text
stringlengths
2
806k
meta
dict
The present invention relates to cases, such as rigid cases for transporting and/or storing products. In particular, it is directed to an elongated two-section case wherein one section fits or telescopes within the other, and the sections of the cases are formed of a relatively rigid material, such as roto-molded polyethylene. Numerous forms of cases have been devised over the years, including soft sided cases and rigid wall cases. The most familiar forms of cases are suitcases, briefcases, roll-on carrying cases, golf club cases and golf club traveling cases, and the like. A need exists for a relatively strong and lightweight case for transporting elongated items, such as fishing poles, golf clubs, rifles and various and sundry other elongated devices that need protection from the elements and from damage, such as while being transported in the baggage compartment of an airplane. The present invention relates to a relatively rigid case formed in two telescoping sections wherein the end of one section fits within the end of another section to form the overall elongated case. A relatively simple latching assembly is provided, along with the manner in which the two case sections are configured, to allow an end of one section to abut against a latch plate affixed to the other section to act as a stop or stops, and to enable the two sections to be simply, efficiently and strongly latched together. In this manner, the two sections overlap thereby providing a strong central section to the assembled case. Another aspect of the present invention is that the closed end of the smaller section is configured to almost totally fit within the open end of the larger section to provide a relatively compact case assembly for shipment, storage, warehousing and the like. More specifically, according to an exemplary embodiment, each section has a closed end and an open end. In assembling the case for use, to contain or hold an article, such as a fishing rod, golf clubs or the like, the two open ends are mated in the manner noted above and latched together to provide an elongated carrying case for the article. On the other hand, in the case of just storage and/or shipment of the case itself, the closed end of one section is inserted into the open end of the other section, with the two sections telescoped together thereby resulting in a relatively compact assembly only slightly longer than one of the sections. Accordingly, it is an object of the present invention to provide an improved form of case. Another object of the present invention is to provide a relatively rigid and lightweight elongated carrying case having a simple latching mechanism for securing together sections of the case for carrying a product or products therein. A further object of the present invention is to provide a tube case having two sections, one of which can be stored in the other for relatively compact storage and shipment.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to a portable apparatus that can be selectively moved to the site of a concrete pad of the type that is commonly used to support equipment and structures--including transformers, switching equipment, pumps, generators and similar heavy equipment; more specifically, it relates to an hydraulically operated apparatus that can be utilized to raise an edge of a concrete pad without the necessity of first removing whatever heavy equipment is installed on the pad. There are many instances in which time and natural forces (including erosion) have an adverse effect on concrete pads (i.e., small slabs) of the type that are widely used to support heavy equipment. Equipment such as transformers, electrical switches, generators, air conditioning compressors, etc., are frequently placed on top of such concrete pads in order to provide stability for the equipment. However, a concrete pad that was installed or poured so as to be level will not necessarily remain level over a period of years. It is common, therefore, to visit a remote piece of equipment and find that soil erosion or repetitive freezing and thawing has caused the supporting soil to have failed in its job of maintaining the slab in a level condition. Because transformers and the like have cooling oil that is designed to maintain the transformers at a desired temperature, anything that causes a transformer to tilt more than a very modest amount can contribute to uneven cooling and perhaps inordinate temperatures that might even cause a transformer to fail. Obviously, then, it would be desirable to restore a concrete pad of the type described herein to a level condition. And if possible, the restoration should be accomplished without taking the transformer out of service or requiring that it be removed from the pad in order to lighten the load that must be lifted. It is true that lifting devices have been developed and used in other applications. For example, U.S. Pat. No. 4,591,466 to Murray and Bright entitled "Method For Positioning And Stabilizing A Concrete Slab" teaches an apparatus for elevating a portion of a concrete slab when the slab has a hole with a substantial quantity of structurally sound concrete around it. The presence of the structurally sound concrete around the hole is necessary because the Murray and Bright apparatus relies on placing a driving apparatus on top of the slab and using the slab as an anchor to obtaining resisting forces as a series of tubular shafts are driven into the ground under the slab. A similar device is shown in U.S. Pat. No. 4,800,700 to May entitled "Method and Apparatus For Lifting And Supporting Slabs." The May technique involves cutting an elongated hole into a concrete slab and using a special lift plate that is similarly elongated. However, there is no teaching in either of the patents of a technique for approaching the edge of a small slab and pushing directly against the earth instead of pushing against the slab that is to be lifted. Another device of the prior art is shown in U.S. Pat. No. 4,100,714 to Stith, Jr. entitled "Method Of Positioning And Supporting A Machine." However, the Stith technique requires the presence of an existing concrete foundation against which lifting forces may be exerted in order to lift the edge of a heavy machine by relatively small amounts. In situations where there is no concrete foundation to push against, it would be impossible to utilize a Stith device. It is also known to elevate the side or corner of a house when a concrete foundation has shifted. But anything that has the size such that it could lift the corner of a house would likely be of such bulk and shape as to require that it be mounted on the rear of a truck or special-purpose vehicle. Regrettably, there is seldom enough room around many transformers and the like to permit a truck to be backed up to a work site. Accordingly, there has remained a need for a portable device that can be handled by two or three men and that has the capacity to lift several hundreds or thousands of pounds. It is an object of this invention to provide such a portable apparatus, and to teach the method of using it to restore concrete pads easily and in a short period of time. It is a further object to provide an apparatus that can be operated to drive a shaft vertically into the ground even when the terrain around the shaft is not horizontal. Still another object is to provide an apparatus that is capable of using readily available reinforcing rod as the supporting shaft for a lifting device. These and other objects will be apparent from a close reading of the specification and claims that follow, together with reference to the several figures of the drawing that are provided herewith.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method of modulating the activity of NMDA receptors in a mammal. In particular, the invention relates to a new NMDA antagonist, and its use in the treatment of conditions associated with NMDA receptor activity. The NMDA (N-methyl-D-aspartate) receptor is a major subclass of glutamate receptor and glutamate is believed to be the most important excitatory neurotransmitter in the mammalian central nervous system. Importantly, activation of the NMDA receptor has been shown to be the central event which leads to excitotoxicity and neuronal death in many disease states, as well as a result of hypoxia and ischaemia following head trauma, stroke and following cardiac arrest. It is known in the art that the NMDA receptor plays a major role in the synaptic plasticity which underlies many higher cognitive functions, such as memory and learning, as well as in certain nociceptive pathways and in the perception of pain (Collingridge et al, The NMDA Receptor, Oxford University Press, 1994). In addition, certain properties of NMDA receptors suggest that they may be involved in the information-processing in the brain which underlies consciousness itself. NMDA receptor antagonists are therapeutically valuable for a number of reasons, such as the following three specific reasons. Firstly, NMDA receptor antagonists confer profound analgesia, a highly desirable component of general anaesthesia and sedation. Secondly, NMDA receptor antagonists are neuroprotective under many clinically relevant circumstances (including ischemia, brain trauma, neuropathic pain states, and certain types of convulsions). Thirdly, NMDA receptor antagonists confer a valuable degree of amnesia. However, it is clear from the prior art that there are a number of drawbacks associated with current NMDA receptor antagonists. These include the production of involuntary movements, stimulation of the sympathetic nervous system, induction of neurotoxicity at high doses (which is pertinent since NMDA receptor antagonists have low potencies as general anaesthetics), depression of the myocardium, and proconvulsions in some epileptogenic paradigms e.g., "kindling" (Wlaz P et al, Eur. J. Neurosci. 1994; 6:1710-1719). In particular, there have been considerable difficulties in developing new NMDA receptor antagonists that are able to cross the blood-brain barrier. This factor has also limited the therapeutic applications of many known NMDA antagonists. The present invention thus seeks to provide an improved NMDA receptor antagonist for general pharmaceutical use which can readily diffuse across the blood brain barrier.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention represents a significant innovation in the area of sports safety, as relates to so-called xe2x80x9cprotective mouth shieldsxe2x80x9d. Presently, the use of mouth guards placed in the mouth, i.e., intra-oral mouth guards to protect against concussion is quite common in athletics. These mouth guards are typically made of a plastic or rubber material and are of general xe2x80x9cUxe2x80x9d-shape cross-section to fit over the teeth of the user. While these guards certainly serve a useful function, they are not designed to shield the mount and teeth from impact, but rather are intended to prevent concussion. Within the universe of all athletes susceptible to injury to the teeth, a hazard exists, peculiar to the sub-group of athletes who wear braces. Impact injuries to the mouth of a brace wearer, which intra-oral mouth guards cannot prevent can range from internal lacerations of the cheeks, lips and gums, to painful trapping of the lips or cheek in the brace. Additionally, damage to the braces themselves, from impact with other players, balls, etc. commonly occur, necessitating costly repairs. Currently, extra-oral protection for the teeth and mouth is limited to those sports in which the players are permitted to wear helmets, such as ice hockey and football. Wire mesh xe2x80x9cface cagesxe2x80x9d in hockey and face masks in football require a helmet to which they are attached. The present invention is unique in that it provides protection form injury to brace and no-brace wearing athletes in sports in which helmets are not used, either by custom, such as basketball, or by the inherent nature of the game such as soccer. In the case of soccer, use of the head to direct the ball is an integral part of the game, and helmets cannot be worn as to do so would significantly alter the character of the sport. As such, no means of extra-oral protection from potentially catastrophic injury to the teeth with the attendant pain and treatment costs, currently exists for the millions of soccer or basketball players. The invention comprises a strap system, enabling independent wear, for supporting a grid-like plastic protector which overlies the mouth of the user and by protruding outward truly protects the teeth and mouth of the user, including those wearing braces. The invention prevents impact to the mouth. The unique character of the invention is it suitability for non-helmet sports. The strap system is designed to facilitate easy and quick positioning of the mouth protector in place and easy adjustment for comfort and stability. The invention can of course be utilized in conjunction with an intra-oral mouth guard. If used alone, however, in addition to its superior ability to prevent injury to the teeth and mouth, the invention, unlike an intra-oral guard, does not impede verbal communication by the user, a significant consideration in team sports. The efficacy of the invention is particularly acute in light of the tremendous expansion in recent years of organized sports programs, particularly soccer, among both genders. As part of that expansion, participation begins at earlier ages and children as young as four years of age, who now regularly engage in team sports. The invention is particularly attractive to the parents of such young children.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to an optical recording (writing) and reproducing (reading or playing back) apparatus for forming pits on an optical recording medium depending on given data to be recorded using a light spot projected from a recording light projection optical system. The present invention includes a semiconductor laser to record the data on the optical recording medium. The optical recording medium is illuminated using a light spot projected from a reproducing light projection optical system. The reflected light from the optical recording medium is converted into an electrical signal through a reproducing light reception optical system including a light receiving element to read data represented by the pits. More particularly the present invention involves a recording and reproducing apparatus for a WORM storage medium (write once, read many) forming new pits to record additional data in an unrecorded region subsequent to the recorded pits on the optical recording medium. 2. Description of the Prior Art The format shown in FIG. 1a represents a known format (continuous WORM type format) for recording data in pit form on a track of a card-shaped optical recording medium used in this type of optical recording and reproducing apparatus. In the continuous WORM type format shown in FIG. 1a, one track of an optical recording medium includes a plurality of sectors A, B, C and D. The sectors A to D are contiguous to each other. The sectors A to D respectively comprise data portions a.sub.1 to d.sub.1 in which data are recorded and sector information portions a.sub.2 to d.sub.2 in which information regarding the sectors are recorded. A lead portion e.sub.2 is the track information portion. In the continuous WORM type format, no space indicating the boundary between the contiguous sectors exists between the sectors. For example, as shown in FIG. 1b, the first pit P.sub.bs out of pits P.sub.b in the succeeding sector B is additionally recorded (additionally formed) subsequently to the last pit P.sub.ae out of pits P.sub.a recorded (formed) in the preceding sector A. In order to properly establish synchronization in continuously reproducing the pits in the sectors A and B, when data is additionaly recorded in the sector B subsequently to the sector A, the first pit P.sub.bs in the sector B must be recorded in a position which is synchronous with the position of the last pit P.sub.ae in the sector A. The sector information portion a.sub.2 exists in the rear end of the sector A, as described above. Pits indicating a mark or pattern representing the end of the sector (referred to as sector end pattern hereinafter) are formed in this sector information portion a.sub.2. The recording and reproducing apparatus must comprise a means for properly reading such a sector end pattern and forming the first pit P.sub.bs to be recorded in the sector B in a position which is properly synchronous with the position of the last pit P.sub.ae in the sector A.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an inductance part such as a transformer, a choke coil, and the like used for a power supply unit and, more particularly, to an inductance part provided with a plurality of windings and a magnetic core inserted through the windings. 2. Description of the Related Art With a reduction in the weight, thickness, length and size of an electronic part, a switching power supply unit undergoes miniaturization and, accordingly, an inductance part which is a component used in the switching power unit is also required to be reduced in the thickness. Conventionally, as a transformer which is an inductance part, a sheet transformer as disclosed in Japanese Patent Application No. JP-A-62-76509 (refer to Patent Document 1) has been proposed. In general, a primary winding of a transformer used in a switching power supply has a large number of turns and draws less current, so that it is suitably used as a sheet coil. As an example of a sheet coil that has conventionally been used, there is known one disclosed in Japanese Patent Application No. JP-A-2003-142323 (refer to Patent Document 2: paragraphs [0004] to [0006]). As described in this document, in order to increase the number of turns, a multilayer structure is adopted and windings formed in a plurality of layers are connected in series. However, a secondary winding has a low voltage and smaller number of turns but draws comparatively a larger current, so that there may occur a case where a use of only the sheet coil is not sufficient due to the limitation of output current rating. Therefore, it is often a case where a triple insulated wire having the wire surface onto which triple insulation coating has been applied is used to constitute the sheet transformer. An example of this technique is disclosed, as an improvement for the sheet transformer, in Japanese Patent Application No. JP-A-08-316040 (refer to Patent Document 3). In Patent Document 3, a tape is stuck on a secondary winding (triple insulation wire, etc.) that has been subjected to at least a single insulation coating for simultaneously achieving both fixing of the secondary winding and insulation between the secondary winding and a magnetic core. According to a winding structure of Patent Document 3, the secondary winding contacts a sheet coil as the primary winding only at one surface, preventing the second winding and sheet coil from being tightly-coupled. In order to achieve the tight coupling between the second winding and sheet coil, there can be considered a structure in which sheet coils 1011 and 1012 which are obtained by dividing one sheet coil into two are disposed both above and below a secondary winding 102 as illustrated in a cross-sectional view of FIG. 12 partly illustrating a winding structure, or secondary windings 1021 and 1022 which are obtained by dividing one secondary winding into two are disposed both above and below a sheet coil 101 as illustrated in a cross-sectional view of FIG. 13 partly illustrating a winding structure. However, since there exists a secondary winding draw-out portion (triple insulated wire draw-out portion) 1031 in FIG. 12, secondary winding draw-out portions (triple insulated wire draw-out portions) 1033 and 1034 in FIG. 13, the thickness of a transformer is increased by an amount corresponding to the wire diameter of the draw-out portion. When reduction of the thickness of the transformer is prioritized, the secondary winding can be provided only on one side, making it impossible to achieve the sandwich structure. Thus, the coupling between the primary and secondary windings has been sacrificed. Reference numerals 105, 1051, and 1052 in FIG. 12 and FIG. 13 each denote a spacer serving as member for achieving insulation between the secondary winding and magnetic core 104 and as a bobbin core for winding the secondary winding therearound. FIG. 12 and FIG. 13 each illustrate only one side (left side) of the cross-section of structures of the primary and secondary windings wound around the magnetic core 104. Further, in FIG. 12, a reference numeral 1031 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 102 is drawn out with the winding start portion thereof in the lead, and reference numeral 1032 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 102 is drawn out with the winding end portion thereof in the lead. Further, in FIG. 13, a reference numeral 1033 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 1021 is drawn out with the winding start portion thereof in the lead, and reference numeral 1035 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 1021 is drawn out with the winding end portion thereof in the lead. Further, in FIG. 13, a reference numeral 1034 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 1022 is drawn out with the winding start portion thereof in the lead, and reference numeral 1036 denotes a secondary winding draw-out portion (triple insulated wire draw-out portion) at which the secondary winding 1022 is drawn out with the winding end portion thereof in the lead.
{ "pile_set_name": "USPTO Backgrounds" }
A twisted wire brush typically comprises bristles held by and extending radially from a twisted wire core. To form the twisted wire brush, the bristles are inserted between parallel wires while the wires are twisted to press the bristles between the wires. Depending on the application for which a twisted wire brush might be intended, the density of the bristles and the surface area over which the bristles cover can be varied by adjusting the number of bristles, by angling the bristles at multiple angles from the core axis, and by bending the twisted wire core into various shapes. The bristles can also be made of varying materials having varying physical dimensions, flexibility, and other characteristics suitable for the particular application. In twisted wire brushes built for cleaning applications, in which the brushes are used with relatively strong force to clean, the bristles can be relatively thick in diameter, made of metal, and be relatively rigid. However, despite the relative strength offered by the characteristics of many cleaning brushes, the bristles wear with use, often bending, splintering, and breaking during use. These brushes exhibit limited durability as a result, and can require regular replacement with regular use. Further, in many instances, worn and damaged brushes can pose a nuisance or a hazard. With grill brushes, for example, a bristle fragment can attach to a grill on which food is cooked, and then find its way into the food that is ingested. The food-borne bristle can be a mere nuisance, or it can wind up causing internal harm to a person that chews and/or swallows the bristle fragment. It would be desirable to provide a twisted wire brush that can overcome the disadvantages discussed above. It would be desirable to provide a twisted wire brush that has greater durability, and/or is less prone to bristles breaking, splintering, or fragmenting.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a stability compensation circuit and a DC-DC converter including the same. When a load on an output of a DC-DC converter changes from a light load to a heavy load in an instant, an output voltage of the DC-DC converter abruptly decreases and then slowly returns to an original level. This is because a certain period of time is needed to charge an integral capacitor of a stability compensation circuit included in the DC-DC converter with a predetermined control voltage. If a large amount of time elapses until the output voltage of the DC-DC converter returns to the original level since, the stability of the DC-DC converter may be adversely affected and an error may result. Accordingly, to maintain a desired output voltage with the least influence of changing load, it is necessary to control the output voltage of an integrator in a stability compensation circuit to reach a control voltage as quickly as possible.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Disclosure The present disclosure generally relates to distributing digital television content and more particularly to presenting a virtual environment including avatars that represent viewers of the television content. 2. Description of the Related Art Televisions are often communicatively coupled to set-top boxes for receiving multimedia programs from a provider network. Friends physically located in different households may socialize over telephones, for example, while simultaneously viewing television content accessed by their respective set-top boxes from the provider network.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a wiping unit that performs wiping cleaning with respect to a recording head of an inkjet printer or the like, and an inkjet printer equipped with the wiping unit. 2. Related Background Art A mechanism for maintaining the performance of a recording head that injects ink is indispensable for an inkjet printer, and is provided in most of the models. Among them, a nozzle cleaning mechanism that cleans a nozzle line surface (nozzle plate) of a recording head is important because, when ink droplets remain on the nozzle plate, or dust or the like adheres thereto, ink droplets to be injected are curved or ink cannot be injected from the nozzle, which has a serious effect on an image quality and the formation of an image. A typical example of the nozzle cleaning mechanism includes a mechanism having a configuration of wiping a nozzle plate with a wiping blade (hereinafter, simply referred to as a “blade”). However, when contamination of ink or the like adhering to the blade after being wiped is left, the remaining ink is pushed in the nozzle due to the pressure acting on the blade, which causes inconvenience such as the destruction of meniscus of ink and clogging of the nozzle. In order to solve the above problem, according to the JP 2002-79681 A, there is known a nozzle cleaner, which vibrates a blade, from which ink adhering to a nozzle plate has been wiped, when the blade moves to an ink removal portion to remove ink and dust adhering to the surface of the blade. However, even with the nozzle cleaner described in Patent Document 1, it is actually difficult to remove the entire contamination of ink or the like adhering to a blade with one cleaning operation. In a nozzle cleaning mechanism, a configuration of wiping the surface of a blade with a sponge or the like after soaking the wiped blade in a detergent to make it easy to clean the blade and to remove the contamination on the surface thereof is known. There is a problem with such a configuration that, it is difficult to remove the entire contamination as described above, and hence a great amount of contamination adheres to and is accumulated on the surface of a sponge or the like with which wiping is performed to contaminate the blade again in some cases. Particularly, in a so-called wide format inkjet printer having a print width exceeding 50 inches, a printing operation with a recording head is performed continuously 10 meters or more, and in this case, the amount of contamination of a nozzle plate increases. Thus, the possibility of the occurrence of the above-mentioned problem increases further. Further, the nozzle cleaner of Patent Document 1 requires a mechanism for vibrating a blade, and hence an apparatus configuration becomes complicated and a production cost increases. The present invention has been made in view of the above circumstance, and its object is to provide a wiping unit capable of reliably removing contamination of ink or the like adhering to a blade after wiping in spite of a simple configuration, and an inkjet printer.
{ "pile_set_name": "USPTO Backgrounds" }
H. A. Sarvetnick, "Plastisols and Organosols", Van Nostrand Reinhold Company, New York (1972), describes plastisols as fluid mixtures, ranging in viscosity from pourable liquids to heavy pastes, obtained by dispersing polymeric resin particles in nonvolatile, nonaqueous liquid plasticizers, i.e., materials which are compatible with the polymer or resin and increase its workability and flexibility but are not solvents for the resin or polymer under ordinary conditions of storage. When the plastisol has been formed into a desired shape, e.g., by molding or coating, it can be heated to coalesce the polymeric resin particles and the nonvolatile liquid constituent, thereby forming a homogeneous mass. Volatile diluents can be added to plastisol dispersions to modify their viscosity and to achieve desirable handling characteristics in coating or other forming operations. A dispersion that contains no more than 10% volatile diluent is regarded as a plastisol. Polyvinyl chloride has been described in the literature as the primary polymer used in forming plastisols. Polyvinyl chloride plastisols have been described in U.S. Pat. No. 3,795,649 wherein the polyvinyl chloride is copolymerized with other monomers, including acrylic monomers, that constitute a minority (<35%) of the polymer composition. In U.S. Pat. No. 2,618,621 there are disclosed polyvinyl chloride plastisols wherein part of the plasticizer content is replaced with an acrylic monomer, which is then conventionally thermally polymerized at the temperature encountered in the step of coalescing the polyvinyl chloride resin. It has been found that polyvinyl chloride plastisol dispersions can be made photoactive by having attached to the backbone of the polyvinyl chloride polymer photopolymerizable or photocrosslinkable groups, such that upon exposure to actinic radiation, the modified polyvinyl chloride polymer becomes polymerized or crosslinked. Such photoactive plastisols, in element form, can be used in a process of image formation that may be a positive working washout imaging system or a negative toned imaging system.
{ "pile_set_name": "USPTO Backgrounds" }
Balloon angioplasty is a nonsurgical method of clearing coronary and other arteries, blocked by atherosclerotic plaque, fibrous and fatty deposits on the walls of arteries. A catheter with a balloon-like tip is threaded up from the arm or groin through the artery until it reaches the blocked area. The balloon is then inflated, flattening the plaque and increasing the diameter of the blood vessel opening. The arterial passage is thus widened. A wide variety of catheters have been developed in the prior art for percutaneous transluminal coronary or peripheral vascular applications. One example is a balloon dilatation catheter for performing percutaneous transluminal coronary angioplasty, which is well known in the art. An artery is one of the tube-shaped blood vessels that carry blood away from a heart to the body's tissues and organs. An artery is made up of an outer fibrous layer, a smooth muscle layer, a connecting tissue layer, and the inner lining cells. If arterial walls become hardened due to the accumulation of fatty substances, then blood flow can be diminished. Accumulation of fatty substances occurs most often at the site of bifurcated branches where the separation of flows favors the deposition of fatty substances. Hardening of the arteries, or loss of vessel elasticity, is termed arteriosclerosis while fatty deposit build-up is termed atherosclerosis. Atherosclerosis and its complications are a major cause of death in the United States. Heart and brain diseases are often the direct result of this accumulation of fatty substances that impair the arteries' ability to nourish vital body organs. There are limitations, however, to this technique's application, depending on the extent of the disease, the blood flow through the artery, and the part of the anatomy and the particular vessels involved. Prior art vascular dilatation balloons are axially straight and are most effective in a relatively straight vessel. However, plaque build-up and/or severe stenosis mostly occur at the point of vessel bifurcation where the blood flow is turbulent and the deposition of fatty substances is most likely. Recently, a newer technique was developed to perform a balloon dilatation procedure at the bifurcated region by inserting two balloons of different sizes sequentially into a first vessel and a second bifurcated vessel, respectively. However, the procedure of double-balloon sequential dilatations is not very successful in treating the stenosis. When a first vessel is dilated by a first balloon, the inner vessel wall of the first vessel at the bifurcation region tends to temporarily recede because of the balloon's pushing. Once the first balloon is deflated, the inner vessel wall of that first vessel at the bifurcation region bounces back and the dilatation effectiveness is compromised. The bifurcated balloon is also useful to deploy a bifurcated stent at the bifurcated region of the blood vessels as a further treatment to the stenotic tissues. When a clogged artery is widened, the plaque is broken up and the underlying collagen or damaged endothelium is exposed to the blood flow. Collagen has a pro-thrombotic property, which is a part of the body healing process. Unless the collagen or the damaged endothelium is passivated or modulated, the chance for blood vessel clotting as well as restenosis still exists. Moderate heat is known to tighten and shrink the collagen tissue as illustrated in U.S. Pat. No. 5,456,662 and U.S. Pat. No. 5,546,954. It is also clinically verified that thermal energy is capable of denaturing the tissue and modulating the collagenous molecules in such a way that treated tissue becomes more resilient ("The Next Wave in Minimally Invasive Surgery" MD&DI pp. 36-44, August 1998). Therefore, it becomes imperative to post-treat vessel walls after the walls are treated with angioplasty and/or stenting procedures. One method of reducing the size of cellular tissues in situ has been used in the treatment of many diseases, or as an adjunct to surgical removal procedures. This method applies appropriate heat to the tissues, and causes them to shrink and tighten. RF therapeutic protocol has been proven to be highly effective when used by electrophysiologists for the treatment of tachycardia; by neurosurgeons for the treatment of Parkinson's disease; and by neurosurgeons and anesthetists for other RF procedures such as Gasserian ganglionectomy for trigeminal neuralgia and percutaneous cervical cordotomy for intractable pains. Radiofrequency treatment, which exposes a patient to minimal side effects and risks, is generally performed after a stent is deployed in a body lumen. Therefore there exists a need in the art for a vascular dilatation catheter to have a bifurcated balloon to inflate the bifurcated region of the two vessels simultaneously. By performing a procedure using a dilatation catheter having a bifurcated balloon, the stenotic region at the bifurcation zone can be effectively treated.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to nuclear reactors and more particularly, to apparatus for repairing jet pump assemblies within a nuclear reactor pressure vessel. A reactor pressure vessel (RPV) of a boiling water reactor (BWR) typically has a generally cylindrical shape and is closed at both ends, e.g., by a bottom head and a removable top head. A top guide typically is spaced above a core plate within the RPV. A core shroud, or shroud, typically surrounds the core and is supported by a shroud support structure. Particularly, the shroud has a generally cylindrical shape and surrounds both the core plate and the top guide. There is a space or annulus located between the cylindrical reactor pressure vessel and the cylindrically shaped shroud. In a BWR, hollow tubular jet pumps positioned within the shroud annulus, provide the required reactor core water flow. The upper portion of the jet pump, known as the inlet mixer, is laterally positioned and supported against two opposing rigid contacts within restrainer brackets by a gravity actuated wedge. The restrainer brackets support the inlet mixer by attaching to the adjacent jet pump riser pipe. The purpose of the gravity actuated wedge is to maintain contact between the inlet mixer and the restrainer bracket. The wedge works in cooperation with two set screws which are tack welded to the restrainer bracket to maintain contact with the inlet mixer. The flow of water through the jet pumps typically includes pressure fluctuations which are caused by various sources in the reactor system. The pressure fluctuations may have frequencies close to one or more natural vibration modes of the jet pump piping. The jet pump piping stability depends on the tight fit-up, or contact, of the restrainer brackets and the inlet mixers. Operating thermal gradients, hydraulic loads, and fluctuations in the hydraulic loads can overcome the lateral support provided by the gravity wedge, allowing gaps or clearances to develop at the opposing two fixed contacts or set screws. Particularly, the tack welds can break and the set screws can loosen permitting the jet pump to vibrate within the restrainer bracket. The loss of contact between the inlet mixer and the restrainer bracket can change the jet pump natural frequency to match some excitation frequency in the system, causing vibration of the piping and exerting increased loads which may cause cyclic fatigue cracking and wear of the piping supports, which can result in degradation from wear and fatigue at additional jet pump structural supports. To overcome this problem, gravity wedge supports have been used at locations where clearances have developed in restrainer bracket contacts. The gravity wedge support employed a sliding wedge and a fixed bracket mount which engaged the jet pump restrainer bracket. To allow access for installation of the wedge support required disassembly of the jet pumps, which is an undesirable expense and may cause an extension of reactor maintenance downtime. Additionally, the gravity wedge supports typically included bolted attachments which could vibrate loose and fall into the reactor. Another attempted solution is to reinforce the welded attachment of the two set screws to the restrainer bracket, then reset the inlet mixer against the set screws when the jet pump is reassembled. However, this procedure causes significant downtime and also requires disassembling the jet pumps. It would be desirable to provide an apparatus for restoring the tight rigid fit-up provided between the inlet mixer and the adjacent restrainer bracket, replacing the support function of the existing screw type contacts. It would also be desirable to provide an apparatus that would prevent the set screws from backing out completely and escaping into the reactor system. Additionally, it would be desirable to provide an apparatus that can be remotely installed by attachment to the existing restrainer bracket without disassembling the inlet mixer, and remain in place during disassembly of the jet pumps during maintenance shutdowns.
{ "pile_set_name": "USPTO Backgrounds" }
Selective Catalytic Reduction (SCR) vehicles are diesel powered motor vehicles which are compatible with the use of an operating fluid to reduce emissions. Typically, the SCR vehicle has a urea tank, separate from the fuel tank, which is used to carry an operating fluid such as an automotive urea solution, or the like. Automotive Urea Solution (AUS) is a solution of high purity urea in de-mineralized water. AUS is stored in a urea tank of an SCR vehicle and is sprayed into the exhaust gases of the vehicle in order to convert oxides of nitrogen into elementary nitrogen and water. An SCR vehicle may then advantageously satisfy various emission standards, such as the Euro V Emissions Standard. Problematically, AUS freezes at a temperature of approximately minus eleven degrees centigrade. In order to ensure this method of reducing emissions in an SCR vehicle remains effective, the AUS needs to be maintained in a liquid state to allow injection. SCR vehicles generally rely on a heating wire or the like, which may be molded into or wrapped around the AUS hose or line to avoid freezing of the AUS. This is a rather inefficient and inflexible solution that requires a complete redesign of the fluid line to change its heating properties. Thus, to change the heating characteristics of an internal wire assembly, another production run of the hose must be produced and the resistance per foot is changed when the hose is being extruded by either changing the wire pitch, the wire size or adding more wires into the system, or a combination of all three. SCR hoses require connection to an electrical power source. Insulation piercing (IP) connectors are commonly used to form mechanical and electrical connections between insulated cables. Typically, an IP connector includes metal piercing blades with sets of teeth on either end thereof. The piercing blades are mounted in housing members (e.g., along with environmental sealing components). The housing members are clamped about the insulated cable so that one set of teeth of a piercing blade engages a main cable and the other set of teeth of the piercing blade can engage another conductor. The teeth penetrate the insulation layers and make contact with the underlying conductors, thereby providing electrical continuity between the conductors through the piercing blade. Representative of the art is U.S. Pat. No. 8,444,431 which discloses an electrical connector assembly for mechanically and electrically connecting first and second cables each including an elongate electrical conductor covered by an insulation layer includes a housing configured to receive the cables, an electrically conductive bus member in the housing, an electrically conductive first and second blade members in the housing each having an inner end, an outer end and an insulation piercing feature on the outer end. The inner ends are coupled to the bus member and the insulation piercing features each include at least one tooth configured to pierce through the insulation covers of the cables and electrically engage the cable conductor. The bus member provides electrical continuity between the first and second blade members and thereby the conductors of the first and second cables when the conductors are engaged by the insulation piercing feature of the first and second blade members. What is needed is a self-piercing connector comprising a first cutting member having a semi-circular form and comprising portions that extend tangentially from each end of the first cutting member, a second cutting member having a semi-circular form and comprising portions that extend tangentially from each end of the second cutting member, the first cutting member and the second cutting member electrically isolated from each other. The present invention meets this need.
{ "pile_set_name": "USPTO Backgrounds" }
In general, a cooking appliance is a device for cooking or heating food using a heating source. The heating source includes an electric heater for generating heat upon application of electricity, a burner which generates heat using fossil fuel, and an induction heater which induces electricity to flow through a cooking container made of metal using an electromagnetic force. An example of such cooking appliances includes a cooking appliance having a plurality of cooking spaces, each of the cooking spaces being heated by a heating source. For example, the cooking appliance has an upper cooking space and a lower cooking space: food such as fish is cooked in the upper cooking space; and food, for example, chicken, having a different cooking temperature to that of the food to be cooked in the upper cooking space is input and cooked in a lower cooking space. However, the cooking appliance having a plurality of cooking spaces has the problem that fixed sizes of the cooking spaces make efficient cooking difficult depending on the size of food.
{ "pile_set_name": "USPTO Backgrounds" }
In January 1969, U.S. Pat. Nos. 3,421,692; 3,421,699 and 3,425,058 issued to Robert S. Babington, the present applicant, and his co-inventors. These patents disclose a type of liquid atomization apparatus which is particularly useful in liquid fuel burners. The principle involved in the apparatus, now frequently referred to as the "Babington principle," is that of preparing a liquid for atomization by causing it to spread out in a free-flowing thin film over the exterior surface of a plenum having an exterior wall which defines the atomizer bulb and contains at least one aperture. When gas is introduced into the plenum, it escapes through the aperture and thereby creates a very uniform spray of small liquid particles. By varying the number of apertures, the configuration of the apertures, the shape and spray characteristics of the surface, the velocity and amount of liquid supplied to the surface, and by controlling the gas pressure within the plenum, the quantity and quality of the resultant spray can be adjusted as desired to suit a particular burner application. Various arrangements of such atomization apparatus have been disclosed in other U.S. patents issued to the present applicant, namely U.S. Pat. Nos. 3,751,210; 3,864,326; 4,155,700; and 4,298,338. The disclosures of the patents mentioned in this paragraph are specifically incorporated by reference into this application. So that liquid fuel burners and liquid atomizers constructed in accordance with the Babington principle will have the widest possible range of applications, it has been found desirable to provide the maximum possible variation in the volumetric flow rate of the atomized fuel or other liquid between the lowest and the highest flow rates required. For example, flow rates as low as 0.3785 liter (0.1 gallon) per hour may be required for some applications and as high as 3.785 liters (1.0 gallon) per hour may be required for others. Once the particular geometry for a given atomization apparatus has been selected, however, changes in the flow rate of the atomized liquid must be made primarily by adjusting the flow rate of liquid onto the atomizer bulb. For the lowest flow rates desired, the liquid film thickness at the aperture preferably would be the thinnest achievable while still maintaining a continuous film over the exterior surface of the atomizer bulb. On the other hand, to provide higher flow rates of the atomized liquid, it is necessary to increase the thickness of the film at the aperture without increasing it so much that undesirably large liquid particles are formed. In the prior art apparatuses, a single liquid feed tube has been positioned above each atomizer bulb a distance of approximately 3.175 to 9.53 mm (0.125 to 0.375 inch) so that a variable flow rate of atomized liquid from about 0.757 to 2.27 liters (0.2 to 0.6 gallons) per hour has been achievable. Various applications have remained, however, in which flow rates above and below this range have been desired but have not been reliably achievable.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention generally pertains to Code Division Multiple Access (CDMA) communications, also known as spread-spectrum communications. More particularly, the present invention pertains to a system and method for providing a high capacity, CDMA communications system which provides for one or more simultaneous user bearer channels over a given radio frequency, allowing dynamic allocation of bearer channel rate while rejecting multipath interference.
{ "pile_set_name": "USPTO Backgrounds" }
3D printing is a technology based on a digital model file that uses a powder or granular material to construct objects by layer-by-layer printing. 3D printing is usually done using digital technology material printers, and is often used for manufacturing models in the mold manufacturing, industrial design and other fields. Hernia repair mesh is mainly used in the repair of abdominal hernia. Abdominal wall hernia refers to the bulging of the organs or tissues within the abdominal cavity from the abdominal wall of the weak or defect area. Abdominal wall hernia includes inguinal hernia, umbilical hernia, hernia, incisional hernia and stoma hernia and so on, and the inguinal hernia is the most common. Because the abdominal wall hernia has a high incidence, so its treatment has now become an important social problem. The placement of synthetic meshes into the body of a patient has become routine in the field of surgical practice. The most common use for mesh implants is the placement into the abdominal cavity for the repair of ventral and incisional hernias. Intraperitoneal onlay mesh technique is indicated in multiple defect hernias as well as for the treatment of large abdominal wall defects with loss of domain in obese patients. The implants are usually fixed by sutures, tacks or anchors. Complications found with Intraperitoneal onlay mesh technique are seroma formation, impaired functionality of the abdominal wall, chronic pain and adhesion formation. Chronic pain (continuous or intermittent pain) persisting for more than 3 months postoperatively is mainly caused by perforating fixation devices with a reported incidence of 5-15% in open and laparoscopic hernia repair operations. The new trends for hernia repair include mini-invasive techniques, in which the hernia defect is closed by a piece of non-absorbable mesh with minimal tension. The follow-up times thus far are short for such procedures, and it seems that recurrence rates of 1% or below could be expected. Also, the general recovery time has become shorter, and the patients are usually encouraged to begin their normal activities with no restrictions within a week after the operation. The commercially available meshes used in hernia repair today are typically made of various plastics, which can subdivided in to permanent (non-absorbable) or absorbable mesh. The most commonly used piece of hernia repair mesh polyester, polypropylene mesh and expanded polytetrafluoroethylene mesh. Polypropylene and polyester woven mesh material can help the surrounding tissue ingrowth, to improve the organizational strength and tensile strength. Also due to the large mesh macrophages and leukocytes can access, eliminate network of bacteria, so this type of mesh has a good anti-inflammatory effects, once infected, do not have to remove the mesh; however, these two materials are mesh into the abdominal cavity and internal organs cannot contact you because of a large number of animal experiments and clinical observations found that both mesh with the organization if they can produce severe adhesions in the abdominal cavity, gastrointestinal obstruction or fistula. Expanded polytetrafluoroethylene mesh is a microporous material, easy formation of adhesions in contact with abdominal viscera. But fibroblasts and macrophages cannot enter the pores, so the firm repaired and resistance to infection nor polypropylene and polyester mesh and, in the event of infection must be removed in order to control the meshing material. Further, permanent surgical implants (metals, plastics, silicone, etc.) have been shown to cause side effects in many patients because of corrosion, wearing, migration, chronic inflammation and risk of infection. When the foreign material is placed near sensitive organs, the risks of these side effects can be severe to the patient's well being. In the case of hernia surgery, the plastic mesh will always become situated into close contact with the sensitive intra-abdominal organs. Bioabsorbable meshes made of polyglycolic acid and its lactide copolymer are also known. Since the 1970's, these bioabsorbable materials have been used in surgery as sutures. No major harm to the tissues has been generally reported from use of polyglycolic acid and its lactide copolymer, and these materials also induce fibrogenesis and scar formation to some extent. Unfortunately, sutures and meshes manufactured of polyglycolic acid or its lactide copolymers (with around 10 mol-% of lactide units) tend to lose their strength within about 1 month after implantation, in which time the hernia site would not have enough time to heal and form scar tissue to resist pressure. Different mesh concepts for adhesion prevention have been developed including coated meshes, developed for separation of peritoneal defects and used for the individual coating of meshes. Large pores and high flexibility increase mesh integration into the abdominal wall and provide good biomechanical function. Examples for coated meshes are Parietex Composite®, Sepramesh® and Proceed®. The idea of integrating mesh and antiadhesive layer in the implant is to separate implant and viscera until the mesh is covered by neomesothelium (after approximately 10 days) and in the following to reduce the foreign body reaction and adhesion formation triggered by the implant. However, using coated meshes may still trigger adverse reaction due to the use of mechanical fixation means such as sutures, tacks and anchors, which may extend from the implant. It is therefore a goal of the present application to provide improved means to prevent or minimize all causes of unwanted tissue adhesion to the implant or its fixtures. Clinical and experimental studies have shown that lightweight, large-pore hernia meshes, which have been increasingly implanted in clinical routine, possess better biocompatibility as attested to in numerous experimental and pathological studies. Due to lower inflammatory reaction and scar formation, the dynamics of the abdominal wall is preserved with sufficient stability and shrinkage of the mesh surface is reduced. The ideal surgical repair biological material requirements are: implant material causes physical changes within the organization, without chemical activity, does not cause inflammation and foreign body reaction, non-carcinogenic, non-allergenic and highly sensitized, good biocompatibility, without disturbing the electrolyte balance. Certain properties of each mesh, including tensile strength, elasticity, porosity, and method of fabrication, may greatly influence the tissue reaction to the prosthetic. Although the use of a hernia mesh has been regarded as a basic means in performing hernia repairs, the decisions about which techniques to use are not well defined, and instead the choice depends on tradition, context, and familiarity with the type of hernia. It is extremely important that surgeons understand the full range of physicomechanical properties of mesh materials, particularly the extent to which these properties affect the body's response to the implanted material.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field Example embodiments relate to methods of forming fine patterns of a semiconductor device, and/or more particularly, to methods of forming fine patterns by a double-patterning process. 2. Description of the Related Art As the integrity of semiconductor devices increases, design rules of components in the semiconductor device are reduced. When fabricating a semiconductor device having fine patterns configured for corresponding to tendency (or, inclination or leaning) of high-integrated semiconductor devices, it is necessary to realize fine patterns exceeding the resolution limitations of a photolithography process. In addition, a technology that may form patterns having fine widths while reducing processing times for forming a mask layer is necessary.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the pickling of metals by passing the same through an acid bath, and in particular to the reclamation of unused acid from and concentration of spent pickle liquor produced by a metal pickling process. In the production of metals, and in particular ferrous metals such as steel, metal oxide scales often form on the surface of the metals. To remove such scale, the metal is typically passed through an acid bath referred to as pickle liquor. Frequently, the pickle liquor used is hydrochloric or sulfuric acid. As the metal is treated, metallic salts are produced by the corrosive action of the acid bath. The corrosive action also occurs on the unoxidized or descaled portions of the metal being pickled, which is an undesirable consequence of the pickling process as the metal so removed is wasted. Sometimes an inhibitor such as thiourea is included in the bath which somewhat inhibits the corrosion of the unscaled metal while having little effect on the descaling action. The formation of the metallic salts uses and thus reduces the concentration of the pickle liquor acid, and as will be discussed later, also often undesirably enhances the corrosive effect on the descaled metal. Hence, the metallic salts must be removed from the pickle liquor, and fresh acid added thereto. Spent pickle liquor which is relatively high in metallic salts and low in acid is thus typically bled off from the pickle liquor bath. The unused acid in the spent liquor is, therefore, lost unless recovered. Disposal of the spent liquor containing unused acid is difficult both due to total volume of the spent pickle liquor and low PH caused by the acid. Federal and state regulations on dumping of low PH materials are becoming increasingly strict, thus this low PH material generated from the pickling process normally requires neutralization before placing in a landfill, deep welling or other disposal site. A number of processes have been developed for converting the metallic salts of various ferrous metal pickling processes, wherein the pickling acid is hydrochloric acid, to iron oxides, often by combusting oxygen and fuel in the presence of the iron chlorides produces therein. However, these processes require substantially increased inputs of energy and often need careful monitoring of the operation. Hence these processes may require substantial additional energy and labor inputs as compared to the requirements of operating a pickling process without any recovery system. In addition, spent pickle liquor metallic salt concentration processes are sometimes used in conjunction with pickling processes using hydrochloric acid which include a single stage evaporator and the absorption or condensation of the acid-water gaseous vapors or overheads released from the evaporation before returning of the overheads to the pickling bath. This process in general uses separate energy supplies in the form of heat to vaporize the acid-water mixture and to heat the pickling baths to their proper operational temperature. Thus, most spent pickle liquor concentration processes require substantially greater energy input than does a pickling process which does not concentrate the spent pickle liquor. The marketability of some of the metallic salts is low and thus they are disposed of by standard methods of waste disposal, however, many of the salts such as iron chlorides have a relatively good commercial market. Normally salability improves as the salt concentration of the solution containing the metallic salts increases, and as the free or unused acid concentration therein decreases. Marketability is also significantly enhanced by a decrease in free or unused acid content of the concentrated metallic salts solution. Therefore, the unused acid removal and concentration of the remaining salt solution provided by the present invention, as will be discussed later, also improves the value and salability of the concentrated spent pickle liquor. In addition, the ferrous chlorides generated in the ferrous metal pickling processes using hydrochloric acid are not as marketable as ferric chlorides and it is thus desirable to convert the ferrous chloride to ferric chloride.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to transfer hoists for use in living quarters or patient care facilities to bodily lift disabled persons and transport them from one location to another. The hoists are commonly mounted on and suspended from an overhead rail which is supported in A-frames, or attached by support brackets to ceiling joists. Typically, the hoists are used by disabled persons, such as quadriplegic, handicapped, weak and elderly persons, to lift themselves vertically and transport themselves along the overhead rail from one location to another, such as from a bed to a wheelchair, without assistance. This provides such persons with added mobility and independence. Prior art transfer hoists tend to be modeled after industrial hoists and, therefore, are not entirely satisfactory for use in living quarters or patient care facilities. Excessive weight of the hoists is a particular problem, as they may weigh more than 150 lbs. This makes hoist installation difficult and shipping expensive. Further, since the supporting structure, such as an A-frame, must carry the weight of the overhead rail, the hoist and the person being lifted by the hoist, this structure must be extremely sturdy and rugged. This adds further to the costs associated with the hoist. In addition, prior art transfer hoists commonly have intricate designs comprising, for example, channelized weldments. Since weldments are expensive to manufacture, this adds significantly to the cost of the hoist. Moreover, the prior art hoists generally include complex guide mechanisms which guide steel cables onto multiple take-up reels. The guide mechanisms and multiple take-up reels are provided to decrease cable wear and prevent the cables from twisting or kinking. However, they are expensive, not only in terms of materials, but in terms of labor necessary to assemble them and mount them on the hoist. In addition, these steel cables and associated mechanisms further increase the weight of the hoist. In the event of power outages, it is desirable that the hoist be capable of manual operation. The prior art, however, has not provided a manual override that is satisfactory for such manual operation.
{ "pile_set_name": "USPTO Backgrounds" }
An inkjet printing system, as one embodiment of a fluid ejection system, may include a printhead, an ink supply that provides liquid ink to the printhead, and an electronic controller that controls the printhead. The printhead, as one embodiment of a fluid ejection device, ejects ink drops through a plurality of orifices or nozzles. A fluid ejection device in an inkjet printing system may include fuses as part of a programmable read-only memory (PROM). The fuses are used to store information during the manufacture or use of the device by blowing selected fuses. The blowing of fuses, however, can damage portions of a fluid ejection device. If undesirable fluidic or non-fluidic material comes into contact with a damaged portion near a blown fuse, the fuse may effectively become un-blown and thereby change the bit of information stored by the fuse. At the same time, materials disposed in close proximity to the fuse may affect the thermal or electrical environment of blowing the fuse.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a disposable halogen producing electrolytic cell for chlorinating a swimming pool, spa, hot tub, fountain or other large vessel by positioning the unit on a wall inside the vessel to be chlorinated and permitting water to flow through the unit. 2. Description of Background Art Disinfection of swimming pools, spas, hot tubs, fountains or other large vessels normally requires the circulation of water through a halogen type disinfectant or by halogen generated within a cell inserted into the plumbing of the filtration loop. These halogen generation systems generally require 1) cutting or adding the generation cell to the filtration pipe loop or 2) attaching the cell to existing fittings within the body of water. A common difficulty of the first type is the high cost and large size of the electrodes, which require extensive electronic monitoring equipment to ensure safety and proper disinfection. These systems require that the operation of the electrodes inside the cell coincide with the operation of the existing circulation pump. Sensors must be used to ensure circulation and to accommodate the entrapment of gases produced during the generating process. The second type of system requires the immersion of electrodes under the surface of the water either attached to the inside of the vessel wall or attached to an existing fitting inside the vessel. The difficulty with this embodiment is the necessity to insert wiring through the vessel wall and route wires through existing pool piping which precludes access to the wires for service or replacement and which makes it difficult to remove the electrodes plates for replacement, cleaning or winterizing.
{ "pile_set_name": "USPTO Backgrounds" }
Plate heat exchangers, PHEs, typically consist of two end plates in between which a number of heat transfer plates are arranged in an aligned manner, i.e. in a stack. To be properly positioned between the end plates, the heat transfer plates may engage with an upper carrying bar and a lower guiding bar, which bars extend between the end plates. In one type of well-known PHEs, the so called gasketed PHEs, gaskets are arranged between the heat transfer plates, typically in gasket grooves which extend along edges of the heat transfer plates. The end plates, and therefore the heat transfer plates, are pressed towards each other by means of some kind of tightening means, whereby the gaskets seal between the heat transfer plates. The gaskets define parallel flow channels between the heat transfer plates through which channels two fluids of initially different temperatures alternately can flow for transferring heat from one fluid to the other. For a PHE to work properly, it may have to be cleaned at regular intervals, naturally depending on, among other things, the nature of the fluids fed through the PHE. In connection therewith, an operator typically loosens the tightening means before separating the end plates to open the PHE. In the open PHE the heat transfer plates are separable from each other by being pushed or pulled along the carrying and guiding bars. Typically, the operator washes one side of a first heat transfer plate before moving the first heat transfer plate to make the other side of it accessible. Thereafter, the operator washes the other side of the first heat transfer plate. This procedure is then repeated for each of the remaining heat transfer plates. The heat transfer plates are typically washed by being swilled off with water. Cleaning of a PHE in the above described way may be time-consuming, especially if the PHE contains many and large heat transfer plates. Also, when cleaning large heat transfer plates, it may be difficult to reach upper portions of the heat transfer plates. The operator may have to use a ladder or similar which may be tiresome and associated with danger. Further, due to the human factor, some of the heat transfer plates may be carefully cleaned while others may be less carefully cleaned.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a drive circuit for a voltage driven switching device. When a semiconductor switching device, such as insulated gate type bipolar transistor (IGBT), is used for driving a motor, and if arm short circuit or short circuit of load is caused, the collector current of the IGBT increases quickly and consequently the IGBT is broken down due to overcurrent or heat. It, therefore, is necessary to detect a short circuit state in a short time. When classifying roughly, there are two major known methods of detecting the short circuit. One is a method, as disclosed in the Japanese Application Patent Laid-open Publication No. Hei 04-79758, where a current sense IGTB is used to detect the short circuit current. The other is a method, as disclosed in the Japanese Application Patent Laid-open Publication No. Hei 02-262826, where the collector voltage is monitored to detect the short circuit state. On the other hand, there remains a problem that, if current is cut off quickly in a short circuit state, the rate of current change−dI/dt becomes greater and consequently the spike voltage, which is defined by the product of the rate and the stray inductance, becomes greater, resulting in the breakdown of the IGBT. To prevent this, the method disclosed in the Japanese Application Patent Laid-Open Publication Nos. Hei 04-79758 and 02-262826 is provided with a soft cutoff function so as to cut off the main IGBT slowing in the case short circuit is detected.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present disclosure relates to a field of search and retrieval systems for a handheld device. More particularly, the present invention relates to efficient representation of digital documents to enable searching of digital documents in the handheld device. 2. Description of the Related Art Handheld devices have evolved greatly both in terms of functionality and storage capacities. The handheld devices are provided with several pre-loaded applications and a lot more applications are available to be downloaded. With enhanced and enlarged storage capacities, a size of the data of content and digital documents stored in the handheld devices may be in a gigabytes range. As memory storage on the handheld devices grows ever cheaper and capacious, a device may hold thousands of files and keeping track of every single file is an increasingly complicated job. Searching relevant content has become important for users of the handheld devices such that there exists a dedicated search engine for almost each search requirement. For example search engines can be classified based on content and topic (e.g., business, enterprise, job, legal, medical, news, people and so on), based on information type (e.g.,. forum, blog, multimedia, email, maps, price, bittorrent, etc.) and based on model (e.g., open source engine, semantic browsing engine, social search engine, desktop search engine, etc.). In recent years, there has been a paradigm shift in content and document search, and the focus has now shifted to a local domain rather than a global domain so as to give relevant results to a user. For example, searching “pizza hut” should return only local search results rather than global results. Now this search paradigm has moved to the desktop and mobile devices. As it turns out searching one's own files is a considerably different task as most of the time there is only one correct result. Not being able to search one's own documents can be really frustrating experience to the user. Therefore, a need exists for a system and method for efficient representation of digital documents in order to enable searching of digital documents in the handheld device.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, an increasing number of passenger cars, such as sedans, are equipped with such apparatuses that permit a part of a seat back of the vehicle rear seat to be reclined forward or folded down on its seat cushion, to provide extended cargo room. More specifically, the seat back includes a forward foldable portion which can be reclined from the upright position to the folded position in which the vehicle compartment and the trunk room communicate with each other, to enable one in the vehicle compartment to put cargo into or take it out of the trunk room. In the above apparatus, the forward foldable portion is allowed to lean forward to the folded position relative to the rest of the seat back. The apparatus is also provided with a lock device for locking or holding the forward foldable portion in the upright position. By releasing the lock device from the side of the vehicle compartment or trunk room, the forward foldable portion can be reclined forward or folded down on the seat cushion, so that the vehicle compartment communicates with the trunk room. In the known apparatus, however, the lock device can be normally released from only one side of the vehicle compartment and the trunk room, which is inconvenient when one wishes to release the lock device from the other side. Thus, it has been desired to enable the lock device to be released from both sides of the vehicle compartment and the trunk room. In view of the above problem, there have been proposed rear seat structures of so-called trunk-through type, as disclosed in Japanese Utility Model Publications No. 64-37740 and No. 1-102033. With regard to the seat structure as disclosed in Japanese Utility Model Publication No. 64-37740, a recessed portion is formed in the side face of the base portion of the seat back, so as to extend through the seat back to the front and back thereof, and an operating lever for reclining the seat back forward to the folded position is provided in the recessed portion such that the lever can be operated from the front and back sides of the seat back. With this arrangement, the seat back can be reclined forward to the folded position, or held in the upright position. With regard to the seat structure as disclosed in Japanese Utility Model Publication No. 1-102033, a lock device is provided for causing an engaging member on the side of the seat back to engage with an engaging member on the side of the vehicle body, so as to prevent the seat back from leaning forward, and an operating mechanism is provided for moving the engaging member of the seat back in the direction opposite to the engaging direction, so as to allow the seat back to be reclined forward to the folded position. Also, a stopper mechanism that is engageable with the operating mechanism is provided for inhibiting the operating mechanism from moving the engaging member of the seat back in the releasing direction, and one on the side of the trunk room is able to operate the stopper mechanism for engagement with or release from the operating mechanism. Furthermore, a release mechanism is provided for moving the operating mechanism in the direction for releasing the engagement of the engaging member on the side of the seat back with the engaging member on the side of the vehicle body when the stopper mechanism and operating mechanism are placed in the released state. In the seat structure as disclosed in Japanese Utility Model Publication No. 64-37740 as described above, the recessed portion is formed in the side face of the base portion of the seat back so as to extend through the seat back to the front and back thereof, and the operating lever mounted in the recessed portion may be operated from both sides of the vehicle compartment and trunk room, so that the seat back can be reclined forward to the folded position. In this arrangement, however, the operating lever mounted in the recessed portion formed in the seat back is always exposed to the vehicle compartment and trunk room, and thus deteriorates the appearance of the seat. Also, the rear seat structure is generally provided with a theft proof lock device that makes it impossible to operate the operating lever from the side of the vehicle compartment, thus permitting the operating lever to be operated only from the side of the trunk room. In the seat structure as disclosed in this publication, however, such a theft proof lock device cannot be installed. In the seat structure as disclosed in Japanese Utility Model Publication No. 1-102033 as described above, the lock device is released by operating the operating mechanism from the inside of the vehicle compartment, so as to permit the seat back to be reclined forward to the folded position, while the stopper mechanism is engaged with or released from the operating mechanism by operating the releasing mechanism from the inside of the trunk room, thus permitting the seat back to be reclined forward to the folded position through the operating mechanism when it is released from the stopper mechanism. Thus, the seat back can be reclined forward to the folded position by operating the operating mechanism from both sides of the vehicle compartment and the trunk room, and the stopper mechanism serves as a theftproof lock device. In the presence of the theft proof lock device, however, the operating mechanism, stopper mechanism, and the releasing mechanism must be appropriately associated or linked with each other, which results in a complicated structure and increased cost for components.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to novel prostacyclin derivatives, a process for their preparation, as well as their use as medicinal agents. DOS's [German Unexamined Laid-Open Applications] Nos. 2,845,770; 2,900,352; 2,902,442; 2,904,655; 2,909,088; and 2,912,409 disclose (5E)- and (5Z)-6a-carbaprostaglandin-I.sub.2 analogs. The nomenclature for the compounds of this invention is based on a proposal by Morton and Brokaw [J. Org. Chem. 44: 2880 (1979)]. In the synthesis of these compounds, two double-bond isomers are produced in all cases, characterized by the notation (5E) or (5Z). The two isomers of this prototype are illustrated by the following structural formulae: ##STR3## It is known from the very voluminous literature on the state of the art of prostacyclins and their analogs that this class of compounds is suitable for the treatment of mammals, including man because of their biological and pharmacological properties. However, their utilization as medicines frequently encounters difficulties since the duration of their efficacy is too short for therapeutic purposes. All structural alterations are aimed at prolonging the duration of efficacy as well as increasing the selectivity of the effectiveness.
{ "pile_set_name": "USPTO Backgrounds" }
Various systems are available for expressing proteins in bacteria, and heterologous proteins are typically produced at high levels using E. coli as a host. However, E. coli is not always the most desirable host bacterium--in certain circumstances it is particularly advantageous to use Bacillus subtilis. The advantages of B. subtilis as an expression host include its non-pathogenicity, absence of significant codon bias (Brown, T. A., 1991, Genomes and Genes, In: T. A. Brown (Ed.), Molecular Biology Labfax, BIOS Scientific Publisher Ltd., Oxford, pp. 235-254), the presence of secretory mechanisms, its extensively studied genetics, and the facility of large-scale manipulation using standard protocols (Simonen, M. and Palva, I., 1993, Microbiological Reviews, 57: 109-137). To date, protein expression using B. subtilis has been unsuccessful due to low product expression levels. This has resulted from the lack of efficient regulatory elements, both for transcriptional and post-transcriptional control of expression. One major problem encountered in B. subtilis is that at the onset of the stationary (S) growth phase it expresses large quantities of proteases which are detrimental to the integrity of the heterologous protein which is being expressed and therefore product expression during S-phase is unacceptably low. Efforts have been made to address this (Wong, S. L., 1995, Current Opinion in Biotechnology, 6: 517-522). This problem has been overcome in the past by the use of protease-deficient and endonuclease-defective strains. However, although able to express desired proteins at improved levels during S-phase, they suffer from the problem of typically being slow-growing strains and introducing additional expense and difficulties into the manufacturing process. It has previously been suggested (Lam, K. H. E., Chow, K. C. and Wong, W. K., Abstract T3.36, Asia Pacific Society of Bioscientists, Second International Symposium and Workshop, Jul. 8-11 1996) to express proteins in B. subtilis during the vegetative growth phase (VGP) using an expression/secretion cassette comprising the B. subtilis veg promoter, the E. coli lac operator, the Staphylococcal protein A leader sequence for secretion, a multiple cloning region, translational stop codons and the efficient B. subtilis gnt transcriptional terminator. The cassette may be cloned into a modified B. subtilis/E. coli shuttle vector pRB373M2 to form an expression/secretion vector named the veg vector. The endoglucanase (Eng) gene and the human epidermal growth hormone gene (hEGF) were stated as having been cloned into the veg vector. The present inventors have now succeeded in making a novel expression cassette, particularly for use in B. subtilis and E. coli, which allows very high expression levels of heterologous proteins to be achieved in B. subtilis. Previously, the use of the vegI promoter alone in B. subtilis has not been described--the use of the veg(comprising the vegI and vegII promoters) (see for example U.S. Pat. No. 4,783,405; U.S. Pat. No. 4,710,464; U.S. Pat. No. 4,559,300) and vegII (see for example Le Grice, F. J., 1990, Methods Enzymol., 185: 201-214) promoters in heterologous protein expression has been described. As a result of the isolation and purification of an unexpected vegI mutant occurring at very low levels (a total of five B. subtilis transformants were found to harbour plasmid DNA containing the mutant vegI promoter in a transformation in which about 300 .mu.g of DNA was used), it has now been found that a B. subtilis endonuclease activity appears to act upon the vegI promoter, causing digestion and subsequent exonuclease digestion of the promoter. The present inventors have succeeded in isolating the putative vegI promoter B. subtilis endonuclease restriction site, allowing the modification of the palindromic restriction site to protect against B. subtilis endonuclease activity and allow the use of the modified vegI promoter. One particular modified vegI promoter is described below but other modifications may be readily made to the vegI promoter to protect against the endonuclease activity whilst still retaining the promoter functionality. This allows the use of the vegI promoter alone with B. subtilis, not previously suggested by the prior art. The identification of the palindromic endonuclease restriction site is particularly surprising since it is an octameric sequence, whereas most endonuclease restriction sites are hexamers. According to the present invention there is provided an endonuclease-protected vegI promoter, and particularly a B. subtilis endonuclease-protected vegI promoter. The present inventors have found that the octameric sequence of SEQ ID NO: 20, which forms part of the -10 region of the vegI promoter, is a B. subtilis endonuclease restriction site, meaning that constructs containing the vegI promoter undergo endonuclease (and subsequently, exonuclease) digestion when transformed into B. subtilis. This in turn results in the construct failing to express any coding sequences it contains. The identification of the endonuclease restriction site has allowed the development of endonuclease-protected vegI promoters which are protected against endonuclease restriction digestion, yet which still retain their promoter functionality. Specifically, the fifth residue of SEQ ID NO: 20 may be substituted from A to G to give the endonuclease-protected sequence of SEQ ID NO: 21. The endonuclease restriction site is typically found at nucleotides -15 to -8 of the vegI promoter relative to the transcription start nucleotide beginning at nucleotide +1 (nucleotide 51 of SEQ ID NOs: 12 and 13) (Le Grice, S. F. J. et al., 1986, Mol. Gen. Genet., 204: 229-236). An example of an endonuclease-protected vegI promoter is that of SEQ ID NO: 12. The sequence of a typical vegI promoter is that of SEQ ID NO: 13. Alternatively endonuclease-protection may be achieved by other nucleotide substitutions to the octamer. The substitutions may be simply made and the efficacy of the substituted readily determined using the experimental procedures detailed below. Alternatively, nucleotides of the restriction site may be methylated using primers with specifically methylated nucleotides and the standard procedures of PCR and subcloning. Other substitutions will be readily apparent to one skilled in the art and may be readily made and the efficacy of modified promoters simply determined. Also provided according to the present invention is a DNA construct for expressing a coding sequence in B. subtilis, comprising operatively linked in the 5' to 3' direction: a) an endonuclease-protected vegI promoter; PA1 b) a DNA coding sequence encoding an RNA encoding an expression product; and PA1 c) a 3' non-translated region. PA1 a) an endonuclease-protected vegI promoter; PA1 b) at least one cloning site into which may be inserted a DNA coding sequence encoding an RNA encoding an expression product; and PA1 c) a 3' non-translated region. PA1 a) transforming a bacterium with a DNA construct according to the present invention containing the coding sequence of said gene for said expression product; PA1 b) culturing said bacterium to cause expression of said coding sequence; and PA1 c) isolating and purifying said expression product. PA1 a) the vegI promoter; PA1 b) a DNA coding sequence encoding an RNA encoding an expression product; and PA1 c) a 3' non-translated region. PA1 a) culturing a transformed E. coli according to the present invention, said E. coli having been transformed with a DNA construct containing the coding sequence of said gene for said expression product, said culturing causing expression of said coding sequence; and PA1 b) isolating and purifying said expression product. It may additionally comprise between said endonuclease-protected vegI promoter and said DNA coding sequence a lac operator, ribosome binding site, and SPA leader sequence. Said 3' non-translated region may comprise a stop codon and the gnt transcriptional terminator. Said DNA coding sequence may comprise the coding sequence for a heterologous protein, for example the Cellulomonas fimi cenA coding sequence or the human epidermal growth factor (hEGF) coding sequence. The successful results obtained (below) expressing both hEGF and endoglucanase (Eng), two very different heterologous proteins, shows that such a construct is capable of successfully expressing a wide range of proteins. Other heterologous proteins which may be expressed using the construct of the present invention include human interleukin 1 (Bellini, A. V. et al., 1991, J. Biotech. 18: 177-192) and the antidigoxin single-chain antibody (Wu, X. C. et al., 1993, Bio/Technology, 11: 71-76). Other proteins will be readily apparent to one skilled in the art. Also provided according to the present invention is a DNA construct for expressing a coding sequence in B. subtilis, comprising operatively linked in the 5' to 3' direction: In such a construct, the cloning site may comprise a multiple cloning site. The construct may additionally comprise between said endonuclease-protected vegI promoter and said cloning site a lac operator, ribosome binding site, and SPA leader sequence. Said 3' non-translated region may comprise a stop codon and the gnt transcriptional terminator. An example of such a construct is that detailed in FIG. 1. Also provided according to the present invention is a bacterium transformed with a DNA construct according to the present invention. Experiments (below) detail B. subtilis transformed with such a construct. Experiments have also shown that expression can be successfully achieved in E. coli. Successful expression my also be achieved in other bacteria, for example Staphylococcus aureus, the pRB373 shuttle vector (see below) having been derived from the S. aureus plasmid pUB110 (Gryczan, T. J. et al., 1978, J. bacterial., 134: 318-329). Also provided according to the present invention is the expression product of a DNA construct according to the present invention made by a bacterium transformed with same. Such an expression product may be isolated and purified. Also provided according to the present invention is a method of manufacture of an expression product of a gene, comprising the steps of: As detailed above, experiments have shown that E. coli transformed with a construct having an endonuclease-protected vegI promoter are capable of successfully expressing the coding sequence of the construct. It has now also been found that, surprisingly, E. coli transformed with a construct having an unmodified vegI promoter are also capable of expressing the coding sequence of the construct. Thus the present invention also provides an E. coli bacterium transformed with a DNA construct for expressing a coding sequence, said DNA construct comprising operatively linked in the 5' to 3' direction: Such a use of a vegI promoter has neither been suggested nor disclosed by the prior art. Also provided according to the present invention is the expression product of a DNA construct made by an E. coli bacterium according to the present invention, transformed with said DNA construct. Also provided according to the present invention is a method of manufacture of an expression product of a gene, comprising the steps of: Also provided according to the present invention is a vegI promoter having a guanine nucleotide substituted at position -11 relative to the transcriptional start nucleotide beginning at nucleotide +1. The invention will be further apparent from the following description, with reference to the several figures of the accompanying drawings, which show, by way of example only, form of B. subtillis expression systems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a display system and, more particularly, to an image display apparatus such as a flat-type display utilizing electron emission by polarization reversal of a ferroelectric material. 2. Description of the Related Art In recent years, due to the great needs to notebook type personal computers, portable game machines, and the like, the production and sales of image display elements are increased. More specifically, liquid crystal display elements are more popularly used than other solid image display elements because of the low power consumption of the liquid crystal display elements. The liquid crystal displays are roughly classified into simple matrix liquid crystal displays and active matrix liquid crystal displays. Although the simple matrix liquid crystal displays are advantageously used for high-density integration because of their simple structures, the simple matrix liquid crystal display elements have crosstalk to a non-selected cell, and an increase in resolution which is an object of the high-density integration cannot be achieved. In contrast to this, in the active matrix liquid crystal displays, crosstalk to a non-selected cell can be suppressed without posing any problem, and an image having a high resolution can be obtained, thereby considerably improving image quality. In this manner, a large number of active matrix liquid crystal displays have been used in recent years. However, in these liquid crystal displays, the following problems are posed. First, the liquid crystal displays are not self-emission type displays. For this reason, although the liquid crystal display elements are improved using back light electric luminescence (EL) or a back light fluorescent tube, the service life and power consumption of the back light electric luminescence and back light fluorescent tube pose a problem. In addition, a liquid crystal display has a field angle narrower than that of each of other display devices, i.e., about 30.degree., and has poor time response. In addition, especially, an active matrix liquid crystal display is manufactured in complex manufacturing steps, and the production cost of the active matrix liquid crystal display is high. The liquid crystal displays having the above drawbacks are not satisfactorily used in image display apparatuses which are popularly used in the field of information industries, and image displays free from the above drawbacks are required. Although an image display apparatus using a cathode-ray tube is excellent in a field angle, time response, and a resolution, the image display apparatus is a vacuum tube apparatus and has poor portability and high power consumption. As described above, although a conventional image display element has been improved, there is no image display apparatus which can simultaneously satisfy a high image resolution, excellent time response, a wide field angle, a self-emission property, low power consumption, and low cost. The image display apparatus which satisfies the above conditions is demanded. On the other hand, an EL element is developed, as a self-emission type of light-emitting device which satisfies the low power consumption. In this EL element, a thin film is inserted between an phosphor (light-emitting) film and a thick insulating film on the phosphor (light-emitting) film side, and an intermediate electrode is inserted between the light-emitting film and the thick insulating film on the thick insulating film side. Note that a transparent electrode consisting of a metal such as Al or Au or ITO (Indium Tin Oxide) may be used as the intermediate electrode, or the intermediate electrode may consist of an n-type semiconductor in which a donor is very heavily doped. However, when the metal or semiconductor is used, the intermediate electrode from which light is extracted must have a small thickness enough to transmit the light. In this structure, when a voltage is applied across a back electrode and the transparent electrode, and an electric field is applied to the phosphor (light-emitting) film, electrons from the intermediate electrode tunnel through the thin insulating film to be injected in the phosphor (light-emitting) film. The injected electrons are accelerated by the electric field generated in the phosphor (light-emitting) film and collide with a luminescent center in the phosphor (light-emitting) film so as to excite the luminescent center. When the intermediate electrode is not formed, electrons injected in the phosphor (light-emitting) film are supplied from a level (trap) located at the interface between the insulating film and the phosphor (light-emitting) film. Therefore, in the same electric field, the number of injected electrons is larger when the intermediate electrode is formed than when the intermediate electrode is not formed, and light emission luminance is increased. In the general EL element as discribed above, carriers are supplied by forming a trap site or a space charge region in a high electric field. However, in order to obtain carriers in only this electric field, an electric field of several MV/cm must be applied to extract the carriers by a tunnel phenomenon, or hot carriers must be generated. In this manner, it is conventionally very difficult to extract carriers by the tunnel phenomenon or by the generation of hot carriers. In addition, since a drive voltage is very high, i.e., about 100 V, the EL element is not practically used in place of a liquid crystal display element.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to the art of thermal printing and more particularly, to dye-receiving sheets for thermal dye transfer printing on which a dye sublimating from a dye-transfer sheet is received in an imagewise pattern. 2. Description of the Prior Art Substrates of dye-receiving sheets which are used in thermal transfer printing should have a small degree of curling when heated, and high brightness. To this end, studies have been made on extruded sheets made of mixtures of white fine particles and polyester resins because of the small degree of curling and high brightness. When, however, a dye-receiving sheet using the extruded sheet substrate and a dye transfer sheet are used in combination for the thermal transfer printing, a disadvantage is involved in that because of the rigidity or hardness of the substrate, the dye-receiving sheet and the dye transfer sheet do not contact intimately, resulting in a lowering of the print density.
{ "pile_set_name": "USPTO Backgrounds" }
1. Title of the Invention The present invention relates generally to a microwave oven of the type including a duty cycle control to vary power level, and more particularly to a means for decreasing the magnetron power by way of a plurality of intermediate power levels during the thawing of different food products. 2. Description of the Prior Art An often used method for thawing processed and prepared foods in a microwave oven involves setting a program timer for a desired span of time while keeping the magnetron power level relatively low. The thawing period and the power level may depend upon the quality of nature of the food, however, and thus deciding the time-power level conditions is known to be intricate. In the meantime there has been developed a control system called a duty cycle control in which the power transformer and the magnetron are alternately switched between a full-on operation and a full-off operation. The ratio of "on" time compared to the total operation time is known as the duty cycle. The average magnetron power level is the actual power output of the microwave oven. Various particular circuits have been proposed to effect duty cycle power control. These control systems range from a simple cam-functioned mechanical timer, to more advanced systems adopting electronic timing and switching elements. Although the above-described methods and systems are in practical use, no appropriate power control systems have been made available that function in relation to the temperature of the food undergoing thawing.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a high-insulated stud and in further detail, to a high-insulated stud that connects multiple reed relays and a printed circuit board (printed board) that uses this high-insulated stud. 2. Description of the Prior Art The technology disclosed in Utility Model Laid-Open No. Sho 63(1988)-73,836 shown in FIG. 1 is known as a conventional high-density, high-insulation mounting method by means of which multiple relays housing multiple reed switches are connected. An example is shown in FIG. 1 where reed relay 3 houses reed switches in 3 vertical rows and 4 horizontal rows and the reeds at positions corresponding to adjacent relays themselves are connected. The highest reeds bend away slightly to the left and the second-highest reeds bend away slightly to the right. Metal conductors 41 and 42 with an extension at appropriate heights and spacing for each reed of the multiple relays are soldered to the reeds. Metal conductors 41 and 42 are anchored by insulation member 44 to the printed board. The insulation holds metal conductors 41 and 42 with polyester film (not illustrated) in between. By means of this technology, mounting density is improved somewhat, but a special relay is used and therefore, cost is increased. Moreover, the heights and spacing of the extensions of the metal conductors used to connect relays is determined from the layout of each part and the board, and therefore, there are problems in that it is difficult to make universal parts and cost is increased. Furthermore, the metal conductors trail a long distance close to the board and therefore, there is an increase in parasitic capacitance and a reduction in noise property. As an example of a different prior art, relays have been mounted by the method shown in FIG. 2 when signal conductors are present for which high-insulation must be guaranteed, but it was not necessary to mount as many relays and when it was preferred that cost be kept down using universal parts. This is described in FIG. 2 using a 2-reed relay as an example. Lead 218 extending from the reed switch on one side of 2-reed relay 214 is a signal conductor for which high-insulation must be guaranteed. Lead 218 trails in the groove part of high-insulated stud 222, such as a Teflon stud, etc., in order to connect to other signal conductors. Precautions should be taken here so that the other signal conductors to be disconnected are wired aerially in order to guarantee high-insulation. Incidentally, Teflon studs (Teflon terminals), such as FX-3 made of MAC8, etc., are known as high-insulated studs. Moreover, relays such as URM-P22912GTE made by Sanyu Co., Ltd., etc., are known as 2-reed relays. It is also common knowledge that depending on their purpose, the make-contact type or transfer-contact type of these relays is used. Lead 216 that extends from the reed switch on the other side of each 2-reed relay 214 is used as a guard line for shielding the above-mentioned signal conductor and is bent at the end of the relay terminal and soldered to land 220 of the printed board 212 in order to be connected to the guard pattern on the printed board. When each high-insulated stud 222 is connected for multi-channel connection, lead 218 is trailed through the groove part and then connecting lead 224, such as tin-plated wires, etc., is coiled around one (226b) of top parts 226a and 226b where each stud branches in two and eventually are soldered. There are the following problems when this prior art is used: First, the work involving coiling lead 224 around this top part 226b is quite delicate, and therefore, working cost is increased, because a columnar high-insulated stud as small as 3 millimeters in diameter is generally used for efficient use of surface area. Next, in order to guarantee working space of high-insulated stud 222, the stud must be as much as length L1+L2 from land 220. However, the surface area that is occupied will increase and mounting efficiency will drop. In the example in FIG. 2, L1 is clearance from the end of the guard pipe of the relay to where lead 216 connects with land 220 and is 4 mm and L2 is the distance from the outside rim of high-insulated stud 222 to land 220 and is 6 mm. Therefore, a space of 3 to 5 mm is needed as the clearance for bending wiring 224 horizontally between multiple high-insulated studs 222. In conclusion, by means of this technology, a total length of 13 to 15 mm from the end of the guard pipe of the relay is occupied. Third, because the work involved in bending guard lead 216 to the position on land 220 is a delicate operation, working cost is increased. Cracks are made in the glass tube in which the reed switches have been inserted by the tools used to apply pressure and as a result, the percent of defective units increases. The present invention solves the above-mentioned problems, its purpose being to present a high-insulated stud and printed board holding the same with which mounting density is raised while guaranteeing high-insulation performance and high voltage tolerance and a reduction in the number of processes involved in mounting and improved working performance, as well as a reduction in parasitic capacitance and prevention of cracking of the glass tube in which reed switches have been inserted, are expected. The high-insulated stud of a first embodiment of the present invention comprises a first columnar conductive terminal having a first height, a second columnar conductive terminal having a second height lower than the height of said first conductive terminal that is placed in a row with and at a distance from said first conductive terminal, an insulating pedestal, a first groove open at the top, a second groove intersecting said first groove and shallower than said first groove at the top of said first conductive terminal, and a third groove open at the top, which is parallel with said first groove and whose bottom face is almost the same height as the bottom face of said first groove, at the top of said second conductive terminal. Here, the second conductive terminal can also have a connection terminal that passes through said pedestal. By means of a different embodiment, the second groove can be a groove open at the top, or the second groove can be a groove open sideways. The printed circuit board with a high-insulated stud of another embodiment of the present invention comprises a first columnar conductive terminal placed at a first height on said board and insulated from said board by a first insulating member and a second columnar second terminal having a second height lower than the height of said first conductive terminal that is placed in a row with and at a distance from said first conductive terminal where said second conductive terminal connected to the circuit on said substrate, and a first groove open at the top and a second groove that intersects said first groove and that is shallower than said first groove at the top of said first conductive terminal and a third groove open at the top, which is parallel with said first groove and whose bottom face is almost the same height as the bottom face of said first groove, at the top of said second conductive terminal. Another embodiment of the printed circuit board with a high-insulated stud is characterized in that it has a second insulation member around the outside of the base of the second conductive terminal. Another embodiment of the printed circuit board with a high-insulated stud is characterized in that said first insulation member is also wrapped around the base of said second conductive terminal. Yet another embodiment of the printed circuit board with a high-insulated stud comprises first and second columnar conductive terminals placed at a first height on said board and insulated together with said board by an insulation member and third and fourth columnar conductive terminals of a second height lower than the height of said first conductive terminal which are connected to the circuit on said board, said conductive terminals are each arranged in a row in the order of said first, third, second and fourth conductive terminals, there is a first groove open at the top and a second groove that intersects said first groove and is shallower than said first groove at the top of each of said first and second conductive terminals, there is a third groove open at the top that is parallel with said first groove and has a bottom face of approximately the same height as the bottom face of said first groove at the top of each of said third and fourth terminals, and the second grooves of said first and second terminals are connected by a metal wire.
{ "pile_set_name": "USPTO Backgrounds" }
Human cytomegalovirus ("HCMV") is a ubiquitous pathogen that is the major cause of morbidity and mortality in immunocompromised individuals, such as transplant and AIDS patients, as well as a leading cause of congenital birth defects (Britt et al., in Fields Virology, pp. 2493-2523 (Fields et al., eds. 1996)). HCMV is also associated with the development of atherosclerosis, restenosis after coronary angioplasty, chronic rejection in organ transplant patients (Grattan et al., Jama 261:3561-3566 (1989); Melnick et al., Bioessays 17:899-903 (1995); Zhou et al., NEJM 335:624-630 (1996)) and chronic graft-versus-host disease in bone marrow transplant patients (Lonnqvist et al., Transplantation 38:465-468 (1984); Soderberg et al., Transplantation 61:600-609 (1996)). Most individuals become infected with HCMV early in life, and depending on the geographic location, between 60-100% of adults are carriers of the virus (Britt et al., in Fields Virology pp. 2493-2523 (Fields et al., eds. 1996)). Similar to other herpesviruses, HCMV establishes life-long latency in the host after a primary infection, which is characterized by persistence of the viral genome without the production of infectious virus. The respective sites of latency for other herpesviruses such as Epstein Barr and herpes simplex viruses are B cells and neurons (Kieff, in Fields Virology pp. 2343-2396 (Fields et al., eds. 1996); Roizman et al., in Fields Virology pp. 2231-2296 (Fields et al., eds. 1996)). However, although transmission of latent HCMV has been shown to occur through transfusion of blood products, bone marrow grafts, and solid organs (Britt et al., in Fields Virology pp. 2493-2523 (Fields et al., eds. 1996); Chou, NEJM 314:1418-1423 (1986); Meyers, Am. J. Med. 81:27-38 (1986); Tegtmeier, Arch. Pathol. Lab. Med. 113:236-245 (1989)), the identity of cells harboring latent or persistent virus is unknown. In addition to HCMV, the identity of cells harboring other viruses is unclear, and methods of culturing such viruses are unknown. Several animal models have been established to understand mechanisms involved in latency and reactivation of CMV (Bruning et al., Transplantation 41:695-698 (1986); Hamilton et al., Transplantation 39:290-296 (1985); Reddehase et al., J. Exp. Med. 179:185-193 (1994); Yagyu et al., Transpl. Proc. 25:1152-1154 (1993)). In murine organ transplant models, reactivation of murine cytomegalovirus ("MCMV") was shown to be influenced by the state of imrnmunosuppression and histoincompatibility between the donor and the recipient (Bruning et al., Transplantation 41:695-698 (1986); Hamilton et al., Transplantation 39:290-296 (1985); Reddehase et al., J. Exp. Med. 179:185-93 (1994); Yagyu et al., Transpl. Proc. 25:1152-1154 (1993)). In MCMV latently-infected mice, the spleen, kidneys, and bone marrow were shown to be important sources of virus (Jordan et al., J. Clin. Invest. 70:762-768 (1982); Mercer et al., J. Virol. 62:987-997 (1988); Olding et al., J. Exp. Med. 141:561-572 (1975)). Activation of virus in latently infected animals has been shown to occur through either intraperitoneal injection of thioglycollate (Pollock et al., Virology 227:168-179 (1997)) or allogeneic stimulation (Schmader et al., J. Inf. Dis. 166:1403-1407 (1992)). The peripheral blood of latently infected animals was also demonstrated to be a reservoir of virus since allogeneic stimulation resulted in the activation of MCMV replication (Schmader et al., J. Inf. Dis. 166:1403-1407 (1992); Olding et al., J. Exp. Med. 141:561-572 (1975); Jordan et al., J. Clin. Invest. 70:762-876 (1982); Mercer, et al., J. Virol. 62:987-997 (1988); Koffron et al., Scand. J. Inf. Dis.-Suppl. 99:612 (1995); Stoddart et al., J. Virol. 68:6243-6253 (1994); Pollock et al., Virology 227:168-179(1997)). In humans, examination of organ tissues and peripheral blood obtained from patients with HCMV disease has suggested that PBMC are a viral reservoir of HCMV (Chou, NEJM 314:1418-1423 (1986); Meyers, Am. J. Med. 81:27-38 (1986); Taylor-Wiedeman, et al., J. Gen. Virol. 72:2059-2064 (1991); Tegtmeier, Arch. Pathol. Lab. Med. 113:236-245 (1989); Gnann et al., Am. J. Pathol. 132:239-248 (1988)). Further analyses of separated PBMC populations obtained from HCMV-seropositive donors have identified monocytes as the predominant infected cell type (Taylor-Wiedeman et al., J. Gen. Virol. 72:2059-2064 (1991)). While viral replication in monocytes is restricted to early events of gene expression (Ibanez et al., J. Virol. 65:6581-6588 (1991)), examination of organ tissues early in HCMV disease has demonstrated extensive viral gene expression in tissue macrophages (Gnann et al., Am. J. Pathol. 132:239-248 (1988); Sinzger et al., J. lnf. Dis. 173:240-245 (1996)). CD14.sup.+ monocytes in the peripheral blood are terminally differentiated cells derived from myeloid/granulocyte precursors. In vivo, stimulation of monocytes by contact with T and B cells during antigen processing events induces differentiation of monocytes into macrophages for function as immune effector cells. A variety of tissue culture protocols have been established to mimic the in vivo development of monocyte-derived macrophages ("MDM"), which includes treatment of monocytes with cytokines, mitogens, corticosteroids, or lipopolysaccharide ("LPS") (reviewed by Adams et al., in The Macrophage pp. 77-115 (Lewis et al., eds. 1992)). Caux et al. report, using FACS sorting, that a transient population of CD14.sup.+, CD1a.sup.+ cells represent a developmental phase in MDM differentiation (Caux et al., J. Exp. Med. 184:695-706 (1996)). MDM derived by these methods have been used for the in vitro propagation of certain macrophage-tropic viruses (Gendelman et al. J. Exp. Med. 167:1428-1441 (1988); Matloubian et al., J. Virol. 67:7340-7349 (1993); Schrier et al., J. Virol. 64:3280-3288 (1990)). Rettig et al. identify endogenous CD68.sup.+, CD83.sup.+ bone marrow stromal cells that are infected with HHV8 (Rettig et al., Science 276:1851-1854 (1997)). However, culture of HCMV in MDM has proven to be difficult, often resulting in abortive infection (Rice et al., Proc. Natl. Acad. Sci. (USA) 81:6134-6138 (1984); Taylor-Wiedeman et al., J. Virol. 68:1597-1604 (1994)). MDM differentiation systems have also been developed that rely on the mitogenic stimulation of PBMC to generate HCMV permissive macrophages (Ibanez et al., J. Virol. 65:6581-6588 (1991)). Although macrophages differentiated by this method are susceptible to in vitro, exogenous HCMV infection, attempts to reactivate HCMV from PBMC obtained from latently infected individuals have been unsuccessful using this method or others (Taylor-Wiedeman et al., J. Virol. 68:1597-1604 (1994)). Thus, there is a need to identify the specific cellular reservoir of latent HCMV infection, to isolate cultures of such cells, and to establish methods of culturing cells in which HCMV replicates, where the cells are latently infected with HCMV and/or additional viruses, or can be infected in vitro.
{ "pile_set_name": "USPTO Backgrounds" }
The cost to ship cabinets is very high because they consume a large amount of space which limits the quantity that can be placed in a truck or shipping container. Since shipping charges are often based on the truck or container load, being able to place more cabinets in a container helps to reduce cost. One method being deployed today to increase container load quantity is the use of flat packs configurations. FIGS. 6A-6C illustrated flat pack configurations. Cabinets are packaged and shipped unassembled, individually or in bulk to improve space efficiency by reducing the volume each unit occupies. The cabinets are then assembled in the supplier's factory, at a reseller or distributor, or the job site. Using this method, container loads can roughly be doubled. Typically, 36 fully assembled standard configuration cabinets can fit into a 40-foot shipping container. However, using a flat pack solution, 77 units would be able to fit into a 40-foot shipping container. Although flat pack configurations for cabinets has reduced shipping costs, it is still desirable to further reduce shipping costs. It is also desirable to provide cabinets that are easily and economically assembled after shipping.
{ "pile_set_name": "USPTO Backgrounds" }
Recorded audible information, such as recorded speech, is used for a variety of applications. For example, audible speech recordings are left as voicemail messages, people listen to recorded books, podcasts, and the like, and recorded audible information can be used as a teaching tool—for example, to teach another language or for other subjects. An ability of a person to understand playback of audible content (e.g., speech) can depend on the user's/listener's command over a language, accent of a narrator of the recorded information (e.g., relative to an accent of a listener), and the like, along with the user's command of cultural and regional influences on a language. For example, when listening to playback of recorded audible information, if the user doesn't understand the language or dialect of the recorded speech, the listener may have to slow down the playback of the speech and/or replay some or all of the recorded speech one or more, e.g., several times. Additionally or alternatively, the listener may resort to use dictionary to understand keywords. This results in delay in listening to the information and of understanding the subject matter of the recorded information. A speed of the spoken information, a tone of the voice that recorded the information, and even the recorded words can affect a listener's/user's understanding of the subject matter of the recorded information when listening to playback of the recorded information. The same can be true when listening to audible information derived from a text to speech converter. As the listener becomes familiar with a language, dialect, tone, or the like over time, the listener's vocabulary builds, and as a result, the listener/user may be able to pick up content of recorded audible information at a much faster pace. Hence, a solution that can help a user/listener understand content of playback of recorded audible information by personalizing the content based on the user's command of, for example a language or dialect, is desired. Any discussion of problems provided in this section has been included in this disclosure solely for the purposes of providing a context for the present invention, and should not be taken as an admission that any or all of the discussion was known at the time the invention was made. It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of illustrated embodiments of the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an apparatus and a method for controlling an operation of audio output in an audio system including output operations for outputting different sound ranges. 2. Background of the Related Art A notebook computer as a personal appliance is widely used. In the notebook computer, various kinds of multimedia files can be recorded, written-in, stored, or read-out and reproduced in mass recording media such as a hard disk. Recently, the notebook computer is additionally provided with a woofer function for outputting a low sound. The woofer function separates audio signals with low-pass components and audio signals with high-pass components from the reproduced audio signal components. The woofer function amplifies the audio with the low-pass component and outputs it as a vibration sound and amplifies the audio with the high-pass component and outputs it as a tone sound. Accordingly, a user of the notebook computer having the woofer function can listen to the tone sound of the high-pass component and simultaneously feel the audio of the low-pass component as a dynamic vibration sound through a speaker for the woofer while reproducing a music file such as a MP3 audio or a moving picture file such as a movie. However, as described above, the related art notebook computer has various disadvantages. For example, when the user selectively listens to the audio of the high-pass components, without any vibration sound of unnecessary low-pass components, for example when reproducing a specific type of a file such as a file for language study, there are the problems that the user has to change and set an audio output mode one by one or individually. In addition, a battery life can be reduced by an unnecessary woofer operation. The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a process cartridge detachably mountable to a main assembly of an electrophotographic image forming apparatus. The electrophotographic image forming apparatus forms an image on a recording material through an electrophotographic image-formation-type process. Examples of the electrophotographic image forming apparatus include an electrophotographic copying machine, an electrophotographic printer (a laser beam printer or mountable LED printer), a facsimile machine, a word processor, and the like. The process cartridge integrally contains an electrophotographic photosensitive drum, and charging means, developing means or cartridge, in the form of a unit or a cartridge, which is detachably mountable to a main assembly of an image forming apparatus. The process cartridge may contain the electrophotographic photosensitive drum, and at least one of charging means, developing means and cleaning means, in the form of a cartridge that is detachably mountable to the main assembly of the image forming apparatus. Furthermore, the process cartridge may contain at least the electrophotographic photosensitive drum and the developing means. Heretofore, in an electrophotographic image forming apparatus using the electrophotographic image process, a process-cartridge type is a type in which the electrophotographic photosensitive member and process means, actable on the electrophotographic photosensitive member, are integrally contained in a cartridge, which is detachably mountable to the main assembly of the image forming apparatus. In such a process-cartridge type, the maintenance of the apparatus can be carried out by the users without servicemen, and therefore, the operativity can be improved significantly, and for this reason, it is widely used in image forming apparatus. An example of such a process cartridge includes a toner-developing frame having a developing frame supporting developing means and a toner-developing frame having a toner container accommodating the toner, and a cleaning frame rotatably supporting the photosensitive drum and having cleaning means, wherein the toner developing frame and the cleaning frame are coupled such that they are pivotable relative to each other about an axis parallel with the photosensitive drum. The process cartridge further includes an urging member for urging the photosensitive drum and the developing roller of the developing means toward each other. The present invention provides further developments. Accordingly, it is a principal object of the present invention to provide a process cartridge and an electrophotographic image forming apparatus wherein the positional relation between an electrophotographic photosensitive drum and a developing roller can be correctly maintained. It is another object of the present invention to provide a process cartridge and an electrophotographic image forming apparatus wherein the positional relation between a developing roller and an electrophotographic photosensitive drum can be correctly maintained, in which no additional cleaning means is used. According to an aspect of the present invention, there is provided an electrophotographic image forming apparatus and a process cartridge usable therewith comprising an electrophotographic photosensitive drum; a developing roller for developing an electrostatic latent image formed on the electrophotographic photosensitive drum with a developer; a frame for rotatably supporting the electrophotographic photosensitive drum; a supporting member, rotatably supported in the frame, for rotatably supporting the developing roller at a position away from a rotational center thereof; and an urging member for elastically urging the frame to urge the developing roller toward the electrophotographic photosensitive drum.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to golf balls. More specifically, to the use of thermoplastic silicone-urethane copolymer materials in a golf ball cover, core and intermediate layers between the cover and the core for improving golf ball physical properties. Conventional golf balls can be divided into two general types or groups: solid balls and wound balls. The difference in play characteristics resulting from these different types of constructions can be quite significant. Balls having a solid construction are generally most popular with the average recreational golfer because they provide a very durable ball while also providing maximum distance. Solid balls are generally made with a single solid core, usually made of cross-linked rubber, which is encased by a cover material. Typically the solid core is made of polybutadiene which is chemically cross-linked with zinc diacrylate and/or similar cross-linking agents and is covered by a tough, cut-proof blended cover. The cover is generally a material such as SURLYN(copyright), which is a trademark for an ionomer resin produced by DuPont. The combining of the core and cover materials provides a ball that is virtually indestructible by golfers. Further, such a combination imparts a high initial velocity to the ball that results in improved distance. Because these materials are very rigid, two-piece balls have a hard xe2x80x9cfeelxe2x80x9d when struck with a club. Likewise, due to their hardness, these balls have a relatively low spin rate, which provides greater distance. Wound balls typically have either a solid rubber or liquid center core around which many yards of a stretched elastic thread or yam are wound. The wound core is then covered with a durable cover material such as ionomer or polyurethane. Wound balls are generally softer and provide more spin, which enables a skilled golfer to have control over the ball""s flight and final position. Particularly, with approach shots into the green, the high spin rate of soft, wound balls enables the golfer to stop the ball very near its landing position. The design and technology of golf balls has advanced to the point whereby the United States Golf Association has now instituted a rule that prohibits the use, in a USGA sanctioned event, of any golf ball which can achieve an initial velocity of 255 ft/s when struck by an implement having a velocity of 143 ft/s. (Herein referred to as the USGA test.) Manufacturers place a great deal of emphasis on producing golf balls that consistently achieve the highest possible velocity in the USGA test without exceeding the limit, which are available with a range of different properties and characteristics, such as velocity spin and compression. Thus, a variety of different balls are available to meet the needs and desires of a wide range of golfers. Regardless of the form of the ball, players generally seek a golf ball that delivers maximum distance, which requires a high initial velocity upon impact. Therefore, in an effort to meet the demands of the marketplace, manufacturers strive to produce golf balls with high initial velocities. As a result, golf ball manufacturers are continually searching for new ways in which to provide golf balls that deliver the maximum performance for golfers at all skill levels, and seek to discover compositions that provide the performance of a high compression ball with lower compression. The physical characteristics of a golf ball are determined by the combined properties of the core, any intermediate layers, and the cover. These, in turn, are determined by the chemical compositions of each. The composition of some balls will provide for increased distance. Other compositions provide for improved spin. Manufacturers are constantly looking to develop the ideal materials, silicone elastomers for example, have been examined for their innate ability to provide material having fairly high ultimate elongation, which is a very desired property in the make-up of a golf ball. However, they also have only low-moderate tensile strengths. One of the least attractive properties of silicone elastomers in the manufacture of golf balls is that the materials require covalent cross-linking to develop useful properties. This is because linear or branched silicone (polydimethylsiloxane)(PSX) homopolymers are viscous liquids or millable gums at room temperature. Fabrication of these materials must include, or be followed by, cross-linking to form chemical bonds among adjacent polymer chains. The infinite network thus formed gives the polymer its rubber elasticity and characteristic physical-mechanical properties. Cross-linking of extrudable and moldable silicone stock is usually done via peroxide-generated free radicals adding to vinyl groups incorporated along the polymer backbone, or increasingly, by the platinum-catalyzed addition of silane (xe2x80x94Sixe2x80x94H) terminal vinyl groups. Certain low-strength (RTV) silicone adhesives vulcanize at room temperature by condensation reactions, eliminating an acid or alcohol to generate xe2x80x94Sixe2x80x94OH or silanols, followed by the elimination of water as silanols condense to form xe2x80x94Sixe2x80x94Oxe2x80x94Sixe2x80x94 (siloxane) bonds and create a three-dimensional network. Regardless of how the cross-linking or vulcanization is effected, the resulting thermoset silicone cannot be re-dissolved or re-melted. This severely reduces the number of post-fabrication operations that could be used in the fabrication process of golf balls. Thermal forming, radio frequency welding, heat sealing and solvent bonding are all essentially unavailable when working with conventional silicone elastomers. In contrast to cross-linked silicone rubbers, many polyurethane elastomers are thermoplastic in nature. That is, they can be processed by methods that involve melting or dissolving the polymer to reshape it. The molecular structure of a typical thermoplastic urethane (TPU) consists of alternating high-melting xe2x80x9chardxe2x80x9d urethane segments and liquid-like xe2x80x9csoftxe2x80x9d segments. Hard segments are almost always the reaction product of an aromatic or aliphatic diisocyanate and a low molecular weight, chain-extending dialcohol or diol. The diisocyanates may be selected from the group consisting of alkyl diisocyanates, arylalkyl diisocyanates, cycloalkylalkyl diisocyanates, alkylaryl diisocyanates, cycoalkyl diisicyanates, arly diisocyanates, cycloalkylaryl diisocyanates, all of which may be further substituted with oxygen, and mixtures thereof. The chain extender of the hard segment used in the preparation of the copolymers may be an aliphatic polyol or an aliphatic or aromatic polyamine such as known for preparing polyurethanes and polyureas. The polyol for the hard segment may be preferably selected from the group consisting of alkylene, cycloalkylene, arylene diols, triols, tetraalcohols and pentaalcohols, and mixtures thereof. The polyamine of the hard segment may be selected from the group consisting of alkyl, cycloalkyl, and aryl amines that may be further substituted with nitrogen, oxygen, halogen, complexes thereof with alkali metal salts and mixtures thereof. Soft segments may be built from polyols with terminal hydroxyl (xe2x80x94OH) groups. The hydroxyl creates a urethane group, while the reaction between isocyanates and existing urethane groups will form allophanate groups that can produce minor amounts of covalent cross-linking in TPUs. When a TPU is heated, the hydrogen-bonded hard segments and any allophanate cross-links, both of which hold the polymer together at its use temperature, dissociate to allow the polymer to melt and flow. Dissolution in a polar solvent can also disrupt the hydrogen bonds that hold together the hard segments on adjacent chains. Once these virtual cross-links are broken, the polymer can be fabricated into golf balls. Upon cooling or solvent evaporation, the hard segments de-mix from the soft segments to re-associate by hydrogen bonding. This restores the original mechanical properties of the polyurethane elastomer. Polyether and polycarbonate TPUs generally have excellent physical properties, combining high elongation and high tensile strength, albeit having fairly high-modulus. Varying the hard segment of a TPU during synthesis can produce a whole family of polymers of related chemistry but with a wide range of hardness, modulus, tensile-strength properties and elongation. In the fabrication of golf balls, the use of TPUs of different hardness values within a single family provides considerable versatility in manufacturing. Therefore, there exists a need for a golf ball comprising a thermoplastic silicone-urethane having improved golf ball performance. The invention is related to a use of a silicone-urethane material for forming golf balls. More particularly, the present invention is directed to the use of silicone-urethane copolymers and their blends in the formation of a golf ball core, cover or intermediate layer. A first embodiment is a golf ball comprised of a core and a cover, one of which comprises an aromatic or aliphatic urethane hard segment with a silicone based soft segment to create a thermoplastic silicone-urethane copolymer. Preferably the core or cover is comprised of a thermoplastic silicone-polyether urethane copolymer. A second embodiment of the invention combines the above hard and soft segments with a polycarbonate to form a thermoplastic silicone-polycarbonate urethane copolymer. Another embodiment of the invention combines the above hard and soft segments with a polyethylene oxide to form a thermoplastic silicone-polyethyleneoxide urethane copolymer. Other embodiments of the invention include blends of silicone-polyurethane with at least one thermoplastic or thermoset polymer including ionomers, including highly neutralized ionomers, non-ionomers, polyurea, epoxy, styrenic, olefinic homo and copolymers (including metallocenes and single-site), polyamides, polyester, polyimide, polydiene, block copolymers of polyether (or ester)-ester, polyether (or ester)-amide and suitable compatibilizers. Examples of these may be found in U.S. Pat. Nos. 4,675,361, 5,428,123, 5,589,563, and 5,863,627 issued to Ward et al.; which are incorporated by reference herein in their entirety. The invention is either a two-piece or a multi-layered golf ball having a coefficient of restitution greater than about 0.7 and an Atti compression of at least about 50. In a preferred use of the invention, the thermoplastic silicone-urethane is used for the ball cover and has a material tensile strength of greater than about 1,000 psi, and preferably between about 1000 to 50,000 psi; an ultimate elongation greater than about 40%, and preferably and greater than about 400%; and and an initial modulus from about 300 psi to 100,000 psi, preferably from about 300 psi to 10,000 psi. In another preferred embodiment, the golf ball is comprised of an intermediate layer formed form a silicone-urethane copolymer. Preferably, the material has a tensile strength greater than about 3000 psi; an ultimate elongation greater than about 40% and more preferably greater than about 400% and/or an initial modulus greater than 300 psi. In preferred embodiments of the present invention, the thermoplastic silicone-urethane copolymers have a silicone content from 0.1% to 60% of polymer by weight. More preferably, the thermoplastic silicone-urethane copolymers have a silicone content of between about 1% and 20%. A preferred embodiment is a golf ball wherein one of the ball components is comprised of a thermoplastic silicone-urethane copolymer composition consisting of methane bis(4-phenylisocynate) (MDI), or hydrogenated MDI (H12-MDI), 3-hydroxypropyl terminated polydimethylsiloxane, and 1,4 butane-diol. A suitable catalyst would be used in the preparation. A golf ball utilizing the compositions of the present invention will target the most favorable properties of both silicones and urethanes, wherein the strengths of each material can be maximized.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to the field of theft deterrent systems. More particularly it relates to systems for deterring the theft of relatively small objects of merchandise such as wallets, pocketbooks, organizers and the like. The problem of pilferage of merchandise is widespread, costing businesses many millions of dollars annually. This problem is particularly acute in the retail sales environment and especially in situations involving the display of relatively small articles which can easily be concealed by shoplifters. Special problems are presented by relatively high cost objects such as those made of leather including wallets and pocketbooks which are small enough to be concealed, but which potential purchasers prefer to examine closely before buying. There is therefore a need for a system which will deter theft while still permitting the potential customer to examine an item such as a wallet or a pocketbook prior to purchase. Systems for clamping tags to small items such as eyeglasses and jewelry are known. See for example the system disclosed in U.S. Pat. No. 5,148,836 to the present inventor. Also known are devices for securing electronic tags and labels to articles. An approach used in clothing retailing is to provide a tag containing an ink vial which breaks if an attempt is made to remove the tag from the garment without a special tool. The ink permanently stains the garment, thus denying its benefit to the pilferer. A device of this type is described in U.S. Pat. No. 5,205,024. Such an approach is not very useful for objects made of leather and the like such as wallets. There is therefore a need for a theft-deterrent device to deter the theft of objects such as wallets and which is relatively simple and inexpensive. The present invention is directed towards a system and method for deterring the theft of objects such as wallets in a simple and highly cost effective manner by utilizing the benefit denial principle. More particularly, the present invention deters theft by at least partially destroying the object if an unauthorized attempt is made to remove the theft deterrent device. Unlike systems of the prior art, the present invention does not require complex tools for installation or removal of a theft deterrent device. In addition, the system is relatively inexpensive to manufacture and simple to use.
{ "pile_set_name": "USPTO Backgrounds" }
Most position tracking systems used with a graphical user interface (GUI) utilize a mouse to generate two-dimensional position information. The mouse is typically tethered to the computer by an electrical cord through which power is provided from the computer to the mouse and position information is provided from the mouse to the computer. A cordless mouse utilizes a rechargeable or replaceable battery as its power source and radio frequency (RF) signals to communicate position information to the computer. While conventional position tracking systems work well, the electrical cord of a corded mouse can restrict a user's freedom of movement and the power source of a cordless mouse requires constant recharging or replacement. In addition to the above-described limitations, a conventional mouse only provides two-dimensional position information. Three-dimensional position information and orientation information are desirable in some position tracking applications.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an ice detector circuit for sensing an ice deposition on a sensing surface of an ice detector probe from an air mass moving relative thereto.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to consumer use of what is here called the "television space". That is, the use of video/audio signal streams such as in the past have been distributed by broadcast over radio frequency bands or by cable distribution, or made available from video recorder/player devices such as cassette recorders or video disc player, or made available from direct, live sources such as cameras, game systems or computers. Such video/audio signal streams, whether carrying analog or digitally encoded information, have come to represent a significant resource to most consumers for information and entertainment. Access to the television space has, in the past, been achieved by use of a television receiver. Then came changes in the methods of distribution, leading to the use of various set top devices such as cable boxes for analog signal streams, recorder/players, game machines, home cameras, etc. As such devices using the television space have proliferated, so also have the associated control devices. As television space technology has approached what is presently known as the "home theater", systems having as many as seven or more constituent components which are connected one to another have become possible. In such a systems of systems, several or even all of the constituent systems may have its own remote control device, intended to enable a human observer to control the functionality of the respective constituent system while avoiding the necessity of directly manipulating control available at the face of the system. With the proliferation of systems, a user is frequently faced with a proliferation of remote control devices. At the same time as remote controls have been proliferating, attempt to provide a "universal" remote have been made. Such attempts have resulted in remote controls having a manual interface, usually in the form of buttons, which approaches or exceeds the limits of human usefulness. By way of example, there are remote control devices offered with certain of the component systems for home theater use which may have fifty or so separate (and separately or jointly operable) buttons. Such a proliferation of controls and proliferation of control functions results in an unmanageable situation for a consumer. Coordinating control among a plurality of remote control devices and system elements becomes quickly difficult to the point of impossibility. Further, the user interfaces easily become confused. It becomes difficult for a human observer to be certain of the response which may be achieved by selecting and actuating a particular button on a particular remote control. The present invention proposes that these difficulties be resolved by providing, for the television space and for other environments presenting similar problems of resource allocation and navigation, a single remote control device which cooperates with a display controller and with control programs executed by the display controller and an associated central processing unit (CPU). The remote control device, in accordance with this invention, has access to the resources of the entire system with which it is related. Further, the navigation among functions available and resource allocation is accomplished by display of on-screen images which overlay or modify the images derived from the video/audio streams entering the television space. This is accomplished with minimal buttons to be actuated by the human observer.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to the field of data security. More particularly, the present invention relates to a system and method of preserving integrity of a data set undergoing post-processing operations. 2. Description of Art Related to the Invention Over the last few years, there have been many advances in hardware and software designed for implementation within an electronic capture device in order to digitize sensory data (e.g., a visible image and/or an audible sound). Examples of an xe2x80x9celectronic capture devicexe2x80x9d include a digital camera, a digital video recorder, or a digital scanner. After being digitized, the sensory data may be immediately downloaded to a computer for storage on a hard disk drive. Alternatively, the data may be internally stored within the electronic capture device to be downloaded at a later time. During storage or transmission, the digitized data is susceptible to illicit modification. Currently, digital signatures can be used to protect data integrity by ensuring that the digitized data cannot be illicitly modified without detection. Unfortunately, there is no scheme utilized by conventional electronic capture devices that supports modification of digitally-signed data without rendering its corresponding digital signature invalid. The present invention relates to a system and method for preserving data integrity. First, a data set is provided. The data set includes data and a record. Thereafter, characteristics of post-processing operations associated with that data set are recorded into the record of the data set. In one embodiment, the contents of the records are used to verify whether the data has been compromised through unauthorized post-processing operations.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to flame retardant optical fiber buffer coating compositions, and more particularly, to flame retardant fiber optic buffer coating compositions that can be applied to coated optical fiber and cured at high speed. The invention also relates to optical fiber flame retardant coating compositions which can be cured more efficiently than commercial thermoplastic buffer compositions. The invention also relates to an optical fiber coated with flame retardant buffer coating composition, and to methods of making such optical fiber. 2. Description of Related Art Optical glass fibers are frequently coated with two or more superposed radiation-curable coatings which together form a primary coating immediately after the glass fiber is produced by drawing in a furnace. The coating which directly contacts the optical glass fiber is called the “inner primary coating” and the overlaying coating is called the “outer primary coating.” In older references, the inner primary coating was often called simply the “primary coating” and the outer primary coating was called a “secondary coating,” but for reasons of clarity, that terminology has been abandoned by the industry in recent years. Inner primary coatings are softer than outer primary coatings. Single-layered coatings (“single coatings”) can also be used to coat optical fibers. Single coatings generally have properties (e.g., hardness) which are intermediate to the properties of the softer inner primary and harder outer primary coatings. The relatively soft inner primary coating provides resistance to microbending which results in attenuation of the signal transmission capability of the coated optical fiber and is, therefore, undesirable. The harder outer primary coating provides resistance to handling forces such as those encountered when the coated fiber is ribboned and/or cabled. Optical fiber coating compositions, whether they are inner primary coatings, outer primary coatings, or single coatings, generally comprise, before cure, a polyethylenically-unsaturated monomer or oligomer dissolved or dispersed in a liquid ethylenically-unsaturated medium and a photoinitiator. The coating composition is typically applied to the optical fiber in liquid form and then exposed to actinic radiation to affect cure. Optical fiber comprising a waveguide, an inner primary coating and an outer primary (or secondary) coating typically has a diameter of approximately 250 microns. The inner primary coating typically has an applied thickness of 20-40 microns and the outer primary coating typically has an applied thickness of about 20-40 microns. For the purpose of multi-channel transmission, optical fiber assemblies containing a plurality of coated optical fibers have been used. Examples of optical fiber assemblies include ribbon assemblies and cables. A typical ribbon assembly is made by bonding together a plurality of parallel oriented, individually coated optical fibers with a matrix material. The matrix material has the function of holding the individual optical fibers in alignment and protecting the fibers during handling and installation. Often, the fibers are arranged in “tape-like” ribbon structures, having a generally flat, strand-like structure containing generally from about 2 to 24 fibers. Depending upon the application, a plurality of ribbon assemblies can be combined into a cable which has from several up to about 1000 individually coated optical fibers. An example of a ribbon assembly is described in published European patent application No. 194891. A plurality of ribbon assemblies may be combined together in a cable as disclosed, for example, in U.S. Pat. No. 4,906,067. The term “ribbon assembly” includes not only the tape-like ribbon assembly described above, but optical fiber bundles as well. Optical fiber bundles can be, for example, a substantially circular array having at least one central fiber surrounded by a plurality of other optical fibers. Alternatively, the bundle may have other cross-sectional shapes such as square, trapezoid, and the like. Coated optical fibers (or waveguides) whether glass, or, as has come into use more recently, plastic, for use in optical fiber assemblies are usually colored to facilitate identification of the individual coated optical fibers. Typically, optical fibers are coated with an outer colored layer, called an ink coating, or alternatively a colorant is added to the outer primary coating to impart the desired color. The ink layer, if applied, typically has an applied thickness of about 4-8 microns. The optical fiber, coated with inner primary coating, outer primary coating, and ink layer typically has a diameter of about 260 microns. Typically, the matrix material of a fiber optic ribbon assembly or cable is separated from the individual coated fibers in order to facilitate splicing two cables, or the connection of a fiber to an input or output. It is highly desirable that the matrix material can be removed from the coated fiber with little or no effect on the outer primary coating or colored ink coating of the fiber. Good removability of the matrix material not only preserves the readily visual identification of the color-coded fiber, it also avoids harming the waveguide during the removal process. It is well known in the art that optical fiber coated with well-known inner primary, outer primary, and ink or colored coatings have a relatively small diameter that makes such fiber difficult to work with and not entirely satisfactory for handling purposes. It is known to bundle optical fiber in loose buffer tubes. Such tubes include optical fiber surrounded by a gel-type buffer layer which is surrounded by the tube material. In order to improve handleability, and to add to the protection of the optical fiber, it is known to “upjacket” the fiber with a tight buffer coating. Upjacketing of the optical fiber is typically carried out to increase the diameter of the fiber of from about 250 microns to a diameter of from about 600 microns to about 900 microns. In a preferred form, the increased diameter of the fiber falls within the range from about 400 microns to about 900 microns. Upjacketing is desirable for applications such as local area networks, in-home applications, and in commercial establishments. Upjacketed fiber can be bundled without the need for additional gel filling or buffering in loose buffer tubes known in the art. Because the optical adhesive and durability properties of the tight-buffer coating are not as rigid as those properties are for the inner primary, outer primary, and ink compositions typically used to make optical fiber, extruded thermoplastic materials such as polyvinyl chloride have been used heretofore as the tight-buffer coating. However, thermoplastic materials, such as polyvinyl chloride-based tight-buffer coatings are undesirable, particularly as the demand for tight-buffer coated optical fiber rises. Equipment for applying extruded thermoplastic buffer coatings is expensive, thermoplastic materials are not suitable for short runs, and it is difficult to apply such coatings. Other drawbacks of thermoplastic coatings are that they must be heated during application, they must be extruded through relatively small dies, e.g., on the order of 250 microns to 900 microns, they must be cooled which can result in undesired stresses in the optical fiber and they are not adapted to be applied at the high line speeds at which optical fiber is made. Various attempts have been made to apply extruded thermoplastics to coated optical fiber at high line speeds, such as at speeds in excess of 100 meters/minute. Application of extruded thermoplastics at such line speeds has been unsatisfactory because the thermoplastic buffer coatings are not readily strippable from the optical fiber. Stripping the thermoplastic buffer coating has been found to cause damage to the underlying layers of ink, secondary or primary coatings. It is also known that attempts to apply extruded thermoplastics at high line speeds can result in unacceptable microbending induced signal-loss attenuation. Recently, the art has attempted to provide a UV light-curable tight-buffer coating. For example, U.S. Pat. No. 6,208,790 B1 describes such-a coating, but this patent does not describe flame-retardant tight-buffer coatings, and it does not describe UV light-curable coatings which are flame retardant. It would be advantageous in the art to provide a flame retardant tight-buffer coating composition, suitable for upjacketing optical fiber, that is curable by exposure to actinic, i.e., ultraviolet, radiation as well as such a coating that can be used on existing machinery and in existing processes well known to producers of optical fiber. Such machinery includes but is not limited to the machinery for applying ink to coated fiber and to ribbon-making machinery. Additionally, it would be desirable if the flame retardant tight-buffer coating is easily removed from the fiber without damage to underlying ink, secondary or primary coatings. It would be especially desirable if the flame retardant tight-buffer coating could be applied to coated optical fiber and cured at high speeds without causing unacceptable microbending induced signal-loss attenuation to the optical fiber. Thus, there remains a need for a UV-curable flame retardant buffer material that can be applied and cured at high speed, without causing unacceptable microbending signal-loss attenuation. There is also a need for a UV-curable flame retardant buffer material that is easily removed from the optical fiber without causing damage to underlying ink, secondary and/or primary coating layers. In its preferred embodiment, the present invention provides a composition that has these and, optionally, other desirable attributes as well.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a percutaneous transcatheter delivery system for a medical device, particularly an occlusion device, which allows a physician to deliver the device and observe its position without the tissue contortion caused by a stiff catheter or delivery device while the device remains tethered to the system. Current medical technology provides for the percutaneous implantation of medical devices, delivered through a catheter, which gives individuals an option to traditional surgery in a variety of medical situations. Generally this procedure begins by inserting a guidewire into a major blood vessel and advancing it through the body to the treatment location. Next, a catheter is advanced over the guidewire until it reaches the treatment location, so that the guidewire can then be removed. A medical device is then attached to a delivery device (also called a delivery forceps) which is used to advance the medical device through the catheter to the treatment location. Once the medical device is properly positioned it is released from the delivery device. For example, permanently repairing cardiac apertures in adults and children normally requires open heart surgery which is a risky, expensive, and painful procedure. To avoid the risks and discomfort associated with open heart surgery, modern occlusion devices have been developed that are small, implantable devices capable of being delivered to the heart through a catheter to occlude the aperture. This procedure is performed in a cardiac cathlab and avoids the risks and pain associated with open heart surgery. To deliver an occlusion device, a guidewire and a catheter are inserted into a major blood vessel and advanced, through the body, to the treatment site. To allow for proper control and maneuvering, each item of the delivery system, including the guidewire, catheter, and delivery device, must be sufficiently stiff to maneuver to the desired location despite resistance caused by contact with the surface of the vasculature and turns in the body. At the same time, guidewires, catheters, and delivery devices must also be flexible enough to navigate the numerous turns in the body's vasculature. The necessary stiffness of the guidewire, catheter, and delivery device may distort the tissue on the way to and at the site of the defect, making it difficult to optimally position the occlusion device. One difficulty in implanting occlusion devices is ensuring that the occluder conforms to the contours of the defect. Poor conformation to the defect results in poor seating of the occlusion device which decreases the ability of the occlusion device to occlude the defect. Ensuring the proper seating of an occlusion device once it has been deployed poses a continuing challenge given the uneven topography of the vascular and septal walls of each patient's heart. The challenge in correctly positioning an occluder so that it conforms to the uneven topography is compounded by the fact that the contours of each defect in each individual patient are unique. Distortion of tissue surrounding the defect caused by the stiffness of the guidewire, catheter, or delivery device adds to the seating challenge. If the surrounding tissue is distorted by the catheter, it is difficult to determine whether the occlusion device will be properly seated once the catheter is removed and the tissue returns to its normal state. If the occlusion device is not seated properly, it may have to be retrieved and re-deployed. Both doctors and patients prefer to avoid retrieval and re-deployment because it causes additional expense and longer procedure time. Worse yet, if the occlusion device embolizes or is improperly deployed, retrieval of the device may require open heart surgery. Releasing the occlusion device from the delivery device also poses challenges to treatment. Currently, a variety of release mechanisms are used to release an occlusion device from the delivery device. Some release mechanisms work by pulling or twisting a handle of the delivery device in order to release the occlusion device. This pulling on or twisting of the delivery device may make the delivery device very stiff due to the tension created by the release mechanism. The tension may add to tissue contortion. One example of a current release system is a delivery device with a small jaw on the end which grasps the occlusion device. The small jaw is connected to a long wire. Pulling on the wire opens the jaw and releases the occlusion device. A drawback to this design is the tension that is created when the wire is pulled. When the wire must be pulled to release the occlusion device, the delivery device becomes very stiff, particularly at the end of the device closest to the occlusion device. This stiffness near the occlusion device distorts the tissue at the location where the occlusion device is to be deployed. As a result, it is difficult to judge whether or not the occlusion device is properly placed, or whether or not it will remain properly placed once released from the device and the tissue returns to normal. Thus, there is a need in the art for a delivery system that allows physicians to observe the placement of an internal medical device without tissue contortion that also allows for easy release and retrieval.
{ "pile_set_name": "USPTO Backgrounds" }
One of technologies for performing communication on a network is “data encapsulation”. The details are as follows. A data transferred between networks constitutes its form in accordance with a communication system used at the time of the transfer. The communication on the network is performed through a plurality of layers, as represented by OSI Reference Model and TCP/IP stack. Therefore, the form of the data needs to be capable of supporting specification of each layer. In general, a data consists of a header and a payload. The header includes a content that serves as a control data at a specific layer, and a communication standard at that layer interprets the content of the header to forward the payload to another layer. At each layer, the header is added ahead of the payload at a time of transmission and the header is removed at a time of reception. Therefore, the payload includes a content that can serve as the header at an upper layer. When a data communication is initiated, a data is generated from the top layer of the communication system. The data passes through lower layers one after another, passes through the bottom layer and then is output to the network. Before the data reaches the bottom layer, the header associated with each layer is added to the data and a portion being the header at the upper layer is treated as the payload. The addition of the header thus performed is called the data encapsulation. The data encapsulation can be regarded as a technique that makes it possible by adding the header associated with a specific communication system to communicate with the communication system with which communication has not been available. By the application of this technique, it is possible to improve data security and to create a new communication system that can support a plurality of existing communication systems. A new communication system that utilizes this technique is described in Non-Patent Literature 1. According to Non-Patent Literature 1, “Fibre Channel Over Ethernet (FCoE)” is proposed as one technique for a recent data center. A recent data center is operated with a network configuration in which Storage Area Network (SAN) as represented by Fibre Channel (FC) and Local Area Network (LAN) as represented by Ethernet (registered trade mark) are mixed. Since separate networks are mixed, management costs and device costs are rising, which is a problem. Because of this situation, the FCoE has been proposed. According to the FCoE, an FC data is encapsulated by using an Ethernet header and a newly-defined FCoE header. As a result, it is possible to integrate the communication system into the Ethernet system and to achieve a network configuration that the SAN and the LAN are integrated. Since uniform management and devices can be achieved on the integrated network, the FCoE is considered as a promising technique for solving the problem. However, according to the current FCoE, the communication needs to invariably go through an FCoE communication-dedicated switch that is called an “FCoE Forwarder (FCF)”. This causes constraint on network flexibility and extensibility. Therefore, it is not possible to deal with the data center configuration that utilizes a large number of communication devices.
{ "pile_set_name": "USPTO Backgrounds" }
Pressure swing adsorption (PSA) devices are used to separate at least one preferentially adsorbed component from at least one less readily adsorbed component in a feed fluid mixture. Gas separation by PSA is achieved by synchronized pressure cycling and gas flow reversals through a set of adsorber beds which adsorb the preferentially adsorbed component/s in the feed gas mixture. During each cycle, a pressurized feed gas mixture is first introduced to the feed end of the adsorber beds. The less readily adsorbed component/s pass through the adsorber beds while the preferentially adsorbed component/s are adsorbed. Thus, gas taken from the end opposite the feed end of the bed (i.e. the product end) is concentrated in the less readily adsorbed component/s. The adsorbent in the beds is regenerated later in the cycle by closing off the supply of pressurized feed gas mixture, reducing the pressure in the bed thereby desorbing the preferentially adsorbed component/s, and exhausting or purging them from the bed. A simple PSA cycle can thus involve a single pressurization step in which gas concentrated in less readily adsorbed component/s is obtained from the product end of the beds, and a depressurization step in which gas concentrated in readily adsorbed component/s is exhausted from the feed end of the bed. However, to improve purity, yield, and efficiency, complex PSA cycles are typically employed in the art. These more complex cycles use de-pressurization and re-pressurization gas flows between feed and product ends of the adsorbent beds at various stages in the cycle. Multiple adsorption beds are required for these more complex PSA cycles. Conventional commercial PSA devices currently employ fixed-bed adsorbents in the form of beads or pellets from about 1 mm to 4 mm in size. In order to achieve higher cycle speeds, the gas velocities within the adsorbent beds must increase, particularly for devices with multiple adsorbent beds. The maximum cycle speed for such conventional beaded bed PSA devices is however limited by such factors as bead fluidization, attrition, and also to some extent valve operation speeds and valve durability. Rapid cycle PSA (RCPSA) devices have been recently developed that operate at cycle speeds greater than about 2 cycles per minute. The use of structured adsorbent beds comprising laminated sheets of immobilized adsorbent avoids issues of bead fluidization and attrition and also allows for decreased pressure drops in the beds. The use of such laminated sheet adsorbent, combined with the use of compact high speed rotary valves allows high PSA cycle speeds to be achieved at high efficiencies. U.S. Pat. Nos. 4,968,329 and 5,082,473 and application number 2002-0170436 disclose preferred embodiments for a RCPSA bed comprising spirally wound adsorbent sheets of 1 mm or less in thickness. An adsorbent sheet is spirally wound together with a spacer sheet, e.g. a wire mesh spacer sheet, such that the spacer sheet defines flow channels between adjacent sheets of adsorbent. U.S. Pat. No. 5,082,473 suggests that the ratio of half sheet adsorbent thickness to channel gap (b/t) is desirably near unity but could be between 0.5 and 2.0, or in other words, the channel gap could be somewhere between 0.25 to 1 that of the adsorbent sheet thickness. This implies then that the channel fraction in the bed (where channel fraction is defined as the ratio of the channel volume to the total bed volume) is less than 50%. In many PSA applications, the feed streams may contain small amounts of contaminants that are even more preferentially adsorbed on the adsorbent than those component/s intended to be adsorbed. Such contaminants may be characterized by very strong, and sometimes irreversible, adsorption and may deactivate or poison the adsorbent thereby degrading its capacity and selectivity and thus its ability to function properly. For instance, high nitrogen selectivity, cation exchanged, low silica-to-alumina ratio zeolites are commonly used in the separation of oxygen from air, but these zeolites are very sensitive to water contaminant in the feed stream. Various methods may be used in conventional PSA to remove contaminants from the feed gas stream and thus guard against degradation of the adsorbent bed. These include upstream clean-up of the feed gas (e.g. feed gas cooling followed by condensation upstream of the PSA device) or adsorption onto regenerable guard beds (which are typically placed at the feed end within the same adsorbent housing of the PSA device). The guard beds serve to adsorb virtually all the contaminant from the feed stream before it reaches the primary adsorbent bed. And, the guard beds are regenerated at the same time as the primary adsorbent bed in the typical PSA cycle. For removal of water contaminant from a feed stream, a dessicant is typically used as a guard layer at the feed end of the beds. Guard layers for contaminant control within a PSA bed do not contribute to the primary adsorption process and thus effectively add undesirable dead volume to the PSA bed. Preferably, the void space at the ends of the adsorbent beds should be minimized for better recovery. It is thus desirable to minimize the length and internal void volume of such guard layers, while still effectively removing the contaminants in the feed stream. In the prior art, this is generally done by maximizing the amount of guard adsorbent material present in the guard layer while still allowing for acceptable flow of gas through the guard layer. In PSA applications employing zeolite adsorbents in which water is a primary contaminant, typically from 5 to 30% of the adsorber bed is occupied by a guard layer containing alumina, silica gel, activated carbon, or a combination of these. The feed gas is dried to 0.1 to 5 ppm of water vapour before contacting the zeolite adsorbent layers. Conventional PSA devices are less sensitive to the presence of contaminants in the feed stream than are the recently developed, faster cycle RCPSA devices. The former have relatively longer adsorber beds over which contaminant diffusion must occur and have relatively larger adsorbent inventory so that if a given amount is deactivated, it represents a smaller fraction of the total. Further, the rate of deterioration is dependant on the cumulative number of cycles experienced, which is less for conventional PSA devices over a given time period. The unexpected sensitivity of RCPSA devices to feed stream contaminants was noted experimentally in U.S. Pat. No. 7,037,358. Various methods were also disclosed therein to protect RCPSA devices against contaminants and particularly against water. For instance, the use of guard layers, similar in design to the primary adsorbent layers, were employed at the feed end of the adsorber beds. The layers generally were disclosed as being thin and having a high surface area, with the flow channels having narrow hydraulic radius in order to overcome mass transfer constraints. It is necessary to reduce the length of narrow flow channels in order to maintain a desirable low pressure drop across the guard bed.
{ "pile_set_name": "USPTO Backgrounds" }
Early qualification testing is important in assessing new immature fabrication processes for semiconductor devices. Early semiconductor die fabricated with such immature fabrication processes may be rife with defects, which results in few if any nominal or repairable die for early failure rate studies. This may be further complicated when chip repair and electrical die identification is not yet available.
{ "pile_set_name": "USPTO Backgrounds" }
In digital transmission systems, for the purpose of supplying the clock pulse there is generated in a control centre a master clock pulse which is transmitted via the digital transmission system to local digital transmission facilities. In each of the digital transmission facilities, a local slave clock pulse is generated which is synchronized to the received master clock pulse. The digital transmission facilities, e.g., data transmission facilities, are predominantly accommodated in subracks which have a central clock-pulse supply unit. The clock-pulse supply unit generates the slave clock pulse which is used as a central system clock pulse and, in a synchronous system, via the back panel which comprises a bus for system clock-pulse distribution, distributes it to all function units accommodated in the subracks. If the functioning of the central clock-pulse supply is impaired or fails, this can affect the entire data transmission facility. For this reason, there is a change towards redundancy in the construction of the clock-pulse supply unit of the subracks. This means that a redundant clock pulse, which is non-dependent on the slave clock pulse, is generated locally through a second clock-pulse supply unit. If there is disturbance of the slave clock pulse it is possible to switch over to the redundant clock pulse. The redundant clock pulse is then the new slave clock pulse which assumes the function of supplying the clock pulse to the subracks. The switchover to the redundant clock pulse can be effected autonomously by the clock-pulse supply units or administratively, from the control centre. The switchover can result in an interruption of a connection existing at that instant, e.g. a telephone connection, which can mean the loss of data. It is necessary to resynchronize the redundant clock pulse to the master clock pulse. This requires time. The interrupted connection must be re-established.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to methods for diagnosing or monitoring Alzheimer's disease. More particularly, the present invention relates to measuring the amount of tau protein and/or the amount of β amyloid peptide (x-≧41) in patient fluid samples and using these amounts as a diagnostic indicator. Alzheimer's disease (AD) is a degenerative brain disorder characterized clinically by progressive loss of memory, cognition, reasoning, judgment and emotional stability that gradually leads to profound mental deterioration and ultimately death. AD is a very common cause of progressive mental failure (dementia) in aged humans and is believed to represent the fourth most common medical cause of death in the United States. AD has been observed in all races and ethnic groups worldwide and presents a major present and future public health problem. The disease is currently estimated to affect about two to three million individuals in the United States alone. AD is at present incurable. No treatment that effectively prevents AD or reverses its symptoms or course is currently known. The brains of individuals with AD exhibit characteristic lesions termed senile plaques, and neurofibrillary tangles. Large numbers of these lesions are generally found in several areas of the human brain important for memory and cognitive function in patients with AD. Smaller numbers of these lesions in a more restricted anatomical distribution are sometimes found in the brains of aged humans who do not have clinical AD. Senile plaques and amyloid angiopathy also characterize the brains of individuals beyond a certain age with Trisomy 21 (Down's Syndrome) and Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWAD). At present, a definitive diagnosis of AD usually requires observing the aforementioned lesions in the brain tissue of patients who have died with the disease or, rarely, in small biopsied samples of brain tissue taken during an invasive neurosurgical procedure. The principal chemical constituent of the senile plaques and vascular amyloid deposits (amyloid angiopathy) characteristic of AD and the other disorders mentioned above is an approximately 4.2 kilodalton (kD) protein of about 39-43 amino acids designated the amyloid-β peptide (Aβ) or sometimes βAP, AβP or β/A4. Aβ was first purified and a partial amino acid sequence reported in Glenner and Wong (1984) Biochem. Biophys. Res. Commun. 120:885-890. The isolation procedure and the sequence data for the first 28 amino acids are described in U.S. Pat. No. 4,666,829. Forms of Aβ having amino acids beyond number 40 were first reported by Kang et al. (1987) Nature 325:733-736. Roher et al. (1993) Proc. Natl. Acad. Sci. USA 90:10836-840 showed that Aβ(1-42) is the major constituent in neuritic plaques (90%) with significant amounts of isomerized and racemized aspartyl residues. The authors also showed that Aβ(17-42) also predominates in diffuse plaques (70%), while Aβ(1-40) is the major constituent in the meningovascular plaques, comprising 60% of the total Aβ and, in parenchymal vessel deposits Aβ(1-42) represents 75% of the total Aβ. Iwatsubo et al. (1994) Neuron 13:45-53 showed that Aβ42(43)-positive senile plaques are the major species in sporadic AD brain. Molecular biological and protein chemical analyses conducted during the last several years have shown that Aβ is a small fragment of a much larger precursor protein, referred to as the β-amyloid precursor protein (APP), that is normally produced by cells in many tissues of various animals, including humans. Knowledge of the structure of the gene encoding APP has demonstrated that Aβ arises as a peptide fragment that is cleaved from the carboxy-terminal end of APP by as-yet-unknown enzymes (proteases). The precise biochemical mechanism by which the Aβ fragment is cleaved from APP and subsequently deposited as amyloid plaques in the cerebral tissue and in the walls of cerebral and meningeal blood vessels is currently unknown. Several lines of evidence indicate that progressive cerebral deposition of Aβ plays a seminal role in the pathogenesis of AD and can precede cognitive symptoms by years or decades (for review, see Selkoe (1994) J. Neuropath. and Exp. Neurol. 53:438-447 and Selkoe (1991) Neuron 6:487). The single most important line of evidence is the discovery in 1991 that missense DNA mutations at amino acid 717 of the 770-amino acid isoform of APP can be found in affected members but not unaffected members of several families with a genetically determined (familial) form of AD (Goate et al. (1991) Nature 349:704-706; Chartier Harlan et al. (1991) Nature 353:844-846; and Murrell et al. (1991) Science 254:97-99). Suzuki et al. (1994) Science 264:1336-1340 showed that in persons with the 717 mutation, there is a higher percentage of Aβ(−42) than Aβ(−40). In addition, a double mutation changing lysine595-methionine596 to asparagine595-leucine596 (with reference to the 695 isoform) found in a Swedish family was reported in 1992 (Mullan et al. (1992) Nature Genet 1:345-347) and is referred to as the Swedish variant. Genetic linkage analyses have demonstrated that these mutations, as well as certain other mutations in the APP gene, are the specific molecular cause of AD in the affected members of such families. In addition, a mutation at amino acid 693 of the 770-amino acid isoform of APP has been identified as the cause of the Aβ deposition disease, HCHWA-D, and a change from alanine to glycine at amino acid 692 appears to cause a phenotype that resembles AD in some patients but HCHWA-D in others. The discovery of these and other mutations in APP in genetically based cases of AD argues that alteration of APP and subsequent deposition of its Aβ fragment can cause AD. Neurofibrillary tangles are composed mainly of the microtubule protein, tau. Z. S. Khachaturian (1985) Arch. Neurol. 42:1097-1105. Recent studies have shown that tau is elevated in the CSF of Alzheimer's disease patients. M. Vandermeeren et al. (1993) J. Neurochem. 61:1828-1834. Despite the progress which has been made in understanding the underlying mechanisms of AD, there remains a need to develop methods for use in diagnosis of the disease. While the level of tau is of some help in diagnosing Alzheimer's disease (M. Vandermeeren et al., supra) more markers, and more specific markers would be helpful. It would be further desirable to provide methods for use in diagnosis of Aβ-related conditions, where the diagnosis is based at least in part on detection of Aβ and related fragments in patient fluid samples. Specific assays for Aβ detection should be capable of detecting Aβ and related fragments in fluid samples at very low concentrations as well as distinguishing between Aβ and other fragments of APP which may be present in the sample. 2. Description of the Background Art Glenner and Wong (1984) Biochem. Biophys. Res. Commun. 120:885-890 and U.S. Pat. No. 4,666,829, are discussed above. The '829 patent suggests the use of an antibody to the 28 amino acid Aβ fragment to detect “Alzheimer's Amyloid Polypeptide” in a patient sample and diagnose AD. No data demonstrating detection or diagnosis are presented. Numerous biochemical electron microscopic and immunochemical studies have reported that Aβ is highly insoluble in physiologic solutions at normal pH. See, for example, Glenner and Wong (1984) Biochem. Biophys. Res. Commun. 122:1131-1135; Masters et al. (1985) Proc. Natl. Acad. Sci. USA 82:4245-4249; Selkoe et al. (1986) J. Neurochem. 46:1820-1834; Joachim et al. (1988) Brain Research 474:100-111; Hilbich et al. (1991) J. Mol. Biol. 218:149-163; Barrow and Zagorski (1991) Science 253:179-182; and Burdick et al. (1992) J. Biol. Chem. 267:546-554. Furthermore, this insolubility was predicted by and is consistent with the amino acid sequence of Aβ which includes a stretch of hydrophobic amino acids that constitutes part of the region that anchors the parent protein (APP) in the lipid membranes of cells. Hydrophobic, lipid-anchoring proteins such as Aβ are predicted to remain associated with cellular membranes or membrane fragments and thus not be present in physiologic extracellular fluids. The aforementioned studies and many others have reported the insolubility in physiologic solution of native Aβ purified from AD brain amyloid deposits or of synthetic peptides containing the Aβ sequence. The extraction of Aβ from cerebral amyloid deposits and its subsequent solubilization has required the use of strong, non-physiologic solvents and denaturants. Physiologic, buffered salt solutions that mimic the extracellular fluids of human tissues have uniformly failed to solubilize Aβ. Separate attempts to detect APP or fragments thereof in plasma or CSF have also been undertaken. A large secreted fragment of APP that does not contain the intact Aβ region has been found in human cerebrospinal fluid (Palmert et al. (1989) Proc. Natl. Acad. Sci. USA 86:6338-6342; Weidemann et al. (1989) Cell 57:115-126; Henriksson et al. (1991) J. Neurochem. 56:1037-1042; Palmert et al. (1990) Neurology 40:1028-1034; and Seubert et al. (1993) Nature 361:260-263) and in plasma (Podlisny et al. (1990) Biochem. Biophys. Res. Commun. 167:1094-1101). The detection of fragments of the carboxy-terminal portion of APP in plasma has also been reported (Rumble et al. (1989) N. Engl. J. Med. 320:1446-1452), as has the failure to detect such fragments (Schlossmacher et al. (1992) Neurobiol. Aging 13:421-434). Despite the apparent insolubility of native and synthetic Aβ, it had been speculated that Aβ might occur in body fluids, such as cerebrospinal fluid (CSF) or plasma (Wong et al. (1984) Proc. Natl. Acad. Sci. USA 92:8729-8732; Selkoe (1986) Neurobiol. Aging 7:425-432; Pardridge et al. (1987) Biochem. Biophys. Res. Commun. 145:241-248; Joachim et al. (1989) Nature 341:226-230; Selkoe et al. (1989) Neurobiol. Aging 10:387-395). Several attempts to measure Aβ in CSF and plasma have been reported by both radioimmunoassay methods (WO90/12870 published Nov. 1, 1990) and sandwich ELISAs (Wisniewski in Alzheimer's Disease, eds. Becker and Giacobini, Taylor and Francas, N.Y. pg. 206, 1990; Kim and Wisniewski in Techniques in Diagnostic Pathology, eds. Bullock et al., Academic Press, Boston pg. 106; and WO90/12871 published Nov. 1, 1990). While these reports detected very low levels of Aβ immunoreactivity in bodily fluids, attempts to directly purify and characterize this immunoreactivity further and determine whether it represented Aβ were not pursued, and the efforts were abandoned. The possibility of Aβ production by cultured cells was neither considered nor demonstrated. Retrospectively, the inability to readily detect Aβ in bodily fluids was likely due to the presence of amyloid precursor fragments with overlapping regions or fragments of Aβ that obscured measurements and to the lack of antibodies completely specific for intact Aβ. This is presumably because the antibodies used by both groups would cross-react with other APP fragments containing part of Aβ known to be present in CSF thereby interfering with the measurement, if any, of intact Aβ. These difficulties have been overcome with the use of monoclonal antibodies specific to an epitope in the central junction region of intact Aβ (Seubert et al. (1992) Nature 359:325-327). Seubert et al. (1992) Nature 359:325-327 and Shoji et al. Science (1992) 258:126-129 provided the first biochemical evidence for the presence of discrete Aβ in bodily fluids. Vigo-Pelfrey et al. (1993) J. Neurochem. 61:1965-1968 reported the identification of many Aβ species in cerebrospinal fluid.
{ "pile_set_name": "USPTO Backgrounds" }
Non-volatile memory is becoming standard in many data storage systems such as digital cameras and digital audio players. Modular, portable memory devices, such as flash memory devices, are available that can be readily connected to and disconnected from these systems. CD-based media is also used. Regardless of the type of memory device employed, data storage systems use a file system to control where data is located on the device and to interface with the device. Many data storage systems use the DOS FAT file system. Because the DOS FAT file system requires that the memory device be re-writeable, the DOS FAT file system is not preferred for write-once memory devices. While there are file systems designed for write-once memory devices, such as the ISO9660 file system used by CD-ROMs and the Universal Disk Format (UDF) used by Adaptec for multi-session CD-RWs, these file systems may not be suitable for certain applications.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to containers for storage, transport and use of liquid chemicals including acids, solvents, bases, photo-resists, dopants, inorganics, organics, biological solutions, pharmaceuticals, and radioactive chemicals. In particular, the invention relates to a container which uses a disposable film pouch within a bottle or overpack, and to dispensing systems used in conjunction with this container. 2. Description of the Prior Art Presently, the users of liquid chemicals have had a very limited choice of packaging, delivery, and disposal methods for those chemicals. One prior art system delivers chemicals from a bulk source, usually a 55 gallon drum, to the point of use. This type of delivery system, including the drums, piping, and automated delivery equipment, is very expensive, making it usable by only a small number of manufacturers whose volume is sufficient to justify the high cost. A second, most widely-used alternative is to handle the liquid chemicals in bottles made of glass or polyethylene. This alternative, however, has several disadvantages. In particular, glass and polyethylene have been shown to contribute both particulate contamination and metal-ion extractables which significantly compromise the level of desired purity of liquid chemicals. In addition, the dispensing methods used with glass and polyethylene bottles also compromise the purity of the chemical contents. Manual decanting exposes chemicals to atmospheric contamination, and also can compromise the safety of the technicians handling the bottles. With glass bottles, there is also the danger of breakage; even slight abuse to the bottles can be very hazardous if breakage occurs. Disposal of empty bottles is also a major concern. Disposal typically requires triple rinsing, tagging, and crushing before sanitary disposal. This process is labor intensive and tedious. A third alternative is the use of blow-molded fluoropolymer bottles. With this alternative, the manual handling of the bottle (as opposed to bulk delivery) is maintained, yet the fluoropolymer bottle provides inertness which is critical to maintaining the of the chemicals being handled. These-blow molded bottles, however, are very expensive and therefore have only been cost justified by the use of a returnable program in which the bottles are returned to the manufacturer for processing and reuse. A returnable program, however, presents numerous logistical problems for suppliers and users alike. There is a continuing need for improved containers and systems for storage, transport and use of liquid chemicals. In particular, there is a continuing need for containers which are much lower in cost yet offer the handling characteristics of fluoropolymer bottles or of automated delivery systems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to structuring for sheet supported sensors and associated circuitry in hand-operated graphic image controllers, and particularly six degree of freedom (3D) computer image controllers which serve as interface input devices between the human hand(s) and graphic image displays such as a computer or television display, a head mount display or any display capable of being viewed or perceived as being viewed by a human. 2. Description of the Prior Art Although there are many related physical-to-electrical hand-controlled interfacing devices interfacing with computers, game consoles and the like image generation machines connected to image displays and the like shown and described in prior art, no disclosures or documents teach or suggest singularly or in reasonable combination the present claimed invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a semiconductor device comprising a semiconductor chip on which an internal voltage generating circuit is provided, and more particularly to a semiconductor device comprising a reset signal generating circuit for generating a power-on-reset signal (hereinafter referred to as a POR signal) used for resetting an internal circuit thereof when a power source is turned ON or for keeping circuit operation halted until an internal potential is stabilized in order to prevent the unstable state from occurring when the power source is turned ON. 2. Description of the Background Art In some cases, the semiconductor device has a structure in which the internal circuit is reset when the power source is turned ON or the circuit operation is kept halted until the internal potential is stabilized by using the POR signal in order to prevent the unstable state from occurring when the power source is turned ON. FIG. 25 is a block diagram showing the structure of a semiconductor device which comprises a conventional POR signal generating circuit for generating a POR signal. In FIG. 25, reference numeral 1 designates a semiconductor chip, 2 designates a power input terminal provided on the semiconductor chip 1 for receiving an external voltage ExVdd given from the outside of the semiconductor chip 1, 3 designates an internal circuit provided in the semiconductor chip 1, 4 designates an internal voltage generating circuit for supplying an internal voltage intVdd to the internal circuit 3, and 5 designates a POR signal generating circuit for generating a POR signal to be sent to the internal circuit 3 based on the external voltage ExVdd. FIG. 26 is a circuit diagram showing the structure of a POR circuit. In FIG. 26, reference numeral 6 designates an N channel MOS transistor having a gate to which the external voltage ExVdd is given, a drain to which the external voltage ExVdd is given, and a source, 7 designates a capacitor having a first end connected to the source of the transistor 6 and a second end connected to a ground potential point GND, 8 designates an N channel MOS transistor having a gate to which the external voltage ExVdd is given, a drain to which the external voltage ExVdd is given, and a source, 9 designates an N channel MOS transistor having a drain connected to the source of the transistor 8, a source connected to the ground potential point GND, and a gate connected to the first end of the capacitor 7, 10 designates an inverter having an input terminal connected to the drain of the transistor 9 and an output terminal for inverting and outputting the logic of a signal input to the input terminal, and 11 designates an inverter having an input terminal connected to the output terminal of the inverter 10 and an output terminal for inverting and outputting the logic of a signal input to the input terminal. A pulse signal is output as the POR signal from the conventional POR signal generating circuit. The pulse width of the POR signal is determined by the charging time of the capacitor 7 because the conventional POR signal generating circuit has the above structure. However, the conventional POR signal generating circuit has problems that the POR signal is generated depending on the rise speed of an external power source before the internal voltage generating circuit fully operates and that the POR signal is generated by the change of the external voltage. It is preferred that POR signals outputted on different timings are generated depending on a circuit structure in some cases, for example, in the case where a plurality of internal voltage generating circuits are provided on the semiconductor chip and the internal voltages have different generation timings. In the case of a DRAM, a plurality of potentials such as a substrate potential Vbb, a cell plate potential Vcp and the like are necessary. According to the semiconductor chip in which the external voltage ExVdd is dropped inside and the internal voltage intVdd is used, the cell plate potential Vcp is often generated by the internal voltage intVdd when the ground potential GND acts as a reference in consideration of the stability of the potential. A coupling capacity between a cell plate and a substrate is big. Consequently, the floating of the substrate potential Vbb may be caused by the coupling capacity when the cell plate potential Vcp rises. In order to prevent the floating, it is preferred that the substrate potential Vbb is kept fixed to the ground potential GND until the cell plate potential Vcp rises. However, the POR signal generating circuit according to the prior art has the following problems. More specifically, the POR signal is generated by only the external voltage. For this reason, it is hard to generate signals which rise (or fall) at different timings, that is, at a comparatively early timing as the POR signal of the internal voltage generating circuit, and a signal which rises (or falls) after the cell plate potential Vcp is stabilized, that is, at a comparatively late timing as the POR signal of the internal voltage generating circuit used for setting the substrate potential Vbb.
{ "pile_set_name": "USPTO Backgrounds" }
Many types of plugs currently in use, including crankbaits and minnow lures) wobble, swim, roll, or show other suitable `in-built` action when drawn steadily through the water. Many of these types of plugs are retrieved by line connected to the body of the plug directly to an eyelet or through intermediate elements, and have one or more hooks connected to the plug body. In most cases, for the lure to achieve its action the lure body, hook(s) and line all have to move appropriately. Thus in these circumstances weight added to the line, intermediate elements, hook(s) or lure body will generally tend to dampen the action of these lures. Similarly, the addition to any of these components of fish and strike attracting elements such as propellors, flashes or spinning blades that add significant weight and/or water resistance will also tend to dampen action. These and related limitations restrict the effectiveness in certain fishing applications of many types of plugs with `in-built` action currently in use. For example, many plugs with `in-built` action that imitate very small bait fish, frogs or insects cannot be made heavier for more effective casting, and many larger plugs cannot be weighted for more effective deep water jigging or for longer distance casting, without impairing the plug's action. Furthermore, the addition of bait to artificial lures can often significantly improve their fish catching ability, provided the weight and/or water resistance of the bait does not impair the action of the lure. The significance of being able to retain satisfactory action in an artificial lure whilst also being able to add weight, bait and/or other components can be seen by examining the evolution of metal bladed lures: By the early 1800's, the metal spoon was in use in England and north America. It was discovered that the combination of bait with the spoon could improve catch rates in some circumstances, but this adversely affected the action. Around 1865 the spinner was invented, comprising a metal blade that rotated about a fixed shaft. Thus the fixed shaft could carry hooks, bait, weight and other components without impairing the action of the blade. The spinner is in widespread use today in a large variety of patterns and forms.
{ "pile_set_name": "USPTO Backgrounds" }
A prior art system for video image creation is described in commonly owned U.K. Patent Publication 2 098 625 and is shown in FIG. 1 hereof. FIGS. 1-11 of said U.K. Patent Publication are included in this specification as FIGS. 5-15, respectively. This specification includes under this heading the disclosure of said U.K. Patent Publication, with appropriate changes of figure numbers. The symbol "'" has been added to each reference numeral in the figures and text taken from said U.K. Patent Publication and added to this specification. The system is controlled via a touch tablet/stylus combination and a keyboard (not illustrated) and is capable of producing video images that resemble closely those that would be produced using conventional artists materials. To achieve the realism incoming signals and stored signals are mixed so that there is a blending and this blending is controlled by a distribution signal related to the distribution power of the implement which is being simulated. For example, if the operator wishes to draw a stroke on the screen that simulates the use of a wide brush and real paint the operator `draws` a line on the touch tablet using the stylus and chooses, say, the color red and the implement `wide brush`. The computer 1 receives signals from the touch tablets representing the co-ordinates of points along the line and also command signals for the type of brush and the color. To achieve the desired effect of a wide stroke in the final image, a patch of picture points adjacent and including each designated picture point must be processed. Taking the co-ordinate signal for the first point on the line the computer produces a corresponding address in the frame store in which signals representing the picture being created are accumulated so that when the signals in the store 2 are read and applied to a color TV monitor the first point in the line will appear on the screen of the color monitor in the position indicated by the stylus on the touch tablet. The address produced by the computer is the address of the corner of the patch of picture point signals to be processed. The computer also causes video signals representing red to be loaded into a patch of locations in the patch RAM 3 and the distribution signals for a wide brush to be loaded into a patch of locations in the shape RAM 4. The distribution signal represents the effect produced by a wide brush with white paint on a black background, i.e. the intensity distribution produced by the selected implement. Starting from the corner address of the patch the computer generates the addresses of all points in the patch referred to the frame store 2 and for each address generated the signals for that address are read from frame store 2 and patch store 3 into processor 5, which comprises two multipliers 8 and 9 and an adder 10. The processing is done picture point by picture points. The distribution signal for each address is also made available to processor 5 from the shape RAM 4, after being multiplied in 6 by a factor related to the pressure of the stylus on the touch tablet and being perhaps multiplied in multiplier 7 by a stencil signal, and it is applied as a multiplication factor K to the multiplier 8. The complement of K, namely 1-K, is produced by the circuit 11 and applied to the multiplier 9. The output of the processor for each picture point can be seen to be KA+(1-K)B where A is the new signal derived from RAM3 and B the stored signal in store 2 and so the value of K determines the proportions of incoming and stored signals which make up the new image signal. The image signals in the frame store 2 are also read and rewritten in the store 2 cyclically in TV raster format, so that the image being created can be displayed on the TV monitor. Once each picture point within the patch has been processed the computer generates the address for the corner of the next patch and the processing then runs through this patch. Each patch is called a brush stamp and to produce a continuous line on the screen the brush stamps will have to overlap so signals for some picture points will be processed a plurality of times for one line. The system operates at a speed such that the lines are seen on a monitor at essentially the same time as the operator draws them. It will be understood that this is a simplified explanation of the system and it will in fact operate on three video signal components separately, say for example R, G, B signals. This system produces images which are very close to those produced using paint on paper etc. although the images are made up from color video signals and viewed on a color T.V. monitor. However, the system requires random access to the frame store, for updating the image in response to each application of the stylus, which access is interleaved with the normal reading of the video signals in TV raster format for display or refresh purposes. In addition to this complication, the use of a random access store as the frame store for the video signals, which is necessary for the processing, is costly. There are a number of standard computer peripherals available that permit "computer graphics" to be generated entirely electronically. These can take the form of vector or raster displays with the input means usually some form of touch tablet on which the operator can draw and see the results of this work in real time on the electronic display. The system of particular interest to the broadcaster, amongst others, is that of the raster display configuration where the display itself can take the form of a normal colour TV screen and thus the video from the computer can be broadcast directly. The obvious use of such a system is to allow the graphics used to much in modern productions to be generated electronically rather than the traditional pencil and paper or "cut and stick" techniques that are both time consuming and expensive in materials. A typical known electronic graphics system is shown in FIG. 5 comprising a touch tablet 10', a computer 12', a framestore 13' with associated colour generation RAMs 14'-16' for the display 17'. An artist draws with the stylus 11' of the touch tablet and the computer 12' registers the coordinates (x,y) of the stylus whilst remembering the selected colour with which the artist has chosen to draw. The computer then feeds the appropriate addresses to the framestore 13' where the pixel at that address is modified to hold the code corresponding to the chosen colour which it receives as incoming data. As the framestore is read at normal broadcase video rates than the lines, or pictures, drawn by the artist are visible on the display. It is found in practice that, providing the display is directly in front of the touch tablet, the fact that the artist is not watching his hand but the screen provides no problem. It is possible to use the computer to designate the stylus size so as to be several picture points in diameter for example so that the lines on the `drawn` image will be of a designated width, as though drawn with a larger stylus. This is achieved by controlling the writing of data into the frame store so that adjacent picture points receive the incoming data also. The colour for display is generated from the RAM stores 14'-16' handling the Red, Green or Blue component respectively to generate the desired colour combination. (Equal amounts of R, G and B components will produce a monochrome image of a certain intensity.) If the data from frame store 13' is 8 bits wide, this will allow 256 different `partial colour` combinations. The capacity of the RAMs is selected accordingly. The various colour parameters are fed into the RAMs from the computer and can be updated as desired. During normal operation the RAMs operate as ROMs in dependence on the frame store output. Now the system described represents a fairly common application of digital techniques and there are already a number of such units available. In the system as described, the path from the touch tablet to the framestore and the display via the computer is all unidirectional, since the computer only writes to the framestore and does not read from it (and in such a system makes no use of the information held in the framestore). The style of pictures drawn with such a machine can be of very high quality but cannot fall into the category of "fine art", or, put another way, they are more impressionistic than realistic. This is caused by the nature of the hard "electronic" lines being a far cry from the textures and tonal qualities of the more conventional artists tools. This electronic nature of the pictures is further emphasised by the fact that existing systems are `partial` colour (as shown) systems rather than `full` colour, that is to say, the framestore only has 256 possible combinations in each pixel and a colour can be allocated to each combination. Thus only 256 hues, saturations or luminance levels are possible on the screen for any given picture. Any true pictorial representation of a scene would have far more combinations than this. The system of the present invention seeks to arrive at a much closer electronic analogy of the normal artists tool in order that the operator might still move the stylus but that the results on the screen make it appear he is genuinely working with a pencil, paint brush, or other implement. According to the invention there is provided a video image creation system comprising means for providing image data pertaining to at least one picture point allocated to a designated coordinate location and processing means for processing the image for each designated coordinate location from both current and previously derived image data. Further according to the invention there is provided a video image creation system comprising drafting means operable by an operator to designate positions on a desired image, storage means having means for storing signals representing values of a characteristic of the image, such as intensity or colour, at storage locations representing points on a raster of image points, means responsive to operation of said drafting means to produce a signal representing a new value of said characteristic relevant to a position designated by said drafting means, processing means for combining proportions of said produced signal and any signal stored in the corresponding location in said storage means, and means for storing the resultant of the combination in the corresponding location in said storage means. As already described with regard to the prior art arrangement of FIG. 5, such a prior art system can designate the stylus size but the resulting image drawn via this stylus is rather impressionistic due to the hard electronic lines. Considering this prior art system operating in black and white (monochrome) then assuming the stylus width to have been selected to be 7 picture points (centred on picture point 4) then the intensity will correspond to that shown in FIG. 6(a). In order to move towards a more natural image, the first consideration was to vary the intensity so that it was reduced towards the edges of the stylus as shown in FIG. 6(b). The shape was initially calculated by considering a cylinder projected onto a matrix of pixels. In the centre there is full intensity but at the edges where the cylinder only partially covers a pixel a correspondingly reduced intensity is used. Whilst this gives the correct softening effect to the edges to provide an improved image on a raster display, this only goes some way to overcoming the problem as the algorithm has no knowledge of the background and consequently produces a halo effect. It has been found that in order to produce a more realistic image it is necessary to provide a contribution from the `background` on which the image is drawn when synthesizing this image. The background can correspond to the paper or can be part of the image already created. The stylus may be considered as though it were a pencil having a point which may be drawn across the paper to form lines. The end of the pencil has a `distribution` and this distribution varies whether it is a lead pencil, a coloured pencil, a crayon or charcoal or other implement. To emulate the artists tools, as the stylus is moved across the touch tablet, it must not just fill the pixels corresponding with its address with the appropriate colour, it must form a distribution around the point in question just as the real life pencil, crayon or charcoal does. If the stylus is now considered as if it were a paint brush then further aspects need investigation, since the type of paint it is carrying also matters. A brush fully loaded with poster paint is very similar to the pencil situation since it simply replaces the colour of the paper with that of the paint according to a certain distribution. However, water colours and oil paint depend not only on what paint is loaded on the brush but also what paint is on the paper. The brushes still have distributions but not the simple type of pencil that has one simple peak, the brush can have many peaks (the stipple), lines (the oil), or just a single peak (the traditional camel hair) but all have little or no temporal content, i.e. little or no build-up if the pencil or brush is held over the point. Thus we have found that instead of having to write just one point or several points of equal value for each position of the stylus on the touch tablet, a distribution of luminance and chrominance levels have to be written around the point in question to simulate the action of the pencil or paint brush. At the extreme edge of the influence of the pencil there is a very small contribution from the pencil and a large contribution from the background whilst at the centre of the pencil, the contribution is nearly all from the pencil. Considering FIG. 7, the small squares represent picture points and the vertical axis the contribution from the pencil. The curve shown could be typical for a broad pencil whereas FIG. 8 more accurately shows a narrow fine point pencil. The contribution (K) for the pencil in FIG. 7 and 8 is complemented by the contribution supplied by the background, which background may be the paper or the pencilled image already laid down. In other words, as the contribution from the pencil decreases, the contribution from the background increases and vice versa. Thus information on this background must be made available during image synthesis. In the situation where the shape is calculated from a cylinder, as mentioned above, this in practice produces a sharp pencil like result when handled by the raster display. The uniform `height` of the unquantized cylinder chosen effectively defines the contribution value (K). One arrangement for producing the image creation system of the invention is shown in FIG. 9. In order to simplify understanding of the operation, the system will be described initially as operating in black and white (monochrome) so that only variation in intensity will be considered. Colour operation is discussed in more detail later. The touch table 10' is provided as before with its associated stylus and the x and y coordinates fed to address generator 24'. The desired implement is expediently selected by means of the switches 21'. These switches can take the form of standard digital thumbwheel switches for example, so that setting to a particular number gives an output indicative of the chosen implement and colour (or intensity in the monochrome case) from those available to the user. Examples of typical implement shapes have been illustrated in FIGS. 7 and 8 and these would be pre-stored in ROM store 23' and the selected item made available therefrom on a picture point by picture point basis by means of the address generator 24'. This store 23' effectively gives the value of K for any given picture point within the selected patch. A similar operation occurs also for the intensity value selected from those available within ROM store 22' (see also the schematic illustration of FIG. 10). The distribution data for the contribution coefficient K for a given implement with values corresponding for example to those shown in FIGS. 7 and 8 read out from the shape ROM 23' will thus vary picture point by picture point in this predetermined manner. In addition intensity data will be read out from ROM 22' for processing by processor 20'. The size of the area of interest for a given implement is expediently passed to the address generator 24' as shown to ensure that the number of picture points processed adjacent a given coordinate is kept to a minimum to ensure maximum processing speed. The processor 20' not only receives data from ROM22' but also from frame store 13' which processor uses a portion of the new data with previously stored data, the proportion being determined by the value of K at any given time. The desired (read) addresses from the frame store are accessed by means of the address generator 24' as are the addresses in which the processed data is to be stored. Thus the information not only flows as simulated to the store (as in the prior art case) but flows from the store for processing which may be termed as a "read-modify-write" process. Whilst the picture build up is continuing, the progress is continuously available to monitor 17' by using a three port frame store arrangement as shown which includes a separate display address generator 25' for sequentially addressing the framestore 13' to gain access to the stored data for monitoring. The address generator 25' is shown under the control of sync separator 26' which receives information from a video reference source in normal manner. Thus framestore 13' allows access for processing so as to read and write to every point essentially at random and a video output port that can display the contents of the frame store at video rates. An example of the arithmetic processing of the data is illustrated in FIG. 10. The pen "shape" distribution and the intensity are shown schematically coming from stores 23' and 22' respectively. There is, of course, no reason why, in the electronic case, the intensity (or in the expanded colour system, the colour) has to be constant across the brush and thus the pen colour or intensity data stored takes on similar proportions to the pen shape data stored. The algorithm for filling the picture stores 13' contents as the stylus is moved is: ##EQU1## where K.ltoreq.1 and represents the contribution on a point by point basis of the pen shape. P.sub.L is the Pen intensity and represents a value of Luminance. LUMA is the picture store content PA0 K<1 and represents the contribution on a point by point basis of the pen shape. PA0 P.sub.c is the Pen colour and represents a value of Hue, Saturation and Luminance. PA0 VALUE is the picture store content for that particular picture point. PA0 a store for video signals representing the image, means for sequentially reading video signals from said store, PA0 and means for updating the signals in said store once per reading cycle thereof in response to video effect signals generated during a preceding cycle period. PA0 means for generating brush stamp signals for controlling the video effect of signals to be used in the image, PA0 means for multiplying factors related to successive brush stamp signals for a point to generate a signal representing the effect of overlapping brush stamps, PA0 means for storing color video signals representing an image, said store means being updated at intervals, and means for updating the signals in said store at intervals in response to the said generated signal. This algorithm is realised by the processor 20'. The patch of 16.times.16 pixels is shown to be large enough to encompass the desired pen shape. The processor hardware for handling this particular algorithm comprises a subtractor 30' (e.g. 74S381), a muliplier 31' (e.g. MPY8HuJ/TRW) and an adder 32 (e.g. 74S381). The peak of the pen shape is central of the patch in this instance and will produce the maximum value of K at this point. The x and y coordinate provided by the touch tablet will correspond to the corner of the patch read out from the store and processing of all points within this patch is effected and the modified data written back into the store 13'. During this processing the old luminance value and the designated intensity value are subtracted and the difference multiplied by coefficient K, the value of K being dependent on where the particular picture point lies within the selected patch. The result is added to the earlier luminance data. It is clear that some picture points at the periphery will remain unchanged in this example. Movement of the actual stylus on the touch pad by one picture point will cause a new patch to be read out from the store 13' which will contain most of the earlier picture points but 16 new picture points will be present and naturally 16 others will have been omitted. The processing will again be carried out for the entire patch. During a particular drawing sequence there will usually be no change in the contents of stores 22' and 23', but the patch from frame store 13' will be changing in dependence on the movement of the stylus. It can be seen that during the second processing operation just described, the previous movement by 1 picture point will cause a proportion of the luminance information generated by the earlier processing operation to be used in the calculation of the new content for the updated patch. The processor 20' is realised in purpose-built hardware to enable the processing speeds to be achieved in a sufficiently short space of time to provide the real time operational requirements which are beyond normal computational speeds. The number of processing steps for a given coordinate will depend on the size of the patch accessed. Thus, if the patch was say 32 picture points wide and 32 high there are 32.times.32 or 1024 points to be processed for each movement of the stylus. A reasonable update rate for the stylus would be 500 times per second or better and this figure results in a processing speed of approximately 2 .mu.sec per point. The size of the patch or square or pixels removed from the main picture store 13' must be the same size as that accessed from the pen intensity and the pen shape stores 22' and 23'. Thus the latter stores only have a capacity of a few picture points wide and high for any given pen intensity and shape. The patch size can be made variable dependent on requirements as already described with regard to FIG. 9 and the address generator 24' thereof operates to select the desired location accordingly. An embodiment of this address generator will now be described with reference to FIG. 11. A system clock generator 50' in conjunction with the normal `go` pulses resulting from the stylus contact with the touch tablet, control the addressing operation for processing. A `go` pulse from the touch tablet loads the x and y co-ordinates therefrom into registers 40' and 41'. These values are passed across for loading into the x and y frame store address counters 42', 43' to define the start of the addressing within the given patch. At the same time the two patch store address counters 44' and 45' are cleared (counter 42' being loaded and counter 44' being cleared respectively via OR gate 53'). The `go` pulse from the touch tablet also initiates the clock generator 50' which produces pulses at a repetition rate sufficiently spaced to allow the processing within the processor 20' of FIG. 9 to be effected before the next pulse is produced (e.g. 500 .mu.S). Thus the first pulse from generator 50' passes to initiate a read operation from frame store 13' and patch stores 22' and 23' at an address defined by the outputs of counters 42', 43' and 44', 45' respectively and schematically represented in FIG. 10. A delay 51' is provided to allow sufficient time for the read operation and the processor 20' to process the data from the first pixel location within the patch with the intensity data and associated contribution value before a write pulse is produced to initiate writing of the processed data back to the frame store 13' so as to effect the `read-modify-write` sequence. A further delay 52' is provided to allow time for the writing operation to be completed before the clock pulse passes to increment the addresses within the framestore x address counter 42' and the patch address counter 44' for the next cycle. The x and y size of the patch selected by switches 21' of FIG. 9 is held in the registers 48' and 49' respectively. These values are passed to comparators 46' and 47' respectively so that the current count within counters 44' and 45' can be compared to determine when the desired patch has been fully addressed. Thus after a given number of clock pulses equal to the number of pixels in the x direction for a patch (Nx) when the output from patch address counter 44' becomes equal to that from ROM 48', the output of comparator 46' will change causing patch counter 44' to be cleared and frame store x address counter 42' to be reloaded with the x ordinate from register 40'. At the same time the frame store y address counter 43' and patch store y address counter 45' are incremented so that all the pixels in the x direction in that patch are addressed, processed and rewritten into the frame store for the next y location in the patch. These steps continue until eventually the y address count within counter 45' will become equal to that output from ROM 49' and this will be detected by comparator 47' indicative that all the pixels within the patch have been processed. This equality causes the stopping of clock generator 50'. When the stylus is moved to the next adjacent x,y coordinate that value will be available at the inputs to registers 40' and 41' and the accompanying go pulse will cause the whole operational cycle to proceed once again, this time for a patch moved by one pixel in either the x or y direction dependent on how the stylus was moved. By using dedicated hardware for the processing it is possible to read, process and rewrite a patch of 16.times.16 pixels in only 350 .mu.s approximately which is sufficiently rapid to follow normal stylus movements without falling behind in the processing. Thus due to the speed of processing, the system will respond seemingly instantaneously for all brushes or other artists implements up to the larger. For very large brushes a patch of 16.times.16 or even of 32.times.32 is too small and either larger patches or multiple writing has to be considered and this causes a slowing of the action. However, the larger the brush the slower the action is not dissimilar to working with a real life brush and is, therefore, quite acceptable. In order that this slowing up of the brush does not happen in unnatural steps the size of the patch is made only as large as is necessary for the brush being used and will track the change in size as required. Although the picture point data is shown in store 13' of FIG. 10 as being defined to 8 bit resolution, in practice increasing the resolution to up to 16 bits will result in a picture of higher quality being obtained if this refinement is required. The bit handling capacity of the stores and processing will accordingly require expansion. Although the resolution of the raster display is only 512.times.768 pixels, for instance, to enhance quality, the pen position (x and y) is preferably known to say an accuracy of 8 times this value (i.e. to 1/8th of a pixel in each direction). The cylinder shape described above for example can in practice be placed upon the pixel matrix to an accuracy of 1/8th pixel as the touch tablet is inherently capable of defining this stylus coordinates to such accuracy. Thus 64 (i.e. 8.times.8) placements of the cylinder each resulting in a different brush shape can be stored in store 23' and the appropriate one used dependent on the fractional parts of the coordinate given by the touch tablet and therefor results in an effective brush position accuracy of 8 times better than the original pixel matrix. The patch store capacity and that of the address generator will require adjustment accordingly. The brushes and pencils described so far have no temporal nature, if the stylus is held steady over a point, nothing additional happens with time. However, in the case of the airbrush the longer it is held over a point the greater the build up of paint. This modification can simply be applied to the algorithm of FIG. 10 by choosing a touch tablet/stylus combination which produces a pulse train whilst held at a given coordinate location (rather than the single `go` pulse as discussed above). This allows the train of go pulses to each initiate the `ready-modify-write` operation described in relation to FIG. 11. The system can be made to simulate even more realistically by adding the dimension of `pressure`. The texture of the artists tool changes with pressure and thus if a pressure sensitive device were fitted to the point of the stylus then this could be taken into account when setting the pen shape stores. Alternatively, a second multiplier can be added to the standard algorithm between the pen shape store and the processor as now shown in FIG. 12 with additional multiplier 33'. The stylus 11' is shown schematically with an integral spring loaded potentiometer 58' which includes a wiper contact which will produce a voltage Vp dependent on the tip pressure. This voltage is converted via ADC 59' to the value k.sub.1. Thus if little pressure is being used coefficient k.sub.1 is small and if high pressure is employed, k.sub.1 tends to 1. A further refinement of the machine is to simulate the action of a light rubber or, in the water colour case, clear water by allowing a blurring facility. This can be achieved by modifying the processor of FIG. 10 to operate as an accumulator to allow recursive low pass filtering on the patch as shown in FIG. 13. This allows a contribution from adjacent picture points within the patch to be provided when calculating the intensity of a particular picture point. The processor 20' includes subtractor 30', multiplier 31' and adder 32' as before. The old data is received by subtractor 30' where delayed data from delay 34' is subtracted therefrom. The result is multiplied by coefficient C in multiplier 31'. The output from the multiplier is added in adder 32' to the delayed data from delay 34'. The hardware of this processor acts as the desired accumulator with the value of C determining the degree of smearing. If the delay period .tau. is selected to equal 1 picture point then horizontal smearing takes place. If .tau. equals 16 picture points then vertical smearing takes place. This delay can be selected using thumbwheel switches for example. As shown the value of C can, if desired, be variable in regard to both the shape of the rubber say (made available from store 23') and the pressure of application of the rubber (made available from stylus 11') by using the further multiplier 33'. Although the distribution of FIGS. 7 and 8 are somewhat symetrical, with other configurations this need not be so. Thus for a stipple brush for example, a number of peaks will be present. Although the system has been described for ease of explanation as achieving a monochrome operation, in practice the system would adapt to generate colour images. A first step would be to provide a `partial colour` system using memories along the lines of FIG. 5. In such a situation the processing requirement is shown in FIG. 14. The intensity values used from store 22' are now defined as colour values and processed values derived therefrom will be converted into actual colour values on read out from the frame store (as in FIG. 5). There is of course, no reason why, in the electronic case, the colour has to be constant across the brush and thus the pen colour store can take on similar proportions to the pen shape store. Thus, the algorithm for filling the picture store contents as the stylus is moved is now: EQU VALUE.sub.new =K.P.sub.c +(1-K).times.VALUE.sub.old Where With a partial colour system, difficulties can arise since `intensity` produced by the algorithm may appear as `colour` incorrectly. Special luminance values must be `reserved` to avoid this degradation. In order to provide a full range of hues, saturations and luminance levels however a system with three frame stores and associated processing would be preferable as shown in FIG. 15. These would handle the luminance and colour difference (i.e. Y, I and Q) components respectively. Thus three frame stores 13A'-13C' are shown with associated processors 20A'-20C', for the respectively Y, I and Q components. The processed data held in the various frame stores is passed to combiner 35' where the luminance and colour difference information is combined to provide full colour video for the monitor 17'. The read and write addressing respectively of the frame stores will be common to each store and is supplied by address generator 24' as before. The patch store addressing will be common to the patch stores 22A'-22C' and 23'. As now shown in FIG. 15 where there is a number of selections for the various parameters it is convenient (as an alternative) to replace the switches 21' of FIG. 9 with the computer 12'. Thus a given colour or implement for example can be selected on the computer keyboard 37'. By using RAMs instead of ROMs for the patch stores 22', 23' allows a greater number of variations to be conveniently dealt with, as any one of a number of colours or shapes stored in bulk computer store 38' can on operating the keyboard 37' be loaded via computer 12' into the designated RAM. Thereafter the stores 22', 23' are effectively used as a ROM until a new colour or shape is selected, at which time the RAMs are written into with updated parameters. The storage capacities of the stores 22', 23' need only be equivalent to the maximum brush size required (defined to pixel or sub-pixel accuracy). The patch size and x,y coordinates can also be passed via the computer. Time information from the touch tablet and pressure information from the stylus for example can also be passed conveniently via computer 12' to the processors 20A'-20C' as represented by the broken lines. As the computer is only being used for switching and routing operations as an operational alternative to the thumbwheel switch configuration described earlier and not for processing, its speed limitation is not a problem in the present system. As shown a cursor display block 39' may be included to indicate, on the monitor 17', the position of the stylus. The cursor block may include an offset device controlled by the patch size information available via the computer so that the cursor is offset to indicate the centre rather than the corner of the patch. The system described is not restricted to use in the broadcasting art alone. After completion of the creation process the image may be converted into hard copy for example using the photoplotter 36' so that it can be used as normal artwork for magazines and so on. With the addition of other peripherals (e.g. modem) the image could be directly relayed to remote locations or recorded onto disk for transportation to a remote location or for future use. Thus a full range of options are open to the operator and are shown as inputs to computer 12' and include colour selection, implement and medium, pressure, time of application (for airbrush etc) and blurring of the eraser or water colour simulation. It has been found that the system produces extemely good artistic results. Although the system has been described as using a touch tablet, other possibilities exist for generating the x and y coordinates. The algorithms described above may alternatively be generated by a rapidly operating dedicated microprocessor, although this may result in some loss of computational speed. Although the FIG. 15 arrangement has been described generally in terms of NTSC colour components, it can equally apply to PAL colour components or RGB. The object of the invention is to produce a video image creation system which will produce realistic images in approximately real time more advantageously and preferably also without the use of a random access frame store.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention Embodiments of the invention relate to a conductor loop, which is completely embedded in an article. The article includes a base body of a polymer material with elastic properties. The two relevant polymer material groups are elastomers or thermoplastic elastomers. Usually, the article is additionally provided with a strengthening support, in particular, embedded completely in the elastic base body. The conductor loop is used in particular for a conveyor belt. 2. Discussion of Background Information With regard to conductor loop technology, reference is made in particular to the following patent literature: DE 40 14 475 A1; DE 44 44 264 C1; DE 196 07 867 A1; DE 198 27 120 A1; DE 198 31 854 A1; DE 101 00 249 A1; EP 0 213 057 A1; EP 1 097 094 B1; WO 2005/030621 A1; AU 57 558 B; GB 1 246 786 A; and U.S. Pat. No. 4,621,727, the disclosures of which are expressly incorporated by reference herein in their entireties. Conveyor belt conductor loop technology is discussed in more detail below. It is usual to provide conveyor belts with conductor loops in order to detect the occurrence of longitudinal rips. These conductor loops are checked for intactness with the aid of a transmitter/receiver combination. If a longitudinal rip occurs in the conveyor belt, the conductor loop is also destroyed and the transmitter/receiver transmission path is interrupted. This provides a criterion for stopping a conveyor belt at the beginning of the ripping process and limiting the length of the rip. The maximum possible length of the rip is thereby restricted to the distance between two conductor loops. Unfortunately, after the conveyor belts have been in use for some time, false alarms occur with increasing frequency, caused by the conductor loop being destroyed without a rip occurring in the belt. The conductor loops often includes metal cords, in particular steel cords, incorporated in a meandering form. The cords usually include in turn of at least five stranded wires or flexes. A cord structure of the type 7×7 is preferred for this, with a single wire diameter of approximately 0.2 mm and a total diameter of 1.5 mm to 2 mm. There are also variants including a mixed structure of copper stranded wires and steel stranded wires, particularly with the steel stranded wires enclosing the copper stranded wires. A version including a solid copper wire enclosed by steel stranded wires is also known. The meandering structure (DE 196 07 867 A1, FIG. 1) is particularly suitable for increasing the extensibility of the loops, since they would otherwise be destroyed after a relatively short time by the mechanical stressing in the conveyor belt, to be specific flexural stress and applied stress. Producing the meander requires the use of a relatively ductile material, which however has adverse effects on the lifetime of the conductor loop. Although materials with higher elasticity improve the fatigue strength of the individual cord, they make it more difficult to form this meander. The use of so-called “high elongation” cords (HE cords), which are able to extend more than the cords as a result of their structure, also improves the lifetime, but likewise makes it more difficult to form the meanders. The laid-open patent application DE 101 00 249 A1 presents a conductor loop which has a higher cord mass within the peripheral region of the conveyor belt than in the central region of the conveyor belt. At the same time, the conductor loop is also free from crossing points. With such a structural design, it is possible to achieve a higher electromagnetic sensitivity. The laid-open patent application WO 2005/030621 A1 concerns a recent conductor loop development. For the purpose of providing a highly flexible and highly extensible conductor loop with an increased lifetime, it proposes forming the conductor loop as an open flex helix, wherein each individual wire is enclosed by a polymer material with elastic properties. This measure also prevents internal friction between the wires. The drawbacks of conductor loops of the prior art specified here, according to which the conductor loop cords usually include steel, is their susceptibility to corrosion, their low flexibility, in spite of the measures according to WO 2005/030621 A1, their low extensibility and, finally, the fallible connection within the endless closure.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, color photographic images are not only used as a simple recording materials but also color photographic images are widely used for display. This is due to the excellency of the image quality and the simplicity of making images as compared to images by ordinary multicolor printing and ink jet printing. As the display systems, there is a so-called reflected light system comprising viewing an image formed on a support by incident light from the image side and a so-called transmitted light system comprising viewing an image formed on a support by incident light from the back side of the image. It is known that under a specific conditions, such as a dark room, night outdoors, etc., the latter system provides a clearer image. As a frequently practiced actual example of the latter system, there is a system of disposing a large number of fluorescent lamps behind a large-sized photographic positive transparent and fixing the positive transparent to a wall. Accordingly, in the case of displaying a photographic image, it is preferred to select a reflected light system or a transmitted light system according to the conditions under which the display will occur. If a good quality photographic image can be viewed by both reflected light and transmitted light, one photographic image can be used for both of the viewing systems and can be very advantageously utilized in, for example, a place where surrounding brightness changes large. As a method of providing the above-described photographic image, a light-sensitive material comprising a support composed of a base containing a white pigment such as titanium oxide, etc., kneaded therein, and having thereon color photographic light-sensitive layers has been proposed. The object of this system is that the support functions as a light reflecting layer in the case of viewing the image by reflected light and also the support functions as a light transmitting layer in the case of viewing the image by transmitted light. However, in the case of viewing one image by a reflected light system and a transmitted light system, it is very difficult to provide a photographic material which gives a clear image having a preferred color density for both the systems. That is, in the case of viewing an image showing a proper density in a reflected light system by transmitted light, the density of the image is too low and the image is viewed indistinctly. On the other hand, in the case of viewing an image showing a proper density in a transmitted light system by reflected light, the color density is too high and the image is viewed as a dark image. Thus, such a conventional photographic image is unsuitable for display in both the reflected light system and the transmitted light system.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to cylindrical-type wastewater screens and more particularly to a sprayer for cleaning the cylindrical screen during operation. Presently, wastewater is a byproduct of many industrial processes that use water. For example, the food industry relies rather heavily on water for processing food. Water is used to clean vegetables, beef, fish, poultry, and other types of food often before the food is cooked, blanched or sterilized using other water. Unfortunately, after all this water is used it typically must also be processed to clean it so it can be either reused or inexpensively disposed. As a result of rather restrictive environmental laws and regulations that have made disposal of unprocessed wastewater prohibitively expensive, wastewater processing or preprocessing at the site of the food processing facility is desirable. One apparatus that has proved particularly effective at treating wastewater is a cylindrical-type wastewater screen and such is shown and described in my U.S. Pat. No. 5,433,849, issued Jul. 18, 1995. As shown in that patent, a cylindrical-type wastewater screen has a cylindrical screen, typically comprised of perforate wedgewire, into which the wastewater is introduced while the screen is rotated. The wastewater passes radially outwardly through the screen after which it can be reused, further filtered, or disposed. Solids entrained in the wastewater that were filtered out of the wastewater can be cheaply disposed of as landfill or fertilizer. As shown, two cylindrical-type screens having successively finer screen media can be concentrically arranged to provide staged treatment of wastewater. During operation, wastewater introduced within the cylindrical screen passes radially outwardly through perforations in the screen while most of the solids entrained in the wastewater is filtered by and retained in the screen because the perforations typically are no greater than about ten to twenty thousandths of an inch. The filtered solids often cling to the screen and the screen is rotated to cause gravity to encourage the solids to separate from the screen and fall to the bottom of the screen. A small flow of wastewater at the bottom of the screen carries the solids from the screen helping to keep the screen clean. Many times, sticky solids, such as fat, connective tissue, coatings, starch, and other sticky residue will continue to cling to the screen despite rotation of the screen. The sticky solids can also cause other solids in the wastewater to stick to it and in general will significantly reduce the efficiency of the screen by partially or completely plugging perforations. Should too many perforations become plugged, the screen will have to be taken offline and cleaned. Presently, to help keep the screen clean to prevent too many perforations from becoming plugged, fixed or stationary nozzles carried by a manifold which is disposed adjacent the screen can discharge cold water, hot water, steam or even air forcefully against the screen. Several spaced apart nozzles must be used to clean the screen along its entire axial length. Unfortunately, where water is used, each nozzle typically requires a flow of as much as about 3 gallons per minute such that a typical screen can use as much as 30 to 90 gallons of water per minute, depending on the number of nozzles required and the type of screening apparatus used. For example, where a double cylinder wastewater screen is used, such as is disclosed in U.S. Pat. No. 5,433,849 to Zittel, as many as 30 nozzles fixed to at least two manifolds are used to keep both cylinders clean. While the frequency of cleaning can vary with the type of solids entrained in the wastewater, each cleaning cycle nonetheless uses a lot of water which undesirably increases wastewater treatment costs. While reciprocating sprayers have been used in some types of similar processing equipment, they have not been viewed as particularly well suited for use in cylindrical-type because of reliability considerations and because of concern they could not effectively clean the rather small perforations found in wastewater screens. For example, it is known to use a reciprocating sprayer to direct water against a perforate cylinder of a bean snipper to free the perforations of bean parts that have become lodged in them. However, the perforations in the cylinder of a bean snipper are much larger, typically at least {fraction (13/64)} (0.203) of an inch, the cylinder is made of polycarbonate, and a bean snipper is used to cut beans, not process wastewater. Moreover, it is not believed that the reciprocating sprayer used in bean snippers discharges water at a great enough pressure to completely pass through the exterior of the screen adjacent the sprayer and impact against the interior of the screen on the opposite side. Additionally, reciprocating sprayers can incorporate a rodless air cylinder system that uses an air cylinder. Such a system can require a sufficiently clean supply of air that may not be available at a plant utilizing a reciprocating sprayer. The present invention provides an apparatus for screening wastewater. The apparatus for screening wastewater includes a frame, a rotatable cylindrical screen carried by the frame and having an axis of rotation and which is defined by a tubular perforate wedgewire sidewall having an interior wedgewire surface and an exterior wedgewire surface, and a wastewater conduit having an opening disposed inside the wedgewire sidewall through which conduit effluent is discharged. The apparatus for screening wastewater further includes a plurality of spray nozzles positioned along the length of the cylindrical screen from which fluid is ejected against the wedgewire sidewall to dislodge solids from the wedgewire sidewall, a control system coupled to the plurality of spray nozzles that controls the order that each nozzle of the plurality of spray nozzles ejects fluid and controls a duration of time that each nozzle of the plurality of nozzles ejects fluid, and a pump in fluid flow communication with a supply of the fluid for delivering the fluid to the plurality of spray nozzles. The plurality of nozzles can eject fluid under pressure sufficient to impinge against and pass through the outer surface of the wedgewire sidewall and then impinge against an inner surface of the wedgewire sidewall such that solids are dislodged at both regions of impingement. The plurality of spray nozzles can also eject fluid at a pressure of at least about 80 to 1000 psi. The plurality of spray nozzles can additionally eject fluid at a volume of about 5 to 20 gallons per minute based on the size of the screen and based on the water pressure supplied. The wedgewire sidewall of said cylinder can have openings of 10 to 20 thousands of an inch. The apparatus for screening wastewater can further include a second cylindrical screen that is comprised of a tubular perforate wedgewire sidewall wherein the fluid from the plurality of spray nozzles is under sufficient pressure that it impinges against and passes through the outer surface of the cylindrical screen, the outer surface of the second cylindrical screen, the inner surface of the second cylindrical screen, and the inner surface of an opposite side of the cylindrical screen. The sprayer can be disposed about 4 to 6 inches away from the outer sidewall of the cylindrical screen. The plurality of spray nozzles can be arranged so that the fluid ejected from the spray nozzles against the wedgewire sidewall provides complete coverage of the cylindrical screen along the axis of rotation. The apparatus for screening wastewater can further include a plurality of electrically actuated valves coupled to the plurality of spray nozzles positioned along the length of the cylindrical screen, wherein the controller can control the operation of the electrically actuated values to provide fluid to the plurality of spray nozzles. The valves can open and close in sequence to eject fluid from the spray nozzles to sequential areas of the cylindrical screen. The apparatus for screening wastewater can further include a plurality of spray manifolds coupled to the plurality of spray nozzles, wherein each of the plurality of spray manifolds can be coupled to at least one of the plurality of spray nozzles. The apparatus for screening wastewater can further include an operator interface coupled to the control system.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a process of producing a polyimide asymmetric membrane having a dense layer and a porous layer. More particularly, it relates to a process of producing a polyimide asymmetric membrane made of multi-component polyimide containing a fluorine-containing polyimide and having a controlled composition of the fluorine-containing polyimide in its dense layer. The process of the invention provides a practical high-performance gas separation membrane. 2. Description of the Related Art Gas separation membranes are made use of in industrial gas separation processing. Above all, gas separation membranes made of polyimide with high permselectivity (permeance ratio) are used. Generally speaking, polyimide has high permselectivity (permeance ratio) but low permeability (permeability coefficient). Hence, a gas separation membrane made of polyimide has an asymmetric structure composed of a porous layer primarily performing a mechanical supporting function and a dense layer primarily performing a separation function, with the thickness of the dense layer, where permeate gas undergoes permeation resistance, reduced so as to secure a gas permeation rate. A gas separation membrane for practical use is required to have not only gas permeation characteristics including gas permselectivity and permeation rate but other characteristics such as mechanical strength. In the case of polyimide derived solely from one tetracarboxylic acid component and one diamine component (i.e., homopolyimide), these characteristics are determined by the combination of the tetracarboxylic acid component and the diamine component. In order to realize a gas separation membrane fulfilling these requirements for practical use, studies of gas separation membranes have been directed to use of copolyimide obtained by replacing part of the tetracarboxylic acid component and/or the diamine component with other tetracarboxylic acid component and/or other diamine component. Characteristics of gas separation membranes made of such copolyimide depend on the composition of two or more tetracarboxylic acid components and/or two or more diamine components. Through the studies, polyimides prepared using a fluorine-containing tetracarboxylic acid component or a fluorine-containing diamine component have often been used for the purpose of improving gas permeation characteristics, particularly permeation rate. In general, nevertheless, an asymmetric membrane formed of a polyimide with excellent gas permeation characteristics, such as a fluorine-containing polyimide, has insufficient mechanical strength, while an asymmetric membrane formed of a polyimide with high mechanical strength exhibits insufficient gas permeation characteristics. JP-A-6-269650 discloses a composite gas separation membrane having a laminate structure comprising (a) a porous polyacrylonitrile structural support material, (b) a gutter layer comprising a crosslinked polar phenyl-containing-organopolysiloxane material, and (c) an ultrathin selective membrane layer comprising a specific fluorine-containing polyimide. JP-A-8-52332 discloses a composite gas separation membrane comprising an aliphatic porous polyimide supporting layer and a fluorine-containing polyimide thin layer laminated thereon. Making such a composite membrane involves forming a uniform thin layer on a porous layer. However, it is not easy to uniformly form a thin layer on a porous layer. In fact, it is not easy even with the processes taught in the above references to obtain a high performance gas separation membrane. Japanese Patent Application No. 2003-24755 discloses a process of producing an asymmetric hollow fiber separation membrane by phase inversion method using a polymer blend solution containing two kinds of polyimides. The reference does not mention production of an asymmetric membrane using a blend solution containing a copolymer having “blockness” that is obtained by preparing a blend solution containing polyimide components having specific polymerization indexes and further subjecting the blend solution to polymerization and imidation.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, wireless networks have emerged as flexible and cost-effective alternatives to conventional wired local area networks (LANs). At the office and in the home, people are gravitating toward use of laptops and handheld devices that they can carry with them while they do their jobs or move from the living room to the bedroom. This has led industry manufacturers to view wireless technologies as an attractive alternative to Ethernet-type LANs for home and office consumer electronics devices, such as laptop computers, Digital Versatile Disk (“DVD”) players, television sets, and other media devices. Furthermore, because wireless networks obviate the need for physical wires, they can be installed relatively easily. Wireless communication systems adapted for use in homes and office buildings typically include an access point coupled to an interactive data network (e.g., Internet) through a high-speed connection, such as a digital subscriber line (DSL) or cable modem. The access point is usually configured to have sufficient signal strength to transmit data to and receive data from remote terminals or client devices located throughout the building. For example, a portable computer in a house may include a PCMCIA card with a wireless transceiver that allows it to receive and transmit data via the access point. Data exchanged between wireless client devices and access points is generally sent in packet format. Data packets may carry information such as source address, destination address, synchronization bits, data, error correcting codes, etc. A variety of wireless communication protocols for transmitting packets of information between wireless devices and access points have been adopted throughout the world. For example, in the United States, IEEE specification 802.11 and the Bluetooth wireless protocol have been widely used for industrial applications. IEEE specification 802.11, and Industrial, Scientific, and Medical (ISM) band networking protocols typically operate in the 2.4 GHz or 5 GHz frequency bands. In Europe, a standard known as HIPERLAN is widely used. The Wireless Asynchronous Transfer Mode (WATM) standard is another protocol under development. This latter standard defines the format of a transmission frame, within which control and data transfer functions can take place. The format and length of transmission frames may be fixed or dynamically variable. Although traditional wireless networks work fairly well for residential Internet traffic running at data rates below 1 megabit per second (Mbps), transmission of high-bandwidth video programs is more problematic due to the much faster video data rates. High-bandwidth data transmissions can be degraded by the presence of structural obstacles (e.g., walls, floors, concrete, multiple stories, etc.), large appliances (e.g., refrigerator, oven, furnace, etc.), human traffic, conflicting devices (e.g., wireless phones, microwave ovens, neighboring networks, ×10 cameras, etc.), as well as by the physical distance between the access point and the mobile terminal or other device. By way of example, an IEEE 802.11b compliant wireless transceiver may have a specified data rate of 11.0 megabits per second (Mbps), but the presence of walls in the transmission path can cause the effective data rate to drop to about 1.0 Mbps or less. Degradation of the video signal can also lead to repeated transmission re-tries, causing the video image to appear choppy. These practical limitations make present-day wireless technologies one of the most unreliable of all the networking options available for home media networks. One proposed solution to this problem is to increase the number of access points in the home, with the various access points being interconnected by a high-speed cable wire. The drawback of this approach, however, is that it requires that cable wires be routed through the interior of the structure. An alternative solution is to utilize wireless repeaters to extend coverage of the network throughout the building. For example, D-Link Systems, Inc., of Irvine, Calif. manufactures a 2.4 GHz wireless product that can be configured to perform either as a wireless access point, as a point-to-point bridge with another access point, as a point-to-multi-point wireless bridge, as a wireless client, or as a wireless repeater. As a wireless repeater, the product functions to re-transmit packets received from a primary access point. But the problem with these types of wireless repeaters is that they retransmit at the same frequency as the primary access point device. Consequently, because the primary access point and repeaters share the same channel, the bandwidth of the network is effectively reduced for each repeater installed. For example, if a data packet needs to be repeated (i.e., re-transmitted) three times in the same channel, each packet must wait until the previous packet has been repeated which means that the resulting bandwidth loss is 67%. So if the initial video transmission starts out at, say, 21 Mbps, the effective payload data rate at the receiver end is diminished to about 7 Mbps. Naturally, with more repeaters, more data hops are required, so the bandwidth loss becomes worse. This approach basically trades-off bandwidth for signal range—extending the range of the wireless network, but sacrificing valuable bandwidth in the process. Still another attempted solution to the problem of wireless transmission of video data is to lower the bandwidth of the video through data compression. This technique involves compressing the video data prior to transmission, then decompressing the data after it has been received. The main drawback with compression/decompression techniques is that they tend to compromise the quality of the video image, which is unacceptable to most viewers. This approach also suffers from the problem of lost connections during transmission. In view of the aforementioned shortcomings, there exists a strong need for a highly reliable wireless network (e.g., on a par with coaxial cable) that provides very high data rates (e.g., 30 Mbps) throughout the full coverage range of a home or building.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates generally to the field of exercise equipment, and particularly to a lower body exerciser that combines elements of both a stepping exercise and a running exercise. 2. Prior Art A wide variety of exercise devices have been developed for exercising the various muscle groups of the human body. One class of such devices that is particularly adapted for exercising the lower body consists of cycle-type exercisers. These machines generally simulate the exercise experienced when pedaling a cycle. The operator sits in either an upright, semi-recumbent or recumbent position and operates a pair of foot pedals on a crank shaft. The operator's feet travel in a circular path, each foot constrained to move exactly out of phase with the other. Another class of machines for exercising the lower body consists of treadmills that permit a walking or running exercise. In a treadmill exercise, there is typically no resistance other than the weight of the operator's body, the effect of which may be amplified by elevating the forward end of the treadmill. Yet another class of lower body exercisers that has become popular in recent years, consists of machines that simulate climbing stairs. These machines typically have a pair of pedals pivotally mounted to a frame for up and down movement in a arcuate path. Operation of the pedals may be either dependent or independent. Typically, resistance is provided only for the downward stroke of each pedal so that the resulting exercise accurately simulates stair climbing. Each of the above-mentioned classes of lower body exercisers is useful for achieving particular exercise objectives; however, each such class of exerciser is also limited by the inherent mechanical limitations on the range of motion.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a relay apparatus, a method of controlling content delivery and a content delivery system, in which a mobile terminal and the relay apparatus are connected to a radio network including a RAN (Radio Access Network). A content server which delivering various contents to the mobile terminal is located on a private network, is connected to the relay apparatus, and delivers the contents to the mobile terminal via the relay apparatus. 2. Description of the Related Art A system has hitherto been proposed, in which a mobile terminal receives a content of interest via a network from a content server managing various contents (for example, see Patent Literature 1). In a system including a base transceiver station (Node B) and a base station controller (RNC) which is compliant with 3GPP standards as a mode of RAN, a mobile terminal needs to receive delivery of a content of interest from a content server always via a core network. Patent Literature 1: Japanese Patent Laid-Open Publication No. 2001-265689 (claims 4 to 6, FIG. 1) However, in this system, when an operator installing a RAN independently sets a content server to provide services, the operator needs to have a network operator having a core network make settings to allow connection of the content server to the core network. Therefore, it took much time and labor for the operator to complete the above system. In the above system, a mobile terminal is required to receive a content of interest from the content server always via the core network. Accordingly, the operator could not provide a service of delivering original contents, not via the core network, to a mobile terminal just being connected to a RAN (especially, RAN compliant with 3GPP) that is not connected to the core network. Furthermore, data sent and received between a mobile terminal and the content server is always routed through the core network similarly to data sent and received between the mobile terminal and a general content server connected to the Internet. Therefore, when the mobile terminal receives data of interest from the above content server, a user thereof must pay a certain fee according to an amount of delivered data.
{ "pile_set_name": "USPTO Backgrounds" }
German Patent Application No. DE 42 27 893 describes a differential-pressure sensor, which has two semiconductor diaphragms. The semiconductor diaphragms are each provided with interconnected piezoresistive resistors on the upper side. To protect the sensitive sensor elements, the upper sides of the semiconductor diaphragms are situated in a common reference chamber, which can be hermetically sealed. In addition to the measurement of a differential pressure, the measurement of an absolute pressure with the aid of micromechanical pressure sensors is also known from the related art. Thus, for example, German Patent Application No. DE 100 32 579 describes the manufacture of such an absolute-pressure sensor, where a cavity and a diaphragm situated above the cavity are produced, using variably porosified regions and subsequent thermal treatment. German Patent Application No. DE 101 38 759 describes an elaboration on this principle, where variably doped regions are used for producing the cavity and the diaphragm. A method, by which both a differential-pressure sensor and an absolute-pressure sensor can be manufactured, is known from German Patent Application No. DE 100 32 579. In a first step, a first porous layer is initially formed in a semiconductor substrate, and in a second step, a hollow space or cavity is formed under or from the first porous layer in the semiconductor substrate, using an external access opening. In very general terms, the pressure signals of a micromechanical pressure sensor may be acquired on the diaphragm, using both capacitive dielectric layers and piezoresistive resistors. In this context, an evaluation circuit may be mounted in direct proximity to the sensor element necessary for detecting the pressure signal, on the same substrate as the sensor element.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a testing system, more specifically to a testing system for testing semiconductor devices, a testing method for testing semiconductor devices, and a method for manufacturing semiconductor devices. 2. Description of the Related Art A semiconductor device is manufactured by a series of processes including a combination of lithography, etching, heat treatment (oxidation, annealing, or diffusion), ion implantation, thin film formation (CVD, sputtering, or vapor deposition), washing (resist removal or washing with a solution), or the like. After the treatment of each process, testing is carried out to check adequacy of the treatment, magnitude of variation, and the like. For example, in the lithography process to transfer an image of a mask pattern to a working wafer, dimensional measurement of the transferred pattern is performed. In the testing process, sampling test is performed. Specifically, in a lot including a plurality of semiconductor wafers, some semiconductor wafers are sampled and then tested. Results of the testing are considered as representative values of the lot. The sampling test in the testing process is to save time and effort required for the 100-percent-testing. However, along with a recent increase in integration of semiconductor devices, each process becomes difficult to control, and the number of items to be tested is getting larger than before. For example, the dimensional measurement after the lithography requires monitoring of variation in a shot, variation between shots, variation between wafers, and the like. In currently-available method of testing, areas to be tested are previously decided. Accordingly, it is difficult to coverall the test items within the limited number of tests. For example, when the number of testing points determined on a throughput of a testing apparatus or costs is limited to 30 points, the test items are determined as: five points per shot, six shots per wafer, and one wafer per lot. The variation in a shot and variation between shots, for which many tests are carried out, can be monitored. However, the variation between wafers cannot be monitored since only one wafer is measured. However, since wafers are varied, the representative values of the lot cannot be properly calculated by sampling only one wafer from the lot.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a die for injection molding used in injection molding and able to manufacture a tape cassette, a disk cartridge, etc. formed by synthetic resin and other molding materials, with high precision and good productivity, and also relates to an injection molding method using this die. More particularly, the present invention relates to a die for injection molding which can promote cooling and solidification of a molded product by holding this molded product in a cavity block as long as possible at a die opening time and can obtain a stable molded product by preventing its deformation at a taking-out time of the molded product, and also relates to an injection molding method using this die. In general, a box body of a tape cassette, a disk cartridge, etc., is constructed by a pair of shells (also called halves) overlapped with each other and uses thermoplastic resin as its material. Many molded products are simultaneously manufactured by injection molding using a die for injection molding constructed by a fixed side die and a movable side die and able to be opened and closed. Schematic processes of such injection molding are provided as follows. The die is first clamped (the die clamp is held until the die is opened after a cooling time), and a nozzle next comes in contact with the die by advancing an injecting unit. A molding material is then injected and a die cavity is filled with this molding material. Next, shrinkage of the molding material is restrained by applying a holding pressure to this molding material. Further, a screw is rotated and the next molding material is supplied into a heating cylinder. Next, the nozzle is retreated. When the molding material is cooled and solidified, the die is opened and a molded product is projected out of the die by ejector pins so that one cycle of an injection molding process is completed. The injection molding is continuously performed by repeating this process. For example, a conventional die for injection molding used in such injection molding is provided as shown in FIGS. 1 to 2. This die for injection molding is constructed by a fixed side die 1 and a movable side die 2. The fixed side die 1 has a fixed side attaching plate 3, a fixed side receiving plate 4, a fixed side die plate 5 and a cavity block 6. The movable side die 2 has a movable side attaching plate 7, a spacer plate 8, a movable side receiving plate 9, a movable side die plate 10 and a core block 11 Further, a sprue bush 12 and a locating ring 13 are arranged in the fixed side attaching plate 3 of the fixed side die 1. An injection fielding nozzle of an injection molding machine is fitted into the sprue bush 12 and the locating ring 13. A gate of a sprue 14 at its end tip extending from the sprue bush 12 to the cavity block 6 is opened to a cavity 15 of the cavity block 6. A projecting plate 16 is arranged on a rear face of the movable side receiving plate 9 of the movable side die 2. A plurality of kinds of ejector pins 17, 18 have base portions fixed to this projecting plate 16 and extend through the movable side receiving plate 9 and the core block 11. Similarly, a guide pin 19 has a base portion fixed to the projecting plate 16 and extends through the movable side receiving plate 9 and the movable side die plate 10. An end tip face of the one ejector pin 17 faces the cavity 15. A core 20 is fixed to an end tip of the other ejector pin 18. An end tip face of the core 20 faces the cavity 15. Further, a return spring 21 is externally fitted onto the guide pin 19. The projecting plate 16 is biased by resilient force of the return spring 21 on a side of the movable side attaching plate 7. Further; an ejector block 22 is fixed to the projecting plate 16. The projecting plate 16 is pushed forward by a projecting rod 23 of the injection molding machine facing this ejector block 22 so that the ejector pins 17, 18 and the guide pin 19 are respectively projected onto a side of the cavity 15. Thus, as shown in FIG. 1, melted resin injected from the injection molding nozzle of the injection molding machine is injected into the cavity 15 from the sprue gate through the sprue 14 held at a high temperature. After the melted resin is cooled and solidified within the cavity 15, as shown in FIG. 2, a molded product S is separated from a face of the cavity 15 by opening the die. Thereafter, as shown in FIG. 3, the projecting plate 16 is pressed by the projecting rod 23 so that the ejector pins 17 and 18 are projected out. Thus, the molded product 5 is separated from a face of the core block 11 and is taken out of this face. However, in the above-mentioned die for injection molding, as shown in FIG. 2, at a dig opening time in the taking-out of the molded product, the molded product S is attached to the core block 11 and is moved integrally with this core block 11 simultaneously when the die is opened. Therefore, an external face of the molded product is pulled by adhesive force between the molded product and the cavity 15 so that the molded product S is deformed in many cases. Further, as shown in FIG. 3, when the molded product S is projected, the molded product S is pressed end separated by the ejector pins 17 and 18 against an adhesive force between the molded product S and the core block 11. Therefore, the molded product S is similarly deformed by a resisting force caused in this separation in many cases. Accordingly, no stable molded product can be obtained in any case. Specifically, as shown in FIG. 1, the cavity 15 of the die is filled with the melted resin by injecting this melted resin. The melted resin is then solidified by cooling the melted resin in a pressure holding state. However, a considerable tire is required until this melted resin is completely solidified. Therefore, when the die is opened after the complete solidification of the melted resin, a considerable time is taken until the die is opened, thereby reducing production efficiency. Therefore, in general injection molding, the die begins to be opened so as to increase productivity of the molded product S of this kind when the melted resin within the cavity 15 is solidified to a certain extent even before this melted resin is completely solidified. This die opening operation is performed by retreating the movable side die 2. When the movable side die 2 is retreated, the molded product S is retreated integrally with the core block 11 since adhesive force between the molded product S and the core block 11 is generally stronger than that between the molded product S and the face of the cavity 15. Thus, an external face of the molded product S is separated from the cavity face. However, when the external face of the molded product S is separated from the cavity face, separating force is applied to the molded product S by resistance (hereinafter, called xe2x80x9cmold-releasing resistancexe2x80x9d) caused in the die separation based on e.g., an extraction gradient of the cavity 15, a shape of the cavity 15 itself, etc. Therefore, as shown in FIG. 2, a peripheral edge portion of the molded product S is pulled onto a side of the cavity block 6 and is deformed in many cases. Further, as shown in FIG. 3, when a projecting operation of the molded product S is started before the resin of the molded product S is completely solidified, the molded product S is deformed by mold-releasing resistance caused on the basis of e.g., an extraction gradient of the core 20, a shape of the core 20 itself, etc., and the molded product S is scattered by a sudden separating operation in many cases. In view of the aforesaid aspect, it is an object of the present invention to provide a die for injection molding and an injection molding method using this die in which a molded product is supported by a core for a certain time in a cavity block even after an opening operation of the die is started, and the molded product is taken out of the die after the molded product is solidified so that no molded product is deformed at a mold-releasing time and a stable molded product can be obtained with high productivity. According to the present invention, there is provided a die for injection molding of the present invention comprising a protecting mechanism having a separating delay means for pressing a molded product by a core and supporting the molded product in a cavity block until a movable side die is separated by a predetermined distance from a fixed side die. The separating delay means releases the supporting of the molded product after the movable side die in separated by the predetermined distance from the fixed side die. According to the present invention, there is provided an injection molding method in which a molded product is supported in a cavity block by a core on the side of a movable side die at a die opening time until the movable side die is separated by a predetermined distance from a fixed side die, and the molded product is separated from the cavity block by releasing the supporting of the molded product by the core after the movable side die is separated by the predetermined distance from the fixed side die. According to the present invention, the molded product is supported in the cavity block by the core until the movable side die is separated by the predetermined distance from the fixed guide die. The supporting of the molded product by the core is released after the movable side die is separated by the predetermined distance from the fixed side die. Therefore, solidification of a melted material can be promoted by lengthening a supporting time of the molded product, and productivity can be improved by preventing deformation of the molded product.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method of forming a semiconductor structure, and particularly to a method of employing a photoresist profile, direction of ion implantation, and arrangement of semiconductor regions in a semiconductor substrate to enable adjustment of ion implantation dose across multiple semiconductor regions with a single ion implantation mask. There are many instances in semiconductor chips in which transistor matching is of paramount importance; that is, two identically designed transistors are to perform identically to one another. One such instance is in a six-transistor static random access memory (6TSRAM) cell. In this cell there are two halves to the cell (called here left and right), each side consisting of three transistors. Cell functionality is optimum when the three transistors in the left half match exactly (in threshold voltage and drive current, for example) their corresponding transistor in the right half. As there is often a large number of such cells in a design, the area consumed for such a cell is of great importance also, and the cell is to be made as small as possible. The small spacings employed therein poses additional challenges to transistor matching. In view of the above, there exists a need for a method of manufacturing a semiconductor structure in which tightly packed transistors match as identically as possible. Typically, an ion implantation mask enables two different dopant profiles, one formed underneath an area covered with a photoresist and protected from implantation of ions and another formed outside the area covered with the photoresist and implanted with ions. However, transistors located in close proximity to the mask edge may experience partial blockage of the implanted ions, and this partial blockage can vary with mask alignment. Therefore there exists a need for a method of manufacturing a semiconductor structure in which the ion implantation is not sensitive to the mask placement over normal process variations, and yet small spacing is employed.
{ "pile_set_name": "USPTO Backgrounds" }
An objective of processing peach breeding programs is to develop new peach varieties that are commercially desirable. In particular, there is a need for the development of new peach varieties that are suitable replacements for the ‘Early’ maturity season varieties ‘Dixon’, ‘Andross’, and ‘Klampt’ (each non-patented in the United States). Peach variety ‘Dixon’ originated in Linden, Calif., by F. A. Dixon, of the Canners League of California in San Francisco and was introduced in 1956. ‘Dixon’ trees produced very high yields, which made this variety popular for growers. While ‘Dixon’ fruit flesh was a desirable yellow-gold, the pit often exhibited a pink to red color from the formation of red anthocyanins. This red color oxidizes to brown when canned, resulting in an undesirable fruit color as well as an undesirable brown staining of canned syrup. The red stained fruit stone or endocarp is also more prone to breakage, resulting in pit fragments being left with the fruit flesh during processing. As a result of these problems, processors stopped purchasing ‘Dixon’ fruit from growers. Although the ‘Dixon’ variety is no longer commercially planted, no replacement variety presently exists. Peach variety ‘Andross’ was developed as a source of fruit for processors during the early ‘Early’ maturity season following ‘Dixon’ production. ‘Andross’ originated in Davis, Calif., by L. D. Davis, Department of Pomology, University of California, Davis and was introduced in 1964. ‘Andross’ trees consistently set heavy crops, have leaves with globose glands, and flowers of the larger non-showy type. Although ‘Andross’ is the most heavily planted variety for the ‘Early’ maturity season, this variety also produces fruit with red-staining of the pit and associated higher frequencies of endocarp (stone) fragments remaining in processed flesh. Consequently, processors are no longer encouraging new plantings of this variety, and indicate that they may no longer purchase fruit of this variety in the future. Furthermore, the ‘Early’ maturity season variety ‘Klampt’ is not a suitable replacement for ‘Andross’. While ‘Klampt’ fruits and pits are free from red staining, ‘Klampt’ develops soft fruit soon after ripening, which results in fruit damage during transport and subsequent processing. Consequently, as with ‘Andross’, processors are no longer encouraging new plantings of ‘Klampt’, and have indicated that they may no longer purchase fruit of this variety in the future. As a result, there is a need to develop new peach varieties having desirable fruit characteristics, particularly peach varieties having good fruit quality, lacking red staining in the pits, and having pits that resist splitting. The new peach variety ‘Vilmos’ as described herein is a product of this breeding effort.
{ "pile_set_name": "USPTO Backgrounds" }
The field of the invention pertains to automotive fuel tanks, and in particular, to the fill pipes of such tanks. Typically, the fill pipe extends upwardly into a chamber or cavity covered by a spring urged access door. The upper end of the fill pipe is closed by a cap. The door is opened, the cap removed and a tubular nozzle inserted into the fill pipe to add fuel to the tank. The fit of the nozzle into the fill pipe is generally very loose and most fuels, in particular gasoline, are relatively non-viscous. As a result splash back of fuel up the fill pipe and out the opening is not an infrequent event. Such splash back dirties clothing, is disagreeably odorous and contains known carcinogens. There is also a potential fire hazard. As a result a number of devices have been developed to control splash back. U.S. Pat. No. 1,903,139 discloses a metal baffle attached to the outside of the nozzle. More recently U.S. Pat. No. 3,451,445 discloses a frusto-conical spongy baffle to catch and retain liquid fuel but permit air to pass therethrough and U.S. Pat. No. 3,739,988 discloses a plastic baffle attached to the outside of the nozzle. U.S. Pat. No. 3,903,942 discloses a flexible duckbill valve that grasps the nozzle upon insertion in the fill pipe. Although directed to prevention of vapor emissions from the fill pipe, the valve also is directed to prevention of liquid splash. U.S. Pat. No. 4,326,641 discloses an anti-siphon tube depending from a baffle within the upper end of the fill pipe. The baffle also acts as a splash back preventer although some splash back can occur about a loose fitting nozzle. Most motor vehicles are not equipped with anti-splash back devices as disclosed in the prior art and filling stations do not all make a practice of fitting nozzles with suitable baffles. Thus, a need exists for an after market splash guard that can be easily installed by the novice owner or operator of a motor vehicle.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to flat mail conveying, handling, sorting, and stacking systems, and more particularly to a new and improved implement for use in connection with flat mail conveying, handling, sorting, and stacking systems wherein, when flat mail articles, pieces, or units, such as, for example, envelopes, letters, newspapers, catalogs, magazines, greeting cards, post cards, fliers, and the like, are delivered to a predetermined sorting or storage container, bin, or tub destination, the implement will be activated or moved toward, or be disposed in, a particular orientation so as to effectively prevent an erroneous or misdirected discharge of the flat mail articles, units, or pieces from the system conveying structure such that jamming of the system occurs, or alternatively, the conveyed mail articles, pieces, or units are no longer in their original predetermined sorted order which is indispensable in connection with current automatic processing and sequenced delivery of mail pieces or units to recipients. In automatic flat mail conveying, handling, sorting, and stacking systems, flat mail articles, pieces, or units, such as, for example, envelopes, letters, newspapers, catalogs, magazines, greeting cards, post cards, fliers, and the like, are initially conveyed by means of a suitable conveyor belt system, they are subsequently scanned, such as, for example, by means of a suitable bar code reader (BCR) or an optical character recognition (OCR) reader so as to be sorted, such as, for example, by means of destination address information, and conveyed further toward predetermined sorting or storage containers, bins, or tubs. In accordance with current automatic processing and sequenced delivery systems for delivering mail pieces or units to recipients in accordance with the serial order of street delivery addresses, it is imperative that the particular flat mail articles, pieces, or units of mail are not only conveyed to and deposited within the correct sorting or storage container, bin, or tub, but in addition, that the flat mail articles, pieces, or units disposed within a particular sorting or storage container, bin, or tub be disposed and retained in a particular order corresponding to the delivery address sequence. In connection with one type of system used in connection with the deposition of flat mail articles, pieces, or units into predetermined sorting or storage containers, bins, or tubs, the containers, bins, or tubs are disposed beneath a drop-box which has a movable platen member operatively associated therewith and upon which a plurality of flat mail articles, pieces, or units are initially collected or accumulated in preparation for preparing a stack of the flat mail articles, pieces, or units for subsequent deposition within the particular sorting or storage container, bin, or tub. When a predetermined amount or number of flat mail articles, pieces, or units have been collected or accumulated upon the movable platen of the drop-box, the platen is actuated so as to be effectively withdrawn from its position beneath the collected or accumulated articles, units, or pieces of flat mail piled or stacked upon the platen whereby the pile or stack of collected or accumulated articles, pieces or units of mail drops vertically downwardly in effect as a single entity into the sorting or storage container, bin, or tub so as to be disposed in a stacked or piled array within the particular sorting or storage container, bin, or tub. Sometimes, during the course of the high-speed processing and conveyance of the various flat mail articles, pieces, or units, it is necessary or more efficient for the overall operation of the conveying and sorting system to deposit a particular article, piece, or unit of flat mail directly into the sorting or storage container without first collecting or accumulating the flat mail articles, pieces, or units upon the movable platen operatively associated with the drop-box. In other words, the particular article, piece, or unit of flat mail will be conveyed directly from the conveying mechanism, through the drop-box, and into the particular sorting or storage container, bin, or tub, thereby in effect, bypassing the drop-box. Under such circumstances, however, it has been experienced that one or more of the flat mail articles, pieces, or units, in lieu of actually being deposited into the sorting or storage container, bin, or tub, will sometimes become jammed within the track or slot defined within the drop-box framework and along which the platen moves when the same is being moved from its OPENED position to its CLOSED position, or alternatively, the particular article, piece, or unit or flat mail will sometimes be discharged through the slot or space defined between the bottom of the drop-box framework and the upper end of the sorting or storage container, bin, or tub. In either case, the efficient, orderly conveyance and stacking of the flat articles, pieces, or units of mail is operationally disrupted. In the first case, if the particular article, unit, or piece of flat mail becomes jammed, then operation of the conveying and handling system must be shut down until the jammed flat mail article, piece, or unit is able to be removed and placed in its proper order within the stack of flat mail articles, pieces, or units disposed within the sorting or storage container, bin, or tub. In the second case, operation of the conveying and handling system must likewise be shut down, and the particular article, piece, or unit of flat mail must be retrieved and likewise placed in its proper order within the stack of flat mail articles, units, or pieces disposed within the sorting or storage container, bin, or tub. In either case, the efficiency of the conveying and handling system, and the continuous operation of the same, has been compromised. A need therefore exists in the art for a new and improved implement for use in connection with a drop-box framework mechanism which is adapted to be mounted or disposed above a flat mail sorting or storage container, bin, or tub wherein, in connection with those instances in which the platen operatively associated with the drop-box is disposed at its OPENED position so as to permit flat mail articles, pieces, or units to be directly conveyed through the drop-box and into sorting or storage container, bin, or tub, without the flat mail articles, pieces, or units being initially collected or accumulated in a stack or pile upon the platen above the sorting or storage container, bin, or tub, some means must be provided in order to effectively prevent the conveyed flat mail articles, pieces, or units from becoming jammed within the slot defined within the drop-box framework along which the platen is movable between its OPENED and CLOSED positions, as well as to effectively prevent the conveyed flat mail articles, pieces, or units from being conveyed through the slot or opening defined between the bottom of the drop-box framework and the upper end of the sorting or storage container, bin, or tub. Accordingly, it is an object of the present invention to provide a new and improved movable structure which is operatively associated with a drop-box framework mechanism or system, and a sorting or storage container, bin, or tub, so as to operatively cooperate with the drop-box framework mechanism and system, and the movable platen member thereof, such that flat mail articles, pieces, or units can be conveyed and deposited within a predetermined flat mail sorting or storage container, bin, or tub without encountering any operational difficulties. Another object of the present invention is to provide a new and improved movable structure which is operatively associated with a drop-box framework mechanism or system, and a sorting or storage container, bin, or tub, so as to operatively cooperate with the drop-box framework mechanism and system, and the movable platen member thereof, such that flat mail articles, pieces, or units can be conveyed and deposited within a predetermined flat mail sorting or storage container, bin, or tub without encountering any operational difficulties and thereby overcome the various operational disadvantages characteristic of conventional PRIOR ART flat mail article handling, sorting, and stacking systems. An additional object of the present invention is to provide a new and improved movable structure which is operatively associated with a drop-box framework mechanism or system, and a sorting or storage container, bin, or tub, so as to operatively cooperate with the drop-box and the movable platen member thereof such that when the platen member is moved, relative to the drop-box, to its OPENED position, the movable structure will be disposed at a position so as to effectively prevent the jamming or misdirection of flat mail articles, pieces, or units being conveyed toward and into the sorting or storage container, bin, or tub. A further object of the present invention is to provide a new and improved movable structure which is operatively associated with a drop-box framework mechanism or system, and a sorting or storage container, bin, or tub, so as to operatively cooperate with the drop-box and the movable platen member thereof such that when the platen member is moved, relative to the drop-box, to its OPENED position, the movable structure will be disposed at a position so as to effectively prevent the jamming or misdirection of flat mail articles, pieces, or units being conveyed toward and into the sorting or storage container, bin, or tub, and yet will not interfere with the operation of the movable platen member so as to permit the movable platen member to be moved to its CLOSED position and thereby operatively cooperate with the drop-box framework mechanism or system so as to collect and accumulate flat mail articles, pieces, or units thereon in a piled or stacked mode prior to the dropped deposition of the same into the operatively associated sorting or storage container, bin, or tub. A last object of the present invention is to provide a new and improved movable structure which is operatively associated with a drop-box framework mechanism or system, and a sorting or storage container, bin, or tub, so as to operatively cooperate with the drop-box and the movable platen member thereof such that when the platen member is moved, relative to the drop-box, to its OPENED position, the movable structure will be disposed at a position so as to effectively prevent the jamming of any flat mail articles, pieces, or units within the track or slot defined within the drop-box framework mechanism or system along which the platen member is movable, or to similarly effectively prevent the misdirection of any flat mail articles, pieces, or units through the space or slot defined between the bottom of the drop-box mechanism or system and the upper end of the sorting or storage container, bin, or tub. The foregoing and other objectives are achieved in accordance with the teachings and principles of the present invention through the provision of a new and improved structure which comprises a plurality of movable fingers which are either spring-biased or gravitationally moved between upper nested positions and lower deployed positions. The fingers are mounted within a housing which forms an integral part of a drop-box framework mechanism or system. A platen member is movably mounted upon the drop-box framework mechanism or system between a first OPENED position at which the drop-box framework is open so as to permit flat mail articles, pieces, or units to flow therethrough and into an operatively associated sorting or storage container, bin, or tub, and a second CLOSED position at which the platen member is disposed above the sorting or storage container, bin, or tub so as to close the drop-box framework and thereby permit flat mail articles, pieces, or units to be collected and accumulated upon the platen member in preparation for their deposition into the sorting or storage container, bin, or tub as a stacked or piled entity. When the platen member is disposed at its OPENED position, the movable fingers move downwardly to their deployed positions at which the fingers effectively block the track or slot defined within a side wall of the drop-box framework mechanism and within which the platen member is movable between its OPENED and CLOSED positions so that the flat mail articles, pieces, or units, which are being conveyed through the drop-box framework mechanism in a by-pass mode, are effectively prevented from becoming jammed within the platen member track or slot. At the same time, the fingers also block the slot or space defined between the bottom portion of the drop-box framework mechanism and the upper end portion of the sorting or storage container, bin, or tub, so that the flat mail articles, pieces, or units are effectively prevented from being conducted through the slot or space defined between the bottom of the drop-box framework mechanism and the upper end portion of the sorting or storgage container, bin, or tub. In either case, continuous operation of the flat mail article sorting, handling, and stacking operations is achieved, and the specific serial order, in which the flat mail articles, pieces, or units were conveyed, is preserved so as to facilitate automatic processing and delivery sequence of the flat mail articles, pieces, or units to their respective destinations and recipients. When the platen member is movable to the CLOSED position, the platen member will engage the movable fingers and bias the same upwardly so that the platen member may be readily moved to its CLOSED position so as to achieve its flat mail article collection and accumulation mode.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to linear actuators and particularly to linear electric motors of the stepper type. 2. Description of the Prior Art Linear electric motors are well known in which a magnetic toothed motor bar and a magnetic armature structure comprising magnetic core and windings interact to produce relative motion in steplike manner when windings are sequentially energized. One such linear stepper motor is described in U.S. Pat. No. 3,867,676, issued to Hi D. Chai and Joseph P. Pawletko on Feb. 18, 1975. In that patent, the linear motor has armature structures that take the form of E-cores. Each E-core has poles with toothed faces coacting with the teeth of the motor bar on opposite surfaces. The E-cores are attached to a rigid frame structure which has rollers on the upper and lower toothed surfaces of the motor bar. The frame and rollers are designed to maintain a fixed air gap between the pole faces of the E-cores and the upper and lower surfaces of the motor bar. In many applications for linear stepper motors, such as for serial printers as described in copending application of Hi D. Chai and Joseph P. Pawletko, Ser. No. 676,584, filed Apr. 13, 1976, precision stepping is required. This type operation requires the alignment of the motors and air gap be very precise and be maintained without deviation under very high mechanical stresses. In the linear motor structure of the abovementioned U.S. patent, the attainment of the desired precise alignment and air gap is achieved only with very costly manufacturing procedures. Tolerance variations in the mounting of E-cores and rollers on the frame members and the parallelism of the upper and lower bar surfaces very easily destroy the desired air gap size and alignments of the E-core pole teeth thereby affecting the precision in the stepping operation of the motor.
{ "pile_set_name": "USPTO Backgrounds" }
It has long been known that low-field MRI produces high contrast images, but the weak field leads to a low signal to noise (S/N) ratio at poor resolution. Increasing the field increases the S/N ratio and, therefore, the resolution but decreases the contrast, so that high-field images have high resolution but poor contrast. There have been many attempts to overcome this limitation and to provide high-contrast high-resolution MRI images. U.S. Pat. No. 5,168,226A to Hinks discloses a method whereby the total scan time may be shortened without losing resolution. The method disclosed in U.S. Pat. No. 516,226A comprises executing a fast spin echo pulse sequence in which a plurality of views are acquired and the fast spin echo pulse sequence is employed to acquire views from a plurality of separate images during a scan. The low-order phase encoding views are acquired for each image and stored in separate image data arrays, whereas the high-order phase encoding views are acquired only once and stored in all of the image data arrays. Each image data array is employed to reconstruct a separate image using standard reconstruction methods and apparatus. The desired T2 contrast is produced primarily by the low-order views of each image and the high-order views enhance the structural details of each image. Accordingly, only the low-order views need be acquired separately for each image to provide the desired T2 contrast, and a single set of high order phase encoding views can be used to fill in the structure details in all of the images. However, this method provides a relatively small enhancement of the contrast unless a large number of high-order phase encoding views are acquired. Another method of improving contrast is by adding contrast agents to the region of interest, such as administration of a paramagnetic contrast agent (for example, gadolinium) to blood vessels and creating the MRI images at a time when the concentration of contrast agent is at a maximum. This method is disclosed in U.S. Pat. No. 5,479,925A to Dumoulin et al., among others. The method is adapted to enhancing contrast in medical MRI but has limited utility in industrial application where there are no obvious sub-domains (such as blood vessels in medical MRI) into which to introduce the contrast agents and where the presence of a contrast agent in a finished product may well be undesirable. U.S. Patent Application US2004169512A to Jara discloses a method of combining three image-post-processing phases for the purpose of generating high-quality quantitative MR images (proton density (PD), T1, and T2) as well as high-quality virtual MR images with continuously adjustable computer-synthesized contrast weightings, from source images acquired directly with an MRI scanner. Each of the image-post-processing phases uses one or several new computer algorithms that improve image quality with respect to prior art, including linear-combination-of source-images (LCSI) algorithms for generating PD images and model-conforming algorithms for generating Q-MR images of tissue properties that influence NMR relaxation. However, the method depends on the presence of materials with different relaxation times in different parts of the scan (such as white matter and cerebrospinal fluid) to enable the enhanced contrast. It is therefore a long felt need to provide an MRI device with provides high-contrast and high-resolution images.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to an optical data carrier as well as to a method and signal being suitable for recording track data onto an optical data carrier. 2. Discussion of the Background FIG. 1 shows a schematical drawing of a well known optical data carrier, a CD (compact disk) 1. The CD 1 comprises a transparent substrate layer 2 and a reflective information layer 3. The CD 1 contains a spiral shaped path of successive shallow depressions 4, also called pits, in the reflective information layer 3. Encoded information is stored in the lengths of the pits 4 and in the distances between the pits 4. During playback of the CD 1 a scanning light spot 5 which is focused by an objective lens 6 is diffracted by the pits 4 in the reflective information layer 3. The optical power that is diffracted back into the objective lens 6 is modulated according to the information encoded within the reflective information layer 3. The optical power that is diffracted back into the objective lens 6 is converted into a photo current also called high frequency (HF) signal. Generally, the arrangement of the optical system which generates the scanning light spot and which comprises the objective lens 6 is optimized for predetermined thickness values of the substrate layer 2. This causes a problem if the thickness values of a CD do not fulfill the thickness assumptions made. In this case, an undesired effect called “spherical aberration” occurs: Normally, the irradiation distribution of the scanning light spot 5 shows a distribution referenced with the reference numeral 7 (FIG. 2a). In the case of spherical aberration, the irradiation distribution of the scanning light spot 5 shows a distribution referenced with the reference numeral 8 (FIG. 2b). The irradiation distribution 8 leads to a high “jitter” (the standard deviation of time length variations between leading and trailing edges of specific pits 4 or lands (areas between the pits 4), measured at reference scanning velocity). A high jitter, however, may lead to a weak high frequency signal which can not be properly processed. The problem described above concerns all types of CDs: the CD-DA (Compact Disc Digital Audio), the CD-ROM (Compact Disc Read Only Memory) or the SA-CD (Super Audio Compact Disc).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field The present disclosure relates to neutron generators, and more particularly, to nanostructure electrodes for producing ions to be accelerated for neutron generation. 2. Description of Related Art Neutrons can be used to examine different parameters of geological formations in borehole logging. For oil wells it can report important properties such as the porosity of the soil. Currently many radioactive sources are used in the oil-well logging industry. These generate neutrons in a radioactive decay. A common material used is an americium-beryllium source. Radiological source replacement programs have the goal to reduce the amount of radioactive sources and replace them with, for example, neutron generators to lower the risk of proliferation and contamination of oil wells and the environment in general as well as reducing health risks for the workers using radioactive sources at the moment. To replace e.g. americium-beryllium sources, neutrons with a similar energy spectrum as the radioactive sources have to be produced. Deuterium and tritium fusion reactions can for example be used for this purpose. Here, deuterium and tritium gas is ionized, accelerated and then interacts with a target that is loaded with, for example, deuterium or tritium. For oil-well logging applications the ion source needs to be small and energy efficient. Current sources used, for example, are Penning sources. Here, a higher electron current is used to ionize gas. Thus, a new approach of producing high-energy neutrons that is more efficient, smaller in size and has a longer lifetime than current sources is desired. Additionally, the production of neutron with energy greater than 2.5 MeV without the use of tritium would be advantageous.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a recording or reproducing apparatus capable of preventing a tape from being accidentally stuck to a rotary head drum provided with a head (hereinafter referred to as a "rotary drum") owing to dew condensation occurring on the rotary drum, excessively pulled out from a reel and wound around the rotary drum during tape loading under dew-condensation conditions. 2. Description of the Related Art A conventional magnetic recording or reproducing apparatus of this type is arranged to start tape loading with a rotary drum kept rotated while causing a brake to act on a reel table positioned on a side where a tape is pulled out by the rotation of the rotary head. This arrangement is intended to prevent the tape from accidentally sticking to the rotary drum and being excessively pulled out from a reel by the resultant sticking force when the tape comes in contact with the rotary drum wet with dew condensation. However, since the conventional example is arranged in the above-described manner such that the tape is pulled out from a cassette while applying a brake, there is the problem that, in the case of loading at an end portion of the tape, if no tape remains on the reel positioned on a take-up side, the tape cannot be pulled out and a loading operation becomes impossible. To cope with this problem, the conventional arrangement requires the complicated operation of detecting a tape end before loading and transporting the tape toward the take-up side within the cassette before the loading on the basis of the detection result to prevent the above-described winding accident. Such a complicated operation is not only time-consuming but also requires high torque for driving the reel table in order to transport the tape within the cassette before loading. Hence, torque-switching means for selecting the high torque is also required.
{ "pile_set_name": "USPTO Backgrounds" }
Users of client devices with touch-screens face several challenges when interfacing with traditional web applications intended for access by a browser at a terminal with a full-size display. One challenge relates to attempts to remotely control a conventional “point-and-click” driven interface (e.g., Windows® interface) from a touch-screen device which is designed not for traditional “point-and-click” interactions, but rather, for touch-screen gestures and “finger swipe” style of interactions. To address these challenges, it is known in the art to serve a modified “mobile” version of a web application or web site upon detecting touch screen devices which, for example, have increased font size or reduced content. However, these changes require developers to actively create an entirely separate version of a web application, which can be costly and time-consuming, and may not feasible for many legacy web applications already deployed. Consequently, there is a need for improved systems and methods for providing access to a web application one style of user interface to a client device having a different style of user interface.
{ "pile_set_name": "USPTO Backgrounds" }
As e-commerce becomes more mainstream and an important part of business operations, e-commerce security has become more important. Determining threats and weaknesses to a web service or other application-based system is important to a business that provides the service. By analyzing and dealing with potential threats, system designers may help prevent attacks against a web service and other service failures. Mitigating service threats provides for a more secure and safe environment in which business customers may conduct business. Typically, threat modeling involves a team of designers that “brainstorm” to identify perceived vulnerabilities and other weaknesses of a system. Though this method may catch several vulnerabilities of a system, it is suspect to human error and does not provide a standard methodology for eliminating system threats. Some threat modeling methods have been implemented to identify system threats. However, most modeling methods have had inconsistent success. In particular, some threat modeling systems produce an attack model rather than an actual threat model. Other systems are too general, and often use a threat model of a physical process or a general implementation of a software application. This generalization can affect modeling usability because of a lack of focus from the consumer's perspective.
{ "pile_set_name": "USPTO Backgrounds" }
A “flash hook” is a temporary disconnect of the local loop connection in a communication network. Telephones, for example, may include a button for generating a flash hook signal and/or a user may simply go on-hook for a short period of time. Unfortunately, in a Voice over Internet Protocol (VoIP) network where a trunk gateway is used, a user may need to use a keypad to signal a flash hook to the softswitch. Using the keypad to signal the flash hook may be awkward for a user and distracting to another party to the call.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to the field of printing presses and, in particular, to an apparatus for folding signatures in the folder section of a printing press. The printing industry is continually increasing the speed at which printed copies can be generated. Printing, forming, folding and cutting operations are often done by a continuous operation machine, feeding in a web of blank paper from a roll and ending with a printed, cut and folded product, often referred to as a signature. For example, a web may pass through a series of processing units such as the print units, dryer, chill unit, folder and stacker, among others, in being processed into a finished product. One such processing unit in the folder is the quarterfolder. Quarterfolding is typically defined as, for example, folding occurring in the web direction after the signature or sheet has been cut off from the web. The signature may also have been folded prior to quarterfolding. Typical quarterfolding is done, for example, by presenting signatures in sequence to a chopper mechanism that descends upon the signature, forcing it downward through a slot into awaiting rollers which fold the signature. Signatures typically are presented for quarterfolding at a 50% duty cycle, that is, there is a signature of a specific length followed by a space of approximately equal length before the next signature. Therefore, the chopper mechanism descends upon signatures which are presented one half of the cycle time. Quarterfold mechanisms are known in the art. For example, U.S. Pat. No. 4,509,939, incorporated herein by reference, purportedly discloses a quarterfold folding device having a quarterfold blade arranged parallel to the direction of forward travel of a signature and intended to introduce the signature between two rotating cylinders parallel to the direction of forward travel, so as to form the longitudinal fold in the signature. The quarterfold folding device is purportedly suspended from two drive cranks which are rotationally driven parallel in the same direction and at the same speed by means of two additional rotating cranks, each of which is connected to one end of the drive cranks by means of a rotating pivot. The drive cranks carrying the quarterfold blade purportedly drive the quarterfold blade in a vertical movement between a bottom position and a top position. Signatures are purportedly fed into the quarterfold mechanism in a sequential and periodic manner corresponding to the period of the blades movement from the top position to the bottom position. The process of quarterfolding is limited in speed, however, by the rates at which mechanisms and signatures can be treated with a 50% duty cycle as described above. To achieve higher speeds, two separate quarterfolders can be configured on one folder and, for example, arranged so that each quarterfolder folds alternating signatures. This approach adds costs and space requirements, however, that may be prohibitive to many smaller presses thereby limiting their potential speed. It is an object of the present invention to provide a quarterfold folding device and method wherein selected signatures in a stream of signatures are delayed to form signature groupings, such as signature pairs, which are then folded via an appropriately sized chopper blade or folding blade, wherein the speed that the signatures are conveyed and the chopping rate can be varied as a result of forming the signature groupings. Thus, the method and device according to the present invention achieves higher signature throughput by performing one quarterfold cycle for multiple signatures while using a single quarterfolder. Signatures are grouped into, for example, pairs and then the group of signatures is quarterfolded with an appropriate length single chopper blade, for example an extended length chopper blade. Thus, the quarterfolder according to the present invention can receive signature pairs at increased signature rates and at a 50% duty cycle, thereby increasing signature through-put. The device according to the present invention is usable in folders or sheeters performing a cross fold in a sheet or signature by a chopper mechanism. The quarterfolding process according to the present invention involves delaying, for example, alternate signatures on their way to the quarterfolder, such that every other signature is moved back to create a smaller space behind it and a greater space ahead of it. This greater space allows a chopper mechanism to maintain, for example, a 50% duty cycle, while increasing the number of signatures that are quarterfolded in a given time or decreasing the chopping rate while quarterfolding the same number of signatures in a given time or some combination of both. The signatures that are simultaneously processed are paired by, for example, a delaying process. A suitable signature delaying mechanism may group the signatures as desired to prepare them for the quarterfolding process. Thus, an exemplary embodiment of the present invention provides a chopper blade or quarterfold blade that is approximately twice the length of a single signature, wherein by controlling the feed rate at which the stream of signatures are fed to the quarterfold blade and delaying certain signatures, a grouping of signatures, for example, a pair, are quarterfolded simultaneously by a single blade without increasing the chopping rate of the blade. The quarterfold folding device may also include a system for balancing the dynamic forces generated by the moving quarterfold blade as described in U.S. Pat. No. 5,458,557 entitled xe2x80x9cQuarter-Fold Folding Device Having a Balancing System,xe2x80x9d which is incorporated in its entirety herein by reference. The following description regarding the appended drawings, given by way of non-limiting examples, describes the present invention and how it can be produced.
{ "pile_set_name": "USPTO Backgrounds" }
In virtually every radiotelephone system, a large number of subscribers are served from a central fixed site which provides communication channels to the subscribers as the channels are needed and as the subscribers move from place to place. Of course in any such system it is likely that the number of subscribers will occasionally exceed the number of communication channels available. This problem has been addressed in many ways, including providing a busy signal to the subscriber (that is, simply not providing service) and constructing cellular systems having the capacity to reduce the sizes of the radio coverage areas (cells) and to subsequently place more cells and hence more communications channels in a geographic area. Needless to say, not providing service is an unacceptable solution while the process of cell splitting and redeployment is slow and not responsive to a dynamic radiotelephone system. Digital radiotelephone service has been proposed as another method of increasing the number of channels available to subscribers. Two of the most promising digital methods, time division (TD) and code division (CD), offer increased channel availability by further sharing the physical resources among the subscribers. Simply stated, analog signals (such as voice) are converted (in a vocoder) to a digital signal using a conversion format having specified sampling frequency and a particular data compression technique. The compressed data is combined with the time division or code division signal and transmitted, via radio, to the receiver. The receiver demodulates the time division or code division transmitted signal and decompresses and resamples the data in a process complementary to the conversion prior to transmission. This produces a reproduced analog signal at the receiver. The radiotelephone service is bi-directional in that the fixed station both transmits and receives vocoded signals and the subscriber unit reciprocally transmits and receives vocoded signals. Compatibility between transmitting units and receiving units requires that the conversion rates and compression techniques be opposite and equal. Whatever rate is used in the analog to digital processing must be matched in the corresponding digital to analog processing. It should be noted that, in general, the lower the vocoder bit rate, the greater the number of available communications channels, but the quality of the speech is reduced. It has been suggested that the vocoding rates be made variable to encode speech signals at rates based upon the characteristics of the speech to be encoded. In order that the optimum quality of speech be transmitted, the highest rate is used during passages of speech. When the speaker pauses or stops speaking, a variable rate vocoder reduces the rate, thus lowering the average rate per talker, which allows the system to provide more communications channels. See, for example, U.S. Pat. No. 5,515,375 "Method and Apparatus for Multiplexing Fixed Length Message Data and Variably Coded Speech" filed on behalf of DeClerck on Jul. 30, 1993 and assigned to the assignee of the present invention. Even employing the foregoing techniques may not yield a radiotelephone system offering a sufficient number of communication channels in an efficient manner to accommodate a large subscriber population.
{ "pile_set_name": "USPTO Backgrounds" }
The external combustion engine of the above type is recently called as a steam engine of a liquid piston type, which is known in the art, for example, as disclosed in Japanese Patent Publication No. 2007-255259. According to such a known steam engine, working fluid of liquid condition is charged into a pipe-shaped main container and the working fluid is movable in the main container. A portion of the working fluid is heated by a heating portion, which is provided at one end of the main container, to vaporize the working fluid. Vaporized working fluid (steam of the working fluid) is then cooled down by a cooling portion, which is provided at an intermediate portion of the main container, to condense the steam to the liquefied working fluid. The liquid portion of the working fluid is periodically displaced (so-called, self-excited vibration) by alternately repeating the vaporization and condensation of the working fluid, so that kinetic energy is taken out from the self-vibration for the liquid portion of the working fluid at an output portion communicated to the other end of the main container. According to the above steam engine, working fluid is also charged into an auxiliary container, which is a separate container from the main container, and the main container and the auxiliary container are communicated with each other through a restricted portion. According to such a structure, inside pressure of the main container is adjusted by use of the auxiliary container, in order to improve output and efficiency of the external combustion engine. FIG. 3 is a schematic view showing an outline structure of an external combustion engine (a steam engine). The steam engine of FIG. 3 is shown in this application as a reference example, for the purpose of explaining not the prior art but the present invention. In other words, the steam engine does not belong to a prior art. In FIG. 3, multiple (three) main containers 12 to 14 are connected to one output portion 21. Namely, an external combustion engine is shown as a liquid-piston type steam engine having multiple cylinders. According to the reference example, a phase of the movement of the working fluid 11 differs from each other among the multiple main containers 12 to 14, so that mechanical vibration at the output portion 21 is reduced. According to the reference example, the working fluid 11 is charged in a casing 29 of the output portion 21, a casing 29 is communicated with the main containers 12 to 14 through a first communication pipe 33, and restricted portions 35 are formed in the first communication pipe 33. According to such a structure, the casing 29 demonstrates a function of the auxiliary container, as disclosed in the above publication (No. 2007-255259). Since the working fluid 11 is also charged in the casing 29, air in the casing 29 is prevented from flowing into the main containers 12 to 14 through minute gaps between pistons 22 to 24 and cylinders 25 to 27 of the output portion 21. Furthermore, according to the reference example, the casing 29 is communicated with the main containers 12 to 14 through a second communication pipe 34, which is arranged in parallel to the first communication pipe 33, and the second communication pipe 34 is opened or closed by a valve 38. FIG. 4 is a time chart showing an operation of the engine at its starting period according to the above reference example. The starting period is divided into two steps, one is a motoring step and the other is a start-up step. In the motoring step, the pistons 22 to 24 are driven by an outside driving power for one cycle. In the start-up step, the output (the rotational speed) is increased to a predetermined output value (a predetermined rotational speed), after the motoring step has ended. When the start-up step is finished, the steady state operation starts, during which the predetermined output (electrical power) can be taken out from the engine 10. A certain amount of the working fluid 11 in the main containers 12 to 14 is drained off to the casing 29 through the second communication pipe 34 by opening the valve 38 during the motoring step. So-called liquid-drain-off is carried out. When the above liquid-drain-off is carried out, the working fluid 11 returns from the main containers 12 to 14 to the casing 29. However, an excessive amount (an amount more than necessary) of the working fluid 11 may return to the casing 29 during the liquid-drain-off process. Then, the working fluid 11 gradually flows back into the main containers 12 to 14 through the restricted portions 35 after the liquid-drain-off. As a result, the liquid amount of the working fluid 11 in the main containers 12 to 14 becomes to an adequate amount. When the liquid amount of the working fluid 11 in all of the main containers 12 to 14 has become to the adequate amount, the starting operation is finished and changed to a steady state operation. However, as seen from FIG. 4, according to the above reference example, a time necessary for the start-up step (the start-up time) becomes longer, because the phase of the movements in the main containers 12 to 14 differs from each other. As a result, it is a problem in that heat loss during the start-up step may become larger. We could make a flow passage area of the restricted portions 35 larger, as one of counter measures for the above problem. However, according to such countermeasure, in the main container, in which the operational phase is in the most advanced condition, the working fluid 11 may excessively flow into the main container. After all, the start-up time may become longer even in such a countermeasure.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an amplifying apparatus, specifically, to an amplifying apparatus amplifying a signal including an amplitude component and a phase component. 2. Description of the Related Art In recent years, a digital modulating method such as QPSK (Quadrature Phase Shift Keying) and multiple-value QAM (Quadrature Amplitude Modulation) has been used for wireless communication. In the QPSK and the multiple-value QAM, an amplitude (envelope) of a high frequency input signal changes as time elapses. The ratio of a peak electric power to the average electric power of a signal whose amplitude changes is referred to as PAPR (Peak-to-Average Power Ratio). When a signal whose PAPR is large is amplified, it is necessary to cause an amplifier to operate with back off in an area in which the electric power is lower than saturated electric power to secure enough linearity for peak electric power. The efficiency of a general linear amplifier is maximum around the saturated electric power, and if the general linear amplifier operates in an area in which the back off is large, the average efficiency becomes lower. In a wireless LAN (Local Area Network), the Orthogonal Frequency Division Multiplexing (OFDM) method is adopted to realize a multiple carrier transfer. The PAPR of this modulating method becomes larger than that of the QPSK and the multiple-value QAM, so that the average efficiency of an amplifier becomes lower. Thus, there is need for an amplifier which operates highly efficiently even in an area in which the back off is large. To meet the need, Envelope Elimination and Restoration (EER) is proposed as a configuration in which a signal can be amplified highly efficiently in a wide dynamic range in the area in which the back off is large (refer to “PROCEEDINGS OF THE I. R. E.” (L. Kahn), 1952, Vol. 40, pp. 803-806, FIG. 2). FIG. 1 is a block diagram illustrating a configuration of an amplifier of the EER method. Referring to FIG. 1, an EER amplifier includes RF amplifier 901, pulse modulator 902, switching amplifier 903, low-pass filter 904, envelope detector 905, and limiter 906. A digital-modulated high frequency analog signal which is inputted to the EER amplifier is caused to branch to two signals. One of the two signals is inputted to envelope detector 905, and the other signal is inputted to limiter 906. Envelope detector 905 eliminates a carrier frequency component from the inputted signal to extract an amplitude component (envelope). An output of envelope detector 905 is inputted to pulse modulator 902. Pulse modulator 902 pulse-modulates the inputted signal to output the signal to switching amplifier 903. Switching amplifier 906 amplifies current of the signal from pulse modulator 902 by turning on/off VCC to output the signal to low-pass filter 904. Low-pass filter 904 filters the signal from switching amplifier 906. The output from low-pass filter 904 becomes an analog amplitude signal which is obtained by amplifying the amplitude signal outputted from envelope detector 905, and is delivered as an electric power source to RF amplifier 901. On the other hand, limiter 906 to which the other branched signal is inputted converts the input signal to a phase signal, whose amplitude is constant, and which includes only phase information, and inputs the signal to RF amplifier 901. RF amplifier 901 amplifies the phase signal from limiter 906 by using the amplified amplitude signal from low-pass filter 904 as an electric power source. Thereby, the amplitude signal from low-pass filter 904 and the phase signal from limiter 906 are mixed, and the mixed signal becomes a high frequency output signal which is obtained by amplifying the input signal to the EER amplifier. According to the EER amplifier, RF amplifier 901 can be caused to constantly operate in the vicinity of the saturated electric power in which the efficiency is the maximum. Referring to a configuration of the amplitude signal side, it is sufficient that pulse modulator 902 processes a signal in a logic level, so that the electric power consumption of pulse modulator 902 is small. Switching amplifier 903 only turns on/off electric power source VCC as a switching operation, thus, amplifier 903 operates ideally with the efficiency of 100%. Low-pass filter 904 can be configured with lossless inductors and capacitances. Therefore, as compared with a case in which RF amplifier 901 independently operates in a class-A operation or a class-B operation, the EER amplifier can highly efficiently amplify the digital-modulated high frequency input signal across a wide dynamic range. In addition, Envelope Tracking (ET) is also known as another configuration which can highly efficiently amplify signals even in an area in which the back off is large (refer to e.g. “IEEE MTT-S Digest” 2000, Vol. 2, pp. 873-876, FIG. 1). A configuration of the ET amplifier is a configuration in which limiter 906 is eliminated from the EER amplifier illustrated in FIG. 1. RF amplifier 901 does not operate as saturated, but operates linearly, so that the efficiency of the ET amplifier is slightly lower than that of the EER amplifier. However, as in the EER amplifier, the ET amplifier also changes an electric power source voltage of RF amplifier 901 according to the output electric power of the amplitude signal side including a pulse modulation and switching amplification, and delivers only required minimum DC electric power even in the back off area to RF amplifier 901. Thus, the ET amplifier can highly efficiently amplify signals as compared with a case in which RF amplifier 901 independently and linearly amplifies signals with a fixed electric power source. While pulse width modulation (PWM), as a modulating method of a pulse modulator which are used in the EER amplifier and the ET amplifier, has been used as a general pulse modulating method, as another case, a configuration is proposed in which a delta modulation (or, pulse density modulation (PDM)) is applied, whose linearity is excellent (refer to Japanese Patent No. 3207153 (pp. 8, FIG. 3) U.S. Pat. No. 5,973,556 (pp. 3, FIG. 3). FIG. 2 is a block diagram illustrating a configuration of another EER amplifier in which the delta modulation is applied. Referring to FIG. 2, another EER amplifier includes amplitude path 911 and phase path 920. Amplitude path 911 includes delta modulation amplifier 910 and envelope detector 912. Delta modulation amplifier 910 includes envelope detector 913, difference detector 914, quantizer 915, class-D amplifier 916, low-pass filter 917, and attenuator 918. Phase path 920 includes limiter 921, non-linear front amplifier 922, and output stage amplifier 923. Delta modulation amplifier 910 of amplitude path 911 attenuates a high frequency output from output stage amplifier 923 of phase path 920 with attenuator 918, and extracts an amplitude component with envelope detector 913. Difference detector 914 obtains the difference between an amplitude component of a high frequency input detected by envelope detector 912 and an amplitude component of a high frequency output detected by envelope detector 913. Quantizer 915 quantizes the difference, and class-D amplifier 916 amplifies the quantized signal. An output of class-D amplifier 916 is filtered by low-pass filter 917, and is delivered as an electric power source to output stage amplifier 923 of phase path 920. In phase path 920, limiter 921 extracts a phase component from the high frequency input, and non-linear front amplifier 922 amplifies a signal of the phase component. Output stage amplifier 923 finally amplifies an output of non-linear front amplifier 922, and generates a high frequency output. As described above, the linearity of the EER amplifier can be improved by using a delta modulating method whose linearity is excellent. However, there is a problem that a noise level of an amplifying apparatus using the EER method or the ET method is higher than that of a normal linear amplifying apparatus. For example, this is because in pulse modulator 902 of the EER amplifier illustrated in FIG. 1, noise is induced when an analog signal is converted to a pulse signal. When pulse width modulation is used as a pulse modulating method, a switching noise is induced which corresponds to a cycle of a reference triangle waveform signal. When the delta modulation is used as the pulse modulating method, a white quantization noise is the main noise source. The noise induced in pulse modulator 902 is reduced to some extent by low-pass filter 904. However, the noise is not completely eliminated, and the amplitude signal which is superimposed with remaining noise is mixed with a phase signal in RF amplifier 901. As a result, a noise component is mixed in an output signal, and SNR (Signal to noise ratio) of a spectrum of the output signal is degraded. In wireless communications in recent years, such as mobile telephones, using digital modulation, it is specified in a communication standard that an adjacent channel leakage power ratio (ACPR) will be suppressed to a low level. If the SNR is degraded by noise induced in pulse modulator 902, the specification for the ACPR may not be satisfied. To improve the SNR of pulse modulator 902, in the pulse width modulating method, it is effective to increase the frequency (switching frequency) of the reference triangle waveform signal which is used for comparison with an input signal. In the delta modulating method, it is effective to increase a sampling frequency, and increase an over-sampling ratio. The over-sampling ratio is a ratio of a sampling frequency to a frequency which is twice the input signal band. However, if these techniques are adopted, problems will occur in which electric power consumption of a signal processing circuit in pulse modulator 902 is increased, loss induced when switching amplifier 903 is switched is increased, and electric power consumption of the entire EER amplifier is increased. As described above, there exists a trade off between the increase of the SNR and the decrease of electric power consumption in the pulse modulating method. On the other hand, it is assumed that the EER amplifier illustrated in FIG. 2 can correct an error attributed to the non-linearity of delta modulation amplifier 910 and output stage amplifier 923 by providing feedback from output stage amplifier 923 to delta modulator 910. However, a negative feedback loop is configured to be returned to delta modulator 910, so that quantization error which is induced by quantizer 915 in delta modulator 910 is superimposed again. Thus, it is thought that waveform distortion arise from non-linearity can be reduced but noise can not be eliminated in principle with this configuration.
{ "pile_set_name": "USPTO Backgrounds" }
User satisfaction is maximized when the user is able to access any content at any time. Disadvantageously, however, this can result in an extremely inefficient network if the means or distributing the content is not optimized. Furthermore, as the volume of content that is consumed in a personalized fashion continues to grow, existing mechanisms for delivering content are not always able to efficiently deliver the personalized content to users.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a fly line connector. More particularly, the invention is concerned with a connector for fly lines which can permit a fisherman to easily and quickly change leaders without tying knots, and to a method of making such a connector. 2. Description of the Prior Art The fly lines which are at present recognized as giving best results are those formed of a tubular braiding of synthetic fibers, covered on the outside by a plastic film, thus producing a structure of high strength and with a degree of flexibility in accord with the purpose which said line is to serve. These lines, the size of which varies between 0.5 and 2 mm in diameter, consist of two types--one of uniform diameter commonly known as parallel lines and the other, of appreciable higher price than the foregoing, whose diameter decreases towards the free end, which feature has resulted in the name of rat-tail by which it is known among fishing enthusiasts. Since the cost of the braided rat-tail tubular line is considerably higher than that of the parallel line, in general the fisherman is not financially able to purchase it despite the advantages which it offers, for which reason, he purchases different sections of parallel line of different diameters and connects them in such a manner as to obtain a line having a behavior similar to that of the costly rat-tail. On the other hand, both those who use the parallel fly line and those who use the original rat-tail or rat-tail constructed in the manner indicated above, find it frequently necessary to repair their cut lines by splices. For this purpose, it should be pointed out that up to now the work involved in making a splice of a synthetic tubular line constitutes a task which must be carried out slowly and with a great deal of patience, it being impossible to effect it at the fishing site itself since the connection of the broken line is effected by a splice which is then covered with several layers of varnish, each of which must be allowed to dry properly. Therefore, up to the present time, the fisherman whose line is cut sees his fun ruined. Unless he has a spare line, he must bring the line in for repair or else splice it himself; but he can never do this at the fishing site itself for the reasons mentioned above. U.S. Pat. No. 2,533,418 to Benoit relates to snells or leaders made of various materials and which are usually attached to the shank of a fishhook by wrapping with a thread. An adhesive is placed on the wrapping to secure the parts together. U.S. Pat. No. 3,722 to Handl discloses a connection for tubular fishing lines which comprises a pin with barbs at its ends. It is a primary object of the invention to provide a connector for use in connection with fly lines which can simplify the problem of attaching or changing leaders. It is another object of the invention to provide a method for rapidly changing leaders of a fly line without knots. It is a still further object to provide fishing line connectors which can be utilized with all types of lines. It is yet still further object of the invention to provide a fishing line connector which can also act as a strike indicator.
{ "pile_set_name": "USPTO Backgrounds" }
The embodiments of the present invention relate to a light emitting device (LED). The LED is a semiconductor device that converts electric current into light. Since a red LED was commercialized, the red LED, together with a green LED, is used as a light source of electronic devices which includes information communication equipment. For example, a gallium nitride (GaN) semiconductor, which is a nitride semiconductor, has high thermal stability and a wide bandgap. The GaN semiconductor can be combined with other elements, such as, In and Al to form a semiconductor layer that emits green, blue and/or white lights, and wavelengths of the emitted lights can be easily adjusted, so the GaN semiconductor has been spotlighted in the field of high-power electronic devices, such as LEDs. A conventional nitride semiconductor LED is formed by combining a blue LED with a fluorescent substance. The fluorescent substance absorbs a part of the blue light to emit light having a color band of green, yellow and/or red. At the present time, such a fluorescent substance has low photoconversion efficiency and low reliability at high temperatures. Further, the fluorescent substance occupies a predetermined space on the blue LED, so a volume of the nitride semiconductor LED may be increased.
{ "pile_set_name": "USPTO Backgrounds" }
Semiconductor devices or integrated circuits (ICs) can include millions of devices, such as, transistors. Ultra-large scale integrated (ULSI) circuits can include complementary metal oxide semiconductor (CMOS) field effect transistors (FET). Despite the ability of conventional systems and processes to fabricate millions of devices on an IC, there is still a need to decrease the size of IC device features, and, thus, increase the number of devices on an IC. One limitation to the smallness of IC critical dimensions is conventional lithography. In general, projection lithography refers to processes for pattern transfer between various media. According to conventional projection lithography, a silicon slice, the wafer, is coated uniformly with a radiation-sensitive film or coating, the photoresist. An exposing source of radiation illuminates selected areas of the surface through an intervening master template, the mask, for a particular pattern. The radiation can be light, such as ultra-violet light, vacuum ultra-violet (VUV) light and deep ultraviolet light. The radiation can also be x-ray radiation, e-beam radiation, etc. The lithographic photoresist coating is generally a radiation-sensitive coating suitable for receiving a projected image of the subject pattern. Once the image is projected, it is indelibly formed in the coating. The projected image may be either a negative or a positive image of the subject pattern. Exposure of the lithographic coating through a photomask or reticle causes the image area to become selectively either more or less soluble (depending on the negative or positive photoresist coating) in a particular developer. The more soluble areas are removed in the developing process to leave the pattern image in the coating as less soluble polymer. The photoresist material or layer associated with conventional lithographic technologies is often utilized to selectively form various IC structures, regions, and layers. Generally, the patterned photoresist material can be utilized to define doping regions, implant regions or other structures associated with an integrated circuit (IC). A conventional lithographic system is often utilized to pattern photoresist material to form gate stacks or structures. As the features in semiconductor patterning become smaller and smaller, the photoresist thickness needed to sustain reasonable aspect ratio must decrease. A thinner photoresist may not be suitable for etch applications due to premature resist erosion. Thus, resist erosion complications facilitate the necessity for hard mask processes. According to one conventional process, a hard mask is provided above polysilicon/oxide layers to pattern the gate stacks. The hard mask must be thin enough so that it can be etched without eroding the patterned photoresist above it. The hard mask must also be thick enough to withstand an etch process so that uncovered portions of the underlying layer (e.g., polysilicon layer) can be completely removed. Accordingly, the hard mask must have a precise thickness to appropriately pattern the gate stacks. An anti-reflective coating (ARC) has been conventionally provided underneath the photoresist material or the hard mask to reduce reflectivity and thereby, reduce resist notching, lifting and variation of critical dimension of the obtained pattern. Generally, the ARC (organic or inorganic) is a relatively thin layer which cannot be used as a hard mask because it is too thin and does not allow thickness flexibility due to optical design parameters. Advanced lithography is utilizing higher numerical apertures (NA) to achieve smaller feature sizes. However, the use of higher NA affects the reflectivity of the ARC. The effects on reflectivity associated with higher NAs makes designing a optimal thicknesses for an ARC more difficult. For example, reflectivity requirements due to the use of higher NA's and thickness requirements for bottom anti-reflective coatings (BARCs) are not coincident. Thus, there is a need to pattern IC devices using non-conventional lithographic techniques. Further, there is a need for a process of forming a gate stack that does not require a conventional hard mask step. Yet further, there is a need for a hard mask that has low reflectivity at high NA. Even further still, there is a need for a gate mask process that effectively balances optical and etching efficiencies, especially at ultra high NA. Yet even further still, there is a need for a dual layer hard mask that has less than 1% reflectivity at high NAs and can be used with dual poly flow processes.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to supports for an image-recording material which have better density, elasticity modulus, tensile strength, strength, and the like; which are excellent in dimension stability and smoothness; and with which curling is less likely to occur, compared with conventional supports. The present invention also relates to processes for manufacturing such supports for an image-recording material and to image-recording materials using such supports thereby being capable of forming high quality images. 2. Description of the Related Art Conventionally, in a process of fast and efficient papermaking, a sheet of paper is dried as it passes through a number of cylindrical driers while being tensioned in a vertical direction (the direction of papermaking) and contracting freely in a horizontal direction. Accordingly, when such a sheet of paper is subjected to a change of humidity, it tends to contract or expand largely in the horizontal direction. Therefore, when the sheet of paper is used as a support and information is recorded for example in a form of a photograph, curling occurs and provides a disadvantage of not being able to obtain a high quality image. To solve this issue, transfer paper for electrophotography proposed in Japanese Patent Application Laid-Open (JP-A) No. 01-292354 (Japanese Patent (JP-B) No. 2739160) is manufactured using a so-called Yankee paper machine which does not tension in the vertical direction during the drying process and can restrict the drying contraction in both vertical and horizontal directions so that even if the transfer sheet is subjected to a humidity change after it is dried, the rate of contraction is small, its smoothness is excellent, and a degree of curling is small. However, when a sheet of paper is manufactured using a Yankee paper machine as in JP-A No. 01-292354, the freeness of pulp is generally limited to a range of from 400 ml to 600 ml Canadian Standard Freeness (C.S.F.) and many other papermaking conditions such as papermaking speed are limited, resulting in very strict limitation on manufacturing. On the other hand, a treatment in which a sheet of paper is dried while being pressurized (hereinafter may be referred to as pressure drying treatment or press dry treatment) is expected to provide higher strength, elasticity modulus, density and the like, and such process is currently under development (T. Kadoya et al., Seishi Kagaku [Science of papermaking] (Tokyo: Chugai Sangyo Chosakai, 1982), pp. 174-177). In addition, JP-A Nos. 2000-500536 and 07-91829 (JP-B No. 3041754) propose web pressure drying apparatuses which perform thermal drying of a fiber web with a press dry treatment and provide less limitations when used in a manufacturing line. However, Seishi Kagaku does not disclose nor suggest specific conditions or the like for a press dry treatment. Moreover, JP-A Nos. 2000-500536 and 07-91829 only disclose press dry apparatuses and they do not disclose nor suggest a relationship between a press dry treatment and a support for an image-recording material. Therefore it is difficult to predict that a press dry treatment is applicable to a support for an image-recording material and that a high quality image can be formed.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates in general to a toner composition. More specifically, the present invention relates to a toner composition having an external additive with specific components that are present in a specific ratio, featuring stable charge distribution of the toner in a developer of an electrophotographic image forming apparatus, improved toner supply capability, prevention of filming and a fog, and high quality images. 2. Description of the Related Art In recent years, electrophotographic image forming apparatuses such as laser printers, fax machines, and copiers have been widely used to obtain the benefit of high-speed operation and high quality images thereof. Depending on which kind of developer is used, the electrophotographic image forming apparatuses may be divided into a dry type and a wet type. Particularly, the embodiments of the present invention are related to a dry developer. FIG. 1 is a schematic diagram of a conventional dry electrophotographic image forming apparatus based on a non-contact developing system. In the operational process of the dry electrophotographic image forming apparatus of FIG. 1, a photosensitive object (or photosensitive drum) 100 is charged by a charging device 600, and an image is exposed to a laser beam from a laser scanning unit 900 to develop a latent image on the surface of the photosensitive drum 100. A dry toner 400 in a supply roller 300 is supplied to a developing roller 200. A toner layer regulating device 500 ensures that the toner supplied to the developing roller 200 has a thin and uniform thickness. During this process the toner is frictionally charged by the contact between the developing roller 200 and the toner layer regulating device 500. Particularly, M/A and Q/M of the toner transferring to a developing area are adjusted. M/A is a measurement of weight of the toner per unit area (mg/cm2), and Q/M is a measurement of amount of charge per unit weight of the toner (μC/g). Both M/A and Q/M of the toner are measured on the developing roller after the toner had passed through the toner layer regulating device. The toner, having passed through the regulating device 500, is then developed to an electrostatic latent image on the photosensitive drum 100, is transferred by a transfer roller (not shown) to a recording medium, and is fused by a fuser (not shown). Any residual toner on the photosensitive drum 100 is wiped by a cleaning blade 700, stored in the residual toner collecting bin 800, and the printing process is repeated again starting from the charging step to the image forming step. In general, a dry toner contains a colorant, a binder, a control charge agent, a releasing agent, and optionally other additives to meet the functional requirements of the toner. The additives are divided into an internal additive that is added into toner particles, and an external additive that is added to the surface of the toner particles. Although the toner comprises particles of several micrometers that form a print image on the recording medium, chargeability and fluidity of the toner play a major factor in determining the quality of the print image. Therefore, various kinds of compounds are present in the toner composition as external additives to provide the toner with effective fluidity, charge stability (or chargeability), and cleanability. A noncontact and nonmagnetic one-component developing system is regarded as very advantageous because the system features a—minimized size, facilitated color correspondence, effective gradation, and high-resolution image quality. The most important feature in the noncontact, nonmagnetic one-component developing system is ensuring that the charge and charge distribution of the toner remain constant after repeated print operation, that is, are substantially the same as in an initial printing operation. In this way, stable developing capacity may be maintained, and fogging and filming may be prevented. The most effective way to provide the toner with a uniform charge is generally the formation of a thin toner layer on the developing roller. However, when the layer is made thin, it consequently imparts substantial stress to the toner and deteriorates the toner itself. In addition, when the thin toner layer is formed on the developing roller, the charge of the toner is increased, and this, in turn, lowers the developing efficiency and the image density.
{ "pile_set_name": "USPTO Backgrounds" }
Reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in any country. In the last decade, much has been learnt about the molecular, genetic and cellular events underpinning plant life cycles and plant production. One particularly important plant product is wheat grain. Wheat grain is a staple food in many countries and it supplies at least 20% of the food kilojoules for the total world population. Starch is the major component of wheat grain and is used in a vast range of food and non-food products. Starch characteristics vary and they play a key role in determining the suitability of wheat starch for a particular end use. Despite this huge global consumption and despite an increased awareness of the importance of starch functionality on end product quality, research on genetic variation in wheat and its precise impact on starch characteristics lags behind that for other commercially important plant crops. Bread wheat (Triticum aestivum) is a hexaploid having three pairs of homoeologous chromosomes defining genomes A, B and D. The endosperm of grain comprises 2 haploid complements from a maternal cell and 1 from a paternal cell. The embryo of wheat grain comprises one haploid complement from each of the maternal and paternal cells. Hexaploidy has been considered a significant obstacle in researching and developing useful variants of wheat. In fact, very little is known regarding how homoeologous genes of wheat interact, how their expression is regulated, and how the different proteins produced by homoeologous genes work separately or in concert. Cereal starch is made up of two glucose polymers, amylose and amylopectin. The ratio of amylose to amylopectin appears to be a major determinant in (i) the health benefit of wheat grain and wheat starch and (ii) the end quality of products comprising wheat starch. Amylose is an essentially linear polymer of α-1,4 linked glucose units, while amylopectin is highly branched with α-1,6 glucosidic unit bonds linking linear chains. High amylose starches are of particular interest for their health benefits. Foods comprising high amylose have been found inter alia to be naturally higher in resistant starch (RS), a form of dietary fibre. RS is starch or starch digestive products that are not digested or absorbed in the small intestine. Resistant starch is increasingly seen to have an important role in promoting intestinal health and in protecting against diseases such as colorectal cancer, type II diabetes, obesity, heart disease and osteoporosis. High amylose starches have been developed in certain grains such as maize and barley for use in foods as a means of promoting bowel health. The beneficial effects of resistant starch result from the provision of a nutrient to the large bowel wherein the intestinal microflora are given an energy source which is fermented to form inter alia short chain fatty acids. These short chain fatty acids provide nutrients for the colonocytes, enhance the uptake of certain nutrients across the large bowel and promote physiological activity of the colon. Generally, if resistant starches or other dietary fibre are not provided to the colon it becomes metabolically relatively inactive. Thus high amylose products have the potential to facilitate increased consumption of fibre. Some of the potential health benefits of consuming high amylose wheat grains or their products such as starch include its role in regulating sugar and insulin and lipid levels, promoting intestinal heath, producing food of lower calorie value that promote satiety, improving laxation, water volume of faeces, promoting growth of probiotic bacteria, and enhancing faecal bile acid excretion. Most processed starchy foods contain very little RS. The breads made using wild-type wheat flour and a conventional formulation and baking process contained <1% RS. In comparison, breads baked using the same process and storage conditions but containing the modified high amylose wheats had levels of RS as much as 10-fold higher (see International Publication No. WO 2006/069422). Legumes, which are one of the few rich sources of RS in the human diet, contain levels of RS that are normally <5%. Therefore, consumption of the high amylose wheat bread in amounts normally consumed by adults (e.g. 200 g/d) would readily supply at least 5-12 g of RS. Thus, incorporation of the high amylose wheat into food products has the potential to make a considerable contribution to dietary RS intakes of developed nations, where average daily intakes of RS are estimated to be only about 5 g. Starch is widely used in the food, paper and chemical industries. The physical structure of starch can have an important impact on the nutritional and handling properties of starch for food or non-food or industrial products. Certain characteristics can be taken as an indication of starch structure including the distribution of amylopectin chain length, the degree and type of crystallinity, and properties such as gelatinisation temperature, viscosity and swelling volume. Changes in amylopectin chain length may be an indicator of altered crystallinity, gelatinisation or retrogradation of the amylopectin. Whilst chemically or otherwise modified starches can be used in foods that provide functionality not normally afforded by unmodified sources, such processing has a tendency to either alter other components of value or carry the perception of being undesirable due to processes involved in modification. Therefore it is preferable to provide sources of constituents that can be used in unmodified form in foods. Starch is initially synthesized in plants in chloroplasts of photosynthesizing tissues such as leaves, in the form of transitory starch. This is mobilized during subsequent dark periods to supply carbon for export to sink organs and energy metabolism, or for storage in organs such as seeds or tubers. Synthesis and long-term storage of starch occurs in the amyloplasts of the storage organs, such as the endosperm, where the starch is deposited as semicrystalline granules up to 100 μm in diameter. Granules contain both amylose and amylopectin, the former typically as amorphous material in the native starch granule while the latter is semicrystalline through stacking of the linear glucosidic chains. Granules also contain some of the proteins involved in starch biosynthesis. The synthases of starch in the endosperm is carried out in four essential steps. ADP-glucose pyrophosphorylase (ADGP) catalyses the synthesis of ADP-glucose from glucose-1-phosphate and ATP. Starch synthases then promote the transfer of ADP-glucose to the end of an α-1,4 linked glucose unit. Thirdly, starch branching enzymes (SBE) form new α-1,6 linkages in α-polyglucans. Starch debranching enzymes (SDBE) then remove some the branch linkages through a mechanism that has not been fully resolved. While it is clear that at least these four activities are required for normal starch granule synthesis in higher plants, multiple isoforms of enzymes taking part in one of the four activities are found in the endosperm of higher plants. Specific roles for some isozymes have been proposed on the basis of mutational analysis or through the modification of gene expression levels using transgenic approaches (Abel et al., 1996; Jobling et al., 1999; Schwall et al., 2000). However, the precise contributions of each isoform of each activity to starch biosynthesis are still not known, and these contributions appear to differ markedly between species. In the cereal endosperm, two isoforms of ADP-glucose pyrophosphorylase (ADGP) are present, one form within the amyloplast, and one form in the cytoplasm. Each form is composed of two subunit types. The shrunken (sh2) and brittle (bt2) mutants in maize represent lesions in large and small subunits respectively. Some efforts have focussed on starch synthase enzymes to investigate strategies to modulate the amylose/amylopectin ratio in wheat (see Sestili et al. 2010). Four classes of starch synthase (SS) are found in the cereal endosperm, an isoform exclusively localised within the starch granule (granule-bound starch synthase (GBSS)) two forms that are partitioned between the granule and the soluble fraction (SSI and SSII) and a fourth form that is entirely located in the soluble fraction (SSIII). GBSS has been shown to be essential for amylose synthesis and mutations in SSII and SSIII have been shown to alter amylopectin structure. A mutant wheat plant entirely lacking the SGP-1 (SSIIa) protein was produced by crossing lines which were lacking the A, B and D genome specific forms of SGP-1 (SSII) protein (Yamamori et al., 2000). Examination of the SSII null seeds showed that the mutation resulted in alterations in amylopectin structure, deformed starch granules, and an elevated relative amylose content to about 30-37% of the starch, which was an increase of about 8% over the wild-type level (Yamamori et al., 2000). Amylose was measured by colorimetric measurement, amperometric titration (both for iodine binding) and a concanavalin A method. Starch from the SSII null mutant exhibited a decreased gelatinisation temperature compared to starch from an equivalent, non-mutant plant. Starch content was reduced from 60% in the wild-type to below 50% in the SSII-null grain. In maize, the dull1 mutation causes decreased starch content and increased amylose levels in endosperm, with the extent of the change depended on the genetic background, and increased degree of branching in the remaining amylopectin. The gene corresponding to the mutation was identified and isolated by a transposon-tagging strategy using the transposon mutator (Mu) and shown to encode the enzyme designated starch synthase II (SSII). The enzyme is now recognized as a member of the SSIII family in cereals. Mutant endosperm had reduced levels of SBEIIa activity associated with the dull1 mutation. It is not known if these findings are relevant to other cereals. Lines of barley having an elevated proportion of amylose in grain starch have been identified. These include High Amylose Glacier (AC38) which has a relative amylose content of about 45%, and chemically induced mutations in the SSIIa gene of barley which raised levels of amylose in kernel starch to about 65-70% (WO 02/37955 A1; Morell et al., 2003). The starch showed reduced gelatinisation temperatures. Two main classes of SBEs are known in plants, SBEI and SBEII. SBEII can be further categorized into two types in cereals, SBEIIa and SBEIIb. Additional forms of SBEs are also reported in some cereals, a putative 149 kDa SBEI from wheat and a 50/51 kDa SBE from barley. Sequence alignment reveals a high degree of sequence similarity at both the nucleotide and amino acid levels and allows the grouping into the SBEI, SBEIIa and SBEIIb classes. SBEIIa and SBEIIb generally exhibit around 80% nucleotide sequence identity to each other, particularly in the central regions of the genes. In maize and rice, high amylose phenotypes have been shown to result from lesions in the SBEIIb gene, also known as the amylose extender (ae) gene (Boyer and Preiss, 1981, Mizuno et al., 1993; Nishi et al., 2001). In these SBEIIb mutants, endosperm starch grains showed an abnormal morphology, amylose content was significantly elevated, the branch frequency of the residual amylopectin was reduced and the proportion of short chains (<DP17, especially DP8-12) was lower. Moreover, the gelatinisation temperature of the starch was increased. In addition, there was a significant pool of material that was defined as “intermediate” between amylose and amylopectin (Boyer et al., 1980, Takeda et al 1993b). In contrast, maize plants mutant in the SBEIIa gene due to a mutator (Mu) insertional element and consequently lacking SBEIIa protein expression were indistinguishable from wild-type plants in the branching of endosperm starch (Blauth et al., 2001), although they were altered in leaf starch. In both maize and rice, the SBEIIa and SBEIIb genes are not linked in the genome. SBEIIa, SBEIIb and SBEI may also be distinguished by their expression patterns, both temporal and spatial, in endosperm and in other tissues. SBEI is expressed from mid-endosperm development onwards in wheat and maize (Morell et al., 1997). In contrast, SBEIIa and SBEIIb are expressed from an early stage of endosperm development. In maize, SBEIIb is the predominant form in the endosperm whereas SBEIIa is present at high expression levels in the leaf (Gao et al., 1997). In rice, SBEIIa and SBEIIb are found in the endosperm in approximately equal amounts. However, there are differences in timing and tissues of expression. SBEIIa is expressed at an earlier stage of seed development, being detected at 3 days after flowering, and was expressed in leaves, while SBEIIb was not detectable at 3 days after flowering and was most abundant in developing seeds at 7-10 days after flowering and was not expressed in leaves. In wheat endosperm, SBEI (Morell et al, 1997) is found exclusively in the soluble fraction, while SBEIIa and SBEIIb are found in both soluble and starch-granule associated fractions (Rahman et al., 1995). Very high amylose varieties of maize have been known for some time. Low amylopectin starch maize which contains very high amylose content (>90%) was achieved by a considerable reduction in the SBEI activity together with an almost complete inactivation of SBEII activity (Sidebottom et al., 1998). In potato, down regulation of the main SBE in tubers (SBE B, equivalent to SBEI) by antisense methods resulted in some novel starch characteristics but did not alter the amylose content (Safford et al., 1998). Antisense inhibition of the less abundant form of SBE (SBE A, analogous to SBEII in cereals) resulted in a moderate increase in amylose content to 38% (Jobling et al., 1999). However, the down regulation of both SBEII and SBEI gave much greater increases in the relative amylose content, to 60-89%, than the down-regulation of SBEII alone (Schwall et al., 2000). International Publication No. WO 2005/001098 and International Publication No. WO 2006/069422 describe inter alia transgenic hexaploid wheat comprising exogenous duplex RNA constructs that reduce expression of SBEIIa and/or SBEIIb in the endosperm. Grain from transgenic lines carried either no SBEIIa and/or SBEIIb protein or reduced protein levels. A loss of SBEIIa protein from endosperm was associated with increased relative amylose levels of more than 50%. A loss of SBEIIb protein levels did not appear to substantially alter the proportion of amylose in grain starch. It was proposed but not established that a SBEIIa and/or SBEIIb triple null mutant substantially lacking expression of SBEIIa and SBEIIb proteins would result in further elevations of amylose levels. However, it was not known or predictable from the prior art how many mutant alleles of SBEIIa and/or SBEIIb would be required to provide high amylose levels of at least 50% as a proportion of the total starch. It was also unknown whether the grain of triple null genotypes would be viable or whether the wheat plants would be fertile. There is a need in the art for improved high amylose wheat plants and for methods of producing same.
{ "pile_set_name": "USPTO Backgrounds" }
The process of categorizing packets into different flows in a network router or switch is called packet classification. For example, when a computer opens a TCP session with a printer on a network, the computer sends traffic or flow through a router to the printer. Likewise, the printer sends traffic or flow back through the router to the computer. Packets belonging to the same flow obey a pre-defined rule and are processed in a similar manner by the router. For example, packets with the same source and destination Internet protocol (IP) addresses form a flow. Packet classification is needed for services such as firewalls, quality of service (QOS), and services that require the capability to distinguish and isolate traffic into different flows for processing. The increased demand for speed, capacity and differentiated services has increased the need for high speed, high capacity, and highly selective flow classifiers. Flow classifiers must be able to process packets at a rate of about 10-20 Mpackets/sec. Flow classifiers must also distinguish up to 2M different flows described by Layer 2-4 parameters. Because flow classification is performed on every packet, flow classification is typically performed in hardware and generally requires hardware acceleration. Flow classifiers include a search engine and a look up table, which is also called a flow table. Every row in the flow table contains a flow key and a corresponding function. The flow classifier extracts a flow descriptor or search key from the packet. The flow classifier compares the search key to flow keys in the flow table. If a match is found, the packet is processed using the corresponding function. If a match is not found, a default function is applied to the packet. The search key typically includes selected fields of a header of a packet. The search key may also include internal router parameters such as an ingress port number. The search key may be viewed as a bit string having a fixed length that is created by concatenation of selected packet fields and internal router parameters. Design of a flow classifier requires balancing of memory requirements and search time. The memory consumed by the look up table is preferably minimized while maintaining a desired search time. Consuming less memory usually increases the number of table lookups. Decreasing the number of table lookups usually increases the size of the flow table and the required system memory.
{ "pile_set_name": "USPTO Backgrounds" }
Containers made of metal materials, such as thin gauge aluminum alloys, are in use throughout industry for containing products such as food products. For example, puddings, gelatin, desserts, fruits, and the like are often sold in thin gauge metal containers each of which is sized to provide normal servings and each container may then be used as a serving dish whereby the user is encouraged to eat directly therefrom using an appropriate eating utensil or the user is encouraged to drink directly from such container. A problem with many of the thin gauge metal containers in use is that the lid or closure provided on each of these containers is difficult to remove and jagged metal edges are sometimes left on each the container and the closure.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the monitoring of the operation of cigarette manufacturing machines. A proposal for a method of monitoring the operation of tobacco industry machinery is set forth in United Kingdom Patent Specification No. 1,352,941, the object of the method being to provide management with the extent of machine down-time associated with the or each machine fault responsible for machine stoppage. Sensors are used to detect the occurrence of particular machine operation events and when an event occurs it activates the relevant sensor, which thereby emits a signal which signal in turn causes a cessation of the machine drive and thus a stoppage of the machine. Signals are also sent to a counting device and a time measuring device, there being one of each of these devices associated with each of the sensors. At the commencement of a machine stoppage occasioned by a sensed machine operation event, the count of the counting device associated with the activated sensor is increased by one and the associated time measuring device is activated and remains activated until the machine minder, having remedied the machine fault which has led to the stoppage, has restarted the machine and brought it back up to full production speed. If the same event recurs, the count of the counting device is increased by one and the elapsed time of the stoppage measured by the time measuring device is cummulated with the time value recorded up to the end of the preceding stoppage.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to vascular occlusion devices. More specifically, the invention relates to a vascular occlusion device for closing an atrial septal defect. 2. Description of Related Art A number of different devices may be used to occlude a body cavity including, for example, a blood vessel. When it is desirable to quickly occlude a blood vessel, an inflatable balloon may be used. However, balloons have the disadvantage of being temporary. Another example of an occlusion device includes embolization coils. Embolization coils are permanent and promote blood clots or tissue growth over a period of time, thereby occluding the body cavity. However, while the blood clots or the tissue grows, blood may continue to flow past the coil and through the body cavity. It may take a significant period of time for sufficient tissue to grow to fully occlude the body cavity. This leaves a patient open to a risk of injury from the condition which requires the body cavity be occluded. An example of such a condition includes, but is not limited to, an atrial septal defect such as a patent foramen ovale. In view of the above, it is apparent that there exists a need for an improved vascular occlusion device.
{ "pile_set_name": "USPTO Backgrounds" }
Because there is a wide variety of applications for mechanical packing and seals, including packing for pumps, valves, hydraulic, and pneumatic equipment, a whole industry has grown up in their design and construction. In the areas with which the present invention is concerned, the packing is generally sold in relatively long coils of braided packing material of square or rectangular cross-section from which many suitable lengths may be cut. Conventionally, several lengths are cut from the coil of material for a given installation, each length being formed into a ring about a shaft with the cut ends abutting each other. Often, as many as a half dozen such rings or more are disposed about the shaft with their radial sides in abutting relationship. A so-called packing or stuffing box formed integrally with, and generally extending outwardly from, the housing surrounds the shaft. The interior of the stuffing box is of a diameter sufficiently greater than that of the shaft to accommodate the packing rings. An annular gland is fitted about the shaft and bolted to the exterior of the stuffing box in such a fashion that an end of the gland compresses the packing rings in the stuffing box. Generally, the gland has a flange through which bolts pass which are threaded into the stuffing box. Tightening of the bolts pulls the gland toward the housing and thereby compresses the packing rings within the stuffing box. Under such compression, the materials tend to expand radially to some extent and substantially fill the stuffing box to prevent or minimize the escape of the contents of the housing at the intersection of the shaft and the housing. In the original conventional manufacture of the packing material, it is braided in the form of a relatively long, straight length with square or rectangular cross-section. Because it is then cut to desired short lengths, each of which is formed into a ring about a cylindrical shaft, the outside circumference of each packing ring is longer than the inside circumference. Before compression from the gland is applied, the cross-section of each ring tends to form itself into a trapezoidal shape, the narrow side of the trapezoid being the stretched side adjacent the inner surface of the stuffing box. Conversely, the wide side of the trapezoid abuts the shaft. Because of the trapezoidal cross-section which is assumed by each packing ring, this phenomenon is known as "keystoning." Several problems arise from this keystoning effect. First and foremost, when a plurality of abutting rings are used in a typical application and the packing is compressed by the gland, the force exerted by the gland is concentrated on the packing ring corners adjacent the shaft. This creates a higher normal force between the corners of the packing rings and the shaft adjacent thereto than is created along the ring at locations remote from the corners. Moreover, wear of both packing and shaft becomes more rapid at these corners adjacent the shaft and foreshortens the usable life of both the packing ring set and shaft and reduces the time before leakage becomes intolerable, necessitating adjustment of gland compression and subsequent replacement of the packing and shaft in a shorter than desirable time. More specifically, most mechanical compression packing is formed on plait or so-called "lattice" braiding machines, e.g., interlocking braiding machines, by braiding yarns from moving yarn carriers about axial warp yarns in such a fashion that the warp yarns provide fill which is symmetrical about the central axis of the finished braid. Said otherwise, the warp yarns, when viewed cross-sectionally, are conventionally the same in number and by position when any 90-degree quadrant of a cross-section of the packing is viewed in mirror image compared to the adjacent two quadrants. The cross-section of the conventionally braided packing has a square or rectangular shape when a length of the material is placed on a flat surface, and the opposite sides of the square or rectangle are generally parallel and equal in width. However, when measured lengths of material are wrapped about a cylindrical body, such as a pump sleeve or valve shaft, to form rings with outer sides abutting the inner surface of a stuffing box, the outer sides are placed under some circumferential tension. As a result, each ring's outer side, i.e., the side adjacent the interior of the stuffing box, tends to contract in the direction parallel to the axis of the ring before the rings are compressed by the gland. Also, the inner side, i.e., the side adjacent the surface of the shaft, tends to expand in length in the direction parallel to the ring axis. When the rings are compressed, more of the load is directed axially to the inner portion of the packing rings adjacent the shaft. The force is concentrated at the abutting inner corners of the rings, and this results in unwanted wear. Various alternatives have been proposed to combat the unwanted effects of keystoning. One alternative involves the use of packing rings which are interspersed with compensating rings machined or die-formed into wedge shapes having the wider axial dimension at the outer diameter. The packing rings are then installed in proper sequence with the "wedge spreaders" to compensate for keystoning. This expedient is useful and has provided some relief from sealing problems, but it is expensive and requires special forms of packing rings and wedges which must be carefully assembled and installed in the proper order. Moreover, in the past there has been a problem when trying to pack rings of small cross-section such as those in the one-quarter inch to the five-sixteenths inch range about relatively small diameter shafts of one-half to one and three-eighths inches. The problem is that when the packing is wrapped around the shaft, the warps which are at the interior corners tend to pop out and result in shaft scarring. This can occur either before or after gland pressure is applied. Moreover, warp popping can occur in manufacture when these small cross-section braids are drawn off the braiding machine around a capstan. As will be appreciated, the popping problem relates to certain particular materials used in the construction of the braided packing. If a material of high strength and relatively low yield is used in the construction of the packing, then the yarns used as the corner fill on the inside of the packing, the side which will be placed adjacent the shaft, will tend to "pop" out through the braided outer layer, as there is a resistance to their compressing axially within the braid. Thus, the inner axial corner yarns tend to deform to the side instead of remaining constrained within the braid. This "popping" occurs because a high intensity point load is placed upon the braid when the braid passes over a radiused surface and results in what appears to be a loop of axial yarn outside the braid. Examples of packing materials which have this tendency are Kevlar IT aramid packing yarn which is a plied aramid monofilament yarn impregnated with Teflon, i.e., polytetrafluorlethylene, and treated with silicone, i.e., dimethylsiloxane, manufactured by E. I. DuPont Company, and graphite filament yarn cordage which may or may not contain various sizings, finishes or treatments manufactured from plied and twisted rayon monofilament precursor yarns or spun, twisted and plied "pitch" based graphite yarns as manufactured by the Polycarbon Company. When packing containing these yarns "pops" during manufacture, or when the "pops" are created as result of placing the packing in the stuffing box, if the "pop" becomes located between the packing and the shaft or shaft sleeve, then a local high intensity point load is placed upon the shaft surface as a result of this "popped" warp. This results in much higher than normal wear on the shaft or shaft sleeve and has resulted in wear so high that one can see evidence in worn sleeves in which the cuts resemble those made by a machine tool operating on the surface of a rotating shaft. While the popping problem is particularly severe for packings used about small diameter shafts, popping is also a problem in packing made with these materials for use on larger shafts. It is therefore a primary objective of the present invention to prevent such "warp pop-out" so as to protect shafts from scarring. It is also an object of this invention to provide a tapered density profile for the packing ring which better eliminates the aforementioned "keystoning" effect when the packing ring is wrapped around a shaft and is compressed by providing a more regular initial trapezoidal cross-section. Another object of the present invention is to avoid the use of packing rings and wedges or preshaped cross-sections which must be assembled in a particular sequence. Still another object of the invention is to avoid the need of packing rings which are die-formed so that they are preshaped to fit the stuffing box. A further object of the invention is the production of mechanical compression packing which is not subject to either keystoning or warp popping.
{ "pile_set_name": "USPTO Backgrounds" }
Three-dimensional object models in CAD systems can include opposing faces or sets of faces that together comprise a wall.
{ "pile_set_name": "USPTO Backgrounds" }
Comprehensive eye examinations need to become more accessible in the U.S., since over 75% of adults use some form of vision correction. But many areas have a limited supply of optometrists and ophthalmologists—the gatekeepers for eye examinations—or such supply may be reduced during certain days and hours of the week. Access to comprehensive eye examinations is critical in determining not only corrective prescriptions for eyeglasses and contact lenses, but also in identifying potential diseases of the eye and body, such glaucoma, macular degenerations, and hypertension. The internet is being increasingly utilized for optical products such as eyeglasses and contact lenses. Further, there are new technologies that offer the consumer refractions via smartphones, portable devices, as well as through the internet on a computer in order to determine the patient's prescription. Companies and devices that currently offer this technology via refraction devices include: Opternative, Smart Vision Labs, Eyenetra, Peek, Pediavision, and 2win. But these refraction-based systems do no provide the patient/consumer with a comprehensive eye examination. While these systems update their prescription for eyeglasses and/or contact lenses with a device, they are not able to discover other potential ocular health issues. Indeed, the reduction of vision in the eye and therefore the necessity for eyeglasses and/or contact lenses is the stimulus that motivates a patient/consumer to see an eyecare professional. Thus, patients that use present-day internet-based tools for glasses or contacts will not be evaluated for other ocular-related medical issues and will not normally schedule such visits with an optometrist or ophthalmologist. Without such visits, important ocular issues could be missed and go undiagnosed. Although extremely convenient, the use of these new technologies without proper medical guidance may results in adverse effects for patients, and ultimately cause more harm than good. Accordingly, it is therefore desirable to combine the convenience of internet or remote based eye testing with the availability of skilled optometrists or ophthalmologists into an apparatus, method, and system for remote comprehensive eye examinations.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention belongs to a pretensioner which is used, for example, in a seat belt device attached to the seat of a vehicle, such as a car. The pretensioner typically applies a tension on a seat belt and increases the restraint force on the occupant in the case of an emergency such as, for example, a vehicle collision. More particularly, the present invention relates to a pretensioner in which a piston is operated by the pressure of gas generated by a gas generator so as to apply a tension to a seat belt. Conventionally, the seats of vehicles, such as cars, are provided with seat belt devices, and the seat belt devices serve to protect the occupant by restraining the occupant with the seat belt and reducing the inertial movement of the occupant when an extremely high vehicle deceleration is caused in the case of an emergency such as a vehicle collision. Some of such conventional seat belt devices have a pretensioner that quickly restrains the occupant with a great restraint force by tensioning the seat belt to increase the restraint force in the above emergency. While the pretensioner is generally disposed in a seat-belt retractor of the seat belt device, it is sometimes disposed in a buckle or a lap anchor. For example, a seat belt device having a buckle pretensioner is disclosed in Japanese Unexamined Patent Application Publication No. 2000-326823 (incorporated by reference herein). This publication discloses two types of buckle pretensioners. In the first type, a buckle is pulled by the pulling of a connecting member for connecting the buckle and a piston into a cylinder, in which the piston slides, when actuated. In the buckle pretensioner, a gas generator is mounted on a base and a piston and a cylinder are attached to the gas generator. A middle portion of the connecting member is curved by a pulley mounted in the base so as to change the direction thereof. The buckle-pulling direction and the piston-sliding direction are set to form a predetermined angle therebetween. When the buckle pretensioner is actuated, the piston is operated by the pressure of gas generated by the gas generator to draw the connecting member, so that the buckle is pulled. In the second type of buckle pretensioner, when actuated, a connecting member for connecting a buckle and a base is pressed by a piston, and the buckle is thereby pulled. A piston and a cylinder are mounted on a base and a gas generator is disposed in the cylinder. A middle portion of the connecting member is curved by a pulley disposed in a piston rod so as to change the direction thereof, and the buckle-pulling direction and the piston-sliding direction are set to form a predetermined angle therebetween. When the buckle pretensioner is actuated, the piston is operated by the pressure of gas generated by the gas generator, and the pulley presses the connecting member, so that the buckle is pulled. In both the first and second types of buckle pretensioners disclosed in the aforementioned publication, a pressure vessel for accommodating the gas generator, and the cylinder in which the piston slides are made of separate components. As a result, the number of components and the number of assembly processes increase, and the cost is increased. In particular, the pressure vessel of the first type is generally made by die-casting in zinc in order to ensure pressure strength, and for this reason, both the weight and thickness thereof are increased. A seat belt device having a buckle pretensioner in which a pressure vessel and a cylinder are formed of a single component is disclosed in Japanese Unexamined Patent Application Publication No. 2001-39268 (incorporated by reference herein). In the buckle pretensioner disclosed in this publication, a buckle and a piston are connected by a connecting member, and the piston is slidably fitted in one case. Further, a gas generator is fixed by a fixing member inside the case so that it is coaxial with the sliding axis of the piston. A middle portion of the connecting member is bent by a lock member rotatably disposed so as to change the direction thereof, and the buckle-pulling direction and the piston-sliding direction are set to form a predetermined angle therebetween. When the buckle pretensioner is actuated, the piston is operated by the pressure of gas generated by the gas generator so as to draw the connecting member, so that the buckle is pulled. Since the pressure vessel for the gas generator and the cylinder are thus formed of a single component, the number of components and the number of assembly processes are reduced, and the cost is thereby reduced. However, in the buckle pretensioner disclosed in Japanese Unexamined Patent Application Publication No. 2001-39268, the gas generator is fixed by the fixing member inside the case so that it is offset from the piston toward the buckle and is coaxial with the sliding axis of the piston, as a result the connecting member for connecting the buckle and the piston needs to be positioned to avoid interference with the gas generator and, therefore, the connecting member and the gas generator are placed in parallel. However, when the connecting member and the gas generator are placed in parallel, the cross-sectional area of the case is large. Accordingly, in order to prevent the cross-sectional area of the case from becoming large, it is essential to use a gas generator having a special shape that is different from the shape of the conventional gas generator, for example, the shape of an elongated straw. For this reason, it is not preferred to use standard-shape gas generators that have been used heretofore.
{ "pile_set_name": "USPTO Backgrounds" }
I. Field of the Invention This invention relates generally to the compacting, storage and removal of trash for industrial or commercial enterprises and multi-unit residential buildings, and more particularly, to a automated comprehensive trash compacting, storage and handling system which includes a through-the-wall storage container directly accessible for loading from the inside and for disposal from the outside of a building. II. Description of the Related Art A wide variety of machines for the collection, compaction and storage of trash and refuse are available commercially and are disclosed in the literature. This includes many types and models of machines for compacting or baling trash along with various types of storage containers. These include the familiar steel dumpster located behind commercial buildings which have loosely fitting hinged lids and which are designed to be lifted by side ears and dumped periodically into compatibly designed hauling trucks. These systems require the compacted or uncompacted refuse, including paper and other solid waste together with garbage, to be hauled, usually by hand, from the building to the holding container where it may reside for several days prior to being removed. While this presents no particular problem with paper or other inert solid waste materials, this may lead to unsanitary conditions with respect to garbage or other refuse which spoils readily causing odors and attracting rodents, insects and other unwanted pests. Available landfills for the disposal of garbage and solid wastes are rapidly being depleted and it is already apparent that within the foreseeable future the cost for disposing of garbage and solid waste materials will skyrocket; in some areas, landfills will be unavailable entirely. Even at this writing it is known that some restaurants and other food handling establishments have been forced to close because they could not cope with rising waste costs. This means that soon compaction, sorting and recycling will no longer be novelties or voluntary conservation efforts but will be the required modes of operation. Commercial establishments dealing with food or garbage types of refuse which readily breed unsanitary conditions will no longer be able to simply store such wastes in open or flip-top metal containers behind the service establishments. It is contemplated that soon storage facilities for such refuse will have to be segregated, sealed and even refrigerated to maintain sanitary conditions on the premises. In some jurisdictions, apparently, this may be the law. In addition to the rapidly increasing costs for disposing of waste materials in landfills, or the like, charges to commercial establishments for such services are usually made based on the frequency of pick-up and the volume, i.e., number of cubic yards of material based on the capacity of the dumpster. In some cases, the full charge is made regardless of the actual amount of material in the dumpster. Haulers charging by volume of material transported have been traditionally opposed to the use of trash compactors simply because they reduce the total volume of materials hauled. More recently, however, there has been evidence of an increasing trend toward utilizing weight as the criteria for refuse collection rather than volume. In this vein, the use of compaction as a part of an overall refuse treatment process is rising rapidly as the reduced volume is no longer a drawback to generating revenues for the haulers. In view of the increasing pressure on landfills and other means of trash and refuse disposal, and the demand for recycling and more sanitary treatment of garbage, a great need exists for the provision of a comprehensive garbage and refuse treatment system which addresses the handling, storage and disposal of material in a manner which accommodates recycling and provides a sanitary and environmentally acceptable alternative to those in existence today.
{ "pile_set_name": "USPTO Backgrounds" }
Norleucine, an analog of the amino acid methionine, can be misincorporated into proteins in place of methionine residues. When expressed in Escherichia coli (E. coli), many heterologous proteins have norleucine mistakenly incorporated in places where methionine residues should appear. The misincorporation of norleucine in proteins, in particular in heterologous proteins produced by recombinant means, is generally considered undesirable due, in part, to the resulting production of altered proteins having undesirable characteristics. Misincorporation of norleucine at methionine positions during recombinant protein production in E. coli has been observed for over 50 years. (See, e.g., Munier and Cohen (1959) Biochim Biophys Acta 31:378-391; Cohen and Munier (1956) Biochim Biophys Acta 21:592-593; Cohen and Munier (1959) Biochim Biophys Acta 31:347-356; and Cowie et al., (1959) Biochim Biophys Acta 34:39-46.) For example, approximately 14% of methionine residues in methionyl bovine somatotropin (MBS) exhibited norleucine misincorporation during recombinant production of this protein in E. coli, and approximately 6% of the methionine residues in native E. coli proteins were also substituted with norleucine. (See Bogosian et al., (1989) J Biol Chem 264:531-9.) In another example, production of interleukin-2 in a minimal medium E. coli fermentation resulted in approximately 19% of the methionine residues in the recombinant protein were substituted with norleucine. (See Tsai et al., (1988) Biochem Biophys Res Commun 156:733-739.) Other studies showed that norleucine residue misincorporation into protein can occur both at internal methionine residues and at the amino terminal methionine residue. (See Brown (1973) Biochim Biophys Acta 294:527-529; and Barker and Bruton (1979) J Mol Biol 133:217-231.) Norleucine competes with methionine for incorporation into proteins due to the promiscuous nature of the enzyme methionyl tRNA synthetase (MetG). (See Trupin et al., (1966) Biochem Biophys Res Commun 24:50-55; and Fersht and Dingwall (1979) Biochemistry 18:1250-1256.) Kinetic studies with E. coli MetG enzyme showed that acylation of MetG is approximately 4-fold higher with methionine compared to that with norleucine. (See van Hest et al., (2000) Am Chem Soc 122:1282-1288.) Due to the relaxed substrate specificity of MetG, norleucine can substitute for methionine in the acylation reaction, resulting in misincorporation of norleucine into proteins in place of methionine. Misincorporation of norleucine residues for methionine residues in recombinant protein production is generally considered undesirable. Recombinant proteins or polypeptides containing misincorporated norleucine residues may exhibit altered structural and functional features, such as, for example, altered sensitivity to proteolysis, diminished biological activity, or increased immunogenicity. Various strategies have been developed to reduce or prevent norleucine misincorporation during recombinant protein production. For example, supplementing cell culture medium with methionine during the fermentation process (by continuous or bolus feed/addition of methionine) has been used to ensure that excess methionine is available to the cells, thus reducing the probability of an incorrect charging of the methionyl tRNA with norleucine. (See, e.g., U.S. Pat. No. 5,599,690.) While continuous or bolus feed/addition of methionine reduced the extent of norleucine misincorporation in recombinant proteins, the operational complexity and cost of the fermentation process may increase. Furthermore, continuous or bolus feed/addition of methionine during fermentation may lead to undesirable dilution of the fermentor contents, resulting in lower cell densities and lower product yields. Deleting genes involved in the norleucine biosynthetic pathway such as, for example, deleting genes of the leucine operon (leuA, leuB, leuC, and leuD) or deleting transaminase encoding genes such as ilvE or tyrB, has also been used to reduce norleucine misincorporation in proteins. (See Bogosian et al., (1989) J Biol Chem 264:531-539; Tsai et al., (1989) Biochem Biophys Res Commun 156:733-739; and Randhawa et al., (1994) Biochemistry 33:4352-4362.) The deletion of biosynthetic pathway genes to prevent norleucine misincorporation, however, may require addition of other amino acids (such as leucine or isoleucine) to the culture medium during fermentation as many genes involved in norleucine biosynthesis are also involved in biosynthesis of branched chain amino acids. (See Bogosian et al., (1989) J Biol Chem 264:531-539; see FIG. 8 of the instant specification.) Another strategy used to prevent norleucine misincorporation involved co-expression of enzymes which degrade norleucine, including, for example, amino acid dehydrogenases and amino acid oxidases. This approach, however, required overexpression of these enzymes, which may not be desirable during recombinant protein production, and may lead to lower recombinant protein yields. (See e.g., United States Patent Application Publication No. US2007/0009995.) In addition, over expression of these enzymes may result in degradation of other analogous amino acids during the fermentation process. Altering the primary amino acid sequence of the polypeptide to be expressed by substituting methionine codons with other codons was also performed to prevent norleucine misincorporation. (See e.g., U.S. Pat. No. 5,698,418.) Such substitutions, however, may lead to diminished activity or structural changes in the resulting protein, a highly undesirable outcome for recombinant protein production in the biotechnology industry. As noted above, current methods used to prevent norleucine misincorporation during recombinant protein production in microorganisms are associated with various disadvantages; therefore, a need exists for novel methods useful for preventing or reducing norleucine misincorporation in to proteins, in particular during recombinant protein production in microorganisms, such as E. coli. The present invention meets this need by providing engineered microorganism host cells effective at preventing norleucine misincorporation during recombinant protein production in microorganisms, such as, for example, bacteria. The present invention provides, inter alia, E. coli host cells comprising mutated metA and metK alleles (i.e., altered metA and metK nucleic acid sequences) which result in methionine production by the microorganism to a degree or extent sufficient to reduce or prevent norleucine misincorporation into proteins and polypeptides. Analysis of recombinant proteins produced utilizing such host cells showed that misincorporation of norleucine residues in place of methionine residues was eliminated. The present invention further demonstrates that fermentation process performance using such E. coli host cells, including growth of the host cells and recombinant protein product titers utilizing such E. coli host cells, was comparable to that observed in control host cells.
{ "pile_set_name": "USPTO Backgrounds" }