contest
stringclasses 315
values | contest_url
stringclasses 1
value | url
stringlengths 53
65
| alphabet
stringclasses 20
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
467
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMCB010 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb010/tasks/7090 | C | OMCB010(C) | 200 | 162 | 273 | [
{
"content": "ãæ¡ä»¶ã¯ïŒéè² æŽæ° $a$ ãšå¥æ° $b$ ãçšã㊠$2^a\\cdot b^2$ ãšè¡šããããšãšåå€ã§ããïŒããã«ããã¯ïŒæ£æŽæ° $k$ ãçšã㊠$k^2$ ãŸã㯠$2k^2$ ãšè¡šããããšãšåå€ã§ããïŒä»¥äžããïŒæ±ããåæ°ã¯ $\\lfloor \\sqrt{10000} \\rfloor+ \\lfloor \\sqrt{5000} \\rfloor=100+70=\\textbf{170}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/7090"
}
] | ãæ£ã®çŽæ°ã®ç·åãå¥æ°ã§ãããããªïŒ$1$ ä»¥äž $10000$ 以äžã®æŽæ°ã¯ããã€ååšããŸããïŒ |
OMCB010 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb010/tasks/6789 | D | OMCB010(D) | 200 | 160 | 271 | [
{
"content": "ãå¥æ°ãé£ç¶ããªãããšãïŒã©ã®é£ç¶ããäºã€ã®ç©ãå¶æ°ã§ããããšã®å¿
èŠååæ¡ä»¶ã§ããïŒ\\\r\nãå¥æ°ãé£ç¶ããªããããªå¥æ°ã®çœ®ãããå Žæã®çµã¿åããã¯ïŒæãåŸãã«äžŠãã å¥æ°ä»¥å€ã«ã€ããŠã¯ãã®äžã€åŸãã®å¶æ°ãšãã¢ã«ããŠèããããšã§ïŒ${}\\_{81}\\mathrm{C}\\_{80} = 81$ éãã§ããïŒãããããããã«å¯ŸãïŒå¥æ°ã®é åºãšå¶æ°ã®é åºããããã $80!$ éããã€èããããã®ã§ïŒ$S = 81\\times (80!)^2$ ã§ããïŒ\\\r\nãLegendreã®å®çããïŒãã㯠$3$ 㧠$\\bf{76}$ åå²ãåããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/6789"
}
] | ã$1,2,3,\cdots ,158,159,160$ ã®äžŠã¹æ¿ã $(a_1,a_2,a_3,\cdots ,a_{158},a_{159},a_{160})$ ã§ãã£ãŠïŒä»»æã® $159$ 以äžã®æ£æŽæ° $i$ ã«å¯Ÿã㊠$a_ia_{i+1}$ ãå¶æ°ãšãªããã®ã®åæ°ã $S$ ãšãããšãïŒ$S$ ã $3$ ã§å²ãåããæ倧ã®åæ°ã解çããŠãã ããïŒ |
OMCB010 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb010/tasks/6584 | E | OMCB010(E) | 300 | 65 | 103 | [
{
"content": "ã$O$ ãã蟺 $AC$ ã«ããããåç·ã®è¶³ïŒããªãã¡èŸº $AC$ ã®äžç¹ïŒã $Q$ ãšãããšïŒ$\\triangle{APH}\\sim\\triangle{AQO}$ ã«ãã $AP:AQ=2:3$ ã§ããïŒ$AB:AC=5:6$ ãåŸãïŒããã«ïŒ$\\cos{A}=\\dfrac{AP}{AC}=\\dfrac13$ ããããïŒ$\\angle{BOC}=2\\angle{A}$ ã«æ³šæããã° $BC=4\\sqrt{2}$ ããããïŒãŸãïŒ$AB=5x$ ãšãããŠäžè§åœ¢ $ABC$ ã«äœåŒŠå®çã䜿ãããšã§ïŒ$x^2=\\dfrac{32}{41}$ ãåŸãããã®ã§ïŒ$\\triangle{ABC}=\\dfrac12\\times5x\\times6x\\times\\sin{A}=\\dfrac{320\\sqrt2}{41}$ ãšãªãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{363}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/6584"
},
{
"content": "$A(0,0),B(a,0)$ ãšãããš $P(\\frac{5}{2}a,0),O(\\frac{1}{2}a,\\sqrt{9-\\frac{a^2}{4}}),C(\\frac{5}{2}a,\\sqrt{9-\\frac{a^2}{4}}+\\sqrt{9-\\frac{a^2}{100}})$ ãšãªãïŒçŽç· $BC$ ã®åŸã㯠$\\frac{\\sqrt{9-\\frac{a^2}{4}}+\\sqrt{9-\\frac{a^2}{100}}}{\\frac{3}{5}a}$ ããçŽç· $AH$ 㯠$y=\\frac{\\frac{3a}{5}}{\\sqrt{9-\\frac{a^2}{4}}+\\sqrt{9-\\frac{a^2}{100}}}x$ ã§ããïŒãã£ãŠã$AH^2=(1+(\\frac{\\frac{3a}{5}}{\\sqrt{9-\\frac{a^2}{4}}+\\sqrt{9-\\frac{a^2}{100}}})^2) \\times \\frac{4a^2}{25}=4$ ãåŸãããã®ã§ãããã解ããš $a=\\frac{20\\sqrt{2}}{\\sqrt{41}}$ ãšãªãã$\\triangle ABC=\\frac{a}{2}(\\sqrt{9-\\frac{a^2}{4}}+\\sqrt{9-\\frac{a^2}{100}})=\\frac{320\\sqrt{2}}{41}$ ãšãªãïŒ",
"text": "座æšãçšãã解æ³(éæšå¥š)",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/6584/507"
}
] | ãåå¿ã $H$ïŒå€å¿ã $O$ ãšããéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒ$AH=2$ïŒ$BO=3$ ãæãç«ã¡ãŸããïŒããã«ïŒ$C$ ãã蟺 $AB$ ã«ããããåç·ã®è¶³ã $P$ ãšãããšããïŒ$P$ ã¯ç·å $AB$ ã $2:3$ ã«å
åããŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,c$ ããã³å¹³æ¹å åãæããªãæ£æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMCB010 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb010/tasks/10482 | F | OMCB010(F) | 400 | 45 | 85 | [
{
"content": "ã$AB=c,BC=p,CA=b$ ãšããïŒ$\\angle{B}$ ã®äºçåç·ãšèŸº $AC$ ã®äº€ç¹ã $D$ ãšããïŒ$\\triangle{ABC}\\sim\\triangle{ADB}$ ããïŒ$AD=\\dfrac{c^2}{b},BD=\\dfrac{cp}{b}$ ã§ããïŒããã§ïŒ$BD=CD$ ããïŒèŸº $AC$ ã®é·ãã«ã€ããŠïŒ\r\n$$b=AD+CD=\\dfrac{c^2}{b}+\\dfrac{cp}{b}$$\r\nãªã®ã§ïŒãããæŽçãããš $b^2=c(p+c)$ ãåŸãïŒããã次ã®ããã«å€åœ¢ããïŒ\r\n$$b^2=c(p+c)\\iff b^2=\\Big(c+\\dfrac12p\\Big)^2-\\dfrac{p^2}{4}\\iff 4b^2=(2c+p)^2-p^2\\iff p^2=(2c+2b+p)(2c-2b+p)$$\r\nã倧å°é¢ä¿ããïŒ$2c+2b+p=p^2,2c-2b+p=1$ ãšãªãä»ãªãïŒããã $b,c$ ã«ã€ããŠè§£ããšä»¥äžã®ããã«ãªãïŒ\r\n$$b=\\dfrac{p^2-1}{4},c=\\dfrac{(p-1)^2}{4}$$\r\nã$3$ 以äžã®çŽ æ°ã«å¯ŸãïŒ$b,c$ ã¯åžžã«æ£æŽæ°ãšãªãããšãåããïŒäžè§åœ¢ã®æç«æ¡ä»¶ $|b-c|\\lt p\\lt b+c$ ãèãããšïŒ$p\\geq5$ ãªãçŽ æ°ã¯æ¡ä»¶ãæºããããšã確èªã§ããïŒãŸãïŒåšé·\r\n$$b+p+c=\\dfrac{p(p+1)}{2}$$\r\n㯠$p\\geq 5$ ã§å調å¢å ããã®ã§ïŒçµå±ïŒçŽ æ° $5$ ããæ°ã㊠$10$ çªç®ã«å°ããçŽ æ°ã§ãã $37$ ãäžã®åŒã«ä»£å
¥ãããã®ãæ±ããã°è¯ãïŒè§£çãã¹ãå€ã¯ $\\bf 703$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/10482"
},
{
"content": "ã$AB=c, BC=p, CA=b$ ãšããïŒæ£åŒŠå®çãçšããŠ\r\n$$\\sin \\theta : \\sin 2 \\theta : \\sin (180^{\\circ}-3\\theta)=c:b:p$$\r\nãããã«é©åœãªå€åœ¢ãããŠ\r\n$$1:2\\cos \\theta:(4\\cos^2\\theta-1)=c:b:p$$\r\nãšãªãïŒãã㧠$2\\cos\\theta=\\dfrac{y}{x}$ ïŒæ¢çŽåæ°ïŒãšãããšïŒæ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$x^2:xy:(y^2-x^2)=c:b:p$$\r\nããã®åŒã«ãããŠïŒå·ŠèŸºã® $3$ æ°ã¯ããããæŽæ°ã§ããïŒããã« $x,y$ ãäºãã«çŽ ã§ããããšãçšããã°ïŒ$x^2,y^2$ ãäºãã«çŽ ã§ããïŒ$x^2, y^2-x^2$ ãäºãã«çŽ ã§ããïŒãã®ããšããïŒ$y^2-x^2=p\\ \\mathrm{or} \\ 1$ãåŸãïŒ$ x \\neq 0$ ãã $y^2-x^2=1$ ã®æŽæ°è§£ã¯ååšããïŒçµå± $y^2-x^2=p$ ã§ããïŒ\\\r\nã$y^2-x^2=(y+x)(y-x)=p$ ããïŒ$y+x=p, y-x=1$ ã§ããïŒ\\\r\nãåŸã£ãŠ $b,c,p$ ã $x$ ãçšããŠè¡šããšïŒæ¬¡ã®ããã«ãªãïŒ\r\n$$b=x(x+1), c=x^2, p=2x+1$$",
"text": "äžè§æ¯ãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/10482/503"
},
{
"content": "åçŽç· $CB$ äžã«ç¹ $P$ ãïŒ$\\angle{ACP}=\\angle{APC}$ ãšãªãããã«ãšãïŒãŸãïŒ$AB = c , AC = b , BC = p$ ãšããïŒ\\\r\nãã®ãšãïŒç°¡åãªè§åºŠèšç®ã«ããïŒäžè§åœ¢ $APC$ ãš $BPA$ ãçžäŒŒã§ããããšããããïŒãã£ãŠïŒä»¥äžã®åŒãåŸããã:\r\n\r\n$$c(c + p) = b^2$$\r\n\r\nåŸã¯ïŒå
¬åŒè§£èª¬ã®éãã§ããïŒ",
"text": "幟äœã®éšåã®å¥è§£",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/10482/506"
},
{
"content": "ã$\\sin B=\\sin 2C=2\\sin C\\cos C$ ããã³æ£åŒŠå®çã»äœåŒŠå®çãã $$\\dfrac{a^2+b^2-c^2}{ab}=2\\cos C=\\dfrac{\\sin B}{\\sin C}=\\dfrac{b}{c}$$ ã§ããïŒäž¡èŸºã $abc$ åããŠæŽçãããš $(a-c)(b^2-ac-c^2)=0$ ã§ããïŒ\r\n\r\nã$a=c$ ã®ãšãïŒäžè§åœ¢ $ABC$ ã¯çŽè§äºç蟺äžè§åœ¢ã«ãªãïŒå
šãŠã®èŸºã®é·ããæŽæ°ã«ã¯ãªãåŸãäžé©ïŒ\r\n\r\nã$b^2=c(a+c)$ ã§ã〠$c$ ã $a$ ã®åæ°ã®ãšãïŒæ£æŽæ° $d$ ãçšã㊠$c=ad$ ãšãããšïŒ$ad(a+ad)=a^2d(d+1)$ ãå¹³æ¹æ°ã ãã $d(d+1)$ ãå¹³æ¹æ°ã«ãªãå¿
èŠããããïŒ$d^2\\lt d(d+1)\\lt (d+1)^2$ ããäžé©ïŒ\r\n\r\nã$b^2=c(a+c)$ ã§ã〠$c$ ã $a$ ã®åæ°ã§ãªããšãïŒ$a$ ã¯çŽ æ°ã ãã $c, a+c$ ã¯äºãã«çŽ ãªã®ã§ïŒãããã®ç©ãå¹³æ¹æ°ã«ãªãã«ã¯ãããããšãã«å¹³æ¹æ°ã§ããå¿
èŠãããïŒãããã£ãŠ $c=m^2, a+c=n^2$ ãšãããŠïŒ$a=(n+m)(n-m)$ ã§ããïŒ$a$ ãçŽ æ°ãªã®ã§ $n-m=1$ ã§ïŒ$c=\\left(\\dfrac{a-1}{2}\\right)^2, b=\\dfrac{a^2-1}{4}$ ã§ããïŒä»¥äžïŒæ¬è§£ãšåæ§ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb010/editorial/10482/508"
}
] | ãäžè§åœ¢ $ABC$ ãããïŒ$3$ 蟺ã®é·ãã¯ããããæ£æŽæ°å€ã§ïŒç¹ã« $BC$ ã®é·ãã¯çŽ æ°ã§ããïŒããã«ïŒ$\angle{ABC}=2\angle{ACB}$ ãæç«ããŠããŸãïŒäžè§åœ¢ $ABC$ ã®åšé·ãšããŠãããããã®ã®ãã¡ $10$ çªç®ã«å°ããå€ã解çããŠãã ããïŒ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/7195 | A | OMCB009(A) | 100 | 340 | 363 | [
{
"content": "ãOMCãããããåãåŸåŸ©ãããšãã®å¹³åã®éãã¯ïŒåäœã $\\mathrm{m}\\/å$ ãšããŠïŒ\r\n$$\\dfrac{40 \\times 3 + 60 \\times 2}{5} = 48$$\r\nãšãªãïŒãã£ãŠïŒéã®ãã®è·é¢ã®æå°å€ã¯ $48 \\times 77 \\times \\dfrac{1}{2} = 1848\\\\,\\mathrm{m}$ ïŒæ倧å€ã¯ $50 \\times 77 \\times \\dfrac{1}{2} = 1925\\\\,\\mathrm{m}$ ãªã®ã§ïŒæ±ããå€ã¯ $\\bf{3773}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/7195"
}
] | ãOMCåã¯äžãåãåé $40\\,\mathrm{m}$ ïŒäžãåãåé $60\\,\mathrm{m}$ ïŒå¹³åŠãªéãåé $50\\,\mathrm{m}$ ã§æ©ããŸãïŒããæ¥ïŒOMCåã¯ããéã®ããåŸåŸ©ã§èš $77$ åãããŠæ©ããŸããïŒãã®ãšãïŒçéã®è·é¢ãšããŠããããæå°å€ã $A\\,\mathrm{m}$ïŒæ倧å€ã $B\\,\mathrm{m}$ ãšããŸãïŒ$A + B$ ã解çããŠãã ãã |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/2652 | B | OMCB009(B) | 100 | 342 | 368 | [
{
"content": "ãæãå€åŽã«äœçœ®ãããã¹ç® $24$ åã«ãã£ãŠè²ã®ç°ãªããã¹ã®å¢çã $24$ ç®æããã®ã§ããã**è¯ããªãå¢ç**ãšåŒã¶ïŒä»ïŒç€é¢äžã®ãã¹ãŠã®ãã¹ãåãè²ã«ããããã«ïŒä»»æã®è¯ããªãå¢çã«å¯ŸããŠïŒããã蟺äžã«å«ãé·æ¹åœ¢ãå°ãªããšã $1$ åã¯éžã¶å¿
èŠãããïŒã©ã®ããã«é·æ¹åœ¢ãéžãã§ãïŒãã®èŸºäžã«å«ãŸããè¯ããªãå¢çã¯é«ã
$4$ ç®æãªã®ã§ïŒå°ãªããšãæäœã¯ $24 \\/ 4=6$ åè¡ãå¿
èŠãããïŒäžæ¹ã§å³ã®ããã«é·æ¹åœ¢ãéžã³ïŒæäœãããããšã§ç€é¢ã¯å
šãŠé»ã®ãã¹ã«ã§ããïŒä»¥äžããæäœåæ°ã®æå°ã¯ $ \\bf6 $ ã§ããïŒ\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/2652"
}
] | ãå³ã®ããã« $7 \times 7$ ã®ãã¹ç®ãæãããŠããç€é¢ã«ïŒé»ãšçœã®è²ã亀äºã«å¡ãããŠããŸãïŒä»
ãç€é¢äžã®ãã¹ç®ã§åºæ¥ãé·æ¹åœ¢ãäžã€éžã³ïŒãã®å
éšã®è²ãçœã¯é»ã«ïŒé»ã¯çœã«å¡ãæ¿ããããšããæäœãè¡ãïŒç€é¢äžã®ãã¹ãŠã®ãã¹ãåãè²ïŒé»ã§ãçœã§ãæ§ããŸããïŒã«ããããã«ã¯æå°ã§äœåæäœãå¿
èŠã§ããïŒ
 |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/6448 | C | OMCB009(C) | 100 | 261 | 292 | [
{
"content": "ãäºã€ã®åã®å
±éã®äžå¿ã $O$ïŒ$O$ ããæ£äºè§åœ¢ã®äžèŸºã«åçŽã«äžãããç¹ã $H$ïŒ$H$ ã«æãè¿ãæ£äºè§åœ¢ã®é ç¹ã®ãã¡ã®äžã€ã $A$ïŒå
æ¥åã®ååŸã $r$ïŒå€æ¥åã®ååŸã $R$ ãšãã. \r\nã$r = OH, R = OA$ ãšãªãïŒãŸãïŒäžè§åœ¢ $OAH$ 㯠$\\angle AOH = 36^\\circ$ ã®çŽè§äžè§åœ¢ãšãªã. ãããã£ãŠïŒ\r\n$$\\dfrac{S_r}{S_R} = \\mathrm{cos}^2 36^\\circ = \\bigg( \\dfrac{1+\\sqrt{5}}{4} \\bigg) ^ 2 = \\dfrac{3 + \\sqrt{5}}{8}$$\r\nã§ããããïŒç¹ã«æ±ããå€ã¯ $\\mathbf{16}$ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/6448"
},
{
"content": "ããã§ã¯ïŒcos36°ã®æ±ãæ¹ã«ã€ããŠ2éã玹ä»ããã\r\n***\r\n### æ±ãæ¹1 åç幟äœã®æ¹æ³ã§\r\n $\\angle{A} = 108^{\\circ},AB = AC$ ãæºããäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ äžã« $AD = CD$ ãæºããç¹ $D$ ããšãïŒ\\\r\nãã®ãšãïŒ$\\angle{CBA} = \\angle{ACD} = \\angle{CAD} = 36^{\\circ}$ ããïŒäžè§åœ¢ $CAB$ ãšäžè§åœ¢ $CDA$ ã¯çžäŒŒïŒãã£ãŠïŒ$CD = 1,AC = x(x\\gt0)$ ãšãããšïŒ\r\n\r\n$$BC = \\dfrac{AC^2}{CD} = x^2$$\r\n\r\nããããïŒãŸãïŒ$\\angle{BAD} = \\angle{BDA} = 72^{\\circ}$ ããïŒ\r\n\r\n$$BC = BD + CD = AD +CD = x + 1$$\r\n\r\nãšãããïŒä»¥äžããïŒ$x^2 = x + 1$ ãªã®ã§ïŒããã解ããŠïŒ$x=\\dfrac{1 + \\sqrt{5}}{2}$ ããããïŒ\\\r\nãã£ãŠïŒ$\\cos{36^{\\circ}} = \\dfrac{x}{2} = \\dfrac{1 + \\sqrt{5}}{4}$ ãšæ±ããããïŒ\r\n***\r\n### æ±ãæ¹2 äžè§é¢æ°ãçšããŠ\r\n $\\theta = 36^{\\circ}$ ãšããïŒãã®ãšãïŒ$2\\theta + 3\\theta = 180^{\\circ}$ ããïŒ\r\n\r\n$$cos{3\\theta} = cos{(180 - 2\\theta)} = -cos{2\\theta}$$\r\n\r\nãªã®ã§ïŒåè§å
¬åŒïŒ3åè§ã®å
¬åŒãçšããŠ\r\n\r\n$$4\\cos{\\theta}^3 - 3\\cos{\\theta} = - 2\\cos{\\theta}^2 + 1$$\r\n\r\n$0 \\lt \\cos{\\theta} \\lt 1$ ã«æ³šæããŠè§£ããšïŒ$\\cos{\\theta} = \\dfrac{1 + \\sqrt{5}}{4}$ ããããïŒ",
"text": "å
¬åŒè§£èª¬è£è¶³(cos36°ã®æ±ãæ¹)",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/6448/490"
}
] | ãäžèŸºã®é·ãã $1$ ã®æ£äºè§åœ¢ã«å
æ¥ããåã®é¢ç©ã $S_r$ ïŒå€æ¥ããåã®é¢ç©ã $S_R$ ãšããŸãïŒ$\dfrac{S_r}{S_R}$ ã¯äºãã«çŽ ãªæ£æŽæ° $a, b, c$ ã«ãã£ãŠ $\dfrac{a+\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã®å€ã解çããŠãã ããïŒ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/4160 | D | OMCB009(D) | 200 | 276 | 297 | [
{
"content": "ã䞡蟺ã®å¶å¥ãèããããšã§ $p = 2$ ãåããïŒãããäžåŒã«ä»£å
¥ããŠèšç®ããããšã§ $qr = 2021$ ãåããïŒ$\\lbrace q, r\\rbrace = \\lbrace 43, 47\\rbrace$ ãåŸãïŒåŸã£ãŠ $p+q+r$ ãšããŠããããå€ã¯ $2 + 43 + 47 = 92$ ã®ã¿ã§ããããïŒè§£çãã¹ã㯠$\\bf{92}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4160"
},
{
"content": "ãå
¬åŒè§£èª¬ã®æ¹ãéããšæããŸããïŒFermat ã®å°å®çã䜿ããããªã£ãå Žåã®è§£æ³ã§ãïŒ\r\n\r\n---\r\n\r\n$$p^{6p}+q^p+r^p=(q+r)^p+54$$\r\nã« Fermat ã®å°å®çãé©çšãããšïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$p^{6p}+q+r \\equiv q+r+54 \\pmod p$$\r\nããã£ãŠ $54 \\equiv 0 \\pmod p$ ã§ããïŒ$p=2 \\ \\mathrm{or}\\ 3$ ãåŸãïŒ\\\r\nã$p=3$ ã代å
¥ãããš $3^{18}=3qr(q+r)+54$ ãšãªãïŒæ°å€ã®å€§ããã§å¿ãæãããã«ãªããïŒããèããã° $qr(q+r)=3^2(3^{15}-2)$ ãšå€åœ¢ã§ããã®ã§ïŒ$p=3$ ã¯ããåŸãªãããšããããïŒ$q=r=3$ ã®å Žåã«çåŒãæºãããªãããšã確ãããã°ããïŒïŒ",
"text": "Fermat ã®å°å®ç",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4160/495"
}
] | ã$3$ ã€ã®çŽ æ° $p, q, r$ ã以äžãæºãããŸãïŒ$p+q+r$ ã®å€ãšããŠãããããã®ã®ç·åãæ±ããŠãã ããïŒ
$$p^{6p}+q^{p}+r^{p}=(q+r)^{p}+54$$ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/4147 | E | OMCB009(E) | 200 | 312 | 337 | [
{
"content": "ã $N^3$ ãš $N$ ã®äžäºæ¡ãäžèŽããããšã¯ïŒ$N^3-N$ ã $100$ ã§å²ãåããããšãšåå€ã§ããïŒããªãã¡æ¬¡ãæãç«ã€ããšãšåå€ã§ããïŒ\r\n$$\\begin{cases}\r\n(N-1)N(N+1)\\equiv 0\\pmod {25}\\\\\\\\\r\n(N-1)N(N+1)\\equiv 0\\pmod {4}\r\n\\end{cases}\r\n\\Longleftrightarrow\r\n\\begin{cases}\r\nN\\equiv 0,1,24\\pmod {25}\\\\\\\\\r\nN\\equiv 0,1,3\\pmod {4}\r\n\\end{cases}$$\r\nãããã£ãŠæ¡ä»¶ãæºãã $N$ ã¯ïŒ$0$ ãé€ãããããšã«æ³šæãããš $3\\cdot 3-1=8$ åããïŒããã§ïŒ\r\n$$(100-N)^3-(100-N)\\equiv-(N^3-N)\\pmod{100}$$\r\nãã $N$ ãæ¡ä»¶ãæºãããªãã° $100-N$ ãæ¡ä»¶ãæºããã®ã§ïŒæ±ãã $N$ ã®ç·å㯠$\\dfrac{100\\cdot8}{2}=\\bf400$ ïŒ\r\n----\r\n**å¥è§£.** \\\r\nã$N\\equiv 0,\\pm 1\\pmod {25}$ ãŸã§ã¯æ¬è§£èª¬ãšåãã§ããïŒãããã£ãŠ $1\\leq N\\leq 99$ ã®ç¯å²ã§ã¯æ¬¡ãæ¡ä»¶ãæºãã $N$ ã®åè£ã¯æ¬¡ã®ãšããã§ããïŒ\r\n$$N=1,24,25,26,49,50,51,74,75,76,99$$\r\nãã®ãã¡å®éã« $N^3$ ãš $N$ ã®äžäºæ¡ãäžèŽãããã®ã¯æ¬¡ã® $8$ ã€ã§ããïŒ\r\n$$N=1,24,25,49,51,75,76,99$$\r\nãããã®å㯠$\\bf400$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4147"
}
] | ã$99$ 以äžã®èªç¶æ° $N$ ã«ã€ã㊠$N^3$ ãš $N$ ã®äžäºæ¡ãäžèŽãããã®ã®ç·åãæ±ããŠãã ããïŒãã ãïŒ$3$ ã®ããã«åã®äœã«æ°ããªãå Žåã¯é©åã« $0$ ãå
¥ã㊠$03$ ãªã©ãšããŠèããŠãã ããïŒ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/7634 | F | OMCB009(F) | 200 | 282 | 319 | [
{
"content": "ããŸãïŒ$7$ ã®åæ°ã¯ $7$ ã®ã¿ã§ããããšããïŒ$a_{10}=7$ ãå¿
èŠã§ããïŒãŸãïŒä»¥äžã§ã¯åå¹³æ¹æ°ãæ§æãã $3$ ã€ã®æŽæ°ã**ã°ã«ãŒã**ãšåŒã¶ïŒ$3,5$ ã®åæ°ã«çç®ãããšïŒ$3$ ãš $6$ïŒ$5$ ãš $10$ ã¯ããããåãã°ã«ãŒãã«å±ããããšãåããïŒããã«ïŒãããã®ã°ã«ãŒãã®ãã $1$ ã€ã®èŠçŽ ãšããŠé©ãããã®ã¯ãããã $2,8$ ã§ããïŒéã«ãã®ãšãååæ§ãæºããïŒ\\\r\nã以äžããïŒ$2,8$ ã®å±ããã°ã«ãŒãïŒã°ã«ãŒããšãã®èŠçŽ ã®é çªãèããããšã§ïŒæ±ããçãã¯\r\n$$2Ã3!Ã(3!)^3=\\mathbf{2592}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/7634"
}
] | ã$1,2,3,\ldots,10$ ã®äžŠã¹æ¿ã $a_1,a_2,a_3 ,\ldots,a_{10}$ ã§ãã£ãŠïŒä»¥äžãæºãããã®ã¯ããã€ã§ããïŒ
- $\sqrt{a_1a_2a_3},\sqrt{a_4a_5a_6},\sqrt{a_7a_8a_9}$ ã¯ããããæŽæ°ã§ããïŒ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/6734 | G | OMCB009(G) | 300 | 180 | 223 | [
{
"content": "ãäžè§åœ¢ $ PBM$ ãš $QCM^\\prime$ ãååã«ãªãããã« $QC$ ã«é¢ããŠ$M$ ã®å察åŽã« $M^\\prime$ ããšããšïŒäžè§åœ¢ $ MM^\\prime C $ ã¯çŽè§äºç蟺äžè§åœ¢ã§ããããïŒ$ \\angle BMP =\\angle QMC =45^{\\circ} $ ãåŸãïŒ\\\r\nã$AB\\neq AC$ ã§ããããïŒ$A,M,P,Q$ ãéãåãšèŸº$BC$ ã $M$ ã§ãªãç¹ã§äº€ããã®ã§ããã $D$ ãšãããšïŒ\r\n$$\\angle BAD = \\angle PMD = 45^\\circ = \\angle QMC = \\angle CAD$$\r\nããçŽç· $AD$ 㯠$\\angle A$ ã®äºçåç·ã§ããããïŒ$BC = \\sqrt{AB^2 + AC^2 } = \\sqrt{34}$ ãšäœµããŠ\r\n$$DP = DQ,\\quad BD = \\dfrac{3}{8} \\sqrt{34}, \\quad CD = \\dfrac{5}{8} \\sqrt{34} $$\r\nã§ããïŒ\\\r\nãäžè§åœ¢ $ PBD \\equiv QCD^\\prime$ ãšãªãããã«çŽç· $CM^\\prime$ äžã«ç¹ $D^\\prime$ ããšããšç¹ $Q$ ã¯çŽè§äžè§åœ¢ $DCD^\\prime$ ã®æ蟺ã®äžç¹ã§ãããã \r\n$$ DQ = \\dfrac{1}{2}\\sqrt{BD^{2}+CD^{2}}=\\dfrac{17}{8} $$\r\nãåŸãïŒäžè§åœ¢ $PDQ$ ãçŽè§äºç蟺äžè§åœ¢ã§ããããšããïŒ$ PQ $ ã®é·ã㯠\r\n$\\dfrac{17}{8}\\times\\sqrt{2}=\\sqrt{\\dfrac{289}{32}}$ \r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{321}$ ã§ããïŒ \r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/6734"
},
{
"content": "$A(0,0),B(3,0),C(0,5)$ ãšãªãããã«çŽäº€åº§æšããšãïŒãã®ãšãïŒ$M(\\dfrac{3}{2},\\dfrac{5}{2})$ ã§ããïŒãŸãïŒ$a$ ãæ£ã®å®æ°ãšã㊠$P(a,0)$ ãšããã° $BP=CQ$ ãã $Q(0,2+a)$ ãšãªã. \r\nããã§ïŒ$\\angle PMQ = 90^\\circ$ ãã $\\overrightarrow{MP}\\cdot\\overrightarrow{MQ}=0$ïŒããªãã¡\r\n$$-\\dfrac{3}{2}(a-\\dfrac{3}{2})-\\dfrac{5}{2}(a-\\dfrac{1}{2})=\\dfrac{7}{2}-4a=0$$\r\nãªã®ã§ $a=\\dfrac{7}{8}$ ãåŸã. ãã£ãŠ\r\n$PQ=\\sqrt{\\left( \\dfrac{7}{8} \\right)^2+\\left( \\dfrac{23}{8} \\right)^2}=\\sqrt{\\dfrac{289}{32}}$ ãšãªãïŒ",
"text": "座æšã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/6734/491"
},
{
"content": "$\\mathrm{A,M,P,Q}$ãããåãšçŽç·$\\mathrm{BC}$ãšã®å
±æç¹ã®ãã¡$\\mathrm{M}$ã§ãªããã®ã$\\mathrm{D}$ãšããã\r\n$\\mathrm{BP}=\\mathrm{CQ}=x$ãšããŠãç¹$\\mathrm{B}$ãš$\\mathrm{C}$ã«å¯ŸããŠããããæ¹ã¹ãã®å®çãé©çšãããš\r\n\r\n$$\\mathrm{BP}\\cdot \\mathrm{BA}=\\mathrm{BD}\\cdot \\mathrm{BM}$$\r\n\r\nãã\r\n\r\n$$3x=\\mathrm{BD}\\cdot \\dfrac{\\sqrt{34}}{2}$$\r\n\r\nã§ããã\r\n\r\n\r\n$$\\mathrm{CQ}\\cdot \\mathrm{CA}=\\mathrm{CD}\\cdot \\mathrm{CM}$$\r\n\r\nãã\r\n\r\n$$5x=\\mathrm{CD}\\cdot \\dfrac{\\sqrt{34}}{2}$$\r\n\r\n\r\nãšãªãããã£ãŠã\r\n\r\n\r\n$$\\sqrt{34}=\\mathrm{BC}=\\mathrm{BD}+\\mathrm{CD}=\\dfrac{6x}{\\sqrt{34}}+\\dfrac{10x}{\\sqrt{34}}=\\dfrac{16x}{\\sqrt{34}}$$\r\n\r\nããã$x=\\dfrac{17}{8}$ãåŸãã\r\n\r\nãã£ãŠã\r\n\r\n$$\\mathrm{PQ}^2=(3-x)^2+(5-x)^2=\\left(\\dfrac{7}{8}\\right)^2+\\left(\\dfrac{23}{8}\\right)^2=\\dfrac{289}{32}$$",
"text": "æ¹ã¹ãã®å®çã䜿ã",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/6734/501"
}
] | ã$ \angle A = 90^{\circ}, AB = 3, AC = 5 $ ãªãäžè§åœ¢ $ ABC $ ã«ãããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒèŸº $ AB $ äžã«ç¹ $P$ ïŒèŸº $ AC $ äžã«ç¹ $Q$ ã $ BP=CQ $ ãšãªãããã«ãšããšïŒ$ 4 $ ç¹ $A,M,P,Q$ ã¯åäžååšäžã«ãããŸããïŒ\
ããã®ãšã $ PQ $ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $ a,b $ ã«ãã£ãŠ $ \sqrt{\dfrac{b}{a} } $ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMCB009 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb009/tasks/4057 | H | OMCB009(H) | 300 | 154 | 233 | [
{
"content": "ã$n$ åãïŒ$1,10,100$ åçããããã $4$ æ以äžïŒ$5,50$ åçããããã $1$ æ以äžããçšããªãã§æ¯æãæ¹æ³ã¯äžæã«å®ãŸãïŒãããæå°ææ°ãéæããå¯äžã®æ¹æ³ã§ããïŒåŸã£ãŠïŒæ±ãã $n$ ã®æ°ã¯ïŒç¡¬è²šãåèš $6$ æ䜿ãæ¹æ³ã§ãã£ãŠïŒ$1,10,100$ åçããããã $4$ æ以äžïŒ$5,50$ åçããããã $1$ æ以äžãã䜿ããªãæ¹æ³ã®æ°ãšäžèŽããïŒ$1,10,100$ åçã䜿ãææ°ãèããïŒ\r\n\r\n- $1,10,100$ åçãåèš $6$ æ䜿ãå Žå\\\r\n$1,10,100$ åçã䜿ãææ°ã®çµã¿åãã㯠$(0,2,4)(0,3,3)(1,1,4)(1,2,3)(2,2,2)$ ãšãã®äžŠã³æ¿ãã® $19$ éãïŒ\r\n\r\n- $1,10,100$ åçãåèš $5$ æ䜿ãå Žå\\\r\n$1,10,100$ åçã䜿ãææ°ã®çµã¿åãã㯠$(0,1,4)(0,2,3)(1,1,3)(1,2,2)$ ãšãã®äžŠã³æ¿ãã® $18$ éãïŒæ®ã $1$ æã $5,50,500$ åçã® $3$ éããªã®ã§ïŒå
šäœã§ $54$ éãïŒ\r\n\r\n- $1,10,100$ åçãåèš $k\\le4$ æ䜿ãå Žå\\\r\n$5,50$ åç ãããããäœæ䜿ãããèããããšã§ïŒ$5,50,500$ åçã䜿ãææ°ã®çµã¿åãã㯠$4$ éããšåããïŒ$1,10,100$ åçã䜿ãæ¹æ³ã¯ ${}\\_{k+2}\\mathrm{C}\\_{k}$ éãããã®ã§ïŒå
šäœã§ $4{}\\_{k+2}\\mathrm{C}\\_{k}$ éãïŒ\r\n\r\n以äžããèšç®ããããšã§æ±ããçã㯠$\\bf{213}$ ãšåããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4057"
},
{
"content": "ãnåçã (n) ã§è¡šãïŒ\r\n\r\n$(\\mathrm{i})$ã(5)ïŒ(50) ãã©ã¡ãã䜿ããªãå Žå\\\r\nã(1)ïŒ(10)ïŒ(100)ïŒ(500) ãåãã㊠$6$ æãããããªç¡¬è²šã®çµã¿åãã㯠${}\\_{9}\\mathrm{C}\\_{3}=84$ éãã§ããïŒãã ããã® $84$ éãã®äžã«ã¯ïŒæ¡ä»¶ã«é©ããªããããªä»¥äžã®å Žåãå«ãŸããŠããïŒ\\\r\nâ ã(1)ïŒ(10)ïŒ(100) ã®ããããã $6$ æããå ŽåïŒ$3$ éãïŒ\\\r\nâ¡ã(1)ïŒ(10)ïŒ(100) ã®ããããã $5$ æããå ŽåïŒ$3Ã3=9$ éãïŒ\\\r\nãã£ãŠïŒ$84-3-9=72$ éãïŒ\r\n\r\n$(\\mathrm{ii})$ã(5)ïŒ(50) ã®ããããã $1$ æå«ãå Žå\\\r\nã(1)ïŒ(10)ïŒ(100)ïŒ(500) ãåãã㊠$5$ æãããããªç¡¬è²šã®çµã¿åãã㯠${}\\_{8}\\mathrm{C}\\_{3}=56$ éãã§ããïŒãã ããã® $56$ éãã®äžã«ã¯ïŒ(1)ïŒ(10)ïŒ(100) ã®ããããã $5$ æããå ŽåïŒ$3$ éãïŒãå«ãŸããŠããïŒ\\\r\nãã£ãŠïŒ$2Ã(56-3)=106$ éãïŒ\r\n\r\n$(\\mathrm{iii})$ã(5)ïŒ(50) ã®äž¡æ¹ã $1$ æãã€å«ãå Žå\\\r\nã(1)ïŒ(10)ïŒ(100)ïŒ(500) ãåãã㊠$4$ æãããããªç¡¬è²šã®çµã¿åãã㯠${}\\_{7}\\mathrm{C}\\_{3}=35$ éãã§ããïŒæ¡ä»¶ã«åããå Žåã¯ãªãïŒïŒ\r\n\r\n以äžã®å Žåã足ãåãããŠïŒ$72+106+35=\\mathbf{213}$ éãïŒ",
"text": "5åçïŒ50åçã®ææ°ã§å Žååãããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4057/496"
},
{
"content": "èªç¶æ°$n$ã«å¯ŸããŠã\r\n$0\\leq p\\lt \\infty,0\\leq q\\leq 4,0 \\leq r\\leq 1,0\\leq s\\leq 4,0 \\leq t\\leq 1,0\\leq u\\leq 4$ãšãªããããªæŽæ°ã®çµ$(p,q,r,s,t,u)$ã§ãã£ãŠã\r\n$$n=500p+100q+50r+10s+5t+u$$\r\nãšãªããããªãã®ãå¯äžã€ååšããŠããã®ãšãã«$f(n)=p+q+r+s+t+u$ã§ããã\r\n\r\nïŒãã®ãšãã500åçã100åçã50åçã10åçã5åçã1åçããããã$p,q,r,s,t,u$æ䜿ãããšã«ãªããïŒ\r\n\r\nãã®ãšãã$(p,q,r,s,t,u)$ãš$n$ãäžå¯Ÿäžå¯Ÿå¿ããããšã«æ³šæãããš\r\n\r\n$$F(x):=\\sum_{n=0}^{\\infty}x^{f(n)}=\\left(\\sum_{p=0}^{\\infty}x^p\\right)\\cdot \\left(\\sum_{q=0}^{4}x^q\\right)\\cdot \\left(\\sum_{r=0}^{1}x^r\\right)\\cdot \\left(\\sum_{s=0}^{4}x^s\\right)\\cdot \\left(\\sum_{t=0}^{1}x^t\\right)\\cdot \\left(\\sum_{u=0}^{4}x^u\\right)$$\r\n\r\nãã£ãŠ\r\n\r\n$$F(x)=\\dfrac{1}{1-x}\\cdot \\dfrac{1-x^5}{1-x}\\cdot (1+x)\\cdot\\dfrac{1-x^5}{1-x}\\cdot (1+x)\\cdot\\dfrac{1-x^5}{1-x}=\\dfrac{(1-x^5)^3(1+x)^2}{(1-x)^4}$$\r\n\r\n$f(n)=6$ãšãªããããª$n$ã®åæ°ã¯$[x^6]F(x)$ãšãªããååã«ãããŠ7ä¹ä»¥éã¯èæ
®ããªããŠãããã®ã§\r\n\r\n$$[x^6]\\dfrac{(1-x^5)^3(1+x)^2}{(1-x)^4}=[x^6]\\dfrac{(1-3x^5)(1+x)^2}{(1-x)^4}=[x^6]\\dfrac{1+2x+x^2-3x^5-6x^6}{(1-x)^4}$$\r\n\r\n$[x^a]\\dfrac{x^b}{(1-x)^c}=\\binom{(a-b)+c-1}{c-1}={}\\_{(a-b)+c-1}\\mathrm{C}\\_{c-1}$ã«æ³šæãããšçãã¯\r\n\r\n$$\\binom{9}{3}+2\\binom{8}{3}+\\binom{7}{3}-3\\binom{4}{3}-6\\binom{3}{3}=84+2\\cdot 56+35-3\\cdot 4-6\\cdot 1=213$$",
"text": "圢åŒçåªçŽæ°",
"url": "https://onlinemathcontest.com/contests/omcb009/editorial/4057/502"
}
] | ãæ£ã®æŽæ° $n$ ã«ã€ããŠïŒ$f(n)$ ã以äžã®ããã«å®ããŸã:
- $1$ åçïŒ$5$ åçïŒ$10$ åçïŒ$50$ åçïŒ$100$ åçïŒ$500$ åçãçšããŠã¡ããã© $n$ åãæ¯æãããã«å¿
èŠãªç¡¬è²šã®æå°ææ°ïŒ
$f(n) = 6$ ãšãªãæ£ã®æŽæ° $n$ ã¯ããã€ãããŸããïŒ
<details><summary> $f(n)$ ã®äŸ<\/summary>
ãäŸãã°ïŒ$4057$ åãæå°ææ°ã®ç¡¬è²šã§æ¯æããšãïŒ$500$ åçã $8$ æïŒ$50$ åçã $1$ æïŒ$5$ åçã $1$ æïŒ$1$ åçã $2$ æã§ããã®ã§ïŒ$f(4057)=8+1+1+2=12$ ã§ãïŒ
<\/details> |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/9733 | A | OMC219(A) | 100 | 410 | 418 | [
{
"content": "ã$b_n = a_{n}^2$ ãšããã° $\\\\{b_n\\\\}$ ã¯ãã£ããããæ°åãšãªãïŒ$a_n$ ãæŽæ°ã«ãªãããšã¯ïŒ$b_n$ ãå¹³æ¹æ°ã§ããããšãšåå€ã§ããïŒé çªã«èšç®ããã° $ b_{12}=144=12^2$ ãæå°ã§ããïŒããªãã¡ïŒæ±ããå€ã¯ $\\mathbf{12}$ ã§ããïŒ\\\r\nããªãïŒ$12$ ãå¯äžã§ããããšãç¥ãããŠããïŒåç
§ïŒhttps:\\/\\/math.la.asu.edu\\/~checkman\\/SquareFibonacci.html",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/9733"
}
] | ãæ£ã®å®æ°å $\lbrace a_n\rbrace_{n=1,2,\ldots}$ ã¯
$$ a_1=a_2=1, \quad a_{n+2}^2 = a_{n+1}^2 + a_{n}^2 \quad (n=1,2,\ldots)$$
ãæºãããŸãïŒãã®ãšãïŒ$a_n$ ãæŽæ°ãšãªããã㪠$3$ 以äžã®æŽæ° $n$ ã®ãã¡ïŒæå°ã®ãã®ãæ±ããŠãã ããïŒ |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/9718 | B | OMC219(B) | 300 | 134 | 301 | [
{
"content": "ã$k(k-1)+1$ åãã $k(k+1)$ åãŸã§ã® $2k$ åã®ã³ã³ãã¹ãã®æ瞟ã¯OMCåãšbzuLåã§åã¡è² ããåæ°ã«ãªã£ãŠããïŒOMCåã¯bzuLåã«äžåºŠãè² ãè¶ããç¬éããªãïŒãããã£ãŠïŒãã®åºéã§ã®åã¡è² ãã®çµã¿åããã¯ïŒ $\\frac{1}{k+1}{}\\_{2k}\\mathrm{C}\\_{k}$ éãïŒã«ã¿ã©ã³æ°ïŒãšãªãïŒ ããã $k=1$ ãã $k=99$ ãŸã§ç¬ç«ã«èæ
®ããããšã§ïŒ$M$ ã¯ä»¥äžãšãªãïŒ\r\n$$ M = \\prod_{k=1}^{99} \\frac{1}{k+1}{}\\_{2k}\\mathrm{C}\\_{k} = \\frac{\\prod_{k=1}^{99} {}\\_{2k}\\mathrm{C}\\_{k}}{100!}$$\r\nãããã§ïŒæ£æŽæ° $N$ ã $2$ ã§å²ãåããæ倧ã®åæ°ã $v_2(N)$ïŒ$N$ ã®äºé²æ³è¡šç€ºã§ã® $1$ ã®æ°ã $\\mathrm{popcount}(N)$ãšãããšïŒä»»æã®æ£æŽæ° $x$ ã«ã€ããŠæ¬¡ãæãç«ã€ïŒ\r\n$$v_2(x!) = x - \\mathrm{popcount}(x)$$\r\n<details><summary>蚌æ<\\/summary>\r\nã$x$ ã«é¢ããåž°çŽæ³ã«ãã£ãŠç€ºãïŒ\\\r\nããŸãïŒ$x = 1$ ã®ãšãïŒäž¡èŸºã¯ãšãã« $0$ ãšãªãæç«ããïŒ\\\r\nã次ã«ïŒãã $x \\ge 1$ ã§æç«ããŠãããšä»®å®ããïŒ$x$ ã $2$ é²è¡šç€ºãããšãïŒ$2^0$ ã®äœãã $k$ åé£ç¶ã㊠$1$ ãçŸãããšããïŒãã®ãšãïŒ\r\n$$v_2(x+1) = k, \\quad \\mathrm{popcount}(x+1) = \\mathrm{popcount}(x) - k + 1$$\r\nã§ããããïŒ\r\n$$\\begin{aligned}\r\nv_2((x + 1)!)\r\n&= v_2(x!) + v_2(x+1)\\\\\\\\\r\n&= (x+1) - (\\mathrm{popcount}(x) - k + 1)\\\\\\\\\r\n&= (x+1) - \\mathrm{popcount}(x+1)\r\n\\end{aligned}$$\r\nãšãªãïŒä»¥äžãã瀺ãããïŒ\r\n<\\/details>\r\n\r\nãããã£ãŠïŒ$\\mathrm{popcount}(2k)=\\mathrm{popcount}(k)$ ã«æ³šæããããšã§ïŒ\r\n$$\\begin{aligned}\r\n v_2\\left( \\frac{\\prod_{k=1}^{99} {}\\_{2k}\\mathrm{C}\\_{k}}{100!}\\right) & = \\sum_{k=1}^{99}v_2\\left( \\frac{(2k)!}{(k!)^2}\\right) -v_2(100!)\\\\\\\\\r\n& = \\sum_{k=1}^{99} \\mathrm{popcount}(k) - (100-\\mathrm{popcount}(100))\\\\\\\\\r\n& = \\sum_{k=1}^{100} \\mathrm{popcount}(k) - 100\\\\\\\\\r\n& = 319-100 = 219\r\n\\end{aligned}$$\r\n\r\nãšãªãã®ã§ïŒæ±ããå€ã¯ $\\mathbf{219}$ ã§ããïŒ\\\r\nããªãïŒ$\\mathrm{popcount}$ ã®å㯠$\\displaystyle\\sum_{k=1}^{2^n-1} \\mathrm{popcount}(k)=n2^{n-1}$ ã掻çšãããšããïŒããã¯ïŒå $k = 0,1,\\ldots, n-1$ ã«ã€ããŠïŒ$2^k$ ã®äœã $1$ ã§ãããã㪠$1$ ä»¥äž $2^{n}$ æªæºã®æŽæ°ã¯ã¡ããã© $2^{n-1}$ åããããšããæãç«ã€ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/9718"
}
] | ãããã³ã³ãã¹ãã¯éå»ã« $9900$ åéå¬ãããŠããïŒOMCåãšbzuLåã¯ãã®ãã¹ãŠã«åºå ŽããŠããŸããïŒããã§ïŒã©ã®åãOMCåãšbzuLåãåäžã®æ瞟ãåã£ãããšã¯ãªãïŒåã¡ãšè² ããæ¯å決ãŸã£ãŠãããã®ãšããŸãïŒOMCåãšbzuLåã®æ瞟ãæ¯èŒãããšïŒä»¥äžã®ããšãããããŸããïŒ
- OMCåã¯bzuLåã«è² ãè¶ããããšããªã ïŒã€ãŸãïŒã©ã®æç¹ã§ãïŒOMCåãbzuLåã®æ瞟ãäžåã£ãåæ°ã¯ïŒbzuLåã®æ瞟ãäžåã£ãåæ°ä»¥äžã§ãã£ãïŒ
- å $n=1,2,\ldots,99$ ã«å¯ŸããŠïŒç¬¬ $n(n+1)$ åã®ã³ã³ãã¹ããçµäºããçŽåŸã¯ïŒOMCåãšbzuLåã®åã¡è² ãã¯åæ°ã§ãã£ãïŒ
ãã®ãšãïŒOMCåãšbzuLåã®åã¡è² ãã®çµã¿åãããšããŠãããããã®ã¯ $M$ éããããŸãïŒ$M$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ããïŒ |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/9857 | C | OMC219(C) | 300 | 84 | 168 | [
{
"content": "ã$\\angle{A_1OA_2} = x$ ãšããïŒ \r\n**è£é¡ïŒ** $1 \\leq k \\leq 2023$ ãªãæŽæ° $k$ ã«å¯ŸããŠïŒ$\\angle{OA_{k+1}A_k} = kx$ãšãªãïŒ \r\n**蚌æïŒ** $k$ ã«é¢ããæ°åŠçåž°çŽæ³ãçšããïŒ \r\n- $k=1$ ã®ãšãïŒ$OA_1 = A_1A_2$ ãã $\\angle{OA_2A_1} = \\angle{A_1OA_2} = x$ ã§ããããããïŒ\r\n- ãã $1$ ä»¥äž $2022$ 以äžã® $k$ ã§ã®æç«ãä»®å®ããïŒ$OA_{k+2}\\gt OA_k$ ã§ããããïŒç·å $OA_{k+2}$ äžã« $OA_{k} = OX_k$ ãªãç¹ $X_k$ ãåããïŒãã®ãšãïŒäžè§åœ¢ $OA_{k}A_{k+1}$ ãš äžè§åœ¢ $OX_kA_{k+1}$ ã¯ååã§ããããïŒ$A_{k+1}X_k = A_{k}A_{k+1}$ ããäžè§åœ¢ $A_{k+1}A_{k+2}X_k$ ã¯äºç蟺äžè§åœ¢ã§ããïŒãŸãïŒ$ \\angle{OA_{k+1}X_k} =\\angle{OA_{k+1}A_k} =kx$ ãæç«ããïŒãã£ãŠïŒ\r\n$$ \\angle{OA_{k+2}A_{k+1}} = \\angle{A_{k+1}X_{k}A_{k+2}} =\\angle{A_{k+1}OX_k} + \\angle{OA_{k+1}X_k} = (k+1)x$$\r\nãšãªãïŒ\r\n\r\n以äžããïŒåž°çŽæ³ãåãããïŒç€ºãããïŒ$\\square$\r\n\r\nãäžã®åœé¡ãšäžè§åœ¢ $OA_{2023}A_{2024}$ ã $OA_{2023} = OA_{2024}$ ãæºããäºç蟺äžè§åœ¢ã§ããããšããïŒ$(2\\cdot 2023 + 1)x = \\pi$ ãšãªãïŒ$x = \\dfrac{\\pi}{4047}$ ãåŸãïŒãŸãïŒæåè§ãèãããšïŒ$\\measuredangle{A_kOA_{k+1}} = \\pm x$ ãšãããããïŒ\r\n$$\\measuredangle{A_1OA_{2024}} = \\sum_{k=1}^{2023} \\measuredangle{A_kOA_{k+1}} = \\sum_{k=1}^{2023} \\pm x$$\r\nãšãªãïŒãã ãå $\\pm$ ã¯ç¬ç«ã«ç¬Šå·ã決ããããïŒïŒãããã£ãŠïŒ$\\angle{A_1OA_{2024}}$ ãšããŠããããå€ã¯ $1$ ä»¥äž $2023$ 以äžã®å¥æ° $n$ ãçšããŠïŒ $\\dfrac{n\\pi}{4047}$ ãšè¡šããããïŒãã®åèšã¯\r\n$$\r\n\\sum_{m=1}^{1012} \\dfrac{(2m-1)\\pi}{4047} = \\dfrac{1012^2 \\pi}{4047}\r\n$$\r\nãšãªãïŒè§£çãã¹ãå€ã¯ $1012^2+4047=\\mathbf{1028191}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/9857"
}
] | ãå¹³é¢äžã®ç¹ $O,A_1,A_2\ldots,A_{2024}$ ã¯ä»¥äžãæºãããŸãïŒ
- $OA_1 = A_1A_2 = A_2A_3 = \cdots = A_{2023}A_{2024}$
- $ 0 \lt OA_1 \lt OA_2 \lt \cdots \lt OA_{2022} \lt OA_{2023} = OA_{2024}$
- $ \angle{A_1OA_2} = \angle{A_2OA_3} = \cdots = \angle{A_{2023}OA_{2024}}$
ãã®ãšãïŒåŒ§åºŠæ³ã§ã® $\angle{A_1OA_{2024}}$ ã®å€§ãããšããŠããããå€ã®ç·åã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{\pi a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ\
ããã ãïŒä»»æã®çžç°ãªã $3$ ç¹ $X, Y, Z$ ã«ã€ã㊠$0 \leq \angle XYZ \leq \pi$ ãšããŸãïŒ |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/10116 | D | OMC219(D) | 500 | 27 | 64 | [
{
"content": "ã$b_n=a_{n+1}a_n$ ããã³ $c=\\dfrac{1}{10116}$ ãšããïŒãã®ãšãæ°å $\\\\{ b_n \\\\}$ 㯠$b_1=b_2=25$ ããã³\r\n$$ b_{n+2}b_n = c+ b_{n+1}^2$$ \r\nãæºããïŒã㟠$\\dfrac{a_{n+2}}{a_n} + \\dfrac{a_n}{a_{n+2}} = \\dfrac{b_{n+1}}{b_n} + \\dfrac{b_n}{b_{n+1}}$ ã§ããïŒãã®å€ã«ã€ã㊠$n\\ge 2$ ã§ã¯\r\n$$\r\n\\begin{aligned}\r\n\\frac{b_{n+1}}{b_n} + \\frac{b_n}{b_{n+1}} &= \\frac{c+b_n^2}{b_{n-1}b_n} + \\frac{b_{n+1}b_{n-1}-c}{b_nb_{n+1}} \\\\\\\\\r\n&= \\frac{b_{n}}{b_{n-1}} + \\frac{b_{n-1}}{b_{n}} + c \\Big(\\frac{1}{b_{n-1}b_{n}}-\\frac{1}{b_nb_{n+1}}\\Big)\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãšãªãã®ã§ïŒãã®å€åœ¢ãç¹°ãè¿ãè¡ãããšã§ïŒ\r\n$$\r\n\\begin{aligned}\r\n\\frac{b_{n+1}}{b_n} + \\frac{b_n}{b_{n+1}}\r\n& = \\frac{b_{2}}{b_{1}} + \\frac{b_{1}}{b_{2}} + c\\Big(\\frac{1}{b_{1}b_{2}}-\\frac{1}{b_nb_{n+1}}\\Big)\\\\\\\\\r\n& = 2 + c\\Big(\\frac{1}{625}-\\frac{1}{b_nb_{n+1}}\\Big)\\\\\\\\\r\n& =2+\\frac{c}{625} -\\frac{c}{b_nb_{n+1}}\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒäžæ¹ã§ïŒ$b_3 \\gt b_2$ ã確ããããïŒ\r\n$$\r\n\\begin{aligned}\r\nb_{n+2} = b_{n+1}\\cdot\\frac{b_{n+1}}{b_n}+\\frac{c}{b_n} \\gt b_{n+1}\r\n\\end{aligned}\r\n$$\r\nããïŒåž°çŽæ³ãã $\\lbrace b_n\\rbrace_{n=2,3,\\ldots}$ ã¯ç矩å調å¢å ã§ããïŒãŸãïŒ\r\n$$\r\n\\begin{aligned}\r\nb_{n+2}b_{n+1} \\gt b_{n+2}b_n = c+ b_{n+1}^2 \\gt c+ b_{n+1}b_n\r\n\\end{aligned}\r\n$$\r\nããïŒ$b_{n+1}b_n$ 㯠$c(n-1)$ ãã倧ããã®ã§ïŒ$n \\to \\infty$ ã§æ£ã®ç¡é倧ã«çºæ£ããïŒãã£ãŠïŒä»åæ±ããå€ã¯\r\n$$\r\n\\begin{aligned}\r\n\\lim_{n \\to \\infty} \\Big( \\frac{a_{n+2}}{a_n}+\\frac{a_{n}}{a_{n+2}}\\Big) &= \\lim_{n \\to \\infty} \\Big(\\frac{b_{n+1}}{b_n} + \\frac{b_n}{b_{n+1}}\\Big) \\\\\\\\\r\n& = \\lim_{n \\to \\infty} \\Big(2+\\frac{c}{625} -\\frac{c}{b_nb_{n+1}}\\Big)\\\\\\\\\r\n& = 2+\\frac{c}{625} - 0\\\\\\\\\r\n& = \\frac{12645001}{6322500}\r\n\\end{aligned}\r\n$$\r\nã§ããïŒãããã£ãŠçããå€ã¯ $6322500+12645001 = \\mathbf{18967501}$ ãšãªãïŒ\\\r\nããªãïŒæåŸã®èšç®ã¯ $3\\times625\\times10116+1$ ãšããã°åæ°ã詳ããæ±ããå¿
èŠããªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10116"
},
{
"content": "挞ååŒã® $n$ ããã³ $n+1$ ã®å Žåãæ¯èŒããããšã§ïŒä»»æã® $n$ ã«å¯Ÿã以äžã®çåŒãæãç«ã€ãšãããïŒ\r\n$$\r\na_{n+4}a_{n+3}a_{n+2}a_{n+1} + (a_{n+2}a_{n+1})^2 = a_{n+3}a_{n+2}a_{n+1}a_{n} + (a_{n+3}a_{n+2})^2\r\n$$\r\nãã®äž¡èŸºã $a_{n+3}a_{n+2}^2a_{n+1}$ ã§å²ãïŒ$c_{n} = \\dfrac{a_{n+2}}{a_{n}}$ ãšããããšã§ïŒä»¥äžã®åŒãåŸãïŒ\r\n$$\r\nc_{n+2} + \\dfrac{1}{c_{n+1}} = c_{n+1} + \\dfrac{1}{c_{n}}\r\n$$\r\nãããã£ãŠïŒ$c_{n+1} + \\dfrac{1}{c_{n}}$ ã®å€ã¯ $n$ ã«ãããäžå®ã§ïŒ\r\nãã®å€ $K$ ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\nK = c_2 + \\dfrac{1}{c_1} = \\dfrac{a_4}{a_2} + \\dfrac{a_1}{a_3} = \\biggl(1 + \\dfrac{1}{625\\cdot 10116} \\biggr) + 1= 2 + \\dfrac{1}{625\\cdot 10116}\r\n$$ \r\nç¹ã«ïŒä»»æã® $n$ ã«å¯Ÿã $c_{n} \\geq 1$ ãšãªãããšãåž°çŽçã«ç€ºããïŒ\r\n\r\nããã§ïŒ$\\alpha + \\dfrac{1}{\\alpha} = K$ ãªã $\\alpha \\gt 1$ ããšãïŒ\r\nãªãïŒãã® $\\alpha$ ã¯äºæ¬¡æ¹çšåŒ $x^2 - Kx + 1 = 0$ ã®è§£ã§ããïŒ\r\n$K \\gt 2$ ãªã®ã§ãã®ãã㪠$\\alpha$ ãååšããããšã«æ³šæããïŒ\r\nãã® $\\alpha$ ãçšã㊠$c_{n+1} + \\dfrac{1}{c_{n}} = K$ ãå€åœ¢ãããšïŒä»¥äžã®ããã«ãªãïŒ\r\n$$\r\n\\alpha - c_{n+1} = \\dfrac{1}{\\alpha c_{n}} (\\alpha - c_{n})\r\n$$\r\nãã®åŒããïŒä»»æã® $n$ ã«å¯Ÿã $\\alpha - c_{n} \\gt 0$ ãšãªãããšãåž°çŽçã«ç€ºãïŒ\r\nããã« $\\dfrac{1}{\\alpha c_{n}} \\leq \\dfrac{1}{\\alpha}$ ãã\r\n$$\r\n0 \\lt \\alpha - c_{n} \\leq \\dfrac{1}{\\alpha ^{n-1}} (\\alpha - c_{1})\r\n$$\r\nãšãªãã®ã§ïŒ\r\n$n\\rightarrow \\infty$ ã®ãšã $c_{n}$ 㯠$\\alpha$ ã«åæããïŒ\r\n\r\n以äžããïŒ$n\\rightarrow \\infty$ ã®ãšã\r\n$$\r\n\\dfrac{a_{n+2}}{a_{n}} + \\dfrac{a_{n}}{a_{n+2}} = c_{n} + \\dfrac{1}{c_{n}} \\rightarrow \\alpha + \\dfrac{1}{\\alpha} = K = 2 + \\dfrac{1}{625\\cdot 10116}\r\n$$\r\nãšãªãïŒ\r\n\r\n### ã³ã¡ã³ã\r\n解説äžã® $\\alpha$ ã¯å€©äžãçã«æããŸããïŒ\r\n$f(x) = -\\dfrac{1}{x} + K$ ãšãããš $c_{n+1} = f(c_{n})$ïŒ$\\alpha = f(\\alpha)$ ãšãªãããïŒ\r\n$y = f(x)$ ãš $y=x$ ã®ã°ã©ããå³ç€ºããããšã§ïŒ$c_{n}$ ããããã®äº€ç¹ã® $x$ 座æšã§ãã $\\alpha$ ã«åæããããšãçŽæçã«ç解ã§ããŸãïŒ",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10116/492"
},
{
"content": "ãå
¬åŒè§£èª¬ãšåæ§ã« $b_n=a_{n+1}a_n$ ããã³ $c=\\dfrac{1}{10116}$ ãšããïŒããŸæ±ããããã®ã¯\r\n$$\\tag{1} \\lim_{n \\to \\infty} \\left( \\dfrac{b_{n+1}}{b_n}+\\dfrac{b_n}{b_{n+1}} \\right) $$\r\nã§ããïŒäžããããæ¡ä»¶ã¯ $b_{n+2}b_n - b_{n+1}^2=c$ ãšå€åœ¢ããããïŒ$n+1$ ã®å Žåãèããããšã§ïŒ$b_{n+2}b_n - b_{n+1}^2=b_{n+3}b_{n+1} - b_{n+2}^2$ ãæç«ããïŒãã®åŒã$b_{n+1}b_{n+2}$ ã§å²ã£ãŠå€åœ¢ãããšïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$\\tag{2} \\dfrac{b_{n}}{b_{n+1}}+\\dfrac{b_{n+2}}{b_{n+1}}=\\dfrac{b_{n+1}}{b_{n+2}}+\\dfrac{b_{n+3}}{b_{n+2}}$$\r\nãåŒ $(1), (2)$ ãããèŠããšïŒ$\\dfrac{b_{n+1}}{b_n}=c_n$ ãšå€åœ¢ããããšãæãã€ãïŒããããŠãŒã¶ãŒè§£èª¬ã® $c_n$ ã«ä»ãªããªãïŒ\r\n\r\n---\r\n\r\nãããŸæ±ããããã®ã¯ $\\lim\\limits_{n \\to \\infty} \\left( c_n+\\dfrac{1}{c_n} \\right)$ ã§ãããïŒãã $\\lim\\limits_{n \\to \\infty} c_n$ ãååšããã°è©±ã¯ç°¡åã§ããïŒåŒ $(2)$ ãã\r\n$$\\lim_{n \\to \\infty} \\left( c_n+\\dfrac{1}{c_n} \\right)=\\lim_{n \\to \\infty} \\left( c_{n+1}+\\dfrac{1}{c_n} \\right) =c_2+\\dfrac{1}{c_1}$$ \r\nãšãªãããã§ããïŒå®éïŒãŠãŒã¶ãŒè§£èª¬ã®åŸåã§ã¯ $\\lim\\limits_{n \\to \\infty} c_n$ ã®ååšã蚌æããŠããïŒOMC ã®è§£ç圢åŒããããŠïŒååšèšŒæãããã« $c_2+\\dfrac{1}{c_1}$ ãå
¥åããããšãå¯èœã§ã¯ãããïŒïŒ\\\r\nããªã挞ååŒã極éå€ãæã€å ŽåïŒãã®å€ã¯ïŒå
šãŠã® $c_n$ ãã¡ãåãæåãšããæ¹çšåŒã®è§£ã«çããïŒæ¬åã§èšãã°ïŒ$\\lbrace c_n \\rbrace$ ã«é¢ãã挞ååŒã¯ $c_{n+1}+\\dfrac{1}{c_n}=K$ ãªã®ã§ïŒãŠãŒã¶ãŒè§£èª¬ã«ãããŠæ¹çšåŒ $\\alpha +\\dfrac{1}{\\alpha}=K$ ãèããã®ã¯ïŒããé£èºã®ããããšã§ã¯ãªãïŒïŒãã®æ®µèœã¯ïŒãŠãŒã¶ãŒè§£èª¬ã®ã³ã¡ã³ãéšåã«ã€ããŠïŒå¥ã®è¡šçŸãããŠããã«éããªãïŒïŒ\\\r\nãïŒåèãŸã§ïŒããããšã®æ°å $\\lbrace a_n \\rbrace$ ã«ã€ããŠèšãã°ïŒæ¹çšåŒ $\\alpha^4=c+\\alpha^4$ ã¯è§£ãæããªãã®ã§ïŒæ¥µéå€ãååšããªãããšããããïŒ",
"text": "å¥è§£ïŒãŠãŒã¶ãŒè§£èª¬ïŒã®è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10116/493"
}
] | ãæ£ã®å®æ°å $\lbrace a_n\rbrace_{n=1,2,\ldots}$ 㯠$ a_1 = a_2 = a_3 = 5$ ããã³
$$a_{n+3}a_{n+2}a_{n+1}a_{n}=\frac{1}{10116}+(a_{n+2}a_{n+1})^2 \quad (n = 1, 2, 3, \ldots) $$
ãæºãããŠããŸãïŒãã®ãšãïŒ
$$\lim_{n \to \infty} \Big( \frac{a_{n+2}}{a_n}+\frac{a_{n}}{a_{n+2}}\Big)$$
ã®å€ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ãçããŠãã ããïŒ |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/10240 | E | OMC219(E) | 500 | 19 | 35 | [
{
"content": "ã$(p, q, r)$ ãåºå®ãïŒäºãã«åºå¥ãããç $128$ åã®ãã¡ $p$ åãè² $X_1$ ã§ïŒ$q$ åãè² $X_2$ ã§ïŒ$r$ åãè² $X_3$ ã§å¡ãããšãèããïŒãã ãïŒåãçãè€æ°ã®è²ã§å¡ã£ãŠããããšããïŒãã®ãšãïŒ \r\n- ã©ã®è²ã«ãå¡ãããŠããªãçã $a_0$ å \r\n- $X_1$ ã®ã¿ã§å¡ãããŠããçã $a_1$ å \r\n- $X_2$ ã®ã¿ã§å¡ãããŠããçã $a_2$ å \r\n- $X_1$ ãš $X_2$ ã®ã¿ã§å¡ãããŠããçã $a_3$ å \r\n- $X_3$ ã®ã¿ã§å¡ãããŠããçã $a_4$ å \r\n- $X_1$ ãš $X_3$ ã®ã¿ã§å¡ãããŠããçã $a_5$ å \r\n- $X_2$ ãš $X_3$ ã®ã¿ã§å¡ãããŠããçã $a_6$ å \r\n- ãã¹ãŠã®è²ã§å¡ãããŠããçã $a_7$ å\r\n\r\nãšããããšã§ïŒ$(a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7)$ ã¯çŸããæ°åãšãªãïŒçŸããæ°åãåºå®ãããšãïŒçã®åœ©è²æ¹æ³ã¯ $\\dfrac{128!}{\\prod_{k=0}^{7} a_k!}$ éãããïŒçŸããæ°åã®åºå®ã解é€ãããšãã«ïŒ$X_1,X_2,X_3$ ã§ã®åœ©è²ãç¬ç«ã«èããããšã«ãã£ãŠïŒä»¥äžã®çåŒãåŸãïŒ\r\n$$\r\n\\sum_{\\lbrace a_k\\rbrace\\text{: çŸããæ°å}} \\dfrac{128!}{\\prod_{k=0}^{7} a_k!} = {}\\_{128}\\mathrm{C}\\_{p} \\cdot {}\\_{128}\\mathrm{C}\\_{q} \\cdot {}\\_{128}\\mathrm{C}\\_{r} \r\n$$\r\nãããã£ãŠïŒ$(p,q,r)$ ãåºå®ãããšãã«ïŒãã¹ãŠã®çŸããæ°åã«å¯Ÿããã¹ã³ã¢ã®ç·å $f(p,q,r)$ ã«ã€ããŠä»¥äžãåŸãïŒ\r\n$$\r\nf(p,q,r)=\\frac{ {}\\_{128}\\mathrm{C}\\_{p} \\cdot {}\\_{128}\\mathrm{C}\\_{q} \\cdot {}\\_{128}\\mathrm{C}\\_{r} }{128!}\r\n$$\r\næ£æŽæ° $n$ ã $2$ ã§å²ãåããæ倧ã®åæ°ã $v_2(n)$ ã§è¡šãããšãšãããšïŒLegendre ã®å
¬åŒã«ããïŒ\r\n$$\r\nv_2(128!) = \\sum_{k=1}^{7} \\Big\\lfloor \\frac{128}{2^k} \\Big\\rfloor = 2^{7}-1 = 127\r\n$$\r\nãšãªãïŒãŸãïŒKummer ã®å®çããïŒ\r\n$$\r\nv_2( {}\\_{128}\\mathrm{C}\\_{n}) =7-v_2(n)\r\n$$\r\nãšãªãïŒãã ãïŒç¹å¥ã« $v_2(0) = 7$ ãšå®çŸ©ããïŒãŸãïŒ$0$ ã§ãªãæçæ° $\\dfrac{a}{b}$ ã«å¯Ÿã㊠$v_2\\Big(\\dfrac{a}{b}\\Big) = v_2(a)-v_2(b)$ ãšå®ããããšã«ããïŒãããšïŒ\r\n$$\r\nv_2(f(p,q,r))=21-v_2(p)-v_2(q)-v_2(r)-127\r\n$$\r\nãåŸãïŒæ±ããå€ã¯ $v_2\\Big(\\dfrac{x}{y}\\Big)$ ã®çµ¶å¯Ÿå€ã§ããïŒããã¯\r\n$$\r\n\\begin{aligned}\r\n\\Biggl| v_2 \\Biggl( \\prod_{0 \\leq p,q,r\\leq 128}f(p,q,r) \\Biggr)\\Biggr| \r\n&= \\Biggl| \\sum_{0 \\leq p,q,r\\leq 128}v_2(f(p,q,r)) \\Biggr| \\\\\\\\ \r\n&= \\sum_{0 \\leq p,q,r\\leq 128} (106+v_2(p)+v_2(q)+v_2(r))\\\\\\\\ \r\n&= 106\\cdot 129^3 + \\sum_{p=0}^{128} (129^2\\cdot 3v_2(p))\\\\\\\\ \r\n&= 129^2 \\left(106\\cdot 129 + 3\\sum_{p=0}^{128} v_2(p) \\right)\\\\\\\\ \r\n&= 129^2 (106\\cdot 129 + 3(7+v_2(128!)))\\\\\\\\ \r\n&= 129^2 (106\\cdot 129 + 3\\cdot 134)\\\\\\\\ \r\n&= 129^2\\cdot 14076\\\\\\\\ \r\n&=\\mathbf{234238716}\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10240"
},
{
"content": "ã圢åŒçåªçŽæ°ãçšããŠ, $f(p,q,r)$ ãå°åºããŸã.\\\r\n$$\\sum_{k=0}^{\\infty}\\frac{1}{k!}x^k=e^x$$\r\nãã, $f(p,q,r)$ ã¯ä»¥äžã®å€ã«ãªããŸã. å±éãããšã $t,x,y,z$ ã®æ¬¡æ°ãåé¡æã®æ¡ä»¶ã®åŒãšãããã察å¿ããŸã.\r\n$$\r\n\\begin{aligned}\r\n&[t^{128}x^py^qz^r]e^te^{xt}e^{yt}e^{xyt}e^{zt}e^{xzt}e^{yzt}e^{xyzt}\\\\\\\\\r\n&=[t^{128}x^py^qz^r]e^{(1+x)(1+y)(1+z)t}\\\\\\\\\r\n&=[x^py^qz^r]\\frac{((1+x)(1+y)(1+z))^{128}}{128!}\\\\\\\\\r\n&=\\frac{\\displaystyle\\binom{128}{p}\\binom{128}{q}\\binom{128}{r}}{128!}\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10240/630"
}
] | ã$(p,q,r)$ ã $128$ 以äžã®éè² æŽæ°ã®çµãšãïŒä»¥äžãæºããéè² æŽæ°ã®çµ $(a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7)$ ã**çŸããæ°å**ãšåŒã³ãŸãïŒ
$$
\begin{aligned}
a_0+a_1+a_2+a_3+a_4+a_5+a_6+a_7 &= 128, \\\\
a_1+a_3+a_5+a_7 &= p, \\\\
a_2+a_3+a_6+a_7 &= q, \\\\
a_4+a_5+a_6+a_7 &= r \\\\
\end{aligned}
$$
ãŸãïŒçŸããæ°åã«å¯Ÿãã**çŸãã** ã以äžã®å€ã§å®ããŸãïŒ
$$
\prod_{k=0}^{7} \frac{1}{a_k!}
$$
$(p,q,r)$ ãåºå®ãããšãã«ïŒãã¹ãŠã®çŸããæ°åã«å¯ŸããçŸããã®**ç·å**ã $f(p,q,r)$ ãšå®çŸ©ããŸãïŒ
ã$128$ 以äžã®éè² æŽæ°ã®çµ $(p,q,r)$ ãã¹ãŠã«å¯Ÿãã $f(p,q,r)$ ã®**ç·ç©**ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $x,y$ ãçšã㊠$\dfrac{x}{y}$ ãšè¡šãããšãã§ããã®ã§ïŒ$xy$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ããïŒ |
OMC219 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc219/tasks/10460 | F | OMC219(F) | 600 | 9 | 41 | [
{
"content": "ãæ¡ä»¶ãäžãã $1,2$ ãšããïŒãŸãïŒ$N=60^9,M=110^{18}$ ãšããïŒ\r\n<details>\r\n<summary>æ¡ä»¶ãããã<\\/summary>\r\nã**1ïŒ** ä»»æã®æŽæ° $x$ ã«å¯Ÿã㊠$f(x+M) = f(x)$ \r\nã**2ïŒ** ä»»æã®æŽæ° $x,y,z$ ã«å¯ŸããŠïŒ$f(x+yz)-f(x)-f(y)f(z)$ 㯠$N$ ã§å²ãåããïŒ \r\n<\\/details> \r\nã以äžïŒ$f$ ã®å€åã§ã¯**çå·ã $N$ ã§å²ã£ãäœãã§èãã**ïŒæ¡ä»¶ $2$ ã¯ä»»æã®æŽæ°ã®çµ $x,y,z$ ã«å¯ŸããŠïŒ\r\n$$\r\nf(x+yz)=f(x)+f(y)f(z)\r\n$$\r\nãæç«ããããšãšèšãæããããïŒãã®åŒã« $x=a,y=b,z=c$ ã代å
¥ããããšã $P(a,b,c)$ ãšè¡šãããšã«ããïŒãŸãïŒ$d=f(1)$ ãšããïŒ\\\r\nãä»»æã®æŽæ° $n$ ã«ã€ããŠïŒ$P(n,1,1)$ ããïŒ\r\n$$\r\nf(n+1)=f(n)+d^2\r\n$$\r\nãšãªãïŒãŸãïŒ$n=0$ ãšããŠïŒ\r\n$$\r\nd=f(0)+d^2\r\n\\iff f(0)=d-d^2\r\n$$\r\nãšãªãïŒãã£ãŠïŒä»»æã®æŽæ° $n$ ã«å¯ŸããŠïŒ\r\n$$\r\nf(n)=d^2n+f(0)=d^2n+d-d^2\r\n$$\r\nãšãªãïŒäžæ¹ã§ïŒ$P(1,0,1)$ ããïŒ\r\n$$\r\nf(1)=f(1)+f(0)f(1) \r\n\\iff f(1)f(0)=0\r\n$$\r\nãšãªãããïŒ\r\n$$\r\nd^2(d-1)=d(d^2-d)=-f(1)f(0)=0\r\n$$\r\nãåŸãïŒããã§éã« $d^2(d-1)$ ã $N$ ã§å²ãåãããã㪠$d$ ã«å¯ŸããŠïŒ$f(x)=d+d^2(x-1)$ ãšãããšïŒ\r\n$$\r\n\\begin{aligned}\r\nf(x+yz)-f(x)-f(y)f(z) &= d^2yz - (d + d^2(y-1))(d + d^2(z-1)) \\\\\\\\\r\n&= d^2 (yz - 1 - d(y+z-2) - d^2(y-1)(z-1)) \\\\\\\\\r\n&= d^2 (yz - 1 - (y+z-2) - (y-1)(z-1)) \\\\\\\\\r\n&= 0\r\n\\end{aligned}\r\n$$\r\nãšãªãããïŒæ¡ä»¶ $2$ ã®åŒãæºããããããšã瀺ãããïŒãããã£ãŠïŒãã®ãã㪠$d$ ããšã«é¢æ°ãäžæã«å®ãŸãïŒ \r\nãããã§ïŒæ¡ä»¶ $1$ ã«ã€ããŠèå¯ããïŒ$f(x+M)=f(x)$ ããïŒ\r\n$$\r\nd^2(x+M)-d^2+d=d^2x-d^2+d \r\n$$\r\nãã $Md^2=0$ ãåå€ãªæ¡ä»¶ãšãªãïŒ\\\r\nã以äžã®è°è«ããŸãšãããšïŒ$d^2(d-1)$ ããã³ $Md^2$ ã $N$ ã§å²ãåãããã㪠$0\\leq d\\lt N$ ã®åæ°ãæ±ããã°ããïŒ\\\r\nã$Md^2 = 11^{18}2^{18}5^{18}d^2$ ã $N=2^{18}3^95^9$ ã§å²ãåããã®ã§ïŒ$d$ 㯠$3^5$ ã®åæ°ã§ããïŒãŸãïŒ$d$ ãš $d-1$ ã¯äºãã«çŽ ãªã®ã§ïŒ$d^2$ ãš $d-1$ ã¯äºãã«çŽ ã§ããïŒãã£ãŠïŒãã®ç©ã $N=2^{18}3^95^9$ ã§å²ãåããããšãšåããããšïŒ$d^2$ 㯠$2^a3^95^b$ ã®åæ°ã§ïŒ$d-1$ ã $2^{18-a}5^{9-b}$ ã®åæ°ïŒãã ãïŒ$a$ 㯠$0$ ãŸã㯠$18$ïŒ$b$ 㯠$0$ ãŸã㯠$9$ïŒã«ãªãïŒãã®ãšãïŒ$d$ 㯠$2^x3^55^y\\quad (x=\\lfloor\\frac{a+1}{2}\\rfloor,y=\\lfloor\\frac{b+1}{2}\\rfloor)$ ã®åæ°ãšãªãïŒããã§ïŒ$a,b$ ãåºå®ãããšãã«ïŒ\r\n$$\r\n\\begin{aligned}\r\nd &\\equiv 0 \\pmod{2^x3^55^y}\\\\\\\\\r\nd &\\equiv 1 \\pmod{2^{18-a}5^{9-b}}\r\n\\end{aligned}\r\n$$\r\nãšããäºã€ã®æ¡ä»¶ãæºãã $0\\leq d \\lt N=2^{18}3^95^9$ ã®åæ°ãèããïŒäžã€ç®ã®æ¡ä»¶ã§ $d$ ãšããŠãããããã®ã $2^{18-x}3^{4}5^{9-y}$ åããïŒãŸãïŒ$2^x3^55^y$ ãš $2^{18-a}5^{9-b}$ ã¯äºãã«çŽ ã§ããããïŒäºã€ç®ã®æ¡ä»¶ãæºãã $d$ ã®åæ°ã¯äžåœå°äœå®çã«ããïŒ$2^{18-x}3^45^{9-y} \\div 2^{18-a}5^{9-b} = 2^{a-x}3^{4}5^{b-y}$ åã§ããïŒç°ãªã $a,b$ ã«å¯ŸããŠã¯ïŒ$d$ ã®å°äœã®æ¡ä»¶ãèããããšã§ïŒåã $d$ ãšãªãããšã¯ãªãã®ã§ïŒæ±ããåæ°ã¯\r\n$$\r\n3^4(1+2^9)(1+5^4) = 81\\cdot 513 \\cdot 626 = \\mathbf{26012178}\r\n$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc219/editorial/10460"
}
] | ãæŽæ°ã«å¯ŸããŠå®çŸ©ããïŒ$0$ ä»¥äž $60^9$ æªæºã®æŽæ°å€ãåãé¢æ° $f$ ã§ãã£ãŠïŒä»¥äžããã¹ãŠæºãããã®ã®åæ°ãæ±ããŠãã ããïŒ
- ä»»æã®æŽæ° $x$ ã«å¯Ÿã㊠$f(x+110^{18}) = f(x)$ ãæãç«ã€ïŒ
- ä»»æã®æŽæ° $x,y,z$ ã«å¯ŸããŠïŒ$f(x+yz)-f(x)-f(y)f(z)$ 㯠$60^9$ ã§å²ãåããïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/7409 | A | OMCB008(A) | 100 | 341 | 365 | [
{
"content": "ãå転ã«ã€ããŠèããªããšãïŒäžŠã¹æ¿ããŠåºæ¥ãæŽæ°ã¯ $4!\\/2=12$ åããïŒããã§ïŒ\r\n$$(1169,6911), \\quad (1196,9611), \\quad (1619,6191), \\quad (1916,9161)$$\r\nã® $4$ çµãå転ã§äžèŽããããïŒæ±ããåæ°ã¯ $\\dfrac{4!}{2!}-4=\\mathbf{8}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/7409"
}
] | ãããã§ã¯ïŒæ°åã®ã$1$ãã$6$ãã$9$ãã $180$ 床å転ããããšïŒããããã$1$ãã$9$ãã$6$ãã«äžèŽãããšã¿ãªããŸãïŒãã®ãšãïŒ$1,1,6,9$ ã**å転ãããã«**䞊ã¹æ¿ããŠã§ãã $4$ æ¡ã®æŽæ°ã®åæ°ãæ±ããŠãã ããïŒ\
ãäŸãã°ã$1916$ãã¯æ¡ä»¶ãæºãããŸããïŒã$1616$ãã¯æ¡ä»¶ãæºãããŸããïŒ\
ããã ãïŒã$1916$ããšã$9161$ãã®ããã«ïŒ$180$ 床å転ããŠäžèŽãããã®ã¯**åããã®ãšã¿ãªããŸã**ïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/4294 | B | OMCB008(B) | 100 | 351 | 351 | [
{
"content": "ã $A$ ãããåã€ç¢ºçãš $A$ ãããè² ãã確çã¯çããã®ã§ïŒãããã«ãªã確ç㯠$54~ \\\\%$ ã§ããïŒäžæ¹ã§ãããã«ãªã確ç㯠$(x^2+y^2+z^2)~ \\\\%$ ãšãè¡šããã®ã§ïŒ$x+y+z=10$ ã〠$x^2+y^2+z^2=54$ ãªã $x,y,z$ ãæ¢ãã°ããïŒãã㯠$(1,2,7)$ ãå¯äžã§ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{127}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/4294"
}
] | ã次ã®æ¡ä»¶ãå
šãŠæºããæ£æŽæ°ã®çµ $(x,y,z)$ ã¯ãã $1$ éãããã®ã§ïŒãã®çµã«å¯Ÿã㊠$100x+10y+z$ ã®å€ãæ±ããŠãã ããïŒ
- $x+y+z=10$
- $x\lt y\lt z$
- ãžã£ã³ã±ã³ã«ãããŠïŒ$10x~ \\%, 10y~ \\%,10z~ \\%$ ã®ç¢ºçã§ããããã°ãŒïŒãã§ãïŒããŒãåºã $A,B$ ããããžã£ã³ã±ã³ã $1$ åãããšãïŒãããã«ãªããã« $A$ ããã $B$ ããã«åã€ç¢ºç㯠$23 ~\\%$ ã§ããïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/8401 | C | OMCB008(C) | 100 | 309 | 339 | [
{
"content": "ã $0.1=a$ ãšããŠåé¡æã®æ¡ä»¶ãå€åœ¢ããŠãã.\r\n$$\\begin{aligned}\r\n\\sqrt{\\sqrt{n+4}-\\sqrt{n}} \\leq a &\\Longleftrightarrow \\sqrt{n+4}\\leq \\sqrt{n}+a^2\\\\\\\\\r\n&\\Longleftrightarrow 4\\leq 2a^2\\sqrt{n}+a^4\\\\\\\\\r\n&\\Longleftrightarrow n\\geq \\Big(\\frac{4-a^4}{2a^2}\\Big)^2=\\frac{4}{a^4}-2+\\frac{a^4}{4}\r\n\\end{aligned}$$\r\nãã£ãŠ $n$ ã®æå°å€ã¯ $\\dfrac{4}{a^4}-1=\\mathbf{39999}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/8401"
},
{
"content": "ãåé¡æã®æ¡ä»¶ã¯ä»¥äžã®ããã«å€åœ¢ã§ãã.\r\n$$\r\n\\begin{aligned}\r\n\\sqrt{\\sqrt{n+4}-\\sqrt{n}}\\leq\\frac{1}{10}&\\iff \\sqrt{n+4}-\\sqrt{n}\\leq\\frac{1}{100}\\\\\\\\\r\n&\\iff (\\sqrt{n+4}-\\sqrt{n})(\\sqrt{n+4}+\\sqrt{n})\\leq\\frac{\\sqrt{n+4}+\\sqrt{n}}{100}\\\\\\\\\r\n&\\iff 400\\leq\\sqrt{n+4}+\\sqrt{n}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãããã§åå倧ãã $n$ ã«å¯Ÿã, $\\sqrt{n+4}$ 㯠$\\sqrt{n}$ ãšè¿ãå€ãåããã, $$\\sqrt{n}+\\sqrt{n}=400\\iff n =40000$$ ä»è¿ãé»åãçšããŠèª¿ã¹ããš, $400\\leq\\sqrt{n+4}+\\sqrt{n}$ ãæºããæå°ã®æ£æŽæ°ã¯ $n=\\mathbf{39999}$ ã ãšåãã.",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/8401/480"
}
] | ã$\sqrt{\sqrt{n+4}-\sqrt{n}}$ ã®å€ã $0.1$ 以äžãšãªãæ£æŽæ° $n$ ã®æå°å€ãæ±ããŠãã ãã. |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/4033 | D | OMCB008(D) | 200 | 310 | 336 | [
{
"content": "ãåäœã®åã $18$ ã ãã $n$ 㯠$9$ ã®åæ°ã§ããïŒ$n$ ã¯æ£ã®çŽæ°ã $10$ åãã€ããïŒ$n$ ã $3$ ã§å²ãåããåæ°ã¯ $4$ åã $9$ åã§ããïŒäžæ¹ $3^9=19683\\geq10^3$ ã§ããããïŒãã $3$ ã§ãªãçŽ æ° $p$ ãçšã㊠$n=3^4\\times{p}$ ãšè¡šããããšããããïŒ$n$ 㯠$3$ æ¡ã®æ£æŽæ°ãªã®ã§ïŒ$p=2,5,7,11$ ã«ã€ããŠãããã $n$ ã®åäœã®åã $18$ ã§ãããã©ãã調ã¹ãã°ããïŒ$n=567,891$ ã®ãšãã«æ¡ä»¶ãæºããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $567+891=\\bf{1458}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/4033"
}
] | ã以äžã®æ¡ä»¶ãæºãããã㪠$3$ æ¡ã®æ£æŽæ° $n$ ã®ç·åãæ±ããŠäžãã.
- åäœã®åã $18$ ïŒ
- æ£ã®çŽæ°ãã¡ããã© $10$ åæã€ïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/3707 | E | OMCB008(E) | 200 | 196 | 242 | [
{
"content": "ãäžè§åœ¢ $ABC$ïŒäžè§åœ¢ $DBC$ ïŒäžè§åœ¢ $DEC$ ã¯ååãªã®ã§ïŒ\r\n\r\n$$\\angle ACB=\\angle DCB=\\angle DCE=60^\\circ$$\r\n$$AE=AC+CE=CD+BC=12$$ \r\n$$|\\square ABDE|=3|\\triangle BCD|$$\r\nãæç«ããïŒãããã£ãŠïŒ$BC=a,~ CD=b$ãšãããšïŒæ¬¡ãæãç«ã€ïŒ\r\n$$a+b=12$$\r\n$$3\\times \\frac{\\sqrt{3}}{4}ab=7\\sqrt{3}$$\r\n以äžããïŒäœåŒŠå®çãã $BD^2$ ã®å€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$BD^2=a^2+b^2-ab=(a+b)^2-3ab=12^2-28=\\bf{116}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/3707"
},
{
"content": "ã$\\angle{ACB}=60^{\\circ}$ ãŸã§ã¯å
¬åŒè§£èª¬ãšåãã§ã. \r\n\r\n ---\r\n\r\nãããã§åè§åœ¢ $ABDE$ ã«çç®ãããš, $$AB=DE, \\angle{BAE}+\\angle{AED}=\\angle{BAC}+\\angle{CBA}=180^{\\circ}-\\angle{ACB}=120^{\\circ}$$\r\nãšãªãã®ã§, åè§åœ¢ $ABDE$ ãšååãªåè§åœ¢ $6$ ã€ãé©åã«çµã¿åãããå³åœ¢ã¯, äžèŸºã®é·ãã $12$ ã®æ£å
è§åœ¢ããäžèŸºã®é·ãã $BD$ ã®æ£å
è§åœ¢ãããæããå³åœ¢ãšãªãããšãããã.ïŒå
·äœçã«ã¯, $2$ ã€ã®ååãªåè§åœ¢ $ABDE$ ãš $A^{\\prime}B^{\\prime}D^{\\prime}E^{\\prime}$ ã, 蟺 $AB$ ãšèŸº $E^{\\prime}D^{\\prime}$ ããã®é ã§éãªãããã«, ãŸãåè§åœ¢å士ããã®èŸºä»¥å€ã§éãªããªãããã«äžŠã¹ãŠ, ä»ã®åè§åœ¢ãåãããã«äžŠã¹ãã°ãã.ïŒ \r\nãäžèŸºã®é·ãã $1$ ã®æ£å
è§åœ¢ã®é¢ç©ã¯ $\\dfrac{3\\sqrt{3}}{2}$ ã§ãããã, $x=BD$ ãšããã°, $$\\frac{3\\sqrt{3}}{2}(12^2-x^2)=7\\sqrt{3}\\times6$$ ãšãªã, $x^2=\\bf{116}$ ãæ±ãŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/3707/484"
}
] | ã$\angle{C}$ ãéè§ã§ããäžè§åœ¢ $ABC$ ã«ã€ããŠïŒç¹ $A$ ã蟺 $BC$ ã«é¢ããŠå¯Ÿç§°ç§»åãããç¹ã $D$ ïŒç¹ $B$ ã蟺 $CD$ ã«é¢ããŠå¯Ÿç§°ç§»åãããç¹ã $E$ ãšãããšããïŒ$3$ ç¹ $A, C, E$ ã¯åäžçŽç·äžã«ããïŒèŸº $AE$ ã®é·ã㯠$12$ ãšãªããŸããïŒããã«åè§åœ¢ $ ABDE$ ã®é¢ç©ã $7\sqrt{3}$ ã§ãããšãïŒç·å $BD$ ã®é·ãã® $2$ ä¹ã®å€ã解çããŠãã ããïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/4221 | F | OMCB008(F) | 300 | 162 | 217 | [
{
"content": "ãçŽç· $AH$ ãš $BC$ ã®äº€ç¹ã $E$ ãšãïŒçŽç· $BH$ ãš $AD$ ã®äº€ç¹ã $F$ ãšããïŒ\\\r\nãå°åœ¢ $ABCD$ ã¯çèå°åœ¢ã§ãããã $BE=\\dfrac{AD-BC}{2}=1$ ã§ããïŒãŸãïŒ$AB=AC$ ããçŽç· $BH$ ã¯ç·å $AC$ ã®åçŽäºçåç·ã§ããããïŒ$AF = CF$ ãæãç«ã€ïŒãŸãïŒçŽç· $AF$ ãš $BC$ ã¯å¹³è¡ã§ããã®ã§ïŒåè§åœ¢ $ABCF$ ã¯ã²ã圢ã§ããïŒ$AF=7$ ããããïŒãã£ãŠïŒ\r\n $$AH:EH=AF:EB=7:1$$ \r\nãåŸãïŒä»¥äžããïŒ\r\n$$\\begin{aligned}\r\n\\frac{|ADH|}{|ABCD|} = \\frac{AD\\cdot AH \\/2 }{(AD + BC)\\cdot AE \\/ 2}\r\n= \\frac{9\\cdot 7}{(7+9)(7-1)} = \\frac{21}{32}\r\n\\end{aligned}$$\r\nã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{53}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/4221"
},
{
"content": "ïŒçºæ³ã«è³ããŸã§ïŒ\\\r\nãåè§åœ¢ $ABCD$ ãçèå°åœ¢ã§ããïŒåº§æšãšçžæ§ãè¯ãïŒ$AD$ ãŸã㯠$BC$ ã $x$ 軞ãªã©ã«ããã°ããïŒïŒ\\\r\nãããã« $AH \\perp BC$ ã§ããããšããïŒç¹ $A$ ãåç¹ïŒ$AD$ ã $x$ 軞ãšãªãããã«åº§æšå¹³é¢ãèšå®ããã°ïŒç¹ $H$ 㯠$y$ 軞äžã«ååšããããšã«ãªãïŒ\r\n\r\n---\r\n\r\nïŒèšç®ïŒ\\\r\nãç¹ $A$ ãåç¹ïŒçŽç· $AD$ ã $x$ 軞ãšãªãããã«åº§æšãèšå®ããïŒ$B(1, 4\\sqrt{3})$ïŒ$C(8,4\\sqrt{3})$ïŒ$D(9,0)$ ã§ããïŒ\\\r\nã$AH \\perp BC$ ããïŒç¹ $H$ 㯠$y$ 軞äžã«ååšããïŒãã£ãŠçŽç· $CH$ ã® $y$ åçãæ±ããã°ããïŒ\\\r\nã$AB \\perp CH$ ããïŒçŽç· $CH$ ã¯åŸãã $-\\dfrac{1}{4 \\sqrt{3}}$ ã§ããïŒç¹ $C$ ãéãããšãã\r\n$$CHïŒy=-\\dfrac{1}{4 \\sqrt{3}}x+\\dfrac{14}{3}\\sqrt{3}$$\r\nããã£ãŠ $H(0, \\dfrac{14}{3}\\sqrt{3})$ ã§ããïŒããšã¯äžè§åœ¢ãšå°åœ¢ã®é¢ç©ãããããæ±ããã°ããïŒ",
"text": "座æšãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/4221/478"
},
{
"content": "ã$AH$ ãš $BC$ ã®äº€ç¹ã $E$ïŒ$BH$ ãš $AC$ ã®äº€ç¹ã $M$ ãšããïŒMenelausã®å®çããïŒ\r\n$$\\dfrac{AH}{EH}\\cdot\\dfrac{EB}{BC}\\cdot\\dfrac{CM}{MA}=1$$\r\nã§ããïŒ$CM=MA$ ã«æ³šæããã°ïŒ$AH:AE=7:6$ ãåŸãããïŒæ±ããæ¯ã¯ïŒ\r\n$$\\dfrac92\\cdot7:\\dfrac{9+7}{2}\\cdot6=21:32$$\r\nã§ããïŒ",
"text": "Menelausã®å®çãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/4221/711"
}
] | ã蟺 $AD$ ãš $BC$ ãå¹³è¡ãªå°åœ¢ $ABCD$ ã¯ä»¥äžãæºãããŸãïŒ
$$AB=BC=CD=7,\quad DA=9$$
ãäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšãããšãïŒäžè§åœ¢ $ADH$ ãšå°åœ¢ $ABCD$ ã®é¢ç©æ¯ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$a:b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/3910 | G | OMCB008(G) | 300 | 135 | 179 | [
{
"content": "ãæŽæ° $k\\ (1\\le k \\le 100)$ ãåŒã確ç㯠$\\dfrac{1}{100}$ïŒæŽæ° $k$ ãåŒãããšãåã€ç¢ºç㯠$k+3$ åã®ããŒã«ãã $k$ åã®ããŒã«ãåŒãæ¹æ³ã®ãã¡ïŒ$k$ åã®çœã®ããŒã«ãã $k$ åã®çœã®ããŒã«ãåŒã確çãªã®ã§ \r\n$$\\dfrac{{}\\_{k}\\mathrm{C}\\_{k}}{{}\\_{k+3}\\mathrm{C}\\_{k}}=\\dfrac{1}{{}\\_{k+3}\\mathrm{C}\\_{k}}=\\dfrac{6}{(k+1)(k+2)(k+3)}$$\r\nã§ããïŒãã£ãŠïŒæ±ãã確çã¯ïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{100}\\frac{1}{100} \\frac{6}{(k+1)(k+2)(k+3)}\r\n&=\\frac{3}{100}\\sum_{k=1}^{100} \\bigg(\\frac{1}{(k+1)(k+2)}-\\frac{1}{(k+2)(k+3)}\\bigg)\\\\\\\\\r\n&=\\frac{3}{100} \\bigg(\\frac{1}{2\\cdot 3}-\\frac{1}{102\\cdot 103}\\bigg)\\\\\\\\\r\n&=\\frac{35}{7004}\r\n\\end{aligned}$$\r\n\r\nããããã£ãŠïŒçããã¹ãå€ã¯ $35+7004=\\textbf{7039}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/3910"
}
] | ãè±åããã¯ä»¥äžã®ã²ãŒã ãããããšã«ããŸããïŒ
- ãŸãïŒäžã®èŠããªãç®±ã«èµ€è²ã®ããŒã«ã $3$ åå
¥ããïŒ
- $1$ ä»¥äž $100$ 以äžã®ç°ãªãæŽæ°ã $1$ ã€ãã€æžããã $100$ æã®ã«ãŒãããïŒç¡äœçºã« $1$ æéžã³ïŒéžãã ã«ãŒãã«æžãããŠããæ°ã ãçœãããŒã«ãç®±ã«å
¥ããïŒ
- éžãã ã«ãŒãã«æžãããŠããæ°ã ãç®±ãã $1$ åãã€ïŒè±åãããç®±ã«æ»ãããšãªãããŒã«ãç¡äœçºã«åãåºãïŒ
- éäžã§èµ€è²ã®ããŒã«ãåŒãããè±åããã®è² ããšãªãïŒäžåºŠãèµ€è²ã®ããŒã«ãåŒããªãã£ããè±åããã®åã¡ãšãªãïŒ
ãè±åããããã®ã²ãŒã ã«åã€ç¢ºçã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMCB008 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb008/tasks/5572 | H | OMCB008(H) | 300 | 63 | 159 | [
{
"content": "ã$n-1=m$ ãšãããšïŒäºé
å®çããïŒ\r\n\r\n $$ \\begin{aligned} n^{n} & = (m+1)^{m+1}=m^{m+1}+{}\\_{m+1}\\mathrm{C}\\_{1} m^{m}+ \\cdots + {}\\_{m+1}\\mathrm{C}\\_{m-1} m^{2} + {}\\_{m+1}\\mathrm{C}\\_{m} m +1 \\\\\\\\\r\n & \\equiv \\frac{(m+1)m^{3}}{2} + (m+1)m +1 \\pmod{m^{3}} \\\\\\\\ \r\n & = \\frac{n}{2} (n-1)^{3} +n^{2} -n +1 \\pmod{(n-1)^{3}} \\end{aligned} $$\r\n\r\nãšãªãïŒãã£ãŠïŒäžåŒã®å€ãæŽæ°ãšãªãã®ã¯ïŒ\r\n\r\n$$ \\frac{n}{2} + \\frac{n^{2} -n +1+1000n^{2}-2001n+1000}{(n-1)^{3}} = \\frac{n}{2} +\\frac{1001}{n-1} $$\r\n\r\nãæŽæ°ãšãªããšãã§ããïŒ \\\r\nã$n$ ãå¶æ°ã®ãšãïŒ$n-1$ ã $1001=7 \\times 11 \\times 13$ ã®æ£ã®çŽæ°ãšãªãã°ããïŒæ¡ä»¶ãæºãã $n$ ã®ç·åã¯ïŒ\r\n\r\n$$ (7+1)(11+1)(13+1)+8=1352. $$\r\n\r\n$n$ ãå¥æ°ã®ãšãïŒ$n-1$ ã $1001$ ã®æ£ã®çŽæ°ã® $2$ åãšããŠè¡šãããã°ããïŒæ¡ä»¶ãæºãã $n$ ã®ç·åã¯ïŒ\r\n\r\n$$ 2(7+1)(11+1)(13+1)+8=2696. $$\r\n\r\n以äžããïŒæ±ããå€ã¯ïŒ$1352+2696= \\mathbf{4048} $ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb008/editorial/5572"
}
] | ã$2$ 以äžã®æŽæ° $n$ ã§ãã£ãŠïŒ
$$ \frac{n^{n}+1000n^{2}-2001n+1000}{(n-1)^{3}} $$
ãæŽæ°ãšãªããã®ã®ç·åãæ±ããŠãã ããïŒ |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11546 | A | 第27åçäžå
¥è©Šæš¡è©Š(A) | 100 | 123 | 130 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11546"
},
{
"content": "$OD\\times N,A,D$ ãå
šãŠ2æ¡ã«ãªãã®ã§ $N,A,D$ ãçžç°ãªã $1$ 以äžã®æ°ã§ããããšããèã㊠$O=1,2$ïŒ\r\n___\r\n$O=2$ ã®ãšã\\\r\næ¡æ°ãã $N,A,D$ 㯠$1,4,3$ ã®äžŠã³æ¿ãïŒäžã®äœãèã㊠$1$ ã«ãªããã®ã¯ $N$ ã ãïŒ\\\r\nãããšäžã®äœãèã㊠$Y=2$ ãšãªã£ãŠããŸãã®ã§ã ãïŒ\\\r\nãã£ãŠ $O=1$ïŒ\r\n___\r\näžããäžæ¡ãèã㊠$Y,N$ ãéãå€ã«ãªãããšããç¹°ãäžãããèµ·ããŠãŠ $Y\\gt N\\geq 2$ ãåããïŒ\\\r\n$OD\\geq 12$ ãš $OD\\times D$ ã2æ¡ãªããšãã $D\\leq 6$ïŒ$N,A\\leq 8$ïŒ\\\r\nããšã¯ $Y$ ã®å€ãäžã®äœãèããªããå
šæ¢çŽ¢ãããšã§ããïŒ",
"text": "åã®è§£æ³",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11546/487"
}
] | äœåïŒäžžå²¡
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠãã ããïŒ
___
ã$O,D,Y,S,E,N,A$ ã® $7$ æåã«ã¯ç°ãªãæ°åãå
¥ãïŒãã®ãšã $NADA=\fbox{ãã}$ ã§ããïŒãã ãïŒ$O,Y,N$ 㯠$0$ ã§ã¯ãªãïŒæäžæ®µã«æžãããŠããã®ã¯ïŒ$O$ ã§ã¯ãªãïŒæ°åã® $0$ ã§ããïŒ\
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11550 | B | 第27åçäžå
¥è©Šæš¡è©Š(B) | 100 | 22 | 30 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11550"
}
] | äœåïŒå®®æ
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãããæ± ã®åšäžã«å°ç¹ $P$ ãããïŒãã®æ± ã®åšå²ãå°ç¹ $P$ ãã $A$ åïŒ$B$ åïŒ$C$ åã® $3$ 人ã¯ããããäžå®ã®éãã§åãæ¹åãã€åæã«èµ°ãåºããïŒæå㯠$A$ åãæãéãïŒ$B$ åãæãé
ãèµ°ãåºãïŒãã®åŸ$A$ åãš $C$ åã $1$ åããéãããšã« $A$ åãš $B$ åã¯ã©ã¡ããéããåé $\fbox{ãã}$ mã ãäžããïŒ$A$ åãš $B$ åãåããŠããéã£ã $10$ ååŸã« $C$ åã¯å°ç¹ $P$ ã $2$ åç®ã«ééãïŒèµ°ãåºããŠãã $87$ ååŸã« $A$ åã¯å°ç¹ $P$ ã $4$ åç®ã«éã£ãïŒ$A$ å㯠$C$ åãš $2$ åç®ã«ããéã£ãŠãã $3$ kmé²ããšå°ç¹ $P$ ã $10$ åç®ã«éã£ãïŒãŸã $B$ åãš $C$ åãåããŠããéã£ãã¡ããã©ãã®ãšã $A$ åã¯å°ç¹ $P$ ã $7$ åç®ã«ïŒ$C$ å㯠$5$ åç®ã«éã£ãïŒãã ãïŒããããã®äººãå°ç¹ $P$ ãéã£ãåæ°ïŒããã³ããããã® $2$ 人ãããéã£ãåæ°ã«ã¹ã¿ãŒãã¯å«ããªãïŒ |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11551 | C | 第27åçäžå
¥è©Šæš¡è©Š(C) | 100 | 80 | 141 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11551"
},
{
"content": "ïŒïœã®éãéãåæ°ãšïŒïœã®éãéãåæ°ãèãããšïŒïŒïœã®éã¯é£ç¶ããŠéããªãããïŒ$(8,1),(7,4),(6,7)$ ã®ããããã§ããïŒ\r\n- $(8,1)$\\\r\n1mã®éãæåãæåŸã«éãå Žåã$2\\cdot 2=4$ éã\\\r\nããã§ãªãå Žåã$7\\cdot 4=28$ éã\r\n- $(7,4)$\\\r\n1mã®éãæåïŒæåŸå
±ã«éãå Žåã3mã®é7åãš1mã®é2åã®äžŠã³æ¿ããèã㊠$15\\cdot 8=120$ éã\\\r\n1mã®éãæåãšæåŸã©ã¡ããäžæ¹ã®ã¿éãå Žåã$2\\cdot 20\\cdot 16=640$ éã\\\r\n1mã®éãæåïŒæåŸå
±ã«éããªãå Žåã$15\\cdot 32=480$ éã\r\n- $(6,7)$\r\n1,3,1,3,1,3,1,3,1,3,1,3,1ããèããããªãã®ã§ïŒ$64$ éã\r\n\r\nãããã£ãŠ $4+28+120+640+480+64=1336$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11551/489"
}
] | äœåïŒå®®å
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠãã ããïŒ
___
ãå³ã®ãããªéãããïŒ$A$ åã¯å°ç¹ $S$ ããå°ç¹ $G$ ãŸã§çŽåã«æ¥ãéãåŒãè¿ãããšãªã移åããïŒ$A$ åã¯åžžã« $1$ mã $1$ åã§ç§»åããïŒãã®æïŒ$27$ ååŸã«å°ç¹ $G$ ã«å°éããæ¹æ³ã¯ $\fbox{ãã}$ éãããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11553 | D | 第27åçäžå
¥è©Šæš¡è©Š(D) | 100 | 25 | 62 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11553"
}
] | äœåïŒæ°Žæ¬
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠãã ããïŒ
___
ãäžè§åœ¢ã®é¢å
«ã€ãããªãç«äœ $X$ ãããïŒç«äœ $X$ ã®èŸºã®é·ãã¯å
šãŠç°ãªãïŒãŸãã©ã®é ç¹ã«ãåã€ã®é¢ãéãŸã£ãŠããïŒç«æ¹äœã®å±éå³ã¯ $11$ çš®é¡ïŒç«äœ $X$ ã®å±éå³ã¯ $\fbox{ãã}$ çš®é¡ããïŒå¹³è¡ç§»åã»å転ã»è£è¿ãã§äžèŽãããã®ãåäžèŠããïŒïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11554 | E | 第27åçäžå
¥è©Šæš¡è©Š(E) | 100 | 104 | 128 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11554"
}
] | äœåïŒæ¢
æ¬
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠãã ããïŒ
___
ãäžèŸº $10$ cmã®ç«æ¹äœãããïŒç¹ $A$ ãåºçºãã $T$ åã¯äžç§ããšã«ç«æ¹äœå
ïŒè¡šé¢ãšå
éšãã¹ãŠïŒãäžäžãŸãã¯ååŸãŸãã¯å·Šå³ã« $1$ cmé²ãïŒ$20$ ç§åŸã« $T$ åã $\triangle BCD$ ã®èŸºäžã«ããåãæ¹ã¯ $\fbox{ãã}$ éãããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11555 | F | 第27åçäžå
¥è©Šæš¡è©Š(F) | 100 | 28 | 49 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11555"
}
] | äœåïŒå€ªç°
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãæ¯ç·ãšååŸã®é·ãã®æ¯ã $6:1$ ã®éæãªçŽåéãããïŒåºé¢ã«ç¹ $A$ ããšãïŒããããåéã®åšããäžåšããæççµè·¯ $S$ ãèããïŒåºé¢ã®åã«å
æ¥ã㊠$A$ ãé ç¹ã®äžã€ãšããæ£å
è§åœ¢ $ABCDEF$ ãèããïŒåéã®é ç¹ãšåºé¢ã®åã®äžå¿ $O$ ãäžèŽããããã«çäžããèŠãïŒå³åŽã®å³ïŒïŒãã®ãšãçµè·¯ $S$ ãšæ£å
è§åœ¢ã亀差ããŠããããã«èŠããç¹ã®ãã¡èŸº $CD$ äžã§ $D$ ã«æãè¿ãç¹ã蟺 $CD$ äžã«ãšãç¹ $P$ ãšããïŒ$\angle POA$ ã®å€§ãã㯠$\fbox{ãã}^\circ$ ã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11557 | G | 第27åçäžå
¥è©Šæš¡è©Š(G) | 100 | 29 | 42 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11557"
}
] | äœåïŒäœè€
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ã$AB=AC$ïŒ$\angle BAC=120^\circ$ ãæºãã $\triangle ABC$ ãš $PA=5$ cmïŒ$PB=3$ cmïŒ$PC=7$ cmãæºããç¹ $P$ ãããïŒåè§åœ¢ $PBCA$ ã¯äžèŸº $1$ cmã®æ£äžè§åœ¢ã® $\fbox{ãã}$ åã®é¢ç©ã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11558 | H | 第27åçäžå
¥è©Šæš¡è©Š(H) | 100 | 52 | 57 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11558"
}
] | äœåïŒå°å±±
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãè§ $BCA=90^\circ$ ã®çŽè§äžè§åœ¢ $ABC$ ãããïŒ$BC=13$ cmãšãªã£ãŠããïŒç·å $AC$ ã® $C$ åŽã®å»¶é·ç·äžã« $AB=CD$ ãšãªãç¹ $D$ ããšãïŒ$\angle ADE=90^\circ$ïŒ$DE=47$ cmãšãªãç¹ $E$ ããšãïŒ$\angle BAC:\angle DAE=2:3$ ãšãªã£ãŠãããšãïŒ$AC=\fbox{ãã}$ cmã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11561 | I | 第27åçäžå
¥è©Šæš¡è©Š(I) | 100 | 25 | 30 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11561"
},
{
"content": "çŽç· $EF$ äžã«äžè§åœ¢ $EBFïŒCGF$ ãçžäŒŒã«ãªãããã«ç¹ $G$ ããšãïŒ\\\r\nçžäŒŒæ¯ãã $FG$ ã®é·ããåããïŒ\\\r\näžè§åœ¢ $DCFïŒDGC$ ãçžäŒŒãªã®ã§ïŒèŸºã®æ¯ãèããã°åºããïŒ",
"text": "å
¬åŒè§£èª¬(ç¥èš)",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11561/486"
}
] | äœåïŒåç°
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãå³ã¯ $AB=AC$ïŒ$BF=3$ cmïŒ$\angle ABC=54^\circ$ïŒ$BE:EF:FC=6:5:4$ ãæºãããŠããïŒãã®ãšãïŒ$CD=\fbox{ãã}$ ã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11562 | J | 第27åçäžå
¥è©Šæš¡è©Š(J) | 100 | 62 | 63 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11562"
},
{
"content": "äžã®å³ã®ããã«$a_n$ãæ蟺ã«æã€çŽè§äžè§åœ¢åã€ã§ãæ£æ¹åœ¢ããæ£æ¹åœ¢ãããã¬ãã圢ãã§ããã\r\nããã$a_1$ïœ$a_{77}$ãŸã§äœããçµã¿åããããšäžã®å³ã®ããã«ãªãã\r\nçã㯠$\\frac{{a_1}^2 - {a_{78}}^2}{4} = 2024$ ãšãªã\r\nhttps:\\/\\/drive.google.com\\/file\\/d\\/1UubiurnN9hxYXryKGTNv13qm2Qr3GypD\\/view?usp=drive_link",
"text": "çæ ¡æ°åŠç 究éš",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11562/494"
}
] | äœåïŒå
ç°
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãæãé·ã蟺ã®é·ãã $a_1$ cmã«ãªããããªçŽè§äžè§åœ¢ãäœãïŒãã®é¢ç©ã $A_1$ ãšããïŒãããŠå³ã®ããã« $a_2$ ããšãïŒä»¥éïŒåæ§ã®æäœãããè¿ããŠãã£ããšããïŒ$a_1=111, ~ a_{78}=65$ ãšãªã£ãïŒãã®ãšãïŒ$A_1+A_2+\cdots +A_{77}=\fbox{ãã}$ ã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11565 | K | 第27åçäžå
¥è©Šæš¡è©Š(K) | 100 | 11 | 19 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11565"
}
] | ã5æ2æ¥19:22ãç»é²ãããŠãã解çã®æ°å€ã«èª€ãããããŸããïŒçŸåšã¯èšæ£ãããŠãããŸãïŒ
---
äœåïŒå±±å£
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠãã ããïŒ
___
ã$m$ ãš $n$ ã $6$ 以äžã®æŽæ°ãšããïŒæ£äºè§åœ¢ $ABCDE$ ã®èŸº $AB$ ãäžèŸºãšããæ£ $m$ è§åœ¢ïŒãããŠæ£ $n$ è§åœ¢ãå³ã®ããã«æžãïŒæ£ $m$ è§åœ¢äžã«ç¹ $F,G$ ãïŒæ£ $n$ è§åœ¢äžã«ç¹ $H,I$ ãããããå³ã®ããã«å®ããïŒ$m,n$ ã®éã«ã¯å€§å°ã®å¶çŽãå®ããªãïŒïŒãããŠïŒ$CH$ ãäžèŸºãšããæ£ $m$ è§åœ¢äžã«ç¹ $P$ ãïŒ$EG$ ãäžèŸºãšããæ£ $n$ è§åœ¢äžã«ç¹ $Q$ ãå³ã®ããã«ãããããšãïŒãã®ãšãïŒ$P$ ãš $Q$ ãäžèŽãããã㪠$m$ ãš $n$ ã®çµã¯ $\fbox{ãã}$ éãããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11566 | L | 第27åçäžå
¥è©Šæš¡è©Š(L) | 100 | 24 | 30 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11566"
}
] | äœåïŒäœè€
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãåºèŸºã $2$ cmã§é«ãã $5$ cmã®äºç蟺äžè§åœ¢ $12$ åïŒãã®äºç蟺äžè§åœ¢ã® $2$ cm ã§ãªãæ¹ã®é·ããäžèŸºã«ãã€æ£äžè§åœ¢ã $8$ åã§æ§æãããå±éå³ãããïŒãã®å±éå³ãçµã¿ç«ãŠããšãã®äœç©ã¯ $\fbox{ãã}$ cm${}^3$ ã§ããïŒ
 |
第27åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2024/tasks/11567 | M | 第27åçäžå
¥è©Šæš¡è©Š(M) | 100 | 61 | 65 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2024/editorial/11567"
}
] | äœåïŒäž
ã以äžã® $\fbox{ãã}$ ã«åœãŠã¯ãŸãæ°ã¯äºãã«çŽ ãªæŽæ° $m,n$ ãçšã㊠$\displaystyle \frac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠãã ããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
___
ãå³ã®ããã« $\triangle ABC$ïŒæ£æ¹åœ¢ $ADEB$ïŒæ£æ¹åœ¢ $BFGC$ïŒæ£æ¹åœ¢ $CHIA$ ããšãïŒ$\triangle ABC=100$ cm${}^2$ïŒ$\triangle DFH=700$ cm${}^2$ ã®ãšã $\triangle EGI=\fbox{ãã}$ cm${}^2$ ã§ããïŒ
 |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/6749 | A | OMCE002(A) | 300 | 214 | 267 | [
{
"content": "ã以äžïŒTKGãããå〠$n$ ã**å
æå¿
åæ°**ãšåŒã³ïŒshokoãããå〠$n$ ã**åŸæå¿
åæ°**ãšåŒã¶ããšã«ããïŒ\\\r\nãTKGãããæåã«äžæãç³ãåããšïŒå±±ã«åŸæå¿
åæ°ã®æ°ã ãç³ãæ®ãããšã㯠$n$ ã¯å
æå¿
åæ°ã§ããïŒTKGãããã©ã®ããã«æåã«ç³ãåã£ãŠãïŒå±±ã«å
æå¿
åæ°ã®æ°ã ãç³ãæ®ããšã㯠$n$ ã¯åŸæå¿
åæ°ã§ããïŒ$\\cdots(A)$ \\\r\nããã®ããšã«æ³šæããŠïŒ 以äžã®ããšãæ°åŠçåž°çŽæ³ãçšããŠç€ºãïŒ\r\n- $(*)$ $n$ ã $12$ ã§å²ã£ãäœãã $0$ ãŸã㯠$2$ ã®ãšãåŸæå¿
åæ°ã§ïŒããã§ãªããšãå
æå¿
åæ°ã§ããïŒ\r\n\r\n\r\n(1)ã$n=1,3,4,\\ldots,9$ ã¯å
æå¿
åæ°ã§ïŒ$n=2$ ã¯åŸæå¿
åæ°ã§ããïŒãŸãïŒ $n=10,11$ ã®ãšãã¯TKGããã¯æ®ãã®ç³ã $2$ åã«ããããšã§åãŠãã®ã§ $n=10,11$ ã¯å
æå¿
åæ°ã§ïŒ$(A)$ ãã $n=12$ ã¯åŸæå¿
åæ°ãšãªãïŒ \r\n ããã£ãŠïŒ$n=1,2,\\ldots,12$ ã®ãšã $(*)$ ã¯æãç«ã€ïŒ \r\n\r\n(2)ã$n=12k+1,12k+2,\\ldots,12k+12$ ã®ãšã $(*)$ ãæãç«ã€ãšä»®å®ããïŒ \r\n- $n=12k+13$ ã®ãšã㯠TKGãããç³ã $12k+12$ åæ®ãã°ããã®ã§ïŒããã¯å
æå¿
åæ°ïŒ \r\n- $n=12k+14$ 㯠$(A)$ ããåŸæå¿
åæ°ïŒ \r\n- $n=12k+15,\\ldots,12k+23$ ã®ãšãã¯TKGãããç³ã $12k+14$ åæ®ãã°ããã®ã§ïŒãããã¯å
æå¿
åæ°ïŒ \r\n- $n=12k+24$ 㯠$(A)$ ããåŸæå¿
åæ°ïŒ \r\n \r\nã以äžã«ãã $(*)$ ã¯æãç«ã¡ïŒæ±ããç·å㯠$(12+24+\\cdots+996)+(2+14+\\cdots+998)=\\textbf{83832}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/6749"
}
] | ãåäžã®ç³ã $n$ åãããªãå±±ããããŸãïŒãããçšããŠïŒTKGãããšshokoããã®äºäººã®ãã¬ã€ã€ãŒãã²ãŒã ãè¡ããŸãïŒäºäººã¯ïŒä»¥äžã®ã«ãŒã«ã«åŸã£ãŠïŒå±±ããç³ã亀äºã«ãšã£ãŠãããŸãïŒäž¡è
ãèªèº«ã®åã¡ã®ããã«æåãå°œãããšãïŒ**shokoãããåã€**ãã㪠$1$ ä»¥äž $1000$ 以äžã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ
- äžåºŠã«ãšããç³ã®åæ°ã¯ïŒ$1,3,4,5,6,7,8,9$ ã®ããããã§ããïŒ$2$ ã®ã¿é€å€ãããŠããããšã«æ³šæããïŒïŒ
- å±±ããç³ãååšããéãäºãã«ç³ãåãç¶ãïŒæåŸã«ç³ãåã£ã人ã**åã¡**ãšããïŒ
- æåã«ç³ããšãã®ã¯TKGããã§ããïŒ |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/8691 | B | OMCE002(B) | 300 | 177 | 249 | [
{
"content": "ã$\\angle{BAC}=90^{\\circ}$ ããïŒ$BC$ ã®äžç¹ã $M$ ãšãããšïŒ$AM=BM=CM$ ãšãªãïŒ \r\nãã£ãŠïŒ $AD:BC=1:2$ ããïŒ$AD=AM$ ã§ããïŒ \r\n\r\n- $M$ ãš $D$ ãäžèŽãããšã \r\n $DA=DC$ ããïŒ$\\angle{ACB}=\\angle{DAC}=90^\\circ - 77.7^\\circ = 12.3^{\\circ}$ ãšãªãïŒ\r\n\r\n- $B,M,D,C$ ããã®é ã«äžçŽç·äžã«äžŠã¶ãšã \r\n$AM=BM$ ããïŒ $\\angle{MAB}=\\angle{MBA}=x$ ãšãããŠããïŒ$AD=AM$ ããïŒ$\\angle{ADM}=\\angle{AMD}=2x$ ãšãªãïŒãã£ãŠïŒäžè§åœ¢ $ABD$ ã®å
è§åã«çç®ããŠïŒ$2x+x+77.7^{\\circ}=180^{\\circ}$ ããïŒ$x=34.1^{\\circ}$ ã§ããïŒ$\\angle{ACB}=55.9^{\\circ}$ ãšãªãïŒ \r\n\r\n- $D,B,M,C$ ããã®é ã«äžçŽç·äžã«äžŠã¶ãšã \r\n$AM=CM$ ããïŒ $\\angle{MAC}=\\angle{MCA}=x$ ãšãããŠããïŒ$AD=AM$ ããïŒ$\\angle{ADM}=\\angle{AMD}=2x$ ãšãªãïŒãã£ãŠïŒäžè§åœ¢ $ACD$ ã®å
è§åã«çç®ããŠïŒ$2x+x+167.7^{\\circ}=180^{\\circ}$ ããïŒ$x=4.1^{\\circ}$ ã§ããïŒ \r\n\r\n- $B,D,M,C$ ããã®é ã«äžçŽç·äžã«äžŠã¶ãšã\\\r\nç·å $DM$ ã®äžç¹ã $N$ ãšãããšïŒ$AN \\perp BC$ ãšãªãïŒãããšïŒ\r\n$$ 90^\\circ \\gt \\angle AMN = 2 \\angle ACN = 2 \\angle BAN \\gt 2 \\angle BAD $$ \r\nãã $\\angle BAD \\lt 45^\\circ$ ãšãªãïŒæ¡ä»¶ãæºãããªãïŒ\r\n\r\n- $B,M,C,D$ ããã®é ã«äžçŽç·äžã«äžŠã¶ãšã\\\r\n$\\angle{BAD}\\gt90^{\\circ}$ ãšãªãæ¡ä»¶ãæºãããªãïŒ\r\n\r\n以äžããïŒ$\\angle{ACB}$ ã®å€ãšããŠããåŸãå€ã®ç·å㯠$12.3^{\\circ}+55.9^{\\circ}+4.1^{\\circ}=72.3^{\\circ}$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{733}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8691"
}
] | ã$\angle{BAC}=90^{\circ}$ ã®äžè§åœ¢ $ABC$ ã«å¯ŸãïŒçŽç· $BC$ äžã«ç¹ $D$ ããšã£ããšããïŒ
$$AD:BC=1:2, \quad \angle{BAD}=77.7^{\circ}$$
ãšãªããŸããïŒãã®ãšãïŒ$\angle{ACB}$ ãšããŠããåŸãå€ã®ç·åã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\left( \dfrac{a}{b} \right)^\circ$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/8693 | C | OMCE002(C) | 500 | 98 | 171 | [
{
"content": "ã以äžïŒ$N=10000$ ãšãïŒ \r\n$$f(x)=a_0+a_1x+a_2\\cdot\\dfrac{x(x-1)}{2}+\\cdots+a_{N}\\cdot\\dfrac{x(x-1)\\cdots(x-N+1)}{N!}$$ \r\nãšããïŒ $x=0,1,\\ldots,N$ ã代å
¥ããŠããããšã§ $a_0,a_1,\\ldots,a_{N}$ ã $f(0),f(1),\\ldots,f(N)$ ãçšããŠè¡šãããšãã§ãïŒ\r\n$$ \\begin{aligned}\r\na_m &= \\sum_{k=0}^{m} (-1)^{m-k}{}\\_{m}\\mathrm{C}\\_{k}f(k) \\\\\\\\\r\n&= (-1)^m\\sum_{k=0}^{m} (k+1)(-2)^k{}\\_{m}\\mathrm{C}\\_{k} \\\\\\\\\r\n&= (-1)^m\\Bigl(\\sum_{k=1}^{m} (-2)^km{}\\_{m-1}\\mathrm{C}\\_{k-1}+\\sum_{k=0}^{m}(-2)^k{}\\_{m}\\mathrm{C}\\_{k}\\Bigr)\r\n\\end{aligned}$$ \r\nãšãªãïŒãã£ãŠïŒäºé
å®çãã $a_m=(-1)^m(-2m(-1)^{m-1}+(-1)^m)=2m+1$ ãšãªãã®ã§ïŒ\r\n$$ \\begin{aligned}\r\nf(N+1) &= \\sum_{k=0}^{N} (2k+1){}\\_{N+1}\\mathrm{C}\\_{k} \\\\\\\\\r\n&= 2\\sum_{k=1}^{N} (N+1){}\\_{N}\\mathrm{C}\\_{k-1}+\\sum_{k=0}^{N} {}\\_{N+1}\\mathrm{C}\\_{k} \\\\\\\\\r\n&= 2(N+1)(2^N-1)+(2^{N+1}-1) \\end{aligned}$$ \r\nã§ããïŒãã£ãŠïŒ \r\n$$f(N+1)\\equiv2\\cdot(-6)\\cdot(2^{-6}-1)+2^{-5}-1\\equiv-\\dfrac{5}{32}+11\\equiv\\dfrac{30016}{32}+11\\equiv\\textbf{949}\\pmod{N+7}$$\r\nããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8693"
},
{
"content": "ãèªåã¯å
¬åŒè§£èª¬ã®ãããªåæã«è³ããªãã£ãã®ã§ïŒä»¥äžã®ããã«è§£ããŸããïŒãã®è§£æ³ãïŒåå¿é²ãå
ŒããŠïŒãŸãšããŠããããšæããŸãïŒãŸãã¯ïŒã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒã«ã€ããŠã®çŽ¹ä»ã§ãïŒ\r\n\r\n --- \r\n\r\n**ã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒïŒ** $N+1$ åã®ç¹ $(x_0, y_0), (x_1, y_1), \\ldots (x_N, y_N)$ ïŒ$x_0\\lt x_1 \\lt \\cdots \\lt x_N$ ãšããŠããïŒãããïŒããããã¹ãŠãéã $N$ 次以äžã®å€é
åŒ $f(x)$ ã¯ïŒä»¥äžã®ããã«è¡šãããïŒ\r\n$$\r\nf(x) = \\sum_{n=0}^{N} y_n \\dfrac{g_n(x)}{g_n(x_n)}.\r\n$$\r\nãã ãïŒ$g_n(x)=\\displaystyle \\prod_{k\\neq n} (x-x_k)$ ã§ããïŒ\r\n --- \r\n\r\nãã¯ãããŠãã®åŒãèŠããšããæ¹ã¯ïŒäžåŠã»é«æ ¡æ°åŠã®åé¡éã«ãèŒã£ãŠãããããªãæå®ããã $2\\ (3)$ ç¹ããã¹ãŠéããããªçŽç·ïŒæŸç©ç·ïŒã®åŒãæ±ãã ããšããåé¡ãäŸã«ããŠãã®åŒãæžãäžããŠã¿ããšïŒããããäœããã£ãŠãããã®ãªã®ããã«ã€ããŠæèŠãæŽããããšæããŸãïŒ\\\r\nãæ©éïŒä»åã®åé¡ã«ã©ã°ã©ã³ãžã¥è£éãé©çšããŠã¿ãŸãããïŒ\r\n\r\n --- \r\n\r\nä»åã®å Žå $N=10000, x_n=n, y_n =(n+1) 2^n$ ãšããã°ããããã§ããïŒãŸã㯠$g_n(x_n)$ ãæ±ããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\ng_n(x_n)=g_n (n) &= (n-0)(n-1) \\cdots 1\\cdot (-1)(-2) \\cdots (n-N)\\\\\\\\\r\n&= n!\\ (N-n)!\\ (-1)^{N-n}.\r\n\\end{aligned}\r\n$$\r\n\r\nä»åæ±ããã®ã¯ïŒ$f(N+1)$ ã§ããããïŒ$g_n(N+1)$ ãæ±ããŠããïŒ\r\n\r\n$$\r\ng_n(N+1) = \\displaystyle \\prod_{k\\neq n} (N+1-k) = \\dfrac{(N+1)!}{N+1-n}.\r\n$$\r\n\r\nããã§ïŒã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒãé©çšãããš\r\n\r\n$$\r\n\\begin{aligned}\r\nf(N+1) &= \\sum_{n=0}^{N} (n+1) 2^n \\dfrac{(N+1)!}{N+1-n} \\cdot \\dfrac{1}{ n!\\ (N-n)!\\ (-1)^{N-n}}\\\\\\\\\r\n&= \\sum_{n=0}^{N} (n+1) \\dfrac{(N+1)!}{(N-n+1)\\ (N-n)!\\ n!} 2^n (-1)^{N-n}\\\\\\\\\r\n&= \\sum_{n=0}^{N} (n+1)\\ {}\\_{N+1} \\mathrm{C} \\_{n}\\ 2^n (-1)^{N-n}\\\\\\\\\r\n&= \\underbrace{\\sum_{n=0}^{N} {}\\_{N+1} \\mathrm{C} \\_{n}\\ 2^n (-1)^{N-n}}\\_{=A} + \\underbrace{\\sum_{n=0}^{N} n\\ {}\\_{N+1} \\mathrm{C} \\_{n}\\ 2^n (-1)^{N-n}}\\_{=B}\r\n\\end{aligned}\r\n$$\r\nãšå€åœ¢ã§ããïŒ$A,B$ ããããã«ã€ããŠïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\nA &= -\\sum_{n=0}^{N} {}\\_{N+1} \\mathrm{C} \\_{n}\\ 2^n (-1)^{N+1-n} \\\\\\\\ \r\n&= -\\Biggl(\\sum_{n=0}^{N+1} {}\\_{N+1} \\mathrm{C} \\_{n}\\ 2^n (-1)^{N+1-n} - {}\\_{N+1} \\mathrm{C} \\_{N+1}\\ 2^{N+1} (-1)^{N+1-(N+1)} \\Biggl)\\\\\\\\\r\n&= -\\Bigl( \\bigl(2+(-1)\\bigl)^{N+1} - 2^{N+1} \\Bigl)\\\\\\\\\r\n&= 2^{N+1}-1.\r\n\\end{aligned}\r\n$$\r\n\r\n$$\r\n\\begin{aligned}\r\nB&= \\sum_{n=0}^{N} n\\ \\dfrac{(N+1)!}{n\\ (n-1)!\\ (N+1-n)!}\\ 2^n (-1)^{N-n}\\\\\\\\\r\n&= (N+1) \\sum_{n=1}^{N} \\ \\dfrac{N!}{(n-1)!\\ (N+1-n)!}\\ 2^n (-1)^{N-n}\\\\\\\\\r\n&= (N+1) \\sum_{n=1}^{N} {}\\_{N} \\mathrm{C} \\_{n-1}\\ 2^n (-1)^{N-n}\\\\\\\\\r\n&= -2(N+1) \\sum_{n=1}^{N} {}\\_{N} \\mathrm{C} \\_{n-1}\\ 2^{n-1} (-1)^{N+1-n}\\\\\\\\\r\n&= -2(N+1) \\Biggl( \\sum_{n=1}^{N+1} {}\\_{N} \\mathrm{C} \\_{n-1}\\ 2^{n-1} (-1)^{N-n+1} - {}\\_{N} \\mathrm{C} \\_{N+1-1}\\ 2^{N+1-1} (-1)^{N+1-(N+1)} \\Biggl)\\\\\\\\\r\n&= -2(N+1) \\Bigl( \\bigl(2+(-1)\\bigl)^{N} -2^N \\Bigl)\\\\\\\\\r\n&= -2(N+1)+(N+1)\\ 2^{N+1}.\r\n\\end{aligned}\r\n$$\r\n\r\n以äžãã \r\n$$\r\n\\begin{aligned}\r\nf(N+1) &=2^{N+1}-1 -2(N+1)+(N+1)\\ 2^{N+1}\\\\\\\\\r\n&= N\\ 2^{N+1} +2^{N+2} -2N-3.\r\n\\end{aligned}\r\n$$\r\nãšå
¬åŒè§£èª¬ã«ãã衚瀺ãåŸãããšãã§ããïŒ\r\n\r\n ---\r\n\r\nããã®ãŠãŒã¶ãŒè§£èª¬ã®å·çã«ãããïŒé«æ ¡æ°åŠã®çŸããç©èªããã®èšäºïŒhttps:\\/\\/manabitimes.jp\\/math\\/726 ïŒãåèã«ãããŠããã ããŸããïŒæåŸã«ïŒã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒã䜿ãããããããªãOMCã®åé¡ãïŒèªåãèšæ¶ããŠããéãã§ãŸãšããŠçµããã«ããŸãïŒãã¿ãã¬æ³šæã§ãïŒïŒ\r\n\r\n<details>\r\n<summary>é¢é£ããOMCã®åé¡ã»è§£èª¬èšäºïŒãã¿ãã¬æ³šæïŒ<\\/summary>\r\nã»OMC176BïŒhttps:\\/\\/onlinemathcontest.com\\/contests\\/omc176\\/tasks\\/6981 ïŒ\\\r\nã©ã°ã©ã³ãžã¥è£å®ã䜿ã£ãŠæçŽã«ããããšãã§ãããããããŸããïŒãã®åé¡ã®ãŠãŒã¶ãŒè§£èª¬ã«ãããŠãïŒã©ã°ã©ã³ãžã¥è£å®ã«ã€ããŠçŽ¹ä»ãããŠããŸãïŒ\r\n\r\nã»OMC114EïŒhttps:\\/\\/onlinemathcontest.com\\/contests\\/omc114\\/tasks\\/5248 ïŒ\\\r\nãŠãŒã¶ãŒè§£èª¬äžã«ïŒã©ã°ã©ã³ãžã¥è£å®ãçšããããŒããåºãŠããŸãïŒ\r\n\r\nã»OMC081FïŒhttps:\\/\\/onlinemathcontest.com\\/contests\\/omc081\\/tasks\\/2518 ïŒ\\\r\n114Eã® math_wakaranai ããã®ãŠãŒã¶ãŒè§£èª¬ã§ã玹ä»ãããŠããŸããïŒããã«ããªã³ã¯ã貌ã£ãŠãããŸãïŒ\r\n<\\/details>",
"text": "ã©ã°ã©ã³ãžã¥ã®è£éå
¬åŒ",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8693/479"
},
{
"content": "$N=10000$ãšããïŒäžè¬ã«å€é
åŒ $g(x)$ ã«å¯ŸããŠ\r\n$$g^{[0]}(x)=g(x),\\quad g^{[k+1]}(x)=g^{[k]}(x+1)-g^{[k]}(x)$$\r\nã«ãã£ãŠå€é
åŒ $g^{[0]}(x),g^{[1]}(x),g^{[2]}(x),\\cdots$ ãå®ããïŒ$g(x)$ ã $d$ 次åŒãªãã° $g^{[k]}(x)$ 㯠$d-k$ 次åŒã§ããïŒç¹ã« $g^{[d+1]}(x)=0$ ã§ããããšã«æ³šæããïŒäžããããæ¡ä»¶ããé ã«å·®åãèšç®ãããš\r\n$$f^{[k]}(n)=2^n(n+2k+1)\\quad(n=0,1,\\cdots,N-k)$$\r\nãšãªãïŒããã§æ±ããã¹ãå€ã¯\r\n$$\\begin{aligned}\r\nf(N+1)&=f(N)+f^{[1]}(N)\\\\\\\\\r\n&=f(N)+f^{[1]}(N-1)+f^{[2]}(N-1)\\\\\\\\\r\n&=\\cdots\\\\\\\\\r\n&=\\sum_{k=0}^N f^{[k]}(N-k)\r\n\\end{aligned}$$\r\nãšè¡šããã®ã§ïŒäžã®åŒã代å
¥ããŠèšç®ãããš\r\n$$\r\nf(N+1)=\\sum_{k=0}^N2^{N-k}(N+k+1)=2(2^N-1)(N+2)+1\\equiv \\mathbf{949}\\pmod{N+7}\r\n$$\r\nãšãªãïŒ",
"text": "å·®åãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8693/482"
},
{
"content": "å€é
åŒ$p_k$ã\r\n$$p_k(x)=\\dfrac{x(x-1)\\cdots (x-k+1)}{k!}$$\r\nãšããïŒ\r\n$x$ãæŽæ°ã®ãšã$p_k(x)=\\binom{x}{k}$ã§ããïŒ\r\n\r\n$$g(n)=(n+1)\\left(\\sum_{k=0}^{10000}\\binom{n}{k}\\right)=(n+1)\\left(\\sum_{k=0}^{10000}p_k(n)\\right)$$\r\nãšãããšïŒ$g$ã¯10001次å€é
åŒã§ããïŒ$g(n)=f(n),(n=0,\\ldots,10000)$ã§ããïŒ\r\nãã£ãŠïŒããå®æ°$a$ãååšããŠïŒ\r\n$$g(n)-f(n)=a\\cdot n\\cdot(n-1)\\cdot \\cdots \\cdot (n-10000)$$\r\nãšãªãïŒ\r\n\r\n$g$ã®10001ä¹ã®ä¿æ°ãèæ
®ãããšïŒ$a=\\dfrac{1}{10000!}$ã§ããïŒ\r\nãã£ãŠïŒ\r\n\r\n$$f(10001)=g(10001)-\\dfrac{10001\\times 10000\\times \\cdots \\times 1}{10000!}$$\r\n\r\nããã§ïŒ\r\n\r\n$$g(10001)=10002\\times\\left(2^{10001}-1\\right)$$\r\n\r\nã§ãããã\r\n\r\n$$10002\\times\\left(2^{10001}-1\\right)-10001\\equiv -5\\times\\left(\\dfrac{1}{32}-1\\right) +6$$\r\n\r\nãæ±ããã°è¯ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8693/670"
}
] | ãå®æ°ä¿æ° $10000$ 次å€é
åŒ $f$ ã¯ïŒ$0$ ä»¥äž $10000$ 以äžã®ä»»æã®æŽæ° $n$ ã«ã€ããŠ
$$f(n)=(n+1)2^n$$
ãæºãããŠããŸãïŒãã®ãšãïŒ$f(10001)$ ãçŽ æ° $10007$ ã§å²ã£ãäœãã解çããŠãã ããïŒ |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/8692 | D | OMCE002(D) | 500 | 32 | 71 | [
{
"content": "$$ \\begin{aligned}\r\n2&(a^2b^2+a^2c^2+a^2d^2+b^2c^2+b^2d^2+c^2d^2)-(a^4+b^4+c^4+d^4)+8abcd \\\\\\\\\r\n&=-(a^2+b^2-c^2-d^2)^2+4a^2b^2+4c^2d^2+8abcd \\\\\\\\\r\n&= -(a^2+b^2-c^2-d^2)^2+(2ab+2cd)^2 \\\\\\\\\r\n&= (2ab+2cd+a^2+b^2-c^2-d^2)(2ab+2cd-a^2-b^2+c^2+d^2) \\\\\\\\\r\n&= ((a+b)^2-(c-d)^2)((c+d)^2-(a-b)^2) \\\\\\\\\r\n&= (a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)\r\n\\end{aligned} $$\r\nã§ããã®ã§ïŒ\r\n$$(-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d)=(n^2+1)^{n+2}-1$$ \r\nãšãªãæŽæ° $a,b,c,d$ ãååšãããã㪠$n$ ã®æ¡ä»¶ãæ±ããã°ããïŒããã§ïŒ \r\n$$x=-a+b+c+d, \\quad y=a-b+c+d, \\quad z=a+b-c+d, \\quad w=a+b+c-d$$ \r\nãšããïŒãã®ãšã\r\n$$ a=\\dfrac{-x+y+z+w}{4}, \\quad b=\\dfrac{x-y+z+w}{4}, \\quad c=\\dfrac{x+y-z+w}{4}, \\quad d=\\dfrac{x+y+z-w}{4} $$ \r\nãšãªãããšã«æ³šæããïŒ \r\n\r\n- $n$ ãå¥æ°ã®ãšã \r\nã$x=y=z=1,w=(n^2+1)^{n+2}-1$ ãšãããšïŒ$w\\equiv2^{n+2}-1\\equiv-1\\pmod4$ ã§ããããïŒãã®ãšãïŒ$a,b,c,d$ ã¯äžåŒãæºãããã€æŽæ°ãšãªãïŒ \r\n\r\n- $n$ ãå¶æ°ã®ãšã \r\nã$xyzw=(n^2+1)^{n+2}-1$ ã¯å¶æ°ã§ããããïŒ$x,y,z,w$ ã®ãã¡å°ãªããšãäžã€ã¯å¶æ°ã§ããïŒãŸãïŒ$2(c+d) = x+y$ ãªã©ããïŒ\r\n$$ x+y, \\quad x+z, \\quad x+w, \\quad y+z, \\quad y+w, \\quad z+w $$\r\nã¯å
šãŠå¶æ°ãªã®ã§ïŒ$x, y, z, w$ ã¯ãã¹ãŠå¶æ°ã§ããããšãå¿
èŠïŒãã£ãŠïŒ$xyzw=(n^2+1)^{n+2}-1$ ã〠$4$ ã§å²ã£ãäœãã \r\n$$(0,0,0,0),~ (0,0,2,2),~ (0,2,0,2),~ (0,2,2,0), \\\\\\\\\r\n(2,0,0,2),~ (2,0,2,0),~ (2,2,0,0),~ (2,2,2,2) \\ $$ \r\nã®ããããã§ãããããªæŽæ° $x,y,z,w$ ãååšããããšãæ±ããæ¡ä»¶ãšãªãïŒ\r\nã€ãŸãïŒæ£ã®æŽæ° $N$ ã $2$ ã§å²ãåããåæ°ã $v_2(N)$ ãšãããšïŒ$K=v_2((n^2+1)^{n+2}-1)$ ã $4$ ãŸã㯠$6$ 以äžã§ããããšãæ±ããæ¡ä»¶ã§ããïŒ\r\nããã§ïŒLTEã®è£é¡ããïŒ$K=v_2((n^2+1)^{n+2}-1^{n+2})=v_2(n^2)+v_2(n+2)$ ã§ããã®ã§ïŒæ¬¡ã®å ŽååãããïŒæ±ãã $n$ ã®æ¡ä»¶ã¯ïŒ$n\\equiv0,2,8,10,14\\pmod{16}$ãšãªãïŒ \r\n - $n\\equiv2,10\\pmod{16}$ ã®ãšãïŒ$K=2+2=4$ \r\n - $n\\equiv14\\pmod{16}$ ã®ãšãïŒ$K\\geqq2+4=6$ \r\n - $n\\equiv6\\pmod{16}$ ã®ãšãïŒ$K=2+3=5$ \r\n - $n\\equiv4,12\\pmod{16}$ ã®ãšãïŒ$K=4+1=5$ \r\n - $n\\equiv0,8\\pmod{16}$ ã®ãšãïŒ$K\\geqq6$ \r\n\r\nã以äžããïŒ$1$ ä»¥äž $1000$ 以äžã®æ£ã®æŽæ°ãã $16$ ã§å²ã£ãäœãã $4,6,12$ ã®ããããã§ãããã®ãé€ãããã®ã®ç·åãæ±ããã°ããïŒæ±ããå€ã¯ $500500-31500-31626-31000=\\textbf{406374}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8692"
}
] | ã以äžã®çåŒãæºããæŽæ° $a,b,c,d$ ãååšãããããªïŒ$1$ ä»¥äž $1000$ 以äžã®æ£ã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ
$$ \begin{aligned}
2(a^2b^2&+a^2c^2+a^2d^2+b^2c^2+b^2d^2+c^2d^2) \\\\
&= a^4+b^4+c^4+d^4-8abcd +(n^2+1)^{n+2}-1
\end{aligned}$$ |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/8090 | E | OMCE002(E) | 700 | 11 | 30 | [
{
"content": "ãäžè§åœ¢ $ADR$ ãšäžè§åœ¢ $BCR$ ã¯çžäŒŒã§ããããïŒãã®çžäŒŒã®çžäŒŒæ¯ã $1 : p$ ãšããïŒäžè§åœ¢ $ADP$ ãšäžè§åœ¢ $CBP$ ãçžäŒŒã§ãããïŒãã®çžäŒŒæ¯ã $AD : BC = 1 : p$ ã§ããïŒãã£ãŠïŒ$\\angle BAC = \\angle BDC = \\theta$ ãšãããšïŒ\r\n$$|PBCR| = \\frac{1}{2}\\cdot BR\\cdot CP\\cdot\\sin\\theta = \\frac{1}{2} \\cdot pAR\\cdot pAP\\cdot\\sin\\theta = p^2\\triangle APR$$\r\nã§ããïŒãã£ãŠ\r\n$$\\triangle ABC = |PBCR| - \\triangle APR = (p^2 - 1)\\triangle APR$$\r\nã§ããïŒåæ§ã«ïŒ$\\triangle BCD = (p^2 - 1)\\triangle DPR$ ã§ããïŒãããã£ãŠïŒ\r\n$$\\begin{aligned}\r\n\\triangle RCD - \\triangle RAB\r\n&= \\triangle BCD - \\triangle ABC\\\\\\\\\r\n&= (p^2 - 1)(\\triangle DPR - \\triangle APR)\\\\\\\\\r\n&= 2(p^2 - 1)\\triangle MPR\r\n\\end{aligned}$$\r\nãæãç«ã€ã®ã§ïŒ$2(p^2 - 1) = \\dfrac{9}{8}$ ã§ããïŒããã解ãã° $p = \\dfrac{5}{4}$ ãåŸãïŒåæ§ã«ïŒäžè§åœ¢ $ABR$ ãšäžè§åœ¢ $DCR$ ã®çžäŒŒæ¯ã $1 : q$ ãšããã°ïŒ$2(q^2 - 1) = \\dfrac{5}{2}$ ãæãç«ã€ã®ã§ïŒ$q = \\dfrac{3}{2}$\r\nã§ããïŒ\\\r\nã以äžããïŒ$RA=8k,RB=10k,RC=15k,RD=12k$ ãšããããšãã§ãïŒãã®ãšãäœåŒŠå®çãã $AB=2\\sqrt{21}k,CD=3\\sqrt{21}k$ ãæãç«ã€ïŒããã§ïŒ$D$ ãéãçŽç· $AC$ ã«å¹³è¡ãªçŽç·ãšåè§åœ¢ $ABCD$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $D$ ã§ãªãæ¹ã $X$ ãšãããšïŒ\r\n$$\\angle BAX = \\angle BAC + \\angle CAX = \\angle BDC + \\angle DCA = 120^\\circ$$\r\nã§ããããïŒäœåŒŠå®çãã $BX=\\sqrt{399}k$ ã§ããïŒäžæ¹ïŒæ£åŒŠå®çãã $BX = \\sin120^\\circ = \\dfrac{\\sqrt3}{2}$ ã§ãããã®ã§ïŒ$k=\\dfrac{1}{2\\sqrt{133}}$ ãåŸãïŒä»¥äžããïŒ${AC}^2={(23k)}^2=\\dfrac{529}{532}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{1061}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8090"
},
{
"content": "åè§åœ¢ $ARBX,BRCY,CRDZ,DRAW$ ãå¹³è¡å蟺圢ãšãªããããªç¹ $X,Y,Z,W$ ãåã. ãã®ãšã, äŸãã°ç¹ $Q,A,B,X,R$ ãš $Q,C,D,R,Z$ ã«ã¯çžäŒŒã®é¢ä¿ãããã®ã§ $Q,X,Z$ ã¯å
±ç·ãšãªã. ãã㧠$\\triangle{RXZ}=\\dfrac{1}{2}(|YXRZ|-|WYRZ|)$ ã§ããã\r\n$$|YXRZ|=2\\times\\triangle{RBC}+\\triangle{RXB}+\\triangle{RZC}$$\r\n$$|WXRZ|=2\\times\\triangle{RAD}+\\triangle{RXA}+\\triangle{RZD}$$\r\nãªã®ã§, $\\triangle{RZX}=\\triangle{RBC}-\\triangle{RAD}$ ã ãšããã. ãã£ãŠä»®å®ãã\r\n$$\\triangle{QRX}:\\triangle{QZR}=2\\times 2:2\\times 2 + 5=4:9$$\r\näžæ¹, åé ã«è¿°ã¹ãéãç¹ $Q,A,B,X,R$ ãš $Q,C,D,R,Z$ ã¯çžäŒŒã§ãã, ãã®çžäŒŒæ¯ã¯ $2:3$ ã§ãããšãããã®ã§, $AB:CD=2:3$ ãåŸã. åæ§ã« $AD:BC=4:5$ ããããã®ã§, ããšã¯å
¬åŒè§£èª¬ãšåæ§ã«ããã°è¯ã.\r\n---\r\näžè¬çã«, ããããåé¡ã§ã¯å¹³è¡å蟺圢ãäœã£ãŠããããšããŸã«ããŸããããŸã. äŸãšããŠJJMO2023äºéž12ãæããŠãããŸãïŒãã¿ãã¬ã«ãªã£ãããããŸããïŒ.",
"text": "ç®æ°ã§è§£ã",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8090/483"
}
] | ãåè§åœ¢ $ABCD$ ã¯çŽåŸã $1$ ã§ããåã«å
æ¥ããŠããŸãïŒåçŽç· $BA$ ãšåçŽç· $CD$ ã¯ç¹ $P$ ã§äº€ããïŒåçŽç· $DA$ ãšåçŽç· $CB$ ã¯ç¹ $Q$ ã§äº€ããïŒçŽç· $AC$ ãšçŽç· $BD$ ã¯ç¹ $R$ ã§äº€ãã£ãŠããŸãïŒèŸº $AD$ ã®äžç¹ã $M$ ãšãïŒèŸº $AB$ ã®äžç¹ã $N$ ãšãããšä»¥äžãå
šãŠæãç«ã¡ãŸããïŒ
- $\angle{ARB}=60^{\circ}$
- $(\triangle{RCD}-\triangle{RAB}):\triangle{RPM}=9:8$
- $(\triangle{RBC}-\triangle{RDA}):\triangle{RQN}=5:2$
ããã®ãšãïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠${AC}^2=\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠäžããïŒãã ãïŒäžè§åœ¢ $XYZ$ ã®é¢ç©ã $\triangle XYZ$ ã§è¡šããŸãïŒ |
OMCE002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omce002/tasks/8694 | F | OMCE002(F) | 700 | 1 | 26 | [
{
"content": "ãæ¬ã³ã³ãã¹ãã¯ïŒåœ F åé¡ã®åºé¡ãã¹ã«ãã Unrated ãšãªããŸããïŒã¿ãªããŸã®è²Žéãªãæéã奪ãçµæãšãªã£ãŠããŸãïŒç³ãèš³ãããŸããã§ããïŒè©³çŽ°ã¯[ã¢ããŠã³ã¹](https:\\/\\/onlinemathcontest.com\\/announcements\\/show\\/46)ãã芧ãã ããïŒ\\\r\nã以äžã®è§£èª¬ã¯ïŒã³ã³ãã¹ãçµäºã®æ°æéåŸã«ãŠãŒã¶ãŒã® [MARTH](https:\\/\\/onlinemathcontest.com\\/users\\/marth) æ°ã«ãã [Mathlog](https:\\/\\/mathlog.info\\/articles\\/DWsS96nCLHF8ZjHkYKeP) äžã«å·çããããã®ã§ããïŒMARTH æ°ã®ãåæã«ãã OMC äžã®è§£èª¬ãžç§»æ€ããããã®ã§ãïŒãã ãïŒäžéšè§£èª¬ã®äœè£ãå€æŽããéšåããããŸãïŒ\\\r\nããªãïŒæ¬æ¥æ³å®ãããŠããåé¡æã»è§£èª¬ããŠãŒã¶ãŒè§£èª¬ã«åé²ãããŠããŸãã®ã§ïŒã確èªããã ãããšå¹žãã§ãïŒ\r\n\r\n------\r\nã$N=9000,M=8998$ ãšãïŒ$x,y$ ã® $2$ å€æ°åªçŽæ°ãçšããŠèããïŒ$i$ çªç®ã®ã«ã¿ã©ã³æ° $C_i = \\dfrac{1}{i+1}\\dbinom{2i}{i}$ ãçšããŠïŒ$x$ ã®åªçŽæ° $g$ ã以äžã®ããã«å®çŸ©ããïŒ\r\n$$g(x)=\\sum_{i=0}^{\\infty}C_ix^i$$\r\nãã®ãšãïŒä»¥äžãæãç«ã€ïŒ\r\n$$f(x,y)=\\sum_{i=0}^{\\infty}\\sum_{j=0}^{\\infty}\\binom{2i+4j}{i} x^iy^j=\\frac{1}{\\sqrt{1-4x}}\\frac{1}{1-g(x)^4 y}$$\r\n\r\n\r\n**蚌æïŒ** $(0,0)$ ããåºçºãïŒ$y=x+k$ äžã®ããç¹ $P(s,s+k)$ ãžãš $x,y$ ããããã®æ£æ¹åã« $1$ é²ãããšãç¹°ãè¿ããŠåŸãããçµè·¯ã«ã€ããŠèããïŒ\r\n\r\n\r\n\r\nãäžå³ã®ããã«ïŒ$y-x$ ã $1$ å¢ããããšã«çµè·¯ãåå²ããïŒããã¯äžæã§ããïŒãšïŒçµè·¯æ°ã«ã€ããŠä»¥äžã®çåŒãåŸãïŒ\r\n$$\\dbinom{2s+k}{s} = \\sum_{n_1+n_2+\\dots+n_{k+1}=s}C_{n_1}C_{n_2}\\cdots C_{n_k}\\binom{2n_{k+1}}{n_{k+1}}$$\r\nãããã£ãŠ,\r\n$$\\sum_{i=0}^{\\infty}\\binom{2i+k}{i}x^i=\\left(\\sum_{i=0}^{\\infty}C_ix^i\\right)^k\\left(\\sum_{i=0}^{\\infty}\\binom{2i}{i}x^i\\right)$$\r\nãåŸãïŒãŸãïŒ\r\n$$\\sum_{i=0}^{\\infty}\\binom{2i}{i}x^i=\\frac{1}{\\sqrt{1-4x}}$$ \r\nã§ããããïŒ\r\n$$\\sum_{i=0}^{\\infty}\\binom{2i+k}{i}x^i=\\frac{(g(x))^k}{\\sqrt{1-4x}}$$\r\nãšãªãïŒãããã£ãŠïŒ\r\n$$\r\n\\begin{aligned}\r\nf(x, y)&=\\sum_{i=0}^{\\infty}\\sum_{j=0}^{\\infty}\\binom{2i+4j}{i} x^iy^j\\\\\\\\\r\n&=\\sum_{j=0}^{\\infty}\\frac{(g(x))^{4j}}{\\sqrt{1-4x}} ~ y^j\\\\\\\\\r\n&=\\frac{1}{\\sqrt{1-4x}}\\frac{1}{1-g(x)^4y}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãã瀺ãã¹ãçåŒãåŸãïŒ$\\square$\r\n---\r\n\r\nã以éã§ã¯ïŒç°¡åã®ããã« $f(x,y), g(x)$ ãåã« $f, g$ ãšè¡šãïŒåŒæ°ã¯ã€ãã« $(x, y), x$ ã§ããããšã«æ³šæïŒïŒ$S_n$ 㯠$f$ ã®ç©ã®ããä¿æ°ãšãªããïŒåé¡ã§äžããããå¶çŽãããã€ãããããšã«çæãããïŒå¶çŽ $a_k\\neq0$ $(k=1,n)$ ã«ã€ããŠã¯ $f$ ã $f-\\frac{1}{1-y}$ ã«å€ããããšã§ïŒãŸãå¶çŽ $(a_k,b_k)\\neq(0,0)$ $(k\\neq1,n)$ ã«ã€ããŠã¯ $f$ ã $f-1$ ã«å€ããããšã§å¯Ÿå¿ã§ããïŒãã£ãŠ $S_n$ ã¯ïŒ\r\n$$\\bigg(f-\\frac{1}{1-y}\\bigg)(f-1)^{n-2}\\bigg(f-\\frac{1}{1-y}\\bigg)$$\r\nã® $x^{N}y^{M}$ ã®ä¿æ°ãšãªãïŒ$\\displaystyle \\sum_{n=2}^{\\infty}(-1)^nS_n$ ã¯\r\n$$\\begin{aligned}\r\n&\\bigg(f-\\frac{1}{1-y}\\bigg)^2(1-(f-1)+(f-1)^2-(f-1)^3+\\dots)\\\\\\\\\r\n&=\\bigg(f-\\frac{1}{1-y}\\bigg)^2\\frac{1}{1+(f-1)}\\\\\\\\\r\n&=\\frac{1}{f}\\bigg(f-\\frac{1}{1-y}\\bigg)^2\\\\\\\\\r\n&=f+\\frac{1}{f}\\frac{1}{(1-y)^2}-\\frac{2}{1-y}\r\n\\end{aligned}$$\r\nã® $x^{N}y^{M}$ ã®ä¿æ°ãšãªãïŒãã£ãŠïŒ\r\n$$\\frac{g^k}{\\sqrt{1-4x}}=\\sum_{i=0}^{\\infty}\\binom{2i+k}{i}x^i$$ \r\nã«æ°ãä»ããã°ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$ \\begin{aligned}\r\n[x^{N}y^{M}]&\\bigg(f+\\frac{1}{f}\\frac{1}{(1-y)^2}-\\frac{2}{1-y}\\bigg) \\\\\\\\\r\n&=[x^{N}y^{M}]f+[x^{N}y^{M}]\\frac{1}{f}\\frac{1}{(1-y)^2}\\\\\\\\\r\n&=[x^{N}y^{M}]\\frac{1}{\\sqrt{1-4x}}\\frac{1}{1-g^4y}+[x^{N}y^{M}]\\frac{1-4x}{\\sqrt{1-4x}} (1-g^4y)\\frac{1}{(1-y)^2}\\\\\\\\\r\n&=[x^{N}]\\frac{g^{4M}}{\\sqrt{1-4x}}+[x^{N}]\\frac{1-4x}{\\sqrt{1-4x}} (M+1-Mg^4)\\\\\\\\\r\n&=[x^{N}]\\frac{g^{4M}}{\\sqrt{1-4x}}+(M+1)[x^{N}]\\frac{1}{\\sqrt{1-4x}}-4(M+1)[x^{N-1}]\\frac{1}{\\sqrt{1-4x}}\\\\\\\\\r\n&-M[x^{N}]\\frac{g^4}{\\sqrt{1-4x}}+4M[x^{N-1}]\\frac{g^4}{\\sqrt{1-4x}}\\\\\\\\\r\n&=\\binom{2N+4M}{N}+(M+1)\\binom{2N}{N}-4(M+1)\\binom{2(N-1)}{N-1}-M\\binom{2N+4}{N}+4M\\binom{2(N-1)+4}{N-1}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nããã§ïŒçŽ æ° $p = 8999$ ã«ãã $N = p+1, ~ M = p-1$ ãšè¡šããããšããïŒ\r\n$$ \\binom{2N+4M}{N} \\equiv \\binom{6p-2}{p+1} \\equiv -10 $$\r\n$$ -M\\binom{2N+4}{N} \\equiv \\binom{2p+6}{p+1} \\equiv 12 $$\r\n$$ 4M\\binom{2(N-1)+4}{N-1} \\equiv -4\\binom{2p+4}{p} \\equiv -8 $$\r\nã $\\mathrm{mod} ~ p$ ã§æç«ãïŒæ®ãã®é
㯠$\\mathrm{mod} ~ p$ 㧠$0$ ã§ããããïŒè§£çãã¹ãå€ã¯\r\n$$ -10 + 12 - 8 \\equiv \\mathbf{8993} \\pmod{p} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8694"
},
{
"content": "ãåœ F åé¡ã§ã¯ïŒåé¡æã§äžããã¹ãå¶çŽæ¡ä»¶ã«äžè¶³ãçããŠããç¶æ
ã§åºé¡ãããããïŒã³ã³ãã¹ãäžã«ç»é²ãããŠãã解çãæ£åœãšã¯ç°ãªã£ãŠããŸããïŒUnrated ãšãªã£ãŠããŸã£ãããšãéããŠãè©«ã³ç³ãäžããŸãïŒ\r\n\r\nã以äžã«ïŒåæ¡ã®åé¡ã®ã¢ã€ãã¢ãçšããŠæ£ãã解ããåé¡æãšãã®è§£èª¬ãæ²èŒããŸãïŒé¢çœãã¢ã€ãã¢ã掻ãããåé¡ã ãšæããŸãã®ã§ïŒæ¯éãã®ããŒãžã§ã³ã«ãææŠããŠããã ããã°ãšæããŸãïŒãã®åé¡ã«å¯Ÿãã解説ã¯ãŠãŒã¶ãŒè§£èª¬ã«åé²ãããŠããŸãïŒ\r\n\r\n**åé¡ïŒ** $2$ ä»¥äž $17998$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒæŽæ°ã®çµ $(a_1,a_2,\\ldots,a_{n},b_1,b_2,\\ldots,b_{n})$ ã§ãã£ãŠ \r\n$$a_1+a_2+\\cdots+a_{n}=9000, \\quad a_1 \\neq 0$$\r\n$$b_1+b_2+\\cdots+b_{n}=8998, \\quad a_n\\neq0$$\r\nããã³ïŒä»»æã® $n$ 以äžã®æ£ã®æŽæ° $k$ ã«ã€ããŠ\r\n$$-\\frac{a_k}{4} \\leq b_k \\leq 8998, \\quad 0 \\leq a_k \\leq 8999$$\r\n$$0 \\leq \\sum_{i=1}^{k} b_i \\leq 8998, \\quad (a_k,b_k)\\ne(0,0)$$\r\nãæºãããã®ãã¹ãŠã«ã€ããŠã® $\\displaystyle \\prod_{k=1}^{n} {}\\_{2a_k+4b_k}\\mathrm{C}\\_{a_k}$ ã®ç·åã $S_n$ ãšããŸãïŒ\\\r\nã$\\displaystyle\\sum_{n=2}^{17998}(-1)^nS_n$ ãçŽ æ° $8999$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ",
"text": "æ¬æ¥æ³å®ãããŠããåºé¡ - åé¡æ",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8694/497"
},
{
"content": "**解説ïŒ** 以äžïŒ$p=8999$ ãšããïŒåº§æšå¹³é¢äžã§\r\n$$(4m+n, n) \\quad (0 \\leq m \\leq p-1, ~ 1 \\leq n \\leq p)$$ \r\nãšè¡šããã $p^2$ åã®ç¹ã**èœãšãç©Ž**ãšåŒã¶ããšãšããïŒãããš $\\sum_{n=2}^{17998} (-1)^n S_n$ ã¯ïŒåº§æšå¹³é¢äžãç¹ $O(0,0)$ ããç¹ $A(5p-3,p+1)$ ãŸã§ $x$ æ¹åã $y$ æ¹åã« $1$ ã ãé²ãæäœãç¹°ãè¿ããŠåŸãããçµè·¯ã®ãã¡ïŒèœãšãç©Žãå°ãªããšã $1$ ã€éããããªçµè·¯ã®ç·æ°ãå
é€åçã§æ±ãããã®ã§ããïŒ\\\r\nãå®éïŒçµè·¯ã $n-1$ åã®èœãšãç©Ž $T_1, \\ldots, T_{n-1}$ ãéããšä»®å®ãïŒå§ç¹ã $T_0(0,0)$ïŒçµç¹ã $T_n(4(p-1)+p+1, p+1)$ ãšãããšïŒ$1 \\leq k \\leq n$ ã«ã€ã㊠$T_{k-1}$ ãã $T_k$ ãžã®å€äœã¯ $(a_k+4b_k, a_k)$ ãšãããïŒãã㧠$a_k, b_k$ ãã¡ã¯ $0 \\leq a_k \\leq p, ~ -\\dfrac{a_k}{4} \\leq b_k \\leq p-1$ ãã¿ããæŽæ°ã§ããïŒ$a_1 \\neq 0, ~ a_n \\neq 0$ ããã³\r\n$$ \\sum_{k=1}^n (a_k + 4b_k) = 5p-3, \\qquad \\sum_{k=1}^n a_k = p+1 $$\r\nãæºãããŠããïŒããã«å€äœã¯ $0$ ã§ã¯ãªãã®ã§ $(a_k, b_k) \\neq (0,0)$ïŒãŸãæççµè·¯ã®ã¿ãèããŠãããã $\\displaystyle 0 \\leq \\sum_{i=1}^{k} b_i \\leq 8998$ ãæãç«ã¡ïŒåé¡æã®æ¡ä»¶ã«åèŽããïŒèœãšãç©Žãé©åœãªé 㧠$1, 2, \\ldots, p^2$ ãšã©ãã«ãïŒèœãšãç©Ž $i$ ãéããããªçµè·¯ã®éåã $A_i$ ãšããïŒèœãšãç©Žã¯é«ã
$2p-1$ åãŸã§ããèžããªãããšã«æ³šæãããšïŒèœãšãç©Žãå°ãªããšã $1$ ã€éããããªçµè·¯ã®ç·æ° $S$ ã¯å
é€åçããïŒ\r\n$$ \\begin{aligned}\r\nS &= \\sum_{1 \\leq i_1 \\leq p^2} |A_{i_1}| - \\sum_{1 \\leq i_1 \\lt i_2 \\leq p^2} |A_{i_1} \\cap A_{i_2}| + \\cdots + (-1)^{2p-1} \\sum_{1 \\leq i_1 \\lt \\cdots \\lt i_{2p} \\leq p^2} |A_{i_1} \\cap \\cdots \\cap A_{i_{2p-1}}| \\\\\\\\\r\n&= S_2 - S_3 + S_4 - \\cdots + (-1)^{2p} S_{2p} \r\n\\end{aligned} $$\r\nãšãªãããïŒç€ºãããïŒ\r\n\r\nãããŠïŒäžèšã®ããã«è§£éã§ãã $S$ ãçŽæ¥èšç®ããããšãèããïŒãã®ããã«ã¯ $O$ ãã $A$ ãŸã§ã® ${}\\_{6p-2}\\mathrm{C}\\_{p+1}$ éãã®çµè·¯ã®ãã¡ïŒèœãšãç©Žã $1$ ã€ãéããªãå Žåã®æ°ãæ±ããã°ããïŒç€é¢ã¯èœãšãç©Žã«ãã£ãŠåæãããŠããããïŒçŽç· $y = 0$ äžã®ã©ã®ç¹ãéããã«ãã£ãŠä»¥äžã®ããã«å Žååãã§ããïŒ\r\n- ç¹ $(0,1)$ ãéããã®ãšç¹ $(4p-3,0)$ ãéããã®ã¯ãããã $p$ çªç®ã®ã«ã¿ã©ã³æ°ã§ãã $\\dfrac{{}\\_{2p}\\mathrm{C}\\_{p}}{p+1}$ éããã€ããïŒ\r\n- $k=0,1,\\ldots,p-2$ ã«ã€ããŠïŒç¹ $(4k+1,0)$ ãéããç¹ $(4k+5,0)$ ãéããªãçµè·¯ã¯ $k$ ã®å€ã«äŸããïŒ$25\\cdot2^{p-3}$ éãã§ããïŒãã®ããšã¯ïŒç¹ $(4k+1,0)$ ããåºçºãããšãã®æççµè·¯ã®ç·æ°ãç¹ $(4k+1,0)$ ã«è¿ãæ¹ããé ã
ã«èšç®ããŠããããšã§åŸãããšãã§ããïŒ\r\n\r\nã以äžããïŒ\r\n$$ S={}\\_{6p-2}\\mathrm{C}\\_{p+1} - 2 \\cdot \\dfrac{{}\\_{2p}\\mathrm{C}\\_{p}}{p+1} - (p-1) \\cdot 25 \\cdot 2^{p-3} $$ \r\nãšãªãïŒä»¥äžïŒåååŒã®æ³ã $p$ ãšãããšïŒ\r\n$${}\\_{6p-2}\\mathrm{C}\\_{p+1}\\equiv\\dfrac{(6p-2)(6p-3)\\cdots(5p+1)5p(5p-1)(5p-2)}{(p+1)p(p-1)\\cdots1}\\equiv\\dfrac{(p-1)!\\cdot5\\cdot(-2)}{(p-1)!}\\equiv-10 $$\r\n$$ \\dfrac{{}\\_{2p}\\mathrm{C}\\_{p}}{p+1}\\equiv{}\\_{2p}\\mathrm{C}\\_{p}\\equiv\\dfrac{2p}{p}\\cdot\\dfrac{2p-1}{p-1}\\cdot\\dfrac{2p-2}{p-2}\\cdot\\cdots\\cdot\\dfrac{p+1}{1} \\equiv 2 $$\r\n$$ (p-1) \\cdot 25 \\cdot 2^{p-3}\\equiv\\dfrac{-25}{4}\\equiv\\dfrac{-9024}{4} \\equiv -2256 $$\r\nã§ããããïŒ$S\\equiv-10-4+2256\\equiv\\textbf{2242}$ ãšãªãïŒ",
"text": "æ¬æ¥æ³å®ãããŠããåºé¡ - 解説",
"url": "https://onlinemathcontest.com/contests/omce002/editorial/8694/498"
}
] | ã$2$ ä»¥äž $17998$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒ$0$ ä»¥äž $8999$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\ldots,a_{n},b_1,b_2,\ldots,b_{n})$ ã§ãã£ãŠ
$$a_1+a_2+\cdots+a_{n}=9000, \quad b_1+b_2+\cdots+b_{n}=8998,$$
$$a_1\ne0, \quad a_n\ne0, \quad (a_k,b_k)\ne(0,0) ~~ (k=1,2,\ldots,n)$$
ãæºãããã®ãã¹ãŠã«ã€ããŠã® $\displaystyle \prod_{k=1}^{n} {}\_{2a_k+4b_k}\mathrm{C}\_{a_k}$ ã®ç·åã $S_n$ ãšããŸãïŒ$\displaystyle\sum_{n=2}^{17998}(-1)^nS_n$ ãçŽ æ° $8999$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/7154 | A | OMCB007(A) | 100 | 390 | 399 | [
{
"content": "ã$N=20$ ãšããïŒç®±ã«ã¯åèšã§ããŒã«ã $\\dfrac{N(N+1)}{2}$ åå
¥ã£ãŠããããïŒæåŸ
å€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{n=1}^{N}n\\cdot\\frac{n}{\\frac{N(N+1)}{2}}\r\n&=\\frac{2}{N(N+1)}\\sum_{n=1}^{N}n^2\\\\\\\\\r\n&=\\frac{2}{N(N+1)}\\cdot\\frac{N(N+1)(2N+1)}{6}\\\\\\\\\r\n&=\\frac{2N+1}{3}\\\\\\\\\r\n&=\\frac{41}{3}\r\n\\end{aligned}$$\r\nåŸã£ãŠè§£çãã¹ãå€ã¯ $41+3=\\textbf{44}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/7154"
}
] | ãç®±ã $1$ ã€ããïŒãã®äžã«ã¯ $n=1,2,\dots,20$ ã«ã€ããŠçªå· $n$ ãæžãããããŒã«ã $n$ åïŒåèš $210$ åå
¥ã£ãŠããŸãïŒOMCåããã®ç®±ããããŒã«ã $1$ ã€åãåºãããšãïŒãã®ããŒã«ã«æžãããŠããå€ã®æåŸ
å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããŸãïŒ$a+b$ ã®å€ã解çããŠãã ããïŒãã ãïŒã©ã®ããŒã«ãç確çã§åãåºãããŸãïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/2678 | B | OMCB007(B) | 200 | 349 | 389 | [
{
"content": "ãåã®äœãã $1$ åŒããŠèããããšã§ïŒä»¥äžã®åé¡ã«åž°çãããïŒ\r\n\r\n- åäœã®åã $9$ ãšãªããã㪠$8999$ 以äžã®æ£æŽæ°ã¯ããã€ãããïŒ\r\n\r\nããã«ïŒ$9000$ ä»¥äž $9999$ 以äžã§åäœã®åã $9$ ãšãªããã®ã¯ $9000$ ã®ã¿ã§ããããïŒããã«ä»¥äžã®åé¡ã«åž°çããã.\r\n\r\n- åäœã®åã $9$ ãšãªããã㪠$9999$ 以äžã®æ£æŽæ°ã¯ããã€ãããïŒ\r\n\r\nãã㯠$9$ åã®çã $3$ ã€ã®ãããã§åããæ¹æ³ãšåäžèŠã§ããïŒãã£ãŠïŒæ±ããå€ã¯ ${}_{12} \\mathrm{ C }_3-1=\\textbf{219}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/2678"
}
] | ã$10$ é²æ³è¡šèšã«ãããŠïŒåäœã®åã $10$ ãšãªããã㪠$4$ æ¡ã®æ£æŽæ°ïŒ$1000$ ä»¥äž $9999$ 以äžïŒã¯ããã€ãããŸããïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/3206 | C | OMCB007(C) | 200 | 357 | 393 | [
{
"content": "ã$129600=2^6\\cdot3^4\\cdot5^2$ ããæ£ã®çŽæ°ã®åæ°ã¯ $7Ã5Ã3=105$ åã§ããïŒ\\\r\nãæ£ã®çŽæ° $n$ ã«ã€ã㊠$129600\\/n$ ãæ£ã®çŽæ°ãªã®ã§ïŒ$2^3\\cdot3^2\\cdot5^1$ 以å€ã«ã€ããŠæã㊠$129600$ ãšãªãæ£ã®çŽæ°ã®ãã¢ã $104\\/2=52$ åäœãããšãåºæ¥ãïŒ\r\nãã£ãŠæ±ããç©ã¯\r\n$$(2^6\\cdot3^4\\cdot5^2)^{52}\\cdot2^3\\cdot3^2\\cdot5^1=2^{315}\\cdot3^{210}\\cdot5^{105}$$\r\nã§ããïŒè§£çãã¹ã㯠$\\textbf{315210105}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/3206"
}
] | ã$129600$ ã®ãã¹ãŠã®æ£ã®çŽæ°ã®**ç©**ã¯ïŒæ£ã®æŽæ° $a,b,c$ ãçšã㊠$2^a\cdot3^b\cdot5^c$ ãšè¡šãããŸãïŒ$a,b,c$ ããã®é ã«äžŠã¹ãæ°ã解çããŠãã ããïŒäŸãã°ïŒ$12,9,600$ ããã®é ã«äžŠã¹ãæ°ã¯ $129600$ ã§ãïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/8663 | D | OMCB007(D) | 300 | 101 | 165 | [
{
"content": "ãçžå ã»çžä¹å¹³åã®é¢ä¿ã«ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\dfrac{b^2}{a^2}+\\dfrac{c}{b}+\\dfrac{a^4}{c}&=\\dfrac{b^2}{3a^2}+\\dfrac{b^2}{3a^2}+\\dfrac{b^2}{3a^2}+\\dfrac{c}{4b}+\\dfrac{c}{4b}+\\dfrac{c}{4b}+\\dfrac{c}{4b}+\\dfrac{a^4}{2c}+\\dfrac{a^4}{2c}\\\\\\\\\r\n&\\geq9\\sqrt[9]{\\dfrac{a^2b^2c^2}{3^34^42^2}}\r\n\\end{aligned}\r\n$$\r\nããªãã¡ $(abc)^2\\leq\\dfrac{3^34^42^2}{9^9}=\\dfrac{2^{10}}{3^{15}}$ ã§ããïŒ\r\n$(a,b,c)=\\Big(\\dfrac{2\\sqrt{3}}{9},\\dfrac{2}{9},\\dfrac{8}{81}\\Big)$ ã®ãšãçå·ãæç«ããïŒãã£ãŠè§£çãã¹ãå€ã¯ $\\mathbf{14349931}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/8663"
}
] | ãæ£ã®å®æ° $a,b,c$ ã
$$\dfrac{b^2}{a^2}+\dfrac{c}{b}+\dfrac{a^4}{c}=1$$
ãã¿ãããšãïŒ$(abc)^2$ ã®ãšãããæ倧å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/6820 | E | OMCB007(E) | 300 | 106 | 207 | [
{
"content": "ã察称æ§ããïŒ$P$ ãåãç¯å²ã®ãã¡äžè§åœ¢ $OBC$ ã®å
éšåã³åšäžã®éšåã®é¢ç© $S$ ãæ±ãïŒããã $3$ åããã°ããïŒäžè§åœ¢ $OBC$ ã $xy$ å¹³é¢äžã«ïŒ$B(-\\sqrt3,0),C(\\sqrt3,0),O(0,1)$ ãšãªãããã«é
眮ããïŒãã®ãšãïŒç¹ $P(x,y)$ ã«ã€ããŠæºããã¹ãäžçåŒã¯$$\\sqrt{x^2 + (y-1)^2} \\leq y$$ ã§è¡šãããïŒãããæºããïŒäžè§åœ¢ $OBC$ å
ã«ããç¹ $P$ ã®é¢ç© $S$ ã¯\r\n$$2\\int_{0}^{\\frac{1}{\\sqrt3}} \\left(\\left(-\\frac{1}{\\sqrt3} x+1\\right)-\\left(\\frac{1}{2}x^2 + \\frac{1}{2}\\right)\\right)dx$$\r\nã§è¡šããïŒæ±ããé¢ç©ã¯ $3S= \\dfrac{5\\sqrt 3}{9}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{17}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/6820"
}
] | ã1蟺 $2\sqrt3$ ã®æ£äžè§åœ¢ $ABC$ ãããïŒãã®å€å¿ã $O$ ãšããŸãïŒäžè§åœ¢ $ABC$ ã®å
éšã®ç¹ $P$ ãã蟺 $BC, CA, AB$ ã«åç·ãåŒããã®è¶³ã $D,E,F$ ãšãããšã
$$PO\leq PD,\quad PO\leq PE,\quad PO\leq PF$$
ãæç«ããŸããïŒãã®ãããªç¹ $P$ ãåãç¯å²ã®é¢ç©ã¯æ£æŽæ° $a, b, c$ ãçšã㊠$\dfrac{a\sqrt b}{c}$ ($a,c$ ã¯äºãã«çŽ 㧠$b$ ã¯å¹³æ¹å åããããªã) ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMCB007 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb007/tasks/8442 | F | OMCB007(F) | 400 | 106 | 164 | [
{
"content": "ã察称æ§ãã $a\\geq b$ ãšããŠããïŒ$a+b+c=120$ ãçšããŠäžåŒãå€åœ¢ããŠïŒæ¬¡ãåŸãïŒ\r\n$$\\dfrac{1}{2}ab=\\sqrt{\\dfrac{(a+b+c)}{2}\\cdot\\dfrac{(-a+b+c)}{2}\\cdot\\dfrac{(a-b+c)}{2}\\cdot\\dfrac{(a+b-c)}{2}}$$\r\nããã¯$3$蟺ã $a,b,c$ ã§ããäžè§åœ¢ãååšããŠïŒãã®é¢ç©ã $\\dfrac{1}{2}ab$ ã«çããããšãè¡šããŠããïŒãããã£ãŠãã®äžè§åœ¢ã¯é·ã $c$ ã®èŸºãæ蟺ãšããçŽè§äžè§åœ¢ã§ããïŒçµå±ïŒæ¬¡ã®åŒãæºããçµ $(a,b,c)$ ãæ±ããããšã«åž°çãããïŒ\r\n$$\\begin{cases}\r\na+b+c=120\\\\\\\\\r\na^2+b^2=c^2\r\n\\end{cases}$$\r\n $c$ ãæ¶å»ããŠå€åœ¢ãããšæ¬¡ãåŸãïŒããã§ïŒ$120-a=A,120-b=B$ ãšçœ®ããŠããïŒ\r\n$$AB=7200$$\r\n $A\\leq B \\lt120$ ãã $60\\lt A\\lt 84\\lt B\\lt 120$ ã§ããããšã«æ³šæãããšïŒèãããã $(A,B)$ ã®çµã¯ $(72,100),(75,96),(80,90)$ ã§ããïŒ$c=120-a-b=A+B-120$ ããïŒ$c$ ãšããŠããããå€ã¯ $52,51,50$ ã§ããïŒ\r\nç¹ã«è§£çãã¹ã㯠$\\bf153$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/8442"
},
{
"content": "ã$a+b-60=A, ab=B$ ãšãããšïŒ$a+b+c=120$ ããïŒ$(a+b-c)(b+c-a)(c+a-b)=(2a+2b-120)(120-2a)(120-2b)=8A(B-60A)$ ã§ããããïŒäžåŒã¯ $B^2-240AB+14400A^2=0$ ãšæžãæããããïŒãã£ãŠ $B=120A$ ããªãã¡ $ab=120a+120b-7200$ ã§ïŒ$(120-a)(120-b)=7200$ ã§ããïŒä»¥äžæ¬è§£ãšåæ§ã§ããïŒ\r\n\r\nããªãïŒãããªã $a+b-60=A$ ãšãã眮æãæãã€ããªããšãïŒåºæ¬å¯Ÿç§°åŒ $a+b=A, ab=B$ ãçšããŠäžåŒãè¡šããŠãã $Aâ=A-60$ ãšããã°èªç¶ãªçºæ³ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb007/editorial/8442/477"
}
] | ã$a+b+c=120$ ãªãæ£ã®æŽæ° $a, b, c$ ã
$$
a^2b^2 = 30(a+b-c)(b+c-a)(c+a-b)
$$
ãã¿ãããŠãããšãïŒ$c$ ã®å€ãšããŠããåŸããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/4320 | A | OMC218(A) | 200 | 321 | 341 | [
{
"content": "ã$\\cos{\\theta}=X,\\sin{\\theta}=Y$ ãšçœ®ãçŽã㊠$XY$ å¹³é¢äžã§æ£æ¹åœ¢ $|X|+|Y|=t$ ããã³åäœå $X^{2}+Y^{2}=1$ ã®äº€ç¹ãèããïŒãã®ãšãïŒåé¡ã®æ¡ä»¶ã¯äžæ¹ãä»æ¹ã«å€æ¥ïŒå
æ¥ïŒããããšãšèšãæããããããïŒ$t=1,\\sqrt{2}$ ã®ãšãæ¡ä»¶ãæºããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{24142}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/4320"
},
{
"content": "ãåãšæ£æ¹åœ¢ã®äº€ç¹ã«åž°çãããå
¬åŒè§£èª¬ã®çºæ³ã¯çŽ æŽãããã§ããïŒãããæãã€ããªãã£ãå Žåã®è§£æ³ã§ãïŒ\\\r\nãããããå³å¯æ§ã«æ¬ ããè¡šçŸããããïŒçŽèŠ³ã«é Œã£ããããŠããŸããïŒã容赊ãã ããïŒ\r\n\r\n---\r\n\r\nã$xy$ å¹³é¢äžã«ãããåº§æš $(\\cos \\theta, \\sin \\theta)$ ã¯å $x^2+y^2=1$ äžã«ååšãïŒ$0\\leq \\theta \\lt 2\\pi$ ãåãéã«ååšäžãäžåšããïŒ\\\r\nãé¢æ° $f(\\theta)=|\\sin \\theta|+|\\cos \\theta|$ ãšçœ®ããšïŒãã®é¢æ°ã¯ $0\\leq \\theta \\lt \\dfrac{\\pi}{2}$ïŒç¬¬äžè±¡éïŒã®ç¯å²ã§ \r\n$$f(\\theta)=\\sin \\theta+\\cos \\theta=\\sqrt{2}\\sin\\left(\\theta+\\dfrac{\\pi}{4}\\right)$$\r\nã§ããïŒ$3$ ç¹ $(0,1), \\left(\\dfrac{\\pi}{4}, \\sqrt{2}\\right),\\left(\\dfrac{\\pi}{2}, 1\\right)$ ãéãïŒå±±ãªãã®ã°ã©ããæãïŒ\\\r\nã察称æ§ãã $f(\\theta)=|\\sin \\theta|+|\\cos \\theta|$ ã¯ïŒ$\\dfrac{\\pi}{2} \\leq \\theta \\lt \\pi$ïŒç¬¬äºè±¡éïŒïŒ$\\pi \\leq \\theta \\lt \\dfrac{3}{2}\\pi$ïŒç¬¬äžè±¡éïŒïŒ$\\dfrac{3}{2}\\pi \\leq \\theta \\lt 2\\pi$ïŒç¬¬å象éïŒã§ãå
šãåãå³åœ¢ãæãïŒåšæé¢æ°ã§ããïŒåŸã£ãŠïŒåé¡æã®æ¡ä»¶ãæºãããããªå®æ° $\\theta$ ã¯ïŒ $0\\leq \\theta \\lt \\dfrac{\\pi}{2}$ïŒç¬¬äžè±¡éïŒã®ç¯å²ã§ $|\\sin \\theta|+|\\cos \\theta|=t$ ã®è§£ããã äžã€ã§ããã°ããïŒãã®ãã㪠$t$ 㯠$1$ ãš $\\sqrt{2}$ ã®ã¿ã§ããïŒ\r\n\r\n---\r\n\r\nè£è¶³ïŒãšãããææ³ïŒïŒ\\\r\nãå
¬åŒè§£èª¬ã»ã©ãšã¬ã¬ã³ãã§ã¯ãªãã§ããïŒ$xy$ å¹³é¢äžã®å $x^2+y^2=1$ ãçšããç¹ã§ïŒçºæ³ã¯äŒŒãŠãããšæããŸãïŒ\\\r\nããã®åãã®ããã« $\\sin\\theta, \\cos \\theta$ ãäž¡æ¹åºãŠããŠïŒãããã察称çãªåŒã«ãªã£ãŠããå Žåã¯ïŒ$xy$ å¹³é¢äžã®è©±ã«åž°çããããšããããšãïŒãã°ãã°ãããŸãïŒ",
"text": "å¥è§£ãšè£è¶³",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/4320/467"
}
] | ã$|\sin{\theta}|+|\cos{\theta}|=t$ ãæºãã $0$ ä»¥äž $2\pi$ æªæºã®å®æ° $\theta$ ãã¡ããã© $4$ åååšãããããªå®æ° $t$ ã«ã€ããŠïŒãã®ç·åã $s$ ãšããŸãïŒ$10000s$ 以äžã®æ倧ã®æŽæ°ã解çããŠãã ããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/4737 | B | OMC218(B) | 200 | 273 | 315 | [
{
"content": "ã$a_{100}$ 㯠$16$ 以äžã®æŽæ° $k$ ãçšã㊠$a_{100}=2^{2^k+1}$ ãšæžããããïŒFermatã®å°å®çãã $a_{100}$ ã $2^{16}+1$ ã§å²ã£ãããŸã㯠$\\mathbf{2}$ ã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/4737"
}
] | ãæ°å $\lbrace a_n\rbrace$ ã以äžã§å®ããŸãïŒ
$$a_1=1, \quad a_{n+1}=2^{a_n+1}$$
ãã®ãšãïŒ$a_{100}$ ãçŽ æ° $2^{16}+1$ ã§å²ã£ãããŸããæ±ããŠãã ããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/5043 | C | OMC218(C) | 300 | 262 | 300 | [
{
"content": "ãæ¡ä»¶ãã¿ããæ° $X$ ã $10$ é²æ³ã§ $\\overline{x_1x_2x_3x_1x_2x_3}\\_{(10)}$ïŒ$12$ é²æ³ã§ $\\overline{y_1y_2y_3y_1y_2y_3}\\_{(12)}$ ãšè¡šãããšããïŒ\r\n\r\n$$\\begin{aligned}\r\n& \\overline{x_1x_2x_3x_1x_2x_3}\\_{(10)}=(10^3+1) \\times \\overline{x_1x_2x_3}\\_{(10)}=7 \\times 11 \\times 13 \\times \\overline{x_1x_2x_3}\\_{(10)} \\\\\\\\\r\n& \\overline{y_1y_2y_3y_1y_2y_3}\\_{(12)}=(12^3+1) \\times \\overline{y_1y_2y_3}\\_{(12)}=7 \\times 13 \\times 19 \\times \\overline{y_1y_2y_3}\\_{(12)}\r\n\\end{aligned}$$\r\n\r\nã§ããããïŒæ£ã®æŽæ° $M$ ãçšã㊠$X=7 \\times 11 \\times 13 \\times 19 \\times M$ ãšè¡šãïŒãã®ãšãïŒ\r\n\r\n$$\\overline{x_1x_2x_3}\\_{(10)}=19M, \\quad \\overline{y_1y_2y_3}\\_{(12)}=11M$$\r\n\r\nã§ããïŒãŸãïŒ\r\n\r\n$$10^2 \\leq \\overline{x_1x_2x_3}\\_{(10)} \\lt 10^3, \\quad 12^2 \\leq \\overline{y_1y_2y_3}\\_{(12)} \\lt 12^3$$\r\n\r\nã§ããããïŒ$14 \\leq M \\leq 52$ ã®ç¯å²ã§é©ãã $X$ ãåŸãããïŒãã£ãŠ $X$ 㯠$\\bm{39}$ éãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/5043"
}
] | ã$2$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒæ£ã®æŽæ° $N$ ã $\bm{n}$ **é²æ³ã«ãããè¯ãæ°**ã§ãããšã¯ïŒæ¬¡ãå
šãŠæºããããšãæããŸãïŒ
- $N$ 㯠$n$ é²æ³è¡šèšã§ $6$ æ¡ã§ããïŒã€ãŸãïŒ$n^5 \le N \lt n^6$ ãæºããïŒ
- $N$ ã $n$ é²æ³ã§è¡šãããšãïŒ$n^5$ ã®äœãš $n^2$ ã®äœïŒ$n^4$ ã®äœãš $n$ ã®äœïŒ$n^3$ ã®äœãš $1$ ã®äœãããããçããïŒ
ã$10$ é²æ³ã«ãããè¯ãæ°ã§ããïŒã〠$12$ é²æ³ã«ãããè¯ãæ°ã§ãããæ£ã®æŽæ°ã¯ããã€ãããŸããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/6204 | D | OMC218(D) | 500 | 41 | 121 | [
{
"content": "ãå°ãªããšã $1$ åãžã£ã³ãããããã¿ã¯ïŒäžè§åœ¢ $A_0B_0C_0$ ã®å
éšïŒåšãå«ãŸãªãïŒã«ååšãïŒãã€éå¿äžã«ååšããªãïŒéå¿äžã«ååšãããªãã°ïŒéå¿ãžãžã£ã³ãããçŽåã« $A_1, A_2, B_1, B_2, C_1, C_2$ ã®ããããã«ååšããå¿
èŠããããïŒããã¯çããªãïŒïŒ\\\r\nãäžè§åœ¢ $A_0B_0C_0$ ã®åéšåãå³ã®ããã« $P, Q, R, S, T$ ãšãïŒå€ªç Žç· $P$ïŒå€ªå®ç· $Q$ ã¯çœäžžãå«ãŸãïŒé å $R, S, T$ ã¯å¢çãå«ãŸãªãïŒïŒ$n$ åã®ãžã£ã³ãã®ããšããã¿ãããããã«ååšãã確çã $p_n, q_n, r_n, s_n, t_n\\ (n=1, 2, \\cdots)$ ãšãããšïŒä»¥äžã®æŒžååŒãæãç«ã€ïŒ\r\n$$p_1=\\dfrac{1}{3},\\quad q_1=\\dfrac{2}{3},\\quad p_{n+1}=\\dfrac{2}{9}p_n+\\dfrac{1}{9}q_n,\\quad q_{n+1}=\\dfrac{4}{9}p_n+\\dfrac{2}{9}q_n$$\r\n$$s_1=t_1=0,\\quad s_{n+1}=\\dfrac{2}{9}p_n+\\dfrac{2}{9}q_n+\\dfrac{2}{9}r_n+\\dfrac{4}{9}s_n+\\dfrac{2}{3}t_n,\\quad t_{n+1}=\\dfrac{1}{9}p_n+\\dfrac{1}{9}q_n+\\dfrac{1}{9}r_n+\\dfrac{2}{9}s_n+\\dfrac{1}{3}t_n$$\r\nãã£ãŠïŒ$q_n=2p_n$ ã§ãããã $p_{n+1}=\\dfrac{4}{9}p_n$ ãæãç«ã¡ïŒ\r\n$$p_n=\\dfrac{2^{2(n-1)}}{3^{2n-1}}$$\r\nãåŸãïŒãŸãïŒ$p_n+q_n+r_n=1-(s_n+t_n),\\ s_n=2t_n$ ã§ãããã $t_{n+1}=\\dfrac{4}{9}t_n+\\dfrac{1}{9}$ ãæãç«ã¡ïŒ\r\n$$t_n=\\dfrac{3^{2(n-1)}-2^{2(n-1)}}{5\\times3^{2(n-1)}}$$\r\nãåŸãïŒæ±ãã確ç㯠$1-(p_8+t_8)=\\dfrac{4\\times3^{15}-2^{15}}{5\\times3^{15}}$ ïŒãã®åæ¯ãšåå㯠$5$ ã§å²ãåããããšã«æ³šæïŒã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{25821479}$ïŒ\r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/6204"
},
{
"content": "ãããã¿ã§ã¯ãªãïŒåç¹ $K$ ãæ¡ä»¶ãæºãããªãã移åãããã®ãšèããïŒä»¥äžãé«ãããšããè¡šçŸãçšããããïŒããã¿ã®ãŸãŸã ãšïŒããã¿ã空äžã«æµ®ããŠãããããªå€ãªç¶æ³ãæ³åããããïŒïŒ\r\n\r\nãçŽç· $B_0C_0$ ãé«ã $0$ ã«ååšãïŒ$x$ 軞äžã«ãããšæ³åããã°ããïŒïŒç¹ $A_0$ ãé«ã $3$ ã«ååšãããšèãããïŒ\\\r\nãã¯ããç¹ $K$ ãååšããå Žæã¯é«ã $1$ ã§ããïŒ$\\triangle A_0 A_1 C_2$ ã¯é«ã $2$ ãš $3$ ã®éã«ååšããïŒ\\\r\nã $P_n(\\ast)$ ã§ïŒ$n$ åã®ç§»ååŸã«åç¹ $K$ ã®é«ã $h$ ãæ¡ä»¶ $\\ast$ ãæºãã確çïŒãè¡šãããšã«ããïŒããšãã° $P_0(h=1)=1$ïŒ$P_0(0 \\lt h \\lt 1)=0$ ã§ããïŒ\\\r\nã$8$ åç®ã®ç§»ååŸã«åç¹ $K$ ã $\\triangle A_0 A_1 C_2$ ã®åšäžãŸãã¯å
éšã«ååšãã確ç㯠$P_8(2 \\leq h \\lt 3)$ ã§ããïŒå¯Ÿç§°æ§ãèããã°ïŒããŸæ±ããã確çã¯ïŒ$1-3ÃP_8(2 \\leq h \\lt 3)$ ã§ããïŒ\r\n\r\n---\r\n\r\nãèšç®ã®ããããã®ããã«ïŒæ¹ããŠæ¬¡ã®ããã«çœ®ãçŽãïŒ\r\n$$x_n=P_n(2 \\leq h \\lt 3), y_n=P_n(1 \\leq h \\lt 2), z_n=P_n(0 \\lt h \\lt 1)$$\r\nããããã $x_n, y_n, z_n$ ã«é¢ãã挞ååŒãç«ãŠãŠïŒ$x_6$ ãæ±ãããïŒããã§å®éã«æŒžååŒãç«ãŠããšïŒ\r\n$$\\begin{aligned}\r\nx_{n+1} &=\\dfrac{3x_n+y_n}{9}\\\\\\\\\r\ny_{n+1} &=\\dfrac{6x_n+4y_n+3z_n}{9}\\\\\\\\\r\nz_{n+1} &=\\dfrac{4y_n+6z_n}{9}\r\n\\end{aligned}$$\r\nã$x_n+y_n+z_n=1$ ã $z_n$ ã«ã€ããŠè§£ããŠïŒç¬¬äºåŒã«ä»£å
¥ãããšïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$y_{n+1} =\\dfrac{3x_n+y_n}{9}+\\dfrac{1}{3}$$\r\nãããªãã¡ïŒ$n \\geq 1$ ã®ç¯å²ã§ïŒ$y_n=x_n+\\dfrac{1}{3}$ ã§ããïŒãããçšããã° $x_{n+1} =\\dfrac{3x_n+y_n}{9}$ ã¯æ¬¡ã®ããã«å€åœ¢ãããïŒ\r\n$$x_{n+1}=\\dfrac{4}{9}x_n+\\dfrac{1}{27}$$\r\nã$x_1=\\dfrac{1}{9}$ ãçšããŠæŒžååŒã解ãã°ïŒ$x_n=\\dfrac{2}{45}\\left(\\dfrac{4}{9}\\right)^{n-1}+\\dfrac{1}{15}$ ãšãªãïŒ$x_8=\\dfrac{2^{15}+3^{15}}{5Ã3^{16}}$ïŒæ±ããã¹ãå€ã¯ $1-3x_6=\\dfrac{4Ã3^{15}-2^{15}}{5Ã3^{15}}$ ã§ããïŒ",
"text": "3å€æ°ã®æŒžååŒã§è§£ãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/6204/469"
},
{
"content": "ã$A_0,B_0,C_0$ ã®äœçœ®ãã¯ãã«ã ,$a,b,c$ ãšã, $xa+yb+zc\\quad (x+y+z=1)$ ã§è¡šãããç¹ã$ (x,y,z)$ ãšè¡šçŸããããšã«ããŸã.\\\r\nãããã¿ã¯æå $(1\\/3,1\\/3,1\\/3)$ ã«ããŠ, ãžã£ã³ãã«ãã£ãŠ, 以äžã®ãããããšå¹³åãåããŸã.\r\n$$\r\n\\begin{aligned}(1,0,0),(0,1,0),(0,0,1),\\\\\\\\\r\n\\Big(\\frac{1}{3},\\frac{2}{3},0\\Big),\\Big(0,\\frac{1}{3},\\frac{2}{3}\\Big)\\Big(\\frac{2}{3},0,\\frac{1}{3}\\Big),\\\\\\\\\r\n\\Big(\\frac{2}{3},\\frac{1}{3},0\\Big),\\Big(0,\\frac{2}{3},\\frac{1}{3}\\Big)\\Big(\\frac{1}{3},0,\\frac{2}{3}\\Big)\\\\\\\\\r\n\\end{aligned}$$\r\n $i$çªç®ã®ãžã£ã³ãã§éžãã ç¹ã $(x_i,y_i,z_i)$ ãšãããš, $8$ åç®ã®ãžã£ã³ãã®åŸããã¿ã®äœçœ®ã¯, 以äžã«ãªããŸã.\r\n$$\\Big(\\frac{1}{2^8}\\frac{1}{3}+\\sum_{i=1}^8\\frac{1}{2^{9-i}}x_i,\\frac{1}{2^8}\\frac{1}{3}+\\sum_{i=1}^8\\frac{1}{2^{9-i}}y_i, \\frac{1}{2^8}\\frac{1}{3}+\\sum_{i=1}^8\\frac{1}{2^{9-i}}z_i\\Big)$$\r\nãç¹ $(x,y,z)$ ãå
è§åœ¢å
ã«å«ãŸããæ¡ä»¶ã¯, $x\\lt2\\/3,y\\lt2\\/3,z\\lt2\\/3$ ã§ããã®ã§, æ¡ä»¶ã¯ä»¥äžãšåå€ã§ã.\r\n<details> <summary> 蚌æ <\\/summary> \r\nãçŽç· $A_1C_2$ ã«é¢ããŠ, $A_0$ ãšåãåŽã«ããæ¡ä»¶ãèãã. $A_1,C_2$ ã¯ãããã, $(2\\/3,1\\/3,0),(2\\/3,0,1\\/3)$ ã§ããã®ã§, $A_1C_2$ äžã«ããç¹ã¯, \r\n$$(x,y,z)=t\\Big(\\frac{2}{3},\\frac{1}{3},0\\Big)+(1-t)\\Big(\\frac{2}{3},0,\\frac{1}{3}\\Big)=\\Big(\\frac{2}{3},\\frac{1}{3}t,\\frac{1}{3}(1-t)\\Big)$$\r\nãšè¡šãã, $(x,y,z)$ ã $A_1C_2$ äžã«ããå¿
èŠååæ¡ä»¶ã¯ $x=2\\/3$ ã§ãã, $A_0$ ã«ã€ããŠã¯, $x=1\\gt 2\\/3$ ã§ããã®ã§, çŽç· $A_1C_2$ ã«é¢ããŠ, $A_0$ ãšåãåŽã«ããæ¡ä»¶ã¯$x\\gt 2\\/3$.$x\\lt2\\/3,y\\lt2\\/3,z\\lt2\\/3$ ã§ãããšã, å
è§åœ¢ã®å€åŽã®å°ããäžè§åœ¢ã«ã¯å«ãŸããªãã®ã§ãããæ¡ä»¶ã§ãã. (ããã¿ã¯åžžã«äžè§åœ¢ $A_0B_0C_0$å
ã«ããããšã«æ³šæ.)<\\/details>\r\n$$\r\n\\begin{aligned}(3x_1)+2(3x_2)+4(3x_3)+\\dots+128(3x_8)\\lt 2^9-1,\\\\\\\\\r\n(3y_1)+2(3y_2)+4(3y_3)+\\dots+128(3y_8)\\lt 2^9-1,\\\\\\\\\r\n(3z_1)+2(3z_2)+4(3z_3)+\\dots+128(3z_8)\\lt 2^9-1\\\\\\\\\r\n\\end{aligned}$$\r\nãéå $U$ ã以äžã§,å®ãããš, $(3x_i,3y_i,3z_i)\\in U$ ã§ããã®ã§,\r\n$$\r\n\\begin{aligned}U=&\\\\{(3,0,0),(0,3,0),(0,0,3),\\\\\\\\\r\n&(1,2,0),(0,1,2),(2,0,1),\\\\\\\\\r\n&(2,1,0),(0,2,1),(1,0,2)\\\\}\r\n\\end{aligned}\r\n$$\r\n$x,y,z$ ã®å€é
åŒ $P(x,y,z)$ ã\r\n$$P(x,y,z)=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x$$ \r\nãšãããš, ããã¿ãå
è§åœ¢å
ã«å«ãŸããå Žåã®æ°ã¯, \r\n$$P(x,y,z)P(x^2,y^2,z^2)P(x^4,y^4,z^4)\\cdots P(x^{128},y^{128},z^{128})$$\r\n ãå±éãããšãã®, $x,y,z$ ããããã®æ¬¡æ°ã $2^9-1$ ããå°ãããã®ä¿æ°ã®ç·åã§ãã. ãŸã \r\n$$P(x,y,z)=(x+y+z)(x^2+y^2+z^2)$$\r\n ã§ããã®ã§, $Q(x,y,z)=x+y+z$ ãšãããš, \r\n$$\r\n\\begin{aligned}\r\n&P(x,y,z)P(x^2,y^2,z^2)P(x^4,y^4,z^4)\\cdots P(x^{128},y^{128},z^{128})\\\\\\\\\r\n=&Q(x,y,z)\\times(Q(x^2,y^2,z^2))^2(Q(x^4,y^4,z^4))^2\\cdots(Q(x^{128},y^{128},z^{128}))^2\\times Q(x^{256},y^{256},z^{256})\r\n\\end{aligned}$$\r\nãšãªã. ãã£ãŠ, 以äžã®åé¡ã解ãã°è¯ã.\r\n\r\n---\r\n**åé¡**.\r\nã$3$ ã€ã®æ° $x,y,z$ ããã, åã $x=y=z=0$ ã§ã. $i=1,2,\\dots,9$ ã«ã€ããŠ, $i$ åç®ã®ã¿ãŒã³ã«ä»¥äžã®æäœãè¡ããŸã.\r\n- $x,y,z$ ã®äžããäžã€éžã¶.\r\n- éžãã æ°ã« $2^{9-i}$ ã足ã.\r\n- $i=2,3,\\dots,8$ ã®ãšã, ããäžåºŠãããç¹°ãè¿ã.\r\n\r\nããã®ãšã, $x,y,z$ ã®ã©ãã $2^9-1$ ãã, å°ãããªããããªæäœåã¯äœéããããŸããïŒ\r\n\r\n---\r\nãäžçªæåã« $2^8$ ãéžãã æ°ã $x$ ãšããŸã. çµè«ãè¿°ã¹ããš $x$ ãäžåºŠãéžã°ãªãã¿ãŒã³ãååšã, åã㊠$x$ ãäžåºŠãéžã°ãªãã¿ãŒã³ãŸã§, $x$ã $2$ 床éžã°ãªãããšãå¿
èŠååæ¡ä»¶ãšãªããŸã.\r\n<details> <summary> 蚌æ <\\/summary>\r\nã以äžããåŸã.\r\n\r\n- $y,z$ ã¯ã©ã®ããã«è²ªæ¬²ã«æäœãè¡ã£ãŠã $2(2^7+2^6+\\dots+2)+1=2^9-3$ 以äžã«ãªã.\r\n\r\n- æåŸãŸã§ $x$ ãäžåºŠä»¥äžéžã³ç¶ãããš $x\\geq 2^8+2^7+\\dots+1=2^9-1$ ãšãªã£ãŠããŸã.\r\n\r\n- $i (\\geq 2)$ ã«ã€ããŠ, $i-1$ ã¿ãŒã³ç®ãŸã§ã« $x$ ã $1$ 床ãã€éžã³, $i$ ã¿ãŒã³ç®ã« $x$ ã $2$ åéžãã§ããŸã£ãå Žå. $x\\geq 2^8+\\dots 2^{9-(i-1)} +2\\times 2^{9-i}=2^9$ ãšãªã.\r\n\r\n- $i (\\geq 2)$ ã«ã€ããŠ, éã« $i$ ã¿ãŒã³ç®ã« $x$ ãäžåºŠãéžã°ã, $i-1$ ã¿ãŒã³ç®ãŸã§ $x$ ãäžåãã€éžãã ãšãããš, $i+1$ ã¿ãŒã³ä»¥é貪欲㫠$x$ ãæ倧åããŠã, $x\\leq 2^8+\\dots +2^{9-i}+2(2^{9-(i+1)}+\\dots 2)+1=2^9-3$ ãšãªã.<\\/details>\r\n\r\n\r\nããã£ãŠ, $i=2,\\dots,9$ ã¿ãŒã³ç®ã« $x$ ãäžåºŠãéžã°ã, ãããŸã§ã« $x$ ãäžåºŠãã€éžã¶æ¹æ³ã足ããããã°è¯ã.\r\n- $i=2,\\dots,8$ ã®ãšã, $x$ ã $2$ ãã $i-1$ ãŸã§ã®åã¿ãŒã³ã«ã€ã㊠$x$ ãäžåºŠãã€éžã¶æ¹æ³ã¯ ,$x\\leftaroow y,z$ ã $y,z\\leftarrow x$ ã® $4$ éã, $i$ ã¿ãŒã³ç®ã« $x$ ãäžåºŠãéžã°ãªãæ¹æ³ã¯ $y,z \\leftarrow y,z$ ã® $4$ éã. åŸã¯, $i+1$ ãã $8$ ã¿ãŒã³ç®ãŸã§ $9$ éã. $9$ ã¿ãŒã³ç®ã¯ $3$ éã. ãã£ãŠ, $4^{i-1}\\times 9^{8-i}\\times 3$ éã.\r\n- $i=9$ ã®ãšã, $x$ ã $2$ ãã $i-1$ ãŸã§ã®åã¿ãŒã³ã«ã€ã㊠$x$ ãäžåºŠãã€éžã¶æ¹æ³ã¯ $4$ éã. $9$ ã¿ãŒã³ç®ã« $1$ 床ã $x$ ãéžã°ãªãæ¹æ³ã¯ $2$ éã. ãã£ãŠ, $4^7\\times 2$éã.\r\nã\r\nããããã, æ¡ä»¶ãæºããæäœåã¯, (æåã« $y,z$ ãéžãã ãšããŠãåæ§ã§ãããã)\r\n$$3\\times\\Big(4^7\\times 2+\\sum_{i=2}^{8}4^{i-1}\\times 9^{8-i}\\times 3\\Big)=\\mathbf{34417716}$$\r\néããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/6204/609"
}
] | ãäžè§åœ¢ $A_0B_0C_0$ ã«ãããŠå蟺ã $3$ çåãïŒèŸº $A_0B_0$ äžã®åç¹ã $A_0$ ã«è¿ãæ¹ããé ã« $A_1, A_2$ïŒèŸº $B_0C_0$ äžã®åç¹ã $B_0$ ã«è¿ãæ¹ããé ã« $B_1, B_2$ïŒèŸº $C_0A_0$ äžã®åç¹ã $C_0$ ã«è¿ãæ¹ããé ã« $C_1, C_2$ ãšãããŸãïŒã¯ããïŒäžè§åœ¢ $A_0B_0C_0$ ã®éå¿ã«ããã¿ãããŸãïŒãã®ããã¿ãïŒ$A_0, A_1, A_2, B_0, B_1, B_2, C_0, C_1, C_2$ ããç¡äœçºã« $1$ ç¹ãéžã³ïŒãã®ãšãããã¿ãããå°ç¹ãšéžãã ç¹ã®äžç¹ãžãžã£ã³ãããããšã $8$ åç¹°ãè¿ããŸãïŒã¡ããã© $8$ åã®ãžã£ã³ãã®ããšããã¿ãå
è§åœ¢ $A_1A_2B_1B_2C_1C_2$ ã®å
éšïŒåšãå«ãŸãªãïŒã«ååšãã確çãæ±ããŠãã ããïŒãã ãïŒæ±ãã確çã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/4243 | E | OMC218(E) | 500 | 21 | 58 | [
{
"content": "ã$BC$ ã®äžç¹ã $M$ ãšããã°ïŒäžè§åœ¢ $ABC$ åã³äžè§åœ¢ $DBC$ ã«äžç·å®çãé©çšãïŒ$2$ åŒã足ãåãããããšã§ïŒ\r\n$$2(AM^2+DM^2)=AB^2 + AC^2 + CD^2 + BD^2 - BC^2=128 = 2AD^2$$\r\nãåŸãïŒãã£ãŠïŒ$\\angle AMD=90^{\\circ}$ ã§ããïŒ$AD$ ã®äžç¹ã $N$ ãšããã° $ MN=4$ ã§ããïŒããã§çŽç· $AB$ ãšçŽç· $CD$ ã®äº€ç¹ã $E$ ãšãïŒ$\\angle EDA=α$ ãšããã°ïŒæ¡ä»¶ãã $\\angle EAD=3α, 0^{\\circ}\\lt{α}\\lt{45^{\\circ}}$ ã§ããïŒãŸãïŒäžè§åœ¢ $EAD$ ã®å€æ¥åãšäžè§åœ¢ $EBC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $E$ ã§ãªãæ¹ã $P$ ãšããã°ïŒ$P$ ã¯åè§åœ¢ $ABCD$ ã®ãã±ã«ç¹ã§ããããïŒ$AB=CD$ ãšããããŠïŒäžè§åœ¢ $PAB$ ãšäžè§åœ¢ $ PDC$ ã¯åãåãã®ååã§ããïŒãã£ãŠïŒäžè§åœ¢ $PAD$ ãšäžè§åœ¢ $PBC$ ã¯çžäŒŒãªäºç蟺äžè§åœ¢ã§ããïŒ$\\angle PBM=\\angle PCM=2α$ ã§ããïŒããã«ïŒäžè§åœ¢ $PAD$ ãšäžè§åœ¢ $PBC$ ãçžäŒŒã§ããããšããïŒäžè§åœ¢ $PAB$ ãšäžè§åœ¢ $PNM$ ãçžäŒŒã§ããïŒãã®çžäŒŒæ¯ã¯ $5:4$ ã§ããã®ã§ïŒ$\\sin 2α=\\dfrac{PM}{PB}=\\dfrac{4}{5}$ ãåŸãïŒãã£ãŠïŒ$\\cos α=\\dfrac{2}{\\sqrt{5}}, \\cos 3α=\\dfrac{2}{5\\sqrt{5}}$ ãé ã«åŸãïŒäœåŒŠå®çãé©çšããããšã§\r\n$$BD^2=89+\\frac{32}{5}\\sqrt{5},\\quad AC^2=89+32\\sqrt{5}$$\r\nãæ±ãŸãïŒä»¥äžããïŒ\r\n$$BC^2=BD^2+AC^2-78=\\dfrac{500+192\\sqrt{5}}{5}$$\r\nãåŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{702}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/4243"
},
{
"content": "ïŒçºæ³ã«è³ããŸã§ïŒ\\\r\nãæ¡ä»¶ $AB=CD=5, AD=8$ ããïŒ$A(4,0), D(-4,0)$ ãšããã° $B(4+5 \\cos \\alpha, 5 \\sin \\alpha), C(-4+5 \\cos \\beta, 5 \\sin \\beta)$ ãªã©ãšãããïŒãŸããã®ããã«ãããšïŒæ¡ä»¶ $AC^2+BD^2=BC^2+78$ ã¯èšç®ããããæ¡ä»¶ãšãªãïŒäžå¹³æ¹ã®å®çã䜿ããïŒïŒ\\\r\nããŸãæ¡ä»¶ $3 \\angle CDA - \\angle DAB = 360^{\\circ}$ ã«ã€ããŠãïŒèšç®ããŠã¿ããšïŒåº§æšãšçžæ§ããã圢ã«ãªãïŒ\\\r\nããã®ãããªæ¡ä»¶ãããã£ãŠããïŒåº§æšãçšããŠã¿ãããšèããããïŒ\r\n\r\n---\r\n\r\nã$3 \\angle CDA - \\angle DAB = 360^{\\circ}$ ããïŒ$\\angle CDA=\\theta$ ãšãããš $\\angle DAB = 3 \\theta - 360 ^{\\circ}$ ãšãããïŒåè§åœ¢ãåžãªã®ã§ïŒ$0^{\\circ} \\lt 3 \\theta - 360 ^{\\circ} \\lt 180^{\\circ} \\iff 120^{\\circ} \\lt \\theta \\lt 180^{\\circ}$ ã§ããïŒããã«ïŒåçŽç· $BA$ ãšåçŽç· $CD$ ã亀ããããšãã $\\angle CDA+\\angle DAB \\gt 180^{\\circ} \\iff 135^{\\circ} \\lt \\theta$ ãªã®ã§ïŒ$\\theta $ 㯠æ¡ä»¶ $135^{\\circ} \\lt \\theta \\lt 180^{\\circ}$ ãæºããïŒ\\\r\nã$A(4,0), D(-4,0)$ ãšãããšïŒäžã® $\\theta$ ãçšã㊠$B(4-5 \\cos 3\\theta, 5 \\sin 3\\theta), C(-4+5 \\cos \\theta, 5 \\sin \\theta)$ ãšãããïŒ\\\r\nã以äžã§æºåãæŽã£ãã®ã§ïŒæ®ã£ãæ¡ä»¶ $AC^2+BD^2=BC^2+78$ ãå€åœ¢ããŠãããïŒäžå¹³æ¹ã®å®çãçšããŠåŒå€åœ¢ããŠããã°ïŒæ¬¡ã®åŒãåŸãããïŒ\r\n$$ \\cos \\theta\\cos 3\\theta - \\sin \\theta \\sin 3 \\theta =-\\dfrac{7}{25} $$\r\nã巊蟺ã¯å æ³å®çãçšããã° $\\cos4\\theta$ ãšãªãã®ã§ïŒããšã¯åè§ã®å
¬åŒãçšããŠïŒè§åºŠã®æ¡ä»¶ã«æ°ãä»ããªããèšç®ããã°ããïŒ\\\r\nã$\\cos 2 \\theta=\\dfrac{3}{5}, \\cos \\theta=-\\dfrac{2\\sqrt{5}}{5}$ ãšãªãïŒé©åœãªåŒã«ä»£å
¥ããã° $BC^2$ ãæ±ãŸãïŒ",
"text": "座æšãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/4243/471"
}
] | ãåžåè§åœ¢ $ABCD$ ã次ã®æ¡ä»¶ãæºãããŸããïŒ
- åçŽç· $BA$ ãšåçŽç· $CD$ ã¯äº€ããïŒ
- $AB=CD=5, AD=8$
- $AC^2+BD^2=BC^2+78$
- $3 \angle CDA-\angle DAB=360^{\circ}$
ãã®ãšãïŒ$BC$ ã®é·ãã® $2$ ä¹ã¯æ£ã®æŽæ° $a,b,c,d$ (ãã ã $c$ ã¯å¹³æ¹å åããããïŒ$a,b,d$ ã®æ倧å
¬çŽæ°ã¯ $1$) ãçšã㊠$\dfrac{a+b\sqrt{c}}{d}$ ãšè¡šãããã®ã§ïŒ$a+b+c+d$ ã解çããŠãã ããïŒ |
OMC218 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc218/tasks/9085 | F | OMC218(F) | 500 | 34 | 82 | [
{
"content": "ãæ¡ä»¶ 2. ããïŒ$n$ 㯠$7$ 以äžã®çŽ å æ°ãæããªãããïŒ$\\lbrace p, q, r\\rbrace=\\lbrace 2,3,5\\rbrace$ ãªãçŽ æ° $p,q,r$ ãšéè² æŽæ° $x, y, z$ ãçšã㊠$n = p^x q^y r^z$ ãšè¡šããïŒãã®ãšãïŒ$$d(n)d(p^{11}n^{12}) - 6d(pn^2)d(p^5n^6) + 5d(p^2n^3)d(p^3n^4) = 1110^{2m + 1} $$\r\nã $(1)$ ãšãïŒãããæãç«ã€æ¡ä»¶ãæ±ãããïŒ$k$ ãæ£æŽæ°ãšãããšãïŒ\r\n$$p^{k-1}n^k = p^{k(x + 1) - 1} q^{ky} r^{kz}$$\r\nã§ããã®ã§\r\n$$d(p^{k-1}n^k) = k(x + 1)(ky + 1)(kz + 1)$$\r\nãæãç«ã€ïŒãã£ãŠ $A_1 = 13, A_2 = 8, A_3 = 7$ ãšãããšïŒ$3$ 以äžã®æ£æŽæ° $i$ ã«å¯Ÿã\r\n$$\r\n\\begin{aligned}\r\n&\\quad \\ d(p^{i-1}n^i) d(p^{\\frac{12}{i}-1}n^{\\frac{12}{i}}) \\\\\\\\\r\n&= 12(x+1)^2(iy + 1) \\left ( \\frac{12}{i}y + 1 \\right )(iz + 1) \\left (\\frac{12}{i}z + 1 \\right ) \\\\\\\\\r\n&= 12 (x + 1)^2 (12y^2 + A_i y + 1)(12z^2 + A_i z + 1)\r\n\\end{aligned}\r\n$$\r\n\r\nãæãç«ã€ïŒããã« $B_1 = 1, B_2 = -6, B_3 = 5$ ãšãããšåŒ $(1)$ ã®å·ŠèŸºã¯\r\n$$\r\n\\begin{aligned}\r\n&\\quad \\ \\sum_{i=1}^3 B_i d(p^{i-1}n^i) d(p^{\\frac{12}{i}-1}n^{\\frac{12}{i}}) \\\\\\\\\r\n&= 12 (x + 1)^2 \\sum_{i=1}^3 B_i (12y^2 + A_i y + 1)(12z^2 + A_i z + 1)\r\n\\end{aligned}\r\n$$\r\nãšè¡šããïŒ\r\n$$\\sum_{i=1}^3 B_i = \\sum_{i=1}^3 A_iB_i = 0ïŒ\\sum_{i=1}^3 A_i^2B_i = 30$$\r\nã§ããããšã«æ³šæããã°\r\n$$\r\n\\begin{aligned}\r\n&\\sum_{i=1}^3 B_i d(p^{i-1}n^i) d(p^{\\frac{12}{i}-1}n^{\\frac{12}{i}}) \\\\\\\\\r\n&= 12 (x + 1)^2 yz \\sum_{i=1}^3 A_i^2B_i = 360(x + 1)^2 yz\r\n\\end{aligned}\r\n$$\r\nãåŸãããïŒããã«ïŒçžç°ãªãçŽ æ° $p, q, r$ ã«ãããïŒåŒ $(1)$ ãæãç«ã€ããšã®å¿
èŠååæ¡ä»¶ã¯ããæ£æŽæ° $m$ ãååšããŠ\r\n$$(x + 1)^2 yz = 2^{2m - 2} \\cdot 3^{2m-1} \\cdot 5^{2m} \\cdot 37^{2m + 1} $$\r\nãã¿ããããšã§ããïŒãã®åŒã $(2)$ ãšããïŒ\\\r\nããã㧠$m$ ã®å€ã $1$ ã€åºå®ããïŒåŒ $(2)$ ããã³ $y \\geq z$ ãã¿ãããããªéè² æŽæ°ã®çµ $(x, y, z)$ ã®éåã $X_m$ ãšãïŒæ¡ä»¶ 1. 2. 3. ããã¹ãŠã¿ããæ£æŽæ° $n$ ã®éåã $Y_m$ ãšããïŒãã㧠$(x, y, z) \\in X_m$ ã«å¯Ÿã $g(x, y, z)$ ã次ã®ããã«å®ããïŒ\r\n\r\n- çµ $(x, y, z)$ ã«ãããŠïŒ$x, y, z$ ã® $3$ æ°ã®ãã¡å€§ããæ¹ãã $1, 2, 3$ çªç®ã®ãã®ããããã $a, b, c$ ãšããïŒããªãã¡ $a \\geq b \\geq c$ ã§ããïŒãªããã€ä»»æã®éè² æŽæ° $i$ ã«å¯Ÿãã$x, y, z$ ã®äžã§ $i$ ã«çãããã®ã®åæ°ããš ã$a, b, c$ ã®äžã§ $i$ ã«çãããã®ã®åæ°ããçãããªãããã« $a, b, c$ ãå®ããïŒïŒãã®ããã«å®ãã $a, b, c$ ã«ãã $g (x, y, z) = 2^a \\cdot 3^b \\cdot 5^c$ ãšå®çŸ©ããïŒ\r\n\r\nãããšïŒ$g$ ã $X_m$ ãã $Y_m$ ãžã®å
šåå°ãšãªã£ãŠããïŒ\r\n<details>\r\n<summary>$g$ ãå
šåå°ã§ããããšã®èšŒæ<\\/summary>\r\n**step 1.**ãå€åã $Y_m$ ã§ããããšïŒ\\\r\nã$(x, y, z) \\in X_m$ ãä»»æã«éžã³ïŒ$n = g(x, y, z)$ ãšããïŒ$g$ ã®å®çŸ©ãã $n$ ã¯æããã«æ¡ä»¶ 1. 2. ãã¿ããïŒããã§ä»¥äžã®èŠé ã«ããçŽ æ° $p$ ãå®ããïŒ$2$ é
ç®ä»¥äžã該åœããå ŽåãããåŸããïŒãã®å Žåã¯ã©ãã $1$ ã€ãéžã¹ã°ããïŒïŒ\r\n\r\n- $a = x$ ã®ãšã㯠$p = 2$ ãšããïŒ\r\n- $b = x$ ã®ãšã㯠$p = 3$ ãšããïŒ\r\n- $c = x$ ã®ãšã㯠$p = 5$ ãšããïŒ\r\n\r\nãã®ããã« $p$ ãéžã¹ã°ïŒãã® $n$ ã¯æ¡ä»¶ 3. ã§ç€ºãçåŒãã¿ããããšã確èªã§ããïŒåŒ $(2)$ ã®æç«ãã $p, q, r$ ãé©åœã«å®ããåŒ $(1)$ ãããããããšãèããïŒïŒãã£ãŠïŒ$n \\in Y_m$ ã§ããïŒ\r\n\r\n**step 2.**ãåå°ã§ããããšïŒ\\\r\nã$(x, y, z), (x^{\\prime}, y^{\\prime}, z^{\\prime}) \\in X_m$ ã $g(x, y, z) = g(x^{\\prime}, y^{\\prime}, z^{\\prime})$ ãã¿ãããšããïŒ$g$ ã®å®çŸ©ããã³çŽ å æ°å解ã®äžææ§ãã $x^{\\prime}, y^{\\prime}, z^{\\prime}$ 㯠$x, y, z$ ã®çœ®æã«ãªã£ãŠããããšããããïŒç¹ã« $x^{\\prime}$ 㯠$x, y, z$ ã®ãã¡å°ãªããšã $1$ ã€ãšçããïŒãã㧠$x^{\\prime} = y$ ãšä»®å®ãããš $(x, y, z), (x^{\\prime}, y^{\\prime}, z^{\\prime}) \\in X_m$ ã§ããããšãã\r\n$$(x - 1)^2yz = (y - 1)^2xz$$\r\nãããããïŒãããå€åœ¢ãããš\r\n$$(x - y)(xy - 1) = 0$$\r\nãšãªãïŒãã㯠$x = y$ ãšåå€ã§ããïŒ$xy - 1 = 0$ 㯠$x = y = 1$ ãšåå€ãã $x = y$ ã®ååæ¡ä»¶ã§ããããšã«æ³šæïŒïŒãã£ãŠ $x^{\\prime} = x$ ãåŸãããïŒ$x^{\\prime} = z$ ãä»®å®ããå Žåã§ãåæ§ã« $x^{\\prime} = x$ ãåŸãããã®ã§ïŒçµå± $x^{\\prime} = x$ ã¯å¿
ãæãç«ã€ïŒããã« $y \\geq z, y^{\\prime} \\geq z^{\\prime}$ ã䜵ããããšã§ $(x, y, z) = (x^{\\prime}, y^{\\prime}, z^{\\prime})$ ãåŸãããïŒããã§åå°æ§ã瀺ãããïŒ\r\n\r\n**step 3.**ãå
šå°ã§ããããšïŒ\\\r\nã$n \\in Y_m$ ãä»»æã«éžã¶ïŒãããšæ¡ä»¶ 1. 2. ãã $a \\geq b \\geq c \\geq 0$ ãªãæŽæ° $a, b, c$ ãçšã㊠$n = 2^a \\cdot 3^b \\cdot 5^c$ ãšè¡šããïŒæ¡ä»¶ 3. ã§ç€ºãçåŒãã¿ãã $p$ ãã©ã®å€ãã«ãã£ãŠ $(x, y, z)$ ã以äžã®ããã«å®ããïŒ$2$ é
ç®ä»¥äžã該åœããå ŽåãããåŸããïŒãã®å Žåã¯ã©ãã $1$ ã€ãéžã¹ã°ããïŒïŒ\r\n- $p = 2$ ã®å Žå㯠$(x, y, z) = (a, b, c)$ ãšããïŒ \r\n- $p = 3$ ã®å Žå㯠$(x, y, z) = (b, a, c)$ ãšããïŒ\r\n- $p = 5$ ã®å Žå㯠$(x, y, z) = (c, a, b)$ ãšããïŒ\r\n\r\nãããšãã® $(x, y, z)$ ã¯åŒ $(1)$ ãïŒ$p, q, r$ ãé©åœã«å®ããäžã§ã¿ããã®ã§ïŒåŒ $(2)$ ãã¿ããïŒããã«äžèšã®å®ãæ¹ãã $y \\geq z$ ããããã®ã§ $(x, y, z) \\in X_m$ ã§ããïŒãã㯠$g(x, y, z) = n$ ãã¿ããïŒããã§å
šå°æ§ã瀺ãããïŒ\r\n<\\/details>\r\n\r\nããã®ããšãã $f(m)$ 㯠$X_m$ ã®å
ã®åæ°ã«çããïŒ$(x, y, z) \\in X_m$ ãšãããšãïŒåŒ $(2)$ ãã $(x + 1)^2$ 㯠$2^{2m - 2} \\cdot 3^{2m - 1} \\cdot 5^{2m} \\cdot 37^{2m + 1}$ ã®å¹³æ¹å åã§ããã®ã§ïŒ$m - 1$ 以äžã®éè² æŽæ° $i_1, i_2$ ãš $m$ 以äžã®éè² æŽæ° $i_3, i_4$ ã«ãã£ãŠ\r\n$$(x + 1)^2 = 2^{2i_1} \\cdot 3^{2i_2} \\cdot 5^{2i_3} \\cdot 37^{2i_4}$$\r\nãšè¡šãããšãã§ãïŒ\r\n$$x = 2^{i_1} \\cdot 3^{i_2} \\cdot 5^{i_3} \\cdot 37^{i_4} - 1$$\r\nã§ããïŒ$x$ ããã®å€ããšããšã $y, z$ ã¯\r\n$$yz = 2^{2(m - 1 - i_1)} \\cdot 3^{2(m - 1 - i_2) + 1} \\cdot 5^{2(m - i_3)} \\cdot 37^{2(m - i_4) + 1}$$\r\nãã¿ããïŒãã®åŒã«ãããŠå³èŸºã¯å¹³æ¹æ°ã§ãªãïŒããã« $y \\geq z$ ãªã®ã§ãããã¿ãã $(y, z)$ ã®åæ°ã¯å³èŸºã®æ£ã®çŽæ°ã®åæ°ã®ååã«çããïŒ\r\n$$\\frac{1}{2}(2(m - 1 - i_1) + 1)(2(m - 1 - i_2) + 2)(2(m - i_3) + 1)(2(m - i_4) + 2)$$\r\nã§ããïŒããã $(i_1, i_2, i_3, i_4)$ ãšããŠããåŸããã®ãã¹ãŠã«ã€ããŠç·åããšãããšã§ $f(m)$ ãåŸãããïŒ$i_1, i_2, i_3, i_4$ ãããããç¬ç«ã«åãããŠç·åããšãïŒã®ã¡ã«ç©ãèšç®ããããšãèããã°ããïŒ\r\n$$\r\n\\begin{aligned}\r\n&\\sum_{i_1 = 0}^{m - 1} (2(m - 1 - i_1) + 1) = \\sum_{i = 1}^m (2i - 1) = m^2 \\\\\\\\\r\n&\\sum_{i_2 = 0}^{m - 1} (2(m - 1 - i_2) + 2) = \\sum_{i = 1}^m (2i) = m(m + 1) \\\\\\\\\r\n&\\sum_{i_3 = 0}^{m} (2(m - i_3) + 1) = \\sum_{i = 1}^{m + 1} (2i - 1) = (m + 1)^2 \\\\\\\\\r\n&\\sum_{i_4 = 0}^{m} (2(m - i_4) + 2) = \\sum_{i = 1}^{m + 1} (2i) = (m + 1)(m + 2)\r\n\\end{aligned}\r\n$$\r\nãªã®ã§ïŒ\r\n$$f(m) = \\frac{1}{2} m^3(m + 1)^4(m + 2)$$\r\nãåŸãïŒããã $1110$ ã®åæ°ã§ããã«ã¯ $m, m + 1, m + 2$ ã®äžã« $37$ ã®åæ°ãå«ãŸããªããã°ãªããïŒ$m \\geq 35$ ãå¿
èŠã§ããïŒäžæ¹ã§ $f(35)$ 㯠$1110$ ã®åæ°ã§ããããšã確èªã§ããïŒ$f(m)$ ã¯å調å¢å ãªé¢æ°ãªã®ã§ïŒæ±ããæå°å€ã¯\r\n$$\\frac{f(35)}{1110} = \\mathbf{1200225600}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc218/editorial/9085"
}
] | ãæ£æŽæ° $m$ ã«å¯ŸãïŒä»¥äž $3$ æ¡ä»¶ããã¹ãŠã¿ããæ£æŽæ° $n$ ã®åæ°ã $f(m)$ ãšè¡šããŸãïŒ
- **æ¡ä»¶ 1.**ã$v_2(n) \geq v_3(n) \geq v_5(n)$ ãæãç«ã€ïŒ
- **æ¡ä»¶ 2.**ãä»»æã® $7$ 以äžã®çŽ æ° $p$ ã«ã€ã㊠$v_p(n) = 0$ ãæãç«ã€ïŒ
- **æ¡ä»¶ 3.**ããã $5$ 以äžã®çŽ æ° $p$ ãååšããŠæ¬¡ã®çåŒãæãç«ã€ïŒ
$$d(n)d(p^{11}n^{12}) - 6d(pn^2)d(p^5n^6) + 5d(p^2n^3)d(p^3n^4) = 1110^{2m + 1}$$
ãã ãïŒ$n$ ãæ£æŽæ°ïŒ$p$ ãçŽ æ°ãšãããšãïŒ$d(n)$ 㯠$n$ ã®æ£ã®çŽæ°ã®åæ°ïŒ$v_p(n)$ 㯠$n$ ã $p$ ã§å²ãåããæ倧ã®åæ°ãè¡šããŸãïŒãã®ãšãïŒ$m$ ãæ£æŽæ°å
šäœã§åããããšãã« $\dfrac{f(m)}{1110}$ ããšãåŸãæå°ã®æŽæ°å€ã解çããŠäžããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/6399 | A | OMCB006(A) | 100 | 412 | 423 | [
{
"content": "ãå¹³æ¹æ°ãã€ç«æ¹æ°ã§ããæŽæ°ã¯ïŒæ£æŽæ° $n$ ãçšã㊠$n^6$ ãšè¡šãããïŒ\\\r\n$$5^6\\lt 20000\\lt 6^6$$\r\nã§ããããïŒè§£çãã¹ãå€ã¯ $1^6+2^6+3^6+4^6+5^6=\\mathbf{20515}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/6399"
}
] | ãå¹³æ¹æ°ãã€ç«æ¹æ°ã§ãããã㪠$20000$ 以äžã®æ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ\
ãã ãïŒå¹³æ¹æ°ïŒç«æ¹æ°ãšã¯ïŒæ£ã®æŽæ° $n$ ãçšããŠãããã $n^2,n^3$ ãšè¡šãããæ°ã§ãïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/6297 | B | OMCB006(B) | 100 | 406 | 409 | [
{
"content": "ã次㮠$2$ ã€ã®æ¹çšåŒãæãç«ã€ïŒ\\\r\n$$\\dfrac{b+2}{a+2}=\\dfrac{25}{100} ,\\ \r\n\\dfrac{b+1}{a+4}=\\dfrac{24}{100}$$\r\n\r\nããããã $(a,b)=(146,35)$ ãåŸãããïŒçããã¹ãå€ã¯ $a+b=\\mathbf{181}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/6297"
}
] | ãéçã«ãããŠæçãšã¯ïŒ(å®ææ°)\/(ææ°)ã§ç®åºãããæ°ã®ããšãèšããŸãïŒ\
ãéçéšã®OMCããã¯ïŒæ¬¡ã®è©Šå㧠$2$ ææ° $2$ å®æã ãšæçã $2$ å² $5$ åã«ïŒ$4$ ææ° $1$ å®æã ãšæçã $2$ å² $4$ åã«ãªãããã§ãïŒãã®ãšãïŒçŸåšã®OMCããã®çŽ¯èšæææ瞟ã¯ïŒéè² æŽæ° $a,b$ ãçšã㊠$a$ ææ° $b$ å®æãšè¡šããã®ã§ïŒ$a+b$ ãçããŠãã ããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/8280 | C | OMCB006(C) | 200 | 330 | 364 | [
{
"content": "ããŸãïŒ$1,2$ 㯠$A$ ã«ïŒ$8$ 㯠$B$ ã«å«ãŸããïŒ\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nã$1,2$ ã¯çžç°ãªã $2$ ã€ã®æ£æŽæ°ã®åãšããŠè¡šããªãïŒ$8$ ã $A$ ã«å«ãŸãããšãããšïŒ$B$ ã®èŠçŽ 㯠$A$ ã® $8$ 以å€ã®çžç°ãªã $2$ ã€ã®èŠçŽ ã®åãšããŠè¡šãããå¿
èŠããããïŒããã¯é«ã
${}\\_{3}\\mathrm{C}\\_{2}=3$ éãã§ããããäžå¯èœã§ããïŒ\r\n<\\/details>\r\n\r\nãŸãïŒ$A$ ã«ã¯ $3,4$ ã®ãããããå«ãŸãïŒïŒ$B$ ã« $8$ ãå«ãŸããããšããïŒ$A$ ã«ã¯ $5,6,7$ ã®ãããããå«ãŸããïŒããã« $5$ 㯠$3$ ãšãšãã«å
¥ãïŒããšã«æ³šæããã°ïŒ$A$ ãšããŠé©ãããã®ã¯\r\n$$\\lbrace{1,2,3,5\\rbrace}, \\quad \\lbrace{1,2,3,6\\rbrace},\\quad \\lbrace{1,2,4,6\\rbrace}, \\quad \\lbrace{1,2,4,7\\rbrace}$$ \r\nãšãããã®ã§ïŒ$\\\\{1,2,3,7\\\\}$ ã¯é©ããªãïŒïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{50}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8280"
}
] | ãæŽæ°ãããªãéåã®çµ $(A,B)$ ã次ãã¿ãããšãïŒ**è¯ãçµ**ãšãã¶ããšãšããŸãïŒ
- $|A|=|B|=4$ ã〠$A\cup B=\\{1,2,3,4,5,6,7,8\\}$ïŒ
- $B$ ã«å«ãŸããä»»æã®èŠçŽ ã¯ïŒ$A$ ã«å«ãŸããçžç°ãªã $2$ æŽæ°ã®åãšããŠè¡šããïŒ
ãã¹ãŠã®è¯ãçµ $(A,B)$ ã«å¯ŸããŠïŒã$A$ ã®èŠçŽ ã®ç·åãã®ç·åã解çããŠãã ããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/8083 | D | OMCB006(D) | 200 | 313 | 356 | [
{
"content": "ã$C_{1}$ ã®äžå¿ã $O$ïŒçŽç· $OP$ ãš $C_{2}$ ã®äº€ç¹ã $R (\\neq P)$ ãšããïŒ$C_{1}$ ã« $C_{2}$ ãå
æ¥ããããšããç·å $PR$ 㯠$C_{2}$ ã®çŽåŸã§ããïŒ$\\angle PQR=90^{\\circ}$ ããã³ $OR=OP-PR=10$ ãæãç«ã€ïŒããã«ããïŒäžè§åœ¢ $OQR$ ãšäžè§åœ¢ $OPQ$ ã¯çžäŒŒæ¯ $\\sqrt{OR}:\\sqrt{OP}=1:2$ ã®çžäŒŒã§ããïŒãããã£ãŠ $RQ=\\dfrac{1}{2}PQ$ ã§ããïŒäžè§åœ¢ $PQR$ ã«äžå¹³æ¹ã®å®çãé©çšã㊠$PQ^2+\\left(\\dfrac{1}{2}PQ \\right)^2=900$ïŒããªãã¡ $PQ^2=\\mathbf{720}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8083"
}
] | ãååŸ $40$ ã®å $C_{1}$ ã«ç¹ $P$ ã§å
æ¥ããååŸ $15$ ã®å $C_{2}$ ããããŸãïŒããã« $C_{1}$ ã®çŽåŸã« $C_{2}$ ã ç¹ $Q$ ã§æ¥ãããšãïŒç·å $PQ$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/8754 | E | OMCB006(E) | 300 | 222 | 344 | [
{
"content": "ãçœãé§ã®çœ®ãæ¹ã¯ ${}\\_{5}\\mathrm{C}\\_{2}\\times 5^2=250$ éãããïŒãã®ãã¡ $2$ ã€ã®çœãé§ãåãè¡ã«ãããããªçœ®ãæ¹ã¯ $5\\times {}\\_{5}\\mathrm{C}\\_{2}=50$ éãããïŒ$2$ ã€ã®çœãé§ãç°ãªãè¡ã«ãããããªçœ®ãæ¹ã¯ $250-50=200$ éãããïŒãã® $2$ ã€ã®çœ®ãæ¹ã®ããããã«å¯ŸããŠïŒé»ãé§ã®çœ®ãæ¹ãäœéãããããå ŽååãããŠæ±ããïŒä»¥äžïŒçœãé§ãšé»ãé§ã®äž¡æ¹ããããããªè¡ã**è¯ãè¡**ãšåŒã¶ïŒ\r\n\r\n ã$(i)$ $2$ ã€ã®çœãé§ãåãè¡ã«ããå Žå\r\n\r\n - è¯ãè¡ã $1$ ã€ã®ãšãïŒè¯ãè¡ãžã®é»ãé§ã®çœ®ãæ¹ã¯ $3$ éãïŒããäžã€ã®é»ãé§ã眮ãå Žæ㯠$20$ éãèããããããïŒ$3\\times 20=60$ éãïŒ\r\n- è¯ãè¡ããªããšãïŒ${}\\_{4}\\mathrm{C}\\_{2}\\times 5^2=150$ éãïŒ\r\n\r\nã$(ii)$ $2$ ã€ã®çœãé§ãç°ãªãè¡ã«ããå Žå\r\n- è¯ãè¡ã $2$ ã€ã®ãšãïŒ$4^2=16$ éãïŒ\r\n- è¯ãè¡ã $1$ ã€ã®ãšãïŒè¯ãè¡ãžã®é»ãé§ã®çœ®ãæ¹ã¯$2\\times 4=8$ éãïŒããäžã€ã®é»ãé§ã眮ãå Žæ㯠$15$ éãããããïŒ$8\\times 15=120$ éãïŒã\r\n- è¯ãè¡ããªããšãïŒ${}\\_{3}\\mathrm{C}\\_{2}\\times 5^2=75$ éãïŒ\r\n\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $50\\times(60+150)+200\\times(16+120+75)=\\mathbf{52700}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8754"
},
{
"content": "- è¡\\/åã«é¢ããæ¡ä»¶ãæ°ã«ããªãé§ã®çœ®ãæ¹ã¯å
šéšã§ $\\displaystyle \\binom{25}{2}\\times\\binom{23}{2}=:a\\_1$ éãããïŒ \r\n- è¡ã«é¢ããæ¡ä»¶ã«éåãã(åã«é¢ããæ¡ä»¶ã¯æ°ã«ããªã)é§ã®çœ®ãæ¹ã¯ $\\displaystyle 5\\times\\binom{5}{2}\\times\\binom{23}{2}=:a\\_2$ éãããïŒ \r\n- åã«é¢ããæ¡ä»¶ã«éåãã(è¡ã«é¢ããæ¡ä»¶ã¯æ°ã«ããªã)é§ã®çœ®ãæ¹ã¯ $\\displaystyle 5\\times\\binom{5}{2}\\times\\binom{23}{2}=:a\\_3(=a\\_2)$ éãããïŒ \r\n- è¡\\/åã«é¢ããæ¡ä»¶ã«å
±ã«éåããé§ã®çœ®ãæ¹ã¯ $\\displaystyle 5\\times\\binom{5}{2}\\times\\left(3\\times\\binom{5}{2}+2\\times\\binom{4}{2}\\right)=:a\\_4$ éãããïŒ (å¶çŽã«éåããè¡ã«çœãé§ããããåŠãã§å ŽååããããŠããïŒ ) \r\n\r\næ±ããçãã¯å
é€åçããïŒ$a\\_1-a\\_2-a\\_3+a\\_4=75900-2\\times 12650+2100=52700$ éãã§ããïŒ",
"text": "å
é€åçã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8754/465"
}
] | ãçœãé§ $2$ ã€ïŒé»ãé§ $2$ ã€ã®åèš $4$ ã€ã®é§ã $5\times 5$ ã®ãã¹ç®ã®ãã¡ $4$ ã€ã®ãã¹ã« $1$ ã€ãã€çœ®ãæ¹æ³ã§ãã£ãŠïŒæ¬¡ã® $2$ ã€ã®æ¡ä»¶ãæºãããã®ã¯äœéããããŸããïŒ
- çœãé§ã $2$ ã€çœ®ãããåã¯ååšããªãïŒ
- é»ãé§ã¯ $2$ ã€çœ®ãããè¡ã¯ååšããªãïŒ
ããã ãïŒåè²ã®é§ã¯åºå¥ããªããã®ãšããŸãïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/8281 | F | OMCB006(F) | 300 | 143 | 212 | [
{
"content": "ãäžè§åœ¢ã® $3$ 蟺ã®é·ãã $a,b,c ~ (a\\leq b\\leq c)$ ãšããïŒHeronã®å
¬åŒããïŒä»¥äžãæãç«ã€ïŒ\\\r\n$$(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=2^{4051}.$$\r\nããããïŒïŒäžè§äžçåŒã«æ³šæããŠïŒéè² æŽæ° $p,q,r,s$ ãçšããŠ\r\n$$a+b+c=2^p, \\quad -a+b+c=2^q, \\quad a-b+c=2^r, \\quad a+b-c=2^s$$\r\nãšãããšïŒ$p\\gt q\\geq r\\geq s$ ã§ããïŒãŸã以äžãæãç«ã€ïŒ\\\r\n$$p+q+r+s=4051, \\quad 2^p=2^q+2^r+2^s.$$\r\n第2åŒãã $p=q+1=r+2=s+2$ ãå¿
èŠã§ããïŒç¬¬1åŒãšããããŠ\r\n$$(p,q,r,s)=(1014,1013,1012,1012)$$\r\nãšãããïŒãã®ãšãïŒç¢ºãã« $a,b,c$ ã¯æ£æŽæ°ã§ããïŒç¹ã«ïŒåšã®é·ã㯠$2^{1014}$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{1015}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8281"
}
] | ãå蟺ã®é·ããæ£æŽæ°å€ã§ããïŒé¢ç©ã $2^{2023}\cdot\sqrt2$ ã§ããäžè§åœ¢ã«ã€ããŠïŒãã®åšã®é·ã $N$ ã¯äžæã«å®ãŸããŸãïŒ$N$ ã®æã€æ£ã®çŽæ°ã®åæ°ã解çããŠãã ããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/8139 | G | OMCB006(G) | 300 | 81 | 165 | [
{
"content": "ãäžè¬ã«éè² æŽæ° $n$ ã«å¯ŸãïŒ$4a+2b+c+d=2n$ ã®éè² æŽæ°è§£ $(a,b,c,d)$ ã®åæ°ãæ°ããïŒ$c,d$ ã®å¶å¥ãäžèŽããããšããïŒéè² æŽæ° $p,q$ ãçšã㊠$(c,d)=(2p,2q)$ ãŸã㯠$(2p+1,2q+1)$ ãšè¡šãïŒããããã«ã€ããŠæ¡ä»¶ã¯ $b+p+q=n-2a$ïŒ$b+p+q=n-2a-1$ ãšãªãïŒãã® $2$ ã€ã®æ¹çšåŒã®ã©ã¡ãããæºããéè² æŽæ°ã®çµ $(a,b,p,q)$ ã®åæ°ã¯ïŒ$b+p+q \\leq n$ ãæºããéè² æŽæ°ã®çµ $(b,p,q)$ ã®åæ°ãšçããïŒããã«ãã㯠$b+p+q+r=n$ ãæºããéè² æŽæ°ã®çµ $(b,p,q,r)$ ã®åæ°ãšçããïŒæåŸã« $n=0,1,\\ldots, 50$ ã§ç·åããšãã°ïŒ$b+p+q+r+s=50$ ãæºããéè² æŽæ°ã®çµ $(b,p,q,r,s)$ ã®åæ°ãšçããããïŒãã㯠${}\\_{5}\\mathrm{H}\\_{50}={}\\_{54}\\mathrm{C}\\_{50}=\\mathbf{316251}$ ãšæ±ãŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8139"
},
{
"content": "ã$4a+2b+c+d+2e=100$ ãæºããéè² æŽæ°ã®çµ $(a,b,c,d,e)$ ã®åæ°ãæ±ããã°ããïŒ \r\n$$E\\_1:=\\lbrace(4a,2b,c,d,2e)\\mid 4a+2b+c+d+2e=100\\rbrace$$\r\n$$E\\_2:=\\lbrace(2a,2b,2c,2d,2e)\\mid 2a+2b+2c+2d+2e=100\\rbrace$$\r\nãšããïŒãã ãïŒãããã®éåã§ã $a,b,c,d,e$ ã¯éè² æŽæ°ã§ããïŒ\r\n\r\nããã§ïŒ$\\varphi:E\\_1\\to E\\_2$ ã以äžã§å®ãã: \r\n$$\\varphi (4a,2b,c,d,2e)=\\begin{cases}\r\n(4a,2b,c,d,2e) & (c\\equiv d \\equiv 0\\pmod2)\\\\\\\\\r\n(4a+2,2b,c-1,d-1,2e) & (c\\equiv d \\equiv 1\\pmod2)\\\\\\\\\r\n\\end{cases}$$\r\nãããšïŒéåå $\\varphi\\^{-1}$ ã以äžã§å®ãŸãããšãåãã:\r\n$$\\varphi\\^{-1} (2a,2b,2c,2d,2e)=\\begin{cases}\r\n(2a,2b,2c,2d,2e) & (2a \\equiv 0\\pmod4)\\\\\\\\\r\n(2a-2,2b,2c+1,2d+1,2e) & (2a \\equiv 2\\pmod4)\\\\\\\\\r\n\\end{cases}$$ \r\n\r\nããªãã¡ïŒ$E\\_1$ ãš $E\\_2$ ã«ã¯ $1$ 察 $1$ 察å¿ãããã®ã§ïŒ$E\\_1$ ã®å
ã®æ°ã®ä»£ããã« $E\\_2$ ã®å
ã®æ°ãæ°ããã°ããïŒçã㯠$\\displaystyle\\binom{54}{4}$ ã§ããïŒ",
"text": "å
šåå°ãæ§æ",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8139/464"
},
{
"content": "ãçã㯠$4a+2b+c+d+2e=100$ ãæºããéè² æŽæ° $(a,b,c,d,e)$ ã®çµã®åæ°ã«çããïŒãã£ãŠçãã¯\r\n\r\n$$\\begin{aligned}\r\n& [x^{100}] \\dfrac{1}{(1-x)^2(1-x^2)^2(1-x^4)} \\\\\\\\\r\n&= [x^{100}] \\dfrac{(1+x)^2(1+x^2)^4}{(1-x^4)^5} \\\\\\\\\r\n&= [x^{100}] \\dfrac{1+2x+5x^2+8x^3+10x^4+12x^5+10x^6+8x^7+5x^8+2x^9+x^{10}}{(1-x^4)^5} \\\\\\\\\r\n&= 5 \\times [x^{92}] \\dfrac{1}{(1-x^4)^5} + 10 \\times [x^{96}] \\dfrac{1}{(1-x^4)^5} + [x^{100}] \\dfrac{1}{(1-x^4)^5} \\\\\\\\\r\n&= 5 \\times \\binom{27}{4} + 10 \\times \\binom{28}{4} + \\binom{29}{4} \\\\\\\\\r\n&= \\mathbf{316251}\r\n\\end{aligned}$$\r\n\r\nãåè¡ç®ãžã®åŒå€åœ¢ã§ã¯åªçŽæ°ã®åœ¢ã§è¡šãããšã $\\dfrac{1}{(1-x^4)^5}$ ã次æ°ã $4$ ã®åæ°ã®é
ããæããªãããšãçšããïŒ \\\r\nãäºè¡ç®ãžã®åŒå€åœ¢ã§ã¯ $\\dfrac{1}{(1-x^4)^5}=\\sum_{i=0}^{\\infty}\\binom{i+4}{4}x^{4i}$ ãçšããïŒ \\\r\nãïŒäžè¬ã« $\\dfrac{1}{(1-x)^n}=\\sum_{i=0}^{\\infty}\\binom{i+n-1}{n-1}x^i$ ãæãç«ã€ïŒïŒ",
"text": "圢åŒçåªçŽæ°ïŒæ¯é¢æ°ïŒãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/8139/473"
}
] | ã$4a+2b+c+d$ ã $0$ ä»¥äž $100$ 以äžã®**å¶æ°**ãšãªããããª**éè² æŽæ°** $(a,b,c,d)$ ã®çµã¯ããã€ãããŸããïŒ |
OMCB006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb006/tasks/10276 | H | OMCB006(H) | 300 | 62 | 95 | [
{
"content": "ã$O$ ãå転ã®äžå¿ãšã ïŒ$\\triangle{OCD}$ ã $\\triangle{OAX}$ ã«ç§»ããããªå転ãèããïŒè§åºŠè¿œè·¡ãã $4$ ç¹ $A,O,C,D$ ã¯å
±åã§ããã®ã§ïŒ$D,A,X$ ã¯å
±ç·ã§ããïŒãã£ãŠïŒåè§åœ¢ $AOCD$ ã®é¢ç©ã¯äžè§åœ¢ $ODX$ ã®é¢ç©ã«çããïŒ$OD=OX=5,~\\angle{DOX}=120^\\circ$ ã§ããã®ã§ïŒ\r\n$$\\square AOCD=\\triangle{ODX}=\\dfrac12\\cdot5\\cdot5\\sin{120^\\circ}=\\dfrac{25\\sqrt3}{4}$$\r\nã§ããïŒãŸãïŒ$\\triangle OAC$ ã«ãããæ£åŒŠå®çããïŒ$OB=2\\sqrt3$ ãåããã®ã§ïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯ïŒ\r\n$$\\dfrac{25\\sqrt3}{4}\\cdot\\dfrac{5+2\\sqrt3}{5}=\\dfrac{\\sqrt{1875}+30}{4}$$\r\nãã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1909}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/10276"
},
{
"content": "ïŒå¹Ÿäœçãªèå¯ïŒ\\\r\nããŸãã¯å¹Ÿäœçãªèå¯ãããŠããããïŒ$\\angle ABC=60^{\\circ}$ ãšããæ¡ä»¶ãã©ã®ããã«æŽ»çšã§ããã ãããïŒ\\\r\nãåé¡æäžã«ã$\\triangle ABC$ ã®å€å¿ã $O$ ãšããããšãããïŒããããªããŠãå€æ¥åãèããŠè¯ããããã§ããïŒãªããªãã° $\\angle ABC$ ãäžå®å€ã§ãããšããæ¡ä»¶ã¯ïŒç·å $AC$ ãåºå®ãããšãã«ïŒç¹ $B$ ãããå®åäžã«ååšãããšèšãæããããããã§ããïŒâµ ååšè§ã®å®çïŒïŒç¹ã«ãã®äžå®å€ã $60^{\\circ}$ ã§ãããšããæ¡ä»¶ã¯ããã«åŒ·åã§ïŒå€æ¥åã®ååŸã容æã«æ±ãŸããïŒäœåŒŠå®ççã䜿ãããšãå¯èœã§ããïŒãã®ãããªçºæ³ãããã°ïŒ$\\triangle ABC, \\triangle ADC$ ã®å€æ¥åãããããæããŠã¿ãããªãã®ã¯ïŒããé£èºã®ããããšã§ã¯ãªãïŒ\\\r\nãããŠä»åã®å³åœ¢ã¯ïŒ$4$ ç¹ $ABCD$ ãåè§åœ¢ãæããšããæ¡ä»¶ããïŒå $ABC$ ãšå $ADC$ ã¯çŽç· $AC$ ããèŠãŠå察åŽã«ååšããïŒãããŠïŒãããã®åã®ååŸãå
±ã«äžèŽãïŒäžå¿éã®è·é¢ãååŸã«çããããšã¯ïŒå®¹æã«ãããã§ãããïŒ\\\r\nã以äžïŒå
¬åŒè§£èª¬ã»ã©ã¹ããŒãã§ã¯ãªããïŒäžè§æ¯ãçšããæ¹æ³ãšåº§æšãçšããæ¹æ³ããããã玹ä»ããïŒ\r\n\r\n---\r\n\r\nïŒäžè§æ¯ãçšããæ¹æ³ïŒ\\\r\nãè§åºŠè¿œè·¡ããïŒ$4$ ç¹ $O,A,C,D$ ã¯å
±åã§ããïŒããã«ååšè§ã®å®çããïŒ$\\angle ADO=\\angle CDO=30^{\\circ}$ ã§ããïŒ\\\r\nããã£ãŠæ±ããã¹ãé¢ç©ã¯ïŒ\r\n\r\n$$\\begin{aligned}\r\n\\triangle ADB+\\triangle BDC&=\\dfrac{1}{2}DB\\cdot DA \\sin 30^{\\circ}+\\dfrac{1}{2}DB\\cdot DC \\sin 30^{\\circ}\\\\\\\\\r\n&=\\dfrac{1}{4}DB(DA+DC)\r\n\\end{aligned}$$\r\nã§ããïŒæ£åŒŠå®çãçšããã°å $O$ ã®ååŸã¯ $2\\sqrt{3}$ ãªã®ã§ïŒ$DB=5+2\\sqrt{3}$ ãšãªãïŒ$DA+DC$ ã«ã€ããŠã¯ïŒåè§åœ¢ $OADC$ ã« Ptolemy ã®å®çãé©çšããã°ããïŒ$2\\sqrt{3}(DA+DC)=5Ã6$ ãã $DA+DC=5 \\sqrt{3}$ ãåŸãïŒ\r\n\r\n<details><summary>Ptolemy ã®å®çã䜿ããªãæ¹é<\\/summary>\r\nã$\\triangle OAD$ ãš $\\triangle OCD$ ã¯ã©ã¡ããïŒ$OA=OC=2 \\sqrt{3}$ïŒ$OD=5$ å
±éïŒ$\\angle ADO=\\angle CDO=30^{\\circ}$ ã§ããïŒäœåŒŠå®çãçšããã°ïŒ$DA,DC$ ã¯ãããã次ã®äºæ¬¡æ¹çšåŒã®è§£ã§ããããšããããïŒ\r\n$$(2\\sqrt{3})^2=5^2+x^2-2\\cdot 5 \\cdot x \\cos 30^{\\circ}$$\r\nã$DA \\neq DC$ ããïŒè§£ãšä¿æ°ã®é¢ä¿ãçšããã°ïŒ$DA+DC=5 \\sqrt{3}$ ã§ããããšããããïŒ\r\n\r\nïŒ$DA \\neq DC$ ã®çç±ïŒå $OACD$ ã«ã€ããŠèããã°ïŒ$DA = DC$ ãªãã° $OD$ ã¯åã®çŽåŸã§ããïŒ$OD=4\\sqrt{3}$ ãšãªãã¯ãã§ããïŒïŒ\r\n<\\/details>\r\n\r\n---\r\n\r\nïŒåº§æšãçšããæ¹æ³ïŒ\\\r\nã$O$ ãåç¹ãšãïŒ$AC$ ã $y$ 軞ã«å¹³è¡ã«ãªããã㪠$xy$ çŽäº€åº§æšãèããïŒããã§ã¯ïŒç¹ $C, D$ ãå
±ã«ç¬¬ $1$ 象éãšãªãããã«åº§æšãåãïŒ\\\r\nãç¹ $A(\\sqrt{3},-3), C(\\sqrt{3},3),$ ã¯æ¯èŒç容æã«ãããïŒ\\\r\nãç¹ $D$ ã«ã€ããŠã¯ïŒæ¡ä»¶ $\\angle ADC=60^{\\circ}$ ããïŒç¹ $D$ ãå $(x-2\\sqrt{3})^2+y^2=12$ äžã«ããããšããããïŒäžæ¹ïŒæ¡ä»¶ $OD=5$ ããç¹ $D$ 㯠$x^2+y^2=25$ ãæºããïŒé£ç«æ¹çšåŒã解ãã° $D \\left( \\dfrac{25 \\sqrt{3}}{12}, \\dfrac{5 \\sqrt{69}}{12}\\right)$ ã§ãããšãããïŒããããïŒçŽç· $BOD$ 㯠$y=\\dfrac{\\sqrt{23}}{5}x$ ã§ããïŒ$OB=2\\sqrt{3}$ ãã $B\\left(-\\dfrac{5}{2},-\\dfrac{\\sqrt{23}}{2} \\right)$ ãåŸãïŒ\\\r\nããã£ãŠåè§åœ¢ã®é¢ç©ã¯ïŒ$\\triangle ABC+\\triangle ADC$ ãæ±ããã°ããã®ã§ïŒæ¬¡ã®ããã«åŸãããïŒ\r\n$$\\dfrac{1}{2}Ã6Ã\\left(\\dfrac{25 \\sqrt{3}}{12}+\\dfrac{5}{2} \\right)$$\r\n\r\n<details><summary>極圢åŒãçšãããšå°ãæ©ã<\\/summary>\r\nãå $ADC$ ã¯ããèŠããšïŒæ¥µåœ¢åŒãšéåžžã«çžæ§ã®è¯ã圢ãããŠããïŒåç¹ãéãïŒäžå¿ã $x$ 軞äžã§ããïŒïŒ\\\r\nãå $ADC$ ã®çŽåŸã $4\\sqrt{3}$ ãªã®ã§ïŒå $ADC$ ã®æ¥µæ¹çšåŒã¯ $r=4\\sqrt{3}\\cos\\theta$ ã§ããïŒäžæ¹ $OD=5$ ããïŒ$D\\left( 5,\\alpha \\right)$ ãšçœ®ããïŒ$\\alpha$ 㯠$ \\cos\\alpha =\\dfrac{5}{4\\sqrt{3}}$ ãæºããïŒïŒãã®ãšã $B\\left( -2\\sqrt{3},\\alpha \\right)$ ãšçœ®ããã®ã¯ã»ãŒæããã§ããïŒ\r\n$$\\triangle ABC+\\triangle ADC=\\dfrac{1}{2}ÃACÃBD \\cos\\alpha=\\dfrac{1}{2}Ã6Ã(5+2\\sqrt{3})\\cos\\alpha$$\r\n<\\/details>",
"text": "æçŽã«æ±ããæ¹æ³ 2 ã€ïŒäžè§æ¯ã»åº§æšïŒ",
"url": "https://onlinemathcontest.com/contests/omcb006/editorial/10276/459"
}
] | ãåžåè§åœ¢ $ABCD$ 㯠$AC=6$ ããã³ $\angle{ABC}=\angle{ADC}=60^\circ$ ãæºãããŸãïŒããã«ïŒ$\triangle ABC$ ã®å€å¿ã $O$ ãšãããš $OD=5$ ã§ããïŒå ã㊠$3$ ç¹ $B,O,D$ ã¯åäžçŽç·äžã«ãããŸããïŒãã®ãšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b,c$ ãçšã㊠$\dfrac{b+\sqrt c}{a}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/6452 | A | OMCB005(A) | 100 | 424 | 439 | [
{
"content": "ãçŽ æ°ã®æžãããããŒã«ïŒå¶æ°ã®æžãããããŒã«ã¯ãããã $4$ åãã€ããïŒãã®å
$2$ ãéè€ããŠããããšã«æ°ãã€ããã°ïŒåã£ã $2$ åã®ããŒã«ã®çµã¿åãããšããŠèãããããã®ã¯ $4^2 - 1 = 15$ éãã§ããïŒããŒã«ã®åãæ¹ã¯å
šéšã§ ${}\\_{9}\\mathrm{C}\\_{2} = 36$ éãããã®ã§ïŒæ±ãã確ç㯠$\\dfrac{5}{12}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{17}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/6452"
}
] | ã$1$ ãã $9$ ãŸã§ã®æ°åãæžãããããŒã«ã $1$ ã€ãã€äžã®èŠããªãè¢ã®äžã«å
¥ã£ãŠããŸãïŒãããã $2$ ã€ã®ããŒã«ãåæã«åã£ããšãïŒ$1$ åã¯å¶æ°ãæžãããããŒã«ïŒãã $1$ åã¯çŽ æ°ãæžãããããŒã«ãšãªããããªç¢ºçã¯äºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ\
ããã ãïŒåããŒã«ã¯ç確çã§éžã°ãããã®ãšããŸãïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/4220 | B | OMCB005(B) | 100 | 400 | 416 | [
{
"content": "ã$BC=BM=x$ ãšãããšäžç·å®çãã $x=6\\sqrt2$ ãåŸãïŒããã«ïŒ$A$ ãã $BC$ ã«äžããåç·ã®é·ãã $h$ ãšãããšäžå¹³æ¹ã®å®çãã $h=3\\sqrt{14}$ ãªã®ã§ïŒäžè§åœ¢ $ ABC$ ã®é¢ç©ã¯ $18\\sqrt{7}$ ãšèšç®ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{2268}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/4220"
},
{
"content": "ã $B$ ãã $AC$ ã«äžãããåç·ã®é·ã $h$ ã¯ïŒåç·ã®è¶³ã $H$ ãšããã°ïŒ $AH=9$ ãšãªãããšãã $3\\sqrt{7}$ ãšæ±ããããã®ã§ïŒãããçšãããšïŒæ±ããã¹ãå€ã¯ $(\\frac{1}{2}\\cdot 12\\cdot3\\sqrt{7})^2=2268$ ãšãªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/4220/462"
}
] | ã$AB=AC=12$ ãªãäžè§åœ¢ $ABC$ ã®èŸº $AC$ ã®äžç¹ã $M$ ãšãããš $BC=BM$ ãæãç«ã¡ãŸããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ã®å€ã解çããŠãã ããïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/5463 | C | OMCB005(C) | 200 | 347 | 385 | [
{
"content": "ãFermatã®å°å®çãã\r\n$$1^{79}+3^{79}+\\cdots +(2n+1)^{79} \\equiv 1+3+\\cdots +(2n+1) = (n+1)^2 \\equiv 0\\pmod{79}$$\r\nãšãªãã°è¯ãã®ã§æ±ãã $n$ ã®æå°å€ã¯ $\\mathbf{78}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/5463"
}
] | ã次ã®å€ãçŽ æ° $79$ ã§å²ãåãããããªæ£ã®æŽæ° $n$ ã®æå°å€ãæ±ããŠãã ããïŒ
$$1^{79}+3^{79}+\cdots +(2n+1)^{79}$$ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/3272 | D | OMCB005(D) | 200 | 364 | 386 | [
{
"content": "$$(s^2+r^2)(s+r)(s-r)=pq$$\r\nã§ããã®ã§ $s-r=1$ ãå¿
èŠïŒãã£ãŠ $s=3, r=2$ ã§ããïŒ$pq=65$ ãšãããã®ã§ $$(p, q, r, s)=(5, 13, 2, 3), (13, 5, 2, 3)$$\r\nãæ±ããçµã§ããïŒæ±ããç·ç©ã¯ $(5+13+2+3)\\times (13+5+2+3)=\\bf{529}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/3272"
}
] | ãçŽ æ°ã®çµ $(p, q, r, s)$ ã§ãã£ãŠïŒä»¥äžã®çåŒ
$$pq+r^4=s^4$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ $p+q+r+s$ ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/5198 | E | OMCB005(E) | 200 | 212 | 284 | [
{
"content": "ãæ¡ä»¶ããããå®æ° $k$ ãååšããŠ\r\n$$f(x)=kg(x)+123, \\quad g(x)=\\dfrac{1}{k}f(x)+456$$\r\nãšè¡šããããïŒ$k=-\\dfrac{41}{152}$ ã§ããïŒãããš $f(a)+g(a)=789$ ãã $g(a)=\\mathbf{912}$ ããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/5198"
}
] | ã次æ°ã®çããå®æ°ä¿æ°å€é
åŒ $f(x),g(x)$ ã«å¯ŸãïŒå€é
åŒãšã㊠$f(x)$ ã $g(x)$ ã§å²ã£ãäœã㯠$123$ïŒ$g(x)$ ã $f(x)$ ã§å²ã£ãäœã㯠$456$ ã§ããïŒããã«ïŒ$f(a)+g(a)=789$ ãã¿ããå®æ° $a$ ãååšããŸããïŒãã® $a$ ã«å¯ŸããŠïŒ$g(a)$ ãæ±ããŠäžããïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/3156 | F | OMCB005(F) | 200 | 316 | 358 | [
{
"content": "ãåã®æ¡ä»¶ãã¿ããæ£ $k$ è§åœ¢ $(k\\geq 3)$ 㯠$k$ ã $10000$ ã®çŽæ°ã§ãããšãã®ã¿ååšãïŒå $k$ ã«ã€ã㊠$\\dfrac{10000}{k}$ åããïŒ\r\nåŸã£ãŠ $10000$ ã®æ£ã®çŽæ°ã®ç·åã $T$ ãšãããšïŒæ±ããåæ° $S$ ã¯\r\n$$S=T-\\frac{10000}{2}-10000$$\r\nã§ããïŒ $10000=2^4\\times5^4$ ãã\r\n$$T=(2^0+2^1+2^2+2^3+2^4)(5^0+5^1+5^2+5^3+5^4)=\\frac{2^5-1}{2-1}\\times\\frac{5^5-1}{5-1}=24211$$ ã§ããããïŒè§£çãã¹ãå€ã¯ $\\bf{9211}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/3156"
}
] | ãããæ£ $10000$ è§åœ¢ $P$ ã«å¯ŸãïŒ$P$ ããçžç°ãªãé ç¹ã $3$ ã€ä»¥äžéžã¶æ¹æ³ã§ãã£ãŠïŒæ¬¡ã®æ¡ä»¶ãæºãããã®ã¯ããã€ãããŸããïŒ
- éžãã é ç¹ã®å
šãŠãé©åœã«çµã¶ããšã§æ£å€è§åœ¢ãäœãããšãã§ãïŒéžãã é ç¹å
šãŠããã®æ£å€è§åœ¢ã®é ç¹ãšãªãïŒ
ããã ãïŒ$P$ ã®é ç¹ã¯ãã¹ãŠåºå¥ã§ãããã®ãšãïŒ$10000$ åã®é ç¹ãå
šãŠéžã¶æ¹æ³ãæ¡ä»¶ãæºãããšããŸãïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/3423 | G | OMCB005(G) | 300 | 135 | 255 | [
{
"content": "ã$N$ ã®äžãã $m$ æ¡ç®ã®æ°åã $N_m$ ãšè¡šãïŒ$a=2$ ã®ãšããèããã° $N$ ã®å
šãŠã®æ¡ã®æ°åã®å¶å¥ã¯äžèŽããïŒ\\\r\nããŸã, $k \\geq 6$ ã®ãšãã«æ¡ä»¶ãæºãã $N$ ãååšããªãããšã瀺ãïŒ$a=5$ ã®ãšããèããã°\r\n$$N_1+N_5=N_2+N_6=10$$\r\nãšãªãïŒ$a=3$ ã®ãšããèããã°\r\n$$N_1 \\equiv N_5 ,\\quad N_2 \\equiv N_6 \\pmod 6$$\r\nãšãªãïŒä»¥äžãã, æŽæ°ã®çµ $(N_1,N_5), (N_2,N_6)$ ã¯\r\n$$(2,8), \\quad(5,5),\\quad (8,2)$$\r\nã®ããããã ãšãããïŒããã, $a=6$ ã®ãšããèãããšïŒ$N_1+N_6$ ã $6$ ã§å²ãåãããïŒããã¯èµ·ããåŸãªãïŒ\\\r\nã$k=5$ ã®ãšãïŒ$\\textbf{86402}$ ãæ±ããæ倧å€ãäžããããšã容æã«ç¢ºèªãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/3423"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ倧ã®æ£æŽæ° $N$ ãæ±ããŠãã ããïŒ
- $N$ ã®æ¡æ°ã $k$ ãšããïŒ$2 \leq a \leq k$ ãªããã¹ãŠã®æŽæ° $a$ ã«ã€ããŠïŒ$N$ ããã©ã®ããã«é£ç¶ãã $a$ æ¡ãåãåºããŠãïŒãã®å
é ãšæ«å°Ÿã®æ°åã®åã $a$ ã®åæ°ãšãªãïŒ
ãªãïŒè¡šèšã¯ãã¹ãŠåé²æ³ã§èãããã®ãšããŸãïŒäŸãã° $204$ ã¯æ¡ä»¶ãã¿ãããŸãïŒ |
OMCB005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb005/tasks/5408 | H | OMCB005(H) | 300 | 54 | 123 | [
{
"content": "ãå
ç·ã®è»è·¡ã¯ç¹ $(0,0),\\left( \\dfrac{22}{41} ,1\\right) ,\\left( \\dfrac{44}{41} ,0\\right)$ ãé ç¹ãšããäºç蟺äžè§åœ¢ãšååãªäžè§åœ¢ã䞊ã¹ããã®ã, æ£æ¹åœ¢ $OABC$ å
ã«ãæãç³ãã ããã®ã§ããããšã«æ³šæããïŒå
ç·ã $x$ æ¹åã«è·é¢ $1$ ã ãé²ããã³ã«ç·å $AB$ ãŸã㯠$CO$ äžã®é¡ã§åå°ãããŠé²è¡æ¹åãå€ããããšïŒãŸã $x$ æ¹åã«è·é¢ $\\dfrac{44}{41}$ ã ãé²ããã³ã«ç·å $OA$ äžã®é¡ã§åå°ãããããšããïŒ$x_n$ ã¯ä»¥äžã®ããã«æžããïŒããã§ïŒ$\\dfrac{44}{41} n$ ã®æŽæ°éšåãšå°æ°éšåããããã $m_n,r_n$ ãšããïŒ\r\n$$x_n=\r\n\\begin{cases}\r\nr_n && (m_n ãå¶æ°ã®ãšã)\\\\\\\\\r\n1-r_n && (m_n ãå¥æ°ã®ãšã)\r\n\\end{cases}$$\r\nã$\\dfrac{44}{41}=1.\\dot{0} 731\\dot{7}$ã«æ³šæãããšïŒ$\\dfrac{44}{41}\\cdot 10^k$ ã®æŽæ°éšåã®å¶å¥ããã³å°æ°éšå㯠$k$ ã $5$ ã§å²ã£ãããŸãã§æ±ºå®ããïŒãããã£ãŠæ¬¡ãåŸãïŒ\r\n$$m_{10^k}\\equiv\r\n\\begin{cases}\r\n1 && (k\\equiv 0\\mod 5)\\\\\\\\\r\n0 && (k\\equiv 1\\mod 5)\\\\\\\\\r\n1 && (k\\equiv 2\\mod 5)\\\\\\\\\r\n1 && (k\\equiv 3\\mod 5)\\\\\\\\\r\n1 && (k\\equiv 4\\mod 5)\r\n\\end{cases}\r\n\\pmod2,\\quad\r\nr_{10^k}=\r\n\\begin{cases}\r\n3\\/41 && (k\\equiv 0\\mod 5)\\\\\\\\\r\n30\\/41 && (k\\equiv 1\\mod 5)\\\\\\\\\r\n13\\/41 && (k\\equiv 2\\mod 5)\\\\\\\\\r\n7\\/41 && (k\\equiv 3\\mod 5)\\\\\\\\\r\n29\\/41 && (k\\equiv 4\\mod 5)\r\n\\end{cases}$$\r\nãã£ãŠ $x_{10^k}$ ãæ±ãããšæ¬¡ã®éãã§ããïŒ\r\n$$\r\nx_{10^k}=\r\n\\begin{cases}\r\n38\\/41 && (k\\equiv 0)\\\\\\\\\r\n30\\/41 && (k\\equiv 1)\\\\\\\\\r\n28\\/41 && (k\\equiv 2)\\\\\\\\\r\n34\\/41 && (k\\equiv 3)\\\\\\\\\r\n12\\/41 && (k\\equiv 4)\r\n\\end{cases}$$\r\n以äžãã解çãã¹ãã¯ä»¥äžã®èšç®ãã $\\bf{2881}$ ãšãªãïŒ\r\n$$\\sum_{k=0}^{99}x_{10^k}=20\\times \\left(\\frac{38}{41}+\\frac{30}{41}+\\frac{28}{41}+\\frac{34}{41}+\\frac{12}{41} \\right)=\\frac{2840}{41}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/5408"
},
{
"content": "ãå
¬åŒè§£èª¬ã§ã¯ $x_{10^k}$ ãæ±ããéçšã«ãããŠïŒåŸªç°å°æ°ãçšããŠãããïŒãã㯠$44\\cdot 10^k \\pmod{82}$ ãæ±ããŠããããšã«çããïŒæçŽã«èšç®ããããšãåºæ¥ãïŒ\r\n $$44\\cdot 10^k \\equiv \\begin{cases} 44&&(k\\equiv 0 \\pmod{5})\\\\\\\\30&&(k\\equiv 1 \\pmod{5})\\\\\\\\54&&(k\\equiv 2 \\pmod{5})\\\\\\\\48&&(k\\equiv 3 \\pmod{5})\\\\\\\\70&&(k\\equiv 4 \\pmod{5})\\end{cases} \\pmod{82}$$ \r\nãšãªãããšããïŒ $41$ 以äžã®å€ã®å Žæã§ã¯æãè¿ããŠããããšã«çæããã°ïŒ\r\n$$x_{10^k} \\equiv \\begin{cases} 38\\/41&&(k\\equiv 0 \\pmod{5})\\\\\\\\30\\/41&&(k\\equiv 1 \\pmod{5})\\\\\\\\28\\/41&&(k\\equiv 2 \\pmod{5})\\\\\\\\34\\/41&&(k\\equiv 3 \\pmod{5})\\\\\\\\12\\/41&&(k\\equiv 4 \\pmod{5})\\end{cases}$$ \r\nãšãªãããšãåããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb005/editorial/5408/463"
}
] | ã$xy$ å¹³é¢äžã« $4$ ç¹ $O(0,0),A(1,0),B(1,1),C(0,1)$ ãããïŒç·å $OA,AB,BC,CO$ äžã«ã¯ããããé¡ã眮ãããŠããŸãïŒããŸïŒç¹ $O$ ããç¹ $\left( \dfrac{22}{41} ,1\right)$ ãžãšå
ç·ãçºå°ããŸããïŒçºå°ããå
ç·ã $n$ åç®ã«ç·å $OA$ äžã®é¡ã§åå°ããããšãïŒåå°ãèµ·ããç¹ã® $x$ 座æšã $x_n$ ãšããŸãïŒãã®ãšãïŒä»¥äžã®å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
$$\sum_{k=0}^{99} x_{10^k}$$ |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/2702 | A | OMC217(A) | 200 | 372 | 394 | [
{
"content": "ãå€å¥åŒã $D$ ãšããã° $D\\/4=n^2-6n+57$ ã§ãããã, ãããå¹³æ¹æ°ãšãªããã㪠$n$ ããã¹ãŠæ±ããã°ãã.\\\r\nã$D\\/4$ ãéè² æŽæ° $m$ ã«ãã£ãŠ $m^2$ ãšããã°, æ¡ä»¶ã¯\r\n$$(m+n-3)(m-n+3)=48$$\r\nãšå€åœ¢ã§ãã. $m+n-3$ ããã³ $m-n+3$ ã®å¶å¥ãäžèŽããããšã«çæããŠç©ã $48$ ã§ãã $2$ æ°ã®çµã調ã¹ãããšã§, çµ $(m,n)$ ãšããŠããåŸããã®ã¯ $(7,2),(7,4),(8,7),(13,14)$ ã§ãã, ç¹ã«æ±ããç·å㯠$\\textbf{27}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/2702"
}
] | ã$x$ ã® $2$ 次æ¹çšåŒ $x^2+2nx+6n-57=0$ ãæŽæ°è§£ãæã€ãããªæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ãã. |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/6266 | B | OMC217(B) | 200 | 348 | 362 | [
{
"content": "ãæ¡ä»¶ããïŒçŽç· $AB,BC,CA$ ãš $P$ ãšã®è·é¢ã¯çãããã $P$ ã¯äžè§åœ¢ $ABC$ ã®å
å¿ã§ããïŒãŸãïŒ$AB = 3x, BC = 4x, CA = 5x$ ãšãããšïŒ\r\n$$AB^2 + BC^2 = CA^2$$\r\nãæãç«ã€ã®ã§ïŒ$\\angle{B}=90^{\\circ}$ ã§ããïŒãããã£ãŠïŒ\r\n$$768 = \\frac{1}{2}AB\\cdot BC = 6x^2$$\r\nã§ããããïŒ$x = 8\\sqrt2$ ã§ããïŒãã£ãŠïŒ\r\n$$AB=24\\sqrt2,\\quad BC=32\\sqrt2,\\quad CA=40\\sqrt2$$\r\nã§ããïŒããã§ïŒ$P$ ãã蟺 $AB, BC, CA$ ã«äžãããåç·ã®è¶³ããããã $D,E,F$ ãšãããšïŒåè§åœ¢ $BDPE$ ã¯é·æ¹åœ¢ã§ããïŒç¹ã« $PD = PE$ ããæ£æ¹åœ¢ã§ããïŒãŸãïŒ$P$ ãå
å¿ã§ããããšã«æ°ãã€ãããšïŒ\r\n$$AD = AF,\\quad CE = CF$$\r\nãããããæãç«ã€ã®ã§ïŒ\r\n$$BP=\\sqrt2BD = \\sqrt2\\cdot \\frac{BD + BE}{2} = \\frac{(AB - AD) + (BC - CE)}{\\sqrt2} = \\frac{AB + BC - CA}{\\sqrt2}=\\bf{16}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/6266"
}
] | ãé¢ç©ã $768$ ã®äžè§åœ¢ $ABC$ ã®å
éšã« $P$ ãåããšä»¥äžãæºãããŸããïŒ
$$AB:BC:CA=|â³ABP|:|â³BCP|:|â³CAP|=3:4:5$$
$BP$ ã®é·ããæ±ããŠãã ããïŒ\
ããã ãïŒ$|\triangle XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ãè¡šããŸãïŒ |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/8771 | C | OMC217(C) | 400 | 87 | 299 | [
{
"content": "ã$T\\subset S$ ã« $3$ ã®åæ°ãå«ãŸãããšãïŒ$f(T) = 0$ ã§ããïŒ\\\r\nã次ã«ïŒ$T\\subset S$ ã« $3$ ã®åæ°ãå«ãŸããªãå ŽåãèããïŒãã®ãšãïŒæ¬¡ãæãç«ã€ïŒ\r\n\r\n- $T$ ã« $3$ ã§å²ã£ãŠ $2$ ããŸãæ°ãå¶æ°åå«ãŸããŠãããªã $f(T) = 1$ïŒå¥æ°åå«ãŸããŠãããªã $f(T) = 2$ïŒ\r\n\r\nãããã£ãŠïŒ\r\n$$\r\nA = {}\\_{3000}\\mathrm{C}\\_{0} + {}\\_{3000}\\mathrm{C}\\_{2} + \\cdots + {}\\_{3000}\\mathrm{C}\\_{3000},\\quad\r\nB = {}\\_{3000}\\mathrm{C}\\_{1} + {}\\_{3000}\\mathrm{C}\\_{3} + \\cdots + {}\\_{3000}\\mathrm{C}\\_{2999}\r\n$$\r\nãšãããšïŒ$f(T) = 1$ ãšãªããã㪠$T\\subset S$ ã®æ° $n_1$ïŒ$f(T) = 2$ ãšãªããã㪠$T\\subset S$ ã®æ° $n_2$ ã¯ãããã\r\n$$n_1 = 2^{3000}A - 1,\\quad n_2 = 2^{3000}B$$\r\nãšè¡šããïŒããã§ïŒæ¬¡ã®è£é¡ãæãç«ã€ïŒ\r\n\r\n<details><summary>**è£é¡.**ã$A = B = 2^{2999}$<\\/summary>\r\näºé
å®çããïŒ\r\n$$2^{3000} = (1 + 1)^{3000} = A + B,\\quad 0 = (1-1)^{3000} = B - A$$\r\nãããããæãç«ã€ïŒããã $2$ åŒãé£ç«ããããšã§ææã®çµæãåŸãïŒ\r\n<\\/details>\r\n\r\nè£é¡ããïŒæ±ããå¹³åã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\frac{1\\cdot n_1 + 2\\cdot n_2}{2^{9000} - 1} = \\frac{3\\cdot 2^{5999} - 1}{2^{9000} - 1}$$\r\nä»ïŒçŽ æ° $p$ ã $3\\cdot 2^{5999} - 1$ ãš $2^{9000} - 1$ ãå²ãåã£ããšããïŒããªãã¡ïŒ\r\n$$3\\cdot 2^{5999} \\equiv 2^{9000} \\equiv 1\\pmod p$$\r\nãæãç«ã£ããšããïŒãã®ãšãïŒ$2^{9000} - 1$ ã¯å¥æ°ã§ãããã $p$ ã¯å¥çŽ æ°ã§ããïŒãŸãïŒ\r\n$$3 \\equiv \\frac{1}{2^{5999}} \\equiv \\frac{2^{9000}}{2^{5999}} = 2^{3001} \\pmod p$$\r\nãæãç«ã€ïŒãããã£ãŠïŒ\r\n$$27 = 3^3 \\equiv (2^{3001})^3 = 8\\cdot 2^{9000} \\equiv 8 \\pmod p$$\r\nã§ããããïŒ$p = 19$ ã§ããïŒäžæ¹ã§ïŒãã§ã«ããŒã®å°å®çãã $3\\cdot 2^{5999} - 1$ ãš $2^{9000} - 1$ ã¯ãšãã« $19$ ã§å²ãåããïŒãŸãïŒLTEã®è£é¡ãã $2^{9000} - 1$ 㯠$19^2$ ã§å²ãåããªãããšã確èªã§ããã®ã§ïŒ\r\n$$b = \\frac{3\\cdot2^{5999} - 1}{19}$$\r\nã§ããïŒããã $2999$ ã§å²ã£ãããŸãã¯ïŒ$\\bf2211$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/8771"
},
{
"content": "ããã®åé¡ã解ãããã«ã¯ïŒæ¬¡ã® $2$ ã€ã®ããšãèããªããã°ãªããŸããïŒ\r\n\r\n**Step.1**ã$f(T)=1,2$ ãšãªãéšåéåã®æ°ãæ±ãã\\\r\n**Step.2**ãå®éã«å¹³åãæ±ããåŸïŒçŽåãã\r\n\r\nã以äžïŒStep.1 ã®è£è¶³ãšïŒStep.2 ã®å¥è§£ã玹ä»ããŸãïŒ\r\n\r\n---\r\n**Step.1 ã®è£è¶³**\\\r\nãåé¡æäžã§ã¯ïŒåå $f$ ã¯ç©ºéåã«å¯ŸããŠå®çŸ©ãããŠããªããïŒ$f(\\phi)=1$ ã§ãããšå®çŸ©ãããïŒ$0$ åã®æ°ã®ç©ã¯ïŒç©ã«é¢ããåäœå
$1$ ã ãšå®çŸ©ããã®ãèªç¶ã§ããïŒïŒ\r\nã$$S_0=\\lbrace 3,6,9,\\cdots,9000\\rbrace , S_1=\\lbrace 1, 4, 7,\\cdots, 8998\\rbrace, S_2=\\lbrace 2, 5, 8,\\cdots, 8999\\rbrace$$\r\nãšããïŒãã®ãšãïŒ$S$ ã®éšåéå $T$ ã $S_0$ ã®èŠçŽ ã $1$ ã€ã§ãå«ãã°ïŒ$f(T)=0$ ã§ããïŒ$T$ ã $S_1$ ã®èŠçŽ ãã©ãå«ãã§ãïŒ$f(T)$ ã®å€ã«ã¯åœ±é¿ããªãïŒçµå± $T$ ã $S_2$ ã®èŠçŽ ãå¶æ°åå«ããïŒå¥æ°åå«ããã«ãã£ãŠïŒ$f(T)$ ã®å€ã¯ $1$ ã $2$ ãã«ãªãïŒ\\\r\nããããŸã§èå¯ããã°ïŒ$f(T)=1$ ãšãªãå Žåãš $f(T)=2$ ãšãªãå Žåãåæ°ã ãããšèŠåœãã€ããããããªãïŒãã®äºæ³ãä¿¡ããã°ïŒ$f(T)=1$ ãšãªãå Žåã®æ°ã $f(T)=2$ ãšãªãå Žåã®æ°ãçãã $2^{6000}÷2$ ãšãªããšèããããïŒå®éã«ã¯ïŒåé¡æã«åŸã£ãŠç©ºéåãé€ãã®ã§ïŒ$f(T)=1$ ãšãªãå Žåã®æ°ã¯ $2^{5999}-1$ ã§ããïŒïŒ\\\r\nãæåŸã«ïŒãã®äºæ³ã«ã€ããŠèšŒæãããŠããïŒå
¬åŒè§£èª¬ãšåæ§ã«\r\n$$A= {}\\_{3000} \\mathrm{C}\\_{1}+{}\\_{3000} \\mathrm{C}\\_{3}+\\cdots +{}\\_{3000} \\mathrm{C}\\_{2999},B= {}\\_{3000} \\mathrm{C}\\_{0}+{}\\_{3000} \\mathrm{C}\\_{2}+\\cdots +{}\\_{3000} \\mathrm{C}\\_{3000} $$\r\nãšãããšãïŒ$A=B$ ããªãã¡ $A-B=0$ ã瀺ãã°ãããïŒãã®ããšã¯ $(1-1)^{3000}$ ã®äºé
å±éãèããã°ãããïŒ\r\n\r\n---\r\n\r\n**Step.2 ã®å¥è§£**\\\r\nãæ±ããå¹³å㯠$\\dfrac{3 \\cdot 2^{5999}-1}{2^{9000}-1}$ ã ãšããã£ãïŒæ¬¡ãªãåé¡ã¯ïŒãããçŽåã§ãããåŠãã§ããïŒ~ã¡ã¿çãªçºæ³ãããã°ïŒãã®åé¡ã®ç¹æ°ããèããŠïŒãã£ãšçŽåã§ããã¯ãã ãšäºæ³ã§ããªãããªãïŒãã£ãšèšã£ãŠããŸãã°ïŒäžåºŠ WA ããã°çŽåã§ããããšããããïŒ~ \\\r\nããã®ããã«ã¯ïŒ$\\gcd(3 \\cdot 2^{5999}-1, 2^{9000}-1)$ ãèããã°ããïŒ$2^{2999}=x$ ãšçœ®ããŠïŒåŒãèŠãããããŠãããïŒ\r\n\r\n$$\\begin{aligned}\r\n\\gcd(6x^2-1, 8x^3-1)&=\\gcd(8x^3-1, 8x^3-6x^2)\\\\\\\\\r\n&=\\gcd(8x^3-1, 4x-3)\\\\\\\\\r\n&=\\gcd(64x^3-8, 4x-3)\\\\\\\\\r\n&\\leq \\gcd(64x^3-8, 64x^3-27)\\\\\\\\\r\n&\\leq 19\r\n\\end{aligned}$$\r\nãäžã€ç®ã®çå·ã¯ Euclid ã®äºé€æ³ã§ããïŒæ®é㯠$6x^2-1$ ãæ®ãã¹ãã ãïŒããšã®èšç®ã§ãããããã«ïŒ$8x^3-1$ ãæ®ãæ¹ã $4x-3$ ãšçžæ§ãããïŒäºã€ç®ã»äžã€ç®ã®çå·ã¯ïŒäžæ¹ãå¥æ°ã§ããããåŸãïŒãŸãïŒäžã®åŒã§çšããŠããäžçå·ã¯ïŒåã«å€§å°é¢ä¿ãè¡šãã ãã§ã¯ãªãïŒäžæ¹ãä»æ¹ã®çŽæ°ã§ããããšãå«æããŠããïŒ\\\r\nããªãïŒäžã€ç®ã®çå·ãã次ã®ããã«å€åœ¢ããããšãã§ããïŒ\r\n$$\\gcd(4x^2+2x+1, 4x-3)=\\gcd(5x+1,4x-3)=\\gcd(20x+4,20x-15) \\leq 19$$\r\nãå®éã« $19$ ã§å²ãåãããã©ããã¯ïŒFermat ã®å°å®çãã確èªããã°ããïŒä»¥äžã¯å
¬åŒè§£èª¬ãåç
§ïŒ",
"text": "è£è¶³ãšå¥è§£",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/8771/451"
}
] | ã$S = \\{1,2,\ldots,9000\\}$ ãšããŸãïŒä»»æã® $S$ ã®ç©ºã§ãªãéšåéå $T$ ã«å¯ŸããŠïŒ$T$ ã®èŠçŽ ã®ç·ç©ã $3$ ã§å²ã£ãããŸãã $f(T)$ ãšããŸãïŒ$T$ ã $S$ ã®ç©ºã§ãªãéšåéåå
šäœãåããšãïŒ$f(T)$ ã®å¹³åã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac ba$ ãšè¡šãããã®ã§ïŒ$b$ ãçŽ æ° $2999$ ã§å²ã£ãããŸãã解çããŠãã ããïŒ |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/3613 | D | OMC217(D) | 400 | 38 | 139 | [
{
"content": "ã $\\angle PBC = x$ ãšãïŒç·å $BC$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $ A^{\\prime} $ ãšããïŒ\r\n$$\\angle BA^{\\prime}C + \\angle CPB = (4x+2x) + (180^{\\circ} - 5x - x) = 180^{\\circ} $$\r\n ãªã®ã§ $4$ ç¹ $A^{\\prime},B,C,P $ ã¯åäžååšäžã«ããïŒ\r\nãã£ãŠ $\\angle PBA^{\\prime} = \\angle PA^{\\prime}B = 5x$ ã§ãããã $ BP = A^{\\prime}P $ ãåããïŒ\r\nãŸãïŒçŽç· $AP$ ãš $BC$ ã®äº€ç¹ã $D$ ãšãããšäžè§åœ¢ $ABD$ ãäºç蟺äžè§åœ¢ã§ãããã $BD = AD = A^{\\prime}D $ ãåããïŒ\r\nãããããçŽç· $PD$ 㯠$BA^{\\prime}$ ã®åçŽäºçåç·ã§ããããïŒ\r\n$AB = AA^{\\prime}$ ã§ããïŒ\r\näžè§åœ¢ $ABA^{\\prime}$ ã¯æ£äžè§åœ¢ã§ããïŒåŸã£ãŠïŒ\r\n$\\angle ABA^\\prime = 8x = 60^{\\circ}$ ãã $x = 7.5^\\circ$ ãåŸããã \r\n$\\angle PCA = 180^{\\circ} -7.5^{\\circ} \\times 15 = 67.5^{\\circ}$ ã§ããïŒ\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\bf{137}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/3613"
},
{
"content": "çŽç· $BC$ ã«é¢ã㊠$P$ ãšå¯Ÿç§°ãªç¹ã $P^\\prime$ ãšããïŒãããšïŒç°¡åãªè§åºŠèšç®ã«ããïŒ$A, B, P^\\prime, C$ ã®å
±åãåããïŒãŸãïŒ$\\angle PBC = \\theta$ ãšãããšïŒ$$\\angle BAP^\\prime = \\angle BCP^\\prime = 5\\theta, \\angle ABP^\\prime = \\angle ABC + \\angle P^\\prime BC = 5\\theta $$\r\nããïŒ$PB = P^\\prime B = P^\\prime A$ ãåããïŒãŸãïŒ$\\angle PAP^\\prime = \\theta$ ã容æã«åããïŒããã§ïŒçŽç· $PP^\\prime$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $A^\\prime$ ãšããïŒãããšïŒ$\\angle PBP^\\prime = 2\\theta = 2 \\angle PAP^\\prime $ ãšãªãïŒã〠$PB = P^\\prime B$ ã§ããããšããïŒ$BA^\\prime = BP = BP^\\prime$ ãåŸãïŒãããšïŒ$P^\\prime A^\\prime = P^\\prime A = P^\\prime B$ ãåãããŠäžè§åœ¢ $BA^\\prime P^\\prime$ ãæ£äžè§åœ¢ã§ãããšåããïŒãã£ãŠïŒ$\\angle A^\\prime PP^\\prime = 150^\\circ$ ãåããïŒããšã¯ç°¡åãªè§åºŠèšç®ã«ããïŒ$\\theta = {\\cfrac{15}{2}}^\\circ$ ãåããïŒ$\\angle PCA = {\\cfrac{135}{2}}^\\circ$ ãåŸãããïŒ",
"text": "æãè¿ããäºåããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/3613/450"
},
{
"content": "ããããªæ¹æ³ããããšããããšã§ïŒçŽ¹ä»ããŠãããŸãïŒ\\\r\nãããŸã奜ãŸããæ¹æ³ã§ã¯ãªãã§ããããïŒåžžã«ã§ãããšãéããªãã®ã§éæšå¥šã§ãïŒ\r\n\r\n---\r\n\r\nããã§ãã®å®çã®äžè§æ¯çããïŒæ¬¡ã®åŒãæç«ããïŒ\r\n$$\\dfrac{\\sin \\angle PAC}{\\sin \\angle PAB}\\cdot \\dfrac{\\sin \\angle PBA}{\\sin \\angle PBC}\\cdot\\dfrac{\\sin \\angle PCB}{\\sin \\angle PCA}=\\dfrac{\\sin 2 \\theta}{\\sin 4 \\theta} \\cdot \\dfrac{\\sin 3 \\theta}{\\sin \\theta} \\cdot \\dfrac{\\sin 5 \\theta}{\\sin 15 \\theta} =1$$\r\nã$2$ åè§ã®å
¬åŒïŒ$3$ åè§ã®å
¬åŒãçšãããšæ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\dfrac{1}{2 \\cos 2 \\theta} \\cdot \\dfrac{3-4\\sin^2 \\theta}{ 3-4 \\sin^2 5 \\theta} =1$$\r\nãåæ¯ã« $\\cos 2 \\theta$ ãããã®ã§ïŒãããå«ã圢ã«å€åœ¢ãããš $3-4\\sin^2 \\theta=1+2\\cos 2 \\theta$ ãšãªãïŒãã£ãŠïŒ\r\n$$\\dfrac{1+2\\cos 2\\theta}{2\\cos 2\\theta(1+2 \\cos 10 \\theta)}=1$$\r\nãå€åœ¢ã㊠$\\cos 2 \\theta \\cos 10 \\theta=\\dfrac{1}{4}$ ïŒ\\\r\nãç©åã®å
¬åŒãçšã㊠$\\cos 8 \\theta+\\cos 12 \\theta=\\dfrac{1}{2}$ïŒ\\\r\nã$\\cos 4 \\theta=x$ ãšçœ®ãã°ïŒ$2$ åè§ã®å
¬åŒïŒ$3$ åè§ã®å
¬åŒãçšããŠïŒä»¥äžã®ããã«å€åœ¢å¯èœã§ããïŒ\r\n$$4x^3+2x^2-3x-\\dfrac{3}{2}=\\dfrac{1}{2}(2x+1)(4x^2-3)=0$$\r\nã$15 \\theta \\lt 180^ {\\circ}$ ã ã£ãã®ã§ïŒ$\\cos 4 \\theta=\\dfrac{\\sqrt{3}}{2}$ ããªãã¡ $\\theta =7.5^{\\circ}$ ãåŸãïŒ\r\n\r\n---\r\n\r\nã以äžã¯ïŒäžè§æ¯ãçšããïŒããå°ã楜ãªå¥è§£ã§ãïŒ\r\n\r\nã$\\triangle ABC$ ã®å€æ¥åãšçŽç· $CP$ ã®äº€ç¹ã§ïŒç¹ $C$ ã§ãªããã®ã $D$ ãšããïŒ\\\r\nã$\\angle PBC=\\theta$ ãšãããšïŒ$\\angle BPE= \\angle BEP= 6 \\theta $ ã§ããïŒãããã $BP=BE$ ãåŸãïŒãŸãååšè§ã®å®çïŒæ£åŒŠå®çïŒããïŒ$AB:BE=\\sin 10 \\theta : \\sin 5 \\theta$ ã§ããïŒ$BP=BE$ ãã $AB:BP=\\sin 10 \\theta : \\sin 5 \\theta$ïŒ\\\r\nãäžæ¹ïŒ$\\triangle ABP$ ã«æ£åŒŠå®çãçšããŠïŒ$AB:BP=\\sin 7 \\theta : \\sin 4 \\theta$ïŒãã£ãŠïŒ$\\sin 10 \\theta : \\sin 5 \\theta = \\sin 7 \\theta : \\sin 4 \\theta$ ãåŸãïŒ\\\r\nãç©ã®åœ¢ã«å€åœ¢ããŠãã $2$ åè§ã®å
¬åŒãçšãããšïŒ$2 \\sin 4 \\theta \\cos 5 \\theta = \\sin 7 \\theta$ïŒ\\\r\nãåç©ã®å€æå
¬åŒãçšãããš $\\sin 9 \\theta - \\sin \\theta=\\sin 7 \\theta$ïŒ\\\r\nã$\\sin 9 \\theta - \\sin 7\\theta=\\sin \\theta$ ãšããŠããå床åç©ã®å€æå
¬åŒãçšãããš $2 \\sin \\theta \\cos 8 \\theta =\\sin \\theta$ïŒ\\\r\nããããã $\\cos 8 \\theta =\\frac{1}{2}$ ããªãã¡ $\\theta =7.5^{\\circ} $ ãåŸãïŒ",
"text": "äžè§æ¯ãçšããæ¹æ³ïŒéæšå¥šïŒ",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/3613/452"
},
{
"content": "ãšã¹ããŒã«æ¯ãçãããããªè§£æ³ãªã®ã§ïŒéæšå¥šã§ãïŒ\r\n___\r\n$\\angle PBC = \\theta$ ãšãããšïŒCevaã®å®çããïŒ$\\dfrac{\\sin 2\\theta}{\\sin 4\\theta} \\cdot \\dfrac{\\sin 3\\theta}{\\sin \\theta} \\cdot \\dfrac{\\sin 5\\theta}{\\sin 15\\theta} = 1$ \r\nåç©ã®å
¬åŒãçšãããšïŒ\r\n$$4\\left( \\sin 2\\theta \\sin 3\\theta \\sin 5\\theta \\right) = \\sin 6\\theta + \\sin 4\\theta - \\sin 10\\theta$$\r\n$$4\\left( \\sin 4\\theta \\sin \\theta \\sin 15\\theta \\right) = \\sin 18\\theta + \\sin 12\\theta - \\sin 10\\theta - \\sin 20\\theta$$\r\nããããããèŠããšïŒ\r\n$$\\left( \\sin 6\\theta - \\sin 18\\theta \\right) + \\left( \\sin 4\\theta + \\sin 20\\theta \\right) - \\sin 12\\theta = 0$$\r\n$12 \\theta = 90^{\\circ}$ ã®ãšã $ \\left( 巊蟺 \\right) = 0 + \\left( \\dfrac{1}{2} + \\dfrac{1}{2} \\right) - 1 = 0$ [*1] ã§ããããïŒ$\\angle PCA = 180^{\\circ} - 15 \\times 7.5^{\\circ} = 67.5^{\\circ}$ ã¯è§£ã®åè£ã§ããïŒå®é $\\mathbf{137}$ ãæåºãããšCAãåŸãïŒ\r\n\r\n___\r\n[*1] äžã®åŒã«å¯ŸãïŒã§ããã ãå€ãã®é
ãæ¶ãããããªä»£å
¥ãããããšèãããšãã®ããã«ãªãïŒ",
"text": "äžè§æ¯ãçšãã解æ³(ãã£ãšéæšå¥š)",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/3613/461"
}
] | ãäžè§åœ¢ $ABC$ ããã³ãã®å
éšã®ç¹ $P$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$\angle PBC : \angle CAP : \angle ABP : \angle PAB : \angle BCP = 1:2:3:4:5 $$
ãã®æïŒ $\angle PCA$ ã®å€§ããã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ 床ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/8799 | E | OMC217(E) | 400 | 48 | 114 | [
{
"content": "ã$2^{k}$ ãçŽæ°ãšããŠæ〠$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®åæ°ã $C_{n,k}$ ã§è¡šãããšã«ãããšïŒ\r\n$$\\sum_{k = 1} ^ {n} f(k) = \\sum_{k = 0}^{\\infty} 2^{k}C_{n,k}$$\r\nãšãªãïŒããã§ïŒ$C_{n,k} = \\bigg \\lfloor {\\cfrac{n}{2^{k}}} \\bigg \\rfloor$ ã§ããããïŒæ£ã®æŽæ° $x,y$ ã«å¯Ÿã㊠$x\\\\% y$ 㧠$x$ ã $y$ ã§å²ã£ãããŸããè¡šãããšã«ãããšïŒ\r\n$$2^{k}C_{n,k} = n - n\\\\% 2^{k}$$\r\nã§ããïŒä»ïŒ$2^{1000} \\le n \\lt 2^{1001} - 1$ ã®å Žåã¯ïŒ$C_{n,k} \\gt 0$ ãšãªã $k$ ã®ç¯å²ã¯ $0 \\leq k \\leq 1000$ ã§ããã®ã§ïŒ\r\n$$g(n) = -1000n + \\sum_{k = 0}^{1000} (n - n \\\\% 2^{k}) = n - \\sum_{k = 0}^{1000} n \\\\% 2^{k}$$\r\nãšåããïŒ\\\r\nãããã§ïŒ$n$ ã® $2$ é²æ°è¡šèšã $b_{1000}b_{999} \\cdots b_{0}$ ãšããïŒãã®ãšãïŒ$n\\\\%2^0 = 0$ ã§ããïŒ$k\\ge1$ ã®ãšãã«ã¯\r\n$$n\\\\%2^{k} = \\sum_{i = 0}^{k - 1}2^{i}b_i$$\r\nãšãªãããïŒ\r\n$$\\sum_{k = 0}^{1000} n\\\\% 2^{k} = \\sum_{k = 0}^{1000}2^{k}(1000-k)b_{k}$$\r\nãåŸãïŒããããïŒ$b_{1000} = 1$ ã§ããããšã«æ°ãã€ããã°ïŒ\r\n$$g(n) = n - \\sum_{k = 0}^{1000} \\ n ïŒ
2^{k} = 2^{1000} - \\sum_{k = 0}^{999}2^{k}(999 - k)b_{k}$$\r\nãåããïŒããã§ïŒ$\\displaystyle\\sum_{k = 0}^{999}2^{k}(999 - k)b_{k}$ ã®åé
ã® $b_k$ ã®ä¿æ°ã¯ïŒ$k$ ã«å¯Ÿã㊠($k = 999$ ãé€ã) åºçŸ©å調å¢å ã§ããïŒãŸãïŒ\r\n$$ \\sum_{k = 0}^{4}2^{k}(999 - k) \\lt 2^{5}(999-5),\\quad \\sum_{k = 0}^{1}2^{k}(999 - k) \\lt 2^{2}(999-2)$$\r\nãããããæãç«ã€ã®ã§ïŒ$g(n)$ ã®ãšãåŸã $37$ çªç®ã«å€§ããå€ã¯\r\n$$2^{1000} - (2^5(999-5) + 2^2(999-2)) = 2^{1000} - 35796$$\r\nã§ããïŒããã $997$ ã§å²ã£ãããŸãã¯ãã§ã«ããŒã®å°å®çã«ãã $\\bf112$ ãšåããïŒ\r\n\r\n**è£è¶³.**ãæåŸã®è°è«ãšåæ§ã«èããããšã§ïŒ$n - 2^{1000}$ ãååã«å°ããç¯å²ã§ã¯ $g(n)$ ã¯ç矩å調æžå°ã§ããããšããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/8799"
}
] | ãæ£ã®æŽæ° $n$ ã«å¯ŸãïŒ$n$ ã®æ£ã®çŽæ°ã®ãã¡éè² æŽæ° $k$ ãçšã㊠$2^{k}$ ãšè¡šããããã®ã®ç·åã $f(n)$ ãšããŸãïŒãŸãïŒ$g(n) = - 1000n + \displaystyle \sum_{k = 1} ^ {n} f(k)$ ãšå®ããŸãïŒ\
ãæ£ã®æŽæ° $n$ ã $2^{1000} \le n \lt 2^{1001}$ ãã¿ãããªããåããšãïŒ$g(n)$ ã®ãšãåŸã $37$ çªç®ã«å€§ããå€ãçŽ æ° $997$ ã§å²ã£ãäœãã解çããŠäžããïŒ |
OMC217 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc217/tasks/9293 | F | OMC217(F) | 600 | 5 | 36 | [
{
"content": "ãæ£ã®å®æ° $X, Y, Z$ ã«ãã£ãŠ \r\n$$X=\\dfrac{x}{x+\\sqrt{y}}, \\quad Y=\\dfrac{y}{y+\\sqrt{z^2}}, \\quad Z=\\dfrac{z}{z+\\sqrt{x^3}}$$ \r\nãšè¡šãïŒçžå ã»çžä¹å¹³åã®é¢ä¿ããïŒ\r\n$$\\begin{aligned}\\dfrac{1}{z}&= \\left(\\dfrac{\\sqrt{y}}{x}\\right)^{6}\\left(\\dfrac{z}{y}\\right)^3\\left(\\dfrac{\\sqrt{x^3}}{z}\\right)^4\\\\\\\\\r\n&=\\left(\\dfrac{1 - X}{X}\\right)^6 \\left(\\dfrac{1 - Y}{Y}\\right)^3 \\left(\\dfrac{1 - Z}{Z}\\right)^4 \\\\\\\\\r\n&=\\dfrac{(Y + Z)^{6}}{X^{6}}\\dfrac{(Z + X)^{3}}{Y^{3}}\\dfrac{(X+Y)^{4}}{Z^{4}}\\\\\\\\\r\n&= \\frac{1}{X^6Y^3Z^4} \\left(\\frac{Y}{5}\\cdot 5 + \\frac{Z}{7} \\cdot 7 \\right)^6 \\left(Z + \\frac{X}{5}\\cdot 5 \\right)^3 \\left(\\frac{X}{7}\\cdot 7 + Y \\right)^4 \\\\\\\\\r\n&\\geq \\frac{1}{X^6Y^3Z^4} \\left(12\\sqrt[12]{\\frac{Y^5}{5^5}\\cdot\\frac{Z^7}{7^7}}\\right)^6 \\left(6\\sqrt[6]{Z \\cdot\\frac{X^5}{5^5}}\\right)^3 \\left(8\\sqrt[8]{\\frac{X^7}{7^7}\\cdot Y}\\right)^4 \\\\\\\\\r\n&= \\dfrac{2^{27} \\cdot 3^{9}}{5^{5} \\cdot 7^{7}}\\end{aligned}$$\r\nãŸãïŒå®éã«çå·ãæç«ããã $x, y, z$ ãååšããã®ã§ïŒæ±ããçã㯠$28 \\cdot 10 \\cdot 6 \\cdot 8= \\mathbf{13440}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/9293"
},
{
"content": "ãé«æ ¡ç¯å²ããã¯éžè±ããŸããïŒåé¡ã®åœ¢åŒãã埮åãæ³èµ·ããæ¹åãã§ãïŒ\\\r\nããã ïŒæ®éã«åŸ®åããããšãããšïŒ$\\sqrt{y}$ïŒ$\\sqrt{x^3}$ ããããèšç®ãåä»ã«ããããªã®ã§ïŒå°ã工倫ãããããšããã§ãïŒããããããšå·¥å€«ããæ±ãŸããããããŸãããïŒããŸãèããŠããŸããïŒïŒ\r\n\r\n---\r\n\r\nããŸãïŒäžããããæ¡ä»¶ã次ã®ããã«æžãæããïŒ\r\n$$\\dfrac{1}{1+\\frac{\\sqrt{y}}{x}}+\\dfrac{1}{1+\\frac{z}{y}}+\\dfrac{1}{1+\\frac{\\sqrt{x^3}}{z}}=1$$\r\nããã㧠$s=\\dfrac{\\sqrt{y}}{x}$ïŒ$t=\\dfrac{z}{y}$ïŒ$u=\\dfrac{\\sqrt{x^3}}{z}$ ãšããã°ïŒäžæ¡ä»¶ã¯å¯Ÿç§°çãªåŒãšãªãïŒ\\\r\nãäžæ¹ïŒæ倧å€ãæ±ããã¹ãå€æ° $z$ ã«ã€ããŠãèããå¿
èŠãããïŒ$s,t,u$ ã®å®çŸ©ã®åŒãã $x, y$ ãæ¶å»ãããš $s^6t^3u^4=\\dfrac{1}{z}$ ãåŸãïŒæ±ºããŠããããªåŒã§ã¯ãªããïŒèŠã¯ $s^6t^3u^4$ ã®æå°å€ãæ±ããã°ããããšã«ãªãïŒåŸ®åãããããšããç¹ã§ã¯ïŒããæªããªãåŒã§ããïŒïŒ\\\r\nã以äžã®èå¯ããå
ã®åé¡ã¯ïŒæ¬¡ã®ãããªåãã«å€åããïŒ\r\n\r\n- æ¡ä»¶ $\\dfrac{1}{1+s}+\\dfrac{1}{1+t}+\\dfrac{1}{1+u}=1$ ã®ããšã§ïŒ$s^6t^3u^4$ ã®æå°å€ãæ±ããïŒ\r\n\r\n---\r\n\r\nããã®ããã«ããŠïŒLagrange ã®æªå®ä¹æ°æ³ã䜿ãããšããçºæ³ã«è³ãïŒ\r\n$$f(s,t,u,\\lambda)=s^6t^3u^4-\\lambda \\left( \\dfrac{1}{1+s}+\\dfrac{1}{1+t}+\\dfrac{1}{1+u}-1 \\right)$$\r\nãšçœ®ããŠïŒãã€ãã€å埮åããŠãããïŒ\r\n$$\\begin{cases}\r\n\\dfrac{\\partial f}{\\partial s} =6s^5t^3u^4+\\lambda \\dfrac{1}{(1+s)^2}=0 \\\\\\\\\r\n\\dfrac{\\partial f}{\\partial t} =3s^6t^2u^4+\\lambda \\dfrac{1}{(1+t)^2}=0 \\\\\\\\\r\n\\dfrac{\\partial f}{\\partial u} =4s^6t^3u^3+\\lambda \\dfrac{1}{(1+u)^2}=0 \\\\\\\\\r\n\\end{cases}$$\r\nãå埮ååŸã®ç¬¬ $1$ é
ããããã $s^6t^3u^4$ ç±æ¥ã§ããããšã«æ³šæãããšïŒæ¬¡ã®ããã«åŒå€åœ¢ã§ããïŒ\r\n$$\\dfrac{s}{6(1+s)^2}=\\dfrac{t}{3(1+t)^2}=\\dfrac{u}{4(1+u)^2}$$\r\nããã£ãŠçµå±ã¯ïŒæ¬¡ã®é£ç«æ¹çšåŒã解ãã°ããïŒ\r\n$$\\begin{cases}\r\n\\dfrac{1}{1+s}+\\dfrac{1}{1+t}+\\dfrac{1}{1+u}=1 \\\\\\\\\r\n\\dfrac{s}{6(1+s)^2}=\\dfrac{t}{3(1+t)^2}=\\dfrac{u}{4(1+u)^2} \\\\\\\\\r\n\\end{cases}$$\r\nããã®æ¹çšåŒã¯äžèŠé£ãããã«èŠãããïŒæ¬¡ã®åŒå€åœ¢ã«æ°ã¥ãã°ïŒèšç®ã¯è€éã§ã¯ãªãïŒ\r\n$$\\dfrac{s}{(1+s)^2}=\\dfrac{1}{1+s} \\cdot \\dfrac{s}{1+s}=\\dfrac{1}{1+s}\\left(1-\\dfrac{1}{1+s}\\right)$$\r\nãæ¹ã㊠$\\dfrac{1}{1+s}=p$ïŒ$\\dfrac{1}{1+t}=q$ïŒ$\\dfrac{1}{1+u}=r$ ãšå€æ°ã眮ãçŽãïŒ$p+q+r=1$ ãçšããããšã§ïŒå
ã»ã©ã®é£ç«æ¹çšåŒã¯æ¬¡ã®ããã«æžãçŽãããïŒ\r\n$$\\begin{cases}\r\np+q+r=1 \\\\\\\\\r\n\\dfrac{p(q+r)}{6}=\\dfrac{q(r+p)}{3}=\\dfrac{r(p+q)}{4} \\\\\\\\\r\n\\end{cases}$$\r\nããã®ç¬¬äºåŒããïŒããå®æ° $k$ ãçšã㊠$pq+qr=3k, qr+rp=4k, rp+pq=6k$ ãšçœ®ããïŒããããç°¡åã« $pq=\\dfrac{5}{2}k, qr=\\dfrac{1}{2}k, rp=\\dfrac{7}{2}k$ ãåŸãïŒç©ãåã£ãŠ $pqr$ ã®å€ãæ±ããã°ïŒé©åœãªããç®ã«ãã£ãŠ$p=\\dfrac{\\sqrt{70k}}{2}, q=\\dfrac{\\sqrt{70k}}{14}, r=\\dfrac{\\sqrt{70k}}{10}$ïŒ\\\r\nãããšã¯ïŒ$p+q+r=1$ ãã $\\sqrt{k}$ ãæ±ãŸãïŒåŸã£ãŠ $p, q, r$ ãæ±ãŸãïŒããã«ã¯ $s, t, u$ ãæ±ãŸãïŒ\r\n\r\n---\r\n\r\nããªãïŒLagrange ã®æªå®ä¹æ°æ³ã¯æ¥µå€ïŒæ倧å€ïŒã®ååšãä¿èšŒãããã®ã§ã¯ãªãã®ã§ïŒå³å¯ã«ã¯ãã®ç¹ã«ã¯æ³šæãå¿
èŠã§ãïŒOMCã®ã«ãŒã«äžïŒãã®ãããªããšã¯èããå¿
èŠããªãã®ã§ããâŠïŒïŒè©³ããã¯é©åœãªåèæžçã§ç¢ºèªããŠãã ããïŒ\\\r\nãé¡é¡ãšããŠïŒ[OMC112(C)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc112\\/tasks\\/3393)ïŒ[OMC132(E)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc132\\/tasks\\/4656) ãæããŠãããŸãïŒ",
"text": "Lagrange ã®æªå®ä¹æ°æ³",
"url": "https://onlinemathcontest.com/contests/omc217/editorial/9293/457"
}
] | ãæ£ã®å®æ° $x, y, z$ ã
$$\dfrac{x}{x+\sqrt{y}} + \dfrac{y}{y+\sqrt{z^2}} + \dfrac{z}{z+\sqrt{x^3}} = 1$$
ãã¿ãããšãïŒ$z$ ã®ãšãåŸãæ倧å€ã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ãçšã㊠$\dfrac{q}{p}$ ãšè¡šãããã®ã§ïŒ$pq$ ã®æ£ã®çŽæ°ã®åæ°ã解çããŠãã ãã. |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/8162 | A | OMCB004(A) | 100 | 467 | 474 | [
{
"content": "ãæ±ãããå€ $A+R+S+T$ ã¯\r\n$$(S+T+A+R+T)+(S+T+A+R+S)-(S+T+R)-(T+A+S)$$\r\nã«çããããïŒ$\\mathbf{87}$ ã§ããïŒã¡ãªã¿ã«ïŒåæ°ãæ±ãããš $(A,R,S,T) = (66,75,-57,3)$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/8162"
}
] | ãå®æ° $A,R,S,T$ ã以äžã®çåŒãã¿ãããŸãïŒ
$$\begin{cases}
S+T+A+R+T&=90\\\\
S+T+A+R+S&=30\\\\
S+T+R&=21\\\\
T+A+S&=12
\end{cases}$$
ãã®ãšãïŒ$A+R+S+T$ ã®å€ãæ±ããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/4880 | B | OMCB004(B) | 100 | 445 | 464 | [
{
"content": "ã$2$ 以äžã®æ£æŽæ° $n$ ã $n=p_1^{a_1}\\cdots p_k^{a_k}$ ãšçŽ å æ°å解ããããšãïŒæ£ã®çŽæ°ã $(a_1+1)\\cdots(a_k+1)$ åãã€ïŒã㟠$7$ ã¯çŽ æ°ã§ããããïŒ$k=1,a_1=6$ ã§ããïŒããªãã¡ïŒããçŽ æ° $p$ ãçšã㊠$p^6$ ãšè¡šãããïŒããã $3$ æ¡ä»¥äžã«ãªãã®ã¯ $p=2, 3$ ã®ãšãã§ããïŒæ±ããç·å㯠$64+729 = \\textbf{793}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/4880"
}
] | ãæ£ã®çŽæ°ãã¡ããã© $7$ åãã€ãããªïŒåé²æ³è¡šèšã§ $3$ æ¡ä»¥äžã®æ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/3329 | C | OMCB004(C) | 100 | 445 | 454 | [
{
"content": "ã$S(\\triangle XYZ)$ 㧠$\\triangle XYZ$ ã®é¢ç©ãè¡šãïŒæ¡ä»¶ãã $\\triangle PQR$ ã¯æ£äžè§åœ¢ã§ããïŒç°¡åãªè§åºŠèšç®ã«ãã $\\triangle AQR \\equiv \\triangle BRP \\equiv \\triangle CPQ$ ããããïŒãããš $S(\\triangle ABC)=25\\sqrt{3}$ïŒ$S(\\triangle PQR)=16\\sqrt{3}$ ãã \r\n$$S(\\triangle AQR)=\\dfrac{S(\\triangle AQR)+S(\\triangle BRP)+S(\\triangle CPQ)}{3}=\\dfrac{S(\\triangle ABC)-S(\\triangle PQR)}{3}=3\\sqrt{3}$$\r\n ã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{27}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/3329"
}
] | ãäžèŸºã®é·ãã $10$ ã§ããæ£äžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC,CA,AB$ äžã«ããããç¹ $P,Q,R$ ããšã£ããšãã,ã$PQ=QR=RP=8$ ãšãªããŸããïŒãã®ãšãäžè§åœ¢ $AQR$ ã®é¢ç©ã®äºä¹ãæ±ããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/2674 | D | OMCB004(D) | 100 | 431 | 442 | [
{
"content": "ã$a=180n-360, b=n(n-3)\\/2$ ã§ããããïŒæ¡ä»¶ã¯æ¬¡ãšåå€ã§ããïŒ\r\n$$n^2-21n+38\\leq0$$\r\n $n\\geq3$ ã«æ°ãã€ããŠãã®äžçåŒã解ããš $n=3,4,...,19$ ã§ããããïŒæ±ããç·å㯠$\\bf187$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/2674"
}
] | ã$3$ 以äžã®æŽæ° $n$ ã«ã€ããŠïŒæ£ $n$ è§åœ¢ã®å
è§ã®ç·åã ïŒåºŠæ°æ³ã§ïŒ $a$ 床ïŒå¯Ÿè§ç·ã®æ¬æ°ã $b$ æ¬ã§ããïŒæ¬¡ã®äžçåŒãæãç«ã¡ãŸããïŒ
$$a \geq 20(b+1)$$
ããã®ãããªæŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/6712 | E | OMCB004(E) | 200 | 391 | 425 | [
{
"content": "ãæåã® $4$ æåã®äžã®ã X ãã®å Žæã§ãã以éã®ã X ããé
眮ããå Žæã決ãŸãããšã«çæããã°ïŒã X ãã®äœçœ®ã¯æ¬¡ã® ${}_4 \\mathrm{C}_2=6$ åã«éãããïŒã X X - - X X - ã, ã X - X - X - X ã, ã - X X - - X X ã, ã X - - X X - - ã,ã - X - X - X - ã, ã - - X X - - X ãïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $2^3Ã3+2^4Ã3=\\mathbf{72}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/6712"
}
] | ãã J ã,ã M ã,ã X ããããªã $7$ æåã®æååïŒäœ¿ããªãæåããã£ãŠãæ§ããŸããïŒã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãæºãããã®ã¯ããã€ãããŸããïŒ
- ã©ã®é£ç¶ãã $4$ æåãåã£ãŠãïŒãã®ãã¡ã¡ããã© $2$ æåãã X ãã§ããïŒ
ãäŸãã°ã J M X X J M X ãã¯ãã®æ¡ä»¶ãæºãããŸãïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/2244 | F | OMCB004(F) | 200 | 351 | 414 | [
{
"content": "ãLegendreã®å®çããïŒ$2244!$ ãçŽ å æ°å解ãããšïŒ\r\n$$2244!=2^{2240}\\times 3^{1120}\\times 5^{557}\\times7^{371}\\times \\cdots$$\r\nãšãªãããïŒé¡æãã¿ãããã㪠$n$ ã¯\r\n$$n=2^{a}\\times 3^b\\times 5^c\\quad (0\\leq a \\leq4 , ~ 0\\leq b \\leq2 , ~ 0\\leq c \\leq1)$$\r\nãšè¡šããïŒãããã£ãŠæ±ããç·åã¯\r\n$$(1+2+2^2+2^3+2^4)\\times(1+3+3^2)\\times(1+5)=\\textbf{2418}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/2244"
},
{
"content": "ãLegendre ã®å®çã®è¿äŒŒã«ã€ããŠçŽ¹ä»ããŠãããŸãïŒ\\\r\nãä»åã®åãã§ããã°ïŒãã®è¿äŒŒã§ãååã«èãããç²ãã§ãïŒçç±ã¯åŸè¿°ããŸãïŒïŒ\r\n\r\n---\r\n\r\nããŸãïŒLegendre ã®å®çãšã¯æ¬¡ã®ãããªãã®ã§ããïŒ\\\r\nãã**å®ç**ïŒèªç¶æ° $n$ ãšçŽ æ° $p$ ã«å¯ŸããŠïŒ$n!$ ã $p$ ã§å²ãåããæ倧ã®åæ°ã¯ $\\sum\\limits _{k=1}^{\\infty} \\left\\lfloor \\dfrac{n}{p^k} \\right\\rfloor$ ã§ããïŒ\\\r\nãããã§ïŒåºé¢æ°ãå€ãè¿äŒŒãèãããšïŒæ¬¡ã®åŒãåŸãŸãïŒ\r\nã$$\\sum\\limits _{k=1}^{\\infty} \\left\\lfloor \\dfrac{n}{p^k} \\right\\rfloor \\fallingdotseq \\sum\\limits _{k=1}^{\\infty} \\dfrac{n}{p^k} = \\dfrac{n}{p-1}$$\r\nãå®éã«ãã®è¿äŒŒãçšããŠã¿ããšïŒ$2244!$ ã«ã€ããŠã¯æ¬¡ã®ããã«æžãè¡šãããŸãïŒ\r\nã$$2244! \\fallingdotseq 2^{\\frac{2244}{2-1}}Ã3^{\\frac{2244}{3-1}}Ã5^{\\frac{2244}{5-1}}Ã7^{\\frac{2244}{7-1}}à \\cdots =2^{2244}Ã3^{1122}Ã5^{561}Ã7^{374} \\cdots$$\r\nãæ£ããå€ã¯ $2^{2240}Ã3^{1120}Ã5^{557}Ã7^{371}à \\cdots$ ãªã®ã§ïŒãã倧ããã¯å€ããŠããªãããšãããããŸãïŒ\r\n\r\n---\r\n\r\nã以äžã§ã¯ïŒãã®è¿äŒŒã®ç²ŸåºŠã«ã€ããŠèããŠãããŸãïŒ\\\r\nã$x=\\lfloor \\log _p n \\rfloor$ ãšçœ®ããŠïŒè¿äŒŒå€ãšçã®å€ã®å·®ãåããŸãïŒ\r\n$$\\begin{aligned}\r\n\\sum\\limits _{k=1}^{\\infty} \\left(\\dfrac{n}{p^k}-\\left\\lfloor \\dfrac{n}{p^k} \\right\\rfloor \\right) &= \\sum\\limits _{k=1}^{x} \\left(\\dfrac{n}{p^k}-\\left\\lfloor \\dfrac{n}{p^k} \\right\\rfloor \\right) + \\sum\\limits _{k=x+1}^{\\infty} \\left(\\dfrac{n}{p^k}-\\left\\lfloor \\dfrac{n}{p^k} \\right\\rfloor \\right)\\\\\\\\\r\n&\\lt \\sum\\limits _{k=1}^{x} 1 + \\sum\\limits _{k=x+1}^{\\infty} \\dfrac{n}{p^k}\\\\\\\\\r\n&= x+\\dfrac{n}{p^x(p-1)}\r\n\\end{aligned}$$\r\næåŸã®é
$\\dfrac{n}{p^x(p-1)}$ ã«ã€ããŠã¯ïŒ$p^x \\leq n \\lt p^{x+1}$ ã§ãã£ãããšããïŒãããã $1$ ã«ãªããŸãïŒ\\\r\nã以äžã®è°è«ããïŒããã§çŽ¹ä»ããè¿äŒŒã¯ïŒ $n$ ã $p$ é²æ°ã§è¡šãããšãã®æ¡æ°çšåºŠã®èª€å·®ãçããããšããããŸãïŒãªãïŒä»¥äžã®è°è«ãåèã«ããã°ïŒãã®è¿äŒŒã¯å¿
ãçã®å€ãã倧ããæ¹ã«ãããããšãããããŸãïŒïŒ\r\n\r\n---\r\n\r\nãæ¯ãè¿ã£ãŠä»åã®åãã§ããïŒ$2244$ ã $2$ é²æ°ã§è¡šããš $12$ æ¡ã«ãªããŸãïŒ\\\r\nãåŸã£ãŠïŒä»åã®è¿äŒŒã§åŸã $2^{2244}Ã3^{1122}Ã5^{561}Ã7^{374} \\cdots$ ã§ããïŒææ°ã $500$ ã§å²ã£ãåã§ããã°ïŒçã®å€ãšäžèŽããããšãããããŸãïŒ\\\r\nãããä»åã®åããïŒ$2244!$ ã§ãªã $2024!$ ã ã£ãå Žåã«ã¯ïŒãã®è¿äŒŒã䜿ã£ãŠè¯ããã¯åå泚æããå¿
èŠããããŸãïŒ\\\r\nãäºã€ã®å€ã調ã¹ãŠã¿ããšïŒ\\\r\nããè¿äŒŒå€ïŒ$2^{2024}Ã3^{1012}Ã5^{506}Ã7^{337 \\frac{1}{3}}Ã\\cdots$\\\r\nããçã®å€ïŒ$2^{2017}Ã3^{1006}Ã5^{503}Ã7^{335}Ã\\cdots$\\\r\nãšïŒã¡ãã£ãšæãæããããŸãïŒå®éã¯ïŒ$\\lfloor \\log_2 2024 \\rfloor =11$ïŒ$\\lfloor \\log_3 2024 \\rfloor =6$ïŒ$\\lfloor \\log_5 2024 \\rfloor =4$ ãªã®ã§åé¡ãããŸããïŒïŒ\r\n\r\nã以äžïŒè¿äŒŒã«ã€ããŠã®çŽ¹ä»ã§ããïŒ",
"text": "Legendre ã®å®çã®è¿äŒŒ",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/2244/449"
}
] | ã$2244!$ ã $n^{500}$ ã§å²ãåãããããªïŒæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/4497 | G | OMCB004(G) | 300 | 235 | 326 | [
{
"content": "ãæ²ç· $n=xy$ äžãšãããããäžã«ãã第äžè±¡éã®æ Œåç¹ã®éå $S$ ã«ã€ããŠèããïŒ$x=k ~ (1\\leq k \\leq n)$ ãåºå®ãããšãïŒ$S$ ã®èŠçŽ 㯠$\\displaystyle\\bigg\\lfloor\\frac{n}{k} \\bigg\\rfloor$ ã ãããïŒãããã£ãŠïŒ$S$ ã®èŠçŽ ã®æ°ã¯ $\\displaystyle\\sum_{k=1}^{n}\\bigg\\lfloor \\frac{n}{k} \\bigg\\rfloor$ ã«çããïŒ\\\r\nãäžæ¹ã§ $S$ ã®èŠçŽ ã®æ°ã¯ $xy=k ~ (1\\leq k \\leq n)$ ãåºå®ããããšã§ãæ°ããããïŒæ£æŽæ° $k$ ã®æ£ã®çŽæ°ã®åæ°ã $d_k$ ã§è¡šãã° $S$ ã®èŠçŽ ã®æ°ã¯ $\\displaystyle\\sum_{k=1}^{n}d_k$ ã§ããïŒãããã£ãŠæ¬¡ãåŸãïŒ\r\n$$a_n=\\sum_{k=1}^{n}d_k$$\r\nãã£ãŠ $a_{n+1}=a_n+3$ 㯠$d_{n+1}=3$ ã§ããããšãšåå€ã§ããïŒããã¯ããã« $n+1$ ãçŽ æ°ã® $2$ ä¹ã§ããããšãšåå€ã§ããïŒãã£ãŠæ±ããæ倧å€ã¯ $67^2-1=\\mathbf{4488}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/4497"
},
{
"content": "ã$$a_{n+1}-a_{n}=\\sum_{k=1}^{n+1}\\left(\\left\\lfloor\\frac{n+1}{k}\\right\\rfloor-\\left\\lfloor\\frac{n}{k}\\right\\rfloor\\right)$$\r\nã§ã. \r\nããã§, å $k$ ã«ã€ããŠ, \r\n\r\n- $\\dfrac{n+1}{k}$ ãæŽæ°ã§ãªããšã, $\\displaystyle\\left\\lfloor\\frac{n+1}{k}\\right\\rfloor=\\left\\lfloor\\frac{n}{k}\\right\\rfloor$\r\n- $\\displaystyle\\left\\lfloor\\frac{n+1}{k}\\right\\rfloor-\\left\\lfloor\\frac{n}{k}\\right\\rfloor$ 㯠$0$ ãŸã㯠$1$ \r\n\r\nã§ããããšã確ãããããŸã. (å³å¯ã«ç¢ºãããã«ã¯ $n=kq+r$ ãšãªãéè² æŽæ° $q,r\\ (r\\lt k)$ ããšãã®ãè¯ãã§ããã. ) \r\n\r\nãããã, \r\n$$\\begin{aligned}\\left\\lfloor\\frac{n+1}{k}\\right\\rfloor-\\left\\lfloor\\frac{n}{k}\\right\\rfloor=\\begin{cases}1&(k\\mid (n+1))\\\\\\\\0&(k\\nmid (n+1))\\end{cases}\\end{aligned}$$\r\nãåãã, $a_{n+1}-a_{n}=(n+1$ ã®æ£ã®çŽæ°ã®åæ°$)$ ãåãããŸã.",
"text": "é
ããšã®å·®åãèŠãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/4497/447"
}
] | ãæ°å $\\{a_n\\}$ ã以äžã§å®ããŸãïŒ
$$a_n=\sum_{k=1}^{n}\bigg\lfloor \frac{n}{k} \bigg\rfloor$$
ãã®ãšãïŒ$a_{n+1}=a_n+3$ ãšãªããã㪠$5000$ 以äžã®æ倧ã®æ£æŽæ° $n$ ã解çããŠãã ããïŒ |
OMCB004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omcb004/tasks/6267 | H | OMCB004(H) | 300 | 134 | 195 | [
{
"content": "ãç·å $BC$ ã®äžç¹ã $M$ïŒäžè§åœ¢ $ABC$ ã®éå¿ã $G$ ãšããïŒ\\\r\nã$G,H,O$ ãåäžçŽç·äžã«ããããšã«æ°ãã€ããã°ïŒ$AH\\parallel MO$ ãšäœµããŠäžè§åœ¢ $AGH$ ãš $MGO$ ã¯çžäŒŒã§ããïŒåŸã£ãŠïŒ$AH : MO = AG : GM = 2 : 1$ ã§ããïŒããã«ïŒäžè§åœ¢ $AHO$ ãšäžè§åœ¢ $OMD$ ã¯çžäŒŒã§ããããïŒ$DO=\\dfrac{1}{2}AO$ ã§ããïŒãã£ãŠïŒ$D$ ã«é¢ã㊠$O$ ãšå¯Ÿç§°ãªç¹ã $O^\\prime$ ãšããã°ïŒ$OO^\\prime=2DO=AO$ ãã $O^\\prime$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ååšããã®ã§ïŒæ¹ã¹ãã®å®çãã $$\\dfrac{1}{2}A O\\times \\bigg(\\frac{1}2AO+AO\\bigg)=DO^\\prime\\times AD= BD\\times CD = 100\\times 123$$\r\nã§ãããã $AO^2=\\bf16400$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/6267"
},
{
"content": "ã$\\triangle ABC$ ã®éå¿ã $G$ ãšãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããïŒ$OM=x$ ãšãããš $AH=2x$ ã§ããïŒ$OH=3\\times OG=2\\times DM=23$ ã§ããããäžå¹³æ¹ã®å®çãã $$OA^2=AH^2+OH^2=4x^2+23^2=OM^2+MB^2=x^2+\\left(\\frac{223}{2}\\right)^2$$ ãæãç«ã€ïŒãããããæãã«è§£ãããšã§ $OA^2=\\boxed{\\textbf{\\color{blue}{16400}}}$ ãåŸãããïŒ",
"text": "äžå¹³æ¹ã§ãããã®è§£",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/6267/455"
},
{
"content": "ãçŽç· $BC$ ã«é¢ããŠïŒç¹ $A,O$ ãšå¯Ÿç§°ãªç¹ããããã $A^{\\prime}$ïŒ$O^{\\prime}$ ãšããïŒ \r\nããã§ïŒåè§åœ¢ $BOCO^{\\prime}$ ã¯ã²ã圢ã§ããããïŒç·å $BC,OO^{\\prime}$ ã¯çŽäº€ãïŒäžç¹ $M$ ãå
±æããïŒ \r\nãŸãïŒ$\\triangle A^{\\prime}BC$ ã®å€æ¥åã $\\Gamma$ ãšãããšïŒ$\\Gamma$ 㯠$BC$ ã«é¢ã㊠$\\triangle ABC$ ã®å€æ¥åãšå¯Ÿç§°ã§ããããïŒ$\\Gamma$ ã®ååŸã® $2$ ä¹ãæ±ãããã®ã§ããïŒ \r\nãçŽç· $BC,HO$ ã¯ãšãã« $AH$ ãšåçŽã§ããããïŒ$BC \\parallel HO$ïŒ \r\n$\\angle BHC = 180^{\\circ} - \\angle BAC = 180^{\\circ} - \\angle BA^{\\prime}C$ ããïŒ$H$ 㯠$\\Gamma$ äžã®ç¹ïŒ \r\n$OH$ ãš $\\Gamma$ ã®äº€ç¹ã®ãã¡ $H$ ã§ãªãæ¹ã $K$ ãšãããšïŒ$\\angle KHA^{\\prime} =180^{\\circ} - \\angle OHA = 90^{\\circ}$ ããïŒ$KA^{\\prime}$ 㯠$\\Gamma$ ã®çŽåŸã§ããïŒ$K$ 㯠$A^{\\prime}O^{\\prime}$ äžã®ç¹ïŒ \r\nãã£ãŠïŒçŽç· $KO^{\\prime}$ïŒããªãã¡çŽç· $A^{\\prime}O^{\\prime}$ ãšïŒçŽç· $BC$ ã®äº€ç¹ã¯ïŒçŽç· $AO,BC$ ã®äº€ç¹ $D$ ã«çããïŒ \r\nã$MD \\parallel OK, MO = MO^{\\prime}$ ã§ããããïŒäžç¹é£çµå®çãã $$OK = 2MD = 2 \\left( BM - BD \\right) = CD - BD = 23$$\r\nãäžå¹³æ¹ã®å®çããïŒ\r\n$$ AO^2 = O^{\\prime}B^2 = O^{\\prime}M^2 + MB^2 = O^{\\prime}M^2 + \\dfrac{ \\left( BD + CD \\right) ^2}{4} = O^{\\prime}M^2 + \\dfrac {223^2}{4}$$\r\n$$ AO^2 = O^{\\prime}K^2 = O^{\\prime}O^2 + OK^2 = 4O^{\\prime}M^2 + 23^2$$\r\nãããã£ãŠïŒ$AO^2 = \\dfrac{223^2 - 23^2}{3} = \\dfrac{246 \\cdot 200}{3} = \\mathbf{16400}$ ã§ããïŒ\r\n\r\n___\r\næ®å¿µãªããïŒå€§äººããéå¿ããšã£ãæ¹ãæ©ãããã§ãïŒ",
"text": "éå¿ããªã€ã©ãŒç·ã䜿ããªã解æ³",
"url": "https://onlinemathcontest.com/contests/omcb004/editorial/6267/456"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®å€å¿ïŒåå¿ããããã $O,H$ ãšãïŒçŽç· $AO$ ãšèŸº $BC$ ãšã®äº€ç¹ã $D$ ãšãããšä»¥äžãæãç«ã¡ãŸããïŒ
$$BD=100,\quad CD=123,\quad \angle{AHO}=90^{\circ}$$
ãã®ãšã $AO^2$ ã®å€ãæ±ããŠãã ããïŒ |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/9829 | A | OMC216(A) | 400 | 111 | 192 | [
{
"content": "ã$9$ 以äžã®æ£æŽæ° $i$ ã«ã€ããŠïŒ$a_i$ ãå·Šãã $i$ çªç®ã®ç³ã®è²ãçœã®ãšã $a_{i}=0$ïŒé»ã®ãšã $a_{i}=1$ ãšå®ããïŒ$A, B$ ãé©åã«ç³ãåãããšã§ïŒ$C$ ãããåŸãããé»ã®ç³ã®æ°ã¯ä»¥äžã® $3$ ã€ã®ããããã«ä»»æã«å¶éã§ããïŒ\r\n$$a_{1} + a_{4} + a_{7}, \\quad a_{2} + a_{5} + a_{8}, \\quad a_{3} + a_{6} + a_{9} \\tag{â}$$\r\nãããã£ãŠïŒ$(â)$ ã®ãã¡å°ãªããšã $1$ ã€ã $1$ 以äžã§ããã°ïŒ$C$ ããããšãç³ãå¿
ã $1$ å以äžã«ã§ãã. \\\r\nãéã«ïŒ$(â)$ ããããã $2$ 以äžã®ãšãïŒ$C$ ããã¯é»ãç³ã $2$ åãšãããšãå¯èœãšãªãïŒããã¯ïŒ$C$ ããã®çªã®å³ç«¯ã®ç³ã®çªå·ãšå·Šç«¯ã®ç³ã®çªå·ã $3$ ã§å²ã£ãäœããåžžã«çããããïŒ$C$ ãããç³ãåãã¯ããã® $2$ åã¯äž¡ç«¯ã®ããããã«å¿
ãé»ãç³ãããããšãã瀺ãããïŒ\\\r\nã以äžããïŒæ±ããã¹ã㯠$(â)$ ã®ãã¡å°ãªããšã $1$ ã€ã $1$ 以äžã§ãããã㪠$(a_1, a_2, \\ldots, a_9) \\in \\\\{0, 1\\\\}^9$ ã®åæ°ã§ããïŒããã¯äœäºè±¡ãèããŠ\r\n$$2^{9} - 4^{3} = \\mathbf{448}$$ \r\nãšèšç®ããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/9829"
}
] | ãèš $9$ åã®çœãç³ãšé»ãç³ãå·Šå³äžåã«äžŠãã§ããïŒ$A, B, C$ ããã® $3$ 人ã次ã®æäœã $A, B, C, A, B, C, \ldots$ ã®é çªã§è¡ããŸãïŒ
- 巊端ãŸãã¯å³ç«¯ã«ããç³ãäžã€éžã³ïŒãããåãé€ãïŒ
æäœãç³ããªããªããŸã§è¡ããšãïŒ$A$ ãããš $B$ ãããååããŠé©åã«æäœãããããšã§ïŒ$C$ ãããæçµçã«åã£ãé»ãç³ã®ç·æ°ã $C$ ããã®éžæã«ãããåžžã« $1$ å以äžã«ããããšãã§ããŸããïŒãã®ãšãïŒåãã®ç³ã®äžŠã¹æ¹ãšããŠãããããã®ã¯äœéããããŸããïŒ\
ããã ãïŒã¯ããã«äžŠãã§ããç³ã«ã¯ïŒäœ¿ããªãè²ããã£ãŠããããã®ãšããŸãïŒ |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/10589 | B | OMC216(B) | 400 | 114 | 189 | [
{
"content": "ãéè² æŽæ° $n$ ã«ã€ã㊠$2n$ ç§åŸãã $2n+1$ ç§åŸãå¥æ°ç§ç®ïŒ$2n+1$ ç§åŸãã $2n+2$ ç§åŸãå¶æ°ç§ç®ãšãããšïŒæ¡ä»¶ãã $2$ ç¹ $P,Q$ ã¯å¥æ°ç§ç®ïŒå¶æ°ç§ç®ã®ããããäžæ¹ã§ã¯ã€ãã«äºãã«å¹³è¡ã«ïŒããäžæ¹ã§ã¯ã€ãã«äºãã«åçŽã«åãããšããããïŒãŸãå¥æ°ç§ç®ãå¹³è¡ãªå ŽåãèããïŒ\\\r\nã$2$ ç¹ $P,Q$ ã¯æçè·é¢ã§ $A$ ã«ç§»åããŠäžèŽãïŒå¹³è¡ã«åãé㯠$2$ ç¹éã®ãã³ããã¿ã³è·é¢ã¯å€ãããïŒåçŽã«åãéã¯ãã³ããã¿ã³è·é¢ã¯ $2$ å€åããããšããïŒå¶æ°ç§ç®ã®ãã¡ $5$ ç§é㯠$P$ ã $x$ 軞ïŒ$Q$ ã $y$ 軞æ¹åã«åãïŒæ®ãã® $5$ ç§é㯠$P$ ã $y$ 軞ïŒ$Q$ ã $x$ 軞æ¹åã«åãïŒãããš $P, Q$ ã $20$ ç§åŸã« $A$ ã«å°éããããšããïŒå¥æ°ç§ç®ã®ãã¡ $5$ ç§é㯠$2$ ç¹ãšã $x$ 軞æ¹åïŒæ®ãã® $5$ ç§é㯠$2$ ç¹ãšã $y$ 軞æ¹åã«åãããšã«ãªãïŒãããã«ãã£ãŠå¥æ°ç§ç®ãå¹³è¡ãªå Žåã®å
šãŠã網çŸ
ã§ãïŒãã㯠${{}\\_{10}\\mathrm{C}\\_{5}}^2$ éããšãªãïŒ\\\r\nãå¥æ°ç§ç®ãåçŽãªå Žåãåæ§ã§ããïŒæ±ããå€ã¯ $2\\times {{}\\_{10}\\mathrm{C}\\_{5}}^2=\\mathbf{127008}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/10589"
}
] | ã座æšå¹³é¢äžã® $2$ ç¹ $P, Q$ ãç¹ $O(0,0)$ ãåæã«åºçºãïŒç¹ $A(10,10)$ ãžãšæ¬¡ã®æ¡ä»¶ãå
šãŠæºããããã«ç§»åãããšãïŒçµè·¯ã®çµãšããŠãããããã®ã®åæ°ãæ±ããŠãã ããïŒ
- $P, Q$ ã¯ãããã $x$ 軞ããã㯠$y$ 軞ã«å¹³è¡ã«ç§é $1$ ã§ç§»åãïŒ$O$ ãåºçºã㊠$20$ ç§åŸã«ç¹ $A$ ã«å°éããïŒ
- $P, Q$ ã¯ããããæ Œåç¹ã§ã®ã¿é²è¡æ¹åãå€ããããšãã§ããïŒ
- $P, Q$ ãããããæ Œåç¹ã«å°éãããšãïŒå¿
ãäžæ¹ãé²è¡æ¹åãå€ãããäžæ¹ã¯çŽé²ããïŒããªãã¡ïŒ$1$ ç§ããšã« $P, Q$ ã®ã¡ããã©äžæ¹ã®ã¿ãé²è¡æ¹åãå€ããïŒ
ãã ãïŒ$P, Q$ ã®å
¥ãæ¿ãã®ã¿ã§äžèŽããçµè·¯ã®çµãç°ãªããã®ãšããŠæ°ããŸãïŒãŸãæ Œåç¹ãšã¯ïŒ$x$ 座æšãš $y$ 座æšããšãã«æŽæ°ãšãªãç¹ããããŸãïŒ |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/8636 | C | OMC216(C) | 500 | 51 | 84 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®èŸºã®é·ãã $BC = a, CA = b, AB = c$ ãšããïŒ$\\omega$ ã®äžå¿ã $I$ïŒèŸº $BC$ ãš $\\omega$ ã®æ¥ç¹ã $D$ïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããïŒãŸãïŒ$\\omega$ ã®ååŸã $r$ ãšããïŒ \\\r\nãç·å $P_BP_C$ ã $\\omega$ ã®çŽåŸãšãªãããšããïŒçŽç· $PP_B$ ãš $PP_C$ ãåçŽã«äº€ããïŒãã®ãããªç¹ $P$ ããã äžã€ã§ããããšããïŒ$\\omega$ äžã§ $\\angle BPC =90^\\circ$ ãæºããç¹ã¯ã¡ããã©äžã€ã§ããïŒãããã£ãŠïŒç·å $BC$ ãçŽåŸãšããåãš $\\omega$ ãæ¥ããïŒãã£ãŠïŒãã®æ¥ç¹ã $T$ ãšããã°ïŒ\r\n$$\\frac{a}{2} = BM = TM = IT + IM = r + \\sqrt{r^2 + DM^2}$$\r\nãæãç«ã¡ïŒãããå€åœ¢ããããšã§ïŒ\r\n$$ar = \\frac{a^2}{4} - DM^2\\tag1$$\r\nãåããïŒããŸïŒ\r\n$$DM = \\frac{|BD - CD|}{2} = \\frac{|b-c|}{2}$$\r\nã§ããïŒãŸãïŒããã³ã®å
¬åŒãã\r\n$$\\begin{aligned}\r\nr &= \\frac{1}{2}\\sqrt{\\frac{(-BC + CA + AB)(BC - CA + AB)(BC + CA - AB)}{BC + CA + AB}}\\\\\\\\\r\n&= \\frac{1}{2}\\sqrt\\frac{(a^2 - (b-c)^2)(b+c-a)}{b+c+a}\r\n\\end{aligned}$$\r\nãæãç«ã€ïŒãã£ãŠïŒãããã $(1)$ ã«ä»£å
¥ããŠæ¬¡ã®ããã«æŽçããŠããããšã§ïŒæ¬¡ãåŸãïŒ\r\n$$\\begin{aligned}\r\n(1)\r\n&\\iff \\frac{a}{2}\\sqrt\\frac{(a^2 - (b-c)^2)(b+c - a)}{a+b+c} = \\frac{a^2 - (b-c)^2}{4}\\\\\\\\\r\n&\\iff 2a\\sqrt{b+c - a}= \\sqrt{(a^2 - (b-c)^2)({a+b+c} )}\\\\\\\\\r\n&\\iff 5 a^3 - 3(b+c) a^2 - (b-c)^2 a - (b+c) (b-c)^2 = 0 \\\\\\\\\r\n&\\iff 5 a^3 - 63 a^2 - a - 21 = 0\r\n\\end{aligned}$$\r\næ¹çšåŒ $5 x^3 - 63 x^2 - x - 21 = 0$ ã¯æç解ããããªãããïŒ\r\n$$ f(x) = x^3 - \\frac{63}{5} x^2 - \\frac{1}{5} x - \\frac{21}{5} $$\r\nã§ããïŒãããã£ãŠ \r\n$$ \\left\\lfloor f(100) \\right\\rfloor = \\left\\lfloor \\frac{4369879}{5} \\right\\rfloor = \\bf873975$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/8636"
}
] | ã$AB=11, AC=10$ ãªãäžè§åœ¢ $ABC$ ã®å
æ¥åã $\omega$ ãšããŸãïŒ$\omega$ äžã®ç¹ $P$ ã«å¯ŸãïŒçŽç· $BP$ ãš $\omega$ ã® $P$ 以å€ã®äº€ç¹ã $P_B$ ãšãïŒçŽç· $CP$ ãš $\omega$ ã® $P$ 以å€ã®äº€ç¹ã $P_C$ ãšããŸãïŒãã ãïŒçŽç· $BP$ ã $\omega$ ã«æ¥ããå Žå㯠$P_B=P$ ãšãïŒåæ§ã«çŽç· $CP$ ã $\omega$ ã«æ¥ããå Žå㯠$P_C=P$ ãšããŸãïŒ\
ã$P_B$ ãš $P_C$ ãç°ãªãïŒãã€ïŒç·å $P_BP_C$ ã $\omega$ ã®çŽåŸãšãªããããªç¹ $P$ ã $\omega$ äžã«ã¡ããã©äžã€ååšããŸããïŒèŸº $BC$ ã®é·ãã®æå°å€é
åŒã $f$ ãšãããšãïŒ $\lfloor f(100) \rfloor$ ã®å€ã解çããŠãã ããïŒ
<details><summary>æå°å€é
åŒãšã¯<\/summary>
ã$m$ ãæ ¹ã«ãã€æçæ°ä¿æ°å€é
åŒã®ãã¡ïŒæ¬¡æ°ãæå°ã§ããïŒãã€æé«æ¬¡ã®ä¿æ°ã $1$ ã§ãããã®ãïŒãã®ãããªãã®ã¯äžæã«ååšããïŒïŒ $m$ ã®**æå°å€é
åŒ**ãšãã³ãŸãïŒ
<\/details> |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/9426 | D | OMC216(D) | 500 | 99 | 136 | [
{
"content": "ã$p = 2^8+1$ ãšããïŒ$2^{16}\\equiv 1 \\pmod{p}$ ã§ããïŒ$2^0,2^1,\\ldots,2^{15}$ ã $p$ ã§å²ã£ãäœãã¯çžç°ãªãããšã«æ³šæãããšïŒ$0$ ä»¥äž $15$ 以äžã®æŽæ°ãããªãæ°å $\\\\{b_n\\\\}\\_{n=0,1,\\ldots}$ ã§ãã£ãŠïŒä»»æã® $n\\geq 0$ ã«ã€ã㊠$b_n\\equiv a_n \\pmod{16}$ ã§ããïŒãã€ïŒ$k$ ã«ãããªãããé¢æ° $f$ ãååšããŠïŒ$b_{n+1}=f(b_n)$ ãæãç«ã€ãã®ãååšããïŒåé¡ã§äžãããã挞ååŒããïŒ\r\n$$ f(x) = \\bigl( (2^x + 216) \\\\% p \\bigr) \\\\% 16 $$\r\nãšè¡šããããšã«æ³šæãããšïŒ$f$ ã®å€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}\r\nx & 0 & 1 & 2 & 3 & 4 & 5 & 6-8 & 9 & 10 & 11 & 12-15 \\\\\\\\ \\hline\r\nf(x) & 9 & 10 & 12 & 0 & 8 & 8 & 7 & 6 & 4 & 0 & 8 \r\n\\end{array}$$\r\nããããµãŸãããšïŒ$\\\\{b_n\\\\}$ ã¯ååå
ã§ããªãã $7$ ã§äžå®ã«ãªãïŒ$\\\\{a_n\\\\}$ ã¯ååå
ã§ããªãã $87$ ã§äžå®ã«ãªãããšããããïŒãããã£ãŠå $k$ ã«ã€ããŠïŒ$a_{m_k} = 87$ ãã¿ããæå°ã® $m_k$ ãæ±ããã°ããïŒ\\\r\nããŸãã¯å $k$ ã«ã€ããŠïŒ$b_{n_k} = 7$ ããªãã¡ $f^{n_k}(k) = 7$ ãã¿ããæå°ã®æ£æŽæ° $n_k$ ãèšç®ããïŒããã¯ä»¥äžã§äžããããïŒ\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}\r\nk & 0 & 1 & 2 & 3 & 4 & 5 & 6-8 & 9 & 10 & 11 & 12-15 \\\\\\\\ \\hline\r\nn_k & 3 & 4 & 3 & 4 & 2 & 2 & 1 & 2 & 3 & 4 & 2 \r\n\\end{array}$$\r\nãããã§ïŒ$a_{m_k} = 87$ ãšãªãã®ã¯ $a_{m_k-1} \\equiv 7 \\pmod{16}$ ããªãã¡ $f^{m_k-1}(k) = 7$ ãšãªã£ããšãã§ããã®ã§ïŒ$k \\equiv 7 \\pmod{16}$ ã®ãšããé€ã㊠$m_k = n_k + 1$ ãæç«ããïŒããªãã¡ïŒ$m_k$ ã¯ä»¥äžã§äžããããïŒ\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}\r\nk \\bmod 16 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12-15 \\\\\\\\ \\hline\r\nm_k & 4 & 5 & 4 & 5 & 3 & 3 & 2 & \\mathbf{1} & 2 & 3 & 4 & 5 & 3 \r\n\\end{array}$$\r\nã以äžããïŒæ±ããç·åã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$ 1 \\cdot (2^{4}) + 2 \\cdot (2 \\cdot 2^{4}) + 3 \\cdot (7 \\cdot 2^{4}) + 4 \\cdot (3 \\cdot 2^{4} + 1) + 5 \\cdot (3 \\cdot 2^{4}) = \\mathbf{852}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/9426"
}
] | ã$0$ ä»¥äž $256$ 以äžã®æŽæ° $k$ ã«å¯ŸããŠïŒ$0$ ä»¥äž $256$ 以äžã®æŽæ°ãããªãæ°å $\\{a_n\\}_{n=0,1,\ldots}$ ã以äžã®æ¡ä»¶ãã¿ãããŸããïŒ
- $a_0=k$ ã§ããïŒãã€ä»»æã®éè² æŽæ° $n$ ã«ã€ããŠ
$$a_{n+1}\equiv 2^{a_n}+216 \pmod{257}.$$
ãã®ãšãïŒ$a_m=a_{m+t}$ ãã¿ãã**æ£æŽæ°** $m,t$ ãååšããã®ã§ïŒããããã® $k$ ã«å¯Ÿã㊠$m$ ãšããŠããããæå°ã®ãã®ã $m_k$ ãšãããŸãïŒ
$$m_0+m_1+m_2+\cdots+m_{256}$$
ãæ±ããŠãã ããïŒ |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/9560 | E | OMC216(E) | 700 | 7 | 22 | [
{
"content": "$$\\angle BDP = \\angle BDC - \\angle CDP = \\angle BAC - \\angle AEF = \\angle AFE$$\r\nã§ããïŒåæ§ã« $\\angle DBP = \\angle AGE$ ã§ããïŒãã£ãŠïŒæ£åŒŠå®çãã次ããããïŒ\r\n$$\\begin{aligned}\r\n\\frac{FQ}{GQ}\r\n&= \\frac{\\sin \\angle FCQ}{\\sin \\angle GCQ}\\\\\\\\\r\n&= \\frac{\\sin\\angle CDP\\cdot (DP\\/CP)}{\\sin\\angle CBP\\cdot (BP\\/CP)}\\\\\\\\\r\n&= \\frac{DP\\sin\\angle AEF}{BP\\sin\\angle AEG}\\\\\\\\\r\n&= \\frac{\\sin\\angle DBP\\sin\\angle AEF}{\\sin\\angle BDP\\sin\\angle AEG}\\\\\\\\\r\n&= \\frac{\\sin\\angle AGE\\sin\\angle AEF}{\\sin\\angle AFE\\sin\\angle AEG}\\\\\\\\\r\n&= \\frac{\\sin \\angle AEF}{\\sin \\angle AFE}\\cdot\\frac{\\sin \\angle AGE}{\\sin \\angle AEG}\\\\\\\\\r\n&= \\frac{AF}{AE}\\cdot\\frac{AE}{AG}\\\\\\\\\r\n&= \\frac{AF}{AG}\r\n\\end{aligned}$$\r\nã§ããïŒãŸãïŒ\r\n$$\\angle FQG = 180^\\circ - \\angle FCG = 180^\\circ - \\angle BCD = \\angle BAD = \\angle FAG$$\r\nã§ããããïŒäžè§åœ¢ $AFG$ ãšäžè§åœ¢ $QFG$ ã¯ååã§ããïŒãã£ãŠïŒ$A$ ãš $Q$ ã¯çŽç· $FG$ ã«é¢ããŠå¯Ÿç§°ã§ããïŒ\\\r\nãããã§ïŒåè§åœ¢ $ABCD$ ã®å€æ¥åã®äžå¿ã $O$ ãšãïŒåè§åœ¢ $ABCD$ ã®ãã±ã«ç¹ã $M$ ãšããïŒãã®ãšãïŒ\r\n$$\\angle FMG = \\angle AMF + \\angle AMG = \\angle ADF + \\angle ABG = \\angle ABC + \\angle ADC = 180^\\circ$$\r\nããïŒ$M$ ã¯çŽç· $FG$ äžã«ããïŒãŸãïŒ\r\n$$\\measuredangle AMC\r\n= \\measuredangle AMF + \\measuredangle FMC\r\n= \\measuredangle ADF + \\measuredangle FBC\r\n= \\measuredangle ADC+ \\measuredangle ABC\r\n= \\measuredangle AOC$$\r\nã§ããããïŒ$4$ ç¹ $A, C, M, O$ ã¯åäžååšäžã«ããïŒåæ§ã« $4$ ç¹ $B, D, M, O$ ãåäžååšäžã«ããïŒãã£ãŠïŒãã®äºåãšåè§åœ¢ $ABCD$ ã®å€æ¥åã®æ ¹å¿ãèããããšã§ïŒ$3$ ç¹ $E,M,O$ ã¯åäžçŽç·äžã«ããããšããããïŒããã«ïŒ\r\n$$\\angle QMF = \\angle AMF=180^\\circ - \\angle ADF = \\angle CDG = \\angle CMG$$\r\nã§ããããšãã $3$ ç¹ $C, M, Q$ ã¯åäžçŽç·äžã«ããïŒãŸãïŒ$AO = CO$ ãã $\\angle AMO = \\angle CMO$ ã§ããã®ã§ïŒ$\\angle AMF = \\angle CMG$ ãšããã㊠$\\angle OMF = \\angle OMG$ ã§ããïŒãã£ãŠïŒçŽç· $FG$ ãš $MO$ ã¯çŽäº€ããïŒããã«ïŒ\r\n$$\\angle OCE = \\angle OCA = \\angle OMA = \\angle OMC$$\r\nãªã®ã§ïŒäžè§åœ¢ $OEC$ ãšäžè§åœ¢ $OCM$ ã¯çžäŒŒã§ããïŒãã£ãŠïŒçŽç· $MO$ ãš $AQ$ ãå¹³è¡ã§ããããšããïŒ \r\n$$CQ=CM\\cdot\\frac{AC}{CE} = CE\\cdot\\frac{OC}{OE}\\cdot\\frac{AE + CE}{CE} = \\frac{1230}{OE}$$\r\nãšãªãïŒ$E$ ããåè§åœ¢ $ABCD$ ã®å€æ¥åãžã®æ¹ã¹ããèããããšã§\r\n$$OE^2=OA^2-AEã»CE = 690$$\r\nãæãç«ã€ã®ã§ïŒ\r\n$$CQ^2=\\frac{1230^2}{OE^2} = \\frac{50430}{23}$$\r\nãšæ±ãŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf50453$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/9560"
},
{
"content": "ãã $Q$ 㯠$FG$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã§ããããŸã§ã¯å
¬åŒè§£èª¬ãšåæ§ã§ãïŒ\\\r\nãBrocard ã®å®çããïŒå $ABC$ ã«ãããŠïŒ$FG$ ã¯æ¥µã $E$ ãšãã極ç·ã§ãïŒåŸã£ãŠïŒ$E$ ãã $FG$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããšïŒ$O,E,H$ ã¯äžçŽç·äžã«ããïŒ$OE \\times OH = 30^2$ ãæç«ããŸãïŒäžæ¹ã§ $OE^2$ ã¯æ¹ã¹ãã®å®çããæ±ããããŸãããïŒ$EH = OH-OE$ ã®å€ããã®æç¹ã§èšç®ããããšãã§ããŸãïŒ\\\r\nãäžæ¹ã§ïŒçŽç· $CA$ ãš $FG$ ã®äº€ç¹ã $R$ ãšãããšïŒå®å
šå蟺圢ã®æ§è³ªãã $C,E,A,R$ ã¯èª¿åç¹åã§ãããïŒ$AR$ ã®é·ããæ±ããããŸãïŒ\\\r\nã以äžããïŒçŽç· $FG$ ãš $C,E,A$ ãããããšã®è·é¢ïŒåŸã£ãŠ $Q$ ãšã®è·é¢ãïŒãèšç®ããããšãå¯èœã«ãªããŸããïŒããšã¯æçŽã«äžå¹³æ¹ã®å®çãçšããŠèšç®ããããšã§ $CQ$ ã®é·ããæ±ããããšãã§ããŸãïŒ\r\n\r\n---\r\n\r\nããããããäžå¹³æ¹ã®å®çã§ãŽãªæŒããªããïŒããšããæèã¯ããšã¬ã¬ã³ãã§ã¯ãªããããããŸããããOMC ã§åœ¹ã«ç«ã€ããšã¯å€ãã§ãã",
"text": "ãŽãªæŒãïŒ",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/9560/448"
}
] | ãååŸ $30$ ã®åã«å
æ¥ããåè§åœ¢ $ABCD$ ãããïŒå¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšãããšïŒ
$$AE=6,\quad BE=10,\quad CE=35,\quad DE=21$$
ãæãç«ã¡ãŸãïŒ
ãçŽç· $AB$ ãšçŽç· $CD$ïŒçŽç· $AD$ ãšçŽç· $BC$ ããããã $F, G$ ã§äº€ãã£ãŠããïŒäžè§åœ¢ $BCD$ ã®å
éšã«ç¹ $P$ ããšã£ããšããïŒ
$$\angle CBP=\angle AEG,\quad \angle CDP=\angle AEF$$
ãæãç«ã¡ãŸããïŒ
ãçŽç· $CP$ ãšäžè§åœ¢ $CFG$ ã®å€æ¥åãšã®äº€ç¹ã®ãã¡ $C$ ã§ãªãæ¹ã $Q$ ãšãããšãïŒç·å $CQ$ ã®é·ãã® $2$ ä¹ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ãçããŠãã ããïŒ |
OMC216 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc216/tasks/6913 | F | OMC216(F) | 800 | 0 | 18 | [
{
"content": "ã$p = \\dfrac{1+\\sqrt{15}i}{4}$ 㯠$p^2-\\dfrac{p}{2} + 1 =0$ ãæºããïŒãã® $p$ ãšä»»æã®å®æ° $a, b$ ã«ã€ããŠïŒ\r\n$$ {|a + bp|}^2 = a^2 + \\dfrac{1}{2}ab + b^2 $$\r\nãšãªãããïŒ\r\n$$ \\begin{aligned}\r\nX &= \\dfrac{1}{2}xyz-(xy^2+yz^2+zx^2) \\\\\\\\\r\nY &= -\\dfrac{3}{4}xyz+\\dfrac{1}{2}(xy^2+yz^2+zx^2)+x^2y+y^2z+z^2x\r\n\\end{aligned} $$\r\nãšãããš $(x+py)(y+pz)(z+px) = X + pY$ ãæãç«ã€ïŒãã®äž¡èŸºã®çµ¶å¯Ÿå€ãæ¯èŒããããšã§ïŒ\r\n$$\\biggl(x^2 + \\dfrac{1}{2}xy + y^2\\biggr)\\biggl(y^2 + \\dfrac{1}{2}yz + z^2\\biggr)\\biggl(z^2 + \\dfrac{1}{2}zx + x^2\\biggr) = X^2 + \\dfrac{1}{2}XY + Y^2$$\r\nãšè¡šããã. ããã§ïŒ$x, y, z$ ã®æææ¡ä»¶ã¯ \r\n$$\\begin{aligned} \r\n5^{20}\r\n&= (x+2y)(y+2z)(z+2x) - 12xyz \\\\\\\\\r\n&= -3xyz + 2(x^2y+y^2z+z^2x) + 4(xy^2+yz^2+zx^2) \\\\\\\\\r\n&= -3X+2Y\r\n\\end{aligned} $$\r\nãšå€åœ¢ããããšãã§ããïŒãããã£ãŠïŒ$N = 5^{20}$ ãšãããš $Y = \\dfrac{3X+N}{2}$ ãªã®ã§ïŒ\r\n$$ X^2 + \\dfrac{1}{2}XY + Y^2 = 4X^2 + \\frac{7}{4} NX + \\frac{N^2}{4} = 4 \\biggl( X + \\frac{7}{32}N \\biggr)^2 + \\frac{15}{256} N^2 $$\r\nãšå€åœ¢ã§ãïŒ$X = -\\dfrac{7}{32}N, ~ Y = \\dfrac{11}{64}N$ ã®ãšããã®åŒã¯æå°å€ $\\dfrac{15}{256}N^2$ ãåãïŒ\r\n\r\nãããã§ïŒ$X, Y$ ã®æææ¡ä»¶ã¯æ¬¡ã® $2$ åŒã«èšãæãããã. \r\n$$\\dfrac{3}{2}X + Y = -(x-y)(y-z)(z-x) = -\\dfrac{5}{32}NïŒX = -\\dfrac{7}{32}N$$\r\nåè
ã®åŒã¯ $k=x-y, ~ l=y-z$ ãšãããš $kl(k+l)=-\\dfrac{5}{32}N$ ãšæžãæããããïŒ$l$ ã®ååšæ¡ä»¶ããïŒ$k^4-\\dfrac{5}{8}Nk\\geq 0$ ã〠$k \\neq 0$ ãå¿
èŠã§ããïŒéã«ããããæºãããšã $x, z$ ã¯å®æ° $α, β$ ãçšããŠïŒ$x=y+α, z=y-β$ ãšè¡šãããšãã§ããïŒãããåŸè
ã®åŒã«ä»£å
¥ãããšïŒå·ŠèŸºãæé«äœã®ä¿æ°ã $-\\dfrac{5}{2}$ ã§ãã $y$ ã® $3$ 次åŒã«ãªãã®ã§ïŒæããã« $y$ ã®å®æ°è§£ãååšãïŒåæã« $x, z$ ã®ååšã瀺ããã. \r\n\r\nãããã«ïŒ$x-y$ ããšãããæŽæ° $n$ 㯠$ n\\lt 0$ ãŸã㯠$n \\geq \\sqrt[3]{\\dfrac{5}{8}N}$ ãæºããïŒãããå¿
èŠååã§ããïŒ$\\sqrt[3]{\\dfrac{5}{8}N} = 39062.5$ ããæ±ããçã㯠\r\n$$1+2+ \\cdots + 39062 = \\mathbf{762939453}$$\r\nã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc216/editorial/6913"
}
] | ãå®æ° $x, y, z$ ã $$(x+2y)(y+2z)(z+2x)= 12xyz + 5^{20}$$ ãæºãããšãïŒä»¥äžã«æå°å€ãååšããŸã.
$$\biggl(x^2 + \dfrac{1}{2}xy + y^2\biggr)\biggl(y^2 + \dfrac{1}{2}yz + z^2\biggr)\biggl(z^2 + \dfrac{1}{2}zx + x^2\biggr)$$
å®æ°ã®çµ $(x, y, z)$ ããã®æå°å€ãéæããŠãããšãïŒ$x-y$ ã**ãšãåŸãªã**æ£æŽæ°å€ã®ç·åã解çããŠãã ãã. |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/9284 | A | OMC215(A) | 100 | 387 | 412 | [
{
"content": "$$\\frac{a^2-1001a+1001^2}{b^2-1001b+1001^2}\\leq\\frac{\\max\\lbrace a^2-1001a+1001^2\\rbrace}{\\min\\lbrace b^2-1001b+1001^2\\rbrace}$$\r\nã§ããïŒçå·ãæç«ããã®ã¯ $a=1,1000$ ã〠$b=500,501$ ã®ãšãã§ããã®ã§è§£çãã¹ãå€ã¯\r\n$$(1+500)+(1+501)+(1000+500)+(1000+501)=\\mathbf{4004}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9284"
}
] | ã $1\leq a\leq 1000, ~ 1\leq b\leq 1000$ ãªãæŽæ° $a,b$ ã«ã€ããŠïŒ
$$\frac{a^2-1001a+1001^2}{b^2-1001b+1001^2}$$
ãããããæ倧ã®å€ããšããšãïŒ$a+b$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/9826 | B | OMC215(B) | 100 | 309 | 398 | [
{
"content": "ã次ã®å³ã®ããã«ãã¹ç®ãåå²ããïŒ\\\r\n\r\nãå $A$ ã® $3$ ãã¹ã«å
šãŠæã眮ãããšã¯äžå¯èœãªã®ã§æã¯é«ã
$2$ æ¬ã§ããïŒãããã£ãŠïŒå
šäœã§æã®æ°ã¯é«ã
$1+3333\\cdot 2=6667$ ã§ããïŒäžã®ããã«æãé
眮ããã°å®éã« $6667$ æ¬æã眮ãããšãå¯èœã§ããïŒ\r\n\r\n\r\n以äžãã眮ãããæã®æ°ã®æ倧å€ã¯ $\\mathbf{6667}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9826"
}
] | ã $100\times 100$ ã®ãã¹ç®ããããŸãïŒ$N$ åã®ãã¹ãéžãã§æãåãã¹ã« $1$ æ¬ãã€çœ®ããšïŒæ¬¡ãæç«ããŸããïŒ
- å·Šå³ãŸãã¯äžäžã«é£ç¶ããŠé£ãåãä»»æã® $3$ ãã¹ã«ã€ããŠïŒãã®ãã¡å°ãªããšã $1$ ãã¹ã«ã¯æã眮ãããŠããªãïŒ
ã$N$ ãšããŠããããæ倧å€ãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/9285 | C | OMC215(C) | 200 | 381 | 405 | [
{
"content": "ã $10^5=2^5\\cdot5^5$ ã®çŽæ°ã¯ $2^a\\cdot5^bã(a,b\\in\\lbrace 0,1,2,3,4,5\\rbrace)$ ãšãããïŒ\\\r\n$$2^a\\cdot5^b\\equiv(-1)^{a+b}\\mod3$$\r\nãªã®ã§çŽæ° $2^a\\cdot5^b$ ã $3$ ã§å²ã£ãäœãã $1$ ã§ããããšã¯ $a,b$ ã®å¶å¥ãäžèŽããããšãšåå€ã§ããïŒãã£ãŠæ±ããç·åã¯\r\n$$(2^0+2^2+2^4)(5^0+5^2+5^4)+(2^1+2^3+2^5)(5^1+5^3+5^5)=\\mathbf{150381}ïŒ$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9285"
}
] | ã $10^5$ ã®æ£ã®çŽæ°ã§ãã£ãŠ $3$ ã§å²ã£ãäœãã $1$ ã§ãããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/10790 | D | OMC215(D) | 200 | 266 | 305 | [
{
"content": "ã蟺 $BC$ äžã®ç¹ $P$ ã§ãã£ãŠïŒç·å $XP$ ãå°åœ¢ $ABCD$ ã®é¢ç©ã $2$ çåãããã®ãèããïŒå
·äœçã«ã¯ $BP=1999$ ãæºããç¹ã§ããïŒ\\\r\nãäžè§åœ¢ $XYZ,XPZ$ ã¯é¢ç©ãçããã®ã§ $XZ\\parallel YP$ ãæãç«ã€ïŒãããã£ãŠçŽç· $XY$ ãšèŸº $BC$ ã®äº€ç¹ã $Q$ ãšããã° $PQ:PZ=YQ:YX=YC:YA=3:1$ ã§ããïŒãã㧠$CQ=3AX=9$ ãã $BQ=2995$ ãªã®ã§ïŒ$BP=1999$ ãšåãããŠïŒ$PQ=996$ ããããïŒä»¥äžãã $PZ=332$ ã§ããïŒ$BZ=BP-PZ=\\bf1667$ ãå°ãããïŒ\r\n----\r\n\r\n**å¥è§£.** \\\r\nã$Y$ ãéã $AD(BC)$ ã«å¹³è¡ãªçŽç·ãš $AB,CD$ ã®äº€ç¹ããããã $P,Q$ ãšããïŒ$AY:YC=1:3$ ããïŒ $PY=751,YQ=750$ ãåŸãããïŒãŸãïŒå°åœ¢ $APYX,DQYX,PBZY,QCZY$ ã®é«ãã¯ãããã $h,h,3h,3h$ ãšè¡šãããïŒãããã£ãŠ $|APYX|+|PBZY|=|DQYX|+|QCZY|$ ããïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$\\frac{h}{2}(3+751)+\\frac{3h}{2}(751+BZ)=\\frac{h}{2}(997+750)+\\frac{3h}{2}(750+(3004-BZ))$$\r\nããã解ãããšã§ $BZ=\\bf1667$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/10790"
}
] | ã$AD\parallel BC$ ãªãå°åœ¢ $ABCD$ ããããŸãïŒèŸº $AD$ äžã«ç¹ $X$ ãïŒç·å $AC$ äžã«ç¹ $Y$ ãïŒèŸº $BC$ äžã«ç¹ $Z$ ããšããšïŒæ¬¡ãæç«ããŸããïŒ
$$\begin{aligned}
AB=1001, \quad BC=3004, \quad CD=2001, \\\\
AX=3, \quad XD=997, \quad AY:YC=1:3
\end{aligned}$$
æãç· $XYZ$ïŒïŒç·å $XY$ ãšç·å $YZ$ ãã€ãªãããã®ïŒãå°åœ¢ $ABCD$ ã®é¢ç©ã $2$ çåãããšãïŒç·å $BZ$ ã®é·ããæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/9288 | E | OMC215(E) | 300 | 275 | 339 | [
{
"content": "ã $999=p, ~ 1001=q$ ãšãïŒ$S=f(1)+f(2)+\\cdots+f(pq)$ ãšããïŒ\\\r\nãè¯ãæ° $a$ ã§ãã£ãŠ $1\\leq a\\leq pq$ ãæºãããã®å
šäœã®éåã $A$ ãšããïŒ$p,q$ ã¯äºãã«çŽ ãªã®ã§ $|A|=p+q-1$ ã§ããïŒ\\\r\nããã㧠$a\\in A$ ã«å¯ŸããŠïŒ$n$ 以äžã®è¯ãæ°ãšã㊠$a$ ãååšãããã㪠$1\\leq n\\leq pq$ 㯠$pq+1-a$ ã ãããïŒ\\\r\nãããªãã¡ $a\\in A$ 㯠$pq+1-a$ ã ã $S$ ã«å¯äžããã®ã§ïŒ\r\n$$\\begin{aligned}\r\nS&=\\sum_{a\\in A}(pq+1-a)\\\\\\\\\r\n &=(pq+1)|A|-\\sum_{a\\in A}a\\\\\\\\\r\n &=(pq+1)(p+q-1)-(\\sum_{k=1}^{q}pk+\\sum_{k=1}^{p}qk-pq)\\\\\\\\\r\n &=\\(pq+1)(p+q-1)-\\frac{pq}{2}(p+q)\\\\\\\\\r\n &=1000000\\cdot 1999-999999\\cdot 1000\\\\\\\\\r\n &=\\bf 999001000\r\n\\end{aligned}$$\r\n----\r\n\r\n**å¥è§£.** \\\r\nã$999=p, ~ 1001=q$ãšããïŒ$p,q$ã¯äºãã«çŽ ãªã®ã§æ¬¡ãæãç«ã€ïŒ\r\n$$f(n)=\r\n\\begin{cases}\r\n\\bigg\\lfloor\\dfrac{n}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{n}{q}\\bigg\\rfloorã&(n=1,2,...,pq-1)\\\\\\\\\r\np+q-1&(n=pq)\r\n\\end{cases}$$\r\nãã£ãŠæ±ãããå€ $S$ ã¯\r\n$$\\begin{aligned}\r\nS&=\\sum_{n=1}^{pq}f(n)\\\\\\\\\r\n&=\\sum_{n=0}^{pq-1}\\bigg(\\bigg\\lfloor\\dfrac{n}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{n}{q}\\bigg\\rfloor\\bigg)+p+q-1\\\\\\\\\r\n&=\\sum_{a=0}^{q-1}\\sum_{b=0}^{p-1}\\bigg(\\bigg\\lfloor\\dfrac{ap+b}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{a+bq}{q}\\bigg\\rfloor\\bigg)+p+q-1\\\\\\\\\r\n&=\\sum_{a=0}^{q-1}\\sum_{b=0}^{p-1}(a+b)+p+q-1\\\\\\\\\r\n&=\\frac{1}{2}pq(p-1)+\\frac{1}{2}pq(q-1)+p+q-1\\\\\\\\\r\n&=\\frac{1}{2}(pq+2)(p+q-2)+1\\\\\\\\\r\n&=\\frac{1}{2}\\cdot 1000001\\cdot1998+1\\\\\\\\\r\n&=\\bf999001000\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9288"
}
] | ã$999$ ãŸã㯠$1001$ ã®å°ãªããšãäžæ¹ã§å²ããããæ£æŽæ°ã**è¯ãæ°**ãšåŒã³ãŸãïŒæ£æŽæ° $n$ ã«ã€ããŠïŒ$n$ 以äžã®è¯ãæ°ã®åæ°ã $f(n)$ ãšãããšãïŒæ¬¡ã®å€ãæ±ããŠãã ããïŒ
$$f(1)+f(2)+\cdots+f(999999)$$ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/11246 | F | OMC215(F) | 300 | 79 | 135 | [
{
"content": "ã次ã®è§åºŠã®è©äŸ¡ã«ãã $\\angle ABD\\gt \\angle CAD$ ãªã®ã§ïŒäžè§åœ¢ $ABE$ ã®å€æ¥åãšèŸº $AD$ 㯠$A$ ã§ãªãç¹ã§åã³äº€ããããšããããïŒ\r\n$$\\angle ABD=180^\\circ-\\angle ACD=\\angle CAD+\\angle ADC\\gt \\angle CAD$$\r\nãã®äº€ç¹ã $F$ ãšãããš\r\n$$\\angle AFE=180^\\circ-\\angle ABD=\\angle DCE$$\r\nããïŒ$F$ ã¯äžè§åœ¢ $CDE$ ã®å€æ¥åäžã«ãããïŒãããã£ãŠæ¹ã¹ãã®å®çãã次ãæãç«ã€ïŒ\r\n$$AF\\cdot AD=61\\cdot 82=5002, \\quad DF\\cdot AD=51\\cdot 98=4998.$$\r\nãããã£ãŠ $AD^2=AF\\cdot AD+DF\\cdot AD=10000$ ããïŒ$AD=\\bf100$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/11246"
},
{
"content": "$\\angle AEB= \\angle DEC$ ãªã®ã§çŽç· $CE$ äžã«äžè§åœ¢ $ABE$ ãšäžè§åœ¢ $DFE$ ãçžäŒŒã§ãããããªç¹ $F$ ãåããïŒ\\\r\näžè§åœ¢ $DCF$ ãäºç蟺äžè§åœ¢ã«ãªãããšã«æ³šæããã°ïŒç¹ $D$ ããçŽç· $EF$ ã«åç·ãäžããããšã§ $\\cos \\angle DEC$ ãæ±ãŸãïŒ\\\r\nããšã¯äžè§åœ¢ $AED$ ã«äœåŒŠå®çãé©çšããã° $AD$ ãæ±ããããšãã§ããïŒ",
"text": "äžè§åœ¢ã移åïŒçž®å°ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/11246/446"
}
] | $$\angle ABD+\angle ACD=180^\circ$$
ãªãåžåè§åœ¢ $ABCD$ ãããïŒãã® $2$ æ¬ã®å¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšãããšïŒ
$$AE=61, \quad BE=47, \quad CE=21, \quad DE=51$$
ãæãç«ã¡ãŸããïŒèŸº $AD$ ã®é·ããæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc215/tasks/9287 | G | OMC215(G) | 300 | 61 | 138 | [
{
"content": "ãåé¡æã®æ¡ä»¶ãæºããçµ $(a_1,...,a_{20})=A$ ã**è¯ãçµ**ãšåŒã¶ïŒ\\\r\nãè¯ãçµã«å¯Ÿã㊠$a_p=20$ ãªã $1\\leq p\\leq 20$ ãåãïŒåé¡æã®äžçåŒã«ãã㊠$j=p$ ãšããã°\r\n$$20a_i=a_ia_p\\leq ip+20\\leq20(i+1)$$\r\nãšãªãã®ã§å
šãŠã®æŽæ° $1\\leq i\\leq20$ ã«å¯Ÿã㊠$a_i\\leq i+1$ ãå¿
èŠã§ããïŒ\\\r\nã$a_i=i+1$ ã§ãããšãäžããããäžçåŒããïŒ$(i+1)^2\\leq i^2+20$ ãªã®ã§ $i=1,2,...,9$ ãå¿
èŠã§ããïŒ\\\r\nã以äžãã次ã®æ¡ä»¶ã $A$ ãè¯ãçµã§ããããã®å¿
èŠæ¡ä»¶ã§ããïŒãã®æ¡ä»¶ãæºãã $A$ ãè¯ãçµã§ããããšã¯å®¹æã«ç¢ºãããããïŒ\\\r\n$$a_i\\leq\r\n\\begin{cases}\r\ni+1&ã(i=1,2,...,9)\\\\\\\\\r\ni &ã(i=10,11,...,20)\r\n\\end{cases}$$\r\nããã£ãŠãã®æ¡ä»¶ãæºãã $(a_1,a_2,...,a_{20})$ ã®çµã®æ°ãæ±ããã°è¯ãïŒ$a_1$ ããé 次å®ããŠãããš $a_9$ ãŸã§ã¯ãããã $2$ éããã€ïŒ$a_{10}$ ãã $a_{20}$ ãŸã§ã¯ $1$ éããã€ããã®ã§ïŒæ±ããé åã®æ°ã¯ $2^9=\\mathbf{512}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9287"
}
] | ã$1,2,\ldots,20$ ã®äžŠã¹æ¿ã $a_1,a_2,\ldots,a_{20}$ ã§ãã£ãŠïŒ$1$ ä»¥äž $20$ 以äžã®ä»»æã®æŽæ° $i,j$ ã«å¯Ÿã㊠$a_ia_j\leq ij+20$ ãæç«ãããããªãã®ã¯ããã€ãããŸããïŒ |
Subsets and Splits