text
stringlengths 2
806k
| meta
dict |
---|---|
The present invention relates to agricultural cultivating tools and, more particularly, to a two-piece cultivator shank assembly.
For many years, cultivator shanks called "spring teeth" have been utilized for soil cultivation. In general, a spring tooth is a rigid, generally flat, curved shank to which a soil-working tool, such as a shovel, may be fixedly attached to a bottom end thereof. Such a shank is usually rigidly mounted on a tool bar of a farm implement. When the bottom of the shank encounters an obstruction, such as a rock or root, the shank resiliently deflects.
Spring teeth shanks presently utilized are typically of one-piece construction and produce adequate results under ideal working conditions. However, obstacles are often encountered that either break a spring tooth shank or bend the shank to such an extent that the shank is damaged and does not spring back into position, requiring either removal or repair of the shank so that the soil may be adequately cultivated. Conventional spring teeth also tend to fracture at the mounting end thereof, thus, there is a need for additional strength at the mounting end of each spring tooth shank.
The prior art includes shanks that are of two-ply construction, resulting in a thick shank having greater total strength than a single-ply shank but having the disadvantage of being heavier than traditional shanks and, therefore, less likely to easily trip out of the ground when an obstruction is encountered. Shanks have also been devised to include various shapes and curves at an upper portion near the mounting end thereof, providing adequate flexibility when an obstruction is confronted. However, if such shanks are broken or bent after an encounter with a substantial object, the entire shank, including the upper formed portion, must be replaced or repaired. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a cigarette having a modified burn rate. The modifications to the cigarette of the present invention include changes to the wrapper of the cigarette paper such that the tobacco column of the cigarette is adjacent to a strip wrap forming co-axial zones of high diffusion areas and co-axial zones of low diffusion areas. Such a partial double wrap cigarette exhibits a modified burn rate such that the standard smolder rate of the cigarette may be changed as desired to either self extinguish or slowed significantly depending upon the desired outcome. | {
"pile_set_name": "USPTO Backgrounds"
} |
Multi band antennas are antennas providing wireless signals in multiple radio frequency bands, i.e. two or more bands. They are commonly used and are well known in wireless communication systems, such as GSM, GPRS, EDGE, UMTS, LTE, and WiMax systems.
This type of multi band antenna often comprises a reflector structure for controlling the radiation of the antenna, e.g. beam width and lobe pattern. To achieve this end, mentioned types of reflectors may have different shapes and setups depending on the frequency in use and the desired radiation pattern, etc.
FIG. 1 schematically shows, in cross section, an example of a reflector for a triple band base station antenna according to prior art. The reflector is placed behind one or more radiating antenna elements in use and is arranged to provide, together with the radiating elements, desired antenna radiation characteristics.
However, it has proved difficult to provide reflectors having reflector structures suitable for multiple antenna frequency bands giving desired antenna radiation characteristics. This is especially the case for multi band antennas arranged to transmit in three or more frequency bands. | {
"pile_set_name": "USPTO Backgrounds"
} |
When a subject is photographed by a video camera under an illumination of a fluorescent lamp directly operated from commercial AC power, chronological brightness level variations in a video signal as an image output, i.e., a fluorescent light flicker occurs due to a difference between the frequency (twice the frequency of the commercial AC power) of a luminance change (light intensity change) of the fluorescent lamp and a vertical synchronization frequency of the camera.
For example, in a zone where the frequency of the commercial AC power is 50 Hz, a subject may be photographed by a CCD camera of an NTSC method (at a 60 Hz vertical synchronization frequency) under the illumination of the non-inverter fluorescent lamp. In such a case as shown in FIG. 28, one field frequency is 1/60 second while the period of the luminance change of the fluorescent lamp is 1/100 second. The exposure timing at each field drifts with respect to variations in the luminance of the fluorescent lamp, and an amount of exposure light at each pixel changes from field to field.
If the exposure time is 1/60 second, the amount of exposure light is different within the same exposure time from duration a1 to duration a2 to duration a3, and when the exposure time is shorter than 1/60 second (but not 1/100 second), the amount of exposure light time is different within the same exposure from duration b1 to duration b2 to duration b3.
Since the exposure timing responsive to the luminance change of the fluorescent lamp reverts back to the original timing every three fields, the brightness level variation due to flickering is repeated every three fields. More specifically, the luminance ratio of each field (the appearance of a flicker) changes within an exposure period, but the period of flickering remains unchanged.
In a progressive camera such as a digital camera, the brightness level variation is repeated every three frames if the vertical synchronization frequency is 30 Hz.
To emit white light, a plurality of fluorescent lamps, for example, a red fluorescent lamp, a green fluorescent lamp, and a blue fluorescent lamp are typically used. Fluorescent materials for these lamps have unique persistence characteristics thereof, and for a duration of time from a stop of discharging to a subsequent start of discharging, light emission decays in accordance with the persistence characteristics. During this duration of time, light appearing white at first decays while the hue thereof changes at the same time. If the exposure timing drifts, not only the brightness level variations but also the hue change occurs. Since the fluorescent lamp has unique spectral characteristics that a strong peak is present in a particular wavelength, a variable component of a signal becomes different from color to color.
The color hue change and the difference in the variable component from color to color lead to a so-called color flicker.
As shown in the bottom portion of FIG. 28, the amount of exposure light remains constant regardless of the exposure timing if the exposure time is set to be an integer multiple of periods ( 1/100 second) of the luminance variation of the fluorescent lamp. No flicker then occurs.
It is contemplated that illumination of the fluorescent lamp is detected through signal processing of a camera in response to an operation of a user, and that the exposure time is set to be an integer multiple of 1/100 second under the illumination of the fluorescent lamp. In this arrangement, a simple method can fully control the generation of the flickering.
However, since this method does not allow the exposure time to be set to any value, the freedom of the exposure amount adjustment means for obtaining an appropriate amount of exposure is reduced.
A method for reducing the fluorescent light flicker under any shutter speed (exposure time) is thus required.
An image pickup device having all pixels in one frame exposed at the same exposure timing, such as a CCD image pickup device, offers relatively easily such a method because the brightness level variations and color variations due to the flickering appears only between fields.
If the exposure time is not 1/100 second, the flickering has a repetition frequency of three fields as shown in FIG. 28. To achieve a constant average value of the video signal of each field, current luminance variations and current color variations are predicted from the video signal three fields before, and the gain of the video signal of each field is adjusted based on the prediction results so that the flicker is reduced to a level that presents no problem in practice.
In the XY addressing type scanning image pickup device, such as a CMOS image pickup device, however, the exposure timing drifts successively from pixel to pixel by one horizontal period of the reading clock (pixel clock) in a screen horizontal direction. Since all pixels are different in the exposure timing, the above-referenced method cannot suppress the flickering.
FIG. 29 illustrates such flickering. The pixels successively drift in the exposure timing in the screen horizontal direction as discussed above. One horizontal period is sufficiently shorter than the period of the variation of the fluorescent light. Based on the assumption that the pixels on the same line have the same timing, the exposure timing of each line in a screen vertical direction becomes something like the one shown in FIG. 29. This assumption presents no practical problem.
The exposure timing is different from line to line in the XY addressing type scanning image pickup device, such as a CMOS image pickup device as shown in FIG. 29 (F1 represents such a drift in the exposure timing). Since the lines suffer from a difference in the amount of exposure light, the brightness level variation and the color variation take place due to the flickering not only between fields but also within each field. A strip pattern appears on a screen (with strips thereof aligned in the horizontal direction and the density of the stripes changing in the vertical direction).
FIG. 30 illustrates an on-screen flicker if a subject is a uniform pattern. Since one horizontal period (one wavelength) of the subject is 1/100 second, a stripe pattern of 1.666 periods appears in one frame. Let M represent the number of read lines per field, and one horizontal period of the stripe pattern corresponds to the number of read lines L=M*60/100. In this description and the drawing, an asterisk (*) represents a multiplication operation.
As shown in FIG. 31, three fields (three frames) correspond to five periods (five wavelengths) of the stripe pattern, and if viewed continuously, the stripe pattern appears to drift in a vertical direction.
FIG. 30 and FIG. 31 show only the brightness level variation due to the flicker. In practice, however, the above-described color variation also additionally appears, thereby substantially degrading image quality. The color flicker, in particular, becomes pronounced as the shutter speed becomes fast. The XY addressing type scanning image pickup device suffers more from image quality degradation because the effect of the color flicker also appears on the screen.
If the exposure timing is set to be an integer multiple of periods ( 1/100 second) of the luminance variation of the fluorescent light, the amount of exposure becomes constant regardless of the exposure timing, and a fluorescent light flicker containing an on-screen flicker does not occur.
With a variable electronic shutter speed feature incorporated, a CMOS image pickup device becomes complex in structure. Even in an image pickup device having the electronic shutter, the flexibility of the exposure amount adjusting means for achieving an appropriate exposure is reduced if only an integer multiple of 1/100 second is set as the exposure time to prevent flickering.
Methods for reducing the fluorescent light flickering for use in the XY addressing type scanning image pickup device, such as the CMOS image pickup device, have been proposed.
Patent document 1 (Japanese Unexamined Patent Application Publication No. 2000-350102) and patent document 2 (Japanese Unexamined Patent Application Publication No. 2000-23040) discloses methods of estimating a flicker component by measuring an amount of light of a fluorescent lamp with a photosensitive element or a measuring element and controlling a gain of a video signal from an image pickup element in response to the estimation result.
Patent document 3 (Japanese Unexamined Patent Application Publication No. 2001-16508) discloses another technique. In accordance with the disclosed technique, two types of images are taken in two conditions, namely, a first electronic shutter value appropriate for a current ambient illumination condition and in a second electronic shutter value having a predetermined relationship to a light and dark cycle of a fluorescent lamp, a flicker component is estimated by comparing the two signals, and a gain of a video signal from an image pickup device is controlled in response to the estimation results.
Patent document 4 (Japanese Unexamined Patent Application Publication No. 11-164192) discloses another technique. In accordance with the disclosed technique, a brightness variation under an illumination of a fluorescent lamp is recorded beforehand as a correction factor in a memory, the phase of a flicker component is detected from a video signal from an image pickup device taking advantage of a difference between the frequency of a video signal component and the frequency of the flicker component, and the video signal is thus corrected in accordance with the correction factor in the memory in response to the detection results.
Patent document 5 (Japanese Unexamined Patent Application Publication No. 2000-165752) discloses another technique. In the disclosed technique, a correction coefficient is calculated from two video signals that are obtained as a result of exposures performed with a time difference, the time difference causing the phase of flicker to be inverted by 180 degrees.
As disclosed in patent documents 1 and 2, the technique of estimating of the flicker component by measuring the amount of light of the fluorescent lamp with the photosensitive element or the measuring element increases the size and the cost of the image pickup system because the photosensitive element or the measuring element is attached to the image pickup device.
As disclosed in patent document 3, the technique of estimating the flicker component by photographing the two types of images in the different shutter conditions (exposure conditions) requires a complex system in the image pickup device, and further this technique is not appropriate for taking a moving image.
The technique disclosed in patent document 4 uses the coefficient prepared beforehand in the memory as a correction signal. It is practically impossible to prepare the correction coefficients for all types of fluorescent lamps. Depending on the type of the fluorescent lamp, detecting accurately the flicker component and reducing reliably the flicker component are difficult. As disclosed in patent document 4, the technique of extracting the flicker component from the video signal taking advantage of the difference between the frequencies of the video signal component and the flicker component has difficulty in detecting the flicker component distinctly from the video signal component in a black background portion and a low-illuminance portion, each portion having a small amount of flicker component. If a moving image is present in a screen, performance for detecting the flicker component is substantially lowered.
As the technique disclosed in patent document 3, the technique disclosed in patent document 5 for estimating the flicker component by photographing the two types of images at the different timings requires a complex system in the image pickup device and is not appropriate for taking a moving image.
In accordance with the present invention, a fluorescent light flicker characteristic of an XY addressing type scanning image pickup device such as a CMOS image pickup device is accurately detected and reliably and sufficiently reduced through simple signal processing without using an photosensitive element regardless of the level of a video signal of a subject and the type of a fluorescent lamp. | {
"pile_set_name": "USPTO Backgrounds"
} |
A. Field of the Invention.
This invention relates to an improved container for keeping the contents of a large beverage container (such as a beer barrel) cold when refrigeration is not available or practical.
B. Description of the Art.
It is standard practice to cool beer barrels in large, bulky, unattractive containers such as cut down 55 gallon drums which containers have no insulating value, are unattractive, and worst of all are difficult and unpleasant to store when not in use. There are a number of beer barrel coolers that have been patented. The prior art devices are either bulky rigid containers that suffer the same storage problems as the cut down 55 gallon drums or are flexible containers that are difficult to use because of their flexibility.
A need exists for a barrel cooler that cools the beverage, is water tight, accommodates both 1/2 and 1/4 barrel sizes of the various shapes and configurations that are available today, is structurally rigid when in use, yet can be conveniently stored when not in use. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to balloon angioplasty. In particular, the present invention relates to an improved catheter apparatus and method for thermal balloon angioplasty treatment of a blood vessel stenosis.
2. Description of the Prior Art
It is known that restricted blood flow through a blood vessel stenosis is treatable by balloon angioplasty. However, it is also known that after such balloon angioplasty treatment certain undesirable conditions, such as abrupt reclosure or restenosis, can occur. Improvements to balloon angioplasty and blood vessel stenosis treatment are disclosed in U.S. Pat. Nos. 4,799,479 and 5,190,540 in order to minimize the occurrence of the undesirable conditions of reclosure and restenosis.
U.S. Pat. No. 4,799,479 discloses inflating a balloon in a blood vessel treatment region against a stenosis. During the time that the balloon is inflated to expand and open the stenosis, heat is applied to the fluid which has inflated the balloon. The fractured stenosis plaque and the blood vessel expanded tissue which result from inflation of the balloon are elevated in temperature to fuse together the fragmented segments of the stenosis and to treat the expanded tissue. This elevation in temperature also coagulates any blood trapped between the fragmented segments or between the fragmented segments of the stenosis and the expanded tissue of the blood vessel created by the expansion and deformation of the treatment region of the blood vessel. The heating of the balloon inflating fluid is performed after the balloon is inflated and takes some amount of time.
U.S. Pat. No. 5,190,540 discloses an improved apparatus and method for thermal balloon angioplasty. The apparatus includes a balloon attached to a distal end of a catheter body. The catheter body has two fluid passages extending therethrough. One passage directs fluid into the balloon and the other passage directs fluid away from the balloon. Each passage has an opening communicating with one end of the balloon.
The method disclosed in the '540 patent includes heating the balloon inflating fluid prior to balloon inflation. This causes the fatty or lipid tissue in the stenosis treatment region of the blood vessel to liquify and become relatively pliable. Thus, as the balloon is inflated any fractures to the stenosis plaque and any fissures or mechanical trauma to the blood vessel wall are minimized due to the relatively pliable condition of the stenosis and surrounding tissue in the treatment region of the blood vessel. After the heated and inflated balloon is maintained in contact with the treatment region for a predetermined time interval, the fluid inflating the balloon is cooled.
The cooling is accomplished while the balloon is inflated by displacing the heated fluid in the balloon with a fluid at a relatively lower temperature. The cooling action of the balloon re-establishes the solid form of the tissue located in the treatment region of the blood vessel. Injecting cool fluid into the balloon causes the heat softened and pliable tissue to congeal in the shape of the inflated balloon. This minimizes tissue elastic recoil and tissue thermal injury which may cause abrupt vessel closure and restenosis. Heat is applied for only a short term and the blood vessel is remolded to increase the likelihood it remains opened.
It is desirable to minimize the total treatment time that the balloon is inflated to avoid long periods of little or no blood flow. However, the heat treatment and the cooling treatment time intervals are relatively fixed. It is important to minimize the transition time between a heat treatment cycle and/or cooling treatment cycle. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a display device, in particular, an organic electroluminescence (EL) display device including an organic EL element.
2. Description of the Related Art
In recent years, an organic EL display device including an organic EL element as a self-luminous device has been attracting attention as a flat-panel display. Here, the organic EL element is an electronic element having a pair of electrodes and an organic compound layer placed between the pair of electrodes, and the organic EL display device is a display device using the organic EL element as a display element.
In a top-emission type display device, a lower electrode to be provided closer to a substrate side with respect to an organic compound layer is required to have a high reflectance for improving the light extraction efficiency of the device. A metal material having a high reflectance such as aluminum or silver is used as a material for the lower electrode, and the material is formed into a layer having a thickness of 30 nm or more in order that the reflectance intrinsic to the material may be obtained. When an organic EL element is formed by laminating the organic compound layer and an upper electrode on the lower electrode having a thickness of 30 nm or more, the organic compound layer becomes thin at end portions of the lower electrode (referring to an upper end portion, a lower end portion, and a side wall portion). The application of a voltage between the lower electrode and upper electrode of such organic EL element causes a phenomenon in which a current concentrates on an end portion of the lower electrode. As a result, the following problem arises. The emission intensity of the organic compound layer at the end portion becomes larger than its emission intensity at a flat portion except the end portion, and hence local brightness unevenness occurs in the same light-emitting pixel.
Several methods have heretofore been proposed as methods for solving the problem. Japanese Patent Application Laid-Open No. 2003-332082 discloses a display device in which all upper end portions of lower electrodes are roundly chamfered so that an electric field may not concentrate in the upper end portions. In addition, Japanese Patent Application Laid-Open No. 2005-327694 discloses a display device in which a side surface of a lower electrode is tilted by processing an upper end portion of the lower electrode into a taper shape.
However, even in the case where an upper end portion of a lower electrode is processed like Japanese Patent Application Laid-Open No. 2003-332082 and Japanese Patent Application Laid-Open No. 2005-327694, as in the case where the upper end portion is not processed, the thickness of an organic compound layer to be formed on the lower electrode tends to be smaller at the upper end portion than at a flat portion as the upper surface of the lower electrode. Accordingly, such a tendency that a current is more likely to concentrate in the upper end portion of the lower electrode than in the flat portion of the lower electrode does not change. In addition, the concentration of the current in the upper end portion of the lower electrode makes the emission intensity of the layer at the upper end portion larger than its emission intensity at the flat portion of the lower electrode. Accordingly, the problem of the local brightness unevenness in the same light-emitting pixel still remains.
In addition, the current efficiency and chromaticity of an organic EL element largely change depending on the thickness of an organic compound layer constituting the element. Accordingly, when the thickness of the organic compound layer to be formed on a lower electrode is not uniform owing to the state of the lower electrode, actually causing a current to flow through the organic compound layer may cause a reduction in luminous efficiency of the element or the deterioration of its color purity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates particularly to a color photographic light-sensitive material for use in making photographic prints.
2. Prior Art and the Problems Thereof
Conventionally color photographic light-sensitive materials for use in making photographic prints are generally formed by coating in order on a reflective support an yellow coupler-containing blue-sensitive silver halide emulsion layer, nonlight-sensitive first interlayer, magenta coupler-containing green-sensitive silver halide emulsion layer, nonlight-sensitive second interlayer, cyan coupler-containing red-sensitive silver halide emulsion layer and nonlight-sensitive protective layer.
And particularly in order to prevent the discoloration by ultraviolet rays of the dyes formed by a color development from the respective couplers, an ultraviolet absorbing agent is added to the second interlayer.
However, such conventional print-making color photographic light-sensitive materials have a disadvantage that the dyes formed by a color development from the respective couplers used, particularly the magenta dye and the cyan dye are poor in the resistance to light, tends to be discolored by light with time, and become out of color balance after being discolored.
In that case, if the protective layer also contains an ultraviolet absorbing agent, the resistance to light could be improved.
And by doing so, there is no doubt that the resistance to light of the light-sensitive material can be improved. However, there still exists another disadvantage that the light-sensitive material, after being processed, loses as time goes by the gloss on the surface thereof by light, heat, moisture, and the like; i.e., the so-called sweat phenomenon arises, thus deteriorating the image quality.
The present invention has been made in view of such a situation as described above, and the principal object of the present invention is to provide a color photographic light-sensitive material which is improved so as to prevent possible deterioration of the gloss on the surface thereof caused with time by light, heat, moisture, and the like, and capable of forming a highly light-resistant dye image.
As a result of our various studies on this problem, it has now been found that the above object of the present invention is accomplished by incorporating a 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compound in the liquid form at normal room temperature into the overcoat layer on the uppermost silver halide emulsion layer of a multilayered color photographic light-sensitive material.
Namely, the present invention is of a color photographic light-sensitive material comprising a reflective support having thereon a plurality of silver halide emulsion layers, of which the emulsion layer located farthest from the support has, on each of both the support side thereof and the opposite side thereof to the support side, at least one nonlight-sensitive layer containing an ultraviolet absorbing agent, said ultraviolet absorbing agent used in said nonlight-sensitive layer on said opposite side of said emulsion layer against said support being a 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compound which is in the liquid form at normal room temperature.
The embodiment of the present invention will be illustrated in detail below:
The color photographic light-sensitive material of the present invention (hereinafter referred as to the light-sensitive material) has not less than two silver halide emulsion layers, and, in the normal form, has three spectrally different light-sensitive silver halide emulsion layers each differently having one of three nondiffusible yellow, magenta and cyan couplers.
The combination of the light-sensitive silver halide emulsion layers with the couplers in a normal instance is such that the cyan coupler is in the red-sensitive silver halide emulsion layer, the magenta coupler in the green-sensitive silver halide emulsion layer, and the yellow coupler in the blue-sensitive silver halide emulsion layer.
There are no special restrictions on the coating order of such respective emulsion layers.
Usually, however, from the reflective support side the yellow coupler-containing emulsion layer, magenta coupler-containing emulsion layer and cyan coupler-containing emulsion layer are coated in the described order. Alternatively, if desired, these layers may also be coated in such an order as of the cyan coupler-containing emulsion layer, magenta coupler-containing emulsion layer and then yellow coupler-containing emulsion layer.
As the yellow, magenta and cyan couplers to be used in the present invention, any known couplers may be used.
Preferred yellow couplers include xcex1-pivaloylacetanilide-type couplers.
Preferred magenta, couplers include 5-pyrazolone-type, more preferably, 1-phenyl-5-pyrazolone-type, and further preferably 1-phenyl-3-anilino-5-pyrazolone-type couplers and pyrazolotriazole-type couplers.
Preferred cyan couplers include phenol-type couplers.
Any of these couplers may be contained in an amount of from 0.05 to 1 mole per mole of silver halide in any of the above silver halide emulsion layers.
Of these silver halide emulsion layers, the silver halide emulsion layer located farthest from the support is provided on each of both the support side thereof and the opposite side thereof to the support side with a nonlight-sensitive layer.
These nonlight-sensitive layers comprise such a hydrophilic binder as, e.g., gelatin.
And the nonlight-sensitive layers each contains an ultraviolet absorbing agent.
In this instance, the binder coating amount in each of the nonlight-sensitive layers is normally from 1 to 30 mg/dm2.
On the other hand, of these nonlight-sensitive layers, the one located farther from the support on the emulsion layer located farthest from the support contains not less than one of 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compounds which are in the liquid form at normal room temperature. These 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compounds preferably have the melting point of not more than 30xc2x0 C., more preferably not more than 15xc2x0 C.
The compounds herein are required to be in the liquid form, and, if not, they cannot display the effect to improve the so-called sweat phenomenon, and even if in the liquid form, any ultraviolet absorbing agents other than 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compounds cannot carry out the improvement on the prevention of the sweat phenomenon.
The 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type compounds preferably have the formula:
wherein R1 and R2 represent an alkyl, an aryl, an alkoxy and aryloxy radical, and R3 represents a hydrogen atom, a halogen atom, an alkyl, an aryl, an alkoxy, an aryloxy, an alkenyl, a nitro or a hydroxyl radical.
More preferably, the compounds having the formula [I] is represented by Formula [II], [III], [IV] or [V]:
wherein R4 represents a methyl, ethyl or propyl radical, R5 represents a secondary alkyl having from 4 to 10 carbon atoms, R6 represents a hydrogen atom, a halogen atom, an alkyl, or an alkoxy radical having from 1 to 8 carbon atoms;
wherein R7, R8 and R9 independently represent an alkyl radical having from 4 to 10 carbon atoms, provided that at least one of R7, R8 and R9 represents a secondary alkyl;
wherein R10 represents a secondary or tertiary alkyl from 1 3 to 8 carbon atoms, X represents an alkylene from 1 to 6 carbon atoms, R11 represents an alkyl group from 1 to 12 carbon atoms, R12 represents the same radical as defined by R6;
wherein R13 and R14 independently represent a secondary alkyl having from 4 to 10 carbon atoms and R15 represents the same radical as defined by R6.
The following are typical examples of those 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type ultraviolet absorbing agents which are in the liquid form at normal room temperature, but are not limited thereto.
Any of these liquid 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type ultraviolet absorbing agents may be incorporated singly or in combination of not less than two kinds into the nonlight-sensitive layer adjacent to the outer side (opposite from the support) of the silver halide emulsion layer located farthest from the support.
Any of these liquid ultraviolet absorbing agents may be added to the nonlight-sensitive layer also in combination with any of other ultraviolet absorbing agents which are in the solid form at normal room temperature.
Those suitably available solid ultraviolet absorbing agents are 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type ultraviolet absorbing agents which are in the solid form at normal room temperature, particularly at 15xc2x0 C. These compounds preferably have the melting point of not less than 15xc2x0 C., more preferably not less than 30xc2x0 C.
If the solid ultraviolet absorbing agent is used in combination with the liquid one, because the molecular weight of the solid one is generally smaller than that of the liquid one, the adding amount by weight of the ultraviolet agent can be reduced, or in the same adding amount, the light-resistant effect of the resulting dye image can be improved. Further, such combined use is advantageous in respect that the using amount of high-boiling solvents that will be described hereinafter can be reduced.
Those solid 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type ultraviolet absorbing agents are of the foregoing formula but substituted at the 3xe2x80x2-, 5xe2x80x2- and 5-positions each with hydrogen, a halogen, an alkyl, an aryl, an alkoxy, an aryloxy, an alkenyl, hydroxy, nitro or the like radical.
And if these 2-(2xe2x80x2-hydroxyphenyl)benzotriazole ultraviolet absorbing agents are used, the diffusion thereof in the added layer is small, and the compatibility thereof with the liquid ultraviolet absorbing agents is excellent, thus giving satisfactory results.
The following are typical examples of such liquid solid 2-(2xe2x80x2-hydroxyphenyl)benzotriazole ultraviolet absorbing agents:
In addition, these liquid and solid benzotriazole-type compounds are described in Japanese Patent Examined Publication Nos. 10466/1961, 26187/1967, 5496/1973 and 41572/1973, and U.S. Pat. Nos. 3,754,919 and 4,220,711, and the like.
In contrast, no special restrictions are put on the use of ultraviolet absorbing agents in the nonlight-sensitive layer adjacent to the support side of the silver halide emulsion layer located farthest from the support, so that they can be various kinds.
However, it is desirable, also in this case, to use 2-(2xe2x80x2-hydroxyphenyl)benzotriazole-type ultraviolet absorbing agents having the following Formula [II] because they have satisfactory compatibility with high boiling solvents and are less-diffusible in the layer:
wherein R1, R2 and R3 each represents hydrogen, a halogen, an alkyl, an aryl, an alkoxy, an aryloxy, an alkenyl, nitro or hydroxyl radical.
The ultraviolet absorbing agents used in this case may be either liquid or solid, and may be used either singly or in arbitrary combination of not less than two kinds.
And typical examples of these agents are the foregoing compounds UV-1L to UV-14L and the above UV-1S to UV-19S.
These ultraviolet absorbing agents thus to be contained in the two nonlight-sensitive layers may be contained in the respective layers in a total amount in a ratio of 0.001-2 parts by weight per part by weight of the binder.
In addition, the ratio of the total amount of the ultraviolet absorbing agents in the nonlight-sensitive layer on the support side of the uppermost emulsion layer to the total amount of the ultraviolet absorbing agents in the nonlight-sensitive layer on the opposite side of the same emulsion layer from the support is desirable to be normally from 1:0.1 to 1:100.
Thus, in order to incorporate the ultraviolet absorbing agent into the nonlight-sensitive layer, the agent, if in the liquid form, may, if necessary, be dissolved into a low-boiling solvent, the solution is finely dispersed using a surface active agent into such a hydrophilic binder as an aqueous gelatin solution, and this resulting dispersed liquid is then added to an objective hydrophilic colloidal layer.
Alternatively, in the case where a solid ultraviolet absorbing agent is used or where a liquid and solid ultraviolet absorbing agent are combinedly used, they may, if necessary, be dissolved into a high-boiling solvent whose boiling point is not less than 175xc2x0 C., or, if necessary, into a mixture of the high-boiling solvent with a low-boiling solvent, the solution is then finely dispersed using a surface active agent into such a hydrophilic binder as an aqueous gelatin solution, and the resulting dispersed liquid is then added to an objective hydrophilic colloidal layer.
The high-boiling solvent used herein includes organic acid amides, carbamates, esters, ketones, urea derivatives, and the like, among which particularly preferred are esters including phthalic acid esters such as dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, di-n-octyl, phthalate, diiso-octyl phthalate di-(2-ethyl-hexyl)phthalate, diamyl phthalate, dinonyl phthalate, diisodecyl phthalate, and the like; phosphoric acid esters such as tricresyl phosphate, triphenyl phosphate, tri-(2-ethyl-hexyl)phosphate, triisononyl phosphate, and the like; sebacic acid esters such as dioctyl sebacate, di-(2-ethyl-hexyl)sebacate, diisodecyl sebacate, and the like; esters of glycerol such as glycerol tripropionate, glycerol tributyrate, and the like; and in addition, adipic acid esters, glutaric acid esters, succinic acid esters, maleic acid esters, fumaric acid esters, citric acid esters, and the like. These may be used singly or in combination of not less than two kinds.
The low-boiling solvent used herein includes methyl acetate, ethyl acetate, propyl acetate, butyl acetate, butyl propionate, cyclohexanol, cyclohexane, tetrahydrofuran, methyl alcohol, ethyl alcohol, acetonitrile, dimethyl formamide, dioxane, methyl-ethyl ketone, methylisobutyl ketone, diethylene glycol monoacetate, acetyl acetone, nitromethane, nitroethane, carbon tetrachloride, chloroform, and the like, and these may be used singly or in combination of not less than two kinds.
Further, as the surface active agent used herein, there may be used such anionic surface active agents as alkylbenzene sulfonate, alkylnaphthalene sulfonate, and the like, and/or such nonionic surface active agents as sorbitansesquioleic acid esters, sorbitanmonolauric acid esters, and the like.
The proportion of the using amount of the high-boiling solvent to that of the ultraviolet absorbing agent is normally not more than 5 parts by weight to 1 part by weight.
In addition, it is desirable to form a nonlight-sensitive layer as a protective layer composed substantially of a binder alone over and adjacent to the opposite side of the uppermost nonlight-sensitive layer from the support.
The forming of the protective layer enables to further reduce the phenomenon of losing the surface gloss with time; i.e., the so-called sweat phenomenon.
The coating amount of the binder of the protective layer is normally from about 1 to about 30 mg/dm2.
Besides, it is desirable to provide a nonlight-sensitive interlayer between the emulsion layer located closest to the support and the intermediate emulsion layer.
This interlayer also has a hydrophilic binder, of which the coating amount is desirable to be from 1 to 30 mg/dm2.
The foregoing two nonlight-sensitive layers and the above interlayer may, if necessary, contain such an anti-stain agent as dioctyl hydroquinone, dibutyl hydroquinone, and the like, a whiteness toning agent, a coating aid, and the like.
And the above-mentioned interlayer may, if necessary, be allowed to contain an ultraviolet absorbing agent as well.
On the premise that the above-described conditions are used, as the dispersion methods for dispersing couplers in the light-sensitive material of the present invention, there may be used various methods such as the so-called aqueous alkaline solution dispersion method, solid dispersion method, latex dispersion method, oil-in-water-type emulsification dispersion method, and the like, from among which any arbitrary method may be selected to be used according to the chemical structure of the coupler used.
Those particularly preferred methods for the present invention are the latex dispersion method and the oil-in-water-type emulsification dispersion method.
These methods are conventionally well-known, and the latex dispersion method and the effect thereof are described in Japanese Patent Publication Open to Public Inspection (hereinafter referred to as Japanese Patent O.P.I. Publication) Nos. 74538/1974, 59943/1976 and 32552/1979, and Research Disclosure Vol. 148, No. 14850 pp. 77-79, August 1976.
Those latexes appropriately usable in the latex dispersion method are homopolymers, copolymers and terpolymers of such monomers as e.g., styrene, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, 2-acetoacetoxyethyl methacrylate, 2-(methacryloyloxy)ethyl-trimethyl-ammonium-methosulfate, sodium 3-(methyacryloyloxy)propane-1-sulfonate, N-isopropyl-acrylamide, N-[2-(2-methyl-4-oxopentyl)]acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, and the like. As the oil-in-water-type emulsification dispersion method, the conventionally known method for dispersing hydrophobic additives such as couplers may be used which is carried out in the manner that the foregoing coupler is dissolved into a high-boiling solvent such as, for example, N-n-butyl acetanilide, diethyl lauramide, dibutyl phthalate, tricresyl phosphate, N-dodecylpyrolidone, or the like, and the solution is then finely dispersed into a hydrophilic colloid such as gelatin.
The silver halide for use in the silver halide emulsion layers of the light-sensitive material of this invention includes those silver halides arbitrarily usable in ordinary silver halide photographic emulsions such as silver chloride, silver bromide, silver iodide, silver chlorobromide, silver iodobromide, silver chloroiodobromide, and the like.
These silver halide particles may be either coarse-grained of fine-grained, the distribution of which may be either narrower or wider.
And these silver particles may be in the crystal form either normal or twinned having an arbitrary proportion of the [100] face to the [111] face. Further, the crystal structure of these silver halide particles may be either homogenious from the internal to the external or heterogeniously stratified with the internal and the external. These silver halide particles may be either of the type of forming a latent image mainly on the surface thereof or of the type of forming a latent image thereinside.
These silver halide particles may be prepared by any known methods practiced by those skilled in the art.
The silver halide emulsion to be used in the respective emulsion layers of the light-sensitive material of this invention is desirable to be free of water-soluble salts, but may remain undesalted, and further may be a mixture of not less than two separately prepared different silver halide emulsions.
As the binder for the silver halide emulsion layers and for the nonlight-sensitive layers, those conventionally known may be used. Those suitably usable include gelatin and gelatin derivatives such as, e.g., phenyl-carbamylated gelatin, acylated gelatin, phthalated gelatin, and the like. These binder materials may, if necessary, be used in the compatible mixture form of not less than two kinds.
The silver halide photographic emulsion comprising silver halide particles dispersed into a binder solution may be sensitized by chemical sensitizers. Those chemical sensitizers advantageously usable in the present invention are broadly classified into 4: noble-metallic sensitizers, sulfur sensitizers, selenium sensitizers, and reduction sensitizers.
Noble-metallic sensitizers include gold compounds and compounds of ruthenium, rhodium, palladium, iridium, platinum, and the like.
When using gold compound, ammonium thiocyanate or sodium thiocyanate may be used in combination therewith.
Sulfur sensitizers include active gelatin and other sulfur compounds.
Selenium sensitizers include active and inert selenium compounds.
Reduction sensitizers include stannous salts, polyamines, bisalkylaminosulfide, silane compounds, iminoaminomethanesulfinic acid, hydrazinium salts and hydrazine derivatives.
The light-sensitive material of this invention may contain, in addition to the foregoing additives, a stabilizer, development accelerator, hardening agent, surfactant, antistain agent, lubricant, brightening agent mordant, DIR compound, or various other photographically useful additives.
The light-sensitive material of this invention may be further arbitrarily provided with a backing layer in addition to the silver halide emulsion layers, the foregoing nonlight-sensitive layers, interlayers and protective layer.
As the reflective support of the light-sensitive material of the invention, those conventionally known materials such as plastic-laminated paper, baryta paper, synthetic paper, and the like, may be arbitrarily selected to be used according to uses. These support materials are generally subjected to various treatments for increasing the adherence thereof to the emulsion layer.
The light-sensitive material of this invention, after being exposed to light through a negative material having an image composed of coupling products, is subjected to color development.
The color development is carried out by an ordinary color developing method.
Namely, the light-sensitive material is first processed in a color developing bath containing a color developing agent. Otherwise, a color developing agent or a precursor thereof is in advance incorporated into the light-sensitive material, which is then processed in an activator solution. After that, in general, the material is bleached and then fixed in the usual way.
The color development by use of a color developer bath or of an activator bath, the bleaching, and the fixing may be independently carried out, but instead of carrying out such two or more processes independently, it is also possible to conduct such processes at a time by use of a processing solution having these functions (monobath); for example, the processing in a monobath of a color developer or an activator containing a bleaching agent and a fixing agent that will be hereinafter described, or the color development followed by the processing in a bleach-fixing bath containing a bleaching agent and fixing agent, and the like.
Otherwise, although the color development by use of the color developer bath or of the activator bath may be immediately followed by the bleach-fixing bath processing for desilvering, an acid stop bath processing may be provided in between the color development and the bleach-fixing bath processing.
The acid stop bath may be an aqueous solution of acetic acid or citric acid. And, if necessary, such processing as prehardening, neutralizing thereof, washing, stabilization, and the like, may be further provided.
When the print-making light-sensitive material is subjected to the above-described processings, a dye image is formed by the coupling reaction inside the light-sensitive material.
The color developing agent used in the processing of the light-sensitive material of this invention is typified by aromatic primary amine color developing agents.
Aromatic primary amine color developing agents include aminophenol-type and p-phenylenediamine-type derivatives. These compounds may be used in the free form or in the form of the hydrochloride thereof, of the sulfate thereof, or of such organic acid salts thereof as p-toluenesulfonate, tetraphenylborate, p-(t-octyl)-benzenesulfonate, and the like.
Typical examples of aromatic primary amine color developing agents are o-aminophenol, p-aminophenol, 5-amino-2-oxytoluene, 2-amino-3-oxytoluene, 2-oxy-3-amino-1,4-dimethylbenzene, N,N-diethyl-p-phenylenediamine hydrochloride, N-methyl-p-phenylenediamine hydrochloride, N-N-dimethyl-p-phenylenediamine hydrochloride, N-ethyl-N-xcex2-methanesulfonamidoethyl-3-methyl-4-aminoaniline and the sulfate thereof, N-ethyl-N-xcex2-hydroxyethylaminoaniline, N-N-diethyl-3-(xcex2-methanesulfonamidoethyl)-4-aminoaniline hydrochloride, 4-amino-N-(2-methoxyethyl)-N-ethyl-3-methylaniline-p-toluenesulfonate, N-ethyl-N-xcex2-methanesulfonamidoethyl-3-methyl-4-aminoanilinetetraphenyl borate, 4-amino-N-(2-methoxyethyl)-N-ethyl-3-methylaniline-tetraphenyl borate, p-morpholinoaniline, p-piperidinoaniline, 4-amino-N,N-diethyl-3-chloroaniline, and the like.
The light-sensitive material of this invention may, if necessary, contain a color developing agent precursor. The color developing agent precursor is a compound capable of producing a color developing agent under an alkaline condition, which includes, e.g., Schiff""s base-type precursors with aromatic aldehyde derivatives, multivalent-metallic ion complex precursors, phthalic acid imide derivative precursors, phosphoric acid amide derivative precursors, sugar-amine reactant precursors and urethane-type precursors.
These aromatic primary amine color developing agent precursors are as described in, e.g., U.S. Pat. Nos. 3,342,599, 2,507,114, 2,695,234 and 3,719,492, British Pat. No. 803,783, Japanese Patent O.P.I. Publication Nos. 135628/1978 and 79035/1979, and Research Disclosure Nos. 15159, 12146 and 13924.
Any of these aromatic primary amine color developing agents are contained in an amount of normally from 1 to 20 g/liter in the color developing solution. If contained in the precursor form in the light-sensitive material, the precursor is incorporated in an amount of normally from 0.5 to 3 moles per mole of silver halide.
The color developing solution or activator solution for use in the light-sensitive material of this invention contains such an alkali agent as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium tertiary phosphate, potassium tertiary phosphate, and the like, such as sulfite as sodium sulfite, potassium sulfite, and the like, and such a bromide as sodium bromide, potassium bromide, ammonium bromide, and the like. Further, the solution may, if necessary, contain any of known development restrainers, a thiocyanate such as sodium thiocyanate; potassium thiocyanate, ammonium thiocyanate, and the like; a chloride such as ammonium chloride, potassium chloride, sodium chloride, and the like; an organic solvent such as ethylene glycol, diethylene glycol, methanol, ethanol, n-butanol, benzyl alcohol, acetone, dimethylformamide, and the like; an amine such as hydroxylamine, ethanolamine, ethylenediamine, diethanolamine, and the like; a water softener such as sodium hexametaphosphate, sodium tripolyphosphate, ethylenediamine tetraacetate, diethylenetriamine pentaacetate, and the like; and a water-soluble brightening agent, and the like.
The color developing solution or activator solution used in the present invention may contain an auxiliary developing agent. As the auxiliary developing agent, 1-aryl-3-pyrazolidone derivatives are preferably used, any of which is used in an amount of from 1 mg to 1 g, and preferably from 10 mg to 500 mg per liter of the color developing or activator solution. Typical examples of such auxiliary developing agents are 1-phenyl-3-pyrazolidone, 4-methyl-1-phenyl-3-pyrazolidone, 4,4-dimethyl-1-phenyl-3-pyrazolidone, 4-methyl-4-hydroxymethyl-1-phenyl-3-pyrazolidone, 4-methyl-4-hydroxymethyl-1-(p-tolyl)-3-pyrazolidone, and the like.
The color developing solution or activator solution used in the invention is kept alkaline in the usual way, the hydrogen ion concentration of which, although arbitrarily selectable according to the kind, composition, purposes and uses of the negative material of the print-making light-sensitive material used, is generally from pH 9.5 to pH 13.5.
The color developing solution or activator solution used in this invention is generally used in a certain temperature range. The temperature range, although arbitrarily selectable according to the kind, composition, uses and purposes of the print-making light-sensitive material of the invention, is preferably from 15xc2x0 C. to 70xc2x0 C., and more preferably from 30xc2x0 C. to 50xc2x0 C.
As the bleaching agent for use in the bleaching bath or in the bleach-fixing bath, any known compounds may be used which include aminopolycarboxylic acid ferric complex salts such as ferric-sodium ethylenediamine tetraacetate, ferric-ammonium ethylenediamine tetraacetate, and the like, and persulfates such as ammonium persulfate, sodium persulfate, and the like.
As the fixing agent for use in the fixing bath or in the bleach-fixing bath, any known compounds may be used which include thiosulfates such as sodium thiosulfate, ammonium thiosulfate, and the like, water-soluble sulfur-containing diols such as 3,6-dithio-1,8-octanediol, 3,6,9,12-tetrathio-1,14-tetradecanediol, and the like, and water-soluble sulfur-containing dibasic acid such as ethylene-bis-thioglycolic acid, sodium ethylene-bis-thioglycolate, and the like.
According to the present invention, the deterioration (sweat phenomenon) of the surface gloss of the light-sensitive material caused with time after the development of the material by heat, light, moisture, and the like, is remarkably reduced; particularly the deterioration of the surface gloss by light is significantly reduced.
And the resistance to light of the color-developed dye image becomes markedly excellent, so that very little discoloration occurs. The color balance of the dye image, even when discolored, is sufficiently retained.
Further, very few static marks are produced when coating the component layers and when transporting the light-sensitive material through the inside of a photographic printer. | {
"pile_set_name": "USPTO Backgrounds"
} |
(1) Field of the Invention
The present invention relates generally to sewing and, more particularly, to a sewing work station having an adjustable work table and, chair.
(2) Description of the Prior Art
The usual modern day practice is to assemble garments in teams of four to eight sewing operators each performing one or two sewing operations. This "work chain" has been necessary, in large part, to the inability of most commercial sewing machines to perform multiple stitching types. This method has several drawbacks.
For example, the semi-completed goods must be re-bundled and un-bundled between each operator. In addition, the speed of the team tends to be governed by the lowest speed operator. Finally, it is difficult to determine the source of quality problems which arise after the garments are completed.
U.S. Pat. No. 4,901,658, issued to Sanvito, teaches one way to overcome these problems. Sanvito discloses a work station to stitch manufactured items. The work station includes a supporting frame on which is mounted a work table for supporting three machines which extend around the operator to allow a manufactured item to be removed from one sewing machine to another whereby one operator can complete the garment. However, the work table taught by Sanvito does not include any means for adjusting the work table height quickly for different operators working different shifts. In addition, Sanvito does not teach any means of coupling the work table and operator chair together to allow movement of the chair from position to position while, at the same time, preventing the tendency of the chair to roll back during working.
Thus, there remains a need for a new and improved sewing work station which allows a single operator to perform multiple sewing operations, includes means for adjusting the work table height quickly for different operators working different shifts, and couples the work table and operator chair together to allow movement of the chair from position to position while, at the same time, preventing the tendency of the chair to roll back during working. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mycoplasma gallisepticum is a pathogen of the avian respiratory tract. Sporadic outbreaks, having important economic consequences, occur in turkeys and broiler chickens, and remain a costly enzootic infection in commercial egg layers. The cytadhesin protein of the organism is a virulence determinant involved in the attachment of the organism to host surfaces during infection via recognition of host receptors.
In current practice, prophylactic immunization of fowl against M. gallisepticum related disease involves either controlled exposure to attenuated vaccine strains (for example the "F strain"), or the use of inactivated, whole cell oil emulsion vaccines. Each of these approaches has certain disadvantages. For example, live vaccines can produce disease or impair reproductive function. Inactivated vaccines, while generally effective in preventing disease in immunized birds, do not reliably prevent infection, and may allow spread of infection and disease to unvaccinated birds.
Improvements are also needed in current diagnostic tests for the presence of M. gallisepticum in fowl. Current methods for diagnosis of M. gallisepticum infections by serological methods typically employs whole organisms to assay the presence of antibodies against M. gallisepticum. These tests are costly and time consuming, and can produce false positive or false negative results due to nonspecific reactions.
U.S. Pat. No. 5,026,636, issued Jun. 25, 1991, discloses the isolation of the P1 cyadhesion gene from M. pneumoniae. U.S. Pat. No. 5,158,870, issued Oct. 27, 1992, discloses diagnosis of M. genitalium infection using monoclonal antibodies. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The embodiments described herein relate to organic light-emitting diodes, such as organic light-emitting diodes comprising a hole-transport layer, two light-emitting layers, and an electron-transport layer.
2. Description of the Related Art
White organic light emitting devices (WOLED) are becoming increasingly important for lighting applications. For example, WOLEDs may be able to replace fluorescent tubes to save energy. Thus there is a continuing need to improving the power efficiency of WOLEDs.
Many of the current WOLEDs comprise a hole-transport layer, at least two light-emitting layers, and an electron-transport layer arranged in that order. In these devices, each layer has a highest occupied molecular orbital (HOMO) energy level and a lowest unoccupied molecular orbital (LUMO) energy level, wherein the HOMO energy levels and/or the LUMO energy levels decrease in a stepwise fashion. In other words, with the energy levels of the first light-emitting layer are lower than the corresponding energy levels of the hole-transport layer (e.g. the HOMO of first light-emitting layer is lower than the HOMO of the hole-transport layer, the LUMO of the first light-emitting layer is lower than the LUMO of the hole-transport layer), the energy levels of the second light-emitting layer are lower than the corresponding energy levels of the first light-emitting layer, and the energy levels of the electron-transport layer are lower than the corresponding energy levels of the second light-emitting layer. These devices may suffer from the problems of electron leakage from the light-emitting layers through the hole-transport layer to the anode, and hole leakage from the light-emitting layers through the electron-transport layer to the cathode, thus reducing the device efficiency. Traditionally, hole-blocking and electron-blocking layers have sometimes been used to attempt to address this problem, but the additional layers add expense and complexity to the device fabrication and may reduce device efficiency.
Other devices may utilize hole-transport layers with very high LUMOs to block electron leakage to the anode an/or electron-transport layers with very low HOMOs to block hole leakage to the cathode. Unfortunately, the large energy gap between the corresponding molecular orbital of the hole-transport layer or the electron-transport layer and the corresponding electrode can significantly reduce hole or electron mobility. The reduced mobility can in turn cause reduced efficiency of the device. The large energy gap may also cause higher driving voltage. Thus, it is difficult to improve efficiency using this approach.
Thus, additional options for addressing these problems are needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a tape loading mechanism for a VCR (video cassette recorder), and more particularly, to a tape loading mechanism which draws a tape-like recording medium from a tape cassette loaded in a VCR, and winds the medium around a rotating head drum.
2. Description of the Related Art
In a tape loading mechanism for a VCR, in a loading method wherein, in general, a capstan is situated outside a running path of a magnetic tape, and a pinch roller for pressing the magnetic tape against the capstan is pressed against the capstan from the inside of the running path of the magnetic tape, it is necessary to move the pinch roller from an opening of a magnetic-tape cassette to a predetermined position and to accurately position it in accordance with a loading operation.
The following two kinds of structures have mostly been adopted for moving and positioning a pinch roller in a conventional tape loading mechanism of this kind:
(a) A structure wherein an arm rotatably supporting a pinch roller is rotatably pivoted on a movable base, and the pinch roller is positioned by moving the base and butting the arm against a stopper at a loading position.
(b) A structure wherein a supporting member pivoting a supporting arm of a pinch roller is moved by a moving mechanism, the supporting member is positioned by a pin secured on the supporting member being engaged with a catching member having a V-groove, and is charged by a spring.
Such structures, however, have the following disadvantages: It is difficult to provide a precise tilt angle of the pinch roller, that is, to secure so-called inclination accuracy at a catching position. Furthermore, inclination changes due to a reaction force when the pinch roller is pressed, and stable running of a magnetic tape is thereby hindered.
The structure of a pinch roller pressing mechanism generally adopted in a conventional VCR is shown in FIG. 1. In FIG. 1, there is shown a magnetic tape 4. A capstan 18 runs the magnetic tape 4 at a constant speed. A pinch roller 11 presses the magnetic tape 4 against the capstan 18. The pinch roller 11 is rotatably pivoted at an end portion of a rotatably-pivoted arm 98. In this structure, the arm 98 is pulled in the direction of arrow J by another member (not shown), a pressing force is given to the pinch roller 11 by a charging spring (not shown), and the pinch roller 11 is thereby pressed against the capstan 18.
In this structure, however, unevenness in the pressing force is produced along the vertical direction (the direction of the axis) of the pinch roller 11, hindering in some cases stable running of the magnetic tape 4. Accordingly, a structure as shown in FIGS. 2(A) and 2(B) has recently been adopted.
In FIGS. 2(A) and 2(B), a pressing lever 99 for providing a pressing force to a pinch roller 11 includes two contact members 99a and 99b, each having the shape of a projected piece, formed facing each other, and is lever 99 provided so as to be rotatable around a shaft 99c. The pinch roller 11 is supported by a rotable arm 98'. In this structure, by pulling the pressing lever 99 in the direction of arrow K in FIG. 2(A), the contact members 99a and 99b press upper and lower end portions 11a and 11b of the shaft of the pinch roller 11, respectively, to give a uniform pressing force to the pinch roller 11.
In the structure shown in FIGS. 2(A) and 2(B), however, if the contact members 99a and 99b of the pressing lever 99 are not aligned with each other, unevenness in the pressing force is produced along the direction of the shaft of the pinch roller 11. Accordingly, it is necessary to align the contact members 99a and 99b with each other in an assembling process of the VCR. Hence, this structure has the problems that it takes much time for the alignment, and production cost is thereby increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field Of The Invention
The present invention relates generally to systems for gravel packing wells, and more particularly, but not by way of limitation, to a one trip gravel packing system which can perform a squeeze pack on a well, and can subsequently produce well fluids without tripping the gravel packing system and the tubing string to which it is attached out of the well.
2. Description Of The Prior Art
In a typical gravel packing operation, the gravel packing assembly is run into the well on a work string. The appropriate zone or zones of the well are gravel packed, and then the work string and some portion of the gravel packing apparatus are removed from the well. Subsequently, a production tubing string with associated apparatus is lowered into the well and engaged with that portion of the gravel packing apparatus which was left in the well.
This tripping of the initial work string out of the well and tripping of the production string back into the well is a time consuming and expensive operation, particularly with relatively deep wells where it may take on the order of eighteen hours of rig time. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a solid base, a process for producing said solid base and a process for preparing an internal olefin in the presence of said solid base. More particularly, the present invention relates to a solid base obtainable by heating alumina, an alkaline earth metal compound and an alkali metal or its hydride at a specific temperature, a process for producing said solid base and a process for preparing an internal olefin by isomerizing an olefin in the presence of said solid base.
2. Description of the Related Art
Solid bases are technically important catalysts and used to catalyze the isomerization of olefins, and hydrogenation or dehydrogenation reactions.
There is known a solid base comprising an alkali metal supported on an alkaline earth metal oxide or a carrier consisting of an alkaline earth metal oxide and an alkali metal hydroxide (cf. Japanese Patent Kokai Publication Nos. 94925/1985 and 81334/1987). However, such a solid base comprising an alkaline earth metal oxide tends to agglomerate during its production so that its handleability is poor, and its catalytic performance is not sufficient.
Further, a solid base comprising an alkali metal hydride supported on a carrier such as alumina is known (cf. Japanese Patent Kokai Publication Nos. 121753/1978 and 134736/1984). Since such a solid base comprising an alkali metal hydride can act as a catalyst in the presence of an auxiliary agent such as ammonia or hydrazine, it has some drawbacks since a purification apparatus for separating and removing the agent is required and that the catalytic reaction is troublesome due to the use of the auxiliary agent. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many different types of computer-implemented recognition systems exist, wherein such recognition systems are configured to perform some form of classification with respect to input data. For example, computer-implemented speech recognition systems are configured to receive spoken utterances of a user and recognize words in the spoken utterances. In another example, handwriting recognition systems have been developed to receive a handwriting sample and identify, for instance, an author of the handwriting sample, individual letters in the handwriting sample, words in the handwriting sample, etc. In still yet another example, computer-implemented recognition systems have been developed to perform facial recognition, fingerprint recognition, and the like.
In many of these recognition systems, a respective recognition system is trained to recognize a relatively small number of potential labels. For instance, many speech recognition systems are trained to recognize words in a relatively small vocabulary (e.g., on the order of hundreds of words). Many conventional speech recognition systems that are configured to recognize words in a large vocabulary (on the order of thousands or tens of thousands of words) consume a significant amount of computer-readable memory, and additionally tend to require personalized training to accurately recognize words in spoken utterances. For many applications, however, it is impractical to obtain requisite training data to cause recognitions output by the recognition system to be sufficiently accurate. For instance, in a call-center scenario where words in a relatively large vocabulary are desirably recognized, it is impractical to train a speech recognition model for each individual customer, and is further impractical to ask each customer to devote several minutes to help train the speech recognition system.
Recently, deep neural networks have been studied as a potential technology that can robustly perform speech recognition without requiring a large amount of individualized training data. A deep neural network (DNN) is a deterministic model that includes an observed data layer and a plurality of hidden layers, stacked one on top of another. Each hidden layer includes a plurality of hidden units (neurons), which are coupled to other hidden units or an output label by way of weighted synapses. The output of a DNN is a probability distribution over potential labels corresponding to the input data. While DNNs have shown great promise in performing recognition tasks, improved robustness with respect to distortion, speaker identity, accent, and the like, is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinctive celery (Apium graveolens var. dulce) variety, designated ADS-25. All publications cited in this application are herein incorporated by reference.
There are numerous steps in the development of any novel, desirable plant germplasm. Plant breeding begins with the analysis, definition of problems and weaknesses of the current germplasm, the establishment of program goals, and the definition of specific breeding objectives. The next step is selection of germplasm that possesses the traits to meet the program goals. The goal is to combine in a single variety or hybrid an improved combination of desirable traits from the parental germplasm. These important traits may include improved flavor, increased stalk size and weight, higher seed yield, improved color, resistance to diseases and insects, tolerance to drought and heat, and better agronomic quality.
All cultivated forms of celery belong to the species Apium graveolens var. dulce that is grown for its edible stalk. As a crop, celery is grown commercially wherever environmental conditions permit the production of an economically viable yield. In the United States, the principal growing regions are California, Florida, Arizona and Michigan. Fresh celery is available in the United States year-round, although the greatest supply is from November through January. For planting purposes, the celery season is typically divided into two seasons: summer and winter, with Florida and the southern California areas harvesting from November to July, and Michigan and northern California harvesting from July to October. Celery is consumed as fresh, raw product and as a cooked vegetable.
Celery is a cool-season biennial that grows best from 60° F. to 65° F. (16° C. to 18° C.), but will tolerate temperatures from 45° F. to 75° F. (7° C. to 24° C.). Freezing damages mature celery by splitting the petioles or causing the skin to peel, making the stalks unmarketable. This can be a problem for crops planted in the winter regions; however, celery can tolerate minor freezes early in the season.
The two main growing regions for celery in California are located along the Pacific Ocean: the central coast or summer production area (Monterey, San Benito, Santa Cruz and San Luis Obispo Counties) and the south coast or winter production area (Ventura and Santa Barbara Counties). A minor region (winter) is located in the southern deserts (Riverside and Imperial Counties).
In the south coast, celery is transplanted from early August to April for harvest from November to mid-July; in the Santa Maria area, celery is transplanted from January to August for harvest from April through December. In the central coast, fields are transplanted from March to September for harvest from late June to late December. In the southern deserts, fields are transplanted in late August for harvest in January.
Commonly used celery varieties for coastal production include Tall Utah 52-75, Conquistador and Sonora. Some shippers use their own proprietary varieties. Celery seed is very small and difficult to germinate. All commercial celery is planted as greenhouse-grown transplants. Celery grown from transplants is more uniform than from seed and takes less time to grow the crop in the field. Transplanted celery is traditionally placed in double rows on 40-inch (100-cm) beds with plants spaced between 6.0 and 7.0 inches apart.
Celery requires a relatively long and cool growing season (The physiology of vegetable crops by Pressman, CAB Intl., New York, 1997). Earlier transplanting results in a longer growing season, increased yields, and better prices. However, celery scheduled for Spring harvest often involves production in the coolest weather conditions of Winter, a period during which vernalization can occur. If adequate vernalization occurs for the variety, bolting may be initiated. Bolting is the premature rapid elongation of the main celery stem into a floral axis (i.e., during the first year for this normally biennial species). Bolting slows growth as the plant approaches marketable size leaves a stalk with no commercial value. Different varieties have different vernalization requirements, but in the presence of bolting, the length of the seed stem can be used as a means of measuring bolting tolerance that exists in each different variety. The most susceptible varieties reach their vernalization requirement earlier and have time to develop the longest seed stems, while the moderately tolerant varieties take longer to reach their vernalization requirement and have less time to develop a seed stem which would therefore be shorter. Under normal production conditions, the most tolerant varieties may not achieve their vernalization requirement and therefore not produce a measurable seed stem.
The coldest months when celery is grown in the United States are December, January and February. If celery is going to reach its vernalization requirements to cause bolting, it is generally younger celery that is exposed to this cold weather window. This celery generally matures in the months of April and May which constitutes what the celery industry calls the bolting or seeder window. The bolting or seeder window is a period where seed stems are generally going to impact the quality of the marketable celery and this is most consistently experienced in celery grown in the Southern California region. The presence of seed stems in celery can be considered a major marketable defect as set forth in the USDA grade standards. If the seed stem is longer than twice the diameter of the celery stalk or eight inches, the celery no longer meets the standards of US Grade #1. If the seed stem is longer than three times the diameter of the celery stalk, the celery is no longer marketable as US Grade #2 (United States Standards for Grades of Celery, United States Department of Agriculture, reprinted January 1997).
Celery is an allogamous biennial crop. The celery genome consists of 11 chromosomes. Its high degree of out-crossing is accomplished by insects and wind pollination. Pollinators of celery flowers include a large number of wasp, bee and fly species. Celery is subject to inbreeding depression, which appears to be dependent upon the genetic background as some lines are able to withstand selfing for three or four generations.
Celery flowers are protandrous, with pollen being released 3-6 days before stigma receptivity. At the time of stigma receptivity the stamens will have fallen and the two stigmata unfolded in an upright position. The degree of protandry varies, which makes it difficult to perform reliable hybridization, due to the possibility of accidental selfing.
Celery flowers are very small, which significantly hinders easy removal of individual anthers. Furthermore, different developmental stages of the flowers in umbels make it difficult to avoid uncontrolled pollinations. The standard hybridization technique in celery consists of selecting flower buds of the same size and eliminating the older and younger flowers. Then, the umbellets are covered with glycine paper bags for a 5-10 day period, during which the stigmas become receptive. At the time the flowers are receptive, available pollen or umbellets shedding pollen from selected male parents are rubbed on to the stigmas of the female parent.
Celery plants require a period of vernalization while in the vegetative phase in order to induce seed stalk development. A period of 6-10 weeks at 5° C. to 8° C. when the plants are greater than 4 weeks old is usually adequate. Due to a wide range of responses to the cold treatment, it is often difficult to synchronize crossing, since plants will flower at different times. However, pollen can be stored for 6-8 months at −10° C. in the presence of silica gel or calcium chloride with a viability decline of only 20-40%, thus providing flexibility to perform crosses over a longer time.
For selfing, the plant or selected umbels are caged in cloth bags. These are shaken several times during the day to promote pollen release. Houseflies (Musca domestica) can also be introduced weekly into the bags to perform pollinations.
Celery in general is an important and valuable vegetable crop. Thus, a continuing goal of celery plant breeders is to develop stable, high yielding celery cultivars that are agronomically sound to maximize the amount of yield produced on the land. To accomplish this goal, the celery breeder must select and develop celery plants that have the traits that result in superior cultivars.
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to methods of lining the internal surface of a pipe, in particular to methods of lining the internal surface of an existing underground pipe.
There has been known a no-excavation underground pipe lining method in which the internal surface of an existing underground gas pipe, water pipe, etc. are lined with a resin without the necessity of any trenching or excavation. For example, a gas service pipe is buried underground branching from a gas main and extending to a user's house. In the method called no-excavation underground pipe lining, there are substantially two steps involved. In the first step, a pressurized liquid is used to produce a pushing force to introduce a necessary amount of resin into the service pipe through an open end thereof and to move the resin through the pipe until the front end of the resin plug flow reaches an inner end (a position branching from the gas main) of the pipe. In the second step, a suction force is used to suck the resin back from the inner end so as to line the internal surface of the pipe with the resin.
In the above first step, prior to introducing the resin into the pipe, a lining pig is at first inserted into the pipe so that it is located in the front of the resin plug flow while the resin is moved forward. In the above second step, such a lining pig serves to even a resin lining layer formed on the internal surface of the pipe so as to obtain a uniform thickness for the resin layer along the entire length of the pipe.
However, since a gas service pipe usually involves a tee member having a recess portion or involves a larger diameter portion along the length thereof, the lining pig is easy to enter or drop into these places, resulting in a problem that there would be no lining pig which can be used to produce a uniform resin lining layer on the internal surface of the pipe.
Further, since a gas service pipe may also involve a narrow-passing section such as valve along its length, it will be difficult for a conventional lining pig to pass therethrough. As a result, a desired lining treatment proves to be impossible.
Moreover, in the above first step, after the resin has been introduced into the pipe, a resin transporting pig, a liquid absorbing material and a liquid blocking pig are inserted behind the resin, so that the pressurized liquid is prevented from mixing into the resin while the resin is moved forward and backward in the pipe. But, a conventional liquid blocking pig sometimes proves to be insufficient to prevent a liquid from mixing into the resin, resulting in a liquid-containing resin that has a deteriorated adhesive property and hence can not adhere to the internal surface of the pipe. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present disclosure relates to an in-pipe inspection robot for inspecting a pipe.
2. Description of the Related Art
Generally, an in-pipe inspection robot is provided to inspect the pipelines installed in a nuclear power plant, a thermoelectric power plant or chemical plants where human access is restricted for safety reason, performing a role of improving the safety of the facilities by moving in the pipelines and closely inspecting foreign materials clogging the pipes, cracks occurring in the pipes or micro-defects in the pipes.
The in-pipe inspection robots such as small wheeled electric vehicles are known. However, these robots have problems of unsatisfactory performance of the desired action, for reason such as wheels sliding on pipes. Accordingly, these days, the technology of in-pipe inspection robot employing a linear actuator as a driving means has been developed.
Particularly, a rack-and-pinion system or a ball screw mechanism is known as the linear actuator. The rack-and-pinion system has a structure of using a rotary motor and rack and pinion in which the pinion is rotatably driven by the rotary motor, thus moving the rack forward and backward. The screw device has a structure in which a nut screw-engaged with a screw axis is driven forward and backward by driving of the rotary motor.
Meanwhile, the in-pipe inspection robot is not able to move along the pipes with the rack-and-pinion system and the ball screw device only. Therefore, there is preceding issue that it is necessary to separately develop a brake device which can be adhered to the pipes or released from the adhered state, while exerting repulsive force to the pipes opposite to a direction of advancement.
However, even when the preceding issue is addressed, there still remains an issue of impaired motion on curved portions of the pipe because the rack of the rack-and-pinion system, which is not flexible in lengthwise direction, is stuck at the curved portion of the pipe. Likewise, the ball screw device also has a shortcoming that it is not able to move on the curved portions of the pipes because the screw axis, which is not flexible, is stuck at the curved portions of the pipes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Smoke detection systems in aircraft cargo compartments have historically experienced a high incidence of false alarm rates. Some smoke detection systems used in aircraft cargo compartments consist of a network of “spot-type” smoke detectors coupled with an alarm system. The network of detectors sends alarm status signals to the alarm system, which provides a warning signal to the flight deck, where a decision may take place to initiate fire suppression and other safety systems. Other proposed smoke detection systems may employ video cameras.
The existence of “particulates” such as mist, dust, condensation, oil droplets and other aerosols in the cargo hold compartments and the sensitivity of current sensor systems contribute to the “high” false alarm rates. In some cases, the ratio of false to genuine alarms may reach 200:1. One study of verified smoke events vs. total alarms indicates that over 90% of all alarms are false due to these particulates. The direct cost of each false alarm may exceed $50,000 and may include indirect consequences such as (1) increased safety risk due to forced landings at unfamiliar or less adequate airports, (2) loss of confidence in detection systems, and (3) risk of injury to passengers and crewmembers during evacuation.
Accordingly, a need exists in the art for improved techniques for smoke and fire hazard detection and evaluation. | {
"pile_set_name": "USPTO Backgrounds"
} |
One of the primary uses of the Internet is content provision. Content may include any kind of content accessible via the Internet including, for example, textual content items, multimedia content items, etc. Content providers distribute, and sometimes also generate, content items that are made accessible to Internet users (e.g., content consumers). One of the greatest difficulties for users and content providers alike is determining the content items that any particular user is interested in receiving. It is known to address this problem by generating, by and/or for each user, a user profile. The user profile is an indication of the user's specific interests, which may then be matched with specific content items to be provided to the user.
There are two known ways for generating user profiles. In one method, user profiles are generated automatically based on the behavior of the user. For example, if a user visits a web site at which he or she makes a purchase, the kind of object purchased is stored and the user is presumed to have an interest in other things like the ones they have purchased. This indirect method is outside user control and prone to error. For example, a person buying gifts for others would likely be profiled as being a user of the products purchased. The method also fails in terms of what it remembers. A user whose interests change over time can be characterized by a profile based in part on past interests that they have given up.
Another known way to generate user profiles involves allowing the user to select interests from broad categories. In this method, the user selects very general interests (such as in News, Sports, etc), like selecting which newspaper sections they read or TV networks they watch. This approach is user driven, but is not specific. Often this is because of the difficulty of enticing users to make the time commitment necessary to submit detailed information. Further concerns about privacy make some users reluctant to provide more detailed information. Accordingly, the profiles that emerge from this method often do not provide a sufficiently precise guide to the specific information the user would like to receive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The products in primary use for wound closure are surgical sutures and staples. Sutures are recognized to provide adequate wound support. However, sutures cause additional trauma to the wound site (by reason of the need for the needle and suture to pass through tissue) and are time-consuming to place, and, at skin level, can cause unattractive wound closure marks. Surgical staples have been developed to speed wound apposition. However, surgical staples also impose additional wound trauma and require the use of ancillary and often expensive devices for positioning and applying the staples.
To overcome these drawbacks, fast-acting surgical adhesives have been proposed. One group of such adhesives is the monomeric forms of alpha-cyanoacrylates.
Reference is made, for example, to U.S. Pat. No. 3,527,841 (Wicker et al.); U.S. Pat. No. 3,722,599 (Robertson et al.); U.S. Pat. No. 3,995,641 (Kronenthal et al.); and U.S. Pat. No. 3,940,362 (Overhults), which disclose that alpha-cyanoacrylates are useful as surgical adhesives. All of the foregoing references are hereby incorporated by reference herein.
Typically, when used as adhesives and sealants, cyanoacrylates are applied in monomeric form to the surfaces to be joined or sealed, where, typically, in situ anionic polymerization of the monomer occurs, giving rise to the desired adhesive bond or seal. Implants, such as rods, meshes, screws, and plates, may also be formed of cyanoacrylate polymers, formed typically by radical-initiated polymerization.
However, a drawback to the in vivo biomedical use of alpha-cyanoacrylate monomers and polymers has been their potential for causing adverse tissue response. For example, methyl alpha-cyanoacrylate has been reported to cause tissue inflammation at the site of application.
The adverse tissue response to alpha-cyanoacrylates appears to be caused by the products released during in vivo biodegradation of the polymerized alpha-cyanoacrylates. It is believed that formaldehyde is the biodegradation product most responsible for the adverse tissue response and, specifically, the high concentration of formaldehyde produced during rapid polymer biodegradation. Reference is made, for example, to F. Leonard et al., Journal of Applied Polymer Science, Vol. 10, pp. 259-272 (1966); F. Leonard, Annals New York Academy of Sciences, Vol. 146, pp. 203-213 (1968); Tseng, Yin-Chao, et al., Journal of Applied Biomaterials, Vol. 1, pp. 111-119 (1990), and to Tseng, Yin-Chao, et al., Journal of Biomedical Materials Research, Vol. 24, pp. 1355-1367 (1990).
For these reasons, cyanoacrylates have not come into widespread use for biomedical purposes.
Efforts to increase the tissue compatibility of alpha-cyanoacrylates have included modifying the alkyl ester group. For example, increasing the alkyl ester chain length to form the higher cyanoacrylate analogues, e.g., butyl-2-cyanoacrylates and octyl-2-cyanoacrylates, has been found to improve biocompatibility but the higher analogues biodegrade at slower rates than the lower alkyl cyanoacrylates.
Other examples of modified alpha-cyanoacrylates used in biomedical applications include carbalkoxyalkyl alpha-cyanoacrylates (see, for example, U.S. Pat. No. 3,995,641 to Kronenthal et al.), fluorocyanoacrylates (see, for example, U.S. Pat. No. 3,722,599 to Robertson et al.), and alkoxyalkyl 2-cyanoacrylates (see, for example, U.S. Pat. No. 3,559,652 to Banitt et al.). Other efforts have included mixing alpha-cyanoacrylates with dimethyl methylenemalonate and higher esters of 2-cyanoacrylic acid (see, for example, U.S. Pat. No. 3,591,676 to Hawkins et al.).
In other efforts to increase the usefulness of alpha-cyanoacrylate adhesive compositions for surgical applications, certain viscosity modifiers have been used in combination with alkyl alpha-cyanoacrylate monomers, such as methyl alpha-cyanoacrylate. See, for example, U.S. Pat. No. 3,564,078 (wherein the viscosity modifier is poly(ethyl 2-cyanoacrylate)) and U.S. Pat. No. 3,527,841 (wherein the viscosity modifier is poly(lactic acid)), both patents being to Wicker et al.
In a related application, U.S. Ser. No. 08/040,618, filed Mar. 31, 1993 (U.S. Pat. No. 5,328,687), the entire contents of which are hereby incorporated by reference, the use of formaldehyde scavengers has been proposed to improve biocompatibility of alpha-cyanoacrylate polymers, whose biodegradation produces formaldehyde, for use in in vivo applications. It is known that various compounds can affect polymerization of alpha-cyanoacrylate monomers, including acids to inhibit or slow polymerization (e.g., Leonard et al., U.S. Pat. No. 3,896,077), and bases to accelerate polymerization (e.g., Coover et al., U.S. Pat. No. 3,759,264 and Dombroski et al., U.S. Pat. No. 4,042,442). | {
"pile_set_name": "USPTO Backgrounds"
} |
Computers may be utilized to process and subsequently print out digital images. Generally, a computer may receive one or more digital images, for example, from another computer, a digital camera or an image scanner. Once the digital image is received, a computer user may desire to have it printed out on some type of paper. As such, the user causes an application operating on the computer to transfer the data associated with the desired image to a print driver that also operates on the computer. The print driver software may then process the digital image data in order to convert it into an acceptable format for the printer associated with the printer driver. Subsequently, the printer driver transfers the formatted image data to the printer which eventually prints the image onto one or more pieces of paper for the user.
It should be appreciated that there is a continuing desire within the printer industry to enable printer drivers to produce more pleasing or attractive renditions of human facial regions location within images.
For these and other reasons, there is a need for the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
SAW components are known, for example, from the document “SAW Devices for Consumer Communication Applications” (IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 40, No. 5, September 1993). However, the finite conductivity of the electrically insulating materials, e.g. of the piezoelectric substrates, which are employed in components operating with acoustic waves can lead to a charge transfer between conductive circuit elements that are at different electrical potentials. Such a charge transfer, e.g., a so-called ESD pulse, regularly leads to destruction, or at least to functional impairment of such SAW components.
It is known from the document U.S. Pat. No. 7,388,456 B2 that SAW filters can be protected against ESD pulses by means of cascaded resonators. In ladder-type structures, in particular, a ratio of substantially 1:1 of the capacitances of serial and parallel transducers is advantageous.
Furthermore, the trivial solution, namely increasing the spatial distance between the conductive structures, firstly goes against the continuous trend toward miniaturization. Secondly, the wavelengths of acoustic waves generally determine the characteristic distance between such electrode structures. Thus, the acoustic wavelength substantially determines the finger spacing of interdigital structures. A simple increase in the finger distances would then considerably impair the electroacoustic properties of such components. | {
"pile_set_name": "USPTO Backgrounds"
} |
A rear axle in a motor vehicle rear suspension system referred to alternatively as a "trailing arm", "twist axle", or "compound crank" suspension system includes a pair of longitudinal control arms usually made of cast iron or aluminum and a transverse torsion bar usually made of steel. Each control arm has a first end hinged to a body of the motor vehicle for up and down pivotal movement and a second end at which a wheel spindle is rigidly attached. Respective ones of a pair of rear road wheels are rotatably mounted on the wheel spindles and guided in vertical suspension excursions relative to the body of the motor vehicle by the control arms. Respective ones of a pair of primary suspension springs are disposed between the control arms and the body of the motor vehicle. Commonly, the torsion bar has a channel-shaped or C-shaped cross section except at respective ones of a pair of opposite terminal ends thereof which are rolled or otherwise formed into right circular cylinders. The circular edges of the terminal ends of the torsion bar are welded to respective ones of the control arms. The torsion bar flexes resiliently in bending and in torsion in response to unequal suspension excursions of the control arms to supplement the primary suspension springs. A rear axle according to this invention is a novel alternative to the known rear axle just described. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method of producing acrylamide polymers, more specifically, this invention relates to an improved method for polymerizing concentrated aqueous monomer solution. Obtained acrylamide polymers are water soluble, porous, hydrous gel and can be dried quickly.
Various processes for preparing polymers of acrylamide have been already known in the art, and many products of acrylamide polymers are now available on the market. The techniques on production of such material are also rapidly advancing. The commercially feasible acrylamide polymers may be grouped into two types: aqueous liquid and powder. These two types of polymers have their own traits, and both of them are widely used in many fields of industry. Recently, however, preference is being given to use of the powder as it has now become possible to obtain the powder with very high quality and also because such powder are more easy to treat.
Various kinds of techniques have been proposed for producing powdery acrylamide polymers, for instance, reversed phase emulsion polymerization method, reversed phase suspension polymerization method and precipitation polymerization method. Any of these methods, however, must use an organic solvent in the polymerization process and also can not always produce a polymer with high quality. There is also available a method in which an aqueous monomer solution at a relatively low concentration (15 to 20% by weight) and dehydration is made by using a water-absorbing solvent such as methanol, acetone or acetonitrile. According to this method, however, a great quantity of water-absorbing solvent must be used as water exists in an amount of more than 5 times the polymer, and also too much cost is required for recovery of the solvent.
Japanese Patent Laid-Open No. 124188/74 discloses "A method of producing dry acrylamide polymers" according to which 10 to 30% by weight of aqueous acrylamide solution is polymerized, and the obtained polymerization product is kneaded and shaped by using an extruder, followed by primary drying with hot air and secondary drying with methanol. This method requires a great quantity of heat as the initial water content is high.
According to the "Method of producing water-soluble polymers" proposed in Japanese Patent Publication No. 5222/74, high-concentration solution of acrylamide (50 to 80% by weight) is polymerized in the presence of a polymerization regulator by forming the polymerization solution into the form of a thin film to increase the surface area while removing heat of polymerization by means of radiation or external cooling. This method has a drawback that the polymerization vessel used therefor is excessively large in area because the polymerization solution is formed into a film, and hence such method is also not suited for industrial application.
In the past attempts for improvement in polymerization of acrylamide, priority has been given to the techniques for removing heat of polymerization and various methods have been proposed in this connection. For instance, in the reversed phase emulsion polymerization method or reversed phase suspension polymerization method, it is tried to dissipate heat of polymerization in a great amount of organic solvent introduced into the polymerization system. In the case of aqueous solution polymerization, as it is difficult to remove heat of polymerization, the monomer concentration usable in this method is up to about 30% by weight, and for polymerization at a higher concentration, the polymerization solution must be formed into a film, so as to expedite heat dissipation. Thus, the greatest problem in the conventional art of aqueous solution polymerization was how to keep the polymerization system below the boiling point to prevent the thermal degradation of the polymer. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention, in some embodiments thereof, relates to isolated polypeptides and polynucleotides, nucleic acid constructs comprising same, transgenic cells comprising same, transgenic plants exogenously expressing same and more particularly, but not exclusively, to methods of using same for increasing abiotic stress tolerance, growth rate, biomass, vigor, yield (e.g., seed yield, oil yield), oil content, fiber yield, fiber quality and/or fertilizer use efficiency (e.g., nitrogen use efficiency) of a plant.
Abiotic stress (ABS; also referred to as “environmental stress”) conditions such as salinity, drought, flood, suboptimal temperature and toxic chemical pollution, cause substantial damage to agricultural plants. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the stress conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Furthermore, most of the crop plants are highly susceptible to abiotic stress and thus necessitate optimal growth conditions for commercial crop yields. Continuous exposure to stress causes major alterations in the plant metabolism which ultimately leads to cell death and consequently yield losses.
The global shortage of water supply is one of the most severe agricultural problems affecting plant growth and crop yield and efforts are made to mitigate the harmful effects of desertification and salinization of the world's arable land. Water deficit is a common component of many plant stresses and occurs in plant cells when the whole plant transpiration rate exceeds the water uptake. In addition to drought, other stresses, such as salinity and low temperature, produce cellular dehydration.
Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage and water supply shortage. In severe cases, drought can last many years and results in devastating effects on agriculture and water supplies. Furthermore, drought is associated with increase susceptibility to various diseases.
For most crop plants, the land regions of the world are too arid. In addition, overuse of available water results in increased loss of agriculturally-usable land (desertification), and increase of salt accumulation in soils adds to the loss of available water in soils.
Salinity, high salt levels, affects one in five hectares of irrigated land. This condition is only expected to worsen, further reducing the availability of arable land and crop production, since none of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit which leads to osmotic stress (similar to drought stress) and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Soil salinity is thus one of the more important variables that determine whether a plant may thrive. In many parts of the world, sizable land areas are uncultivable due to naturally high soil salinity. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population. Salt tolerance is of particular importance early in a plant's lifecycle, since evaporation from the soil surface causes upward water movement, and salt accumulates in the upper soil layer where the seeds are placed. On the other hand, germination normally takes place at a salt concentration which is higher than the mean salt level in the whole soil profile.
Germination of many crops is sensitive to temperature. A gene that would enhance germination in hot conditions would be useful for crops that are planted late in the season or in hot climates. In addition, seedlings and mature plants that are exposed to excess heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat.
Heat stress often accompanies conditions of low water availability. Heat itself is seen as an interacting stress and adds to the detrimental effects caused by water deficit conditions. Water evaporation increases along with the rise in daytime temperatures and can result in high transpiration rates and low plant water potentials. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in various ways; therefore understanding the interaction between different stresses may be important for the development of strategies to enhance stress tolerance by genetic manipulation.
Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. The underlying mechanisms of chilling sensitivity are not completely understood yet, but probably involve the level of membrane saturation and other physiological deficiencies. For example, photoinhibition of photosynthesis (disruption of photosynthesis due to high light intensities) often occurs under clear atmospheric conditions subsequent to cold late summer/autumn nights. In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.
Salt and drought stress signal transduction consist of ionic and osmotic homeostasis signaling pathways. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. The osmotic component of salt stress involves complex plant reactions that overlap with drought and/or cold stress responses.
Common aspects of drought, cold and salt stress response [Reviewed in Xiong and Zhu (2002) Plant Cell Environ. 25: 131-139] include: (a) transient changes in the cytoplasmic calcium levels early in the signaling event; (b) signal transduction via mitogen-activated and/or calcium dependent protein kinases (CDPKs) and protein phosphatases; (c) increases in abscisic acid levels in response to stress triggering a subset of responses; (d) inositol phosphates as signal molecules (at least for a subset of the stress responsive transcriptional changes; (e) activation of phospholipases which in turn generates a diverse array of second messenger molecules, some of which might regulate the activity of stress responsive kinases; (f) induction of late embryogenesis abundant (LEA) type genes including the CRT/DRE responsive COR/RD genes; (g) increased levels of antioxidants and compatible osmolytes such as proline and soluble sugars; and (h) accumulation of reactive oxygen species such as superoxide, hydrogen peroxide, and hydroxyl radicals. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.
Several genes which increase tolerance to cold or salt stress can also improve drought stress protection, these include for example, the transcription factor AtCBF/DREB1, OsCDPK7 (Saijo et al. 2000, Plant J. 23: 319-327) or AVP1 (a vacuolar pyrophosphatase-proton pump, Gaxiola et al. 2001, Proc. Natl. Acad. Sci. USA 98: 11444-11449).
Developing stress-tolerant plants is a strategy that has the potential to solve or mediate at least some of these problems. However, traditional plant breeding strategies used to develop new lines of plants that exhibit tolerance to ABS are relatively inefficient since they are tedious, time consuming and of unpredictable outcome. Furthermore, limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Additionally, the cellular processes leading to ABS tolerance are complex in nature and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways.
Genetic engineering efforts, aimed at conferring abiotic stress tolerance to transgenic crops, have been described in various publications [Apse and Blumwald (Curr Opin Biotechnol. 13:146-150, 2002), Quesada et al. (Plant Physiol. 130:951-963, 2002), Holmström et al. (Nature 379: 683-684, 1996), Xu et al. (Plant Physiol 110: 249-257, 1996), Pilon-Smits and Ebskamp (Plant Physiol 107: 125-130, 1995) and Tarczynski et al. (Science 259: 508-510, 1993)].
Various patents and patent applications disclose genes and proteins which can be used for increasing tolerance of plants to abiotic stresses. These include for example, U.S. Pat. Nos. 5,296,462 and 5,356,816 (for increasing tolerance to cold stress); U.S. Pat. No. 6,670,528 (for increasing ABST); U.S. Pat. No. 6,720,477 (for increasing ABST); U.S. application Ser. Nos. 09/938,842 and 10/342,224 (for increasing ABST); U.S. application Ser. No. 10/231,035 (for increasing ABST); WO2004/104162 (for increasing ABST and biomass); WO2007/020638 (for increasing ABST, biomass, vigor and/or yield); WO2007/049275 (for increasing ABST, biomass, vigor and/or yield).
Suboptimal nutrient (macro and micro nutrient) affect plant growth and development through the whole plant life cycle. One of the essential macronutrients for the plant is Nitrogen. Nitrogen is responsible for biosynthesis of amino acids and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like. Nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. Additional important macronutrients are Phosphorous (P) and Potassium (K), which have a direct correlation to yield and general plant tolerance.
Vegetable or seed oils are the major source of energy and nutrition in human and animal diet. They are also used for the production of industrial products, such as paints, inks and lubricants. In addition, plant oils represent renewable sources of long-chain hydrocarbons which can be used as fuel. Since the currently used fossil fuels are finite resources and are gradually being depleted, fast growing biomass crops may be used as alternative fuels or for energy feedstocks and may reduce the dependence on fossil energy supplies. However, the major bottleneck for increasing consumption of plant oils as bio-fuel is the oil price, which is still higher than fossil fuel. In addition, the production rate of plant oil is limited by the availability of agricultural land and water. Thus, increasing plant oil yields from the same growing area can effectively overcome the shortage in production space and can decrease vegetable oil prices at the same time.
Studies aiming at increasing plant oil yields focus on the identification of genes involved in oil metabolism as well as in genes capable of increasing plant and seed yields in transgenic plants. Genes known to be involved in increasing plant oil yields include those participating in fatty acid synthesis or sequestering such as desaturase [e.g., DELTA6, DELTA12 or acyl-ACP (Ssi2; Arabidopsis Information Resource (TAIR; Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/), TAIR No. AT2G43710)], OleosinA (TAIR No. AT3G01570) or FAD3 (TAIR No. AT2G29980), and various transcription factors and activators such as Lec1 [TAIR No. AT1G21970, Lotan et al. 1998. Cell. 26; 93 (7):1195-205], Lec2 [TAIR No. AT1G28300, Santos Mendoza et al. 2005, FEBS Lett. 579 (21):4666-70], Fus3 (TAIR No. AT3G26790), ABI3 [TAIR No. AT3G24650, Lara et al. 2003. J Biol. Chem. 278 (23): 21003-11] and Wri1 [TAIR No. AT3G54320, Cernac and Benning, 2004. Plant J. 40 (4): 575-85].
Genetic engineering efforts aiming at increasing oil content in plants (e.g., in seeds) include upregulating endoplasmic reticulum (FAD3) and plastidal (FAD7) fatty acid desaturases in potato (Zabrouskov V., et al., 2002; Physiol Plant. 116:172-185); over-expressing the GmDof4 and GmDof11 transcription factors (Wang H W et al., 2007; Plant J. 52:716-29); over-expressing a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter (Vigeolas H, et al. 2007, Plant Biotechnol J. 5:431-41; U.S. Pat. Appl. No. 20060168684); using Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed (Katavic V, et al., 2000, Biochem Soc Trans. 28:935-7).
Various patent applications disclose genes and proteins which can increase oil content in plants. These include for example, U.S. Pat. Appl. No. 20080076179 (lipid metabolism protein); U.S. Pat. Appl. No. 20060206961 (the Ypr140w polypeptide); U.S. Pat. Appl. No. 20060174373 [triacylglycerols synthesis enhancing protein (TEP)]; U.S. Pat. Appl. Nos. 20070169219, 20070006345, 20070006346 and 20060195943 (disclose transgenic plants with improved nitrogen use efficiency which can be used for the conversion into fuel or chemical feedstocks); WO2008/122980 (polynucleotides for increasing oil content, growth rate, biomass, yield and/or vigor of a plant).
Cotton and cotton by-products provide raw materials that are used to produce a wealth of consumer-based products in addition to textiles including cotton foodstuffs, livestock feed, fertilizer and paper. The production, marketing, consumption and trade of cotton-based products generate an excess of $100 billion annually in the U.S. alone, making cotton the number one value-added crop.
Even though 90% of cotton's value as a crop resides in the fiber (lint), yield and fiber quality has declined due to general erosion in genetic diversity of cotton varieties, and an increased vulnerability of the crop to environmental conditions.
There are many varieties of cotton plant, from which cotton fibers with a range of characteristics can be obtained and used for various applications. Cotton fibers may be characterized according to a variety of properties, some of which are considered highly desirable within the textile industry for the production of increasingly high quality products and optimal exploitation of modem spinning technologies. Commercially desirable properties include length, length uniformity, fineness, maturity ratio, decreased fuzz fiber production, micronaire, bundle strength, and single fiber strength. Much effort has been put into the improvement of the characteristics of cotton fibers mainly focusing on fiber length and fiber fineness. In particular, there is a great demand for cotton fibers of specific lengths.
A cotton fiber is composed of a single cell that has differentiated from an epidermal cell of the seed coat, developing through four stages, i.e., initiation, elongation, secondary cell wall thickening and maturation stages. More specifically, the elongation of a cotton fiber commences in the epidermal cell of the ovule immediately following flowering, after which the cotton fiber rapidly elongates for approximately 21 days. Fiber elongation is then terminated, and a secondary cell wall is formed and grown through maturation to become a mature cotton fiber.
Several candidate genes which are associated with the elongation, formation, quality and yield of cotton fibers were disclosed in various patent applications such as U.S. Pat. No. 5,880,100 and U.S. patent application Ser. Nos. 08/580,545, 08/867,484 and 09/262,653 (describing genes involved in cotton fiber elongation stage); WO0245485 (improving fiber quality by modulating sucrose synthase); U.S. Pat. No. 6,472,588 and WO0117333 (increasing fiber quality by transformation with a DNA encoding sucrose phosphate synthase); WO9508914 (using a fiber-specific promoter and a coding sequence encoding cotton peroxidase); WO9626639 (using an ovary specific promoter sequence to express plant growth modifying hormones in cotton ovule tissue, for altering fiber quality characteristics such as fiber dimension and strength); U.S. Pat. No. 5,981,834, U.S. Pat. No. 5,597,718, U.S. Pat. No. 5,620,882, U.S. Pat. No. 5,521,708 and U.S. Pat. No. 5,495,070 (coding sequences to alter the fiber characteristics of transgenic fiber producing plants); U.S. patent applications U.S. 2002049999 and U.S. 2003074697 (expressing a gene coding for endoxyloglucan transferase, catalase or peroxidase for improving cotton fiber characteristics); WO 01/40250 (improving cotton fiber quality by modulating transcription factor gene expression); WO 96/40924 (a cotton fiber transcriptional initiation regulatory region associated which is expressed in cotton fiber); EP0834566 (a gene which controls the fiber formation mechanism in cotton plant); WO2005/121364 (improving cotton fiber quality by modulating gene expression); WO2008/075364 (improving fiber quality, yield/biomass/vigor and/or abiotic stress tolerance of plants). | {
"pile_set_name": "USPTO Backgrounds"
} |
In telecommunication networks such as those based on the 3rd Generation Partnership Project (3GPP) specifications, to evaluate a quality of a communication channel, a reference signal is transmitted from a network device (which is also called as a base station) to a terminal device (which is also called as a user device or user equipment) according to a certain periodicity. The terminal device measures the quality of the channel based on the received reference signal and sends a measurement report to the network device. The report may also be generated and transmitted according to a periodicity configured by the network device. The periodicity for sending a reference signal by a network device may be referred to as a periodicity of reference signal transmission or simply a transmission periodicity. The periodicity for measuring the reference signal by the terminal device may be referred to a periodicity of reference signal measurement or simply a measurement periodicity.
Generally, in current 3GPP networks such as Long Term Evolution (LTE) networks, a small period for transmitting the reference signal is configured (such as 1 ms) so that the terminal devices in the networks are able to receive that signal almost at any time they want. To reach an accuracy level, a terminal device may generate the report by considering the reference signal sent and received at different periodicity. Therefore, the period for the report may be larger than the period for transmitting the reference signal. For example, when the reference signal is sent according to a period of 1 ms, the terminal device may receive one sample of the reference signal at every 40 ms and use the 5 samples to generate a report. The measurement period of the report is thus 40*5=200 ms.
With massive growth of the numbers of devices and traffic volume, the fifth generation (5G) wireless communication systems are being developed to build ultra-reliable connection for high frequencies and enable a networked society, where information can be accessed and data can be shared anywhere and anytime, by anyone with anything. In current standardization work of the 3GPP, New Radio (NR) techniques have been proposed. Some aims of the NR techniques are to increase (boost) the data rate, to save energy, and to decrease un-necessary interference as much as possible for both the network device and terminal device.
A requirement is therefore raised to increase the transmission periodicity of the reference signal (for example, to a level of 100 ms) so that resources and energies of the network device can be reserved for other processing (transmissions, receptions, and/or calculations). However, the increased transmission periodicity may cause some potential problems. On one hand, the measurement periodicity may be likewise increased and thus result in a long measurement period for the terminal device. For example, if 5 samples of the reference signal are needed to generate a report, the terminal device may have to wait for at least 500 ms. On the other hand, there is a tightened requirement on reliability or latency for many use cases of the terminal device where the increased measurement periodicity may be in-flexible or even un-acceptable. | {
"pile_set_name": "USPTO Backgrounds"
} |
Confectionery masses which are at first sticky, such as hot caramel, sugar or like masses, cannot be processed in this way at all, because they are difficult to get out of the molds, particularly when these are casting molds. Special difficulties are encountered in the production of hollow or filled confectionery, such as brandy-cherries and so forth. In German Patent Specification No. 1,955,056 and in the corresponding British Patent Specification No. 1,290,359 apparatus for the production of hollow confections has already been proposed comprising open top molds which are supplied from above with a flowable confectionery mass, temporarily rotated about a vertical axis and then cooled and discharged. Although in practice this apparatus has been a success, it does not entirely overcome the above mentioned shortcomings of conventional machines and it can process only such confectionery masses as will not stick to the molds.
The present invention eliminates these remaining defects, the object being to provide a method, and apparatus for performing the method, which will permit finished ready-wrapped confections to be economically produced without trouble irrespective of the nature of the processed confectionery masses. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a detection method, a detection apparatus, a sample cell for detection and a kit for detection to detect a substance to be detected (a detection target substance) in a sample.
2. Description of the Related Art
Conventionally, in the field of bio-measurement and the like, a fluorescence detection method is widely used as a highly accurate and easy measurement method. In the fluorescence detection method, a sample that is presumed to contain a detection target substance that outputs fluorescence by being excited by irradiation with light having a specific wavelength is irradiated with excitation light having the specific wavelength. At this time, fluorescence is detected to confirm the presence of the detection target substance. Further, when the detection target substance is not a phosphor (fluorescent substance), a substance that has been labeled with a fluorescent dye and that specifically binds to the detection target substance is placed in contact with the sample. Then, fluorescence from the fluorescent dye is detected in a manner similar to the aforementioned method, thereby confirming the presence of the bond between the detection target substance and the substance that specifically binds to the detection target substance. In other words, presence of the detection target substance is confirmed, and this method is widely used.
In bio-measurement, an assay is performed, for example, by using a sandwich method, a competition method or the like. In the sandwich method, when an antigen, as a detection target substance, contained in a sample needs to be detected, a primary antibody that specifically binds to the detection target substance is immobilized on a substrate (base), and a sample is supplied onto the substrate to make the detection target substance specifically bind to the primary antibody. Further, a secondary antibody to which a fluorescent label has been attached, and that specifically binds to the detection target substance, is added to make the secondary antibody bind to the detection target substance. Accordingly, a so-called sandwich structure of (primary antibody)-(detection target substance)-(secondary antibody) is formed, and fluorescence from the fluorescent label attached to the secondary antibody is detected. In the competition method, a competitive secondary antibody that competes with the detection target substance, and that specifically binds to a primary antibody, and to which a fluorescent label has been attached, binds to the primary antibody in such a manner to compete with the detection target substance. Further, fluorescence from the competitive secondary antibody that has bound to the primary antibody is detected.
When the assay is performed as described above, an evanescent fluorescence method has been proposed. In the evanescent fluorescence method, fluorescence is excited by evanescent light to detect fluorescence only from the secondary antibody that has bound, through the detection target substance, to the primary antibody immobilized on the substrate, or fluorescence only from the competitive secondary antibody that has directly bound to the primary antibody. In the evanescent fluorescence method, fluorescence excited by evanescent waves that extend from the surface of the substrate is detected. The evanescent waves are generated by making excitation light that totally reflects on the surface of the substrate enter the substrate from the back side of the substrate.
Japanese Unexamined Patent Publication No. 2005-077338 (Patent Literature 1) proposes an evanescent fluorescence method. In the evanescent fluorescence method disclosed in Patent Literature 1, instead of immobilizing the primary antibody on the substrate, a bound product (bound substance) of (primary reaction body)-(detection target substance)-(secondary reaction body) is formed in liquid phase. Further, the bound product is localized in an area to which the evanescent waves extend, and fluorescence from the bound product is detected. Specifically, the primary reaction body that includes a primary antibody and a magnetic material and the secondary reaction body that includes a fluorescent substance and the secondary antibody are bound to the detection target substance to obtain the bound product. The magnetic material contained in the primary reaction body is attracted by a magnet, and the bound product is localized.
Meanwhile, in the evanescent fluorescent method, methods using electric-field enhancement effects by plasmon resonance are proposed to improve the sensitivity of detection in U.S. Pat. No. 6,194,223 (Patent Literature 2), M. M. L. M Vareiro et al., “Surface Plasmon Fluorescence Measurements of Human Chorionic Gonadotrophin: Role of Antibody Orientation in Obtaining Enhanced Sensitivity and Limit of Detection”, Analytical Chemistry, Vol. 77, pp. 2426-2431, 2005 (Non-Patent Literature 1), and the like. In a surface plasmon enhancement fluorescence method, a metal layer is provided on the substrate, and excitation light is caused to enter the interface between the substrate and the metal layer from the back side of the substrate at an angle greater than or equal to a total reflection angle to generate surface plasmon resonance in the metal layer. Further, fluorescent signals are enhanced by the electric field enhancement action of the surface plasmons to improve the S/N (signal to noise) ratio.
Similarly, in the evanescent fluorescence method, a method using electric field enhancement effects by a waveguide mode is proposed in Spring 2007, the Japan Society of Applied Physics, Collection of Presentation Abstracts, No. 3, p. 1378 (Non-Patent Literature 2). In this optical waveguide mode enhanced fluorescence spectroscopy (OWF), a metal layer and an optical waveguide layer including a dielectric and the like are sequentially formed on the substrate. Further, excitation light is caused to enter the substrate from the back side of the substrate at an angle that is greater than or equal to the total reflection angle to induce an optical waveguide mode in the optical waveguide layer by irradiation with the excitation light. Further, fluorescent signals are enhanced by the electric field enhancement effect by the optical waveguide mode.
Further, Specification of U.S. Patent Application Publication No. 20050053974 (Patent Literature 3) and T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy”, Colloids and Surfaces A, Vol. 171, pp. 115-130, 2000 (Non-Patent Literature 3) propose a method for extracting radiation light (SPCE: Surface Plasmon-Coupled Emission) from the prism side. In the method, instead of detecting fluorescence output from a fluorescent label excited in the electric field enhanced by surface plasmons, the fluorescence newly induces surface plasmons in the metal layer, and radiation light by the newly induced plasmons is extracted from the prism side.
As described above, in bio-measurement or the like, various kinds of methods have been proposed as a method for detecting the detection target substance. In the methods, plasmon resonance or an optical waveguide mode is induced by irradiation with excitation light, and a fluorescent label is excited in an electric field enhanced by the plasmon resonance or the optical waveguide mode, and the fluorescence is directly or indirectly detected.
Further, in surface plasmon resonance measurement apparatuses, methods for increasing the concentration of detection target substance in a region on the sensor portion, the region to which evanescent waves extend from the sensor portion, are proposed in Japanese Unexamined Patent Publication No. 9 (1997)-257702 (Patent Literature 4), Japanese Unexamined Patent Publication No. 2007-085770 (Patent Literature 5), and the like. In Patent Literature 4, Patent Literature 5 and the like, voltage is applied to a sample to attract the detection target substance to the sensor portion, and measurement is performed. In these methods, the pH (potential of hydrogen) of a buffer solution is adjusted to adjust the charge state of a detection target substance, such as protein and nucleic acid. Further, voltage is applied in a state in which the detection target substance is positively or negatively electrified, thereby attracting the detection target substance to the sensor portion.
The method for localizing the detection target substance by application of voltage can achieve a certain effect. Further, Patent Literature 4 describes that in surface plasmon resonance measurement apparatuses, when the detection target substance is attracted to a region within approximately 100 nm from the sensor portion, which the evanescent waves reach, it is possible to reduce the variation in signals.
However, since both of the size and the charge of the detection target substance are small, the attraction effect by application of voltage is weaker than Brown motion of the detection target substance. Therefore, it is difficult to efficiently attract the detection target substance to the surface of the sensor portion. Further, it is necessary to provide a means for applying voltage to the liquid sample. Therefore, there is a problem that the structure of the apparatus becomes complicated.
Further, the electric field enhancement effects by surface plasmon resonance and optical guide mode sharply attenuate as a distance from the surface of the metal layer or the optical waveguide layer increases. Therefore, there is a problem that when the distances from the surface to the fluorescent labels even slightly change, signals from the fluorescent labels become different from each other, and varied. Hence, it is necessary to attract the fluorescent labels within a range of approximately 50 nm from the surface.
For example, FIG. 20 is a schematic diagram illustrating an apparatus for detecting fluorescence by an electric field enhancement effect by surface plasmon resonance. In FIG. 20, the vicinity of a sensor portion of the apparatus is illustrated. A gold film (thin-film, coating or layer) 102 is deposited on a surface of a prism (substrate) 101. Further, primary antibody B1 is immobilized on the gold film 102. When a sandwich assay is performed, fluorescence from a fluorescent label (fluorescent dye molecule f in this case) attached to labeling secondary antibody B2 is detected. The labeling secondary antibody B2 binds to the primary antibody B1 through antigen A. Excitation light is caused to enter the interface between the prism 101 and the gold film 102 at an angle greater than or equal to the total reflection angle to excite surface plasmons on the surface of the gold film 102. Accordingly, the electric field on the surface of the gold film 102 is enhanced. The fluorescent label (fluorescent dye molecule) f is excited in the enhanced electric field, and fluorescence is output. In FIG. 20, the graph shows distance-dependent characteristic of the strength (magnitude) of the electric field, the distance being measured from the surface of the sensor portion (surface of the gold film). As the graph shows, the strength of the electric field sharply decreases as the distance from the surface increases.
At this time, the maximum distance from the surface of the sensor portion to the fluorescent label f of the labeling secondary antibody is approximately 50 nm. When the distance from the surface of the sensor portion is approximately 50 nm, the intensity of fluorescence attenuates by 30% or more. Further, the primary antibody B1 is not always immobilized upright on the surface of the sensor portion, and the primary antibody B1 may fall along the surface by the flow of liquid, a three-dimensional obstacle or the like, and be immobilized in a lying or inclined state. Consequently, the distance from the surface of the fluorescent label f to the surface of the sensor portion is varied, and the intensity of the signal is varied. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates to external compensation for shifts in operational parameters in display panels. More specifically, the current disclosure relates to performing external compensation when these operational parameters shift.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Numerous electronic devices include electronic displays, which display images by varying the amount of light that is emitted from an array of pixels of different colors. For pixels that use self-emissive elements, such as organic light emitting diodes (OLEDs), pixel non-uniformities may arise due to light-emitting diode (LED) voltage changes (e.g., Voled), and/or LED current changes (e.g., Ioled). These pixel non-uniformities could produce a degradation in image quality as pixels change over time. Changes in the pixels may be caused by many different factors. For example, changes in the pixels may be caused by temperature changes of the display, an aging of the display (e.g., aging of the thin-film-transistors (TFTs)), the operation of certain display processes, and other factors.
To counteract image degradation caused by changes in the display, it may be desirable to implement in-pixel or per-pixel compensation for the changes. Yet as pixels per inch (PPI) increase, in-pixel or per-pixel compensation logic for these changes may become more and more limited. For example, high pixel-per-inch displays may include a smaller pixel circuit footprint. Thus, a size of the in-pixel or per-pixel compensation circuits may become a limiting factor. Further, timing constraints for these high-PPI displays may result timing limitations on the in-pixel or per-pixel compensation circuits. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many blood-ingesting pests are known to feed on humans and animals, and many pests are vectors for pathogenic microorganisms which threaten human and animal health, including commercially important livestock, pets and other animals. Various species of mosquitoes, for example, transmit diseases caused by viruses, and many are vectors for disease-causing nematodes and protozoa. Mosquitoes of the genus Anopheles transmit Plasmodium, the protozoan which causes malaria, a devastating disease which results in approximately 1 million deaths annually. The mosquito species Aedes aegypti transmits an arbovirus that causes yellow fever in humans. Other arboviruses transmitted by Aedes species include the causative agents of dengue fever, eastern and western encephalitis, Venezuelan equine encephalitis, St. Louis encephalitis, chikungunya, oroponehe and bunyarnidera. The genus Culex, which includes the common house mosquito C. pipiens, is implicated in the transmission of various forms of encephalitis and filarial worms. The common house mosquito also transmits Wuchereria banuffi and Brugia malayi, which cause various forms of lymphatic filariasis, including elephantiasis. Trypanasomas cruzi, the causative agent of Chagas"" disease, is transmitted by various species of blood-ingesting Triatominae bugs. The tsetse fly (Glossina spp.) transmits African trypanosomal diseases of humans and cattle. Many other diseases are transmitted by various blood-ingesting pest species. The order Diptera contains a large number of blood-ingesting and disease-bearing insects, including, for example, mosquitoes, black flies, no-see-ums (punkies), horse flies, deer flies and tsetse flies.
Various pesticides have been employed in efforts to control or eradicate populations of disease-bearing pests, such as disease-bearing blood-ingesting. pests. For example, DDT, a chlorinated hydrocarbon, has been used in attempts to eradicate malaria-bearing mosquitoes throughout the world. Other examples of chlorinated hydrocarbons are BHC, lindane, chlorobenzilate, methoxychlor, and the cyclodienes (e.g., aldrin, dieldrin, chlordane, heptachlor, and endrin). The long-term stability of many of these pesticides and their tendency to bioaccumulate render them particularly dangerous to many non-pest organisms.
Another common class of pesticides is the organophosphates, which is perhaps the largest and most versatile class of pesticides. Organophosphates include, for example, parathion, Malathion(trademark), diazinon, naled, methyil parathion, and dichlorvos. Organophosphates are generally much more toxic than the chlorinated hydrocarbons. Their pesticidal effect results from their ability to inhibit the enzyme cholinesterase, an essential enzyme in the functioning of the insect nervous system. However, they also have toxic effects on many animals, including humans.
The carbamates, a relatively new group of pesticides, include such compounds as carbamyl, methomyl, and carbofuran. These compounds are rapidly detoxified and eliminated from animal tissues. Their toxicity is thought to involve a mechanism similar to the mechanism of the organophosphates; consequently, they exhibit similar shortcomings, including animal toxicity.
A major problem in pest control results from the capability of many species to develop pesticide resistance. Resistance results from the selection of naturally-occurring mutants possessing biochemical, physiological or behavioristic factors that enable the pests to tolerate the pesticide. Species of Anopheles mosquitoes, for example, have been known to develop resistance to DDT and dieldrin. DDT substitutes, such as Malathion(trademark), propoxur and fenitrothion are available; however, the cost of these substitutes is much greater than the cost of DDT.
There is clearly a longstanding need in the art for pesticidal compounds that are pest-specific, that reduce or eliminate direct and/or indirect threats to human health posed by presently available pesticides, that are environmentally compatible in the sense that they are biodegradable, and are not toxic to non-pest organisms, and have reduced or no tendency to bioaccummulate.
Many pests, including for example blood-inbibing pests, must consume and digest a proteinaceous meal to acquire sufficient essential amino acids for growth, development and the production of mature eggs. Adult pests, such as adult mosquitoes, need these essential amino acids for the production of vitellogenins by the fat body. These vitellogenins are precursors to yolk proteins which are critical components of oogenesis. Many pests, such as house flies and mosquitoes, produce oostatic hormones that inhibit egg development by inhibiting digestion of the protein meal, and thereby limiting the availability of the essential amino acids necessary for egg development.
Serine esterases such as trypsin and trypsin-like enzymes (collectively referred to herein as xe2x80x9cTTLExe2x80x9d) are important components of the digestion of proteins by insects. In the mosquito, Aedes aegypti, an early trypsin that is found in the midgut of newly emerged females is replaced, following the blood meal, by a late trypsin. A female mosquito typically weighs about 2 mg and produces 4 to 6 xcexcg of trypsin within several hours after a ingesting blood meal. Continuous boisynthesis at this rate would exhaust the available metabolic energy of a female mosquito; as a result, the mosquito would be unable to produce mature eggs, or even to find an oviposition site. To conserve metabolic energy, the mosquito regulates TTLE biosynthesis with a peptide hormone named Trypsin Modulating Oostatic Factor (TMOF). TMOF mosquitoes produce in the follicular epithelium of the ovary 12-35 hours after a blood meal; TMOF is then released into the hemolymph where it binds to a specific receptor on the midgut epithelial cells, signaling the termination of TTLE biosynthesis.
This regulatory mechanism is not unique for mosquitoes; flesh flies, fleas, sand flies, house flies, dog flies and other insect pests which need protein as part of their diet have similar regulatory mechanisms.
In 1985, Borovsky purified an oostatic hormone 7,000-fold and disclosed that injection of a hormone preparation into the body cavity of blood imbibed mosquitoes caused inhibition of egg development and sterility (Borovsky, D. [1985] Arch. Insect Biochem. Physiol. 2:333-349). Following these observations, Borovsky (Borovsky, D. [1988] Arch. Ins. Biochem. Physiol. 7:187-210) reported that injection or passage of a peptide hormone preparation into mosquitoes inhibited the TTLE biosynthesis in the epithelial cells of the gut. This inhibition caused inefficient digestion of the blood meal and a reduction in the availability of essential amino acids translocated by the hemolymph, resulting in arrested egg development in the treated insect. Borovsky observed that this inhibition of egg development does not occur when the oostatic hormone peptides are inside the lumen of the gut or other parts of the digestive system (Borovsky, D. [1988], supra).
Following the 1985 report, the isolated hormone, (a ten amino acid peptide) and two TMOF analogues were disclosed in U.S. Pat. Nos. 5,011,909 and 5,130,253, and in a 1990 publication (Borovsky, et al. [1990] FASEB J. 4:3015-3020). Additionally, U.S. Pat. No. 5,358,934 discloses truncated forms of the full length TMOF which have prolines removed from the carboxy terminus, including the peptides YDPAP (SEQ ID NO: 1), YDPAPP (SEQ ID NO: 1), YDPAPPP (SEQ ID NO: 1), and YDPAPPPP (SEQ ID NO: 1).
Neuropeptides Y (NPY) are an abundant family of peptides that are widely distributed in the central nervous system of vertebrates. NPY peptides have also been recently isolated and identified in a cestode, a turbellarian, and in terrestrial and marine molluscs (Maule et al., 1991 xe2x80x9cNeuropeptide F: A Novel Parasitic Flatworm Regulatory Peptide from Moniezia expansa (Cestoda: Cyclophylidea)xe2x80x9d Parasitology 102:309-316; Curry et al., 1992 xe2x80x9cNeuropeptide F: Primary Structure from the Turbellarian, Arthioposthia triangulataxe2x80x9d Comp. Biochem. Physiol. 101C:269-274; Leung et al., 1992 xe2x80x9cThe Primary Structure of Neuropeptide F (NPF) from the Garden Snail, Helix aspersaxe2x80x9d Regul. Pep. 41:71-81; Rajpara et al., 1992 xe2x80x9cIdentification and Molecular Cloning of Neuropeptide Y Homolog that Produces Prolonged Inhibition in Aplysia Neuronsxe2x80x9d Neuron. 9:505-513).
Invertebrate NPYs are highly homologous to vertebrate NPYs. The major difference between vertebrate and invertebrate NPYs occurs at the C-terminus where the vertebrate NPY has an amidated tyrosine (Y) whereas invertebrates have an amidated phenylalanine (F). Because of this difference, the invertebrate peptides are referred to as NPF peptides.
Cytoimmunochemical analyses of NPY peptides suggest that they are concentrated in the brain of various insects, including the Colorado potato beetle Leptinotarsa decemlineata (Verhaert et al., 1985 xe2x80x9cDistinct Localization of FMRFamide- and Bovine Pancreatic Polypeptide-Like Material in the Brain, Retrocerebal Complex and Subesophageal Ganglion of the Cockroach Periplaneta americanaxe2x80x9d L. Brain Res. 348:331-338; Veenstra et al., 1985 xe2x80x9cImmunocytochemical Localization of Peptidergic Neurons and Neurosecretory Cells in the Neuro-Endocrine System of the Colorado Potato Beetle with Antisera to Vertebrate Regulatory Peptidesxe2x80x9d Histochemistry 82:9-18). Partial purification of NPY peptides in insects suggests that both NPY and NPF are synthesized in insects (Duve et al., 1981 xe2x80x9cIsolation and Partial Characterization of Pancreatic Polypeptide-like Material in the Brain of the Blowfly alliphora vomitoriaxe2x80x9d Biochem. J. 197, 767-770).
Researchers have recently isolated two neuropeptides with NPF-like immunoreactivity from brain extracts of the Colorado potato beetle. The researchers purified the peptides using C18 reversed phase high pressure liquid chromatography (HPLC), and determined their structure using mass spectrometry. The deduced structures of these peptides are: Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-amide (SEQ ID NO. 1) and Ala-Pro-Ser-Arg-Leu-Arg-Phe-amide (SEQ ID NO. 2) designated NPF I and NPF II, respectively (Spittaels etal., 1996).
The present inventors have surprisingly discovered that NPF adversely affects TTLE biosynthesis in the midgut of female Aedes aegypti fed a blood meal and injected with NPF polypeptide. Because the structure of NPF is different from TMOF it appears that NPF does not bind to a TMOF-specific binding site on the gut receptor but to a different site on the same or different receptor. Furthermore, cytoimmunochemical analysis, by the inventors, of the mosquito gut after the blood meal, using antiserum against NPF, has surprisingly revealed that exocrine cells with NPF-like molecules that are synthesized by mosquito epithelial cells 24 hours after a blood meal. NPF therefore appears to be a secondary signal in a cascade of signals: first TMOF is released from the ovary, TMOF then binds to a TMOF gut receptor (Borovsky et al., 1994) that stimulates the synthesis and release of NPF from gut specific exocrine cells. NPF then binds to a receptor site on the gut at a site which may be adjacent to or part of the TMOF receptor, resulting cessation of biosynthesis of TTLE. This surprising discovery opens the door to a new generation of NPF pesticides, which inhibit biosynthesis of TTLE in a more direct manner than previously disclosed TMOF peptides.
The present invention provides novel compositions comprising novel pesticidal compounds. The compounds are preferably polypeptides, such as peptides or proteins. In a preferred embodiment, these pesticidal compounds inhibit digestion in pests by inhibiting synthesis of pest digestive enzymes, such as TTLE. In a specific embodiment, these compounds can be used to control populations of pests, such as populations of blood-ingesting insects.
In one aspect, the compositions of the present invention comprise a pesticidal polypeptide which comprises an amino acid sequence having a formula:
A1A2A3A4A5FLNKxe2x80x83xe2x80x83(Formula I)
wherein:
A1 is selected from the group consisting of Y, A, D, F, G, M, P, S and Y;
A2 is selected from the group consisting of A, D, E, F, G, N, P, S and Y;
A3 is optionally present and is selected from the group consisting of A, D, F, G, L, P, S and Y;
A4 is optionally present when A3 is present and is selected from the group consisting of A, F, G, L and Y;
A5 is optionally present when A4 is present and is selected from the group consisting of A, F, L and P;
FLNK is a flanking region which is optionally present and is selected from the group consisting of: P, PP, PPP, PPPP, and PPPPP;
The pesticidal polypeptide preferably does not consist of YDPAP6, DYPAP6, PAP6, YDPAP, YDPAP2, YDPAP3, YDPAP4, NPTNLH or DF-OMe.
In a narrower aspect the pesticidal polypeptide comprises an amino acid sequence which consists essentially of the amino acid sequence of Formula I. In a preferred aspect, the pesticidal polypeptide comprises a TMOF fragment TMOF amino acids adjacent to the amino acid sequence of Formula I. The fragment preferably has less than 50% of the number of amino acid residues of full-length native TMOF, preferably 2-5 amino acid residues. In still another aspect, the pesticidal polypeptide consists of the amino acid sequence of Formula I.
In another aspect, the present invention pertains to DNA sequences encoding the pesticidal polypeptides disclosed herein. Such DNA sequence can be used as known in the art to provide transformed plants or other food organisms which express a pesticidal polypeptide of the present invention.
The subject invention provides pest control compositions comprising pesticidal polypeptides formulated for application to the target pests or their situs. In a specific embodiment, prokaryotic or eukaryotic recombinant hosts which express a pesticidal polypeptide are provided by the subject invention. In a specific example, yeast or algae (preferably unicellular siliceous or green algae) are transformed to express a pesticidal polypeptide of the present invention. The transformed hosts can, for example, be applied to water areas where insect level such as mosquito larvae will ingest the transformed host, resulting in control of the mosquitoes by the pesticidal polypeptide. Furthermore, the polynucleotides of the present invention can be used to modify a virus, which may be used to deliver the polynucleotides to pest or other cells.
Another aspect of the present invention pertains to a method of controlling pests comprising administering to said pest or applying to a pest-inhabited locus an effective amount of a pesticidal polypeptide of the present invention.
The pesticidal polypeptides of the invention are also useful in controlling pest populations in areas of infestation, or areas susceptible to infestation and/or combating target pest populations, and can be employed along with pest repellents and pest attractants to control a pest population in a geographical area.
The invention also includes pesticidal compositions which contain one or more of the pesticidal polypeptides described above, including one or more of the pesticidal polypeptides and a pesticidally acceptable carrier, and also includes methods of killing or controlling insects which involve applying to the insects or their environment such pesticidal compositions. In one aspect, the pesticidal compositions of the present invention are administered in the form of a spray or a time release dosage unit. The pesticidal compositions can also comprise various other known pesticidal polypeptides or other pesticides targeting the same or different pests.
Methods of making pesticidal compositions are also included within the scope of the present invention which comprise bringing one or more of the said pesticidal polypeptides into association with a suitable carrier, diluent or excipient therefor.
As used herein, the term xe2x80x9cpesticidally effectivexe2x80x9d is used to indicate an amount or concentration of a pesticide which is sufficient to reduce the number of pests in a geographical locus, as compared to a corresponding geographical locus in the absence of the amount or concentration of the pesticide.
The term xe2x80x9cpesticidalxe2x80x9d is not intended to refer only to the ability to kill pests, but also includes the ability to interfere with a pests life cycle in any way that results in an overall reduction in the pest population. For example, the term xe2x80x9cpesticidalxe2x80x9d included inhibition or elimination of reproductive ability of a pest, as well as inhibition of a pest from progressing from one form to a more mature form, e.g., transition between various larval instars or transition from larvae to pupa or pupa to adult. Further, the term pesticidal is intended to include all phases of a pest life cycle; thus, for example, the term includes larvicidal, ovicidal, and adulticidal action.
As used herein, the term xe2x80x9cpest attractingxe2x80x9d in reference to chemical or physical attractant (e.g., light attractant) means that the density of pests in an area in the presence of the attractant is greater than the density of pests in a corresponding area without the attractant. As used herein, the term xe2x80x9cpest repellingxe2x80x9d is correspondingly intended to indicate that the density of pests in an area in the presence of the repellent is lower than the density of pests in a corresponding area in the absence of the repellent.
The word xe2x80x9ctransformxe2x80x9d is broadly used herein to refer to introduction of an exogenous polynucleotide sequence into a prokaryotic or eukaryotic cell by any means known in the art (including, for example, direct transmission of a polynucleotide sequence from a cell or virus particle as well as transmission by infective virus particles and transmission by any other known means for introducing a polynucleotide into a cell), resulting in a permanent or temporary alteration of genotype and in an immortal or non-immortal cell line.
The terms xe2x80x9cpeptide,xe2x80x9d xe2x80x9cpolypeptide,xe2x80x9d and xe2x80x9cproteinxe2x80x9d as used herein are intended to refer to amino acid sequences of any length.
The term xe2x80x9cpesticidal polypeptidexe2x80x9d is used herein to indicate polypeptides comprising NPF and TMOF peptides, as well as fragments, derivatives and analogues and other functional equivalents of NPF and TMOF.
The methods and materials of the present invention provide a novel approach to controlling insects and insect-transmitted diseases. The peptides of the present invention have advantageous activity over previously disclosed compounds. | {
"pile_set_name": "USPTO Backgrounds"
} |
Modules constructed from refractory fiber blankets are used in insulating the inner walls of high temperature furnaces. Exemplary of such modules are U.S. Pat. Nos. 3,952,470; 4,001,996; and 4,055,926. Repeated exposure to high temperatures can cause the fibers in some of the modules to shrink. This may result in some looseness between adjacent modules which would permit heat loss directly to and through the walls of the furnace.
One suggested remedial measure is described in U.S. Pat. No. 4,194,282. In that patent, a length of blanket which is equal to or exceeds the length of one complete modular fold, is wedged between such adjacent modules with the help of two spacer plates and a pusher blade. The heat loss through these gaps which were created by shrinkage is effectively halted. However, the ends of the filler blanket are positioned along the hot face of the furnace. The ends of the fibers in the blanket ends are thereby exposed to the highest temperatures and these fiber ends are most susceptible to heat induced shrinkage. In addition, these blanket ends make for a non-uniform, unsightly appearance.
The mini-module of the present invention solves these problems. A length of refractory fiber blanket is twice folded to position the ends toward each other preferably forming a butt joint. The mini-module is then wedged between two modules in the same manner as was done previously. The butt joint will be positioned on the side of the mini-module at some point located between the hot face and the cold face of the adjacent modules, protecting the fiber ends from the extreme temperatures inside the furnace. In order to effect the greatest amount of protection, it is preferred that the butt joint be located closer to the cold face than to the hot face so that the temperature to which the end fibers are exposed is no greater than necessary.
Other features, advantages and characteristics of the present invention will become apparent after a reading of the following specification. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to wireless networks and more specifically to a system and method of erasing location information on a SIM card in a mobile telephone.
2. Discussion of Related Art
In a Global System for Mobile Communication (GSM) system, mobile phones use subscriber identifier modules (SIMs) associated with the mobile phone to store data. The SIM may be a check card or a plastic piece about 1 cm square that may be plugged into the mobile phone. The SIM enables a user to insert the SIM into any mobile phone and use that phone with the user's account. Typically, the type of data stored includes the personal identification number for the user, lists of the optional functionality of the SIM, redial numbers, charges for time increments of phone use, subscriber data, secure data transmission parameters, roaming data and public land mobile network (PLMN) data. The present disclosure is directed to the use of the roaming data with its associated location information on the SIM card.
The SIM card is illustrated in FIG. 1. The wireless device 10 may be a GSM mobile phone or any other wireless device such as a personal digital assistance or portable computer that uses a SIM card or a similar permanent or detachable data card the functions like a SIM card to store roaming data as described herein. The SIM card can be either an ID-1 SIM 12 or a Plug-in SIM 14. The ID-1 SIM is a check card having a microchip or a plug-in card 14 that is about 1 cm square. These descriptions and dimension are not meant to be limited but only serve to generally describe a SIM card. Most SIM cards have the same ability to be inserted into a wireless device 10 such as a mobile phone and operate to provide parameters and data to operate the wireless device 10. The wireless device 10 communicates through an air interface with a base station 16 and an associated wireless network 18. The details of such a network are known to those of skill in the art, therefore, they are not discussed more herein.
The PLMN data include the network color code (NCC), which is a three-bit-long code that identifies the PLMN. The NCC is part of the BSIC and is broadcast in the synchronization channel. Other PLMN parameters include the mobile country code (MCC), which is a three-digit identifier that uniquely identifies a country (not a PLMN) and the mobile network code (MNC) of the home PLMN.
The roaming data includes location updating status parameters for determining whether to update the location data, location area information (LAI), and the NCC of preferred PLMNs. The roaming data also includes a list of preferred PLMNs or service providers that the mobile phone should select if more than one service provider is available and the home PLMN is not found.
When a GSM mobile phone is powered on, the mobile phone needs to select a service provider. The current PLMN service provider is stored on the SIM card as part of the location information. The mobile phone checks the stored service provider in the location information upon power up before looking for the home service provider or another preferred service provider. If the mobile device finds a service provider using the PLMN service provider stored in the location information on the SIM, it will use that service provider.
The approach of first searching at power up for a service provider using the service provider stored on the SIM card causes several problems. First, suppose the user's previous use of the mobile phone was with a roaming service provider outside of the home-use area and the next power up by the user is in his or her home PLMN. In this scenario, if the roaming service provider also provides service in the home service area of the mobile user, the mobile phone may register with the roaming service provider when it should register with the user's home service provider.
Second, as discussed above, part of the roaming data includes the NCCs of preferred PLMNs with which the mobile phone should register if the home PLMN is not available. If the user is roaming outside his or her home service area, and another more preferred service provider is listed in the roaming data, the mobile phone may still attain service from the service provider listed as the current service provider in the location information although that service provider is lower down or not even on the preferred service provider list.
Accordingly, for the foregoing reasons, there are drawbacks to the present system and method of searching for a service provider when a GSM mobile phone is powered up. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a golf ball, and, more particularly, to a golf ball which is provided with a new and unique dimple pattern which provides excellent distance and accuracy.
This invention represents an improvement over the golf ball dimple patterns which are described in U.S. Pat. No. 4,560,168 and the golf ball dimple pattern which is used on the commercial golf ball sold under the name Wilson Staff.
U.S. Pat. No. 4,560,168 describes various icosahedral dimple patterns in which the dimples are arranged so that they do not intersect the six great circles which bisect the sides of the icosahedral triangles. The dimple pattern illustrated in FIGS. 8A and 8B is used on commercial golf balls which are sold under the name Ultra. The Ultra golf ball is a two-piece golf ball which consists of a solid core and a cover. The Ultra dimple pattern includes 432 dimples, and each dimple has the same diameter and depth.
The Wilson Staff golf ball is a three-piece golf ball which includes a solid core, a layer of elastic windings which are wrapped around the core, and a cover. The dimple pattern of the Wilson Staff ball is a 432 dimple pattern which is similar to the Ultra pattern except that there are four different sized dimples and the dimples are frusto-conical rather than spherical. The five dimple diameters are 0.155, 0.150, 0.140, 0.135, and 0.125 inches. The aspect ratio is determined by dividing the depth of the dimple by the diameter of the dimple, and the aspect ratio for all of the Wilson Staff dimples is 0.046. The depths of the dimples are therefore 0.0071, 0.0069, 0.0064, 0.0062, and 0.0058 inches, respectively.
The Wilson Staff dimples are frusto-conical rather than spherical, i.e., the side surface of each dimple is formed by the frustum of a cone or a truncated cone rather than by a portion of a sphere. Prior golf balls sold under the name Pro Staff also utilized frusto-conical dimples. The bottom surface of each Wilson Staff dimple is flat and the depth of the dimple is measured to the bottom surface.
A dimple pattern formed by dimples having different diameters and a constant aspect ratio performs satisfactorily when used on a three-piece golf ball such as the Wilson Staff ball. However, such a dimple pattern does not perform satisfactorily when used on a two-piece ball. When the Wilson Staff dimple pattern is used on a two-piece ball having the same construction as an Ultra golf ball, the resulting ball is significantly shorter than the commercial Ultra ball in both carry and total distance (carry plus roll). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to circuits for energizing gaseous discharge lamps at high frequency, and more specifically, to such circuits employing SCR-type thyristors.
2. Description of the Prior Art
Conventional ballasting circuits for gaseous discharge lamps are well-known for providing proper voltage for starting and limiting the current during operation. Such ballast circuits are usually large and relatively expensive and generally they are not efficient at low cost. Simple inductor ballasts are available; however, they provide poor regulation for line voltage variations.
Although regulating solid state ballasts have been developed, heretofore no commercial ballast circuits have been developed which are entirely suitable for operating gaseous discharge lamp at high frequency.
Theoretically a lamp may be operated either with ac or with a combination of applied dc and ac. Operation with pure ac has conventionally caused audible, oftentimes annoying noises. Combined ac and dc energization gives lower noise than ac alone, but the application of dc inhibits lamp efficiency and shortens life. The application of low audio frequency ac causes noisy ballast conditions. The application of medium frequency ac causes noisy and unstable lamp conditions. In this regard, the high pitch whine of lamps operated under such conditions can be extremely unpleasant.
It is not surprising, therefore, that there have been many proposals for operating gaseous discharge lamps, such as fluorescent lamps, at high frequency. Such previously proposed high frequency energizing circuits generally have utilized especially constructed transformers and coils and have utilized solid state switching devices. The solid state ballast circuits which have been developed, however, have not been for high frequency, such as well above 20 KHz, operation.
One drawback contributing towards the lack of development of a solid state ballast for operating at high frequency is that the characteristics of conventional transistors are less predictable at high frequency operation than for lower frequency operation. It is believed that thyristors, such as silicon controlled rectifiers or SCR's, have only rarely been utilized because of the finite minimum time during which the SCR drive must be reverse biased to assure latching of the SCR in the non-conductive state. Unless the gate and anode energization is removed for at least this minimum time, the SCR will conduct even without gate energization when a positive voltage is placed on its anode. As the frequency of operation increases and this minimum time becomes a greater and greater portion of the operating cycle, providing this minimum time for naturally commutating the SCR becomes increasingly difficult. Consequently the SCR's have historically been considered relatively low frequency devices.
Many of the advantages which are achieved by operating gaseous discharge lamp lighting systems at high frequency are well recognized. Lumen efficiency is generally acknowledged to increase for both fluorescent and high intensity discharge (HID) lamp systems at higher frequencies of operation. It has even been suggested to be desirable to operate fluorescent-type systems at 50 kHz. The rationale for operating fluorescent-type systems at 50 kHz is based on economic considerations, i.e., based on lamp-efficiency increase and the reduction in size and cost of ballast.
However, as is now understood, HID lamp systems operating at relatively high frequencies suffer from the phenomena of acoustic resonance. Whether fluorescent-type systems suffer from the acoustic resonance phenomena is unknown, but it is believed that such fluorescent systems do not so suffer.
Acoustic resonance is a physical resonating of the mechanical elements of the lamp which disturbs the flow of energy through the gaseous medium in the lamp. There are many frequency regions or bands of acoustic resonance in HID lamps, attempted operation in some of which so disturb the flow of energy within a lamp that the lamp extinguishes. Operating in other frequency regions merely causes a flickering of the lamp, producing unpleasant visual effects.
Prior art teachings in connection with acoustic resonance have suggested to many that HID lamp systems may be designed for operation between frequency bands of acoustic resonance. This suggestion has proven unsatisfactory in that the frequency bands are somewhat unpredictable according to the various mixtures of gases within the lamp and according to specific geometric considerations of the lamp. Furthermore, it has been reported that studies for some HID lamps indicate that stable points beyond certain frequencies, such as 4700 Hz, are difficult to find, i.e., the frequency bands of acoustic resonance become closer and closer together and are less predictable. It is believed that such teachings have steered the prior art away from operating HID lamps, or even characterizing the precise effects of acoustic resonance, at ultra high frequencies on the order of greater than 60 kHz.
By virtue of the present invention, on the other hand, it has been discovered that an ultra-high frequencies, the frequency bands of acoustic resonance become less and less visually distractive. Accordingly, above a certain frequency, it appears that acoustic resonance does not exist since it is not visually disturbing, nor does operation at such a frequency extinguish the lamp or cause undesirable and unpleasant flickering of light. | {
"pile_set_name": "USPTO Backgrounds"
} |
Daily, package delivery companies collect millions of packages from thousands of locations scattered over large geographical areas and transport them to sorting facilities for processing. After processing, the packages are carried to an equally large number of scattered destinations. To meet the rigorous schedules of today's business environment, while providing accurate deliveries of packages whose final destinations are literally everywhere in the world, sorting facilities are equipped with automated transfer systems whenever possible. These transfer systems must be fast, durable, easy to repair or replace, and provide gentle but accurate handling of each package.
Initially, laborers employed throughout the sorting facility comprised the sorting process; that is, they had to grab, lift, carry and place packages from one sorting station to another. Such use of labor produced an exceedingly slow and inefficient system that was plagued with human injury. While extensive use of labor has diminished as new and large sorting facilities are equipped with automated sorting and transfer systems, the sorting processes at old and small facilities often still rely on laborers at critical stations that require decisions regarding package placement. For example, at some old and small sorting facilities, conveyors typically feed packages to a cluster of laborers who must individually chose a package, pick it up, read the zip code or foreign address, then place the package on an output belt or into a chute associated with the packages' destination. This process is repeated in successively finer steps until the package is loaded onto a delivery vehicle assigned to a limited geographic area.
Those critical stations which are not automated remain burdened with the problems of manual labor and continue to be the source of delays and errors in an otherwise efficient process. Retrofitting these critical stations with automated devices is one solution taught by the automated sorting systems found in new facilities. For example, it is known to position a feed conveyor so that articles may be received from a single input source and transferred to a single output destination. In addition, it is known to adjust the feed conveyor so that articles may be transferred to additional output destinations. To accomplish the latter, an operator typically positions the feed conveyor between the input and desired output destination before loading articles onto the conveyor. However, such systems require an operator, are not readily adaptable to existing sorting systems, occupy a large amount of space, include complex mechanisms that are relatively difficult to repair, and are unable to move as fast as the existing automated transfer process.
U.S. Pat. No. 4,813,526 (Belanger) discloses a mobile conveyor unit that requires an operator to manipulate each change in destination; that is, swing laterally, raise or lower, and extend or retract the conveyor so articles can be transferred from one position to another. This transfer system is built with two conveyors and a large frame on a curved track that guides the sub-frame side to side while the transfer conveyor, pivoting about a horizontal axis at its entry end, moves up and down by means of hydraulic cylinders.
Similarly, U.S. Pat. No. 2,212,702 (Scott) describes a portable conveyor unit that requires an operator to position the frame then align the main conveyor by pivoting its entry end about a horizontal axis. The main conveyor extends from the horizontal axis, through a pair of upright posts, and terminates at an unsupported free end. The conveyor itself is raised and lower by cables and a winch, but has no provision for lateral movement once the frame is set in place. After the conveyor is positioned vertically, a safety rod is inserted through both the posts and conveyor to provide additional support for the conveyor while in its fixed position.
The transfer system disclosed in U.S. Pat. No. 5,090,549 (Thiel) is built of a series of conveyor sections which include a section that pivots about a horizontal axis for vertical movement and about a vertical axis for horizontal movement.
U.S. Pat. No. 1,753,036 (Williamson) discloses a manually powered letter sorter with a conveyor that can be raised or lowered and swung laterally between three positions in order to line up with a specific pigeonhole. The conveyor is aligned manually through the manipulation of levers and plungers.
While prior art teaches alignment of a feed conveyor between the input source and output destination, to achieve the desired alignment such devices require an operator to stop the apparatus, physically maneuver the feed conveyor as required, then restart the device before continuing the transfer process. Because each alignment requires shut-down, physical manipulation of the conveyor or conveyor controls, and start-up, these devices are incapable of rapid response to destination changes.
Portability, a strength in some prior art devices, is also a flaw when considering adoption into an existing process. For example, the drivable chassis of Belanger ('526) and bulky supporting structure of Scott ('702) prohibit integration within an enclosed structure of limited space. The Thiel ('549) apparatus, even if scaled down, is so large and complicated that it appears entirely restricted to outdoor use.
The primary thrust of the prior art devices, that include powered mechanisms for changing the orientation of a conveyor, is transferring as opposed to sorting articles. Such devices are capable of some degree of flexibility to provide alignment between input source and output destination, but are limited by lack of responsiveness. On the other hand, the manually operated Williamson ('036) device incorporates sorting capabilities but is limited by the cantilever conveyor design to very light and small articles, and is slow because it lacks automation.
Thus, existing transfer systems require an operator; are complex both mechanically and electrically; are by their nature large, bulky, slow and noisy; require significant maintenance; are not suitable for application in existing sorting facilities; and, where they do provide a means for sorting are slow and limited to very small and light articles. Accordingly, there has long existed a need in the art for a device that both transfers and sorts, does not require an operator, is simple in construction, requires little maintenance, is suitable for applicable in existing processes, provides a high throughput of sorted items per occupied floor space, and operates at a speed compatible with other automated devices in an automated process. | {
"pile_set_name": "USPTO Backgrounds"
} |
A problem frequently encountered with grease guns is the entrapment of air in the grease. This entrapped air adversely effects the operation of the grease gun. The patent literature has numerous references to the problem, and a variety of solutions have been proposed.
U.S. Pat. No. 4,298,144 which issued to Pressi in 1981 discloses a grease gun having a tubular casing with a threaded attachment cap. The inner thread of the attachment cap is cut away along a groove running in an axial direction. The groove serves as an air outlet, so that air can escape from the tubular casing through the groove when the attachment cap is not entirely screwed onto the tubular casing. When an air lock is experienced due to entrapped air, the attachment cap is loosened so that continued application of pressure to expel grease expels the unwanted air. The air outlet is made considerably smaller than the grease outlet so that during the expulsion of air as little grease as possible is expelled.
U.S. Pat. No. 5,404,967 which issued to Barry in 1995 discloses a grease gun that has two passageways in which are positioned pistons. The two passageways share a common outlet controlled by a ball valve. The pistons are mounted on a common piston mounting block and, consequently, move in unison. As the pistons move forward in unison, they push a predetermined quantity of grease through the common outlet. If air enters one of the two passageways, grease will continue to pass through the other of the two passageways to the common outlet, causing the ball valve to open and releasing the air lock.
The solution proposed by Pressi is workable and has come into commercial usage. When the grease gun user loosens the attachment cap to open the air passage, care must be taken not to loosen the attachment cap too much. If the attachment cap is too loose it will "pop" off the tubular casing when pressure is applied. When air bleeds off through the air passage, a quantity of grease often follows the air through the air passage making an unwanted mess.
The solution proposed by Barry is a complex and expensive solution to a relatively simple problem. Insufficient time has passed to determine whether the solution proposed by Barry will gain commercial acceptance. | {
"pile_set_name": "USPTO Backgrounds"
} |
The interior spaces of buildings are often at a lower than desired level of humidity. This situation occurs commonly in arid climates and during the heating season in cold climates. There are also instances in which special requirements exist for the humidity of interior spaces, such as in an art gallery or where other delicate items are stored, where it is desired that the interior humidity levels be increased above naturally occurring levels. Therefore, humidifier systems are often installed in buildings to increase the humidity of an interior space.
Humidification systems may take the form of free-standing units located within individual rooms of a building. More preferably, humidification systems are used with building heating, ventilation, and air conditioning (HVAC) systems to increase the humidity of air within ducts that is being supplied to interior building spaces. In this way, humidity can be added to the air stream at a centralized location, as opposed to having multiple devices that increase humidity at multiple points within the building interior. Additionally, because the air within ducts may be warmer than the interior space air during a heating cycle, the additional air temperature can help prevent water vapor from condensing in the vicinity of the humidifier, such as on the inside of the duct.
An issue associated with humidification system is that they should only discharge water vapor into a duct and not liquid water. Liquid water within a duct can create a number of serious problems. For example, liquid water that remains stagnant within a duct can promote the growth of mold or organisms that can release harmful substances into the air flow, potentially causing unhealthy conditions in the building. Liquid water can also cause rusting of a duct which can lead to duct failure, and can create leaks from the duct to the building interior spaces which are unsightly, can cause a slipping hazard, and can lead to water damage to the structure.
One known humidification method involves direct steam injection into an air duct of a building. This approach is most commonly used in commercial buildings where a steam boiler is present to provide a ready supply of pressurized steam. Steam humidification has the advantage of having a relatively low risk of liquid moisture entering a duct or other building space. However, pressurized steam injection systems are associated with a risk of explosion of the steam pressure vessels, as well as a risk of possibly burning nearby people, both of which are very serious safety concerns. In residential applications, there are usually no readily available sources of pressurized steam. An open bath humidifier system may be used, however these are difficult to install because they require a large hole in the duct and can only be used with horizontal or upflow ducts. Alternatively, a residential application may use direct steam injection from a separate unit to generate pressurized steam, but this separate unit is costly. Moreover, the system would suffer from the same disadvantages as are present in commercial direct steam injection systems.
One type of humidifier that is commonly used in residential applications that has the advantages of steam humidification without the need for a separate source of pressurized steam is a tank heater type humidifier. In this type of humidifier, heat is generated within a tank of water, causing the water to boil and steam to be generated. The heat input may be any of a number of different sources, however, commonly an electrical heating element is used. One problem associated with this type of humidifier is that as water is boiled off as steam, the impurities in the water remain in the tank. These impurities generally include minerals that are naturally occurring in most sources of water. Over time, the concentration of these impurities will tend to increase in the tank, leading to greater amounts of impurities that solidify and deposit on the surfaces inside the tank. These deposits can accumulate to the point of creating numerous problems. For example, deposits on a heating coil reduce the heat transfer rate to the water, resulting in lower steam production and possibly causing overheating and failure of the coil. Deposits in the tank can clog passages where water or steam flows in or out, resulting in the failure of the humidifier. It is therefore necessary for a user of a humidifier to occasionally remove the tank of the humidifier and manually clean the tank and associated components to remove the deposits and accumulations.
Improved constructions for humidification systems are desired. In particular, improved constructions for water tanks of steam humidifiers are needed, and specifically, constructions that permit the tank to be readily removed for cleaning. For example, improved techniques and constructions are desirable to allow a water supply line and/or a water drain line to be readily removed from a tank. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to front end accessory drives, and more particularly to belt drive systems having an asymmetric damping tensioner.
Most engines used for automobiles and the like include a number of belt driven accessory systems which are necessary for the proper operation of the vehicle. The accessory systems may include an alternator, air conditioner compressor and a power steering pump.
The accessory systems are generally mounted on a front surface of the engine. Each accessory has a pulley mounted on a shaft for receiving power from some form of belt drive. In early systems, each accessory was driven by a separate belt that ran between the accessory and the crankshaft. Due to improvements in belt technology, single serpentine belts are now generally used in most applications. A single serpentine belt routed among the various accessory components drives the accessories. The engine crankshaft drives the serpentine belt.
Since the serpentine belt must be routed to all accessories, it has generally become longer than its predecessors. To operate properly, the belt is installed with a pre-determined tension. As it operates, it stretches slightly over its length. This results in a decrease in belt tension, which may cause the belt to slip. Consequently, a belt tensioner is used to maintain the proper belt tension as the belt stretches during use.
As a belt tensioner operates, the running belt may excite oscillations in the tensioner spring. These oscillations are undesirable, as they cause premature wear of the belt and tensioner. Therefore, a damping mechanism is added to the tensioner to damp operational oscillations.
Various damping mechanisms have been developed. They include viscous fluid dampers, mechanisms based on frictional surfaces sliding or interaction with each other, and dampers using a series of interacting springs. For the most part these damping mechanisms operate in a single direction by resisting a movement of a belt in one direction. This generally resulted in undamped vibrations existing in a belt during operation as the tensioner arm oscillated between loaded and unloaded positions.
The prior art systems rely on a tensioner set up to be compliant in order to follow the motion of the belt. Usually the tensioner is set up with a low damping rate to facilitate this compliance. As a result the prior art systems operated in an unsatisfactory manner during load changes. The accessory drive operated normally when the engine was running at a steady RPM. The tensioner bearing against the belt would maintain a tension in the span. Generally, the tensioner is xe2x80x98downstreamxe2x80x99 of the crankshaft in a belt movement direction. Damping was set so that the tensioner would damp most of the vibrations in the running belt.
The problems arise when the engine speed is rapidly changed, in the range of 5000 to 10000 RPM/sec. In this case, the accessories such as the alternator continue to drive the belt after a speed reduction due to rotational inertia. This causes the belt on the xe2x80x98downstreamxe2x80x99 side of the crankshaft to tighten, loading the tensioner. If the damping rate in the tensioner is too low the tensioner will be unable to resist the increase in belt tension and the arm will move in a direction away from the belt. As a result, the tensioner is not maintaining sufficient tension in the belt. This will allow the belt to slip on the crankshaft pulley, since the belt is now being driven toward the crankshaft, causing squeeking noises. Prior art systems rely on a means of locking the tensioner arm in the loading direction to prevent the decrease in belt tension. However, locking the tensioner prevents the tensioner from performing its corollary function of damping vibrations in the belt.
Representative of the prior art is U.S. Pat. No. 5,439,420 to Meckstroth et al. which discloses an accessory drive system including a tensioner having a governor for controlling rotational motion of the arm with the arm being able to rotate freely in the direction in which tension of the belt is increased and with the governor resisting motion of the arm in the direction in which tension in the belt is decreased.
The prior art also teaches a method of arranging engine accessories so that the order of rotational interial force is greatest for the accessory nearest the crankshaft pulley as seen from the tight side of the belt. This is taught in U.S. Pat. No. 4,959,042 to Tanaka. This method does not rely on the operational characteristics of the tensioner, instead relying on the dynamics of the staggered order of the accessories based upon rotational interia.
The prior art systems depend upon a locking tensioner or upon a particular mechanical arrangement to address the problem of high rate of change of engine speed. Neither system solves the dual problems of preventing squeal during speed changes while continuing to damp belt vibrations. Further, the prior art systems, in the case of Mechstroth are complex and expensive, requiring complex mechanical devices to control the movement of a tensioner arm. The prior art systems are relatively large requiring room on the engine surface. The Tanaka method does not fully address the issue of high deceleration rates, relying instead on the arrangement of the components which does not fully defeat the tightening of the belt during deceleration.
Reference is also made to co-pending U.S. patent application Ser. No. 09/861,338 filed May 18, 2001 which discloses a tensioner having a damping mechanism.
What is needed is an asymmetric damping tensioner belt drive system having an asymmetric damping tensioner. What is needed is an asymmetric damping tensioner belt drive system capable of providing a higher belt tension during rapid changes in engine speed. What is needed is an asymmetric damping tensioner belt drive system having a greater damping friction in a loading direction than an unloading direction. What is needed is an asymmetric damping tensioner belt drive system having a coefficient of asymmetry in excess of 1.5. The present invention meets these needs.
The primary aspect of the invention is an asymmetric damping tensioner belt drive system having an asymmetric damping tensioner.
Another aspect of the invention is to provide an asymmetric damping tensioner belt drive system capable of providing a higher belt tension during rapid changes in engine speed.
Another aspect of the invention is to provide an asymmetric damping tensioner belt drive system having a greater damping friction in a loading direction than an unloading direction.
Another aspect of the invention is to provide an asymmetric damping tensioner belt drive system having a coefficient of asymmetry in excess of 1.5.
Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention comprises an asymmetric damping tensioner system for belt drives on an engine. A belt is connected between a driver pulley on a crankshaft and any number of driven pulleys. Each driven pulley is connected to an accessory such as an alternator, power steering pump, compressor or the like. The tensioner is placed anywhere before the first component of significant effective inertia, in the belt movement direction. A biasing member in the tensioner is used to maintain a tension in the belt. The tensioner further comprises a damping mechanism to damp belt vibrations caused by the operation of the engine. Tensioner damping friction is unequal or asymmetric, depending upon the direction of movement of the tensioner arm. During acceleration the damping friction of the tensioner in the unloading direction is significantly lower than the damping friction in the opposite, or loading direction, as is the case during deceleration. Lower damping friction during acceleration allows the tensioner arm to quickly adjust to the increase in belt length caused by acceleration. Higher damping friction during deceleration prevents the tensioner arm from being moved too far in the loading direction thereby causing slipping and noise. Asymmetric damping also significantly diminishes overall vibration in the belt during all phases of operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention The present invention relates to colour selection and in particular provides an apparatus whereby a customer may select desired paint colours having regard to particular requirements such as contrast or harmony.
The invention will be described hereinafter with reference to a particular type of colour selection apparatus. However, it will be appreciated by those skilled in the art that the invention is not limited to this particular embodiment or field of use.
2. Description of the Prior Art
It is well known to select paint colours from a colour chart displaying a selection of available colours in discrete sample areas spaced over the chart. Where a wide range of possible colours is available it is known to provide a large display rack holding a matrix array of small packs of colour cards. The cards in any one pack are identical and each card in that pack may display one or more colours. The colour or colours displayed in any one pack are different from those in every other pack and the individual colour packs are preferably arranged on the rack in related groupings. For example, all shades of one colour are preferably displayed in a single area such as a block, row or column.
The coloured face of each card is directed towards the customer who may then remove one or more selected cards from the top of their respective packs, thereby leaving the next underlying identical card visible such that the entire display remains functional provided the packs are periodically replenished.
Preferably, each card includes a plurality of closely similar colours to permit a final and accurate selection to be made.
Once a particular colour has been chosen, the customer frequently needs to select additional related colours to achieve a particular aesthetic effect. This additional selection depends upon what particular chromatic relationship is required between the colours. The customer may wish to draw on accepted rules of harmony, contrast, tonal and triadic relationships to produce the desired effect.
While the tonal relationships between different colours and the use of a "colour wheel" is well known, in cases where perhaps six hundred different colours are available, the customer is often faced with a daunting problem in selecting suitable colour pairs.
It is an object of the present invention to provide a colour display apparatus which will greatly facilitate the selection of related colours. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to electric generating systems and, more particularly, to a portable electric generating system for converting wind or water potential energy into electricity.
There are numerous situations where electricity is not readily available when and where it is actually needed, such as in the immediate aftermath of a natural disaster or at a remote campsite. However, potential energy is often available at or near such areas and could be converted into electricity if only a portable generator system was available to harness the potential energy.
Hydro electric generating plants and wind electric generating systems are generally known in the art. Although assumably effective for their intended purposes, the known systems are not suited for selectively utilizing either wind or water energy to generate electricity. Further, the known systems are not easily assembled, disassembled, and moved between desired locations.
Therefore, it is desirable to have a portable electric generator system which may be configured to selectively utilize either a wind or water stream to operate a generator for producing electricity. Further, it is desirable to have an electric generator system which may be easily and quickly assembled, disassembled, and moved between locations where electricity is needed or where an adequate wind or water stream is available. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This invention relates to an image forming apparatus equipped with an image reader and an automatic document feeder.
2. Related Art
In an image forming apparatus with an image reader that reads an image of an original document, an image reader-mounting unit is provided to mount the image reader thereon. In general, it is necessary to avoid skewing an image and a right angle of an image read by the image reader, and accordingly the image reader-mounting unit is designed to be as flat as possible. Recently, as image forming apparatuses have become lighter and thinner, a more accurate flatness than ever before is needed in a conventional image reader-mounting unit to carry the image reader thereon.
However, since such flatness is hardly ensured simply by enhancing precision of components (i.e., parts), a flatness adjusting unit is generally employed to obtain the necessary flatness. For example, to adjust the flatness of the image reader-mounting unit frame and solve the problems of the skewing and the right angle of the read image, the image reader-mounting unit is configured to be pivotable around an axis.
However, the relative positions of the pivoting center and an adjusting position (i.e., a power point) are not disclosed. Moreover, the arrangement is excessively sensitive and may be not suitable to execute fine adjustment.
Further, among various conventional image forming apparatuses with an automatic document feeder, the automatic document feeder is sometimes indirectly attached to the image reader. That is, the automatic document feeder is directly mounted on the frame of the image forming apparatus. In this case, it may be necessary to maintain relative positions of an image reading reference point for reading an original document fed by the automatic document feeder, on one hand, and the image reader, on the other, using a flatness-adjusting unit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a bracing structure and to a drawbar unit for a vehicle which utilizes such a bracing structure. Such drawbar units are particularly useful with construction vehicles.
2. Prior Art
The attachement of drawbars to vehicles such as heavy construction vehicles is well known. Generally, such drawbar units have been attached to the transmission case at the back of such vehicles. This has created very serious problems in that when heavy loads are being pulled by the vehicle the bolts which are holding the drawbar unit to the transmission case will often fail. Also, the transmission case itself may be ripped off or at least badly bent if the bolts themselves do not fail with the damage occurring generally adjacent the points of attachment of the bolts to the transmission case. Still another problem with prior art drawbar units has been that they tend to be relatively bulky and also relatively difficult and time consuming to fasten in place and remove. Still further, the prior art drawbar units have tended to extend a relatively great distance rearwardly of the main frame of the vehicle carrying them. This has created problems of relatively large moments being created which cause relatively large stresses at the points of attachment of the drawbar unit to the vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the past price display systems consisted of a paper price label affixed to items of merchandise sold in grocery stores so that customers could easily determine the price of each item. At the check-out stand the price of each item was manually entered by clerk into a conventional register. Also, with this completely manual system keeping track of stock and planning of a store's layout was very costly in terms of personnel, resources and money. Since the development of point-of-sale (“POS”) checkout terminals, optical scanners, and computers, the price label has almost universally been eliminated and replaced by a product code, termed a Universal Product Code (“UPC”), or a Stock Keeping Unit (“SKTJ”). These UPC or SKU codes are easily read by an infra-red scanner and a computer of which prompted the development of computerized systems that could handle and manipulate the product data. However, the codes are not easily read by customers, proposing the need to display product information such as price on the product itself or on an adjacent shelf.
Several systems have been developed coordinating the UPC and SKU codes with the price labels in an attempt to fully integrate a computer controlled system providing product information integrity in the areas of space management, audit capabilities and price changes, while still giving customers the product information suited to their shopping needs i.e. price, savings, and sales. Unfortunately, many of these systems are incompatible with existing systems, expensive, and all fail to fully integrate an effective control system providing space management, audit capabilities and rapid price changes while maintaining product information integrity.
In attempting to solve the product information integrity problems associated with the sole use of paper price labels, various electronic displays, employing liquid crystal displays (“LCD”) and light emitting diodes (“LED”), located at the shelf have conventionally been used to display price information. When a price change is desired, the new price can be updated in a computer database, linked to the checkout terminals, and then sent to the electronic display. These electronic displays at least have the advantage of updating price information at the shelf, however without two-way communication, between the electronic display and the computer managing the price information database, price integrity at the shelf cannot be assured. Also, prior art systems cannot specifically identify the unique location of each product in the store.
For example, U.S. Pat. No. 4,002,886, issued to Sundelin, generally describes a system using electronic display modules located at the shelf linked with a central computer, of which also supplies information to the POS terminals. Sundelin's display system has several disadvantages. First, the modules are hard wired, making alterations to shelf and product location difficult and expensive. Second, the modules are wired in parallel making wiring layout for the store virtually unmanageable. Third, communication with the modules is only one-way, generally limiting the systems capability to provide price integrity at the shelf edge.
To overcome the disadvantages of hard wiring, other commercial display systems utilized infra-red or radio broadcast (RF) communications, however both infra-red and RF exhibit certain problems. For example, U.S. Pat. No. 4,821,291, issued to Stevens describes a system using an RF broadcast system to provide two-way communication with the individual display modules. This system overcomes the hardwiring problems, however several other problem arise that affect both the information integrity and the cost of the system. For example, this RF broadcast system is not interference resistant creating problems with the integrity of the price display information even though the display modules may communicate with the main computer.
Steven's display modules are individually battery powered, creating on-going problems with the replacement of those batteries and limits the ability of the system to rapidly determine whether a module is functioning or not. The RF circuitry contained within the display modules greatly increases the cost of implementing such a system of 10,000 or more display modules. Also, this system maintains problems with the speed at which to update pricing information at the display module because a central computer has to access each module individually by a long polling process. Further, this system can not fully integrate a computer controlled system providing space management, audit capabilities and price changes while maintaining product information integrity.
A number of factors have made retail store management more difficult in recent times, including narrowing profit, increasing expenses, increasing labor costs, unavailability of desired education and skill levels in employees, and the proliferation of retail brands and products within brands. Due to these and other factors, those managing retail stores, particularly grocery stores, have given much attention in recent years both to reducing the cost of fulfilling existing store practices, and to developing new store practices.
One known store practice is the “price audit”. In the simplest case, a store that practices manual price auditing will have a list of expected prices, and on a particular day a store employee will be given a portion of the list. The employee is instructed to locate each item from the list in its actual store location, where the price will be checked. In a store where prices are marked on the goods, the marked prices are compared with the price on the list. In a store where prices are posted or displayed nearby to the goods, the posted or displayed price is compared with the list price. Despite the great labor cost involved, management at most large grocery chains will choose to perform manual price auditing on a more or less continuous basis. The management goal is typically that every price will have been audited at least as often as, say, once per quarter.
For many reasons, manual price auditing is less than perfect. It sometimes happens that a product is displayed in multiple store locations, for example, yet the person performing the audit will not necessarily know to continue searching after one occurrence of an item has been found. Thus, second or third locations of an item will miss having the price audited. Also, on a given day the employee performing price auditing will have a list of items to check, and the sequence of items on the list will typically not match the physical arrangement of items on display, so that each item on the list requires a search for the physical item in the store.
Another known store practice is the establishment of plan-o-grams. In a store that has established plan-o-grams, every section of shelving is memorialized, typically in list form, regarding placement of each item of merchandise. Theoretically, nothing is left to chance in a store that has established plan-o-grams; there is a place for everything and everything is in its place. As a practical matter, it is a ponderous task to establish plan-o-grams for a chain of retail stores. Each new product announcement by a manufacturer represents the prospect of having to update or change the plan-o-grams, as does the discontinuance of a product. At the level of an individual store, it is very easy for the physical store layout to deviate from the arrangement set forth in the plan-o-grams, whether due to inadvertence or otherwise.
Furthermore, while most stocking is performed by store employees, some lines of goods are traditionally stocked by representatives of the manufacturers, who have a natural incentive to stock goods in such a way as to promote sales of the goods of their employers. One variable that stores attempt to control is the number of “facings” of each product. A particular manufacturer would prefer, of course, that its products each enjoy a large number of facings, and that the products of its competitors have very few facings. Another variable is the shelf location. Every manufacturer would prefer that its goods be at eye level, yet not all the store shelves are at eye level. Yet another variable to be controlled is the adjacency of particular pairs of products or of product categories.
While the particular locations, facings, and adjacent goods within a store are all important, it is of even greater importance that store management be capable of ensuring that the store at least contains the goods that are desired to be present in the store. To that end, management will often maintain a “shelf set”, a list of items that are expected or desired to be found in each store. While a manual audit could be performed to confirm that each item on the shelf set list is in a store, it is desirable that store management be able to identify exceptions in a routine, non-labor-intensive, automated way.
In addition to the identities of items of merchandise, the shelf set may also include information as to the desired number of facings for each item. It is very labor-intensive to confirm manually that for each item in a store, the actual number of facings matches the desired number. Thus, prior artisans have focused on the provision of an automated or nearly automated way to determine the extent to which actual facings correspond to desired facings.
U.S. Pat. No. 5,241,467, issued to Failing et al. discusses an attempt to provide space management and auditing capabilities coordinated with a computer controlled electronic display system. The system utilizes rails mounted on the shelf edge that provide display module location within a 4 foot space. Communication between the rails and a central computer could be accomplished by RF, infra-red or hard wire. The space management system of Failing et al. includes electronic price display labels mounted on rails along the edges of shelves in a store. A store computer in the store communicates with the labels by an synchronous serial data link. The communications link between the computer and the labels permits the computer to address each label by a logical address and to determine the physical location of each label to within a resolution of typically four feet.
The system provides price audit lists that permit economical use of the time of store personnel during the audit. The lists are generated in such a way that the items on a particular list are physically contiguous; thus once the correct general area has been located by the auditor little additional time need be spent locating the individual items. The store personnel are able to predetermine the criteria according to which audit lists are prepared, and can adjust the criteria over time.
In this system adjacency audit lists may also be prepared. In each entry of such a list, the entry will communicate that it is desired for two particular items to be adjacent in store shelf display. The auditor is expected to locate the two items and to confirm that they are physically adjacent.
In each of these audit processes, the auditor reports the exceptions that were found; theoretically there would never be exceptions and in actuality it is hoped there are very few exceptions. In the space management system according to this system the auditor is able to provide the exceptions by a streamlined data input procedure; if performed at a keyboard, the number of required keystrokes is kept to a minimum.
In this space management system the tedious task of auditing product facings is made easier, and the danger that exceptions might be overlooked is lessened. In performing an audit of product facings, the user is able to use the display hardware, i.e. the electronic price label, including the pushbutton on each label, as a data collection system for product facing information. This eliminates the multiplicity of manual writing, copying, and keying steps in prior art ways of auditing product facings. The space management system of Failing et al., however, fails in several ways. The adjacency lists generated by the system merely shows that two products are simply adjacent thus problems with shelf location are inherent. Merely knowing the adjacent products does not eliminate the risk that competitors will move in to the space of other competitors. This form of auditing is still very tedious and time consuming, thus costly. The plan-o-gram auditing that is discussed does not change the method of auditing and planning of a store because the plan-o-gram method discussed is merely a list of adjacent products of which maintains problems with the ability to update and maintain a store plan and product information integrity is at risk. The resolution of this system is four feet obviating an inherent error in space management. Also, the modules that are employed must have complicated user functionality via push buttons which raise the cost of the system employing large numbers of complex modules, each of which must be individually and tediously visited by store personnel. The Failing et al. system therefore can not set forth a fully integrated computer controlled system providing space management, audit capabilities and rapid price displays while maintaining product information integrity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to seaming machines. More particularly, the invention relates to a seaming machine and method of seaming a number of sheet segments to form a larger sheet of material. Specifically, the invention relates to a bi-directional seaming machine which expedites the process of producing the seams between the sheet segments.
2. Background Information
The seaming together of multiple sheets of material is well known in the art. Typically, a first segment of sheet material is laid on a table or other work surface and a second segment of sheet material is positioned above the first segment with their edges generally aligned so that a seaming device moves along the aligned edges to forms a seam along the length of the two sheet segments. This typically results in a two-segment sheet which is roughly twice as large as each of the individual segments. In order to form larger sheets of material, additional segments of sheet material must be sequentially seamed together. This seaming process may be achieved by various seaming devices depending on the material from which the sheets are formed and the application for which the product will be used. For example, seams may be formed using plastic welders, ultrasonic welders, radio frequency (RF) welders, adhesive or glue seaming devices or sewing devices amongst others.
As will be appreciated, the larger the sheet becomes, the more unwieldy it is to handle. The standard practice for adding one or more additional segments of sheet material to the two-segment sheet is to slide one of the sheets segments off of the table or work surface and move the non-seamed edge of the other sheet segment adjacent the side of the table along which the seaming device is positioned. Especially during the formation of larger sheets of material such as relatively heavy tarps, the movement of these sheet segments and re-positioning thereof can easily require four or more people. Once the non-seamed edge of the second segment of sheet material is properly positioned, a third segment of sheet material is positioned adjacent the second segment and the edges of the second and third segments are then seamed together.
One type of plastic seaming machine utilizes a carriage on which the seaming device and associated structure are mounted so that it can roll back and forth along the edges of sheet material to be seamed together. However, the seaming device is only being used for seaming when the carriage is moving in a single direction. Thus, after seaming two segments of sheet material together, the carriage must be moved from one end of the seam to the other end of the seam in order to seam the next two segments of sheet material together. The relatively slow movement of the carriage back to its starting position is lost time in which no welding occurs. Considering the fact that some seams may be several hundred feet long, this lost time may be considerable. After each segment of sheet material is seamed to the previous one, additional sheet material must be moved off of the table or work surface and gradually piles up on the floor, often in disarray. Furthermore, material hanging off of the table or an elevated work surface pulls on the material atop the table and adds to the difficulty of aligning the material for a subsequent seaming operation. In short, the process is relatively time consuming and labor intensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to a display control apparatus, a display control method, a program, and an information storage medium.
A technology is known in which a voice message entered from a user is accepted to execute processing in accordance with the information represented by the accepted voice message. In one example of an apparatus based on this technology, information indicative that an option of attention related with information indicative of a voice message to be accepted is identified by highlighting this option is displayed. With this apparatus, upon reception of a voice message indicative of an instruction of execution for example, processing in accordance with an option of attention is executed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an ultraviolet and infrared radiation absorbing glass having a high visible light transmittance and a green tint. More particularly, the invention relates to an ultraviolet and infrared radiation absorbing green glass which, when heat-tempered before use, is inhibited from changing in color through the heat-tempering and which is hence especially suitable for use as an automotive window glass.
In order to meet the demand for protection of interior trim of automobiles against deterioration, which has been increasing with the recent trend to luxury of the interior trim, and to reduce the load of air conditioning, various glasses having ultraviolet and infrared radiation absorbing power have recently been proposed as automotive window glasses.
Among the automotive window glasses, the front or side window glasses should have a visible light transmittance of not less than a certain value so as to secure driver""s view. Glasses which have been designed for use in such a position and to which ultraviolet radiation absorbing properties and heat radiation absorbing properties have been imparted, have a greenish tint because an end of the ultraviolet absorption range and an end of the infrared absorption range reside in the visible region.
Window glasses which have an ultraviolet transmittance of about 38% or less and a total solar energy transmittance of about 46% or less and which further have a visible light transmittance of at least 70% so as to secure a view from the inside of the automobile have conventionally been known (see, for example, JP-A-3-187946). (The term xe2x80x9cJP-Axe2x80x9d as used herein means an xe2x80x9cunexamined published Japanese patent applicationxe2x80x9d.)
It is known that one method effective in reducing the total solar energy transmittance of a glass is to increase the absolute amount of ferrous oxide among the iron oxides contained in the glass. Most of the infrared radiation absorbing glasses which have been proposed so far are produced with this technique.
On the other hand, various techniques for reducing ultraviolet transmittance have been proposed. For example, the infrared and ultraviolet radiation absorbing glass disclosed in JP-A-4-193738 contains cerium oxide and titanium oxide so as to have a reduced ultraviolet transmittance. This glass comprises, in % by weight, base glass components comprising 68 to 72% SiO2, 1.6 to 3.0% Al2O3, 8.5 to 11.0% CaO, 2.0 to 4.2% MgO, 12.0 to 16.0% Na2O, and 0.5 to 3.0% K2O and, coloring components comprising 0.65 to 0.75% Fe2O3, 0.20 to 0.35% CeO2, and 0.2 to 0.4% TiO2.
The ultraviolet radiation absorbing glass disclosed in JP-A-6-56466 which has a green tint, comprises a soda-lime-silica glass as base glass components and, coloring components comprising 0.53 to 0.70% total iron oxide in terms of Fe2O3, 0.5 to 0.8% CeO2, and 0.2 to 0.4% TiO2, wherein 30 to 40% of the total iron oxide in terms of Fe2O3 is accounted for by FeO in terms of Fe2O3.
The ultraviolet and infrared radiation absorbing glass disclosed in JP-B-6-88812 (the term xe2x80x9cJP-Bxe2x80x9d as used herein means an xe2x80x9cexamined Japanese patent publicationxe2x80x9d) which has a green tint comprises, in % by weight, base glass components comprising 65 to 75% SiO2, 0 to 3% Al2O3, 1 to 5% MgO, 5 to 15% CaO, 10 to 15% Na2O, and 0 to 4% K2O and, coloring components comprising 0.65 to 1.25% total iron oxide in terms of Fe2O3 and either 0.2 to 1.4% CeO2 or a combination of 0.1 to 1.36% CeO2 and 0.02 to 0.85% TiO2.
Furthermore, glasses which have a preferred tint by adding nickel oxide have been proposed. For example, the glass disclosed in JP-W-8-506314 (the term xe2x80x9cJP-Wxe2x80x9d as used herein means an xe2x80x9cunexamined published PCT applicationxe2x80x9d) comprises a soda-lime-silica glass having a ferrous content calculated with the following equation:
FeO (wt %)xe2x89xa70.007+[(optical density)xe2x88x920.036]/2.3 and contains 0.25 to 1.75% by weight Fe2O3. It further contains one or more members selected from the group consisting of Se, Co3O4, Nd2O3, NiO, MnO, V2O5, CeO2, TiO2, CuO, and SnO and thereby has an neutral tint. This glass has a visible light transmittance of 32% or more, an ultraviolet transmittance of 25% or less, and a solar heat radiation transmittance lower by at least 7% than the visible light transmittance, when it has a thickness of 4 mm. It preferably has a dominant wavelength shorter than 570 nm.
The glasses disclosed in the patent documents cited above have ultraviolet radiation absorbing power by Fe2O3, CeO2, and TiO2 and by interactions among them. However, glasses containing these ingredients assume a yellow tint through heat-tempering. Although the reasons for this color change are unclear, it may be due to the fact that an increase in absorption is observed, which is presumably attributable mainly to an interaction between Fe2O3 and CeO2. Because of this, a glass plate produced and a glass plate obtained by processing (heat-tempering) the glass plate so as to be actually usable as an automotive window glass differ in tint. In this respect, those conventional glasses have had a drawback in quality control. In particular, an increase in saturation caused by heat-tempering is undesirable because the color becomes more vivid.
On the other hand, in the glasses containing NiO, the color change through heat-tempering can be inhibited due to the absorption by tetra-coordinated NiO after heat-tempering in combination with the coloration in yellow mentioned above. However, the conventional glasses containing NiO have too low a visible light transmittance or too high an ultraviolet or infrared transmittance and are hence unsatisfactory for use as automotive window glasses.
The invention has been made in the light of the above-described circumstances of the conventional techniques. An object of the invention is to provide an ultraviolet and infrared radiation absorbing green glass which has a high visible light transmittance, a low ultraviolet transmittance, and a low infrared transmittance, changes little in color through heat-tempering, and retains a stable green tint. Another object of the invention is to provide an ultraviolet and infrared radiation absorbing green glass which, in addition to these properties, has a lower total solar energy transmittance than conventional ones due to the infrared absorption by NiO and which therefore is especially suitable for use as an automotive window glass.
(1) The invention provides an ultraviolet and infrared radiation absorbing green glass comprising: in % by weight,
as coloring components,
0.5 to 1.1%, excluding 0.5%, total iron oxide in
terms of
Fe2O3 (Txe2x80x94Fe2O3);
0 to 2.0% CeO2;
0 to 1.0% TiO2;
0.0005 to 0.01% NiO; and
0.0001 to 0.001% CoO;
wherein, when the glass has a thickness of 4 mm, the glass has a visible light transmittance (YA) of 70% or more, a total solar energy transmittance (TG) of 60% or less, and an ultraviolet transmittance defined by ISO 9050 (Tuv) of 25% or less
(2) In the glass of the invention, the preferred content of CeO2 is from 0.1 to 2.0% by weight.
(3) The glass of the invention preferably comprises: in % by weight,
as base glass components,
65 to 80% SiO2;
0 to 5% Al2O3;
0 to 10% MgO;
5 to 15% CaO:
10 to 20% Na2O;
0 to 5% K2O; and
0 to 5% B2O3;
wherein the sum of MgO and CaO is 5 to 15% and the sum of Na2O and K2O is 10 to 20%.
(4) In the glass of the invention, the content of Txe2x80x94Fe2O3 is preferably from 0.6 to 1.1%, excluding 0.6%.
(5) FeO in terms of Fe2O3 preferably accounts for 20 to 60% of the Txe2x80x94Fe2O3.
(6) The glass of the invention preferably contains 0.0001 to 0.1% in total of at least one selected from the group consisting of Se, Cr2O3, Mn2O3, CuO, Nd2O3, Er2O3, MoO3, V2O5, and La2O3.
(7) The glass of the invention preferably, when the glass has a thickness of 4 mm, has a visible light transmittance (YA) of 70% or more, a total solar energy transmittance (TG) of 53% or less, and an ultraviolet transmittance defined by ISO 9050 (Tuv) of 20% or less.
(8) In the glass of the invention, the difference in a saturation between the glass before a heat treatment and that after the treatment is preferably within 0.5. The saturation is determined from chromaticities a* and b* in the CIE 1976 L*a*b* color system using the following equation (1) (hereinafter referred to as xe2x80x9csaturationxe2x80x9d):
Saturation=(a*2+b*2)1/2xe2x80x83xe2x80x83(1)
(9) The heat treatment is preferably a heat-tempered treatment by air blast cooling.
(10) The glass is especially preferably a sheet glass formed by the float process and has undergone heat-tempering.
Modes for carrying out the invention will be described below in detail.
First, the reasons for limitations of the composition of the ultraviolet and infrared radiation absorbing green glass according to the invention are explained below. Hereinafter, all percents used for component amounts are by weight.
Iron oxide in a glass is present in the forms of Fe2O3, and FeO. Fe2O3is a component which serves to enhance ultraviolet radiation absorbing power, while FeO is a component which serves to enhance heat radiation absorbing power.
If the amount of the total iron oxide in terms of Fe2O3 (Txe2x80x94Fe2O3) is less than 0.5%, the effect of absorbing ultraviolet and infrared radiation is so low that the desired optical properties cannot be obtained. On the other hand, contents of Txe2x80x94Fe2O3 exceeding 1.1% are undesirable in that the glass has a reduced visible light transmittance. Such too high Txe2x80x94Fe2O3 contents are undesirable also in that, when this glass and a glass having a different composition are successively produced with the same glass melting furnace, the compositional change requires much time. Consequently, the content of Txe2x80x94Fe2O3 is from 0.5 to 1.1%, excluding 0.5%, preferably from 0.6 to 1.1%, excluding 0.6%.
NiO is a component for regulating visible light transmittance and color tone. In the invention, NiO plays an especially important role in controlling the color tones before and after a heat treatment. If the content of NiO is less than 0.0005%, the sufficient effect cannot be obtained. On the other hand, contents thereof exceeding 0.01% are undesirable in that the visible light transmittance is decreased.
It is known that NiO changes in coordination number depending on the cooling rate of the glass, resulting in a different color tone. Specifically, the coordination number for the oxygen surrounding Ni2+ changes from 6 to 4 through heat-tempering, and this change brings about a change in absorption. Ni2+ of octahedral coordination has absorption at around 430 nm to color the glass yellow-brown, while Ni2+ of tetrahedral coordination has absorption in the range of from 500 to 640 nm. In the invention, this property of NiO is utilized to control the color tones before and after a heat treatment.
CoO is a component for obtaining a green tint in cooperation with NiO and Fe2O3, and further serves to control visible light transmittance. If the content of CoO is less than 0.0001%, a desirable green tint cannot be obtained. If the content of CoO exceeds 0.001%, the results are too intense a blue tint and a reduced visible light transmittance.
CeO2, although not an essential component, is a component which enhances ultraviolet radiation absorbing power. CeO2 in a glass is present in the form of Ce3+ or Ce4+. In particular, Ce3+ shows reduced absorption in the visible region and is effective in ultraviolet absorption. Ce3+ functions also to enhance ultraviolet radiation absorbing power by an interaction with Fe3+. The content of CeO2 is preferably not less than 0.1%, whereby, a sufficient ultraviolet radiation absorbing power can be obtained. Use of CeO2 in an amount more than 2% is undesirable in that the results are an increased cost and a reduced visible light transmittance.
TiO2, although not an essential component, serves to enhance ultraviolet radiation absorbing power by an interaction with FeO. It may be added in an appropriate amount. If the content of TiO2is too high, the glass tends to be yellowish. Consequently, the upper limit of TiO2 content should be 1.0%, and is preferably 0.8%, more preferably 0.1%.
From the standpoint of obtaining the green tint and properties which the invention is intended to attain, it is preferred that at least one member selected from the group consisting of Se, Mn2O3, CuO, Cr2O3, Nd2O3, Er2O3, MoO3, V2O5 and La2O3 can be added to a glass having a composition within the range according to the invention in an amount of from 0.0001 to 0.1%. Se, Mn2O3, CuO, Cr2O3, Nd2O3 and Er2O3 can function as auxiliary coloring agents and MoO3, V2O5 and La2O3 can function as auxiliary ultraviolet absorbers.
SiO2 is a main component forming a skeleton of glass. If the content of SiO2 is less than 65%, the glass has poor durability. If the content thereof exceeds 80%, the glass is difficult to melt.
Al2O3 is a component which improves glass durability. It the content of Al2O3 exceeds 5%, the glass is difficult to melt. The preferred range of Al2O3 content is from 0.1 to 2%.
MgO and CaO both are used for improving glass durability and for regulating the liquidus temperature and viscosity of the glass during forming. If the content of MgO exceeds 10%, the liquidus temperature rises. If the content of CaO is less than 5% or higher than 15%, the liquidus temperature rises. If the total content of MgO and CaO is less than 5%, the glass has poor durability. If the total content thereof exceeds 15%, the liquidus temperature rises.
Na2O and K2O accelerate glass melting. If the content of Na2O is less than 10% or if the total content of Na2O and K2O is less than 10%, the effect of melting acceleration is poor. If the content of Na2O exceeds 20% or if the total content of Na2O and K2O exceeds 20%, glass durability is decreased. Since too large K2O amounts result in an increased cost, it is desirable to use K2O in an amount of 5% or less.
B2O3 is a component used for improving glass durability or as a melting aid. It functions also to enhance ultraviolet absorption. If the content of B2O3 exceeds 5%, troubles arise in glass forming due to vaporization of B2O3, etc. Consequently, the upper limit of B2O3 content should be 5%.
If the ratio of the amount of FeO to that of Txe2x80x94Fe2O3 is too small, sufficient heat radiation absorbing power cannot be obtained because of the too small FeO amount. On the other hand, if the FeO/Txe2x80x94Fe2O ratio is too large, the range of absorption by FeO extends even into a longer-wavelength range in the visible region, so that the glass has a reduced visible light transmittance and a blue tint. Furthermore, too large FeO/Txe2x80x94Fe2O3 ratios are undesirable in that since the melt of such a glass is on the reduction side, there are cases where not only nickel sulfide stones generate in the glass but also silica-rich streaks or a silica scum generates. In the invention, the FeO/Txe2x80x94Fe2O3 ratio is preferably regulated to 20 to 60%, whereby a green glass having high ultraviolet absorbing power and high heat radiation absorbing power is obtained. The FeO amount used for expressing the FeO/Txe2x80x94Fe2O3 ratio is a value calculated in terms of Fe2O3.
It is preferred to add at least one of Sb2O3, SnO2, and the like as a reducing agent or refining agent in a total amount of up to 1%. It is also preferred to add up to 1% ZnO in order to prevent the generation of nickel sulfide stones more surely.
The glass of the invention has a composition within such a range that the glass can be inhibited from suffering a color change through a heat treatment. Consequently, the difference between the saturation, indicating color tone, of the glass before a heat treatment and that after the treatment is preferably within 0.5. Namely, the glass which has undergone the heat treatment preferably has a reduced saturation.
The main use of the glass according to the invention is as an automotive window glass. For the purpose of safety, the glass is usually heat-tempered by air blast cooling.
The invention will be described in more detail by reference to the following Examples and Comparative Examples. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a recording apparatus which is capable of recording a moving image and a still image on the same recording medium.
2. Description of the Related Art
A demand for high-density recording has recently increased in the field of magnetic recording. Video tape recorders (hereinafter referred to as VTRs) also have come to be arranged to perform recording with a higher density by lowering the traveling speed of the tape.
However, in a case where an audio signal is to be recorded with a stationary head, for example, the reduction of the tape travel speed brings forth a problem that the quality of reproduced sounds is degraded because it is impossible to have the sufficiently high relative speed of a tape to the head. According to one of known methods for solving this problem, the length of recording tracks to be scanned by a rotary head is extended to be longer than the conventional length and audio signals which are time-base-compressed are recorded one after another in the extension parts of the tracks.
More specifically, in the case of a VTR of the rotary-two-head helical scanning type, the VTR has been arranged to have a magnetic tape wrapped at least 180 degrees around a rotary cylinder. Whereas, in accordance with this method, the magnetic tape is arranged to be wrapped at least (180+.theta.) degrees around a rotary cylinder and an audio signal which has been subjected to a PCM (pulse-code modulation) process and time-base-compressed is recorded in the area of ".theta." degrees (hereinafter referred to as a PCM audio signal area or a PCM area).
FIG. 1 shows the tape transport system of the above-stated VTR. FIG. 2 shows the recording tracks formed on the magnetic tape by the arrangement of the VTR shown in FIG. 1. In FIGS. 1 and 2, reference numeral 6 denotes the magnetic tape. Reference numeral 18 denotes the rotary cylinder. Heads 5A and 5B are mounted on the rotary cylinder 18. A video signal area 19 and a PCM audio signal area 20 are formed in each of the recording tracks formed on the magnetic tape 6. The heads 5A and 5B are arranged to trace the video signal area 19 within the angle range of 180 degrees around the rotary cylinder 18 and the PCM audio signal area 20 within the angle range of .theta. degrees around the rotary cylinder 18.
As one example of an application of the above-stated method of recording the digital signal in the different area while the video signal is being recorded, a method for recording a still image digital signal within the digital signal area 20 has been proposed. In the case of a still image, one picture of still image information is completely recordable on the magnetic tape by using the PCM areas of a plurality of recording tracks.
This method not only permits the use of the same apparatus and the same recording medium both for taking a moving image and for taking a still image but also gives the still image with a higher grade of picture quality than a still image obtained by stopping the tape from traveling and by reproducing a video signal recorded in the same track formed on the tape.
However, in accordance with the above-stated example of the prior art method, a still image being taken cannot be monitored in recording the still image. It is, therefore, impossible to let the operator know the timing of the still image recording. It is also impossible for the operator to know the brightness and color tones of the still image being taken.
A further problem of the prior art method lies in that the recording time changes with variations in compression rate and bit rate set for the process of still image recording. Therefore, it is impossible to grasp the length of time required for the completion of the still image recording. It is thus hardly possible, for example, to find appropriate timing for bringing the still image recording action to an end and to determine release timing for a next still image recording process. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention:
This invention relates to a thermopervaporation apparatus. More particularly, it relates to a thermopervaporation apparatus having a porous spacer positioned between a microporous membrane and a heattransmission wall to minimize the space therebetween thereby improving the yield of the condensate.
2. Description of the Prior Art:
As a method for separating water from an aqueous solution, there has been a thermopervaporation method wherein a feed solution such as brine is passed through one side of a microporous membrane (which is impervious to liquids while readily allowing the vapor to pass therethrough) and the vapor of the component to be separated from the feed solution is condensed on a cold wall at the other side of the membrane. A variety of apparatus for performing such a sparation method have been proposed. For example, Japanese Patent Publication No. 49-45461 (45461/1974) discloses a multistage thermopervaporation apparatus for separating a component from a solution by circulating the hot feed liquid to be distilled and a cooling liquid at respectively opposite sides of a gaseous region situated between the above-mentioned microporous membrane which is permeable to the vapor of the component to be separated and the cold wall on which that vapor is to condense, resulting in a pure water from brine.
Generally, such a thermopervaporation apparatus will be able to attain a high condensation rate for the vapor thereby attaining a high yield per hour of the condensate, and will be minimized if the space (i.e., a gaseous region) between the membrane and the cold wall is made small. However, the membrane is not rigid and tends to bend, so that it often comes into contact with the cold wall. The portion of the membrane which is in contact with the cold wall prevents not only the vapor from permeating the membrane but also the condensate from passing between the membrane and the cold wall, thereby reducing the yield of the condensate. Thus, a conventional thermopervaporation apparatus is constructed so that a large space between the microporous membrane and the cold wall is maintained to avoid contact therebetween. This accordingly results in an unavoidable reduction of the yield of the condensate. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to a variable resistor. More particularly, the present invention relates to a chip-type variable resistor wherein the resistance can be adjusted by rotating a rotor relative to an insulating substrate which carries a printed resistor strip.
2. Description of the Prior Art
A variable resistor of the above-described type is disclosed for example in Japanese Utility Model Application Laid-open No. 2(1990)-17805. For conveniently describing the prior art, reference is now made to FIGS. 16 and 17 of the accompanying drawings.
As shown in FIGS. 16 and 17, the prior art chip-type variable resistor comprises an insulating substrate 1 made of a ceramic material for example. The substrate 1 has a central bore 1a, and carries a generally U-shaped resistor strip 2 including an arcuate portion which is centered about the central bore 1a. The respective ends of the resistor strip 2 are electrically connected to extremity electrode terminals 3, 4 arranged at one side of the substrate 1 as spaced from each other along said one side.
The underside of the substrate 1 carries an intermediate terminal member 6 which is made of a metal and integrally formed with a cylindrical support shaft portion 6a fitted in the central bore 1a of the substrate 1. A metallic rotor 5 is rotatably fitted on the shaft portion 6a of the terminal member 6 and has a downwardly directed contact portion 5a for coming into slidable contact with the resistor strip 2. Thus, the resistance of the variable resistor can be adjusted by turning the rotor 5 with a rotational range .theta.' (FIG. 2).
According to the prior art arrangement described above, the resistor strip 1 is uniformly formed to have a constant width and a constant thickness substantially over the entire length thereof. Thus, as shown in FIG. 18, if the nominal overall resistance R of the resistor is relatively large, the inclination (defined as dr'/d.theta.') of the resistance variation within the rotational range .theta.' of the rotor becomes inevitably steep. In such a case, it is possible to provide only a coarse adjustment of resistance. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a preservative-bearing gelatinous material and method of using same to preserve wooden railroad cross ties.
Wooden railroad cross ties are made decay resistant by forcing a material such as creosote into the wood cell structure under relatively high pressure. This protects the exterior wood layer but the interior is not penetrated by the creosote and is subject to attack by decay fungi whenever the exterior layer is split, cracked, abraded away or otherwise structurally compromised. Penetration of the treated exterior is common after extended service use as a result of weathering and also as a result of what is known as spike kill and plate cut.
Weathering typically causes weather checking in the form of splits or cracks running in the direction of the wood grain. These cracks provide passages for moisture to travel under the tie plate supporting the rail and into the tie spike holes and checks.
Spike kill is the mechanical enlargement of spike holes caused by cyclical train loadings on the rail, the spike and the tie plate, the relative movement between these components eventually enlarges the spike hole and exposes the untreated tie wood. This relative movement also causes plate cut, which wears or cuts away the tie at the interface between the tie plate and tie. This action tends to abrade away the treated exterior wood layer and exposes the tie interior to the intrusion of moisture and fungi spores.
Soon after railroad ties are put into service moisture sites become established, particularly in the central portion of the interface between the tie and the tie plate. This central portion never seems to dry. As a consequence, the presence of moisture and the temperature elevation brought on by exposure to the sun serve as an incubator for the growth of decay fungi. The natural balance of food, moisture and temperature accelerates destruction of the wood cells and exaggerates spike kill and plate cut in a cycle which eventually results in premature failure and costly replacement of the ties.
Osmose Incorporated, in U.S. Pat. Nos. 5,236,711 and 5,043,225, disclosed in its summary of the invention xe2x80x9ca thin preservative-bearing pad that is placed between the cross tie and the tie plate either at the time of the original laying of rail or during any subsequent relaying.xe2x80x9d The pad consists of a suspension of a water-soluble fungicide in a binder sandwiched between two layers of a porous hydrophilic backing material. The use of the pad relies on the omni-present moisture found under the tie plate to leach the active ingredients, like sodium fluoride, out of the pad and help diffuse them throughout the adjacent section of wood.
That product, however, has been improved with the present invention because it now does not require a porous hydrophilic backing material and is easier to apply to the wood surface.
The general purpose of this invention is to provide an improved apparatus and method of preserving the vulnerable area of a railroad cross tie near the interface of the tie and the tie plate. To attain this purpose the invention provides a thin preservative-bearing gelatinous material that is placed between the cross tie and the tie plate either at the time of the original laying of rail or during any subsequent relaying. No extra equipment is needed and only a negligible amount of labor is required to simply place the gelatinous material on the adzed surface of the cross tie prior to the mounting or remounting of the rail. The presence of the gelatinous material poses absolutely no resistance to the subsequent driving of the spikes into the tie and is thin enough so as not to pose any rail alignment problems. The use of the gelatinous material relies on the moisture found under the tie plate to leach the active ingredients out of the material and help diffuse them throughout the adjacent section of wood. In addition, the unloading and loading of the tie plate by the passing of a train forces moisture into and out of the gelatinous material to further promote the leaching action. The inert components of the gelatinous material are completely biodegradable and will not pose an environmental problem at the end of the material""s service life. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to structures for mounting a brake pad abrasion detector.
The insertion of a detector (or a so-called probe) at the pad abrasion limit position has been employed in order to detect the abrasion of a brake pad or a lining for many years. There have been proposed a variety of probe mounting structures.
However, among the conventional probe mounting structures, only a few structures permit the simple mounting of the probe as required. For instance, a structure is available in which a threaded hole is formed in the backing plate or in the probe holding member, and the probe is screwed into the threaded hole. However, this conventional structure is disadvantageous in that the machining is rather troublesome, and the probe is liable to be displaced owing to the vibration. In order to prevent the displacement of the probe, it is necessary to provide a special stopper. | {
"pile_set_name": "USPTO Backgrounds"
} |
With the popularity of the 3rd-Generation (3G) mobile communication technology and development of the 4th-Generation (4G) mobile communication technology, the data card products have developed from single-mode single-standard to multi-mode multi-standard.
The calibration of the single-mode data card is simple, and the time consumed by the calibration of the single-mode data card is less. In the prior art, since the multi-mode data card supports at least two standards, which is equivalent to calibrating at least two original single-mode data cards, the calibrating time is longer; and it is required to switch different instrumentations when calibrating different standards of the multi-mode data card, and the procedure of switching the instrumentation during the previous process of calibration will be repeated when calibrating the next multi-mode data card. | {
"pile_set_name": "USPTO Backgrounds"
} |
In an aircraft gas turbine engine, air is drawn into the front of the engine, compressed by a shaft-mounted compressor, and mixed with fuel. The mixture is burned, and the hot exhaust gases are passed through a turbine mounted on the same shaft. The flow of combustion gas turns the turbine by impingement against the airfoil section of the turbine blades, which turns the shaft and provides power to the compressor. The hot exhaust gases flow from the back of the engine, driving it and the aircraft forward. The hotter the combustion and exhaust gases, the more efficient is the operation of the jet engine. Thus, there is incentive to raise the combustion gas temperature.
The turbine engine includes compressor disks and turbine disks (sometimes termed “compressor rotors” and “turbine rotors”) and/or turbine shafts and other rotating parts. A number of blades are mounted to the turbine disks/shafts and extend radially outwardly therefrom into the gas flow path. As the maximum operating temperature of the turbine engine increases, the turbine disks/shafts, rotating seal elements, frames, cases, and static seal elements are subjected to higher temperatures. As a result, oxidation and corrosion of the disks/shafts and seal elements have become of greater concern.
Turbine disks/shafts and rotating seals for use at the highest operating temperatures are typically made of nickel and/or cobalt-base superalloys selected for good elevated temperature toughness and fatigue resistance. They have resistance to oxidation and corrosion damage, but that resistance is not sufficient to protect them at the operating temperatures now being reached. Over time, engine deposits, primarily in the form of nickel oxides and/or aluminum oxides, can form a coating or layer on the surface of these turbine components. These engine deposits typically need to be cleaned off or otherwise removed.
However, chemical methods of cleaning turbine engine components to remove engine deposits on the surface thereof often adversely affect or alter the properties of the base metal of the cleaned turbine component, especially when this turbine component comprises a nickel and/or cobalt-containing base metal. Additionally, these chemical cleaning processes also usually have to be repeated several times and/or the chemically treated component requires excessively abrasive mechanical cleaning, for example, by aggressive grit blasting, to provide appropriate clean surface conditions for the turbine component. However, it has been found that excessive chemical cleaning increases the amount of processing time to achieve the desired surface conditions, while aggressive abrasive mechanical cleaning is labor intensive and requires great care to avoid excessive removal of the surface base metal that can alter the desired dimensional geometry of the turbine component.
Additionally, certain chemical compositions that have been used to clean and remove engine deposits from the surface of the turbine component can also excessively etch the surface of the nickel and/or cobalt-containing base metals used in making the turbine component. For example, it has found that chemical etchant compositions comprising acetic acid can cause undesired intergranular attack (i.e., at the grain boundaries) of the nickel and/or cobalt-containing base metal of the turbine component. Such intergranular attack can undesirably weaken the base metal at these grain boundaries.
Accordingly, it would be desirable to be able be able to effectively and efficiently clean and remove engine deposits, especially engine deposits comprising metal oxides, from turbine components that comprise nickel and/or cobalt-containing base metals. It would be especially desirable to be able to clean and remove such engine deposits in a manner that does not excessively or substantially remove or alter the nickel and/or cobalt-containing base metal of the turbine component. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computing devices, such as notebook computers, personal data assistants (PDAs), and mobile handsets, have user interface devices, which are also known as human interface device (HID). One user interface device that has become more common is a touch-sensor pad. A basic notebook touch-sensor pad emulates the function of a personal computer (PC) mouse. A touch-sensor pad is typically embedded into a PC notebook for built-in portability. A touch-sensor pad replicates mouse x/y movement by using two defined axes which contain a collection of sensor elements that detect the position of a conductive object, such as finger. Mouse right/left button clicks can be replicated by two mechanical buttons, located in the vicinity of the touchpad, or by tapping commands on the touch-sensor pad itself. The touch-sensor pad provides a user interface device for performing such functions as positioning a cursor, or selecting an item on a display. These touch-sensor pads can include multi-dimensional sensor arrays. The sensor array may be one dimensional, detecting movement in one axis. The sensor array may also be two dimensional, detecting movements in two axes.
FIG. 1 illustrates an example of a conventional slider structure 100 connect to ten conductive traces 102. Each trace 102 may be connected between a conductive line and a ground. The conductive line is typically coupled to a sensing pin. The ground is typically coupled to a finger of person. By being in contact or in proximity on a particular portion of the slider structure 100, the capacitance between the conductive lines and ground varies and can be detected. By sensing the capacitance variation of each trace 102, the position of the changing capacitance can be pinpointed. For example, a stylus or a user's finger in proximity or in contact to the slider structure 100 generates signals 104 using the traces 102. A stylus or a user's finger in proximity or in contact to the slider structure 100 at trace number 4 may generate a capacitance variation differential of, for example, 5 units. Adjacent traces number 3 and number 5 may respectively generate a capacitance variation differential of, for example, 2 and 3 units. The detected position of the finger or stylus (i.e., centroid position) may be detected using a complex formula. | {
"pile_set_name": "USPTO Backgrounds"
} |
An organic light emitting diode (OLED) display panel has obvious advantages, such as self-luminescence, low power consumption, no visual dead angle, fast response, high contrast, and the like, over a liquid crystal display panel, and thus is considered to be the mainstream development trend of future display panels.
At present, most of the OLED display panels on the market mainly realize single-sided display. In many cases (e.g., in cases of digital signage, electronic communication equipment, cash register facility, inquiry facility, advertising facility at public places such as an exhibition hall and the like), it is often required that two persons can view a displayed screen at two opposite sides of a display panel at the same time. However, a double-sided display device in the prior art has a complicated structure, a high cost, and a single function. Thus, how to develop a double-sided display device with high integration has become a technical problem to be solved urgently. | {
"pile_set_name": "USPTO Backgrounds"
} |
To facilitate the safe and orderly operation of vehicles on roadways, traffic laws have been adopted. A law enforcement officer may personally witness a driver violating a traffic law and issue a citation to the driver. The citation may result in a fine or jail time for the driver. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention.
The present invention relates to an electrophotographic machine, and, more particularly, to a fuser assembly in an electrophotographic machine.
2. Description of the Related Art.
A fuser assembly is used in an electrophotographic machine to fuse previously applied toner onto a surface of a print medium, such as paper. The fuser assembly includes a fuser roll which presses the toner into the print medium. The fuser roll is heated internally by a heating element, such as a fuser lamp, disposed therein.
The increase in function and speed of electrophotographic printers has driven a continuing increase in the amount of current drawn from the wall outlet to power the printing operation. The wattage of the system power supply continues to increase as more functions and higher speeds are demanded. The higher speeds, expressed in pages per minute, have led to the use of higher wattage fuser lamps and the use of multiple lamps to facilitate the toner fusing operation at these higher print speeds.
A problem is that the combination of the current drawn by the power supply and the fuser lamps can now exceed the amount of current available from a standard 15 ampere, 120 volt wall outlet. The high current draw can result in nuisance tripping of the circuit breaker. It is known to avoid such nuisance tripping by specifying the use of a dedicated, high current outlet. A problem is that such dedicated high current outlets require installation by a qualified electrician, which is both costly and time consuming.
What is needed in the art is a way of preventing the fuser assembly of an electrophotographic machine from causing nuisance tripping of the circuit breaker without having to install a dedicated high current outlet. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to means for securing fuel injection nozzles to internal combustion engines and is of the type that comprises a flange member which, by means of bolts, clamps the fuel injection nozzle to the cylinder head and which, for this purpose, exerts a force on a shoulder of the nozzle body. The flange is provided with a bore having a diameter at least as large as the outer diameter of the nozzle body.
In a known securing means of the aforenoted type (as disclosed, for example, in German Pat. No. 1,010,783), the fuel injection nozzle is provided with a flange which is in engagement with an overlapping or coupling flange which, in turn, is tightened to the engine cylinder by means of bolts. The flange and the coupling flange are so designed that when the latter is slid over the fuel injection nozzle from the side of the engine and rotated, it cooperates with the flange as a bayonet lock. To permit an interengagement between the flange and the coupling flange, the latter is provided with flange projections, while the flange integral with the fuel injection nozzle is provided with complemental openings. A securing means of the aforenoted type, however, requires that the flange integral with the nozzle has a diameter that is greater than the outer diameter of the nozzle body. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field Of The Invention
The present invention relates generally to packer apparatus for isolating a zone of a well, and more particularly, but not by way of limitation, to packer apparatus capable of being lowered through a production tubing on coiled tubing while circulating fluid through a circulating valve, and then inflated adjacent to a zone of a production casing for treatment of the zone without the need for pulling the production tubing from the well. Circulation may also be carried out above the set packer.
2. Description Of The Prior Art
During the life of an oil or gas well, it is often desirable to perform treating operations on some subsurface zone of the well. The cost involved in performing treating operations on completed wells which require the removal of production tubing is often very high. This is especially true when a well is located in a remote area such as the North Slope of Alaska where a rig must be moved back over the well in order to perform operations. Many of these wells located on the North Slope of Alaska are equipped with large tubing strings, e.g., four and one-half or five and one-half inch tubing, production packers and gas lift valves. This high workover cost creates the need for tools which can be run on small diameter coiled tubing and can pass through production tubing and other equipment and then expand out to seal off intervals inside the production casing for treating or other operations.
The prior art presently includes several packer apparatus, such as straddle packers, which can be utilized in the general manner described above. A first such device is being marketed by Nowsco Well Service Ltd. of Aberdeen, Scotland, as described in an Ocean Industry article dated February, 1989, entitled "Thru-Tubing Straddle Packer Expands, Seals in Casing" at pages 44-45. That apparatus is lowered into the well while circulating fluid down through the coiled tubing and out a dump sub. After the tool is located at the appropriate position in the well, the pumping rate down the coiled tubing is increased and the dump sub closes, thus directing fluid to the packers to inflate the packers. Weight is then set down on the apparatus to close the inflation ports and open the treating ports. After treatment is completed, picking up weight reopens the packer inflation ports and allows the packers to deflate. The tool can then be relocated and recycled to treat another zone.
Another inflatable straddle packer is marketed by Tam International of Houston, Tex., as disclosed in the Tam International 1980-1981 General Catalog under the heading "Inflatable Perforation Wash Tool". The Tam International inflatable perforation wash tool can be run on coiled tubing. A ball is dropped to seal the mandrel of the tool prior to inflation of the packers. Weight is then set down on the tool to close the inflation ports and open the circulating or treating ports. After treatment, weight is picked up to deflate the packers and unseat the tool.
U. S. Pat. No. 4,648,448 to Sanford et al., and assigned to Tam International, Inc., of Houston, Tex., discloses another straddle packer apparatus. The apparatus disclosed in the '448 patent utilizes a lug and J-slot structure which is actuated by a combination of reciprocation and rotation of a rigid tubing string on which the tool is lowered. When run on a rigid tubing string, so that the tool can be rotated to actuate the J-slot mechanism, it does not appear that this apparatus could be run through production tubing and set in production casing below the production tubing. A Tam International advertising brochure entitled "Tam-J.TM. Inflatable Workover/Testing Packers And Accessories Ordering Guide" dated January, 1986, indicates at page 5 thereof under the heading "Coil-Tubing Operations" that smaller diameter Tam-J.TM. packers can be utilized on continuous coil tubing by removing the lugs from the J-slot mechanism and allowing the tool to be set, released and reset with straight up and down movement of the coil tubing. Thus, the J-slot mechanism is in effect eliminated from this straddle packer apparatus when it is utilized with coil tubing, which cannot be rotated.
All of the devices discussed above which are designed to be run on coiled tubing down through production tubing and then set in production casing are limited in their operating flexibility since they only have two operating positions which are achieved by either setting down weight or picking up weight. These tools are run into the well with their inflating ports in an open position, and after being located at the appropriate elevation in the well, the packers are inflated to seal them against the casing. Weight is then set down on the packers to close the inflation ports and open a treating port between the packers. Subsequently, weight is picked up from the apparatus to close the treating ports and reopen the inflation ports thus allowing the packers to deflate.
U.S. Pat. No. 4,962,815 to Schultz et al., assigned to the assignee of the present invention, discloses an improved straddle packer apparatus designed to be lowered on coiled tubing down through production tubing and then set in production casing located below the production tubing. A lug and endless J-slot mechanism in this packer provides more than two different operating positions of the tool in response to simple vertical reciprocation of the coiled tubing without rotation thereof. This is accomplished by mounting either the lug or the J-slot in a rotatable body mounted within the packer apparatus. Thus, a simple reciprocating motion without rotation of the coiled tubing can be translated into a multitude of operating positions of the tool as defined by the pattern of the J-slot. The dropping of balls is not necessary.
One particular operating position in the straddle packer of Schultz et al. is an equalizing position. In the equalizing position, the sealed zone of the well located between the inflated packers is communicated with the well annulus both above and below the packers so as to equalize pressures across the packers prior to deflating the packers. This makes it much easier to release the packers, and prevents damage to the packers, thus assuring that multiple settings of the straddle packer apparatus can be accomplished.
The inflatable straddle packer of the '815 patent works well, but in some cases it is desirable to be able to circulate or spot fluids in the well before treating the formation. This is not possible with this prior packer which has no provisions for circulating fluids. The present invention solves this problem by improving the '815 apparatus to include a circulation valve for circulating fluids as the packer is run into the well and also providing a circulating position in which a circulating port above the tool is opened after the inflatable packing elements have been set. The circulating valve may also act as a fill-up valve when the packer is run into the well without a check valve in the tubing string.
There is also a problem of deflating the packer elements of such inflatable straddle packers when the packer is run in a tubing string which has a check valve above the packer. In the present invention, the circulation valve allows venting of fluid to the well annulus so the packer elements will deflate. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure generally relates to systems and processes for capturing carbon dioxide (CO2) from gas streams, and more particularly to a solids delivery system to handle solid material containing the captured CO2.
The emission of carbon dioxide into the atmosphere from industrial sources such as power plants is now considered to be a principal cause of the “greenhouse effect”, which contributes to global warming. In response, efforts are underway to reduce emissions of CO2. Many different processes have been developed to attempt to accomplish this task. Examples include polymer and inorganic membrane permeation; removal of CO2 by adsorbents such as molecular sieves; cryogenic separation; and scrubbing with a solvent that is chemically reactive with CO2, or which has a physical affinity for the gas.
One technique has received much attention for removing CO2 from flue gas streams, e.g., exhaust gas produced at power plants. In this technique, aqueous monoethanolamine (MEA) or hindered amines like methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP) are employed as the solvents in an absorption/stripping type of regenerative process. The technique has been demonstrated commercially, using pilot plant and/or slipstream units, for CO2 capture from coal-fired power plants and gas turbines. Commercial CO2 capture has been practiced in gas sweetening processes for chemical production and in the food and beverage industry.
There are certainly considerable advantages inherent in the MEA and hindered amine-based absorption processes. However, a number of deficiencies may be preventing wider adoption of this type of technology. For example, the process can sometimes result in sharp increases in the viscosity of the liquid sorbent, which can cause decrease the mass transfer of CO2 into the sorbent. To avoid this problem, the concentration of MEA and other amines is sometimes maintained at a relatively low level, e.g., below about 30 wt % in water, in the case of MEA. However, the lower concentrations can greatly reduce absorbing capacity, as compared to the theoretical capacity of the neat absorbent.
Moreover, energy consumption in the MEA process can be quite high, due in large part to the need for solvent (e.g., water) heating and evaporation. For example, the process may consume about 10-30% of the steam generated in a boiler that is heated by combustion of a fossil fuel. Furthermore, MEA-based absorption systems may not have the long-term thermal stability, in the presence of oxygen, in environments where regeneration temperatures typically reach at least about 120° C.
Additional drawbacks may result from the fact that the liquid sorbent which is enriched with CO2 in the MEA or hindered amine process may still contain a substantial amount of free amine and solvent (usually water). The amine and water can be evaporated under typical operating conditions, and can cause corrosion and other degradation in the attendant equipment. To address this concern, specialized, corrosion-resistant materials can be used for the equipment, but this can in turn increase capital costs for the plant. In some cases, corrosion inhibitors can be added, but the use of these specialized additives can also increase operational costs.
Another example of a commercial CO2 post-combustion capture process uses aqueous solutions of piperazine-promoted potassium carbonate (K2CO3). However, this process is often very energy-intensive, and can be economically inferior to the MEA process. Still another example involves the use of chilled ammonia. In this case, energy-intensive cooling systems are usually required for such a system, and the risks associated with unintended ammonia release may be unacceptable.
Therefore, there remains a need for systems that efficiently and effectively remove carbon dioxide from a gaseous stream. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to the generation of fine bubbles and their application in two processes, one being airlift loop bioreactors and the other being particle, in particular, algal floc, separators.
Bubbles of gas in liquid are frequently required in many different applications and usually, but not exclusively, for the purpose of dissolving the gas in the liquid. Like any industrial process, it is generally desired that this be done in the most efficient manner possible. It is widely recognised that one way to achieve efficiency is to reduce the size of the bubbles. The surface area to volume ratio of a smaller bubble is higher. Moreover, the surface tension of a small bubble means that the gas pressure inside the bubble is relatively much higher than in a large bubble. Also small bubbles rise more slowly than large bubbles and they coalesce less quickly so that larger bubbles, that rise to the surface faster, are less quickly formed.
Applications that do not involve gas dissolution exist in oil wells where bubbles rising can transport oil to the surface in certain types of well. Here small bubbles are also advantageous because it takes them longer to coalesce and form the big slugs of gas that are not effective in raising oil. The reason large slugs are not effective is because they have a small surface area compared with small bubbles and it is the surface of bubbles to which articles adhere. It has also been discovered that in the case of particles being lifted by bubbles there is a correlation between bubble size and particle size, in the sense that approximately equal sized bubbles and particles results in good collision efficiency and thus floc formation.
The corollary problem connected with fine bubbles, however, is that they are harder to produce. Reducing the size of the aperture through which the bubble is injected into the liquid is a first step, since it is difficult to form small bubbles through a large aperture. But, even so, a bubble may reach a large size by growing while attached even to a small gas-supplying aperture. Bubble separation is a dynamic process. In any event, such reduction in aperture size is not without cost, because the friction resisting flow of the gas through such a fine aperture, and through the passage leading to the aperture, means that a greater pressure drop is required. The bubble forms once the size of the bubble goes beyond hemispherical and necking-off of the bubble can occur. However, more energy needs to be applied at this stage to finally detach the bubble and generally this is simply achieved by pressing more gas into it increasing its size.
Indeed, generally, bubbles can be no smaller in diameter than the diameter of the aperture through which they are injected, and reducing the size of the bubble increases the energy needed to produce them so that a limit is reached beyond which the efficiency of the system is not improved any further. In fact, getting bubbles anywhere near the size of the aperture (i.e., less than double) would be a significant advancement.
A further problem is that, as bubbles grow beyond hemispherical, the pressure inside them drops. Consequently, two or more bubbles grown in parallel from a common source tend to be unstable beyond hemispherical. What occurs is that, beyond the hemispherical stage, one bubble grows rather more rapidly than an adjacent one (for any of a number of reasons, eg perhaps one is closer to the pressure source and so there is correspondingly less drag and greater pressure to drive the bubble formation). Once there is a size differential there is also a pressure differential with the greater pressure being in the smaller bubble. Consequently, since the bubbles are connected, the smaller bubble inflates the larger one at the expense of its own growth. The result is that, where multiple conduits are connected to a common pressure source, only a few of them end up producing overly large bubbles.
This instability of bubble formation may lead to one of the bubbles growing out of proportion to the aperture size. The necking-off and separation is a dynamic phenomenon and if the unstable bubble grows fast, it may reach a big size before it separates.
Another problem with uncontrolled bubble formation is that colliding bubbles frequently coalesce, so that the extra effort of forming small bubbles is immediately wasted. Ideally, monodisperse bubbles should be provided with sufficient gap between them to prevent coalescing. Indeed, the conditions that lead to coalescing may be dependent on a number of factors connected with a particular site and application, and that, desirably tuning of a bubble generation system should be possible so that the most efficient bubble generation can be arranged.
WO99/31019 and WO99/30812 both solve the problem of fine bubble generation using relatively large apertures by injecting the gas into a stream of the liquid being driven through a small aperture directly in front of the gas exit aperture. The stream of liquid draws the gas into a fine stream, much narrower than the exit aperture for the gas, and fine bubbles ultimately form beyond the small aperture. However, the physical arrangement is quite complex, although bubbles of 0.1 to 100 microns are said to be produced. Furthermore, although the gas exit aperture is large, the liquid into which the gas is injected is necessarily under pressure to drive it through the small aperture which therefore implies that the gas pressure is necessarily also higher, which must mitigate some of the advantage.
Numerous publications recognise that vibration can assist detachment of a bubble or, in the case of EP1092541, a liquid drop. That patent suggests oscillating one side of an annular discharge orifice. The production of liquid drops in a gas matrix can sometimes be regarded as a similar problem to the production of gas bubbles in a liquid matrix.
SU1616561 is concerned with aeration of a fish tank which comprises forcing air through a pipe where apertures open between flaps that vibrate under the influence of the gas motion and produce fine bubbles.
GB1281630 employs a similar arrangement, but also relies on the resonance of a cavity associated with a steel flap to increase frequency of oscillation of the flap and thereby further reduce the size of the bubbles.
U.S. Pat. No. 4,793,714 pressurises the far side of a perforated membrane through which the gas is forced into the liquid, the membrane being vibrated whereby smaller bubbles are produced.
U.S. Pat. No. 5,674,433 employs a different tack by stripping bubbles from hydrophobic hollow fibre membranes using volume flow of water over the fibres.
GB2273700 discloses an arrangement in which sonic vibrations are applied to the air in a sewage aeration device comprising a porous “organ pipe” arrangement, in which the pipe is vibrated sonically by the air flow. The invention relies on vibration of the aerator by virtue of the organ pipe arrangement, losing much of the energy input through inevitable damping by the surrounding water.
DE4405961 also vibrates the air in an aeration device for sewage treatment by mounting a motor driving the air pump on the aeration grid employed, and so that the grid vibrates with the natural vibration of the motor and smaller bubbles result. DE19530625 shows a similar arrangement, other than that the grid is oscillated by a reciprocating arrangement.
JP2003-265939 suggests ultrasonically vibrating the surface of a porous substrate through which a gas is passed into a liquid flowing over the surface.
From the above it is apparent that small bubble generation has application in the sewage treatment industry, in which it is desired to dissolve oxygen in the water being treated. This is to supply respiring bacteria that are digesting the sewage. The more oxygen they have, the more efficient the digestion process. However, a similar requirement exists in bioreactors and fermenters generally where they are sparged for aeration or other purposes. Specifically, the yeast manufacturing industry has this requirement, where growing and reproducing yeast bacteria need constant oxygen replenishment for respiration purposes. Another application is in the carbonisation of beverages, where it is desired to dissolve carbon dioxide into the beverage. A process not looking to dissolve the gas but nevertheless benefiting from small bubbles is in the extraction of hard-to-lift oil reserves in some fields which either have little oil left, or have the oil locked in sand. Indeed, much of the oil in Canada's oil reserves is in the form of oil sand. Bubbling gas up through such oil-bearing reserves has the effect of lifting the oil as the bubbles rise under gravity and bring the oil with them. The bubbles are formed in water and pumped into the well or reserve and the oil is carried at the interface between the gas and water of each bubble as it passes through the reserves. The smaller the bubble, the greater is the relative surface area for transport of the oil.
Another application of bubbles is in particle separation from a liquid suspension of the particles, of which an example application is algal separation. This might be desired for one or both of two reasons. A first reason is to clarify water contaminated with algae. A second reason is to harvest algae grown in water. The process is not limited to algal separation; any mixer comprising solid particles can comprise the use of bubbles which attach to suspended particles and carry them to the surface from which they may be scraped, either to recover the particles or clarify the water. However, attachment of the bubbles to the particles is problematic, particularly if the particles are charged when they may simply bounce off bubbles and not attach to them. Dissolved air flotation (DAF) is a known technique where air is dissolved under substantial pressure into water which, when released into the separation tank immediately releases large quantities of small bubbles. However, there are two issues. The first is the substantial energy requirements to compress and dissolve air in water. The second is the turbulence of the bubbles released into the tank.
It is an object of the present invention to improve upon the prior art arrangements. It is also an object to provide process applications using small bubbles. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a reservoir for use in a master cylinder in a vehicle braking system.
A master cylinder in the braking system in a vehicle, particularly in a two-wheeled vehicle such as a motor cycle, is subjected to severe vibrations during its use, so that braking liquid contained in the reservoir of the master cylinder will be agitated vigorously with the result that air will be mixed into the braking liquid in the form of minute air bubbles, thereby exhibiting a milky white color. When the master cylinder is operated under such a condition to apply a brake, braking liquid including air bubbles therein is admitted into a pressure chamber in the master cylinder or into a brake cylinder. As the amount of air admitted into the pressure chamber or the brake cylinder is increased due to repeated braking operations, an ineffective stroke of a piston of the master cylinder is increased accordingly, resulting eventually in the complete loss of the braking function, if the situation becomes the worst. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to the art of thin film device processing and fabrication. More specifically, the invention relates to the fabrication of Organic Light Emitting Diode based displays and other devices.
2. Related Art
Display and lighting systems based on LEDs (Light Emitting Diodes) have a variety of applications. Such display and lighting systems are designed by arranging a plurality of photo-electronic elements (“elements”) such as arrays of individual LEDs. LEDs that are based upon semiconductor technology have traditionally used inorganic materials, but recently, the organic LED (“OLED”) has come into vogue for certain applications. Examples of other elements/devices using organic materials include organic solar cells, organic transistors, organic detectors, and organic lasers. There are also a number of bio-technology applications such as biochips for DNA recognition, combinatorial synthesis, etc. which utilize organic materials.
An OLED is typically comprised of two or more thin at least partially conducting organic layers (e.g., an electrically conducting hole transporting polymer layer (HTLs) and an emissive polymer layer where the emissive polymer layer emits light) which are sandwiched between an anode and a cathode. Under an applied forward potential, the anode injects holes into the conducting polymer layer, while the cathode injects electrons into the emissive polymer layer. The injected holes and electrons each migrate toward the oppositely charged electrode and recombine to form an exciton in the emissive polymer layer. The exciton relaxes to a lower energy state by emission of radiation and in process, emits light.
Other organic devices, such as organic transistors, organic sensors, and color filters will also typically contain a conducting organic (polymer) layer and other organic layers. A number of these OLEDs or other organic devices can be arranged in a pattern over a substrate as for instance in display system. One way of patterning organic electronic devices over a substrate is to create pockets by photo-lithography and then utilize a process known as ink-jet printing. The use of a photo-resist layer to define pockets for inkjet printing is disclosed in published patent application Number US2002/0060518 A1 entitled “Organic Electroluminescent Device and Method of Manufacturing Thereof”. In ink-jet printing, polymer or organic solution is deposited by discharging droplets of the solution into the pockets from a print head. One common application of inkjet printing is the patterning of multi-color OLED pixels (such as RGB patterned pixels) in order to manufacture a color display.
But inkjet printing and other selective deposition techniques which fabricate polymer films for devices have some limitations. One limitation is in being able to achieve multi-layer or “hetero-structure” devices that have adjacent films that are soluble in the same type of solvents. This is because each polymer solution which is deposited remains soluble even after drying. When an additional organic layer is required to be fabricated over an existing layer, the existing layer can only be made of a material which will not be soluble under the same solvent being used to deposit the additional layer. Otherwise, existing layers will be degraded substantially or even dissolved.
Recent developments have shown that UV curable inks can be used to deposit dye pigments for printing posters and textiles (U.S. patent application No. 20020044188). UV curable inks are solutions which cure or dry into film under application of ultraviolet or other radiation. For spin-coating (rather than selective deposition such as inkjet printing) techniques, a recent publication has outlined the use of “cross-linked” polymers to make RGB displays. See “Multi-colour organic light-emitting displays by solution processing”; C. David Muller, Aurelie Falcou, Nina Reckefuss, Markus Rojahn, Valerie Wiederhirn, Paula Rudati, Holger Frohne, Oskar Nuyken, Heinrich Becker, Klaus Meerholz; Nature Volume 421, Pages 829-833 (20 Feb. 2003). A cross-linked (or “cross-linkable”) polymer is a polymer which has been modified by the addition of a chemical group which chemically reacts with the original polymer to create side-chains which can alter the polymer's properties. In this publication, the authors propose spin coating UV curable inks that are then cross-linked such that the resulting film becomes insoluble. The films are then patterned to create the colored displays. This suffers from the drawback that additional processing is required on the deposited films in order to pattern them.
Thus there is a need for patterned devices that have hetero-structures wherein additional layers may be added to existing layers without degrading the integrity of existing layers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to cylinder and/or valve deactivation in internal combustion engines.
Deactivation roller finger followers (DRFF""s) typically include a body and a hollow shaft upon which is disposed a roller. A locking pin assembly is switchable between a coupled and decoupled position wherein the shaft is respectively coupled to and decoupled from the DRFF body. A pin of the locking pin assembly is disposed within and carried by the hollow shaft. An output cam of an engine camshaft engages the roller.
With the locking pin in the coupled position, the shaft is coupled to the DRFF body. The shaft transfers rotation of the output cam engaging the roller to pivotal movement of the DRFF body, which, in turn, actuates an associated engine valve. With the locking pin assembly in the decoupled position, the shaft is decoupled from the DRFF body. Thus, rotation of the output cam is not transferred to pivotal movement of the DRFF body. Rather, rotation of the output cam is transferred via the roller to reciprocation of the shaft within grooves formed in the RF body. Therefore, the associated valve is deactivated, i.e., not lifted or reciprocated. Lost motion springs absorb the reciprocation of the roller and maintain the roller in contact with the output cam when the DRFF is in the decoupled mode of operation.
The position of the DRFF body relative to the output cam is established, in part, by one or more surfaces on the DRFF body that engage null lobes of the camshaft, and is important to the proper and reliable switching of the locking pin assembly. Wear caused by friction between the null lobes and the surface of the DRFF body engaged thereby may result in a shift in the position of the DRFF body in a direction toward the camshaft and/or output cam. A shift in the position of the DRFF body in a direction toward, or away from, the output cam may adversely affect the operation of the locking pin assembly by, for example, making the exact timing of the mode switching event somewhat unpredictable.
Therefore, what is needed in the art is an apparatus that reduces the wear of the null lobes and/or the surface of the DRFF body engaged thereby.
Furthermore, what is needed in the art is an apparatus that reduces friction at the interfaces between the null lobes and the surface of the DRFF body engaged thereby.
Still further, what is needed in the art is an apparatus that reduces or substantially eliminates any shift in the position of the DRFF body relative to the camshaft, and thereby improves the reliability and predictability of the mode switching of the DRFF.
The present invention provides a valve deactivation system for use with internal combustion engines.
The invention comprises, in one form thereof, an elongate camshaft having at least one lift lobe. The lift lobe has a lift portion and a base circle portion, and is affixed to or integral with the camshaft. A first null lobe is disposed on a first side of the lift lobe, and is affixed to or integral with the camshaft. A second null lobe is disposed on a second side of the lift lobe, and is affixed to or integral with the camshaft. A first journal bearing is disposed on the first null lobe, and a second journal bearing is disposed on the second null lobe. The journal bearings are configured for engaging a body of a deactivation roller finger follower to thereby reduce friction and wear of the roller finger follower body.
An advantage of the present invention is that it reduces friction between the null lobes and the surface of the DRFF engaged thereby, which, in turn, significantly reduces wear of those surfaces.
A further advantage of the present invention is that shifting of the position of the DRFF body relative to the camshaft is reduced.
A still further advantage of the present invention is that it is more economical than using special materials and/or coatings for the interfacial surfaces. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to combination power plants in which a steam power generation plant and an ocean thermal energy conversion power plant are combined, and more particularly to a combination power plant which avoids or minimizes environmental problems associated with warm water which is discharged from the condenser in the steam power generation plant.
Generally, thermal power stations or nuclear power stations (which are referred to hereinafter as "steam power generation plants"), use steam produced in a boiler or in a nuclear reactor. This steam is used to rotate a turbine-generator and is then condensed in a condenser. A large quantity of water is required to condense the steam, so steam power generation plants usually are built along a river, lake or sea. One of the problems which arises is that warm water which is discharged from the condenser back into the river, lake or sea can cause environmental disruption. Therefore, it is important to lower the temperature of the water discharged from the condenser to minimize the environmental disruption effect on the body of water into which it is discharged. It is also important to minimize the quantity of water which is required for heat exchange in the condenser.
It is difficult to maintain a satisfactory level of thermal efficiency of a steam power generation plant when both the quantity of water used for heat exchange and the discharged water temperature is lowered. Also, it is difficult to lower the temperature of the water discharged from the condenser, because it is necessary to use a large quantity of cooling water in order to lower the temperature of the discharged water.
Another problem is that the temperature of the seawater (or river or lake) which is used as the cooling water for the steam power generation plant varies in different seasons. In summer the temperature of the seawater rises causing a corresponding pressure rise in the condenser. Accordingly, a greater quantity of steam is required for the turbine to maintain the rated output of the generator which is driven by the turbine. The steam turbine and the condenser generally are designed to provide the rated output at the maximum seawater temperature.
It will be appreciated that the seawater temperature is lower in the winter as well as in the spring and autumn, than it is in summer. Accordingly, the steam turbine and the condenser have excess capacity which is not utilized in the cooler seasons and which adds to the construction cost and equipment investment and lowers the plant efficiency. Designing other than to the maximum seawater temperature will result in less than the rated output of the power station at high seawater temperatures.
Ocean thermal energy conversion power plants using working fluids such as ammonia or Freon are similar principle to the aforementioned case. Ocean thermal energy conversion power plants use the temperature difference between the relatively warm seawater from the ocean surface and the cool seawater from the bottom of the ocean (or at a substantial depth). The working fluid such as Freon or ammonia is evaporated in an evaporator by surface seawater at about 30.degree. C. introduced into the evaporator. The vaporized Freon rotates a binary turbine connected to a generator. The working fluid vapor exhausted from the binary turbine is introduced into a condenser where it is condensed by seawater from the ocean floor at about 7.degree. C. The condensed working fluid is supplied to the evaporator by a working fluid pump and is evaporated again and then supplied to the binary turbine.
The temperature of seawater at a depth of about 500 to 600 meters is constant throughout the year whereas the seawater temperature at the surface varies considerably and is lower in winter. If the temperature difference between the warm surface seawater and the cool water at the ocean floor is not sufficient, e.g., 20.degree. C., plant efficiency is reduced. This can occur particularly in winter. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present invention relates to a positioning device for positioning of movable object, a lithographic apparatus and a method for manufacturing a device.
2. Description of the Related Art
A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, a patterning device, which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC. This pattern can be transferred onto a target portion (e.g. including part of, one, or several dies) on a substrate (e.g. a silicon substrate). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. Conventional lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at once, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.
In the known lithographic apparatus, a magnetic positioning device is used for the positioning of a substrate stage. In such apparatus, one or more coils cooperate with a number of magnets to actuate the substrate stage to a desired position.
In a known embodiment of such device the coils are arranged in a coil assembly attached to the substrate stage, while the magnets are included in a permanent magnet plate which is arranged substantially stationary next to the operation area of the substrate stage. An example of such arrangement is for instance disclosed in U.S. 2005/0077786, the contents of which is herein incorporated by reference. In this embodiment, the magnetic positioning apparatus is used for the coarse positioning of a long stroke module of the substrate stage. The long stroke module supports a short stroke module which is configured to carry a substrate. A high accuracy actuation device is provided between the long stroke module and the short stroke module to position the substrate supported on the short stroke module with high accuracy.
In an alternative embodiment of a magnetic positioning device, magnets are attached to the substrate stage, and coils are provided at a substantially stationary location next to the operation area. An example of the latter arrangement can for instance be found in U.S. Pat. No. 5,196,745, the contents of which is herein incorporated by reference. In the device of U.S. Pat. No. 5,196,745 a plurality of stage-attached permanent magnetic arrays are provided. Each of the magnetic arrays includes a series of adjacent oppositely poled permanent magnets that cooperate with stationary coil arrays in the horizontal plane to produce the proper lateral forces to move the substrate stage in the desired direction. The above-mentioned alternative embodiment of the magnetic positioning device has a benefit that since the magnets are provided on the substrate stage and the coils are arranged at a stationary position, the cables for energizing the coils do not have to be guided to the moving stage.
In certain lithographic apparatuses, two substrate stages are provided which can be moved in a substantially common operation area. Due to the presence of two substrate stages, the throughput of such dual stage lithographic apparatus can be substantially higher than a single stage lithographic apparatus.
In view of the above-mentioned benefit of the alternative embodiment of the magnetic positioning device, or an other suitable reason, it may desirable to use this alternative embodiment for the actuation of the two substrate stages of a dual stage lithographic apparatus. However, when two substrate stages have to move in a common operation area the alternative embodiment as proposed in U.S. Pat. No. 5,196,745 cannot be applied as the stationary coil arrays cannot be used to simultaneously actuate both the first substrate stage and the second substrate stage. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a strobe control apparatus of a camera having a strobe incorporated therein, and more precisely it relates to a control apparatus for preventing a malfunction in a camera including a strobe which has a light emitter that is movable between a retracted position and an operative position (i.e., light emitting position).
2. Description of the Related Art
Cameras having automatic light modulation type strobes have become available. A strobe incorporated camera which has a strobe control apparatus is also known, in which a light emitter of the strobe is supported by a supporting mechanism, such as a retractable mechanism or a pop-up mechanism so as to move between a retracted position in which the light emitter is retracted in the camera body and an operative position, i.e., a light emitting position in which the light emitter projects outward from the camera body by an electrical driver (e.g., an electrically driven motor).
In such a known strobe control apparatus, the control of the strobe light emission is usually effected in accordance with exposure factors, such as brightness data of an object to be taken, or calculated shutter speed data. Namely, when the object brightness is below a predetermined value upon photographing, the light emitter is brought to the operative position to emit strobe light. After the strobe light is emitted, the light emitter is returned to the retracted position. Conversely, if the object brightness is above a predetermined value, the light emitter is kept in the retracted position, since no strobe light is necessary.
However, in a conventional camera having a strobe control apparatus as mentioned above, there is a possibility that for some reason the light emitter can not move to the operative position for some reason. For instance, the light emitter can not move, if the light emitter is held by a photographer's hand, or, if a detachable external strobe of a certain shape is attached to the camera so that the detachable external strobe interferes with the light emitter, etc. It goes without saying that no clear picture can be taken even if strobe light is emitted from the light emitter which can not move to the operative position.
However, conventional cameras have not focused on the solution to the problems mentioned above. Therefore, for example, if the light emitter which is not in the operative position emits strobe light, an under-exposure occurs or no uniform brightness distribution can be obtained. Conversely, if the release is prohibited when the light emitter is not moved to the operative position, a photographer may miss an opportune picture.
Furthermore, it is also known to provide a compulsive light emitting switch which is actuated to change the photographing mode to a compulsive light emitting mode in which strobe light can be compulsively emitted regardless of the brightness of an object to be photographed. However, the provision of such an additional compulsive light emitting switch makes a camera more complicated.
Furthermore, there is known a strobe-incorporated AF camera having an auxiliary light emitter which emits a contrast pattern when the object brightness is below a predetermined value, or a camera having a self-timer photographing function. In the known cameras, the auxiliary light emitter is provided in the main strobe light emitter or in the camera body, and a self timer indicator for indicating the self timer operation is provided in the camera body.
However, the location of the self timer indicator in the camera body is restricted, especially if the camera body is housed in a body case. Furthermore, there is a possibility that the photographic lens may interfere with the self timer indicator, so that it may be difficult for a photographer to observe the indicator, depending on the position of an object to be taken, even in a photographic range in which a picture of the object can be taken.
In a strobe-incorporated camera, the strobe light emitter can be observed at any place within an area which can be illuminated with the strobe light when the strobe light is emitted. Accordingly, in theory, it is possible to provide the self timer indicator in the strobe light emitter.
However, in this possibility, the self timer indicator can not be observed from the side of the object, when the strobe light emitter is in the retracted position (i.e., inoperative position) in which it is retracted in the camera body.
Therefore, to make it possible to observe the self timer indicator, the strobe light emitter must be moved to the operative position in which the light emitter projects outward from the camera body even in the self timer mode in which no strobe light is required. This is, however, not practicable particularly, with a camera in which the light emitter is manually disengaged from a locking member to move it to the operative position, since, if a photographer fails to disengage the light emitter, no indication of the self timer indicator can be observed, so that no release timing can be learned. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to irrigation control systems, and in particular to irrigation control systems that collect irrigation data from one or more sensors.
2. Description of the Related Technology
Irrigation systems are used widely in commercial and residential applications. Typical irrigation systems include an irrigation controller connected to one or more irrigation devices (e.g., valves) which provide water to desired locations via an assortment of hydraulic components (e.g., pipes, sprinkler heads, and drip lines). The irrigation controllers control the components to provide desired irrigation in accordance with a programmed schedule.
With some irrigation control systems, an operator determines the amount of water and the time at which the water should be applied by defining an irrigation schedule. The irrigation schedule may determine which valves are activated at which times, and for how long. Any changes to the irrigation schedule may be performed manually by the operator.
Other so called “smart” irrigation control systems receive input from sensors that indicate the nature of the environment being irrigated. This input may be used by the irrigation controller to determine how much irrigation is necessary in order to maintain the health of the installed plant life. For example, if the sensor input indicates there has been a recent rain storm, it may not be necessary to provide additional water via the irrigation system. Other input received by the irrigation controller may indicate the moisture present in the soil. Upon receiving the indication of soil moisture, the irrigation controller may determine an amount of irrigation needed to maintain soil moisture levels within a desired range that supports the installed plant life.
Other irrigation sensors may provide input on the flow rate of water through an irrigation supply line. By knowing the actual flow rate of the water, an irrigation controller may more precisely calculate the amount of water being applied during an irrigation program. Based on the needs of the installed plant life, the irrigation controller may extend or shorten the time a particular irrigation zone is active based on the flow rate of the water in the zone.
Irrigation controllers may collect data from these irrigation sensors via either wireless or wired connections. In some environments, wireless connections may have distance limitations, and so a wired connection may be favored. With existing irrigation controller solutions, use of wired sensors requires a dedicated wiring circuit for each sensor. In an irrigation zone including, for example, three sensors, three separate wiring circuits may be needed between the irrigation controller and the sensors in that irrigation zone. An irrigation zone may also include at least one valve actuator. The valve actuation may be performed by an electrical solenoid. A separate wired circuit between the irrigation controller and the solenoid may also be necessary. In such a configuration, four individual sets of wired connections may be needed for one irrigation zone. When one irrigation installation may include up to hundreds of individual zones, the need to provide a dedicated wiring circuit for each irrigation sensor and each water valve may be problematic. For example, when installing a new irrigation system, the need to possibly quadruple the number of wiring circuits necessary to install a smart irrigation system may add significant cost to the installation. Furthermore, when retrofitting legacy systems with smart irrigation controllers that utilize irrigation sensors, the need to install additional wiring may disrupt established ground cover. Additionally, the expense of installing additional wiring may be a significant proportion of the retrofitting cost, and may reduce adoption of smart irrigation systems when not required by law. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known in the art to provide light images by disposing a mask in front of output radiation from a laser. The principles involved are substantially the same as in normal light projectors used for projecting slides or motion picture film. In these devices, the entire output radiation impinges upon the mask and the transparent or cutout portions of the mask defining the pattern pass a percentage of the output radiation. While optical imaging of the pattern on the mask is possible with this system, it is very difficult to provide sufficient energy density or power in the image defined by the mask to effect operations other than that of simply imaging a picture; for example, drilling through a material or effecting a welding along a given pattern as defined by the mask.
The two major difficulties in attempting to perform such drilling or welding operations in accord with a pattern in the mask arises from the fact that, first sufficient energy or power is not available in the beam after it leaves the mask because of the eclipsing which cuts down a large part of the total power available and, second, if the overall power is increased sufficiently to attempt to solve this problem, the mask itself is often subject to destruction.
In simple light imaging systems, it has been proposed to incorporate a mask in the optical cavity of a laser so that the mask itself will not be subject to destruction. Such a system has been described in U.S. Pat. No. 3,293,565 issued to W. A. Hardy for a gas laser wherein curved end mirrors are required in order to effect the lasing action together with a suitable lens to project the image from the system. With such a gas laser, there is not nearly enough output energy in the projected beam to effect physical alternation of a target surface. | {
"pile_set_name": "USPTO Backgrounds"
} |
The development of new and more effective chemotherapeutic agents for cancer treatment requires consideration of a variety of factors including cytotoxicity, tumor cell proliferation, invasion and metastasis. Conventional anticancer agents have typically been identified on the basis of their cytotoxicity alone, as the signaling pathways required for the maintenance and driving of the malignant process were not known. These pathways are now being elucidated in terms of signal transduction.
Signal transduction is the processing of chemical signals from the cellular environment through the cell membrane, and may occur through at least three distinct mechanisms: phosphorylation, activation of ion channels, and effector enzyme activation via guanine nucleotide binding protein intermediates.
Linkage of selected signal transduction pathways to malignant behavior has been demonstrated using molecular biologic techniques. Three different guanine nucleotide-binding protein-linked receptors have been transfected into normal recipient cells and upon specific ligand activation caused malignant behavior.
Tumor formation and ligand-specific focus formation was found when the serotonin 1c receptor was placed into NIH-3T3 cells and stimulated with a receptor specific ligand. Julius, et al., Science, 244:1057-1062 (1989). Serotonin stimulation of the transfected 5HT1c receptors resulted in mobilization of calcium, leading to a proposed link between receptor activation of the signal pathway and the biologic function of tumor formation.
A similar outcome was seen when an adrenergic alpha-1B receptor was put into NIH-3T3 and Rat-1 cells. Allen, et at., Proc. Natl. Acad. Sci. USA 88:11354-11358 (1991). In that experiment, catecholamine stimulation of the transfected receptor produced foci formation and increased cellular proliferation in culture as well as tumorigenic behavior in nude mice. Allen, et al. further demonstrated the functional coupling of the transfected receptor to production of total inositol phosphates which can secondarily cause internal release and influx of calcium, suggesting a link between these signal transduction pathways and the malignant response.
Lastly, transfection of the odd-numbered muscarinic receptors into NIH-3T3 cells has been shown to stimulate internal calcium release and uptake, arachidonic acid release, and generation of inositol phosphates. See, Bonner, et al., Neuron, 1:403-410 (1988), Gutkind, et at., Proc. Natl. Acad. Sci. USA, 88:4703-4703 (1991), Conklin, et al., Proc. Natl. Acad. Sci. USA, 85:8698-8702 (1988), and Felder, et al., J. Pharmachol. Exp. Ther., 255:1140-1147 (1990). Additionally, ligand activation of the m1, m3, and m5 subtype muscarinic receptors resulted in tumorigenic foci formation in vitro.
Association of the products of the arachidonic acid cascade and generation or inhibition of malignancy has also been documented. Prostaglandins have been implicated in the initiation and promotion of malignancy. Honn, et at., Prostaglandin 21:833-864 (1981). In these experiments, phorbol esters stimulated the production of PGE.sub.2 and PGF.sub.2a which could be selectively inhibited by treatment with the cyclooxygenase inhibitor, indomethacin. Pharmacologic manipulation of prostaglandin synthesis in animal models led to the inhibition of cancer progression and was the impetus for human trials.
Pharmaceutical inhibition directed to specific pathways, such as arachidonic acid release or calcium influx, offers a new approach to cancer treatment and potentially to cancer prevention. Compound 1 was originally designed as a coccidiostat (U.S. Pat. No. 4,590,201) and later developed as a cancer treatment agent of particular use in the treatment of peritoneal carcinomatosis of ovarian cancer (U.S. Pat. No. 5,132,315, and Kohn, et al., J. Natl. Cancer Inst., 82:54-60 (1990)). Recent studies have shown Compound 1 to be a novel inhibitor of selected signal transduction pathways including those which involve calcium influx, the release of arachidonic acid and the generation of inositol phosphates. See, Kohn, et al. Cancer Res., 52:3208-3212 (1992) and Felder, et at., J. Pharmacol. Exp. Ther., 257:967-971 (1991). ##STR1##
Compound 2 is another agent with selectivity for receptor-mediated calcium entry (RMCE). This compound inhibits RMCE in platelets, endothelial cells and neutrophils, and blocks voltage-gated L-type calcium channels in vascular smooth muscle cells under patch clamp. Merritt, et al., Biochem. J. 271:515-522 (1990). Similarly, compound 1 has been shown to inhibit L- and T-type voltage gated calcium channels. Hupe, et al., J. Biol. Chem., 266:10136-10142 (1991). However, neither study evaluated the effect of their respective agents on malignant cells.
Signaling events are so primary in cellular function that any agent which interferes with signal-effector coupling should be uniformly toxic to normal cells and tissues as well as to malignant and metastatic tissues and cells. However, when nude mice received oral administration of compound 1, no toxicity to normal tissues including connective tissue, mucosal surfaces, and bone marrow was observed. See, Hupe, et al. J. Cell. Physiol., 144:457-466 (1990) and Kohn, et at., Cancer Research, 52:3208-3212 (1992). This suggests that malignant cells have a higher state of dependence upon certain second messenger pathways, rendering them selectively sensitive to compound 1 and related agents. | {
"pile_set_name": "USPTO Backgrounds"
} |
Monoclonal antibodies have in recent years become successful therapeutic molecules, in particular for the treatment of cancer. Unfortunately, however, monoclonal antibodies are often unable to cure diseases when used as monotherapy. Bispecific antibodies can potentially overcome some of the limitations of monoclonal antibody therapy, e.g. they could be used as mediators to target a drug or toxic compound to target cells, as mediators to retarget effector mechanisms to disease-associated sites or as mediators to increase specificity for tumor cells, for example by binding to a combination of targets molecules that is exclusively found on tumor cells.
Different formats and uses of bispecific antibodies have recently been reviewed by Chames and Baty (2009) Curr Opin Drug Disc Dev 12: 276. One of the major obstacles in the development of bispecific antibodies has been the difficulty of producing the material in sufficient quality and quantity by traditional technologies, such as the hybrid hybridoma and chemical conjugation methods (Marvin and Zhu (2005) Acta Pharmacol Sin 26:649). Co-expression in a host cell of two antibodies, consisting of different heavy and light chains, leads to a mixture of possible antibody products in addition to the desired bispecific antibody.
Several strategies have been described to favor the formation of a heterodimeric, i.e. bispecific, product upon co-expression of different antibody constructs.
Lindhofer et al. (1995 J Immunol 155:219) have described that fusion of rat and mouse hydridomas producing different antibodies leads to enrichment of functional bispecific antibodies, because of preferential species-restricted heavy/light chain pairing. Another strategy to promote formation of heterodimers over homodimers is a “knob-into-hole” strategy in which a protuberance is introduced at the interface of a first heavy-chain polypeptide and a corresponding cavity in the interface of a second heavy-chain polypeptide, such that the protuberance can be positioned in the cavity so as to promote heterodimer formation and hinder homodimer formation. “Protuberances” are constructed by replacing small amino-acid side-chains from the interface of the first polypeptide with larger side chains. Compensatory “cavities” of identical or similar size to the protuberances are created in the interface of the second polypeptide by replacing large amino-acid side-chains with smaller ones (U.S. Pat. No. 5,731,168). EP1870459 (Chugai) and WO 2009089004 (Amgen) describe other strategies for favoring heterodimer formation upon co-expression of different antibody domains in a host cell. In these methods, one or more residues that make up the CH3-CH3 interface in both CH3 domains are replaced with a charged amino acid such that homodimer formation is electrostatically unfavorable and heterodimerization is electrostatically favorable. WO2007110205 (Merck) describe yet another strategy, wherein differences between IgA and IgG CH3 domains are exploited to promote heterodimerization.
Dall'acqua et al. (1998 Biochemistry 37:9266) have identified five energetically key amino-acid residues (366, 368, 405, 407 and 409) that are involved in the CH3-CH3 contact in the interface of a CH3 homodimer.
WO 2008119353 (Genmab) describes an in vitro method for producing bispecific antibodies wherein a bispecific antibody is formed by “Fab-arm” or “half-molecule” exchange (swapping of a heavy chain and attached light chain) between two monospecific IgG4- or IgG4-like antibodies upon incubation under reducing conditions. This Fab-arm exchange reaction is the result of a disulfide-bond isomerization reaction and dissociation-association of CH3 domains wherein heavy-chain disulfide bonds in the hinge regions of the parent (originally monospecific) antibodies are reduced and the resulting free cysteines form an inter heavy-chain disulfide bond with cysteine residues of another parent antibody molecule (originally with a different specificity), and simultaneously CH3 domains of the parent antibodies release and reform by dissociation-association. The resulting product is a bispecific antibody having two Fab arms which potentially are compassed different sequences. It should be noted that the process is random however and Fab-arm exchange can also occur between two molecules with identical sequence or two bispecific molecules can engage in Fab-arm exchange to regenerate antibodies comprising the original monospecific parent antibody specificity.
It has now surprisingly been found that by introducing asymmetrical mutations in the CH3 regions of the two monospecific starting proteins, the Fab-arm exchange reaction can be forced to become directional and thereby yield highly stable heterodimeric proteins. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wheelchairs are frequently used to provide mobility for a person who has a limited ability to walk either temporarily or permanently. So called “raising wheelchairs” or “standing wheelchairs” can include a mechanism that moves the seat, the backrest, or both from a seated position to an upright position. The mechanism can assist in lifting or in counteracting the weight of the user to assist the user in rising from a seated to an erect position. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a recirculating charge transfer magnetic field sensor.
Conventional semiconductor magnetic field sensors typically operate as a Hall cell. In the operation of Hall-effect components, an electrical potential difference is known to result from charge-carrier drift in a magnetic field. As shown in FIG. 1, the Hall cell 10 includes a resistive sheet 12 or substrate, an input conductive contact 14, an output conductive contact 16, and sense contacts 18. The cell 10 operates to measure the displacement of the carriers in the resistive sheet in response to an applied magnetic field, Conventional Hall cells are microscopic plates, for example, the thickness being t=10 .mu.m, the length l=200 .mu.m and the width w=100 .mu.m. A bias voltage V is applied to the plate via two current contacts C1 and C2, The bias voltage creates an electric field E.sub.e and forces a current I. If the plate is exposed to a perpendicular magnetic induction B, the Hall electric field E.sub.H occurs in the plate. The Hall electric field gives rise to the appearance of the Hall voltage V.sub.H between the two sense contacts S1 and S2.
Charge transport of this type depends on the properties of the semiconductor used and on the environmental conditions. Any change in the semiconductor properties or the environment causes a change in the output signal of the Hall-effect component. Hall-effect components are particularly sensitive to surface effects, encapsulation stress, light, temperature, changes in the material doping density gradient, etc. Therefore, to obtain high-precision magnetic field sensors, the Hall-effect component must be made of a special semiconductor material, including a special encapsulation, and by means of non-standard process steps. Furthermore, external temperature variations must be compensated for. For this reason, it is difficult to integrate a good Hall-effect component into a signal processing circuit.
In addition, errors in measurement occur due to the inability to create precise positioning of charge contacts. Positioning errors of the contacts in the order of micrometers give rise to millivolt output offsets. Also, the ratio of sensitivity to accuracy in such devices remains constant with device geometric changes.
More recently, charge-coupled device (CCD) magnetic field sensors have been developed to improve the precision for measuring magnetic fields. Examples of such devices are described in U.S. Pat. No. 3,906,359 and U.S. Pat. No. 5,194,750, both incorporated herein by reference. In these prior art CCD magnetic field sensors, the measurement arises from a lateral redistribution of carriers within a moving charge packet. The redistribution is caused by the well known Lorentz force acting upon the carriers, which is proportional to their velocity, charge, and the magnitude of the magnetic field. In the devices described in the '750 patent, the potential difference between the ends of the packet (which arises from that redistribution of carriers) is sensed by means of a pair of contacts, centrally located with respect to a series of gates which propagate the packet. In the devices described in the '359 patent, the measure of the magnetic field is given by the difference in the number of carriers arriving at two contacts situated at the end of the array of propagation gates and at the ends of the charge packet, i.e. by the difference in the two currents observed to exit the two contacts.
Unfortunately, the prior art devices lack high measuring sensitivity and accuracy due to geometric limitations and the physics of semiconductor materials. The ultimate sensitivity of such devices is proportional to the width of the propagating charge packet and its velocity. Increasing the width of the packet in turn increases (as the square of the increase in width) the time required for the redistribution to fully occur. Accordingly, for a device of a given length, increasing the velocity (decreasing the time for the packet to traverse the device) or increasing its width will decrease the percentage of full redistribution that occurs yielding no net increase in sensitivity. The redistribution time constant, in fact, involves the carrier mobility which is strongly a function of temperature. The sensitivity that is achieved for such devices, will thus be also affected by temperature and for realistically sized devices, fall far short of the expected sensitivity. In these prior art devices, the carrier mobility temperature coefficient will also affect proportionately, the current observed to exit the contacts and hence their difference. Since that difference is the measurement output, it will have a commensurate additional error.
It is therefore an object of the present invention to provide a CCD magnetic field sensor which maximizes sensitivity and precision, while maintaining realistic limits on device dimensions.
It is a further object of the present invention to provide a CCD magnetic field sensor which operates to ensure that the output potential settles to a value indicated by the Faraday equation by accommodating full lateral redistribution of carriers within propagating charge packets.
It is another object of the present invention to provide a CCD magnetic field sensor which utilizes a recirculation technique to accommodate full lateral redistribution of carriers in the charge packets. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to the process of gridding vases/containers, specifically to such vases/containers which are used by hobbyists and professionals alike to assist and expedite the development and shape of a floral arrangement and to assist in securing the original shape of the arrangement during handling, delivery and installation.
2. Prior Art
Retail florists commonly begin an arrangement by placing a criss-cross pattern of floral adhesive tape across the opening of the vessel, over the lip and down approximately ¼ inch to ½ inch onto the outside of the chosen vessel. The grid is then secured to the vase by tightly wrapping another piece of floral adhesive tape around the outside circumference of the lip of the vessel to bind the tape endings to the outside rim of the container, thus holding the grid work in place.
The size of the voids created by the grid is determined by the preference of the floral designer. Some designers prefer a grid with larger, fewer apertures. While others prefer a smaller, tighter net. Consequently, the ability to vary the size of the apertures and the ability to adapt the gridding to many different sizes and shapes of containers are two very important qualities.
Such a grid is an important means of keeping the stem insertions in place while the arrangement is being developed. The grid also assists in keeping the stems in place during the jostling of the finished product during the delivery process and the installation of the floral piece to its final destination. The strength and durability of the grid is obviously also very important.
Originally the reticular of tape was applied by hand, one piece at a time; first as strips of tape in one direction across the opening. Then, repeating the process in the opposite direction across the opening to eventually form a reticular or fish net pattern of tape over the entire opening. The ends of the strips are bent down over the lip and onto the outside edge of the opening. The net of tape is secured by manually running another piece of adhesive tape very tightly around the outside edge of the container/vase. In essence, the net of tape supports the stems and helps to keep the stems from flopping around during the process of building the arrangement and also during the delivery and installation processes.
Industry professionals commonly use two different styles of floral adhesive tape. The two most popular adhesives are: #1-a clear scotch tape style #2-a floral tape that is solid dark green on the outside surface with a white adhesive underneath.Both are produced on rolls 100 yards long. Both are available in two widths. Size A is ¼ inch wide. Size B is ½ inch wide and is generally used for vases/containers with very large openings. The dark green tape has a stronger adhesive, remains bonded longer and holds up better when exposed to water in the container and the humidity and moisture in the flower coolers. It is flawed, however, by the fact that the finished grid is more difficult to camouflage than the clear adhesive one. An important consideration in professional designing is to not allow the mechanics of this type of an arrangement to show. The clear adhesive is easier to hide but does not have the adhesive strength of the dark green tape and doesn't perform as well once the water and moisture are introduced into the mix. In both cases the grid is at risk of collapsing once the vessel is filled with water. The dark green tape is, however, more durable.
Literally thousands of vases are hand-taped in shops worldwide every year. While the cost of the materials used in the hand-taping method amounts to only pennies per container the tape is susceptible to moisture damage, and the process is very time consuming.
A designer or designer's assistant with average skill and experience can hand tape approximately 30 vases per hour. Consequently the hand-taping method monopolizes many hours of expensive labor.
To date, other inventors have suggested alternatives. Such as:
#1 A complicated series of rubber bands, too complicated and too time consuming to be productive and profitable and not strong enough to support an arrangement or survive delivery.
#2 A flexible grid formed from woven pipe cleaners which is not secured to the vessel, difficult to camouflage, more time consuming to construct and truly pointless in effect because there is not enough strength in the grid to be of assistance.
#3 A plastic closure that is too rigid to design in, too limiting to the sizes of stems that it will receive, too limiting to the types of vases/containers that it will fit, too difficult to camouflage and too expensive to use profitably.
#4 A pre-apertured page of adhesive with tabs around the perimeter is too weak to adhere to the vessel, too limiting on the size of stems it will accept, too difficult to camouflage, too expensive (sometimes costing as much as the vase/container) to use profitably, too susceptible to moisture, too difficult to apply and has definite size limitations.
To date, inventors have suggested 4 alternatives to the primitive hand-taped method. #1 In the U.S. Pat. No. 6,189,261 the floral arranging accessory that is proposed is designed out of pipe cleaners that are not secured to the container well enough to be used commercially and is also intended to be removed from the finished arrangement. Thus being of no asset in helping to hold the floral materials in place during delivery. This method also appears to be even more time consuming to install and virtually impossible to keep in place while the designing of the arrangement is taking place. It might be of some minor assistance to a hobbyist who has all day to develop an arrangement but, from a professional standpoint U.S. Pat. No. 6,189,261 flexible arranging grid is mainly a toy and would not be acceptable in a commercial setting. #2 Other problems associated with prior art grids like the ones suggested by in U.S. Pat. No. 5,578,452 are that the plastic cap type grid is too rigid, does not adapt well to the wide variety of shapes, sizes and styles of containers and is difficult to camouflage around the edge of the vessel as well as throughout the lid. The rigidity and size of the apertures limits the size of the stems and consequently the selection of the types of flowers that can be used. The size of the openings is not adjustable to the many different sizes of stems. The plastic cap type grid is also too rigid and doesn't afford the designer the ability to make insertions at different angles which is often necessary to achieve the proper shape and/or camouflage the mechanics (ie. the grid itself). #3 Furthermore, the grid presently on the market that is a pre-aperatured page of adhesive with tabs around the perimeter allows for a limited diameter stem to be inserted. The manufacturer of the adhesive page grid recommends that you wait 20 minutes after application for the adhesive to set, while our invention is ready to use in seconds. The tabs are difficult to camouflage once they are stuck to the sides of the vase/container and it is difficult to remove the residue once the arrangement is dismantled. #4 An application (W2002/0184818) is also pending that suggests a floral grid be made out of elastic and stretched over the top opening in the vase. Again, while possibly an aid for the hobbyist, this is not something that would work in commercial floristry. An elastic lid would be too difficult and too time consuming to use effectively with any speed. Each stem insertion would encourage the device to peel off the edge of the vase. If it were left on it would rarely stay on through the jostling of the delivery process. If it were removed before delivery, as the applicant suggests, the flowers would not maintain their placement during the delivery process and chances are a jumbled mess would be delivered instead of a carefully designed arrangement. It would rarely survive delivery. The fact that it is easily removable makes it worthless and a hindrance to product delivery. Commercially speaking we do not want a device that we can reuse. Our mechanics must go out the door with the arrangement. They must be easily camouflaged and need to be disposable after the flowers are spent. Like the plastic lid type grid, the elastic grid is much too expensive to be profitable. Like the plastic lid type grid, the elastic grid is also too difficult to camouflage. The care and handling instruction card that accompanies every arrangement instructs the recipient to “add water daily”. Like the plastic lid type grid, the elastic grid is too difficult to add water through. | {
"pile_set_name": "USPTO Backgrounds"
} |
Security systems are generally known. Such systems typically include some form of physical barrier to intruders, including one or more sensor to detect intruders who are able to surmount the barrier.
In the case of a home, the physical barrier may be the exterior walls of the home. In this case, the sensors may include door sensors that detect the opening or closing of the doors. Window sensors may also be provided to detect intruders who attempt to enter through a window.
The sensors within a home are typically electrical switches that are mechanically connected to a door or window. In other cases, motion detectors may be used that are based upon infrared detection of human intruders or the processing of video signals to detect human shapes.
Security systems typically operate in three modes including disarmed, alarm away and alarm stay. In the disarmed mode, the control panel does not report a burglary alarm when a sensor is activated, while in the alarm away mode the control panel sounds an alarm when a sensor is activated and may report the alarm to a central monitoring station. In the alarm stay (used during night time hours when a homeowner is present), the control panel may only monitor sensors along a periphery of the home.
While alarm systems are effective, authorized users may still be vulnerable to attack when they enter or exit the secured area. Accordingly, a need exists for better ways of protecting users of security systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field of the Invention
This invention relates generally to wireless communication devices and more particularly to radio frequency transmitters used within such wireless communication systems.
2. Description of Related Art
Communication systems are known to support wireless and wire lined communications between wireless and/or wire lined communication devices. Such communication systems range from national and/or international cellular telephone systems to the Internet to point-to-point in-home wireless networks. Each type of communication system is constructed, and hence operates, in accordance with one or more communication standards. For instance, wireless communication systems may operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), and/or variations thereof.
Depending on the type of wireless communication system, a wireless communication device, such as a cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, et cetera communicates directly or indirectly with other wireless communication devices. For direct communications (also known as point-to-point communications), the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of radio frequency (RF) carriers of the wireless communication system) and communicate over that channel(s). For indirect wireless communications, each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel. To complete a communication connection between the wireless communication devices, the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other wide area network.
For each wireless communication device to participate in wireless communications, it includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver (e.g., a station for in-home and/or in-building wireless communication networks, RF modem, etc.). As is known, the transmitter includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard. The one or more intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals. The power amplifier amplifies the RF signals prior to transmission via an antenna.
As is also known, the receiver is coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives inbound RF signals via the antenna and amplifies them. The one or more intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals. The filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals. The data recovery stage recovers raw data from the filtered signals in accordance with the particular wireless communication standard.
As is further known, the transmitter of a wireless communication device transmits RF signals that represent baseband processed data to the receiver of another wireless communication device directly or through an access point, or base station. The particular type of baseband processing used to prepare the data for radio frequency transmission and subsequent data recapture by the receiver is dependent upon the standard, or standards, being supported by the wireless communication devices and upon the received signal strength of the RF signals. For example, if the standard being supported is IEEE802.11g, the baseband processing may include encoding data at 1 or 2 megabits-per-second using a direct sequence spread spectrum (DSSS) encoding protocol, a 5.5 or 11 megabits-per-second complimentary code keying (CCK) encoding protocol, or a 6, 9, 12, 18, 24, 36, 48, or 54 orthogonal frequency division multiplexing (OFDM) encoding protocol.
The particular encoding protocol selected is at least partially based on received signal strength indication (RSSI). In general, the weaker the signal strength of the received RF signal, the lower the data rate. As is known, the transmitter transmits RF signals at a fixed output power level (e.g., 10 dBm) such that the decrease in receive signal strength is primarily due to physical distance between the transmitter and receiver. Thus, the greater the distance, the weaker the received signal will be, requiring a lower data rate encoding protocol to be used. Further, when the received signals are weak, the data recovery circuitry within the receivers may have difficulty recapturing the data resulting in a retransmission of the data or loss of data, either of which reduces data throughput.
One solution for improving received signal strength is to raise the transmit power level such that the received signal strength would correspondingly increase. While this would help for weaker received signal strengths, it is overkill for stronger received signals and would unnecessarily consume additional power in the transmitter, which, for battery operated wireless communication devices is extremely detrimental.
Therefore, a need exists for a method and apparatus for adjusting transmit power levels, while maintaining the particular transmit power level constant, without increasing power consumption and further improving data throughput. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a system for shift control in automatic transmission. More particularly it relates to improvements in a system for shift control in automatic transmission and an engine, wherein gear stages are automatically switched in accordance with a preset shift map.
Automatic transmissions comprising gear transmission mechanisms, a plurality of frictionally engaging devices, and hydraulic pressure control devices operated to selectively switch the engagements of the frictionally engaging devices, so that any one of a plurality of gear stages can be achieved in accordance with a preset shift map, are well known in the transmission art.
Furthermore, in an automatic transmission for a vehicle, of the type described, various systems are known for integrally controlling an automatic transmission and an engine, wherein, engine torque is changed during shifting to obtain satisfactory shift characteristics and durability of the frictionally engaging devices (For example, Japanese Patent Laid-Open No. 69738/1980). More specifically, the system for integrally controlling the automatic transmission and the engine, of the type described changes the amount of torque transmitted from the engine during shifting and controls the amount of energy absorbed by various members in the automatic transmission or by the frictionally engaging devices so as to complete a shifting within a short period of time under a low shift shock, whereby a satisfactory shift feeling is given to a driver and durability of the frictionally engaging devices is improved.
However, when the control for changing engine torque cannot be carried out due to trouble in a sensor system or a request from the engine side, durability of the frictionally engaging devices is reduced due to an increase in the amount of absorbed energy by the frictionally engaging devices in the automatic transmission. Moreover, a shifting time duration is prolonged therefore worsening the shift feeling. This is caused by the shift tuning data (oil pressure and the like) in the automatic transmission set in expectation of a decrease in the engine torque by a predetermined value during the shifting.
Furthermore, no matter whether the engine torque change control during shifting as described above may be carried out or not, even when the working oil pressure is decreased due to the oil leakage for example, the shift time duration is prolonged to affect less durability of the frictionally engaging devices, and the shifting is not completed in a shockless region of the accumulator, whereby high shift shocks occur. | {
"pile_set_name": "USPTO Backgrounds"
} |
One or more aspects relate, in general, to processing within a computing environment, and in particular, to vector processing within such an environment.
Processing within a computing environment includes controlling operation of one or more central processing units (CPUs). Normally, operation of a central processing unit is controlled by instructions in storage. Instructions may have different formats and often specify registers to be used in performing various operations.
Depending on the architecture of the central processing unit, various types of registers may be used including, for instance, general purpose registers, special purpose registers, floating point registers and/or vector registers, as examples. Different types of registers may be used with different types of instructions. As examples, floating point registers store floating point numbers to be used by floating point instructions; and vector registers hold data for vector processing performed by Single Instruction, Multiple Data (SIMD) instructions, including vector instructions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a process for preparing printing plates, especially for those useful for printing on corrugated boards.
The process of the invention is useful for plates for printing not only on corrugated boards but also for usual paper materials.
Preparation of printing plates usually requires a complex process including many steps as seen in FIG. 7. The conventional process will be described with reference to the case where for a better understanding, the characters "F" and "L" roughly sketched as at 1 are to be printed in different colors.
Step a
The characters are drawn on paper in specified colors to prepare originals 2 for printing plates.
Step b
The originals 2 are photographed by a letterpress camera on an enlarged or reduced scale corresponding to the print 6 to be made, to obtain negative films 3.
The letterpress camera is provided with a front mirror and adapted to photograph reflected images. The image of the original, which is reflected from the mirror and passes through the lens, is projected onto the coating of the film as an inverted normal image having the original right-to-left relationship. Accordingly when the negative film 3 is turned through 180 degrees, the image as seen from the film substrate side is an erect reverse image as seen in FIG. 7(b).
It is to be noted that in the letterpress printing process, the term "normal image" or "reverse image" refers to the image as seen through the film substrate, with the photosensitive coating side of the film positioned outward and does not refer to the image as seen directly on the coated surface of the film. Thus, the reverse image on the negative 3 is a normal image when it is viewed directly on the coated surface.
Step c
Each negative film 3 is placed on the coating 42 of photosensitive paper 41 with the film substrate in intimate contact therewith and with the coated film surface 31 out ashown in FIG. 5, and the paper is exposed to light to obtain a print 4 bearing the image as a positive normal image.
Step d
The print 4 is cut to a piece of paper 5 having a suitable size and bearing the image. The pieces 5 are arranged on a mounting board 7 of the same size as the print 6 to be obtained, the surface of the board 7 is cut away in the same size as the pieces 5, and the pieces 5 are fitted into the mounting board 7, with the surfaces of the pieces 5 flush with the surface of the mounting board 7.
The layout obtained is identical with the printed layout on the print 6 to be finished with the exception of color.
Step e
The mounting board 7 with the layout of characters is photographed again with the letterpress camera to prepare identical negative films 8 bearing reverse images only and identical in number to the number of colors.
Step f
Only one image on one of the negative films 8 is obliterated with an opaque ink, while only the other image on the other negative film 8 is similarly inked out for color separation to obtain negative films 9 for the different colors.
Step g
Each of the negatives 9 is placed on a fresh film with the coated surface of the former in contact with the photosensitive surface of the latter, followed by exposure and printing to obtain a color separation film 10 bearing the image in the form of a positive normal image for the given color.
Step h
A plate-making color separation negative 12 is prepared from each film 10 using an enlarger 23 and a fresh film. When the printing plate 11 finally obtained is fitted around a printing roller for printing, an enlarged image will be obtained, so that the negative 12 is such that the image thereon is formed as contracted in the direction of rotation of the printing roller by an amount corresponding to the enlargement.
FIG. 6 shows the enlarger 23, in which the color separation film 10 is moved horizontally with the coated surface out, while the fresh film is fitted around a drum 24 and rotated at the same time. The color separation film 10 is exposed to light from above to form an image on the fresh film on the drum 24 through a mirror 25, lens 26 and slit 27 and obtain a print.
Since the peripheral speed of the drum 24 is slightly lower than the horizontal feed speed of the color separation film 10, the image of the film 10 is formed on the film over the drum 24 as a reverse image slightly contracted in the direction of rotation of the drum, whereby the plate-making color separation negative 12 is obtained.
Step i
A photosensitive flexible synthetic resin sheet (for forming a flexible relief printing plate) is exposed to light in intimate contact with each negative 12, whereby the exposed surface area of the resin sheet is chemically reacted and made insoluble. The unexposed area is etched away by a known chemical treatment to obtain a printing plate 11 having a reverse image in relief.
Each flexible printing plate 11 thus repared is set on a printing roller to print the image on paper 6 in color by letterpress printing.
Because the positive-negative relationship of the film, as well as of the photosensitive paper, is dependent on the kind of the photosensitive agent forming the coating, the foregoing description is merely exemplary of the conventional process. It is of course possible to print the image of a negative on photosensitive paper or film in intimate contact therewith to obtain a negative image.
The photosensitive agent coating the film and plate-making material may be such that it become soluble when exposed. In this case, it is possible to photograph an original of positive image to obtain a film bearing a positive image (positive-positive film).
The normal image-reverse image relationship is also not limitative; it is possible to photograph a normal image with a mirror- or prism-incorporating camera to obtain a normal image by reversing the image twice through the lens and prism.
Various plate making proceses have been practiced which resort to combinations of positive image-negative image relationship and normal image-positive image relationship.
The conventional process described above requires many steps for preparing finished prints and necessitates manual work for the step d of laying out the paper pieces 5 and fitting the pieces 5 into surface cutouts in the mounting board 7 and for the image inking-out and color separation step f, so that it has been thought impossible to automatically produce printing plates in large quantities.
Furthermore, the negative films 3, 8, photosensitive paper 4, mounting board 7 and color separation film 10 prepared are used only once and are not reusable. This renders the printing plate expensive to make.
While a sample of finished print must be approved of by the customer who placed an order for prints with the rough sketch 1, the plate maker shows the customer a print of the negative films 8 on sensitive paper obtained by contact printing or the mounting board layout 7 for this purpose. Accordingly in the event of a change in the customer's instructions, the same steps must be repeated again to comply with the customer's request. Further because the sample, i.e. the mounting board 7 or the print, bears positive images only, the conventional process involves the inconvenience that no color image sample is available before the process is executed to the final step (step i). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a memory control apparatus for controlling a memory access command to be used and a memory control method.
2. Description of the Related Art
As the main memory of a computer system, a synchronous DRAM is used in general. Along with the improvement of functionality and performance of computer systems, requirements for the access performance of the synchronous DRAM are growing. To make the most of the performance, various methods for controlling access to the synchronous DRAM have been proposed concerning a memory control apparatus.
When independently controlling memory access to a plurality of banks of a synchronous DRAM, the issuance timings of a plurality of commands overlap in some cases. Since the specifications of the synchronous DRAM do not permit issuance of the plurality of commands at the same timing, the issuance of any one of the commands needs to be delayed.
In Japanese Patent Laid-Open No. 2007-249837, the column address of the current memory transfer is compared with the column address of the next memory transfer. If the column addresses are different, a READ A command (READ command with precharge) or a WRITE A command (WRITE command with precharge) is issued. On the other hand, if the column addresses are identical, READ commands or WRITE commands of the same column address are continuously issued.
According to the method disclosed in Japanese Patent Laid-Open No. 2007-249837, however, the column address of the current memory transfer is compared with the column address of the next memory transfer but not with the memory transfer address after next. Hence, if transfer of the same column address exists after next the transfer for issuing a command, a READ A command or a WRITE A command is used. In this case, if the next transfer is done for a different bank, access can be performed without precharge. Hence, unnecessary precharge occurs, and the transfer efficiency lowers. | {
"pile_set_name": "USPTO Backgrounds"
} |
Transit providers, such as taxi companies, limousine companies, bus companies, railway companies, airlines, etc., may install in-vehicle entertainment and service systems in their vehicles to entertain their passengers, to enable attendants to better serve the passengers, etc., during transit on the vehicles. For example, commercial planes are generally equipped with in-flight entertainment (IFE) systems to accommodate their passengers' desire for entertainment while in-transit to their destinations. However, among other issues, typical transit providers do not provide their passengers with a convenient way of enabling their passengers to select or prepare, before departure of a vehicle, in-vehicle services that they are to be provided during transit on the vehicle, or to extend those in-vehicle services after the passengers leave the vehicle. | {
"pile_set_name": "USPTO Backgrounds"
} |
This type of interface may be considered as being relatively restricting in various applications, e.g. identifying people or controlling the access of particular people to a building. It may also be restricting in banking transactions that require the card to pass through a slot in the terminal.
That is why the Applicant seeks to provide a remote data interchange system suitable for use over different distances.
The person skilled in the art knows that the amplitude of an electromagnetic signal applied to the terminals of an inductive frame can be varied by coupling the frame inductively with a resonant circuit which is tuned to the frequency of the signal. Such variations are significant when the ratio between the area of the inductive elements of the resonant circuit and the area of the frame is not too great.
However, it is intended, particularly for remote banking transactions, that the bearer of a memory card fitted with a resonant circuit should pass through an inductive frame or "gate" and that information should be exchanged as the bearer is passing through. Unfortunately, the ratio of the area of such a gate (about 1.6 m.sup.2) to the area of a standard memory card (about 40 cm.sup.2) would give rise to amplitude variations which are too small to be indicative of the presence of a card in the gate, and which could possibly be interpreted as "noise". In addition, these variations depend on the physical characteristics (e.g. volume) of the person present in the gate, which means that the variations are insufficiently stable to ensure adequate reliability for information interchange during banking transactions, for example.
The invention seeks to provide a solution to this problem.
An object of the invention is to cause an electromagnetic signal at the terminals of an inductive frame or "gate" to vary during remote inductive coupling with a portable object such as a memory card in a manner which is indicative of the presence of the card in the gate.
Another object of the invention is to escape from interfering variations due, in particular, to the physical characteristics of the people carrying such memory cards.
Another object of the invention is to ensure that information is transmitted reliably between the portable object and the station.
Another important object of the invention is to enable remote two-way interchange to take place between the portable object and the station.
The invention also seeks to provide a device which consumes practically no energy when transmitting or when receiving information, and which does so at very low cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to spin valve thin-film magnetic devices, thin-film magnetic heads, and floating type magnetic heads, and to methods for manufacturing spin valve thin-film magnetic devices, and more particularly, relates to a spin valve thin-film magnetic device in which the asymmetry thereof can be reduced.
2. Description of the Related Art
A giant magnetoresistive head is provided with a device having magnetoresistance, in which the device has a multilayer structure composed of a plurality of materials exhibiting giant magnetoresistance. Among several types of structures exhibiting giant magnetoresistance, a spin valve thin-film magnetic device may be mentioned as a device which has a relatively simple structure and a high rate of change in resistance with respect to application of a minute external magnetic field. As a spin valve thin-film magnetic device, a single spin valve thin-film magnetic device and a dual spin valve thin-film magnetic device may be mentioned.
FIGS. 28 and 29 show schematic cross-sectional views of conventional spin valve thin-film magnetic devices. FIG. 28 is a cross-sectional view observed from a recording medium side, and FIG. 29 is a cross-sectional view observed from a track width direction side.
In FIGS. 28 and 29, an X1 direction in the figure is the track width direction of the spin valve thin-film magnetic device, a Y direction in the figure is the direction of a leakage magnetic field from the magnetic recording medium, and a Z direction in the figure is the moving direction of the magnetic recording medium.
The spin valve thin-film magnetic device 9 shown in FIGS. 28 and 29 is a so-called a dual spin valve thin-film magnetic device composed of a free magnetic layer provided on each surface thereof in the thickness direction with a nonmagnetic conductive layer, a fixed magnetic layer, and an antiferromagnetic layer, in that order, from the free magnetic layer.
In the spin valve thin-film magnetic device 9, an underlying layer 115 is formed on an insulating layer 264, and on the underlying layer 115, a second antiferromagnetic layer 172, a second fixed magnetic layer 151, a second nonmagnetic conductive layer 132, a free magnetic layer 141, a first nonmagnetic conductive layer 131, a first fixed magnetic layer 121, a first antiferromagnetic layer 171, and a cap layer 114 are sequentially formed, in that order.
In addition, on both sides of a laminate composed of the layers from the underlying layer 115 to the cap layer 114 in the X1 direction in the figure, conductive layers 116 and 116, interlayers 117 and 117, bias layers 118 and 118, and bias underlying layers 119 and 119 are formed.
The first and the second fixed magnetic layers 121 and 151 are magnetized respectively by exchange anisotropic magnetic fields which appear at the interfaces between the first fixed magnetic layers 121 and the first antiferromagnetic layers 171 and between the second fixed magnetic layer 151 and the second antiferromagnetic layer 172, and the magnetization directions of the first and the second fixed magnetic layers 121 and 151 are fixed in the Y direction in the figure.
The free magnetic layer 141 is placed in a single domain state by the bias layers 118 and 118, and the magnetization direction of the free magnetic layer 141 is aligned in the direction opposite to the X1 direction in the figure, i.e., in the direction crossing the magnetization directions of the first and the second fixed magnetic layers 121 and 151.
When the free magnetic layer 141 is placed in a single domain state, the generation of Barkhausen noise is prevented.
In this spin valve thin-film magnetic device 9, when sensing current is imparted from the conductive layers 116 and 116 to the free magnetic layer 141, the first and the second nonmagnetic conductive layers 131 and 132, and the first and the second fixed magnetic layers 121 and 151, and when leakage magnetic field from the magnetic recording medium running to the Z direction is imparted to the free magnetic layer 141 in the Y direction in the figure, the magnetization direction of the free magnetic layer 141 is changed from the direction opposite to the X1 direction to the Y direction. The combination of the change in the magnetization direction in the free magnetic layer 141 and the magnetization directions of the first and the second fixed magnetic layers 121 and 151 changes the electrical resistance, and the leakage magnetic field from the recording medium is detected by the change in voltage in accordance with the change in the electrical resistance.
In a typical spin valve thin-film magnetic device, as shown in FIG. 30, when an external magnetic field from the recording medium is not applied, it is ideal for the magnetization direction H3 of the free magnetic layer 141 to be perpendicular to the magnetic directions H1 and H2 of the first and the second fixed magnetic layers 121 and 151.
However, in the conventional spin valve thin-film magnetic device 9, ferromagnetic interlayer coupling occurs between the free magnetic layer 141 and the first and the second fixed magnetic layers 121 and 151 with the first and the second nonmagnetic conductive layers 131 and 132, respectively, and as a result, magnetic moments H4 and H5 are generated by the ferromagnetic interlayer coupling magnetic fields. The directions of the magnetic moments H4 and H5 are parallel to the magnetization directions of the first and the second fixed magnetic layers 121 and 151, i.e., the directions of the magnetic moments H4 and H5 are in the Y direction in the figure.
Consequently, since the magnetization direction H3 of the free magnetic layer 141 is inclined by the magnetic field moments H4 and H5 to the Y direction so as to be H6, and hence, the magnetization direction H6 of the free magnetic layer 141 cannot be perpendicular to the magnetization directions H1 and H2 of the first and the second fixed magnetic layers 121 and 151, there is a problem in that an asymmetric property (hereinafter referred to as xe2x80x9casymmetryxe2x80x9d) of wave shapes for reading is increased.
In addition, in the conventional spin valve thin-film magnetic device 9, as shown in FIG. 31, when an external magnetic field from the recording medium is not applied, it is ideal for the magnetization direction H3 of the free magnetic layer 141 to be perpendicular to the magnetic directions H1 and H2 of the first and the second fixed magnetic layers 121 and 151. However, dipole magnetic fields H14 and H15 leaked from the first and the second fixed magnetic layers 121 and 151, respectively, penetrate into the free magnetic layer 141 from the direction opposite to the Y direction in the figure and incline the magnetization direction H3 of the free magnetic layer 141 toward the magnetization direction H16 which is a direction opposite to the Y direction. As a result, the magnetization direction H16 of the free magnetic layer 141 cannot be perpendicular to the magnetization directions H1 and H2 of the first and the second fixed magnetic layers 121 and 151, and there is a problem in that the asymmetry wave shapes for reading, i.e., the asymmetry, is increased.
In consideration of the problems described above, an object of the present invention is to provides a spin valve thin-film magnetic device in which the inclination of the magnetization direction of the free magnetic layer can be prevented, and the asymmetry can be reduced, a thin-film magnetic head provided with the spin valve thin-film magnetic device, and a floating type magnetic head provided with the thin-film magnetic head. The present invention also provides a method for manufacturing the spin valve thin-film magnetic device described above.
To these ends, the structures described below are employed in the present invention.
A spin valve thin-film magnetic device according to the present invention, comprises a free magnetic layer, a pair of nonmagnetic conductive layers formed on both sides of the free magnetic layer in the thickness direction thereof, a pair of fixed magnetic layers formed on the pair of nonconductive layers, a pair of antiferromagnetic layers formed on the pair of fixed magnetic layers, a pair of conductive layers imparting a sensing current to the free magnetic layer, the pair of nonmagnetic conductive layers, and the pair of fixed magnetic layers, and a pair of bias layers for aligning a magnetization direction of the free magnetic layer, wherein the free magnetic layer is a laminate composed of at least 2L ferromagnetic layers with a nonmagnetic interlayer provided therebetween, the L being an integer of 1 or more, in which magnetization directions of the ferromagnetic layers adjacent to each other are antiparallel to each other so that the entire free magnetic layer is in a ferrimagnetic state; one of the pair of the fixed magnetic layers is a laminate composed of at least 2M ferromagnetic layers with a nonmagnetic layer provided therebetween, the M being an integer of 1 or more, in which magnetization directions of the ferromagnetic layers adjacent to each other are antiparallel to each other so that the entire fixed magnetic layer is in a ferrimagnetic state, and a magnetization direction of the entire fixed magnetic layer is fixed in a direction crossing the magnetization direction of the entire free magnetic layer by an exchange coupling magnetic field formed by the fixed magnetic layer and one of the antiferromagnetic layers adjacent thereto; the other fixed magnetic layer is a laminate composed of at least 2N ferromagnetic layers with a nonmagnetic layer provided therebetween, the N being an integer of 1 or more, in which magnetization-directions of the ferromagnetic layers adjacent to each other are antiparallel to each other so that the entire other fixed magnetic layer is in a ferrimagnetic state, and a magnetization direction of the entire other fixed magnetic layer is fixed in a direction parallel to the magnetization direction of the fixed magnetic layer by an exchange coupling magnetic field formed by the other fixed magnetic layer and the other antiferromagnetic layer adjacent thereto; and a magnetization direction of a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer, and a magnetization direction of a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the other fixed magnetic layer, are antiparallel to each other.
According to the spin valve thin-film magnetic device described above, the fixed magnetic layer is composed of the even number 2L of ferromagnetic layers, and the other fixed magnetic layer is composed of the even number 2N of ferromagnetic layers, in which, when magnetization directions of these fixed magnetic layers are parallel to each other, magnetization directions of ferromagnetic layers, which are closest to the free magnetic layer among ferromagnetic layers forming individual fixed magnetic layers, are simultaneously antiparallel to each other. Consequently, the magnetization direction of the free magnetic layer can be aligned in the direction perpendicular to the magnetization directions of these fixed magnetic layers.
The magnetization direction of the free magnetic layer can generally be aligned in one direction by the bias layers. However, the magnetization direction of the free magnetic layer provided between the fixed magnetic layers may be inclined depending on the magnetizations thereof, and as a result, the asymmetry may not be reduced in some cases.
However, according to the spin valve thin-film magnetic device described above, the magnetization direction of the free magnetic layer is unlikely to be influenced by the magnetizations of the fixed magnetic layers, and hence, the asymmetry can be reduced.
In the spin valve thin-film magnetic device of the present invention described above, the direction of a magnetic field moment Hb1 of a ferromagnetic exchange coupling magnetic field formed by ferromagnetic interlayer coupling of the free magnetic layer and a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer, and the direction of a magnetic field moment Hb2 of a ferromagnetic exchange coupling magnetic field formed by ferromagnetic interlayer coupling of the free magnetic layer and a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the other fixed magnetic layer, are antiparallel to each other in the free magnetic layer.
According to the spin valve thin-film magnetic device described above, since the directions of the magnetic moments Hb1 and Hb2 of the ferromagnetic interlayer coupling magnetic fields formed by the free magnetic layer and the individual ferromagnetic layers, which are closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer and the other fixed magnetic layer, are antiparallel to each other in the free magnetic layer, the ferromagnetic interlayer coupling magnetic fields counteract each other, and hence, the magnetization direction of the free magnetic layer is not inclined by the ferromagnetic interlayer coupling magnetic fields. As a result, the magnetization direction of the free magnetic layer can be aligned in the direction perpendicular to those of the fixed magnetic layers, and hence, the asymmetry of the spin valve thin-film magnetic device can be reduced.
In the spin valve thin-film magnetic device according to the present invention, it is preferable that the L be 1, the M be 1, and the N be 1.
When the spin valve thin-film magnetic device has the structure as described above, the thicknesses of the free magnetic layer and the fixed magnetic layers are decreased, and shunting of the sensing current can be prevented, whereby the rate of change in magnetoresistance can be increased.
In the spin valve thin-film magnetic device according to the present invention, it is preferable that one of the fixed magnetic layers described above be composed of a first ferromagnetic layer and a second ferromagnetic layer with a first nonmagnetic layer provided therebetween, in which the thickness of the second ferromagnetic layer formed at a location closer to the free magnetic layer is larger than that of the first ferromagnetic layer, and that the other fixed magnetic layer be composed of a third ferromagnetic layer and a fourth ferromagnetic layer with a second nonmagnetic layer provided therebetween, in which the thickness of the third ferromagnetic layer formed at a location closer to the free magnetic layer is smaller than that of the fourth ferromagnetic layer.
In addition, in the spin valve thin-film magnetic device according to the present invention, one of the fixed magnetic layers described above may be composed of a first ferromagnetic layer and a second ferromagnetic layer with a first nonmagnetic layer provided therebetween, in which the thickness of the second ferromagnetic layer formed at a location closer to the free magnetic layer is smaller than that of the first ferromagnetic layer, and that the other fixed magnetic layer may be composed of a third ferromagnetic layer and a fourth ferromagnetic layer with a second nonmagnetic layer provided therebetween, in which the thickness of the third ferromagnetic layer disposed at a location closer to the free magnetic layer is larger than that of the fourth ferromagnetic layer.
A thin-film magnetic head of the present invention is capable of reading magnetically written information, which comprises one of the spin valve thin-film magnetic devices described above.
A floating type magnetic head of the present invention comprises a slider and the thin-film magnetic head described above provided in the slider.
Since the thin-film magnetic head and the floating type magnetic head comprise the spin valve thin-film magnetic devices in which the asymmetry thereof is reduced, a superior symmetric property of wave shapes for reading can be obtained, and the rate of occurrence of errors in reading can be reduce.
A method for manufacturing a spin valve thin-film magnetic device of the present invention, comprises a step of forming an antiferromagnetic layer, a fixed magnetic layer composed of at least 2M ferromagnetic layers coupled antiferromagnetically with each other with a nonmagnetic layer provided therebetween, in which the M is an integer of 1 or more, a nonmagnetic conductive layer, a free magnetic layer composed of at least 2L ferromagnetic layers coupled antiferromagnetically with each other with a nonmagnetic interlayer provided therebetween, in which the L is an integer of 1 or more, the other nonmagnetic conductive layer, the other fixed magnetic layer composed of at least 2N ferromagnetic layers coupled antiferromagnetically with each other with a nonmagnetic layer provided therebetween, in which the N is an integer of 1 or more, and the other antiferromagnetic layer so as to form a laminate; and a step of performing a heat treatment for the laminate, while an external magnetic field is applied to the laminate, which is smaller than a magnetic field at which spin flop transformations occur in the ferromagnetic layers forming the fixed magnetic layer and the other fixed magnetic layer, whereby exchange coupling magnetic fields appear between the antiferromagnetic layer and the fixed magnetic layer and between the other antiferromagnetic layer and the other fixed magnetic layer.
The external magnetic field is preferably 8.0xc3x97104 A/m or less.
According to the method for manufacturing a spin valve thin-film magnetic device described above, by the step of forming the laminate composed of the free magnetic layer, the fixed magnetic layers, the nonmagnetic conductive layers, and the antiferromagnetic layers, as described above, followed by the step of performing the heat treatment while the external magnetic field is applied which is smaller than that at which spin flop transformations occur in the individual ferromagnetic layers forming the fixed magnetic layers, a spin valve thin-film magnetic device as described above can be easily manufactured.
In addition, in order to solve the conventional problems described above, the structures described below are employed in the present invention.
A spin valve thin-film magnetic device according to the present invention, comprises a free magnetic layer, a pair of nonmagnetic conductive layers formed on both sides of the free magnetic layer in the thickness direction thereof, a pair of fixed magnetic layers formed on the pair of nonconductive layers, a pair of antiferromagnetic layers formed on the pair of fixed magnetic layers, a pair of conductive layers imparting a sensing current to the free magnetic layer, the pair of nonmagnetic conductive layers, and the pair of fixed magnetic layers, and a pair of bias layers for aligning a magnetization direction of the free magnetic layer, wherein the free magnetic layer is a laminate composed of at least 2L ferromagnetic layers with a nonmagnetic interlayer provided therebetween, the L being an integer of 1 or more, in which magnetization directions of the ferromagnetic layers adjacent to each other are antiparallel to each other so that the entire free magnetic layer is in a ferrimagnetic state; one of the pair of fixed magnetic layers is a laminate composed of at least 2M ferromagnetic layers with a nonmagnetic layer provided therebetween, the M being an integer of 1 or more, in which magnetization directions of the ferromagnetic layers adjacent to each other are antiparallel to each other so that the entire fixed magnetic layer is in a ferrimagnetic state, and a magnetization direction of the entire fixed magnetic layer is fixed in a direction crossing the magnetization direction of the entire free magnetic layer by an exchange coupling magnetic field formed by the fixed magnetic layer and one of the antiferromagnetic layer adjacent thereto; the other fixed magnetic layer is one of a single ferromagnetic layer and a laminate composed of at least 2N+1 ferromagnetic layers with a nonmagnetic layer provided therebetween, the N being an integer of 1 or more, magnetization directions of the ferromagnetic layers adjacent to each other being antiparallel to each other so that the entire other fixed magnetic layer is in a ferrimagnetic state, and a magnetization direction of the entire other fixed magnetic layer is fixed so as to be antiparallel to the magnetization direction of the fixed magnetic layer by an exchange coupling magnetic field formed by the other fixed magnetic layer and the other antiferromagnetic layer adjacent thereto; and a magnetization direction of a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer, and a magnetization direction of a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the other fixed magnetic layer, are antiparallel to each other.
According to the thin-film magnetic device described above, the fixed magnetic layer is composed of 2L ferromagnetic layers, i.e., an even number of ferromagnetic layers, and the other fixed magnetic layer is composed of a single ferromagnetic layer or 2N+1 ferromagnetic layers, i.e., an odd number of ferromagnetic layers, in which, when the magnetization directions of these fixed magnetic layers are antiparallel to each other, magnetization directions of ferromagnetic layers, which are closest to the free magnetic layers among ferromagnetic layers forming individual fixed magnetic layers, are simultaneously antiparallel to each other. Consequently, the magnetization direction of the free magnetic layer can be aligned in the direction perpendicular to the magnetization directions of these fixed magnetic layers.
The magnetization direction of the free magnetic layer can generally be aligned in one direction by the bias layers. However, the magnetization direction of the free magnetic layer provided between the fixed magnetic layers may be inclined depending on the magnetizations thereof, and as a result, the asymmetry may not be reduced in some cases.
However, according to the spin valve thin-film magnetic device described above, the magnetization direction of the free magnetic layer is unlikely to be influenced by the magnetizations of the fixed magnetic layers, and hence, the asymmetry can be reduced.
In the spin valve thin-film magnetic device of the present invention described above, the direction of a magnetic field moment Hb1 of a ferromagnetic exchange coupling magnetic field formed by ferromagnetic interlayer coupling of the free magnetic layer and a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer, and the direction of a magnetic field moment Hb2 of a ferromagnetic exchange coupling magnetic field formed by ferromagnetic interlayer coupling of the free magnetic layer and a ferromagnetic layer, which is closest to the free magnetic layer among the ferromagnetic layers forming the other fixed magnetic layer, are antiparallel to each other in the free magnetic layer.
According to the spin valve thin-film magnetic device described above, since the directions of the magnetic moments Hb1 and Hb2 of the ferromagnetic interlayer coupling magnetic fields formed by the free magnetic layer and the individual ferromagnetic layers, which are closest to the free magnetic layer among the ferromagnetic layers forming the fixed magnetic layer and the other fixed magnetic layer, are antiparallel to each other in the free magnetic layer, the ferromagnetic interlayer coupling magnetic fields counteract each other, and hence, the magnetization direction of the free magnetic layer is not inclined by the ferromagnetic interlayer coupling magnetic fields. As a result, the magnetization direction of the free magnetic layer can be aligned in the direction perpendicular to those of the fixed magnetic layers, and hence, the asymmetry of the spin valve thin-film magnetic device can be reduced.
According to the spin valve thin-film magnetic device of the present invention described above, the direction of a magnetic moment Hd1 of a dipole magnetic field of the fixed magnetic layer and the direction of a magnetic moment Hd2 of a dipole magnetic field of the other fixed magnetic layer is antiparallel to each other in the free magnetic layer.
In the spin valve thin-film magnetic device described above, since the directions of the magnetic moments Hd1 and Hd2 of the dipole magnetic fields of the fixed magnetic layer and the other fixed magnetic layer are antiparallel to each other in the free magnetic layer, the dipole moments of the fixed magnetic layers counteract each other, and the magnetization direction of the free magnetic layer is not inclined by these dipole magnetic fields, whereby the magnetization direction of the free magnetic layer can be aligned in the direction perpendicular to the magnetization directions of the fixed magnetic layers, and hence, the asymmetry of the spin valve thin-film magnetic device can be reduced.
In addition, according to the spin valve thin-film magnetic device of the present invention, when the sensing current flows in the pair of nonmagnetic conductive layers, a magnetic moment Hs of a sensing current magnetic field applied to the free magnetic layer is represented by the formula described below.
Hb1+Hb2+Hd1+Hd2+Hs≅0
According to the spin valve thin-film magnetic device described above, since the sum of the magnetic moments Hb1 and Hb2 of the ferromagnetic interlayer coupling magnetic fields applied to the free magnetic layer, the magnetic moments Hd1 and Hd2 of the dipole magnetic fields, and the magnetic moment Hs of the sensing current magnetic field is zero, the magnetization direction of the free magnetic layer is not inclined by these magnetic moments, and the asymmetry of the spin valve thin-film magnetic device can be zero.
In the spin valve thin-film magnetic device according to the present invention, it is preferable that the L be 1, the M be 1, and the other fixed magnetic layer be a single ferromagnetic layer.
In addition, in the spin valve thin-film magnetic device according to the present invention, the L may be 1, the M may be 1, and the N may be 1.
When the spin valve thin-film magnetic device is formed as described above, the thicknesses of the free magnetic layer and the fixed magnetic layers are decreased, and shunting of the sensing current can be prevented, whereby the rate of change in magnetoresistance can be increased.
In the spin valve thin-film magnetic device according to the present invention, when sensing current flows, the direction of the sensing current magnetic field applied to the fixed magnetic layer and the magnetization direction of the entire fixed magnetic layer are in the same direction, and the direction of the sensing current magnetic field applied to the other fixed magnetic layer and the magnetization direction of the entire other fixed magnetic layer are in the same direction.
According to the spin valve thin-film magnetic device described above, since the directions of the sensing current magnetic fields, which are generated when the sensing current flows in each nonmagnetic conductive layer, are in the same directions as the magnetization directions of the corresponding fixed magnetic layers, the magnetizations of the fixed magnetic layers are not counteracted by the sensing current magnetic fields, and the magnetizations of the fixed magnetic layers can be reliably fixed, whereby the asymmetry of the spin valve thin-film magnetic device can be reduced.
The thin-film magnetic head of the present invention is capable of reading magnetically written information, which comprises one of the spin valve thin-film magnetic devices described above.
In addition, the floating type magnetic head of the present invention comprises a slider and the thin-film magnetic head described above provided in the slider.
Since the thin-film magnetic head and the floating type magnetic head comprise the spin valve thin-film magnetic devices described above in which the asymmetry thereof is reduced, the symmetry of wave shapes for reading is superior, and the rate of occurrence of errors in reading can be reduced.
A method for manufacturing a spin valve thin-film magnetic device according to the present invention, comprises the steps of forming an antiferromagnetic layer, a fixed magnetic layer composed of at least 2M ferromagnetic layers with a nonmagnetic layer provided therebetween, in which the M is an integer of 1 or more, a nonmagnetic conductive layer, a free magnetic layer composed of at least 2L ferromagnetic layers with a nonmagnetic interlayer provided therebetween, in which the L is an integer of 1 or more, the other nonmagnetic conductive layer, the other fixed magnetic layer composed of one of a single ferromagnetic layer and at least 2N+1 ferromagnetic layers with a nonmagnetic layer provided therebetween, in which the N is an integer of 1 or more, and the other antiferromagnetic layer so as to form a laminate; and performing a heat treatment for the laminate, while an external magnetic field is applied to the laminate so as to align magnetization directions of all ferromagnetic layers forming the fixed magnetic layer and the other fixed magnetic layer in the same direction, whereby exchange coupling magnetic fields appear between the antiferromagnetic layer and the fixed magnetic layer and between the other antiferromagnetic layer and the other fixed magnetic layer.
In addition, the external magnetic field is preferably 4.0xc3x97105 A/m or more.
According to the method for manufacturing a spin valve thin-film magnetic device, by the step of forming the laminate composed of the free magnetic layer, the fixed magnetic layers, the nonmagnetic conductive layers, and the antiferromagnetic layers, as described above, followed by the step of performing the heat treatment while the external magnetic field is applied which is sufficient so as to align the magnetization directions of all ferromagnetic layers forming the fixed magnetic layers in the same direction, a spin valve thin-film magnetic device as described above can be easily manufactured. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a heat transfer sheet, more particularly to a heat transfer sheet which is useful for a heat transfer system by use of a sublimable dye (heat migratable dye), excellent in dye migratability during heat transfer, and also can give excellent image density.
As the method for giving excellent monocolor or fullcolor image simply and at high speed in place of the impact printing or general printing method, non-impact printing such as an ink jet system or heat transfer system has been developed. Among these, the so called sublimation heat transfer system by use of a sublimable dye is the most excellent as one having excellent continuous gradation and giving fullcolor image comparable with color photography.
The heat transfer sheet to be used in the sublimation type heat transfer system as mentioned above may be generally one having a dye layer comprising a sublimable dye and a binder formed on one surface of a substrate film such as polyester film, and a heat-resistant layer provided on the other surface of the substrate film for prevention of sticking of a thermal head.
By superposing the dye layer surface of such a heat transfer sheet on an image receiving material having an image receiving layer comprising a polyester resin and the like, and heating imagewise from the back of the heat transfer sheet by a thermal head, the dye in the dye layer is transferred to the image receiving material to form a desired image.
In the heat transfer system as described above, only the dye is migrated from the dye layer to the image receiving material, and the binder remains on the substrate film side. In this case, sharper and higher density images can be formed, as the migratability of the dye is better.
As the method for improving migratability of the dye, it is the simplest to increase printing energy, but higher printing energy undesirably results in increased printing cost. Further, when a plastic film is used as the substrate film, the thermal energy which can be applied is of itself limited.
As another method, it has been well known in the art to use a dye of low molecular weight, but when the molecular weight of the dye is low, there ensues the problem that fastness cf the image formed, such as bleed resistance and heat resistance is inferior.
As the method for circumventing such problems, the method of using a dye with a high molecular weight has been known. However, use of these dyes with high molecular weights involves the problem that migratability of the dye becomes inferior, thus preventing the formation of a sharp and high density image.
Accordingly, a first object of the present invention is to provide a heat transfer sheet which can form an image of satisfactory density with lower printing energy as compared with the prior art, or can form an image of higher density with the same printing energy as in the prior art.
Meanwhile, another known method for improving migratability of the dye is to add a compound having a low melting point such as wax, etc. as the sensitizer into the dye layer. However, addition of these low melting compounds gives rise to problems such as blocking of the heat transfer sheet wound up in a roll, bleeding of the dye to be transferred to the back, etc. Further, during heat transfer, there ensues the problem that the dye layer tends to be fused onto the surface of an image receiving material to be peeled off with difficulty. When it is peeled off, the dye layer tends to be migrated to the image receiving material.
An addition of fine particles such as silica as the release agent into the dye layer may be conceivable for solving these problems. However, in this case, the transferred image becomes coarse, thereby causing the problem that color reproducibility and resolution become low. Also, there is the method of adding a silicone oil as the release agent, but such silicone oil has no compatibility with the dye layer, whereby problems such as generation of surface stickness, occurrence of discoloration of the transferred image, reduced storability, and the like, result.
Therefore, a second object of the present invention is to provide a heat transfer sheet which can form an image of satisfactory density with lower printing energy as compared with the prior art, or can form an image of higher density with the same printing energy as in the prior art without causing problems of storability and fusion to occur. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional MEMs mirrors for use in optical switches, such as the one disclosed in U.S. Pat. No. 6,535,319 issued Mar. 18, 2003 to Buzzetta et al, to redirect beams of light to one of a plurality of output ports include an electro-statically controlled mirror pivotable about a single axis. Tilting MEMs mirrors, such as the ones disclosed in U.S. Pat. No. 6,491,404 issued Dec. 10, 2002 in the name of Edward Hill, and U.S. Pat. Publication No. 2003/0052569, published Mar. 20, 2003 in the name of Dhuler et al, which are incorporated herein by reference, comprise a mirror pivotable about a central longitudinal axis, and a pair of electrodes, one on each side of the central longitudinal axis for actuating the mirror. The Dhuler et al reference discloses the positioning of electrodes at an angle to the mirrored platform to improve the relationship between the force applied to the mirror and the gap between the mirror and the electrodes. The MEMs mirror device, disclosed in the aforementioned Hill patent, is illustrated in FIG. 1, and includes a rectangular planar surface 2 pivotally mounted by torsional hinges 4 and 5 to anchor posts 7 and 8, respectively, above a substrate 9. The torsional hinges may take the form of serpentine hinges, which are disclosed in U.S. Pat. No 6,327,855 issued Dec. 11, 2001 in the name of Hill et al, and in U.S. Pat. Publication No. 2002/0126455 published Sep. 12, 2002 in the name of Robert Wood, which are incorporated herein by reference. In order to position conventional MEMs mirror devices in close proximity, i.e. with a high fill factor, fill factor=width/pitch, they must be positioned with their axes of rotation parallel to each other. Unfortunately, this mirror construction restraint greatly restricts other design choices that have to be made in building the overall switch.
When using a conventional MEMs arrangement, the mirror 1 positioned on the planar surface 2 can be rotated through positive and negative angles, e.g. ±2°, by attracting one side 10a or the other side 10b of the planar surface 2 to the substrate 6. Unfortunately, when the device is switched between ports at the extremes of the devices rotational path, the intermediate ports receive light for fractions of a millisecond as the mirror 1 sweeps the optical beam past these ports, thereby causing undesirable optical transient or dynamic cross-talk.
One solution to the problem of dynamic cross-talk is to initially or simultaneously rotate the mirror about a second axis, thereby avoiding the intermediate ports. An example of a MEMs mirror device pivotable about two axes is illustrated in FIG. 2, and includes a mirror platform 11 pivotally mounted by a first pair of torsion springs 12 and 13 to an external gimbal ring 14, which is in turn pivotally mounted to a substrate 16 by a second pair of torsion springs 17 and 18. Examples of external gimbal devices are disclosed in U.S. Pat. No. 6,529,652 issued Mar. 4, 2003 to Brenner, and U.S. Pat. No. 6,454,421 issued Sep. 24, 2002 to Yu et al. Unfortunately, an external gimbal ring greatly limits the number of mirrors that can be arranged in a given area and the relative proximity thereof, i.e. the fill factor. Moreover, the external gimbal ring may cause unwanted reflections from light reflecting off the support frame. These references also require at least four electrodes to actuate each mirror.
Another proposed solution to the problem uses high fill factor mirrors, such as the ones disclosed in U.S. Pat. No. 6,533,947 issued Mar. 18, 2003 to Nasiri et al, which include hinges hidden beneath the mirror platform. Unfortunately, these types of mirror devices require costly multi-step fabrication processes, which increase costs and result in low yields, and rely on four different pairs of electrodes for actuation.
An object of the present invention is to overcome the shortcomings of the prior art by providing a MEMs mirror device that can pivot about perpendicular axes using a limited number of electrodes. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims priority of German Application No. 201 01 486.6 filed Jan. 29, 2001.
The invention relates to a linear connector of plastic material for joining hollow spacing profiles and hollow bar profiles of multiple insulating glasses. Linear connectors of such a kind are known from EP 0 681 083 having a cross section configuration dimensioned to be received into the cross-section of the hollow spacing profiles which are to be connected to one another. These types of linear connectors are generally configured such that the hollow profiles are held together within the abutment area of the linear connector after mounting. There are certain cases, however, in which the demands upon the connection of the hollow profiles are not sufficiently fulfilled because the connection force provided by these types of connectors is only based on frictional forces between the surfaces of the linear connector and the surfaces of the inner walls of the spacing profiles.
It is therefore an object of the invention to develop a linear connector comprising a flat, longitudinal body of which its one end is insertable into one spacing profile and its other end is insertable into a second spacing profile which are to be connected to one another. A surface of the body of the connector is provided with at least one abutment element in the center of the linear connector which upon insertion of the linear connector into the spacing profiles to be connected to one another is operative to abut the profile front faces respectively. The longitudinal body is provided with a double-T-cross-section with distantly parallel and horizontal cross-bars which are joined by at least one vertical center bar and at least partly touch in the mounted condition of the linear connector to the opposing surfaces of the inner wall of the profiles. The inventive linear connector is provided to improve the sealing effect between the body of the linear connector at the joining gap and the bodies of the spacing profiles which are to be joined.
It is a further object of the invention to improve the joining forces of the hollow bar profiles of the mounting and the linear connector.
A still further object of the invention is to further improve the durability of the joint of linear connectors and spacing profiles and bar profiles as part of multiple insulating glass units.
If the spacing profiles are of metal, it has been proposed to join the hollow spacing profiles at their abutting faces by welding. In such cases, however, the linear connector of plastic material should not be destroyed by the influence of the heat during the welding process.
Thus, it is a still further object of the invention to configure the linear connector such that damage to the linear connector is avoided without obstructing, however, the welding process and the formation of the requested welding seam.
These and other objects of the invention are solved by a construction characterized in that at least one of the two cross-bars is provided in the center of its length with a recess. The recess makes visible the surface of the joined spacing profiles within the area of their ends having the front faces of the spacing profiles connected to one another, and wherein the recess enables welding of these ends under heat without melting the plastic material of the linear connector.
It is especially important to configure the recess such that the strength of the linear connector, which is directly dependent on the cross-section of the connector, will not be affected negatively such that the connector cannot fulfill its function. Therefore, preferably one cross-bar is recessed in the joining area so that the metallic surfaces of the spacing profiles, which in general consist of aluminum, become visible so that a welding seam or welding point may be established closing also the gap between the front faces of the spacing profile bodies to be joined. This provides that the drying substance within the hollow space of the spacing profiles be contained within the joining area of the spacing profiles. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a device for feeding tablets, or the like, to blisters made in a travelling sheet of synthetic material, and for example the blisters of cards thermoformed in a web of synthetic material subsequently receiving a closure film.
Such devices are disposed above the trajectory of travel of a blister sheet, moved for example by a belt conveyor.
2. Discussion of Related Art
The current devices use vibratory feeders which select, orient, and dispatch the tablets to a means for filling the blisters, comprising dispensing means and distributing means, such as brushes, rectilinear or rotary, guaranteeing the entry of each tablet into a blister.
By reason of the diversity of shapes and dimensions of the tablets and of the orientation of the blisters, namely, parallel, transverse, or inclined with respect to the direction of movement of the sheet, each dispenser can dispense only one or perhaps two types of tablets. Moreover, it is in general specific to a packaging installation and can no longer be transferred over to another installation. A consequence of this is to limit an installation to the dispensing of certain tablets and to not be able to adapt it rapidly for the dispensing of other tablets, when demand for these latter becomes greater.
To this drawback, which involves increasing the number of specialized installations so as to cope with diversified demand, are added those resulting from the dispensing conditions. Specifically, in current devices the stream of tablets is poorly controlled, so that chips and dust may form in the dispensing circuit, through joggling or jamming which engender damage to the tablets. This causes the provision of incomplete packaging or of packaging containing defective tablets and/or dust affecting not only the aesthetic appearance, but also the hygiene of the packaging.
Such is the case in the document DE-A-9 842 273 in which the hopper of a storage reservoir dispenses a batch of tablets under gravity into a temporary reservoir formed in the distributing device, upstream of rectilinear distributing brushes, and in which the surplus product is sucked up and recycled.
The object of the present invention is to remedy these drawbacks by providing a device affording complete and regular filling, without damaging the dispensed tablets, and which can very rapidly be transferred from one installation to another, while being able to receive tablets of different shapes and dimensions, thereby improving the loading schedule of each packaging installation, and that of a plant.
To this end, the device according to the invention consists of a single enclosure containing and carrying the storage reservoir, the dispensing means, and the distributing means consisting of cylindrical and rotary brushes. The dispensing means consists of two parallel flaps which, forming the bottom of the reservoir and delimiting a buffer bay, are inclined with respect to the horizontal, downward in the upstream sense, come into closure contact against the upstream transverse wall of the enclosure, near to the blister sheet, are translationally mobile and are linked, by their posterior ends, to independent means able to move them in one direction or the reverse, the control of the means of opening and closing each flap reacting, in respect of the upper flap, to a volumetric sensor detecting the quantity of tablets accumulated in the buffer bay and, in respect of the lower flap, to the sensor disposed above the travelling sheet, upstream of the first brush, and detecting the quantity of tablets accumulating against the first brush.
With this device, when the quantity of tablets accumulated against the first brush reaches a specified minimum volume, the corresponding sensor triggers the sliding of the lower flap and thus causes all or some of the content of the buffer bay to be emptied in small waves as close as possible to the filling zone.
Likewise, when the content of this bay reaches a minimum volume, the sensor associated therewith opens the upper flap, so that the latter allows some of the tablets contained in the reservoir to enter the bay. As soon as the maximum volume which can be accommodated in the bay is reached, the same sensor closes the flap.
It follows from this that the tablets stored in the reservoir are subjected to no vibration or movement which might damage them, through volume and weight of the tablets.
Advantageously, the lower end of the lower flap is, in the closure position, substantially in the horizontal diametral plane of the first brush.
Thus, transfers, respectively from the reservoir to the bay and from the bay to the distributing station, take place solely under gravity over small distances, and in small quantities, so that the kinetic energy imparted to the tablets is insufficient to damage them and form fragments and dust.
In one embodiment, the enclosure is fixed by dismantlable means on the vertical platen of a box which can be moved vertically on the runners of a chassis, disposed laterally to the conveyor moving the blister sheet, said box containing, for each of the brushes of the enclosure, an electric drive motor whose output shaft is equipped with means for rotational and translational linkage and with positioning means, all able to cooperate with complementary means made at the posterior end of the drive shaft for each brush.
This enclosure which will be fitted onto the power take-offs of the motorization disposed in the outer box, is interchangeable and may be specific to a product, thereby eliminating any risk of cross-contamination. This removability facilitates cleaning thereof and the cleaning of the station which can very rapidly be freed, all the more easily since all the elements in contact with the tablets are dismantlable.
Other characteristics and advantages will emerge from the description which follows with reference to the appended schematic drawing. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are many types of facilities which are adapted to accommodate large numbers of people. As examples, many facilities are used as places of employment, schools and gathering halls (among other functions).
During an emergency the operators of such facilities typically need to either get people out of the facility, or into an appropriate location within the facility. Getting people out of a facility, or to an appropriate location within the facility, can be quite difficult, especially when there is no way of determining the location of each individual that is within the facility.
Many of these types of buildings, factories, schools and institutions are required by local ordinances to have some sort of emergency warning system that alerts people to an emergency situation (e.g., a fire, chemical spill, terrorist attack, tornado or hurricane). The appropriate response to an emergency by the individuals that are within the facility will depend in part on the type of emergency. As examples, people should leave the structure during a fire and move to a basement or interior protective area within the facility during a tornado.
Some facilities have different signals to alert people as to the type of emergency. As examples, a continuous siren may indicate a fire while an intermittent siren may indicate a tornado.
There are facilities that include systems for providing response instructions to individuals in the case of an emergency. These systems typically include written messages and/or videos that the individuals read upon entering the structure. Other systems rely on the performance of “drills” to simulate an appropriate response in an emergency.
One unacceptable situation is where an individual is not provided with any type of emergency response instructions. The individual must either find a way to manage alone, or hopefully find another person who knows an appropriate route to take during a particular type of emergency.
There is a need for a system and method that quickly provide individuals within a facility with appropriate response instructions during an emergency. The system and method should be able to account for the locations of individuals within the facility and the type of emergency. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a stabilizer for power system which is applied to an exciter of a synchronous generator.
2. Description of the Prior Art
FIG. 1 is a system configuration diagram showing the construction of a typical stabilizer for power system. Referring to the same Figure, reference numeral 1 designates a synchronous generator (hereinafter referred to as generator), numeral 2 designates a circuit breaker for tripping the generator 1 from an external power system 4, numeral 3 designates a main transformer disposed between the circuit breaker 2 and the external power system 4, numeral 5 designates a turbine shaft connected to the rotor of the generator 1, numeral 6 designates a transformer for detecting current from the generator 1, numeral 7 designates a transformer for detecting the terminal voltage of the generator 1, numeral 13 designates a converter for calculating output from the generator according to voltage and current detected by means of the transformers 6, 7, numeral 51 designates a power system stabilizer for generating auxiliary signals for automatic voltage regulator (AVR) by inputting the rotation speed of the rotor and the power generated in the generator 1, numeral 10 designates automatic voltage regulator (AVR) for stabilizing the terminal voltage in the generator 1, numeral 8 designates a transformer for supplying part of electric power generated in the generator 1 to a thyrister exciter 9a which excites the field winding of the generator 1.
When the terminal voltage of the generator 1 detected by the transformer 7 deviates from the reference value, the AVR 10 controls the thyrister exciter 9a so as to make the deviation from the reference value zero. The power system stabilizer 51 receives the output of the generator through the converter 13 and the rotation speed of the rotor. To improve the stability of the power system, the power system stabilizer 51 produces auxiliary signals from the output of the generator and the rotation speed of the rotor and supplies auxiliary signals to the AVR. The AVR 10 controls the thyrister exciter 9a according to the voltage deviation reflected by the auxiliary signals Generally, the power system stabilizer 51 uses one of the deviation of the generator output, the deviation of the rotation speed of the generator and the deviation of system frequency. The deviation mentioned here refers to difference to each reference value.
FIG. 2 is a block diagram showing a section containing the power system stabilizer and the excitation system (including the AVR and the exciter) in the conventional stabilizer for power system disclosed in, for example, Japanese Patent Publication No. 4-35975. The components shown in FIG. 2 constitute a two-parallel-type power system stabilizer (two-parallel-type PSS). Referring to the same Figure, numeral 31 designates a low-pass filter which receives the deviation signal of the rotation speed of the rotor of the generator 1 from an input terminal 23 and passes through only components below a predetermined frequency of the input signal. Numeral 22 designates a first power system stabilizer for producing an auxiliary signal relating to the deviation of the rotation speed according to the output of the low-pass filter 31. In the first power system stabilizer 22, numeral 22a designates a filter circuit for determining the reacting range of the input signal and usually has the transfer characteristic in the form of [Tr1.S/(1+Tr1.S)].[1/(1+Th1.S)]. Numeral 22b designates an amplifying/phase correcting circuit for compensating time lag of a regulator 26, an exciter 9, the generator 1 and the like, and usually has the transfer characteristic in the form of Kp.(1+TP2.S)/(1+TP1.S). Numeral 22c designates a limiter circuit for limiting the output of the first power system stabilizer 22 so that it is on appropriate signal level from the viewpoint of the overall excitation system.
Reference numeral 32 designates a high-pass filter receiving the output deviation signal from the input terminal 29 and passing through only components above a predetermined frequency of the input signal. Numeral 28 designates a second power system stabilizer for producing an auxiliary signal relating to the output deviation according to the output of the high-pass filter 32. In the second power system stabilizer 28, numeral 28a designates a filter circuit for determining the reacting range of the input signal and has the transfer characteristic in the form of [Tr2.S/(1+Tr2.S)].[1/(1+Th2.S)]. Numeral 28b designates an amplifying/phase correcting circuit and has the transfer characteristic in the form of Kw.(1+Tw2S)/(1+Tw1S). Numeral 28c designates a limiter circuit for limiting the output of the second power system stabilizer 28 so that it is on appropriate signal level from the viewpoint of the overall excitation system. Numeral 30 designates a subtractor circuit for subtracting the output of the second power system stabilizer 28 from the output of the first power system stabilizer 22.
Reference numeral 21 designates an input terminal to which a deviation from the reference value of the terminal voltage of the generator 1 is input. Numeral 25 designates an operation circuit for adding the voltage deviation from the input terminal 1 to the output of the subtractor circuit 30 and simultaneously subtracts the output of the dumping circuit 24 from the sum. Numeral 26 designates a regulator for controlling the exciter 9 according to the output of the operation circuit 25. Numeral 9 designates an exciter for exciting the field winding of the generator 1. Numeral 24 designates a dumping circuit for achieving feed-back of the output of the exciter 9 toward the input side of the regulator 26 in order to stabilize voltage control.
The filters 31, 32, the first power system stabilizer 22, the second power system stabilizer 28 and the subtractor circuit 30 correspond to the power system stabilizer 51. The operation circuit 25, the regulator 26 and the dumping circuit 24 correspond to the AVR. The exciter 9 corresponds to the thyrister exciter 9a.
Next, the operation of the stabilizer for power system will be described below. The power system stabilizer 51 generally uses one of the deviation of the generator output, the deviation of the rotation speed of the generator and the deviation of the system frequency. Herein the case in which the deviation of the rotation speed of the generator is input into the power system stabilizer 22 will be explained. When a rotation speed deviation signal is input to the input terminal 23, the low-pass filter 31 cuts off frequency components of over 5-10 rad/sec in order to remove influences of noise and twisting vibration from the signal. Further, the rotation speed deviation signal inputs to the amplifying/phase correcting circuit 22b after the dc component and high frequency component are eliminated by the filter circuit 22a. The amplifying/phase correcting circuit 22b amplifies the signal and corrects the phase thereof appropriately. The amplifying/phase correcting circuit 22b is set so as to perform phase lead correction. Then, the limiter circuit 22c limits the output of the amplifying/phase correcting circuit 22b so as to be below appropriate signal level from the viewpoint of the overall excitation system.
When a deviation occurs in the rotation speed of the generator, the output of the generator is also changed. Thus, an output deviation signal is input to the input terminal 29. The high-pass filter 32 eliminates frequency component of below 1-2 rad/sec in order to secure sufficient effect against frequency variation in such a range in which the first power system stabilizer 22 does not act effectively. The output deviation signal inputs to the amplifying/phase correcting circuit 28b after dc component and high frequency component are eliminated by the filter circuit 28a. The amplifying/phase correcting circuit 28b is set so as to perform phase lag correction. The limiter circuit 28c limits the output of the amplifying/phase correcting circuit 28b so as to be below appropriate signal level from the viewpoint of the overall excitation system.
The subtractor circuit 30 subtracts the output of the second power system stabilizer 28 from the output of the first power system stabilizer 22 and then outputs the result to the operation circuit 25. The operation circuit 25 adds the output of the subtractor circuit 30 to the deviation of the terminal voltage of the generator 1, the deviation being input through the input terminal 21. Then, the operation circuit 25 subtracts the output of the dumping circuit 24 and supplies the result to the regulator 26.
The aforementioned action of the two-parallel-type power system stabilizer take measures effectively to system unstableness which includes 1) vibration in low frequency system having a cycle of 3-5 sec, and 2) vibration in the generator having a cycle of about 1 sec. That is, the first power system stabilizer 22 to which a rotation speed deviation is input, having a characteristic for phase lead generates an auxiliary signal against low frequency vibration between power systems. The second power system stabilizer 28 to which a generator output deviation is input, having a characteristic for phase lag generates an auxiliary signal against output vibration between generators, having a cycle of about 1 sec. Then, these auxiliary signals are added to the excitation system so as to raise dumping performance in a plurality of electric power unstable modes.
The conventional stabilizer for power system is constructed in the aforementioned configuration. Thus, it functions effectively to a plurality of power unstable modes which can be preliminarily expected. However, if the number of the electric power unstable modes to be taken measures to is increased, it is necessary to increase the number of the power system stabilizers correspondingly.
Constants for use in the amplifying/phase correcting circuits 22b, 28b are design values corresponding to the relation between the output P of the generator 1 and the internal phase angle 6, the relation being linearized in the vicinity of a certain stable point. Thus, the power system stabilizer 51 operates effectively against little vibration in the vicinity of the design point (e.g., .delta.1 in FIG. 3). However, the conventional apparatus has such a problem that the stability of the power system cannot be secured when non-linearity becomes more intense (e.g., when the stability point is moved to .delta.2 in FIG. 3) caused by movement of the stability point is moved due to a change of the power system construction or a large scale load trip. | {
"pile_set_name": "USPTO Backgrounds"
} |
Extreme ultraviolet (EUV) light is used in applications such as extreme ultraviolet lithography (EUVL). The extreme ultraviolet (EUV) light may be generated using an EUV source in which a target material is irradiated by a laser source. The irradiation of the target material by a high power laser source leads to the generation of plasma which emits EUV light. A collector situated in a vessel focuses the photons of the plasma so that the photons are directed out of the vessel and into an EUV consuming system such as an extreme ultraviolet lithography system (EUVL).
To monitor the generation process, EUV sensors can be used to measure the energy of the EUV light. In vessels provided with multiple EUV sensors, significant EUV energy discrepancies have been observed between the multiple EUV sensors.
It is in this context that embodiments arise. | {
"pile_set_name": "USPTO Backgrounds"
} |
Heretofore, there has been a problem that, during walk of a walking robot having a plurality of movable legs, a leg link mechanism or precision apparatuses, such as sensors, included in the leg link mechanism are apt to be broken due to a touch-down impact caused when the leg link mechanism and the external environment, including the ground and a floor, collide with each other. In order to prevent this problem, some walking robots include, in the foot of the extremities of the movable legs of the robot, an impact absorbing mechanism for absorbing the touch-down impact, for example, which uses rubber bushes with low rigidity and the like.
Some of those walking robots further include a 6-axis force sensor. This sensor is used for control of walk by the walking robots having movable legs, in particular, for compliance control of the foot joints with regard to control of bipedal walking. In the foot of the extremity of each of the movable legs, the sensor is installed between a lower base plate and an upper base plate. The lower base plate has a surface to contact the ground, a floor and the like, and is an equivalent to the foot sole. The upper base plate is joined to the foot joint, and supports the upper structure of the robot including the rest part of the movable leg.
Furthermore, with regard to a compliance control of the foot joints in control of walk of a bipedal walking robot, the 6-axis force sensor measures a reaction force from the lower base plate, which is caused due to a contact of the lower base plate mainly with the ground and the like, as force components respectively in the yaw axis direction (perpendicular direction), the roll axis direction (antero-posterior direction) and the pitch axis direction (left-right direction), as well as moment components respectively about the axes. On the basis of these parameters, a CPU (central processing unit) included in the main body of the robot performs calculations. Thereby, each of the joints in its movable legs is controlled.
At this point, with regard to the foot mechanism provided with elastic members, such as the rubber bushes, constituting the impact absorbing mechanism, the force components and the moments about the axes to be measured by the 6-axis force sensor have the respective deviations due to elastic displacements of the elastic members respectively with regard to the yaw-axis, the roll-axis and the pitch-axis. When the walking of the robot is controlled, this complicates the calculation by the CPU included in the main body of the robot.
If the deviations of the force components in the respective axis directions and the deviations of the moments about the respective axes were kept constant, this can make it simple to control the walking of the robot. To this end, with regard to the elastic displacements in the elastic members which are interposed between the lower base plate and the upper base plate in each of the foot mechanisms for the purpose of impact absorption, it is preferable that the respective rotational spring constants concerning displacements relatively of the base plates be kept constant, and that displacement to maintain the relative positional relationship between the base plates be made isotropic.
More specifically, it is preferable that a walking robot be configured to restrict displacements (deviations) in the axis directions respectively of the lower base plate and the upper base plate, which are inappropriate for controlling of the walking of the robot, by the following measures. In order that elastic displacement with low rigidity due to the impact absorbing mechanism including the rubber bushes and the like may absorb a reaction force from the lower base plate and the load from the upper base plate, including the dead weight of the robot, first, elastic displacement with low rigidity concerning the perpendicular direction (yaw-axis direction) is allowed. Second, concurrently, the elastic displacement has a high rigidity concerning the axis directions orthogonal to the perpendicular direction.
With regard to the walking robot having movable legs, however, when the lower base plate of each of the legs touches down to a slope, the ground in a rough terrain condition or the like, the elastic members, such as the rubber bushes, constituting the impact absorbing mechanism cause disparate elastic displacements which respectively vary in displacement amount with regard to each of the axis directions. For this reason, rotational spring constants respectively of the elastic displacements can not be constant. Accordingly, displacements for maintaining the relative positional relationships between the base plates are hindered from being isotropic.
In addition, while the robot having movable legs is walking, in particular while a bipedal walking robot is walking, when a free leg (a leg in motion, which is not in contact with the ground) is swung forward, this causes a torque about the yaw axis (a moment of rotation) in a supporting leg (a leg being in contact with the ground, and supporting the load including the dead weight of the robot). Accordingly, a large spinning force acts about the yaw axis with the supporting leg working as a center of rotation. This causes the elastic members, such as the rubber bushes, constituting the impact absorbing mechanism to respectively make elastic displacements due to the distortion chiefly about the yaw axis. Concurrently, the elastic displacements respectively about the roll axis (the axis in the antero-posterior direction) and the pitch axis (the axis in the left-right direction), both of which are orthogonal to the yaw axis direction, become so disparate that their displacement amounts differ from each other. As a result, the displacements for maintaining the relative positional relationship between the base plates cannot be isotropic. This complicates the control of the walking of the robot.
In order to restrict such disparate elastic displacements respectively of the elastic members, whose respective displacement amounts vary from one to another, and in order to accordingly make isotropic the relative displacement between the upper base plate and the lower base plate which is an equivalent to a foot sole, it has been essential that a conventional robot be provided with a guide mechanism using rigid members such as plates, which allow the elastic members to make the respective elastic displacements in the yaw axis direction, and which have high rigidity concerning the axis directions orthogonal to the yaw axis direction. This restricts displacements (deviations) in the axis directions between the lower base plate and the upper base plate, which are inappropriate for controlling of the walking of the robot (see Japanese Patent Laid-open No. Hei. 11-033941, Paragraph [0029], and FIG. 1, for example).
However, if the guide mechanism using the rigid members in this manner were installed in the robot, this brings about the following problem. First, the installation increases the weight of the foot mechanism, accordingly increasing the inertial moment, which needs to be suppressed in each of the movable legs of the walking robot. In addition, this installation causes each of the members with high rigidity and a corresponding elastic member to contact each other, accordingly causing frictional resistance. As a result, this frictional resistance, as disturbance, acts on the control of the walking of the robot.
Furthermore, the additional installation of the guide mechanism using the rigid members brings about another problem. The additional installation complicates the foot mechanism. Depending on conditions of the walking posture of the robot, the rigid members interfere physically with the 6-axis force sensor in conjunction with displacement of the elastic members such as the rubber bushes. Accordingly, this breaks the force sensor.
Moreover, with regard to the compliance control, while the 6-axis force sensor measures a reaction force from the lower base plate to be caused due to the lower base plate's contact chiefly with the ground and the like, the impact absorbing mechanism, such as the rubber bushes, for absorbing an impact caused due to the lower base plate's contact with the ground and the like, absorbs the touch-down impact. For this reason, the impact absorbing mechanism is preferable in protecting the robot's joint structures including the sensor devices such as the 6-axis force sensors, and the leg link mechanism. However, the elastic displacements with low rigidity, which are properties of the impact absorbing mechanism, causes vibrations. Accordingly, the vibrations remain during the period of vibration damping. This inadequately vibrates the 6-axis force sensor. As a consequence, the vibration acts, as disturbance, on the control of the walking of the robot. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a traction and alignment arm particularly for motor vehicle body repair benches.
Conventional special repair benches are used to repair the body of motor vehicles damaged by accidents; the damaged body is placed on these benches and fixed thereto. The body is then repaired by applying forces, generally traction forces, to the portions damaged by impacts during the accident, so as to return the body as much as possible to its original configuration.
Traction is generally applied to the damaged body portions by means of traction arms which are in most instances constituted by a usually tree-shaped horizontal base which is associable with the repair bench by means of one of its longitudinal ends and supports, at its other longitudinal end, a post which is pivoted to the base and connected to the portions of the part to be repaired that are to be subjected to traction by means of cables, chains or the like. Traction is applied to these cables or chains by means of a fluid-actuated cylinder pivoted to the base of the arm: the end of the stem of the piston of said cylinder acts on the post so as to increase the angle formed by the post and by the base of the traction arm.
In other traction arms, the fluid-actuated cylinder, instead of being interposed between the base and the post, is mounted on the post and acts directly on the chain or cable to apply traction to it. In this last type of arm, the post is generally rigidly associated with the base of the supporting arm instead of being articulated thereto.
In order to vary the direction of the force applied to the body portion to be repaired by means of the cables or chains, the base is associated with the bench by means of two supports: a first one can be rigidly fixed to the bench, whereas the second one is articulated to the first support so as to be rotatable along an arc of preset breadth about a vertical axis and in turn supports the base of the arm so as to be rotatable about a horizontal axis. In this manner it is possible to vary the orientation of the base with respect to the front plane where the traction arm is applied to the repair bench by rotating the base and the second support about the vertical axis, and it is furthermore possible to vary the inclination of the post with respect to a horizontal plane by virtue of the fact that the base is rotatable about its axis with respect to the second support.
Also known from FR-A-2102094 is a traction arm as defined in the preamble of claim 1.
Currently commercially available traction arms can furthermore be rigidly coupled to the bench both along the lateral sides and along the front sides, and the point where the chains or cables are applied to the post can be shifted along the extension of said post so as to allow further variations in the direction of the traction forces applied to the damaged body.
Nevertheless, currently commercially available traction arms are very often unusable, or usable with only partially satisfactory results, in certain repair situations, mainly due to the limitations that in any case occur in the possibility of orientating said arm and therefore the traction forces applied to the damaged regions of the body.
In particular, with currently commercially available traction arms it is extremely difficult to reach the upper and lower regions of the body and apply traction thereto with a correctly orientated force. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some consumer electronics equipment has already been designed with power saving features. A “standby” mode is a power saving mode that reduces electrical power consumption when the electronic device is idle. Standby mode places the electronic device into a state of “waiting for a power-up command”. However, power consumption can still be considerable in such a “standby” mode, even though the equipment is not in active use.
Canal+ introduced a digital set-to-box (STB) having a true power cutoff mode built into it meaning that the STB could be completely powered down, thus consuming no power.
However, the majority of consumer electronics equipment currently marketed are not designed with such a power cutoff feature and therefore various after-market devices are available that provide some degree of power control. Such devices include the Standby Saver (www.standby-saver.co.uk/standby-_saver_home.htm) and The Savasocket (www.thesavasocket.co.uk/savasocket.html). These are timer-based, mains-power control devices that the consumer equipment is plugged into. The device turns the power on or off according to a preset timer that forms part of the device.
International patent application published as WO 2004/057862 describes an appliance, such as a set top box, that has an ON power mode and a STAND BY power mode and that is in communication with a television set. A parameter of an operating signal associated with the television set is monitored and the value of the parameter is compared with predetermined values at which the set top box is desired to be either operative (ON power mode) or inoperative (STAND BY power mode). When a predetermined value of the parameter is detected, the current power mode of the set top box is evaluated and, if necessary, changed. Power supply to the TV set, operating frequency of a local oscillator/mixer in the TV set or the presence of a line scan signal from the TV set rate can be monitored to determine whether the appliance should be turned on or off.
U.S. Pat. No. 6,292,233 describes a device controller that controls access to a device, such as a television, and that has a power input for receiving power and a data input for receiving control data. When in standby mode, the device controller disconnects the device from a power source, such as the AC mains of the building in which the device is situated. As a result, in standby mode only the device controller is powered, which uses much less power than prior art devices in standby mode. The device controller includes an input device structured to provide control data based on control instructions received from a user, a power switch coupled between a power source and the device power input, and a data coupler coupled to the device data input and structured to convert electrical data into non-electrical data and back to the electrical data for delivery to the device data input. The device controller also includes a controller structured to cause the data coupler to provide the control data to the device data input, decode the control data, and if the control data indicates that the user desires to turn on the device when in standby mode, then causes the power switch to deliver power from the power source to the device power input.
European patent application EP0975109 describes a digital broadcasting method for transmitting required information to minimize the stand-by power in an apparatus for receiving a digital broadcast, and the receiving apparatus. Before transmitting utilization data for an apparatus at the receiving end from a transmitting end, transmission schedule information including the kind of the utilization data, a receiver identifier indicating a target to which the utilization data is to be transmitted, and the transmission time at which the utilization data is to be transmitted, is multiplexed in a transport stream of a service (program) to be transmitted. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to a method and composition for providing in various health benefits by administering various bioactive compounds derived from the plant Morinda cirtrifolia to individuals. More particularly this invention relates to administering one or more of the following: Pyro-phorbide a, Pheophorbide a, Purpin 7, and/or Pheophorbide Phypolesper all which may be derived from Noni leaf extract, Noni leaf juice, and/or Roast leaf. Moreover, the foregoing formulations result in alleviating pain and inflammation.
2. Background
People are becoming increasingly more conscientious of their health. With a variety of deadly diseases and ailments threatening the public health each year, efforts to find treatments and medications that treat and prevent disease are ongoing. Moreover, studies show that comprehensive, novel early prevention and detection strategies increase healthy life potential. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention pertains generally to electrical equipment for measuring and testing, and more specifically to the design of piezoelectric resonators and systems to utilize the acoustoelectric effect to measure electrical properties of a medium.
2. Description of the Related Art
Piezoelectric materials are materials which generate electricity when subjected to mechanical stress and, conversely, generate mechanical stress when a voltage is applied. There are many materials which are piezoelectric. These piezoelectric materials have found application in many diverse technologies, ranging from mechanical actuators and gas igniters to very precise timekeeping.
The uses for piezoelectric devices derive from the conversion of electricity to motion or vibration and, often, the reconversion of that motion back into electricity. For example, a precision clock oscillator will utilize a quartz crystal of very precise dimension and mass. Electrodes are formed on the surface of the crystal, and an electric field is applied. This stimulates a mechanical stress in the quartz.
If the applied voltage changes at or near the resonant frequency of the crystal, a sustained vibration may be generated in the quartz. At the resonant frequency of the quartz, which may be determined by cut angle, thickness, length, width and mass, an electrically alternating current may pass through the crystal with very little loss. Outside of this frequency, larger losses will occur in the alternating current as it is passed through the crystal.
The Q of a crystal is a measure of how narrow a band of frequencies is passed by the crystal with minimum attenuation relative to the resonant frequency of the crystal. Often the Q of a piezoelectric material will determine the useful application. For example, very low Q materials are capable of converting wide frequency bands to and from mechanical energy. These materials are often used as sonic transducers in applications such as in microphones or speakers. The low Q allows for many tones to be produced.
Other applications demand a great deal of precision, such as timekeeping. For these applications, a material with a very high Q is preferred, since only a very narrow band of frequencies may then be passed through the piezoelectric material. In these precision applications, the piezoelectric material is usually associated with an electronic oscillator circuit, where the oscillator circuit will be caused to oscillate at the resonant frequency of the piezoelectric material.
With modern manufacturing methods, precision crystals of quartz or similar very high Q material may be made to oscillate at a frequency which is accurate to within a few parts per million. As noted above, this frequency is dependent upon the type of material, mass and dimensions of the crystal resonator. During the production of the quartz resonators, layers of conductive electrode material are typically deposited to a precision of only a few atomic layers, since the resonators will be sensitive to changes in mass as small as this.
The characteristic sensitivity of high Q piezoelectric materials to changes in mass has led industry to a number of diverse applications. For example, a quartz resonator may be coated with an absorbent which is selective to a particular compound. The amount or concentration of that compound may be determined just by monitoring the change in resonant frequency of the quartz as the compound is absorbed. As more of the compound is absorbed, the mass of the vibrating structure is increased.
Similarly, amounts of material deposited in a vacuum deposition chamber may be very accurately monitored by including a quartz resonator in the deposition area. As more material is deposited upon a surface of the quartz resonator, the frequency of the quartz will also change, thereby indicating with great precision the thickness of the deposited layer.
Many other similar applications for precision resonators have been devised. For the purposes of this disclosure, these applications will be referred to herein as crystal microbalances. That is, the addition or subtraction of mass in the region of vibration of the piezoelectric material results in a change in the resonant frequency of vibration. Common applications for crystal microbalances include gas sensing, mass detection for very small masses, film thickness monitoring, microbe and similar biological sensing, and frequency control. Other more recent applications include viscosity and density detectors.
The use of mass or viscosity sensing limits the applicability of the very sensitive quartz resonator to those situations where a change of mass, density or viscosity may be expected or generated. The present inventors have sought to overcome the limitations of the prior art through the use of a new type of sensor which utilizes the acoustoelectric effect that is characteristic of piezoelectric materials. For the purposes of this disclosure, the acoustoelectric effect will be defined as an electrical interaction between a medium and a vibrating piezoelectric material, wherein the medium acts to electrically load the piezoelectric material proportionate to one or more electrical characteristics of the medium.
The acoustoelectric effect as defined herein was introduced by the present inventors and others in a paper entitled "Theory and Applications of Quartz Resonators as Sensors for Viscous Conductive Liquids," incorporated herein by reference. The sensor which formed the topic of that paper was neither reproducible nor sufficiently sensitive to form the resonator structure for a commercial sensor. Furthermore, the theory in that paper ignored the existence of the metal electrode in deriving the acoustoelectric effect.
Additional structures were attempted which addressed the issues of sensitivity and reproducibility. These sensors utilized a lithium niobate piezoelectric material of high piezoelectric coupling in an acoustic plate mode arrangement. The acoustic plate mode device propagates the wave from a first electrode, commonly referred to as an interdigital transducer or IDT, to a second IDT. The amount of acoustoelectric interaction present at the surface of the acoustic plate mode device affects the propagating properties of the wave through the device. By monitoring the time delay or phase change and attenuation, it is possible to determine through the acoustoelectric effect various electrical properties of the medium. For example, liquid properties such as conductivity, ion concentration and dielectric constant can be monitored with high sensitivity.
However, lithium niobate is a relatively expensive material which restricts the applicability of the device to those applications which will tolerate the increased cost. Moreover, lithium niobate is extremely sensitive to changes in ambient temperature. Although the high electromechanical coupling coefficient of lithium niobate allows sufficient sensitivity, the acoustic plate mode device utilizes the surface acoustic wave device structure which requires a more elaborate oscillator circuit. Acoustic plate mode quartz devices constructed similarly were found not to have sufficient sensitivity.
The present invention seeks to overcome the limitations of the prior art both in terms of cost and reproducibility. The present invention thereby provides a sensor which may be affordably mass produced while at the same time providing great sensitivity and reproducibility. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to an apparatus and process for matching wall coverings on a cover plate, switch plate, outlet plate, panel door, medicine cabinet door or the like to a wall, ceiling or other background.
2. Description of the Prior Art
One of the more tedious and difficult tasks constantly faced by professional and do-it-yourself wall covering hangers is to match pieces to be applied to cover and switch plates, panel doors and the like with a pattern or design on the wall, ceiling or background. The oldest method of matching such wall coverings is a trial and error process of laying a piece of wallpaper (that matches the pattern surrounding the outlet) on the outlet and moving the piece so that the patterns match as closely as possible. Then, the match piece placed on the outlet is withdrawn from the wall simultaneously with effort and care exerted not to disturb the location of the wallpaper match piece on the outlet plate. This process is undesirable, because there is considerable margin for error and guesswork.
Previous efforts to solve the outlined problem include a marking template, Wortham U.S. Pat. No. 4,259,785 involving a means of marking a wall covering by use of a template having a base plate, with two tabs thereon for receiving the outlet trim plate support screws and a plurality of pins extending from the template. The plurality of pins are used to make markings for cutting the match piece. Another apparatus and process is found at Stallings U.S. Pat. No. 4,353,759 consisting of a laminate template having an upper layer which lays over a contacted adhesive layer including a lower and lighter weight release paper forming the lower layer of the sandwich. This process involves covering the cover plate with a match piece and applying the scored template adhesively to the back of the match piece, trimming the match piece and scoring the same as per the template and pressing the cover plate against the adhesive using the marked positions; then, the match piece is applied to the cover plate.
Those paper covering hangers who wish to remain competitive in the business seek the most efficient and accurate methods of completing a job, which are evidenced in the applicant's patent application. | {
"pile_set_name": "USPTO Backgrounds"
} |
Today there is an increasing global desire to reduce greenhouse gas emissions and develop clean alternative vehicle fuels. Methane (CH4), the primary component of natural gas, is of particular interest as it is abundant and has lower CO2 emission and more efficient combustion than other hydrocarbons due its high H/C ratio. In addition to industry-driven demand for stationary gaseous storage, global governmental initiatives have created incentives to develop vehicular gaseous fuel storage.
Gas storage in porous materials has experienced significant development in recent years in various industrial applications related to energy, environment, and medicine. Among porous materials, metal organic frameworks (MOFs) are a versatile and promising class of crystalline solid state materials which allow porosity and functionality to be tailored towards various applications. MOF crystal chemistry uses a molecular building block (MBB) approach that offers potential to construct MOFs where desired structural and geometrical information are incorporated into the building blocks prior to the assembly process. Choosing an ideal blueprint net and isolating the reaction conditions that permit in situ consistent formation of the corresponding inorganic MBBs are the keys for successfully implementing this approach.
The challenges of constructing MOFs having tailored properties for gas storage applications have limited the use of low cost materials such as aluminum and iron. In particular, low cost materials have not been developed which satisfy the Department of Energy (DOE) CH4 gravimetric uptake target of 700 cm3 STP/g (0.5g/g) at recommended temperatures between −40° C. and 85° C. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present disclosure describes self-supporting films for delivery of a therapeutic agent, and more particularly, self-supporting films for delivery of a therapeutic agent containing at least one hydrophobic polymer and at least one water-soluble therapeutic agent.
2. Background of Related Art
Delivery of a therapeutic agent through the use of implantable medical devices is described in a wide variety of manners. Existing methods of such delivery of a therapeutic agent predominantly focus on the use of water-soluble drugs and polymers to form thin surface coatings positioned on the surface of the medical device which provide limited therapeutic payloads.
In addition, highly water-soluble drugs may be difficult to formulate for controlled release in that highly water-soluble drugs may offer limited solubility in the organic systems particularly useful with hydrophobic or water-insoluble drug carriers, i.e., hydrophobic polymers. Limited solubility of the highly water-soluble drugs may further lead to poor encapsulation efficiencies of the drug and limited therapeutic payload on the implantable device. Such hydrophilic drugs need a sufficient water barrier to sustain release. Current systems are challenged from a drug payload and sustained release standpoint including offering therapeutic benefits.
It would be beneficial to provide self-supporting films for delivery of a therapeutic agent which does not require the support of a medical device and which displays enhanced therapeutic payload. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the medical instrument arts. It finds particular application in conjunction with an improved combination needle holder and suture cutter medical instrument for use in closing an incision or wound, and will be described with particular reference thereto.
It is known to use separate needle driver and scissors instruments during a medical procedure to close an incision or wound. In particular, the needle driver is used to pass a needle and depending suture through incised tissue. Thereafter, the scissors are used to cut the suture after a finishing knot has been tied in the suture.
It is burdensome, time consuming, and overly-complicated to repeatedly alternate between two separate medical instruments when placing individual stitches. In the case where no medical assistant is available to hand the instruments to the surgeon (or other person performing the suturing procedure), the surgeon must repeatedly pick-up and put-down the instruments thus increasing the chance of dropping or placing an instrument outside a sterile field surrounding the incision or wound. These problems compound when numerous stitches are required to close a relatively large incision or wound.
U.S. Pat. No. 2,315,326, issued to Gmeiner, discloses a combination needle holder and scissors instrument 10 that allows a surgeon to suture an incision or wound with a single instrument. As shown in FIG. 1, the Gmeiner instrument includes a pair of hingedly connected jaws 12a, 12b each having end teeth 14a, 14b for gripping a needle 16 (shown in cross-section) and a guide or stop block 18 therefore, together with a pair of longitudinally positioned shearing blades 20a, 20b between the stop block 18 and jaw pivot 22. The shearing blades 20a, 20b cooperate to shear or otherwise cut the suture in a scissors-like manner. The Gmeiner instrument also includes a pair of arms or handles 24a, 24b that have finger loops 26a, 26b and a lock mechanism 28a, 28b.
In operation, the jaws 12a, 12b of the Gmeiner instrument are clamped around a needle by bringing the loops 26a, 26b and depending handles 24a, 24b together to actuate the lock mechanism 28a, 28b in a known manner. Thereafter, the Gmeiner instrument is manipulated to pass the clamped needle and depending suture through the tissue. After a finishing knot has been placed in the suture, the jaws 12a, 12b of the Gmeiner instrument are unclamped from around the needle by deactuating the lock mechanism 28a, 28b to separate the handles 24a, 24b in a conventional manner. With the jaws (and handles) of the Gmeiner instrument open, the shearing blades 20a, 20b are positioned proximate the finishing knot and then actuated by bringing the handles 24a, 24b together to cut the suture in a scissors-like manner. It should be appreciated that the lock mechanism may be inadvertently actuated when bringing the handles together to sever the suture.
Thus, a disadvantage associated with the Gmeiner instrument is that the jaws must close in order to effectuate the scissors-like cutting of the suture. This not only involves properly positioning the shearing blades close to the finishing knot, but it also involves separately manipulating (i.e. closing the handles) the instrument to effectuate the cutting action. Two specific problems arise from this operation. First, as mentioned, the lock mechanism may be inadvertently actuated while cutting the suture. This locks the handles together, thus requiring the instrument to be unlocked before it can be used again to reclamp the same needle and remaining suture, or to clamp to a new needle and suture. The unlocking motion is an extra operation that disadvantageously increases the amount of time to complete the procedure and the amount of effort required to perform the procedure.
Second, the use of two shearing blades (or one die cut blade and a guide surface) requires relatively exact alignment of the instrument to the suture, i.e., perpendicular placement of the device relative to the finishing knot. Due to space constraints and/or the angle and area of the suture involved, this alignment may be difficult, thus hampering the cutting operation.
Accordingly, it has been considered desirable to develop a new and improved combination needle holder and suture cutter medical instrument for use in closing an incision or wound which meets the above-stated needs and overcomes the foregoing difficulties and others while providing better and more advantageous results. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits