma rays to destroy cancer cells. Radiation therapy may be used either alone or in conjunction with surgery, chemotherapy or other forms of therapy. Most patients receive radiation therapy after lumpectomy to destroy cancer cells that may remain in the area after lumpectomy. Some patients receive radiation therapy before surgery to shrink the tumor to a manageable size to enable surgical excision.
Various types of radiation therapy are known. Brachytherapy, or internal radiation therapy, involves invasive placement of radioactive substances directly into the breast tissue adjacent to the tumor. Surgical procedures are required to place e.g. catheters into the breast to help guide radioactive materials into the correct area of the breast.
Conventional external beam radiation therapy employs a radiation source outside the body to deliver high energy radiation to the tumor. The radiation source typically includes a relatively large accelerator and electronics, making it difficult to be positioned close to the body for highly localized therapy such as accelerated partial breast irradiation. In addition, because external radiation beam must pass through the skin to reach the tumor, the skin is necessarily subjected to, and often higher, radiation dose than the tumor. Depending on the severity of the skin toxicity of radiation, the resultant damages include erythema (reddening of the skin), which may cause patient discomfort, and desquamation (ulceration and denudation of the skin), which is painful and often requires that the therapy be interrupted. | {
"pile_set_name": "USPTO Backgrounds"
} |
According to a primary aspect, the invention more particularly relates to an installation provided with a free suction fan, the inlet(s) of the fan being at least partially defined peripherally by an annular inlet wall portion that tapers in the inlet direction, and the flow rate being-measured on the suction side of the fan in the vicinity of the inlet opening(s) thereof. Such a method, as well as an apparatus for carrying out the method is known from EP-A1-0419798 (Gebhardt Ventilatoren GmbH).
The performance of ventilation installations is dependent to an essential degree on the total flow rate. A given minimum flow rate is thus required in any ventilation installation for achieving the desired indoor climate, particularly with respect to low pollution percentages in the room air and desired room temperature by regulated supply of heat or cooling with the air.
The greater requirements made on the indoor climate, the more important it is to be able to measure, monitor and regulate the total and partial flows in the ventilation installation. If the total flow rate from a central unit decreases by 10%, the partial flows to each room will also decrease by 10%. If monitoring of the total flow rate is enabled, the partial flows in the entire ventilation installation can thus be indirectly monitored as well.
Several methods are known for flow measurement, particularly partial flows, but these methods either require an extra pressure drop with accompanying energy increase, generation of noise and increased operational costs, or they require high flow rates for achieving sufficient measurement accuracy. Such high flow rates are not normally present in ventilation ducts, and in addition there are often obstacles, e.g. in the form of bends close to the measuring point. Therefore, it is generally not possible to achieve sufficient measurement accuracy with certain simple flow meters, such as so-called Prandtl tubes (which measure dynamic pressure, i.e. the difference between total pressure and static pressure) or temperature-responsive electrical components (e.g. a resistor, the resistance of which depends on the temperature and thus also on the flow rate of the cooling air). For satisfactory measurement accuracy within a large flow range there is further required that the flow meter is placed in a straight duct section with a distance of about 5 duct diameters before and about 3 duct diameters after the measurement point.
In accordance with prior art, and as indicated above, the flow rate in a ventilation installation may be determined on the basis of pressure-drop measurements which can be made at different places in the ventilation installation, e.g. in a duct system connected to a central unit, as is proposed in the published Swedish patent application SE-A-8704163-8 (AB Bahco Ventilation). A pressure difference across a component in the duct system is measured here with the aid of pressure measurement outlets, the pressure drop across the component then being proportional to the square of the flow. The pressure measurement outlets are connected via hoses to a pressure-sensing means in a meter with a pointer for visual indication of the flow. This measurement method is however burdened with the disadvantage that comparatively poor measurement accuracy is obtained, partly due to the comperatively low flow rate in the ducts and partly due to practical installation difficulties.
Another method of flow determination is described in the Swedish patent specification SE-C-455 442 (AB Bahco Ventilation). In this case a filter in a central unit is exchanged for two perforated plates serving as constriction means, pressure sensors then being used to measure the different pressure drops which occur with the filter in place on the one hand, and the constriction plates on the other. On the basis of the flows which have already been measured with the constriction plates located in a similar unit, the flow rate is interpolated or extrapolated when the filter is in place, e.g. graphically with the aid of a diagram.
This method also gives comparatively poor measurement accuracy, and it cannot be used for continuous measurement during operation of the installation, at least not without considerable complications and work from personel.
Yet another known method is described in the published Swedish patent application SE-A-8701663-0 (Flakt AB), the pressure drop measurement being carried out on the suction side of a suction fan in a ventilation installation.
The fan is placed in an apparatus housing and on its pressure side is connected to a duct system. A constriction means is arranged in the inlet portion of the housing on the suction side of the fan and has two pressure tappings connected to a differential pressure measurement device for determining the pressure drop and the flow rate.
The constriction means, e.g. in the form of adjustable baffles is adjustable between a completely open position and a maximum constriction position, i.e. the measurement position, which enables determination of an empirical graph of the relationship between the measured pressure difference in the measurement position and the corresponding flow rate.
This known apparatus thus requires a considerable constriction of the total flow rate during measurement while the apparatus is in operation, which results in increased need of energy, increased operational costs and disturbing noise.
Both in measurement of the total flow rate in or in connection with an air-conditioning unit (apparatus housing) and in measurement of the partial flows in ducts it has therefore been necessary to compromise energy demand and measurement accuracy. No suitable method for readily determining the total flow rate in a ventilation installation has been provided so far. An attempt has been made to measure the pressure drop in a measurement chamber provided with constrictions and situated in the outlet part of a fan (PCT/FI88/00149, publication No. W89/02581-Imatera) but even this method has turned out to be unsuitable, due to complicated apparatus and comparatively high costs.
Attempts have also been made to measure the local flow rate in the vicinity of the inlet opening of a fan. See EP-A1-0419798 (Gebhardt Ventilation GmbH, mentioned in the opening paragraph) and JP-A-59 13 1116 (Nihon Furooseru K.K.) In both these cases, the measurement is carried out by means of a tapping hole, made in the annular inlet wall portion, and an adjoining pipe or hose for sensing the static pressure at the surface of the inlet wall portion of the fan. However, in the region closest to the surface of the inlet wall portion, the air flow is somewhat irregular and possibly subject to frictional disturbances, which depend on the exact geometrical configuration and the smoothness of the surface and the flow rate. Therefore, the static pressure measured in such a way is generally not representative of the total flow rate, in particular when using damper control of the flow at a constant rotational speed of the fan. Moreover, of course, such a method can only be used upon modifying the inside structure of ordinary fans. There is also risk of clogging of the tapping holes being freely exposed in the inlet. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an engine overheat detection system and more particularly to an improved engine overheat detection system that is most suitable to a marine engine.
2. Description of Related Art
Watercraft powered by inboard or outboard motors typically include an electrical system. The motor includes a water propulsion device which is powered by an internal combustion engine. As is well known, an ignition system is utilized to fire one or more ignition elements corresponding to each combustion chamber of the engine, igniting the air and fuel mixture in each combustion chamber of the engine.
These engines commonly include a liquid cooling system. Liquid coolant in the form of water in which the watercraft is operating is supplied to various cooling passages or jackets associated with the engine. In some instances, the cooling system is arranged such that the coolant drains from the coolant jackets when the engine is stopped.
In order to prevent engine overheating, an overheat detection system may be associated with the engine. The detection system includes a sensor for sensing the temperature of the engine. The output of the sensor may be used by an engine control unit to shut off the engine by disabling the ignition system.
This system has the drawback that at certain times a condition of engine overheat may be indicated when in fact the engine is not in an overheat condition. This drawback is likely to happen particularly in connection with an engine that operates on a four stroke principle. Because such a four stroke engine has an oil pan therein for lubrication and lubricant contained in this oil pan tends to accumulate much heat during the engine operation.
Referring to FIG. 1, when the engine is operating normally and coolant is in the water jacket(s), the temperature inside the water jacket Tw remains lower than a predetermined high temperature or threshold temperature Tlim (85.degree. C. in FIG. 1). When the engine is shut off, however, the coolant drains from the jacket. In addition, the temperature To of the lubricant contained in the oil pan is still high for some time after the engine is stopped. Because the lubricant temperature To is around 130.degree. C. when the engine is running and the temperature To is hard to fall down. Since no coolant remains in the water jacket and the lubricant temperature To is high, the temperature in the jacket rises immediately after the engine has been stopped. The temperature may rise to a point well above the predetermined high temperature Tlim. Then, with the lubricant temperature To falling down, the temperature inside the water jacket Tw falls back below the temperature Tlim.
If the engine is subsequently restarted before the temperature in the jacket Tw falls back below the temperature Tlim, the overheat detection system will indicate that the engine is overheated. This is due primarily because coolant is not yet being supplied to the cooling jacket(s).
In order to prevent the wrong determination of overheat from being occurring when the engine is restarted immediately after being stopped, one idea may be proposed wherein no overheat detection is made during a predetermined time after the engine is started. FIG. 2 shows a flowchart of an overheat detection routine in accordance with this idea as an example.
Immediately after the engine is started, the program goes to a step S1 and checks if an overheat sensor (thermal switch) is on or off. If it is on, i.e., the temperature inside the water jacket Tw is higher than the predetermined high temperature Tlim, the program goes to a step S2 to determine if the engine has been just started or not. This state is represented by that the engine speed is less than 2000 rpm. If this is negative, the program goes to a step S3 and prevents an overheat signal from being output for 20 seconds. Then, the program goes to a step S4 to check again with the overheat sensor if it is still on. If it is positive, the program permits to output an overheat signal in a step S6. Meanwhile, if the engine speed is equal to or greater than 2000 rpm in the step S2, the program goes to a step S5 and prevents the overheat signal from being output for 90 seconds. Thus, the wrong determination of overheat is prevented. The method and system for this overheat detection will be described more in detail later.
However, another problem arises if the prevention time (indicated as Ts in FIG. 1) is relatively long. That is, in the event an actual overheat happens, no overheat signal is provided during the prevention time and the engine must operates under this overheat condition for a while.
It is, therefore, a principal object to provide an improved engine overheat detection system which overcomes the above-stated problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
There have been many developments in connection with improving comfort, wear and/or longevity of cosmetic compositions for the face, eye, lips nails or hair. For example, U.S. Pat. No. 5,985,258 is directed to eye make-up compositions comprising water insoluble polymeric material in the form of an aqueous emulsion and a water-soluble, film-forming polymer that are intended to improve wear benefits. U.S. Pat. No. 6,074,054 teaches a composition for application to the lips comprising silicone resins and dimethicone gums of high viscosity. U.S. Pat. No. 6,464,967 teaches the use of specific polyolefin waxes in mascara and eyebrow compositions to improve application, comfort and wear. U.S. Pat. No. 6,423,306 discloses transfer free compositions with block copolymers and additional film formers. Mixtures of waxes have been used to combine properties such as film hardness and adhesion to the lash. See, e.g. WO95/15741. | {
"pile_set_name": "USPTO Backgrounds"
} |
The rotor of a direct drive generator for wind turbines has a diameter of more than 4 m, dependent on the generator power and torque. The generator rotor of the Siemens Wind Power direct drive turbines for example has an outer diameter of 4.2 m for the SWP 3.0-101 and an outer diameter of 6.5 m for the SWP 6.0-154 and a length of around 2.5 m.
The rotor consists of a front plate, a rotor ring with a certain yoke height and a bearing ring. The complete rotor is also called rotor housing because in the Siemens Wind Power direct drive turbines the rotor is located outside of the stator and acts therefore like a house. The rotor outer surface is directly in contact with the ambient air.
The rotor housing of all the direct drive Siemens Wind Power generators is a single welded and machined steel component. The rotor housing consists of two large cones, which are welded together with a forged steel ring and a rolled steel yoke. This rotor housing is then machined in a large CNC machine.
Previously, it was especially bearings in large DC and AC motors with few poles that risked current flow. In modern electric machines one should be aware of the risk of current flow in both the bearing and the machine's drive chain. This is due to the ever increasing use of frequency converters. In recent years there has been an increase in motors controlled by PWM inverters (variable frequency drives) in industrial HVAC, pumping, and processing equipment. VFD's induce voltage onto the shaft of the driven motor may cause pitting, fluting and finally bearing and motor failure.
Damaged bearings, for instance, can cause generator failures, which lead to unplanned downtime and costly repairs. A single month's wait for parts is unrealistically short considering the worldwide shortage of bearings and other key components. On top of lost revenue is the cost of repairing failed bearings due to for example new bearings, labour, slip rings, and other parts, but also enormous expense of renting and transporting the large crane needed for many repairs must be accounted for.
Bearing currents caused by stator-to-rotor capacitive coupling must be diverted from the shaft by providing a least resistance path to ground other than the bearing themselves.
Moreover, it is known to prevent damage of bearings due to induced shaft currents, by insulating the bearing from the shaft currents and/or by providing an alternative path for the shaft currents to flow. In current designs of direct drive generators, fiberglass laminates are used to isolate the bearing from shaft induced voltage. Fiber glass laminates acts as a good insulation for direct current and low frequency current to enter the bearing, but this is not useful for very high frequency currents, as the capacitance impedance reduces as frequency increases. In current designs shaft grounding brushes are also used to ground stray currents, but this is also not useful to ground very high frequency currents.
The problem addressed in this document is related to generator shaft currents where induced current causes damage to the main bearing of a wind turbine generator. Therefore an electrical insulation of the main bearing may be needed to avoid failure of the generator. Such an electrical insulation increases the effort for producing a direct drive generator. Hence, there may be a need to produce a direct drive generator with an outer rotor in an easier and cost reducing manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computer systems, as with other operating environments, have found numerous applications in an industrial automation environment and can be found ubiquitously employed throughout, e.g., to control the operation of a device, machine, process, and the like. However, rather than entering commands though a single interface, the size of the operation being controlled may require an operator to be positioned at a plurality of locations (e.g., operator stations) to facilitate full understanding and operation of the machine as the machine runs through its series of operations in accord with the process requirements being conducted therewith.
For example, a cold chamber die casting machine with a locking force rated in the thousands of tons can be of a considerable size requiring an operator to position themselves in a number of locations with respect to the die casting machine during operation, such as at the furnace during loading of liquid metal into the shot sleeve, by an extraction mechanism (e.g., a robot) during removal of a casting, by the spray system during spraying of the die cavity with lubricant, etc. Similar requirements can occur with a large forging press, sheet metal press, and other machines of such scale that an operator cannot effectively review operation of the machine from a singular location. Alternatively, a manufacturing process may comprise of a plurality of machines connected by material handling devices (e.g., conveyors) and a number of operator stations are located throughout the manufacturing process enabling an operator to control the process from a number of vantage points. Further, rather than the operator controlling the machine from a single interface (e.g., a human machine interface (HMI), graphical user interface (GUI), terminal, and the like), a plurality of interfaces may be associated with the machine, e.g., an interface located at each of the operator stations. During operation of a machine, the operator may generate control commands from a first interface and then move on to a second interface and control the machine from there, and subsequently move to a third interface and further control the machine from the third interface.
A variety of control software is available to control machines with some code languages and code types being of open source and others being proprietary to a particular manufacturer (e.g., manufacturer of industrial equipment). Further, there are different ways of controlling a machine based upon capturing and transmitting data, where the data can be forwarded from an interface to a controller, or a controller can request data (e.g., by polling or other sequential and non-sequential manners), and the like. However, a situation can arise where control data is received from a plurality of interfaces concurrently or in a sequential manner. For example, machine control may be performed from any of three interfaces associated with a controller, where, for example, the control process is a binary one such as control of a jog operation, with a data value of “0” equating to perform “no jog” operation, and a data value of “1” equating to perform “jog” operation.
A jog process can involve an operator initiating a jog motion to facilitate intermittent motion of a machine component with respect to a work piece, datum, or the like. For example, positioning of a die in a die casting machine, locating a machine head with respect to a work piece, etc. Rather than being a command for continuous movement of a component, e.g., placement of a machine head, a jog command is a command resulting in a predefined amount of displacement (e.g., motion) for each generation of a jog request. For example, pressing of a “move” button can cause a machine head to move continuously in a certain direction while the move button is pressed. However, a “jog” button can be programmed such that only a predefined degree of displacement is effected for a single press of the button and the button has to be “released” (e.g., finger pressure removed from button) before the button can be re-pressed for the next jog request to be effected. For example, a machine can be configured, such that when the operator executes (e.g., presses) the jog button the machine head travels a prescribed distance, e.g., ten thousands of an inch, one millimeter, 10 microns, etc.
However, if signals are being received from a plurality of interfaces a problem can occur where a controller, associated with the plurality of interfaces, is using a single jog status field to determine whether a machine jog is to be performed. For example, in a situation where jog request signals are being generated by any or all of three interfaces coupled to a controller, and the jog request signals each update a single jog status field, then a jog status received from a first interface can be overwritten by a jog status subsequently received from a second interface. In this scenario, a situation can occur where a Jog signal is received from interface #1, but a subsequent no jog signal is received from interface #2. Upon receiving a jog signal from interface #1 a jog status field is set to a value of “1”, however, upon receiving the subsequent no jog signal from interface #2, the jog status field is set to a value of “0”. Given that the no jog signal received from interface #2 is subsequent to the jog signal received from interface #1, the interface #1 signal is overwritten by the interface #2 signal, and when the jog status field is accessed, a value of “0” is read, and no machine jog is performed, even though the operator had activated a jog from interface #1. Hence, in a situation where a plurality of interfaces are writing data, such as jog data signals, at a rate sufficient to support machine operations, and the last setting of a jog status field is continually read as being set to “0”, perform no jog, then no matter what the values were applied to the jog status field between a prior reading of the jog status field and a subsequent reading of the jog status field, a controller considers the value of the jog status field to have continually been set to “0” and no jog is performed even though an operator at interface #3 is pressing the jog button.
For the sake of readability an interface, HMI, GUI, and the like are referred to as a interface, however, it is to be appreciated that the term interface relates to any device, machine, component, software, etc., facilitating communication between an entity controlling an operation and a device, machine, component, software, etc., effecting or performing the operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to a lock arrangement for securing a pair of panels together, and more specifically relates to a lock means including a rotatable bolt held in a locked-position by a resilient means.
Wall, panels and the like, were secured together, heretofore, by various means. For example, brackets attached to the rear side of panels with screws or nails, were commonly used. However, the disassembling and re-assembling of the panels frequently weakened and sometimes even caused cracks in the panel structure, and made them unsuitable for supporting any objects other than those having minimal weight. Panels were also secured together by press fitting one into the other, such as those formed with tongues and grooves. Many of these type panels due to careless manufacturing did not provide a secure and tight press fit with each other. Also, many that initially secured firmly together lost their tightness in time, and eventually would slip out of contact.
The subject invention on the other hand, provides a removable lock for firmly securing one panel to another panel. The panels locked in accordance with the invention herein are easily assembled or disassembled, without the necessity of screwing into or out from the panel structure. Nevertheless, the attachment of the panel is tight and secure and there is virtually no possibility of the panel connection weakening and the panels slipping away from each other.
It is therefore a primary object of the invention to provide a lock means for removably securing one panel to another.
Another object is to provide a lock for securing two panels together which are easily connected or disconnected.
Another object is to provide means for securely attaching two panels together without requiring screws or nails to embed into the panel structure.
Another object is to provide a lock means including a channelled bracket for securely attaching a plurality of panels. A related object is to provide such bracket with four entranceways, so that the panels may be connected into an end to end relationship, or perpendicular to each other. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present application relates to a transistor suitable for being produced at a low temperature, a method of producing the transistor, and a display.
A field-effect transistor (FET) is used as a thin-film transistor (TFT) in many electronic units. The thin-film transistor is provided with a gate electrode, a gate insulating layer, a semiconductor layer, and a source electrode as well as a drain electrode on a substrate. According to the arrangement of the gate electrode of these elements, the thin-film transistors are broadly divided into two types of structure: top-gate type; and bottom-gate type. Also, according to the arrangement of the source electrode and the drain electrode, the thin-film transistors are divided into a top-contact type and a bottom-contact type.
For example, in the top-gate type TFT structure, the semiconductor layer, the gate insulating layer, the gate electrode, and the source/drain electrodes are provided in this order from the substrate side. In the bottom-gate type TFT structure, the gate electrode, the gate insulating layer, the semiconductor layer, and the source/drain electrodes are provided in this order from the substrate side. Currently, an inorganic substance such as silicon (Si) is often used as the semiconductor layer in such a TFT. However, an expensive large-scale unit is necessary in forming an inorganic semiconductor layer and therefore, development of lower-cost and simply-manufacturable TFTs has been desired.
One of such lower-cost TFTs is a TFT in which an organic semiconductor material is used for the semiconductor layer. Development of this type of TFT has been pursued vigorously. In forming a semiconductor layer with this organic semiconductor material, the organic semiconductor material is dissolved in an organic solvent, and then the organic solvent is dried from the applied resultant. Therefore, the organic semiconductor material enables to form a semiconductor layer at extremely low temperature, compared to the procedure in the past of forming an inorganic semiconductor layer made of amorphous silicon or the like. The organic semiconductor is allowed to be changed into an ink state. Therefore, it is possible to form an organic semiconductor layer in a low-temperature and easy production process by, for instance, coating deposition such as printing methods (see International Publication No. WO2003/016599, for example). In addition, this organic semiconductor layer is capable of being formed by drying an organic solvent having a low boiling point. Therefore, it is possible to produce this organic semiconductor layer at an extremely low temperature, as compared with a process of forming an inorganic semiconductor layer made of currently-available amorphous silicon or the like. This allows a plastic film or the like to be used, in place of a heat-resistant silicon substrate or glass substrate usually used, thereby making it possible to produce a flexible device.
It is also possible to control physical properties and performance of the organic semiconductor material, by designing the constituent molecules thereof. Moreover, the organic semiconductor layer is lighter than the inorganic semiconductor layer, and has flexibility. This organic semiconductor is likely to realize a low cost, high performance, flexibility, and weight reduction. Therefore, the organic semiconductor is expected to be used in organic light-emitting devices, and organic electronics devices such as organic solar battery, in addition to the TFTs (FETs).
Meanwhile, for the TFT using the organic semiconductor layer, forming layers other than the semiconductor layer at a low temperature has been also studied. Each of the electrodes is preferably made of metal, and is, for example, designed to obtain conductivity by dispersing silver nano-particles to an organic solvent to be in an ink state, and sintering the resultant at a low temperature (for example, about 150° C.). In addition, for each of the gate insulating layer and the like, an inorganic material such as silicon oxide (SiO2) employed in the TFT with the inorganic semiconductor layer is not used. Instead, a film formed by applying a polymer organic material being dissolved in a solvent is used for each of the gate insulating layer and the like. It is possible to form the insulating layer and the like in a low-temperature production process, without impairing the flexibility of the organic semiconductor. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. FIELD OF THE INVENTION
The present invention relates to electroviscous fluids.
2. DESCRIPTION OF THE PRIOR ART
It is known that certain suspensions consisting of finely devided particles dispersed in a highly non-conductive liquid exhibit a remarkable increase in viscosity in an applied electric field. This effect is termed the Winslow Effect and these suspensions are termed electroviscous fluid of Winslow type. Most electroviscous fluids proposed heretofore comprise an electrically insulating liquid and, dispersed therein, a quantity of water-containing fine particles and are of Winslow type. According to two leading theories on the mechanism by which the electroviscous effect occurs, the dielectric polarization and the hydrogen bonding due to water existing on the surfaces of particles form bridges of the particles in an applied electric field. As the methods of increasing the electroviscous effect, there are proposed many types of fine particles useful for electroviscous fluids including, for example, particles obtained by incorporating an aqueous solution of a metal ion or a polar substance in between the layers of a substance having a lamination layer structure such as mica and vermiculite [Japanese Patent Publication (Kokoku) No. 5117/1974], water-containing particles of strongly acidic or strongly basic ion exchangers [Japanese Patent Publication (Kokai) No. 92278/1975], water-containing particles of a high water-absorptive resin having an acidic group such as polyacrylic acid (U.S. Pat. No. 4,129,513), particles of pyrogenic silica in which an acid such as formic acid, maleic acid and a base such as aniline, ethylenediamine, easily capable of forming a hydrogen bond, have been incorporated instead of water (U.S. Pat. No. 3,427,247), as particles containing no water, particles of a ferroelectric substance such as potassium titanate [J. Appl. Phys. 38 (1) 67 (1967) ], and particles of an organic semiconductor such as lamp black [J. Appl. Phys. 21, 402 (1950)] and poly(acene-quinone)polymer (U.S. Pat. No. 4,687,589). However, the electroviscous fluids comprising the above described particles have some problems. More specifically, according to the electro-viscous fluids using water-containing particles, due to the presence of water, the water migrates into both the inside of the particles and the vehicle of the particles or water is vaporized or electrolyzed and the current generated is rapidly increased with elevated temperatures. According to the electroviscous fluids using particles of an acid and a base and particles of a semiconducor, the current is rapidly increased with elevated temperature. Further, according to the electroviscous fluids using particles of a ferroelectric substance, the electroviscous effect is low.
In general, the electroviscous fluids proposed heretofore exhibit the electroviscous effect by the application of an electric potential with either an alternating current or a direct current but when an electric potential is continuously applied for a long period of time, such a tendency that the electric potential is slowly decreased or dielectric breakdown easily occurs can be observed. In order to prevent the tendency, the use of an electric potential with a pulsating direct current is proposed (U.K. Patent No. 2125230). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention concerns a rear suspension for a vehicle such as a bicycle, motorcycle or similar, of the type comprising a chassis, hereafter called an underframe, a swing arm integral with the underframe and bearing the hub axle of a rear drive wheel, and a shock absorber whose ends are respectively integral with the underframe and swing arm, said suspension providing an xe2x80x9canti-bobbingxe2x80x9d effect and leaving clear the space between the seat and rear wheel to allow the fixation of a mud guard, carrier rack or similar.
In the area of mountain-biking, called MTB, rear suspensions are well known comprising a swing arm articulated in the lower part of the seat tube cooperating with a shock absorber. This is the case, for example, with the xe2x80x9cXC FULLxe2x80x9d bike marketed by LAPIERRE; the swing arm pivots around a fixed axle parallel to the axle of the engaging sprocket which is borne by the crankset positioned at the intersection between the down tube and the seat tube. In addition, the ends of the shock absorber are integral with the swing arm and respectively with the top tube connecting the seat tube to the bicycle fork or an intermediate tube extending globally from the crankset to the top tube, said seat tube being non-continuous to allow passage of the shock absorber.
This type of rear suspension has the disadvantage of taking up the space at the rear of the bicycle, i.e. the space between the rear wheel and the seat, so that it is impossible to fix a rear mudguard, being the cause therefore of various projections of mud, water, etc. onto the cyclist""s back in the event of rain for example. Also, in the event of sudden fast pedalling, such as cranking to pick up speed or if the cyclist stands on the pedals when climbing a hill etc., this type of rear suspension gives rise to a so-called xe2x80x9cbobbing effectxe2x80x9d leading to cyclic bouncing of the suspension even on level ground. Therefore, in addition to the cycling discomfort this causes, part of the torque drive provided by the cyclist is dispersed in the shock absorber instead of contributing to the momentum of the bicycle.
With this type of rear suspension, the upper tensioned strand of the transmission chain extending between the engaging sprocket, borne by the crankset, and the engaged sprocket, integral with the rear drive wheel, extends above the rotation axle of the swing arm relative to the underframe thereby setting up a torque proportional to the tension of the upper strand and at a distance which separates the upper strand of the chain from the centre of rotation of the swing arm, which tends to cause the swing arm to pivot upwards thereby compressing the shock absorber when the cyclist pushes on the pedals, the bicycle being in static equilibrium, i.e. when mounted by a cyclist. When the torque drive applied to the pedals by the cyclist is relatively low and constant, the drive applied to the swing arm and consequently the downward movement of the shock absorber are equally small and constant, so that the cyclist does not perceive any bobbing effect even though part of the torque drive is dispersed within the shock absorber, thereby reducing the efficacy of pedalling. However, when the cyclist pedals harder or when the cyclist stands on the pedals to pick up speed, the position of the centre of gravity of the bicycle/cyclist pair varies; this causes a vertical oscillating movement of the bicycle frame so that the torque drive is suddenly increased, causing an increase in the drive applied to the swing arm which compresses the shock absorber and gives rise to the bobbing effect rapidly perceived by the cyclist. Therefore when pedalling energetically there is a strong increase in the torque drive which becomes cyclical and with each pedal movement it increases the drive applied to the swing arm which compresses the shock absorber giving rise to a bobbing effect, the latter being characterized by a parasitic alternate compression movement of the bicycle""s front and rear suspensions in rhythm with the rate of pedalling which hampers the cyclist.
To overcome this disadvantage, a bicycle rear suspension has already been imagined which provides a so-called xe2x80x9canti-bobbingxe2x80x9d effect; this is the case for example in French patent FR 2.774.966 filed by the Applicant describing a rear bicycle suspension comprising a swing arm guided by two connecting rods. The orientation of the two rods is set such that the intersection of their respective axes passing through the centre of their two pivots, said intersection materializing the instantaneous centre of rotation of said swing arm, is positioned in the upper anterior quadrant of the point defined by a horizontal axis and a vertical axis converging towards the centre of the crankset, and are articulated on said swing arm at two points notably distant from one another. The suspension also comprises a shock absorber whose ends are respectively integral with the swing arm and the seat tube, said shock absorber extending globally parallel to said seat tube at its rear.
Even though this type of suspension provides an anti-bobbing effect, it has the disadvantage of taking up space at the rear of the bicycle so that it is not possible to fix a rear mudguard, carrier rack or similar. Also, even though this type of suspension provides a particularly effective anti-bobbing effect, it nevertheless has the disadvantage of imparting insufficient rigidity to the underframe/suspension assembly which, when intensive demand is placed on the bicycle, is detrimental to the general performance of the bicycle making it uncomfortable.
One of the purposes of the invention is therefore to overcome these disadvantages by putting forward a rear suspension for a bicycle, or similar, formed of a swing arm connecting the axle of the rear wheel to the upright of the underframe, and a shock absorber whose ends are integral with the underframe and swing arm respectively, said underframe and/or swing arm comprising means making it possible to clear the space between the seat and rear wheel to allow fixation of a rear mudguard or a carrier rack for example, while providing an anti-bobbing effect.
For this purpose, the invention provides for an anti-bobbing system of the rear suspension of a vehicle, such as a bicycle, motorcycle or similar, of the type comprising an underframe, swing arm integral with the underframe bearing the hub axle of a drive wheel, and a shock absorber whose ends are respectively integral with the underframe and swing arm, the torque drive being transmitted to the drive wheel via a chain extending between an engaging sprocket integral with the underframe and an engaged sprocket integral with the hub axle of the drive wheel, said chain between the engaging and engaged sprockets forming two strands, an upper tensioned strand transmitting the torque drive to the drive wheel and a lower so-called return strand, the underframe formed of a globally vertical seat tube, a top tube and a down tube, the top tube and the down tube being integral with a head or steering tube bearing a fork, the axle of the engaging sprocket being positioned at the intersection of the seat tube and down tube and/or the swing arm comprising means so that the upper strand of the transmission chain or the straight line extending it passes through the instantaneous centre of rotation C of the swing arm when the vehicle is in a position of static equilibrium and so that said upper strand of the chain is located below the instantaneous centre of C of the swing arm when the hub of the drive wheel is located above its reference position Pr corresponding to the position of the hub axle of the drive wheel when the vehicle is in a position of static equilibrium. The rear suspension is remarkable in that the swing arm is made integral via at least two articulation means with the underframe whose intersection of the straight lines D1, D2 passing through the rotation axles of each articulation means is positioned in the upper posterior quadrant of a point defined by a horizontal axis H and a vertical axis V converging towards to the axle of the engaging sprocket and in that the ends of the shock absorber are respectively integral with the swing arm or the articulation means joining the swing arm to the down tube, and with a hanger of the down tube, said hanger extending along the plane containing the underframe tubes, said shock absorber extending in front of the down tube i.e. between the down tube and the fork bearing the front wheel, globally parallel to the latter or between the tubes forming the underframe in the plane containing the latter.
It is can be easily understood that when the vehicle is ridden over perfectly level ground, the upper strand of the transmission chain passing through the instantaneous rotation centre of the swing arm, i.e. the rotation centre of the swing arm at each time t, the entirety of the torque drive is transmitted to the drive wheel, and that when the cyclist changes rhythm and pedals harder for example the upper strand of the chain being located below the instantaneous rotation centre of the swing arm, a restoring moment is set up proportional to the tension of the upper strand of the chain and at a distance separating the upper strand and the instantaneous centre of rotation of the swing arm, which tends to return the swing arm to its initial position. This restoring moment is set up whenever the cyclist pedals harder, thereby avoiding the onset of the bobbing effect. Obviously, when overcoming an obstacle, the restoring moment adds itself to the restoring force of the shock absorber, considerably improving motive power when climbing hills for example. Also, unlike the teaching of French patent FR 2.774.966 in which the instantaneous centre of rotation of the swing arm is located in the upper anterior quadrant of the bicycle, the position of the instantaneous centre of rotation is located in the upper posterior quadrant and the position of the shock absorber on the down tube of the bicycle imparts greater rigidity to the underframe/suspension assembly making it possible to clear the space between the rear wheel and the seat so as to fix a rear mudguard, carrier rack or similar.
According to one particularly advantageous characteristic of the rear suspension of the invention, the instantaneous centre of rotation of the swing arm moves globally along a straight line perpendicular to the upper strand of the chain when the hub axle of the drive wheel moves, so that the restoring moment is proportional to the movement of the hub axle of the drive wheel. | {
"pile_set_name": "USPTO Backgrounds"
} |
Rock bolts are principally used in mining and tunneling.
A rock bolt generally is introduced into a borehole and may be grouted in place, an end of the anchor extending out of the hole and being threaded to accommodate a nut which is braced against a bearing plate.
The grouting may be any hardenable mass, e.g. a synthetic resin and usually a two-component synthetic resin which can be provided in a cartridge which is disrupted by the insertion of the anchor. The latter may be rotated to mix the two components and then is merely permitted to be locked in place in the hardening mass.
A rigid rock bolt, anchor or similar stabilizer provides for reinforcement of the rock or other structure due to the low yielding properties or characteristics of the anchor, and in conjunction with a full grouting because of the strong bond with the rock. The reinforcement action is, however, reduced or eliminated when stress-release movements arise i.e. expansion or contraction or shifting sets in to crack the structure around the anchor
However, one constantly has to expect stress-release or stress-shifting movements of the rock, particularly in the case of underground mining or tunneling. When these movements occur the anchors lose their value, and use must be made of expansion or yielding types of rock bolts or anchors to compensate for such movement. This latter type of anchor allows adaptation of the so-called rock armoring to movements of the surrounding rock matter or the like environment, due to the definable expansion or tensile properties of the rock bolt.
Such adaptation to the respective movements of the host environment or rock is only then feasible with an anchor rod when it is made of a material which has corresponding elastic, expanding or, in the most general sense, yielding properties. For this adaptation, furthermore, the anchor rod is securely clamped in place or tensioned at the toe end of the borehole by being securely cemented at the base of the borehole. Such affixing of the anchor is also done at the borehole mouth. However, to permit the extension or accommodation movement of the anchor, at least a portion of its length must be allowed free play in the borehole.
It is known to secure or safeguard the distance of free play or movement of an extensible anchor, whereby the anchor is equipped with a flexible hose-like compensating or slip tube or sleeve which extends between the fixed regions of the anchor in the base of the borehole and in the vicinity of the borehole mouth. The anchor rod is otherwise securely cemented into the borehole over the respective full length, e.g. by hydraulic cement or synthetic resin grout or similar compositions. Utilization of a slip element enhances the extensibility of the anchor in the region where the free play is permitted.
It is a disadvantage of the known anchor that it does not provide a sufficiently high reinforcement of the surrounding rock because of the nature of this sleeve and the surface configuration thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to positioning technology, in particular, hybrid positioning with blending multiple location technologies.
Location based services are an emerging area of mobile applications that leverages the ability of new devices to calculate their current geographic position and report that to a user or to a service. Some examples of these services include identifying a location of a person or an object in the context of entertainment, work, health or personal life.
Location based services require instantaneous reliable positioning system that can work everywhere. Since no single positioning technology can meet such requirement, combining different positioning technologies to compensate for individual technology's own limitation can provide better results. Such combinations typically include Global Navigation Satellite System (GNSS) along with other non-GNSS positioning systems, such as Wi-Fi and/or cellular positioning technologies. A Hybrid Positioning Engine (HPE) utilizes multiple positioning technologies actively collaborating in order to provide highly accurate location estimation. The limitations of conventional hybrid positioning systems are discussed and a new algorithm for hybrid positioning with Wi-Fi and GPS blending is presented. Wi-Fi discussed herein includes any wireless local area network product that is based on the IEEE 802.11 standards. It should be noted that Wi-Fi is used herein as a non-limiting example of a wireless local area network product. GPS discussed herein includes any satellite positioning system operable to provide location and time information.
Global Positioning System (GPS) is a GNSS that provides autonomous geo-spatial positioning with global coverage using satellites. GNSS allows small electronic receivers to determine their location to within a few meters using time signals transmitted along a Line-Of-Sight (LOS) by radio from satellites. GPS provides highly accurate location results in “open sky” environments, like rural areas and on highways. GPS performs poorly in urban areas where buildings block the view of satellites, and it doesn't provide any coverage inside of buildings.
In indoor environments or in the dense urban canyons, where the low level satellite based signals are critically compromised by obscuration and environmental degradation, Wi-Fi based positioning systems provide better results. Wi-Fi positioning is rapidly gaining acceptance as a complement and supplement to GNSS positioning for outdoor and indoor environments. Wi-Fi hotspots are prevalent in the very areas where GNSS starts to struggle and many smart devices are already equipped with Wi-Fi technology that can support positioning applications.
Performance of GNSS receivers is often poor in deep urban canyons for a number of factors such as low number of visible satellites and heavy multipath caused by multiple high-rises. Wi-Fi positioning works well where GPS performs poorly by utilizing large installed user base of Wi-Fi Access Points (AP). Additionally, low range of Wi-Fi enables reasonable positioning accuracy. An AP or a hotspot has a range of about 20 meters indoors and a greater range outdoors. Hotspot coverage can comprise an area as small as a single room with walls that block radio signals or as large as many square miles, covered by multiple overlapping APs.
The end user needs to know their location awareness anywhere and everywhere, however, no one location technology provides adequate performance in all locations. Blending different technologies for positioning, for example, Wi-Fi and GPS, provides a solution for overall good positioning accuracy. However, for efficient blending certain key points need to be considered. Since GPS performance can degrade quite sharply in deep urban canyons, it's desirable to recognize this early and prevent large GPS drifts. If blending only kicks in when GPS has drifted too much, it will not help correct the UPS back to the right path. Also, blending should be performed to help GPS when GPS needs it, otherwise it may hurt GPS performance. In a situation, when GPS positioning is already good, blending with poor Wi-Fi positioning may result in overall poor hybrid positioning as compared to GPS only positioning. Lastly, Wi-Fi positioning accuracy needs to be assessed before blending with GPS. If Wi-Fi positioning itself is not good then blending it with GPS will not provide good results. Typically, GPS and Wi-Fi fixes are blended in a feed-forward fashion using a weighted sum of their fixes, which is further explained with the help of FIG. 1.
FIG. 1 illustrates a conventional positioning system 100 using feed forward blending.
As illustrated in the figure, conventional positioning system 100 includes an AP database 102, a Wi-Fi Position Engine (PE) 104, a Wi-Fi scan module 106, a hybrid PE 108 and a GNSS PE 110. For illustrative purposes, AP database 102. Wi-Fi PE 104, Wi-Fi scan module 106, hybrid PE 108 and GNSS PE 110 are shown as distinct elements, however, in some cases, at least two of AP database 102, Wi-Fi PE 104, Wi-Fi scan module 106, hybrid PE 108 and GNSS PE 110 may be combined as a unitary element.
AP database 102 contains the location of APs and is managed by a database vendor such as Google or Navizon. Generally, a database vendor collects the location of APs by “wardriving” efforts and/or crowd sourced using mobile phones such as the iPhone and the Android phone. Wardrivers use a Wi-Fi equipped device together with a GPS device to record the location of wireless networks. When a street driver finds a good GPS location, he determines that at that GPS location, there are certain number of APs and reports those APS with their respective signal strength to the database vendor. Database vendors collect this information from multiple users at different times to build up their database. AP database 102 is operable to bi-directionally communicate with Wi-Fi PE 104 via a signal 112.
Wi-Fi scan module 106 is operable to receive the scan parameters from Wi-Fi PE 104 via a signal 114 for scanning the APs and to provide the scan results back to Wi-Fi PE 104 via a signal 116. Wi-Fi scan module 106 performs the scan by sending probe requests to all the APs in the vicinity. Typically, an AP will respond with a probe response, which includes the Basic Service Set Identifier (BSSID) and Receive Signal Strength (RSS) of each AP. BSSID refers to Media Access Control (MAC) address for an AP, which uniquely identifies that AP. The scan results from APs include BSSIDs and RSSs for all the APs, which are forwarded to Wi-Fi PE 104 via signal 116. In one example, Wi-Fi scan module 106 communicates with a Wireless Local Area Network chipset (WLAN) and receives the list of scanned APs. In particular, the WLAN chipset executes the scan, wherein Wi-Fi scan module 106 sends a request and gets a response from the WLAN chipset.
Wi-Fi PE 104 is operable to provide Wi-Fi positioning based on the inputs from AP database 102, and Wi-Fi scan module 106. Wi-Fi PE 104 is operable to receive AP locations from AP database 102 based on the AP list provided as a result of Wi-Fi scan. Wi-Fi PE 104 is further operable to determine the user location based on the AP locations. Wi-Fi PE 104 provides a Wi-Fi only output via a signal 118 and also a Wi-Fi positioning report to hybrid PE 108 via a signal 120.
GNSS PE 110 is operable to receive the satellite measurements (not shown) and compute the location of a GNSS receiver. GNSS PE 110 provides a GNSS report to hybrid PE 108 via a signal 124. GNSS PE 110 triangulates the position based on a pseudo-range that indicates how far the user is from the satellites and the user velocity, GNSS PE 110 may include a Kalman filter, which filters this information across time. Kalman filter algorithm is an optimized method of determine the best estimation of a system's current state. The algorithm works in a two-step process. In the prediction step, the Kalman filter produces estimates of the true unknown values, along with their uncertainties. Once the outcome of the next measurement is observed, these estimates are updated using a weighted average, with more weight being given to estimates with higher certainty. The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate. The estimate is updated using a state transition model and measurements. Kalman filter receives measurements from multiple satellites and determines the effective current location based on the past as well as the new measurements from the satellites.
Hybrid PE 108 is operable to perform blending of Wi-Fi fix and GNSS fix for a user location based on the Wi-Fi positioning report received from Wi-Fi PE 104 and the GNSS report received from GNSS PE 110. Typically, for conventional positioning system 100, GPS and Wi-Fi fixes are blended in a feed-forward fashion using a weighted sum of their fixes. Generally, the weights are based on the uncertainties in the measurement. If the GPS solution is good and the Wi-Fi solution is not as good, more weightage is given to the GPS solution. Alternatively, if the Wi-Fi solution is good and the GPS solution is not as good, more weightage is given to the Wi-Fi solution.
This method has few limitations, which are discussed below. When good Wi-Fi fixes are available only for a short time, blended solution will improve only during that time and will not improve for the later fixes. Since Wi-Fi fix is good only for a short time, more weightage is given to the Wi-Fi solution. If Wi-Fi solution is not good thereafter and the GPS solution was not good throughout, then the blended solution will not improve in the latter part. Additionally, if Wi-Fi and GPS uncertainty estimates are already inaccurate, they will result in poor blending performance. It is possible to give unnecessary weightage to one solution thinking that the fix is good but that may be inaccurate. Errors in GPS or Wi-Fi fix, not reflected in the uncertainty metric will cause deviations in the blended fix.
Additionally Wi-Fi and GPS fixes are typically colored by the past and do not represent independent information, therefore, using a weighted sum is decidedly non-optimal in such cases. Wi-Fi fixes, which is computed based on the visible APs may be more clustered. Using this information multiple times in blending will cause clustering of the blended fixes as well.
What is needed is a blending method for Wi-Fi and GPS that overcomes the problems present in the feed-forward blending method and additionally provides an overall good positioning accuracy. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various telephone calling and billing arrangements have been developed over the long history of the telecommunications industry. From operator-controlled local and long distance calls to automatic direct dialing to newly emerging computer telephony calling over data networks, and from plain-old-telephone service (POTS) to collect calling, to calling card, toll-free calling and pre-paid calling—among many others—the telephone industry has been continually seeking to apply new technologies to provide new and more flexible telephone calling services.
Electronic and optical switching, transmission, signaling, and database storage of many kinds have expanded the reach of telephony techniques to many new and enhanced applications. These and a variety of processors and other facilities embedded in, or linked to, more traditional facilities in the Public Switched Telephone Network (PSTN) have still further enlarged the spectrum of telephone services available to the public.
One telephone service area that has developed rapidly in recent years is that of providing telephone communications to inmates in jails, prisons and other confinement facilities, sometimes referred to as Inmate Calling Services (ICS). While ICS contexts involve functions in common with everyday home and business calling, and with calling from public facilities such as airports and hotels, special issues arise that are peculiar to ICS. Thus, for example, controls over timing, duration, allowed called destinations, and billing—among many others—must be addressed in planning and implementing ICS.
An important goal in providing ICS is call efficiency—despite the need to observe the many constraints characteristic of ICS calling. Thus, for example, automation of call setup, monitoring and billing processes for ICS is of high importance. In particular, since collect and other special billing arrangements are common in the provision of ICS, avoidance of costs associated with human operators to provide step-by-step controls for ICS has long been recognized. U.S. Pat. No. 4,054,756, issued Oct. 18, 1977 to Comella and Yokelson discloses a system and method for automating many operator services, including playing of recorded announcements, collection of information from calling and called parties, call setup and billing based on such inputs. Use of functionality like that described in the last-cited patent has therefore found application in the provision of ICS.
As computing power has greatly increased and been made available in the form of now-ubiquitous personal computers, the Comella, et al. teachings have been adapted to provide much of the computing power used to provide ICS. In particular, providing ICS to inmates in confinement facilities has lately been accomplished through the use of analog telephone station equipment (usually hardened versions of basic home or office telephone sets) connected to one or more personal computers located on-premises at correctional facility locations. Such computers are used, among other things, to control telephone access to the PSTN, record conversations as appropriate, and to generate and record Station Message Detail Reporting (SMDR) data for use in billing calls made from the correctional facility.
FIG. 1 shows a functional network diagram representation of a typical prior art ICS systems, including apparatus installed at a correctional facility connected to the PSTN. In particular, a telephone facility 100 is shown as including a plurality of analog telephone sets 101-i, i=1, 2, . . . , N, illustratively connected to control computer 110. Telephone sets 101-i and computer 110 may be physically located in different areas or different buildings of a correctional facility; more than one control computer 110 may be employed if required to meet calling volume at the facility. Control computer(s) 110 located on-site within an illustrative correctional facility are typically connected directly to the PSTN via on-site analog loop-start telephone lines or, in some cases, multiplexed digital connections, e.g., T1 carrier links. Personal computer-based control computer 110 typically includes a plurality of peripheral interface cards to accomplish connectivity between the analog stations and the PSTN. Illustratively, Intel Dialogic D/4PCI cards are used to interface to up to four input telephone sets per card. In some applications, up to 16 such cards can be used in a single computer to provide access to PSTN 120 for up to 64 telephone sets. Other particular Intel cards can provide much higher line coverage. While the illustrative Intel cards provides functionality for detecting ringing associated with incoming calls, ICS calling is typically limited to providing only outbound calling from the correctional institution.
The one or more control computers 110 at each correctional facility site, in cooperation with PSTN functionality provided off-site by local and long distance telephone companies, control the sequence of events required to complete ICS calls originated at the correctional facility site to called parties connected to the PSTN. Such calls are typically either collect or debit/prepaid telephone calls to remote called parties identified by inmates using the facilities shown in FIG. 1. In FIG. 1 the PSTN is represented as cloud 120; parts of PSTN 120 are shown outside this cloud to emphasize the part they play in completing the call. In particular, illustrative PSTN switches 140 and 145 are shown serving representative stations, shown as telephones 170 and 160, respectively, in FIG. 1. Telephone station set 160, by way of example, is indicated as the called party's telephone set.
The owner or provider of the on-site telephony equipment and ICS incurs purchase, operation and maintenance costs associated with the completion of such calls, and seeks a profit by charging a rate for ICS calls that repays both the fixed costs (equipment, maintenance and other) and the variable per-call costs that the provider incurs for use of PSTN 120.
As will be appreciated from the foregoing, control computer costs, telephone line use costs, and maintenance costs associated with ensuring a high level of system up-time at many geographically distributed (on-correctional-site) installations—each including complex computer hardware and associated software—can be burdensome and expensive.
Voice over IP (VOIP) techniques using the Internet or other data networks offer possible alternatives to a range of existing business and residential communications systems. In particular, VOIP systems are emerging as candidate implementations for a variety of enterprise communications solutions. One illustrative example of such systems is available from Quintum Technologies. Residential use, as illustrated by AT&T's CallVantage VOIP service over high-speed cable connections, and digital subscriber line Internet connections by local exchange carriers and others, is also emerging as a possible alternative to local and long distance calling using traditional Plain Old Telephone Service (POTS). A formal XML Schema for IP-based voice telephony service is included as Exhibit ipdr-1 in incorporated provisional application 1.
A particular aspect of collect, bill-to-third-party, and calls involving other particular billing options is that of billing validation. Billing validation relates generally to validating the availability of identified accounts for billing of a call, and has proven to be especially important for inmate calling. Thus, for example, validation is commonly sought for collect calls to determine that the account, including called party account numbers, exist and are of a class for which billing can be accomplished by one or more billing entities. In some cases, as, for example, for at least some calls to a called party at a cellular account number, it is often difficult to ensure billing for the benefit of an ICS provider placing the call on behalf of a calling party. Often bills for calls completed to a variety of called party destination types prove to be uncollectible unless complex, expensive and time-consuming validation techniques are used. Further, these techniques are applied in prior practice even when a call is not completed, as when the called number is busy or a called party fails to answer.
Because of the rise in popularity of cellular and other portable telephone devices, many of which do not provide billing collection services for calls placed by wireline ICS providers, an important step in insuring payment for ICS is to verify the type of service subscribed to by the called party for ICS calls. Perhaps even more important in this regard is the rise of CLECs or Competitive Local Exchange Carriers, who often lack the ability or inclination to provide billing collection for calls processed by an ICS provider. CLECs are to be contrasted with the traditional incumbent local exchange carriers (ILECs), such as a Regional Bell Operating Company (RBOC).
Some estimates report that upwards of 20 percent of calls sought to be completed by ICS providers are ultimately to be completed by CLECs. When combined with mobile services such as cellular telephone services for which billing is sometimes problematic, the combined percentage of calls potentially associated with billing problems can easily approach or exceed twenty-five percent.
To help reduce the number of calls completed to telephone stations associated with cellular service, CLEC and other services that do not ensure collection and payment of charges for ICSs, and for other service providers concerned about billing of charges for services rendered, a number of databases are maintained by the telephone industry for checking the status of particular telephone lines. In particular, so-called Line Identification Databases (LIDB databases) provide a variety of information for telephone lines. Thus, a database query launched to a LIDB or similar database for a call can provide some information relating to whether calls to a particular line (and the account and phone number associated with it) can be counted on (or not) to be billed by the number provider.
Other databases having special information about particular telephone subscriber accounts may also be maintained, including, generally, a class known as billed number screening databases or by other particular names. Some of these are maintained locally by service providers based on past history of payment, credit or other factors. All of these may help service providers, including ICS providers, to increase the share of calls that can actually be billed, thereby increasing the share of calls for which charges are actually collected.
As might be expected, use of LIDB and other telephone line or account databases by service providers seeking information about particular telephone lines or accounts incurs charges by the providers of such databases. Since data commonly found in such databases is available more easily to some industry participants than others, concern is sometimes expressed by those querying the database as to these charges and conditions associated with use of the databases. In particular, a significant percentage of calls for which line or account databases (hereinafter, LIDB databases) are queried (i.e., for which so-called database dips are performed) prove to be no-revenue calls. This no-revenue condition can arise because the LIDB data raises issues about the likelihood of being able to bill for the call. For example, the unlikely ability to bill for the call may be indicated by a database response indicating no data is available for the particular line/account (hereinafter, line). In some cases, it is possible to arrange for alternative payment methods by which a called party can pay for received calls, even if such payment options are not reflected in the LIDB database response. But by the time such arrangements have been made, a LIDB dip may well have been performed, and a cost to the ICS provider incurred.
Further, even if the line information received in response to a LIDB dip appears to warrant the completion of a call in the expectation of being able to bill for the call, the call may not be completed, e.g., because of a busy line or a no-answer condition at the time of the call. As to conditions associated with LIDB services, it is often required that even successive calls to the same number must employ a separate LIDB dip, thus incurring multiple charges for the same information over a short interval. Moreover, storage (or caching) of prior LIDB dip results is typically discouraged under contracts with LIDB database providers. Thus, ICS and other service providers incur substantial costs for LIDB services, even for calls or call attempts for which no revenue will be derived by the ICS provider.
In yet another way that ICS providers incur costs without deriving any revenues involves so-called billed number screening (BNS). Callers attempting to place a third number billed or collect call to a line equipped with BNS will be advised by an announcement that such billing is not authorized and another form of billing is required. Such need for alternative billing arrangements may not be determined before costs of call setup and LIDB dip has been performed, thus incurring cost to an ICS provider. It is obviously preferable that such alternative billing arrangements not be negotiated on each call to a BNS line.
It is therefore desirable for network users, such as ICS providers, to ascertain with increased certainty that calls placed can be billed. Moreover, it is desirable that such calls incur minimum costs to the provider and provide convenience for calling and called parties to an ICS call.
A need therefore exists to provide flexible and economical validation of billing status for called parties or others relied upon by an inmate to pay charges for ICS calls.
A continuing problem in ICS is that though an original called party (e.g., an inmate's lawyer or an approved family member) can be qualified by correctional authorities to receive inmate calls, such calls can sometimes be forwarded, extended, bridged, or otherwise connected to other parties who have not been so qualified. A primary mechanism for permitting calls to such not-qualified persons or locations includes the conference call and call forwarding functionality available to many PSTN users. In the sequel, all multi-party, conference, forwarded, bridged, or otherwise extended calls will be referred to as conference calls or 3-way calls—irrespective of the actual number of stations involved and irrespective of the particular mechanism used to establish or maintain the call—unless the context requires otherwise. It should be borne in mind that some 3-way calls may be authorized, e.g., to simultaneously discuss a legal issue with an attorney and spouse, or with two attorneys at different locations.
Many techniques have been developed to attempt to thwart unauthorized 3-way calling. These have often employed monitoring a calling line to detect hook-flashes or other signals characteristic of a 3-way call attempt for an ongoing call. A number of problems with such techniques have long been recognized, including false-positive indications. Claims for successful detection of unauthorized 3-way calls on inmate calls have frequently been regarded as dubious. It is therefore desirable to control inmate calling behavior by seeking to positively detect unauthorized 3-way calling, but to permit 3-way calling when properly authorized.
Applicants have further recognized that present implementations of existing features and the introduction of new features in existing ICS systems and methods often suffer limitations imposed by current personal computer-based on-site computers and PSTN communications links and processes. Areas in which ICS systems and methods are currently limited include (i) location of processing assets on-site at correctional institutions, thereby limiting or precluding ready access to specialized or high-powered computing and communications resources, (ii) establishing the identity of a calling inmate with a high degree of certainty, (iii) rapidly and economically recording, monitoring, storing and selectively playing back inmate conversations to serve a variety of law enforcement needs, and (iv) identifying with a high degree of certainty when unauthorized persons receive (including by forwarding) or are added to calls originated by calling inmates. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to semiconductor devices and more particularly to analog and digital MIM capacitors and methods for fabricating such in the manufacture of semiconductor device products.
Capacitors are employed in digital and analog devices for a variety of purposes, including storing electrical charge, filtering, blocking DC voltage levels, and stabilizing power supplies (e.g., decoupling switching noise from DC supplies). Typical capacitors used in semiconductor devices may have the structure of a metal oxide semiconductor (MOS) type, a P-N junction type, a polysilicon-insulator-polysilicon (PIP) type, a metal-insulator-metal (MIM) type, etc., wherein the type of capacitor employed typically depends on the application (e.g., analog or digital) and desired response characteristics of the device.
PIP capacitors suffer from capacitance variations caused by the doping characteristics of the polysilicon capacitor electrode plates, and as such, these devices exhibit fairly large changes in the capacitance as a function of applied voltage. Hence these devices have a large voltage coefficient of capacitance (VCC), typically measured in parts per million per volt (ppm/V). In addition, parasitic effects are seen in MOS type transistors where the capacitor is located proximate the substrate. MIM type capacitors may be advantageously fabricated in upper interconnect layers of a semiconductor device wafer to mitigate such parasitic effects. MIM capacitors are further desirable, since the electrode plates are fabricated from conductive metal materials, whereby the polysilicon doping issues and polysilicon depletion associated with PIP capacitors are avoided.
Voltage dependent capacitance effects are generally more detrimental in analog capacitors than in decoupling capacitors. Thus, in semiconductor devices having both analog and digital circuitry (e.g., sometimes referred to as mixed-signal devices), some capacitors have different design performance criteria than others. In this regard, mixed-signal devices generally employ decoupling capacitance to reduce power supply transients associated with switching transistors, as well as analog capacitors for filtering and other types of analog circuits.
Decoupling capacitors (e.g., digital capacitors) require high capacitance density (e.g., measured in fF/um2) in order to minimize the amount of device area devoted to decoupling. In some cases, capacitance densities of 10 fF/um2 or more are desired to minimize the die area occupied by decoupling capacitors, particularly as higher clock speeds (e.g., transistor switching speeds) dictate increased decoupling capacitance requirements. However, decoupling capacitors generally are not as sensitive to the dependence of capacitance on voltage as are analog capacitors. For instance, a decoupling capacitor connected between a power supply rail and ground will not see large fluctuations in applied voltage during normal operations (e.g., apart from fast transient switching noise in digital circuits). Thus, for a decoupling capacitor designed to decouple high frequency noise from a 3 V DC supply, the difference in capacitance at 1 V is relatively unimportant.
Conversely, analog circuits do not demand such high capacitance densities, wherein densities of around 3 fF/um2 or less may be used. However, analog circuits are much less tolerant of capacitance variations during operation than are digital circuits. For example, if the impedance of the capacitor is not reasonably predictable or consistent across the range of expected applied voltages, the circuit performance could be different for different applied voltages, and consequently, the performance of the analog circuit may be unsatisfactory. Thus, whereas decoupling capacitors can be successfully employed with relatively large fluctuations in capacitance with changes in applied voltage, analog capacitors are typically designed to have VCC specifications in a range of about 300 ppm/V or less.
These divergent capacitor design goals often lead to separate processing operations to form digital (e.g., decoupling) and analog capacitors in the manufacture of semiconductor devices, particularly in mixed-signal type devices. Separate capacitor dielectrics have conventionally been employed since the VCC coefficients typically get smaller as dielectric film thickness is increased, while the capacitance density is reduced for thicker dielectrics. Some processes fabricate analog and decoupling MIM type capacitors in separate interconnect levels or layers, while others form different dielectric layers in the same interconnect level for the analog and digital MIM capacitors. In either case, multiple masks and process steps are required to separately form the decoupling and analog capacitors. It is a continuing goal to reduce or streamline the number of such processing steps, so as to increase product throughput and reduce product cost in the manufacture of semiconductor devices. Accordingly, there is a need for capacitor structures and processing methods by which analog and decoupling capacitors can be fabricated to accommodate the different performance requirements with respect to VCC, leakage current, and capacitance density, and which reduce the number of processing steps required for capacitor fabrication.
The following presents a simplified summary in order to provide a basic understanding of one or more aspects of the invention. This summary is not an extensive overview of the invention, and is neither intended to identify key or critical elements of the invention, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. The invention relates to semiconductor devices and methods for making the same in which a single dielectric layer is used to form metal-insulator-metal (MIM) decoupling capacitors and analog capacitor segments. Analog capacitors are formed by coupling analog capacitor segments in series with one another. High k dielectric material or ferroelectric material may be used to form the single dielectric layer for the analog and decoupling capacitors, and the polarities of the analog capacitor segments may be reversed to effectively reduce asymmetric effects related to applied voltage. In this manner, a streamlined manufacturing process may be achieved, which produces capacitors adapted for the different requirements of analog and decoupling (e.g., digital) capacitors.
In accordance with one aspect of the invention, a method of fabricating capacitors in a mixed-signal semiconductor device is provided, which comprises forming a dielectric layer above a wafer, forming a decoupling capacitor and a plurality of analog capacitor segments using the dielectric layer, and coupling two or more of the analog capacitor segments in series to form an analog capacitor. The dielectric layer may be a high k dielectric material, such as having a dielectric constant k greater than about 8, for example, tantalum oxide (TaO), or ferroelectric material, for example, Pb(Zr,Ti)O3 (PZT), (Ba,Sr)TiO3 (BST), SrTiO3 (STO) and SrBi2TA2O9 (SBT), BaTiO3 (BTO), (Bil-xLax) 4Ti3O12 (BLT), or other ferroelectric material, deposited over a conductive (e.g., metal) bottom electrode layer. A top electrode layer is then formed over the dielectric, wherein the top and bottom electrode layers may comprise any suitable material, such as titanium nitride (TiN), titanium aluminum nitride (TiAlN), iridium (Ir), iridium oxide (IrO), or others.
The top and bottom electrode layers and the dielectric layer are then patterned using a single mask, so as to form decoupling capacitors and analog capacitor segments in a small number of processing steps in the manufacturing flow. The patterning provides one or more decoupling capacitors, as well as a number of analog capacitor segments separated from one another, individually comprising unetched portions of the bottom electrode layer, the dielectric layer, and the top electrode layer, wherein the dielectric material in the decoupling capacitor and the plurality of analog capacitor segments are of substantially the same thickness.
The analog capacitor segments are series coupled to form analog capacitors having the desired lower effective capacitance density (fF/um2), wherein the individual segments may be interconnected in reverse polarity relationship to provide substantially symmetric capacitance vs. voltage and leakage current performance characteristics. For example, the analog capacitor segments may be connected in series by electrically connecting bottom electrode portions of first and second analog capacitor segments to one another or by electrically connecting top electrode portions of first and second analog capacitor segments to one another.
Any number of such segments may be connected in this manner to form analog capacitors of a desired capacitance value. In one example, four such segments are coupled through electrically connecting bottom electrode portions of first and second analog capacitor segments to one another, electrically connecting top electrode portions of second and third analog capacitor segments to one another, and electrically connecting bottom electrode portions of third and fourth analog capacitor segments to one another to form an analog capacitor. In this manner, the design parameters for both decoupling (e.g., digital) capacitors and analog capacitors may be met, while reducing the total number of processing steps (e.g., and hence the cost) in manufacturing mixed-signal and other types of semiconductor devices.
In another aspect of the invention, a semiconductor device is provided, which comprises an analog capacitor having first and second analog capacitor segments coupled in series, wherein the first and second analog capacitor segments comprise first and second portions of a dielectric layer, respectively, and a decoupling capacitor comprising a third portion of the dielectric layer. The first and second analog capacitor portions may be coupled in reverse polarity relationship to one another, so as to provide a resulting analog capacitor having a substantially symmetrical VCC and leakage current performance with respect to applied voltage, such as by coupling top electrode portions thereof together, or by coupling bottom electrode portions thereof together. The dielectric layer used to form the decoupling capacitor and the analog capacitor segments may comprise a high k dielectric material, such as TaO material or ferroelectric materials, wherein the top and bottom electrodes may be fashioned from TiN, TiAlN, Ir, IrO, or other metal materials.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative of but a few of the various ways in which the principles of the invention may be employed. Other aspects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
An embodiment of the present invention relates to the field of integrated circuits and, more particularly, to reducing soft errors in integrated circuits that include dynamic circuits.
2. Discussion of Related Art
Dynamic circuits, such as domino circuits, for example, are widely used in high-speed integrated circuit designs. This is because dynamic circuits typically provide area and speed advantages over corresponding static complementary metal oxide semiconductor (CMOS) circuits.
Dynamic circuits, however, are more vulnerable to soft errors as compared to their static counterparts. A soft error is a transient, single event upset that changes the state of a circuit node or other internal storage element. Soft errors may, for example, be caused by alpha particles or cosmic rays impinging on the integrated circuit device.
Alpha particles are charged particles that may originate from the decay of trace impurities in integrated circuit packaging materials, for example. Cosmic rays may include heavy ions and protons that, either directly or indirectly, may have an ionization effect within the integrated circuit device semiconductor material. In either case, the charged particles from these sources may change the charge at an integrated circuit node such that the node actually transitions to an opposite logical state.
The critical charge (Qcrit) at a node is an indication of the susceptibility of the node to such soft errors. Qcrit is the minimum charge beyond which operation of a circuit will be affected. Thus, if an ion strike causes charge collected at a node to exceed Qcrit, the node may erroneously transition from a logical one state to a logical zero state, for example.
As integrated circuit fabrication technologies continue to scale down into the submicron region, less charge is stored on integrated circuit nodes and thus, less energy is needed to change the state of a node. For this reason, integrated circuit devices are becoming increasingly susceptible to soft error failures.
One approach to addressing this issue has been to add error detection and/or correction circuitry to integrated circuit designs. This approach may be used in memory design, for example. Error detection and/or correction circuitry identifies circuit errors such that resulting issues may be mitigated while correction circuitry may compensate for the error. Such approaches, while preventing some circuit failures, can involve significant additional circuitry that takes up valuable semiconductor real estate. Additionally, such approaches may not be viable for dynamic circuits in speed critical paths, for example.
Other approaches may involve processing changes. For some dynamic random access memory (DRAM) cells, for example, gate oxide thicknesses are decreased to store additional charge. This approach, however, may lead to an increase in other types of failures due to increased defects in the thinner gate oxide.
Other processing changes such as use of trench-capacitor structures, and applying a coating of a radioactive-contaminant-free polymer on top of an integrated circuit have also been used in an effort to reduce soft errors. Such processing changes may be undesirable because they add one or more additional processing steps involving additional time and expense. Further such approaches may not reduce soft errors to the extent desired.
A method and apparatus for reducing soft errors in a dynamic circuit are described. For one embodiment, a dynamic circuit includes a dynamic logic gate having an output node at which a logical output value of the logic gate is detected. A keeper circuit coupled to the output node is configured to harden the dynamic circuit by increasing the critical charge at the output node.
Other features and advantages of the present invention will be appreciated from the accompanying drawings and from the detailed description that follows below. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to new and useful improvements in ear jewelry and more particularly pertains to a new and improved earring construction for pierced ears which includes the use of a rotatable head attached to the stem portion of an earring or the like, whereby the stem may be inserted through a wearer's ear and the rotatable head may then be moved into a position which prevents the stem, and thus the earring, from becoming disengaged from the wearer's ear, thereby to eliminate the need for a separate retaining fastener.
2. Description of the Prior Art
Piercing type earrings having stems or posts designed to pass through openings in earlobes are well known in the art. These earrings normally require the use of separable fasteners or clips that are attachable to end portions of the posts after the posts have been inserted through earlobe openings, thereby to prevent accidental withdrawal of the posts which could result in earring loss. With respect to piercing type earrings, it can be appreciated that substantial problems have been encountered in attempting to design fasteners which won't inadvertently become separated from the earring posts whereby a loss of the associated earring could result. This problem is particularly troublesome when an earring is made of a precious metal or is provided with precious stones inasmuch as a loss of the earring could result in considerable financial deprivation.
There have been several attempts to overcome the problem of losing earrings as a result of an inadvertent disengagement of associated fasteners. For example, U.S. Pat. No. 3,260,068, which issued to Arthur Micallef on July 12, 1966, and U.S. Pat. No. 3,446,033, which issued to Jesse Driscoll on May 27, 1969, both disclose earrings for pierced ears wherein the earrings include stems bent in a manner which effects a retaining of the associated earring in an earlobe without the necessity of utilizing a separate fastener on the stem. More particularly, both of these earring constructions rely upon the substantially transverse positioning of an angulated end portion of a stem with respect to an earlobe, thus to effect a frictional gripping action as occasioned by the attendant weight of the associated earring. While these designs may eliminate the need for a separable fastener, it can be appreciated that substantial difficulty and pain may be experienced in forcing these bent stems through an earlobe, while at the same time there still exists the possibility that the stems could become undesirably disengaged.
A different manner of attaching a single piece earring to an earlobe is disclosed in U.S. Pat. No. 3,446,034, which issued to Jesse Driscoll on May 27, 1969, wherein a complexly-designed attaching means is employed. In this patent, a hollow earring stem is designed to be inserted completely through an earlobe, while a flexible line extends partially through the hollow stem so as to extend out of one end thereof and also out of a separate opening centrally positioned on the stem. A pair of ornaments are attached to respective ends of the flexible line, with the post being positioned transverse to the earlobe after being inserted therethrough while both ends of the flexible line will extend through the earlobe opening. While tending to possibly retain an earring more securely than the above-discussed bent post constructions, it can be appreciated that this form of attaching means is complex to manufacture, requires that the ornaments be retained on flexible lines, and could also cause ear irritation due to the use of the pair of flexible lines through the earlobe opening as opposed to a smooth gold-plated earring post.
Accordingly, it is apparent that there exists a continuing need for improved pierced ear jewelry which eliminates the possibility of loss of separable fasteners while at the same time permitting a quick, secure and comfortable attachment of the associated earring to an earlobe. In this respect, the present invention substantially fulfills this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a wireless communication system which uses multiple carriers, such as an orthogonal frequency division multiple access (OFDMA) or a single carrier-frequency division multiple access (SC-FDMA), radio resources are a set of continuous sub-carriers and are defined by a time-frequency region on a two-dimensional sphere. A time-frequency region is a rectangular form sectioned by time and sub-carrier coordinates. In other words, one time-frequency region could be a rectangular form sectioned by at least one symbol on a time axis and a plurality of sub-carriers on a frequency axis. Such a time-frequency region can be allocated to an uplink for a specific user equipment (UE), or an eNode B can transmit the time-frequency region to a specific user equipment in a downlink. In order to define such a time-frequency region on the two-dimensional sphere, the number of OFDM symbols and the number of continuous sub-carriers starting from a point having an offset from a reference point should be given.
An evolved universal mobile telecommunications system (E-UMTS) which is currently being discussed uses 10 ms radio frame comprising 10 sub-frames. Namely, one sub-frame includes two continuous slots. One slot has a length of 0.5 ms. Also, one sub-frame comprises a plurality of OFDM symbols, and a part (for example, first symbol) of the plurality of OFDM symbols can be used for transmission of L1/L2 control information.
FIG. 1 illustrates an example of a structure of physical channels used in the E-UMTS. In FIG. 1, one sub-frame comprises an L1/L2 control information transmission region (hatching part) and a data transmission region (non-hatching part).
FIG. 2 illustrates a general method of transmitting data in the E-UMTS. In the E-UMTS, a hybrid auto repeat request (HARQ) scheme, which is one of data retransmission schemes, is used to improve throughput, thereby enabling desirable communication.
Referring to FIG. 2, the eNB transmits downlink scheduling information (hereinafter, referred to as ‘DL scheduling information’) through DL L1/L2 control channel, for example, a physical downlink control channel (PDCCH), to transmit data to a user equipment in accordance with the HARQ scheme. The DL scheduling information includes user equipment identifier (UE ID) or group identifier (group ID) of user equipments, location and duration (resource assignment and duration of assignment) information of radio resources allocated for transmission of downlink data, modulation mode, payload size, transmission parameters such as MIMO related information, HARQ process information, redundancy version, and new data indicator.
In order to notify that DL scheduling information is transmitted through the PDCCH for what user equipment, the user equipment identifier (or group identifier), for example, a radio network temporary identifier (RNTI) is transmitted. The RNTI can be classified into a dedicated RNTI and a common RNTI. The dedicated RNTI is used for data transmission and reception to and from a user equipment of which information is registered with a eNB. The common RNTI is used if communication is performed with user equipments, which are not allocated with dedicated RNTI as their information is not registered with the eNB. Alternatively, the common RNTI is used for transmission and reception of information used commonly for a plurality of user equipments, such as system information. For example, examples of the common RNTI include RA-RNTI and T-C-RNTI, which are used during a random access procedure through a random access channel (RACH). The user equipment identifier or group identifier can be transmitted in a type of CRC masking in DL scheduling information transmitted through the PDCCH.
User equipments located in a specific cell monitor the PDCCH through the L1/L2 control channel using their RNTI information, and receive DL scheduling information through the corresponding PDCCH if they successfully perform CRC decoding through their RNTI. The user equipments receive downlink data transmitted thereto through a physical downlink shared channel (PDSCH) indicated by the received DL scheduling information.
A scheduling mode can be classified into a dynamic scheduling mode and a persistent or semi-persistent scheduling mode. The dynamic scheduling mode is to transmit scheduling information to a specific user equipment through the PDCCH whenever allocation of uplink or downlink resources is required for the specific user equipment. The persistent scheduling mode means that the eNB allocates downlink or uplink scheduling information to the user equipment statically during initial call establishment such as establishment of a radio bearer.
In case of the persistent scheduling mode, the user equipment transmits or receives data using scheduling information previously allocated to the eNB without using DL scheduling information or UL scheduling information allocated from the eNB. For example, if the eNB previously sets a specific user equipment to allow the user equipment to receive downlink data through RRC signal and a radio resource “A” in accordance with a transport format “B” and a period “C” during establishment of a radio bearer, the user equipment can receive downlink data transmitted from the eNB using information “A”, “B” and “C”. Likewise, even in case that the user equipment transmits data to the eNB, the user equipment can transmit uplink data using a previously defined radio resource in accordance with previously allocated uplink scheduling information. The persistent scheduling mode is a scheduling mode that can well be applied to a service of which traffic is regular, such as voice communication.
AMR codec used in voice communication, i.e., voice data generated through voice codec has a special feature. Namely, voice data are classified into a talk spurt and a silent period. The talk spurt means a voice data period generated while a person is actually talking, and the silent period means a voice data period generated while a person does not talk. For example, voice packets, which include voice data in the talk spurt, are generated per 20 ms, and silent packets (SID), which include voice data in the silent period, are generated per 160 ms.
If the persistent scheduling mode is used for voice communication, the eNB will establish radio resources in accordance with the talk spurt. Namely, the eNB will previously establish radio resources for transmitting and receiving uplink or downlink data to and from the user equipment at an interval of 20 ms during call establishment using a feature that voice packets are generated per 20 ms. The user equipment receives downlink data or transmits uplink data using radio resources, which are previously established per 20 ms. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a vehicle-surroundings monitoring apparatus for monitoring the surroundings of a traveling vehicle for, for example, a vehicle traveling in a nearby lane.
2. Description of Related Art
Optical vehicle distance detecting apparatuses which are used as a vehicle-surroundings monitoring apparatus using image sensors have been well known in, for example, Japanese Patent Laid-Open No. 63-38085 and Japanese Patent Laid-Open No. 63-46363. In any case, the apparatuses include a pair of horizontally spaced optical systems which comprise lenses 1, 2 disposed horizontally apart from each other at a reference distance L, image sensors 3, 4 disposed at the focal distance f of these lenses 1, 2, and a signal processing device 30 connected to the image sensors 3, 4, as shown in FIG. 7.
In the conventional vehicle-surroundings monitoring apparatuses, a signal processing device 30 serves to shift image signals from the image sensors 3, 4 to electrically overlap them one over the other to thereby determine a distance R up to an object 31 based on the principles of trigonometry using the following equation: EQU R=f.multidot.L/p
where p represents a deviation or an amount of shift p by which the above two image signals have the best match.
Japanese Patent Publication No.4-161810 discloses a distance measuring or detecting method in which a vehicle-surroundings monitoring apparatus sets a plurality of windows on a display screen at specified positions for an image signal in order to detect a distance up to an object captured by these windows based on the principles of trigonometry. However, the conventional vehicle surroundings monitoring apparatus having an optical vehicle distance detecting device described above may mistakenly identify a lane marker (lane-separating line) or guard rail entered into the windows as a vehicle traveling in a nearby lane when the apparatus is used for monitoring following vehicles or nearby vehicles travelling in the adjacent lanes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a system and method for collecting information and monitoring production, and more particularly to a system and method for collecting punch information from shop floors and monitoring production on a real-time basis.
2. Description of Related Art
With economic globalization and intense business competition, many enterprises are facing more difficulties and challenges than ever before. Suppliers of goods have to strive to meet more stringent demands from customers, such as shorter delivery times, more customized products, higher quality and lower price. Manufacturers need to collect production information in real time to improve management of shop floors in factories. Traditionally, production information at shop floors is collected by hand. For example, by dictation and recording with a pen, or by manually inputting data into a computer terminal. It takes a long time to collect the original information, let alone effectively organize and analyze the collected information and finally respond to it. It is imperative for many enterprises to establish a system for instantly monitoring production information and quickly responding to problems identified at the shop floor. Such system can greatly improve efficiency and effectiveness of production.
With the recent development and widespread application of information technology, production information is now collected automatically at many facilities. Barcode technology is a typical means used for automated collection. To apply barcode technology, a manufacturer has to first label all the products, devices and apparatuses with barcodes. Operators at shop floors scan the barcodes with barcode readers, and the obtained production information is automatically stored into a monitoring computer. Barcode technology simplifies the collection of production information to a certain degree. However, it is costly, and the collection of information is only partly automated. In addition, information-collecting sensors attached to machines on the shop floor are usually not fully utilized.
Accordingly, what is needed is a system and method that completely automates collection of production information and that fully utilizes information-collecting sensors.
It is a primary object of the present invention to provide a system and method for collecting production information from shop floors and for monitoring production, whereby a user at a remote location can obtain real-time information on machines used in the production.
It is another object of the present invention to provide a system and method for collecting production information from shop floors and for monitoring production, whereby a user can obtain real-time information of all machines located at different shop floors.
It is a further object of the present invention to provide a system and method for collecting production information from shop floors and for monitoring production, whereby a user can know in real time of any current abnormality in production, and can quickly respond to thereby maintain production.
It is a still further object of the present invention to provide a system and method for collecting production information and for monitoring production, wherein all production information including production abnormalities is stored in a database for future reference.
To achieve the above objects, the present invention provides a system and method for collecting production information from punch machines at shop floors and for monitoring production performed by the punch machines. The system comprises information collectors respectively connected to the punch machines, the information collectors obtaining machine-related real-time information and converting such information into computer-readable information; a monitoring computer located remotely from the shop floors and connected with the information collectors via a first communication link, the monitoring computer obtaining the computer-readable information from the information collectors according to pre-installed information obtaining instructions; and a database that stores information obtained by the monitoring computer and information set by users. Users can inquire of all information stored in the database at personal computers that are connected to the database via a second communication link. Each punch machine is assigned with a particular network ID representing its identification in the whole system. Therefore a user can readily identify information on a specific machine and control that machine""s production. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a variable phase shifting circuit and a variable phase shifting method. More specifically, the present invention is directed to such a variable phase shifting method, and also a variable phase shifting circuit easily manufactured in an integrated circuit with a simple circuit arrangement.
2. Description of the Related Art
Conventionally, RC variable phase shifting circuits play an important role specifically in signal processing systems operable in microwave frequency ranges. The RC variable phase shifting circuits are generally composed of resistor elements and capacitor elements, and any one of resistor element and capacitor element is constructed as a variable element.
Japanese Laid Open Patent Application (JP-A-Heisei 1-268217) describes the variable phase shifting circuit capable of realizing the broadband variable width. In this variable phase shifting circuit, the emitter of the first transistor is connected via the first resistor element to the first power supply terminal, and the collector of this transistor is connected via the second resistor element to the second power supply terminal.
The series circuit is connected between the collector of the first transistor and the emitter thereof. This series circuit is composed of the second transistor and the third resistor element. The base of this second transistor is connected to the emitter thereof as the variable capacitor element. Otherwise, the base of the second transistor is connected to the collector thereof.
In this variable phase shifting circuit, the emitter of the third transistor is connected via the fourth resistor element to the first power supply terminal, and the collector of this third transistor is connected via the fifth resistor element to the second power supply terminal.
The series circuit is connected between the collector of the third transistor and the emitter thereof. This series circuit is composed of the fourth transistor and the sixth resistor element. The base of this second transistor is connected to the emitter thereof as the variable capacitor element. Otherwise, the base of the third transistor is connected to the collector thereof.
Furthermore, in this variable phase shifting circuit, both the base of the first transistor and the base of the third transistor are connected to the input terminal. The junction point between the second transistor and the third resistor element is connected to the first output terminal. Also, the junction point between the fourth transistor and the sixth resistor element is connected to the second output terminal.
Either the emitter of the first transistor or the collector thereof is connected to the collector of the second transistor, and either the emitter of the third transistor or the collector thereof is connected to the fourth transistor. It should be noted that in this variable phase shifting circuit, a field-effect transistor (FET) may be employed as each of the above-explained transistors.
On the other hand, Japanese Laid Open Utility Application (JP-U-Heisei 2-126431) discloses a monolithic variable phase shifting circuit. In this reference, an input signal is supplied to a first phase shifting circuit and a second phase shifting circuit such that the input signal is separated into two signals having the phase difference of 90 degrees.
Also, in this monolithic variable phase shifting circuit, the first input signal is supplied to the first phase shifting circuit while the second input signal is supplied to the second phase shifting circuit, such that these input signals are synthesized into a signal not to have a phase difference.
In each of the first phase shifting circuit and the second phase shifting circuit, both of the collector of the transistor and the emitter thereof are grounded in order that the DC voltage can be applied via the resistor element. Also, the series circuit is connected between the collector of the transistor and the emitter thereof. This series circuit is composed of the variable capacitor element, the fixed capacitor element, and the resistor element. This variable capacitor element is formed by the junction capacitance of the transistor.
The base of the transistor is connected to the input terminal. Either the junction point between the variable capacitor element and the resistor element or another junction between the fixed capacitor element and the resistor element is connected to the output terminal.
Furthermore, since the variable capacitance element is connected In parallel to the fixed capacitor element, the degradation of the frequency characteristic can be suppressed. It should also be noted that field-effect transistors may be employed as the respective transistors in this monolithic phase shifting circuit.
Further, Japanese Laid Open Patent Application (JP-A-Heisei 3-26015) discloses the voltage variable phase shifter for controlling the phase of the signal by controlling the voltage by the transistor circuit.
In this voltage-controlled variable phase shifter, the collector of the first transistor is grounded so as to vary the phase of the input signal. The second transistor controls the emitter current supplied from the first transistor in response to the controlling variable voltage. Also, the fixed capacitor element is connected between the emitter of the first transistor and the ground.
In response to the change in the controlling variable voltage, this voltage-controlled variable phase shifter changes the output impedance of the first transistor. Furthermore, both this changed output impedance and the fixed capacitance element determines the phase shift amount.
FIG. 1A and FIG. 1B represent RC variable phase shifting circuits known in this technical field. The RC variable phase shifting circuit shown in FIG. 1A is composed of the resistor element R and the variable capacitor element C'. The predetermined phase shifting amount with respect to the input signal may be obtained by adjusting the capacitor value of the variable capacitor element C'.
Also, the RC variable phase shifting circuit shown in FIG. 1B is composed of the capacitor element C and the variable resistor element R'. The desirable phase shifting amount with respect to the input signal may be obtained by adjusting the resistor value of the variable resistor element R'.
In the case that the above-explained RC variable phase shifting circuits shown in FIG. 1A and FIG. 1B are realized as the integrated circuit, the following problem will arise. That is, it is practically difficult to assemble the variable resistor element R' into the semiconductor element as to the known RC variable phase shifting circuit shown in FIG. 1B.
Also, in the RC variable phase shifting circuit represented in FIG. 1A, for example, the variable capacitor realized by utilizing the reverse biasing of the transistor, which may function as the variable capacitor element C', has been proposed.
However, when the variable capacitor element by using the reverse biasing of the transistor is assembled into the semiconductor element, if the junction capacitor between the base and the emitter is utilized, then the voltage withstanding level is low.
Under such a circumstance, this reverse biasing variable capacitor element can be hardly applied to the semiconductor element. Also, when the junction capacitor established between the base-to-emitter path is used, the change amount of the phase shift is very small. As a consequence, it is practically difficult to obtain a desirable phase shift amount. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a laser irradiation method and a laser irradiation apparatus for using the method (apparatus including a laser and an optical system for guiding laser light emitted from the laser to an object to be irradiated). In addition, the present invention relates to a method of manufacturing a semiconductor device, which includes a laser light irradiation step. Note that a semiconductor device described here includes an electro-optical device such as a liquid crystal display device or a light emitting device and an electronic device which includes the electro-optical device as a part.
2. Description of the Related Art
In recent years, a wide study has been made on a technique in which laser annealing is performed for a semiconductor film formed on an insulating substrate made of glass or the like, to crystallize the film, to improve its crystallinity so that a crystalline semiconductor film is obtained, or to activate an impurity element. Note that a crystalline semiconductor film in this specification indicates a semiconductor film in which a crystallized region is present, and also includes a semiconductor film which is crystallized as a whole.
A method of forming pulse laser light from an excimer laser or the like by an optical system such that it becomes a square spot of several cm or a linear shape of 100 mm or more in length on a surface to be irradiated, and scanning the laser light (or relatively shifting an irradiation position of the laser light with respect to the surface to be irradiated) to conduct annealing is superior in mass productivity and is excellent in technology. The “linear shape” described here means not a “line” in the strict sense but a rectangle (or a prolate ellipsoid shape) having a high aspect ratio. For example, it indicates a shape having an aspect ratio of 10 or more (preferably, 100 to 10000). Note that the linear shape is used to obtain an energy density required for sufficiently annealing an object to be irradiated. Thus, if sufficient annealing is conducted for the object to be irradiated, it may be a rectangular shape or a sheet shape. Under the present conditions, an excimer laser of 15 J/pulse is on the market. In the future, there is also a possibility that annealing with sheet shaped laser light is conducted.
FIGS. 7A and 7B show an example of a configuration of an optical system for forming laser light in a linear shape on a surface to be irradiated. This configuration is extremely general. All optical systems described above are based on the configuration shown in FIGS. 7A and 7B. According to the configuration, a cross sectional shape of laser light is converted into a linear shape, and simultaneously an energy density distribution of laser light on the surface to be irradiated is homogenized. In general, an optical system for homogenizing the energy density distribution of laser light is called a beam homogenizer.
Laser light emitted from a laser 101 is divided in a direction perpendicular to a traveling direction thereof by a cylindrical lens group (hereinafter referred to as a cylindrical lens array) 103, thereby determining a length of linear laser light in a longitudinal direction. The direction is called a first direction in this specification. It is assumed that, when a mirror is inserted in a course of an optical system, the first direction is changed in accordance with a direction of light bent by the mirror. In the configuration shown in the top view of FIG. 7A, the cylindrical lens array is divided into seven parts. Then, the laser lights are synthesized on a surface to be irradiated 109 by a cylindrical lens 105, thereby homogenizing an energy density distribution of the linear laser light in the longitudinal direction.
Next, the configuration shown in the cross sectional view of FIG. 7B will be described. Laser light emitted from a laser 101 is divided in a direction perpendicular to a traveling direction thereof and the first direction by cylindrical lens arrays 102a and 102b, thereby determining a length of linear laser light in a width direction. The direction is called a second direction in this specification. It is assumed that, when a mirror is inserted in a course of an optical system, the second direction is changed in accordance with a direction of light bent by the mirror. In the cross sectional view of FIG. 7B, the cylindrical lens arrays 102a and 102b each are divided into four parts. The divided laser lights are temporarily synthesized by a cylindrical lens 104. After that, the laser lights are reflected by a mirror 107 and then condensed by a doublet cylindrical lens 108 so that they become again single laser light on the surface to be irradiated 109. The doublet cylindrical lens 108 is a lens composed of two cylindrical lenses. Thus, an energy density distribution of the linear laser light in a width direction is homogenized.
For example, an excimer laser in which a size in a laser window is 10 mm×30 mm (which each are a half-width in beam profile) is used as the laser 101 and laser light is produced by the optical system having the configuration shown in FIGS. 7A and 7B. Then, linear laser light which has a uniform energy density distribution and a size of 125 mm×0.4 mm can be obtained on the surface to be irradiated 109.
At this time, when, for example, quartz is used for all base materials of the optical system, high transmittance is obtained. Note that coating is preferably conducted for the optical system such that transmittance of 99% or more is obtained at a frequency of the used excimer laser.
Then, the linear laser light formed by the above configuration is irradiated with an overlap state while being gradually shifted in a width direction thereof. Thus, when laser annealing is performed for the entire surface of an amorphous semiconductor film, the amorphous semiconductor film can be crystallized, crystallinity can be improved to obtain a crystalline semiconductor film, or an impurity element can be activated.
Also, an area of a substrate used for manufacturing a semiconductor device is being increased more and more. This is because high throughput and a low cost can be realized in the case where a plurality of semiconductor devices such as liquid crystal display device panels are manufactured from a single large area substrate as compared with, for example, the case where TFTs for a pixel portion and driver circuits (source driver portion and gate driver portion) are formed on a single glass substrate, thereby manufacturing a single semiconductor device such as a liquid crystal display device panel (FIG. 9). At the present time, for example, a substrate of 600 mm×720 mm, a circular substrate of 12 inches (about 300 mm in diameter), etc. are used as the large area substrate. Further, it is expected that a substrate in which a length of one side exceeds 1000 mm will be also used in future.
In end portions of linear, rectangular shaped, or sheet shaped laser light produced on the surface to be irradiated or its vicinity by the optical system, an energy density is gradually attenuated by an aberration of a lens or the like (FIG. 8A). In this specification, regions in which an energy density is gradually attenuated in end portions of linear, rectangular shaped, or sheet shaped laser light is called attenuation regions.
Also, with increase in an area of a substrate and an output of a laser, longer linear laser light, longer rectangular-shaped laser light, and larger sheet-shaped laser light are being produced. This is because high efficiency is obtained in the case where annealing using such laser light is conducted. However, an energy density in end portions of laser light emitted from an oscillating laser is lower than that in a substantially central region thereof. Thus, when an area of the laser light is expanded to be equal to or larger than an area up to now by the optical system, the attenuation regions tend to be increasingly noticeable.
In the attenuation regions of laser light, the energy density is insufficient as compared with a region having high homogeneity of an energy density and is gradually attenuated. Thus, when annealing is conducted using laser light having the attenuation regions, uniform annealing cannot be conducted for an object to be irradiated (FIG. 8B). In addition, even when annealing is conducted by a method of performing scanning with attenuation region overlapping of the laser light, the annealing condition is distinctly different from that for the region having the high homogeneity of the energy density. Thus, uniform annealing cannot be still conducted for the object to be irradiated. Therefore, the same treatment cannot be conducted for a region of the object annealed by the attenuation regions of the laser light and another region of the object annealed by the region of the laser light having the high homogeneity of the energy density.
For example, when the object to be irradiated is a semiconductor film, crystallinity of a region of the film annealed by the attenuation regions of the laser light is different from that of another region of the film annealed by the region of the laser light having the high homogeneity of the energy density. Thus, even when TFTs are manufactured from such a semiconductor film, electrical characteristics of TFTs manufactured from the region of the film annealed by the attenuation regions of the laser light are deteriorated and this becomes a factor for causing a variation of TFTs on the same substrate. Actually, there is almost no such a case where the TFTs are manufactured from the region of the film annealed by the attenuation regions of the laser light to produce a semiconductor device. Thus, this becomes a factor for decreasing the number of usable TFTs per substrate, thereby reducing throughput. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally, a gabion or gabion mesh is well known as a basket or cage filled with earth or rocks, and has basic units each of which takes the shape of a rectangle by bending two special zinc-coated steel wires or two steel wires with PVC coating further formed thereon, or a hexagon by twisting two steel wires in such a manner that the steel wires overlap with each other. Among them, a hexagonal gabion has a firm twisted structure formed by the two steel wires, and thus, is characterized in that it has a higher strength over and is stronger than a rectangular gabion. Therefore, the hexagonal gabion is recently preferred to the rectangular gabion.
As shown in FIG. 1, the hexagonal gabion is formed in such a manner that two steel wires mutually forms a twisted structure, branch off from each other and then form another identical twisted structure in cooperation with other adjacent steel wires, and subsequently branch off from each other again and then form a further identical twisted structure in cooperation with the previous adjacent steel wires or other adjacent steel wires, thereby consecutively repeating such processes. Consequently, such hexagonal basic units are formed both in the right and left direction and in the fore and aft direction, and mutually establish a consecutive connection relationship among them both in the right and left direction and in the fore and aft direction, resulting in a large gabion in the form of a steel wire mesh. At this time, the two steel wires can be differentiated into an upper steel wire A guided by an upper slider and a lower steel wire B guided by a lower slider in view of the manufacturing process of the gabion.
Further, FIG. 2 shows an improved version of such a conventional hexagonal gabion. The improved gabion is formed by inserting an additional transverse steel wire C into a twisted structure of upper and lower steel wires A and B to halve the size of a hexagon, so that the gabion can be filled with smaller fillers.
Nowadays, such a hexagonal gabion has been used in a variety of applications by using the hexagonal mesh structure. This hexagonal gabion is most widely used in the field of engineering and construction structures. In this field, for example, a gabion inclination (slope) is formed to protect a cut surface of earth and rocks in a case where there is a risk of collapse and falling rocks. Alternatively, if construction of a revetment for a road or cliff is required, a gabion mesh is assembled and filled with gravel or waste rocks (crushed rocks) having a size of 100 to 300 mm to construct a revetment. Further, in a case where a scour phenomenon has occurred or may occur in a dam or river conservation structure, a gabion mesh is assembled and filled with fillers to prevent the scour phenomenon in the dam or river conservation structure.
Particularly, when a revetment or the like is constructed as an engineering and construction structure, fillers for the revetment are gravel or crushed rocks. Thus, underground water permeating from the ground can freely flow through spaces among the fillers, thereby achieving natural drain. This eliminates a possibility that water pressure is produced inside a wall surface of the revetment. Accordingly, there is an advantage in that collapse due to water pressure can be prevented. Therefore, a gabion revetment is recently admitted as having safety higher than that of other engineering and construction structures, and also appraised as having superior performance.
Moreover, in the engineering and construction structure using the gabion mesh, ambient earth and sand or the like will be gradually filled into spaces among the empty spaces among the fillers, thereby providing soil and environments in which ambient plants can sprout and grow. Thus, there is an advantage in that the structure using the gabion mesh has superior environment-friendliness to similar structures such as concrete revetments or stone reinforcement walls in view of ecology. Therefore, the structure using the gabion mesh is recently widely used as an environment-friendly engineering and construction structure in advanced countries including Europe.
However, even though the gabion mesh has superior environment-friendliness as above, it has several critical problems due to limitations on its basic configuration as follows.
First, in such a conventional gabion mesh, both longitudinal steel wires A and B cannot be continuously supplied but one of the steel wires is cut and then supplied. This is because spirally twisted structures of the conventional gabion mesh continuously proceed only in one direction and the upper steel wire A should be cut to be relatively short and then supplied in order to form the twisted structures by consecutively spirally rotating the upper steel wire A together with the lower steel wire B in one direction while fixing the lower steel wire B as a reference. Nowadays, the upper steel wire A is called “spring steel wire” and is generally used after being cut to be remarkably shorter than the lower steel wire B.
Further, in manufacturing such a conventional gabion mesh, only an intermittently automated process rather than a fully automated process can be employed. This is because a conventional method for manufacturing the gabion mesh employs the shortly cut upper steel wire A, a plurality of upper steel wires A should be generally supplied until the gabion mesh is completely manufactured using a single lower steel wire B, and respective tie operations for the upper steel wires A to the lower steel wire B should be manually performed. Thus, there is a disadvantage in that in manufacturing the conventional gabion mesh, the manufacturing process cannot be fully automated.
Furthermore, there is a disadvantage in that skilled workers are required for manufacturing the conventional gabion mesh. This is because, upon manufacture of the conventional gabion mesh, the upper steel wires A should be repeatedly coupled to the upper slider during the manufacture thereof, and such coupling operations make the automation of the manufacturing process difficult and require craft of skilled workers.
In addition, there is a critical disadvantage in that the method for manufacturing the conventional gabion mesh has very low productivity. This is because the manufacturing process of the conventional gabion mesh is performed intermittently and depends on a partially automated process, at least two or three skilled workers are required according to the size of the gabion mesh, and it takes at least 20 to 30 minutes whenever the aforementioned coupling process is performed even by such skilled workers.
Since these problems with the manufacturing process result from the configuration itself of the conventional gabion mesh, there are insoluble limitations on the problems so far as the coupling structure of the gabion mesh or each unit of the gabion mesh is not fundamentally changed. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a process for preparing catalysts useful in the production of dicarboxylic acid anhydrides by the oxidation of hydrocarbons. More particularly it is directed to the preparation of catalysts suitable for producing maleic anhydride from 4-carbon atom hydrocarbons, such as n-butane, n-butenes, 1,3 butadiene or a mixture thereof.
Catalysts containing vanadium and phosphorus oxides have been used in the oxidation of 4-carbon atom hydrocarbons, such as n-butane, n-butenes, 1,3 butadiene or mixtures thereof with molecular oxygen or oxygen-containing gas to produce maleic anhydride. Conventional methods of preparing these catalysts involve combining a vanadium compound, a phosphorus compound, and if desired, promoter element compounds in a reducing medium under conditions which will provide vanadium in a valence state below +5 to form catalyst precursors capable of being converted to an oxide. The catalyst oxide precursor is then recovered and calcined to provide active catalytic material.
It has been taught in the art that various pentavalent and trivalent phosphorus compounds are satisfactory phosphorus components for use in the preparation of mixed vanadium phosphorus oxide catalysts. Orthophosphoric acid has been designated by some in the art as a preferred component.
U.S. Pat. No. 3,238,254 to Kerr lists the use of various phosphorus compounds such as metaphosphoric acid, triphosphoric acid, pyrophosphoric acid, orthophosphoric acid, phosphorus pentoxide, phosphorus oxyiodide, ethyl phosphate, methyl phosphate, amine phosphate, phosphorus pentachloride, phosphorus trichloride, phosphorus oxybromide, and the like, in the preparation of catalysts containing the mixde oxides of vanadium and phosphorus.
U.S. Pat. No. 3,474,041 to Kerr contains the above disclosure, and additionally discloses that vanadium phosphorus catalysts may be reactivated and stabilized by adding to the catalyst an organophosphorus compound.
U.S. Pat. Nos. 3,907,707 to Raffelson et al., 4,149,992 to Mount et al. and 4,179,404 to Barone disclose the preparation of vanadium phosphorus oxide catalysts using trivalent phosphorus compounds such as orthophosphorous acid, pyrophosphorous acid, metaphosphorous acid and hypophosphorous acid. Other phosphorus sources may include phosphorus trioxide and organic phosphites. A pentavalent phosphorus compound additionally could be utilized.
U.S. Pat. No. 4,043,943 discloses the preparation of the vanadium phosphorus oxide catalyst in a liquid organic medium, preferably anhydrous, wherein the vanadium compound is reduced and solvated by gaseous HCl followed by reaction with the phosphorus compound.
The preparation of oxidation catalysts containing the mixed oxides of vanadium and phosphorus is disclosed in copending U.S. Ser. No. 106,786, assigned to our common assignee, wherein a vanadium compound is at least partially solubilized in an organic liquid medium capable of reducing at least a portion of the vanadium to a +4 valence state, and unsolubilized vanadium having a particle size larger than about 0.1 mm diameter is removed from the medium before addition of a phosphorus-containing compound.
The preparation of such catalysts is disclosed in co-pending U.S. Ser. No. 146,971, assigned to our common assignee, wherein partial reduction of a pentavalent vanadium compound is effected in the presence of a phosphorus compound in an organic liquid medium capable of reducing the vanadium.
U.S. Pat. No. 4,013,586 to Dolan et al. discloses the preparation of vanadium phosphorus oxide catalysts using organo phosphonates as the source of phosphorus. A pentavalent phosphorus compound additionally could be utilized. | {
"pile_set_name": "USPTO Backgrounds"
} |
Rapid development of the mobile internet and a continuous increase in a quantity of network users impose an increasingly higher requirement on a capacity of a wireless network. There are two conventional manners for improving a network capacity: A first manner is adding a new site, and a second manner is adding a system spectrum to extend a carrier frequency. However, due to difficulty in obtaining a site, high costs for deploying a new site, and a limited quantity of wireless spectrum resources, it is difficult to rapidly improve the network capacity in the two conventional manners.
Currently, a sector splitting technology is a cost-effective technical solution for improving the network capacity without adding a new site or a system spectrum. In the sector splitting technology, a sector cell requiring a relatively high network capacity is split into two sector cells; each of the two sector cells obtained by splitting is planned as a cell, where each sector cell uses a cell identifier; and a resource is reused for the two sector cells obtained by splitting, so as to improve a network capacity. However, compared with the original sector cell, an area of each sector cell obtained by using the sector splitting technology is decreased, that is, a coverage area of the cell is decreased, a quantity of cells is increased, and inter-cell interference is severer. This affects network performance such as handover and access, and makes network planning and optimization more complex.
To overcome a problem of the severer inter-cell interference caused by the sector splitting technology, a co-cell networking technology may be applied to the two sector cells obtained by using the sector splitting technology. The co-cell networking technology is combining two sector cells obtained by using the sector splitting technology to form a co-cell network, where the two sector cells in the same co-cell network share a cell identifier. In this way, a network capacity is improved by using the sector splitting technology, network performance such as handover and access is not affected, and complexity of network planning and optimization is reduced. The co-cell networking technology may also be applied to two sector cells that have not been processed by using the sector splitting technology. The two sector cells that have not been processed by using the sector splitting technology are combined to form a co-cell network, and the two sector cells in same the co-cell network share a cell identifier.
A virtual 6-sector cell is used as an example. A conventional 3-sector cell is shown in FIG. 1 (a). Sector cells shown in FIG. 1 (b) are obtained after each sector cell in FIG. 1 (a) is processed by using the sector splitting technology. For example, a cell 0 is split into two sector cells after cell splitting, and the two sector cells share a cell identifier of the cell 0.
In the co-cell network, a base station sends common pilot signals together and sends user data independently. Therefore, a channel mismatch problem exists, and a system throughput is affected. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention pertains to silicone resins having the general formula (R1SiO3/2)x(HSiO3/2)y where R1 is an alkyl group having 8 to 24 carbon atoms. The resins are used to form porous thin films on semiconductor devices.
Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit (IC). The interconnect levels are typically separated by an insulating or dielectric coating. The coatings may be formed by chemical vapor deposition or by spin-on techniques. For example, U.S. Pat. No. 4,756,977 discloses the use of hydrogen silsesquioxane resins to form coatings on electronic devices.
As the size of the circuit elements and the spaces between such elements continues to decrease, there is a need for insulating materials that have a lower dielectric constant. In particular, materials that can provide a dielectric constant below 3 are desirable. One means for producing coatings that have a dielectric constant below 3 is to use spin-on materials that are silicon based and that when cured produce pores in the film.
Silicon containing spin-on materials have been described in U.S. Pat. Nos. 5,010,159 to Bank et al., U.S. Pat. No. 6,022,814 to Mikoshiba et al., and U.S. Pat. Nos. 6,143,855 and 6,177,199 to Hacker et al.
It has now been found that resins having the formula (R1SiO3/2)x(HSiO3/2)y where R1 is an alkyl group having 8 to 24 carbon atoms can be used to produce coatings on electronic devices, in particular semiconductor devices. These resins can be used to produce films having a dielectric constant of 1.5 to 2.3.
This invention pertains to silicone resins having the general formula (R1SiO3/2)x(HSiO3/2)y where R1 is an alkyl group having 8 to 24 carbon atoms. The resins can be used to form porous thin films on semiconductor devices by applying the resin onto a semiconductor device and heating the resin to a temperature sufficient to cure the resin and produce the porous coating. These coatings produced herein have a dielectric constant of 1.5 to 2.3. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to cosmetic organizers and, in particular, to an organizer having a hinged cover.
A cosmetic organizer is helpful for keeping numerous small cosmetic items together and readily available. A complement of cosmetics can include numerous small items such as eyeliner pencils, lipsticks, compacts, various bottles, brushes, etc. Much time can be lost locating these various items when applying make-up.
It is desirable to keep such cosmetics in a closed case so they are not lost when transported or stored. It is also desirable to have a hinged cover and a catch to keep the cover closed. Preferably, the organizer is compartmentalized but not unnecessarily complex.
Furthermore the organizer should preferably be easily manufactured from simply molds. Known molds can make relatively complex shapes by using only two halves, or "plates." In some case a three part mold or a cam operated insert may be necessary if the shape is too complex for a two-plate mold. Still a shape such as a torus can be made with a "pass through," that is, an element that passes through the hole of the torus.
For aesthetic and practical reasons, a cosmetic case is preferably soft. A completely soft case, however, is disadvantageous because the case will collapse into a distorted shape making the case difficult to use.
Accordingly there is a need for an organizer that is compact, soft but not collapsible, which can be manufactured efficiently. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is well known that bipolar transistors, especially heterojunction bipolar transistors (HBTs) based on GaAs technologies, can exhibit excessive current leakage at emitter/base contact junctions. See Lin, Hao-Hsiung et. Al., “Super-gain AlGaAs/GaAs Heterojunction Bipolar Transistors using an Emitter Edge-thinning design,” Appl. Phys. Lett. 47 (8), 15 Oct. 1985, pp. 839-841. Surface recombination of electrons in the base material and the spacing between the emitter and base contacts of the devices degrade transistor performance and affect device reliability.
The prior art has attempted to minimize the parasitic capacitance at these emitter/base junction areas by, for example, producing devices 10 on a substrate 26. An area between the emitter layer 34 and the base contacts 48 is covered with a photoresist material 50 prior to etching the device as described in U.S. Pat. No. 5,804,877 (Fuller et. al.) and illustrated in FIG. 1. The disadvantage of this method is the use of an additional photolithography step during the device fabrication process that causes damage to collector sidewalls during the stripping of the photoresist and limits the useful operating voltage of the transistor.
To address the surface recombination problem that reduces the reliability of the HBTs, a fabrication process described in U.S. Pat. No. 5,001,534 (Lunardi et. al.) required that an emitter layer (referred to as a ledge) be left intact beneath the entire base contact and electrical contact to the base layer of the device was accomplished through the intact emitter layer. The base contact metal was diffused through the emitter layer, and the reliability of the transistors were compromised.
In U.S. Pat. No. 5,840,612 (Oki et. al.) surface passivation of HBTs was again addressed by using a depleted layer of widebandgap semiconductor (also referred to as a ledge) over the extrinsic base region of the transistor. The ledge thickness was defined by selectively etching away semiconductor layers above the widebandgap semiconductor; however, it is difficult to achieve a consistent ledge thickness and thus large variations in the device's characteristics result.
As demand for more reliable device performance continues to increase, the need for semiconductors, especially HBTs based on GaAs technologies, which exhibit maximum operating voltages has become apparent.
Accordingly, a need exists for a method of manufacturing a semiconductor component, and a semiconductor component thereof, that is both reliable and exhibits maximum operating voltages.
For simplicity and clarity of illustration, the figures illustrate the general invention, and descriptions and details of well-known features and techniques are omitted to avoid excessive complexity. The figures are not necessarily drawn to scale, and the same reference numerals in different figures denote the same elements. It is further understood that the embodiments of the invention described herein are capable of being manufactured or operated in other orientations than described or illustrated herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an optical displacement sensor and an external force detecting device, and more particularly to an optical displacement sensor to sense a relative positional displacement between a reference segment and a measurement segment according to the displacement of the position of light received, and an external force detecting device to detect an external force applied to the measurement segment according to the output of the optical displacement sensor.
2. Description of the Related Art
An external force detecting device, such as an optical six-axis force sensor, has been conventionally known, in which a positional displacement of a force receiving member (i.e., measurement segment) to receive an external force applied relative to a static member (i.e., reference segment) is sensed by an optical displacement sensor, and the external force applied is calculated according to a signal outputted from the optical displacement sensor.
For example, in an optical six-axis force sensor, an external force applied is calculated with respect to six axis directions according to displacements generated in the six directions, and therefore optical displacement sensors are provided so as to measure the displacements in the six axis directions. The optical six-axis force sensor as described above includes three optical displacement sensors each of which is adapted to measure displacements in the two axis directions X and Y.
Each of such optical displacement sensors includes a light emitting diode (LED) as a light source, and a photo diode (PD) array as a light receiving element disposed opposite to the LED on a common optical axis, wherein the PD array is composed of four PDs, and light emitted from the LED is arranged to impinge on the PD array at its center area equally shared by the four PDs. In the optical displacement sensor, the positional displacement of light received at the PD array can be detected, that is to say, the relative positional displacement between a portion of the sensor having the LED attached thereto and a portion of the sensor having the PD array attached thereto can be detected. In the optical six-axis force sensor, a six-axis force is calculated according to respective outputs from the three optical displacement sensors.
Conventionally, in a six-axis force sensor using three optical displacement sensors, a light source and a light receiving element must be provided at each optical displacement sensor thus requiring a plurality (three) of light sources, which results in increased power consumption. To overcome this problem, Japanese Patent Application Laid-Open No. 2005-156456 discloses a six-axis force sensor incorporating a trifurcate optical fiber which has one light entrance end and three light exit ends, and a light beam emitted from a light source is introduced into the trifurcate optical fiber from the one entrance end and split into three light beams to take three separate optical paths and to exit out from respective exit ends so as to impinge on three separate light receiving elements, respectively, thus requiring only one light source.
In the disclosed six-axis force sensor described above, the optical fiber has its trifurcated portions bent or curved at 90 degrees so that the three light beams progressing through the optical fiber can be duly directed to the respective light receiving elements. With this structure, there is a lot of light leaking at the bent/curved portion causing a problem of light loss. In order to reduce the amount of light leaking at the bent/curved portion, the curvature radius of the bent/curved portion must be set large, which, however, causes the optical displacement sensor to be dimensioned large, thus prohibiting downsizing of the sensor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electrostatic trap (E-Trap) and multi-pass time-of-flight (MP-TOF) mass spectrometers (MS) generally appear to share one common feature—the analyzer electrostatic fields are designed to provide an isochronous ion motion with respect to small initial energy, angular, and spatial spreads of the ion packets. In MP-TOF MS, ion packets follow a predetermined folded ion path from a pulsed source to a detector, and ion mass-to-charge ratio (m/z) is determined from the ion flight time (T), where T˜(m/z)0.5. In E-Trap MS, ions are trapped indefinitely and the ion flight path is not fixed. Ion m/z is determined from the frequency (F) of ion oscillations, where F˜(m/z)−0.5. The signal from an image charge detector is analyzed with the Fourier transformation (FT).
Both techniques are challenged to provide a combination of the following parameters: (a) spectral acquisition rate up to 100 spectra a second in order to match speed of GC-MS, LC-IMS-MS, and LC-MS-MS experiments; (b) ion charge throughput from 1E+9 to 1E+11 ions/sec in order to match ion flux from modern ion sources like ESI (1E+9 ion/sec), EI (1E+10 ion/sec) and ICP (1E+11 ion/sec); and (c) mass resolving power in the order 100,000 to provide mass accuracy under part-per-million (ppm) for unambiguous identification in highly populated mass spectra.
TOF MS: High resolution TOF MS developments have been made with the introduction of electrostatic ion mirrors. Mamyrin et al in U.S. Pat. No. 4,072,862, incorporated herein by reference, appears to suggest using a double stage ion mirror to reach second-order time per energy focusing. Frey et al in U.S. Pat. No. 4,731,532, incorporated herein by reference, appears to suggest introducing grid-free ion mirrors with a decelerating lens at the mirror entrance to provide a spatial ion focusing and to avoid ion losses on meshes. Aberrations of grid-free ion mirrors have been improved by incorporation of an accelerating lens by Wollnik et al in Rapid Comm. Mass Spectrom., v.2 (1988) #5, 83-85, incorporated herein by reference. From that point it became apparent that the resolution of TOF MS is no longer limited by analyzer aberrations, but rather by the initial time spread appearing in the pulsed ion sources. To diminish effects of the initial time spread one should extend the flight path.
Multi-Pass TOF MS: One type of MP-TOF, a multi-reflecting MR-TOF MS arranges a folded W-shaped ion path between electrostatic ion mirrors to maintain a reasonable size of the instrument. Parallel ion mirrors covered by grids has been described by Shing-Shen Su, Int. J. Mass Spectrom. Ion Processes, v.88 (1989) 21-28, incorporated herein by reference. To avoid ion losses on grids, Nazarov et al in SU1725289, incorporated herein by reference, suggested gridless ion mirrors. To control ion drift, Verenchikov et al in WO2005001878, incorporated herein by reference, suggested using a set of periodic lenses in a field-free region. Another type of MP-TOF—so called Multi-turn TOF (MT-TOF) employs electrostatic sectors to form spiral loop (race-track) ion trajectories as described in Satoh et al, J. Am. Soc. Mass Spectrom., v.16 (2005) 1969-1975, incorporated herein by reference. Compared to MR-TOF, the spiral MT-TOF has notably higher ion optical aberrations and can tolerate much smaller energy, angular and spatial spreads of ion packets. The MP-TOF MS provide mass resolving power in the range of 100,000 but they are limited by space charge throughput estimated as 1E+6 ions per mass peak per second.
E-Trap MS with TOF Detector: Ion trapping in electrostatic traps (E-trap) allows further extension of the flight path. GB2080021 and U.S. Pat. No. 5,017,780, both incorporated herein by reference, suggest I-path MR-TOF where ion packets are reflected between coaxial gridless mirrors. Looping of ion trajectories between electrostatic sectors is described by Ishihara et al in U.S. Pat. No. 6,300,625, incorporated herein by reference. In both examples, ion packets are pulsed injected onto a looped trajectory and after a preset delay the packets are ejected onto a time-of-flight detector. To avoid spectral overlaps, the analyzed mass range is shrunk reverse proportional to number of cycles which is the main drawback of E-Traps with a TOF detector.
E-Trap MS with Frequency Detector: To overcome mass range limitations I-path electrostatic traps (I-Path E-Trap) employ an image current detector to sense the frequency of ion oscillations as suggested in U.S. Pat. Nos. 6,013,913A, 5,880,466, 6,744,042, Zajfman et al Anal. Chem, v.72 (2000) 4041-4046, incorporated herein by reference. Such systems are referred as I-path E-traps or Fourier Transform (FT) I-path E-traps and form part of the prior art (FIG. 1). In spite of the large size analyzer (0.5-1 m between mirror caps), the volume occupied by ion packets is limited to ˜1 cm3. A combination of low oscillation frequencies (under 100 kHz for 1000 amu ions) and low space charge capacity (1E+4 ions per injection) either severely limit an acceptable ion flux or lead to strong space charge effects, such as self-bunching of ion packets and peaks coalescence.
Orbital E-Traps: In U.S. Pat. No. 5,886,346 Makarov, incorporated herein by reference, suggested electrostatic Orbital Trap with an image charge detector (trade mark ‘Orbitrap’). The Orbital Trap is a cylindrical electrostatic trap with a hyper-logarithmic field (FIG. 2). Pulsed injected ion packets rotate around the spindle electrode in order to confine ions in the radial direction, and oscillate in a nearly ideal harmonic axial field. It is relevant to the present invention that the field type and the requirement of stable orbital motion locks the relationship between characteristic length and radius of the Orbitrap, and do not allow substantial extension of a single dimension of the trap. In WO2009001909 Golikov et al, incorporated herein by reference, suggested a three-dimensional electrostatic trap (3D-E-trap) also incorporating orbital ion motion and image charge detection. However, the trap is even more complex than Orbitrap. An analytically defined electrostatic field defines 3-D curved electrodes with sizes linked in all three directions. Though linear electrostatic field (quadratic potential) of the Orbital trap extends the space charge capacity of the analyzer, still ion packets are limited to 3E+6 ions/per injection by the capacity of so-called C-trap and by the necessity to inject ion packets into the Orbitrap via a small (1 mm) aperture (Makarov el al, JASMS, v.20, 2009, No. 8, 1391-1396, incorporated herein by reference). The orbital trap suffers slow signal acquisition—it takes one second for obtaining spectra with 100,000 resolution at m/z=1000. Slow acquisition speed, in combination with the limited charge capacity does limit the duty cycle to 0.3% in most unfavorable cases.
Thus, in the attempt of reaching high resolution, the prior art MP-TOF and E-traps do limit throughput (i.e. combination of the acquisition speed and the charge capacity) of mass analyzers under 1E+6 to 1E+7 ions per second, which limits effective duty cycle under 1%. The data acquisition speed of E-traps is limited to 1 spectrum a second at resolution of 100,000.
It is an object of at least one aspect of the present invention to obviate or mitigate at least one or more of the aforementioned problems.
It is a further object of at least one aspect of the present invention to improve the acquisition speed and the duty-cycle of high resolution electrostatic traps in order to match the intensity of modern ion sources exceeding about 1E+9 ions/sec and to bring the acquisition speed to about 50-100 spectra/sec required by tandem mass spectrometry while keeping the resolving power at about 100,000. | {
"pile_set_name": "USPTO Backgrounds"
} |
For rotating members, in particular rotating shafts, it is sometimes necessary to receive accurate rotational information, which may be rotational position, velocity, and acceleration information. Various sensing systems have been developed to accomplish this task.
One sensing system in particular that works well in relatively harsh environments, such as with a crankshaft of an internal combustion engine, is a toothed sensor wheel. For this particular sensing system, the wheel is ferromagnetic and an inductive (magnetic field) sensor is located near the wheel periphery. As the wheel rotates, the teeth pass by the sensor, changing the magnetic field. The information is then communicated to a processor via a generally sinusoidal voltage signal from the sensor. This works generally well since it is non-contact--there are no rubbing parts to wear out, dirt and oil won't generally interfere with the signal, and the temperature effects are minimal. Generally the sensor wheel will have a series of teeth that are the same size and evenly spaced circumferentially about the wheel, with one of the teeth missing. The missing tooth location will provide a gap for indexing, to determine the absolute rotational position. This information can then be used for generally controlling engine operating parameters, such as ignition timing, fuel injector timing, etc.
While the information provided by the sensor system is sufficient for conventional internal combustion engines, the need arises to increase the accuracy of readings for this type of system in order to obtain more precise engine operation information. An example of such an instance is the desire to use a toothed crankshaft sensor wheel to detect engine cylinder misfires. It must be very precise because the slight acceleration of the crankshaft due to a cylinder firing must be determined. For this type of calculation, as little as 10 microseconds error may be too much to obtain the desired accuracy.
In general the toothed wheel sensor system produces a sinusoidal signal that has periodic zero crossings (i.e. where the voltage is zero). These zero crossings are subsequently used for determining the rotational information needed for misfire detection. The sinusoidal signal is sent to a processor for generation of a square wave from which edges are time stamped for further digital signal processing as part of a misfire monitor.
An accuracy concern arises however around the location of the missing tooth. For these inductive sensors, the missing tooth location provides for a different rate of change in magnetic flux linkage than do the other teeth on the wheel, so that residual stored energy will occur due to the loss of this flux coupling at the location of the missing tooth. The additional energy is stored in the inductor of the sensor and decays based on the particular sensor and input circuit characteristics. This residual energy will then result in higher voltages, affecting the signal for a few teeth past the gap as the excess energy decays, inherently causing a time delay in the zero crossing of the signal and hence increases the variation in the edge placement for the square waves which are subsequently generated. This, then, results in inaccurate time stamp data at these locations. The need arises then for compensation in the signal due to the energy storage in the inductive sensor.
One method of correction employed is to take the signal from the sensor as is, with the error, and employ software in a signal processor to manipulate the signal in order to compensate for the error. However, the accuracy can be less than satisfactory since the correction is based on operation at a given operating speed to minimize the software complexity, and as the rotational speed varies from the given speed, the accuracy of the error correction is reduced.
Thus, it is desirable to assure accuracy in the signal initially sent from the inductive sensor, (i.e. reduce the error at the source), and avoid the need for the error compensation in the software of the signal processor in order to obtain accurate rotational acceleration data from a sensor wheel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus and method for measuring the individual toe angle of nonsteerable rear wheels on a vehicle, and more particularly to such apparatus and method for measuring individual toe angles of the rear wheels relative to a chassis centerline reference.
2. Description of the Prior Art
An electronic wheel aligner for measuring the toe of the front wheels with respect to the rear wheel axis of rotation is disclosed in U.S. Pat. No. 4,097,157, Lill. When the aligner heads are mounted on the rear wheels the system disclosed in the aforementioned U.S. Patent cannot determine the individual rear wheel toe because the reflector disclosed therein which provides the rear wheel rotation axis reference would then be mounted on a steerable front wheel having a movable rotation axis.
"Centering gages" for vehicle frames have been described in the past as for example in U.S. Pat. No. 3,151,396, Junkins. The gage disclosed by Junkins has a housing with a pair of elongate parallel bars which are simultaneously movable longitudinally in opposite directions within the housing. The outer end of each bar has a hanger attached thereto so that the end of each bar may be hung from opposite side beams on the vehicle frame. A rod is mounted on the housing which is always at the midpoint between the ends of the movable parallel bars since the ends of the bars either converge or diverage at the same rate due to an array of cables and rollers mounted within the housing.
Another "centering gage" is disclosed in U.S. Pat. No. 3,417,479, Hirmann, which includes members near the outer ends of the assembly which contact the vehicle chassis at similar points on opposite sides of the chassis. Telescoping end members are provided to move longitudinally on each end of a tubular center member in the Hirmann gage. A rack is attached to each of the telescoping end members extending into the center member. A pinion is mounted within the center member which is meshed with each of the two racks. Thus, when one telescoping end member is moved longitudinally either toward or away from the center of the gage, the pinion is rotated thereby driving the other telescoping end member toward or away from the center of the gage synchronously with the one telescoping end member. An optical path is aligned with the center point of the central member so that a line of sight is provided along the chassis centerline when the feeler members are in contact with opposite sides of the chassis. | {
"pile_set_name": "USPTO Backgrounds"
} |
Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies with a rising prevalence owing to the aging of the American population. MDS comprise a group of malignant hematologic disorders associated with impaired erythropoiesis, dysregulated myeloid differentiation and increased risk for acute myeloid leukemia (AML) transformation. The incidence of MDS is increasing with 15,000 to 20,000 new cases each year in the United States and large numbers of patients requiring chronic blood transfusions. Ineffective erythropoiesis remains the principal therapeutic challenge for patients with more indolent subtypes, driven by a complex interplay between genetic abnormalities intrinsic to the MDS clone and senescence dependent inflammatory signals within the bone marrow (BM) microenvironment. Although three agents are approved for the treatment of MDS in the United States (US), lenalidomide (LEN) represents the only targeted therapeutic. Treatment with LEN yields sustained red blood cell transfusion independence accompanied by partial or complete resolution of cytogenetic abnormalities in the majority of patients with a chromosome 5q deletion (del5q), whereas only a minority of patients with non-del5q MDS achieve a meaningful response, infrequently accompanied by cytogenetic improvement. Although responses in patients with del5q MDS are relatively durable, lasting a median of 2.5 years, resistance emerges over time with resumption of transfusion dependence. | {
"pile_set_name": "USPTO Backgrounds"
} |
Immunity and inflammation are forms of physiologic processes defined as the body's response against foreign substances such as antigens or, in some cases, itself; autoantigens, or some form of damaging biologic or mechanical insult The process often involves the production of antibodies by type B lymphocytes which interact with foreign substances and subsequently destroy or inactivate the antigen using a number of cellular and chemical amplification systems and regulation systems such as complement, arachadonic acid metabolites such as prostaglandin and leukotriennes, cytokines, preformed mediators such as serotonin and histamine, and enzymes. Inflammatory responses occur in conjunction and as a result of the immune recognition process and functions to provide the basic tissue insult
Unfortunately, inflammatory reactions intrinsically may have destructive effects on tissue and organ structure and function, and may lead to painful or subjectively adverse sensory experiences. A specific form of inflammation defined herein deals with an organism's ability to produce a rapid regional inflammatory response over a several second to 12 hour period.
While various anti-inflammatory agents have existed in the past, none have been associated with the mechanism of regional chemodenervation such as achievable with botulinum toxin. Regional chemodenervation refers to the practice of injecting or otherwise providing the chemodenervation agent to a particular region or site with diffusion of that agent from that site over a fixed distance. Dosages associated with regional chemodenervation range from 20-600 units per region for the treatment of movement disease.
Regional chemodenervation is accomplished for therapeutic purposes for the treatment of a number of movement disorders of the body, involving excessive tone, involuntary movement and abnormal postures often associated with abnormal sensations. Examples of such movement disorders include essential blepharospasm, hemifacial spasm, adult onset spasmodic torticollis, regional occupation limb and hand dystonia, spasmodic dysphonia, aberrant facial nerve region with facial muscle synkinesis, and bruxism and jaw dystonia as described by Borodic, G. E., Pearce, L. B., Johnson, E., Schantz, E., Clinical and Scientific Aspects of Therapeutic Botulinum toxin Administrations, Ophthalmology Clinics of N. America, September, Vol. 4, No. 3, 1991.
Chemodenervation is accomplished by injecting a biologically quantized amount of botulinum toxin into the regional muscles involved with the involuntary movement, effecting a block in neuromuscular transmission leading over a period of several weeks to neurogenic muscular atrophy, decreased muscular resting tone and decreased muscular contractility over a defined region determined by the quantity of chemodenervating agent used in the injection site. The preferred agent is-botulinum toxin, generally quantized using the ID 50 bioassays which may be refined by regional denervation bioassays as described by Borodic, G. E., Alderson, K., Pearce, L. B., Ferrante, R., Histologic changes in muscle and clinicopathologic correlations after therapeutic botulinum toxin administration, Textbook of Botulinum toxin Therapy Eds, J. Jankovic, M. Hallet, M. Dekker, New York, Hong Kong, Chapter 10, Pages 119-158, 1994.
The botulinum unit is defined as that quantity of botulinum toxin capable of killing 50% of a population of Swiss Webster mice. The quantity is an activity unit, and specifically not a unit of mass. Depending on the quality of the botulinum toxin used, the mass necessary to produce this activity may vary.
The dosage associated with such regional movement diseases is on the order of 25-600 units, with the duration of the chemodenervative effect being generally 12-16 weeks, with complete reversibility for most therapeutic preparations of botulinum toxin. Botulinum is known to exist as immunotypes A-G which affect different cytoplasmic acceptor proteins after being internalized at the presynaptic motor axon terminal. Each immunotype has been associated with varying durations of action and chemodenervating potency per LD 50 unit, as described by Borodic, G. E., Pearce, L. B., New Concepts in Botulinum toxin Therapy, Drug Safety 11(3): 145-152, 1994.
Despite the known tissue effects from regional injections of botulinum toxin, certain medical observations regarding the use of chemodenervating agents can not be easily explained by such denervating tissue effects. For instance, when chemodenervation is used to treat patients with benign essential blepharospasm, photophobia or sensitivity of the eye to light is often markedly decreased. Botulinum toxin in the dosages associated with the blocking in neuromuscular transmissions has also been shown to occasionally be helpful for the treatment of regional pain syndromes such as myofascial pain syndromes, headaches, and migraine headaches which can not easily be explained by me traditional chemodenervation model mat has been evoked for the efficacy in regional movement diseases. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to systems for reducing rotational nonuniformities of shafts and in particular a draft shaft of an internal combustion engine.
2. Description of the Related Art
The invention concerns a system for actively reducing rotational nonuniformity of a shaft, especially the drive shaft of an internal combustion engine or a shaft which is coupled or can be coupled to it.
More simple systems of this type are known, which can only act by driving or only by braking an internal combustion engine to reduce its rotational nonuniformity. Thus, Patent Abstracts of Japan, Volume 11, No. 28 (M-557), Jan. 27, 1987 & JP-A-61 200 333 (NISSAN I) discloses a synchronous electrical machine that is directly coupled to the crankshaft of an internal combustion engine and is switched like a (driving) electric motor when the rotational speed falls below a certain standard value and thus counteracts a rotational nonuniformity to slow down (a so-called negative rotational nonuniformity). The motor is shut off when the rotational speed goes beyond this standard value.
A purely brake type system is disclosed by Patent Abstract of Japan, Volume 4, No. 29 (M-002), Mar. 14, 1980 & JP-A-55 005 454 (TOYOTA). Here, an electromagnet surrounds the outer rim of a flywheel on the crankshaft of an internal combustion engine. The electromagnet is excited synchronously with rotational nonuniformities and thus brakes the flywheel in correct phase, acting like an eddy current brake.
Similarly, EP-B-0 427 568 (ISUZU) discloses an internal combustion engine with a conventional belt-driven dynamo, which acts like a brake when there is a rotational nonuniformity to speed up (a so-called positive rotational nonuniformity). Finally, DE-A-32 30 607 (VW I) also discloses an internal combustion engine with a flywheel-dynamo, which acts like a brake when there is a rotational nonuniformity during phases of positive nonuniformity. The dynamo can also serve as a starter for the internal combustion engine.
Systems which can alternately act as drives and brakes to actively reduce rotational nonuniformities are also known in the state of the art:
Thus, EP-B-0 175 952 (MAZDA) discloses such a system with a commutator machine, having two stator windings- one for driving and one for braking. Through alternating correct-phase excitation of these two stator winding ,the machine alternately behaves like a drive and a brake.
Patent Abstracts of Japan, Volume 7, No. 240 (M-25), Oct. 25, 1983 and JP-A-58 126 434 (NISSAN II) disclose a system with a commutator machine, wherein the electrical energy obtained here by braking is saved in a capacitor and again used for driving.
DE-A-41 00 937 (FICHTEL & SACHS) discloses a system with a synchronous alternating current machine, which can generate a torque with periodically changing direction. The synchronous machine is configured such that the torque fluctuations occur in a fixed phase position relative to the crankshaft, so that they can counteract certain rotational nonuniformity orders of the internal combustion engine. But in order to allow a certain adjustment of this fixed phase relationship, the stator winding arrangement of the synchronous machine can have several winding strands laid down in opposite peripheral direction, which can be optionally energized with current.
These known systems essentially enable an active reduction of rotational nonuniformity.
More remote state of the art shall also be mentioned below, pertaining to certain configurations of the invention:
EP-A-0 604 979 (NIPPONDENSO) discloses an active vibration dampening system, in which a direct current machine furnishes alternating moments phase-shifted to rotational nonuniformities, in order to dampen vibrations of the vehicle in this way.
EP-A 0 437 266 (MAGNET-MOTOR) and DE-A 33 35 923 (VW II) disclose flywheel accumulators for hybrid vehicles.
DE-A 33 38 548 (VW II), DE-A 44 08 719 (VW IV), DE-A 0 938 680 (MULLER), DE-A 0 282 671 (MEYER) and U.S. Pat. No. 2,790,917 (TROFIMOV) concern electromagnetic couplings.
DE-A 32 43 513 (VW V) discloses an electric machine in whose proximity a mechanical coupling is arranged.
H. Deisenroth, C. Trabert: "Avoidance of Voltage Surge in Pulse Invertor Drives," etc., 1993, 1060, concerns pulse invertor drives.
DE-A 42 30 510 (GRUNDL & HOFFMANN) and W. Geissier, F. Unger-Weber: "Modeling the Three-Phase Propulsion System of a Modern Multisystem Locomotive," EPE, Florence, 1991, 4-632, disclose liquid-cooled invertor.
J. Langheim, J. Fetz: "Electric Citybus with Two Induction Motors--Power Electronics and Motor Control," ETEP, Vol. 2, No. 6, November/December 1992, 359, concerns a field-oriented regulation of an electric machine. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates in general to the field of drug delivery, and more particularly, to drug delivery and monitoring systems having drug administration information and data storage capability.
An alarming number of adverse drug events occur nationally contributing significantly to morbidity and mortality, as well as immense expense. Major contributing factors include the necessity of health care workers to perfectly identify, prepare and administer medications after properly identifying the patient and remembering allergies, drug-drug interactions, the patient medical conditions and then recalling drugs and dosing for charting on the patient's record.
A number of systems are known for monitoring drug delivery to a patient through an IV injection port. For example, see Martin, U.S. Pat. No. 4,976,687; Abrams, U.S. Pat. No. 4,613,325; Robinson, et al., U.S. Pat. No. 4,559,044; Purcell, et al.; U.S. Pat. No. 4,383,252; and Lundquist, U.S. Pat. No. 4,079,736.
A drug documenting system has been disclosed using optical scanning techniques in Walker, et al., U.S. Pat. No. 5,651,775, the disclosure of which is incorporated herein in its entirety by reference. In Walker, et al., a scanner module includes a reader for entering and storing drug administration information and data on a magnetic card by operation of a microprocessor. The scanner module includes one or more photo sensing electronic detectors for reading machine readable drug administration information provided on a label adhered to a syringe and determining drug volume delivery data in real time. A PCMCIA slot provides system communication through the use of a modem or connection to an area network. The scanner module may be integrated into a system at a fixed location or rendered portable by battery power. By reducing the sensing system size and connecting to wireless communicating devices, added safety and utility can be made available to patients. Notwithstanding the foregoing, there remains the desire for improvements in drug delivery and monitoring systems, which are fulfilled by the system of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
In modern communications systems a video signal may be sent from one device to another over a medium such as a wired and/or wireless network, often a packet-based network such as the Internet. Typically video content, i.e. data which represents the values (e.g. chrominance, luminance) of samples in slices of the video, is encoded by an encoder at the transmitting device in order to compress the video content for transmission over the network. Herein, “slice” means a frame of the video or region of a frame of the video i.e. a frame is comprised of one or more slices. The encoding for a given slice may comprise intra frame encoding whereby (macro) blocks are encoded relative to other blocks in the same slice. In this case a target block is encoded in terms of a difference (the residual) between that block and a neighbouring block. Alternatively the encoding for some frames or slices may comprise inter frame encoding whereby blocks in the target slice are encoded relative to corresponding portions in a preceding frame, typically based on motion prediction. In this case a target block is encoded in terms of a motion vector identifying an offset between the block and the corresponding portion from which it is to be predicted, and a difference (the residual) between the block and the corresponding portion from which it is predicted. The residual data may then be subject to transformation into frequency coefficients, which are then subject to quantization whereby ranges of frequency coefficients are compressed to single values. Finally, lossless encoding such as entropy encoding may be applied to the quantized coefficients. A corresponding decoder at the receiving device decodes the slices of the received video signal based on the appropriate type of prediction, in order to decompress them for output on a display.
Once the video content has been encoded, the encoded video content is structured for transmission via the network. The coded video content may be divided into packets, each containing an encoded slice. For example, the H.264 and HEVC (High Efficiency Video Coding) standards define a Video Coding Layer (VCL) at which the (e.g. inter/intra) encoding takes place to generate the coded video content (VCL data), and a Network Abstraction Layer (NAL) at which the VCL data is encapsulated in packets—called NAL units (NALUs)—for transmission. The VCL data represents values of samples in the video slices. Non-VCL data, which generally includes encoding parameters that are applicable to a relatively large number of frames or slices, is also encapsulated in NALUs at the NAL. Each NALU has a payload which contains either VCL or non-VCL data (not both) in byte (8 bit)-format, and a two-byte header which among other things identifies the type of the NALU.
The NAL representation is intended to be compatible with a variety of network transport layer formats, as well as with different types of computer-readable storage media. Some packet-orientated transport layer protocols provide a mechanism by which the VCL/non-VCL data can be divided into packets; however, other stream-orientated transport layer protocols do not. With a view to the latter, an H.264 byte stream format is defined, whereby the raw NAL data—comprising encoded VCL data, non-VCL data and NALU header data—may be represented and received at the transport layer of the network for decoding, or from local computer storage, as a stream of data elements. A “stream of data elements” (stream) means a sequence of data elements which is received, and which thus becomes available for decoding, over time so that decoding and outputting of video content in earlier parts of the stream can commence before later parts of the stream have been received. For the H.264 byte stream format, the stream is a byte stream i.e. the data elements are bytes. A similar format is defined in the HEVC standard, the successor to H.264. Some similar format is also adopted in SMPTE VC-1 standard.
Dividing markers, called start code prefixes, are included in the byte stream to mark the boundaries between NALUs so that each NALU header is preceded by a start code prefix marking the start of that NALU. 3 and 4 byte start code prefixes are defined, which are 0x 00 00 01 and 0x 00 00 00 01. Note “0x ij kl . . . ” means each of “ij”, “kl”, . . . is a hexadecimal representation of a 1-byte value e.g. 0x 00 is equivalent to 0000 0000 in binary, 0x 0A to 0000 1010, 0x FF to 1111 1111 etc. At the receiving terminal, the sequence is parsed to identify the start code prefixes and, in turn, the NALUs. The payload data is separated out, and any encoded slices are supplied to the decoder, which decodes the video slices by effectively inverting the various encoding processes. Certain byte patterns—specifically 0x 00 00 0y where y=0, 1 or 2—are illegal within an NALU payload i.e. the device decoding the byte sequence operates on the assumption that these sequences will not occur within a NALU payload so, if they do, this is liable to cause an error in or failure of the separation process. For example, the sequence 0x 00 00 01 is illegal in a payload because that sequence is reserved for the start code prefixes; if it were to occur in an intended payload, the decoding device would mistake it for a start code prefix marking the start of the next NALU and treat it as such. For this reason, at the same time as inserting the start code prefixes the encoding device inserts emulation prevention markers as follows: whenever the byte pattern 0x 00 00 0z, where z=0, 1, 2 or 3, occurs in the NALU payload data, a 1-byte emulation prevention marker, which is an emulation prevention byte, 0x 03 is inserted so that the pattern becomes 0x 00 00 03 0z; at the decoding device, at the same time as parsing the sequence to identify the start code prefixes, occurrences of the byte pattern 00 00 03 0z are identified, and the emulation prevention byte 0x 03 is removed before the relevant part of the stream is decoded; z=3 is included to ensure that 0x 03 bytes which occur ‘naturally’ in the NALU payloads are not mistaken for emulation prevention bytes and mistakenly removed before decoding. | {
"pile_set_name": "USPTO Backgrounds"
} |
Printing systems, including inkjet and laser printers, are well known in the art. In inkjet printing systems, an inkjet printhead is typically mounted on a carriage that is moved back and forth across a print media, such as paper. As the printhead is moved across the print media, a control system activates the printhead to deposit or eject ink droplets onto the print media to form text and images. Ink is provided to the printhead from a supply of ink that is either carried by the carriage or mounted to a fixed receiving station.
In electrophotographic or “laser” printing systems, marking material commonly called “toner” is provided by an electrophotographic engine frequently referred to as a toner cartridge. The toner cartridge often includes an intermediate imaging device such as a drum, and a reservoir of imaging material such as powdered toner. The drum is charged using an energy source such as a scanning laser. The imaging material is attracted to the charged drum and is then transferred to print media.
Regardless of the printing technology, it has become common for printing systems to incorporate additional functionality, generally by the inclusion of a scanner. These multifunction or “All-in-One” systems allow a user to print, scan, copy, and fax documents. The desired function may typically be selected from a control panel on the printing system, or through a software menu structure. Typical control panels may comprise hard-wired buttons or controls, or may comprise liquid crystal displays (LCDs) that may or may not be touch-sensitive (in which case they may be referred to as touchscreens). Such displays normally provide graphical representations of various selectable features, for instance buttons, that the user may select by either touching the display with one's finger or scrolling through the features using an actual control panel button.
One common function provided by All-in-One printing systems is facsimile transmission, or “fax”. Fax is a relatively old technology in which the image on a sheet of paper is scanned and converted into audio tones that may be transmitted over common telephone lines. The low bandwidth of phone lines means that faxes are typically low resolution monochrome images.
Facsimile transmission works reasonably well when the original document consists of dark lines or text on a substantially white background. Facsimile transmission works much less well when the original document has characteristics that don't reproduce well as a low resolution monochrome image. When the original document is printed on colored paper, for example, artifacts in the background of the faxed image can seriously degrade the readability of the faxed document.
There is therefore a need for methods that allow for improved facsimile transmission of documents printed on color media. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The techniques and apparatus described herein relate to semiconductor structures having an electrode structure in which conductive regions are recessed in a semiconductor region, and particularly to semiconductor devices, such as nitride-based semiconductor devices, using one or more such electrode structures.
2. Discussion of the Related Art
Improved power transistors are desired for advanced transportation systems, more robust energy delivery networks and new approaches to high-efficiency electricity generation and conversion. Such systems rely on very efficient converters to step-up or step-down electric voltages, and use power transistors capable of blocking large voltages. In hybrid vehicles, for example, power transistors with blocking voltages of more than 500 V are used to convert DC power from the batteries to AC power to operate the electric motor.
Conventional power devices (e.g., transistors or diodes) used in such applications are made of silicon. However, the limited critical electric field of silicon and its relatively high resistance causes available commercial devices, circuits and systems to be very large and heavy, and operate at low frequencies. Therefore such commercial devices are unsuitable for future generations of hybrid vehicles and other applications.
Nitride semiconductor devices have been proposed as offering the potential for producing high-efficiency power electronics demanding high blocking voltages and low on-resistances. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to managing groups of computers and more particularly relates to managing policies for configuring hardware or software settings on groups of computers with a plurality of operating systems.
2. Description of the Related Art
A major concern of information technology management in corporations and other organizations has been balancing the complexity associated with managing large numbers of computers with the needs of individual users as they try to accomplish their tasks. A heterogeneous set of computer hardware, operating systems, and application software creates complexity and increased costs, but various combinations of hardware, operating systems, and software provide technical advantages when used as user workstations, departmental servers, corporate infrastructure equipment, and the like. User workstations are particularly difficult to manage when various needs and preferences of individual users are accommodated. For example, an engineer may require the use of a CAD system that runs only on the UNIX™ operating system, where other corporate users may be standardized on the Microsoft Windows™ operating system and associated applications. Many similar compatibility issues exists among current computer systems.
One factor that adds to the complexity of managing various operating systems is that different operating systems employ different techniques for setting configuration information. For example, Microsoft Windows™ and applications that run on Windows typically use a database, called the registry, to store configuration information. Computers running the UNIX operating system or derivatives thereof such as LINUX typically store configuration information in plain text files in particular locations in the file system directory. Information technology managers within an organization that uses heterogeneous operating systems typically institute separate sets of management procedures and standards for each operating system used in the organization.
One component of prior art solutions to the problem of managing large numbers of computers and users is the use of policies. Policies are used to set configurable options associated with an operating system or application program for a group of computer users. For example, a word processing program may have an option to select an American English dictionary or a British English dictionary. By creating one policy for its users in the United States and another policy for its users in England, an organization can set the appropriate option for all users without configuring each user's computer individually.
Another component of prior art solutions to the problem of managing groups of computers and users is the use of network directory services. Directory services provide an infrastructure to store and access information about network-based entities, such as applications, files, printers, and people. Directory services provide a consistent way to name, describe, locate access, manage, and secure information about these resources. The directories associated with directory services are typically hierarchical structures such as a tree with each node in the hierarchy capable of storing information in a unit often referred to as a container. Enterprises may use directory servers and directory services to centrally manage data that is accessed from geographically dispersed locations.
For example, corporations typically create network directory trees that mirror their corporate organizations. Information about individual employees, such as their employee number, telephone number, and hire date may be stored in a user object corresponding to each user in the directory tree. An organizational unit container representing each department may contain the user objects associated with each employee in the department. Organizational unit objects associated with each corporate division may contain the department organizational unit objects associated with each department in the division. Finally, an organization container representing the corporation as a whole may contain the company's division organizational unit objects.
Combining the use of policies and directory services facilitates management of groups of computers and users. Policies may be associated with the various containers in the directory services tree to store associated configuration information at the organization, division, or departmental level. For example, a policy may be associated with the Accounts Receivable container in a corporate organization to set options for the accounting program used in that department. Exceptions to the policy can be managed on an individual level, or by creating a group object and associating a policy with the group. Suppose, for example, that all employees in an organization use a software application with a particular set of configuration options, but department managers require a different set of options. A policy could be created with the basic set of options and associated with the organization container. A separate policy with the configuration options for managers could be created and assigned to a Managers user group object.
Using policies and directory services in combination has proven efficient in homogeneous operating system environments. Prior art computer management systems use policies targeted toward a specific operating system, referred to as the native operating system. From the point of view of prior art policy and policy management systems, other operating systems are considered to be foreign operating systems. However, the operating requirements of many organizations require information technology managers to manage multiple operating systems. The efficiencies associated with policies and directory services have not been realized in heterogeneous operating system environments. Since different operating systems use different approaches to setting configuration information, a policy associated with a directory services container may be applied to users of a native operating system that provided the policies, but there may not be a method for applying the policy for users of a foreign operating system.
From the foregoing discussion, it should be apparent that a need exists for an apparatus, system, and method that extend the use of policies to manage configuration information on computers having operating systems that are foreign to the policy creation and management environment. Beneficially, such an apparatus, system, and method would control cost and complexity associated with management of computers with heterogeneous operating systems within an organization. The benefits are multiplied when network directory services are used in conjunction with policies. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention pertains to protective headgear. More particularly, this invention pertains to helmets that protect against injuries from direct and tangential impacts to the head.
2. Description of the Related Art
Concussions are a common problem in American football and other contact sports. Repetitive impact to the head can lead to very serious and long term injuries and related issues. Therefore, it is important that measures be taken to protect athletes, to reduce their risks.
Various types of sports helmets are used to reduce brain injuries, including skull and neck injuries, resulting from head impacts. Such helmets typically employ a hard outer shell in combination with internal padding made of an energy-absorbing material. A conventional helmet is generally designed to prevent skull fracture, and, to some extent, injuries associated with linear acceleration following a direct impact. Bio-mechanical research has long understood, however, that angular forces from a tangential impact can cause serious brain damage, including concussion, axonal injury, and hemorrhages. Neurological research studies show that angular or rotational forces can strain nerve cells and axons more than linear forces. It is thus desirable to have protective headgear that protects against both direct impacts and tangential impacts that cause rotational injuries. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional document routing systems may not be optimized for business-to-business transactions. In particular, the systems may not be able to process the volume of documents that may be applied in a business-to-business context. Conventional systems are not only expensive, but the conventional systems also are not sufficiently fast and do not sufficiently scale. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to an adapter for a centrifuge tube and to a removal tool for removing the adapter from the centrifuge tube.
Description of the Prior Art
A centrifuge rotor is a device used with a centrifuge instrument in order to subject a sample of a liquid to a centrifugal force field. The sample is carried in a suitable container, such as a test tube. The sample container is itself received within a recess provided in the body of the centrifuge rotor. The axis of the recess may be parallel to or inclined with respect to the axis of rotation of the rotor. The rotor in the latter case is known as a fixed angle rotor.
The sample container may, in some cases, exhibit a physical size that differs from the physical dimension of the recess in the centrifuge rotor in which it is received. In these instances the sample container is introduced into the recess using an intermediate device called an adapter. The adapter is externally dimensioned and configured in a manner that makes it compatible for receipt within the recess in the centrifuge rotor and is internally dimensioned and configured to accept the sample container. The adapter with the sample container received therein are thus receivable as a unit within the recess of the rotor and the sample may be thus exposed to the centrifugal force field upon rotation of the rotor.
Relative centrifugal force (RCF) is a measure of the magnitude of the centrifugal force to which a sample is subjected during a centrifugation run. RCF is dependent upon the radial distance of the sample from the axis of rotation of the centrifuge rotor. In instances when an adapter is utilized the sample container is usually not located within the recess at the greatest radial distance from the axis of rotation. For example, if it is desired to separate in a fixed angle rotor the contents of a liquid sample carried in a microtube using a centrifuge rotor having recesses which are sized to accomodate a standard test tube an adapter must be used. Currently available adapters able to accommodate a microtube are physically configured to substantially duplicate the exterior dimensions of the standard test tube. An opening is provided in the adapter that conforms in shape and length to the microtube. This opening is typically formed in the adapter adjacent the upper end thereof. Thus, when the microtube is received within the adapter and the adapter inserted into the sample receiving recess the sample is disposed at a distance from the axis of the rotation of the rotor that is less than the radial distance between the axis of rotation and the bottom of the sample receiving recess in the fixed angle rotor. As a result the sample is exposed to a lesser relative centrifugal force during a run of a given duration. Typical examples of such adapters of this type are those manufactured and sold by the Medical Products Department of E. I. du Pont de Nemours and Company, Inc. as model numbers P/N 00410, 00425, 00419 and 00381.
At the termination of a centrifugation run the sample container must be removed from the sample carrying recess. Care must be exercised in order to avoid remixing the separated constituents or components of the sample. The degree of care which must be exercised when removing the sample is increased when an adapter has been used to carry the sample container.
In view of the foregoing it is believed advantageous to provide an adapter which will permit a sample container to be disposed at the maximum radial distance within a recess in a given centrifuge rotor and at the same time be extractable from the recess without remixing the separated components in the sample. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Related Applications
This application is a Continuation-In-Part of application Ser. No. 534,805, filed 9-22-83, entitled "Vehicle Compactor" now U.S. Pat. No. 4,510,858, which is a Divisional of application Ser. No. 347,489, filed 2-10-82, entitled "Vehicle Compactor" which has now been issued as U.S. Pat. No. 4,426,928.
2. Field of the Invention
This invention relates to junk metal compactors and in particular to those designed for the compaction of vehicles.
3. Description of the Prior Art
One type of compactor for vehicles has a flat frame supporting a plurality of upstanding members. Several of the upstanding members support a pair of opposed doors which pivot toward and, when closed, parallel the frame to sequentially crush segments of the vehicle as it is advanced through the compactor. To manipulate each door a two-part linkage, connected by an elbow pin, has one of its ends secured to the door. The other end of the linkage is pivotally mounted by several other upstanding members, the pivot axis being supported substantially above the frame and above the pivot axis for the corresponding door. Each door is raised and lowered by a hydraulic cylinder having one end supported by still other upstanding members, the other end of the cylinder connected to the linkage elbow pin. Accordingly, actuating the hydraulic cylinders manipulates the linkages to, in turn, drive the doors for opening and closing.
One drawback of the type of compactor described above is that the linkages are supported at the ends of the upstanding members which are relatively distant to the frame. Accordingly the upstanding members must be large or additional supporting means are required to prevent these members from deforming under the forces imposed upon the linkage during compaction. This adds not only additional weight but also cost to the device.
Another drawback is that the doors, linkages and hydraulic cylinders all require independent, pivotal supports. Again, this increases the weight and cost of the device.
Another problem with prior compactors, including the type described above, relates to the means by which the vehicle is advanced through the device. Typically a winch line, supported in front of the device by a pulley secured to a stake in the ground, is attached to the front of the vehicle to pull it through the device for compaction. The disposition of the pulley in front of the device enables the entire vehicle to be pulled therethrough. However, during advancement of the vehicle, the compactor tends to walk toward the stake. Eventually the space between the stake and device becomes such that one or the other must be repositioned. Accordingly, constant supervision is required and time is wasted during repositioning.
Still another drawback found in the compactors of the prior art, is that manual operation is required to repeatedly compact a segment of the vehicle and advance a new segment into the device for compaction. Manual operation is time consuming and costly.
Yet still another drawback is that many prior art compactors are not easily portable from one location to another. Often the weight of a compactor necessitates the use of a large flatbed trailer. In turn, apparatus must be provided to lift the compactor onto the trailer. These are contributing factors to the cost of compactor operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a combustion apparatus used in a device such as a water heater.
2. Description of the Related Art
Recently, water heaters are in widespread use at home. Water heaters for household use must supply hot water to a number of places solely by itself. For example, each family has water taps or showers in a kitchen, a bathroom, a washbasin in its house. One water heater supplies hot water to those. Further, a large number of water heaters for household use have functions such as filling a bathtub with hot water and heating a remaining bath water again.
In this way, since hot water is used at a plurality of places by using a water heater for household use, the required amount and temperature of water change frequently. Thus, a combustion apparatus incorporated in such a water heater must change a combustion amount in response to a change of the amount and temperature of water.
For that reason, a combustion apparatus incorporated in a water heater for household use is provided with a gas proportional valve so as to change the combustion amount. More specifically, the combustion amount is changed by controlling the amount of fuel gas by regulating a valve opening degree of the proportional valve, which is disposed at a fuel supply channel of the combustion apparatus, in response to the required amount of heat generation.
The patent document 1 specified below discloses a combustion apparatus provided with a proportional valve at a fuel gas supply channel. Patent Document 1: JP 2000-146163 A | {
"pile_set_name": "USPTO Backgrounds"
} |
Flouropolymers are melt-processable resins that are formed into polymer structures by many different processes, such as extrusion, injection molding, fiber spinning, extrusion blow molding and blown film. They are also used as polymer processing aids due to their low surface energies and phase behaviors.
Flouropolymers, and especially polyvinylidene fluoride polymers and copolymers often have a white color. In the manufacture of fluoropolymer articles, thermoforming processes are often used, which often lead to undesirable discoloration of the fluoropolymer in the final product.
Several methods have been proposed to reduce discoloration of fluoropolymers during the processes for manufacturing articles. U.S. Pat. No. 3,781,265 describes the synthesis of poly (vinylidene fluoride) resin having good thermal stability by polymerizing VDF in suspension using diisopropyl peroxydicarbonate as the initiator and 1,1,2-trichlorotrifluoroethane as the polymerization accelerator. The synthesis of heat resistant PVDF by an emulsion process using ammonium persulfate as the initiator and methyl/ethyl acetate as the Chain transfer agent is reported in JP 58065711.
The use of special chain transfer agents has been reported to provide improved whiteness in PVDF synthesis, such as trichlorofluoromethane in U.S. Pat. No. 4,569,978 emulsion polymerization; Dialkyl ethers in JP 01129005 suspension polymerization; ethane in emulsion polymerization in U.S. Pat. No. 6,649,720; and HCFC-123 in emulsion polymerization in EP 655468.
U.S. Pat. No. 6,187,885 describes improved color using copolymerization of vinylidene fluoride (VDF) with hexafluoropropylene (HFP). According to this invention 1-20% HFP was added when 50-90% of VDF was already charged into the polymerization reactor.
EP 816397 describes improved resistance to heat-induced color distortion by a reduction of impurities, using a perfluoropolyether as the surfactant.
Suspension polymerization of VDF using organic peroxide initiators has been reported in JP 02029402. The application claims that pH treatment of the reaction mixture with NaOH yielded a milky white product that was resistant to discoloration at high temperatures.
Post-treatment of the fluoropolymer with sodium acetate for improved resistance to discoloration is described in US 2004225096.
Surprisingly it has been found that a fluoropolymer composition can be produced having excellent whiteness even after melt processing, by producing a multi-phase composition having a polyvinylidene fluoride continuous phase and a non-continuous phase having an average domain size of 20-900 nm, and a refractive index mismatch of between 0.007 and 0.07 between the phases. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method for manufacturing an integrated circuit, a measurement apparatus for an integrated circuit, and a wafer.
Presently, integrated circuits are used in a variety of applications. In order to improve the productivity of integrated circuits, a plurality of integrated circuit chips are simultaneously manufactured on a single wafer. More specifically, devices and wiring patterns for a plurality of integrated circuits are formed on a wafer. Then, a dicing process is performed to divide the wafer into a plurality of chips to form the integrated circuits. Before dividing the wafer into chips, each integrated circuit undergoes a conduction test, which is referred to as a probe test.
A typical probe test is conducted by pressing a probe needle against a bonding pad of the chip so as to test the operation of the chip. Contact between the probe needle and the bonding pad must be ensured during the probe test to reduce contact resistance between the bonding pad and the probe needle. However, the bonding pad may be damaged if the probe needle is pressed too hard against the bonding pad. Therefore, research has been carried out to develop a method for manufacturing a semiconductor that avoids damaging of the bonding pad during the probe test (refer to, for example, Japanese Laid-Open Patent Publication No. 8-306751).
In the invention described in Japanese Laid-Open Patent Publication No. 8-306751, a probe pad is arranged in a region between chips along a scribe line. The probe pad is connected to a bonding pad by a wire. A probe needle is pressed against the probe pad to conduct the probe test through the bonding pad. This prevents the bonding pad of the chip from being damaged even if the pressure of the probe needle damages the probe pad.
However, in the invention of Japanese Laid-Open Patent Publication No. 8-306751, the probe pad is connected to the bonding pad by a wire. Therefore, capacitance generated between the substrate and a wire or bonding pad may interfere and lower measurement accuracy. The influence of such capacitance is particularly prominent when conducting a probe test with high-frequency waves. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to prosthetic implants and pertains, more specifically, to a construction and a method for facilitating securement of a selected augment to an implant component, such as the securement of a selected tibial augment to a tibial implant component of a prosthetic knee implant.
2. Description of Related Art
In a knee implant procedure, for example, very often tibial augments, or spacers, are employed by a surgeon to compensate for a bone defect encountered at the implant site. Typically, a tibial augment is selected during the course of surgery, upon observation of the actual implant site, and is attached by the surgeon to the lower, or distal surface of the tibial tray of a tibial implant component utilizing attachment screws, bone cement, or a combination of screws and cement. Both screws and cement exhibit certain drawbacks.
Thus, where bone cement is used to attach a tibial augment to the tibial tray, the cement ordinarily is mixed during surgery and is placed between the augment and the tibial tray. The tibial augment then is secured in place with a clamp and is held in place until the cement cures. Unwanted delay is experienced as a result of the requirement for waiting until the cement cures before going forward with the implant procedure. In addition, the extra steps involved in mixing the cement, applying the cement, and then clamping the augment to the tibial tray require added effort as well as increased time, all to the detriment of both the patient and the surgeon.
The use of attachment screws requires the mechanical assembly of a selected tibial augment with the tibial tray of a tibial implant component, again during surgery. The tibial tray is provided with apertures passing entirely through the tibial tray, and the tibial augment includes holes in locations corresponding to the apertures in the tibial tray. In executing the assembly, screws either are inserted through unthreaded apertures in the tibial tray and then threaded into corresponding threaded holes in the tibial augment to secure the augment against the distal surface of the tibial tray, or the screws are passed through unthreaded holes in the augment to be threaded into threaded apertures in the tibial tray to secure the augment in place. In either procedure, the surgeon must contend with handling small loose screws and threading the screws into place. In addition, apertures in the tibial tray can allow particulate polyethylene debris from a bearing member supported at the proximal surface of the tibial tray to migrate through the tibial tray and into the adjacent bone during service of the implant, causing deleterious effects. Further, the presence of apertures in the tibial tray reduces the area of the proximal surface available for support of the bearing member, thereby increasing stress on the material of the bearing member and encouraging cold flow of polyethylene into the apertures of the tibial tray, with concomitant distortion of the bearing member. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a rotary-electric-machine temperature estimation system for a vehicle, which temperature estimation system includes: a rotary electric machine provided in a vehicle body so as to be fixed thereto and including a stator coil; a cooler configured to cool off the stator coil; and a temperature sensor configured to measure a temperature of the stator coil.
2. Description of Related Art
In an electric vehicle including a rotary electric machine, a fuel cell-powered vehicle, or a hybrid vehicle including a rotary electric machine and an engine, a temperature of a coil included in the rotary electric machine is measured so as to detect defects or improve performance.
Japanese Patent Application Publication No. 2013-40783 (JP 2013-40783 A) describes a rotary-electric-machine temperature estimation system for a vehicle. The temperature estimation system includes a rotary electric machine provided in a vehicle and including a stator coil, a cooler configured to inject refrigerant and to cool off the stator coil by the refrigerant, and a temperature sensor configured to measure a temperature of the stator coil. In this configuration, an actual temperature of the stator coil is estimated according to a torque acquisition value of the rotary electric machine, a variation in measured temperature of the temperature sensor, and a temperature correction value associated with the torque acquisition value and the variation in measured temperature. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the charging of storage batteries and the like, for example, and, in particular, to the charging of industrial storage batteries of the type which are used to provide motive power for fork lift vehicles and the like.
In large factories and warehouses it is common to utilize a number of battery-driven vehicles such as fork lift trucks, tractors and the like. These vehicles are powered by large, heavy-duty electrical storage batteries which are removably mounted in the vehicles. The batteries must be frequently recharged, sometimes daily. Thus, typically, there are a number of batteries being charged while other batteries are being used in the vehicles.
The charging operation requires a considerable amount of manual labor in removing the discharged batteries from the vehicles and connecting them to the chargers at a charging location and replacing charged batteries in the vehicles. The charging location can occupy a considerable amount of floor space and the entire operation can be quite hazardous because of exposure of the operators to corrosive fluids and explosive vapors emitted from the battery. The danger of explosion is particularly acute during the charging process because of the possibility of electrical sparks from the charging apparatus. Also, care must be taken to keep track of the length of time each battery has been charging. | {
"pile_set_name": "USPTO Backgrounds"
} |
Video on demand (VoD) services have been successfully provided to households with wired connections to service providers. By contrast, households in areas without wired connections are often forced to rely on wireless services for VoD services. However, wireless services offering VoD services may suffer from one or more deficiencies, such as increased network congestion or an inability to differentiate between VoD traffic and other types of network traffic, such as Internet traffic. | {
"pile_set_name": "USPTO Backgrounds"
} |
Echinacea purpurea is an American native plant found in the eastern United States region normally bounded by Michigan and Oklahoma on the west and Virginia, North Carolina and Georgia on the east. These are several named varieties, including: `Alba` (not patented), `Bright Star` (not patented), `Magnus` (not patented), `Monk's Silver` (not patented), Rudbeckia purpurea plant U.S. Plant Pat. No. 2,414 (now known as Echinacea purpurea `Robert Bloom` U.S. Plant Pat. No. 2,414), `The King` (not patented), `White Lustre` (not patented), and `White Swan` (not patented), most of which are seed propagated. These are all taller varieties, like the straight species, that flower in heights varying between 65 and 150 cm (26 to 60 inches) tall. One dwarf variety, Echinacea purpurea `Cygnet White` (not patented), is a selection with white horizontal ray florets that reaches 51 cm (20 inches) in plant height. Other short forms exist, such as `Nana` (not patented) in Great Britain and `Rosenelf` (not patented) in Germany, however, `Kim's Knee High` is unique in its clear pinkish red flower color and extended bloom period. The flowers of the general species range from white and cream to pink, carmine and purple with greenish or bronze colored centers. Echinacea purpurea grows in most soils in zones 3 through 9 and is tolerant of high heat and drought. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This invention relates to the medical field, and more particularly, to facilitating communications between a patient, care-givers, visitors, and the like.
2. Description of the Related Art
Oftentimes, patients are unable, or have difficulty, speaking with care-givers, visitors, and other personnel. This inability to speak clearly can make communications between the patient and others difficult. Typically, patients experience such speaking difficulties as a result of a particular medical treatment. Such is the case when a patient must be intubated or when the patient requires an inter-tracheal tube. Patients also can experience difficulty speaking, not as the result of a medical treatment, but as a direct result of an ailment, infirmity, or other medical condition. In any case, many situations arise in which a patient experiences either a loss of the ability to speak or difficulties in speaking.
Presently, when a patient who is unable to verbally communicate needs to communicate with care-givers, the patient uses a call button to effectively page personnel. As a normal intercom response from a nurse cannot verbally be answered by the patient, this generally requires that the nurse come to the room to find out what the patient needs. In consequence, the nurse must visit the patient. This can result in additional work for the nurse as a second, and even third trip, may be necessary, but cannot be determined until after the nurse has visited with the patient.
Alternative communication methods can be used in the case where a patient who is unable to verbally communicate wants to communicate with other persons within the same room. The patient can be given a sheet of paper having printed thereon the letters of the alphabet. The patient is asked to point to the letters one by one in order to spell words. This speech alternative, however, does have disadvantages. For example, detecting where one word ends and another word begins can be difficult. Consequently, as the patient points to the letters, the person with whom he is trying to communicate may not be able to follow what the patient is trying to articulate. Further adding to the problem, the patient may lack manual dexterity as a result of a medical treatment or condition and have difficulty pointing to desired letters. In an emergency, this can create a life-threatening situation.
Handwritten notes can provide another alternative to verbal communication. Some of the disadvantages associated with the use of a letter chart, however, also can apply to the use of handwritten notes. In fact, handwritten communications can require more manual dexterity than merely pointing to a letter and, at best, are tediously slow. Another disadvantage is that passing notes amidst the large number of cables, wires, monitors, tubes, and other medical equipment often proves difficult. Moreover, while fumbling for pen and paper or passing a note, one can inadvertently disconnect a monitor or tube thereby endangering the patient.
Conventional healthcare monitoring equipment, for example of the variety often used within intensive care units, is often thought to preclude the need for patients to call a nurse. Such equipment, however, can generate erroneous alerts and/or signals, must be reset from time to time, and may not be able to respond to each emergency need of a patient. Still, patients can have other needs or reasons for calling a nurse other than those which are monitored by conventional monitoring equipment.
While some attempts have been made to develop more effective patient communication systems, such systems have yet to adequately address the needs of patients lacking the ability to communicate verbally. Moreover, many systems do not facilitate communications between the patient and other persons in the same room, various hospital service personnel, or with visitors in remote locations whether or not they have the ability to speak. | {
"pile_set_name": "USPTO Backgrounds"
} |
Interactive Voice Response (IVR) technology is generally used to detect voice and key inputs from a caller. Various organizations such as banks, insurance companies, and other service providers use IVR technology to manage calls from their customers. Typically, IVR systems are used by organizations that have high call volumes. An objective for implementing the IVR systems is to provide the customers with a quick and good experience. Moreover, the cost of providing the services is reduced. Generally, IVR systems allow a user to interact with an audio response system. The IVR systems can provide prompts to a user and receive touch tone and/or spoken responses on the prompts from the user. Through such IVR dialogue the system collects sufficient information about the user to direct the call to the most appropriate resource, information processing system or the like. Various organizations such as banks, insurance companies, and other service providers use IVR system to manage calls from their customers. Typically, IVR systems are used by organizations that have high call volumes. An objective for implementing the IVR systems is to provide the users or customers with a quick and good experience. Moreover, or the cost of providing the services is reduced.
Typically, in case of an audio IVR menu the user calling the destination may have to listen and follow instructions on the menu to get a desired response or a function performed. Therefore, the process can be time consuming. Moreover, in case the user provides an incorrect input, the complete process may have to be repeated. Further, the IVR menu for an organization may be updated or changed regularly. For example, extension numbers inside an organization may be changed and correspondingly, the extension numbers associated with the IVR menu may be updated. As a result, a frequent user may not be able to reach a desired end by remembering a combination of numbers. Furthermore, the dialed destination may not include the information desired by the user. In such a case, the user may have to call the destination again for retrieving the desired information. Therefore, the user may become frustrated with the IVR systems.
Usually, the IVR menus are same for all the users. Therefore, the customer has to listen them carefully to select the appropriate option. The user may have to wait for long time for receiving information while interacting with the IVR systems. Moreover, sometimes the requested information might not be available at the time when the user calls the destination. Therefore, the user may have to either wait for long time or call again later. For example, the user may desire to talk to a customer care executive of the destination, who is busy at the time of the call. Therefore, the call of the user may be put on hold or he may be asked to call later.
A U.S. Pat. No. 7,460,652, assigned to AT&T Intellectual Property I, L.P., discloses techniques for call routing and communication with a call originator. The call may be received at an automated call handling system. Thereafter, the call is evaluated based on a set of business rules and routed to an interactive voice response unit based on the evaluation. Further, the interactive voice response unit automatically schedules and sends an email to the originator of the call. However, the scheduling of the email is performed after establishing a communication with the automated call handling system. Moreover, the scheduling is performed at the automated call handling system.
In the light of the above discussion, techniques are desired for providing enhanced telephony. | {
"pile_set_name": "USPTO Backgrounds"
} |
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
The present disclosure is related in general to wellsite equipment such as oilfield surface equipment, oilfield cables and the like.
As easily accessible oil reserves become increasingly less common, oil exploration may require drilling to greater depths. Concurrently, more complex, versatile downhole tools have greater requirements for electrical power and/or telemetry. Wireline cables containing only copper conductors are unable to adequately meet today's requirements for both power and telemetry.
Optical fibers, while occupying much smaller space, can provide much lower telemetry attenuation compared to copper conductors. Utilization of optical fibers frees up the cable core real estate and thereby makes it possible to integrate larger conductors for power transmission. Therefore, replacing a copper conductor with an optical fiber in order to increase telemetry capability will provide viable solutions to both telemetry and power problems.
It remains desirable to provide improvements in wireline cables. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a cylinder lock-key-combination, a key blank intended for the combination and a key intended for the combination and made from the key blank.
In growing markets great numbers of opening combinations for selected lock mechanisms and/or additional new key profiles are needed for large groups of locks to be masterkeyed, which can be distinguished from earlier key profiles already provided for the markets and which can be utilized for keeping the different lock groups separate from each other. A key profile refers here to the form of a key before any combination surfaces or combination cuts required by the actual opening combination of the lock are made. For big applications it may even be necessary to provide dedicated key profiles. In addition depending on the application different key profiles should be available on the one hand for locks operated in only one turning direction and on the other hand correspondingly also for bidirectionally operable locks. The turning direction or operating direction of a lock refers here to the direction in which the key turns for opening the lock mechanism. Since cylinder locks provided with so-called rotatable locking discs are advantageous from the viewpoint of their masterkeying and pickproof properties, the new key profiles should be suitable for particular lock mechanisms of this kind.
A bidirectionally operable cylinder lock provided with rotatable locking discs and having a symmetrical key which may be inserted in the lock in two different turning positions is known from U.S. Pat. No. 4,351,172. This lock can be adapted also to be operable in only one turning direction, but this requires positively blocking one of the turning directions by means of a separate blocking member. A more recent cylinder lock is known from U.S. Pat. No. 5,490,405. This lock is operable in only one turning direction and the returning of the locking discs is accomplished by making use of a separate returning member, whereby more space is obtained in the shank of the key for different profile grooves. In this lock the opening for the key in the locking discs is additionally designed in a certain way so that for example a key according to a practical implementation of U.S. Pat. No. 4,351,172 is not operable in the lock shown in U.S. Pat. No. 5,490,405. Hereby, by means of this solution a key profile family of its own is provided which is independent of earlier key profiles.
Also the patent FI 25618 shows a bidirectionally operable lock in which the selection of the direction of operation occurs by means of a separate guiding plate located in front of the set of discs. In this solution, in the key opening of the locking disc there is a counter surface for each possible combination cut. In addition the key itself comprises a key shank having a separate bit part for combination cuts, which is in clear contrast to the keys according to the solutions mentioned above. Thus the key inserted in the lock is available for only one turning direction at a time and in addition the opening combination is identical for both turning directions.
An aim of the invention is to provide a novel cylinder lock-key-combination, new keys intended therefor as well as key blanks for the keys, suitable particularly for locks provided with rotatable locking discs and making it possible to provide new key profiles which are operationally independent of prior known key profiles. An aim is additionally to provide a solution offering versatile possibilities for adapting the invention in view of different needs for locking so that it may easily be adapted to locks operable on the one hand in one turning direction and on the other hand in two turning directions. In addition the solution should be uncomplicated, secure as to its operation and advantageous as to its costs.
In accordance with the invention the key opening of at least one locking disc has at least two discrete counter surfaces for effecting turning of the locking disc in one direction, and these counter surfaces are so dimensioned and arranged with regard to each other that at least two different combination values can be alternatively selected for the corresponding combination surface of the key. Different combination values refer to the possible different turning angles through which the key turns the locking discs in order to open the lock mechanism. In accordance with the invention a simple and well-defined design is obtained for the key opening of the locking disc which may effectively be utilized in cooperation with the combination surfaces of the key having a key profile of clearly different design from those previously known. In addition the same basic solution may with advantage be adapted both for cylinder locks operable in one direction and for cylinder locks operable in two directions.
The technical effect of the solution can further be improved when the key opening of a code locking disc which can be provided with different combination values has two counter surfaces for one turning direction of the key, and the two counter surfaces are angularly spaced from each other about the turning axis of the locking disc and are disposed at different respective angles to the central axis of the key opening of the locking disc so that they are inclined at an angle of about 30xc2x0. The central axis of the key opening extends in the plane of the locking disc as distinct from the turning axis of the locking disc, which is perpendicular to the central axis of the key opening and passes through the center of the key opening.
When the counter surface in the key opening of the code locking disc corresponding to larger turning angles of the key extends substantially to the central normal of the central axis of the key opening, the key opening may in a simple way be made fully symmetrical for a bidirectionally operable lock or partly symmetrical for a unidirectionally operating lock. In both cases the counter surfaces and/or return surfaces for the same turning direction are diametrically located with regard to the turning axis of the locking disc.
The key openings of the code locking discs can with advantage be at least substantially identical and formed so that some degree of free turning of the key is provided, i.e. the code locking discs turn with the key only after the key has been turned to some degree, for instance about 15xc2x0, from the initial insertion position of the key. The lock includes further at least one lifting 0-locking disc of which the key opening is smaller than the key opening of the normal code locking discs and which always turns when the key is turned in the lock. The basic aim of a lifting 0-locking disc is to provide for returning of the locking bar into its locked position under positive guidance when the lock mechanism is locked. No code locking disc has in this case the 0. combination. Consequently, the combination values of the code locking discs determining the opening combination of the lock are totally independent of the 0-locking disc and its counter surfaces, which increases the number of opening combinations available and improves the masterkeying properties of the solution according to the invention. In addition the lifting 0-locking disc may naturally be utilized for defining the profile of the key shank compatible with the key channel and to arrange for desired variations thereof for providing different lock families.
When the lock is operable in only one turning direction, the surface of the key opening of a code locking disc opposite to the counter surface with regard to the central axis serves as a return surface, which in cooperation with the key is used to return the locking discs to the locking position of the lock mechanism. By arranging the return surface in the same plane as one of the counter surfaces of the locking disc a simple and well-defined form is obtained for the key opening. The solution is secure as to its operation and no separate return members are needed in it.
When the lock is operable in both turning directions the code locking disc has in total four counter surfaces for each turning direction, the counter surfaces serving for the same turning direction being located in pairs diametrically on either side of the turning axis of the locking disc.
The basic form of the shank of a key blank according to the invention in the perpendicular cross-sectional plane of the shank, exclusive of any possible profile grooves or corresponding grooves extending over the shank, is substantially rectangular except for at least one bevel surface at one or more corners for providing at least one combination surface. Hereby the basic form of the shank of the key blank is simple and advantageous to manufacture.
Advantageously the bevel surface provides selectively one of two combination surfaces having different respective combination values. In this way the number of different combination values normally to be utilized in this lock type can easily be obtained without compromising the security of operation for opening the lock. The length of the individual combination surfaces may be shorter than in a conventional lock. On the other hand the solution makes it also possible to increase the number of combination values, which provides for multiplying the opening combinations available.
In practice the bevel surface forms in the perpendicular cross-sectional plane of the shank of the blank an angle of 20xc2x0-30xc2x0, preferably an angle of about 25xc2x0, with the central axis extending in the direction of the longer side of the rectangular cross section of the shank. The bevel surface may be divided into two parts which extend mutually in different directions and each of which forms one combination surface. Alternatively the bevel surface may be divided into two at least substantially parallel parts separated from each other by a step or the like and each forming one combination surface. Hereby manufacturing of illicit keys may be made more difficult. In addition hereby an entirely new family of key profiles can be provided.
By arranging the shank of the key blank to be symmetrical as to the parts located diametrically opposite each other with regard to the central axis of the shank so that there is a bevel surface at each of two diametrically opposite corners, the key can be inserted in the lock in two different turning positions. In the case of a lock operable in both turning directions each corner of the shank of the key blank may be provided with a bevel surface so that the shank of the key blank is symmetrical with regard to both the central axis parallel to the perpendicular cross-sectional plane of the shank and its central normal. When on the other hand the key blank is intended for a lock operable only in one turning direction the bevel surface at every second corner of the shank may operate as a return surface for the locking discs.
The invention relates also to a key for a combination defined above and to be made from a key blank defined above, which is characterized in that the basic form of the shank of the key blank in the perpendicular cross-sectional plane of the shank, exclusive of any possible profile grooves or corresponding grooves extending over the shank of the key, is substantially rectangular except for at least one bevel surface at one or more corners and providing combination surfaces corresponding to the code locking discs of the lock. The bevel surface provides at least one selectable combination surface, and the value of other successive combination surfaces in the key is determined on the basis of the combination of the angle of cutting and the length of the cut surface of the cuts to be made in the bevel surface.
The bevel surface may with advantage comprise two combination surfaces having different combination values. In this case the angular pitch between cuts corresponding to successive combination values may respectively be about 15xc2x0, which is sufficient to secure reliable operation of the lock and makes it possible to utilize a 0-cut only for the lifting 0-locking disc independent of the combination values to be given for the code locking discs.
In a favorable embodiment of the key the length of the cut surfaces corresponding to different combination values is determined so that the extreme or outer ends thereof are located at most on three different peripheral surfaces measured from the central axis of the shank of the key. A peripheral surface means here not only an arc of a circle or other curved surface but also a plane or possibly a surface including even several separate plane parts. Correspondingly the extreme ends of the cut surfaces providing for turning movement for the locking discs and corresponding to different combination values are with advantage located on two different peripheral surfaces measured from the central axis of the shank of the key. In this case the combination surfaces extending to the same peripheral surface are with advantage located mutually with equal pitch, which makes manufacturing of the key simpler. However, the mutual angular pitch between successive combination surfaces located on different peripheral surfaces need not be in accordance with the pitch in question, but it is sufficient that the mutual pitch between the counter surfaces in the code locking disc is selected to operationally correspond to said angular pitch between successive combination surfaces located on different peripheral surfaces, so that the turning movement imparted to a code locking disc by means of the key is operationally compatible with the location of the peripheral notch of the code locking disc.
The parts of the combination cuts diametrically opposite each other with regard to the central axis of the shank of the key are with advantage located symmetrically, whereby the key can be inserted in the lock in two turning positions. In addition in the case of a bidirectionally operable lock the key includes four cut surfaces for each code locking disc so that the combination cuts located diametrically opposite each other with regard to the central axis of the shank of the key are identical. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present Invention relates to a new and distinct cultivar of Azalea, botanically known as Rhododendron hybrida, an evergreen greenhouse-forcing type Azalea, and hereinafter referred to by the name ‘Carousel’.
The new Azalea is a product of a planned breeding program conducted by the Inventor in Alva, Fla. The objective of the breeding program is to create new Azalea varieties having uniform plant habit, profuse and uniform flowering response, dark green foliage, good foliage retention during the cooling and forcing periods, resistance to Cylindrocladium and excellent postproduction longevity.
The new Azalea originated from a cross-pollination made by the Inventor in March, 1996, in Alva, Fla., of a proprietary Azalea selection identified as code number YB-1159, not patented, as the female, or seed, parent with a proprietary Azalea selection identified as code number YB-1054, not patented, as the male, or pollen, parent. The new Azalea was discovered and selected by the Inventor as a flowering plant within the progeny of the stated cross-pollination in a controlled environment in Alva, Fla., in June, 1998.
Asexual reproduction of the new Azalea by terminal cuttings taken in a controlled environment in Alva, Fla. since September, 1998, has shown that the unique features of this new Azalea are stable and reproduced true to type in successive generations. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fluorocarbon based fluids have found widespread use in many commercial and industrial applications, including as the working fluid in systems such as air conditioning, heat pump and refrigeration systems, as aerosol propellants, as blowing agents, as heat transfer media, and as gaseous dielectrics. Because of certain suspected environmental problems, including the relatively high global warming potentials, associated with the use of some of the compositions that have heretofore been used in these applications, it has become increasingly desirable to use fluids having low or even zero ozone depletion potential, such as hydrofluorocarbons (“HFCs”). Thus, the use of fluids that do not contain chlorofluorocarbons (“CFCs”) or hydrochlorofluorocarbons (“HCFCs”) is desirable. Furthermore, some HFC fluids may have relatively high global warming potentials associated therewith, and it is desirable to use hydrofluorocarbon or other fluorinated fluids having as low global warming potentials as possible while maintaining the desired performance in use properties. Additionally, the use of single component fluids or azeotrope-like mixtures, which do not substantially fractionate on boiling and evaporation, is desirable in certain circumstances.
Certain fluorocarbons have been a preferred component in many heat exchange fluids, such as refrigerants, for many years in many applications. For, example, fluoroalkanes, such as chlorofluoromethane and chlorofluoroethane derivatives, have gained widespread use as refrigerants in applications including air conditioning and heat pump applications owing to their unique combination of chemical and physical properties. Many of the refrigerants commonly utilized in vapor compression systems are either single components fluids or azeotropic mixtures.
As suggested above, concern has been increasing in recent years about potential damage to the earth's atmosphere and climate, and certain chlorine-based compounds have been identified as particularly problematic in this regard. The use of chlorine-containing compositions (such as chlorofluorocarbons (CFC's), hydrochlorofluorocarbons (HCF's) and the like) as the working fluid in heat transfer systems, such as in refrigeration and air-conditioning systems, has become disfavored because of the ozone-depleting properties associated with many of such compounds. There has thus been an increasing need for new fluorocarbon and hydrofluorocarbon compounds and compositions that are attractive alternatives to the compositions heretofore used in these and other applications. For example, it has become desirable to retrofit chlorine-containing refrigeration systems by replacing chlorine-containing refrigerants with non-chlorine-containing refrigerant compounds that will not deplete the ozone layer, such as hydrofluorocarbons (HFC's). Industry in general and the heat transfer industry in particular are continually seeking new fluorocarbon based mixtures that offer alternatives to, and are considered environmentally safer substitutes for, CFCs and HCFCs. It is generally considered important, however, at least with respect to heat transfer fluids, that any potential substitute must also possess those properties present in many of the most widely used fluids, such as excellent heat transfer properties, chemical stability, low- or no-toxicity, non-flammability and/or lubricant compatibility, among others.
Applicants have come to appreciate that lubricant compatibility is of particular importance in many of applications. More particularly, it is highly desirably for refrigeration fluids to be compatible with the lubricant utilized in the compressor unit, used in most refrigeration systems. Unfortunately, many non-chlorine-containing refrigeration fluids, including HFC's, are relatively insoluble and/or immiscible in the types of lubricants used traditionally with CFC's and HFC's, including, for example, mineral oils, alkylbenzenes or poly(alpha-olefins). In order for a refrigeration fluid-lubricant combination to work at a desirable level of efficiently within a compression refrigeration, air-conditioning and/or heat pump system, the lubricant should be sufficiently soluble in the refrigeration liquid over a wide range of operating temperatures. Such solubility lowers the viscosity of the lubricant and allows it to flow more easily throughout the system. In the absence of such solubility, lubricants tend to become lodged in the coils of the evaporator of the refrigeration, air-conditioning or heat pump system, as well as other parts of the system, and thus reduce the system efficiency.
With regard to efficiency in use, it is important to note that a loss in refrigerant thermodynamic performance or energy efficiency may have secondary environmental impacts through increased fossil fuel usage arising from an increased demand for electrical energy.
Furthermore, it is generally considered desirably for CFC refrigerant substitutes to be effective without major engineering changes to conventional vapor compression technology currently used with CFC refrigerants.
Flammability is another important property for many applications. That is, it is considered either important or essential in many applications, including particularly in heat transfer applications, to use compositions which are non-flammable. Thus, it is frequently beneficial to use in such compositions compounds which are nonflammable. As used herein, the term “nonflammable” refers to compounds or compositions which are determined to be nonflammable as determined in accordance with ASTM standard E-681, dated 2002, which is incorporated herein by reference. Unfortunately, many HFC's which might otherwise be desirable for used in refrigerant compositions are not nonflammable. For example, the fluoroalkane difluoroethane (HFC-152a) and the fluoroalkene 1,1,1-trifluorpropene (HFO-1243zf) are each flammable and therefore not viable for use in many applications.
Higher fluoroalkenes, that is fluorine-substituted alkenes having at least five carbon atoms, have been suggested for use as refrigerants. U.S. Pat. No. 4,788,352—Smutny is directed to production of fluorinated C5 to C8 compounds having at least some degree of unsaturation. The Smutny patent identifies such higher olefins as being known to have utility as refrigerants, pesticides, dielectric fluids, heat transfer fluids, solvents, and intermediates in various chemical reactions. (See column 1, lines 11-22).
While the fluorinated olefins described in Smutny may have some level of effectiveness in heat transfer applications, it is believed that such compounds may also have certain disadvantages. For example, some of these compounds may tend to attack substrates, particularly general-purpose plastics such as acrylic resins and ABS resins. Furthermore, the higher olefinic compounds described in Smutny may also be undesirable in certain applications because of the potential level of toxicity of such compounds which may arise as a result of pesticide activity noted in Smutny. Also, such compounds may have a boiling point which is too high to make them useful as a refrigerant in certain applications.
Bromofluoromethane and bromochlorofluoromethane derivatives, particularly bromotrifluoromethane (Halon 1301) and bromochlorodifluoromethane (Halon 1211) have gained widespread use as fire extinguishing agents in enclosed areas such as airplane cabins and computer rooms. However, the use of various halons is being phased out due to their high ozone depletion. Moreover, as halons are frequently used in areas where humans are present, suitable replacements must also be safe to humans at concentrations necessary to suppress or extinguish fire.
Applicants have thus come to appreciate a need for compositions, and particularly heat transfer compositions, fire extinguishing/suppression compositions, blowing agents, solvent compositions, and compatabilizing agents, that are potentially useful in numerous applications, including vapor compression heating and cooling systems and methods, while avoiding one or more of the disadvantages noted above. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the manufacture of pipe that has a welded seam, it is common to use multiple AC welding arcs at extremely high current levels, such as over 1,000–2,000 amperes. The less expensive power supply to create such ultra high welding currents is a transformer based welder having a sinusoidal output current. This power supply requires only a large, heavy transformer and related control circuitry. However, to accomplish high welding currents the sinusoidal output has an extremely high peak current compared to the heating current determined by the root mean square of the sinusoidal wave. This relatively inexpensive power supply can create the necessary high current, but results in peak currents that seriously affect the welding operation. To overcome the disadvantages of a sinusoidal type electric arc welder, it is now common practice to use power supplies based upon high frequency switching technology. These switching type power supplies rectify the incoming line voltage to produce a DC link. This DC link is switched through a primary winding of an output transformer as alternating pulses to create an output current constituting the AC arc welding current. Pulse width modulators determine the frequency in the primary winding of the output transformer. Consequently, the pulses at the output transformer are substantially square waves. Thus, the root mean square of the secondary current is essentially the same as the maximum output current for the power supply. In this manner, welding arc does not require high peak currents to obtain the desired root mean square current for heating. Consequently, the inverter type power supply overcomes the disadvantage of the sinusoidal power supply when performing high current electric arc welding of the type needed for seam welding pipes. For this reason, pipe welding has been converted to the inverter technology.
Even though widely used for pipe welding, inverters present a dilemma. Standard inverter type power supplies generally have a maximum output in the range of 500 amperes. To provide an inverter type power supply for high currents in excess of 1,000–2,000 amperes, a special inverter must be designed and engineered. This involves substantial costs and highly trained electrical and welding engineers. But, such high capacity power supply has a relatively low sales volume. Consequently, high current inverters for use in pipe welding are not economically feasible and demand a long lead time. To overcome these disadvantages, The Lincoln Electric Company has developed a power supply using a master inverter, with one or more slave inverters controlled and operated in unison. When the welding operation requires a current in excess of 1500 amperes, three inverters are parallel. The rated output current for the compound inverter is tripled over a single off-the-shelf inverter. Increasing the number of inverters operated in unison to provide a high current type welder is expensive, but accomplishes the desired results.
There is a need for a high current power supply that creates an AC welding current having a root mean square current of over 1,000–2,000 amperes without the requirement of paralleling several standard low current inverters. Such high current power supply for use in electric arc welding of pipes must not have the peak current problem, experienced by a sinusoidal type power supply. | {
"pile_set_name": "USPTO Backgrounds"
} |
All publications cited herein are incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
Worldwide, an estimated 350,000 people are diagnosed with leukemia each year, with approximately 257,000 deaths annually (International Agency for Research on Cancer). In the U.S. alone, an estimated 274, 930 people are living with leukemia, with about 90 percent of all leukemia diagnosed in adults (World Health Organization). In 2012, 47, 150 new patients were diagnosed, with only about 50 percent expected to survive (American Cancer Society). While conventional frontline therapies are effective in many cases, it is obvious from the low survival rate of leukemia patients that there is an imperative for improvement.
Leukemia is very expensive to treat, and many patients are unable to afford treatment. Most patients with leukemia are treated with chemotherapy (Ohio State University's Comprehensive Cancer Center). Just one chemotherapy treatment can cost $150,000, usually with several treatments needed. An optional treatment, bone-marrow transplants are known to cost $250,000 or more (Edgar Law Firm, Santa Rosa, Calif.). The National Cancer Institute's Cancer Trends Progress Report: 2011-2012 update estimates that $5.4 billion is spent in the United States each year on leukemia treatment, or more than $114,500 for each of the 47, 150 patients diagnosed in 2012.
Ewing sarcoma family of tumors (EFT) is an aggressive disease that occurs exclusively in humans and disproportionally affects adolescents and young adults. EFT is the second most common malignant bone tumor that can also arise in extra skeletal soft tissues. This group of undifferentiated tumors is an orphan cancer; the parental lineage of which is unknown. Phenotypically it appears as a primitive stem-cell like tumor with round blue cells and increased mitotic activity. Gene profiling studies detect increased expression for biomarkers from both the neural and mesenchymal lineages. Clinically, it is a highly invasive disease with approximately 20-25% of the patients having metastatic disease at diagnosis. Those lacking overt spread of disease likely harbor micro-metastases as is evident by the high relapse rate at distant sites following surgical resection. The outcomes in patients with metastatic disease is dismal with long term outcome ranges from 20%-40% despite intensive multi-modal therapy.
Unlike osteosarcoma, the most common malignant bone tumor, and various other adult cancers, EFT is associated with a paucity of genomic mutations in genes driving crucial signal transduction pathways. EFT pathogenesis is significantly dependent on the genomic networks that are either repressed or triggered into action by the genetic aberration, EWS/ETS fusion gene that is constitutively active in the tumor cells. The fusion of the EWS gene on chromosome 22q24 with one of five E-twenty-six (ETS) transcription factor gene family members (FLI1, ERG, ETV1, E1AF, and FEV) occurs as a result of chromosomal translocations in this family of tumors.
Decreasing post-transcriptional fusion-gene levels by using RNAi technology significantly impairs the proliferative, invasive, and tumorigenic phenotype of Ewing sarcoma both in vitro and in vivo. Thus oncogenic activity of the EWS/ETS fusion genes makes them ideal therapeutic targets and such fusion-related targeted therapy is currently being clinically evaluated. However this may prove challenging as fusion proteins are known to be difficult targets due to their disordered protein nature and lack of intrinsic enzymatic activity. Other approaches to tackle the disease are also currently being investigated. These are either therapeutic agents that can potentially reverse EWS/FLI-driven signatures or oncogene-targeted drug therapy that impair significant cancer-related signaling pathways that are necessary for tumor existence. Single drug therapies have failed in trials despite having strong biological data to support them. To date no standard therapy exists for second-line treatment of relapsed and refractory Ewing sarcoma, despite extensive protocol-driven clinical research evaluating dose intensification and schedule optimization.
With incorporation of high-throughput genomics and the current knowledge of the transcribed genome, our search for molecular characterization of the tumor led us to identify a long non-coding RNA (lncRNA), FEZF1-AS1 that is strongly associated with EFT. FEZF1-AS1 is regulated by EWS-FLI1 in EFT and its expression is required for neural features of this tumor. Like EFT, a developmental tumor occurring only in humans, FEZF1-AS1 is expressed only in humans during the development of the nervous system. It imparts invasive potential to the tumor and thus helps maintain the aggressiveness of this disease. Given the role of FEZF1-AS1 in EFT, it can be a therapeutic target to treat this invasive disease.
Herein, we provide a drug delivery system, in which hybrid polymerized liposomal nanoparticles (HPLNs) are utilized to encapsulate cancer drugs (for example, therapeutic agents that target FEZF1-AS1) and deliver the cancer drugs to the cancer cells. The described delivery system can be used for encapsulating virtually any drug of interest and targeting to any tissue for which there is a known unique or specific cell marker. Therefore this invention provides a very versatile platform technology.
The HPLNs described herein offer a major advantage over many other types of delivery particle substances by employing a unique type of nanoparticle material that is both biocompatible and enhances the bioavailability of the drugs encapsulated within. In addition, the technology is customized by adjusting the particle properties so that a high amount of the drug agent is contained within, and actually solidified into a crystal. Still another differentiating feature is a customization process that appends a tumor-targeting molecule to the surface of the particle, thus improving the particles' selectivity in accessing tumorous cells while avoiding healthy tissues.
Through the use of drugs encapsulated in HPLNs, physicians treating cancer patients may see a significant increase in the therapeutic window of existing cancer chemotherapeutic substances by minimizing dose-related toxicity on non-cancerous cells. For these patients, the HPLNs described herein hold the promise of more effective treatment, accomplished through several significant attributes: a) shorter treatment time, b) fewer hospital visits, c) less damage to normal tissues, d) more rapid recovery, and e) greater chance of survival. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known to incorporate various phosphites with polymers as disclosed in U.S. Pat. No. 3,305,520 and phosphites with tetraaryl tin as shown in Canadian Pat. No. 727,700. However, these references deal solely with phosphites such as triaryl and trialkyl phosphites. Due to increased molding temperatures and use temperatures of molded shapes of polycarbonates, it is increasingly more important to prepare polycarbonates having increased stability to thermal degradation or discoloration due to elevated temperatures.
Epoxy compounds have been known to provide stabilization for polycarbonates as disclosed in an application of C. A. Bialous et al. entitled "A Hydrolytically Stable Polycarbonte Composition", Ser. No. 427,832 filed Dec. 26, 1973 now U.S. Pat. No. 3,839,247, issued Oct. 1, 1974 and assigned to the same assignee as the present invention.
However, it has been found that the epoxy compounds prepared from epichlorodydrin described in the C. A. Bialous et al. application normally contain significant amounts of chlorine as an impurity which results in poor molded color of polycarbonate compositions containing these particular epoxy compounds.
These polycarbonate compositions are suitable for producing bottles which are free of the drawbacks of hazing and brittleness of clear polycarbonate bottles when subjected to water or moisture under elevated temperatures.
In the art, there are several patents directed to using epoxies with polycarbonates. One such patent is U.S. Pat. No. 3,489,716, which specifically discloses employing with a polycarbonate a cycloaliphatic epoxy containing 1-2-cycloaliphatic rings. Another patent is U.S. Pat. No. 3,634,312, which discloses the use of a great host of epoxies that can be used with a copolycarbonate and specifically poly(bisphenol-A-carbonate-co-phosphite). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention pertains generally to invoking run-time routines in computer programming languages, and more particularly to a method for linking related run-time routines to functional modules or "chains".
2. Description of the Background Art
In existing programming languages, including the "C" programming language, there is no provision for linking routines that are independently compiled but need to be called at the same point. For example, a computer (or embedded controller) may reset due to a power failure, a deliberate reset, or a system crash. At the startup code of the controller program, each component of the controller hardware (for example, the LCD, keypad, digital I/O and analog I/O) may need to execute different routines to restore external devices from a power failure, to reinitialize system parameters for a deliberate reset, or to record the crash time and date for a system crash.
In order to perform the above reset operation in a conventional high level programming language, the programmer must be aware of all the components being used, and call the correct reset handling routine for each possible cause of reset. This is a problem for three major reasons. First, a component may be implicitly used by another component. As a result, the programmer may not be aware of the usage of the implicit component and, therefore, not call the reset handling routines of the implicit component. Second, the programmer needs to explicitly relate the cause of reset to the handler routines, leaving much room for mistake. Third, because the decision to call reset handling routines depends on the components used, it is impossible to define a system routine to perform the conditional calls.
Therefore, there is a need for a programming language construct and method of use that reverses the responsibilities of the application programmer to the library programmers and provides for chaining related run-time routines so that the programmer need only call a function in order to execute a related routines. The "function code chaining" language construct and method of use in accordance with the present invention satisfies that need, as well as others, and overcomes the deficiencies in previously known techniques. | {
"pile_set_name": "USPTO Backgrounds"
} |
This specification relates to generating phoneme representations of acoustic sequences.
Acoustic modeling systems receive an acoustic sequence and generate a phoneme representation of the acoustic sequence. The acoustic sequence for a given utterance includes, for each of a set of time steps, an acoustic feature representation that characterizes the utterance at the corresponding time step. The phoneme representation is a sequence of phonemes or phoneme subdivisions that the acoustic modeling system has classified as representing the received acoustic sequence. An acoustic modeling system can be used in, for example, a speech recognition system, e.g., in conjunction with a pronunciation modeling system and a language modeling system. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the field of cotton breeding. In particular, the invention relates to the novel cotton variety 07X440DF.
2. Description of Related Art
There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis and definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possess the traits to meet the program goals. The goal is to combine in a single variety an improved combination of desirable traits from the parental germplasm. These important traits may include resistance to diseases and insects, tolerance to drought and heat, tolerance to herbicides, improvements in fiber traits and numerous other agronomic traits that may be desirable to the farmer or end user.
Choice of breeding or selection methods depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of variety used commercially (e.g., F1 hybrid variety, pureline variety, etc.). For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, recurrent selection and backcrossing.
The complexity of inheritance influences choice of the breeding method. Backcross breeding is used to transfer one or a few favorable genes for a highly heritable trait into a desirable variety. This approach has been used extensively for breeding disease-resistant plant varieties. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of offspring from each successful cross.
Each breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful varieties produced per unit of input (e.g., per year, per dollar expended, etc.).
Promising advanced breeding lines are thoroughly tested and compared to appropriate standards in environments representative of the commercial target area(s) for generally three or more years. The best lines are candidates for new commercial varieties. Those still deficient in a few traits may be used as parents to produce new populations for further selection.
These processes, which lead to the final step of marketing and distribution, may take as much as eight to 12 years from the time the first cross is made. Therefore, development of new varieties is a time-consuming process that requires precise forward planning, efficient use of resources, and a minimum of changes in direction.
A most difficult task is the identification of individuals that are genetically superior, because for most traits the true genotypic value is masked by other confounding plant traits or environmental factors. One method of identifying a superior plant is to observe its performance relative to other experimental plants and to one or more widely grown standard varieties. Single observations are generally inconclusive, while replicated observations provide a better estimate of genetic worth.
The goal of plant breeding is to develop new, unique and superior cotton varieties. The breeder initially selects and crosses two or more parental lines, followed by repeated selfing and selection, producing many new genetic combinations. Each year, the plant breeder selects the germplasm to advance to the next generation. This germplasm is grown under unique and different geographical, climatic and soil conditions, and further selections are then made, during and at the end of the growing season. The varieties which are developed are unpredictable. This unpredictability is because the breeder's selection occurs in unique environments, with no control at the DNA level (using conventional breeding procedures), and with millions of different possible genetic combinations being generated. A breeder of ordinary skill in the art cannot predict the final resulting lines he develops, except possibly in a very gross and general fashion. The same breeder cannot produce the same variety twice by using the exact same original parents and the same selection techniques. This unpredictability results in the expenditure of large amounts of research monies to develop superior new cotton varieties.
Pureline cultivars, such as generally used in cotton and many other crops, are commonly bred by hybridization of two or more parents followed by selection. The complexity of inheritance, the breeding objectives and the available resources influence the breeding method. The development of new varieties requires development and selection, the crossing of varieties and selection of progeny from superior crosses.
Pedigree breeding and recurrent selection breeding methods are used to develop varieties from breeding populations. Breeding programs combine desirable traits from two or more varieties or various broad-based sources into breeding pools from which varieties are developed by selfing and selection of desired phenotypes. The new varieties are evaluated to determine which have commercial potential.
Pedigree breeding is commonly used for the improvement of self-pollinating crops. Two parents which possess favorable, complementary traits are crossed to produce an F1. An F2 population is produced by selfing one or several F1 plants. Selection of the best individuals may begin in the F2 population or later depending upon objectives of the breeder; then, beginning in the F3, the best individuals in the best families can be selected. Replicated testing of families can begin in the F3 or F4 generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F6 and F7), the best lines or mixtures of phenotypically similar lines are typically tested for potential release as new varieties.
Mass and recurrent selections can be used to improve populations of either self-or cross-pollinating crops. A genetically variable population of heterozygous individuals is either identified or created by intercrossing several different parents. The best plants are selected based on individual superiority, outstanding progeny, or excellent combining ability. The selected plants are intercrossed to produce a new population in which further cycles of selection are continued.
The single-seed descent procedure in the strict sense refers to planting a segregating population, harvesting a sample of one seed per plant, and using the one-seed sample to plant the next generation. When the population has been advanced from the F2 to the desired level of inbreeding, the plants from which lines are derived will each trace to different F2 individuals. The number of plants in a population declines each generation due to failure of some seeds to germinate or some plants to produce at least one seed. As a result, not all of the F2 plants originally sampled in the population will be represented by a progeny when generation advance is completed.
The modified single seed descent procedures involve harvesting multiple seed (i.e., a single lock or a simple boll) from each plant in a population and combining them to form a bulk. Part of the bulk is used to plant the next generation and part is put in reserve. This procedure has been used to save labor at harvest and to maintain adequate seed quantities of the population. The multiple-seed procedure may be used to save labor. It is considerably faster to gin bolls with a machine than to remove one seed by hand for the single-seed procedure. The multiple-seed procedure also makes it possible to plant the same number of seeds of a population each generation of inbreeding. Enough seeds are harvested to make up for those plants that did not germinate or produce seed.
Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., Allard, 1960; Simmonds, 1979; Sneep et al., 1979; Fehr, 1987a,b).
Proper testing should detect any major faults and establish the level of superiority or improvement over current varieties. In addition to showing superior performance, there must be a demand for a new variety that is compatible with industry standards or which creates a new market. The introduction of a new variety will incur additional costs to the seed producer, the grower, processor and consumer; for special advertising and marketing, altered seed and commercial production practices, and new product utilization. The testing preceding release of a new variety should take into consideration research and development costs as well as technical superiority of the final variety. For seed-propagated varieties, it must be feasible to produce seed easily and economically.
The two cotton species commercially grown in the United States are Gossypium hirsutum, commonly known as short staple or upland cotton and Gossypium barbadense, commonly known as extra long staple (ELS) or, in the United States, as Pima cotton. Upland cotton fiber is used in a wide array of coarser spin count products. Pima cotton is used in finer spin count yarns (50-80) which are primarily used in more expensive garments. Other properties of Pima cotton are critical because of fiber end use.
Cotton is an important and valuable field crop. Thus, a continuing goal of plant breeders is to develop stable, high yielding cotton varieties that are agronomically sound. The reasons for this goal are obviously to maximize the amount and quality of the fiber produced on the land used and to supply fiber, oil and food for animals and humans. To accomplish this goal, the cotton breeder must select and develop plants that have the traits that result in superior cultivars.
The goal of a commercial cotton breeding program is to develop new, unique and superior cotton varieties. In cotton, important traits include higher fiber (lint) yield, earlier maturity, improved fiber quality, resistance to diseases and insects, tolerance to drought and heat, and improved agronomic traits. The breeder initially selects and crosses two or more parental lines, followed by generation advancement and selection, thus producing many new genetic combinations. The breeder can theoretically generate billions of different genetic combinations via this procedure. | {
"pile_set_name": "USPTO Backgrounds"
} |
The insulin resistant syndrome complicated by disorder of carbohydrate and/or lipid metabolism and hypertension attracts attention as a multi-risk group of high incidence of ischemic heart disease. The insulin resistant syndrome is found in most of patients suffering from obesity and non insulin-dependent diabetes mellitus (NIDDM). The metabolic disorder of lipids herein recognized is the increase in blood triglycerides mainly due to the increase in chylomicron, very low density lipoproteins, and remnant lipoproteins which are the intermediary metabolites thereof, and the decrease in HDL-C (Diabetes, 37, 1595–1607(1988); Arch. Intern. Med., 149, 1514–1520(1989); Diabetes Care, 14, 173–194 (1991)).
Although it has often been disserted that the blood triglyceride level is probably an important risk factor of arteriosclerotic diseases, the clear relevance has not been established. Said level, however, has been reported to be an independent risk factor of ischemic heart disease based on the results obtained recently using arteriography (Circulation, 90, 2230–2235 (1994)).
It is well known that the HDL-C level negatively correlates to incidence of ischemic heart diseases from the results of a lot of epidemiological researches (Circulation, 79, 8–15(1989)). HDL is thought to participate in the reverse cholesterol transport into liver from extrahepatic tissues and demonstrated to have anti-arteriosclerosis effect in animal model experiments (J. Clin. Invest., 85, 1234–1241(1990); Nature, 353, 265–267(1991)).
It has been confirmed that blood total cholesterol level, especially LDL-C level, positively correlates to incidence of ischemic heart diseases and the said incidence can be decreased by lowering the level in a large-scale intervention trial (Lipid Research Clinics Program: JAMA, 251, 351(1984); Lipid Research Clinics Program: JAMA, 251, 365(1984)).
Accordingly, compounds that decrease the blood triglyceride level and LDL-C level, and also increase the HDL-C level or decrease the atherogenic index are useful as a remedy for arteriosclerosis, especially for prevention or treatment of ischemic heart diseases. Further, compounds that improve the insulin resistance are expected to reduce the blood glucose level and blood insulin level, and improve the pathological conditions of complications such as diabetes mellitus, hyperinsulinemia, hypertension and obesity, which can be risk factors of arteriosclerotic diseases, and whereby exert effective preventive or therapeutic activity on arteriosclerosis.
It has been heretofore known that 2-aryl-5-alkyloxazole derivatives or 2-aryl-5-alkylthiazole derivatives of the general formula (A), which have some similarity to the compounds of the present invention have blood lipid lowering effect or blood glucose lowering effect.
wherein:Ring Ar1 is aryl; V is oxygen or sulfur; Ak1 is hydrogen, alkyl or haloalkyl; Ak2 is alkylene; Ak3 is alkylene, alkenylene or alkynylene optionally substituted by alkoxy, alkoxycarbonyl, acylthio, acylamino or aryl; Q is carboxy, 2,4-oxazolinedione-5-yl, 2,4-thiazolinedione-5-yl, or 1,2,4-oxadiazolidine-3,5-dione-2-yl; Ring Ar2 is a group of the formula [B1]or [B2].
For example, compounds included in the general formula (A), namely 2,4-thiazolidinedione derivatives, are reported to have blood lipid lowering effect or blood glucose lowering effect in U.S. Pat. No. 5,532,256, WO96/05186, JP H7-188227, A, JP S61-85372, A and U.S. Pat. No. 5,401,761.
It is described that compounds included in the general formula (A), namely 2,4-oxazolidinedione derivatives, have blood lipid lowering effect or blood glucose lowering effect in JP H9-124623, A, WO95/18125, JP H7-165735, A and U.S. Pat. No. 5,468,762 and JP H8-92228, A.
It is described that compounds included in the general formula (A), namely 1,2,4-oxadiazolidine-3,5-dione derivatives, have blood lipid lowering effect or blood glucose lowering effect in U.S. Pat. No. 5,510,360 and U.S. Pat. No. 5,480,896.
It is described that compounds included in the general formula (A), namely carboxylic acid derivatives, have blood lipid lowering effect or blood glucose lowering effect in WO99/462325, WO98/00137, WO97/31907, WO96/38415, JP H9-323982, A, JP H8-325264, A, JP H5-507920, A, U.S. Pat. No. 5,510,360 and U.S. Pat. No. 5,480,896.
The compound of the general formula (A) is characterized in that it has: (1) 2-aryl-5-alkyloxazole ring or 2-aryl-5-alkylthiazole ring at one end; (2) carboxy, 2,4-oxazolinedione-5-yl, 2,4-thiazolinedione-5-yl or 1,2,4-oxadiazolidine-3,5-dione-2-yl at the other end; and (3) an aromatic ring such as benzene represented by ring Ar2 in the molecule.
Further, EP-A-220573 describes that oxazole derivatives of the general formula (B) show antiarthritic activity.
wherein:Ar3 is substituted phenyl or thienyl; R23 is hydrogen or alkyl; Ak4 is alkylene having 1 to 2 carbon atoms: R24 and R25 are each alkyl; Q1 is carboxy, alkoxycarbonyl, carbamoyl, N-alkylcarbamoyl or N,N-dialkylcarbamoyl. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to wavelength division multiplexed transmission systems, and more particularly to a method and apparatus for performing dispersion compensation without a change in polarization.
Wavelength-division multiplexing is expected to be increasingly utilized in undersea and transcontinental terrestrial optical transmission systems due, in part, to the large bandwidth capacity such multiplexing provides. One way of increasing the total transmission capacity of such systems is to more efficiently use the available spectral bandwidth such as by decreasing the spacing between adjacent ones of the multiplexed channels. Unfortunately, wavelength division multiplexed transmission systems are susceptible to performance limitations due to polarization dependent effects such as cross-talk between the multiplexed channels. Cross-talk, which is primarily caused by the non-linear index of refraction of optical transmission fibers, increases as the channel spacing decreases. Four-wave mixing is one significant deleterious effect that produces cross-talk
U.S. Application Serial No. [N.S. Bergano 22-4] entitled xe2x80x9cMethod and Apparatus for Improving Spectral Efficiency in Wavelength Division Multiplexed Transmission Systems,xe2x80x9d discloses an optical transmitter that generates a WDM signal having even-numbered channels in a state of polarization (SOP) orthogonal to the SOP of the odd-numbered channels. This arrangement advantageously limits the four-wave mixing products that can be generated in the transmitter and the optical transmission path to which it is typically coupled.
Wavelength division multiplexed systems must also employ dispersion management techniques. As the per channel data rates of such system increase, the interplay of dispersion and fiber nonlinearity needs to be more carefully managed. Typically the transmission line is designed to have an average dispersion value of zero. In the case of WDM systems, however, only one channel can be arranged to have an average dispersion of zero. The remaining channels will have some net nonzero dispersion due to the dispersion slope of the optical fibers forming the transmission One technique for overcoming this limitation in WDM systems is to compensate for those channels that do not have a net zero dispersion by adding compensating dispersion fiber at the receiver or transmitter so that their net accumulated dispersion is zero. It has been shown to be advantageous to provide a portion of the dispersion compensation at the transmitter and a portion at the receiver.
While it would be beneficial to provide a transmitter that offers both dispersion compensation and a signal in which adjacent channels have orthogonal SOPs, such a transmitter has not been available because it has not been possible to perform dispersion compensation in a polarization maintaining environment.
Accordingly, it would be desirable to provide a method and apparatus for performing dispersion compensation without changing the polarization of the optical signal.
In accordance with the present invention, a method and apparatus is provided for transmitting an optical signal. The method includes the step of generating an optical signal that includes a plurality of optical channels, which are sequentially numbered from 1 to N from lowest to highest wavelength. Dispersion compensation is imparted to each of the plurality of optical channels without a change in polarization of the channels. A state-of-polarization of predetermined odd-numbered channels is oriented to be substantially orthogonal to a state of polarization of predetermined even-numbered channels by directing the predetermined odd-numbered channels and the predetermined even-numbered channels through orthogonally polarizing inputs of a polarization coupler. The odd-numbered channels and the even-numbered channels may be directed through first and second wavelength combiners, respectively, prior to orienting their states of polarization. The orthogonal relationship between the states of polarization of odd and even-numbered channels advantageously limits the four-wave mixing products that can be generated in the optical transmitter and the optical transmission path to which it is typically coupled.
In one embodiment of the invention, dispersion compensation is provided by device that includes an optical circulator having an input port, an intermediate port, and an output port. First and second polarization maintaining optical fibers are respectively coupled to the input and output ports. The first and second polarization maintaining fibers have an orientation offset by 90 degrees with respect to one another. A single mode fiber is coupled at one end to the intermediate port and at the other end to a dispersion compensating fiber. A Faraday rotator mirror is coupled to the dispersion compensating fiber. Such a device provides dispersion compensation without a change in polarization.
In another embodiment of the invention, the dispersion compensator includes an optical circulator having an input port, an intermediate port, and an output port. First, second and third polarization maintaining optical fibers are respectively coupled to the input, intermediate and output ports. A Faraday rotator is coupled at one end to the second polarization maintaining fiber and at another end to a chirped fiber grating. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a ferule fixed to the terminal of an optical fiber, and more particularly to a female ferule fixed to the terminal of, preferably, a multi-core optical fiber.
In recent years, a system has been adopted in which a portion of a wire harness is replaced by an optical fiber and for example, the respective nodes are connected to one another through the optical fiber. As such a system, there is a previously known optical module disclosed in e.g. the following Patent Reference 1. In FIG. 8, reference numeral 1 denotes an optical module disclosed in the following Patent Reference 1. The optical module 1 is a “big-table type” module which includes a circuit board 2, a light receiving/emitting portion (light transmitter/receiver) 3 mounted on the circuit board 2, a pair of connectors 4,4 provided at the end of the circuit board 2, and relay optical fibers 5, 5 which optically connect the light receiving/emitting portion 3 and the connectors 4, 4.
At the respective ends of the optical fiber cables 5, 5, ferules 6, 6 (see FIGS. 9A to 9C) are fixed. The ferules 6, 6 are housed within the connectors 4, 4, respectively. The connector 4, 4 is formed in a receptacle shape. An optical connector 7, 7 is connected to such a connector 4, 4 by fitting. The optical connector 7, 7 is formed in a plug shape. The optical connector 7, 7 is provided at the terminal of an optical fiber cable 8, 8. At the terminal of the optical fiber cable 8, 8, a ferule 9, 9 (see FIGS. 9A to 9C) housed in the optical connector 7, 7 is provided.
The ferule 6, 6 of the terminal of the optical fiber cable 5, 5 is formed in the same shape as the ferule 9,9 of the terminal of the optical fiber cable 8, 8. Within the connector 4, 4 and optical connector 7, 7 which are fit to each other, their front end faces are opposite to each other and their optical axes agree with each other.
Now referring to FIGS. 9A to 9C, an explanation will be given of the optical fiber cable 5, 8 and the ferule 6, 9. The optical fiber cable 5, 8 includes an optical fiber 10 composed of a core and a cladding, and a primary sheath 11 and a secondary sheath 12 with which the optical fiber 10 is covered. In order to fix the ferule 6, 9, the terminal of the optical fiber cable 5, 8 is worked so that the primary sheath 11 and secondary sheath 12 are removed and the optical fiber 10 is exposed by a predetermined length.
The ferule 6, 9 is formed in a nearly cylindrical shape composed of a small-diameter portion 13 and a large-diameter portion 14. The ferule 6, 9 is formed to straightly penetrate from its front end face 15 to its read end face 16. The inner diameter of the small-diameter portion 13 is set to agree with the outer diameter of the optical fiber 10. The inner diameter of the large-diameter portion 14 is set to agree with the outer diameter of the primary sheath 11. The end of the secondary sheath 12 is adapted to hit on the rear end 16.
The terminal processing is performed as follows, Epoxy adhesive is applied on the terminal of the optical fiber cable 5, 8. This terminal is internally inserted into the ferule 6, 9. The adhesive is dried. After this fixing, the optical fiber 10 projected from the front end face 15 is cut or ground.
Patent Reference 1: JP-A-2003-149515
In order that the respective front end faces 15 of the ferules 6, 9 are opposite so that their optical axes are not deviated from each other, the inventors of this invention intends to integrally form the cylindrical portion, into which the small-diameter portion 13 of the ferule 9 can be inserted, to the front end face 15 of the ferule B. However, if the cylindrical portion is formed integrally to the front end face 15 of the ferule 6, in the terminal processing, disadvantageously, it becomes very difficult to perform the cutting or grinding of the optical fiber 10 projected from the front end face 15 (As the case may be, the cutting or grinding cannot be done). Further, if shaving refuse internally remains on the cylindrical portion in the cutting or grinding, disadvantageously, this may influence an optical connection portion.
Additionally, in order to obviate the above inconvenience, in removing the primary sheath 11 and secondary sheath 12, it can be proposed to precisely manage the exposed size of the optical fiber 10. However, in order to realize this proposal, may difficulties must be overcome.
Meanwhile, there is a previously known “multi-core optical fiber in which a large number of optical fibers being tied is covered with an outer cladding. This multi-core optical fiber has such a structure that removal of the cladding at the terminal will unbraid the large number of optical fibers. Therefore, if the multi-core optical fiber with such loosening is employed in place of the optical fiber cable 5, the above problem of the ferule in which the cylindrical portion is integrally formed to the front end face will be further complicated. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally, wine racks are used in wine cellars or other wine storage areas to store numerous bottles of wine in a desired area. In one example of a conventional wine rack 30 shown in FIG. 1, the bottles of wine are supported along the length of the bottle within a grid of generally rectangular cavities 32 stacked upon and next to each other, each rectangular cavity typically formed by pairs of parallel wood supports 34, 36 held in position by front and rear frame structures. In this example of a conventional wine rack, the wine rack is typically configured such that user places a bottle 38 of wine lengthwise within one of the rectangular cavities such that when the rack is full of wine bottles, only the top ends 40 (i.e., where the foil is wrapped around the top end) of the wine bottles 38 are generally visible when viewing the wine rack—and the labels on the wine bottle are not generally visible by the user. As such, in order to determine which type of wine (e.g., varietal/grape type, winery name, vintage/year, etc.) is stored in a particular cavity 32 of such a wine rack, the user may need to remove the bottle from the wine rack in order to view the label on the bottle.
As recognized by the present inventor, what is needed is a wine rack that provides storage for numerous wine bottles while permitting the user to view the label of the bottle of wine as the wine bottle rests in the wine rack.
It is against this background that various embodiments of the present invention were developed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many welding applications such as MIG (metal inert gas) or GMAW (gas metal arc welding) utilize a wire feeder to provide filler metal to the weld. Generally, the wire feeder will provide wire at a nominally constant speed (typically given in inches per minute). Wire feed speed controllers control the speed at which the wire is fed to the arc.
A typical prior art wire feeder includes a motor that pulls wire from a reel and feeds the wire at a wire feed speed to the weld arc. The motor is controlled by a wire feed controller that may be a stand alone controller or may be part of a controller that controls other aspects of the welding process. The wire feed controller controls the speed of the wire feeder and typically includes a potentiometer (or digital up/down input buttons) on a front panel of the controller which the user uses to set wire feed speed.
A user selectable input, such as the angular position of a knob, typically determines the resistance of the potentiometer, which is used to set the speed point in the control circuit. Digital systems typically provide the output of an up/down button or other input device to a microprocessor or digital control device. The controller may include feedback circuitry to control the wire feed speed, or the speed control may be open loop.
Generally, the wire feeding system has a response of the wire feed speed relative to the user selectable input. For example, as the user turns the front panel potentiometer a given angular rotation the wire speed the changes a given amount. The response is dependent upon the type of control and the components used to implement the control.
The response of the wire feed speed relative to the potentiometer setting may be described as having a sensitivity: inches/minute/degree of angular rotation of the potentiometer (or user selectable input), which is the relationship between angular position and wire feed speed. The sensitivity is also the slope of the potentiometer versus wire feed speed curve, for a given potentiometer setting.
Additionally, a response may be described as having a slope over a range, which is the average slope of the potentiometer versus wire feed speed curve over that range. When the curve is linear over the range, the response of the wire feed speed relative to the user selected input is said to be linear. Conversely, when the curve is not linear over the range, the response of the wire feed speed relative to the user selected input is said to be nonlinear.
Given the wide variety of welding applications, processes and power supplies, a wide variety of sensitivities is desirable. Some prior art wire feed controllers created two sensitivities by providing a toggle switch to select between a faster range and a slower range. Thus, the angular sensitivity at slower speeds is greater than when using the potentiometer for the full range. However, this requires an additional control switch. Also, this prevented the use of a direct wire feed speed reading, since a single potentiometer knob was used for multiple wire feed speed ranges.
Another prior art system that had multiple sensitivities is described in U.S. patent application Serial No. 08/911,998, now U.S. Pat. No. 5,990,447, which is owned by assignee of this invention, and which is implemented in the Miller.RTM. Millermatice.RTM. 300 welding power source, has a controller for the wire feed speed that is inherently linear. A nonlinear circuit input circuit provides a variety of gains depending upon the setting of the potentiometer, to create a nonlinear response of the wire feed speed relative to the potentiometer setting, because it is desirable, for the applications for which that welding power source is often used, to have the sensitivity of the potentiometer be greater at lower speeds than at higher speeds.
Conversely, some welding applications and processes may be better implemented when the sensitivity of the user selectable input is constant over an entire range. The Hobart Handler.RTM. 120/150, for example, is often operated at the lower end of its wire feed speed range. A nonlinear response, with less sensitivity at the slower speeds, makes it difficult for the operator to achieve the desired wire feed speed (WFS) settings. Thus, a linear response is desired. However, not all controllers provide a linear relationship between the input in output. Thus, it may be desirable to provide a nonlinear stage which corrects for inherent nonlinearity in a controller and/or motor, and create a desired overall response. The combined effect of the nonlinear stage and the inherent nonlinearity may be a substantially linear controller, or one with a desired nonlinearity.
It is typical in the prior art to control a motor i.e. using a pulse width modulated integrated circuit. While such circuits may be designed to be inexpensive, when they are used to dictate a desired response of the motor relative to the user input they are often expensive and require external circuitry to condition the signal coming from a potentiometer. Given the number of components, such a system has increased risk of failure and may be expensive. Thus, it would be desirable to have the response of the motor to the user input be determined by the input circuit.
Given the variety of needs for linear or nonlinear responses, a controller having a user selectable input which may be tailored to a particular response is desirable. Preferably, such a user selectable input will be relatively inexpensive to implement, and not be complicated and require an excessive number of components. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present disclosure generally relates to water amusement attractions and rides. More particularly, the disclosure generally relates to jet and side control gates for controlling water flow in water amusement rides.
2. Description of the Relevant Art
The 80's decade witnessed phenomenal growth in the participatory family water recreation facility (i.e., the water park) and in water oriented ride attractions in the traditional themed amusement parks. The main current genre of water ride attractions (e.g., waterslides, river rapid rides, and log flumes, and others) require participants to walk or be mechanically lifted to a high point, wherein, gravity enables water, rider(s), and riding vehicle (if appropriate) to slide down a chute or incline to a lower elevation splash pool, whereafter the cycle repeats. Some rides can move riders uphill and downhill but for efficiency and performance reasons these rides also generally start on an elevated tower and generally require walking up steps to reach the start of the ride.
With this phenomenal growth came the subsequent problem of finding enough appropriate land available for development into water recreation facilities. One of the problems facing water park developers is finding enough land upon which to develop their water parks. The development of water parks is an expensive enterprise to which the addition of having to purchase large tracts of land only further adds to the expense of developing water parks.
Generally speaking, the traditional downhill water rides are short in duration (normally measured in seconds of ride time) and have limited throughput capacity. The combination of these two factors quickly leads to a situation in which patrons of the parks typically have long queue line waits of up to two or three hours for a ride that, although exciting, lasts only a few seconds. Additional problems like hot and sunny weather, wet patrons, and other difficulties combine to create a very poor overall customer feeling of satisfaction or perceived entertainment value in the water park experience. Poor entertainment value in water parks as well as other amusement parks is rated as the biggest problem of the water park industry and is substantially contributing to the failure of many water parks and threatens the entire industry.
Additionally, none of the typical downhill water park rides is specifically designed to transport guests between rides. In large amusement parks, transportation between rides or areas of the park may be provided by a train or monorail system, or guests are left to walk from ride to ride or area to area. Trains or monorails have relatively minor entertainment value and are passive in nature in that they have little if any active guest-controlled functions such as choice of pathway, speed of riders or rider activity besides sightseeing from the vehicle. They are also generally unsuitable for water parks because of their high installation and operating costs and have poor ambience within the parks. These types of transportation are also unsuitable for water park guests who, because of the large amount of time spent in the water, are often wet and want to be more active because of the combination of high ambient temperatures in summertime parks and the normal heat loss due to water immersion and evaporative cooling. Water helps cool guests and encourages a higher level of physical activity. Guests also want to stay in the water for fun. Water parks are designed around the original experience of a swimming hole combined with the river rafting or tubing. The preferred feeling is one of natural ambience and organic experience. A good river ride combines calm areas and excitement areas like rapids, whirlpools, and beaches. Mechanical transportation systems do not fit in well with these types of rides. There exists a need in water parks for a means of transportation through the park and between the rides.
For water rides that involve the use of a floatation device (e.g., an inner tube or floating board) the walk back to the start of a ride may be particularly arduous since the rider must usually carry the floatation device from the exit of the ride back to the start of the ride. Floatation devices could be transported from the exit to the entrance of the ride using mechanical transportation devices, but these devices are expensive to purchase and operate. Carrying the floatation device or using mechanical transportation to transport the floatation device may reduce guest enjoyment, cause excess wear and tear on the floatation devices, contribute to guest injuries, and/or make it impossible for some guests to access the rides. Also, a park that includes many different non-integrated rides may require guests to use different floatation devices for different rides, which makes it difficult for the park operators to provide the guests with a general purpose floatation device. It is advantageous to standardize riding vehicles for rides as much as possible.
Typically water parks are quite large in size. Typically guests must enter at one area and pass through a changing room area upon entering the park. Rides and picnic areas located in areas distant to the entry area are often underused in relation to rides and areas located near the entry area. More popular rides are overly filled with guests waiting in queue lines for entry. This leads to conditions of overcrowding in areas of the park which leads to guest dissatisfaction and general reduction of optimal guest dispersal throughout the park. The lack of an efficient transportation system between rides accentuates this problem in water parks.
For the reasons stated above and more, a natural and exciting water transportation system to transport participants between rides as well as between parks may be used to interconnect many diverse and stand-alone water park rides. The transportation system relieves the riders from the burden of carrying their floatation devices up to the start of a water ride. The transportation system also allows the riders to stay in the water, thus keeping the riders cool while they are transported to the start of the ride. The transportation system also may be used to transport guests from one end of a water park to the other, between rides and past rides and areas of high guest density, between water parks, or between guest facilities such as hotels, restaurants, and shopping centers. The transportation system itself may be a main attraction with exciting water and situational effects while seamlessly incorporating into itself other specialized or traditional water rides and events.
A transportation system may use sloped and/or flat water channels to transport participants. The depth and/or flow of water in these water channels may be controlled by narrowing or widening the water channels. Narrowing or widening the water channels may especially be useful in deeper water channels typically used for water amusement rides. Typically, a fast moving water section (e.g., a downhill or downhill rapids section) is located following a slow moving water section (e.g., a flat water section). The slow moving water section is typically an area used to collect and/or organize participants before they move into the fast moving water section. The fast moving water section may have a narrower cross-section so that water flows through the fast moving water section at a higher velocity.
It is important to control the water depth in the slow moving water section for several reasons. One reason is that the velocity (flow rate) and momentum of water entering the fast moving water section from the slow moving water section is dependent upon the head (depth) of water at the beginning of the fast moving water section. The depth of water at the beginning of the fast moving water section is dependent upon the depth of water in the slow moving water section.
A second reason is that the velocity of riders in the slow moving water section and upstream of the fast moving water section is determined by the width, depth, and water flow of the slow moving water section of the water channel. Typically, the width and water flow are assumed to be constant, so the velocity of the riders is mainly determined by the water depth in the slow moving water section. The water depth in the slow moving water section may be maintained at a desired level (e.g., a relatively constant level) by selectively restricting the flow of water out of the slow moving water section. A restriction in the flow of water out of the slow moving water section increases the head in the slow moving water section. This increase in head may be balanced by an increase in velocity of the water flowing past the restriction so that the water depth in the slow moving water section is maintained at the desired level. Thus, the velocity of riders in the slow moving water section may be controlled by selecting the water depth in the slow moving water section using the restriction. Selective adjustment of the restriction may be used to adjust water depth in the slow moving water section and control the velocity of riders in the slow moving water section.
Some examples of devices that are used to restrict water flow through an open channel include a sluice gate or an adjustable submerged obstruction (e.g., an adjustable weir). Sluice gates are typically unsuitable for use in water parks in which people participate due to safety reasons. Adjustable submerged obstructions are generally expensive and difficult to install in a water park and/or are unsuitable for controlling the flow of water in a water park. Adjustable side gates may be used to restrict water flow through an open channel. Adjustable side gates include moving parts that open and close into a water channel. The adjustable side gates may be manually controlled and/or actuated by mechanical means. These moving parts may be unsuitable for water parks because of safety issues involving riders in the water channel, especially for the high volume flows of water seen in water parks. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to the art of medical devices, systems, and methods for cutting and removing tissue with the option of also providing auxiliary functions through the same instrument. More specifically, the invention is designed to mechanically core prostate tissue via a transperineal minimally invasive surgery. The invention is primarily directed at alleviating the condition of benign prostatic hyperplasia (BPH) characterized by generally non-malignant (benign) proliferation of the cells making up the prostate gland in males but can also be used for removal of malignant tissue to treat prostate cancer.
The prostate is a walnut-sized gland located beneath the bladder and in front of the rectum. The urethra passes through the prostate to the bladder neck. Commonly, as a man ages, the prostate begins to grow and this growth often results in the prostate squeezing the urethra within it. This proliferation of tissue in the prostate gland is known as benign prostatic hyperplasia (BPH). BPH causes urination problems when an enlarged prostate presses against the urethra narrowing the canal. BPH is estimated to affect over fifty percent of men over the age of sixty.
Approximately one-third of prostate tissue is anterior to the urethra and consists of fibromuscular tissue physiologically related to the urethra and bladder. Approximately two-thirds of prostate tissue is posterior to the urethra and consists of glandular tissue. BPH involves bilateral nodular expansion of prostate tissue in a transition zone between the fibromuscular tissue and the glandular tissue. Without treatment, BPH obstructs the urethra to cause a slow or interrupted urinary stream, nocturia, increased frequency of urination, a sense of urinary urgency, and incontinence. Occasionally, BPH is also responsible for more severe problems including uraemia, hydronephrosis, and urinary tract infections. Uraemia is retention in the bloodstream of waste products normally excreted in the urine. Hydronephrosis is the dilation of the branches of the pelvic cavity and the kidney, caused by an accumulation of urine resulting from obstruction of normal outflow.
Systems and methods exist to treat BPH. These include drug therapy, non-surgical procedures, and surgical procedures (i.e. prostatectomy).
Drugs often have side effects and must be taken long-term for continued effectiveness. For an example of pharmaceutical treatment of BPH, see U.S. Pat. No. (hereinafter USP) 6,989,400 (“Treatment of benign prostatic hyperplasia” by George Tidmarsh) assigned to Threshold Pharmaceuticals, Inc. disclosing the administration of lonidamine.
Non-surgical (without mechanical cutting) conventional BPH procedures, such as thermotherapy, use various forms of energy (radiofrequency, microwave, ultrasound, etc.) to ablate the prostate tissue. The application of energy is usually overbroad and results in ablation-induced collateral damage and necrosis (cell death) of healthy urethral tissue. These non-mechanical energy delivery devices alleviate symptomatic pressure and widen the constricted urethra by coring out a new urethral channel formed by scar tissue. However, overly aggressive scar tissue proliferation occasionally results in some individuals, and can have side effects including seminal vesicle blockage (leading to reverse ejaculation, dry climax, etc.) and an increase in volume that creates pressure and undermines the achievement of volume reduction in the prostate. Other technologies such as TURP (TransUrethral Resection of the Prostate) and LASER (Light Amplification by Stimulated Emission of Radiation) also destroy healthy tissue including important muscles at the bladder neck. The bladder neck is a common target for treatment. The widening with both TURP and LASER damage the bladder's muscular structure that can lead to bladder incontinence and can also reduce or eliminate the bladder neck's ability to constrict upon sexual stimulation/ejaculation allowing the ejaculate to travel in reverse into the male's bladder, thus yielding him with reverse ejaculation.
For example, U.S. Pat. No. 6,289,249 (“Transcatheter microwave antenna” by Arndt et al.) assigned to the U.S. Government as represented by NASA describes a system comprising a catheter with a small diameter, disk loaded, monopole antenna surrounded by fusion material. Microwaves from the antenna heat prostatic tissue to promote necrosing. The fusion material absorbs energy to keep the urethra cool. The pressure of the prostatic tissue against the urethra is relieved as the body reabsorbs the necrosed or dead tissue. (For reference to reabsorption by the body see Abstract, 13:7 and 15:42.) Resorption of tissue in transurethral prostate treatments is also referred to in U.S. Published Application No. (hereinafter U.S. Pub. App.) 20080125772 (“Tuned RF energy and electrical tissue characterization for selective treatment of target tissues” by Corbett W. Stone, et al.) assigned to Minnow Medical, Inc (San Diego, Calif.) at paragraph [0095]. Relying on the body to reabsorb or otherwise dispose of severed, damaged and/or dead tissue is risky and inconsistent as all patients heal differently. The time in which the patients can expect to experience relief from the procedure may take several weeks to realize, if at all. Other potential challenges are that the tissue can fail to disintegrate properly and can be transported to other regions of the body to cause complications there from blockage (i.e. thrombosis, lumen occlusion, obstruction at junctions to interfere with natural drainage, pressure accumulation, etc.).
Other drawbacks of microwave thermal therapy systems are addressed in U.S. Pat. No. 5,370,677 (“Gamma matched, helical dipole microwave antenna with tubular-shaped capacitor” by Rudie, et al.) assigned to Urologix, Inc. These include overbroad generation of heat that necroses healthy tissue also and unpredictable heating patterns and radiation lengths that are not easily adjusted (1:65-3:3). U.S. Pat. No. '677 also refers to necrosed tissue being “resorbed by the body” rather than removed (2:11-14). The only reference to removal is locally removing tissue by heating and necrosing rather than externally removing the necrosed tissue from the body (4:24-27).
U.S. Pat. No. 5,575,811 (“Benign prostatic hyperplasia treatment catheter with urethral cooling” by Reid, et al.) assigned to Urologix, Inc. discloses a similar system to that of the '249 patent in which a catheter having an antenna is used to heat tissue. U.S. Pat. No. '811 also discloses a “coolant fluid” to be circulated in a chamber between the catheter shaft and urethral wall to keep cool the body lumen.
Another non-surgical approach for ameliorating the symptoms of BPH without removing the problem at its source is a urethral stent. U.S. Pat. No. 4,762,128 (“Method and apparatus for treating hypertrophy of the prostate gland” by Robert Rosenbluth) assigned to Advanced Surgical Intervention, Inc. discloses an expandable tubular stent to be used with an expansion catheter and left in place for long-term patency of the urethral lumen. Other stents are disclosed in U.S. Pat. No. 5,234,456 (“Hydrophilic stent” by Thomas Silverstrini) assigned to Pfizer Hospital Products Group, Inc. and U.S. Pat. No. 5,163,952 (“Expandable polymeric stent with memory and delivery apparatus and method” by Michael Froix and unassigned).
U.S. Pat. No. 4,932,956 by Reddy et al. and assigned to American Medical Systems, Inc. discloses a “Prostate balloon dilator”. The balloon dilator is part of a catheter and urine is drained through the catheter (6:16-17 and claim 7). The apparatus of U.S. Pat. No. '956 simply dilates the urethral lumen and is then removed without damaging any urethral tissue. The balloon in patent '956 is not used as a sheath for instrument delivery and retrieval, for urethral protection against irritation, and/or for urine drainage (rather, urine is drained through the catheter).
Conventional surgical systems for removal of the prostate (prostatectomy) are bulky and expensive and their use generally results in the loss of fertility. Prostatectomy is typically performed as an in-patient procedure requiring general anesthesia, a longer term hospital stay, and a significant recovery time before a patient returns to work.
The current gold standard therapeutic approaches include transurethral resection of the prostate (TURP) and laser surgery. For example, U.S. Pat. No. 6,156,049 (“Method and apparatus for transurethral resection of the prostate” by Lovato, et al.) assigned to Coherent Inc. discloses a TURP procedure and U.S. Pat. No. 6,986,764 (“Method and system for photoselective vaporization of the prostate, and other tissue” by Davenport, et al.) assigned to Laserscope discloses a laser surgery procedure. Both the TURP and LASER technologies destroy the urethral lining, prostatic capsule, and bladder neck's muscular structure as well as any other soft tissue with which they engage. TURP and LASER both have significant side effects, such as reverse ejaculation and pain/discomfort upon urination, as a result of built-up scar tissue and damage to the bladder neck's musculature.
There are minimal reference art patents covering surgical approaches to BPH that rely on transurethral mechanical coring atherectomy probes and even less that apply to transperineal access procedures. Atherectomy generally refers to the mechanical removal of material from a body lumen by a rotating, reciprocating, end cutting, or guillotine cutting device typically inserted through a catheter that then aspirates out the separated tissue. Only two patents were found referring to “benign prostatic hyperplasia” in the “Abstract” and to “transurethral” in a claim and both of these (U.S. Pat. Nos. 6,477,426 and 6,424,869) use heating/microwave methods rather than mechanical cutting (searches performed on Mar. 12, 2008, same results on Sep. 17, 2008). In the context of the present application and invention mechanical cutting is used to refer to cutting via a structurally sharp blade rather than, for example, severing or resecting tissue with current in cauterizing or electrosurgical electrodes. Only one other U.S. patent was found to contain the term combination “atherectomy probe” (search performed on Sep. 9, 2008). U.S. Pat. No. 5,019,089 (“Atherectomy advancing probe and method of use” by Andrew F. Fan) assigned to Interventional Technologies Inc. (San Diego, Calif.) is primarily concerned with removing obstructive tissue and plaque from the lumens of arteries to restore blood flow. There is no mention of application to the prostate's core transurethrally or transperineally through a micro puncture of the urethral wall and/or a micro puncture of the prostatic capsule. The objective is incremental advancement (including use of advancement tape) rather than cutting and removal mechanisms. A rotating cutter is disclosed but there is no disclosure of the following cutting mechanisms: radial reciprocating, guillotine and end-cutting. Although a suction system for tissue removal during the procedure and a port for injecting medicinal fluids are briefly disclosed, there is no enablement as to potential or optimal designs or how these would operate in conjunction with the rotating cutter (3:38-42, 8:10-18).
U.S. Pub. App. 20080125772 of Stone, et al. (fully cited above) also teaches the combination of more than one therapy (i.e. drugs, medicinal fluids, or radiation) in a single device (see paragraphs [0098], [0099], [0118], and [0138]). However, the published application does not teach mechanical cutting/coring with a sharp blade and thus does not include this component in any of the combinations. Rather, U.S. Pub. App. '772 emphasizes electrosurgical energy delivery by electrodes (see Abstract, claims 9, 11, 18, 26, 33, etc.). Further, the publication teaches using the different features or therapies sequentially while in the present invention they could be administered simultaneously. In fact, in the present invention it is expected that suction removal will be performed simultaneous with coring to provide a continuous process that does not provide severed tissue with the opportunity to migrate before external removal.
U.S. Pat. No. 5,571,130 (“Atherectomy and prostectomy system”) by John B. Simpson, et al. assigned to Advanced Cardiovascular Systems, Inc. (Santa Clara, Calif.), unlike U.S. Pat. No. '089 above and as its title implies, specifically refers to use of the cutting tool on prostate tissue and not just for relieving blockages in the arteries. Like the present invention, U.S. Pat. No. '130 is directed to “precisely deliver a sharp cutting action to the diseased portion of . . . the gland with optimal efficiency” (2:38-40). However, the present invention teaches a device with a greater variety of: (i) cutting mechanisms including several different range of motion (ROM) patterns, (ii) power sources for activation, and (iii) auxiliary therapies that can be provided together with mechanical cutting. U.S. Pat. No. '130 does refer to a reciprocating blade (i.e. see claims 4, 5 and 10) but it is not a radially reciprocating motion as is possible with the present invention. The blade has a “relatively straight cutting edge” and the disclosure actually teaches away from a curved blade finding this does not match up well with the shape of lumens (at least in arteries) resulting in cutting into the lumen too deeply in parts to create an uneven inner surface (see Abstract, claims 5, 3:59 and 1:53-2:8.) There is also no disclosure of a rotating, circular, guillotine, or end cutting motion. Rather, the cutting mechanism disclosed in U.S. Pat. No. '130 results from one or more straight edged blades sliding or reciprocating back and forth across a rectangular cutout window at the distal end of a housing, severing atheromas or tissue as it closes the window. The straight cutting blade or blades are as long as the cutout window. Thus, in the cutting position in which the window has just closed, the straight cutting blade(s) completely occlude the window so that no more tissue can enter or exit (3:9-15). U.S. Pat. No. '130 also refers only to electrical activation of the cutting elements while the present invention also includes manual mechanical, pneumatic, hydraulic, and solar-powered electrical activation. More specifically, U.S. Pat. No. '130 describes electrically heating one or more elements on the blade for ablating tissue when adapting the device for prostatectomy (2:9-19 and 7:53-63) and is self-described as a device for performing the TURP procedure “in which an enlarged or diseased prostate gland is removed” (2:10-11). This implies the blade must be moved slow enough to allow time for heat transfer to the tissue. A heating element on the blade suggests tissue is ablated with heat rather than mechanically severed.
Thus, the common approaches to BPH treatment are not minimally invasive and result in trauma to and the removal of the urethral lining, crucial bladder neck musculature, and the prostate's capsule, as well as an unnecessarily large section of the prostate or the entire prostate. Common approaches damage the urethra which results in scar tissue that may occlude the seminal vesicle with the reduction or potential loss of fertility and possibly increase the potential for reverse ejaculation, resulting from the blockage and reduced smooth lining of a natural urethra. Damage to the smooth lining of the urethra caused by these approaches results in increased pain, discomfort, extended catheterization, additional time off from work (recovery), increased dependence on pain medications and extended (and expensive) in-patient hospital stays. The present invention is designed to be used with the prostate access technology of commonly owned co-pending application Ser. Nos. 61/048,427 and 61/086,775 (and their future continuations and other applications claiming benefit of priority to them) to completely eliminate (or at least minimize) urethral damage and destruction of bladder neck musculature, while preserving the prostatic capsule with a small micro puncture in order to gain access to the core of the targeted bulk tissue of the prostatic lobes.
Recent prostate treatment probes have focused on newer energy therapies while an understanding of how to precisely control them to selectively remove tissue remains to be mastered. Mechanical cutting/coring of prostate tissue has remained largely unconsidered recently. The reference art that does deal with mechanical cutting atherectomy probes for the prostate is old, crude, and rigid. The present invention refines mechanical cutting and combines it with other therapies to provide a flexible, adaptable device, taking full advantage of advances in the mechanical, biomedical, and electrical arts.
Minimally invasive therapies are not without side effects. A recent study demonstrated the impact of four different types (standard transurethral resection of the prostate (TURP) in 55 cases, transurethral microwave thermotherapy in 34, interstitial laser coagulation of the prostate in 42 and transurethral needle ablation in 42) of BPH treatment on post-treatment quality of life and sexual function. The study found a statistically significant association between ejaculatory dysfunction and an adverse impact on sexual activity following the procedures. However, there was no correspondingly significant change post-procedure in either sexual desire or erectile function with these same therapies. Accordingly, post-treatment sexual dysfunction and the corresponding impairment in quality of life appear to be largely attributable to ejaculatory problems. (See Y. Arai, Y. Aoki, et al. “Impact of Interventional Therapy for Benign Prostatic Hyperplasia on Quality of Life and Sexual Function: A Prospective Study” in The Journal of Urology, Vol. 164, Issue 4, pp. 1206-1211.) Ejaculation loss or severe decrease in ejaculate volume was reported by 48.6%, 28.1%, 21.6% and 24.3% of the patients in the four treatment groups referred to (TURP, microwave, laser, needle ablation), respectively. Thus, there is a need in the art for minimally invasive procedures that do not negatively impact quality of life with reduced or eliminated ejaculation (or changes in volume, pressure, direction, etc.).
Another important consideration in BPH treatment is to address the problem early. This is in contrast to the “watchful waiting” approach that typically coincides with drug therapy while putting off surgery until symptoms become unbearable and conclusively demonstrate irresponsiveness to drugs. The easier and safer the surgical procedure becomes the less it is something to be put off and avoided. There are significant benefits to be obtained in early intervention in the form of preserved bladder muscle tone and function. The longer an individual with a developing hypertrophic prostate waits before having surgery (to remove the hypertrophic portion) the more likely it is the hypertrophic tissue will begin to obstruct the bladder neck which leads to all sorts of complications as the bladder reacts to try and achieve a higher pressure to pass fluid through the constricted neck. These complications include: permanent loss of detrusor contractile ability, involuntary detrusor contractions, partial denervation of the bladder smooth muscle, bladder irritability and instability, early termination of voiding, intermittency of the urinary stream, higher residual urine volume, loss of bladder compliance, and overall bladder mass increase with less muscle tone and more collagen deposition. See Leslie, Stephen W, MD, FACS, (Founder and Medical Director of the Lorain Kidney Stone Research Center, Clinical Assistant Professor, Department of Urology, Medical College of Ohio) “Transurethral Resection of the Prostate” especially under heading “Pathophysiology” as published on eMedicine from WebMD (updated Oct. 3, 2006) accessible at http://emedicine.medscape.com/article/449781, accessed on Mar. 10, 2009. As the body reacts to the obstruction the internal and external sphincters can also be damaged and worn down. The loss of involuntary muscle response that accompanies damage to the internal sphincter generally cannot be reacquired through training (whereas training is sometimes effective to reverse damage to voluntary muscles). Thus, damage to the internal sphincter from waiting too long for surgery and/or from other less selective procedures can cause irreversible reverse ejaculation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to left ventricular intracardiac pacing leads.
The invention is in the general context of “active implantable medical devices” as defined by Directive 90/385/EEC of 20 Jun. 1990 the Council of the European Communities, including implants to continuously monitor heart rhythm and deliver as necessary the electrical stimulation, resynchronization or defibrillation pulses to the heart.
Intracardiac “stimulation” leads will mainly be referenced herein, that is to say, leads for the delivery of low-energy pulses used for bradycardia or resynchronization therapies. But the invention also applies to cardioversion/defibrillation intracardiac leads intended to deliver an electric shock of high energy to the heart to try to terminate a tachyarrhythmia. Unless otherwise indicated, the generic terms “stimulation lead (or electrode)” or “pacing/defibrillation lead” may designate any kind of lead used for these purposes, regardless of the type and level of electrical energy delivered.
For right ventricular stimulation, implanting an endocardial lead by the right peripheral venous network is sufficient. However, for left ventricular stimulation, the situation is more complex.
A wide variety of solutions have been proposed for this purpose: lead inserted into the coronary network via the right atrium and the ostium of the coronary sinus, catheter inserted in the right ventricle and positioned against the wall of the interventricular septum, or piercing of the septum then introduction of a lead through the septum until the latter comes into contact with an inner wall of the left ventricle.
Another technique, more difficult to implement and being much more invasive, is to implant epicardial electrodes on the outer myocardium wall, in one or more suitable sites arranged facing the cavity of the left ventricle. The implantation of such a lead is however a very heavy operation, usually requiring general anesthesia and the use of highly invasive surgical techniques. For this reason, this solution is often considered a last resort in case of failure of implantation via the coronary sinus. In addition, the electrical performance is often poor, and it is very difficult to change the implantation site initially chosen and, if necessary, to explant the lead later.
U.S. 2008/0294229 A1 discloses a pacing lead in particular for the left ventricular stimulation by implantation in the thickness of the septal wall, or in the thickness of the left ventricular free wall, below the surface and along this region of this wall between the apex and the atrial region.
U.S. 2005/0080470 A1 describes a specific transthoracic implantation technique of a detection/stimulation lead. However, this technique is particularly invasive, because of the high caliber of the instruments used to cross the chest. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various objects, including mineral resources such as iron ore and limestone, are conveyed by a conveyor belt. When the objects are conveyed by the conveyor belt, the objects to be conveyed are fed onto an upper rubber cover of the conveyor belt from a hopper or another conveyor belt. The fed objects to be conveyed are carried on the upper rubber cover and conveyed in a traveling direction of the conveyor belt. When the objects to be conveyed are fed onto the upper rubber cover of the conveyor belt, the upper rubber cover is subject to impact, and when the surfaces of the objects to be conveyed are sharp, the upper rubber cover sometimes sustains cut damage. When the objects to be conveyed are loaded on the upper rubber cover and conveyed, the upper rubber cover is subject to wear as a result of the objects to be conveyed sliding on the upper rubber cover. Thus, in known art, various proposals have been made (see Japanese Unexamined Patent Application Publication No. 2001-88922A, for example) in order to improve wear resistance of the upper rubber cover.
The amount of wear, and the like occurring in the upper rubber cover significantly change depending on environment in which the conveyor belt is used (including the types of the objects to be conveyed). To estimate wear resistance of the upper cover rubber with high accuracy, evaluation is most preferably performed under conditions similar to the actual use environment. Accordingly, there is a demand for a testing device that performs evaluation to have condition settings that conform to the various environments in which the conveyor belt is used.
Examples of known testers that perform evaluation of wear resistance for rubber include a DIN (Deutschen Institut für Normung (German Institute for
Standardization)) wear tester and a Williams wear tester. However, these wear testers have the object of obtaining wear resistance under certain preset conditions. Thus, they cannot be set for conditions that conform to various environments in which the conveyor belt is used and are inadequate in estimating with high accuracy wear resistance of the upper cover rubber of the conveyor belt should the conveyor belt actually be used. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. In a common embodiment, data to be exchanged is divided into a series of packets that can be transmitted between a sending computing device and a recipient computing device. In general, each packet can be considered to include two primary components, namely, control information and payload data. The control information corresponds to information utilized by one or more communication networks to deliver the payload data. For example, control information can include source and destination network addresses, error detection codes, and packet sequencing identification, and the like. Typically, control information is found in packet headers and trailers included within the packet and adjacent to the payload data.
In practice, in a packet-switched communication network, packets are transmitted between multiple physical networks, or sub-networks. Generally, the physical networks include a number of hardware devices that receive packets from a source network component and forward the packet to a recipient network component. The packet routing hardware devices are typically referred to as routers. Generally described, routers can operate with two primary functions or planes. The first function corresponds to a control plane, in which the router learns the set of outgoing interfaces that are most appropriate for forwarding received packets to specific destinations. The second function is a forwarding plane, in which the router sends the received packet to an outbound interface.
To execute the control plane functionality, routers can maintain a forwarding information base (“FIB”) that identifies, among other packet attribute information, destination information for at least a subset of possible network addresses, such as Internet Protocol (“IP”) addresses. In a typical embodiment, the FIB corresponds to a table of values specifying network forwarding information for the router. In one aspect, commercial level routing hardware components can include customized chipsets, memory components and software that allows a single router to support millions of entries in the FIB. However, such commercial level routing hardware components are typically very expensive and often require extensive customization. In another aspect, commodity-based routing hardware components are made of more generic components and can be less expensive than commercial level routing hardware components by a significant order of magnitude. However, such commodity-based routing hardware components typically only support FIBs on the order of thousands of entries. | {
"pile_set_name": "USPTO Backgrounds"
} |
Braking assistance systems fitted in vehicles support the driver of the vehicle on hazard or emergency braking. The principle is based on analysis of accident events. In this analysis it was found that the possible brake force amplification was actually only rarely used, since the foot brake was activated either too weakly or too late. The result is a disadvantageous elongation of the braking distance, which may for example lead to collision accidents.
Conventional brake force boosters operate with an evacuated volume. The difference between the vacuum (negative pressure) and the atmospheric pressure is used to generate an auxiliary force. This serves to increase the activation force applied by the driver, so that the actual braking force is composed of the activation force and the auxiliary force. In contrast, electromechanical braking systems work without vacuum. Here the braking pressure is produced exclusively by one or more electric motors. Hence there is no mechanical connection between the brake pedal and the wheel brake(s). The resistance felt for example at the brake pedal is produced independently in the form of feedback.
The combination of electronic and usually hydraulic components entails certain inertia in the response behavior of such electromechanical braking systems. In other words, these require a reaction time between the deceleration request and the actual occurrence of the initiated braking process. To counter this disadvantage, in a parallel German application, number 10 2014 211 377.6, the applicant has proposed a method for operating an electromechanical braking system for a vehicle. This significantly improves the performance of the braking system as a whole, both for a deceleration request initiated by the person operating the vehicle and for an automatic vehicle control system. The entire content of German application number 10 2014 211 377.6 is incorporated herein by reference.
The solution proposed provides that, in advance of a possible braking process, on the basis of a trigger factor, a temporary pre-pressure is created in at least one part of the vehicle braking system. In this way, when the expected braking process actually occurs, a pre-pressure created semi-preventatively is already present to an adequate level. During the actual braking process, the pre-pressure may be passed on, either in full or in part, to at least one wheel brake of the vehicle braking system. The pre-pressure may evidently also be supplemented by an additional pressure depending on the intensity of the braking process. As a result, the reaction time of the braking system is significantly reduced.
Despite the resulting advantages, electromechanical braking systems still offer room for improvement. Thus in connection with the creation of pre-pressure, the question arises of how this can be adapted ideally to the individual deceleration request. | {
"pile_set_name": "USPTO Backgrounds"
} |
Community awareness management companies (CAMCs) provide community awareness programs (CAPs) (also referred to as public awareness programs) for businesses and other entities, such as the pipeline industry. A CAMC manages various facets of CAPs, including, for example, direct mail campaigns designed to educate various audiences about the business or other entity, the environment, and other information. In an example of a pipeline company, the CAMC educates various audiences about the pipeline company and pipeline operations. The CAMC may include other or different information for other entities or other pipeline programs.
Audiences for a particular CAP may include residents, businesses, emergency management persons or groups, excavators, or other audiences. The CAMC generally identifies stakeholder audiences for a particular CAP and other contacts to which information will be sent. A stakeholder audience includes those audience members that have a stake in education or other awareness programs, such as residents and business that may be interested in a company's business, its operations, or other issues.
When managing a CAP for a pipeline company, for example, CAMCs may analyze pipeline data, identify the stakeholder audience for the pipeline CAP, establish mailing lists designed for the specific stakeholder audiences and/or specific companies or other contacts, and design, print, and execute mailings. One or more of the foregoing may be included in a package referred to as an audit package. Upon program completion, the CAMC may provide the client with, for example, an audit package having a map of a pipeline area in which areas of mailings are designated, paper and compact disk (CD) copies of the mailing lists, and a form documenting acceptance and delivery by the Post Office of a mailing and the number of pieces in the mailing. In other CAPs, other items may be included in an audit package. Since these audit packages generally are paper, they require a significant amount of storage.
The CAMC works with client companies to understand their centerline data. Centerline data generally identifies the centerline or physical location of a structural item of relevance to the CAP for a geographic area. In the pipeline CAP example, the centerline data is used to show the centerline of pipeline locations in one or more geographic areas.
Using the centerline data for one example, the CAMC generates a paper map and a paper report to identify data managed by the CAP, such as applicable pipelines or other data. The paper report may identify, for example, a table of audience members within a geographic location for the CAP.
The CAMC defines a buffer area, which generally is a number of feet or miles from the centerline data. Audiences within the buffer area are identified, and the buffer area and the audiences in the buffer area typically are identified in the audit package. In the pipeline CAP example, the buffer area is defined for a distance from the pipeline centerline data, and a pipeline analysis with the identifications of audiences within the buffer area is generated for an audit package.
The CAMC may generate one or more audit packages for a client in a program year. A program year is 365 days (not including a leap year) during which a CAP operates.
A dataset is a collection of data that relates to a topic or thing. Generally, the dataset has data attributes that describe the collection of data. The data attributes are related to each other and related to the topic or thing of the dataset. For example, a business dataset for a pipeline may contain a set of attributes for the land on which the pipeline is located or for pipeline statistics.
A company and/or a CAMC may have different datasets of information related to the CAP. However, the datasets are difficult to manage.
It would be helpful to have geographic information, such as maps, for the CAP. Geographic information system (GIS) products provide geographic information, such as maps or other geographic data, based on some input. With most GIS products, if you want to relate data from multiple disparate datasets to geographic data you must permanently merge the data from the disparate datasets with the geographic data. However, this generally requires that the data be replicated. In some cases, the data may require conversion prior to replication. Other GIS products provide the ability to join or associate one or more datasets with geographic data, but only as long as the datasets are in the same database in which the geographic data is housed.
Improved systems and methods are needed to geographically identify aspects of a CAP and to enable entry and management of audience data, including entering and identifying audience members geographically, throughout a program year. Thus, new systems and methods are needed to enable linking different datasets in a community awareness management system with spatial data without replicating the datasets and to enable a user to access the datasets spatially. | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject matter disclosed herein relates to gasification systems and, more particularly, to systems for cooling syngas.
Gasifiers convert carbonaceous materials into a mixture of carbon monoxide and hydrogen, referred to as synthesis gas or syngas. For example, an integrated gasification combined cycle (IGCC) power plant includes one or more gasifiers that react a feedstock at a high temperature with oxygen and/or steam to produce syngas. The syngas may be used for power generation, chemical production, or any other suitable application. Prior to use, the syngas may be cooled in a syngas cooler and treated in a gas treatment system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed generally to the monitoring arts and more particularly to a monitor for complex machinery such as agricultural machinery. While the invention is useful for monitoring the operation of any of a broad variety of machines, the disclosure will be facilitated by specific reference to a field seed planter or grain drill.
A framer engaged in the mechanized planting of seeds or grain generally utilizes a seed planting machine pulled behind a tractor or the like. Modern seed planting machines generally include a plurality of individual planting units which receive seed or grain from one or more hoppers and distribute the seed to individual rows for planting, so that a plurality of rows may be planted in a single pass over the field. In the planting of such crops as corn or soybeans, the planting machine may include as few as four to as many as twenty-four individual planting units, while machinery for planting grain crops such as wheat may include as many as forty or more individual planting units.
Many arrangements have been heretofore proposed for monitoring the operation of a plurality of such individual planting units in the planting machine and providing a suitable display or other observable indication thereof to a console conveniently mounted to be observed in the tractor cab. The systems heretofore provided, however, have generally required a separate signal lead or wire from a sensor unit associated with each planting unit back to the cab-mounted console.
While such an arrangement has proven quite useful for the planting of corn or soybean seeds in planting machines containing up to 24 planting units, the additional wiring requirements for typical grain drill machines containing 40 or more planting units has presented some difficulty. For example, the proper cabling and interconnection of 40 or more such separate signal leads would prove quite cumbersome and difficult in field assembly of such a monitoring system for all but the highly skilled technician. However, provision of a pre-assembled package of cables and connectors for accommodating such a large number of leads may be economically unfeasable due to the expense it would add to the purchase price of such a preassembled monitoring system. Moreover, since various makes and models of planting machinery and tractors would require different lengths of cables and different configurations of leads, cables and connectors, it would be difficult if not impossible to provide a suitable preassembled cable and connector package for any conceivable arrangement or combination of equipment upon which the monitoring system is to be installed.
Additionally, such a complex cabling and connector arrangement might lead not only to error in the proper assembly of the monitoring equipment in the first instance but also to an increased frequency of equipment failure or malfunction in the field. Moreover, a farmer faced with such equipment failure might well find it difficult or impossible to locate and remedy the source of the equipment malfunction, without the aid of a skilled technician. Since the purpose of such large-scale, multiple row planting equipment is to maximize the acreage which may be planted during the optimum time in the planting season, such an increased frequency of equipment malfunction and the relatively time-consuming repair procedure is clearly undesirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some of the information set forth herein has been published. See Pyle, A. M. and Barton, J. K., Mixed Ligand Complexes and Uses Thereof as Binding Agents to DNA, Inorganic Chemistry, 1987, 26:3820-3823, which was distributed by the publisher on November 6, 1987.
Throughout this application various publications are referenced by arabic numerals within parentheses. Full citations for these publications may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
There has been considerable interest in elucidating those factors which determine affinity and selectivity in binding of small molecules to DNA. (22-28) A quantitative understanding of such factors which determine recognition of DNA sites would be valuable in the rational design of sequence-specific DNA binding molecules for application in chemotherapy and in the development of tools for biotechnology. Much work has focused on the elucidation of non-covalent interactions with DNA by small natural products and their synthetic derivatives. (23-28) These small molecules are stabilized in binding to DNA through a series of weak interactions, such as the .pi.-stacking interactions assocatied with intercalation of aromatic heterocyclic groups between the base pairs, and hydrogen bonding and Van der Waals interactions of functionalities bound along the groove of the DNA helix. It would be valuable to understand quantitively the contributions from these different modes to stabilization of the bound complex at a DNA site.
Previous work has focused on the examination of non-covalent interactions with DNA of transition metal complexes of phenanthroline. (22, 29-32) The cationic complexes has been found both to intercalate into DNA and to bind non-covalently in a surface-bound or groove-bound fashion. These interactions with DNA have been characterized largely through spectroscopic and photophysical studies, and determinations of enantiomeric selectivities associated with binding by the metal complexes have been helpful also in establishing models. (29, 30) On the basis of these investigations, intercalation likely occurs preferentially from the major groove of the DNA helix and is favored for the .DELTA. isomer into a right-handed helix. In the case of the surface-bound interaction, it likely occurs along the minor groove of the helix and it is the .LAMBDA. isomer which is favored in surface-binding to right-handed DNA helices. FIG. 5 illustrates models for these binding interactions.
Based upon these binding interactions, derivatives of tris (phenanthroline) complexes have been developed which recognize selectively different conformations of DNA. By matching shapes and symmetries of the metal complexes to those of DNA conformations, probes for A-and Z-DNA have been designed. (31) Most recently, a diphenylphenanthroline complex of rhodium (III) has been found to induce double-stranded cleavage at cruciform sites upon photoactivation. (32) Although these complexes lack hydrogen bonding donors and acceptors and therfore must be associating with the DNA only through a mixture of Van der Waals and intercalative interactions, a high level of specificity is associated with the recognition of different DNA sites by these complexes.
The present invention involves mixed ligand complexes and complexes having three phenanthrenequionediimine ligands. The mixed ligand complexes of ruthenium (II) were explored for their interactions with B-DNA using a variety of biophysical and spectroscopic methods. Mixed ligand complexes of phenanthroline, phenanthrenequinonediimine, and derivatives thereof have been found to be useful for the construction and characterization of DNA-binding molecules. The ruthenium (II) complexes are particularly useful owing to their intense optical absorption and emission, their relative ease of preparation, and their inertness to substitution and racemization. (33-35) | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present application relates to a transmitter optical module, in particular, a transmitter optical module having a plurality of optical signal sources.
2. Background Arts
An optical transmitter module that installs four laser diodes (herein after denoted as LDs) each emitting an optical beam with a specific wavelength different from others has been known in the field. In order to driver LDs installed within such a transmitter module, active devices, typically in integrated circuit (IC) implementing driver circuits to driver respective LDs, and passive devices of capacitors and inductors are inevitably installed within a housing of the transmitter module. In particular, when the operational speed of the LDs exceeds 10 Gbps, or reaches 25 Gbps, the assembly of such active and passive devices becomes a key factor for the transmitter module to show the designed performance. Moreover, recent trend for active optical components such an optical transceiver has continuously requested subjects inconsistent to each other, that is, the housing in the dimensions thereof is as small as possible, while, the performance or the operational speed thereof is as fast as possible.
In order to realize the operational speed exceeding 10 Gbps, the bonding wires connecting electrical components in the transmitter module should be short as possible. In other words, the electrical components are necessary to be positioned such that the bonding wires become shortest. A longer bonding wire causes an increase of the transmission impedance and degrades the high frequency performance of the transmitter module. The present application is to provide an arrangement of the components in the housing, by which the bonding wires effectively become shortest. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the separation of materials of varying densities, it is well known to impart centripetal force to the material so that the resulting acceleration causes a density related distribution of material. For example, cyclonic collectors have been employed for many years for the removal of solid particles from gaseous streams. A cyclonic collector is a stationary device with no moving parts which converts the entering gas stream to a vortex. Centripetal force acts on the particles in the gas stream causing them to migrate to the outside wall where they are collected by inertial impingement. Since the force developed can be many times that of the force due to gravity, very small particles can be separated out of the gas stream. U.S. Pat. No. 325,521 discloses a very early cyclone design for the separation of dust from air. Cyclonic collectors are frequently used in the control of air pollution. Various conventional cyclonic collector designs are described in Kirk-Othmer, ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Third Edition, John Wiley & Sons, 1978, Vol. 1, pages 667-673, incorporated by reference for the disclosure of such details.
As can be appreciated, cyclones and modified cyclonic collectors can be used to remove entrained liquids from a gas stream. Even the crudest device can capture liquid droplets larger than 100 micrometers if care is taken to prevent liquid reentrainment. Wet cyclones are described in some detail by Stern, Caplan and Bush in CYCLONE DUST COLLECTORS, American Petroleum Institute, New York, N.Y., 1955. Gas-liquid cyclones are also discussed in Rousseau, HANDBOOK OF SEPARATION PROCESS TECHNOLOGY, John Wiley & Sons, 1987, pages 132-137, incorporated herein by reference.
Fluid cyclones and hydrocyclones have found acceptance within the paper-making and metallurgical industries and elsewhere. The most common type of hydrocyclone utilizes a straight conical design wherein fluid enters through a tangential inlet into a short cylindrical section. A vortex is created in the cylindrical section and in a conical section located directly below as the fluid spirals in a path moving downward and inward, then upward in a helical path to an exit pipe co-axial with the cylindrical section. As with the dry cyclone, the centripetal acceleration imparted by the rapid rotation of the fluid causes dense particles to be forced outward to the outer wall surfaces of the cylindrical and conical sections. The dense particles are transported in the slower moving boundary layer downward towards the apex of the conical section where an exit orifice is therein provided. The high centripetal force near the center creates a liquid-free zone referred to by those skilled in the art as a vortex cone. In the conical cyclone, this core is filled with air and a back pressure at the exit of the hydrocyclone is required to prevent air from being sucked in.
Related patents include U.S. Pat. No. 3,862,714, which discloses an apparatus for the vortical separation of fluid material. The apparatus includes an annular zone between two rotating cylindrical surfaces wherein the fluid material is introduced into this zone to form a forced vortex having an axial component of motion of predetermined profile. Centripetal acceleration causes a distribution of the fluid material with the more dense material located further from the axis.
U.S. Pat. No. 4,251,368 discloses a cyclone separator having a generally cylindrical first portion with a plurality of substantially equally spaced directed feeds. Adjacent to and coaxial with the first portion is a generally cylindrical second portion open at its far end. The first portion has an axial overflow outlet opposite the second portion. Optionally, a flow-smoothing taper is provided between the inlet portion and the separating portion. The apparatus disclosed finds utility in the removal of oil from water in oil-rig drilling and aboard ships involved in the sea transport of oil.
U.S. Pat. No. 4,389,307 is directed to a form of fluid cyclone in which the velocity energy of the exit fluid is converted into exit pressure permitting the device disclosed to discharge at atmospheric pressure or higher while a vacuum exists in the central core of the vortex.
U.S. Pat. No. 4,844,817 discloses a system for the separation of oil from oily water where the oily water is available at relatively low pressure insufficient to drive a hydrocyclone separator. A particular combination of pumps and hydrocyclones is disclosed which is said to be effective under low pressure situations.
Despite these advances in the art, there exists a need for an improved material extraction nozzle capable of effectively separating materials of different densities, particularly gas-liquid mixtures. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a liquid biocidal composition containing (a) formaldehyde adduct compounds and (b) an isothiazolone, which is intended to provide synergistic biocidal. activity against bacteria and fungi. More particularly, the present invention relates to the use of a biocide composition which includes formaldehyde adduct compounds and 1,2- benzisothiazolin-3-one.
2. Description of the Prior Art
Synergistic biological activity exists when the combination of lesser quantities of two biocidal agents results in an equal or greater inhibitory effect than is achieved by the use of either agent acting alone. The synergistic interaction of two or more antimicrobial agents produces an effect that is more than additive in its resultant biological activity.
Formaldehyde adduct compounds are known biocides; their proposed biological target is the cell wall of susceptible microorganisms (S. P. Denyer, 1990. Mechanisms of action of biocides. International Biodeterioration, 26:89). Examples of such adduct compounds includeN-methyl-2-hydroxymethyleneoxypropyl-2xe2x80x2-hydroxypropylamineanditsformaldehyde oligomers (manufactured by Creanova Inc., Somerset, N. J. under the trademark NUOSEPT(copyright) 145, hereinafter xe2x80x9cNMPFAxe2x80x9d); oxazolidines such as (4,4-dimethyloxazolidine, manufactured by Creanova Inc. under the trademark NUOSEPT(copyright) 101, hereinafter xe2x80x9cDMOxe2x80x9d), mixtures of bicyclic oxazolidines (such as (5-hydroxymethoxymethyl-1-aza-3,7-dioxabicyclo(3.3.0) octane,5-hydroxymethyl-1-aza-3,7-dioxabicyclo(3.3.0)octane,5-hydroxypoly[methyleneoxy-methyl-1-aza-3,7-dioxabicyclo (3.3.0) octane; manufactured by Creanova Inc. under the trademark NUOSEPT(copyright) 95, hereinafter xe2x80x9cMBOxe2x80x9d; and 2-[(hydroxymethyl) amino]ethanol, (manufactured by Creanova Inc. under the trade mark NUOSEPT(copyright) 91, hereinafter xe2x80x9cHMAExe2x80x9d).
The compound 1,2-benzisothiazolin-3-one (hereinafter xe2x80x9cBITxe2x80x9d), an isothiazolone, is an antimicrobial agent. Isothiazolones are disclosed in U.S. Pat. Nos. 3,761,488; 4,105,431; 4,252,694; 4,265,899; 4,279,762; 4,871,754, and 5,620,997. Studies on the microbiological target of BIT suggest that the compound acts on the cytoplasmic membrane thiol-enzymes. (See, e.g., Fuller, S. J., Denyer, S. P., Hugo, W. B., Pemberton, D., Woodcock, P. M. and Buckley, A. J., (1985). The mode of action of 1,2-benzisothiazolin-3-one on Staphylococcus aureus, Letters in Applied Microbiology, 1, 13-15.)
Biocidal combinations with synergistic activities for various microorganisms are known. Different formaldehyde donor compounds have been combined with 3-iodo-2-propynyl butyl carbamate (IPBC), a well known fungicide, to broaden the antimicrobial spectrum of activity. (U.S. Pat. No. 5,428,050; U.S. Pat. No. 4,844,891; D. Pendelton et al. (1987), Modern Paint and Coatings August p:30; September, p:148.) Also, biocidal combinations containing an isothiazolone and other compounds have been disclosed. Some synergistic combinations include isothiazolones and metal complex with functional ligands (U.S. Pat. No. 4,608,183); isothiazolones and hydroxymethylamino acetic acids (U.S. Pat. No. 4,980,176); isothiazolones and substituted anilides (U.S. Pat. No. 5,212,193); and, isothiazolones and triazines (U.S. Pat. No. 5,294,614).
It is an object of the present invention to provide a synergistic biocidal combination, which is more efficacious than known microbicidal compositions.
Another object of the present invention is the provision of a synergistic combination of biocides which is water-soluble and can be uniformly distributed.
Still another object of this invention is the provision of a water-soluble preservative mixture for use in architectural coating applications (i.e. paints, stains) and other coating related materials (adhesives, sealants, joint compounds, latex emulsions, etc), which is effective against a wide range of fungi and bacteria.
It has been found that the composition of the present invention comprising a mixture of a formaldehyde adduct compound and an isothiazolone exhibits synergistic antimicrobial activity against a wide range of microorganisms; the biological activity of the two compounds acting together being greater than the sum of both compounds acting separately. Synergistic antimicrobial activity may be the result of each biocide having a different mechanism of action on the target microorganisms. The advantages of using a synergistic combination include:
a.) a broadened antimicrobial spectrum of activity;
b.) an increase in effectiveness;
c.) a reduction of the use levels; and
d.) a decrease in the toxicity of a given agent to the host and the environment.
The present invention, which combines formaldehyde adduct compounds and 1,2-benziosthiazolin-3-one (BIT), provides a composition having synergistic activity against a wide range of bacteria and fungi.
The present invention is directed to a mixture of two biocides designed to control unwanted bacterial and fungal growth in water-based applications, including but not limited to, paints, e.g., acrylics, polyvinyl acetates, styrene-butadienes, etc., coatings, adhesives, sealants, latex emulsions and joint compounds. The liquid biocidal composition of the present invention comprise a mixture of formaldehyde adducts, including NMPFA, DMO, MBO or HMAE, and BIT. The weight ratio of the formaldehyde adduct compound to BIT in the composition of the present invention ranges from about 100:1 to 1:100, more preferably from about 30:1 to 1:30, and most preferably from about 6:1 to 1:6. The BIT can be in the form of an acid or base.
The synergistic antimicrobial activity of the present invention is demonstrated by testing over a range of concentrations and ratios of NMPFA and BIT. The synergistic antimicrobial activity of the present invention is also demonstrated by testing the formaldehyde adduct compounds DMO, MBO or HMAE, and BIT. The examples presented below serve to illustrate the invention and to demonstrate the synergistic results obtained when the two compounds are used in combination, as compared with their effectiveness when used individually. | {
"pile_set_name": "USPTO Backgrounds"
} |
Thin and ultra-thin semiconductor substrates, such as semiconductor wafers or foils with a thicknesses in the range of a fraction of micron up to 100 microns, are highly advantageous in many applications including but not limited to high-performance semiconductor microelectronics, system-on-a-chip (SOC), silicon-on-insulator (SOI), MEMS, power electronics, flexible ICs, solar photovoltaics, and optoelectronics.
Further, crystalline (both mono-crystalline and multi-crystalline) silicon (c-Si) wafers are widely used in producing silicon based photovoltaic solar cells, mainly due to higher efficiencies and synergies with the well-established silicon microelectronics industry infrastructure and supply chain. The trend in the mainstream c-Si wafer solar cell industry has been to scale down wafer thicknesses to below 200 microns in order to reduce the amount of silicon material in grams used per watt of solar cell rated peak power—thus reducing the overall manufacturing cost of the solar photovoltaic power modules. For example, the leading edge monocrystalline silicon wafer solar cells are projected to scale down to a wafer thickness of about 120 microns by 2012, from a current wafer thickness of 140 to 200 microns. Technologies are also being developed that use less than 100 microns (μm) c-Si foil (such as foils in the thickness range of a few microns to below 50 microns) to make cost-reduced high efficiency solar cells. In addition, thin semiconductor substrates or foils may be a requirement to make partially see-through c-Si solar cells for building integrated photovoltaic (BIPV) products.
However, thin c-Si solar cells are usually much larger than other stand-alone thin semiconductor or MEMS devices (chips): over 200 to 500 cm2 for solar cells vs. less than 1 to several cm2 for semiconductor microelectronic and MEMS chips. Typical silicon solar cell sizes are 210 mm×210 mm, 156 mm×156 mm, and 125 mm×125 mm squares (or pseudo squares).
Semiconductor wafers, such as monocrystalline silicon wafers are quite brittle and break easily from stresses, micro-cracks, and edge damage when their thickness is reduced—particularly to much less than 150 microns. In addition, because of the reduced mechanical rigidity of a thin wafer it becomes more flexible and behaves more like a flexible piece of thin foil. As a result, it is rather difficult and problematic (in terms of mechanical yield) to handle and process these thin wafers in normal automated semiconductor microelectronic or photovoltaic process equipment and fabs that are designed to process and handle wafers with regular thicknesses (e.g., ˜150 microns to ˜1000 microns).
In order to use existing commercially-available wafer processing equipment and fab automation solutions for thin wafer handling and processing, mobile chucks or carriers have been developed to support and hold thin wafers and substrates in place during handling and processing. Using these carriers, the bonding of the thin wafer and the carrier may be made either temporary or permanent. Many current thin wafer bonding techniques are too expensive and cumbersome (e.g., bonding and de-bonding steps take too long and use expensive materials and/or processes) to be used for mass production of low-cost solar cells.
Current mobile electrostatic carriers (MESC) have been developed to utilizing electrostatic force between two electrodes to hold the thin wafers. Generally, there are two types of MESCs: a unipolar (monopolar) type and a bipolar type. FIGS. 1A (prior art) and 1B (prior art) are cross-sectional schematic drawings of current designs of a unipolar MESC and a bipolar MESC, respectively. Unipolar MESCs consists of an electrode layer embedded in a dielectric material, shown the electrode extends along the entire lateral plane of the MESC. In this configuration the thin wafer to be clamped forms the second electrode of the capacitor, which means the thin wafer surface has to be electrically contacted for charging/clamping and discharging/declamping. As shown in FIG. 1A, unipolar MESC 10 comprises metal (or electrically conductive material) base-plate 12 under thin dielectric layer 14. The metal (or electrically conductive material) base-plate is maintained at a high-voltage relative to thin wafer 16 sitting on top of the thin dielectric layer to create an electrostatic force which clamps the thin wafer to it. In other words, the thin wafer serves as one of the two capacitor electrodes—the other being the base-plate—when a high voltage is applied to activate the chucking and when the MESC is discharged.
Unipolar MESCs are often made from the same material as the thin wafer to minimize or eliminate the coefficient of thermal expansion (CTE) mismatch during thermal process. The advantage of such a unipolar MESC is its simplicity, however when a dielectric layer or a thick non-conductive reinforcement layer is applied onto the thin wafer front surface, it is difficult to discharge the capacitor in order to separate the thin wafer from the MESC since there is no conductive path access to the thin wafer (particularly if the thin wafer goes through a dielectric deposition process such as deposition of a PECVD silicon nitride passivation/ARC layer in a silicon solar cell).
Current bipolar MESCs consist of two electrodes embedded and laterally insulated in a dielectric material. In contrast to a unipolar MESC, the thin wafer does not need to be electrically contacted for charging and discharging because the capacitor is formed between the two electrodes or multiple pairs of electrodes. Such a bipolar MESC is usually made from metal electrodes and polymer dielectric layers; therefore it is limited in terms of thin wafer thermal process and wet chemical process capabilities. As shown in FIG. 1B, bipolar MESC 20 has both of electrodes of opposite polarity (negative electrodes 22 and positive electrodes 28) embedded under dielectric layer 24 and in the MESC itself. This bipolar MESC design relies upon the electric field generated between the two electrodes to hold thin wafer 26 in place. When using a bipolar MESC, during the chucking and dechucking, the thin wafer does not need to be electrically contacted.
Current bipolar mobile electrostatic carriers are often made from metallic electrodes and polymer dielectric layers, because of which the overall performance of the MESCs is limited with some of the following concerns: (1) The existence of metal and polymer limits the thin wafer processing temperature to be typically less than 300° C., which means that current MESCs cannot be reliably used for wafer processing much above 300° C.; (2) The thin wafer and processing equipment may be contaminated by the MESC structural materials, especially when processed at elevated temperatures; (3) The thermal (TCE) mismatch between the MESC structural materials (metal & polymer) and the thin semiconductor wafer may cause warpage or even breakage of the thin wafer (and/or formation of microcracks); (4) The MESC structural materials (metal & polymer) may not be chemically compatible with commonly used dry and wet chemical etching and deposition processes; (5) The overall mobile electrostatic carrier lifetime may be affected by the dielectric qualities of the polymer dielectric materials, especially in wet environments; and (6) De-clamping of thin wafer from the MESC may be difficult and take a long time (particularly after high-temperature processing) due to the charging of the MESC capacitor dielectric. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to organic thin film transistors, and in particular, to an organic thin film transistor including a gate electrode, a gate insulating film, an organic active layer and a source/drain electrode, or a gate electrode, a gate insulating film, a source/drain electrode and an organic active layer, sequentially formed on a substrate, wherein the gate insulating film is a multi-layered insulator comprising a first layer of a high dielectric constant (k) material and a second layer of an insulating organic polymer compatible with the organic active layer, the second layer being positioned directly under the organic active layer.
2. Description of the Related Art
In recent years, most of thin film transistors (TFT) used for display application consisted of amorphous silicon as the semiconductor, silicon oxide, or silicon nitride as the insulator, and metal electrodes. However, with the recent development of various conductive organic materials, research into developing an organic thin film transistor (OTFT) using an organic material as the semiconductor has been made actively. Since its first development in the 1980s, the OTFT has widened its application into functional electronic devices and optical devices. For example, in the field of liquid crystal displays (LCD), which includes the TFT as switching elements controlling the electric fields, there are many attempts to adopt the OTFT due to its flexibility and easy preparing process. As novel electronic material, the organic semiconductor in the OTFT is superior to its inorganic counterpart (i.e. amorphous silicon) because it has many synthetic routes and can be formed in any shape from fiber to film. Further it shows high flexibility and can be manufactured at a low cost. Therefore, the OTFT using the organic semiconductor such as conducting polymers as an active layer is considered to be advantageous in that the overall manufacture can be achieved by a roll to roll process using a plastic substrate because its active layer can be formed by a printing-process under atmospheric pressure, instead of chemical vapor deposition (CVD) using plasma and requiring high pressure and high temperature, so low-priced TFT could be realized.
But, compared with the amorphous Si TFT, the OTFT exhibits disadvantageously lower charge mobility and higher driving and threshold voltages. In this regard, N. Jackson et al. made an improvement and raised possibility for the OTFT's practical use by achieving a charge mobility of 0.6 cm2·V−1·sec−1 with pentacene active layer (54th Annual device Research Conference Digest 1996). However, the charge mobility achieved by N. Jackson still falls short of the required value, and as well, the OTFT in the prior art requires a driving voltage higher than 100 V and a sub-threshold voltage at least 50 times as high as that of amorphous silicon-TFT. Meanwhile, in U.S. Pat. No. 5,981,970 and Science (Vol. 283, pp822–824), there is disclosed a method of lowering the driving voltage and the threshold voltage in the OTFT by use of a high dielectric constant (i.e. high k) gate insulator, in which the gate insulator is made of an inorganic metal oxide such as BaxSr1-xTiO3 (BST; Barium Strontium Titanate), Ta2O5, Y2O3, and TiO2, or a ferroelectric insulator such as PbZrxTi1-xO3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(Ta1-xNbx)2O9, Ba(Zr1-xTix)O3 (BZT), BaTiO3, SrTiO3, and Bi4Ti3O12. In the OTFT prepared by said method, the gate insulator was prepared by chemical vapor deposition, physical vapor deposition, sputtering, or sol-gel coating techniques and its dielectric constant, k, was 15 or higher. By using this high k insulator, the driving voltage can be decreased to −5V, but the charge mobility still remains unsatisfactory, lower than 0.6 cm2·V−1·sec−1. Further, since the process requires high temperatures of 200–400° C., there is a limit in selecting the type of the substrate and as well, it becomes impossible to adopt a common wet process such as simple coating or printing. U.S. Pat. No. 6,232,157 discloses a method of using polyimide, benzocyclobutene or polyacryl as the organic insulating film, but, the OTFT prepared by the method cannot exhibit device characteristics equal to those of the TFT of inorganic insulator.
In order to improve the performance of thin film electronic devices in the prior art, there were many attempts to adopt a multi-layered gate insulator having two or more layers. For example, U.S. Pat. Nos. 6,563,174 and U.S. Pat. No. 6,558,987 disclose a multi-layered gate insulating film made of amorphous silicon nitride and silicon oxide and a double insulating film made of the same material, respectively, and both of the patents reported that there was a substantial improvement in electrical property of the insulator and crystalline quality of the semiconductor layer. However, these patents are inherently related to the inorganic TFT using the inorganic material, such as amorphous or monocrystalline silicon, and thus cannot be applied in the preparation of the organic semiconductor device.
Recently, many attempts have been made to use the OTFT for various drive devices. However, to realize the practical use of OTFT in LCD or flexible displays using organic EL, not only should a charge mobility increase to the level of 5 cm2·V−1·sec−1 or higher, but also improvement in the driving and threshold voltages of the device should be achieved. In particular, for simplifying the preparation and reducing the cost, it can be desirable for the whole process of preparing the OTFT to be carried out by an all-printing or all-spin method on a plastic substrate. Under the circumstances, there have been many research efforts for developing a method to simplify the preparation of the organic gate insulating film and to increase the charge mobility in the interface between the insulator and the organic active layer. However, satisfactory results have yet to be obtained.
Thus, in this art, it is urgently demanded to develop an organic TFT of a new structure that shows high charge mobility, superior insulating properties, and low driving and threshold voltages, and that can be prepared with ease, for example, by a common wet process. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the present invention generally relate to fabrication of semiconductor substrates, and more particularly, to plasma chambers having a confinement ring configured to confine plasma inside the chambers.
2. Description of the Related Art
Generally, a plasma reactor is used to process semiconductor substrates to produce microelectronic circuits. The reactor forms a plasma within a chamber containing the substrate to be processed. One of the processes that is used is a dry etch process, which typically operates within a vacuum vessel to allow the use of RF plasma conditions, to contain the reactive gases necessary for this process, and to prevent atmospheric contamination of the sample during processing. Chambers in such reactors are typically fabricated from aluminum or stainless steel and, as such, represent a potential contamination source. Other possible drawbacks to exposure of the vacuum vessel to plasma conditions include the cost of parts wear-out, defect issues from deposited polymeric species, and variability in the RF current paths. For these reasons, several approaches have been taken by etch system manufacturers to limit the extent of the plasma to a central region within the vacuum vessel and, in this way, segregate the functions of vacuum and plasma containment. This constraint on the extent of the plasma has generally been termed “confinement” of the plasma.
One approach for plasma confinement is to increase the lifetime of electrons to enhance the plasma efficiency by applying magnetic fields in magnetically enhanced reactive ion etch (MERIE) plasma reactors. While this approach allows the confinement of electrons, both ionic species and radical neutrals often interact with chamber walls, thereby causing contamination sputtering and defect issues from polymer build-up.
Therefore, a need exists for an improved apparatus to confine plasma within a processing region inside the plasma chamber. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. The Field of the Invention
This invention relates to fence machining devices, and more particularly, that class of device which can be utilized to provide pointed ends of fence materials, coupled with semi-circular indents, to produce a pointed end in a complex design.
2. Description of the Prior Art
The prior art abounds with apparatusses of various constructions used to cut and shape wood for a variety of commercial and decorative uses.
U.S. Pat. No. 316,752, issued Apr. 28, 1885 to P. G. De Blanc, teaches a circular sawing machine in which a shaft is rotably mounted to a plate. The plate is slidably fixed to guide rails. One end of the shaft has affixed thereto a circular saw blade and the other end of such shaft is adapted to have a spur gear, whose teeth are engaged with a rack affixed to one guiderail, the gear being able to concurrently rotate with the shaft. Thus, when the entire assembly is moved laterally along the guides, the spur gear is caused to rotate, since its teeth are engaged within the stationary rack, thereby imparting to the saw blade an additional impetus to rotate as the central axis of the shaft rotably supporting said blade is translated in the direction parallel to the length of the guide rails. It can be seen that in this disclosure, the amount of rotation of the saw blade is proportional to the linear translation of its axis, one function being dependant upon the other.
U.S. Pat. No. 4,112,987, issued Sept. 12, 1978 to Ben E. Pachnik, teaches a supporting device for a conventional router, which device is equipped with at least one side arm, having therein a number of spaced apart holes extending in a line parallel to the longitudinal axis of a cutter blade, mounted in conventional fashion, in a router secured at right angles to the first mentioned plate. By inserting a pin or other pivot bar, through one of the holes, the structure, including the plate to which the router may be affixed, pivots about a pivot bar, describing thereby a path taking by the active and free end of a router bit mounted in the router, which is semi-circular in shape. By permitting the router to travel towards and away from the plate carrying the pivot bar, a wooden work piece may have one or more of its corners, adjacent the free end thereof, routed so as to describe an arcuate shape in three dimensions.
Neither of the aforementioned prior art teachings include a mechanism which permits a circular notch to be disposed within the side of a wooden work piece, and to have the end of the same work piece curved to describe a partial radial surface which may or may not be contiguous with the adjacent edge of the semi-circular notch. Such pleasant and complex design is well known in the fence art. | {
"pile_set_name": "USPTO Backgrounds"
} |
The lifting of a certain body mass, commonly called load, is typically carried out by mechanized equipment vertically suspending it, by means of hooks associated with flexible linear elements such as cables or chains, subsequently interconnected or attached to mechanical devices, placed at a upper position in relation to the load. These devices are called load lifting winches that retrieve and store cables or chains when hoisting a load.
The lifting winches, when intended to perform hoisting operations on large amplitude vertical paths, often include cylindrical cable drums that are also able to store the wire cables. They are also typically driven through the main axis of the cylindrical cable drum.
It's also possible to observe the existence of cylindrical drum winches with tangential drive to the drum using a spur gear transmission. Here the sprocket is mounted inside or outside the drum perimeter. The drive speed being constant and cylindrical geometry of the drum being also constant along its major axis, it translates into a constant cable winding speed as well. The load on the cable is subjected results from subdividing the total lifting load by introducing rope reeving sheaves both placed near the drum and hook, respectively sheaves top block and bottom block.
A cylindrical drum is featured by maximizing the cable storage along its perimeter. Given the cylindrical geometry of the drum, the winding length per drum rotation is constant along its length. Therefore, to increase the total winding length, it becomes necessary to increase the diameter of the cylindrical drum or, alternatively, increase the total cylindrical drum length or both. The engine torque at the main axis of the drum, required to lift the load increases proportionally to the diameter, increases proportionally as the drum diameter increase. This also means that the approach distance of the hook to the drum axis will have to proportionally increase as well.
The variable rotational speed in cylindrical drum winches is achieved by adding electromechanical variable drive systems or electronic devices such as adjustable AC or DC drives. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a holder suitable for disposing or mounting various lengthy articles or members at desired locations.
2. Description of the Prior Art
Electric cords, electric cables or the harness thereof are usually disposed at inconspicuous locations such as the upper portions of walls, ceilings or the corners thereof and are held so that the important points thereof do not shift.
The operations in such cases are carried out in unfavorable working environments as described above and, therefore, high utility is required of the holders used for these purposes so that the following requirements may be satisfied.
Holders must originally satisfy various requirements including their ability to hold members to be held (such as harness or the like) so that they do not unreasonably shift, a good working space being ensured in any narrow place and permitting ready mounting or dismounting of the members to be held, a holding function which will not cause damage to the members to be held, and the possibility that a single holder can accommodate various sizes of members to be held. In addition, such holders must satisfy universal requirements such as simplicity of structure, ease of manufacture and low cost of manufacture.
Considering the prior art holders from such a viewpoint, the holders using a shrounding ring or screws to directly attach the members to be held to a wall surface cannot provide a good working space in narrow places and often cause damages to be imparted to the members to be held.
On the other hand, resilient metal fittings (holders) having a U-shaped or like cross section adapted to be attached to a wall surface and into which the members to be held are forced so as to be held satisfy the requirements concerning the structure, manufacture and cost. But if the resiliency (spring force) of the holders is intensified, the above-described operation of forcing the members to be held into the holders becomes difficult to carry out and may also damage the members to be held and, conversely, if the resiliency of the holders is weakened, there will occur a problem that the members to be held which have been fitted into the interior of the holders shift. In addition, a single holder of such type cannot accommodate various sizes of members to be held. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a technique for supporting evaluation of a service, and in particular to a technique for supporting quantitative evaluation of the value of a service to be performed before providing the service.
2. Description of the Related Art
Conventionally, the compensation paid for a service or a solution for realizing the service is often calculated by accumulation of costs based on the number of required workers, a contract period and the like. If the outcome is based on a template, the calculation of accumulation of costs may be appropriate. Recently, however, there is a demand for various solutions according to clients, and the outcome is not always based on a template. Therefore, there is an increase in the need to determine compensation corresponding to the value of a delivered solution based on a metric index agreed with a client. As prior-art techniques related thereto, some techniques have been already disclosed from a viewpoint of estimation of value. For example, a method of estimating the value of an information system is disclosed in Patent Document 1 and the like. [Patent document 1]: Published Unexamined Patent Application No. 2001-265908
However, in such conventional estimation approaches, the value of an information system or the like is quantified based on estimation after the implementation in most cases, and it is difficult to apply the approaches to calculation of a compensation rate to be determined in advance.
The present invention has been made in consideration of the above technical problem. Its object is to provide a technique for supporting estimation which avoids over-evaluation or under-evaluation of value, by quantitatively estimating the value delivered by a solution provider in advance and taking into account risk to achievement thereof. Furthermore, a system for compensation according to the outcome of a solution is being introduced, and another object of the present invention is to provide a technique for calculating a compensation rate in advance in consideration of risk. | {
"pile_set_name": "USPTO Backgrounds"
} |
Beverage dispensing systems such as the post-mix soda gun have been popular for at least twenty years and are now utilized in approximately 90% of the bars and cocktail lounges in this country. They consist of a dispenser handset with selection switches coupled with an under bar group of solenoid valves controlling pressurized syrup ingredients and carbonated water. Actuation of a selection switch opens a syrup valve and a carbonated water valve so the ingredients can flow to a mixing chamber in the handset through flexible delivery conduits before being dispensed.
Early liquor systems have utilized the same techniques with timer controlled solenoid valves regulating the flow of pressurized liquor. These systems were not successful sales wise, because the measured quantity was not consistant due to pressure variations, timer variations, and kinks in the delivery conduits. These slight variations are not readily noticeable when the end product such as cola is a mixture of ingredients, but when a one ounce shot of liquor is called for at over $100.00 a gallon, it must be exactly one ounce.
More recent liquor systems have utilized positive displacement pumps for exact measurement but they have suffered from the difficulty of changing the volume of the drink delivered. If the drink recipe called for a half measure or a half measure more there was no simple method of changing the volume delivered for that one drink or for a period of time such as a happy hour.
Previous attempts to control the volume dispensed include: U.S. Pat. No. 3,598,287 showing a knobwheel cooperating with a limit switch which must be adjusted manually. U.S. Pat. No. 3,830,405 shows an adjusting handle with threads to screw inwardly in order to limit the retracting movement of the piston. U.S. Pat. No. 3,785,526 shows a manually adjustable servo switch operated by a rack and pinion gear attached to the piston rod. The intent of the required manual adjustment was to insure the accuracy of each pump not to change the volume to be delivered by one pump for one dispensing cycle. It can also be appreciated that it would be impractical on a system involving 24 pumps to adjust all 24 pumps for the duration of a happy hour.
U.S. Pat. No. 3,830,405 shows a dispenser handset with both liquor and soda mix selection buttons but it is obvious that as the number of selections are increased the more confusing the selection becomes and the more chance there is for operator error. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method of manufacturing deoxycellulose compounds from cellulose in aprotic solvents with LiCl and/or CaC1.sub.2.
The Journal Polymer , Volume 28, December, 1987, pages 2317-2323, describes the derivatization of cellulose in lithium chloride/N,N-dimethylacetamide solutions by McCormick and Callais. Example 16 describes the preparation of chlorodeoxycellulose with a degree of substitution of 2.3. At best, such a highly substituted product can be processed in a mixture with pure cellulose to form threads or membranes since, after substitution, the properties typical of cellulose membranes and threads are largely lost. On the other hand, however, the reactivity of chlorodeoxycellulose is relatively low in order to utilize the chlorine as a reactive center and gentle operating conditions, for example to immobilize enzymes.
An object of the present invention is to provide a method of preparation of deoxycellulose derivatives characterized by a higher reactivity of the substituents than that of chlorodeoxycellulose. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to prostheses in general, and more particularly to improvements in knee joint prostheses. Still more particularly, the invention relates to improvements in knee joint prostheses of the type wherein a tibial component has a shank which is to be implanted into the tibia, a femoral component has a shank which is to be implanted into the femur, and the two components are coupled to each other by a hinge joint (hereinafter called hinge for short) defining a pivot axis which is disposed at a fixed distance from the two components. Such prostheses enable the femur to pivot relative to the tibia (and/or vice versa) in a predetermined plane (which is normal to the pivot axis) between a first position in which the two shanks make an oblique angle and a second position in which the two shanks extend from the pivot axis in substantially diametrically opposite directions.
Knee joint prostheses of the above outlined character are implanted when the tissue in the region of the knee Joint to be replaced is no longer capable of properly connecting the femur with the tibia. Once the substance at the knee joint of a patient has been diagnosed as being incapable of properly connecting the tibia and the femur, it is equally impossible to replace the natural knee Joint with an endoprosthesis of the type wherein the hinge which enables the tibia and the femur to pivot relative to each other is capable of permitting movements in the longitudinal direction of the tibia and/or femur. The stability of endoprosthesis of the just outlined character is achieved in that the two parts of the endoprosthesis are form-lockingly connected to each other. The damaged tissue at the knee Joint is incapable of stabilizing an endoprosthesis to prevent undue material stresses of the system and/or luxations by permitting a shifting of the hinge. Moreover, such movements would cause considerable pain to the patient and would render a luxated endoprosthesis useless for its intended purpose.
The above outlined problems are much less acute when the natural knee Joint is replaced with a fixed hinge type knee joint prosthesis because neither the tibial component nor the femoral component can move in the radial direction of the pivot axis which is defined by the hinge. Such complete form-locking engagement between the leaves of the hinge as well as between the leaves and the respective (femoral and tibial) components contributes significantly to the stability of the prosthesis, and the likelihood of damage to the material of the prosthesis is negligible or nil. The femur and the tibia can pivot relative to each other within preselected limits but are incapable of performing any other relative movements. It will be appreciated that a prosthesis wherein the pivot axis which is defined by the pintle of the hinge is disposed at a fixed distance from the femoral and tibial components is less versatile than certain other prostheses wherein the pivot axis can move longitudinally of the tibia and/or femur and/or vice versa. Therefore, the movements which such prosthesis permits are not identical with movements of a healthy knee joint but constitute a compromise between natural movements and those which are permissible or acceptable in view of the nature of damage or injury to the replaced natural knee joint. Thus, the tibia is not free to move from side to side but can merely turn about a single axis which is defined by the pintle of the hinge.
Heretofore known attempts to enhance the versatility of a knee joint prosthesis include the utilization of a hinge which permits the femur and the tibia to move relative to each other about a plurality of different axes. Such pronounced movability must be achieved without risking a loosening of the tibial and/or femoral component in the respective bone. In accordance with a presently known proposal, the artificial knee joint is to permit angular movements of the tibia and femur about a so-called compromise axis which is defined by a part attached to the femur. Extensive experiments with such prostheses indicate that a satisfactory orientation of the compromise pivot axis is yet to be found. If the axis of an existing prosthesis is not fixed, its orientation is far from resembling that which is defined by a natural knee joint and, in addition, a knee joint prosthesis with a non-fixed pivot axis is unreliable and does not permit the patient to perform movements which even remotely resemble those of a natural knee joint.
Another drawback of heretofore known knee joint prostheses is that they develop mechanical problems in the region of the hinge and/or at the loci of implantation of tibial and femoral components into the respective bones. In fact, the adverse mechanical influences are frequently so pronounced that it becomes necessary to remove the implanted prosthesis and to replace it with a different artificial knee joint. Implantation of a fresh knee joint prosthesis almost invariably necessitates extensive resection of bones which leads to substantial losses of bone material and causes complications in the course of subsequent operations.
Additional problems arise in connection with the implantation of knee joint prostheses. This holds especially true for proper positioning of threaded fasteners or other locating, retaining and/or positioning parts which must be anchored in a bone or which must pass through an accurately selected portion of a bone in order to properly engage complementary parts in the implanted prosthesis. Heretofore known proposals to accurately position material removing apparatus with reference to the bones to be drilled and/or similarly treated are far from satisfactory. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pitch multiplication is a class of technologies for manufacturing integrated circuits (ICs), developed for photolithography to enhance the feature density. Pitch doubling or double patterning techniques where a conventional lithography process is enhanced to produce double the expected number of features is the simplest case of pitch multiplication. One problem that arises during etching of a substrate using pitch doubled patterns is how to control difference in etch rate between different regions on a substrate. | {
"pile_set_name": "USPTO Backgrounds"
} |
A power system that supplies power from a battery or other DC power supply to a load, such as a motor, is mainly constituted by a capacitance element, a power switching device, and a power converter. The capacitance element is a smoothing capacitor or the like. The power switching device switches an electric circuit connecting the DC power supply and the capacitance element in response to commands. The power convertor converts DC power to AC power.
While not driving the load, the power switching device leaves the electric circuit connecting the DC power supply and the capacitance element in an open state (i.e. cuts off the electric circuit). Conversely, when driving the load, the power switching device places the electric circuit in a closed state (allows conduction between the power supply and the capacitance element). When placing the electric circuit into the closed state, it is necessary to first charge the capacitance element. Inrush current therefore flows along the electric circuit. Such inrush current may damage elements along the electric circuit between the power supply and the capacitance element, or may adversely affect other devices due to a temporary lowering in the power supply voltage. In order to solve this problem, a variety of power switching devices that use a precharging method are well known (for example, Patent Literature 1 and 2). Such devices restrict the inrush current when the electric circuit enters the closed state by charging the capacitance element via a resistor for a predetermined time period starting at the time a command to place the electric circuit into the closed state is received.
FIG. 34 illustrates the overall configuration of a power system 1000 that includes a power switching device that uses a precharging method according to Patent Literature 1.
The power system 1000 is provided with a power switching device 91, a capacitance element 92, and a power converter 93. The power switching device 91 is provided along an electric circuit connecting a DC power supply BA and the capacitance element 92 and switches the electric circuit in accordance with commands received from an external source. The capacitance element 92 is a smoothing capacitor. The power converter 93 is provided along an electrical circuit connecting the capacitance element 92 and a three-phase AC motor 94 (hereinafter simply referred to as a “motor”). The power converter 93 is an inverter that converts DC to three-phase AC.
In more detail, the power switching device 91 is provided with switches (system main relays SMR1 and SMR2, switching element 98) inserted along the electric circuit connecting the DC power supply BA and the capacitance element 92, a diode 99 for backflow prevention, and a controller 95 for turning the switches on and off. Whether the system main relays SMR1 and SMR2 are on or off is controlled by whether power is supplied to excitation circuits 96 and 97. Whether the switching element 98 is on or off is controlled by a control signal (gate voltage) to the gate terminal thereof. An element with a high on-resistance is used as the switching element 98 (see FIG. 4 of Patent Literature 1).
The controller 95 causes the switches to operate as follows. First, starting at the time a command to place the electric circuit into the closed state is received, the controller 95 turns on the switching element 98 for a predetermined time period, leaving the system main relay SMR1 off. After the predetermined time period has elapsed, the controller 95 turns the switching element 98 off and turns the system main relay SMR1 on. The system main relay SMR2 is on continually during these operations. As a result of these operations, immediately after power is supplied, current flows through the switching element 98, which has a high on-resistance. This prevents inrush current, since the current flowing along the electric circuit connecting the DC power supply BA and smoothing capacitor 92 does not grow excessively large.
[Citation List]
[Patent Literature]
Patent Literature 1: Japanese Patent Application Publication No. 2009-44914
Patent Literature 2: Japanese Patent Application Publication No. 2005-312156 | {
"pile_set_name": "USPTO Backgrounds"
} |
A hood for providing shade on a baby stroller containing a single seat is generally designed so as to be foldable. Specifically, both ends of the folding hood body are releasably attached to respective attaching portions formed at appropriate positions on both sides of a rear portion of the single seat. In order to fold the stroller, it is not necessary to perform any preparatory operation such as folding only the sun-shading hood in advance. Therefore, the folding of the stroller body itself allows the sun-shading hood to be compactly folded at the same time.
However, in the case of a so-called double stroller (i.e., a stroller having two seats), and particularly in the case of a tandem-seated double stroller such as exemplified in FIG. 1, a problem is encountered. Specifically, if the stroller body is folded as exemplified in FIGS. 2 and 3, the top end portion of the hood which is attached to the rear seat is lower than the top end portion of a handle pole, thereby imposing no problem when carrying the folded stroller. However, the top end portion of the hood which is attached to the front seat is higher than the top end portion of the handle pole, thereby posing a problem to the person carrying the folded stroller. Specifically, the extended hood acts as an obstacle to the person trying to grasp the handle pole. This problem occurs because a seat attaching portion of the front seat is located in a front half of the stroller body. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to pulse generating circuits for use in semiconductor devices, and to a pulse generating circuit for use in a semiconductor device for generating a one shot pulse in accordance with change in the level of an address signal, such as an ATD circuit provided in a DRAM.
2. Description of the Background Art
FIG. 3 is a schematic block diagram showing a conventional DRAM. In FIG. 3, a row address is input into a row address buffer 21, and the input row address is decoded by a row decoder 22 to be applied to a memory cell array 23. When a RAS signal is applied to a control circuit 28, a row address of the memory cell array 23 is designated in the timing of the RAS signal. Meanwhile, a column address is externally input into a column address buffer 24 and applied to a column decoder 25, and an OR output of each address is applied to ATD circuit 27. The ATD circuit 27 upon detecting a change in the level of an address signal, generates a one shot pulse as an internal CAS signal and applies the same to the column decoder 25. The column decoder 25 decodes a column address signal and designates a column address of the memory cell array 23 through a sense amplifier 26. Externally input data is applied from an I/0 29 to the memory cell array 23 through the sense amplifier 26. If a R/W signal applied to the control circuit 28 indicates a state of writing, the data is written into a designated address of the memory cell array 23. If the R/W signal indicates a state of reading, an address of the memory cell array 23 is designated by a row address signal and a column address signal, data is read out from a corresponding address, and the read out data is amplified at the sense amplifier 26 and then output through the I/0 29.
FIG. 4 is a diagram of an electrical circuit showing one example of the ATD circuit shown in FIG. 3. Referring to FIG. 4, an address signal, for example, is input as a clock input .phi..sub.IN. The clock input .phi..sub.IN is input to the gate of a P type MOS transistor 2 and the gates of N type MOS transistors 8 and 10, and inverted at an inverter 1 to be applied as .phi..sub.IN to the gate of N type MOS transistor 5 and the gates of N type MOS transistors 12 and 14. A P type MOS transistor 3 is connected in parallel to a P type MOS transistor 2, a power supply voltage V.sub.cc is provided to the drains of the P type MOS transistors 2 and 3, the sources of the P type MOS transistors 2 and 3 are connected to the drain of the N type MOS transistor 8, an N type MOS transistor 9 is connected between the source of the N type MOS transistor 8 and the drain of the N type MOS transistor 10, and an N type MOS transistor 11 is connected between the source of the N type MOS transistor 10 and ground. Each gate of the P type MOS transistor 3 and the N type MOS transistors 9 and 11 is connected to a node N1.
A P type MOS transistor 4 is connected in parallel to a P type MOS transistor 5, a power supply voltage V.sub.cc is provided to the drains of the P type MOS transistors 4 and 5, the sources of the P type MOS transistors 4 and 5 are connected to the drain of an N type MOS transistor 12, an N type MOS transistor 13 is connected between the source of the N type MOS transistor 12 and the drain of the N type MOS transistor 14, and an N type MOS transistor 15 is connected between the source of the N type MOS transistor 14 and ground. Each gate of the P type MOS transistor 4, the N type MOS transistors 13 and 15 is connected to a node N2. The node N1 is connected to the connection point of the sources of the P type MOS transistors 4 and 5 and the drain of N type MOS transistor 12, while the node N2 is connected to the connection point of the sources of the P type MOS transistors 2 and 3 and the drain of the N type MOS transistor 8.
The gates of the P type MOS transistors 7 and 6 constituting a 2-input NAND circuit are connected to the nodes N1 and N2. The drains of the P type MOS transistors 6 and 7 are each provided with the power supply voltage V.sub.cc, the sources are connected together to be output as .phi..sub.OUT and also connected to the drain of an N type MOS transistor 17, the source of the N type MOS transistor 16 is connected to the drain of the N type MOS transistor 17, and the source of the N type MOS transistor 17 is grounded. The gate of the N type MOS transistor 16 is connected to the node N1, while the gate of the N type MOS transistor 17 is connected to the node N2.
FIG. 5 is a timing chart for use in illustration of an operation of the ATD circuit shown in FIG. 4. Now, referring to FIG. 5, a description of the operation of the ATD circuit shown in FIG. 4 follows. The N type MOS transistors 8-11 and 12-15 function as high resistance elements. As shown in FIG. 5(a), when the clock input .phi..sub.IN rises to an "H" level, the P type MOS transistor 2 is turned off, the N type MOS transistors 8 and 10 conduct, and .phi..sub.IN which is an output of the inverter 1 is pulled down to an "L" level. Accordingly, the P type MOS transistor 5 conducts, while the N type MOS transistors 12 and 14 are turned off. As a result, the node N1 is pulled to the "H" level, while the N type MOS transistors 9 and 11 conduct.
With the P type MOS transistors 2 and 3 being non-conductive, the node N2 attains the "L" level as shown in FIG. 5(d). At that time, as shown in FIG. 5(c), the node N2 rapidly rises from the "L" level to the "H" level, while the node N2 is pulled down to the "L" level from the "H" level gradually as shown in FIG. 5(d), since the N type MOS transistors 8-11 function as the high resistance elements. Therefore, the P type MOS transistor 7 has conducted before the node N1 rises to the "H" level, while the P type MOS transistor 6 conducts when the node N2 is pulled down to the "L" level. Therefore as shown in FIG. 5(e), a one shot pulse by which the sources of the P type MOS transistors 6 and 7 attain the "L" level only during a period T1 is output as .phi..sub.OUT.
Conversely, when the clock input .phi..sub.IN is pulled from the "H" level to the "L" level, the node N2 rapidly rises to the "H" level from the "L" level, and the node N.sub.1 is gradually pulled to the "L" level from the "H" level. As a result, a one shot pulse which attains the "L" level only during a period T2 is output as .phi..sub.OUT.
In the ATD circuit show in FIG. 4, as described above, it takes a longer period of time for .phi..sub.OUT to change its level from "L" to "H" in the case in which the node N2 changes its level from "H" to "L" as compared to the case in which the node N1 changes its level from the "H" to "L", resulting in different one shot pulse widths between T1 and T2. Accordingly, the ATD circuit shown in FIG. 4 suffers from a disadvantage that accessing time varies depending upon change in address when used for an SRAM or a DRAM. | {
"pile_set_name": "USPTO Backgrounds"
} |
With the rapid growth of mobile communications and great progress of technology, the world will move towards a fully interconnected network society where anyone or any device can acquire information and share data anytime and anywhere. It is estimated that there will be 50 billion interconnected devices by 2020, of which only about 10 billion may be mobile phones and tablet computers. The rest are not machines communicating with human beings but machines communicating with one another. Therefore, the subject of how to design a system that better supports the Internet of Everything needs to be studied further.
In the standard of Long Term Evolution (LTE) of the Third Generation Partnership Project (3GPP), machine-to-machine communication is called machine type communication (MTC). MTC is a data communication service that does not require human participation. Deployment of large-scale MTC user equipments can be used in such fields as security, tracking, billing, measurement, and consumer electronics, and specifically relates to applications, including video monitoring, supply chain tracking, intelligent meter reading, and remote monitoring. MTC requires lower power consumption and supports lower data transmission rate and lower mobility. The current LTE system is mainly for man-to-man communication services. The key to achieving competitive advantages of scale and application prospects of MTC services is that the LIE network supports low-cost MTC devices.
In addition, some MTC user equipments need to be installed in the basement of a residential building or at a position within the protection of an insulating foil, a metal window, or a thick wall of a traditional building; MTC suffers from more serious and obvious penetration losses from air interfaces, compared to that of conventional equipment terminals (such as mobile phones and tablet computers) in LTE networks. 3GPP decides to study the project design and performance evaluation of MTC equipments with an additional 20 dB coverage enhancement. It should be noted that MTC equipments located in an area with poor network coverage have the Wowing characteristics: extremely low data transmission rates, low latency requirements, and limited mobility. In view of the above characteristics of MTC, the LTE network can further optimize some signals and/or channels to better support MTC services.
Therefore, at the 3GPP RAN #64 plenary session held in June 2014, a new MTC work item with low complexity and enhanced coverage for Rel-13 was proposed (see non-patent literature: RP-140990 New work Item on Even Lower Complexity and Enhanced Coverage LTE UE for MTC, Ericsson, NSN). In the description of this work item, an LTE Rel-13 system needs to support uplink/downlink 1.4 MHz RF bandwidth for an MTC user equipment to operate at any system bandwidth (for example, 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz). The standardization of the work item will be completed at the end of 2015.
In addition, for better implementation of the Internet of Everything, at the 3GPP RAN #69 plenary session held in September 2015, a new work item was further proposed (see non-patent literature: RP-151621 New Work Item: NarrowBand IOT (NB-IOT), which may be called narrowband Internet of Things (NB-IOT). In the description of this item, NB-IOT needs to support uplink/downlink 180 KHz RF bandwidth and three modes of operation: stand-alone mode of operation, guard-band mode of operation, and in-band mode of operation. The stand-alone mode of operation is to implement NB-IOT on the existing GSM band. The guard-band mode of operation is to implement NB-IOT on the guard band of one LIE carrier. The in-band mode of operation is to implement NB-IOT on the existing LTE band. Different bearer modes may adopt different physical parameters and processing mechanisms.
In the existing LTE system, an LTE user equipment (UE) implements data transmission through a service request process. In the service request process, a base station (eNB) first acquires UE context information from a core network (CN) and saves it locally, and then sends a radio resource control (RRC) connection reconfiguration message to the UE to establish a data radio bearer (DRB), and data is transmitted through the data radio bearer. In an NB-IoT system, a UE in an RRC IDLE state needs to transmit only a small amount of data (small data) in one RRC connection. If small data is transmitted using the existing LIE data transmission process, the utilization rate of radio resources will be lowered. In order to reduce signaling overheads, the SA2 working group arrives at the following two solutions applicable to small data transmission: (1) a control plane data transmission manner (CP solution for short) based on non-access stratum (NAS) messages: in this solution, data is encapsulated in an NAS message packet data unit (NAS PDU) and transmitted to a receiving end through a signaling radio bearer (SRB). (2) A user plane data transmission manner (UP solution for short) based on access stratum context information stored in an eNB: in this solution, access stratum context information is established in an eNB and a data bearer is established, and data is transmitted and sent to a receiving end through the data radio bearer. Meanwhile, SA2 also concludes that the CP solution is a solution that must be implemented in a product, while the UP solution is an optional implementation solution.
For narrowband systems such as NB-IOT, eMTC, and MMTC, different service types usually require data transmission with different reliabilities. In the CP solution, data is encapsulated in an NAS message and transmitted on an SRB. In the existing LTE system, the SRB provides reliable data transmission based on a radio link control acknowledged mode (RLC AM). For service types requiring low reliability the CP solution based on the RLC AM causes large signaling overheads and low resource utilization rate. Therefore, the CP solution needs to provide data transmission services with different reliabilities for different service types. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a chimeric fibroblast growth factor protein, and in particular, to a chimeric fibroblast growth factor protein which does not have an absolute requirement for heparan sulfate for biological activity. The present invention also relates to nucleic acid molecules encoding such a protein, and to therapeutic methods of using such a protein.
Fibroblast growth factors (FGFs) comprise a growing family of proteins found throughout various organs and tissues of both developing and adult mammals. FGFs have been shown to mediate or influence numerous biological processes including mitogenesis, angiogenesis, wound healing, and neurogenesis, as well as limb patterning and outgrowth. Two particularly well known members of the FGF family include FGF-1 and FGF-2, also referred to as acidic FGF and basic FGF, respectively.
FGF-2, also referred to as basic fibroblast growth factor (bFGF), was one of the first FGFs to be identified and has been extensively studied. FGF-2 has been shown to be able to elicit various biological responses by binding to and activating specific cell-surface receptors called FGF receptor tyrosine kinases. In addition to the FGF receptor tyrosine kinase, it is generally agreed that heparan sulfate proteoglycans (or its soluble analog heparin) are necessary for both the FGF/FGF receptor interaction and the resulting biological activity. A relatively small number of studies have implicated the FGF ligand to have a role in mediating the biological activity of these factors, yet the mechanism by which this occurs remains poorly understood.
The commonly accepted paradigm for growth factor mediated activation of receptor tyrosine kinases depicts ligand-facilitated multimerization and trans-phosphorylation of the cognate receptor resulting in the recruitment of intracellular adapter and signal-transducing molecules. A complex cascade of intracellular signaling events terminating in the nucleus is thought to dictate the resulting biological response(s) (Fantl, et al., (1993) Ann. Rev. Biochem., 62:453-81; Klint, et al., (1999) Frontiers in Bioscience4: D165-77). Concomitantly, the ligand is internalized and subjected to degradation or other alternative fates (Cuatrecasas, (1982) Epidermal growth factor: uptake and fate. Ciba Foundation Symposium, 96-108; Lewis, et al., (1996)Exp. Eye Res., 62:309-24; Massagu, etal., (1986) J. Cell. Phys., 128:216-22; Naka, et al., (1993) Febs Letters, 329:147-52; Sorkin, et al., (1988) Exp. Cell Res., 175:192-205). However, mounting evidence for a number of growth factors and cytokines (FGF, nerve growth factor, PDGF, Schwannoma-derived growth factor, insulin, angiotensin 11 and growth hormone) suggest that they may act intracellularly and in many cases support a site of action for these factors in the nucleus (Jans, et al., (1998) Bioessays, 20:400-11; Prochiantz, et al., (1995) Bioessays, 17:39-44; Imamura, et al., (1990) Science, 249:1567-1570; Kimura, H. (1993) Proc. Natl Acad. Sci. USA, 90:2165-9). This has been extensively documented for the FGF family (Imamura, et al., (1990) Science, 249:1567-1570; Baldin, et al., (1990) EMBO J., 9:1511-1517; Imamura, et al., (1994) Exp. Cell Res., 215:363-372). However, the only specific activity described for FGF in the nucleus is enhancement of ribosomal RNA synthesis (Bouche, et al., (1987) Proc. Natl. Acad. Sci. USA, 84:6770-6774). This activity was also correlated with the ability of FGF-2 to bind to and regulate the activity of protein kinase CK2 which has been shown to act directly on nucleolin, a nucleolar protein involved in the control of rDNA transcription (Bonnet, et al., (1996) J. Biol. Chem., 271:24781-7). Additionally, a number of studies have shown that translocation of FGF-2 or FGF-1 to the nucleus either in the absence or presence of their cognate receptors is involved in DNA synthesis, but specific FGF targets have not been identified (Hawker, et al., (1994) Am. J. Phys., 266:H107-20; Hawker, et al., (1994) In Vitro Cellular And Developmental Biology. Animal30A:653-63; Wiedlocha, et al. (1996) Mol. Cell. Biol, 16:270-280; Wiedlocha, et al., (1994) Cell, 76:1039-1051). FGF-1 and FGF-2 ligands have been detected in intracellular compartments. Both ligands have been proposed to have specific intracellular sites of action that include stimulation of DNA synthesis for FGF-1 and stimulation of ribosomal gene transcription for FGF-2. A receptor-independent role for FGF-1 has been proposed using an FGF-1-Diphtheria toxin conjugate, which allowed receptor-independent, cytoplasmic entry of FGF-1.
The evidence for the activity of FGF proteins in a variety of beneficial biological processes, combined with the evidence indicating an intracellular site of action and a potential direct role for FGF proteins in signal transduction affecting cell proliferation and differentiation, make FGF proteins a desirable candidate molecule for the development of modified proteins as regulators of cell growth and differentiation, for the use in applications such as promoting wound healing, treating myocardial infarction (Svet-Moldavsky, G. J., et al, Lancet (Apr. 23, 1977) 913; U.S. Pat. Nos. 4,296,100 and 4,378,347), treating degenerative neurological disorders, such as Alzheimer""s disease and Parkinson""s disease (Walicke, P., et al, Proc Natl Acad Sci (USA) (1986) 83:3012-3016), promoting angiogenesis, promoting bone healing, and promoting muscle healing. Therefore, there is a need in the art for modified FGF proteins having FGF biological activity and novel attributes which improve their suitability for use in therapeutic protocols.
The present invention generally relates to a chimeric fibroblast growth factor (FGF) protein characterized by: (a) fibroblast growth factor biological activity in the absence of heparan sulfate; and, (b) an ability to enter a living cell in the absence of a receptor that binds to FGF. The present invention also relates to recombinant nucleic acid molecules encoding such a chimeric FGF protein, to therapeutic compositions including such a chimeric FGF protein, and to methods of making and using such a chimeric FGF protein.
One embodiment of the present invention is a chimeric fibroblast growth factor (FGF) which includes: (a) a biologically active fibroblast growth factor (FGF) protein having a first amino acid sequence; and, (b) a penetratin peptide having a second amino acid sequence. The penetratin peptide transports the chimeric fibroblast growth factor (FGF) across a lipid bilayer of a cell independently of the presence of an FGF receptor, and the second amino acid sequence is linked to the first amino acid sequence. The chimeric fibroblast growth factor (FGF) is characterized by: (i) fibroblast growth factor (FGF) biological activity in the absence of heparan sulfate; and, (ii) entry into a living cell in the absence of a receptor that binds to FGF. In one embodiment, the FGF biological activity of(i) is characterized by: (a) repression of terminal differentiation in the absence of heparan sulfate; and/or, (b) promotion of cell proliferation in the absence of heparan sulfate. In a preferred embodiment, the second amino acid sequence is linked to the N-terminus of the first amino acid sequence.
In the chimeric FGF of the present invention, the FGF protein is encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions to a nucleic acid molecule encoding any naturally occurring FGF protein, with an FGF protein selected from the group consisting of fibroblast growth factor-1 (FGF-1) protein and fibroblast growth factor-2 (FGF-2) protein being preferred. The FGF protein encoded by the nucleic acid molecule has FGF biological activity. In a preferred embodiment, the FGF protein is selected from the group consisting of a fibroblast growth factor-1 (FGF-1) protein and a fibroblast growth factor-2 (FGF-2) protein. Other preferred FGF proteins include, but are not limited to: FGF proteins having an amino acid sequence selected from the group of SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7 and SEQ ID NO:8. A preferred FGF protein for use in the chimera of the present invention is a fibroblast growth factor-2 protein. In one embodiment, the FGF protein has an amino acid sequence comprising from position 18 through position 172 of SEQ ID NO:2 (HLX-FGF-2) or from position 17 through 171 of SEQ ID NO:4 (TAT-FGF-2). Preferably, a biologically active FGF protein useful in a chimera of the present invention is encoded by a nucleic acid sequence comprising from nucleotide 59 to 523 of SEQ ID NO:1 (HLX-FGF-2) or from nucleotide 59 to 523 of SEQ ID NO:3.
In one embodiment, the penetratin peptide portion of a chimeric FGF of the present invention can include: (a) a first peptide having an amino acid sequence selected from the group consisting of:
(i) X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16; and,
(ii) X16-X15-X14-X13-X12-X11-X10-X9-X8-X7-X6-X5-X4-X3-X2-X1;
wherein X1, X2, X3, X4, X5, X7, X8, X9, X10, X11, X12, X13, X14, X15, and X16 each represent an xcex1-amino acid, between 6 and 10 of which are hydrophobic amino acids; and wherein X6 represents Trp; and,
(b) a second peptide comprising amino acid residues 49-57 of HIV Tat protein (SEQ ID NO:17). In a preferred embodiment, the second peptide of (b) does not comprise amino acid residues 22-36 or 73-86 of HIV Tat protein (SEQ ID NO:17).
The first penetratin peptide can include a peptide comprising helix 3 of a homeobox domain and a homeobox domain, and fragments and homologues thereof Such peptides comprise an amino acid sequence including, but are not limited to: SEQ ID NO:9, amino acid residues 42 through 58 of SEQ ID NO:9, amino acid residues 43 through 59 of SEQ ID NO:9, amino acid residues 43 through 58 of SEQ ID NO:9, amino acid residues 58 through 43 of SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, and/or SEQ ID NO:16. In one embodiment, such a peptide comprises amino acid residues 2-17 of SEQ ID NO:2. Preferably, such a peptide is encoded by a nucleic acid sequence comprising nucleotides 11 to 58 of SEQ ID NO:1.
The second penetratin peptide can include an HIV Tat protein or fragments or homologues thereof. Preferred peptides comprise an amino acid sequence that includes, but is not limited to: amino acid residues 37-72 of SEQ ID NO:17, amino acid residues 38-72 of SEQ ID NO:17, amino acid residues 47-72 of SEQ ID NO:17, amino acid residues 37-58 of SEQ ID NO:17, amino acid residues 38-58 of SEQ ID NO:17, amino acid residues 47-58 of SEQ ID NO:17, amino acid residues 1-21 and 38-72 of SEQ ID NO:17, amino acid residues 47-62 of SEQ ID NO:17, amino acid residues 38-62 of SEQ ID NO:17, amino acid residues 1-72 of SEQ ID NO:17, amino acid residues 1-58 of SEQ ID NO:17, and/or amino acid residues 48-60 of SEQ ID NO:17. In one embodiment, such a peptide comprises amino acid residues 48-60 of SEQ ID NO:17 or amino acid residues 2-14 of SEQ ID NO:4. Preferably, such a peptide is encoded by a nucleic acid sequence comprising residues 14 to 52 of SEQ ID NO:3.
A chimeric fibroblast growth factor (FGF) of the present invention includes a chimera comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2 (HLX-FGF-2) and SEQ ID NO:4 (TAT-FGF-2). Preferably, such a chimeric FGF is encoded by a recombinant nucleic acid molecule having a nucleic acid sequence of SEQ ID NO:1 and SEQ ID NO:3, respectively.
Another embodiment of the present invention relates to a therapeutic composition comprising the chimeric fibroblast growth factor (FGF) of the present invention and a pharmaceutically acceptable excipient.
Yet another embodiment of the present invention relates to a recombinant nucleic acid molecule encoding a chimeric fibroblast growth factor (FGF) of the present invention as described above. Such a recombinant nucleic acid molecule comprises: (a) a first isolated nucleic acid sequence encoding a biologically active fibroblast growth factor (FGF) protein; and, (b) a second isolated nucleic acid sequence encoding a penetratin peptide that transports the chimeric fibroblast growth factor (FGF) across a lipid bilayer of a cell independently of the presence of an FGF receptor, wherein the second nucleic acid sequence is linked to the first nucleic acid sequence. The first and second nucleic acid sequences are operatively linked to a transcription control sequence. Such a chimeric fibroblast growth factor (FGF) is characterized by: (i) fibroblast growth factor biological activity in the absence of heparan sulfate; and, (ii) entry into a living cell in the absence of a receptor that binds to FGF. Preferred chimeric FGF proteins encoded by a recombinant nucleic acid molecule of the present invention are described above.
Another embodiment of the present invention relates to a recombinant cell that expresses the recombinant nucleic acid molecule of the present invention described above. Another embodiment of the present invention is a recombinant virus that comprises the recombinant nucleic acid molecule of the present invention.
Yet another embodiment of the present invention relates to a method to produce a chimeric fibroblast growth factor (FGF), comprising culturing in an effective medium a recombinant cell comprising a recombinant nucleic acid molecule encoding a chimeric fibroblast growth factor protein as described above.
Another embodiment of the present invention relates to a method to promote fibroblast growth factor biological activity in a cell and particularly, to repress terminal differentiation and promote proliferation in a cell. Such a method includes the steps of administering to a cell a chimeric fibroblast growth factor (FGF) protein of the present invention as described above. In one embodiment, the cell has reduced heparan sulfate proteoglycan production characterized by a reduction in both repression of terminal differentiation and promotion of proliferation in the presence of naturally occurring fibroblast growth factor. In another embodiment, the cell is a cell of patient that has a condition selected from the group consisting of stroke, nerve damage, bone damage, muscle damage, and a wound. Such a chimeric FGF can be administered by any route, including in vitro, in vivo, and ex vivo.
Another embodiment of the present invention relates to a method to enhance a biological process selected from the group consisting of mitogenesis, angiogenesis, wound healing, neurogenesis, limb patterning, limb outgrowth, comprising administering to cells associated with the biological process a chimeric fibroblast growth factor (FGF) of the present invention as described above. | {
"pile_set_name": "USPTO Backgrounds"
} |
Larger helicopters, in general, have several features in common in a typical basic configuration or layout. For instance, a typical helicopter will have a cabin section rearward of the pilot's cockpit or flight deck and which is used to transport people, cargo or both. In addition, the helicopter will have an engine compartment which is located typically above and to the rear of the pilot's cockpit or flight deck, and above the cabin section. The engine compartment typically houses two primary components, at least one engine and a rotor transmission with a corresponding transmission housing.
Both the engine and the rotor transmission contain numerous fluids, such as petroleum-based lubricants, that are critical to the operation of the engine and the transmission. These fluids inevitably leak from various locations in the engine and the transmission during both the operation and storage of the helicopter. Because the engine compartment is generally oriented above the cabin section, any leaking fluids eventually seep or drip into the cabin section, unless proper sealing mechanisms are in place. The inflow of these leaking fluids spoil, stain or damage the cabin's interior materials such as seat covers and acoustic linings. In addition, the leaking fluids can severely damage or destroy sensitive electronic equipment that may be placed in the cabin section of a helicopter.
Moreover, the exterior of the helicopter around the engine and transmission compartment is not completely fluidtight, allowing fluid such as water to leak from these areas into the cabin with similar adverse effects.
During routine inspection and maintenance it is necessary to have both ready visual and physical access to portions of the engine or at least the rotor transmission. Such access is required to check critical fluid levels, to replace worn, damaged or depleted parts or filters, or to adjust mechanical systems. Typically, various access panels in or around the engine or transmission compartments provide the requisite openings to achieve ready access to the engine and the rotor transmission. In some helicopters, a forged or fixed airframe structure forms an access opening which is located below the rotor transmission housing and above the cabin section. The opening is thus accessible through the cabin's ceiling. This access opening, however, must be sealed by a cover against the inevitable oil and fluid drippings which the engine and the rotor transmission will produce, as well as against water leakage.
The access opening below the engine compartment in prior helicopters, such as the BLACK HAWK® helicopter, made for the United States by Sikorsky Aircraft Company of Stratford, Conn., is defined by both the aircraft structural forgings and a flexible or yieldable downwardly-turned skirt which is riveted onto the helicopter's forged structure. The skirt is thin and many times more flexible relative to the helicopter's forged structure.
Prior drip pan designs attached a covering plate directly to the flexible skirt with a hollow seal sandwiched therebetween. One hollow seal used in prior designs resembled the flexible, hollow door seals used around car doors or refrigerator doors. However, the skirt contains surface aberrations, such as the protruding rivet heads from the rivets securing the skirt to the forged helicopter structure. When the seal engaged both the skirt and the rivet heads, it could be upset enough so that leakage occurred. Accordingly, the hollow seal traversing these aberrations while sandwiched between the skirt and the covering plate is unable to provide a suitable, consistent, long-term fluid seal. Moreover, flexing of the flexible skirt could also cause leakage.
Also, the geometry of the cover cannot be such that it protrudes significantly into the interior of the cabin section. Headroom in the cabin section typically is limited and any additional protrusion from the ceiling of the cabin section is undesirable. In addition, because weight is critical to the operation of any aircraft, heavy cover constructions are undesirable.
Other prior drip pan structures disclosed in U.S. Pat. Nos. 6,112,856; 6,216,823; and 6,446,907 and Design Pat. No. D444,443, which are fully incorporated herein by this express reference, provided improvements and solutions to these difficulties.
In addition, Sikorsky more recently introduced its “M” Model BLACK HAWK® helicopter for which these prior structures were not readily adaptable due to a change in configuration of the skirt noted above. In particular, while the prior drip pans provided a port for visual access to an oil filter, the port was offset from the filter, rendering it more difficult to see the filter from many viewing angles through the port, requiring specially shaped tools to manipulate filter retention bolts, and requiring tilting of filters when removed or replaced.
The “M” model was introduced by Sikorsky for use by U.S. Military. In that model, and in other aircraft with what are or will be similarly-shaped skirts, there is a skirt as disclosed in U.S. Pat. No. 8,096,496 with an access area or corner for the filter which is pulled outwardly to allow direct and straight-through access to the filter and its filter retention bolts when the pan is removed. Such direct access is preferable as it eliminates the need for the special dog-bone shaped tools necessary to operate the filter retention bolts to remove and install the filter as was required with the prior drip pan, which not only required such tools but also required the filter to be “tipped” as it was removed or replaced and before it could be seated (see FIG. 6 of U.S. Pat. No. 6,446,907). Accordingly, in the new “M” model, one corner has been pulled or extended outwardly and asymmetrically to the other corners. Stated in another way, the radius point or center of the expanded corner curve of the skirt has been moved outwardly from its position in the prior drip pan and the straight sides of the skirt are no longer tangent to the curve of this corner.
The problems associated with the asymmetrical nature of the skirt, which takes on inwardly-facing convex shapes, directed inwardly of the access opening, before flowing into an expanded inwardly-facing concave corner in the “M” model were overcome by a drip pan apparatus disclosed in U.S. Pat. Nos. 8,096,496 and 8,317,127 while still forming a leak-proof seal of the access opening in spite of the previously experienced difficulties with forming a face seal in this location. Furthermore, the drip pan apparatus disclosed is cost effective and easily installed while also facilitating maintenance of the rotor transmission and particularly easing access to the filter secured to the rotor transmission. Moreover, the visual access to the filter through the corresponding site port was also solved.
Nevertheless, despite the significant improvement provided by the drip pan apparatus, modifications to the rotor transmission of the BLACK HAWK® helicopter, including model variations thereof, may slightly alter the position of the filter on the transmission. For example, the rotor transmission found in the S70A-09 helicopter, made for the Australian Army by Sikorsky is modified for applications specific the Australian Army's use. It is believed these slight modifications to the rotor transmission include a slight decrease in clearance between the oil filter and the skirt encircling the access opening for the rotor transmission. While the decrease in clearance is small, possibly amounting to an inch or less, access to the oil filter is hampered, even in situations in which the drip pan apparatus disclosed in U.S. Pat. No. 8,096,496 is utilized. Thus, there is a need for an improved drip pan apparatus for sealing the access opening of a rotor transmission in a helicopter, such as the S70A-09 Australian Army helicopter that utilizes the asymmetrical skirt found in the “M” Model BLACK HAWK® helicopter, that facilitates visual inspection of the rotor transmission, including inspection of the oil filter, and that facilitates and reduces maintenance time, while also sealing the access opening from leakage.
Accordingly, it is one objective to provide an improved leak-proof drip pan apparatus for use in an “M” model BLACK HAWK® helicopter or another helicopter, such as the Australian Army's S70A-09 helicopter, which shares a similar configuration of the skirt surrounding the access opening to the rotor transmission.
A further objective of this invention is to provide an improved cover and seal for the interior access opening of helicopters such as the BLACK HAWK® “M” model helicopter and those of similar structure, such as the Australian Army's S70A-09 helicopter.
Another object of this invention is to provide a drip pan that will effectively and consistently seal fluid from passage from an engine or transmission compartment to a cabin section of a BLACK HAWK® “M” model helicopter and similar air frames, such as the Australian Army's S70A-09 helicopter.
Another object of this invention is to provide a drip pan which permits quick visual and physical access to the engine or transmission compartment of a BLACK HAWK® “M” model helicopter and similar helicopters, such as the Australian Army's S70A-09 helicopter, without requiring modification to the existing aircraft structure.
Another objective of the invention is to more effectively seal a drip pan to the skirt defining a transmission access opening in a BLACK HAWK® “M” model helicopter and similar helicopters, such as the Australian Army's S70A-09 helicopter.
Still another object of this invention is to provide a drip pan that can be attached to the existing structure of a BLACK HAWK® “M” model helicopter and similar helicopters, such as the Australian Army's S70A-09 helicopter, with only slight modifications of the existing air frame structure and with minimal intrusion into the helicopter's cabin section.
Another objective of the invention is to provide an improved drip pan for use with a BLACK HAWK® “M” model helicopter and similar air frames, such as the Australian Army's S70A-09 helicopter, using an o-ring seal between drip pan and frame, where all peripheral curves in the pan are convex (i.e., outwardly directed) with respect to the pan.
Yet another objective of the invention is to provide enhanced visual access to a filter in an “M” model BLACK HAWK® helicopter and similar air frames, such as the Australian Army's S70A-09 helicopter. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.