id
int64 1
3.63k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
98 |
Validate Binary Search Tree
|
Medium
|
<p>Given the <code>root</code> of a binary tree, <em>determine if it is a valid binary search tree (BST)</em>.</p>
<p>A <strong>valid BST</strong> is defined as follows:</p>
<ul>
<li>The left <span data-keyword="subtree">subtree</span> of a node contains only nodes with keys <strong>less than</strong> the node's key.</li>
<li>The right subtree of a node contains only nodes with keys <strong>greater than</strong> the node's key.</li>
<li>Both the left and right subtrees must also be binary search trees.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0098.Validate%20Binary%20Search%20Tree/images/tree1.jpg" style="width: 302px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0098.Validate%20Binary%20Search%20Tree/images/tree2.jpg" style="width: 422px; height: 292px;" />
<pre>
<strong>Input:</strong> root = [5,1,4,null,null,3,6]
<strong>Output:</strong> false
<strong>Explanation:</strong> The root node's value is 5 but its right child's value is 4.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isValidBST(root: TreeNode | null): boolean {
let prev: TreeNode | null = null;
const dfs = (root: TreeNode | null): boolean => {
if (!root) {
return true;
}
if (!dfs(root.left)) {
return false;
}
if (prev && prev.val >= root.val) {
return false;
}
prev = root;
return dfs(root.right);
};
return dfs(root);
}
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void recoverTree(TreeNode* root) {
TreeNode* prev = nullptr;
TreeNode* first = nullptr;
TreeNode* second = nullptr;
function<void(TreeNode * root)> dfs = [&](TreeNode* root) {
if (!root) return;
dfs(root->left);
if (prev && prev->val > root->val) {
if (!first) first = prev;
second = root;
}
prev = root;
dfs(root->right);
};
dfs(root);
swap(first->val, second->val);
}
};
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
C#
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private TreeNode prev, first, second;
public void RecoverTree(TreeNode root) {
dfs(root);
int t = first.val;
first.val = second.val;
second.val = t;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
if (prev != null && prev.val > root.val) {
if (first == null) {
first = prev;
}
second = root;
}
prev = root;
dfs(root.right);
}
}
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func recoverTree(root *TreeNode) {
var prev, first, second *TreeNode
var dfs func(*TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
dfs(root.Left)
if prev != nil && prev.Val > root.Val {
if first == nil {
first = prev
}
second = root
}
prev = root
dfs(root.Right)
}
dfs(root)
first.Val, second.Val = second.Val, first.Val
}
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private TreeNode prev;
private TreeNode first;
private TreeNode second;
public void recoverTree(TreeNode root) {
dfs(root);
int t = first.val;
first.val = second.val;
second.val = t;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
if (prev != null && prev.val > root.val) {
if (first == null) {
first = prev;
}
second = root;
}
prev = root;
dfs(root.right);
}
}
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {void} Do not return anything, modify root in-place instead.
*/
var recoverTree = function (root) {
let prev = null;
let first = null;
let second = null;
function dfs(root) {
if (!root) {
return;
}
dfs(root.left);
if (prev && prev.val > root.val) {
if (!first) {
first = prev;
}
second = root;
}
prev = root;
dfs(root.right);
}
dfs(root);
const t = first.val;
first.val = second.val;
second.val = t;
};
|
99 |
Recover Binary Search Tree
|
Medium
|
<p>You are given the <code>root</code> of a binary search tree (BST), where the values of <strong>exactly</strong> two nodes of the tree were swapped by mistake. <em>Recover the tree without changing its structure</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover1.jpg" style="width: 422px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,null,null,2]
<strong>Output:</strong> [3,1,null,null,2]
<strong>Explanation:</strong> 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0099.Recover%20Binary%20Search%20Tree/images/recover2.jpg" style="width: 581px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,null,2]
<strong>Output:</strong> [2,1,4,null,null,3]
<strong>Explanation:</strong> 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[2, 1000]</code>.</li>
<li><code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> A solution using <code>O(n)</code> space is pretty straight-forward. Could you devise a constant <code>O(1)</code> space solution?
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def recoverTree(self, root: Optional[TreeNode]) -> None:
"""
Do not return anything, modify root in-place instead.
"""
def dfs(root):
if root is None:
return
nonlocal prev, first, second
dfs(root.left)
if prev and prev.val > root.val:
if first is None:
first = prev
second = root
prev = root
dfs(root.right)
prev = first = second = None
dfs(root)
first.val, second.val = second.val, first.val
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if (p == q) return true;
if (!p || !q || p->val != q->val) return false;
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
};
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSameTree(p *TreeNode, q *TreeNode) bool {
if p == q {
return true
}
if p == nil || q == nil || p.Val != q.Val {
return false
}
return isSameTree(p.Left, q.Left) && isSameTree(p.Right, q.Right)
}
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if (p == q) return true;
if (p == null || q == null || p.val != q.val) return false;
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} p
* @param {TreeNode} q
* @return {boolean}
*/
var isSameTree = function (p, q) {
if (!p && !q) return true;
if (p && q) {
return p.val === q.val && isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
return false;
};
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
PHP
|
/**
* Definition for a binary tree node.
* class TreeNode {
* public $val = null;
* public $left = null;
* public $right = null;
* function __construct($val = 0, $left = null, $right = null) {
* $this->val = $val;
* $this->left = $left;
* $this->right = $right;
* }
* }
*/
class Solution {
/**
* @param TreeNode $p
* @param TreeNode $q
* @return Boolean
*/
function isSameTree($p, $q) {
if ($p == null && $q == null) {
return true;
}
if ($p == null || $q == null) {
return false;
}
if ($p->val != $q->val) {
return false;
}
return $this->isSameTree($p->left, $q->left) && $this->isSameTree($p->right, $q->right);
}
}
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
if p == q:
return True
if p is None or q is None or p.val != q.val:
return False
return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(p: &Option<Rc<RefCell<TreeNode>>>, q: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if p.is_none() && q.is_none() {
return true;
}
if p.is_none() || q.is_none() {
return false;
}
let r1 = p.as_ref().unwrap().borrow();
let r2 = q.as_ref().unwrap().borrow();
r1.val == r2.val && Self::dfs(&r1.left, &r2.left) && Self::dfs(&r1.right, &r2.right)
}
pub fn is_same_tree(
p: Option<Rc<RefCell<TreeNode>>>,
q: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
Self::dfs(&p, &q)
}
}
|
100 |
Same Tree
|
Easy
|
<p>Given the roots of two binary trees <code>p</code> and <code>q</code>, write a function to check if they are the same or not.</p>
<p>Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex1.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,3], q = [1,2,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex2.jpg" style="width: 382px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2], q = [1,null,2]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0100.Same%20Tree/images/ex3.jpg" style="width: 622px; height: 182px;" />
<pre>
<strong>Input:</strong> p = [1,2,1], q = [1,1,2]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in both trees is in the range <code>[0, 100]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSameTree(p: TreeNode | null, q: TreeNode | null): boolean {
if (p == null && q == null) {
return true;
}
if (p == null || q == null || p.val !== q.val) {
return false;
}
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
auto dfs = [&](this auto&& dfs, TreeNode* root1, TreeNode* root2) -> bool {
if (root1 == root2) {
return true;
}
if (!root1 || !root2 || root1->val != root2->val) {
return false;
}
return dfs(root1->left, root2->right) && dfs(root1->right, root2->left);
};
return dfs(root->left, root->right);
}
};
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSymmetric(root *TreeNode) bool {
var dfs func(root1, root2 *TreeNode) bool
dfs = func(root1, root2 *TreeNode) bool {
if root1 == root2 {
return true
}
if root1 == nil || root2 == nil || root1.Val != root2.Val {
return false
}
return dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left)
}
return dfs(root.Left, root.Right)
}
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
return dfs(root.left, root.right);
}
private boolean dfs(TreeNode root1, TreeNode root2) {
if (root1 == root2) {
return true;
}
if (root1 == null || root2 == null || root1.val != root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
}
}
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isSymmetric = function (root) {
const dfs = (root1, root2) => {
if (root1 === root2) {
return true;
}
if (!root1 || !root2 || root1.val !== root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
};
return dfs(root.left, root.right);
};
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
def dfs(root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
if root1 == root2:
return True
if root1 is None or root2 is None or root1.val != root2.val:
return False
return dfs(root1.left, root2.right) and dfs(root1.right, root2.left)
return dfs(root.left, root.right)
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
fn dfs(root1: Option<Rc<RefCell<TreeNode>>>, root2: Option<Rc<RefCell<TreeNode>>>) -> bool {
match (root1, root2) {
(Some(node1), Some(node2)) => {
let node1 = node1.borrow();
let node2 = node2.borrow();
node1.val == node2.val
&& dfs(node1.left.clone(), node2.right.clone())
&& dfs(node1.right.clone(), node2.left.clone())
}
(None, None) => true,
_ => false,
}
}
match root {
Some(root) => dfs(root.borrow().left.clone(), root.borrow().right.clone()),
None => true,
}
}
}
|
101 |
Symmetric Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, <em>check whether it is a mirror of itself</em> (i.e., symmetric around its center).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree1.jpg" style="width: 354px; height: 291px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,4,4,3]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0101.Symmetric%20Tree/images/symtree2.jpg" style="width: 308px; height: 258px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,null,3,null,3]
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 1000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it both recursively and iteratively?
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSymmetric(root: TreeNode | null): boolean {
const dfs = (root1: TreeNode | null, root2: TreeNode | null): boolean => {
if (root1 === root2) {
return true;
}
if (!root1 || !root2 || root1.val !== root2.val) {
return false;
}
return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
};
return dfs(root.left, root.right);
}
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> ans;
if (!root) return ans;
queue<TreeNode*> q{{root}};
while (!q.empty()) {
vector<int> t;
for (int n = q.size(); n; --n) {
auto node = q.front();
q.pop();
t.push_back(node->val);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
ans.push_back(t);
}
return ans;
}
};
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func levelOrder(root *TreeNode) (ans [][]int) {
if root == nil {
return
}
q := []*TreeNode{root}
for len(q) > 0 {
t := []int{}
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
t = append(t, node.Val)
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
ans = append(ans, t)
}
return
}
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
List<Integer> t = new ArrayList<>();
for (int n = q.size(); n > 0; --n) {
TreeNode node = q.poll();
t.add(node.val);
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
ans.add(t);
}
return ans;
}
}
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var levelOrder = function (root) {
const ans = [];
if (!root) {
return ans;
}
const q = [root];
while (q.length) {
const t = [];
const qq = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(t);
q.splice(0, q.length, ...qq);
}
return ans;
};
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
ans = []
if root is None:
return ans
q = deque([root])
while q:
t = []
for _ in range(len(q)):
node = q.popleft()
t.append(node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
ans.append(t)
return ans
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut ans = Vec::new();
if let Some(root_node) = root {
let mut q = VecDeque::new();
q.push_back(root_node);
while !q.is_empty() {
let mut t = Vec::new();
for _ in 0..q.len() {
if let Some(node) = q.pop_front() {
let node_ref = node.borrow();
t.push(node_ref.val);
if let Some(ref left) = node_ref.left {
q.push_back(Rc::clone(left));
}
if let Some(ref right) = node_ref.right {
q.push_back(Rc::clone(right));
}
}
}
ans.push(t);
}
}
ans
}
}
|
102 |
Binary Tree Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the level order traversal of its nodes' values</em>. (i.e., from left to right, level by level).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0102.Binary%20Tree%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[9,20],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function levelOrder(root: TreeNode | null): number[][] {
const ans: number[][] = [];
if (!root) {
return ans;
}
const q: TreeNode[] = [root];
while (q.length) {
const t: number[] = [];
const qq: TreeNode[] = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(t);
q.splice(0, q.length, ...qq);
}
return ans;
}
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
vector<vector<int>> ans;
if (!root) {
return ans;
}
queue<TreeNode*> q{{root}};
int left = 1;
while (!q.empty()) {
vector<int> t;
for (int n = q.size(); n; --n) {
auto node = q.front();
q.pop();
t.emplace_back(node->val);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
if (!left) {
reverse(t.begin(), t.end());
}
ans.emplace_back(t);
left ^= 1;
}
return ans;
}
};
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func zigzagLevelOrder(root *TreeNode) (ans [][]int) {
if root == nil {
return
}
q := []*TreeNode{root}
left := true
for len(q) > 0 {
t := []int{}
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
t = append(t, node.Val)
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
if !left {
for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 {
t[i], t[j] = t[j], t[i]
}
}
ans = append(ans, t)
left = !left
}
return
}
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
boolean left = true;
while (!q.isEmpty()) {
List<Integer> t = new ArrayList<>();
for (int n = q.size(); n > 0; --n) {
TreeNode node = q.poll();
t.add(node.val);
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
if (!left) {
Collections.reverse(t);
}
ans.add(t);
left = !left;
}
return ans;
}
}
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var zigzagLevelOrder = function (root) {
const ans = [];
if (!root) {
return ans;
}
const q = [root];
let left = 1;
while (q.length) {
const t = [];
const qq = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(left ? t : t.reverse());
q.splice(0, q.length, ...qq);
left ^= 1;
}
return ans;
};
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
ans = []
if root is None:
return ans
q = deque([root])
ans = []
left = 1
while q:
t = []
for _ in range(len(q)):
node = q.popleft()
t.append(node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
ans.append(t if left else t[::-1])
left ^= 1
return ans
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
pub fn zigzag_level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut ans = Vec::new();
let mut left = true;
if let Some(root_node) = root {
let mut q = VecDeque::new();
q.push_back(root_node);
while !q.is_empty() {
let mut t = Vec::new();
for _ in 0..q.len() {
if let Some(node) = q.pop_front() {
let node_ref = node.borrow();
t.push(node_ref.val);
if let Some(ref left) = node_ref.left {
q.push_back(Rc::clone(left));
}
if let Some(ref right) = node_ref.right {
q.push_back(Rc::clone(right));
}
}
}
if !left {
t.reverse();
}
ans.push(t);
left = !left;
}
}
ans
}
}
|
103 |
Binary Tree Zigzag Level Order Traversal
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the zigzag level order traversal of its nodes' values</em>. (i.e., from left to right, then right to left for the next level and alternate between).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0103.Binary%20Tree%20Zigzag%20Level%20Order%20Traversal/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[3],[20,9],[15,7]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function zigzagLevelOrder(root: TreeNode | null): number[][] {
const ans: number[][] = [];
if (!root) {
return ans;
}
const q: TreeNode[] = [root];
let left: number = 1;
while (q.length) {
const t: number[] = [];
const qq: TreeNode[] = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(left ? t : t.reverse());
q.splice(0, q.length, ...qq);
left ^= 1;
}
return ans;
}
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
#define max(a, b) (((a) > (b)) ? (a) : (b))
int maxDepth(struct TreeNode* root) {
if (!root) {
return 0;
}
int left = maxDepth(root->left);
int right = maxDepth(root->right);
return 1 + max(left, right);
}
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
if (!root) return 0;
int l = maxDepth(root->left), r = maxDepth(root->right);
return 1 + max(l, r);
}
};
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxDepth(root *TreeNode) int {
if root == nil {
return 0
}
l, r := maxDepth(root.Left), maxDepth(root.Right)
return 1 + max(l, r)
}
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int l = maxDepth(root.left);
int r = maxDepth(root.right);
return 1 + Math.max(l, r);
}
}
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxDepth = function (root) {
if (!root) return 0;
const l = maxDepth(root.left);
const r = maxDepth(root.right);
return 1 + Math.max(l, r);
};
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if root is None:
return 0
l, r = self.maxDepth(root.left), self.maxDepth(root.right)
return 1 + max(l, r)
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
if root.is_none() {
return 0;
}
let node = root.as_ref().unwrap().borrow();
1 + Self::dfs(&node.left).max(Self::dfs(&node.right))
}
pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
Self::dfs(&root)
}
}
|
104 |
Maximum Depth of Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, return <em>its maximum depth</em>.</p>
<p>A binary tree's <strong>maximum depth</strong> is the number of nodes along the longest path from the root node down to the farthest leaf node.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0104.Maximum%20Depth%20of%20Binary%20Tree/images/tmp-tree.jpg" style="width: 400px; height: 277px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1,null,2]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxDepth(root: TreeNode | null): number {
if (root === null) {
return 0;
}
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
unordered_map<int, int> d;
for (int i = 0; i < n; ++i) {
d[inorder[i]] = i;
}
function<TreeNode*(int, int, int)> dfs = [&](int i, int j, int n) -> TreeNode* {
if (n <= 0) {
return nullptr;
}
int v = preorder[i];
int k = d[v];
TreeNode* l = dfs(i + 1, j, k - j);
TreeNode* r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
};
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
d := map[int]int{}
for i, x := range inorder {
d[x] = i
}
var dfs func(i, j, n int) *TreeNode
dfs = func(i, j, n int) *TreeNode {
if n <= 0 {
return nil
}
v := preorder[i]
k := d[v]
l := dfs(i+1, j, k-j)
r := dfs(i+1+k-j, k+1, n-1-(k-j))
return &TreeNode{v, l, r}
}
return dfs(0, 0, len(preorder))
}
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int[] preorder;
private Map<Integer, Integer> d = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
this.preorder = preorder;
for (int i = 0; i < n; ++i) {
d.put(inorder[i], i);
}
return dfs(0, 0, n);
}
private TreeNode dfs(int i, int j, int n) {
if (n <= 0) {
return null;
}
int v = preorder[i];
int k = d.get(v);
TreeNode l = dfs(i + 1, j, k - j);
TreeNode r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
}
}
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function (preorder, inorder) {
const d = new Map();
const n = inorder.length;
for (let i = 0; i < n; ++i) {
d.set(inorder[i], i);
}
const dfs = (i, j, n) => {
if (n <= 0) {
return null;
}
const v = preorder[i];
const k = d.get(v);
const l = dfs(i + 1, j, k - j);
const r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
};
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
def dfs(i: int, j: int, n: int) -> Optional[TreeNode]:
if n <= 0:
return None
v = preorder[i]
k = d[v]
l = dfs(i + 1, j, k - j)
r = dfs(i + 1 + k - j, k + 1, n - k + j - 1)
return TreeNode(v, l, r)
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(preorder))
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;
impl Solution {
pub fn build_tree(preorder: Vec<i32>, inorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
let mut d = HashMap::new();
for (i, &x) in inorder.iter().enumerate() {
d.insert(x, i);
}
Self::dfs(&preorder, &d, 0, 0, preorder.len())
}
pub fn dfs(
preorder: &Vec<i32>,
d: &HashMap<i32, usize>,
i: usize,
j: usize,
n: usize,
) -> Option<Rc<RefCell<TreeNode>>> {
if n <= 0 {
return None;
}
let v = preorder[i];
let k = d[&v];
let mut root = TreeNode::new(v);
root.left = Self::dfs(preorder, d, i + 1, j, k - j);
root.right = Self::dfs(preorder, d, i + k - j + 1, k + 1, n - k + j - 1);
Some(Rc::new(RefCell::new(root)))
}
}
|
105 |
Construct Binary Tree from Preorder and Inorder Traversal
|
Medium
|
<p>Given two integer arrays <code>preorder</code> and <code>inorder</code> where <code>preorder</code> is the preorder traversal of a binary tree and <code>inorder</code> is the inorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0105.Construct%20Binary%20Tree%20from%20Preorder%20and%20Inorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> preorder = [-1], inorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 3000</code></li>
<li><code>inorder.length == preorder.length</code></li>
<li><code>-3000 <= preorder[i], inorder[i] <= 3000</code></li>
<li><code>preorder</code> and <code>inorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>inorder</code> also appears in <code>preorder</code>.</li>
<li><code>preorder</code> is <strong>guaranteed</strong> to be the preorder traversal of the tree.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
const d: Map<number, number> = new Map();
const n = inorder.length;
for (let i = 0; i < n; ++i) {
d.set(inorder[i], i);
}
const dfs = (i: number, j: number, n: number): TreeNode | null => {
if (n <= 0) {
return null;
}
const v = preorder[i];
const k = d.get(v)!;
const l = dfs(i + 1, j, k - j);
const r = dfs(i + 1 + k - j, k + 1, n - 1 - (k - j));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
unordered_map<int, int> d;
int n = inorder.size();
for (int i = 0; i < n; ++i) {
d[inorder[i]] = i;
}
function<TreeNode*(int, int, int)> dfs = [&](int i, int j, int n) -> TreeNode* {
if (n <= 0) {
return nullptr;
}
int v = postorder[j + n - 1];
int k = d[v];
auto l = dfs(i, j, k - i);
auto r = dfs(k + 1, j + k - i, n - k + i - 1);
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
};
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(inorder []int, postorder []int) *TreeNode {
d := map[int]int{}
for i, v := range inorder {
d[v] = i
}
var dfs func(i, j, n int) *TreeNode
dfs = func(i, j, n int) *TreeNode {
if n <= 0 {
return nil
}
v := postorder[j+n-1]
k := d[v]
l := dfs(i, j, k-i)
r := dfs(k+1, j+k-i, n-k+i-1)
return &TreeNode{v, l, r}
}
return dfs(0, 0, len(inorder))
}
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<Integer, Integer> d = new HashMap<>();
private int[] postorder;
public TreeNode buildTree(int[] inorder, int[] postorder) {
this.postorder = postorder;
int n = inorder.length;
for (int i = 0; i < n; ++i) {
d.put(inorder[i], i);
}
return dfs(0, 0, n);
}
private TreeNode dfs(int i, int j, int n) {
if (n <= 0) {
return null;
}
int v = postorder[j + n - 1];
int k = d.get(v);
TreeNode l = dfs(i, j, k - i);
TreeNode r = dfs(k + 1, j + k - i, n - k + i - 1);
return new TreeNode(v, l, r);
}
}
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
def dfs(i: int, j: int, n: int) -> Optional[TreeNode]:
if n <= 0:
return None
v = postorder[j + n - 1]
k = d[v]
l = dfs(i, j, k - i)
r = dfs(k + 1, j + k - i, n - k + i - 1)
return TreeNode(v, l, r)
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(inorder))
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;
impl Solution {
pub fn build_tree(inorder: Vec<i32>, postorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
let n = inorder.len();
let mut d: HashMap<i32, usize> = HashMap::new();
for i in 0..n {
d.insert(inorder[i], i);
}
fn dfs(
postorder: &[i32],
d: &HashMap<i32, usize>,
i: usize,
j: usize,
n: usize,
) -> Option<Rc<RefCell<TreeNode>>> {
if n <= 0 {
return None;
}
let val = postorder[j + n - 1];
let k = *d.get(&val).unwrap();
let left = dfs(postorder, d, i, j, k - i);
let right = dfs(postorder, d, k + 1, j + k - i, n - 1 - (k - i));
Some(Rc::new(RefCell::new(TreeNode { val, left, right })))
}
dfs(&postorder, &d, 0, 0, n)
}
}
|
106 |
Construct Binary Tree from Inorder and Postorder Traversal
|
Medium
|
<p>Given two integer arrays <code>inorder</code> and <code>postorder</code> where <code>inorder</code> is the inorder traversal of a binary tree and <code>postorder</code> is the postorder traversal of the same tree, construct and return <em>the binary tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0106.Construct%20Binary%20Tree%20from%20Inorder%20and%20Postorder%20Traversal/images/tree.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
<strong>Output:</strong> [3,9,20,null,null,15,7]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> inorder = [-1], postorder = [-1]
<strong>Output:</strong> [-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= inorder.length <= 3000</code></li>
<li><code>postorder.length == inorder.length</code></li>
<li><code>-3000 <= inorder[i], postorder[i] <= 3000</code></li>
<li><code>inorder</code> and <code>postorder</code> consist of <strong>unique</strong> values.</li>
<li>Each value of <code>postorder</code> also appears in <code>inorder</code>.</li>
<li><code>inorder</code> is <strong>guaranteed</strong> to be the inorder traversal of the tree.</li>
<li><code>postorder</code> is <strong>guaranteed</strong> to be the postorder traversal of the tree.</li>
</ul>
|
Tree; Array; Hash Table; Divide and Conquer; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(inorder: number[], postorder: number[]): TreeNode | null {
const n = inorder.length;
const d: Record<number, number> = {};
for (let i = 0; i < n; i++) {
d[inorder[i]] = i;
}
const dfs = (i: number, j: number, n: number): TreeNode | null => {
if (n <= 0) {
return null;
}
const v = postorder[j + n - 1];
const k = d[v];
const l = dfs(i, j, k - i);
const r = dfs(k + 1, j + k - i, n - 1 - (k - i));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> ans;
if (!root) {
return ans;
}
queue<TreeNode*> q{{root}};
while (!q.empty()) {
vector<int> t;
for (int n = q.size(); n; --n) {
auto node = q.front();
q.pop();
t.push_back(node->val);
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
ans.push_back(t);
}
reverse(ans.begin(), ans.end());
return ans;
}
};
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func levelOrderBottom(root *TreeNode) (ans [][]int) {
if root == nil {
return
}
q := []*TreeNode{root}
for len(q) > 0 {
t := []int{}
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
t = append(t, node.Val)
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
ans = append(ans, t)
}
for i, j := 0, len(ans)-1; i < j; i, j = i+1, j-1 {
ans[i], ans[j] = ans[j], ans[i]
}
return
}
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
LinkedList<List<Integer>> ans = new LinkedList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> q = new LinkedList<>();
q.offerLast(root);
while (!q.isEmpty()) {
List<Integer> t = new ArrayList<>();
for (int i = q.size(); i > 0; --i) {
TreeNode node = q.pollFirst();
t.add(node.val);
if (node.left != null) {
q.offerLast(node.left);
}
if (node.right != null) {
q.offerLast(node.right);
}
}
ans.addFirst(t);
}
return ans;
}
}
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var levelOrderBottom = function (root) {
const ans = [];
if (!root) {
return ans;
}
const q = [root];
while (q.length) {
const t = [];
const qq = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(t);
q.splice(0, q.length, ...qq);
}
return ans.reverse();
};
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrderBottom(self, root: Optional[TreeNode]) -> List[List[int]]:
ans = []
if root is None:
return ans
q = deque([root])
while q:
t = []
for _ in range(len(q)):
node = q.popleft()
t.append(node.val)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
ans.append(t)
return ans[::-1]
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::{cell::RefCell, collections::VecDeque, rc::Rc};
impl Solution {
pub fn level_order_bottom(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut ans = Vec::new();
if let Some(root_node) = root {
let mut q = VecDeque::new();
q.push_back(root_node);
while !q.is_empty() {
let mut t = Vec::new();
for _ in 0..q.len() {
if let Some(node) = q.pop_front() {
let node_ref = node.borrow();
t.push(node_ref.val);
if let Some(ref left) = node_ref.left {
q.push_back(Rc::clone(left));
}
if let Some(ref right) = node_ref.right {
q.push_back(Rc::clone(right));
}
}
}
ans.push(t);
}
}
ans.reverse();
ans
}
}
|
107 |
Binary Tree Level Order Traversal II
|
Medium
|
<p>Given the <code>root</code> of a binary tree, return <em>the bottom-up level order traversal of its nodes' values</em>. (i.e., from left to right, level by level from leaf to root).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0107.Binary%20Tree%20Level%20Order%20Traversal%20II/images/tree1.jpg" style="width: 277px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> [[15,7],[9,20],[3]]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> [[1]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function levelOrderBottom(root: TreeNode | null): number[][] {
const ans: number[][] = [];
if (!root) {
return ans;
}
const q: TreeNode[] = [root];
while (q.length) {
const t: number[] = [];
const qq: TreeNode[] = [];
for (const { val, left, right } of q) {
t.push(val);
left && qq.push(left);
right && qq.push(right);
}
ans.push(t);
q.splice(0, q.length, ...qq);
}
return ans.reverse();
}
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
auto dfs = [&](this auto&& dfs, int l, int r) -> TreeNode* {
if (l > r) {
return nullptr;
}
int mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.size() - 1);
}
};
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
C#
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int[] nums;
public TreeNode SortedArrayToBST(int[] nums) {
this.nums = nums;
return dfs(0, nums.Length - 1);
}
private TreeNode dfs(int l, int r) {
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
}
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedArrayToBST(nums []int) *TreeNode {
var dfs func(int, int) *TreeNode
dfs = func(l, r int) *TreeNode {
if l > r {
return nil
}
mid := (l + r) >> 1
return &TreeNode{nums[mid], dfs(l, mid-1), dfs(mid+1, r)}
}
return dfs(0, len(nums)-1)
}
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int[] nums;
public TreeNode sortedArrayToBST(int[] nums) {
this.nums = nums;
return dfs(0, nums.length - 1);
}
private TreeNode dfs(int l, int r) {
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
}
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
var sortedArrayToBST = function (nums) {
const dfs = (l, r) => {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.length - 1);
};
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
def dfs(l: int, r: int) -> Optional[TreeNode]:
if l > r:
return None
mid = (l + r) >> 1
return TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r))
return dfs(0, len(nums) - 1)
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
fn dfs(nums: &Vec<i32>, l: usize, r: usize) -> Option<Rc<RefCell<TreeNode>>> {
if l > r {
return None;
}
let mid = (l + r) / 2;
if mid >= nums.len() {
return None;
}
let mut node = Rc::new(RefCell::new(TreeNode::new(nums[mid])));
node.borrow_mut().left = dfs(nums, l, mid - 1);
node.borrow_mut().right = dfs(nums, mid + 1, r);
Some(node)
}
dfs(&nums, 0, nums.len() - 1)
}
}
|
108 |
Convert Sorted Array to Binary Search Tree
|
Easy
|
<p>Given an integer array <code>nums</code> where the elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree1.jpg" style="width: 302px; height: 222px;" />
<pre>
<strong>Input:</strong> nums = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> [0,-10,5,null,-3,null,9] is also accepted:
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree2.jpg" style="width: 302px; height: 222px;" />
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0108.Convert%20Sorted%20Array%20to%20Binary%20Search%20Tree/images/btree.jpg" style="width: 342px; height: 142px;" />
<pre>
<strong>Input:</strong> nums = [1,3]
<strong>Output:</strong> [3,1]
<strong>Explanation:</strong> [1,null,3] and [3,1] are both height-balanced BSTs.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in a <strong>strictly increasing</strong> order.</li>
</ul>
|
Tree; Binary Search Tree; Array; Divide and Conquer; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedArrayToBST(nums: number[]): TreeNode | null {
const dfs = (l: number, r: number): TreeNode | null => {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.length - 1);
}
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
C
|
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
struct TreeNode* dfs(int* nums, int i, int j) {
if (i > j) {
return NULL;
}
int mid = (i + j) >> 1;
struct TreeNode* left = dfs(nums, i, mid - 1);
struct TreeNode* right = dfs(nums, mid + 1, j);
struct TreeNode* root = (struct TreeNode*) malloc(sizeof(struct TreeNode));
root->val = nums[mid];
root->left = left;
root->right = right;
return root;
}
struct TreeNode* sortedListToBST(struct ListNode* head) {
int size = 0;
struct ListNode* temp = head;
while (temp) {
size++;
temp = temp->next;
}
int* nums = (int*) malloc(size * sizeof(int));
temp = head;
for (int i = 0; i < size; i++) {
nums[i] = temp->val;
temp = temp->next;
}
struct TreeNode* root = dfs(nums, 0, size - 1);
free(nums);
return root;
}
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
C++
|
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedListToBST(ListNode* head) {
vector<int> nums;
for (; head; head = head->next) {
nums.push_back(head->val);
}
auto dfs = [&](this auto&& dfs, int i, int j) -> TreeNode* {
if (i > j) {
return nullptr;
}
int mid = (i + j) >> 1;
TreeNode* left = dfs(i, mid - 1);
TreeNode* right = dfs(mid + 1, j);
return new TreeNode(nums[mid], left, right);
};
return dfs(0, nums.size() - 1);
}
};
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
Go
|
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedListToBST(head *ListNode) *TreeNode {
nums := []int{}
for ; head != nil; head = head.Next {
nums = append(nums, head.Val)
}
var dfs func(i, j int) *TreeNode
dfs = func(i, j int) *TreeNode {
if i > j {
return nil
}
mid := (i + j) >> 1
left := dfs(i, mid-1)
right := dfs(mid+1, j)
return &TreeNode{nums[mid], left, right}
}
return dfs(0, len(nums)-1)
}
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
Java
|
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> nums = new ArrayList<>();
public TreeNode sortedListToBST(ListNode head) {
for (; head != null; head = head.next) {
nums.add(head.val);
}
return dfs(0, nums.size() - 1);
}
private TreeNode dfs(int i, int j) {
if (i > j) {
return null;
}
int mid = (i + j) >> 1;
TreeNode left = dfs(i, mid - 1);
TreeNode right = dfs(mid + 1, j);
return new TreeNode(nums.get(mid), left, right);
}
}
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
JavaScript
|
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function (head) {
const nums = [];
for (; head; head = head.next) {
nums.push(head.val);
}
const dfs = (i, j) => {
if (i > j) {
return null;
}
const mid = (i + j) >> 1;
const left = dfs(i, mid - 1);
const right = dfs(mid + 1, j);
return new TreeNode(nums[mid], left, right);
};
return dfs(0, nums.length - 1);
};
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
Python
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]:
def dfs(i: int, j: int) -> Optional[TreeNode]:
if i > j:
return None
mid = (i + j) >> 1
l, r = dfs(i, mid - 1), dfs(mid + 1, j)
return TreeNode(nums[mid], l, r)
nums = []
while head:
nums.append(head.val)
head = head.next
return dfs(0, len(nums) - 1)
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
Rust
|
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn sorted_list_to_bst(head: Option<Box<ListNode>>) -> Option<Rc<RefCell<TreeNode>>> {
let mut nums = Vec::new();
let mut current = head;
while let Some(node) = current {
nums.push(node.val);
current = node.next;
}
fn dfs(nums: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
if nums.is_empty() {
return None;
}
let mid = nums.len() / 2;
Some(Rc::new(RefCell::new(TreeNode {
val: nums[mid],
left: dfs(&nums[..mid]),
right: dfs(&nums[mid + 1..]),
})))
}
dfs(&nums)
}
}
|
109 |
Convert Sorted List to Binary Search Tree
|
Medium
|
<p>Given the <code>head</code> of a singly linked list where elements are sorted in <strong>ascending order</strong>, convert <em>it to a </em><span data-keyword="height-balanced"><strong><em>height-balanced</em></strong></span> <em>binary search tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0109.Convert%20Sorted%20List%20to%20Binary%20Search%20Tree/images/linked.jpg" style="width: 500px; height: 388px;" />
<pre>
<strong>Input:</strong> head = [-10,-3,0,5,9]
<strong>Output:</strong> [0,-3,9,-10,null,5]
<strong>Explanation:</strong> One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in <code>head</code> is in the range <code>[0, 2 * 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>5</sup> <= Node.val <= 10<sup>5</sup></code></li>
</ul>
|
Tree; Binary Search Tree; Linked List; Divide and Conquer; Binary Tree
|
TypeScript
|
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedListToBST(head: ListNode | null): TreeNode | null {
const nums: number[] = [];
for (; head; head = head.next) {
nums.push(head.val);
}
const dfs = (i: number, j: number): TreeNode | null => {
if (i > j) {
return null;
}
const mid = (i + j) >> 1;
const left = dfs(i, mid - 1);
const right = dfs(mid + 1, j);
return new TreeNode(nums[mid], left, right);
};
return dfs(0, nums.length - 1);
}
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
function<int(TreeNode*)> height = [&](TreeNode* root) {
if (!root) {
return 0;
}
int l = height(root->left);
int r = height(root->right);
if (l == -1 || r == -1 || abs(l - r) > 1) {
return -1;
}
return 1 + max(l, r);
};
return height(root) >= 0;
}
};
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced(root *TreeNode) bool {
var height func(*TreeNode) int
height = func(root *TreeNode) int {
if root == nil {
return 0
}
l, r := height(root.Left), height(root.Right)
if l == -1 || r == -1 || abs(l-r) > 1 {
return -1
}
if l > r {
return 1 + l
}
return 1 + r
}
return height(root) >= 0
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return height(root) >= 0;
}
private int height(TreeNode root) {
if (root == null) {
return 0;
}
int l = height(root.left);
int r = height(root.right);
if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
return -1;
}
return 1 + Math.max(l, r);
}
}
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function (root) {
const height = root => {
if (!root) {
return 0;
}
const l = height(root.left);
const r = height(root.right);
if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
return -1;
}
return 1 + Math.max(l, r);
};
return height(root) >= 0;
};
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
def height(root):
if root is None:
return 0
l, r = height(root.left), height(root.right)
if l == -1 or r == -1 or abs(l - r) > 1:
return -1
return 1 + max(l, r)
return height(root) >= 0
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
Self::dfs(&root) > -1
}
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
if root.is_none() {
return 0;
}
let node = root.as_ref().unwrap().borrow();
let left = Self::dfs(&node.left);
let right = Self::dfs(&node.right);
if left == -1 || right == -1 || (left - right).abs() > 1 {
return -1;
}
1 + left.max(right)
}
}
|
110 |
Balanced Binary Tree
|
Easy
|
<p>Given a binary tree, determine if it is <span data-keyword="height-balanced"><strong>height-balanced</strong></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_1.jpg" style="width: 342px; height: 221px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0110.Balanced%20Binary%20Tree/images/balance_2.jpg" style="width: 452px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [1,2,2,3,3,null,null,4,4]
<strong>Output:</strong> false
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isBalanced(root: TreeNode | null): boolean {
const dfs = (root: TreeNode | null) => {
if (root == null) {
return 0;
}
const left = dfs(root.left);
const right = dfs(root.right);
if (left === -1 || right === -1 || Math.abs(left - right) > 1) {
return -1;
}
return 1 + Math.max(left, right);
};
return dfs(root) > -1;
}
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
#define min(a, b) (((a) < (b)) ? (a) : (b))
int minDepth(struct TreeNode* root) {
if (!root) {
return 0;
}
if (!root->left) {
return 1 + minDepth(root->right);
}
if (!root->right) {
return 1 + minDepth(root->left);
}
int left = minDepth(root->left);
int right = minDepth(root->right);
return 1 + min(left, right);
}
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if (!root) {
return 0;
}
if (!root->left) {
return 1 + minDepth(root->right);
}
if (!root->right) {
return 1 + minDepth(root->left);
}
return 1 + min(minDepth(root->left), minDepth(root->right));
}
};
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func minDepth(root *TreeNode) int {
if root == nil {
return 0
}
if root.Left == nil {
return 1 + minDepth(root.Right)
}
if root.Right == nil {
return 1 + minDepth(root.Left)
}
return 1 + min(minDepth(root.Left), minDepth(root.Right))
}
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
if (root.left == null) {
return 1 + minDepth(root.right);
}
if (root.right == null) {
return 1 + minDepth(root.left);
}
return 1 + Math.min(minDepth(root.left), minDepth(root.right));
}
}
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var minDepth = function (root) {
if (!root) {
return 0;
}
if (!root.left) {
return 1 + minDepth(root.right);
}
if (!root.right) {
return 1 + minDepth(root.left);
}
return 1 + Math.min(minDepth(root.left), minDepth(root.right));
};
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
if root.left is None:
return 1 + self.minDepth(root.right)
if root.right is None:
return 1 + self.minDepth(root.left)
return 1 + min(self.minDepth(root.left), self.minDepth(root.right))
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
if root.is_none() {
return 0;
}
let node = root.as_ref().unwrap().borrow();
if node.left.is_none() {
return 1 + Self::dfs(&node.right);
}
if node.right.is_none() {
return 1 + Self::dfs(&node.left);
}
1 + Self::dfs(&node.left).min(Self::dfs(&node.right))
}
pub fn min_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
Self::dfs(&root)
}
}
|
111 |
Minimum Depth of Binary Tree
|
Easy
|
<p>Given a binary tree, find its minimum depth.</p>
<p>The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.</p>
<p><strong>Note:</strong> A leaf is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0111.Minimum%20Depth%20of%20Binary%20Tree/images/ex_depth.jpg" style="width: 432px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [3,9,20,null,null,15,7]
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [2,null,3,null,4,null,5,null,6]
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>5</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function minDepth(root: TreeNode | null): number {
if (root == null) {
return 0;
}
const { left, right } = root;
if (left == null) {
return 1 + minDepth(right);
}
if (right == null) {
return 1 + minDepth(left);
}
return 1 + Math.min(minDepth(left), minDepth(right));
}
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
function<bool(TreeNode*, int)> dfs = [&](TreeNode* root, int s) -> int {
if (!root) return false;
s += root->val;
if (!root->left && !root->right && s == targetSum) return true;
return dfs(root->left, s) || dfs(root->right, s);
};
return dfs(root, 0);
}
};
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func hasPathSum(root *TreeNode, targetSum int) bool {
var dfs func(*TreeNode, int) bool
dfs = func(root *TreeNode, s int) bool {
if root == nil {
return false
}
s += root.Val
if root.Left == nil && root.Right == nil && s == targetSum {
return true
}
return dfs(root.Left, s) || dfs(root.Right, s)
}
return dfs(root, 0)
}
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
return dfs(root, targetSum);
}
private boolean dfs(TreeNode root, int s) {
if (root == null) {
return false;
}
s -= root.val;
if (root.left == null && root.right == null && s == 0) {
return true;
}
return dfs(root.left, s) || dfs(root.right, s);
}
}
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {boolean}
*/
var hasPathSum = function (root, targetSum) {
function dfs(root, s) {
if (!root) return false;
s += root.val;
if (!root.left && !root.right && s == targetSum) return true;
return dfs(root.left, s) || dfs(root.right, s);
}
return dfs(root, 0);
};
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
def dfs(root, s):
if root is None:
return False
s += root.val
if root.left is None and root.right is None and s == targetSum:
return True
return dfs(root.left, s) or dfs(root.right, s)
return dfs(root, 0)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.