id
int64 1
3.63k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
31 |
Next Permutation
|
Medium
|
<p>A <strong>permutation</strong> of an array of integers is an arrangement of its members into a sequence or linear order.</p>
<ul>
<li>For example, for <code>arr = [1,2,3]</code>, the following are all the permutations of <code>arr</code>: <code>[1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1]</code>.</li>
</ul>
<p>The <strong>next permutation</strong> of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the <strong>next permutation</strong> of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order).</p>
<ul>
<li>For example, the next permutation of <code>arr = [1,2,3]</code> is <code>[1,3,2]</code>.</li>
<li>Similarly, the next permutation of <code>arr = [2,3,1]</code> is <code>[3,1,2]</code>.</li>
<li>While the next permutation of <code>arr = [3,2,1]</code> is <code>[1,2,3]</code> because <code>[3,2,1]</code> does not have a lexicographical larger rearrangement.</li>
</ul>
<p>Given an array of integers <code>nums</code>, <em>find the next permutation of</em> <code>nums</code>.</p>
<p>The replacement must be <strong><a href="http://en.wikipedia.org/wiki/In-place_algorithm" target="_blank">in place</a></strong> and use only constant extra memory.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> [1,3,2]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,1]
<strong>Output:</strong> [1,2,3]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,1,5]
<strong>Output:</strong> [1,5,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 100</code></li>
</ul>
|
Array; Two Pointers
|
PHP
|
class Solution {
/**
* @param integer[] $nums
* @return void
*/
function nextPermutation(&$nums) {
$n = count($nums);
$i = $n - 2;
while ($i >= 0 && $nums[$i] >= $nums[$i + 1]) {
$i--;
}
if ($i >= 0) {
$j = $n - 1;
while ($j >= $i && $nums[$j] <= $nums[$i]) {
$j--;
}
$temp = $nums[$i];
$nums[$i] = $nums[$j];
$nums[$j] = $temp;
}
$this->reverse($nums, $i + 1, $n - 1);
}
function reverse(&$nums, $start, $end) {
while ($start < $end) {
$temp = $nums[$start];
$nums[$start] = $nums[$end];
$nums[$end] = $temp;
$start++;
$end--;
}
}
}
|
31 |
Next Permutation
|
Medium
|
<p>A <strong>permutation</strong> of an array of integers is an arrangement of its members into a sequence or linear order.</p>
<ul>
<li>For example, for <code>arr = [1,2,3]</code>, the following are all the permutations of <code>arr</code>: <code>[1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1]</code>.</li>
</ul>
<p>The <strong>next permutation</strong> of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the <strong>next permutation</strong> of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order).</p>
<ul>
<li>For example, the next permutation of <code>arr = [1,2,3]</code> is <code>[1,3,2]</code>.</li>
<li>Similarly, the next permutation of <code>arr = [2,3,1]</code> is <code>[3,1,2]</code>.</li>
<li>While the next permutation of <code>arr = [3,2,1]</code> is <code>[1,2,3]</code> because <code>[3,2,1]</code> does not have a lexicographical larger rearrangement.</li>
</ul>
<p>Given an array of integers <code>nums</code>, <em>find the next permutation of</em> <code>nums</code>.</p>
<p>The replacement must be <strong><a href="http://en.wikipedia.org/wiki/In-place_algorithm" target="_blank">in place</a></strong> and use only constant extra memory.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> [1,3,2]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,1]
<strong>Output:</strong> [1,2,3]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,1,5]
<strong>Output:</strong> [1,5,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 100</code></li>
</ul>
|
Array; Two Pointers
|
Python
|
class Solution:
def nextPermutation(self, nums: List[int]) -> None:
n = len(nums)
i = next((i for i in range(n - 2, -1, -1) if nums[i] < nums[i + 1]), -1)
if ~i:
j = next((j for j in range(n - 1, i, -1) if nums[j] > nums[i]))
nums[i], nums[j] = nums[j], nums[i]
nums[i + 1 :] = nums[i + 1 :][::-1]
|
31 |
Next Permutation
|
Medium
|
<p>A <strong>permutation</strong> of an array of integers is an arrangement of its members into a sequence or linear order.</p>
<ul>
<li>For example, for <code>arr = [1,2,3]</code>, the following are all the permutations of <code>arr</code>: <code>[1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1]</code>.</li>
</ul>
<p>The <strong>next permutation</strong> of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the <strong>next permutation</strong> of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order).</p>
<ul>
<li>For example, the next permutation of <code>arr = [1,2,3]</code> is <code>[1,3,2]</code>.</li>
<li>Similarly, the next permutation of <code>arr = [2,3,1]</code> is <code>[3,1,2]</code>.</li>
<li>While the next permutation of <code>arr = [3,2,1]</code> is <code>[1,2,3]</code> because <code>[3,2,1]</code> does not have a lexicographical larger rearrangement.</li>
</ul>
<p>Given an array of integers <code>nums</code>, <em>find the next permutation of</em> <code>nums</code>.</p>
<p>The replacement must be <strong><a href="http://en.wikipedia.org/wiki/In-place_algorithm" target="_blank">in place</a></strong> and use only constant extra memory.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> [1,3,2]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,1]
<strong>Output:</strong> [1,2,3]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,1,5]
<strong>Output:</strong> [1,5,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 100</code></li>
</ul>
|
Array; Two Pointers
|
TypeScript
|
function nextPermutation(nums: number[]): void {
const n = nums.length;
let i = n - 2;
while (i >= 0 && nums[i] >= nums[i + 1]) {
--i;
}
if (i >= 0) {
for (let j = n - 1; j > i; --j) {
if (nums[j] > nums[i]) {
[nums[i], nums[j]] = [nums[j], nums[i]];
break;
}
}
}
for (let j = n - 1; j > i; --j, ++i) {
[nums[i + 1], nums[j]] = [nums[j], nums[i + 1]];
}
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
C++
|
class Solution {
public:
int longestValidParentheses(string s) {
int n = s.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; ++i) {
if (s[i - 1] == ')') {
if (s[i - 2] == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j && s[j - 1] == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return *max_element(f, f + n + 1);
}
};
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
C#
|
public class Solution {
public int LongestValidParentheses(string s) {
int n = s.Length;
int[] f = new int[n + 1];
int ans = 0;
for (int i = 2; i <= n; ++i) {
if (s[i - 1] == ')') {
if (s[i - 2] == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j > 0 && s[j - 1] == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
ans = Math.Max(ans, f[i]);
}
}
return ans;
}
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
Go
|
func longestValidParentheses(s string) int {
n := len(s)
f := make([]int, n+1)
for i := 2; i <= n; i++ {
if s[i-1] == ')' {
if s[i-2] == '(' {
f[i] = f[i-2] + 2
} else if j := i - f[i-1] - 1; j > 0 && s[j-1] == '(' {
f[i] = f[i-1] + 2 + f[j-1]
}
}
}
return slices.Max(f)
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
Java
|
class Solution {
public int longestValidParentheses(String s) {
int n = s.length();
int[] f = new int[n + 1];
int ans = 0;
for (int i = 2; i <= n; ++i) {
if (s.charAt(i - 1) == ')') {
if (s.charAt(i - 2) == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j > 0 && s.charAt(j - 1) == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
ans = Math.max(ans, f[i]);
}
}
return ans;
}
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
JavaScript
|
/**
* @param {string} s
* @return {number}
*/
var longestValidParentheses = function (s) {
const n = s.length;
const f = new Array(n + 1).fill(0);
for (let i = 2; i <= n; ++i) {
if (s[i - 1] === ')') {
if (s[i - 2] === '(') {
f[i] = f[i - 2] + 2;
} else {
const j = i - f[i - 1] - 1;
if (j && s[j - 1] === '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return Math.max(...f);
};
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
PHP
|
class Solution {
/**
* @param string $s
* @return integer
*/
function longestValidParentheses($s) {
$stack = [];
$maxLength = 0;
array_push($stack, -1);
for ($i = 0; $i < strlen($s); $i++) {
if ($s[$i] === '(') {
array_push($stack, $i);
} else {
array_pop($stack);
if (empty($stack)) {
array_push($stack, $i);
} else {
$length = $i - end($stack);
$maxLength = max($maxLength, $length);
}
}
}
return $maxLength;
}
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
Python
|
class Solution:
def longestValidParentheses(self, s: str) -> int:
n = len(s)
f = [0] * (n + 1)
for i, c in enumerate(s, 1):
if c == ")":
if i > 1 and s[i - 2] == "(":
f[i] = f[i - 2] + 2
else:
j = i - f[i - 1] - 1
if j and s[j - 1] == "(":
f[i] = f[i - 1] + 2 + f[j - 1]
return max(f)
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
Rust
|
impl Solution {
pub fn longest_valid_parentheses(s: String) -> i32 {
let mut ans = 0;
let mut f = vec![0; s.len() + 1];
for i in 2..=s.len() {
if s.chars().nth(i - 1).unwrap() == ')' {
if s.chars().nth(i - 2).unwrap() == '(' {
f[i] = f[i - 2] + 2;
} else if (i as i32) - f[i - 1] - 1 > 0
&& s.chars().nth(i - (f[i - 1] as usize) - 2).unwrap() == '('
{
f[i] = f[i - 1] + 2 + f[i - (f[i - 1] as usize) - 2];
}
ans = ans.max(f[i]);
}
}
ans
}
}
|
32 |
Longest Valid Parentheses
|
Hard
|
<p>Given a string containing just the characters <code>'('</code> and <code>')'</code>, return <em>the length of the longest valid (well-formed) parentheses </em><span data-keyword="substring-nonempty"><em>substring</em></span>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "(()"
<strong>Output:</strong> 2
<strong>Explanation:</strong> The longest valid parentheses substring is "()".
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = ")()())"
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest valid parentheses substring is "()()".
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = ""
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 3 * 10<sup>4</sup></code></li>
<li><code>s[i]</code> is <code>'('</code>, or <code>')'</code>.</li>
</ul>
|
Stack; String; Dynamic Programming
|
TypeScript
|
function longestValidParentheses(s: string): number {
const n = s.length;
const f: number[] = new Array(n + 1).fill(0);
for (let i = 2; i <= n; ++i) {
if (s[i - 1] === ')') {
if (s[i - 2] === '(') {
f[i] = f[i - 2] + 2;
} else {
const j = i - f[i - 1] - 1;
if (j && s[j - 1] === '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return Math.max(...f);
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
C++
|
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = nums.size();
int left = 0, right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid])
right = mid;
else
left = mid + 1;
} else {
if (nums[mid] < target && target <= nums[n - 1])
left = mid + 1;
else
right = mid;
}
}
return nums[left] == target ? left : -1;
}
};
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
C#
|
public class Solution {
public int Search(int[] nums, int target) {
int n = nums.Length;
int left = 0, right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
}
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Go
|
func search(nums []int, target int) int {
n := len(nums)
left, right := 0, n-1
for left < right {
mid := (left + right) >> 1
if nums[0] <= nums[mid] {
if nums[0] <= target && target <= nums[mid] {
right = mid
} else {
left = mid + 1
}
} else {
if nums[mid] < target && target <= nums[n-1] {
left = mid + 1
} else {
right = mid
}
}
}
if nums[left] == target {
return left
}
return -1
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Java
|
class Solution {
public int search(int[] nums, int target) {
int n = nums.length;
int left = 0, right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
}
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
JavaScript
|
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function (nums, target) {
const n = nums.length;
let left = 0,
right = n - 1;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
};
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
PHP
|
class Solution {
/**
* @param integer[] $nums
* @param integer $target
* @return integer
*/
function search($nums, $target) {
$foundKey = -1;
foreach ($nums as $key => $value) {
if ($value === $target) {
$foundKey = $key;
}
}
return $foundKey;
}
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Python
|
class Solution:
def search(self, nums: List[int], target: int) -> int:
n = len(nums)
left, right = 0, n - 1
while left < right:
mid = (left + right) >> 1
if nums[0] <= nums[mid]:
if nums[0] <= target <= nums[mid]:
right = mid
else:
left = mid + 1
else:
if nums[mid] < target <= nums[n - 1]:
left = mid + 1
else:
right = mid
return left if nums[left] == target else -1
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Rust
|
impl Solution {
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut l = 0;
let mut r = nums.len() - 1;
while l <= r {
let mid = (l + r) >> 1;
if nums[mid] == target {
return mid as i32;
}
if nums[l] <= nums[mid] {
if target < nums[mid] && target >= nums[l] {
r = mid - 1;
} else {
l = mid + 1;
}
} else {
if target > nums[mid] && target <= nums[r] {
l = mid + 1;
} else {
r = mid - 1;
}
}
}
-1
}
}
|
33 |
Search in Rotated Sorted Array
|
Medium
|
<p>There is an integer array <code>nums</code> sorted in ascending order (with <strong>distinct</strong> values).</p>
<p>Prior to being passed to your function, <code>nums</code> is <strong>possibly rotated</strong> at an unknown pivot index <code>k</code> (<code>1 <= k < nums.length</code>) such that the resulting array is <code>[nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]</code> (<strong>0-indexed</strong>). For example, <code>[0,1,2,4,5,6,7]</code> might be rotated at pivot index <code>3</code> and become <code>[4,5,6,7,0,1,2]</code>.</p>
<p>Given the array <code>nums</code> <strong>after</strong> the possible rotation and an integer <code>target</code>, return <em>the index of </em><code>target</code><em> if it is in </em><code>nums</code><em>, or </em><code>-1</code><em> if it is not in </em><code>nums</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 0
<strong>Output:</strong> 4
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [4,5,6,7,0,1,2], target = 3
<strong>Output:</strong> -1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [1], target = 0
<strong>Output:</strong> -1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5000</code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li>All values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is an ascending array that is possibly rotated.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
TypeScript
|
function search(nums: number[], target: number): number {
const n = nums.length;
let left = 0,
right = n - 1;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
left = mid + 1;
} else {
right = mid;
}
}
}
return nums[left] == target ? left : -1;
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
C++
|
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int l = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
int r = lower_bound(nums.begin(), nums.end(), target + 1) - nums.begin();
if (l == r) {
return {-1, -1};
}
return {l, r - 1};
}
};
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
C#
|
public class Solution {
public int[] SearchRange(int[] nums, int target) {
int l = Search(nums, target);
int r = Search(nums, target + 1);
return l == r ? new int[] {-1, -1} : new int[] {l, r - 1};
}
private int Search(int[] nums, int x) {
int left = 0, right = nums.Length;
while (left < right) {
int mid = (left + right) >>> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
Go
|
func searchRange(nums []int, target int) []int {
l := sort.SearchInts(nums, target)
r := sort.SearchInts(nums, target+1)
if l == r {
return []int{-1, -1}
}
return []int{l, r - 1}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
Java
|
class Solution {
public int[] searchRange(int[] nums, int target) {
int l = search(nums, target);
int r = search(nums, target + 1);
return l == r ? new int[] {-1, -1} : new int[] {l, r - 1};
}
private int search(int[] nums, int x) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >>> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
JavaScript
|
/**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var searchRange = function (nums, target) {
function search(x) {
let left = 0,
right = nums.length;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
const l = search(target);
const r = search(target + 1);
return l == r ? [-1, -1] : [l, r - 1];
};
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
Kotlin
|
class Solution {
fun searchRange(nums: IntArray, target: Int): IntArray {
val left = this.search(nums, target)
val right = this.search(nums, target + 1)
return if (left == right) intArrayOf(-1, -1) else intArrayOf(left, right - 1)
}
private fun search(nums: IntArray, target: Int): Int {
var left = 0
var right = nums.size
while (left < right) {
val middle = (left + right) / 2
if (nums[middle] < target) {
left = middle + 1
} else {
right = middle
}
}
return left
}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
PHP
|
class Solution {
/**
* @param integer[] $nums
* @param integer $target
* @return integer[]
*/
function searchRange($nums, $target) {
$min = -1;
$max = -1;
foreach ($nums as $key => $value) {
if ($value == $target) {
if ($min == -1) {
$min = $key;
}
if ($key > $max) {
$max = $key;
}
}
}
return [$min, $max];
}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
Python
|
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
l = bisect_left(nums, target)
r = bisect_left(nums, target + 1)
return [-1, -1] if l == r else [l, r - 1]
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
Rust
|
impl Solution {
pub fn search_range(nums: Vec<i32>, target: i32) -> Vec<i32> {
let n = nums.len();
let search = |x| {
let mut left = 0;
let mut right = n;
while left < right {
let mid = left + (right - left) / 2;
if nums[mid] < x {
left = mid + 1;
} else {
right = mid;
}
}
left
};
let l = search(target);
let r = search(target + 1);
if l == r {
return vec![-1, -1];
}
vec![l as i32, (r - 1) as i32]
}
}
|
34 |
Find First and Last Position of Element in Sorted Array
|
Medium
|
<p>Given an array of integers <code>nums</code> sorted in non-decreasing order, find the starting and ending position of a given <code>target</code> value.</p>
<p>If <code>target</code> is not found in the array, return <code>[-1, -1]</code>.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 8
<strong>Output:</strong> [3,4]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [5,7,7,8,8,10], target = 6
<strong>Output:</strong> [-1,-1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> nums = [], target = 0
<strong>Output:</strong> [-1,-1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>nums</code> is a non-decreasing array.</li>
<li><code>-10<sup>9</sup> <= target <= 10<sup>9</sup></code></li>
</ul>
|
Array; Binary Search
|
TypeScript
|
function searchRange(nums: number[], target: number): number[] {
const search = (x: number): number => {
let [left, right] = [0, nums.length];
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
};
const l = search(target);
const r = search(target + 1);
return l === r ? [-1, -1] : [l, r - 1];
}
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
C++
|
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int l = 0, r = nums.size();
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Go
|
func searchInsert(nums []int, target int) int {
l, r := 0, len(nums)
for l < r {
mid := (l + r) >> 1
if nums[mid] >= target {
r = mid
} else {
l = mid + 1
}
}
return l
}
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Java
|
class Solution {
public int searchInsert(int[] nums, int target) {
int l = 0, r = nums.length;
while (l < r) {
int mid = (l + r) >>> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
JavaScript
|
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var searchInsert = function (nums, target) {
let [l, r] = [0, nums.length];
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
PHP
|
class Solution {
/**
* @param Integer[] $nums
* @param Integer $target
* @return Integer
*/
function searchInsert($nums, $target) {
$l = 0;
$r = count($nums);
while ($l < $r) {
$mid = $l + $r >> 1;
if ($nums[$mid] >= $target) {
$r = $mid;
} else {
$l = $mid + 1;
}
}
return $l;
}
}
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Python
|
class Solution:
def searchInsert(self, nums: List[int], target: int) -> int:
l, r = 0, len(nums)
while l < r:
mid = (l + r) >> 1
if nums[mid] >= target:
r = mid
else:
l = mid + 1
return l
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
Rust
|
impl Solution {
pub fn search_insert(nums: Vec<i32>, target: i32) -> i32 {
let mut l: usize = 0;
let mut r: usize = nums.len();
while l < r {
let mid = (l + r) >> 1;
if nums[mid] >= target {
r = mid;
} else {
l = mid + 1;
}
}
l as i32
}
}
|
35 |
Search Insert Position
|
Easy
|
<p>Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.</p>
<p>You must write an algorithm with <code>O(log n)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 5
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 2
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,5,6], target = 7
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> contains <strong>distinct</strong> values sorted in <strong>ascending</strong> order.</li>
<li><code>-10<sup>4</sup> <= target <= 10<sup>4</sup></code></li>
</ul>
|
Array; Binary Search
|
TypeScript
|
function searchInsert(nums: number[], target: number): number {
let [l, r] = [0, nums.length];
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
C++
|
class Solution {
public:
bool isValidSudoku(vector<vector<char>>& board) {
vector<vector<bool>> row(9, vector<bool>(9, false));
vector<vector<bool>> col(9, vector<bool>(9, false));
vector<vector<bool>> sub(9, vector<bool>(9, false));
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
char c = board[i][j];
if (c == '.') continue;
int num = c - '0' - 1;
int k = i / 3 * 3 + j / 3;
if (row[i][num] || col[j][num] || sub[k][num]) {
return false;
}
row[i][num] = true;
col[j][num] = true;
sub[k][num] = true;
}
}
return true;
}
};
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
Go
|
func isValidSudoku(board [][]byte) bool {
row, col, sub := [9][9]bool{}, [9][9]bool{}, [9][9]bool{}
for i := 0; i < 9; i++ {
for j := 0; j < 9; j++ {
num := board[i][j] - byte('1')
if num < 0 || num > 9 {
continue
}
k := i/3*3 + j/3
if row[i][num] || col[j][num] || sub[k][num] {
return false
}
row[i][num] = true
col[j][num] = true
sub[k][num] = true
}
}
return true
}
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
Java
|
class Solution {
public boolean isValidSudoku(char[][] board) {
boolean[][] row = new boolean[9][9];
boolean[][] col = new boolean[9][9];
boolean[][] sub = new boolean[9][9];
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
char c = board[i][j];
if (c == '.') {
continue;
}
int num = c - '0' - 1;
int k = i / 3 * 3 + j / 3;
if (row[i][num] || col[j][num] || sub[k][num]) {
return false;
}
row[i][num] = true;
col[j][num] = true;
sub[k][num] = true;
}
}
return true;
}
}
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
JavaScript
|
/**
* @param {character[][]} board
* @return {boolean}
*/
var isValidSudoku = function (board) {
const row = [...Array(9)].map(() => Array(9).fill(false));
const col = [...Array(9)].map(() => Array(9).fill(false));
const sub = [...Array(9)].map(() => Array(9).fill(false));
for (let i = 0; i < 9; ++i) {
for (let j = 0; j < 9; ++j) {
const num = board[i][j].charCodeAt() - '1'.charCodeAt();
if (num < 0 || num > 8) {
continue;
}
const k = Math.floor(i / 3) * 3 + Math.floor(j / 3);
if (row[i][num] || col[j][num] || sub[k][num]) {
return false;
}
row[i][num] = true;
col[j][num] = true;
sub[k][num] = true;
}
}
return true;
};
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
PHP
|
class Solution {
/**
* @param string[][] $board
* @return boolean
*/
function isValidSudoku($board) {
$rows = [];
$columns = [];
$boxes = [];
for ($i = 0; $i < 9; $i++) {
$rows[$i] = [];
$columns[$i] = [];
$boxes[$i] = [];
}
for ($row = 0; $row < 9; $row++) {
for ($column = 0; $column < 9; $column++) {
$cell = $board[$row][$column];
if ($cell != '.') {
if (in_array($cell, $rows[$row]) || in_array($cell, $columns[$column]) || in_array($cell, $boxes[floor($row / 3) * 3 + floor($column / 3)])) {
return false;
}
$rows[$row][] = $cell;
$columns[$column][] = $cell;
$boxes[floor($row / 3) * 3 + floor($column / 3)][] = $cell;
}
}
}
return true;
}
}
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
Python
|
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
row = [[False] * 9 for _ in range(9)]
col = [[False] * 9 for _ in range(9)]
sub = [[False] * 9 for _ in range(9)]
for i in range(9):
for j in range(9):
c = board[i][j]
if c == '.':
continue
num = int(c) - 1
k = i // 3 * 3 + j // 3
if row[i][num] or col[j][num] or sub[k][num]:
return False
row[i][num] = True
col[j][num] = True
sub[k][num] = True
return True
|
36 |
Valid Sudoku
|
Medium
|
<p>Determine if a <code>9 x 9</code> Sudoku board is valid. Only the filled cells need to be validated <strong>according to the following rules</strong>:</p>
<ol>
<li>Each row must contain the digits <code>1-9</code> without repetition.</li>
<li>Each column must contain the digits <code>1-9</code> without repetition.</li>
<li>Each of the nine <code>3 x 3</code> sub-boxes of the grid must contain the digits <code>1-9</code> without repetition.</li>
</ol>
<p><strong>Note:</strong></p>
<ul>
<li>A Sudoku board (partially filled) could be valid but is not necessarily solvable.</li>
<li>Only the filled cells need to be validated according to the mentioned rules.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0036.Valid%20Sudoku/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> false
<strong>Explanation:</strong> Same as Example 1, except with the <strong>5</strong> in the top left corner being modified to <strong>8</strong>. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit <code>1-9</code> or <code>'.'</code>.</li>
</ul>
|
Array; Hash Table; Matrix
|
TypeScript
|
function isValidSudoku(board: string[][]): boolean {
const row: boolean[][] = Array.from({ length: 9 }, () =>
Array.from({ length: 9 }, () => false),
);
const col: boolean[][] = Array.from({ length: 9 }, () =>
Array.from({ length: 9 }, () => false),
);
const sub: boolean[][] = Array.from({ length: 9 }, () =>
Array.from({ length: 9 }, () => false),
);
for (let i = 0; i < 9; ++i) {
for (let j = 0; j < 9; ++j) {
const num = board[i][j].charCodeAt(0) - '1'.charCodeAt(0);
if (num < 0 || num > 8) {
continue;
}
const k = Math.floor(i / 3) * 3 + Math.floor(j / 3);
if (row[i][num] || col[j][num] || sub[k][num]) {
return false;
}
row[i][num] = true;
col[j][num] = true;
sub[k][num] = true;
}
}
return true;
}
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
C++
|
using pii = pair<int, int>;
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
bool row[9][9] = {false};
bool col[9][9] = {false};
bool block[3][3][9] = {false};
bool ok = false;
vector<pii> t;
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
if (board[i][j] == '.') {
t.push_back({i, j});
} else {
int v = board[i][j] - '1';
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
}
}
}
function<void(int k)> dfs = [&](int k) {
if (k == t.size()) {
ok = true;
return;
}
int i = t[k].first, j = t[k].second;
for (int v = 0; v < 9; ++v) {
if (!row[i][v] && !col[j][v] && !block[i / 3][j / 3][v]) {
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
board[i][j] = v + '1';
dfs(k + 1);
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = false;
}
if (ok) {
return;
}
}
};
dfs(0);
}
};
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
C#
|
public class Solution {
public void SolveSudoku(char[][] board) {
this.board = new ushort?[9,9];
for (var i = 0; i < 9; ++i)
{
for (var j = 0; j < 9; ++j)
{
if (board[i][j] != '.')
{
this.board[i, j] = (ushort) (1 << (board[i][j] - '0' - 1));
}
}
}
if (SolveSudoku(0, 0))
{
for (var i = 0; i < 9; ++i)
{
for (var j = 0; j < 9; ++j)
{
if (board[i][j] == '.')
{
board[i][j] = '0';
while (this.board[i, j].Value != 0)
{
board[i][j] = (char)(board[i][j] + 1);
this.board[i, j] >>= 1;
}
}
}
}
}
}
private ushort?[,] board;
private bool ValidateHorizontalRule(int row)
{
ushort temp = 0;
for (var i = 0; i < 9; ++i)
{
if (board[row, i].HasValue)
{
if ((temp | board[row, i].Value) == temp)
{
return false;
}
temp |= board[row, i].Value;
}
}
return true;
}
private bool ValidateVerticalRule(int column)
{
ushort temp = 0;
for (var i = 0; i < 9; ++i)
{
if (board[i, column].HasValue)
{
if ((temp | board[i, column].Value) == temp)
{
return false;
}
temp |= board[i, column].Value;
}
}
return true;
}
private bool ValidateBlockRule(int row, int column)
{
var startRow = row / 3 * 3;
var startColumn = column / 3 * 3;
ushort temp = 0;
for (var i = startRow; i < startRow + 3; ++i)
{
for (var j = startColumn; j < startColumn + 3; ++j)
{
if (board[i, j].HasValue)
{
if ((temp | board[i, j].Value) == temp)
{
return false;
}
temp |= board[i, j].Value;
}
}
}
return true;
}
private bool SolveSudoku(int i, int j)
{
while (true)
{
if (j == 9)
{
++i;
j = 0;
}
if (i == 9)
{
return true;
}
if (board[i, j].HasValue)
{
++j;
}
else
{
break;
}
}
ushort stop = 1 << 9;
for (ushort t = 1; t != stop; t <<= 1)
{
board[i, j] = t;
if (ValidateHorizontalRule(i) && ValidateVerticalRule(j) && ValidateBlockRule(i, j))
{
if (SolveSudoku(i, j + 1))
{
return true;
}
}
}
board[i, j] = null;
return false;
}
}
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
Go
|
func solveSudoku(board [][]byte) {
var row, col [9][9]bool
var block [3][3][9]bool
var t [][2]int
ok := false
for i := 0; i < 9; i++ {
for j := 0; j < 9; j++ {
if board[i][j] == '.' {
t = append(t, [2]int{i, j})
} else {
v := int(board[i][j] - '1')
row[i][v], col[j][v], block[i/3][j/3][v] = true, true, true
}
}
}
var dfs func(int)
dfs = func(k int) {
if k == len(t) {
ok = true
return
}
i, j := t[k][0], t[k][1]
for v := 0; v < 9; v++ {
if !row[i][v] && !col[j][v] && !block[i/3][j/3][v] {
row[i][v], col[j][v], block[i/3][j/3][v] = true, true, true
board[i][j] = byte(v + '1')
dfs(k + 1)
row[i][v], col[j][v], block[i/3][j/3][v] = false, false, false
}
if ok {
return
}
}
}
dfs(0)
}
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
Java
|
class Solution {
private boolean ok;
private char[][] board;
private List<Integer> t = new ArrayList<>();
private boolean[][] row = new boolean[9][9];
private boolean[][] col = new boolean[9][9];
private boolean[][][] block = new boolean[3][3][9];
public void solveSudoku(char[][] board) {
this.board = board;
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
if (board[i][j] == '.') {
t.add(i * 9 + j);
} else {
int v = board[i][j] - '1';
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
}
}
}
dfs(0);
}
private void dfs(int k) {
if (k == t.size()) {
ok = true;
return;
}
int i = t.get(k) / 9, j = t.get(k) % 9;
for (int v = 0; v < 9; ++v) {
if (!row[i][v] && !col[j][v] && !block[i / 3][j / 3][v]) {
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
board[i][j] = (char) (v + '1');
dfs(k + 1);
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = false;
}
if (ok) {
return;
}
}
}
}
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
PHP
|
class Solution {
/**
* @param string[][] $board
* @return bool
*/
public function solveSudoku(&$board) {
if (isSolved($board)) {
return true;
}
$emptyCell = findEmptyCell($board);
$row = $emptyCell[0];
$col = $emptyCell[1];
for ($num = 1; $num <= 9; $num++) {
if (isValid($board, $row, $col, $num)) {
$board[$row][$col] = (string) $num;
if ($this->solveSudoku($board)) {
return true;
}
$board[$row][$col] = '.';
}
}
return false;
}
}
function isSolved($board) {
foreach ($board as $row) {
if (in_array('.', $row)) {
return false;
}
}
return true;
}
function findEmptyCell($board) {
for ($row = 0; $row < 9; $row++) {
for ($col = 0; $col < 9; $col++) {
if ($board[$row][$col] === '.') {
return [$row, $col];
}
}
}
return null;
}
function isValid($board, $row, $col, $num) {
for ($i = 0; $i < 9; $i++) {
if ($board[$row][$i] == $num) {
return false;
}
}
for ($i = 0; $i < 9; $i++) {
if ($board[$i][$col] == $num) {
return false;
}
}
$startRow = floor($row / 3) * 3;
$endCol = floor($col / 3) * 3;
for ($i = 0; $i < 3; $i++) {
for ($j = 0; $j < 3; $j++) {
if ($board[$startRow + $i][$endCol + $j] == $num) {
return false;
}
}
}
return true;
}
|
37 |
Sudoku Solver
|
Hard
|
<p>Write a program to solve a Sudoku puzzle by filling the empty cells.</p>
<p>A sudoku solution must satisfy <strong>all of the following rules</strong>:</p>
<ol>
<li>Each of the digits <code>1-9</code> must occur exactly once in each row.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each column.</li>
<li>Each of the digits <code>1-9</code> must occur exactly once in each of the 9 <code>3x3</code> sub-boxes of the grid.</li>
</ol>
<p>The <code>'.'</code> character indicates empty cells.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714.svg.png" style="height:250px; width:250px" />
<pre>
<strong>Input:</strong> board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
<strong>Output:</strong> [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
<strong>Explanation:</strong> The input board is shown above and the only valid solution is shown below:
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0037.Sudoku%20Solver/images/250px-Sudoku-by-L2G-20050714_solution.svg.png" style="height:250px; width:250px" />
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>board.length == 9</code></li>
<li><code>board[i].length == 9</code></li>
<li><code>board[i][j]</code> is a digit or <code>'.'</code>.</li>
<li>It is <strong>guaranteed</strong> that the input board has only one solution.</li>
</ul>
|
Array; Hash Table; Backtracking; Matrix
|
Python
|
class Solution:
def solveSudoku(self, board: List[List[str]]) -> None:
def dfs(k):
nonlocal ok
if k == len(t):
ok = True
return
i, j = t[k]
for v in range(9):
if row[i][v] == col[j][v] == block[i // 3][j // 3][v] == False:
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = True
board[i][j] = str(v + 1)
dfs(k + 1)
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = False
if ok:
return
row = [[False] * 9 for _ in range(9)]
col = [[False] * 9 for _ in range(9)]
block = [[[False] * 9 for _ in range(3)] for _ in range(3)]
t = []
ok = False
for i in range(9):
for j in range(9):
if board[i][j] == '.':
t.append((i, j))
else:
v = int(board[i][j]) - 1
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = True
dfs(0)
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
C++
|
class Solution {
public:
string countAndSay(int n) {
string s = "1";
while (--n) {
string t = "";
for (int i = 0; i < s.size();) {
int j = i;
while (j < s.size() && s[j] == s[i]) ++j;
t += to_string(j - i);
t += s[i];
i = j;
}
s = t;
}
return s;
}
};
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
C#
|
using System.Text;
public class Solution {
public string CountAndSay(int n) {
var s = "1";
while (n > 1)
{
var sb = new StringBuilder();
var lastChar = '1';
var count = 0;
foreach (var ch in s)
{
if (count > 0 && lastChar == ch)
{
++count;
}
else
{
if (count > 0)
{
sb.Append(count);
sb.Append(lastChar);
}
lastChar = ch;
count = 1;
}
}
if (count > 0)
{
sb.Append(count);
sb.Append(lastChar);
}
s = sb.ToString();
--n;
}
return s;
}
}
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
Go
|
func countAndSay(n int) string {
s := "1"
for k := 0; k < n-1; k++ {
t := &strings.Builder{}
i := 0
for i < len(s) {
j := i
for j < len(s) && s[j] == s[i] {
j++
}
t.WriteString(strconv.Itoa(j - i))
t.WriteByte(s[i])
i = j
}
s = t.String()
}
return s
}
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
Java
|
class Solution {
public String countAndSay(int n) {
String s = "1";
while (--n > 0) {
StringBuilder t = new StringBuilder();
for (int i = 0; i < s.length();) {
int j = i;
while (j < s.length() && s.charAt(j) == s.charAt(i)) {
++j;
}
t.append((j - i) + "");
t.append(s.charAt(i));
i = j;
}
s = t.toString();
}
return s;
}
}
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
JavaScript
|
const countAndSay = function (n) {
let s = '1';
for (let i = 2; i <= n; i++) {
let count = 1,
str = '',
len = s.length;
for (let j = 0; j < len; j++) {
if (j < len - 1 && s[j] === s[j + 1]) {
count++;
} else {
str += `${count}${s[j]}`;
count = 1;
}
}
s = str;
}
return s;
};
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
PHP
|
class Solution {
/**
* @param integer $n
* @return string
*/
function countAndSay($n) {
if ($n <= 0) {
return "";
}
$result = "1";
for ($i = 2; $i <= $n; $i++) {
$count = 1;
$say = "";
for ($j = 1; $j < strlen($result); $j++) {
if ($result[$j] == $result[$j - 1]) {
$count++;
} else {
$say .= $count . $result[$j - 1];
$count = 1;
}
}
$say .= $count . $result[strlen($result) - 1];
$result = $say;
}
return $result;
}
}
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
Python
|
class Solution:
def countAndSay(self, n: int) -> str:
s = '1'
for _ in range(n - 1):
i = 0
t = []
while i < len(s):
j = i
while j < len(s) and s[j] == s[i]:
j += 1
t.append(str(j - i))
t.append(str(s[i]))
i = j
s = ''.join(t)
return s
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
Rust
|
use std::iter::once;
impl Solution {
pub fn count_and_say(n: i32) -> String {
(1..n)
.fold(vec![1], |curr, _| {
let mut next = vec![];
let mut slow = 0;
for fast in 0..=curr.len() {
if fast == curr.len() || curr[slow] != curr[fast] {
next.extend(once((fast - slow) as u8).chain(once(curr[slow])));
slow = fast;
}
}
next
})
.into_iter()
.map(|digit| (digit + b'0') as char)
.collect()
}
}
|
38 |
Count and Say
|
Medium
|
<p>The <strong>count-and-say</strong> sequence is a sequence of digit strings defined by the recursive formula:</p>
<ul>
<li><code>countAndSay(1) = "1"</code></li>
<li><code>countAndSay(n)</code> is the run-length encoding of <code>countAndSay(n - 1)</code>.</li>
</ul>
<p><a href="http://en.wikipedia.org/wiki/Run-length_encoding" target="_blank">Run-length encoding</a> (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string <code>"3322251"</code> we replace <code>"33"</code> with <code>"23"</code>, replace <code>"222"</code> with <code>"32"</code>, replace <code>"5"</code> with <code>"15"</code> and replace <code>"1"</code> with <code>"11"</code>. Thus the compressed string becomes <code>"23321511"</code>.</p>
<p>Given a positive integer <code>n</code>, return <em>the </em><code>n<sup>th</sup></code><em> element of the <strong>count-and-say</strong> sequence</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"1211"</span></p>
<p><strong>Explanation:</strong></p>
<pre>
countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"
</pre>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">"1"</span></p>
<p><strong>Explanation:</strong></p>
<p>This is the base case.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 30</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it iteratively?
|
String
|
TypeScript
|
function countAndSay(n: number): string {
let s = '1';
for (let i = 1; i < n; i++) {
let t = '';
let cur = s[0];
let count = 1;
for (let j = 1; j < s.length; j++) {
if (s[j] !== cur) {
t += `${count}${cur}`;
cur = s[j];
count = 0;
}
count++;
}
t += `${count}${cur}`;
s = t;
}
return s;
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
C++
|
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.size(); ++j) {
t.push_back(candidates[j]);
dfs(j, s - candidates[j]);
t.pop_back();
}
};
dfs(0, target);
return ans;
}
};
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
C#
|
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.Length; ++j) {
t.Add(candidates[j]);
dfs(j, s - candidates[j]);
t.RemoveAt(t.Count - 1);
}
}
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
Go
|
func combinationSum(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if s < candidates[i] {
return
}
for j := i; j < len(candidates); j++ {
t = append(t, candidates[j])
dfs(j, s-candidates[j])
t = t[:len(t)-1]
}
}
dfs(0, target)
return
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
Java
|
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.length; ++j) {
t.add(candidates[j]);
dfs(j, s - candidates[j]);
t.remove(t.size() - 1);
}
}
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
PHP
|
class Solution {
/**
* @param integer[] $candidates
* @param integer $target
* @return integer[][]
*/
function combinationSum($candidates, $target) {
$result = [];
$currentCombination = [];
$startIndex = 0;
sort($candidates);
$this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result);
return $result;
}
function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) {
if ($target === 0) {
$result[] = $currentCombination;
return;
}
for ($i = $startIndex; $i < count($candidates); $i++) {
$num = $candidates[$i];
if ($num > $target) {
break;
}
$currentCombination[] = $num;
$this->findCombinations($candidates, $target - $num, $i, $currentCombination, $result);
array_pop($currentCombination);
}
}
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
Python
|
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if s < candidates[i]:
return
for j in range(i, len(candidates)):
t.append(candidates[j])
dfs(j, s - candidates[j])
t.pop()
candidates.sort()
t = []
ans = []
dfs(0, target)
return ans
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
Rust
|
impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if s < candidates[i] {
return;
}
for j in i..candidates.len() {
t.push(candidates[j]);
Self::dfs(j, s - candidates[j], candidates, t, ans);
t.pop();
}
}
pub fn combination_sum(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
|
39 |
Combination Sum
|
Medium
|
<p>Given an array of <strong>distinct</strong> integers <code>candidates</code> and a target integer <code>target</code>, return <em>a list of all <strong>unique combinations</strong> of </em><code>candidates</code><em> where the chosen numbers sum to </em><code>target</code><em>.</em> You may return the combinations in <strong>any order</strong>.</p>
<p>The <strong>same</strong> number may be chosen from <code>candidates</code> an <strong>unlimited number of times</strong>. Two combinations are unique if the <span data-keyword="frequency-array">frequency</span> of at least one of the chosen numbers is different.</p>
<p>The test cases are generated such that the number of unique combinations that sum up to <code>target</code> is less than <code>150</code> combinations for the given input.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,6,7], target = 7
<strong>Output:</strong> [[2,2,3],[7]]
<strong>Explanation:</strong>
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,3,5], target = 8
<strong>Output:</strong> [[2,2,2,2],[2,3,3],[3,5]]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2], target = 1
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 30</code></li>
<li><code>2 <= candidates[i] <= 40</code></li>
<li>All elements of <code>candidates</code> are <strong>distinct</strong>.</li>
<li><code>1 <= target <= 40</code></li>
</ul>
|
Array; Backtracking
|
TypeScript
|
function combinationSum(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (s < candidates[i]) {
return;
}
for (let j = i; j < candidates.length; ++j) {
t.push(candidates[j]);
dfs(j, s - candidates[j]);
t.pop();
}
};
dfs(0, target);
return ans;
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
C++
|
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (i >= candidates.size() || s < candidates[i]) {
return;
}
for (int j = i; j < candidates.size(); ++j) {
if (j > i && candidates[j] == candidates[j - 1]) {
continue;
}
t.emplace_back(candidates[j]);
dfs(j + 1, s - candidates[j]);
t.pop_back();
}
};
dfs(0, target);
return ans;
}
};
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
C#
|
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum2(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (i >= candidates.Length || s < candidates[i]) {
return;
}
for (int j = i; j < candidates.Length; ++j) {
if (j > i && candidates[j] == candidates[j - 1]) {
continue;
}
t.Add(candidates[j]);
dfs(j + 1, s - candidates[j]);
t.RemoveAt(t.Count - 1);
}
}
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
Go
|
func combinationSum2(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if i >= len(candidates) || s < candidates[i] {
return
}
for j := i; j < len(candidates); j++ {
if j > i && candidates[j] == candidates[j-1] {
continue
}
t = append(t, candidates[j])
dfs(j+1, s-candidates[j])
t = t[:len(t)-1]
}
}
dfs(0, target)
return
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
Java
|
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList<>(t));
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
for (int j = i; j < candidates.length; ++j) {
if (j > i && candidates[j] == candidates[j - 1]) {
continue;
}
t.add(candidates[j]);
dfs(j + 1, s - candidates[j]);
t.remove(t.size() - 1);
}
}
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
JavaScript
|
/**
* @param {number[]} candidates
* @param {number} target
* @return {number[][]}
*/
var combinationSum2 = function (candidates, target) {
candidates.sort((a, b) => a - b);
const ans = [];
const t = [];
const dfs = (i, s) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
for (let j = i; j < candidates.length; ++j) {
if (j > i && candidates[j] === candidates[j - 1]) {
continue;
}
t.push(candidates[j]);
dfs(j + 1, s - candidates[j]);
t.pop();
}
};
dfs(0, target);
return ans;
};
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
PHP
|
class Solution {
/**
* @param integer[] $candidates
* @param integer $target
* @return integer[][]
*/
function combinationSum2($candidates, $target) {
$result = [];
$currentCombination = [];
$startIndex = 0;
sort($candidates);
$this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result);
return $result;
}
function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) {
if ($target === 0) {
$result[] = $currentCombination;
return;
}
for ($i = $startIndex; $i < count($candidates); $i++) {
$num = $candidates[$i];
if ($num > $target) {
break;
}
if ($i > $startIndex && $candidates[$i] === $candidates[$i - 1]) {
continue;
}
$currentCombination[] = $num;
$this->findCombinations($candidates, $target - $num, $i + 1, $currentCombination, $result);
array_pop($currentCombination);
}
}
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
Python
|
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if i >= len(candidates) or s < candidates[i]:
return
for j in range(i, len(candidates)):
if j > i and candidates[j] == candidates[j - 1]:
continue
t.append(candidates[j])
dfs(j + 1, s - candidates[j])
t.pop()
candidates.sort()
ans = []
t = []
dfs(0, target)
return ans
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
Rust
|
impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if i >= candidates.len() || s < candidates[i] {
return;
}
for j in i..candidates.len() {
if j > i && candidates[j] == candidates[j - 1] {
continue;
}
t.push(candidates[j]);
Self::dfs(j + 1, s - candidates[j], candidates, t, ans);
t.pop();
}
}
pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
|
40 |
Combination Sum II
|
Medium
|
<p>Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code> where the candidate numbers sum to <code>target</code>.</p>
<p>Each number in <code>candidates</code> may only be used <strong>once</strong> in the combination.</p>
<p><strong>Note:</strong> The solution set must not contain duplicate combinations.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> candidates = [10,1,2,7,6,1,5], target = 8
<strong>Output:</strong>
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> candidates = [2,5,2,1,2], target = 5
<strong>Output:</strong>
[
[1,2,2],
[5]
]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= candidates.length <= 100</code></li>
<li><code>1 <= candidates[i] <= 50</code></li>
<li><code>1 <= target <= 30</code></li>
</ul>
|
Array; Backtracking
|
TypeScript
|
function combinationSum2(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
for (let j = i; j < candidates.length; j++) {
if (j > i && candidates[j] === candidates[j - 1]) {
continue;
}
t.push(candidates[j]);
dfs(j + 1, s - candidates[j]);
t.pop();
}
};
dfs(0, target);
return ans;
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
C
|
int firstMissingPositive(int* nums, int numsSize) {
for (int i = 0; i < numsSize; ++i) {
while (nums[i] > 0 && nums[i] <= numsSize && nums[i] != nums[nums[i] - 1]) {
int j = nums[i] - 1;
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
for (int i = 0; i < numsSize; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return numsSize + 1;
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
C++
|
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
swap(nums[i], nums[nums[i] - 1]);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return n + 1;
}
};
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
C#
|
public class Solution {
public int FirstMissingPositive(int[] nums) {
int n = nums.Length;
for (int i = 0; i < n; ++i) {
while (nums[i] >= 1 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
Swap(nums, i, nums[i] - 1);
}
}
for (int i = 0; i < n; ++i) {
if (i + 1 != nums[i]) {
return i + 1;
}
}
return n + 1;
}
private void Swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
Go
|
func firstMissingPositive(nums []int) int {
n := len(nums)
for i := range nums {
for 0 < nums[i] && nums[i] <= n && nums[i] != nums[nums[i]-1] {
nums[i], nums[nums[i]-1] = nums[nums[i]-1], nums[i]
}
}
for i, x := range nums {
if x != i+1 {
return i + 1
}
}
return n + 1
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
Java
|
class Solution {
public int firstMissingPositive(int[] nums) {
int n = nums.length;
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
swap(nums, i, nums[i] - 1);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return n + 1;
}
private void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
PHP
|
class Solution {
/**
* @param Integer[] $nums
* @return Integer
*/
function firstMissingPositive($nums) {
$n = count($nums);
for ($i = 0; $i < $n; $i++) {
while ($nums[$i] >= 1 && $nums[$i] <= $n && $nums[$i] != $nums[$nums[$i] - 1]) {
$j = $nums[$i] - 1;
$t = $nums[$i];
$nums[$i] = $nums[$j];
$nums[$j] = $t;
}
}
for ($i = 0; $i < $n; $i++) {
if ($nums[$i] != $i + 1) {
return $i + 1;
}
}
return $n + 1;
}
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
Python
|
class Solution:
def firstMissingPositive(self, nums: List[int]) -> int:
n = len(nums)
for i in range(n):
while 1 <= nums[i] <= n and nums[i] != nums[nums[i] - 1]:
j = nums[i] - 1
nums[i], nums[j] = nums[j], nums[i]
for i in range(n):
if nums[i] != i + 1:
return i + 1
return n + 1
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
Rust
|
impl Solution {
pub fn first_missing_positive(mut nums: Vec<i32>) -> i32 {
let n = nums.len();
for i in 0..n {
while nums[i] > 0 && nums[i] <= n as i32 && nums[i] != nums[nums[i] as usize - 1] {
let j = nums[i] as usize - 1;
nums.swap(i, j);
}
}
for i in 0..n {
if nums[i] != (i + 1) as i32 {
return (i + 1) as i32;
}
}
return (n + 1) as i32;
}
}
|
41 |
First Missing Positive
|
Hard
|
<p>Given an unsorted integer array <code>nums</code>. Return the <em>smallest positive integer</em> that is <em>not present</em> in <code>nums</code>.</p>
<p>You must implement an algorithm that runs in <code>O(n)</code> time and uses <code>O(1)</code> auxiliary space.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,0]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The numbers in the range [1,2] are all in the array.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,4,-1,1]
<strong>Output:</strong> 2
<strong>Explanation:</strong> 1 is in the array but 2 is missing.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [7,8,9,11,12]
<strong>Output:</strong> 1
<strong>Explanation:</strong> The smallest positive integer 1 is missing.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Array; Hash Table
|
TypeScript
|
function firstMissingPositive(nums: number[]): number {
const n = nums.length;
for (let i = 0; i < n; i++) {
while (nums[i] >= 1 && nums[i] <= n && nums[i] !== nums[nums[i] - 1]) {
const j = nums[i] - 1;
[nums[i], nums[j]] = [nums[j], nums[i]];
}
}
for (let i = 0; i < n; i++) {
if (nums[i] !== i + 1) {
return i + 1;
}
}
return n + 1;
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
C++
|
class Solution {
public:
int trap(vector<int>& height) {
int n = height.size();
int left[n], right[n];
left[0] = height[0];
right[n - 1] = height[n - 1];
for (int i = 1; i < n; ++i) {
left[i] = max(left[i - 1], height[i]);
right[n - i - 1] = max(right[n - i], height[n - i - 1]);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += min(left[i], right[i]) - height[i];
}
return ans;
}
};
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
C#
|
public class Solution {
public int Trap(int[] height) {
int n = height.Length;
int[] left = new int[n];
int[] right = new int[n];
left[0] = height[0];
right[n - 1] = height[n - 1];
for (int i = 1; i < n; ++i) {
left[i] = Math.Max(left[i - 1], height[i]);
right[n - i - 1] = Math.Max(right[n - i], height[n - i - 1]);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += Math.Min(left[i], right[i]) - height[i];
}
return ans;
}
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
Go
|
func trap(height []int) (ans int) {
n := len(height)
left := make([]int, n)
right := make([]int, n)
left[0], right[n-1] = height[0], height[n-1]
for i := 1; i < n; i++ {
left[i] = max(left[i-1], height[i])
right[n-i-1] = max(right[n-i], height[n-i-1])
}
for i, h := range height {
ans += min(left[i], right[i]) - h
}
return
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
Java
|
class Solution {
public int trap(int[] height) {
int n = height.length;
int[] left = new int[n];
int[] right = new int[n];
left[0] = height[0];
right[n - 1] = height[n - 1];
for (int i = 1; i < n; ++i) {
left[i] = Math.max(left[i - 1], height[i]);
right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += Math.min(left[i], right[i]) - height[i];
}
return ans;
}
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
PHP
|
class Solution {
/**
* @param integer[] $height
* @return integer
*/
function trap($height) {
$n = count($height);
if ($n == 0) {
return 0;
}
$left = 0;
$right = $n - 1;
$leftMax = 0;
$rightMax = 0;
$ans = 0;
while ($left < $right) {
if ($height[$left] < $height[$right]) {
if ($height[$left] > $leftMax) {
$leftMax = $height[$left];
} else {
$ans += $leftMax - $height[$left];
}
$left++;
} else {
if ($height[$right] > $rightMax) {
$rightMax = $height[$right];
} else {
$ans += $rightMax - $height[$right];
}
$right--;
}
}
return $ans;
}
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
Python
|
class Solution:
def trap(self, height: List[int]) -> int:
n = len(height)
left = [height[0]] * n
right = [height[-1]] * n
for i in range(1, n):
left[i] = max(left[i - 1], height[i])
right[n - i - 1] = max(right[n - i], height[n - i - 1])
return sum(min(l, r) - h for l, r, h in zip(left, right, height))
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
Rust
|
impl Solution {
#[allow(dead_code)]
pub fn trap(height: Vec<i32>) -> i32 {
let n = height.len();
let mut left: Vec<i32> = vec![0; n];
let mut right: Vec<i32> = vec![0; n];
left[0] = height[0];
right[n - 1] = height[n - 1];
// Initialize the left & right vector
for i in 1..n {
left[i] = std::cmp::max(left[i - 1], height[i]);
right[n - i - 1] = std::cmp::max(right[n - i], height[n - i - 1]);
}
let mut ans = 0;
// Calculate the ans
for i in 0..n {
ans += std::cmp::min(left[i], right[i]) - height[i];
}
ans
}
}
|
42 |
Trapping Rain Water
|
Hard
|
<p>Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0042.Trapping%20Rain%20Water/images/rainwatertrap.png" style="width: 412px; height: 161px;" />
<pre>
<strong>Input:</strong> height = [0,1,0,2,1,0,1,3,2,1,2,1]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> height = [4,2,0,3,2,5]
<strong>Output:</strong> 9
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == height.length</code></li>
<li><code>1 <= n <= 2 * 10<sup>4</sup></code></li>
<li><code>0 <= height[i] <= 10<sup>5</sup></code></li>
</ul>
|
Stack; Array; Two Pointers; Dynamic Programming; Monotonic Stack
|
TypeScript
|
function trap(height: number[]): number {
const n = height.length;
const left: number[] = new Array(n).fill(height[0]);
const right: number[] = new Array(n).fill(height[n - 1]);
for (let i = 1; i < n; ++i) {
left[i] = Math.max(left[i - 1], height[i]);
right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
}
let ans = 0;
for (let i = 0; i < n; ++i) {
ans += Math.min(left[i], right[i]) - height[i];
}
return ans;
}
|
43 |
Multiply Strings
|
Medium
|
<p>Given two non-negative integers <code>num1</code> and <code>num2</code> represented as strings, return the product of <code>num1</code> and <code>num2</code>, also represented as a string.</p>
<p><strong>Note:</strong> You must not use any built-in BigInteger library or convert the inputs to integer directly.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> num1 = "2", num2 = "3"
<strong>Output:</strong> "6"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> num1 = "123", num2 = "456"
<strong>Output:</strong> "56088"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= num1.length, num2.length <= 200</code></li>
<li><code>num1</code> and <code>num2</code> consist of digits only.</li>
<li>Both <code>num1</code> and <code>num2</code> do not contain any leading zero, except the number <code>0</code> itself.</li>
</ul>
|
Math; String; Simulation
|
C++
|
class Solution {
public:
string multiply(string num1, string num2) {
if (num1 == "0" || num2 == "0") {
return "0";
}
int m = num1.size(), n = num2.size();
vector<int> arr(m + n);
for (int i = m - 1; i >= 0; --i) {
int a = num1[i] - '0';
for (int j = n - 1; j >= 0; --j) {
int b = num2[j] - '0';
arr[i + j + 1] += a * b;
}
}
for (int i = arr.size() - 1; i; --i) {
arr[i - 1] += arr[i] / 10;
arr[i] %= 10;
}
int i = arr[0] ? 0 : 1;
string ans;
for (; i < arr.size(); ++i) {
ans += '0' + arr[i];
}
return ans;
}
};
|
43 |
Multiply Strings
|
Medium
|
<p>Given two non-negative integers <code>num1</code> and <code>num2</code> represented as strings, return the product of <code>num1</code> and <code>num2</code>, also represented as a string.</p>
<p><strong>Note:</strong> You must not use any built-in BigInteger library or convert the inputs to integer directly.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> num1 = "2", num2 = "3"
<strong>Output:</strong> "6"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> num1 = "123", num2 = "456"
<strong>Output:</strong> "56088"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= num1.length, num2.length <= 200</code></li>
<li><code>num1</code> and <code>num2</code> consist of digits only.</li>
<li>Both <code>num1</code> and <code>num2</code> do not contain any leading zero, except the number <code>0</code> itself.</li>
</ul>
|
Math; String; Simulation
|
C#
|
public class Solution {
public string Multiply(string num1, string num2) {
if (num1 == "0" || num2 == "0") {
return "0";
}
int m = num1.Length;
int n = num2.Length;
int[] arr = new int[m + n];
for (int i = m - 1; i >= 0; i--) {
int a = num1[i] - '0';
for (int j = n - 1; j >= 0; j--) {
int b = num2[j] - '0';
arr[i + j + 1] += a * b;
}
}
for (int i = arr.Length - 1; i > 0; i--) {
arr[i - 1] += arr[i] / 10;
arr[i] %= 10;
}
int index = 0;
while (index < arr.Length && arr[index] == 0) {
index++;
}
StringBuilder ans = new StringBuilder();
for (; index < arr.Length; index++) {
ans.Append(arr[index]);
}
return ans.ToString();
}
}
|
43 |
Multiply Strings
|
Medium
|
<p>Given two non-negative integers <code>num1</code> and <code>num2</code> represented as strings, return the product of <code>num1</code> and <code>num2</code>, also represented as a string.</p>
<p><strong>Note:</strong> You must not use any built-in BigInteger library or convert the inputs to integer directly.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> num1 = "2", num2 = "3"
<strong>Output:</strong> "6"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> num1 = "123", num2 = "456"
<strong>Output:</strong> "56088"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= num1.length, num2.length <= 200</code></li>
<li><code>num1</code> and <code>num2</code> consist of digits only.</li>
<li>Both <code>num1</code> and <code>num2</code> do not contain any leading zero, except the number <code>0</code> itself.</li>
</ul>
|
Math; String; Simulation
|
Go
|
func multiply(num1 string, num2 string) string {
if num1 == "0" || num2 == "0" {
return "0"
}
m, n := len(num1), len(num2)
arr := make([]int, m+n)
for i := m - 1; i >= 0; i-- {
a := int(num1[i] - '0')
for j := n - 1; j >= 0; j-- {
b := int(num2[j] - '0')
arr[i+j+1] += a * b
}
}
for i := len(arr) - 1; i > 0; i-- {
arr[i-1] += arr[i] / 10
arr[i] %= 10
}
i := 0
if arr[0] == 0 {
i = 1
}
ans := []byte{}
for ; i < len(arr); i++ {
ans = append(ans, byte('0'+arr[i]))
}
return string(ans)
}
|
43 |
Multiply Strings
|
Medium
|
<p>Given two non-negative integers <code>num1</code> and <code>num2</code> represented as strings, return the product of <code>num1</code> and <code>num2</code>, also represented as a string.</p>
<p><strong>Note:</strong> You must not use any built-in BigInteger library or convert the inputs to integer directly.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> num1 = "2", num2 = "3"
<strong>Output:</strong> "6"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> num1 = "123", num2 = "456"
<strong>Output:</strong> "56088"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= num1.length, num2.length <= 200</code></li>
<li><code>num1</code> and <code>num2</code> consist of digits only.</li>
<li>Both <code>num1</code> and <code>num2</code> do not contain any leading zero, except the number <code>0</code> itself.</li>
</ul>
|
Math; String; Simulation
|
Java
|
class Solution {
public String multiply(String num1, String num2) {
if ("0".equals(num1) || "0".equals(num2)) {
return "0";
}
int m = num1.length(), n = num2.length();
int[] arr = new int[m + n];
for (int i = m - 1; i >= 0; --i) {
int a = num1.charAt(i) - '0';
for (int j = n - 1; j >= 0; --j) {
int b = num2.charAt(j) - '0';
arr[i + j + 1] += a * b;
}
}
for (int i = arr.length - 1; i > 0; --i) {
arr[i - 1] += arr[i] / 10;
arr[i] %= 10;
}
int i = arr[0] == 0 ? 1 : 0;
StringBuilder ans = new StringBuilder();
for (; i < arr.length; ++i) {
ans.append(arr[i]);
}
return ans.toString();
}
}
|
43 |
Multiply Strings
|
Medium
|
<p>Given two non-negative integers <code>num1</code> and <code>num2</code> represented as strings, return the product of <code>num1</code> and <code>num2</code>, also represented as a string.</p>
<p><strong>Note:</strong> You must not use any built-in BigInteger library or convert the inputs to integer directly.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> num1 = "2", num2 = "3"
<strong>Output:</strong> "6"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> num1 = "123", num2 = "456"
<strong>Output:</strong> "56088"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= num1.length, num2.length <= 200</code></li>
<li><code>num1</code> and <code>num2</code> consist of digits only.</li>
<li>Both <code>num1</code> and <code>num2</code> do not contain any leading zero, except the number <code>0</code> itself.</li>
</ul>
|
Math; String; Simulation
|
JavaScript
|
/**
* @param {string} num1
* @param {string} num2
* @return {string}
*/
var multiply = function (num1, num2) {
if (num1 === '0' || num2 === '0') return '0';
const result = Array(num1.length + num2.length).fill(0);
const code_0 = '0'.charCodeAt(0);
const num1_len = num1.length;
const num2_len = num2.length;
for (let i = 0; i < num1_len; ++i) {
const multiplier_1 = num1.charCodeAt(num1_len - i - 1) - code_0;
for (let j = 0; j < num2_len; ++j) {
const multiplier_2 = num2.charCodeAt(num2_len - j - 1) - code_0;
result[i + j] += multiplier_1 * multiplier_2;
}
}
result.reduce((carry, value, index) => {
const sum = carry + value;
result[index] = sum % 10;
return (sum / 10) | 0;
}, 0);
return result
.slice(0, result.findLastIndex(d => d !== 0) + 1)
.reverse()
.join('');
};
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.