text
stringlengths
2
806k
meta
dict
1. Field of the Invention The present invention relates to currency operated fluid vending machines and more particularly pertains to a new fluid dispensing system for permitting the dispensation of vehicle fluids upon a user depositing money. 2. Description of the Prior Art The use of currency operated fluid vending machines is known in the prior art. More specifically, currency operated fluid vending machines heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements. Known prior art includes U.S. Pat. No. 5,967,366; U.S. Pat. No. 5,957,329; U.S. Pat. No. 5,018,645; U.S. Pat. No. 4,880,144; U.S. Pat. No. 3,318,732; U.S. Pat. No. 3,570,644; U.S. Pat. No. 5,497,914; U.S. Pat. No. 3,845,848; U.S. Pat. No. Des. 272,628; and U.S. Pat. No. Des. 273,790. While these devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not disclose a new fluid dispensing system. The inventive device includes a housing surrounding a tank holding a vehicle fluid. A control assembly is housed in the housing and operationally coupled to a pump assembly for permitting dispensing of the vehicle fluid upon insertion of a pre-determined amount of currency into a currency collection assembly. Additional features include a cover member coupled to the housing using a spindle lock and a channel, a holster in the cover panel for holding a free end of a dispensing hose, free standing embodiment using a base, a main mounting bracket formed to accommodate coupling to existing surfaces, and a transmitter and associated hardware for monitoring fluid levels and usage from a remote location. In these respects, the fluid dispensing system according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of permitting the dispensation of vehicle fluids upon a user depositing money. In view of the foregoing disadvantages inherent in the known types of currency operated fluid vending machines now present in the prior art, the present invention provides a new fluid dispensing system construction wherein the same can be utilized for permitting the dispensation of vehicle fluids upon a user depositing money. The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new fluid dispensing system apparatus and method which has many of the advantages of the currency operated fluid vending machines mentioned heretofore and many novel features that result in a new fluid dispensing system which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art currency operated fluid vending machines, either alone or in any combination thereof. To attain this, the present invention generally comprises a housing surrounding a tank holding a vehicle fluid. A control assembly is housed in the housing and operationally coupled to a pump assembly for permitting dispensing of the vehicle fluid upon insertion of a pre-determined amount of currency into a currency collection assembly. Additional features include a cover member coupled to the housing using a spindle lock and a channel, a holster in the cover panel for holding a free end of a dispensing hose, free standing embodiment using a base, a main mounting bracket formed to accommodate coupling to existing surfaces, and a transmitter and associated hardware for monitoring fluid levels and usage from a remote location. There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention. Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way. It is therefore an object of the present invention to provide a new fluid dispensing system apparatus and method which has many of the advantages of the currency operated fluid vending machines mentioned heretofore and many novel features that result in a new fluid dispensing system which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art currency operated fluid vending machines, either alone or in any combination thereof. It is another object of the present invention to provide a new fluid dispensing system which may be easily and efficiently manufactured and marketed. It is a further object of the present invention to provide a new fluid dispensing system which is of a durable and reliable construction. An even further object of the present invention is to provide a new fluid dispensing system which is susceptible of a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such fluid dispensing system economically available to the buying public. Still yet another object of the present invention is to provide a new fluid dispensing system which provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith. Still another object of the present invention is to provide a new fluid dispensing system for permitting the dispensation of vehicle fluids upon a user depositing money. Yet another object of the present invention is to provide a new fluid dispensing system which includes a housing either surrounding or defining a tank holding a vehicle fluid. A control assembly is housed in the housing and operationally coupled to a pump assembly for permitting dispensing of the vehicle fluid upon insertion of a pre-determined amount of currency into a currency collection assembly. Additional features include a cover member coupled to the housing using a spindle lock and a channel, a holster in the cover panel for holding a free end of a dispensing hose, free standing embodiment using an integral base, a main mounting bracket formed to accommodate coupling to existing surfaces, and a transmitter and associated hardware for monitoring fluid levels and usage either from within the unit or from a remote location. Still yet another object of the present invention is to provide a new fluid dispensing system that provides a way of dispensing vehicle fluids to user upon the deposit of money. Even still another object of the present invention is to provide a new fluid dispensing system that provides high capacity storage of vehicle fluids for dispensation by the user. Still yet even another object of the present invention is to provide a publicly accessible and viewable unit which may incorporate advertising space on an exterior of the housing or tank. These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.
{ "pile_set_name": "USPTO Backgrounds" }
A variety of different shoe constructions are used by the footwear industry. For the most part, each shoe construction has characteristics that make it particularly well-suited for specific applications. For example, some shoe constructions are selected for their durability, others for their flexibility and comfort, while still others are selected for their aesthetic appeal. In general, shoe construction typically involves a number of manufacturing operations or steps. Normally, a significant number of manufacturing operations generally results in a more expensive shoe. In a market where competitive price is often desired, there appears to be a need to make shoes in an efficient manner. Some shoe constructions may involve an upper being stitched to a forepart of an outsole by a hand stitch and the rearpart of the outsole may be attached to the upper by adhesive after a lasting operation. Lasting is typically where a last, an object which simulates a user's foot, is inserted into the upper and the upper is often then pulled taught around the last and secured to a tuck, which is removably attached to the bottom of the last. The tuck generally provides a structure that is adhered to the rearpart of the outsole, which in turn results in the upper being secured to the outsole in the rearpart of the shoe. Without a tuck, it may be difficult to secure the upper to the outsole. A traditional insole is often wrapped with a wrapper around its peripheral edge to help prevent the edge of the insole from wear. The insole with the wrapper is then typically secured to the tuck or outsole. In a separate operation, a socklining may then be adhered directly to the top of the insole for providing a surface adapted to receive a user's foot because the insole's surface is often coarse. In addition to or instead of the above mentioned construction, cementing components of a shoe, such as the upper to the outsole, often involves a number of manufacturing operations. Typically, there is a surface preparation step where the surfaces to be cemented, or glued, are clean of debris and readied, which may also include roughening. Further, there may be an application step where the cement is applied to the surfaces. This step may also involve measuring and evenly distributing the glue over the surface. Further, there may be a pressing step where the surfaces are pressed together. Pressing is believed to reduce air that may be trapped between the surfaces and enhances adhesion. Pressing may also include aligning the surfaces so that the peripheries of the components are flush with one another. Additionally, once the components are pressed together, cementing often requires a waiting period for the cement to cure, or dry. Generally, not only does cementing involve some or all of the above mentioned manufacturing operations, it also involves time, particularly the curing time. It is believed that the number of steps and time involved, especially if user intervention is required, negatively affects cost and efficiency. The cementing process may be further complicated if the surfaces to be glued are uneven or difficult to reach. U.S. Pat. No. 5,369,895 to Hammerschmidt and U.S. Pat. Nos. 4,476,600, 4,408,401 and 4,505,660 to Seidel appear to relate to a shoe having a one piece construction. The one piece construction may reduce manufacturing steps to secure the upper to the outsole. U.S. Pat. No. 4,742,625 to Sydor appears to relate to a shoe having a one piece construction and channels in the sole for ventilating the shoe. Sydor also appears to include a removable insole without ventilation channels. Moreover, ventilating a shoe may be preferred as historically constructed footwear often confine the foot and usually lacks sufficient breathability, which may cause the foot to perspire and may also promote the development of bacteria, fungi and the like as well as any accompanying unpleasant odors and skin problems. Some later developed footwear may attempt to solve the lack of sufficient breathability by providing openings in the upper but such openings may also allow debris and water to enter the shoe. U.S. Pat. No. 6,564,475 to Collins, U.S. Pat. No. 5,086,576 to Lamson, U.S. Pat. No. 6,553,690 to Di Girolamo, and U.S. Pat. No. 5,992,052 to Morris appear to relate to footwear with vent holes in the upper, sole, or both. Although these references may have vent holes in either the upper or sole, breathability is possibly still inadequate since the shoe lacks a mechanism that causes atmospheric air to enter the shoe and hot air within the shoe to exit the shoe. Complicated valve arrangements may have been provided by other constructions to open and close an opening to reduce the amount of debris or water entering the shoe. However, these types of footwear may generally be more expensive to purchase. U.S. Pat. No. 6,282,813 to Squadroni and U.S. Pat. No. 5,992,052 to Moretti appear to relate to footwear having valves for venting the shoe. Other approaches may include a pump encased within the shoe, sometimes in communication with openings in the upper. Generally, the weight of the foot is used to compress the pump and force air out of apertures to ventilate the foot. However, problems may arise if the pump fails to reinflate, which often occurs because the foot is typically placed on top of the pump and prevents full inflation. Moreover, such mechanisms are typically prohibitively expensive to build into footwear and, given that most of these devices are built into the shoe, they are not easily repairable or replaceable. U.S. Pat. No. 4,835,883 to Tetrault and U.S. Pat. No. 4,776,110 to Shiang and U.S. Publication No. 2002/0011009 to Pan appear to relate to footwear having pumps. What is desired, therefore, is a shoe constructed in a more efficient manner without sacrificing quality. What is also desired is a shoe having a reduced number of manufacturing steps. What is further desired is a shoe having improved ventilation. Yet another desire is a shoe that has a ventilation system that cools the user's foot and provides sufficient breathability. A still further desire is a shoe with a ventilation system that reduces the amount of debris or water that enters the shoe. Yet another desire is a shoe that has a ventilation system that is reliable and inexpensive.
{ "pile_set_name": "USPTO Backgrounds" }
In certain secure devices such as payment cards, integrated circuit chips are likely to process and/or store critical data, for example, encryption keys. Such chips may be fraudulently manipulated in order to obtain protected confidential data. To intentionally cause disturbances in the circuits of a chip, an attack mode comprises bombarding chip areas with a laser beam while the chip is operating. Due to the presence of interconnection metal tracks on the front surface side of the chip, laser attacks are often carried out on the back side. To avoid fraud, chips comprising attack detection devices have been provided. The attack detection device is coupled to a chip protection circuit. When an attack is detected, the protection circuit implements certain measures of protection, modification, or destruction of the critical data. For example, it may be provided, when an attack is detected, to interrupt the power supply of the chip or to cause it to reset, in order to reduce the time during which the attacker can study the chip response to a disturbance. Existing detection devices have various disadvantages. They require, for example, creating new structures on chip to enable the detection of a laser attack. Further, they may increase the bulk and/or the complexity of secure devices.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Present Description The present description relates to methods and system for mounting objects to polymeric membranes. 2. Description of Related Art Various applications exist in which a polymeric membrane may be placed over a surface. For example, it may be desirable to provide a polymeric membrane as a roofing material. That is, a polymeric membrane may be applied to an outer surface of a building structure, such as a roof, to protect the structure from the environment. While the mounting system of the present application is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular embodiment disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the process of the present application as defined by the appended claims.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method of generating an interface between circuit blocks in designing a large-scale semiconductor integrated circuit device by using circuit blocks, which are existing resources for designing a circuit such as IPs (Intellectual Properties). To reduce the number of designing steps, the development of such a large-scale integrated circuit device as termed, e.g., “system LSI” using circuit blocks termed IPs (or IP cores), which are existing resources for designing a circuit, has been started recently. The circuit blocks have predetermined input/output interfaces (I/F) which are normally different from one circuit block to another. In incorporating such circuit blocks having different interfaces into one system, therefore, it is an important design issue how to adjust the I/F of the individual circuits blocks and thereby promote smooth signal transmission between the individual circuit blocks. For example, it is necessary to modify logics and timings for I/F adjustment in incorporating the circuit blocks into one system. To meet the necessity, a designing operation has been performed conventionally by a designer who recognizes input/output logics and timings of the circuit blocks, fully understands the difference in I/F structure between the individual circuits blocks, and newly designs an interface circuit or the like required to incorporate the circuit blocks such that the difference in I/F structure between the individual circuit blocks is absorbed and the connecting states between the individual circuit blocks are retained. As a system LSI to be designed has been scaled up increasingly in recent years, however, the number of circuit blocks to be incorporated into the system LSI has also been increased exponentially. If an adjustment between the individual circuits is performed manually, an enormous amount of designing operation should be performed. In other words, it has been becoming difficult to efficiently design a large-scale integrated circuit device such as a system LSI by a conventional designing method which depends only on the skills of the designer. On the other hand, there has been known such technology as follows which focuses attention on circuit behaviors such as the attributes and timings of signals and generates a new circuit from the circuit behaviors. For example, Japanese Unexamined Patent Publication No. HEI 6-32972 discloses technology for generating a new hardware description language from a timing chart and the attributes of signals. Japanese Unexamined Patent Publication No. HEI 7-253998 discloses technology for synthesizing, by using a truth table, behavioral descriptions of two or more logic circuits newly generated and thereby producing a new, complete circuit behavioral description. Japanese Unexamined Patent Publication No. HEI 9-91355 discloses technology for generating circuit data, expected value data, timing data, or the like based on operational data, performing simulation, and automatically generating a new logic circuit. In view of the foregoing, there can be considered the generation of a circuit for absorbing a difference in I/F structure between the circuit blocks by using the conventional methods of automatically generating circuits mentioned above. Although the technology disclosed in the foregoing conventional publications allows generation of a new circuit block independent of the circuit blocks, the matter of how to smoothly retain the connecting states between the individual blocks remains to be solved. With the conventional technologies, it is difficult to generate an interface circuit considering a difference in I/F structure between the individual circuit blocks in the design of an integrated circuit device using circuit blocks which are existing resources.
{ "pile_set_name": "USPTO Backgrounds" }
Prefabricated linear drainage channels, or trench drains, frequently are employed to collect and carry away surface water and other liquid materials from parking lots, factory floors, side walks, driveways and other surfaces. Typically, the drainage channels are constructed so as to have two side walls joined at their bottoms by bottom walls. The tops of the side walls are provided with ledges that support a grating. Normally, the drainage channel is positioned slightly lower than the surface from which water or some other liquid is to be collected and carried away. As a result, the surface water, or other liquid, flows to the top of the drainage channel, through the grating and down to the bottom of the drainage channel from where it is conveyed to a disposal site. It is usually the case that the drainage channels are fabricated in units of a length that allow the channels to be readily handled. At the same time, ordinarily, it is necessary to convey the collected surface waters a distance greater than the length of any individual unit. Consequently, the drainage units must be arranged end-to-end so that the surface water can be conveyed the requisite distance for appropriate disposition. Typically, the drainage channels are installed in a trench that is created in the surface from which surface water is to be collected and carried away. The trench is wider and deeper than the width and height of the drainage channels which are arranged end-to-end in the trench at an appropriate height above the bottom of the trench. The drainage channels are supported in the trench in that fashion while a filler material such as concrete or asphalt is introduced into the open space between the trench and the drainage channels. Once the filler material has set or hardened and the drainage channels are fixed in place, the gratings are installed and the drainage channels can be placed into service. A variety of devices and methods are known for the purpose of supporting the drainage channels in the trench while the filler material is introduced into the open space between the drainage channels and the trench. Several considerations that are relevant with respect to the implementation of any particular supporting device or method are as follows: (1) By not locating the supporting devices in the trench and fashioning the devices so as to be removable, they will not become embedded in the filler material when it hardens and can be reused. (2) The devices and methods, preferably, will allow the tops of the drainage channels to be readily set at any desired level so as to insure that surface water will flow into the drainage channels when they are put into service. (3) The supporting devices and methods will keep the drainage channels from floating and shifting under the influence of the filler material as it is introduced into the open space between the trench and the drainage channels. (4) The supporting devices and methods will be such that any tendency for the drainage channel side walls to collapse toward one another as a result of the pressure of the filler material will be minimized.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a lubricating system for an internal combustion engine for restricting the overall height of the internal combustion engine. 2. Description of Background Art A lubricating system for an internal combustion engine is known, for example, as described in Japanese Patent Publication No. Sho 62-49448 entitled xe2x80x9cOil Piping Structure of Engine.xe2x80x9d In FIG. 3 of the above-mentioned publication, there is shown a structure in which the bottom 20a of a crankcase forms an oil pan, an oil strainer 27 is disposed in the oil pan, and an oil pump 25 is connected to an upper portion of the oil strainer 27. The technology disclosed in the publication has the following disadvantages: the oil strainer 27 is trapezoidal in side view; a communicating passage (no symbol) for communication of the oil strainer 27 and the oil pump 25, and the oil pump 25 are stacked vertically from the bottom 20a of the crankcase to the upper side, and, therefore, the vertical size of the lubricating system becomes large, resulting in that the overall height of the engine becomes large, and the vehicle on which the engine is mounted is necessarily large. Accordingly, it is an object of the present invention to provide a lubricating system for an internal combustion engine which restricts the overall height of the internal combustion engine by reducing the vertical size of the lubricating system. In order to attain the above-mentioned object, an internal combustion engine is provided that includes a pair of case halves that are coupled to constitute a crankcase that form an oil pool in the bottom of the crankcase that is fed through a strainer and an oil pump to various portions. The crankcase is provided with a ceiling portion for shutting off the upper side of the oil pool. A window is opened in the ceiling portion of one of the case halves. The strainer is formed in a flat plate like shape and the flat plate like strainer is fitted in the window. One of the case halves is provided with an oil passage through which the oil having passed through the strainer flows roughly horizontally to a suction port of the oil pump. The ceiling portion of one of the case halves is provided with a cutout portion by not casting at a position where the ceiling portion of one of the case halves and the oil pump are adjacent to each other. A plug is fitted in the cutout portion. The flat plate like strainer is fitted in the window opened in the ceiling portion above the oil pool. One of the case halves is provided with the oil passage through which the oil having passed through the strainer flows roughly horizontally to the oil pump suction port, and one of the case halves is provided with the cutout by not casting at the position where the ceiling portion of one of the case halves and the oil pump are adjacent to each other, whereby the vertical size from the oil pool to the oil pump suction port is reduced as much as possible, and the overall height of the internal combustion engine is restricted. The present invention includes a plug that is molded as one body with an O-ring for sealing the joint portion of the oil pump suction port and an end portion of the oil passage. By molding the plug as one body with the O-ring, the number of component parts is reduced, and production cost of the internal combustion engine is reduced. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, inkjet printers have been developed which use printheads manufactured by micro-electro mechanical system(s) (MEMS) techniques. Such printheads have arrays of microscopic ink ejector nozzles formed in a silicon chip using MEMS manufacturing techniques. Printheads of this type are well suited for use in pagewidth printers. Pagewidth printers have stationary printheads that extend the width of the page to increase printing speeds. Pagewidth printheads do not traverse back and forth across the page like conventional inkjet printheads, which allows the paper to be fed past the printhead more quickly. To reduce production and operating costs, the printheads are made up of separate printhead modules mounted adjacent each other on a support beam in the printer. To ensure that there are no gaps or overlaps in the printing produced by adjacent printhead modules it is necessary to accurately align the modules after they have been mounted to the support beam. Once aligned, the printing from each module precisely abuts the printing from adjacent modules. Unfortunately, the alignment of the printhead modules at ambient temperature will change when the support beam expands as it heats up during printhead operation. Furthermore, if the printhead modules are accurately aligned when the support beam is at the equilibrium operating temperature, there may be unacceptable misalignments in any printing before the beam has reached the operating temperature. Even if the printhead is not modularized, thereby making the alignment problem irrelevant, the support beam and printhead may bow because of different thermal expansion characteristics. Bowing across the lateral dimension of the support beam does little to affect the operation of the printhead. However, as the length of the beam is its major dimension, longitudinal bowing is more significant and can affect print quality.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to electrostatic discharge (ESD) protection circuits for silicon-on-insulator (SOI) circuits. More particularly, it relates to a novel protection circuit structure for providing improved electrostatic discharge protection capability to silicon-on-insulator circuits. As is generally well-known in the art, silicon-on-insulator (SOI) technology has become considered as one of the most effective techniques for fabricating high-speed MOS and CMOS circuits in very large scale integrated (VLSI) circuits. In accordance with the SOI technique, a thin epitaxial layer of semiconductor material, such as silicon, is deposited on an insulator (e.g., a buried oxide film) so as to reduce the capacitive coupling between the semiconductor layer and the underlying insulator and substrate material and thus preventing latch-up. Therefore, field-effect transistors and other devices formed within the thin epitaxial layer of semiconductor material have an advantage of high-speed switching characteristics than the integrated circuits of the same dimension fabricated on a traditional bulk silicon substrate. However, these SOI circuits, like other MOS-type circuits, are particularly susceptible to being damaged or even destroyed by electrostatic discharge. In particular, the magnitude of an electric voltage allowed to be applied to the thin gate insulators of the MOS and CMOS transistors is rather limited since their physical size thereof is fairly small. Thus, such static discharge by persons or equipment handling the integrated circuits can be of a catastrophic nature with sufficient energy so as to cause permanent damage of the semiconductor elements therein. In order to protect the semiconductor elements formed in the bulk silicon substrate from electrostatic discharge, ancillary protection circuits were provided and the energy would be dissipated through the bulk silicon substrate on which the circuits were fabricated. On the other hand, the ancillary protection circuits, such as diode circuits, in the bulk substrate do not perform well in the SOI circuits. This is due to the fact that the insulating layer (buried film oxide) in the SOI circuits is a poor thermal conductor and thus all of the energy must be dissipated laterally through the diodes formed in the thin semiconductor layer. As a result, this leads to increased heat being generated during the ESD event since the buried oxide film has inferior thermal conducting characteristics as compared to the bulk silicon. Accordingly, there still exists a need for a protection circuit structure for use with silicon-on-insulator circuits so as to provide enhanced electrostatic discharge protection. Further, it would be desirable for the protection circuit structure to readily serve as a heat sink so as to dissipate the thermal energy created in the thin semiconductor layer of the SOI structure. Accordingly, it is a general object of the present invention to provide a novel protection circuit structure for use with silicon-on-insulator circuits which has traditionally been unavailable heretofore. It is an object of the present invention to provide a protection circuit structure for providing improved electrostatic discharge protection capability to silicon-on-insulator circuits. It is another object of the present invention to provide a protection circuit structure for use with silicon-on-insulator circuits which can serve as a heat sink so as to dissipate the thermal energy during an ESD event. It is still another object of the present invention to provide a protection circuit structure for use with silicon-on-insulator circuits which includes a protection diode formed underneath an electrically conductive input or input/output pad. In a preferred embodiment of the present invention, there is provided a protection circuit structure for providing electrostatic discharge protection capability to silicon-on-insulator integrated circuits. A SOI structure includes a transistor device having a source region, a drain region, and a channel region all formed over an insulating layer. The insulating layer is formed over a p-type silicon substrate. A thin oxide layer is formed over the insulating layer. A p-type conductive region is formed in an upper portion of the insulating layer. A metal conductive region is formed in the center of the p-type conductive region and extends between top and bottom surfaces thereof. An n-type conductive region is formed in the p-type silicon substrate adjacent to the bottom surface of the p-type conductive region so as to define a protection diode with the p-type silicon substrate. An electrically conductive input or input/output pad is formed over the top surface of the n-type conductive region. A conductive lead line is operatively joined between the input or input/output pad and one of the source and drain regions of the transistor device.
{ "pile_set_name": "USPTO Backgrounds" }
Infants and other incontinent individuals wear absorbent articles such as diapers to absorb and contain urine and other body exudates. Absorbent articles function both to contain the discharged materials and to isolate these materials from the body of the wearer and from the wearer's garments and bed clothing. Disposable absorbent articles having many different basic designs are known in the art. For example, U.S. Patent Re. 26,152, entitled "Disposable Diaper" issued to Duncan et al., on Jan. 31, 1967, describes a disposable diaper which has achieved wide acceptance and commercial success, and U.S. Pat. No. 3,860,003, entitled "Contractable Side Portions for Disposable Diaper," issued to Buell on Jan. 14, 1975, describes an elastic leg cuff disposable diaper which has achieved wide acceptance and commercial success, both patents being hereby incorporated by reference. Many of the known absorbent articles, however, have a tendency to sag or gap away from and to slide/slip down on the body of the wearer during use. This sagging/gapping and sliding/slipping is caused by the relative motions of the wearer as the wearer breathes, moves and changes position, by the downward forces generated when the absorbent article is loaded with body exudates, and by the deformation of the materials of the absorbent article itself when subjected to such wearer's motions. This sagging/gapping and sliding/slipping of the absorbent article can lead to premature leakage and poor fit of the absorbent article about the wearer. Conventional disposable diapers are typically designed to fit high on the abdomen of the wearer and down on the thighs such that the diaper fits in the zones of the wearer that are subject to dynamic motion (and thus dynamic forces) during use. These dynamic motions and forces, especially by the abdomen bulging and contracting, tend to deform the materials making up the diaper and tend to push the diaper away from the body. Thus, the diaper tends to sag/gap away from the body. The closure system of the diaper is also typically designed to form a defined dimension of the waist and leg openings and a line of tension (imparts a tensile force along a line) about the wearer to secure the diaper of the wearer. However, this defined waist dimension created by the closure system cannot accommodate the changes in body dimension caused by wearer movement such that the diaper tends to slide/slip down on the wearer when the dimension of the abdomen of the wearer becomes smaller than the defined dimension formed by the closure. Further, when the abdominal dimension becomes larger than the defined dimension formed by the closure system, the diaper tends to move to a different position on the wearer (i.e. to the area of minimum circumference) or the diaper tends to be so tight on the abdomen that the diaper can mark the skin or be uncomfortable to wear. The absorbent core and other stiff nonelastic members of the diaper typically fit in the zones of the abdomen or legs that undergo such dynamic forces that the absorbent core bunches and is pushed downward or inward by the dynamic forces resulting in further gapping/sliding of the product on the wearer. In order to more snugly fit absorbent articles about the wearer, certain commercially available absorbent articles have been provided with elastic features about the waist, hips, or legs. An example of a disposable diaper with an elastic waist feature which has achieved wide acceptance and commercial success is disclosed in U.S. Pat. No. 4,515,595 which issued to Kievit et al., on May 7, 1985, and is incorporated by reference. An example of a disposable diaper with an elastic leg cuff is disclosed in the previously mentioned U.S. Pat. No. 3,860,003. A further example of a disposable diaper with elastic side panels that fit over the hips of the wearer is disclosed in U.S. Pat. No. 4,857,067 which issued to Wood et al., on Aug. 15, 1989, which is also incorporated by reference. The elastic features are designed to expand and contract with the wearer's motions and to maintain the fit of the absorbent article about the wearer during use (i.e., provide sustained dynamic fit). However, it has been found that absorbent articles having elastic features also have a tendency to sag/gap and slide/slip during use. In addition to addressing problems with the fit and sustained fit of absorbent articles, much attention has been focused on improving the absorbent core structures that function to absorb exudates discharged from the body of the wearer. Commonly, these cores include a conventional absorbent gelling material (referred to herein as an "AGM" material) or a conventional superabsorbent material dispersed in a batt of cellulose fibers. While such core structures typically exhibit good absorbency characteristics, they tend to be limited in their ability to return substantially to their original configuration after being deformed under normal wear situations. Recent developments in the absorbent article industry have included improved stretchable articles. However, the ability to fully utilize suitable articles is often limited by the lack of integrity and shape retention offered by existing core elements. Thus to improve the overall usefulness of these absorbent articles made with the improved stretchable features, there has arisen a need for core elements which are not greatly limited by a failure to allow for movement of the wearer. A stretchable absorbent article, namely a sanitary napkin, is disclosed in co-pending commonly assigned PCT application No. W 93/01785, entitled "Stretchable Absorbent Articles." An absorbent elastomeric wound dressing is disclosed in U.S. Pat. No. 4,957,795 (Riedel). Additional background literature that may be of interest include U.S. Pat. Nos. 3,856,013 (Dulle); 4,229,548 (Sattlegger et al.); 4,341,214 (Fries et al.); 4,554,297 (Dabi); 4,584,324 (Bauman et al.); 3,916,900 (Breyer et al.); 4,394,930 (Korpman); 4,664,662 (Webster); 5,149,720 (DesMarais et al); 4,834,735 (Alemany); 4,610,678 (Weisman et al); 4,673,402 (Weisman et al.); U.S. patent application Ser. No. 08/085,537; entitled "Elastomeric Adhesive Foam;" filed Jun. 30, 1993 in the names of Litchholt and Lodge; and U.S. patent application Ser. No. 08/085,237; entitled "Method of Making an Elastomeric Adhesive Foam and of Elasticizing Garments;" filed Jun. 30, 1993 in the names of Litchholt and Lodge, all of which are incorporated herein by reference. Attention has thus continued to be focused on developing flexible highly absorbent cores which are useful in association with stretchable articles. For example, U.S. Pat. No. 5,268,224, which issued Dec. 7, 1993, to DesMarais, et al., entitled "Absorbent Foam Materials for Aqueous Body Fluids and Absorbent Articles Containing Such Materials" which is incorporated by reference herein, relates to absorbent foam materials suitable for use as or in the absorbent cores of absorbent articles. Such foamed materials typically comprise hydrophilic, flexible open-celled structures which are preferably prepared by polymerizing high internal phase water-in-oil emulsions having pore volumes of from about 12 to 100 ml/g, and a capillary action specific surface area of from about 0.5 to 5.0 m.sup.2 /g. With the advent of more flexible, highly absorbent cores and core materials, attention has turned to utilizing such materials in the most efficient and effective manner possible. Thus, it would be advantageous to provide an absorbent article that provides better fit, reduced leakage, and wearer comfort. It would further be advantageous to provide an absorbent article which has reduced sagging and gapping as well as reduced overall sliding/slipping of the absorbent article and/or the absorbent core on the wearer during use. It is therefore a primary object of the present invention to provide absorbent articles having improved dynamic fit and sustained fit by utilizing uniquely shaped absorbent cores made from a resilient absorbent material in association with a uniquely designed chassis. It is a further object of the present invention to provide an absorbent article providing increased comfort for the wearer by providing freedom of motion for the wearer and minimizing the effects of forces caused by wearer's movements on the product's stability. It is also an object of the present invention to provide an absorbent article including a specifically shaped absorbent core designed to fit within the low motion zone of the wearer, therefore, minimizing the effects of wearer movement on the overall fit of the article. It is a further object of the present invention to anchor the absorbent article about the perimeter of the low motion zone (otherwise referred to herein as the area of minimum circumference) to achieve sustained dynamic fit. It is also an object of the present invention to provide a closure system and containment assembly (chassis) design that anchors the absorbent core in the low motion zone of the wearer to enhance the sustained dynamic fit. It is a further object of the present invention to provide a containment assembly (chassis) design, closure system and an absorbent core shape cooperating to reduce sagging and gapping as well as overall sliding/slipping of the absorbent article during use. Yet, another object of the present invention is to improve the geometric location of the fastening tabs and the diaper fastening system to enhance the sustained fit of the absorbent article. Still another object of the present invention is to provide a containment assembly (chassis) design which results in the absorbent article having improved aesthetic characteristics. These and other advantages of the present invention will be more readily apparent when considered in reference to the following description and when taken in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Known in the art, there is the U.S. Pat. No. 5,399,897 of B. T. Cunningham and P. V. Richard, describing a microstructure comprising a surface member and at least one leg, a proximate end of the leg being connected to a substrate and the distant end thereof being connected to the surface member. The leg is a multi layer leg comprising at least one dielectric layer and one electrically conductive layer. Also known in the art, there are the U.S. Pat. No. 5,021,663 of L. J. Hornbeck and the U.S. Pat. No. 5,288,649 of W. F. Keenan. The supports described in these two patents are made entirely of metal or metal alloy films. The following US patents also describe microstructures: U.S. Pat. No. Issue Date Inventor (s) 5,010,251 Apr. 23, 1991 Grinberg et al 5,286,976 Feb. 15, 1994 Cole 5,300,915 Apr. 5, 1994 Higashi et al 5,602,393 Feb. 11, 1997 Gerard 5,672,903 Sept. 30, 1997 Butler et al 5,688,699 Nov. 18, 1997 Cunningham et al Referring now to FIG. 1, there is shown a perspective schematic view of a typical microbridge structure of the prior art. The microbridge structure shown in FIG. 1 consists of a microstructure 40 suspended over a substrate layer 41, and two inclined legs 42. The microstructure 40 provides a support for a sensing layer 43. The microstructure 40 is equipped with slots 44 cut through its entire thickness in order to elongate the path of heat conduction from the microstructure 40 to the substrate layer 41, and thus improving thermal isolation of this microstructure. The microstructure 40 is also equipped with a reticulated metal layer 45. The metal layer 45 partially overlapping the sensing layer 43 provides an electrically conductive path between the sensing layer 43 and the legs 42. The legs 42 provide a support for the microstructure 40. The proximate ends of each leg are connected to the substrate layer 41 via electrical contact pads 46. The distant ends of the legs are connected to the microstructure 40. Each leg 42 is a multi layer leg consisting of a reticulated dielectric layer 47 and a reticulated electrically conductive layer 48 providing an electrically conductive path between the substrate layer 41 via contact pads 46 and the electrically conductive layer 45 of the microstructure 40 via contacts 49. A drawback with the microbridge structures of the prior art is that when several microbridge structures are mounted side by side over a given area of the substrate layer 41 to form the sensitive surface, a portion of the area is needed to accommodate the legs of the microbridge structures. Such portion of the area that is needed to accommodate the legs is useless for sensing purposes and therefor limit the detecting capabilities of the microbridge structures. An object of the present invention is to provide a microstructure bridge that can be used in a detector array made of several microstructure bridges mounted side by side within a given area to obtain a detector array with improved detecting capability. Another object of the present invention is also to provided a method for making a microstructure bridge that can be used in a detector array made of several microstructure bridges mounted side by side within a given area to obtain a detector array with improved detecting capability.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a method of treatment of conditions such as acquired immuno deficiency syndrome, multiple sclerosis and Alzheimer's disease, and other conditions associated with old age, by serotonin antagonists and primarily cyproheptadine. 2. Description of Prior Art There is a considerable number of studies on the ageing process, including the factors and agents responsible, and there are some suggestions to alleviate it. Some of the diseases often associated with old age include Alzheimer's disease, various heart diseases, arthritis, etc. In two articles which have appeared in 1982--P.S. Timiras et al, The Ageing Brain: Cellular and Molecular Mechanisms of Ageing in the Nervous system, edited by E. Giacobini et al., Raven Press, New York--Developing and Ageing Brain Serotonin Systems; and P.S.T. Timiras et al, Age and Aging (1982) 11, 73-88--there are discussions on the effect of serotonin on the ageing process. These studies have shown that serotonin accumulates in the central nervous system, with increasing age in a linear fashion, whereas its metabolite, melatonin, produced in the pineal gland decreases during aging. The chemical cyproheptadine is a known serotonin antagonist and although other serotonin antagonists are known, the present discussion will be restricted to cyproheptadine because it is most available at present with least side effects. Numerous references describe the various medical uses of cyproheptadine. The following list is only partial: (1) Studies of Mechanism of Cyproheptadine-induced Weight Gain in Human Subjects, John N. Stiel et al., Metabolism, March, 1970 , 19 (3) pp? PA1 (2) Experimental Study on Atherosclerosis, an Attempt at its Prevention and Treatment, Acta Pathol. Jap. Feb. 1969, 19(1) pp. 15-43. PA1 (3) A Preliminary Report on BC-105: a new Antidepressant, Psychosomatics, Jan.-Feb. 1969, 10(1) pp.51-2. PA1 (4) More on Cyproheptadine in Cushing's Disease, New England J. Med. 10 March 1977, 296 (10) pp. 576-7. It is worthwhile considering the potential therapeutic use of cyproheptadine. Cyproheptadine has been investigated as a way of overcoming anorexic effects by stimulating appetite. The ageing process is characterized by a group of progressive diseases such as arteriosclerotic heart disease, cardiovascular accidents, hypertension, arthritis, diabetes, Alzheimer's disease and an increase in age-related cancers. The serotonergic neurotransmitter system which is dominant in the central nervous system, and which directly effects the entire neuroendocrine system via the hypothalamic petuitary axis, is proposed in the prior art to be responsible for the ageing process for the following reasons. By referring to the tables in the references of the Timiras et al mentioned above, it can be seen that serotonin promotes cystogenesis and causes general chronic inflammatory fibrotic changes, gradually leading to a replacement of normal tissues by chronic inflammatory debris-forming sears which in turn lead to increases in rigidity, decreased transport of nutrients and subsequent organ failure. It is therefore believed that by administering an agent which is a serotonin-antagonist and which can cross the blood brain barrier to act within the central nervous system, this serotonin-antagonist would then act in effect as an anti-ageing substance and in that respect may also be used in the treatment of diseases of the aged, and other acute diseases.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to an improved heat exchanger-incorporated hollow fiber type artificial lung 2. Description of the Prior Art Generally, when blood is drawn out of a patient's body and oxygenated externally as during a cardiac operation, an artificial lung is used in the extracorporeal circut. When the cardiac operation necessitates use of slighly or medially low temperatures or extremely low temperatures, the blood must be cooled to the order of 35.degree. to 20.degree. C. at the outset of the circulation of blood through the extracorporeal circuit. Conversely when the extracorporeal circulation is to be terminated, the blood must be heated to a temperature substantially equal to the patient's body temperature. For the purpose of this regulation of blood temperature, the extracorporeal circuit is provided with a heat exchanger. This heat exchanger may be utilized for the purpose of maintaining the warmth of blood when the blood is desired to be circulated at the normal body temperature. Conventionally in the extracorporeal circuit, the artificial lung and the heat exchanger have been incorporated independently of each other and interconnected with a connection tube. As a consequence of this setup, the assemblage of the circuit has proved complicated and the connection between the artificial lung and the heat exchanger has sometimes been made incorrectly, though not frequently. Moreover, since the connection tube is inevitably provided with two independent blood ports (one for the heat exchanger and the other for the artificial lung), it has called for a large volume of priming. Further, the operation of priming itself has been quite difficult because the removal of bubbles from the blood during the course of priming must be performed separately for the artificial lung and the heat exchanger. As a partial solution of this problem, a superposed membrane type artificial lung incorporating a heat exchanger has been disclosed in Japanese Patent Publication (Kokoku) No. 2982/1980. Since the artificial lung part and the heat exchanger part are both of a superposed membrane type, the artificial lung is difficult to manufacture. Moreover, the artificial lung of such a membrane type admits a heavy personal error and has a possibility of entailing dispersion of quality among artificial lungs manufactured at one and the same factory. To solve the problem, a heat exchanger-incorporated hollow fiber type artificial lung has been proposed. The lung includes a hollow fiber type artificial lung part having a plurality of bundles of gas-exchange hollow fiber membranes contained in a first tubular housing, and a shell-and-tube type heat exchanger part having a plurality of tubes contained in a second tubular housing, with the aforementioned artificial lung part and the aforementioned heat exchanger part coaxially connected to each other through the union of the first and second tubular housings (Japanese Patent Application No. 115,868/1980). In this artificial lung, the first and second housing have connecting ends of an identical diameter. These connecting ends have screw threads cut in manually opposite directions. The first and second housings are connected to each other through the medium of an O-ring by virtue of a connecting screw ring fitted across the outer sides of the aforementioned connecting ends. The artificial lung adopting such mode of connection as described above is effective for a short period of time. When this artificial lung as a product is required to guarantee good performance for a long time, it may possibly pose some problems. If the screw threads in the connecting ends should come loose, since one of them spirals opposite the other, the user could not easily retighten them. When he dares to retighten such loose screw threads, thre is a possibility that he will unwittingly cause them to separate from each other entirely. In the hope of precluding such problem the feasibility of a method of fusing the reverse screw ring fast in position has been studied, only to find that the potting member of the artificial lung would collapse on prolonged exposure to compression, and the O-ring made of rubber would avoid following the collapse and induce leakage. When the O-ring separates from the groove formed exclusively for its insertion, it will induce leakage afterward. An object of this invention is to provide a heat exchanger-incorporated hollow fiber type artificial lung provided with a highly relieable, safe connection structure.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to double containment pipe systems having an inner carrier pipe for passage and transportation of fluid within an outer containment pipe. In particular, the present invention relates to double containment fittings for double containment pipe systems. 2. Prior Art Double containment pipe systems are utilized for transporting fluids comprising an inner, or carrier, pipe, positioned concentrically within an outer, or containment, pipe. Both a carrier pipe and its related containment pipe are constructed by a series of pipe sections joined by pipe joints. Traditionally, a carrier pipe system is intended to, and is constructed to, provide a means for transporting a fluid over a long distance efficiently and without allowing any of the fluid to escape from the carrier pipe system. The most common causes of escape of a fluid from a carrier pipe system are either a break in a pipe section, a break in a pipe joint, or a loosening of a pipe joint. A carrier pipe system is constructed to be a safe and reliable means for transporting fluids, especially fluids which might be dangerous or which might contaminate the surrounding area should any escape from the carrier pipe system. Occasionally, a carrier pipe does fail and contaminating fluid covers the surrounding area. Government regulations now require secondary containment systems on many fluid installations and will require secondary containment on many others in the near future. The carrier pipe is normally independent from the double containment pipe which encloses it, and the double containment pipe is not in communication with the carrier pipe unless and until the carrier pipe should develop a leak. Then, the outer containment pipe serves its basic purpose by collecting fluid escaping from the carrier pipe and prevents contact with the environment until the leak is discovered and repaired. Pipe systems have been traditionally constructed of steel or other forms of metal. With the development of fiber glass reinforced resins, simple carrier pipe systems started to be constructed of fiber glass reinforced resins where such usage was permissible. Double containment piping systems are, however, relatively new to the fiber glass resin pipe industry, and a great deal of the design requirements and capabilities of the fiber glass resin double containment systems are being developed even as the systems are being installed. While double containment systems are fabricated from concentric lengths of double containment pipe, a double containment system is also required at fittings such as elbows and connections. It is a principal object and purpose of the present invention to provide a fitting for a double containment piping system. It is a further object and purpose of the present invention to provide a fitting for a double containment piping system that is easily assembled in the field from standardized components. It is a further object and purpose of the present invention to provide a fitting wherein the inner containment member need not be bonded to the outer containment member.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to translucent soap bars and methods for production thereof. More particularly, this invention relates to making milled or machine finished, translucent soap bars which contain synthetic detergents, i.e., "combo-bars". 2. Prior Art Transparent soap bars (the ultimate translucent soap bar), and methods for their manufacture, have been known for many years. Being costly to manufacture, they have been generally regarded as luxury items, and their properties have been equated with high purity and neutrality (although they may actually contain free alkali or free fatty acids). Such products have been used almost exclusively for toilet articles, i.e., bathing, hand, and face washing soaps, etc. Numerous transparent soaps have been formulated. A classic method involves the low temperature saponification of fats and oils predissolved in warm alcohol, water, and glycerine, followed by evaporation of part of the alcohol/water azeotrope. Another common technique is based upon the addition of a polyhydric alcohol, such as glycerol, glycol, sugar or the like to a "neat soap" or semi-boiled soap, or to soap prepared by the cold process technique. Still another method consists of dissolving soap in alcohol to solubilize certain components and then distilling off most of the alcohol. U.S. Pat. No. 3,562,167 to Kamen describes a transparent soap formed from a combination of soap, polyhydric alcohol, and as a surface-active agent, a polyalkoxy ether of an alkylphenol. U.S. Pat. No. 3,903,008 to Deweever et al. describes the formulation of a transparent soap by the combination of soap, polyhydric alcohols, and a quaternized dihydroimidazole detergent. U.S. Pat. Nos. 3,793,214 and 3,926,828 to O'Neil et al. describes transparent soaps produced using branched chain fatty acids. U.S. Pat. No. 3,864,272 to Toma et al. describes the use of a rather complicated, elaborate mechanical method of working the soap, i.e., spray drying followed by mechanical working. A method of formulating a transparent soap is disclosed in U.S. Pat. No. 2,820,768 where a sodium soap made from tallow, coconut oil, and caster is mixed with a triethanolamine soap of stearic acid and oleic acid and an excess of the amine. U.S. Pat. No. 4,290,904 to Poper et al describes a transparent low alkalinity bar soap based on a tetrakis (hydroxyalkyl) ethylene diamine. One of the disadvantages of these prior art transparent soap bars is that they form a scum in hard water. In order to overcome this problem with soaps, not only in transparent soaps, synthetic detergents were developed. It has been found, however, that when these synthetic detergents are added to the typical transparent soap to form what is called a "combo-bar" (i.e., a combination of synthetic detergent and soap), that the bar is no longer transparent. To the Inventors' knowledge, no one to date has made a transparent bar using a synthetic detergent and a soap having the enhanced transparency, clarity, color, and purity of the soaps as described and claimed in Applicant's parent application, U.S.S.N. Ser. No. 07/019,358, now U.S. Pat. No. 4,851,147 nor has anyone used the solubilization system described and claimed therein for cosmetic ingredients. Additionally, to the inventors' knowledge, no one to date has made a translucent, milled or machine finished, or extruded bar using a synthetic detergent and a soap having the enhanced translucency and enhanced gritlessness of the soaps described and claimed herein. Further, U.S. Pat. No. 3,741,911 to Shane described certain alkyl-aryl polyoxyalkylene carboxylic acids and derivatives thereof for use as a surfactant in detergent compositions. The entire disclosure of this patent is incorporated herein by reference. Applicant has discovered that when certain alkanolamines, preferably when used in conjunction with these alkyl-aryl polyoxyalkylene carboxylic acids and preferably utilized in conjunction with a combination of a synthetic detergent and a soap that, surprisingly and unexpectedly, a translucent milled "combo-bar" may be produced.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The field of invention relates to shoe strap apparatus, and more particularly pertains to a new and improved shoe closure strap apparatus wherein the same is arranged for effecting selective closure of a shoe relative to a shoe opening. 2. Description of the Prior Art Shoe strap arrangements are utilized throughout the prior art to effect closure of a shoe opening of a shoe structure. Such apparatus is exemplified in Re. Pat. No. 32,585 to Antonious wherein shoe strap securing structure is arranged for securement in association, either individually or in cooperation, with a shoe lace construction. U.S. Pat. No. 4,476,639 to Zaccaria sets forth a shoe securement strap structure wherein the strap is directed through the shoe sole for overlying securement of the shoe upper portion. U.S. Pat. No. 4,004,355 to Koblick sets forth a shoe device wherein strap structure is arranged for mounting of a cup-like member relative to a shoe boot. U.S. Pat. No. 4,766,682 to Milloy, III sets forth a lace cover strap for use about an instep of a shoe to prevent untying thereof wherein the structure utilizes hook and loop fastener patches for attaching opposing ends of the strap structure. As such, it may be appreciated there continues to be a need for a new and improved shoe closure strap apparatus as set forth by the instant invention which addresses both the problems of ease of use as well as effectiveness in construction in providing strap structure for mounting within conventional shoe lace openings within a conventional shoe and in this respect, the present invention substantially fulfills this need.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention is a hand tool which may be used for laying sheet-like materials and woven materials such as those materials used in the roofing or flooring trades. In many construction activities it is often necessary for workers to lay sheet-like materials and woven materials. Such sheet-like and woven materials are typically supplied in large sheets or rolls. Examples include sheet plastic, woven roving, carpeting, felt, etc. One such construction activity is the laying of roofing materials. In typical build-up or layered roof constructions, it is normally necessary to lay, in sequence, several layers of sheet-like material, such as roofing felt, fiberglass, etc. These layers are adhered to the surface of the building structure and/or to one another through the use of any of a wide variety of adhesives, resins, tar etc., so as to provide a finished and sealed roof composite structure. The layered nature of these composites requires that nonuniformities in the layered sheets be smoothed as each successive layer is put down to assure that all areas of each sheet are well sealed to adjacent layers. More complete and uniform sealing minimizes air spaces which, through bubble formation, can weaken the roof composite, and lead to leaking or puddling. Also, nonuniformities left unremoved can express themselves through the entire composite, leading to irregularities in the finished surface which also cause puddle formation. It is therefore often necessary to smooth the newly placed layers through the application of uniform and gentle pressure. In order to best be able to smooth the layer and remove nonuniformities, it is often most desirable to smooth the layer in a given direction to remove bubbles and to predictably position the layer. Another cause of nonuniformity in roofing composites is any weight or localized stress brought to bear on fleshly placed layers. Localized stresses can occur as a result of workers walking on, or otherwise bringing weight to bear upon the freshly laid layer. Another potential source of nonuniformities is in cases where tooling or other objects are impressed against the newly placed layer so as to depress a portion of the layer to a greater extent than surrounding areas of the layer. Other dangers to be avoided it laying and smoothing roofing layers are snagging and puncture. Snagging the unadhered layers can cause them to be pulled out of position, or cause pleats or wrinkles. Punctures can of course affect the integrity of the finished composite, mad may lead to bubbling or leaking. Accordingly, it is an object of the present invention to provide a hand tool which may be used in a wide variety of sheet-laying or sheet-rolling operations. It is also an object of the present invention to provide a hand tool which will allow one to lay, and to gently and directionally smooth, sheet-like and woven materials without walking on the material, and while avoiding localized stress on the newly placed layers. It is also an object of the present invention to be able to provide a hand tool capable of being adjusted for directional application of pressure, or to accommodate the traveling path of the user. In light of the present disclosure or through use of the present invention, other advantages may become apparent to the user.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to print ribbon delivery systems for printers, and more particularly, to a system for detection of motion of the ribbon in a ribbon cartridge. 2. Description of the Prior Art Detection of ribbon motion is important for at least three reasons: 1) If the ribbon has stalled, the ink in the ribbon will be rapidly depleted and print information will be lost, 2) A ribbon stall condition may be an indicator of a mechanical failure of the ribbon cartridge or transport system, indicting that a repair is needed, or 3) The ribbon has become hung in the wires of the print head, in the case of an impact printer, and that the print head may already be, or may become, damaged. Previous means for sensing ribbon motion include optically sensing the movement of a hole in the ribbon fabric and optically sensing the motion of a flag attached to an idler roller in the ribbon path (see U.S. Pat. No. 4,988,224 by Furrow and Johenning). These means for sensing ribbon motion are undesirable because of 1) a hole requires a modification to the ribbon fabric increasing fabric cost 2) sensing a hole in the ribbon fabric can introduce long delays in detecting failed ribbon motion which can cause loss of print data and or damage to the print head/print mechanism 3) hole/s in the ribbon fabric can reduce printer print speed performance since it is not desirable to print in the hole. Printing must be suspended for a period of time to allow the hole to pass the print zone before printing can resume, and 4) Optical sensors can malfunction due to contamination such as paper and ribbon dust that are present in impact printers.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the cooling means of an electric machine, and more particularly to an electric motor having its housing and armature shaft provided with circulating passageways for cooling oil in order to prevent overheating during operation. One of the most common and important problems in the application of machines is the temperature rise resulting from various losses, such as copper losses, brush-contact loss, core loss, mechanical loss, stray load loss, etc. And, as well known in the art, the operating temperature of a machine is closely associated with its life expectancy, because deterioration of the insulation is a function of both time and temperature. Such deterioration is a chemical phenomenon involving slow oxidation and brittle hardening and leading to loss of mechanical durability and dielectric strength. Therefore, various cooling means or ventilating systems are proposed for such machines to remove the heat arising from the inevitable losses, and thus to prevent overheating of the machines. Of the many types of cooling means available, the most common are cooling fans. However, the cooling problem in electric machines in general increases in difficulty with increasing size. This problem is a particularly serious one in large machines, where economy, mechanical requirements, shipping, and erection all demand compactness. Therefore, the conventional type of cooling fan can not ensure that the cooling air will effectively remove the heat arising from the losses; and in a machine of this type, deterioration of the insulation and burning of brush or coil windings still frequently occur thereby reducing its life.
{ "pile_set_name": "USPTO Backgrounds" }
Not Applicable Not Applicable Not Applicable 1. Field of the Invention The present invention relates to the field of telecommunications call switching and transport and, more particularly, for processing calls and making connections for calls to ported numbers. 2. Background of the Invention Broadband systems provide telecommunications providers with many benefits, including greater bandwidth, more efficient use of bandwidth, and the ability to integrate voice, data, and video communications. These broadband systems provide callers with increased capabilities at lower costs. The broadband systems now are implementing systems and methods for connecting calls to ported numbers. In prior systems, if an originating switch determines that a call is to be connected to a ported number, the originating switch added additional partitioning information to the call signaling. Sometimes the additional information is proprietary to the switching entity. A switch that received the call signaling with the additional information then had to translate the additional information to determine if the dialed number is ported and to determine the routing location for any dialed number that is ported. Also, if the additional information is proprietary, the terminating switch had to be capable of processing the proprietary information. Thus, a system and method are needed that can process calls to ported numbers and to partition the calls to ported numbers during call processing so that they may be easily processed. A system and method are needed that do not require additional information to be added to call signaling and that can process and route calls based on standard, non-proprietary information in call signaling. The present invention fulfills these and other needs. The present invention comprises a system for connecting a call having call signaling. The system comprises a signaling processor that is adapted to receive the call signaling. The signaling processor can process the call signaling by partitioning the call for processing within the signaling processor as a ported call by appending a 1 to a ported number processing parameter of a call signaling parameter. The signaling processor can process the call signaling by partitioning the call for processing within the signaling processor as a non-ported call by not appending the 1 to the ported number processing parameter. The present invention also includes a system for connecting a call having call signaling. The system comprises a signaling processor adapted to receive the call signaling. The signaling processor processes the call signaling by partitioning the call for processing as a ported call by appending a 1 to a nature of address field of a called number party parameter. The signaling processor can process the call signaling by partitioning the call for processing as a non-ported call by not appending the 1 to the nature of address field. Further, the present invention includes a system for connecting a call having call signaling. The system comprises a signaling processor that is adapted to receive the call signaling and to process the call signaling to determine if a ported number parameter is present. If the ported number parameter is present, the signaling processor partitions the call for processing as a ported call by appending a 1 to a ported number processing parameter. Further still, the present invention comprises a system for connecting a call having call signaling. The system comprises a signaling processor adapted to receive the call signaling and to process the call signaling to determine if the call is a ported call. If the call is the ported call, the signaling processor partitions the call for further processing within the signaling processor as a ported call by appending a 1 to a ported number processing parameter. Further yet, the present invention comprises a system for connecting a call having call signaling. The system comprises a signaling processor adapted to receive the call signaling and to process the call signaling to determine if the call is a ported call. If the call is the ported call, the signaling processor partitions the call for further processing within the signaling processor as a ported call by appending a 1 to a nature of address field of a called party number field parameter of the call signaling. The present invention is directed to a method for connecting a call having call signaling. The method comprises receiving the call signaling and processing the call signaling. The method includes partitioning the call for processing as a ported call by appending a 1 to a ported number processing parameter of a call signaling parameter. The method also includes partitioning the call for processing as a non-ported call by not appending the 1 to the ported number processing parameter. The present invention is further directed to a method for connecting a call having call signaling. The method comprises receiving the call signaling and processing the call signaling. The method further comprises partitioning the call for processing as a ported call by appending a 1 to a nature of address field of a called number party parameter. Further, the method comprises partitioning the call for processing as a non-ported call by not appending the 1 to the nature of address field. The present invention also is directed to a method for connecting a call having call signaling. The method comprises receiving the call signaling and processing the call signaling to determine if a ported number parameter is present. The call is partitioned for processing as a ported call by appending a 1 to a ported number processing parameter if the ported number parameter is present. In addition, the present invention is directed to a method for connecting a call having call signaling. The method comprises receiving the call signaling and processing the call signaling to determine if the call is a ported call. The call is partitioned for further processing as the ported call by appending a 1 to a ported number processing parameter if the call is the ported call. Moreover, the present invention is directed to a method for connecting a call having call signaling. The method comprises receiving the call signaling and processing the call signaling to determine if the call is a ported call. The call is partitioned for further processing as the ported call by appending a 1 to a nature of address field of a called party number field parameter of the call signaling if the call is the ported call. The systems may further include a communication device that can receive, handle, and/or transmit call signaling, user communications, and/or control messages. The methods may further comprise receiving, handling, and/or transmitting call signaling, user communications, and/or control messages at a communication device.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a saw chain for chain saws, and to a particular tie link for such a chain. An optimally designed saw chain is one that has good wear characteristics, minimal kick-back, and good cutting action. The chain according to the present invention is constructed with these optimal results in mind. The chain according to the invention presents a general facial area as the chain is traversing the nose of a guide bar (where kick-back can occur) that is substantially as wide as the chain itself, minimizing the possibility that the cutter will become buried in the wood being cut. This wide facial area is provided by constructing a specially configured tie link (i.e. a guard link) that is disposed on the opposite side of the chain from a following cutter link. All other components of the chain may be conventional components, resulting in ease of manufacturing procedures. The guard link does not significantly interfere with the cutting action of the cutter link, and is positioned with respect to the cutter link so that there is good chip clearance and so that any tendency of the chain to "skate", when brought into contact with a smooth cutting surface, is minimized. A tie link (i.e. guard link) according to the present invention comprises a non-cutting link having a base portion including front and rear rivet receiving openings, and a top portion extending above the base portion. The top portion terminates in a nose portion which is rearward of the entire rear rivet receiving opening (and preferably rearward of the entire base portion of the link), and the center of gravity of the link is located closer to the rear rivet receiving opening than the front rivet receiving opening. The nose has a width substantially greater (e.g. twice as great) as the width of the base portion of the guard link, so as to present a large facial area as the chain of which the link is a part traverses the nose of a guide bar. A saw chain according to the present invention comprises a series of center drive links, and pairs of side links all pivotally joined to the center links to form an articulated chain. A first pair of side links comprises a non-cutting tie link to one side of the chain, and a cutter link on the opposite side of the chain from the non-cutting tie link. The cutter link has a base portion including front and rear rivet receiving openings, and a top portion above the base portion and including an upstanding depth gauge at the front of the link, and a cutter tooth rearward of the depth gauge. The chain further comprises a second pair of side links immediately preceding each cutter link, and comprising a non-cutting tie link on the same side of the chain as the following cutter link, and a non-cutting guard link on the opposite side of the chain from the following cutter link, the guard link being as previously described. The nose portion of the guard link terminates adjacent the depth gauge of the following cutter link, and preferably has a width substantially equal to the width of the guard link base portion plus the width of a center link. When the chain is straight the nose portion of the guard link preferably has a height less than the maximum height of the depth gauge, but the nose of the guard link is constructed so that as the chain goes around the nose of a guide bar (where kick-back can occur) the nose of the guard link is even with, or slightly higher than, the depth gauge. The distance that the nose extends rearwardly of the rear rivet-receiving opening, or base portion, of the guard link, and its position vis-a-vis the following cutter link depth gauge, is dependent upon the particular size (e.g. pitch) of the chain, the configuration of the cutter, particular cutting conditions, and the like. For instance the nose portion of the guard link can be configured so that one can, or cannot, see light between it and the depth gauge of the following cutter link when the chain is straight and viewed from the side, or when the chain is traversing the nose of a guide bar and viewed from the side. The guard link according to the present invention preferably is constructed from a blank (cut to a predetermined configuration) which is passed through a progressive die system so that the top portion of the link is gradually bent over. That is, the guard link according to the present invention is preferably formed in a manner similar to the manner in which the cutter teeth of cutter links are conventionally formed, except, of course, that there will be no sharpening of any surfaces thereof, and the maximum width of the nose of the link preferably is only about two-thirds the width of the chain. It is the primary object of the present invention to provide a saw chain, and particular non-cutting tie link therefor, which can minimize kick-back without adversely affecting cutting capabilities of the chain. This and other objects of the invention will become clear from an inspection of the detailed description of the invention, and from the appended claims.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a closed-loop air fuel ratio control system and method for supplying an optimum air fuel mixture to an internal combustion engine. Such a control system or method makes use of an exhaust gas sensor or oxygen sensor for sensing the concentration of the oxygen in the exhaust gas from the engine, and controls the air fuel ratio depending upon the result of the comparison between the output signal of the exhaust gas sensor and a predetermined reference value. However, such a control system or method is arranged to only decide whether or not the sensor output signal is greater than the reference value, that is, whether or not the detected air fuel ratio is smaller than the stoichiometric value, and thus to control the air fuel ratio, without cylinder to cylinder variation, if it is applied to a multi-cylinder engine, to maintain the mean value among the cylinders constant. Accordingly, such control system and method are helpless against bad influences of a cylinder to cylinder air fuel ratio distribution on emission control and fuel economy.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure is directed generally to transmitters for data in a network and, more specifically, to an improved transmission scheme for wireless communication, for example, in a large area network (LAN). Although the present invention will be described with respect to wireless communication and, specifically, the IEEE Standard 802.11, the principles also apply to other transmitting schemes which involve data modulation, spreading and over-sampling ETC. IEEE Standard 802.11 (Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications) is a protocol standard for wireless LAN communication. Its physical layer in the transmitter is responsible for encoding and modulating a packet into baseband signals. As illustrated in FIG. 1, for given a sequence of bits of a packet, the physical layer: 1. modulate the bits or symbols (one bit per symbol for DBPSK and 2 bits per symbol for DQPSK) with DBPSK (for 1 mbps) or DQPSK (for 2 mbps) or other modulation systems to get a sequence of (I, Q) pairs at 10; 2. spread I and Q with Barker sequence to get eleven chips for each I and Q bit at 12; 3. over-sample each chip by a factor of M, say M=4, to get a sequence of I samples and Q samples at 14; 4. feed the I and Q samples to a pulse-shape filter 16; 5. forward the filtered I and Q samples to a RF modulator 18; and 6. transmit the RF modulated I and Q samples. Although each of the steps are necessary, they are time consuming. Combining or implementing any or more of the steps in a more efficient way will increase the transmission speed of the transmitter. The present method performs steps 1, 2, 3 and 4 using one or more look-up tables, therefore substantially decreasing the processing time. The present invention is a method of differentially modulating, spreading, over-sampling and filtering a stream of bits forming symbols for transmission including determining an Ii, and a Qi for each symbol Si using differential modulation with respect to a previous symbol Si−1 having an Ii−1 and a Qi−1. A row of a matrix for I is indexed using two of Ii−1/Qi−1, Ii/Qi, and Si and providing the samples in the indexed row as a spread, over-sampled and filtered output of Ii. Also, a row of a matrix for Q is indexed using two of Ii−1/Qi−1, i,/Qi, and Si and providing the samples in the indexed row as a spread, over-sampled and filtered output of Qi. These values for Ii and Qi are then RF modulated and transmitted. The determining of I and Q includes using one or more of the following differential phase shift keying (DPSK): binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). The method of determining the Ii, Qi, uses a look-up table indexed by the previous Ii−1 Qi−1 and the present symbol Si. The method of determining Ii Qi is performed in one of in series with, in parallel with and simultaneously with indexing the I and Q matrices. The matrix has n rows equal to the number of possible combinations of values of two of the previous Ii−1, Qi−1, the present Ii, Qi, and the present symbol Si and m columns equal to a spread factor times an over-sample factor. Prior to performing the method, the spreading, over-sampling and filtering are determined and stored in the rows of the matrix. The present invention is also directed to a method of transmitting a stream of data bits which form a symbol and includes determining for each symbol an I and a Q. A matrix is indexed using the I and Q to provide a spread, over-sampled and filtered output of the I and Q. This output is RF modulated and transmitted. A matrix for I and a matrix for Q are indexed using two of the present symbol Si, the present Ii, Qi and the previous Ii−1, Qi−1. The I and Q are determined using differential modulation of a present symbol Si with respect to the previous symbol Si−1. The present invention is also directed to the matrix itself having n rows equal to the possible combinations of values of Ii, Qi, and m columns equal to the spread factor times an over-sample factor. Each row includes values corresponding to the spread, over-sampled and filtered samples I, Q. The modulated I, Q's are differentially modulated for a present Ii, Qi with respect to a previous Ii−1, Qi−1, and the n rows equal to the possible combinations of values of two of the previous Ii−1, Qi−1, the present Ii, Qi, and the present symbol Si. These and other aspects of the present invention will become apparent from the following detailed description of the invention, when considered in conjunction with accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Allowing devices to connect to computers through a wireless communication path and wirelessly networking groups of computers is one of the fastest growing segments of the PC industry. Present and emerging standing technologies in this field include IEEE 802.11 (versions a, b and g) also known as ‘WiFi’ available from (# sign used to prevent automatic hyperlinks) http:#standards.ieee.org#catalog#olis#lanman.html, ‘Bluetooth’ available from https:#www.bluetooth.org and Cypress Semiconductor's proprietary WirelessUSB standard available from http:#www.wirelessusb.org. Ball Grid Array (BGA) packaging technology is a popular choice for packaging semiconductor devices, or “chips,” because BGAs offer advantages in space, cost and density over other packaging technologies. This is also true for semiconductor devices pertaining to wireless communications. Wireless devices tend to be quite sensitive to inductance, however, and it is advantageous to minimize the effects of inductance when designing, manufacturing and using wireless and other sensitive devices. A conventional BGA package 10 is shown in FIG. 1. This package 10 includes one or more devices or integrated circuits 12, a BGA substrate 14, mold compound 16, gold wire 20 for wire bonds, epoxy resin 22 to adhere the devices 12 to the substrate 14, and solder-balls 24 to make electrical connections to a circuit board (not shown), such as a line or slot card in a computer or other device. The conventional BGA package 10 may pick up inductance from its connections, for example where a bond wire 20 connects to a pad on the device 12, and through a trace to a ball 24 which connects to a board which connects to an antenna (e.g., an antenna attached to the line card). This electrical path can pick up inductance, and negatively effect the performance of the device. Excess inductance limits the range of transmitting and receiving the wireless signals, and reduces quality of service (QOS) of wireless devices. Embodiments of the invention address these and other limitations in the prior art.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to photosensitive iodonium polymers and to heat curable cationically polymerizable compositions using such photosensitive iodonium polymers in combination with a copper compound as a cocatalyst. Prior to the present invention, Y. Yamada and M. Ikawara reported the synthesis of phenyl polystyryliodonium salts having the iodonium structure as a pendant group on the main chain, Macromol. Chem. 152, 153, 163 (1972). H.K. Livingston and J.W. Sullivan, J. Polym. Sci. C., 195 (1968) synthesized polymeric iodonium materials by various procedures including the condensation of a dicarboxylic acid and an organoiodosodiacetate. Additional investigations by Y. Yamada, K. Kashima, and M. Okawara [J. Polym. Sci., Polym. Let. Ed. 14, 65 (1976)]reported the reaction of 4,4'-methylene bis(penyliodoso diacetate) with diphenylmethane resulting in the production of an oligomeric iodonium salt. The present invention is based on our discovery that high molecular weight resins containing iodonium salt components in the main chain can be made by initially effecting the interfacial polymerization of the diacidhalide of dicarboxydialkyldiphenyliodonium bisulfate of the formula, ##STR1## with diamines, difunctional alcohols, or phenols to produce the corresponding iodonium containing polyamides and polyesters, where R is a C.sub.( 1-8) alkyl radical, X is a halogen radical, and a is a whole number equal to 0 to 3 inclusive. Polymeric photosensitive iodonium salts are provided comprising chemically combined units of the formula, ##STR2## which can be metathesized with an alkali metal or alkaline earth metal hexafluoro compounds of the formula EQU MYF.sub.n, (3) to produce the corresponding polymeric polyfluoro metalloid iodonium salts, where R.sup.1 and R.sup.2 are selected from C.sub.( 6-14) divalent aryl radicals and C.sub.( 6-14) divalent aryl radicals substituted with 1-4 monovalent radicals inert during interfacial polymerization, Q is a member selected from ##STR3## R.sup.4 and R.sup.5 are the same or different monovalent radicals selected from hydrogen or R radicals, R.sup.3 is a divalent C.sub.( 1-14) hydrocarbon radical or divalent C.sub.( 1-14) hydrocarbon radical substituted with monovalent radicals inert during interfacial polymerization, R.sup.6 is a divalent C.sub.( 2-30) divalent, sodium, potassium or magnesium, Y is selected from B, P, As and Sb, and n is an integer having a value of 4-6.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates in general to the fabrication of a self-aligned silicide and more particularly to a method of manufacturing a cobalt silicide (CoSi.sub.2) layer. 2. Description of the Related Art As the level of integration for MOS devices increases, resistance in the source/drain terminals of the MOS device gradually rises to a value comparable to the channel resistance of the MOS device. To ensure integrity at the shallow junction between metallic contacts and the MOS terminals, and for the downward adjustment of sheet resistance in the source/drain terminals, self-aligned silicide processes are now employed in the manufacturing of very large scale integrated (VLSI) circuits, especially for the manufacturing of semiconductor devices having a line width smaller than about 0.5 .mu.m. Titanium is the metal material most frequently used for the self-aligned silicide. However, it is not easy to control the silicide step at the high temperature needed for the titanium salicide process. Moreover, the temperature used to transform the titanium metal into titanium silicide is very high. As the size of the titanium silicide is diminished, high temperature is needed to transform the phase completely, but high temperature bring about thermal unstability. In response to these problems cobalt silicide can be used to displace the titanium silicide in the future, because it has a low silicide temperature and low resistance. However, large amounts of silicon are consumed during the formation of the cobalt silicide, and it is not easy to control junction depth. Moreover, the formation of cobalt silicide is degraded by the native oxide formed on the surface of the silicon substrate. FIGS. 1A to 1B are cross-sectional views showing a progression for manufacturing a cobalt silicide layer by using a cobalt/silicon structure according to a conventional method. First, as shown in FIG. 1A, a silicon substrate 10 is provided. The silicon substrate 10 is dipped in a buffer oxide etchant (BOE) solution with a 50:1 concentration to remove the native oxide formed on the surface of the silicon substrate 10. Then, a layer of cobalt metal 12 is formed, for example, by using a sputtering method, over the silicon substrate 10. The sputtering method comprises, for example, a DC magnetically controlled sputtering method, at a base pressure of about 2.times.10.sup.-7 torr. Next, referring to FIG. 1B, a thermal oxidation method is performed, for example, by using a rapid thermal process with nitrogen for about 30 sec, so that the cobalt layer 12 reacts with the silicon atoms on the surface of the substrate 10, forming a layer of cobalt silicide 14. Then, the unreacted and remaining cobalt metal are removed, for example, by using a wet etching method. A conventional manufacturing method has several drawbacks including the roughness at the junction interface of the silicon substrate 10 and cobalt silicide layer 14, making it hard to control the junction depth. Additionally, the formation of the cobalt silicide is degraded by the native oxide formed on the surface of the substrate structure. Another conventional manufacturing method comprises adding a layer of titanium to the interface between the cobalt layer and silicon substrate, thereby preventing the formation of the native oxide. FIGS. 2A to 2B are cross-sectional views showing a progression for manufacturing a cobalt silicide layer by using a cobalt/titanium/silicon structure according to another conventional method. First, as shown in FIG. 2A, a silicon substrate 20 is provided. Silicon substrate 20 is dipped in a buffer oxide etchant solution with a 50:1 concentration to remove the native oxide formed on the surface of the silicon substrate 20. Then, a layer of titanium metal 22 with a thickness of about 50-150 .ANG. is formed, for example, by using a sputtering method, over the surface of the silicon substrate 20. Then, a layer of cobalt metal 24 is formed, for example, by using a sputtering method, over the titanium layer 22. The sputtering method comprises, for example, DC magnetically controlled sputtering method, at an base pressure of about 2.times.10.sup.-7 torr. Next, referring to FIG. 2B, a thermal annealing method is performed, for example, by using a rapid thermal process with nitrogen for about 30 sec, so that the cobalt layer 24 reacts with the silicon atoms on the surface of the substrate 20, forming a layer of cobalt silicide 26. Simultaneously, a layer of titanium-cobalt-silicon-oxygen mixture 28 is formed on the surface. Then, the unreacted and remaining cobalt metal are removed, for example, by using a wet etching method. There is still a rough interface between the silicon substrate 20 and silicon cobalt layer 26 in this conventional method. Moreover, a large amount of silicon is consumed and voids are formed at the interface.
{ "pile_set_name": "USPTO Backgrounds" }
Databases or other software applications that fail to adhere to guidelines and best practices pose a threat to the stability and availability of systems implementing those applications. For example, a database application, such as an application utilizing DB2® Database Software, might support a customer-facing web interface requiring the database application to maintain constant availability, such as in the case of ecommerce, insurance claim processing, technical support, cloud service, etc. interfaces. When such an application or system implementing the application becomes unavailable, a company can lose significant amounts of money in a short period of times (e.g., $800,000/hour or more). Manually monitoring and enforcing standards, guidelines and best practices across all systems and applications operated by a company is very expensive and time consuming. As a result, many administrators or managers of enterprise applications/systems rely on random checks of data or system logs to ensure adherence to standards (e.g., after noticing problems in a production environment). This checking might identify some deviations from standards, guidelines, and best practices, but many costly problems can still occur due to the retroactive and unfocused nature of this solution.
{ "pile_set_name": "USPTO Backgrounds" }
A significant trend throughout integrated circuit (IC) development is the downsizing of IC components. As the size reduces, the performance requirements become more stringent. Also, as devices continue to shrink in size, the channel region continues to shrink as well. For metal-oxide-semiconductor field effect transistors (MOSFETs), increased performance requirements such as current and speed have generally been met by aggressively scaling the length of the channel region. One technique that may improve scaling limits and device performance is to introduce strain into the channel region, which can improve electron and/or hole mobility. When applied in a longitudinal direction (i.e., in the direction of current flow), tensile stress is known to enhance electron mobility (n-type FET drive currents) while compressive stress is known to enhance hole mobility (p-type FET drive currents). The application of stresses to field effect transistors (FETs) is known to improve their performance.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a dish washing machine. More particularly, to a dish washing machine having a basket height adjusting apparatus. 2. Description of the Related Art A conventional dish washing machine is a machine that injects high-pressure wash water to dishes to wash the dishes. The conventional dish washing machine includes a washing tub in which dishes are washed, upper and lower baskets mounted in the upper and lower parts of the washing tub, such that the upper and lower baskets can be slid forward and backward, to receive dishes, a sump to collect wash water used to wash the dishes, and a pump and nozzles to inject the wash water toward the interior of the washing tub. Technologies for mounting a basket height adjusting apparatus in a dish washing machine to receive various kinds of dishes have been proposed. The basket height adjusting apparatus is mounted at an upper basket to vertically adjust the height of the basket depending upon the size of dishes, thereby effectively receiving dishes in a washing tub having restricted space. An example of a basket height adjusting apparatus includes a support bracket mounted at each side of a basket to receive dishes such that the support bracket can be moved vertically, rollers mounted to the support bracket to slide the basket along a rail fixed to each-side inner wall of a washing tub such that the rail extends in the forward-and-backward direction of the washing tub, and a handle to be rotated in the upward and downward direction by a user such that the basket can be caught by the support bracket and the basket can be released from the support bracket, whereby the basket can be moved upward and downward, as disclosed in Korean Unexamined Patent Publication No. 10-2005-0019653. The basket is constructed in a net structure in which a plurality of vertical bars (i.e., vertical ribs) and a plurality of horizontal bars (i.e., horizontal ribs) are arranged while being spaced apart from each other such that dishes can be received in the basket, and, at the same time, wash water having washed the dishes can flow to the bottom of the washing tub through the basket. According to the above-mentioned disclosure, the height of the basket is adjusted as follows. A user accesses each side of the basket to grip the basket with some fingers (for example, the thumb and the index finger or the thumb, the index finger, and the middle finger) and to rotate the handle fixed to the support bracket through the net of the basket with some fingers (i.e., the middle finger or the ring finger). At this time, the basket is released from the support bracket. As a result, the basket is moved downward due to its weight, and the support bracket, which is mounted at the rail, is moved upward. Consequently, the height of the basket is raised. In the conventional basket height adjusting apparatus, however, the handle which controls the basket such that the basket is caught by the support bracket and the basket is released from support bracket, is fixed to the support bracket which is moved relative to the basket, such that the handle moves along with the support bracket in an upward direction when the basket is moved downward. As a result, there is a possibility that the fingers (i.e., the middle finger or the ring finger) used to rotate the handle are caught between the horizontal bars of the basket moving downward at high speed due to its weight, and therefore, the fingers are injured. Furthermore, the handle is mounted at the outside of the support bracket, and therefore, the handle is exposed to the outside. Consequently, a dish washing machine with such a basket height adjusting apparatus does not provide aesthetically pleasing external appearance.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to analog-to-digital converters (ADCs) and in particular, to high speed algorithmic ADCs having over-range correction. 2. Description of the Related Art Algorithmic ADCs are categorized as either pipelined or cyclic. Pipelined ADCs are commonly used in low- power, high speed applications. A typical pipelined architecture uses a number of similar stages connected in series. A cyclic ADC is typically includes two similar stages, with the final stage output connected back to the initial stage input. Referring to the drawings, FIG. 1 depicts a single stage 20 of a conventional pipelined ADC. Each stage produces K number of bits (D.sub.1 -D.sub.k) so that an ADC having J number of stages will produce J*K number of bits N. FIG. 2 depicts an ADC having a multiple stages, including three stages 20A, 20B and 20C, with each stage producing a single bit D.sub.1 -D.sub.3, respectively. Each converter stage 20 (FIG. 1) includes a sample and hold circuit (S/H) 22 which receives the analog input Vres.sub.i-1 and produces an output Vres.sub.i. The output Vres.sub.i, sometimes referred to as the residue voltage, is fed to the following stage which produces a residue voltage Vres.sub.i+1. For the input stage 20A (FIG. 2), the input voltage Vin is represented by Vres.sub.i-1 and the output voltage is represented by Vres.sub.i. The output of the sample and hold circuit 22 is fed to a an analog-to-digital subconverter circuit (ADSC) 26A having a K bit output. Typically, the ADSC circuit 26A is implemented using comparator circuits which compares Vres.sub.i-1 to a reference voltage Vref. By way of example, stage 20A (FIG. 1) produces a single bit (K=1) and utilizes a single comparator which compares Vres.sub.i-1 (Vin) with a reference voltage and provides an output D.sub.1 which is either +1 or -1 depending on the magnitude of Vres.sub.i-1. Typically, Vres.sub.i-1 can vary between -Vref and +Vref so that the reference used by the comparator is the mid-point between the reference voltages which is nominally 0 volts. The digital output of the ADSC 26A is converted to an analog voltage by a DAC 28A having K input bits. The output voltage of DAC 28A is subtracted from voltage Vres.sub.i-1 held by the sample and hold circuit 22 by adder 24. The difference output of adder 24 is multiplied by an amplifier stage 30A having a gain of 2.sup.K. The amplifier output Vres.sub.i is forwarded to a subsequent stage 20 which provides additional analog and digital outputs based upon the magnitude of Vres.sub.i. As will be explained later in greater detail, each stage typically alternates between two modes of operation, including a sample phase followed by an amplification phase. When a stage 20A (FIG. 2) is in an amplification phase, the subsequent stage 20B will be in the sample phase. The magnitude of the residue voltage Vres.sub.i at the end of the amplification phase can be calculated by the following equation, where Vdac.sub.i is the output of DAC 28A: EQU Vres.sub.i =2.sup.K (Vres.sub.i-1 -Vdac.sub.i) (1) As previously noted, a cyclic ADC includes two stages similar to that of FIG. 1, each of which alternates between a sample and an amplification phase. The input voltage is applied to the first stage which produces a first residue voltage and a first digital output. The first stage forwards the residue voltage to the second stage, with the second stage generating a second residue voltage and a second digital output. The second residue voltage is fed back to the input of the first stage where the first stage produces a third residue voltage and third digital output. The residue voltage is recirculated in this manner until the desired number of bits are produced. The central problem with any algorithmic ADC is that the overall linearity of the ADC is determined by the linearity of DAC 28A. An attractive solution, especially for high speed applications, is to use a one bit (K=1) ADSC 26A and DAC 28A. With a single bit decision, there is always a straight line that can be drawn between the positive and negative references. As indicated by equation (1), when K=1, the ideal gain of the converter stage is two. This is demonstrated by the following equation derived from equation (1): EQU Vres.sub.i =2.multidot.Vres.sub.i-1 -D.sub.i .multidot.Vref(2) Value D.sub.i is either .+-.1 and Vres.sub.i-1 has a minimum value of -Vref and a maximum value of +Vref. FIG. 3 depicts an ideal one bit per stage residue transfer function. The transfer function includes a single transition at Vref=0 and a nominal gain of 2. FIG. 4 is a conventional circuit typically used to provide the one bit per stage residue transfer function of FIG. 3. The stage is shown as a single ended stage in order to simplify the description of operation. However, as is well known, such stages are usually actually implemented in fully differential form where there are differential input residue voltages and differential output residue voltages. The single ended FIG. 4 stage includes a pair of capacitors C1 and C2, which are nominally of the same value, and an operational amplifier 32. Switches S1A, S1B, S1C, S2A and S2B are provided which are implemented using transistors and are controlled by two non-overlapping clocks. During the sample phase, one of the clocks causes switches S1A, S1B and S1C to be turned on, with switches S2A and S2B remaining off. The equivalent circuit is shown in FIG. 5A. Amplifier 32 is configured as a voltage follower (unity gain), with the input voltage Vres.sub.i- 1 being applied to one side of both capacitors C1 and C2. Since the inverting input of amplifier 32 is nominally at ground potential due to feedback, the entire input voltage Vres.sub.i-1 is applied across the parallel combination of capacitors C1 and C2. During the amplification phase following the sampling phase, switches S1A, S1B and S1C are turned off and switches S2A and S2B are turned on. The equivalent circuit is shown in FIG. 5B. Capacitor C2 is connected between the inverting input and the output of amplifier 32 and one side of capacitor C1 is connected to either +Vref or -Vref depending upon bit D.sub.i. As can be explained by the principle of conservation of charge, at the termination of the amplification phase, the output voltage Vres.sub.i will nominally be equal to twice input Vresi.sub.1 plus Vref when D.sub.i =+1 and twice input Vres.sub.i-1 minus Vref when D.sub.i =-1. Thus, the nominal transfer characteristics shown in FIG. 3 are achieved. Taking into account various sources of error, the output voltage Vres.sub.i is more accurately determined by the following equation: EQU Vres.sub.i =((2+a.alpha..sub.i).multidot.Vres.sub.i-1 -(1+.alpha..sub.i).multidot.D.sub.i .multidot.Vref).multidot.(1-.epsilon..sub.i)+Vofs.sub.i (3) As can be seen from equation (3), the actual output voltage Vres.sub.i is affected by .alpha..sub.1, the capacitor mismatch between C1 and C2, ei, the error due to finite open loop gain of amplifier 32 and settling, and Vofs.sub.i, representing a total offset term due to the charge injection effects and amplifier 32 input offset. The converter stage errors noted in connection with equation (3)affect the linearity of the overall ADC. Some of the errors attributable to amplifier 32 can be minimized by careful amplifier design. However, there is a technological limit to reducing the error due to capacitor mismatches. For resolution higher than ten bits, several calibration/correction techniques have been developed to address capacitor mismatch. The relative accuracy of an ADC is the deviation of the output from a straight line drawn through zero and full scale. Such relative accuracy is sometimes referred to as integral non-linearity error. Differential non-linearity (DNL) error describes the difference between two adjacent analog input signal values compared to the step size. For certain applications such as digital imaging, only the DNL is critical. A commutated feedback capacitor switching technique has been developed to reduce the DNL even for relatively large capacitor mismatches. This technique relies on the observation that the DNL is determined by the height of the transition gap in the transfer characteristic. As shown in the idealized transfer curve of FIG. 3, the height V.sub.D is 2Vref at the transition between D.sub.i =+1 and D.sub.i =-1. The significance of the height V.sub.D can be best appreciated by considering an input voltage Vres.sub.i-1 having a magnitude very slightly less than transition voltage (0 volts) and an input voltage very slightly greater that the transition voltage. In order to achieve the desired DNL, the output of the ADC should change no more than one LSB for the slight change in input voltage. However, since the difference in capacitor values represented by .alpha..sub.i are random errors which cannot be reduced to an insignificant value in high resolution ADCs, the approach depicted in FIG. 4 cannot be used in such applications. A prior art commutated feedback-capacitor switching (CFCS) technique has been developed to maintain a high DNL despite the presence of a significant capacitor mismatch. The FIG. 4 circuit is modified to include additional switches so that, during the amplification phase, capacitors C1 and C2 are reversed in the circuit depending upon the state of bit D.sub.i. The equivalent circuit during the sample phase remains the same as shown in FIG. 5A. However, the equivalent circuit during the amplification stage is changed from FIG. 5B to the circuit shown in FIG. 6. When D.sub.i =+1, capacitor C1 is connected as the input capacitor and C2 is connected as the feedback capacitor. When D.sub.i =-1, the two capacitors are switched so that C2 is connected as the input capacitor and Cl functions as the feedback capacitor. FIG. 7 shows the transfer curve when CFCS is utilized. Neglecting the errors due to amplifier 32 settling time and finite gain, the output voltage in the region D.sub.i =-1 is given by the following equation: ##EQU1## Similarly, the output voltage when Di=+1 is given by the following equation: ##EQU2## The magnitude of V.sub.D is calculated by subtracting the value of Vout for Vin=0, in accordance with equation (4), from the value of Vout for Vin=0, in accordance with equation (5). The result V.sub.D (.DELTA.Vout.sub.Vin=0) is as follows: ##EQU3## It can be seen from equation (5) that V.sub.D (.DELTA.Vout.sub.Vin=0) is equal to 2Vref up to a second order error term. Another major issue for any algorithmic ADC is the linear range in the analog domain. The description of prior art converters so far has assumed that all of the analog stages have been operating in the linear range. However, the linear range is limited by the circuit characteristics and is, in no case, greater than the power supply voltage. For a converter architecture which has only 1-bit conversion stages, should the analog residue in one stage be outside the -Vref to +Vref range, such analog residue will be amplified by 2 at each subsequent stage and eventually reach a limiting region of the output voltage at a later stage. This situation results in an erroneous ADC output. One solution is to use one or more over-range stages capable of operating with analog inputs greater than -Vref to +Vref. Examples of the prior art two bits per stage approach are described in "A Pipelined A/D Conversion Technique With Near-Inherent Monoticity" by Paul C. Yu, et al., IEEE Transactions On Circuits and Systems II, Vol. 42, July, 1995, pp. 500-502 and in "A 2.5 V, 12-B, 5-MSample/s Piplelined CMOS ADC" by Paul C. Yu et al., IEEE Journal of Solid State Circuits, Vol. 31, December 1996, pp. 1854-1861. Examples of the over-range circuits are disclosed in U.S. Pat. No. 5,668,549 entitled "Radix 2 Architecture and Calibration Technique For Pipelined Analog To Digital Converters" which issued on Sep. 16, 1997. The contents of the two IEEE publications and U.S. Pat. No. 5,668,549 referenced above are hereby fully incorporated herein. FIG. 8 depicts an exemplary prior art over-range circuit which produces two bits per stage. FIG. 9 is the residue transfer function of the FIG. 8 circuit. Although not depicted in FIG. 8, three comparator circuits are used to determine the two bit digital code based upon input Vin which further defines the three transition points (-Vref, 0, +Vref) in FIG. 9 transfer function. During the sampling phase, switches S1A, S1B, S1C, S1D and S1E are closed so that amplifier 32 is configured for unity gain and so that voltage +Vref is applied to capacitor C0, -Vref is applied to capacitor C3 and the input Vres.sub.i-1 is applied to both capacitors C1 and C2. Table 1 below illustrates the operation of the FIG. 8 circuit when the circuit is in the amplification phase. TABLE 1 ______________________________________ Digital Region Code C0 C1 C2 C3 ______________________________________ Vin < -Vref -1 S2A S4B S4C S1D -Vref < Vin < 0 S1A S2B S4C S1D 0 < Vin < +1 S1A S3B S2C S1D +Vref +Vref < Vin +2 S1A S3B S3C S2D ______________________________________ By way of example, when Vin is between -Vref and 0, Table 1 indicates that the comparators (not depicted) will generate digital code 0. As also indicated by Table 1, switch S1A (FIG. 8) will be turned on thereby connecting associated capacitor C0 to +Vref. Switch 2B will be turned on so as to connect capacitor C1 across amplifier 32 thereby providing feedback. Switches S4C and S1D are also turned on thereby connecting both capacitors C2 and C3 to -Vref. The result is that Vref/2 is added to the input voltage Vres.sub.i-1 and the sum is multiplied by two to provide the transfer characteristics illustrated in FIG. 9. Operation when the digital code Di=+1 is similar, except that Vref/2 is subtracted from the input voltage Vres.sub.i-1 and the difference is multiplied by two. In the event an over-range condition exists where input voltage Vres.sub.i-1 is less than -Vref (D.sub.i =-1), -Vref is connected to capacitors C1, C2 and C3, with CO being connected as the feedback capacitor. This causes 3/2Vref to be added to the negative input voltage Vres.sub.i-1 and the sum to be multiplied by two. This causes the residue voltage to become positioned in-range thereby preventing over-ranging from occurring in subsequent stages. Further, the digital output code of -1 indicates that over-range correction has occurred thereby enabling well known over-range correction techniques to be used so that the output code of the ADC will be correct. Exemplary correction techniques are disclosed in previously cited U.S. Pat. No. 5,668,549. In the event that input voltage Vres.sub.1-i is greater than Vref, digital code +2 is generated thereby indicating an over-range condition. As indicated by Table 1, switches S1A, S3B and S3C connect +Vref to capacitors C0, C1 and C2, respectively. Switch S2D connects capacitor C3 to the feedback position. This causes 3/2Vref to be subtracted from the input voltage Vres.sub.i-1 and the difference to be multiplied by two so that the residue voltage will be in range. The digital code +2 is used for over-range correction. Note that for each of the four different digital codes, a different one of the four capacitors is placed in the feedback position thereby providing commutated feedback capacitor switching (CFCS) so as to compensate for capacitor mismatching and thereby achieving a low DNL error. The major drawback to the FIG. 8 over-range stage is reduced operating speed due to the low feedback gain (C/4C or .beta.=1/4) compared with the normal conversion stage of .beta.=1/2 (C/2C) of FIG. 4. Feedback gain is defined herein to mean that fraction of the amplifier output that is feed back to the input. For the same settling of the over-range stage, the amplifier 32 bandwidth requirements are also increased over the normal stage. The present invention overcomes the above-described shortcomings of the prior art. An ADC stage is disclosed that provides both over-range correction and compensation for capacitor mismatching so as to provide a low DNL error and yet is capable of operating at significantly greater speeds than such prior art stages. These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following Detailed Description of the Invention together with the drawings.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a radial tire, especially the formation of the unvulcanized rubber carcass ply of the tire on a tire building drum. In building a radial tire, the unvulcanized carcass ply is placed on the building drum such that the reinforcement cords of the ply extend longitudinally of the drum. The tire builder normally cuts the carcass ply, so that the opposing ends of the ply are overlapped. The overlapped ends are pressed together to form what is known as a lap joint or splice. It has been found that such joints tend to produce an unslightly waviness in the adjacent sidewalls of the finished tire. Such waviness can be eliminated or substantially reduced by using a butt splice, wherein the opposing ends of the carcass ply are in abutting relation and not overlapped. Butt splices are old as evidenced by U.S. Pat. No. 1,043,143 which discloses the use of a fabric, conventionally woven from a soft weft thread 15 and a small warp cord 16, for covering the butt splice of a carcass ply of a bias-type tire where the reinforcement cords of the ply extend angularly across the tire building drum and not longitudinally of the drum. It appears from the drawing of the U.S. Pat. No. 1,043,143 that the warp cords of the fabric are parallel to the reinforcement cords of the bias carcass ply. The invention is directed to a unique reinforcement which reacts to maintain the butt splice intact by resisting the radial and circumferential forces that are exerted against the tire, especially during the expansion of the tire from a cylindrical to a toroidal shape.
{ "pile_set_name": "USPTO Backgrounds" }
This invention is in the field of articles of manufacture made from composites; more particularly the invention relates to a helmet comprising an impact resistant composite shell. Helmets having impact resistance and in particular ballistic impact resistance are known in the art. Attempts are continually made to improve the impact and ballistic resistance of such helmets. A variety of helmets and methods for making helmets are described in publications such as U.S. Pat. No. 4,199,388 and G.B. Patent application No. 2,098,852. As shown in the UK reference attempts are continually made to design the composite using reinforced fabric cut from flat sheets which must be formed into the three dimensional spherical like shape of a helmet. The fibrous composite should be formed into a helmet without the fabric wrinkling. At the same time there should be no weaknesses along seams and edges in the fabric which occur to obtain a three-dimensional form. In the design of composites made from high strength fibers a useful article of manufacture typically considered is a helmet. This is the case for example in commonly assigned U.S. Pat. Nos. 4,403,012,; 4,457,985; 4,501,856; 4,613,535; 4,623,574; 4,650,710 as well as commonly assigned filed patent applications having U.S. Ser. No. 081,260, filed Aug. 3, 1987 now U.S. Pat. No. 4,820,568 and U.S. Ser. No. 081,074, filed Aug. 3, 1987 now abandoned. U.S. Pat. No. 4,309,487 discloses ballistic resistant laminates of polyethylene fibers where the fibers in each layer are unidirectional and at an angle to fibers in adjacent layers. The laminates are made in the absence of adhesives with each layer being at least 0.5 mils thick. A six inch by six inch square film laminate is disclosed in the Examples. U.S. Pat. No. 4,079,161 is of interest.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention generally relates to a hospital stretcher. More particularly, the present invention relates to an imaging stretcher which lends itself to fluoroscopy imaging. Fluoroscopy imaging with a C-Arm is used by caregivers for diagnostic and surgical visualization. Many conventional imaging tables have designs based on operating room tables. Often these tables are of a cantilever design where the support surface extends out from a single support column. Such tables usually have all electric controls, are relatively large and heavy, and are also expensive. Typically, a room having an operating room-type table is set up in a medical facility, and a C-Arm is temporarily brought into the room when needed for fluoroscopic observations. Due to increase in the number of outpatient centers and clinics, especially pain management clinics, a need has arisen for a low cost, transportable imaging stretcher. In pain management procedures, the patient is placed on a support surface in a prone position and a nerve-deadening solution is injected from a needle to precise areas of the spine. Fluoroscopy imaging with a C-Arm is used to determine the location of the needle in the patient during such procedures. The C-Arm must be positioned to visualize specific places on the spine which requires the C-Arm to be moved between the neck and the lower back of a patient resting on a support surface, tilted to odd angles, and rotated from a vertical to a horizontal orientation without obstruction from the surface supporting the patient. Caregivers will appreciate a low cost imaging stretcher which includes an unobstructed X-ray window from the tailbone to the head of a patient resting on the support surface, with the ability to angle and maneuver the C-Arm around and under the patient. There are some stretchers on the market today that have a radiolucent top that can be used for C-Arm procedures, but have a relatively wide surface with metal structure down the sides that interfere with rotating the C-Arm and shooting an image horizontally or diagonally through a patient. Some of these stretchers have an upper deck or a litter that slides end to end to achieve a large X-ray window, but they do not slide far enough so that the C-Arm can position under the head of a patient supported on the litter, and shoot an image diagonally through the neck without having to pull the C-Arm out from under the patient. Also in these stretchers, the C-Arm cannot be moved from the head to the lower back without obstruction. Some of these stretchers have a C-shaped base that allows C-Arm access from one side only. An imaging stretcher according to the present invention includes a base having a head end and a foot end, an upper deck formed from a radiolucent material, and actuators coupled to the base adjacent to the head end and the foot end of the base respectively for movably supporting the upper deck. According to one aspect of the invention, the head end and foot end actuators are spaced wide apart to define a central imaging region above the base which is free of any components that would interfere with fluoroscopic imaging of a patient supported on the upper deck. According to another aspect of the invention,. the head end and foot end actuators are coupled to the upper deck such that the upper deck is movable toward the foot end of the base. According to a further aspect of the invention, the upper deck may be unlocked, moved to a desired position and locked in place. According to still another aspect of the invention, movement of the upper deck toward the foot end of the base locates the head of a patient supported on the deck between the head end and foot end actuators in the central imaging region. According to a further aspect of the invention, a portion of the base extending between the head end and foot end actuators is formed to be closer to the floor than the end sections thereof supporting the casters to provide more clearance between the upper deck and the base between the actuators in the central imaging region. According to another aspect of the invention, the upper deck is movable between a lowered position and a raised position, and pivotable between a first position where the foot end of the upper deck is raised above the head end thereof (also known as Trendelenberg position) and a second position where the head end of the upper deck is raised above the foot end thereof (also known as reverse Trendelenberg position). According to still further aspect of the invention, the upper deck is formed to include a cutout adjacent to the head end thereof to provide space for a patient""s face lying in a prone position on the upper deck. According to another aspect of the invention, the upper deck is formed to include a pair of openings adjacent to first and second sides thereof for supporting a pair of removable siderails. According to still another aspect of the invention, the upper deck is formed to include a plurality of handles which are also made of radiolucent material. According to a further aspect of the invention, the cutout, the openings for the siderails and the handles are all integrally molded with the upper deck. According to another aspect of the invention, an elongated shaft having a longitudinal axis is coupled to the base for movement along the longitudinal axis. A foot pedal is movably mounted to the base adjacent to the foot end, and is configured to engage a portion of the shaft adjacent to the foot end to move the shaft toward the head end and cause the head end actuator to adjust the elevation of the head end of the upper deck. According to yet another aspect of the invention, the shaft is mounted to the base for rotation about the longitudinal axis between a first orientation and a second orientation. A steering wheel is coupled to the shaft for movement relative to the base between a first position spaced apart from the floor when the shaft is rotated to the first orientation and a second position engaging the floor when the shaft is rotated to the second orientation. Additional features of the present invention will become apparent to those skilled in the art upon a consideration of the following detailed description of the preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to implantable medical devices, and more specifically relates to electrical sensing leads for medical applications. 2. Description of the Prior Art A number of inventors have taught systems which have multiply displaced electrodes. Typically, these electrodes are used for both stimulation and sensing. However, notwithstanding the displacement of multiple electrodes, these references appear not to teach displacing electrodes about three mutually orthogonal axes for the purposes of measuring current vectors in three dimensional space. U.S. Pat. No. 4,154,247 issued to O'Neill, teaches the use of multiply spaced electrodes. FIG. 4f, for example, teaches the use of three electrodes. However, it is assumed from the teaching of O'Neill that the embodiment pictured in FIG. 4f uses electrodes 612 and 615 connected to a single conductor, making them electrically equivalent. The result is simply a bipolar lead with the sensing capability located within a plane rather than in a line as with most bipolar leads. The European Patent Office Publication No. 0,009,734 issued to Babotai discloses a lead having electrodes dispersed over more than one axis. As with the teaching of O'Neill these electrodes are directed primarily to stimulation rather than sensing. Furthermore, because the electrodes do not emanate from a single cylindrical lead body, the exact positional representation of currents sensed by these electrodes is extremely difficult to determine.
{ "pile_set_name": "USPTO Backgrounds" }
It is recognized in the present invention that reference images of various types can be used advantageously in processing and enhancing digital images, particularly when efficiency is desired and/or when various defects tend to be present in the images as originally-acquired. In some cases, existing techniques can be improved and in other cases, new techniques are made available.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a coder image recording apparatus for recording a speech entered through a microphone by printing it on a predetermined printing medium in the form of an optically readable code image and reproducing the entered speech from a loudspeaker. The assignee of the present patent application has proposed a recording apparatus for recording speech by printing it on a predetermined printing medium in the form of an optically readable code image of dot codes in EP 0,670,555 A1 (U.S. Ser. No. 08/407,018). FIGS. 1A and 1B of the accompanying drawings schematically illustrate the configuration of the physical format of dot codes to be used for the proposed recording apparatus. The code pattern 1 comprises a plurality of blocks 2 arranged two-dimensionally on a side by side basis. Each block 2 in turn comprises a data area 3, markers 4 and a block address pattern 5. The data area 3 contains white dots and black dots representing respective data values of "0s" and "1s" that are assigned to each block as speech data and arranged according to a predetermined format of arrangement to produce a white dot image or a black dot image. The markers 4 are black markers arranged at the four corners of the block 12 to provide a reference point for detecting each dot in the data area 3, each of the markers 4 being formed by a certain number of consecutively arranged black dots. The block address pattern 5 is arranged between adjacently located markers 4 to make the block 2 discriminable from other blocks 2 and contains white dots and black dots representing respective data values of "0s" and "1s" that are assigned to each block as address data including an error detecting or error correcting code. The vertical and horizontal lines connecting the dots in the drawing are used for the ease of understanding and they do not exist in real code images. A system using dot codes arranged with the above described physical format provides an advantage that the original data can be restored by rearranging the data of the blocks according to their respective addresses if all the dot codes of the data covers an area greater than the area that can be taken by the solid state image sensing device of the image reader or, differently stated, if the entire dot codes of the data cannot be picked up by a single shot, provided that the address of each of the blocks is contained in any of the images taken by the image reader. Therefore, such a dot code system can store a huge volume of data on a single sheet of paper in a matter that can be achieved by no other known one-dimensional or two-dimensional bar code system so that speech data can be transmitted or transported in a simple manner by means of a recording medium such as paper. Thus, the dot code system may have a wide variety of applications that are not conceivable with known code systems. The code image recording apparatus may be an ordinary printer or a label printer adapted to print and record optically readable dot codes continuously on label-like sheets of paper being fed also continuously along a given direction. The use of a label printer for a code image recording apparatus is very promising because it is portable and easy to use and hence provides a broad opportunity of utilization. However, label printers or not, known code image recording apparatuses have problems to be overcome they get a high market value. More specifically, with a code image recording apparatus of the type under consideration comprising speech input means such as microphone for speech input, code image converting means for encoding the input speech and converting it into a code image of dot codes, a printer for printing and recording the code image obtained by the code image converting means as optically readable image and a loudspeaker for outputting the speech entered by the speech input means, that are contained in a single cabinet, the faint vibrations generated at the time of speech output from the loudspeaker can be transmitted to the printer to interfere with the operation of printing fine dots to deform all or some of the dot codes being printed and adversely affect the operation of reading the printed and recorded dot codes of the code image.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure relates generally to tissue dispensers, and more particularly, to an improved tissue dispenser which includes an integrated structure for advancing the tissues contained in the dispenser. Paper tissues are used everyday by people. The tissues are typically sold in a box that contains a supply of tissues that are transferred by the user to a dispenser. Or, the tissue box itself is a tissue dispenser. In such situations, the dispenser will have a perforated opening along one surface that the consumer removes. The leading tissue is grasped and pulled out of the dispenser. The tissues are typically interleaved so that a subsequent tissue is pulled partially out of the dispenser opening. This process works well enough when the tissue dispenser is full, or about half full, but around the half full mark, and especially lower, the tissues become harder to grasp by a user. This can occur if the subsequent tissues do not follow, or cling to a protruding tissue and the subsequent tissue are not exposed a sufficient height out of the dispenser opening, or not at all. When this happens, the subsequent tissues often fall back within the dispenser box. A user must then reach into the dispenser opening and try to grasp the top tissue sitting in the dispenser. This is difficult and becomes frustrating to the user of the dispenser and the difficulty of grasping tissues increases as the supply of tissues dwindles in the dispenser. When the supply of tissues dwindles, the user is more likely when grasping a tissue, to pull out multiple tissues, thereby wasting a portion of the supply in the dispenser. Reaching deep into the dispenser takes more time than if the tissue were partially extending out of the tissue dispenser opening. A need therefore exists for a tissue dispenser that has a structure that advances the tissue supply toward the dispenser opening as the tissue supply is drawn down by a user. The present disclosure is therefore directed to an improved tissue dispenser that is provided with a structure to advance the tissues in the dispenser to a position nearer the dispenser opening when the supply of tissues begins to draw down in the dispenser.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a semiconductor device, and more particularly, to a semiconductor device having a recess gate and a method of fabricating the same. Recently, with the high integration of semiconductor memory devices, the devices shrink in size and patterns become fine. As the size of the device becomes smaller, a gate channel length is also reduced so that an operational speed or input/output rate of information becomes slower due to a leakage current caused by short channel effect, hot carrier effect and so on. To prevent this phenomenon, there has been proposed various structured recess gates for securing a channel length. Among them, a bulb recess gate, which has been put to practical use in recent years, and is being actively researched because it has an advantage of securing the channel length effectively. The bulb recess gate is configured with an upper portion with a vertical shape and a lower portion with a bulb shape. FIG. 1 illustrates a cross-sectional view showing a typical method of fabricating a recess gate in a semiconductor device. A device isolation structure 12 is formed in a predetermined region of a semiconductor substrate 11 to define an active region and a field region. The semiconductor substrate 11 of the active region is selectively etched to form a bulb recess 13. The bulb recess 13 has an upper vertical portion 13A and a lower bulb shaped portion 13B. A gate insulating layer 14 is formed on the semiconductor substrate 11 where the bulb recess 13 is formed. A gate conductive layer is formed on the gate insulating layer 14 such that it is filled into the bulb recess 13 and protrudes higher than the top surface of the semiconductor substrate 11. Herein, the gate conductive layer comprises a polysilicon layer 15 and a metal or metal silicide layer 16, which are stacked in sequence. As described above, the bulb recess gate is used for widening the channel length. However, since the upper vertical portion 13A of the bulb recess 13 is narrow but the lower bulb shaped portion 13B is rounded, the polysilicon layer 15 is not completely filled into the bulb shaped portion 13B so that a seam A occurs in the polysilicon layer 15. In addition, the lower bulb shaped portion 13B of the bulb recess 13 is formed using an isotropic etch process, which leads to another limitation that there are sharp portions B where the upper vertical portion 13A and the bulb shaped portion 13B meet together. This sharp portion B has an adverse effect on device characteristics, e.g., deterioration of the gate insulating layer 14. FIG. 2 illustrates a transmission electron microscope (TEM) micrograph showing the limitations according to the typical method. A polysilicon layer may not be completely filled into a recess and thus a seam occurs in the polysilicon layer.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to inked ribbon cartridges and more particularly to cartridges used in high speed shuttle matrix printers and having re-inking systems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field Aspects of the disclosure relate generally to wireless communication and more particularly, but not specifically, to opportunistic receive diversity. 2. Background Wireless communication networks are widely deployed to provide various communication services such as telephony, video, data, messaging, broadcasts, and so on. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is a global system for mobile communications (GSM) network. Enhanced general packet radio service (EGPRS) is an extension of GSM technology providing increased data rates beyond those available in second-generation GSM technology. EGPRS is also known as Enhanced Data rates for GSM Evolution (EDGE). In conventional GSM wireless communication technology, different users are multiplexed by using time division multiple access (TDMA), where within one frequency channel each user is allocated resources according to a time schedule, dividing up resources among users using one time slot per user. VAMOS (Voice services over Adaptive Multi-user channels on One Slot) is an enhancement that enables doubling of the standard network capacity for voice calls. Specifically, in VAMOS, different training sequence codes are used to enable a base station to multiplex (or pair) two users onto the same resource (i.e., the same frequency and the same time slot). In addition, to facilitate sharing of the resource, lower transmit power may be allocated to each user as compared to conventional GSM. Generally, a mobile device (e.g., a mobile station (MS), a user equipment (UE), etc.) configured for GSM uses a SIM or USIM card (subscriber identity module or universal subscriber identity module) to store the subscriber's identity and for other security and authentication purposes. Some mobile devices have multi-SIM capability, and accordingly, multiple subscriptions for wireless service. Moreover, these mobile devices may have two or more radio frequency (RF) chains (receive and/or transmit). Such devices may be referred to as dual-SIM, multi-SIM, dual-SIM dual-standby (DSDS), dual-SIM dual active (DSDA), tri-SIM dual active (TSDA), and so on. For some deployments, a mobile device vendor may compromise the RF quality of a mobile device to reduce costs. For example, a low cost mobile device may include a less sensitive RF receive chain. The use of a low sensitivity receive chain may cause performance issues in mobile devices that use VAMOS. If two or more mobile devices share same VAMOS channel, the signals from the mobile devices will interfere on the VAMOS channel. For example, when the subchannel power imbalance ratio (SCPIR) is 0 dB, a VAMOS channel may experience 3 dB less power (as compared to conventional GSM) due to peak to average effect in the VAMOS channel. Thus, there is a need for improved performance in mobile devices that support VAMOS.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to the field of electronic packaging and assembly of electrical components, and more particularly, the invention relates to a system and method for preventing moisture damage to electrical components by maintaining a dry atmosphere in the storage area of a component placement machine. 2. Brief Description of the Related Art Plastic cases for electronic active components or integrated circuits are gaining in popularity over ceramic or metallic packages as they are easier to work with and less expensive. They have, however, the disadvantage of being sensitive to moisture. Moisture from atmospheric humidity is absorbed by the package via permeation. If the moisture level inside the package reaches a critical point, the device may be damaged when brought up to temperature during the reflow soldering process. These types of moisture induced failures are referred to as the popcorning effect due to the audible popping when a crack appears in the package from moisture overpressure. If cracking occurs, air and moisture may contact the silicon die inside the package resulting in corrosion. The reliability of the product is seriously jeopardized if an integrated circuit package cracks during reflow. Micro-cracking is also hard to detect. Therefore, it is critical for printed circuit board assemblers to avoid moisture induced failures and popcorning defects and to limit the exposure of components to moisture. There are currently no specific solutions to prevent the absorption of moisture. Assemblers normally adopt a “moisture management system” in order to control the moisture exposure levels. A part of such a system involves re-bagging the components in dry and desiccant bags after an initial usage. Another part of the current practice is to monitor floor life of a component or the time that the component is exposed to atmosphere moisture. After a floor life has expired, the moisture in the package may be reduced by performing a process referred to as “baking” during which the component is heated to remove moisture. The limit level or critical moisture level (level at which cracking will occur) for a package depends on the package itself and the temperature at which it will be exposed during the assembly/soldering process. A higher reflow temperature results in a lower critical moisture level. The determination of the weight gain percent failure level is therefore component specific and process specific. While baking prevents the moisture-induced failure and the popcorning effect, it is time consuming and may be difficult to manage. For example, products qualifying with a moisture sensitivity corresponding to the IPC/JEDEC J-STD-020 standard are normally baked at an elevated temperature for a period varying from 24 hours (baked at 125° C.) to a week or more (baked at 40° C.). Sometimes this baking process is shortened or interrupted by the assembler because the components are urgently required to finish a production load that is back ordered. Baking also oxidizes the components and ages them by growing the intermetallic layer of the component joint structure. As the reflow soldering temperatures are expected to increase when lead-free alloys are introduced on the market (217° C. and higher melting points for lead-free alloys versus a 183° C. melting point for standard lead alloys) moisture control will become even more critical in the future. Accordingly, it would be desirable to provide a system which eliminates the need for baking and still prevents moisture absorption and the associated moisture induced failure, including popcorning. It would also be desirable to provide a system to remove moisture from components without baking.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a thermally actuated valve assembly and more particularly to a multi-function thermal vacuum valve useful for instance in automotive emission control systems. Various thermally actuated valves have been used for automotive applications. For example, wax actuated valves have long been used. These valves consist of a spool valve which is actuated by a volume change of wax upon reaching a predetermined temperature. These valves, however, have drawbacks and limitations. The valves are subject to loss of wax due to high pressure build up and consequently can exhibit a shift in operating temperature and are actuable at only one temperature. Also the spool valve design allows for cross venting when connected to more than one pneumatic source. Additionally they are costly to manufacture. Thermally actuated valves incorporating bimetallic members as the actuating means such as described in copending application Ser. No. 530,800, entitled Doubled Throw Thermal Valve, filed Dec. 9, 1974, now abandoned, and copending application Ser. No. 641,795, entitled Dual Function Thermal Valve, filed Dec. 18, 1975, now U.S. Pat. No. 4,026,464, each having the same assignee as the present application have also been used. These valves have proved successful but still these valves have the inherent disadvantage for certain applications of allowing possible cross venting. Also the valves cannot be tested prior to final assembly. Accordingly it is an object of this invention to provide an improved thermally responsive multi-function valve in which cross venting is prevented. It is another object of this invention to provide a thermally responsive multi-function valve in which the functions can be switched simultaneously at one temperature or in sequence at two different temperatures. It is still another object of this invention to provide thermally responsive multi-function valve which can be tested prior to final assembly. It is yet another object to provide a thermally responsive multi-function valve which provides for communication between two separate vacuum sources and two separate activity ports. It is yet still another object to provide a thermally responsive valve which is compact in size, reliable in operation and easy to construct. Other objects and features of this invention will be in part apparent and in part pointed out hereinafter. Briefly the thermally responsive multi-function valve of this invention comprises a two part valve body, a first part having two pairs of ports extending from the body and a valve switching assembly contained therein and a second part with a central cavity in which the first part is partially housed. The valve switching assembly provides for two chambers isolated one from another in the first valve body. One pair of the ports are positioned to be in communication with each of the chambers thereby providing two passages in the valve body. The passages each have a valve seat contained therein. In the bottom of the cavity in the second part, a support post is disposed upon which a multi-member thermostatic disc assembly is mounted. The assembly comprises two preformed thermostatic discs with a spring member contained therebetween within a disc carrier or housing member. The two disc members are provided to be actuable at different predetermined temperatures. Touching the top of the disc assembly is a motion transfer pin with two valve plug members which extends into the first valve part and valve switching assembly so that a valve plug is positioned to act as a valve seal in each of the chambers. A sealing means with two wiper seals is positioned around the transfer pin to provide isolation between the chambers while still allowing slidable movement of the pin. A spring member biases the pin to be in engagement with the disc assembly. Initially, in a first temperature range, the transfer pin engages the disc assembly while positioning the first plug or valve seal to engage the first valve seat and thereby block communication in the first passage between the first two ports and positioning the second plug or valve seal to be out of engagement with the second or bottom valve seat thereby providing communication in the second passage between the second two ports. At a second predetermined temperature, one of the discs members snaps to an inverted dish-shaped configuration which causes the first valve plug to move out of engagement with the first valve seat but does not move the second valve seal into engagement with the second valve seat thereby providing communication between the first two ports and the second two ports but not between them. Finally at a third pre-determined temperature, the second of the disc members snaps to an inverted dish-shaped configuration which moves the second valve seal into engagement with the second valve seat thereby only providing communication between the first two ports.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an apparatus and a method for reducing oxygen content in a boiler exhaust gas. It has been a conventional practice to press nitrogen gas into an oil field to maintain the pressure of an oil reservoir or to dissolve nitrogen gas in oil to form a so-called miscible condition, thereby heightening the fluidity of the oil in an oil reservoir. Here, as a nitrogen gas source, nitrogen gas separated from oxygen by the low temperature processing of air is employed. The separation of nitrogen gas, however, requires a tremendous power and furthermore, the cost of the apparatus is markedly high. There is accordingly a demand for countermeasures for obtaining nitrogen gas at a low power and a low cost. An object of the present invention is therefore to provide an apparatus and a method for reducing oxygen content in a boiler exhaust gas, which makes it possible to prepare nitrogen gas at a low power and a low cost. In accordance with the present invention, the above-described object is attained by an apparatus for reducing oxygen content in a boiler exhaust gas, which comprises a combustion catalyst portion disposed downstream or at the intermediate portion of a convectional heat transfer portion of a boiler and a fuel supply apparatus for supplying an oxygen reducing fuel to a position just before said catalyst combustion portion. The present invention includes a method for reducing oxygen content in an exhaust gas from a boiler, which comprises supplying an oxygen reducing fuel to the exhaust gas at just before a combustion catalyst portion disposed downstream or at the intermediate portion of a convectional heat transfer portion of the boiler, burning said oxygen reducing fuel at said combustion catalyst portion to increase CO2 content and reduce oxygen gas content, to thereby obtain an exhaust gas which is composed mainly of nitrogen gas with an oxygen gas concentration not greater than 1,000 ppm.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention provides a process for producing a membrane electrode assembly, and a fuel cell using the membrane electrode assembly produced by the process. 2. Background Art Fuel cells are used for electrochemically oxidizing a fuel such as hydrogen or methanol within a cell to convert chemical energy of the fuel directly into electric energy which is then taken out. In fuel cells, unlike thermal electric power generation, for example, NOx and SOx are not emitted upon combustion of a fuel. Accordingly, fuel cells have drawn attention as a clean electric energy supply source. A membrane electrode assembly (fuel cell electromotive part) in the fuel cell has a construction comprising an anode (a catalyst electrode, a fuel electrode), a proton conductive film, and a cathode (a catalyst electrode, an oxidant electrode) stacked in that order on top of each other. For each of the anode and cathode, the catalyst electrode among these elements comprises a current collector and a catalyst layer. Accordingly, the membrane electrode assembly can also be said to have a construction comprising an anode current collector, an anode catalyst layer, a proton conductive film, a cathode catalyst layer, and a cathode current collector stacked in that order on top of each other. The current collector is usually formed of a porous electroconductive material and also functions to supply a fuel or an oxidant into the catalyst layer and thus is also called “diffusion layer”. In fact, the catalyst layer does not always consist of a pure catalyst alone, and, in many cases, for example, the catalyst layer is a porous layer comprising materials constituting adjacent current collector and proton conductive film, that is, a catalytically active material, an electroconductive material, and a proton conductive material. Some catalyst layer has a construction comprising a catalytically active material supported directly on the porous electroconductive material as the current collector on its side in contact with the proton conductive film. Direct methanol fuel cells will be described as an example. Specifically, a fuel mixture composed of methanol and water is supplied into an anode catalyst layer, and air (oxygen) is supplied into a cathode catalyst layer. In the electrodes, catalyst reactions respectively represented by chemical formulae (1) and (2) take place.Fuel electrode: CH3OH+H2O→CO2+6H++6e−  (1)Oxidant electrode: 6H++(3/2)O2+6e−→3H2O   (2) As can be seen from the above chemical formulae, protons produced in the fuel electrode are transferred to the proton conductive film, and electrons are transferred to the anode current collector. In the oxidant electrode, a reaction takes place among the electrons supplied from the cathode current collector, the protons supplied from the proton conductive film, and oxygen, to allow current to flow across a pair of current collectors. What is required for achieving excellent cell characteristics is to smoothly supply a suitable amount of a fuel to each of the electrodes, to cause a rapid and significant electrode catalyst reaction at a three-phase interface among the catalytically active material, the proton conductive material, and the fuel, to smoothly move electrons and protons, and to rapidly discharge the reaction product. In particular, the catalytic activity is highly important because the electric power which can be supplied is greatly influenced by the performance of the catalyst. In many cases, for both the cathode catalyst and the anode catalyst, platinum or an alloy containing platinum as a main constituent element is used from the viewpoints of the level of the activity and the demand for chemical stability. In particular, when methanol is directly used as a fuel, the adsorption of carbon monoxide as an intermediate material in the reaction on the surface of the catalyst deteriorates the catalytic activity. Accordingly, platinum is generally used as an alloy to promote a reaction of carbon monoxide with water. Alloys usable herein include an alloy of platinum with other platinum group element(s), for example, ruthenium, alloys of platinum with an element(s) other than the platinum group elements, and alloys of platinum with other platinum group element(s) and an element(s) other than the platinum group elements. In these catalysts, however, noble materials such as platinum group elements are necessary. Accordingly, even on the presumption that these materials are recycled, the total amount of these materials used should be reduced, and a high level of activity should be realized stably in a minimized amount of catalyst. From this viewpoint, a further increase in activity is also desired for catalysts comprising these platinum group elements as main constituent elements. In particular, in assembling a fuel cell comprising a plurality of membrane electrode assemblies connected in series, when there is a variation in catalytic activity for each membrane electrode assembly, the whole performance of the assembly is limited to the lowest performance in the performances possessed by the membrane electrode assemblies. To overcome this drawback, a large amount of catalyst should be used leading to a problem of an increase in the amount of noble resources used. Methods for improving the activity of the catalyst to improve the properties of the fuel cell include a method in which current is allowed to flow from a cathode to an anode from an external power supply while supplying oxygen into a membrane electrode assembly on its cathode side and supplying a methanol fuel liquid to the anode side, and a method in which current is allowed to flow from a cathode to an anode from an external power supply while performing crossover of a large amount of methanol from the anode toward the cathode (U.S. Pat. No. 6,962,760). In the above methods, hydrogen is evolved by electrolysis of a fuel liquid on the surface of a catalyst electrode on the anode side to reduce the surface of the catalyst and thus to improve the activity of the catalyst. In the above methods, however, when oxygen is allowed to flow toward the cathode, electrification causes an increase in potential of the cathode resulting in accelerated deterioration in the catalyst and surrounding constituent materials as a result of oxidation. The oxidation of methanol on the cathode side causes swelling of the proton conductive material by a large amount of overcrossed methanol which poses a problem that the performance of the cathode optimized for usual operation conditions is adversely affected. Further, since hydrogen gas is evolved in a bubble form on the anode side, separation of the contact interface of the catalyst and the proton conductive material or the proton conductive film sometimes takes place. Accordingly, continuation of the evolution of hydrogen for a long period of time poses a problem that the properties of the electrode are sometimes irreversibly deteriorated. On the other hand, other method for improving the activity of the catalyst to improve the properties of the fuel cell disposed in the art comprises holding a small amount of a liquid containing catalyst particles as nanocolloid on a gold disk, drying the assembly in an inert atmosphere to prepare an electrode with catalyst particles held thereon, and electrolytically reducing the electrode in an aqueous sulfuric acid solution to improve the properties of the electrode over the properties of the electrode before the electrolytic reduction (A. Lewera et al, Electrochimica Acta, 51, 3950, (2006)). In fact, however, the electrode having catalytic activity improved by this method, when handled in the air, causes a considerably rapid deterioration in properties. Accordingly, the electrode treated by this method involves a problem that handling of the electrode in the air is difficult. Further, the following fact should be noted. In this supporting method, the substrate is gold, and the catalytically active material supported is nanoparticles of platinum group metal. Therefore, the catalytically active material is relatively strongly held. The application to a substrate having a porous structure which causes diffusion of a fuel, however, poses a problem that the holding strength is unsatisfactory.
{ "pile_set_name": "USPTO Backgrounds" }
Memory circuits have been used in various applications. Conventionally, memory circuits can include dynamic random access memory (DRAM) and static random access memory (SRAM) circuits. To enhance accessing speeds of memory, synchronous dynamic random access memory (SDRAM) has been provided. Conventionally, SDRAM has a synchronous interface. By using the synchronous interface, SDRAM waits for a clock signal prior to responding to control inputs so as to synchronize with buses of computer systems. To further enhance speeds of SDRAM, a double-data-rate (DDR) interface has been developed and applied in industry. Later, DDR2, DDR3, and DDR4 were different updated versions of DDR SDRAM.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The field of the invention relates generally to fiber optic modal multichannel duplex devices which may be useful, for instance, in fiber-optic communication systems and fiber optic sensing systems. More specifically, the field of the invention may be generally described as a novel method and apparatus for providing a wedge-shaped fiber optic dielectric waveguide structure for optical fiber ends for radiating and/or modulating standing waveguide modes and linearly polarized modes for use in systems in which optical fibers of any type, including but not limited to single mode, few mode and multimode fibers, are utilized to communicate information or to utilize the physical characteristics of the optical fiber to provide a number of sensing functions such as, for instance and not by way of limitation, measuring temperature by analyzing the Raman scattering of photons and other sensing applications. A novel apparatus and method for mechanically polishing optical fibers to achieve the dielectric waveguide wedge endface and lip of the invention is also disclosed and claimed. 2. Background Art Significant research energy is being expended in field of fiber optic modal multiplexing and de-multiplexing. The typical focus of research is directed at developing an ability to communicate digital data through the dielectric waveguide. Similar focus has been directed toward the ability of the dielectric waveguide modes to respond to various sensor system stimuli. Previous work performed by Lan Truong (Florida Institute of Technology) and Sachin Narahari Dekate (Florida Institute of Technology) demonstrated that modal de-multiplexing and multiplexing is possible. However, the common processes by which the optical fiber structures are currently fabricated is hazardous, was not consistently repeatable and require significant experience to refine the process to provide a working optical fiber capable of radiating modal rings. Previous work in the field of fabricating structures to produce radiated modal rings from optical fibers have relied upon a dangerous process using highly caustic chemicals in which hydrofluoric acid solutions are typically used to etch the tips of optical fibers into a cone shape. These chemicals require a very tight material safety data sheet (MSDS) and storage control, which can be very costly and may be prohibitive to the facilities and handling requirements. In addition to storing the chemicals, disposing of the chemicals is dangerous and costly. The use of such harsh chemicals as hydrofluoric acid makes the methods of the prior art inefficient, unreliable, hazardous and costly for mass production. Fiber-optic communication and sensing systems are generally known in the art: such systems have been known to comprise optical fibers further comprising end shapes created by a chemical etching process, resulting in a cone shaped optical fiber tip designed to radiate modal rings from few mode fibers. Such fiber ends have historically been created by a hydrofluoric or other acid etching processes which may be characterized as non-repeatable, expensive, difficult to achieve, and utilizing a chemical process that is not friendly to the environment. Etching of an optical fiber tip creates a cone shape in which the core of the fiber is etched to a very fine point, which can be problematic. With most few mode fiber cores measuring at 8.4 microns, any vibration, sudden air currents, physical manipulation or tapping of the optical fiber can result in breakage of the fiber tip. If the tip is broken the modal ring radiation is lost. The hydrofluoric etching process cannot be expected to achieve a six sigma manufacturing process and is thus not adaptable to a production environment, or even to a laboratory environment where repeatability is important. A simpler more repeatable process is required to ensure the modal ring technology is able to transition into commercial applications for use industry. One process for hydrofluoric acid flow etching of conical fiber tapers is described in Hydrofluoric acid flow etching of low loss sub wavelength diameter by conical fiber tapers, Eric J. Zhang et al., Department of Electrical and Computer Engineering and the Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S3G4, Canada (“Zhang et al.”). Zhang et al. describes An etch method based on surface tension driven flows of hydrofluoric acid microdroplets for the fabrication of low-loss, subwavelength-diameter bi-conical fiber tapers is presented. Tapers with losses less than 0.1 dB/mm were demonstrated, corresponding to an order of magnitude increase in the optical transmission over previous acid-etch techniques. The etch method produces adiabatic taper transitions with minimal surface corrugations. However, it is obvious from the text of Zhang et al. that the processes described therein for chemically etching optical fibers is not mass-repeatable, economic, or environmentally friendly as is typical of the acid-based optical fiber etching processes known in the art. What is needed in the art, therefore, is an economic, repeatable, highly reliable and environmentally friendly method and structure for creating optical fiber modal multichannel duplex devices that may be utilized to modulate an excitation source by amplitude, phase and/or frequency in single mode, few mode, and multimode fiber optic communications and sensing systems. The present invention provides such features by creating a unique wedge and lip shaped optical dielectric waveguide end face using a novel and repeatable mechanical polishing method, all of which is claimed.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method for controlling a capacitive anti-trap system and to a capacitive anti-trap system. In the case of vehicle closing elements which are displaceable increasingly actuated by external force, in particular driven by a motor, there is a considerable risk during closing of the respective vehicle closing element of a body part of a person standing close to the vehicle being trapped, for example, which can result in considerable injury. For this reason, in capacitive anti-trap systems which are well known per se for vehicles, in particular for motor vehicles, an obstacle in the displacement path of a vehicle closing element to be closed driven by a motor is detected contactlessly by a changing electrical capacitance and an obstacle is prevented from being trapped between the closing vehicle closing element and a vehicle structure in the region of a vehicle body opening which is intended to be closed by the vehicle closing element in a closed position. Such a vehicle closing element may be, for example, a side door, a tailgate, a trunk lid, a window pane or a sliding roof of a motor vehicle. In comparison with purely tactile anti-trap systems, anti-trap systems with capacitive identification have the advantage that any obstacle can be determined even before contact with the vehicle closing element or even shortly thereafter without a certain force needing to act on the sensor system of the anti-trap system in order that the system is triggered and the displacement movement of the vehicle closing element is stopped and/or reversed. In the case of capacitive anti-trap systems on which the present invention is based, use is made of the fact that, in the case of an electrode arrangement of the anti-trap system consisting of at least one transmission electrode and one reception electrode, a signal which is characteristic of the presence of an obstacle can be received at the reception electrode when the transmission electrode is actuated by alternating electric current. Thus, owing to actuation of the transmission electrode by alternating current, an electrical field is generated which is influenced by an obstacle such that an electrical capacitance is measurably changed. This measurable change in the electrical capacitance is measurable at the reception electrode, which is arranged spaced apart from the transmission electrode, and can be evaluated on the basis of a signal received from the measurement electrode, generally a voltage signal, in order to trigger the anti-trap system and to influence the displacement movement of the vehicle closing element. In the case of a vehicle closing element with a comparatively large area, such as, for example, a tailgate of a motor vehicle, generally a plurality of electrode arrangements are provided spaced physically apart from one another in order to monitor precisely regions in which the trapping of an obstacle is particularly critical in a targeted manner. It is also possible for easier fitting for individual electrode arrangements to be constructed separately from one another. For example, US 2007/0035156 A1 describes an anti-trap system in which two electrode arrangements, each having a transmission electrode and a reception electrode, are provided on mutually opposite closing edges, on the longitudinal side, of a vehicle tailgate. The individual electrode pairs define in each case one monitoring region on a closing edge of the tailgate in which an obstacle in the displacement path of the closing tailgate is detectable. The actuation and evaluation the two electrode pairs in this case takes place separately, in each case. An electronic evaluation unit of the anti-trap system from US 2007/0035156 A1 therefore always receives at least two signals, on the basis of which the electronic evaluation unit needs to draw a conclusion on the presence of an obstacle in one monitoring region or the other. However, such a separate evaluation in respect of the presence of an obstacle in different monitoring regions can be comparatively complex, on the one hand, and can make a capacitive anti-trap system comparatively slow, on the other hand. Thus, in the case of capacitive anti-trap systems which only provide a single signal generator by means of which the respectively used transmission electrodes are actuated by an alternating electric current of predetermined amplitude and frequency for reasons of costs, for example, (measurement) signals received at the reception electrode or the reception electrodes can only be evaluated by an electronic evaluation unit in temporal succession in order to determine a possible obstacle in the displacement path of the vehicle closing element.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The Invention relates to selectable print heads. 2. Brief Description of the Prior art The following U.S. Pat. Nos. are made of record: 164,273 to Dorman granted June 8, 1875; 994,971 to Beck granted June 13, 1911; 1,067,448 to Standley granted July 15, 1913; 3,482,512 to Jung granted Dec. 9, 1969; 4,163,422 to Hamisch, Jr. granted Aug. 7, 1979; 4,233,896 to Hamisch, Jr. granted Nov. 18, 1980; 4,271,758 to Osterhof granted June 9, 1981; 4,271,759 to Volk granted June 9, 1981; 4,280,862 to Hamisch, Jr. granted July 28, 1981; 4,283,832 to Hamisch, Jr. granted Aug. 18, 1981; 4,325,302 to Beers granted Apr. 20, 1982; and 4,337,698 to Jenkins granted July 6, 1982. Also made of record is British Pat. No. 1,179,025 to "WAM" published Jan. 28, 1970.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention is directed to electrical connectors of a type having multiple connecting wires and more particularly to a holder for such a connector which provides a ground connection to the cable containing the connecting wires for reducing radiated electrical emissions from the wires attached to the connector while also acting as a locking device from the connector to a printed circuit board. In data processing systems which include a plurality of remote processing devices such as data terminals, communication between the remote processing devices and a central control processing unit takes place over a communication channel which normally takes the form of a multi-conductor shielded cable attached to each of the processing units. In order to meet federal standards that pertain to radiated electrical emissions from the cable, cable connectors have been developed which provide a ground connection to the cable, in addition to a strain relief for the cable. Examples of this type of connectors may be found in the U.S. Pat. Nos. 4,130,334, 4,491,381, 4,475,785, and 2,972,492. It has been found that these prior connectors when attached to their intended device are capable of having their ground connection interrupted due to movement of the electrical connector during operation of the processing device. It is therefore, a principal object of this invention to provide a holder for a shielded electrical cable connector which provides a ground connection for the cable while mounting the connector in a locked position to a printed circuit board. It is another object of this invention to provide a holder for a electrical connector which provides a strain relief for the cable associated with the connector. It is a further object of this invention to provide a low-cost holder for an electrical cable connector which is constructed to facilitate easy mounting and removal of the electrical connector from a locking position with a printed circuit board.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to a method for detecting and excising nonpalpable lesions and, more particularly, to a hematoma-directed ultrasound guided excisional breast biopsy. Increased screening mammography has led to over 1,000,000 breast biopsies performed yearly in the United States. An increasing number of these biopsies are for nonpalpable mammographic abnormalities and less than one-third are visible with ultrasound. Available options for biopsy of these mammographic abnormalities have included needle localization excisional breast biopsy (NLBB) or percutaneous stereotactic core needle breast biopsy (SCNBB). Magnetic resonance imaging (MRI) of the breast has allowed for the visualization of lesions previously undetected by mammography. Despite the availability of MRI guided needle localization techniques at medical institutions, the patient is still subjected to the disadvantages and complications inherent to this method of biopsy. Although NLBB most often results in the successful removal of the targeted lesion in mammographically detected lesions, the miss rate varies from 0 to 22% [Snider HC et al., Intraoperative ultrasound localization of nonpalpable breast lesions, Ann Surg Oncol 6(3):308-314 (1999); Rissanen T J et al., Wire localized biopsy of breast lesions: a review of 425 cases found in screening or clinical mammography, Clin Radiol 47:14-22 (1993); Hasselgren P O et al., Breast biopsy with needle localization: accuracy of specimen x-ray and management of missed lesions, Surgery 114:836-42 (1993); and Homer M J et al., Prebiopsy needle localization: methods, problems, and expected results, Radiol Clin North Am 30(1):139-153 (1992)]. The rate is unknown for MRI NLBB, where even thinner wires are used and where the technology is not universally available. Specimen mammography is used to confirm excision of the targeted lesion after NLBB. In contrast, xe2x80x9cspecimen MRIxe2x80x9d is not possible because MRI requires living tissue with a blood supply to demonstrate areas of enhancement of the targeted lesion. Confirmation of removal requires a separate MRI of the remaining breast tissue in the patient on a separate day. Although NLBB is considered the xe2x80x9cstandardxe2x80x9d for removal of mammographically-detected, nonpalpable breast lesions, disadvantages include the possibility of significant vasovagal reactions which occur in 10 to 20% of patients, the discomfort of the wire, and the possibility of wire transection or migration [Rissanen T J et al, Wire localized biopsy of breast lesions: a review of 425 cases found in screening or clinical mammography, Clin Radiol 47:14-22 (1993); and Homer M J et al., Prebiopsy needle localization: methods, problems, and expected results, Radiol Clin North Am 30(1):139-153 (1992)]. The proven accuracy of SCNBB as well a better rate of margin clearance when the diagnosis of cancer has been established prior to definitive procedure has influenced many surgeons in favor of SCNBB [Yim J H et al., Mammographically detected breast cancer-benefits of stereotactic cores versus wire localization breast biopsy, Ann Surg. 223:688-700 (1996); Israel P S et al., Stereotactic needle biopsy for occult breast lesions: a minimally invasive alternative, Am Surg 61:87-91 (1995); Velanovich F et al., Comparison of mammographically guided breast biopsy techniques, Ann Surg 229(5):625-33 (1999); Fuhrman G M et al., Image-guided core-needle breast biopsy is an accurate technique to evaluate patients with nonpalpable imaging abnormalities, Ann Surg. 227(6):932-39 (1998); and Meyer J E et al., Large-core needle biopsy of nonpalpable breast lesions JAMA 281(17):1638-41 (1999)]. However, when the results of SCNBB require further evaluation, NLBB has been the only tool available to the surgeon. There, thus, remains a need to develop an alternative method that can be used to excise nonpalpable lesions and, at the same time, provide a greater comfort level for the patient. The present invention is directed to a hemotoma-directed ultrasound guided method for detecting and excising nonpalpable lesions in a patient. The method can be used not only to localize a MRI-detected lesion, but also to outline the targeted lesion for complete excision and to obtain margins. The method of the present invention overcomes many of the disadvantages associated with traditional NLBB, for example, discomfort, significant vasovagal reactions (i.e., vomiting, nausea, fainting), frequent delay of surgery, wire transection or migration, significant miss rate, and additional imaging to confirm lesion removal. Twenty patients with nonpalpable breast lesions detected by MRI only were enrolled in a single institution trial. A hematoma comprising about 2-5 ml of the patient""s own blood was injected into the breast to target the nonpalpable lesion. Intraoperative ultrasound of the hematoma was used to direct the excisional biopsy. Ninety-five percent of the lesions detected by MRI were successfully localized by hematoma injection. All of the hematomas used to recognize targeted lesions were successfully identified at surgery by ultrasound and then removed without complication. Eight (40%) of the lesions were malignant with an average tumor size of 12xc2x16 mm (range 4-25 mm). The remaining 12 lesions (60%) comprised papillomas, sclerosing adenosis, radial scars, fibroadenomas, and areas of a typical ductal hyperplasia. The hematoma can be created by a blood injection using the patient""s own blood or naturally by stereotactic core needle biopsy (SCNBB). The hematoma resulting from SCNBB can be used to localize the SCNBB site with intraoperative ultrasound for excision. 20 patients had SCNBB followed by intraoperative ultrasound-guided excision. The previous SCNB site in 19 patients was successfully visualized with intraoperative ultrasound and excised at surgery. One patient had successful removal of the targeted area under ultrasound guidance, but failed to show removal of the clip on the initial specimen mammogram. The results demonstrate the effectiveness of hematoma-directed MRI-guided breast biopsy for nonpalpable lesions by blood injection and by needle biopsy using stereotactic guidance. This novel procedure is potentially more comfortable for patients than current procedures because no wire or needle is left in the breast. The procedure of the present invention is technically faster and easier because ultrasound is used to visualize directly the location of the hematoma at surgery and to confirm lesion removal in the operating room by specimen ultrasound. The hematoma can be inserted into the patient several days before the biopsy, resulting in greater flexibility in scheduling the biopsy and alleviation of the fear of wire migration that frequently occurs with NLBB. In addition to MRI-detected lesions, it is contemplated that the method of the present invention can be used to guide the excision of lesions visualized by other modalities including mammography, PET scanning, and scintimammography. In one aspect of the present invention, a method for detecting and excising nonpalpable lesions, comprising the steps of: (a) injecting at least one hematoma into a mammal""s breast to target a nonpalpable lesion; wherein the hematoma comprises approximately 2 ml to about 5 ml of the mammal""s own blood; (b) detecting the location of the targeted lesion using MRI; and thereafter (c) excising the targeted lesion. The method may further include the step of confirming the excision of the lesion by ex vivo ultrasound. The hematoma is placed in the mammal""s breast for a period of about several hours to about several days before excision of the targeted lesion. The hematoma may be combined with at least one composition for injection into the mammal. The mammal may be a human or an animal. Most importantly, the method may be performed in any organ, not just the breast. In another aspect of the invention, at least one hematoma is produced in the mammal""s breast by stereotactic core needle biopsy to target a nonpalpable lesion. Detection of the targeted lesion is achieved by ultrasound followed by excision of the targeted lesion.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates in general to pest control using microwave energy, and in particular to the use of Super High Frequency (SHF) and Extremely High Frequency (EHF) band microwaves that kill insects in granular materials without the use of chemicals. The principle of using microwaves as a pesticide in grain and granular materials has been known, but it has been determined that effective and consistent mortality rates are only possible when the grain in unpacked, mixed with air, and fairly uniform in density for effective microwave penetration. The search for an operating frequency which would lead to enhanced selective heating of insects in the Extremely High Frequency (EHF) and Super High Frequency (SHF) ranges is motivated by the need to develop alternatives to certain important agricultural chemical pesticides for the treatment of stored products which are to be banned by the Clean Air Act by the year 2001. Operation at discrete frequencies in the microwave and millimeter wave ranges, including Industrial Scientific and Medical (ISM) frequencies specified in the U.S. Code of Federal Regulations (47 C.F.R., part 2), is attractive because of the availability of recently developed high-power oscillators with high continuous outputs and efficiencies at those frequencies. Unlike the relatively low-power microwave and lower frequency heaters, operating at frequencies less than or equal to 2.45 GHz, the EHF and SHF high-power sources offer the possibility of continuous processing of the treated product at high throughput rates while taking advantage of the electromagnetic shielding inherent in the waveguide-like piping or duct systems that arc common in transport systems at grain storage facilities. There is a need for a consistently effective microwave granular treatment device and microwave range that effects high mortality rates while maintaining temperatures within acceptable limits.
{ "pile_set_name": "USPTO Backgrounds" }
A variety of non-volatile memory technologies may be utilized to store program code in any microcontroller system. The three major technologies are: (1) the erasable MOS-technology programmable read-only memory (EPROM), which uses ultraviolet (UV) light to erase the memory, (2) the electrically erasable programmable read-only memory (EEPROM), and (3) the Flash EPROM memory. The Flash EPROM memory combines the electrical erase capability of the EEPROM with the simplicity and lower cost of the EPROM layout. The Flash EPROM memory may be erased while the device is installed in a host system, unlike the UV EPROM, which usually must be removed from the host system for erasure and subsequent reprogramming. Each of the three major technologies mentioned above implement their footprints with similar but distinctly different pin configurations. Also, within any given technology, certain pin positions change their function as the storage capacity of the device is changed. Thus, when a microcontroller system is designed, it is designed to support a specific memory device for program code storage, selected from one of the available technologies. The storage capacity is selected to support the need for the system being designed. These choices, made when the system is designed, preclude the later use of alternate memory technologies, and/or different storage capacities in a given technology, without resorting to costly redesign of the system. This is not a serious disadvantage when the system being designed is to be manufactured in large quantities. There are many applications for microcontrollers, however, such as transport refrigeration applications, where the production quantities are not large, and/or the microcontroller system is designed to operate in a family of related, but different, applications requiring different degrees of sophistication. In such applications, it would be desirable to make the microcontroller system, as originally designed, extremely flexible in order to match the appropriate memory technology with the individual requirements of each application of the system, as well as to be able to respond to the changing requirements of a given application, without costly redesign or retrofit of the system. Such flexibility would also enable a manufacturer to change the memory technology used in a given microcontroller system as price and availability of different memory technologies fluctuate in the marketplace.
{ "pile_set_name": "USPTO Backgrounds" }
A color image forming apparatus that superimposes plural images to obtain a color image performs alignment of the plural images, prevents blurs and bleeding of the images, and maintains satisfactory image quality. An image forming apparatus that obtains a color image using a traveling belt images an adjustment pattern for alignment adjustment on the belt and aligns plural images using a detection result obtained by detecting the adjustment pattern. The thickness of the belt varies depending on regions of the belt. Since the image forming apparatus aligns the images taking into account the thickness that varies depending on the regions of the belt, during alignment adjustment, the image forming apparatus images plural adjustment patterns over the entire circumference of the belt. The image forming apparatus averages detection results obtained by detecting the plural adjustment patterns imaged over the entire circumference of the belt. The image forming apparatus aligns the plural images using an average obtained by averaging the detection results to thereby improve accuracy of the alignment. However, if the image forming apparatus images the plural adjustment patterns over the entire circumference of the belt and obtains an average of the plural adjustment patterns every time the image forming apparatus performs the image alignment adjustment, time required for the image alignment adjustment is long. Therefore, it is likely that the image forming apparatus keeps a user waiting during the image alignment adjustment.
{ "pile_set_name": "USPTO Backgrounds" }
In general, there are two types of seismic exploration methods in which seismic energy is injected into the earth at a first surface location and upon traveling through the subsurface formations is detected at a second surface location. In one such method, the reflection method, seismic energy is directly reflected by the boundaries between the subsurface formations and returns to the earth's surface. In the other of such methods, the refraction method, the seismic energy meets such boundaries between subsurface formations at such an angle that it is refracted along a path that passes through the lower of two formations substantially parallel to the boundary between the formations. Upon emerging from the lower formation into the upper formation, the seismic energy is again refracted at the boundary with a similar angle to that at which it originally entered the lower formation from the upper formation. Upon returning to the surface, the seismic energy is recorded as seismic refraction signals. Refraction seismometry is of course nowhere near as popular as reflection seismometry. The only modern book which considers refraction prospecting in considerable depth is the volume "Seismic Refraction Prospecting," published in 1967 by the Society of Exploration Geophysicists under the editing of A. W. Musgrave. In refraction seismic exploration, a number of seismic detectors are usually, but not necessarily, spaced at greater distances from one another than in reflection shooting, with the refraction detector array being spaced at great distances from the source of seismic disturbances, in practice as much as 5 to 15 miles. Thus, refraction seismic exploration enables large areas to be quickly surveyed, and also enables mapping of certain remote areas in which reflection shooting would be extremely difficult or costly. Further, in refraction exploration, refracted signals having relatively low-frequency spectrums, and therefor low attenuation, are of interest as compared to the higher frequency spectrums often of primary interest in reflection shooting. The use of refraction shooting is also desirable in mapping massive geologic members such as limestone layers or the like, as the velocity information provided by such refraction techniques assists in correlating and identifying desired events or key horizons. Improved techniques have been developed for obtaining and interpreting refraction data, a number of which are described in Seismic Refraction Prospecting, published by The Society of Exploration Geophysicists in 1967. However, in spite of the many advantages which attach to refraction seismic exploration, the use of reflection techniques is currently more common. It is believed that one reason for this situation is that suitable techniques have not been heretofore developed for suppressing unwanted events and enhancing desired events in seismic refraction work. In oil and gas exploration, seismic reflection shooting has been well known and practiced for decades. Since the mid 60's, common-depth-point (CDP) recording of seismic reflection data has been the major surface exploration technique for oil and gas reserves. After its introduction (Mayne, 1962) it took only a few years for geophysicists to realize the fundamental properties of CDP stacking. Mayne's original concept was that of large receiver arrays simulated by CDP stacking without reflection point smearing. This concept has proven itself time and time again as the best reflection seismic data enhancement technique available. Today, the term common-mid-point (CMP) stacking is commonly used rather than CDP since it better describes the geometry of the method. CMP seismic traces are all those traces which have the same geometrical mid-point half way between their corresponding source location and receiver location. Seismic data is typically collected with one source or source array being recorded into many receivers or receiver arrays. As many as 480 receiver arrays are actively recording data from a single source. Receiver arrays are generally spaced at even increments along the seismic line of traverse. The distance between the source and any given receiver array is normally referred to as source-to-receiver offset or simply offset. To achieve CMP geometry, the active receiver arrays are incremented as the location of the source moves along the seismic line of traverse The location of the source is normally incremented at an even receiver array spacing so that the active receiver arrays may be simply "rolled along" at even increments as source locations change, keeping constant offset geometries with the source. The active receiver arrays may be located entirely on one side of the source (end-on), half on each side of the source (split-spread), or somewhere in between (asymmetric split-spread). The CDP fold coverage or number of CMP traces at a given mid-point is controlled by the number of active receiver groups and the source increment along the line. Before CMP seismic reflection traces are summed (or stacked) together to form a single stacked trace at each mid-point location along the seismic line, various geophysical processing steps would normally be applied to the data. These might include gain, spherical divergence correction, deconvolution, static corrections, normal moveout (NMO) removal, and trace muting. Since traditional CMP stacking is done to enhance reflection signals, the NMO correction applied is hyperbolic in source-to-receiver offset. In areas of considerable structural dip in the subsurface, a dip dependent hyperbolic NMO might be used. The amount of hyperbolic moveout is determined by the NMO or stacking velocity. Stacking velocity is a function of root-mean-square (rms) velocity and structural dip. In the presence of dip, the stacking velocities are modified by the cosine of the angle of dip. Dip dependent NMO makes this cosine correction and partially migrates reflection energy to true common-reflection points for stacking. Just prior to CMP stacking, data at far offsets and shallow two-way travel times are generally muted or zeroed. This is done to reduce the effects of NMO stretch and to suppress contamination from unwanted refraction arrivals. A stacked seismic record section is a collection of stacked CMP seismic traces displayed side-by-side in monotonically increasing CMP location. Subsurface structural interpretations can be made from these stacked sections. However, the stacked data is generally migrated to produce better seismic images before structural interpretation. Stacked sections can be generated in several forms. A first method is to generate multiple stacked seismic record sections, each with a different effective stacking velocity. These are called constant velocity (CV) stacked sections or panels. These CV stacked panels can be used to make a velocity interpretation which is needed to form a composite or single final stacked section. The interpreter simply selects certain reflection signals from the multiple CV stacked panels. He then applies the corresponding NMO velocities in a time and space varying manner, with interpolation between panels, to produce a composite stacked section of all desirable reflection signals. The final CMP stacked section will thus use variable velocity functions in both two-way travel time and CMP location. This composite stack can then be used for structural interpretation or passed on to a migration step prior to interpretation. As previously mentioned, refraction signals are generally muted out in the traditional CMP stacking method. Refraction signals are considered undesirable coherent noise and many efforts are made to suppress this form of energy in the CMP stacking process. In many geographical areas of the world, these refracted signals and other related source generated coherent noise completely mask any reflected signals. These areas are considered no record (NR) data areas and as such offer very little subsurface structural information. However, refraction signals can offer some subsurface structural information. Prior to the introduction of the CMP reflection stacking method, seismic refraction methods were widely used to map subsurface structure. Indeed, many of the large oil reserves found in the first half of this century were found using refraction methods. Today, the use of refraction signals is confined mainly to computing near surface static corrections. Reflection events will be generated at all acoustic interfaces in the subsurface. However, refraction events will only be generated in high velocity layers which underlie lower velocity layers, and then only if certain other conditions are right. Reflection events will occur on both the nearest offset seismic traces and the farthest offset seismic traces, whereas refraction events will only occur on seismic traces which are recorded beyond the critical offset distance for a given refraction interface. To record refraction events from deeper and deeper acoustic interfaces, one must record longer and longer source-to-receiver offset traces. A general "rule of thumb" is that one needs offsets which are about three times the vertical depths of interest in the subsurface. Typical maximum offsets used today in reflection CMP recording are on the order of 3000 meters. Thus, refraction events might be expected to be present on these data down to depths of about 1000 meters. For planer refraction interfaces, refraction events will have linear moveout with increasing offset. This linear moveout will be a function of structural dip and the refractor velocity. In a shot profile gather of seismic traces, the linear moveout for a given planer refractor will be different in the up-dip direction from the down-dip direction (split spread recording). However, in a CMP gathering of seismic traces, there is no difference between up-dip and down-dip moveouts because of source/receiver reciprocity. In a CMP trace gather, the linear moveout velocity of a refraction event from a single planer cosine of the angle of dip in the refractor. Prior work with seismic refraction data has not included CMP stacking of the refraction data U.S Pat. No. 3,629,798 (D. W. Rockwell, 1971) worked with refraction data but only stacked data from a single shot. No data was gathered over a CMP for stacking, to provide the advantage of properly imaging refraction wave arrivals. Adams et al received U.S. Pat. No. 4,232,378 in 1980, which relates to a refraction seismic technique, which studies the amplitude of long and short shot-to-receiver-distance refracted waves. There is no discussion of stacking the refracted waves. Also, Ruehle teaches a technique for acquiring refraction data in U.S. Pat. No. 4,242,740, but does not disclose a method of stacking the data. Gassaway et al. received related U.S. Pat. Nos. 4,373,197; 4,393,488; and 4,528,649 which were assigned to applicant's assignee. A `roll-along` technique of shifting source and detector arrays is disclosed, whereby the resulting refracted data can be systematically indexed to offset position. Overlapping stackable displays are produced which are indexed to a common inline position and to refraction travel direction. However, no CMP stacking technique is disclosed, and the method instead relates to distinguish shear wave data from compressional wave data. Monastyrev, V. K. et al received Union of Soviet Socialist Republics Patent No. 864215 in 1981. Multiple profiles of refracted waves are recorded, to also record elastic oscillations at known distances from seismic excitation points, which are nearly the same as the distances to the initial points where refracted waves exit at the surface. The method provides for multiple tracking of common depth refracting areas. Refracted waves corresponding to this total depth area are selected and tau-P summed using various cutoff velocities, which are determined according to the maximum energy values and signal-to-noise ratio. There is no discussion of the need to properly mute the arriving waves which originate at a point inside the critical offset distance. Nor is there a discussion of the use of several constant velocities to generate multiple panels of summed data. Also, Monastyrev et al do not discuss using a generated near-surface velocity model to create a solution to near-surface statics. A Russian brochure, whose title has been translated as "Method For Studying Refracting Boundaries In Geologic Layers" is dated Sept. 5, 1988. It is believed that the brochure was published by the Western Siberia Geophysics Institute which is part of the U.S S.R. Ministry of Geology. The brochure may be further identified as RD 03345, and print order 1024. It relates to a common depth area seismic refraction method, which is based on multiple summation of useful information in the refracted waves. The method itself is not disclosed, and only the benefits of the method are described. Disclosed advantages include simultaneous investigation of several geologic boundaries, being able to study geologic refracting boundaries, and being able to detect heterogeneities in the near-surface section field data. Hinkley (U.S. Pat. No. 4,577,298) discloses a method estimating and correcting source and receiver statics contained in seismic traces. Refraction ray paths are merely normalized to the paths taken by the reflection components to correct for angular displacements between the refractions and reflection signal components. Yang, H. published an article entitled "Stacking and Migration Technique For Seismic Refraction" in December 1986. However, neither CMP nor CDP stacking were discussed. Instead, Yang only utilizes a method of common receiver or common source point stacking. The above methods are all limited in the attempts to image seismic data in that no attempt has been made to incorporate CDP or CMP stacking of the refraction data as taught in the subject application. To date, refraction arrivals are primarily used to generate near surface velocity models for statics computations. Once `first break` picks on refraction events are made, the seismic data is discarded. No attempt has yet been made to produce an image of the refractors themselves. Current methods of utilizing only reflection data frequently fall short of providing adequate seismic images of the geology below the earth's surface. There is therefore a need for an improved seismic method to obtain better quality seismic data.
{ "pile_set_name": "USPTO Backgrounds" }
Peripheral canopy parachutes e.g. annular ring canopy parachutes have been used for low altitude deployment with a low rate of descent. It has been found desirable to drop military personnel and military equipment from the lowest possible altitude and at the maximum horizontal velocity in order to reduce exposure to enemy fire. The increased loads which today's troops must carry with them when they jump requires that any new parachute must provide a high drag coefficient so as to land the paratrooper at a safe velocity. These parachutes open fast and have high drag coefficients and are relatively small and lightweight. A later approach adds a cap over the annular ring canopy to seek to improve performance. Increasingly there is a demand to drop ever larger payloads for beyond mere personnel and personal equipment e.g. 40,000 lbs pay loads. Even using a number of parachutes to drop a 40,000 lb load, for example five parachutes each carry 8,000 lbs of the load, each parachute would be in the neighborhood of 120 feet in width, making for a large, heavy, expensive and unwieldy device.
{ "pile_set_name": "USPTO Backgrounds" }
Hereinafter, a device to device communication environment will briefly be described. Device to device (D2D) communication refers to communication between an electronic device and another electronic device. In a broad sense, D2D communication refers to wire or wireless communication between electronic devices or communication between a machine and a device controlled by a person. However, it is general that D2D communication recently refers to wireless communication between electronic devices performed without control of a person. In the early 1990s when D2D communication had been introduced, D2D communication had been recognized as remote control or telematics and D2D communication markets had been very restrictive. However, D2D communication markets have received attention all over the world since D2D communication had been able to grow rapidly for last several years. Particularly, D2D communication has exerted its great influence at point of sales (POS) and security related application markets in the fields of fleet management, remote monitoring of machine and facilities, measurement of working time on construction machine facilities, and smart meter automatically measuring heat or the use of electricity. It is expected that D2D communication will be used for various purpose of uses in association with the existing mobile communication, wireless high-speed Internet, and low power communication solutions such as Wi-Fi and Zigbee and that its coverage will be extended to business to consumer (B2C) markets without limitation to business to business (B2B) markets. In the D2D communication age, since all machines provided with a subscriber identity module (SIM) card may be able to perform data transmission and reception, they may remotely be controlled. For example, D2D communication technologies may be used for many machines and equipments such as cars, trucks, trains, containers, vending machines, and gas tanks. In this way, application ranges of D2D communication technologies are very broad.
{ "pile_set_name": "USPTO Backgrounds" }
Ultrasonic diagnosis allows to display in real time how the heart beats or the fetus moves, by simply bringing an ultrasonic probe into contact with the body surface. This technique is highly safe, and hence allows repetitive examination. Furthermore, this system is smaller in size than other diagnostic apparatuses such as X-ray, CT, and MRI apparatuses and can be moved to the bedside to be easily and conveniently used for examination. In addition, ultrasonic diagnostic apparatuses vary in type depending on the functions which they have. Some compact apparatuses which have already been developed are small enough to be carried with one hand, and ultrasonic diagnosis is free from the influence of radiation exposure unlike diagnosis using X-rays. Therefore, such ultrasonic diagnostic apparatuses can be used in obstetric treatment, treatment at home, and the like. Recently, intravenous-type ultrasonic contrast media (to be simply referred to as contrast media hereinafter) have been commercialized, and a “contrast echo method” has been practiced. This technique aims at hemodynamics evaluation upon enhancement of a blood flow signal by injecting an ultrasonic contrast medium through a vein in, for example, cardiac and hepatic examinations. Many contrast media function by using microbubbles as reflection sources. For example, a second-generation ultrasonic contrast medium called Sonazoid® which has recently been released in Japan comprises microbubbles each covered with a phospholipid film and containing a perfluorobutane gas. It has become possible to stably observe how a contrast medium refluxes, using ultrasonic transmission waves with an amplitude small enough not to destroy microbubbles. Scanning a diagnostic region (e.g., liver cancer) after the administration of a contrast medium allows to observe increases and decreases in signal intensity from the inflow of a contrast medium, which circulates on a blood flow, to the outflow of the contrast medium. Studies have been made to enable benignancy/malignancy differential diagnosis of a tumoral lesion or diagnosis of a “diffuse” disease or the like based on such differences in temporal changes in signal intensity. In general, such temporal changes in signal intensity need to be recorded or interpreted as a moving image unlike simple morphological information. This generally leads to a long time required for interpretation. Under the circumstance, there has been proposed a technique of mapping the inflow time information of a contrast medium to be generally observed in moving images onto a single still image (see Jpn. Pat. Appln. KOKAI Publication No. 2001-269341, and Jpn. Pat. Appln. KOKAI Publication No. 2004-321688). Such a technique expresses, with different hues, the differences between the peak times of signals based on a contrast medium and allows to recognize at a glance the inflow time at each position within a diagnostic slice. In tumor blood vessels which run in a complicated manner as compared with normal blood vessels, a phenomenon is observed, in which bubbles have nowhere to go and become stagnant or reflux after stagnation (see R. K. Jain, “Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenetic Therapy”, Science, Vol. 307, pp. 58-62, January 2005). In practice, when performing contrast medium ultrasonic observation using a tumor mouse, the behavior of bubbles like that described above is observed in tumor blood vessels. If it is possible to evaluate the behavior of bubbles with contrast-enhanced ultrasonic waves which enable biological imaging, there is a possibility that this technique can be applied to the evaluation of abnormality of tumor blood vessels. It has been confirmed by histopathological observation that an antiangiogenic agent (anticancer agent) which has currently been clinically tested fragments/confines tumor blood vessels by destroying blood vessels that nourish the tumor (see M. Yamazaki, et al., “Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells”, Cancer Science, Vol. 99(6), pp. 1131-1138). If it is possible to visualize and quantify, with contrast-enhanced ultrasonic waves, the manner of how bubbles become stagnant in blood vessels fragmented by the antiangiogenic agent, this technique can be expected to be applied to treatment effect determination. However, mapping of contrast medium inflow times (arrival times) using a conventional ultrasonic diagnostic apparatus cannot express characteristics after the arrival of the contrast medium. For example, it is not possible to discriminate between, for example, a state in which a contrast medium is continuously flowing into a given area and new microbubbles (to be simply referred to as bubbles hereinafter) are replacing old bubbles and a state in which bubbles that have flowed into the area are stagnant. Note that, for example, the technique disclosed in Jpn. Pat. Appln. KOKAI Publication No. 2001-269341 displays contrast medium inflow information (e.g., arrival times) in an ultrasonic scanning slice by color mapping with reference to a given time, and hence allows to observe, in an entire image, how a contrast medium flows into each area. However, this technique does not allow sufficient evaluation of the stagnant state of bubbles after the arrival of the contrast medium at each area. In addition, the technique disclosed in Jpn. Pat. Appln. KOKAI Publication No. 2004-321688 can present the information of arrival times by performing more precise computation based on a logical model of the reflux of microcirculatory blood flows. However, even this technique cannot sufficiently evaluate the stagnant state of bubbles after the arrival of a contrast medium at each area.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure relates generally to assembly, and more particularly, to assembly of light-emitting diode (LED) devices. Photonic devices such as LED devices are semiconductor light sources used in diverse applications. LED devices emit light of various wavelengths when a voltage is applied. Their compact size, switching speed and reliability have provided the industry with rapid growth. Because an LED generates heat, it is typically in need of a cooling device for releasing the generated heat. One such cooling device is a heat sink. However, traditional LED assembly methods often include costly and complicated processes to attach the LED and cooling device, for example, requiring high temperature eutectic bonding. Other drawbacks of current technologies include the lack of thermal conductivity between the LED and a cooling device. Thus, while existing methods of assembling and applying LED devices have in some respects been adequate for their intended purpose, they have not been entirely satisfactory.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to self-filling storage devices for card-shaped data carriers (memory cards) with at least one storage container and at least one roller for dispensing or receiving such memory cards. Such storage devices for card-shaped data carriers (memory cards) are, for example, known in different embodiments for receiving and dispensing user authorization cards for parking structures. These known storage devices provide a reliable dispensing action, respectively, reliable intake of data carriers into the storage container with respective dispensing, respectively, intake rollers; however, in practice it was found that for the arrangement of a plurality of such storage containers in one storage device these storage containers are non-uniformly emptied and/or filled so that it may occur that the storage container nearest to the dispensing slot is already empty even though in the other storage containers there are still memory cards present and the storage device due to the empty storage container at the dispensing slot, will not dispense any further data carriers. Also, it may happen with the known storage devices that, due to the storage container at the dispensing slot being filled, the intake of further data carriers is prevented even though the rearwardly arranged storage containers are not yet filled or not yet entirely filled. It is therefore an object of the present invention to provide a self-filling storage device with which the aforementioned disadvantages can be avoided and which allows for an automated filling and/or emptying of all storage containers.
{ "pile_set_name": "USPTO Backgrounds" }
In many applications it is desirable to limit physical access to electrical circuits and additionally to minimize the risk that the circuit is accidentally energized while it is being accessed. Accidental activation of an electrical circuit during servicing, for example, can result in death or physical injury to personnel as well as damage to expensive equipment. Physical access to an electrical circuit, such as a power transformer, is typically controlled by enclosing the circuit in a cabinet or housing. Such cabinets often have access doors which can be locked with an integral lock or a padlock. In order to prevent continued activation of the circuit when the cabinet doors are opened, it is known to provide proximity switches for deactivating the circuit in response to the cabinet doors being opened. However, such safety systems can easily be circumvented by short circuiting the switch or biasing the switch to its closed position. Additionally, it is known to provide devices for physically maintaining a main power switch or circuit breaker in its off position. Two such systems are disclosed in Nat U.S. Pat. No. 4,440,994, issued Apr. 3, 1984, and Sahrbacker U.S. Pat. No. 4,705,920, issued Nov. 10, 1987. The Nat patent describes a pivoted actuator switch having a lock to prevent the switch from being turned to the "on" position without insertion of a removable key member. The Sahrbacker patent describes a slidable electrical contact carrier actuated by a rocker type actuator which includes a removable locking key as a part of the actuator assembly. Removal of the key in the Sahrbacker device prevents movement of the carrier and thus prevents actuation of the switch. These devices suffer from at least two drawbacks. First, manufacture of these devices is complicated and costly because both patents incorporate specially manufactured locks and/or components. Second, neither system can readily be adapted to limit physical access to the electrical circuit. It is an object of the present invention to provide a safety apparatus which controllably maintains an electrical power switch in its off position. Another object of the present invention is to provide a safety apparatus which inhibits access to an electrical circuit when the circuit is deactivated. A further object of the invention is to provide a safety lockout which is both simple and economical to manufacture. Other objects and advantages of the invention will become apparent upon reading the following detailed description and appended claims, and upon reference to the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
The present embodiments relate to a magnetic resonance coil device for receiving magnetic resonance signals. A magnetic resonance coil device for receiving magnetic resonance signals is known from U.S. Pat. No. 7,592,813 B2. The magnetic resonance coil device includes at least one receiving antenna unit, one signal processing unit, one high-frequency unit, and at least one transmitting antenna unit for cable-free transmission of the received magnetic resonance signals to a data receiving unit.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a brake for a wheelchair, which has a pawl and an activation lever pivotally mounted within a support housing attached to a frame member of the wheelchair, and a leaf spring with a lancing detent, wherein each component acts together so as to provide a neutral position, a locked position, and an on-guard position which provides drag braking for downward inclines and a reverse braking aid for up-inclines. 2. Description of Related Art Wheelchair brakes are known in the art. However, known prior art brakes are activated by a system of rods, or toothed gears or cams, and generally do not promote easy operation on both downward and upward inclines. Known related art includes a three position brake using toothed cams depicted in a wheelchair patent, U.S. Pat. No. 4,101,143 to Seiber, a two position brake using a shoe against the wheel depicted in U.S. Pat. No. 4,350,227 to Knoche, and a three position brake using a toothed shoe depicted in U.S. Pat. No. 4,560,033 to DeWoody et al. Other known related wheelchair brakes include U.S. Pat. No. 4,570,756 to Minnebrake et al., U.S. Pat. No. 4,589,525 to Phipps et al., U.S. Pat. No. 4,691,933 to Strauss, U.S. Pat. No. 4,887,830 to Fought et al., U.S. Pat. No. 4,987,978 to Jungerson, U.S. Pat. No. 5,174,418 to Le et al., and U.S. Pat. No. 5,472,066 to Schello et al. None of the devices in the above references solve the problem of providing an easy to operate brake which takes advantage of the long moment arm of the wheel in cooperative engagement with the short moment arm of a pawl to provide not only the normal neutral and locked position but to aid in braking in inclines, up and down. An object of this novel improvement to wheelchair brakes would provide a brake wherein gravity applied to the activation lever which engages the pawl can provide braking assistance for uphill and downhill modes of operation. Another object of the invention is to provide a brake which is simple and easy to operate and does not contain toothed cams which can break. A further object of the present invention is to provide a brake which prevents warping of the wheelchair framework by the application of equal and limited force.
{ "pile_set_name": "USPTO Backgrounds" }
A seat belt buckle devised to maximize holding capability as well as to improve the cost and ease of manufacture is disclosed in the U.S. Pat. No. 4,617,705 issued to James R. Anthony and Allan R. Lortz. The buckle includes a reinforcement plate mounted to and between an upper and lower housing containing a spring biased pawl engageable with a seat belt tongue. The pawl is held captive between the lower housing and the reinforcement plate, and is biased upwardly against the plate by a pair of springs. A push button is slidably mounted to the upper housing and has a pair of legs extending downwardly through the plate to contact and move the pawl downwardly to disengage the pawl from the tongue. An additional spring mounted between the push button and reinforcement plate requires force above a predetermined level to move the button downwardly to disengage the pawl from the tongue. In many cases, the seat belt tongue is split into two separate tongues for attachment respectively to a seat belt and a shoulder harness. In order to increase the fit and engagement between the buckle and the tongue or pair of tongues inserted into the buckle and to ensure the tongues are not mounted upsdie down in the buckle, it is custom to provide a pair of flanges extending outwardly from the reinforcement plate to engage and provide a stop means limiting motion including pivotal motion of the tongue(s). In the case of a belt buckle engageable with a pair of tongues, it is desirable to provide a buckle that will not lockingly engage when only a single tongue is inserted into the buckle. We have therefore devised a belt buckle, disclosed in our U.S. Pat. Nos. 5,023,981 and 5,038,446, which will lockingly engage the tongues only when both tongues are fully inserted therein. However, simultaneously inserting the dual tongues into the buckle in order to trigger the latching mechanism is not always a trouble-free exercise. For instance, one solution was to provide dual tongues which interlocked together as in tongue 100 shown in FIG. 1 of the present application. Dual interlocking tongues essentially become a single tongue when interlocked together before being inserted into the buckle. Dual interlocking tongues suffer from a number of disadvantages not least of which is the difficulty in connecting the interlocking features when hands are needed for other tasks such as keeping a squirming infant properly positioned in a child restraint seat while the restraints are being secured. FIG. 9 of the present application illustrates another dual tongue system 300 that has mating surfaces to aid the user in simultaneously inserting dual tongues into the buckle. While this type of dual tongue can substantially eliminate some of the problems encountered in interlocking dual tongues, these designs still have the drawback that the dual tongues can slide relative to one another, and therefore can result in some difficulty inserting both tongues simultaneously into the buckle in order to trigger the latching mechanism. Another system known in the art for securing at least two webs to a single buckle is to provide one of the webs with an ordinary tongue and the other with a plastic or metallic loop in place of a tongue. The loop is sized large enough to receive the tongue bar of the tongue but is too small to slip over the handle portion of the tongue. The webs are secured to the buckle by advancing the tongue bar of the tongue through the loop and then advancing the tongue bar into the buckle to trigger the latching mechanism. In this way, the web having the loop attachment is trapped between the buckle and the handle portion of the tongue. Like the prior art just discussed, this type of tongue and loop system suffers from the disadvantage of not always being easily assembled before the webs are secured to the belt buckle. What is needed is a pair of dual interactive tongues that retain the advantages of both interlocking dual tongues and those having other mating features but does not suffer from their respective disadvantages nor introduce new drawbacks to a dual tongue buckle system.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to the compaction of refuse and in particular to the compaction of refuse in relatively thin-walled, disposable bags. 2. Description of the Prior Art In one improved form of refuse compactor illustrated in U.S. Pat. No. 3,917,107 of Michael J. Bottas et al, which patent is owned by the assignee hereof, a removable protective sleeve is provided within the relatively thin-walled, single ply plastic bag so as to maintain the integrity of the bag during the compacting operation. As disclosed therein, the sheath is preferably formed of a cut-resistant, tough material such as a suitable synthetic resin material. Another form of support sleeve for use in a refuse compactor is illustrated in U.S. Pat. No. 3,722,561 of Timothy W. O'Leary et al. Therein, the support sleeve is provided with a rigid collar having a plurality of independently flexible wall portions. The sleeve is inserted into the flexible bag to maintain the mouth and body of the bag open for facilitated compaction. Joseph F. Bourgeois discloses, in his U.S. Pat. No. 3,762,599, a trash compactor structure wherein a number of arcuate shield plates are placed about the sidewall of the container in which is nested a plastic liner and then a disposable plastic bag. Einar O. Engebretsen shows, in U.S. Pat. No. 3,937,355, a removable liner for trash compactors comprising a two-piece structure. A plastic bag is installed within the liner and is secured at its upper edge to the top portion of the liner by suitable clips. In each of U.S. Pat. Nos. 2,916,183 of Virgil C. Ariens, 3,261,545 of Michael E. Frazier, and 3,443,745 of Gunther K. E. Kleeberg, some form of collar is provided for use in retaining portions of the refuse receptacle.
{ "pile_set_name": "USPTO Backgrounds" }
In the television industry there is an ongoing desire to combine video signals in a variety of ways to create various special effects For example, a common function of a digital video effects system is to compress a full field of video to a size smaller than the raster area occupied by a full size field of television signal. The smaller raster is then displayed at a predetermined location within the larger raster of video Framestores recently have been developed for use in the video industry to store video information for the creation of special effects Such devices typically include a memory device capable of holding at least one complete raster of video information, i.e., either a field or a complete frame of video information. One such framestore system is described in U.S. Patent Application entitled "A Recirculating Special Effects Video Framestore" by David E. Trytko, filed Sept. 13, 1989 as U.S. patent application Ser. No. 07/407,722, which was a continuation of copending application Ser. No. 07/195,370 filed May 11, 1988, now abandoned, which was a continuation of copending application Ser. No. 06/943,282 filed Dec. 8, 1986, now abandoned, which was a continuation-in-part of copending application International Application No. PCT/US86/00733 filed Apr. 11, 1986, which was a continuation-in-part of copending application Ser. No. 06/722,532 filed Apr. 12, 1985, now abandoned and assigned to the same assignee as the present patent application the details of which are hereby incorporated by reference. In creating special effects, digital video signals are typically combined through the use of key signals. Two unprocessed video signals cannot be directly combined because the combined signal gain would be the sum of the initial gains of each unprocessed video signal and could exceed the maximum gain resource of the system, i.e., the combined video signal can have a maximum gain no larger than the maximum gain of any of the component video signals. Thus, if all component video signals in the system are allowed to vary in gain anywhere from 0 to 1 volt, the maximum gain excursion of a composite video signal consisting of a combination of two or more component video signals can be no more than from 0 to 1 volt The key signals are used according to the teachings of the invention to cut the gain of component video signals according to calculations relating to the transparency factor of each signal, the maximum available gain for the composite signal and the priority of the various signals. By using separate key signals for each video signal, the key signals can be independently processed to control the gains of the component video signals in such a manner that the final composite video signal uses all the available gain resource without the injection of spurious noise. That is, prior to combining video signals, each individual video signal is gain adjusted by its respective key signal in such a manner that the composite video signal does not exceed an overall reference gain which is the maximum allowable gain resource available to any video signal in the system. A more complete understanding of key signals in video signal processing can be obtained from U.S Patent Application entitled "Apparatus and Method for Processing Video Signals With Key Signals in Accordance With Previous Processing of the Video Signals " by John F. Bloomfield, filed Sept. 1, 1989 as U.S. patent application Ser. No. 07/403,898, which was a continuation of copending application Ser. No. 07/191,778 filed May 2, 1988, now abandoned, which was a continuation of copending application Ser. No. 07/119,223 filed Nov. 3, 1987, now abandoned, which was a continuation-in-part of copending application Ser. No. 06/851,195 filed Apr. 14, 1986, now abandoned, which was a continuation-in-part of copending application International Application No. PCT/US86/00734 filed Apr. 11, 1986, which was a continuation-in-part of copending application U.S. Ser. No. 06/722,532 filed Apr. 12, 1985, now abandoned, and also assigned to the same assignee as the present patent application the details of which are hereby incorporated by reference. Another well known device used in video effects systems is a combiner which is a device to do a "combine" of two or more video signals. A "combine" is effected by combining two or more channels of video information in such a way as to make the scenes or images appear in a desired relationship with each other, e.g., one in front of the other, a transparent image, one image flying over another, one image moving and leaving a trail, etc. One such combiner is illustrated, by way of example in U.S. Pat. No. 4,758,892 entitled "Circuit for Producing a Video Combine from Multiple Video Images" filed on Apr. 27, 1984 by John F. Bloomfield, assigned to the same assignee as the present patent application the details of which are hereby incorporated by reference. In the video effect system described in the above identified U.S. patent application Ser. No. 407,722, video information is held in a memory sometimes hereafter referred to as a framestore or store and is recirculated. This recirculated video is combined with new or input video information in a combiner during recirculation. The recirculated video is processed or "cut" by a key signal in a controllable manner during each recirculation to reduce the gain of the signal. This cut allows combining the recirculated video signal with other video having a known gain to produce desired video effects in the form of an output video signal having a gain which does not exceed the system's maximum allowable gain. It is a limitation of such systems that once video information in the store has been processed or cut by the key signal during recirculation, the lost gain cannot be restored since to increase the gain of a video signal by multiplying it by a value greater than 1 only adds noise since there is no new video information in the multiplication operation. Thus, the cut video information is recirculated back into the frame store and overwrites the video information stored therein. The video information that existed before the cut is therefore forever lost. This is disadvantageous since it is desirable for certain special video effects to be able to make the recirculated video information from the framestore appear at various gain levels, disappear and then reappear at any gain level compatible with the maximum allowable system gain.
{ "pile_set_name": "USPTO Backgrounds" }
One type of light-emitting elements has the structure in which a light-emitting functional layer including a light-emitting layer, a conductive layer, and so on are interposed between an anode as a first electrode and a cathode as a second electrode. The light-emitting layer and the cathode are influenced by gas such as moisture and oxygen (hereinafter, referred to also as gas such as moisture, or simply as gas). Specifically, the light-emitting layer has light-emitting properties that are deteriorated due to moisture or the like, and as a result has a short operating life as an element. The cathode varies in electric properties due to oxygen or the like. Large variation in electric properties disables the cathode to supply electrons to the light-emitting layer, and as a result light emission cannot be performed (so-called display defects are caused). For this reason, a passivation layer is formed on an upper surface of the cathode for example, in order to protect the light-emitting layer and the cathode against gas such as moisture, in other words, in order to prevent gas infiltration. On the other hand, the light-emitting layer emits light. The light is externally extracted after transmitting through the cathode and the passivation layer (in the case of a display panel of a top emission type). Accordingly, there is a need for the passivation layer to have excellent light transmissive properties in addition to high gas barrier properties. A silicon nitride (SiN) film is for example used for the passivation layer. Also, in order to further improve the gas barrier properties of the light-emitting element, there has been proposed an art of forming the passivation layer by an atomic layer epitaxy (ALE) method (for example Patent Literatures 1 and 2).
{ "pile_set_name": "USPTO Backgrounds" }
The present invention generally relates to purchasing systems, and more specifically, but not exclusively, concerns a sales system adapted to dynamically price goods and/or services over a computer network. With the recent explosion in Internet commerce, the amount of stolen or pirated content has been on the rise. Encryption systems, such as Secured Digital Music Interface (SDMI), can be circumvented by hackers so that songs contained therein are freely available. For example, point-to-point (peer-to-peer) (P2P) programs, such as Napster and Gnutella, have made it very easy for a person to copy copyrighted material without compensating the author or artist. Consumers who download the pirated content believe that it is “free”; when in actuality they are “stealing” the author's work. Current intellectual property laws are not comprehensive enough and have not quickly adapted to cover this developing technology. Since intellectual property rights vary internationally, enforcement of those rights across national boundaries can be difficult. Although suits against P2P providers, such as Napster, have been successful, the cost and time involved in achieving a successful result can be prohibitive. Moreover, systems like Gnutella do not require a central index server for maintaining a list of users. This decentralized approach makes it nearly impossible to shutdown such systems since there is no central operator to target for suit. Pursuing legal remedies against individual users who break copyright laws only antagonizes the public further and creates further animosity towards the recording, movie, software and publishing industries. Due to their popularity, the P2P swapping services, like Napster and Gnutella, have dramatically increased network loads of institutions where such services are extremely popular, like colleges and universities. To combat the increased network loads, universities have denied students access to such services across their networks. Thus, these services are severely hampered in contacting an extremely desirable demographic of consumers, students. Therefore, there has been a long-felt need for a system to provide digital media priced so that content suppliers can make a profit, and at the same time provide an incentive for consumers to purchase and not steal content. According to one aspect of the disclosure, a dynamic pricing system for pricing items for sale by a seller which items are available in a limited quantity comprises a pricing server and various types of data stored in memory. The pricing server includes memory, a processor and a clock. One type of data stored in memory is indicative of the initial quantity of an item available in a limited quantity. Another type of data stored in memory is indicative of the current remaining quantity of the item available in a limited quantity. Yet another type of data stored in memory is indicative of an expiration time at which it is desired that all of the item available in a limited quantity be sold. The processor is configured to price the item available in a limited quantity so as to deplete the inventory of the item available in a limited quantity by the expiration date based in part by accessing the memory to retrieve the data indicative of the initial quantity, the current remaining quantity and the expiration time and accessing the clock. Other forms, embodiments, objects, features, advantages, benefits, and aspects of the present invention shall become apparent from the detailed drawings and description contained herein.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, mobile phones or PDAs (Personal Digital Assistants) have been widespread. Also, the specifications in which a compact digital still camera unit or a compact digital video unit is incorporated in the mobile phone or the PDA have been generalized. In a digital apparatus such as the mobile phone or the PDA, a small and low-pixel-number image sensor, as compared with an independent product such as a digital still camera, and an imaging lens device provided with a single focus optical system constituted of one to three plastic lens elements are generally used, in view of severe constraints regarding the size or cost of the digital apparatus. Since the magnification of the single focus optical system is substantially equivalent to visual magnification, an object to be photographed is limited to the one located near a photographer. Under the current rapid development of high-pixel, high-resolution image sensors, there is a demand for a compact zoom optical system that is compatible with a high-pixel image sensor, and is loadable in a mobile phone or a like device capable of photographing a subject remotely away from a photographer. For instance, patent document 1 discloses a negative-positive two-component zoom optical system, which is made compact by forming an image-side lens surface closest to the object side into an aspherical shape. In the zoom optical system, since the curvature of the image-side lens surface closest to the object side is large, it is difficult to produce the image-side lens surface by molding. It is required to produce a so-called composite aspherical lens element by coating a resin on a spherical lens element, which may increase the production cost. Also, since production error sensitivity is high with respect to the lens elements in both of the first lens group and the second lens group, an adjustment operation is required at the time of assembling the lens elements, which may further increase the production cost. Patent document 2 discloses a negative-positive-positive three-component zoom optical system, wherein a moving amount of the lens elements for zooming is suppressed by increasing a zoom load of the second lens group. The optical system disclosed in patent document 2, however, uses three lens elements in each of the first lens group and the second lens group, which is far from sufficient miniaturization. Patent document 3 discloses a negative-positive-positive-positive four-component zoom optical system, wherein the total thickness of lens elements in a collapsed state is reduced by using an aspherical lens element made of a material having a high refractive index and a low dispersion rate in the second lens group. However, since impact resistance required in a mobile terminal is significantly large, it is difficult to employ a collapsible structure itself. Further, since the optical power of the second lens group in the optical system proposed in patent document 3 is small, a large moving amount is required in the second lens group. Consequently, the entire optical length of the optical system in a use state may be too large for a mobile terminal. A retrofocus arrangement incorporated with a first lens group having a negative optical power is suitable in an optical system which uses an image sensor and has a zoom ratio of about two to three times, considering general requirements of securing a back focus distance, maintaining a telecentric state, or the like. However, in the case where the retrofocus arrangement is employed, the negative optical power is increased, as the zoom optical system is miniaturized. As a result, the curvature of the lens elements in the first lens group may be unduly increased, which may increase the expansion ratio of the lens elements. Thus, it may be difficult to produce a zoom optical system or measure a surface configuration of lens elements. Patent document 1: Japanese Unexamined Patent Publication No. 2001-4920 Patent document 2: Japanese Unexamined Patent Publication No. 2001-318311 Patent document 3: Japanese Unexamined Patent Publication No. 2002-365542
{ "pile_set_name": "USPTO Backgrounds" }
Using a standard software development kit (SDK) to write applications in certain closed development environments can be tedious work. This type of application development often requires developers to: be familiar with the ins and outs of the programming languages, read through large quantities of documentation to understand what features to use, and repeatedly debug and compile their code to test it until they achieve what they want. This process wastes valuable computing resources, developer and computing time, and has numerous opportunities for human error. In the drawings, like reference numbers generally indicate identical or similar elements. Additionally, generally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, the number of speakers who make a remote conversation by using a transmission terminal such as a PC (Personal Computer) or a cellular phone is drastically increasing. Not only a conversation between two points (two persons), but a conversation among multiple points (three or more persons) can also be made. Additionally, an administrator who runs a communication service for a conversation between transmission terminals obtains profits by charging users of transmission terminals of a communication fee. As a method for charging such a communication fee, there is disclosed a method for equally charging speakers (participants) who take part in a conversation of a fee for communication from the start to the end of the conversation (see Japanese Patent Application Laid-open No. 09-172509). However, for example, another speaker may take part in a conversation using another transmission terminal during the conversation between two points, or a speaker using a given transmission terminal used for the conversation may leave the conversation during the conversation among multiple points. In such cases, there is a problem that the speaker is charged with a same fee of communication from the start to the end of the conversation even though the speaker did not take part in the actual conversation. This causes the inequality in charged fee.
{ "pile_set_name": "USPTO Backgrounds" }
HFR technologies, such as the Spectral Band Replication (SBR) technology, allow to significantly improve the coding efficiency of traditional perceptual audio codecs. In combination with MPEG-4 Advanced Audio Coding (AAC) it forms a very efficient audio codec, which is already in use within the XM Satellite Radio system and Digital Radio Mondiale, and also standardized within 3GPP, DVD Forum and others. The combination of AAC and SBR is called aacPlus. It is part of the MPEG-4 standard where it is referred to as the High Efficiency AAC Profile (HE-AAC). In general, HFR technology can be combined with any perceptual audio codec in a back and forward compatible way, thus offering the possibility to upgrade already established broadcasting systems like the MPEG Layer-2 used in the Eureka DAB system. HFR transposition methods can also be combined with speech codecs to allow wide band speech at ultra low bit rates. The basic idea behind HRF is the observation that usually a strong correlation between the characteristics of the high frequency range of a signal and the characteristics of the low frequency range of the same signal is present. Thus, a good approximation for the representation of the original input high frequency range of a signal can be achieved by a signal transposition from the low frequency range to the high frequency range. This concept of transposition was established in WO 98/57436 which is incorporated by reference, as a method to recreate a high frequency band from a lower frequency band of an audio signal. A substantial saving in bit-rate can be obtained by using this concept in audio coding and/or speech coding. In the following, reference will be made to audio coding, but it should be noted that the described methods and systems are equally applicable to speech coding and in unified speech and audio coding (USAC). In a HFR based audio coding system, a low bandwidth signal is presented to a core waveform coder for encoding, and higher frequencies are regenerated at the decoder side using transposition of the low bandwidth signal and additional side information, which is typically encoded at very low bit-rates and which describes the target spectral shape. For low bit-rates, where the bandwidth of the core coded signal is narrow, it becomes increasingly important to reproduce or synthesize a high band, i.e. the high frequency range of the audio signal, with perceptually pleasant characteristics. In prior art there are several methods for high frequency reconstruction using, e.g. harmonic transposition, or time-stretching. One method is based on phase vocoders operating under the principle of performing a frequency analysis with a sufficiently high frequency resolution. A signal modification is performed in the frequency domain prior to re-synthesising the signal. The signal modification may be a time-stretch or transposition operation. One of the underlying problems that exist with these methods are the opposing constraints of an intended high frequency resolution in order to get a high quality transposition for stationary sounds, and the time response of the system for transient or percussive sounds. In other words, while the use of a high frequency resolution is beneficial for the transposition of stationary signals, such high frequency resolution typically requires large window sizes which are detrimental when dealing with transient portions of a signal. One approach to deal with this problem may be to adaptively change the windows of the transposer, e.g. by using window-switching, as a function of input signal characteristics. Typically long windows will be used for stationary portions of a signal, in order to achieve high frequency resolution, while short windows will be used for transient portions of the signal, in order to implement a good transient response, i.e. a good temporal resolution, of the transposer. However, this approach has the drawback that signal analysis measures such as transient detection or the like have to be incorporated into the transposition system. Such signal analysis measures often involve a decision step, e.g. a decision on the presence of a transient, which triggers a switching of signal processing. Furthermore, such measures typically affect the reliability of the system and they may introduce signal artifacts when switching the signal processing, e.g. when switching between window sizes. The present invention solves the aforementioned problems regarding the transient performance of harmonic transposition without the need for window switching. Furthermore, improved harmonic transposition is achieved at a low additional complexity.
{ "pile_set_name": "USPTO Backgrounds" }
The determination of substances for diagnostic or scientific purposes in liquid test samples by means of agglutination and the inhibition of agglutination of a sentized solid phase, such as red blood cells, colloidal particles, latex or the like is known for more than 20 years. The test proceeds as follows: the solid carrier phase is activated by a binding agent (e.g. tannic acid, glutaraldehyde, difluoro-dinitro benzene) and sensitized by an antigen or an antibody. It may also spontaneously adsorb the sensitizing substance. The sensitized solid phase is mixed with the test liquid containing the soluble antigen or antibody to be determined and with a determined amount of a specific antibody or antigen with which the sensitized solid phase reacts in binding reaction. In the absence of foreign soluble antigen in the test liquid, an antigen-sensitized solid phase will be agglutinated by the specific antibody. In the presence of foreign soluble antigen, the latter will inhibit agglutination of the solid phase. Conversely, an antibody-sensitized solid phase will be agglutinated in the presence of a determined amount of specific antigen absent any foreign antigen and this agglutination will be inhibited when foreign soluble antibody is also present in the reacting medium from the test liquid. This system, commonly referred to as the hemagglutination inhibition test (HAI), is relatively sensitive, but has lately been superseded by more refined techniques amount which radio-immuno-assay is outstanding. Radio-immuno-assays, however, require radioelements, expensive instrumentation and skilled labor, and it would be desirable to improve the HAI tests and increase their sensitivity, so that they can accomplish the same function as radio-immuno-assays at a much reduced cost.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a NAND flash memory device having a memory cell array in which a plurality of electrically-rewritable memory cells are arranged in a matrix pattern. The NAND flash memory device has a memory cell array in which a plurality of electrically-rewritable memory cells are arranged in a matrix pattern and which has a plurality of NAND memory cell units; a plurality of word lines and a plurality of bit lines which are connected to the plurality of memory cells; and a read-write control section which applies a voltage selectively to the plurality of word lines and the plurality of bit lines when writing, reading, or erasure of data into or from the plurality of memory cells is performed. Each of the plurality of NAND memory cell units has a plurality of series-connected memory cells; a first select gate transistor connected between one end of an element consisting of the plurality of series-connected memory cells and the bit line; and a second select gate transistor connected between the other end of the element consisting of the plurality of series-connected memory cells and a source line. The read-write control section applies a high voltage the first select gate transistor, the second select gate electrode, and the memory cells located adjacent to these gate transistors during writing or reading of data to or from the plurality of memory cells. Since the number of times a high voltage is applied is large, a change arises in the distribution of the threshold values of the memory cells, which may in turn induce erroneous writing of data. A device described in Patent Document 1 has hitherto been known as a related-art NAND flash memory device. The related-art NAND flash memory device of Patent Document 1 supplies a word line of a selected memory cell with a write voltage for writing data into the memory cell; supplies a word line of a memory cell—which is located closer to a common source line by N (N is an integer of two or more) as compared to the selected memory cell—with a reference voltage for cutting the memory cell off; supplies respective word lines of N−1 memory cells—which are located between the word line of the selected memory cell and the Nth memory cell—with an auxiliary voltage which is lower than the write voltage; and supplies word lines of the remaining memory cells with an intermediate voltage which is midway between the write voltage and the reference voltage. In the related-art NAND flash memory device of JP-A-2005-108404, erroneous writing of data is insufficient because of miniaturization of the memory cells.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method of controlling the characteristics of a light transmission path such as an optical fiber member or a plane waveguide path which is used in an optical communication device or the like, and an optical filter. More particularly, the invention relates to a method of forming a refractive index distribution in a light transmission path for controlling its transmission and reflection characteristics, and an optical filter having characteristics which can be dynamically controlled. 2. Description of the Background Art In order to form a grating by a permanent fluctuation distribution of a refractive index in a silica optical fiber member for controlling its transmission and reflection characteristics, in general the interference or diffraction of a laser beam has been utilized heretofore. Alternatively, a grating of a permanent refractive index distribution has been formed by intermittently moving an optical fiber member which is irradiated with a laser beam while limiting a region irradiated with the laser beam through a slit. FIGS. 4A to 4C schematically illustrate an exemplary method of forming a permanent refractive index distribution in an optical fiber member through interference of a laser beam. Referring to FIG. 4A, a silica optical fiber member 10 includes a core 1 which is doped with Ge and a clad layer 2 covering the core 1. An ultraviolet laser beam 21 is divided into a pair of laser beams 21a and 2lb by a beam splitter (half mirror) 22. The respective laser beams 21a and 2lb are reflected by total reflection mirrors 23a and 23b, to interfere with each other at the position of the core 1. Namely, the interfering light has an intensity distribution which periodically fluctuates along the longitudinal direction of the core 1, so that a permanent grating la having a refractive index periodically fluctuating along the longitudinal direction of the core 1 is formed by interaction between the interfering light and the Ge material of the core. When light L is incident upon the optical fiber member 10 including the periodic permanent refractive index fluctuation distribution la, a partial light component La which is included in the light L is reflected by the grating la, so that only the remaining partial light component Lb passes through the grating la. FIGS. 4B and 4C are graphs showing the relations between wavelengths .lambda. and intensity values I in the partial light components La and Lb respectively. Namely, the permanent grating la reflects only the light component La of a specific wavelength in the incident light L, and can serve as a kind of filter. FIG. 5 schematically illustrates an exemplary method of forming a permanent refractive index distribution in an optical fiber member through a slit. In the method shown in FIG. 5, an optical fiber member 10 including a core 1 and a clad layer 2 is partially shielded by a pair of slit masks 30a and 30b. The optical fiber member 10 is irradiated with an ultraviolet laser beam which is expressed by arrow 32 through a slit 31 between the slit masks 30a and 30b. At this time, the ultraviolet laser beam 32 has a direction of polarization which is parallel to the slit 31, as shown by arrow 33. Due to such irradiation with the ultraviolet laser beam 32, a permanent high refractive region is formed in the core 1 of the optical fiber member 10 in correspondence to the slit 31. Therefore, a permanent refractive index distribution can be formed similarly to the grating 1ashown in FIG. 4A, by intermittently moving the optical fiber member 10 along its longitudinal direction, as shown by arrow 11. In the method utilizing interference or diffraction of a laser beam included in the conventional methods of forming permanent refractive index distributions in optical fiber members, however, the optical fiber member must be irradiated with a laser beam for at least several tens of minutes in order to form a sufficient permanent refractive index distribution, and it is difficult to stably maintain an optical system for such a longtime for forming an interference or diffraction fringe with no influence by temperature change or external vibration. Namely, the optical system for forming an interference or diffraction fringe for forming a fine grating in the core of an optical fiber member requires fine control, which disadvantageously leads to inferior controllability in the process. On the other hand, the method of forming a permanent refractive index distribution in an optical fiber member through a slit disadvantageously requires an enormous time for forming a grating including hundreds of periodic refractive index fluctuations, although this method does not require an optical system for forming an interference or diffraction fringe. As understood from FIG. 5, only a single refractive index fluctuation can be formed by single irradiation with a laser beam through the slit. Further, an optical filter including a permanent refractive index distribution which is formed by the aforementioned conventional method is a static filter, and it is impossible to change its characteristics after formation of the filter, except for the central wavelength of transmitted light. In order to control the transmission property of a conventional optical filter system, therefore, the optical filter member which is inserted in a light transmission path is mechanically exchanged. Alternatively, mechanical force is applied to a filter forming a permanent periodic structure of a refractive index by irradiation with a laser beam, thereby changing the central wavelength of transmitted light. However, the former method has such problems that the speed of response is so slow that selectable spectra are definite, and high density packaging cannot be attained since a filter exchanger is large-sized. On the other hand, the latter method has such a problem that the speed of response is so slow that only the central wavelength of transmitted light is controllable.
{ "pile_set_name": "USPTO Backgrounds" }
In semiconductor fabrication, semiconductor chips are fabricated together on a single wafer. Fabrication of these chips generally involves forming several different structures on the wafer, including wiring lines, active devices and passive devices. These structures can be fabricated using conventional lithography, etching and deposition processes. Scaling in semiconductor fabrication can be problematic, though, particularly beyond the 10 nm node. For example, in copper damascene processes, grain growth is constrained by narrow trenches into which copper is deposited. However, as pitch size is continually shrinking (e.g., coming closer together), it is becoming ever more difficult to pattern, e.g., cut, the metal lines or other structures in subsequent fabrication processes. For example, with the shrunken pitches, cutting of metal lines may damage neighboring metal lines, particularly since there is no self-aligned scheme available after self-aligned double patterning (SADP) or self-aligned quadruple patterning (SAQP).
{ "pile_set_name": "USPTO Backgrounds" }
The present invention concerns a fluid catalytic cracking process wherein (a) residuum and other heavy oils with high metals contents are cracked to produce useful products, (b) contaminant metals on the catalyst are deactivated and (c) sulfur oxides produced during catalyst regeneration are absorbed by the cracking catalyst in sufficient amount to effect a reduction of sulfur oxides in the flue gas. The catalytic cracking of various heavier mineral hydrocarbons, for instance, petroleum or other mineral oil distillates such as straight run and cracked gas oils; petroleum residues, etc., has been practiced for many years. As is well known, "gas oil" is a broad, general term that covers a variety of stocks. The term includes light gas oil (boiling range 400.degree. to 600.degree. F.), heavy gas oil (boiling range 600.degree. to 800.degree. F.) and vacuum gas oils (boiling range 800.degree. to about 1100.degree. F.). The petroleum residues have a boiling range from about 1100.degree. F. and up. The vacuum gas oils and residuals together represent the atmospheric reduced crude. A residual stock is in general any petroleum fraction with a higher boiling range than gas oils. Any fraction, regardless of its initial boiling point, which includes the heavy bottoms, such as tars, asphalts, or other undistilled materials can be termed a residual fraction. Accordingly, a residual stock can be the portion of the crude remaining undistilled at about 1050.degree.-1200.degree. F., or it can be made up of a vacuum gas oil fraction plus the portion undistilled at about 1050.degree.-1200.degree. F. For instance, a topped crude may be the entire portion of the crude remaining after the light ends (the portion boiling up to about 400.degree. F.,) have been removed by distillation. Therefore, such a fraction includes the entire gas oil fraction (400.degree. F. to 1050.degree.-1200.degree. F.) and the undistilled portion of the crude petroleum boiling above 1050.degree.-1200.degree. F. The behavior of a hydrocarbon feedstock in the cracking reactions depends upon various factors including its boiling point, carbon-forming tendencies, content of catalyst contaminating metals, etc. and these characteristics may affect the operation to an extent which makes a given feedstock uneconomical to employ. Although the cracking catalyst employed can be discarded to prevent a accumulation of poisoning metals in the cracking system, this type of operation represents a substantial cost factor. Improvements in the regeneration of catalysts become even more important as the cost of the catalyst rises and thus the effects of low feedstock quality are less burdensome. Metallic contaminants are found as innate constituents in practically all crude oils. Upon fractionation of the crudes, the metallic contaminants are concentrated in the residua which normally have initial boiling points of about 1000.degree. F. Such residua are conventionally used as heavy fuels, and it has been found that the metal contaminants therein adversely affect the combustion equipment in which the residua are burned. The contaminants not only form ash, which leads to sludging and the formation of deposits upon boiler tubes, combustion chamber walls, the gas turbine blades, but also attack the refractories which are used to line boilers and combustion chambers and severely corrode boiler tubes and other metallic surfaces with which they come into contact at high temperatures. Efforts of petroleum refiners to employ heavier fractions of crude oil for catalytic cracking have been handicapped due to the heavy coke laydowns experienced in cracking such feedstocks. Coke build-up in catalytic cracking is caused by a number of factors. The presence of high-boiling aromatics and other hydrocarbon coke-formers in the feed contribute to excess coke formation. In high boiling feedstocks these problems are severe since these fractions contain higher proportions than conventional gas-oil feedstocks of coke formers and metal contaminants, which diminish the selectivity of the catalyst. The higher boiling fractions of many crude oils contain substantial portions of metal contaminants, particularly nickel and vanadium components. These metals deposit on the catalyst during the conversion processes so that regeneration of the catalyst to remove coke does not remove these contaminants. This catalyst poisoning modifies the selectivity of a cracking catalyst, causing the catalyst to convert part of the hydrocarbons in the feed to hydrogen and coke rather than the desired light hydrocarbon product. In some commercial operations coke production frequently becomes so severe, due to catalyst poisoning, as well as coke-formers in the feed, that the feed rate or conversion must be reduced to maintain operations with the unit limitations. It is to be understood, therefore, that the problems of catalyst contamination and coke formation prevent full exploitation of heavy feeds. Contaminant metals in crudes occur naturally. Although traces of most metals have been found in crude oil, the most abundant heavy metals are vanadium, nickel, iron and copper. These metals are catalysts themselves and catalyze dehydrogenation of hydrocarbons and aromatic condensations when deposited upon the cracking catalyst. Any metal poisons in a fluid catalytic cracker feed, even very small concentrations, will deposit almost quantitatively on the cracking catalyst. These deposits can accumulate to very high levels, eventually causing lowered catalyst performance, increased coke deposits and gas make. A higher level of metals in feeds is a natural result of processing the heavier, more asphaltenic crudes. For instance, the bulk of metals originally present in a crude will eventually become concentrated in residua such as vacuum-tower bottoms. However, gross metals content cannot be used as a measure of contamination since not all deposited metals are equally effective in producing coke and hydrogen. On a weight basis, nickel and copper are the strongest dehydrogenation catalysts, nickel and copper being about four times as strong as vanadium and about six times as strong as iron. (H. R. Grane, et al., Petrol. Refiner, 40, 5, 170) Copper, however, is typically in very low concentration in feedstocks. Iron which is picked up in vessels and lines due to corrosion and erosion is commonly considered as scale or "tramp" metal and has not been considered as a significant catalyst contaminant. It is well-known that freshly deposited metals are more active as poisons than "older" metals that have been subjected to numerous cycles in the regenerator-reactor circuit. Upon exposure to such repeated cycles of oxidation/reduction, the poisoning effects of metals contaminants are slowly diminished, but there are some claims that those metals on zeolite catalysts lose their effectiveness more slowly than those on amorphous catalysts (Oil Gas J. 70, (20), 112 (1972)). Sulfur is also typically present in a reduced crude or residual oil. During the cracking process, some of this sulfur is deposited in the coke which is produced by the cracking process. During the conventional regeneration process sulfur oxides are produced during oxidation of the coke to carbon dioxide. In the residual oil cracking process, the catalyst material is typically withdrawn continuously from the cracking unit and sent to a regenerator where the coke is burned off. High coke yields from cracking residual oils requires removal of a large quantity of excess energy as heat from the regenerator. When the coke is burned in the regenerator, the sulfur content of the coke is converted to sulfur oxides which are emitted in the flue gas and this may necessitate stack gas scrubbing or some other means of control. The contaminant metals remain on the catalyst and continue to catalyze coking-dehydrogenation reactions unless deactivation or removal of these metals takes place. Moreover, although catalytic cracking of residual oils can be more attractive than other processes for utilizing the residual oils, an extremely large economic investment can be required because of the necessity of auxiliary means of removing the excess heat generated by the combustion of the coke in excess of the reactor requirements. An accompanying problem is the economic investment required for regenerator stack gas scrubbing. When this coke is burned in the regenerator of a catalytic cracker, this sulfur is converted to sulfur oxides. Several cracking catalysts have been developed to reduce sulfur oxide emissions in the flue gas emitted from the fluid catalytic cracking unit, obviating the need for a stack scrubber. In order for these sulfur oxide catalysts to function properly, it is necessary to have an excess of oxygen during the regeneration of the fluid catalytic cracker, more oxygen than is necessary to burn all the coke generated by the cracking process. In the prior art, it is well-known that the yield of gasoline in the catalytic cracking process decreases with an increase in the coke factor of a catalyst. Duffy and Hart (Chem. Eng. Progr. 48, 344 (1952)) reported that yields of gasoline, based on feed disappearance, dropped when the laboratory-measured coke factor of a catalyst rose from 1.0 to 3.0 in commercial cracking of a feedstock containing highly contaminated stocks. This decreased gasoline yield was matched by an equal increase in gas and coke, the metal contaminants being nickel and vanadium. It has also been theorized that metal contaminants, such as iron, nickel, vanadium and copper markedly alter the character of the cracking reactions. Connor, et al., I.& E.C., 49, No. 2, 281 (1957) teach that the aforesaid metals, when deposited upon the surface of cracking catalysts superimpose their dehydrogenation activity in the cracking reactions and convert into carbonaceous residue and gas some of the material that would ordinarily go into gasoline. Connor indicates an additional explanation to explain the variables affecting the carbon-producing factors of a contaminated catalyst, namely, that the degree of dispersion of the metal over the surface of the catalyst, the higher the carbon-producing factor. Connor indicates these factors are approximately inversely proportional to initial surface area and that the carbon producing factor increases with the proportion of catalyst surface area covered by the contaminant. However, as noted above, in the case of iron particularly, some of the "tramp" metal originating from corrosion and other foreign sources is relatively inert as a contaminant and does not promote dehydrogenation or affect selectivity (H. R. Grane, et al, Petrol. Ref. 40, No. 5 (1961) 170). The detrimental effect of the so-called "tramp metals" and other metals in dissolved or suspended form in the feedstock or originating in corrosion of equipment can be suppressed by use of a reducing gas on a silica-alumina catalyst. (U.S. Pat. No. 2,575,258). When these metals other than as tramp metals exist in organic forms and in low concentrations, their removal can be extremely difficult without adverse effects on other desirable catalyst properties (Oil & Gas. J., p. 75, Dec. 11, 1961). Grane reported, op. cit, that when catalysts containing these metals are exposed to the alternating oxidizing and reducing cycles of the regenerator and of the reactor, the activity of the metal contaminants in coke formation decreased but that an increase in oxygen from 4 to 21 percent or length or temperature of the regeneration cycle had little effect. A repeat program carried out at 1050.degree. F. instead of 900.degree. F. gave almost the same results. Foster, U.S. Pat. No. 3,122,511, teaches demetallization of a silica-alumina cracking catalyst where the hydrocarbon feed is highly contaminated with nickel, iron and/or vanadium by treating the catalyst with a sulfiding vapor, chlorinating the catalyst, followed by washing with an aqueous medium. Connor, et al., U.S. Pat. No. 3,123,548, teaches removal of metallic impurities from silica-alumina cracking catalyst with use of hydrogen sulfide gas at an elevated temperature, then with molecular oxygen and a suspension of a cation exchange resin in an aqueous medium. Similarly, methods are taught in U.S. Pat. Nos. 3,539,290 (elevated oxidizing temperature and fluid wash); 3,073,675 (an ion-exchange process); 3,162,595 (solvent extraction); French Pat. No. 1,363,355 (an ion-exchange process) (CA, 62, 7563c); Belgian Pat. No. 626,409 (an ion-exchange process) (CA, 60, 9080d); U.S. Pat. No. 3,293,192 (regeneration of zeolite catalysts with steam and/or temperatures of 1300.degree.-1700.degree. F.); U.S. Pat. No. 3,008,896 (regenerating used catalysts from residual oils by a stripping gas or medium); U.S. Pat. No. 3,041,270 (an ion-exchange process). The primary object of this invention accordingly is to provide a fluid cracking process for proper utilization of cracking catalysts used in processing heavy oils such as residual oil, reduced and whole crudes, gas oil, shale oil, etc. wherein metals deposited on the catalyst are rapidly deactivated concurrently with a reduction of sulfur oxide emissions during the fluid catalytic cracking process. Another object of this invention is to provide a process wherein sulfur oxide emissions from the fluid catalytic cracking process are reduced by absorption by the catalyst. Another object of this invention is to provide a process wherein sulfur oxide absorbent cracking catalysts are subjected to an oxidizing atmosphere having an excess of oxygen present. Another object of this invention is to provide a process for the catalytic cracking of heavy, asphaltenic crudes containing high levels of heavy metals. Another object is to reduce the coke factor of the cracking catalyst and thus increase yields of gasoline from the cracking stock. These and other objects and advantages of the present invention will become clear from the following specification. These objects have been attained using the process of the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a junction box and a connector containing a connecting terminal for electrically connecting a fuse or the like to a wiring circuit. More particularly, the present invention relates to a junction box and a connector that are lightweight and low-profiled so as to promote the trend of down-sizing and allow to freely shift the point of connection with external wiring circuit, while showing a high heat emitting effect. 2. Description of the Related Art In general, to branch a wiring of a car or the like, a junction box (J/B) has been used for purposes of space saving and cost reduction. FIG. 23 is a plan view of the junction box, FIG. 24 is a plan view of a bus bar contained in the junction box, FIG. 25 is a sectional view of a part VII of FIG. 23, and FIG. 26 is a sectional view of a part VIII of FIG. 23. This type of a junction box 101 is constituted of a lower cover 102, a bus bar 103 attached to the lower cover 102, and an upper cover 105 which seals the lower cover and bus bar and to which a connector, fuse, and the like are attached. In the junction box 101, as shown in FIG. 24, the bus bar 103 formed, for example, of a pressed/punched metal plate of copper alloy, aluminum alloy, or the like is used to branch the wiring. Moreover, the junction box 101 also includes a function, for example, of a fuse box, when a fuse 108 is incorporated halfway in the wiring circuit constituted by the bus bar 103. A connector 107 shown in FIG. 25 is a connector connected to the wiring circuit constituted of the bus bar 103. A connector 105a can be connected to the connector 107, when a connecting terminal portion 103a formed by bending a tip end of the bus bar 103 upwards by 90° is passed upwards through an upper cover 105 via a through hole 105b formed in the cover. Moreover, for a fuse attachment portion 105c to which a fuse 108 is attached as shown in FIG. 26, a connecting terminal portion 103d is formed by bending the tip end of the bus bar 103 with a slit 103b formed therein upwards by 90°, and is passed upwards through the upper cover 105 through a through hole 105d formed in-the cover. Thereby, the connecting terminal portion can directly be connected to a leg 108a for connecting the fuse 108, or can be connected using a so-called female to female (F—F) terminal. Moreover, as shown in FIG. 27, the bus bars 103 and insulation plates (IP) 109 having functions of supporting and insulating the bus bars 103 are alternately superimposed to form a wiring circuit (multilayered wiring circuit) 110 which has a multilayered structure. A junction box 112 structured to contain the multilayered wiring circuit 110 in a housing for entirely protecting the outside of the circuit as shown in FIG. 28 is frequently used. However, in the above-described junction box 101, the bus bar 103 is manufactured by punching the metal plate with a die and the wiring circuit is formed. Therefore, when the bus bars 103 having various shapes are manufactured, different dies are required, and much cost is taken. Moreover, the bus bar 103 is formed of a thick metal, a weight of the junction-box 101 therefore increases, and there is a problem that it is difficult to thin the junction box 101. Furthermore, in the junction box 112, the number of layers of the multilayered wiring circuit 110 needs to be minimized in order to prevent the weight and cost of the entire junction box from increasing. Additionally, the multilayered wiring circuit 110 having a small number of layers is used in accordance with a connection mode. For this, a circuit is drawn so as to avoid a wiring circuit of another layer and through holes 111 through which the connecting terminal portions 103a, 103d are passed, and a long circuit needs to be formed. This causes a problem that it is very difficult to lighten and thin the junction box 112. Furthermore, since each of these junction boxes 101, 112 has a part thereof that is integral with it and on which a connector or a fuse is mounted, it inevitably shows certain dimensions and hence is subjected to certain restrictions particularly in terms of the position in a car where it is mounted. Additionally, since it has a structure in which the bus bar 103 is contained in a predetermined cabinet to make it show a rather poor heat emitting performance. Therefore, it is difficult to downsize the junction box and make is lightweight and lowly profiled particularly when it is to be used with a circuit adapted to allow a large electric current to flow. Furthermore, since the part on which a connector or a fuse is mounted is integrally formed with it, the operation of connecting the connector of an external wiring circuit to it will have to be carried out only poorly efficiently to baffle the efforts for improving the efficiency when the part, on which a fuse is mounted, is arranged on the front surface of the instrument panel of a car that is provided with a conventional junction box 101 or 112 for the purpose of improving the servicing efficiency.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to medical imaging systems, and more particularly, to systems that display images resulting from scans performed by medical imaging systems. Medical analysis and diagnosis is often performed with medical imaging system having displays to display the results of a scan of a patient. Analysis of the images can be very time sensitive or critical with added time possibly resulting in increased risk to the patient due to the patient condition. This added time can result in increased risk of permanent injury or death. For example, a brain attack is a time critical patient condition where every minute counts. Accordingly, rapidly determining the appropriate diagnosis and treatment path is often critical and can reduce the chances of permanent injury or death. In particular, for a patient showing signs of a possible stroke, it is important to quickly determine whether there is brain hemorrhaging. Increased time in diagnosis can increase the likelihood of permanent injury. If the diagnosis is not correct, for example, if there is no stroke and a patient is given a stroke treatment, serious harm and death can result. Improper diagnosis can lead to improper treatment. Thus, fast and robust diagnosis and appropriate patient treatment helps to ensure improved patient outcomes. Known methods for displaying medical image data to analyze for diagnosing a patient can be difficult to view or navigate, thereby increasing the time for diagnosis. For example, due to the basic complexity of some anatomical regions, such as the brain, existing segmentation techniques do not allow for a clean visualization. Similarly, these systems display a single image in time and may not provide the clinician with all of the information needed for a proper diagnosis. The clinician often has to view different images, which may be on different screens or may not be able to be viewed simultaneously. This increases the difficulty in reviewing and analyzing the images, thereby increasing the time for a proper diagnosis. Thus, known methods and systems for displaying medical images can be difficult to navigate and review. Further, these system can be cumbersome or awkward to use, further adding time before a proper diagnosis. This added time can result in serious consequences.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to the field of telephony, and more particularly to increasing the efficiency of automated telephony systems. In automated telephony systems (called herein automated systems) a problem sometimes arises when a caller is ineffective at using the automated system to process a transaction. (As used herein, the term “caller” includes a called party that may use an automated system or may be put in a queue.) Some examples of transactions that can be processed on an automated system are: a caller's inquiry, an order the caller wishes to place, a desired change to a caller's account, or a billing question, just to name a few possibilities. A common example of an automated system is an interactive voice response system (IVR). The IVR presents audible questions to a caller, and prompts the caller to respond in some way. Two examples of ways for a caller to respond to the prompts of an IVR system are: (1) by speaking in conjunction with an automated speech recognition (ASR) system, and (2) by using a telephone keypad response system. (The term “telephone keypad” as used herein refers to any device which is contacted to transmit a response.) Using an ASR system, the caller responds by verbalizing his or her answer. Using a telephone keypad response system, the caller responds by pressing a number or symbol on his or her telephone keypad. Other automated systems and ways to answer prompts of an automated system can be envisioned by one of ordinary skill in the art. The problem of ineffectively processing a transaction on an automated system can arise, for example, when an ASR system has difficulty understanding the verbalized response of the caller. On the telephone keypad response system, the problem can arise when the caller presses a button that is not an acceptable response. These mistakes require that the caller repeat the input step in order to try to elicit a response that the automated system will understand and accept. Requiring the caller to repeat his or her input takes up extra time of both the caller and the automated system and furthermore may frustrate the caller. To limit the extra use of time of the caller and the automated system, a typical practice is to use a mistake counter which keeps count of the total number of re-promptings. Upon reaching a certain threshold, the caller is transferred to a live operator (called herein an agent). Not only is this practice beneficial to a caller, but it saves time for the company, as after a certain point, the probability of a successful automatic transaction becomes diminishingly small, and thus further re-prompting is usually ineffective. In these systems, the same threshold for number of re-promptings required before the call is transferred is used in all situations. However, there is a problem with the current mistake counter practice described above. It is common for some callers to have problems when first interacting with the system, but then they become more proficient and are able to complete the remainder of the dialog successfully without error. The mistake counter which does a simple count may result in the forfeit of an opportunity for successful automation. A further consideration is that a caller may be a repeat customer. If so, then the caller's history of successes or failures utilizing the automated system could be helpful in determining if the current call is likely to proceed successfully. For example, if the caller is currently struggling with a step that he or she has previously navigated successfully, transferring the caller too quickly may again result in the forfeit of an opportunity for successful automation. U.S. Pat. No. 6,411,687 (hereinafter '687) generally involves a method of routing a call received by a call center. The call is first transferred to an automated system where information about the call is elicited from the caller. As the caller gives responses to the questions, a behavioral response device analyzes the caller's response according to predetermined criteria to identify callers having certain behavioral characteristics. When these behavioral characteristics are identified, one of two approaches is taken. One approach is to route the caller to an agent that is best trained for handling that kind of call. A second approach is to alert the standard agent who normally receives incoming calls that there is a caller with special needs on the line. With this pre-warning, the agent could adapt his or her style to match the needs of the caller. However, in this art at all calls are directed to some sort of agent, whether a typical agent or a specialized agent. Thus, the automated system does not reduce the number of callers that must speak to an agent. Rather, the automated system, at most, just sorts the received calls. U.S. Pat. No. 6,584,180 (hereinafter '180) involves processing a call on an automated system—specifically an ASR system. It involves allowing a caller to complete their call on the ASR system, even when the system encounters difficulty in understanding the caller's response. The ASR receives a voice response from the caller, synthesizes the response, and then sends back the response to the caller for confirmation that the voice input was correctly recognized. If the caller responds negatively to the confirmation message, the ASR system plays the previously received voice input from the caller as audio to an agent serving the role as a screener interface. The screener listens to the audio and enters what he or she thinks is the caller's response. The screener's response is synthesized into a voice response message by the ASR and transmitted to the caller for confirmation. Only if the caller responds negatively to the screener's interpretation of the caller's message is the call switched to an operator for manual handling of the caller's special problem. Otherwise, the caller continues utilizing the ASR system until call completion or until another problem arises. However, in this art, when a problem arises, there is still a need for human interaction at a call center or the like in order to keep a caller on the ASR system. Furthermore, the complete confirmation loop is quite time intensive. Additionally, this art can only be used on an ASR system, but is not applicable to an IVR that utilizes a telephone keypad for caller input. AT&T has developed and implemented a system called “How may I help you?” (hereinafter “HMIHY”) which utilizes natural language understanding (NLU) technology. Instead of a caller listening to a series of voice prompts and determining the appropriate response, the HMIHY system lets a caller respond directly to a question such as, “How may I help you?” The NLU technology enables the system to: (1) understand a caller's response, (2) route a caller to the appropriate personnel, and (3) ask the caller additional questions when more information is needed. However, when the HMIHY system does not understand a given response the system must repeat instructions or try to illicit information in some other way. When reaching a standard threshold value for the number of mistakes, the call is transferred. By using only one threshold value, a caller may be transferred either prematurely or after too long of a delay. Thus, a problem that emerges from the art is having only a single threshold for measuring when a user is unsuccessful at processing his or her call on an automated system. For example, the system may measure how many mistakes the caller makes—an “inefficiency metric”—and have only one threshold for that metric, i.e., ten mistakes. Accordingly, in this example, all calls will be transferred to a live agent when any caller makes ten mistakes. Having only a single threshold for all situations can make a call center unresponsive to the various needs of different callers. Thus, at least one of two main goals of a call center—maximizing its efficiency and insuring customer satisfaction—will likely not be met.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to Ethernet networks and, more particularly, to a system and method for enabling energy efficient Ethernet networks with time-sensitive protocols. 2. Introduction Energy costs continue to escalate in a trend that has accelerated in recent years. Such being the case, various industries have become increasingly sensitive to the impact of those rising costs. One area that has drawn increasing scrutiny is the IT infrastructure. Many companies are now looking at their IT systems' power usage to determine whether the energy costs can be reduced. For this reason, an industry focus on energy efficient networks (IEEE 802.3az) has arisen to address the rising costs of IT equipment usage as a whole (i.e., PCs, displays, printers, switches, servers, network equipment, etc.). In designing an energy efficient solution, one of the considerations is network link utilization. For example, many network links are typically in an idle state between sporadic bursts of data traffic. An additional consideration for an energy efficient solution is the extent to which the traffic is sensitive to buffering and latency. For example, some traffic patterns (e.g., HPC cluster or high-end 24-hr data center) are very sensitive to latency such that buffering would be problematic. The application itself can also be a significant consideration. For example, one level of analysis can consider whether the application is a home network, service provider, enterprise, or a data center. The analysis can go deeper still by examining scenarios such as the type of network element within a given application. For example, the analysis can consider whether it is a gateway or a switch in a home network, or can consider whether it is a wiring closet or aggregation point in an enterprise network. The particular use of the network element can also be considered, such as whether it is an audio-video bridging switch for the home running a streaming application.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method and apparatus for removing contaminants from a surface. More particularly, the invention relates to the removal of contaminants from a substrate surface through the application of energy from a high-energy source while the molecular crystal structure of the surface being treated is preserved. Surface contaminants include discrete pieces of matter that range in size from submicrons to granules visible to observation with the eye. Such contaminants may be fine dust or dirt particles or unwanted molecules comprised of elements such as carbon or oxygen. Contaminants frequently become adhered to a surface by weak covalent bonds, electrostatic forces, van der Waals forces, hydrogen bonding, coulombic forces or dipole-dipole interactions, making removal of the contaminants difficult. In certain instances, the presence of surface contaminants renders the contaminated substrate less efficient or inoperable for the substrate's designated purpose. For example, in certain precise scientific measurement devices, accuracy is lost when optical lenses or mirrors in the devices become coated with microfine surface contaminants. Similarly in semiconductors, surface defects due to minor molecular contaminants often render semiconductor masks or chips worthless. Reducing the number of molecular surface defects in a quartz semiconductor mask by even a small amount can radically improve semiconductor chip production yields. Similarly, removing molecular surface contaminants, such as carbon or oxygen, from the surface of silicon wafers before circuit layers are deposited on the wafer or between deposition of layers significantly improves the quality of the computer chip produced. The need for clean surfaces free of even the finest contaminants has led to the development of a variety of currently used surface cleaning methods. These known methods, however, each have their own serious drawbacks. For example, widely used chemical and mechanical cleaning techniques require the use of cleaning tools and agents that can introduce as many new contaminants to a treatment surface as they remove. Another currently used method for cleaning substrate surfaces without outside agents requires that the treatment surface be melted to release contaminants which are then removed by ultra high vacuum pressure. This method has the disadvantage that the surface being treated must be briefly melted which may be undesirable, as for example when a semiconductor surface is cleaned between deposition of circuit layers and it is desired that the integrity of the previously deposited layers not be disturbed. A further disadvantage with this process is that ultra high vacuum equipment is both expensive and time consuming to operate. Annealing treatment methods suffer similar drawbacks. When a surface is cleaned by annealing methods, the treatment surface of the substrate being cleaned is heated to a temperature that is generally below the melting point of the material being treated but high enough to enable rearrangement of the material's molecular crystal structure. The surface being treated is held at this elevated temperature for an extended period during which time the surface molecular crystal structure is rearranged and contaminants are removed by ultra high vacuum. Annealing cleaning methods cannot be used where it is desired to preserve the integrity of the existing structure being cleaned. Another currently utilized cleaning method, known as ablation, suffers from its own particular drawbacks. With ablation, a surface or contaminants on a surface are heated to the point of vaporization. Depending on the material being ablated, the material may melt before being vaporized or the material may sublimate directly on heating. With ablation cleaning techniques, if damage to the treatment surface is to be prevented, the ablation energy must be exactly aimed toward contaminants rather than the surface on which the contaminants lie, a difficult task when the contaminants are extremely small or randomly spaced. Even where the ablation energy can be successfully directed at a contaminant, it is difficult to vaporize the contaminant without also damaging the underlying treatment surface. Surface cleaning by melting, annealing and ablation can be conducted with a laser energy source. However, using a laser energy source to remove contaminants from a surface by melting, annealing or ablation does not overcome the inherent disadvantages of these processes. For example, in U.S. Pat. No. 4,292,093, "Method Using Laser Irradiation For the Production of Atomically Clean Crystalline Silicon and Germanium Surfaces" the laser annealing method disclosed requires both vacuum conditions and energy levels sufficient to cause rearrangement and melting of the treatment surface. Other known laser surface cleaning methods involving melting or annealing require similar high energy lasing and/or vacuum conditions, as disclosed in U.S. Pat. Nos. 4,181,538 and 4,680,616. Similarly the laser ablation technique disclosed in U.S. Pat. No. 3,464,534, "Laser Eraser" suffers the same drawbacks as other high energy ablation methods. Accordingly, it is an object of the invention to provide a method and apparatus for removing contaminants from a substrate surface that does not alter the molecular crystal structure of the surface being treated. It is another object of the invention to provide a method and apparatus for removing contaminants from a treatment surface that does not melt or vaporize any portion of the surface being treated. It is another object of the invention to provide a method and apparatus for removing contaminants from the surface of a substrate that introduces no additional impurities to the substrate surface. It is a further object of the invention to provide a method and apparatus for cleaning a substrate surface that does not require a vacuum and can be conducted economically in a very short period of time. Additional objects and advantages of the present invention will be set forth in part in the description that follows and in part will be obvious from the description or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by the method and apparatus particularly pointed out in the appended claims.
{ "pile_set_name": "USPTO Backgrounds" }
Telecommunications is a rapidly changing field of technology. Consequently, the field of telecommunications is replete with prior art references that show advancements in most every piece of equipment associated with the telecommunications industry. The most noticeable advancements to the field of telecommunications may be those occurring to the simple telephone. In recent years, the telephone has undergone a transformation from a simple way to communicate to a far more sophisticated apparatus that utilizes multimedia technologies. With the advent of cellular telecommunications networks, portable telephones and car telephones have become commonplace. Similarly, with the advent of facsimile transmission technology, "fax" machines have become commonplace, as are telephones integrated with fax machines. However, telephones are no longer being considered just voice or facsimile transmitters and receivers. Rather, telephones are now being integrated into highly sophisticated portable computers, thereby transforming the simple telephone into a more versatile multimedia device. For instance, certain telephones are being manufactured with large display screens and sophisticated microprocessors that store and run complex software. As such, the person may use the device either as a telephone or as a personal computer, running any software currently available. Such software is capable of creating complex graphic images on the display screen of the device, wherein, with a few simple commands, the information on the display screen can be transmitted as a facsimile transmission. Similarly, any such prior art device can receive facsimile transmissions sent to it, via a cellar telecommunication network or a hard-wire telephone line interface. Such portable devices that are part telephone, part facsimile machine and part personal computer are sometimes referred to as personal digital assistants (PADs) an example of which is being sold by A.T.&T. under the mark EO 440 Personal Communicator. A listing and description of most commercially marketed portable handheld computer devices with pen-write screens is made in an article by Christopher Barr et al. entitled Pen Pals, PC Magazine Volume 12, Number 17 pgs. 116 et seq. (October 1993). Although the innovations in telephone equipment technology result in a far more versatile and useful telecommunications tool, the products currently being produced do contain certain disadvantages. For instance, many prior art multimedia telephones require a special stylus to create graphic images on the electronic display of the device. As a result, there is no hard copy of what is being entered onto the electronic display. Consequently, to obtain a hard copy of what is shown on the display, the device must be either coupled to a printer or the information downloaded to a disk which must then be taken to another computer and printed. It is conceivable that such prior art multimedia devices may have the capacity to print directly on to paper, much in the same way that facsimile machines print onto paper. However, such multimedia devices are typically portable and lightweight. As a result, the ability to retain a removable amount of paper is limited, as is its ability to drive a high quality printing head. In the prior art, the electronic display of many multimedia telephones are typically liquid crystal displays (LCDs). LCDs do not have a high degree of resolution. As a result, the graphical image produced on the LCD is often not clear. Additionally, very small details or text written in small fonts are often illegible when displayed on an LCD. As a result, if a complex document or blueprint is being viewed or faxed, important information may be lost by the deficiencies of the resolution in the screen. Another deficiency of LCDs is that the image they produce is typically distorted as the LCD is touched. Since the LCD is being written upon by a stylus, the pressure of the stylus may distort the image being displayed, thereby causing difficulties in producing graphical images of exacting detail. Another problem with prior art multimedia telephones is that it only has a single screen. Many documents, facsimile transmissions and the like are several pages long. As a result, only one page at a time can be displayed. To produce hard copies of the pages, each page must be downloaded to a printer. Since multimedia telephones are portable, hard copies of the image on the electronic display can be made by photocopying the display. However, the LCD displays do not always provide a great contrast between the background and the image. Consequently, the photocopied image is not always clear. Additionally, although multimedia telephones are portable, they are far from flat. It is therefore difficult to properly place the display of such a device upon a photocopy machine. The present invention provides improvements to the art of multimedia telephones by providing a tactile screen that enables a piece of paper to be placed over the screen and written upon by an ordinary pen or pencil. As a result, a simultaneous hard copy can be obtained on paper of what is being entered into the electronic display. Furthermore, the electronic display is not distorted by tactile pressure. Consequently, the pressure of a pen or pencil on the screen would not distort the image displayed. Electronic displays that utilize pads capable of being engaged by an ordinary pen or pencil are known in the art as exemplified by U.S. Pat. No. 4,963,8591. Parks entitled METHOD AND APPARATUS FOR CAPTURING INFORMATION IN DRAWING OR WRITING, and U.S. Pat. No. 4,980,646 to Zemel, entitled IMPEDANCE TOMOGRAPHIC TACTILE SENSOR. However, such tactile pads are not adapted for use with displays of a high resolution since the resolution of the tactile pad is typically far inferior to the resolution of the display, thereby adversely effecting the performance of the display. Furthermore, these tactile pads are not transparent and cannot be used over an electronic display. It is therefore an object of the present invention to provide a multimedia telephone with a tactile pad that has a resolution that is at least as great as the resolution of the display itself. As such, the image produced on the display is not adversely affected by the resolution of the tactile pad being engaged. It is a further object of the present invention to provide a multimedia telephone device with a removable electrophoretic display, wherein the display can be removed, photocopied and returned to the telephone without loss of the image on the display.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates in general to automotive air conditioning devices, and more particularly to the automotive air conditioning devices of a type which has a plurality of doors (or dampers) for providing a plurality of air conditioning modes. 2. Description of the Prior Art In order to clarify the task of the present invention, some conventional automotive air conditioning devices will be briefly described. One of them is shown in Laid-open Japanese Utility Model Application (Jikkai) 63-152708. The device of the publication has an air mix door and a temperature difference compensating door. That is, the known device comprises a case having an air flow passage including an upstream part and first and second downstream parts which are branched from the upstream parts. The first and second downstream parts extend to an air mix chamber. An evaporator is installed in the upstream part of the air flow passage to cool air passing therethrough and a heater core is installed in the first downstream part of the air flow passage to heat air passing therethrough. A bypass passage extends from a part of the second downstream part to a downstream portion of the air mix chamber. An air mix door is pivotally installed in the air flow passage at the entrance portions of the first and second downstream parts and a temperature difference compensating door is installed in the bypass passage. The air mix door is pivotal between a hot air flowing position where the door opens the first downstream part while closing the second downstream part and a cool air flowing position where the door opens the second downstream part while closing the first downstream part of the air flow passage. The temperature difference compensating door selectively closes and opens the bypass passage. The bypass passage is provided at a position downstream of the temperature difference compensating door with both a ventilation opening and a defroster opening. These openings are provided with respective open/close doors (viz., ventilation door and defroster door). A foot opening is exposed to the air mix chamber, which is provided with an open/close door (viz., foot door). The ventilation opening is used for letting out the conditioned air toward a major or center part of the vehicle cabin, and the defroster opening is used for letting out the conditioned air toward .ang. windshield of the vehicle. The foot opening is used for letting out the conditioned air toward a lower portion of the vehicle cabin. Based on the parts-arrangement of the above-mentioned conventional air conditioning device, the following two air conditioning devices "A" and "B" have been hitherto proposed, one "A" being a device which has the temperature difference compensating door linked to the air mix door, and the other "B" being a device which has the temperature difference compensating door linked to the ventilation door, the defroster door and the foot door. The following tables "Table-1" and "Table-2" show various conditions (or positions) of the temperature difference compensating doors employed in the above-mentioned devices "A" and "B" respectively. TABLE 1 ______________________________________ Device-A VENT B/L HEAT H/D DEF ______________________________________ M/COOL O O O O O 1/2 HOT C C C C C M/HOT 20.degree. 0 20.degree. O 20.degree. O 20.degree. O 20.degree. O ______________________________________ TABLE 2 ______________________________________ Device-B VENT B/L HEAT H/D DEF ______________________________________ M/COOL O 5.degree. O C C 20.degree. O 1/2 HOT O 5.degree. O C C 20.degree. O M/HOT O 5.degree. O C C 20.degree. O ______________________________________ In the tables, "VENT", "B/L", "HEAT", "H/D" and "DEF" represent ventilation, bi-level, heat, heat/defrost and defrost modes respectively. "M/COOL" represents a maximum cool condition provided when the air mix door opens the second downstream part of the air flow passage while closing the first downstream part of the air flow passage. "1/2 HOT" represents a half-hot condition provided when the air mix door halfly or partially opens both the first and second downstream parts of the air flow passage. "M/HOT" represents a maximum hot condition provided when the air mix door opens the first downstream part of the air flow passage while closing the second downstream part of the air flow passage. "O" represents a condition wherein the temperature difference compensating door fully opens the bypass passage, "C" represents a condition wherein the temperature difference compensating door fully closes the bypass passage and "5.degree. O" or "20.degree. " represents a condition wherein the temperature difference compensating door partially opens the bypass passage, that is, by an angle of about 5 degrees or 20 degrees. As is seen from Table-1, in the device "A", in the half-hot condition "1/2 HOT", the temperature difference compensating door assumes its close position (viz., closes the bypass passage) irrespective of the mode taken by the device. Thus, in each mode of the half-hot condition, the warmed air passing through the first downstream part of the air flow passage and the cooled air passing through the second downstream part of the air flow passage are mixed in the air mix chamber. This means that, in the ventilation mode of the half-hot condition "1/2 HOT", temperature-controlled air can be led into the vehicle cabin from the ventilation opening. However, due to its inherent construction, in the bi-level mode of the half-hot condition "1/2 HOT", it has been difficult to provide an appropriate temperature difference between the temperature-controlled air blown from the ventilation opening and the temperature-controlled air blown from the foot opening. That is, in such mode, a desirable air conditioning wherein the passenger's heads are suitably cooled and the passenger's feet are suitably warmed is not obtained. As is seen from Table-2, in the device "B", in the ventilation mode "VENT", the temperature difference compensating door takes its open position (viz., opens the bypass passage) throughout the "M/COOL", "1/2 HOT" and "M/HOT" conditions. That is, the temperature difference compensating door takes the open position irrespective of the position of the air mix door. This means that, in the ventilation mode of the maximum cool condition "M/COOL", the air flow resistance exhibited by the temperature difference compensating door is low and thus satisfied amount of air is blown into the vehicle cabin from the ventilation opening. Thus, in hot season like summer, a larger amount of cooled air can be led into the vehicle cabin from the ventilation opening, which makes the passengers comfortable. However, due to its inherent construction, in the ventilation mode of the half-hot condition "1/2 HOT", mixing of cooled air and warmed air is not effectively carried out before being blown into the vehicle cabin. This is because part of the cooled air passing through the second downstream part of the air flow passage bypasses the air mix chamber.
{ "pile_set_name": "USPTO Backgrounds" }
In order to ensure a stable work state of an electronic device, the electronic device needs to be sealed with a sealing glass paste. Glass materials are common sealing materials. The sealing process mainly includes: 1) producing a glass material into glass powders and then into a glass paste; 2) coating the glass paste on the joints; 3) heating and burning out the carrier material in the glass paste; 4) melting the glass paste in which the carrier material has been removed using a heat source, to seal the device. Currently, the melting in step 4) is carried out mostly by using laser heat melting method, that is, by using laser energy to heat the glass paste.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a heating system, and more particularly to a heating system particularly adapted to greenhouses. Traditional greenhouse structures, consisting of transparent panes of glass forming a roof to enclose a growing area, drawing air from the outside and having a heater for winter months, while adequate for many purposes, possess many shortcomings which make them unsuitable for year-round production of many types of fruits and vegetables in certain climatic conditions, e.g. in far Northern or far Southern climates where temperature and light conditions may be poor. For example, conventionally the heater is an oil or gas-fired heater, with piping for the oil or gas, and conduits for exhaust gases and heated air all being above the floor level of the greenhouse thereby creating potential shadows and blocking the passage of natural light to the plants. In addition, because such greenhouses often are not well sealed against the outside environment, unsuitable temperature differentials may be created within. As well, outside air which may contain substances which are not conducive to proper growth of plants, is permitted to enter. Also, by-products from the heater system, may be present in the environment within such greenhouses again causing reduced plant growth. There is an increasing awareness of the detrimental impact of impurities in the air on plant growth. Patents of general background interest describing different types of greenhouse structures include Canadian Pat. No. 1,097,075 of Miller issued Mar. 10, 1981 (nutrient supply system for a controlled environment agricultural installation), Canadian Pat. No. 982,426 of Delano et al issued Jan. 27, 1976 (method of controlling amount of solar heat and light entering a greenhouse wherein the windows of the greenhouse are coated with a plastic film which is transparent under certain conditions and non-transparent under others), Canadian Pat. No. 955,748 of Glady et al issued Oct. 8, 1984 (reduction of the contact angle of water condensate droplets formed on the inner surface of greenhouse windows by coating that inner surface with a surface-active agent), U.S. Pat. No. 4,195,441 of Baldwin issued Apr. 1, 1980 (solar greenhouse in which plants are used as solar collectors to absorb solar radiation and store it in a heat reservoir beneath the greenhouse) and U.S. Pat. No. 4,352,256 of Kranz issued Oct. 5, 1982 (greenhouse structure including a central hub and arms comprising growth chambers extending radially outwardly therefrom). Other patents of general background interest relating to heating systems for buildings include Canadian Pat. No. 848,301 of Bryant issued Aug. 4, 1970, Canadian Pat. No. 1,189,840 of Dirkes issued July 2, 1985 and U.S. Pat. No. 2,559,868 of Gay issued July 10, 1951. It is an object of the present invention to provide a heating system which is particularly well-suited for greenhouses, which will provide clean air conditions within the greenhouse space, provide efficient transfer of heat as required to the greenhouse plants and which will not obstruct solar radiation passing to the plants within the greenhouse.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to segmentation of brain structures in medical image data, and more particularly, to a method and system for multi-atlas segmentation of brain structures and cerebral vessel territories in brain computed tomography (CT) image data. Brain CT imaging plays an important role in clinical disease diagnosis. In particular, detection of morphological signatures in brain CT images provides useful information for diagnosing brain disease. For example, ischaemic strokes are due to an interruption in the blood supply to a certain area of the brain, which leads to ischaemia, infarction, and eventual tissue necrosis. The changes can be interpreted and localized in brain CT images for early diagnosis. The quantitative analysis of brain CT images typically requires segmentation of brain structures and vessel territories. Reliable and accurate segmentation of vessel territories are desirable to help localize cerebrallesion in brain CT images in order to diagnose cerebral infarction. Although there have been many studies on segmentation of brain magnetic resonance imaging (MRI) data, vessel territory segmentation in CT image data is far less studied. Accordingly, a reliable and accurate method for segmentation of vessel territories in brain CT image data is desirable.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a lock-down device for all-terrain vehicles, more specifically to a device for securing the rear tires of an all-terrain vehicle against movement. 2. Description of the Prior Art All-terrain vehicles (“ATVs”) are a popular accessory for many homeowners and outdoor sportsman. The ATVs are often stored in garages and transported on trailers or on the beds of pick-up trucks. These raise two concerns. For one is owners of the ATVs are concerned about security, theft or unauthorized movement of the ATV by others. They are also concerned about movement of the ATV when in a truck bed or trailer while transporting the ATV. To alleviate these concerns, ATV owners seek means to secure an ATV to a floor or to a vehicular bed to prevent any undesired movement, either by unauthorized persons or during transport. Various devices are currently available that serve one or both of these desires. For example, U.S. Pat. No. 3,581,846, issued to Januo on Jun. 11, 1971 for a Safety Locking Block Device for Wheeled Vehicles, discloses a pair of blocks which clamp to the front and rear surfaces of a tire. However, this apparatus provides no means for securing to a floor or vehicle bed. U.S. Pat. No. 5,375,442, issued to Hammer on Dec. 27, 1994 for a Clamp Assembly for a Trailer for Like Wheeled Vehicle, provided for an apparatus that clamped onto the wheel of a trailer or vehicle. However, this apparatus would still permit approximately ¾ rotation of the wheel, which may be unacceptable in transport situations. The apparatus is also unusable on solid wheel rims which are commonly used on ATVs and small tractors. U.S. Pat. No. 5,593,260, issued to Zimmerman on Jan. 14, 1997 for an Apparatus for Securing a Vehicle to a Trailer, provides an apparatus with two bars that clam around a tire of an ATV and are held in place by a chain. However this mechanism can easily be defeated simply by temporarily deflating the tire and removing the chain. U.S. Pat. No. 5,724,839, issued to Thering on Mar. 10, 1998, for a vehicle Locking Means with Wheel Clamps, provides an apparatus similar to a bar clamp which clamps to the outer sides of the wheels of an ATV. This device would permit approximately a ½ rotation of the wheels and cannot be secured to the floor or truck bed. Finally, U.S. Pat. No. 6,000,255, issued to Lester on Dec. 14, 1999 for an Anti-Theft Device for All-terrain Vehicles. However the entire device must remain in place and creates an obstruction of use of the space occupied by the apparatus.
{ "pile_set_name": "USPTO Backgrounds" }
In order to seal bell-and-spigot type pipe connections on concrete-pipes, a so-called roll-in joint is still generally used in practice. The sealing ring is mounted on the spigot and pushed into the bell together with spigot, causing the ring to roll in until it reaches roughly the center of pipe connection. Uneveness along the rolling paths might impede uniform rolling of the sealing ring causing local distortion and reduction in diameter, which in turn might give rise to leakages. Furthermore, thinned sections of sealing rings have become lengthened and might protrude into the gap at the front face of the spigot with the consequence of total loss of sealing effect. With sliding joints the seal is backed-off by a shoulder on the spigot as shown in FIG. 2 of European patent application No. 16,275, and a lubricant is used for easing assembly of the pipes and preventing abrasion. A disadvantage arises in certain applications causing the lip to be relieved when the pressure inside the pipeline builds up. There is also the possibility of fixing the sliding seal in the bell, as shown in German patent application No. 29 35 392, whereby the seal is applied as a permanent insert when the pipe is cast. During production it can happen that water seggregating from the fresh concrete accumulates between the seal and its seat, leaving behind an airpocket after evaporating. After such pipes have been laid for the purpose of conveying fluids, the latter can escape through the pockets, seeping out round the back of the seal. A further disadvantage is the fact that the sealing element material ages if stored for a long time and the avoidable storage of seals ties up capilal unnecessarily. Elastomer, though a very effective material for seals, is deleteriously influenced by oxidants, particularly by ozone. Another drawback arises when concrete pipes are being manufactured with constantly deviating dimensions. In that case the integrated seal is either over- or undersized with regard to the seal gap size. With yet another sliding seal installed in the socket, as shown in FIG. 5 of European patent No. 16,275, the sealing element is provided with a retainer having an extended diameter which is seated in a recess or groove inside the socket. The sealing lip is situated radially opposite to the retainer and faces the fluid to be sealed. Growing internal pressure also increases the radial pressure on the sealing lip. The production of concrete bell-pipes comprising a recess or groove is not described; since reference is made to clay pipes, it is assumed that the groove is pressed into the workable clay prior to burning. This method cannot be adapted to concrete pipes. Deviations from nominal dimensions frequently occur with concrete pipes. Each batch is either too thick or too thin so that a specific seal size is not sufficient to cover a nominal size range on concrete pipes. An object of the invention is to find a production method for concrete pipes with which the seal may be mounted in the bell as soon as the concrete-mixture is cured or relatively late, if necessary, immediately prior to pushing the pipe ends together, depending upon the manufacturer's choice. A further object of the invention is to make it possible to select appropriately sized seals to suit individual batches. Still a further object is to allow the concrete pipes to be suitable for adapting different types of seals, i.e. sliding joints, roll-in joints. Concrete pipes are normally cast with the bell at the bottom, whereby "cast" implies any kind of placement and compaction method used in order to charge the mould with concrete. The mould usually comprises a tubular outer mould and a core consisting of a tubular inner wall and a so-called base-ring, herein termed the bell-forming core.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to the field of electromagnetic waves, and more particularly to object identification using electromagnetic waves. Electromagnetic (EM) waves are synchronized oscillations of electric and magnetic fields that can be characterized by either the frequency or wavelength of their oscillations to form the electromagnetic spectrum. Many electrical and electromechanical objects emit small amounts of EM noise during operation. When a person makes physical contact with such an object, this EM noise propagates through the person because of the conductivity of the human body. A sensor worn by the person can detect the EM noise and identify the object that emitted the noise.
{ "pile_set_name": "USPTO Backgrounds" }
Various means have been used in the past to activate an explosively actuated valve. The problem with prior art devices has been that the initiation of the explosive charge generally required either an electrically operated squib, a spring loaded firing pin to initiate a primer either manually or remotely, or an inertia or environmental means to trigger an actuating mechanism. These aforementioned types of initiating means were generally cumbersome to install, often too large to use in confined spaces, expensive to produce, and in some instances lacked the ability to act without significant delay or expended substantial energy. Another problem with prior art devices used to initiate explosive valves was their inability to contain the products of combustion used to initiate the explosive valve. A further problem with prior art flueric initiated devices was their inability to rapidly cut off the supply of the fluid power source.
{ "pile_set_name": "USPTO Backgrounds" }
It is well known in the Internet industry that some of the primary benchmarks by which online websites are measured include: a) ability to attract new visitors; b) visitor time/interaction on site or with the content; and c) user (subscriber) retention rate. With respect to the first benchmark, the current emphasis in research is on developing computing systems that are more effective at attracting visitors through enhanced user targeting, optimized content, customized engagement, etc. Conventionally this is done through targeted advertising to customized audiences (i.e., particular demographics, particular interests) which attempts to engage users and deliver eyeballs to the site/content in question. In other words, an outdoor activities magazine publisher may try to attract subscribers by delivering ads to social network members of a particular gender, age, location who have identified “camping” as an interest. But current targeted advertising algorithms have limited effectiveness, even when those algorithms have access to a user's social/interest graphs. In other words, the measured click through rate (CTR) of current techniques is usually small, and/or the ratio of impressions to actions is small. As research has revealed, the CTR can be as low as 0.01% for most ads. Some social network sites have improved this rate by placing advertising content directly in user newsfeeds, instead of in typical side banner locations. In today's market, it is desirable to achieve significantly higher rates (on the order of 4-5%). The cost to achieve these rates may be high, because cost is based on charging per click (CPC) (or some other engagement) or per impression (CPM). A recent report by SalesForce.com, Inc., (SalesForce.com, Inc., “The Facebook Ads Benchmark Report,” Internet. Available at https://www(dot)salesforcemarketingcloud(dot)com/wp-content/uploads/2013/06/The-Facebook-Ads-Benchmark-Report.pdf. June, 2013.), the contents of which are incorporated by reference in their entirety, discusses these factors. A notable result of this survey is the fact that computing systems configured to deliver certain types of ads (Sponsored Page Post Like Story) achieve more than 100 times better engagement rates than systems that only present conventional external website ads. These more effective types of ads incorporate content directly about a specific social network user and a specific merchant and are broadcast to members of the user's social graph. Thus for a social networking site, or content publishing site, acquiring new users/customers solely through current advertising computing techniques is unpredictable, inefficient and expensive. The second metric that conventional computing systems are measured against is their ability to engage and maintain user interest after users arrive at the Internet property/document. This benchmark is typically measured by monthly/daily active users based on time spent on site/session, actions taken, and so on. For example, Twitter (one social networking site) measures the number of timeline views for each user. In the case of Facebook, another social networking site, an active user is defined as a person who took an action to share content or activity with another friend. Other engagement metrics include statistics such as bounce rate; pages or content views per visit; number of shares of content per visit; average visit time on site, and so on. When a computing system is able to engage and retain a user's attention longer, the result is site bonding, opportunities for presenting advertising, new content, etc. Again, with all things being equal, systems that increase these figures relative to other systems are demonstrably more useful and desirable. Finally, another metric is user retention rate, meaning, if a user is a member or subscriber, how well does the site's engagement logic retain such members? One standard benchmark measures such basic information as the number of members at the beginning of a period, the number of members at the end, and the number of new members. From these pieces of information, an online entity can compute basic benchmarks like retention rate, churn, etc. A recent article by Seufert (Seufert, B. “Minimum Viable Metrics for Mobile,” Internet. Available at http://mobiledevmemo(dot)com/minimum-viable-metrics/, Feb. 5, 2013), the contents of which are incorporated by reference in their entirety, provides a good summary of these metrics. The Seufert article makes mention of another parameter, too, called “virality,” which is a key metric for mobile applications (“apps”). Generally speaking, one wants users to spread the adoption of apps through sharing, and this is measured by computing the average number of additional users each user introduces to the app. Achieving good virality figures is important because it substantially reduces the cost of advertising and overall user acquisition costs. As above, one focus of current research is on developing new computing systems which improve these figures compared to their predecessors. It would be desirable, therefore, to develop new computing systems which improve the above metrics. Industries which have particular needs for improving their computing systems to perform better under these benchmarks include social networks and content publishing sites. These entities require continuous member growth and long retention to maintain profitability and sustainability. The established news/publishing industry in particular (e.g., The New York Times) is under severe pressure to monetize their content to readers and, to date, has been unable to compete against new era content providers using conventional technologies. Similarly, social network sites suffer from member attrition, because user engagement across social graphs is not targeted or attentive to user retention. Prior art techniques solicit suggestions from friends for content. An app known as “Side” for example allows members to answer questions about other members. The questions are not directed to social graph activities or specific predictions per se, but rather open ended potential outside lifestyle activities. An example of a system that predicts user responses is described by Raza et al. in U.S. Patent Application Publication No. 2013/0103692, which is incorporated by reference herein. These existing apps require too much time and investment on the part of the user. In particular, the user is required to define a question that he/she is interested in, as opposed to presenting a predefined question on a single entry (rating) on something a user has already done (read an article). In addition while these apps are useful, they lack any substantial fun and game aspects, feedback, etc. which limits their use.
{ "pile_set_name": "USPTO Backgrounds" }
Microelectromechanical systems (MEMS) are among the most promising technologies for implementing low-cost, low-power components for radio-frequency RF applications. The micrometric scale of these devices and the possibility of integration can avoid the problem of the large area occupied by the passive components of current RF systems, replacing all of them by a single MEMS chip or integrating them into the processing chip of the system. Many actuators built with these technologies have already been developed, although only some of them have found a place in the market. A key point of these devices consists on the performance of the actuation method for every specific device. Many actuation principles are used for actuating MEMS: electrothermal, electrostatic, magnetic, piezoelectric, etc. Nowadays, one of the most used actuation principles in micromechanical switches is the electrostatic actuation. In electrostatic actuation a voltage is applied to two layered conductors (electrodes) to induce charge on the conductors, and the force acting between the induced charges is used as an actuating source. Electrostatic actuation has good general properties: large force achieved for small gaps, direct electrical actuation, etc. Nevertheless, a general drawback is usually the need for a large area, which negatively affects many properties of the devices by reducing speed, decreasing reliability and also increasing costs per area. It also has some other disadvantages, like contact related issues or the self-actuation effect and generally medium-high actuation voltages. Up to now, most of the microdevices which use an electrostatic actuation are based in the use of an electrode at the movable part (like a cantilever beam or a bridge consisting of a beam anchored at both ends) of the device and a fixed electrode at the substrate. Current microswitches usually suffer the problem of a deficient contact surface, which in general causes effects like higher switch on-resistance and severe contact degradation. One of the reasons is the curled surface of the movable part when contact happens. This problem is usually solved in part by applying a higher voltage than it is actually needed; but this can have negative effects on the switch performance. Some other times this is solved by using a bulky or large central region of the movable part of the switch. Another common problem is the self-actuation effect of the switch due to the signals present in the line(s) to be switched. If the signal is large enough, the switch may undesirably close, causing malfunctioning. FIG. 4a-4e of U.S. Pat. No. 5,619,061 show a representative case of state of the art microswitches. The working principle is also representative of the state of the art, where the actuating electrodes 405 and 406 exert an electrostatic force over the movable part until a contact is achieved between contact lines 402 and 403 and the movable part 414 and 412. Topologically, the actuating electrodes 405 and 406 and the contact lines 402 and 403 are located at the same height level, and under the movable part 412. Also, in the way of an example, U.S. Pat. No. 6,784,769-B relates to a microswitch that includes two distributed constant lines disposed close to each other, and a movable element arranged above them, and a driving means (4) for displacing the movable element by an electrostatic force to bring the movable element into contact with the distributed constant lines. The movable element has two projection formed by notching an overlap portion of the movable element which is located on at least one distributed constant line. The projections oppose a corresponding distributed constant line. U.S. Pat. No. 5,801,472-A describes a micro device with integrated electrostatic actuator, with a fixed portion and a movable portion which are opposite. The relative amount of movement is controlled by controlling electrostatic force operating between both; the movable portion is moved by the Integrated electrostatic actuator and a portion connected to the movable portion which can be operated mechanically. The probe of a scanning probe microscope Is provided to the movable portion of the above actuator. The above transducer is provided with the structure in which a large number of such actuators are arranged two- or one-dimensionally. Document US-2003/015936-A1 discloses an electrostatic actuator. A multi-layered auxiliary electrode is further arranged between a main electrode and an actuating body, and positive charge or negative charge is applied to the main electrode, respective auxiliary electrodes, and the actuating body such that electrostatic attractive force is generated between the auxiliary electrodes adjacent to the main electrode, between adjacent auxiliary electrodes, and between auxiliary electrodes adjacent to the actuating body.
{ "pile_set_name": "USPTO Backgrounds" }
Electrically conductive organic polymers have been of scientific and technological interest since the late 1970's. These relatively new materials exhibit the electronic and magnetic properties characteristic of metals while retaining the physical and mechanical properties associated with conventional organic polymers. Herein we describe electrically conducting polymers, for example polyparaphenylene vinylenes, polyparaphenylenes, polyanilines, polythiophenes, polyazines, polyfuranes, polypyrroles, polyselenophenes, poly-p-phenylene sulfides, polythianapthenes, polyacetylenes formed from soluble precursors, combinations thereof and blends thereof with other polymers and copolymers of the monomers thereof. These polymers are conjugated systems which are made electrically conducting by doping. The non-doped or non-conducting form of the polymer is referred to herein as the precursor to the electrically conducting polymer. The doped or conducting form of the polymer is referred to herein as the conducting polymer. Conducting polymers have potential for a large number of applications in such areas as electrostatic charge/discharge (ESC/ESD) protection, electromagnetic interference (EMI) shielding, resists, electroplating, corrosion protection of metals and ultimately metal replacements, i.e. wiring, plastic microcircuits, conducting pastes for various interconnection technologies (solder alternative) etc.. Many of the above applications especially those requiring high current capacity have not yet been realized because the conductivity of the processable conducting polymers is not yet adequate for such applications. In order for these materials to be used in place of metals in more applications, it is desirable to increase the conductivity of these materials. In addition, the processability of these polymers also requires improvement. Although some of these polymers are soluble, the solubility is generally limited and the solutions tend to be not stable over time. The polyaniline class of conducting polymers has been shown to be one of the most promising and most suited conducting polymers for a broad range of commercial applications. The polymer has excellent environmental stability and offers a simple, one-step synthesis. However, the conductivity of the material in its most general form (unsubstituted polyaniline doped with hydrochloric acid) is generally on the low end of the metallic regime most typically, on the order of 1 to 10 S/cm (A. G. Macdiarmid and A. J. Epstein, Faraday Discuss. Chem. Soc. 88, 317, 1989). In addition, the processability of this class of polymers require improvement. Although polyaniline is a soluble polymer, it has been noted that the solutions tend to be unstable with time. (E. J. OH et al, Synth. Met. 55-57, 977 (1993). Solutions of for example the polyaniline in the non-doped form tend to gel upon standing. Solutions greater than 5% solids concentration tend to gel within hours limiting the applicability of the polymer. It is desirable to devise methods of increasing the electrical conductivity of the doped polyanilines and to enhance the processability of these systems to allow broader applicability. The conductivity (.sigma.) is dependent on the number of carriers (n) set by the doping level, the charge on the carriers (q) and on the mobility (.mu.) (both interchain and intrachain mobility) of the carriers. EQU .sigma.=nq.mu. Generally, n (the number of carriers) in these systems is maximized and thus, the conductivity is dependent on the mobility of the carriers. To achieve higher conductivity, the mobility in these systems needs to be increased. The mobility, in turn, depends on the morphology of the polymer. The intrachain mobility depends on the degree of conjugation along the chain, presence of defects, and on the chain conformation. The interchain mobility depends on the interchain interactions, the interchain distance, and the degree of crystallinity. Thus, the conductivity is very dependent on the morphology of the polymer. Recently, it has been shown that polyaniline in the non-doped form has a tendency to aggregate as a result of interchain hydrogen bonding and that this aggregation limits the salvation of the polymer (U.S. application Ser. No. 08/370,127 filed on Jan. 9, 1995 and U.S. application Ser. No. 08/370,128 filed on Jan. 9, 1995, the teachings of which are incorporated herein by reference. It was found that certain additives such as lithium chloride could be added to the polyaniline to disrupt the aggregation. As the aggregation was disrupted, the chains became disentangled from each other and the solvent was able to more effectively solvate the chains to adapt a more expanded chain conformation. As a result, the deaggregated polymer upon doping exhibited higher levels of conductivity than did the polymer in the aggregated form. In addition, it was found that the deaggregated solutions were more stable with time than the corresponding aggregated solutions. Herein novel methods of deaggregating conducting polymers are described involving vibrational techniques. U.S. Pat. No. 5,147,913 to A MacDiarmid et al. describes crosslinking polyaniline polymers through agitation to form gels having from about 5 to about 90 weight percent polyaniline derivative. Gelling is described as a form of crosslinking or solidification of the polymer/liquid mixture. MacDiarmid et al. appears to describe the addition of high concentration of polymer to a solvent, stirring this polymer/solvent mixture, allowing the solvent to swell the highly cross-linked polymer chains, thereby forming a gel. Applicants have taught in the references incoporated herein by reference above that polyaniline in non-doped form consists of regions of aggregation. In contradistinction to the teaching of MacDiarmid et al. applicants have found that agitation, such as provided for example by ultrasonic vibration and shear mixing deaggreagates aggregated conducting polymers and their precursors permitting more effective doping and processing.
{ "pile_set_name": "USPTO Backgrounds" }
As a flexible display which is bendable while displaying image information is developed, studies and developments are being conducted for a foldable type device in which a flexible display is applied to a device having two bodies and folding structures (for example, hinge units). In such a device, since the flexible display may be entirely disposed on two bodies via the folding structure so that a large size display may be implemented in the device. As another device using the flexible display, a rollable type device in which a display has a winding structure is being studied and developed. In such a device, the flexible display is wound so that a size or an area of the entire display may be reduced and the flexible display is unwound so that the size or the area of the entire display may be increased. In the foldable type device and the rollable type device, the flexible display is elastically deformed or elastically restored while changing the shape. Therefore, in a part of the flexible display which is deformed, spring back may be generated. When the spring back of the flexible display is generated, interference or friction between the flexible display and the other part of the device may occur or the flexible display may be damaged or the operation of the device may not be smoothly performed. Therefore, it is necessary to consider to control the spring back of the flexible display. In the device using the flexible display, the movement (for example, sliding) of the flexible display may be generated. In this case, when the smooth movement is not performed or uniform tensile force is not applied to the flexible display while being moved, it is difficult to operate the device and the flexible display may be irregular or damaged. As a related art document using a flexible display, Korean Patent No. 1107127 (hereinafter, referred to as a related art 1) discloses a mobile terminal. The related art 1 includes a flexible display in which a size of a screen exposed to the outside is variable, a driving unit, a sliding member, a first rack gear, and a second rack gear. In the related art 1, a pinion gear is engaged with the first rack gear and the second gear and when the pinion gear rotates by a motor which configures the driving unit, the flexible display moves in a longitudinal direction. However, the related art 1 does not specifically disclose how the driving unit and the motor are connected to the terminal body and how the driving unit and the motor are assembled with other configurations. Therefore, when the terminal is formed by the related art 1, problems in that the pinion gear is not precisely engaged with the first rack gear and the second rack gear to be highly likely to be idle, the first rack gear and the second rack gear are slanted, the flexible display is not appropriately moved, or the flexible display is wrinkled are predictable. Further, in the related art 1, the size of the screen of the flexible display varies by the driving of the driving unit, but a separate configuration which supports a bottom surface of the flexible display is not provided so that unevenness of the flexible display may be easily caused. Further, in the related art 1, the first rack gear and the second rack gear are separated to be coupled to the pinion gear. However, backlash of the gear may cause the deflection of the flexible display during the operation and it is difficult to control an overall tension of the flexible display. Further, in the related art 1, it is difficult to apply uniform tension to the flexible display and it is also difficult to control the spring back in a portion where the flexible display is deformed. It is very important to form a slim mobile terminal with various functions to improve the merchantability of the terminal. However, in the case of the related art 1, the possibility of interference between the driving unit and various components in the terminal and the assembling structure of the driving unit cannot be considered so that it is difficult to expect the improvement of the merchantability. As another related art document using a flexible display, Korean Patent No. 1695206 (hereinafter, referred to as a related art 2) discloses a screen extendable portable terminal. In the related art 2, the flexible display is rolled around a cylindrical rotation member equipped in the housing. The related art 2 does not disclose a configuration which supports a bottom surface of the flexible display when the screen of the flexible display rolled around the cylindrical rotation member is extended so that the flexible display may be easily irregular or deflected. Further, in the related art 2, it is difficult to apply uniform tension to the flexible display when the screen of the flexible display rolled around the cylindrical rotation member is extended or reduced so that an excessive load may be applied to the flexible display. Further, it is difficult to apply a winding type flexible display to a relatively small-size portable device and a radius of curvature is deformed in a wound portion so that it may be difficult to control the entire deformation of the flexible display. Further, the related art 1 and the related art 2 do not disclose a specific control method and unit when the screen of the flexible display is extended or reduced.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a timer circuit, and more specifically, to a timer circuit for an integrated circuit arrangement. It is customary to develop a unique control system for each specific model of an apparatus. For example, in the electronic postage meter area, each postage meter model has a micro-controller system specifically designed for controlling the function set of that electronic postage meter model. The micro-controller system is customarily comprised of a microprocessor in bus communication with a number of memory units and an applications specific integrated circuit (ASIC). It is now considered advantageous to develop a single micro-controller for a plurality of meter models which will offer the advantages of allowing one micro-controller to be utilized in a number of meters resulting in less variations in meter design and better design control for the manufacturer. One of the principle obstacles is that each microprocessor control system is constrained to performance limitation of specific integrated circuit components, such as, the write rate to non-volatile memory units, baud rate to peripheral units. As a result, it is conventional to provide the necessary circuit timers with fixed mode operation, i.e., continuous or one-shot, for a specific control operation. It is recognized that because the timer is so constrained within the control circuit that only like timed events may be logically connected to that timer.
{ "pile_set_name": "USPTO Backgrounds" }
This application is continuation-in-part of, and claims the benefit of, U.S. patent application Ser. No. 10/098,155, filed Mar. 14, 2002, which claims benefit of U.S. Provisional Application No. 60/353,722, filed Feb. 1, 2002, and entitled NUCLEIC ACID MOLECULES ENCODING CEL I ENDONUCLEASE AND METHODS OF USE THEREOF, and which is incorporated herein by reference.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to one-component sealants and adhesives hardening under the influence of moisture and based on low molecular weight, telechelic isocyanate prepolymers, whose backbone has a different chemical composition. The sealants and adhesives are preferably transparent or translucent. Generally binary or ternary mixtures of polymers with different compositions are not compatible or have very wide miscibility gaps, i.e. only very small amounts of one component are soluble in the other component without phase separation (cf. e.g. H. G. Elias, Makromolekule, p.211, Basle, Heidelberg, N.Y., 4th edition 1980). In general, only an insignificant improvement to the compatibility is obtained through adding solvents or plasticizers to incompatible mixtures. For the synthesis of prepolymers containing isocyanate groups and used for producing polyurethane-based adhesives and sealants, very frequently use is made of polyether polyols or polyester polyols. Standard polyether polyols are di, tri or higher functional polypropylene glycols, polyethylene glycols or copolymers thereof. Frequently used polyester polyols are prepared by the esterification of aliphatic or aromatic dicarboxylic acids with difunctional or trifunctional alcohols. Polyurethanes are frequently used in the formulation of sealants hardening at room temperature on the one hand because they have a high hardening speed, which can easily be controlled by catalysts and on the other hand during the hardening reaction, even in the case of one-component formulations, only very small amounts of volatile constituents are released, so that the shrinkage occurring during curing is very small. This makes it possible to produce very satisfactory low modulus sealants. A further advantage is their great absorbtivity for the standard and therefore inexpensive phthalate plasticizers. Therefore very advantageous sealants can be formulated economically. A decisive disadvantage of polyether urethanes is their very high photooxidation sensitivity, which very considerably limits the use thereof in the open in sunlight. This more particularly applies to light coloured or unpigmented sealants. In the case of outdoor exposure or the laboratory simulation thereof, the latter are very rapidly photooxidatively decomposed, so that said sealants no longer fulfil their function. It is only possible to slightly slow down such decomposition processes by adding light stabilizers, antioxidants or combinations thereof, even if they are used in unusually high doses. For this reason it is not possible to produce technically usable, unpigmented (transparent or translucent) polyurethane sealants based on polyethers. Polyurethane polymers based on polyester polyols admittedly have a much better resistance to photooxidative decomposition than polyether urethanes, so that at a first glance they would appear to be suitable. Polyester polyols and therefore the polyurethane prepolymers produced therefrom, for a comparable molecular weight range, have a much higher viscosity than the corresponding polyether polyols and the polyurethane prepolymers produced therefrom. Two routes can be taken in spite of this to come into the viscosity range necessary for using the sealants. Firstly a very low molecular weight polyester polyol, can be used as a raw material for producing polyurethane prepolymers. However, in order that the viscosity of the polyurethane prepolymer also remains low, i.e. there is no significant molecular weight increase during the production of the prepolymer, a very high weight percentage of diisocyanate or triisocyanate is required. A sealant formulated from such a prepolymer still contains a high percentage of reactive isocyanate groups in its reactive stage. In the case of formulations without latent hardeners, i.e. formulations whose crosslinking reaction is based on the partial hydrolysis of isocyanate groups to amino groups (Hofmann reaction) and their reaction with the remaining isocyanate groups, considerable carbon dioxide quantities are split off. In non-pigmented formulations, however, no absorbents can be used for the carbon dioxide, such as e.g. calcium oxide, so that bubble and foam formation supression is impossible. When concomitantly using blocked amines as latent hardeners, it is admittedly possible to suppress bubble formation, but due to the high reactive isocyanate group percentage, a correspondingly high latent hardener quantity is required. As a result of the large number of urea groups formed after the hardening reaction, the cured sealant becomes very hydrophilic, which is not desired in most cases. A second possibility of obtaining a low prepolymer viscosity and therefore sealant viscosity comprises diluting with large amounts of plasticizers or solvents. As the latter evaporates from the sealant during and after the curing process, this leads to an unacceptable shrinkage of the sealant following application. It is not possible to use in the quanitity necessary for an adequate viscosity reduction of the reactive polyester urethane prepolymer the less volatile higher phthalate plasticizers, such as di-2-ethyl hexyl phthalate, dinonyl phthalate, diisodecyl phthalate, etc., because following curing plasticizer exudation occurs. The reason for this phenomenon is the high polarity of the polyester backbone of the polymer, which can be attributed to the ester-carbonyl groups. The use of polar plasticizers, such as e.g. dibutyl phthalate is not possible as a result of its high volatility and the shrinkage link therewith. One solution of the problem would be formed by the use of mixtures of polyether polyols and polyester polyols for the purpose of producing polyurethane prepolymers with a polyether and polyester backbone, so as to combine the advantages of the two components. However, this is not possible in connection with the production of one-component sealants, because the polyester polyols in question are not compatible with the polypropylene glycols suitable for prepolymer production and also not when mixed with plasticizers. A phase separation occurs even after short storage with a very fine dispersion of the two components. A "copolymer", obtained by the joint reaction of a polypropylene glycol and a polyester polyol with a diisocyanate, is also subject to macroscopic phase separation when stored under moisture exclusion conditions. 2. Discussion of Related Art DE-C-29 15 864 describes a moisture-hardening, one-component sealant based on a free isocyanate group-containing reaction product of a diisocyanate and a hydroxyl group-containing acrylic acid ester copolymer of low molecular weight. However, technically high grade sealants are only obtained for pigmented formulations by this process and these can also only contain a small proportion of plasticizer, based on the polymer proportion. According to an earlier proposal (German patent application P 35 18 708.5) mixtures of polyether polyols and a number of polyester polyols compatible with low molecular weight hydroxy-functional methacrylate polymers are obtained. The preferred polyether polyols are the known di, tri or higher functional polyalcohols known to the polyurethane Expert and which are obtained by polymerizing propylene oxide or by copolymerizing propylene oxide and ethylene oxide. The commercially available polyether polyols for producing polyurethanes in the molecular weight range up to approximately 10,000 are compatible in any ratio with the described hydroxy-functional low molecular weight acrylate and methacrylate polymers. Thus, it is readily possible by reaction with diisocyanates alone to prepare homogeneous prepolymer mixtures from these two components and to use these for formulating adhesives and sealants. However, surprisingly advantageous overall characteristics of the sealants are obtained if the polymer mixture additionally contains a suitable polyester component. Only by means of this triple composition is it possible to obtain a non-rigid, unpigmented sealant system, which also has an adequate chemical resistance and light stability to permit use for external applications. The problem of the invention is therefore to develop a compatible binder system, which permits the production of unpigmented, preferably transparent or translucent one-component sealants. Said one-component sealant must be stable during storage, whilst excluding atmospheric humidity and after the entry of the latter must rapidly cure to give a non-rigid sealing compound. This sealant must also have an adequate stability against photooxidative decomposition, so that it can be used outside without limitations.
{ "pile_set_name": "USPTO Backgrounds" }
In circuit design, a typical process flow involves a design house producing a digital layout of the design then performing various modifications to the digital layout to bolster the physical and functional aspects of the circuit and adjust for deviations introduced during the fabrication process. Examples modifications include retargeting, dummy feature/via placement, and optical proximity correction (OPC), as examples. At some point, a milestone step known as “tapeout” is reached when the design is considered ready for a mask fabrication process. The design is sent to a mask house (which may or may not be part of the design house) and subjected to a mask data preparation process that itself might include modifications to the design, such as retargeting or bias adjustments, as examples. After that point, reticle(s) for use in printing the design are physically manufactured. A circuit manufacturer uses the reticle(s) to print the circuit design to create the physical circuit.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to terminals for making electrical connections, and more particularly, to a tab terminal. Dynamoelectric machines such as motors typically include a start winding and a run winding. The start winding is utilized to initiate rotation of the motor rotor. Particularly, the magnetic field generated by the relatively high inductive reactance start winding in a resistance split phase motor may be about 30 degrees out-of-phase (in both a physical sense and a time sense) with respect to the field generated by the relatively lower inductive reactance rim winding. When the run and start windings are energized, the geometric and time phase relationship between magnetic fields generated by the run and start windings, and the magnetization of the rotor, cause the rotor to begin rotating from a standstill condition. Once the rotor has sufficient torque to attain its normal running speed, the start winding is "switched out" of the motor circuit so that the out-of-time phase geometrically spaced magnetic field generated by the start winding does not adversely impact motor operation. Start and run capacitors sometimes are utilized to change the time phase relationship between the magnetic fields generated by the run and start windings. A start capacitor connected in series circuit with the start winding causes the magnetic field generated by the start winding to be, for example, about 90 degrees (rather than about 30 degrees) out-of-time phase with the run winding field. As compared to a 30 degrees time phase shift, a 90 degrees time phase shift of the start winding magnetic field results in a higher starting torque, which is desirable in some applications. In addition to run and start capacitors, other externally mounted motor components may include motor protectors and motor start switches. A motor overload protector coupled between the motor windings and the motor power supply, and responsive to such a high current condition, operates to de-energize the motor windings if such a high current condition persists for a predetermined time period. A motor starter switch, sometimes referred to herein as a "starter", may be employed to control the energization and de-energization of the motor start winding. By housing a starter switch and protector in one unit, manufacturing costs may be reduced and assembly of at least the starter and protector to a motor may be simplified. Examples of such units are set forth in U.S. Pat. No. 5,729,416, which is assigned to the present assignee. The motor starter and protector unit includes a terminal for making an external connection to ground. The terminal is formed by bending, to about 90 degrees, an extension and folding over portions of such extension. A female connector is then pushed over the terminal to make the connection to ground. In accordance with the applicable standard, the terminal must have a nominal thickness of 32/1000 inch. With the terminal described above, the required thickness is achieved by folding over portions of the extension. The folding operation results in significant wear of the tooling. Particularly, the tooling required for such folding operations generally presses the extension, and during such pressing operations, opposing tool faces are brought into abrupt surface to surface contact. Such operations cause the tooling faces to chip and crack. The tooling faces therefore require frequent machining, or replacement, which increases fabrication costs and time. Further, with the known terminal, the leading edge of the terminal is sharp and sometimes digs into the locking mechanism on the mating connector, which increases the difficulty in assembling the connector to the terminal. Also, in some applications, the assembly of the connector over the terminal is a "blind" operation, i.e., the operator cannot view the terminal as the connector is slid thereover. It would be desirable to provide a terminal that satisfies the applicable thickness requirement, yet also can be fabricated without causing excessive tool wear. It also would be desirable to provide such a terminal that is easily coupled to a connector.
{ "pile_set_name": "USPTO Backgrounds" }
The invention includes a method for demulsification of water-in-oil emulsions using sonication and recovering oil therefrom. The invention also includes a method for determining the strength of an interfacial film formed at the oil-water interface. The oil of the emulsion can be of any type including crude oils, crude oil distillates, vegetable oils, animal oils, synthetic oils and mixtures thereof. High TAN and asphaltene content crude oils possess the tendency to form stable water-in-crude oil emulsions. Such crude oil typically contains from about 1 to about 60 volume % water. The polar naphthenic acids and asphaltenes in the crude oil stabilize dispersed water droplets. Further, sub-micron size solids like silica and clay, when present in the crude oil, interact with the polar acids and asphaltenes and enhance the stability of the emulsions formed. Formation of stable water-in-crude oil emulsions result in difficulty in separation of water and crude oil. In most cases, known technologies for separation result in an intermediate emulsion rag layer. Further processing of the rag layer is essential to recover the crude oil and discharge the water. The problem is faced both at production facilities and in refinery desalters. Electrostatic demulsification in the presence of chemical demulsifiers is the most widely used technology for demulsification of water-in-crude oil emulsions. Gravity settling and centrifugation in conjunction with chemical demulsifiers are also employed. Recently, a microwave technology (See for example U.S. Pat. Nos. 6,086,830 and 6,077,400) patented by Imperial Petroleum Recovery Corporation has emerged for treatment of hard to treat emulsions especially the rag layer. Thermal flash methods are also known in the art. The instant invention includes a method for demulsifying a water-in-oil emulsion comprising the steps of: (a) sonicating said emulsion at an energy of about 25 to about 500 watts/cm2; (b) separating said emulsion into an oil phase and an aqueous phase; and (c) recovering said phases. The invention may further optionally comprises adding demulsifier to said emulsion prior to or during said sonication step (a). The invention likewise includes a method for determining the strength of an interfacial film present at the oil-water interface of a water-in-oil emulsion comprising; (a) sonicating a series of at least three samples of said water-in-oil emulsion wherein each of said samples is sonicated at an energy of at least about 25 watt/cm2 higher than the preceeding sample; (b) separating each of said sonicated water-in-oil emulsion samples into a water phase and an oil phase (c) determining the percent water separated for each of said samples in said series of samples; and (d) determining said strength of said interfacial film which strength corresponds to the energy of sonication at which the greatest percentage of water from said series of sample is separated from said water-in-oil emulsion by identifying the energy at which the greatest percentage of water was separated. The invention also includes a method for separation of a water-in-oil emulsion in a process scheme including an on-line sonicator comprising the steps of: (a) collecting a water-in-oil emulsion from said process scheme; (b) sonicating said emulsion, wherein said emulsion is sonicated in a series of at least three samples and wherein each of said samples is sonicated at an energy of at least about 25 watt/cm2 higher than the preceeding sample; (c) separating each of said samples of sonicated water-in-oil emulsion into a water phase and an oil phase; (d) determining the percent water separated for each of said samples in said series of samples; and (e) determining said strength of said interfacial film which strength corresponds to the energy of sonication at which the greatest percentage of water from said series of sample is separated from said water-in-oil emulsion by identifying the energy at which the greatest percentage of water was separated. (f) setting the said on-line sonicator to a sonication energy level corresponding to said determined interfacial film strength: and (g) sonicating said water-in-oil emulsion in said on-line sonicator set to said determined interfacal film strength; and (h) separating said sonicated emulsion into a layer comprising water and a layer comprising oil. The invention includes a method for recovering oil from a water-in-oil emulsion. In such emulsions, particularly those containing crude oils, the organic acids, asphaltenes, basic nitrogen-containing compounds and solid particles present in the crude form an interfacial film at the water/oil interface. The instant invention affords a way to break the film and demulsify the emulsion, thereby forming a plurality of layers from which oil can be recovered. The invention may further comprise adding a demulsifier to said water-in-oil emulsion. Use of a demulsifier is believed to weaken the interfacial film present in the emulsion with demulsifier at the oil/water interface. Such a film is weaker than the film formed absent the demulsifier. Thus, use of a demulsifier can lower the sonication energy required to break the interfacial film of the emulsion. One skilled in the art will readily recognize that the sonication energy can be lowered by use of demulsifiers and the advantages associated with their use in hard to break emulsions. The invention is applicable to any type of water-in-oil emulsion, and is particularly suitable for solids containing water-in-oil emulsions, and is applicable to crude oil emulsions comprising components which may include solids, asphaltenes, organic acids, basic nitrogen compounds and mixtures thereof. Thus, the invention can be applied to water-in-oil emulsions of crude oils, vegetable oils, animal oils, synthetic oils and mixtures thereof. As used herein crude oils include any oils comprising organic acids, and may also contain asphaltenes, solids and basic nitrogen containing compounds. Typically, the solids, if present in the emulsion, will have an average total surface area of xe2x89xa61500 square microns, more preferably about 25 to about 1500 square microns, even more preferably about 50 to 1500 and most preferably about 100 to about 1500 square microns. Sonication is the act of subjecting a system to sound (acoustic) waves. The velocity of sound in liquids is typically about 1500 meters/sec. Ultrasound spans the frequency of about 15 kHz to 10 MHz with associated wavelengths of about 10 to 0.02 cm. The invention may be practiced at frequencies of about 15 kHz to about 20 MHz. The output energy at a given frequency is expressed as sonication energy in units of watts/cm2. The sonication provided for in the instant invention is typically accomplished at energies of about 25 to about 500 watts/cm2. Following the sonication, the sonicated emulsion is separated by methods such as centrifugation, gravity settling, hydrocyclones, application of an electrostatic field, microwave treatment or combinations thereof or by any other methods known to the skilled artisan for phase separation. The oil may then be recovered as a separate phase. Sonication alone may be sufficient to separate the emulsion into phases or may be combined with another separation method or ceased and the emulsion separated by other methods known to the skilled artisan for phase separation. The process may be conducted at temperatures of the water-in-oil emulsion of about 20 to about 200xc2x0 C. and at pressures from ambient to 200 psig (1480.4 kPa). Use of demulsifiers in the invention is optional. If such demulsifiers are utilized, the demulsifiers may be selected from any known demulsifiers that will not degrade during sonication. Such demulsifiers can be readily selected by the skilled artisan. Typically, the demulsifiers will have a molecular weight of about 500 to about 5000, preferably about 500 to about 2000 and a hydrophilic lipophilic balance of above 9 and preferably from 9 to about 35 and most preferably from about 9 to about 15. Demulsifiers which will not degrade during sonication will not contain functional groups such as esters or amides. Demulsifiers will include, but are not limited to those which contain functional groups such as ethers, amines, ethoxylated alcohols, sulfonates and mixtures thereof. A particularly preferred demulsifier is phenolformaldehyde. The demulsifier will be added to the emulsion prior to or during sonication. The amount of demulsifier to be added will range from about 0.1 to about 5.0 wt % based on the amount of the emulsion. Additionally, a delivery solvent may be employed. Such solvents may include crude oil distillates boiling in the range of about 70xc2x0 C. to about 450xc2x0 C., alcohols, ethers and mixtures thereof. Thus, the delivery solvents may be selected from the group consisting of the above. One skilled in the art will recognize that use of a demulsifier will serve to lower the sonication energy necessary to break the interfacial film of the water-in-oil emulsion. Hence, it may be desirable to utilize a demulsifier. Furthermore, a limited number of emulsions may require the use of a demulsifier due to the strength of the interfacial film. Such emulsions will be readily identifiable to the skilled artisan since sonication alone will not break the emulsion sufficiently. The delivery solvent will be present in an amount of from about 35 to about 75 wt % in the demulsifier. Thus, when utilized, the delivery solvent will be included in the 0.1 to 5.0 wt % demulsifier added to the emulsion. A particularly preferred demulsifier is a phenolformaldehyde ethoxylated alcohol having the structure wherein R is selected from the group consisting of alkanes or alkenes from 8 to 20 carbons, E is CH2xe2x80x94CH2 and P is xe2x80x94CH2xe2x80x94CHxe2x80x94CH3, n ranges from 1 to 5, m ranges from 0 to 5 and x ranges from 3 to 9. The invention herein described is applicable in refineries as well as in the emulsion-flooding field of operations. In a refinery, water-in-oil emulsions can form during processing of oils or may be present when crudes are shipped to the refinery for processing. Refinery desalter units would be particularly suited for separation of the emulsion once sonication is completed to coalese dispersed water droplets and recover oil. Likewise, the invention can be applied to oil produced from subterranean formations where emulsion flooding is used to produce the oil leaving the oil to then be demulsified post-production. Techniques for separation of the oil and water post sonication include gravity, centrifugation, electrostatic field application, hydrocyclones, microwave, and combinations thereof. The sonication which is utilized prior to separation may likewise serve to separate the emulsion, or may be used in combination with other techniques for phase separation. Such techniques are readily applied by the skilled artisan at the conditions necessary to separate the emulsion into an oil and a water phase. For example, centrifugation can be conducted at 500 to 150,000 g for about 0.1 to about 6 hours or more, and electrostatic field application of about 500-5000 volts/inch for about 0.1 to about 24 hours or more. The invention is applicable to any water-in-oil emulsion especially those containing components such as organic acids and solids, and which may additionally include asphaltenes, basic nitrogen compounds and emulsifiers which are added or naturally present in the emulsion. Thus, the oils forming the emulsion may include crude oils, crude oil distillates, crude oil resids, or oils derived from plant or animal sources such as vegetable oils and animal oils or synthetic oils such as silicone oils. The emulsion may likewise include surfactants or other emulsifiers present in the oil or added for forming the emulsion. The solids present can be those naturally occurring in such oils such as clay, silica, refinery coke, etc. The solids may likewise have been intentionally added to form the emulsion. When solids are present, they contribute to stabilizing the emulsion and such emulsions are referred to as solids-stabilized emulsions. Solids stabilized emulsions are difficult to demulsify by methods known in the art. In the method for determining the strength of an interfacial film, a series of samples of the water-in-oil emulsion are treated by applying to the sample sonic energy. At least three samples will form the series. Typically, at least 3 to 5 samples, and more preferably at least 3 to 20 samples, and most preferably 3 to 10 samples will be utilized. The sonic energy is applied to each sample, with each proceeding sample being sonicated at an energy at least about 25 to about 50 watts/cm2 higher than the preceeding sample. Once sonication is complete, the oil and water phases are separated and the percent demulsified or water phase separated is measured. A maximum amount of demulsification can then be identified and the energy of sonication corresponding to the amount applied to produce the highest quantity of demulsification is equivalent to the strength of the interfacial film of the emulsion. The amount of energy to be applied to the first of the series of samples is in the range of about 25 to 50 watts/cm2. If the emulsion is not separable, a demulsifier should be added. A demulsifier, however will be optional in most instances. The aqueous phase of the emulsion comprises water and may include dissolved inorganic salts of chloride, sulfates and carbonates of Group 1 and 2 elements. Organic salts can also be present in the aqueous phase. The following examples are meant to be illlustrative and not limiting in any way.
{ "pile_set_name": "USPTO Backgrounds" }