label
int64
0
1
func1
stringlengths
23
97k
id
int64
0
27.3k
0
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) { int rtas; GString *hypertas = g_string_sized_new(256); GString *qemu_hypertas = g_string_sized_new(256); uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; uint64_t max_hotplug_addr = spapr->hotplug_memory.base + memory_region_size(&spapr->hotplug_memory.mr); uint32_t lrdr_capacity[] = { cpu_to_be32(max_hotplug_addr >> 32), cpu_to_be32(max_hotplug_addr & 0xffffffff), 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), cpu_to_be32(max_cpus / smp_threads), }; _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); /* hypertas */ add_str(hypertas, "hcall-pft"); add_str(hypertas, "hcall-term"); add_str(hypertas, "hcall-dabr"); add_str(hypertas, "hcall-interrupt"); add_str(hypertas, "hcall-tce"); add_str(hypertas, "hcall-vio"); add_str(hypertas, "hcall-splpar"); add_str(hypertas, "hcall-bulk"); add_str(hypertas, "hcall-set-mode"); add_str(hypertas, "hcall-sprg0"); add_str(hypertas, "hcall-copy"); add_str(hypertas, "hcall-debug"); add_str(qemu_hypertas, "hcall-memop1"); if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { add_str(hypertas, "hcall-multi-tce"); } if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { add_str(hypertas, "hcall-hpt-resize"); } _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", hypertas->str, hypertas->len)); g_string_free(hypertas, TRUE); _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", qemu_hypertas->str, qemu_hypertas->len)); g_string_free(qemu_hypertas, TRUE); _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", refpoints, sizeof(refpoints))); _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)); _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", RTAS_EVENT_SCAN_RATE)); if (msi_nonbroken) { _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); } /* * According to PAPR, rtas ibm,os-term does not guarantee a return * back to the guest cpu. * * While an additional ibm,extended-os-term property indicates * that rtas call return will always occur. Set this property. */ _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", lrdr_capacity, sizeof(lrdr_capacity))); spapr_dt_rtas_tokens(fdt, rtas); }
21,856
0
static ssize_t nbd_co_receive_request(NBDRequest *req, struct nbd_request *request) { NBDClient *client = req->client; uint32_t command; ssize_t rc; g_assert(qemu_in_coroutine()); client->recv_coroutine = qemu_coroutine_self(); nbd_update_can_read(client); rc = nbd_receive_request(client->ioc, request); if (rc < 0) { if (rc != -EAGAIN) { rc = -EIO; } goto out; } TRACE("Decoding type"); command = request->type & NBD_CMD_MASK_COMMAND; if (command != NBD_CMD_WRITE) { /* No payload, we are ready to read the next request. */ req->complete = true; } if (command == NBD_CMD_DISC) { /* Special case: we're going to disconnect without a reply, * whether or not flags, from, or len are bogus */ TRACE("Request type is DISCONNECT"); rc = -EIO; goto out; } /* Check for sanity in the parameters, part 1. Defer as many * checks as possible until after reading any NBD_CMD_WRITE * payload, so we can try and keep the connection alive. */ if ((request->from + request->len) < request->from) { LOG("integer overflow detected, you're probably being attacked"); rc = -EINVAL; goto out; } if (command == NBD_CMD_READ || command == NBD_CMD_WRITE) { if (request->len > NBD_MAX_BUFFER_SIZE) { LOG("len (%" PRIu32" ) is larger than max len (%u)", request->len, NBD_MAX_BUFFER_SIZE); rc = -EINVAL; goto out; } req->data = blk_try_blockalign(client->exp->blk, request->len); if (req->data == NULL) { rc = -ENOMEM; goto out; } } if (command == NBD_CMD_WRITE) { TRACE("Reading %" PRIu32 " byte(s)", request->len); if (read_sync(client->ioc, req->data, request->len) != request->len) { LOG("reading from socket failed"); rc = -EIO; goto out; } req->complete = true; } /* Sanity checks, part 2. */ if (request->from + request->len > client->exp->size) { LOG("operation past EOF; From: %" PRIu64 ", Len: %" PRIu32 ", Size: %" PRIu64, request->from, request->len, (uint64_t)client->exp->size); rc = command == NBD_CMD_WRITE ? -ENOSPC : -EINVAL; goto out; } if (request->type & ~NBD_CMD_MASK_COMMAND & ~NBD_CMD_FLAG_FUA) { LOG("unsupported flags (got 0x%x)", request->type & ~NBD_CMD_MASK_COMMAND); rc = -EINVAL; goto out; } rc = 0; out: client->recv_coroutine = NULL; nbd_update_can_read(client); return rc; }
21,857
0
static void qio_channel_socket_listen_worker(QIOTask *task, gpointer opaque) { QIOChannelSocket *ioc = QIO_CHANNEL_SOCKET(qio_task_get_source(task)); SocketAddressLegacy *addr = opaque; Error *err = NULL; qio_channel_socket_listen_sync(ioc, addr, &err); qio_task_set_error(task, err); }
21,859
0
static void smp_parse(QemuOpts *opts) { if (opts) { unsigned cpus = qemu_opt_get_number(opts, "cpus", 0); unsigned sockets = qemu_opt_get_number(opts, "sockets", 0); unsigned cores = qemu_opt_get_number(opts, "cores", 0); unsigned threads = qemu_opt_get_number(opts, "threads", 0); /* compute missing values, prefer sockets over cores over threads */ if (cpus == 0 || sockets == 0) { sockets = sockets > 0 ? sockets : 1; cores = cores > 0 ? cores : 1; threads = threads > 0 ? threads : 1; if (cpus == 0) { cpus = cores * threads * sockets; } } else if (cores == 0) { threads = threads > 0 ? threads : 1; cores = cpus / (sockets * threads); } else if (threads == 0) { threads = cpus / (cores * sockets); } else if (sockets * cores * threads < cpus) { error_report("cpu topology: " "sockets (%u) * cores (%u) * threads (%u) < " "smp_cpus (%u)", sockets, cores, threads, cpus); exit(1); } max_cpus = qemu_opt_get_number(opts, "maxcpus", cpus); if (sockets * cores * threads > max_cpus) { error_report("cpu topology: " "sockets (%u) * cores (%u) * threads (%u) > " "maxcpus (%u)", sockets, cores, threads, max_cpus); exit(1); } smp_cpus = cpus; smp_cores = cores > 0 ? cores : 1; smp_threads = threads > 0 ? threads : 1; } if (max_cpus == 0) { max_cpus = smp_cpus; } if (max_cpus > MAX_CPUMASK_BITS) { error_report("unsupported number of maxcpus"); exit(1); } if (max_cpus < smp_cpus) { error_report("maxcpus must be equal to or greater than smp"); exit(1); } if (smp_cpus > 1 || smp_cores > 1 || smp_threads > 1) { Error *blocker = NULL; error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp"); replay_add_blocker(blocker); } }
21,861
0
static void vp8_idct_dc_add4y_c(uint8_t *dst, int16_t block[4][16], ptrdiff_t stride) { vp8_idct_dc_add_c(dst+ 0, block[0], stride); vp8_idct_dc_add_c(dst+ 4, block[1], stride); vp8_idct_dc_add_c(dst+ 8, block[2], stride); vp8_idct_dc_add_c(dst+12, block[3], stride); }
21,862
0
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val) { RTL8139State *s = opaque; switch (addr) { case MAC0 ... MAC0+5: s->phys[addr - MAC0] = val; qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys); break; case MAC0+6 ... MAC0+7: /* reserved */ break; case MAR0 ... MAR0+7: s->mult[addr - MAR0] = val; break; case ChipCmd: rtl8139_ChipCmd_write(s, val); break; case Cfg9346: rtl8139_Cfg9346_write(s, val); break; case TxConfig: /* windows driver sometimes writes using byte-lenth call */ rtl8139_TxConfig_writeb(s, val); break; case Config0: rtl8139_Config0_write(s, val); break; case Config1: rtl8139_Config1_write(s, val); break; case Config3: rtl8139_Config3_write(s, val); break; case Config4: rtl8139_Config4_write(s, val); break; case Config5: rtl8139_Config5_write(s, val); break; case MediaStatus: /* ignore */ DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n", val); break; case HltClk: DPRINTF("HltClk write val=0x%08x\n", val); if (val == 'R') { s->clock_enabled = 1; } else if (val == 'H') { s->clock_enabled = 0; } break; case TxThresh: DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val); s->TxThresh = val; break; case TxPoll: DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val); if (val & (1 << 7)) { DPRINTF("C+ TxPoll high priority transmission (not " "implemented)\n"); //rtl8139_cplus_transmit(s); } if (val & (1 << 6)) { DPRINTF("C+ TxPoll normal priority transmission\n"); rtl8139_cplus_transmit(s); } break; default: DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr, val); break; } }
21,865
0
static void test_validate_fail_union(TestInputVisitorData *data, const void *unused) { UserDefUnion *tmp = NULL; Error *err = NULL; Visitor *v; v = validate_test_init(data, "{ 'type': 'b', 'data' : { 'integer': 42 } }"); visit_type_UserDefUnion(v, &tmp, NULL, &err); g_assert(err); qapi_free_UserDefUnion(tmp); }
21,866
0
static void nabm_writew (void *opaque, uint32_t addr, uint32_t val) { PCIAC97LinkState *d = opaque; AC97LinkState *s = &d->ac97; AC97BusMasterRegs *r = NULL; uint32_t index = addr - s->base[1]; switch (index) { case PI_SR: case PO_SR: case MC_SR: r = &s->bm_regs[GET_BM (index)]; r->sr |= val & ~(SR_RO_MASK | SR_WCLEAR_MASK); update_sr (s, r, r->sr & ~(val & SR_WCLEAR_MASK)); dolog ("SR[%d] <- %#x (sr %#x)\n", GET_BM (index), val, r->sr); break; default: dolog ("U nabm writew %#x <- %#x\n", addr, val); break; } }
21,867
0
static void musicpal_misc_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { }
21,868
0
void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env) { int flag; flag = float64_compare_quiet(a, b, &env->ucf64.fp_status); env->CF = 0; switch (c & 0x7) { case 0: /* F */ break; case 1: /* UN */ if (flag == 2) { env->CF = 1; } break; case 2: /* EQ */ if (flag == 0) { env->CF = 1; } break; case 3: /* UEQ */ if ((flag == 0) || (flag == 2)) { env->CF = 1; } break; case 4: /* OLT */ if (flag == -1) { env->CF = 1; } break; case 5: /* ULT */ if ((flag == -1) || (flag == 2)) { env->CF = 1; } break; case 6: /* OLE */ if ((flag == -1) || (flag == 0)) { env->CF = 1; } break; case 7: /* ULE */ if (flag != 1) { env->CF = 1; } break; } env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); }
21,869
0
static void acpi_align_size(GArray *blob, unsigned align) { /* Align size to multiple of given size. This reduces the chance * we need to change size in the future (breaking cross version migration). */ g_array_set_size(blob, (ROUND_UP(acpi_data_len(blob), align) + g_array_get_element_size(blob) - 1) / g_array_get_element_size(blob)); }
21,870
0
int fd_start_outgoing_migration(MigrationState *s, const char *fdname) { s->fd = monitor_get_fd(s->mon, fdname); if (s->fd == -1) { DPRINTF("fd_migration: invalid file descriptor identifier\n"); goto err_after_get_fd; } if (fcntl(s->fd, F_SETFL, O_NONBLOCK) == -1) { DPRINTF("Unable to set nonblocking mode on file descriptor\n"); goto err_after_open; } s->get_error = fd_errno; s->write = fd_write; s->close = fd_close; migrate_fd_connect(s); return 0; err_after_open: close(s->fd); err_after_get_fd: return -1; }
21,872
0
int msmpeg4_decode_picture_header(MpegEncContext * s) { int code; #if 0 { int i; for(i=0; i<s->gb.size*8; i++) printf("%d", get_bits1(&s->gb)); // get_bits1(&s->gb); printf("END\n"); return -1; } #endif if(s->msmpeg4_version==1){ int start_code, num; start_code = (get_bits(&s->gb, 16)<<16) | get_bits(&s->gb, 16); if(start_code!=0x00000100){ fprintf(stderr, "invalid startcode\n"); return -1; } num= get_bits(&s->gb, 5); // frame number */ } s->pict_type = get_bits(&s->gb, 2) + 1; if (s->pict_type != I_TYPE && s->pict_type != P_TYPE){ fprintf(stderr, "invalid picture type\n"); return -1; } #if 0 { static int had_i=0; if(s->pict_type == I_TYPE) had_i=1; if(!had_i) return -1; } #endif s->qscale = get_bits(&s->gb, 5); if (s->pict_type == I_TYPE) { code = get_bits(&s->gb, 5); if(s->msmpeg4_version==1){ if(code==0 || code>s->mb_height){ fprintf(stderr, "invalid slice height %d\n", code); return -1; } s->slice_height = code; }else{ /* 0x17: one slice, 0x18: two slices, ... */ if (code < 0x17){ fprintf(stderr, "error, slice code was %X\n", code); return -1; } s->slice_height = s->mb_height / (code - 0x16); } switch(s->msmpeg4_version){ case 1: case 2: s->rl_chroma_table_index = 2; s->rl_table_index = 2; s->dc_table_index = 0; //not used break; case 3: s->rl_chroma_table_index = decode012(&s->gb); s->rl_table_index = decode012(&s->gb); s->dc_table_index = get_bits1(&s->gb); break; case 4: msmpeg4_decode_ext_header(s, (2+5+5+17+7)/8); if(s->bit_rate > MBAC_BITRATE) s->per_mb_rl_table= get_bits1(&s->gb); else s->per_mb_rl_table= 0; if(!s->per_mb_rl_table){ s->rl_chroma_table_index = decode012(&s->gb); s->rl_table_index = decode012(&s->gb); } s->dc_table_index = get_bits1(&s->gb); s->inter_intra_pred= 0; break; } s->no_rounding = 1; /* printf("qscale:%d rlc:%d rl:%d dc:%d mbrl:%d slice:%d \n", s->qscale, s->rl_chroma_table_index, s->rl_table_index, s->dc_table_index, s->per_mb_rl_table, s->slice_height);*/ } else { switch(s->msmpeg4_version){ case 1: case 2: if(s->msmpeg4_version==1) s->use_skip_mb_code = 1; else s->use_skip_mb_code = get_bits1(&s->gb); s->rl_table_index = 2; s->rl_chroma_table_index = s->rl_table_index; s->dc_table_index = 0; //not used s->mv_table_index = 0; break; case 3: s->use_skip_mb_code = get_bits1(&s->gb); s->rl_table_index = decode012(&s->gb); s->rl_chroma_table_index = s->rl_table_index; s->dc_table_index = get_bits1(&s->gb); s->mv_table_index = get_bits1(&s->gb); break; case 4: s->use_skip_mb_code = get_bits1(&s->gb); if(s->bit_rate > MBAC_BITRATE) s->per_mb_rl_table= get_bits1(&s->gb); else s->per_mb_rl_table= 0; if(!s->per_mb_rl_table){ s->rl_table_index = decode012(&s->gb); s->rl_chroma_table_index = s->rl_table_index; } s->dc_table_index = get_bits1(&s->gb); s->mv_table_index = get_bits1(&s->gb); s->inter_intra_pred= (s->width*s->height < 320*240 && s->bit_rate<=II_BITRATE); break; } /* printf("skip:%d rl:%d rlc:%d dc:%d mv:%d mbrl:%d qp:%d \n", s->use_skip_mb_code, s->rl_table_index, s->rl_chroma_table_index, s->dc_table_index, s->mv_table_index, s->per_mb_rl_table, s->qscale);*/ if(s->flipflop_rounding){ s->no_rounding ^= 1; }else{ s->no_rounding = 0; } } //printf("%d %d %d %d %d\n", s->pict_type, s->bit_rate, s->inter_intra_pred, s->width, s->height); s->esc3_level_length= 0; s->esc3_run_length= 0; #ifdef DEBUG printf("*****frame %d:\n", frame_count++); #endif return 0; }
21,873
0
static void usbnet_receive(void *opaque, const uint8_t *buf, size_t size) { USBNetState *s = opaque; struct rndis_packet_msg_type *msg; if (s->rndis) { msg = (struct rndis_packet_msg_type *) s->in_buf; if (!s->rndis_state == RNDIS_DATA_INITIALIZED) return; if (size + sizeof(struct rndis_packet_msg_type) > sizeof(s->in_buf)) return; memset(msg, 0, sizeof(struct rndis_packet_msg_type)); msg->MessageType = cpu_to_le32(RNDIS_PACKET_MSG); msg->MessageLength = cpu_to_le32(size + sizeof(struct rndis_packet_msg_type)); msg->DataOffset = cpu_to_le32(sizeof(struct rndis_packet_msg_type) - 8); msg->DataLength = cpu_to_le32(size); /* msg->OOBDataOffset; * msg->OOBDataLength; * msg->NumOOBDataElements; * msg->PerPacketInfoOffset; * msg->PerPacketInfoLength; * msg->VcHandle; * msg->Reserved; */ memcpy(msg + 1, buf, size); s->in_len = size + sizeof(struct rndis_packet_msg_type); } else { if (size > sizeof(s->in_buf)) return; memcpy(s->in_buf, buf, size); s->in_len = size; } s->in_ptr = 0; }
21,874
0
static int v9fs_walk_marshal(V9fsPDU *pdu, uint16_t nwnames, V9fsQID *qids) { int i; size_t offset = 7; offset += pdu_marshal(pdu, offset, "w", nwnames); for (i = 0; i < nwnames; i++) { offset += pdu_marshal(pdu, offset, "Q", &qids[i]); } return offset; }
21,877
0
static void close_unused_images(BlockDriverState *top, BlockDriverState *base, const char *base_id) { BlockDriverState *intermediate; intermediate = top->backing_hd; while (intermediate) { BlockDriverState *unused; /* reached base */ if (intermediate == base) { break; } unused = intermediate; intermediate = intermediate->backing_hd; unused->backing_hd = NULL; bdrv_delete(unused); } top->backing_hd = base; }
21,878
0
static void qemu_paio_submit(struct qemu_paiocb *aiocb) { aiocb->ret = -EINPROGRESS; aiocb->active = 0; mutex_lock(&lock); if (idle_threads == 0 && cur_threads < max_threads) spawn_thread(); TAILQ_INSERT_TAIL(&request_list, aiocb, node); mutex_unlock(&lock); cond_signal(&cond); }
21,879
0
static int raw_media_changed(BlockDriverState *bs) { return bdrv_media_changed(bs->file->bs); }
21,881
0
bool is_tcg_gen_code(uintptr_t tc_ptr) { /* This can be called during code generation, code_gen_buffer_max_size is used instead of code_gen_ptr for upper boundary checking */ return (tc_ptr >= (uintptr_t)tcg_ctx.code_gen_buffer && tc_ptr < (uintptr_t)(tcg_ctx.code_gen_buffer + tcg_ctx.code_gen_buffer_max_size)); }
21,882
0
int ff_h264_decode_sei(H264Context *h) { while (get_bits_left(&h->gb) > 16) { int size = 0; int type = 0; int ret = 0; int last = 0; while (get_bits_left(&h->gb) >= 8 && (last = get_bits(&h->gb, 8)) == 255) { type += 255; } type += last; last = 0; while (get_bits_left(&h->gb) >= 8 && (last = get_bits(&h->gb, 8)) == 255) { size += 255; } size += last; if (size > get_bits_left(&h->gb) / 8) { av_log(h->avctx, AV_LOG_ERROR, "SEI type %d truncated at %d\n", type, get_bits_left(&h->gb)); return AVERROR_INVALIDDATA; } switch (type) { case SEI_TYPE_PIC_TIMING: // Picture timing SEI ret = decode_picture_timing(h); if (ret < 0) return ret; break; case SEI_TYPE_USER_DATA_UNREGISTERED: ret = decode_unregistered_user_data(h, size); if (ret < 0) return ret; break; case SEI_TYPE_RECOVERY_POINT: ret = decode_recovery_point(h); if (ret < 0) return ret; break; case SEI_TYPE_BUFFERING_PERIOD: ret = decode_buffering_period(h); if (ret < 0) return ret; break; case SEI_TYPE_FRAME_PACKING: ret = decode_frame_packing_arrangement(h); if (ret < 0) return ret; break; case SEI_TYPE_DISPLAY_ORIENTATION: ret = decode_display_orientation(h); if (ret < 0) return ret; break; default: av_log(h->avctx, AV_LOG_DEBUG, "unknown SEI type %d\n", type); skip_bits(&h->gb, 8 * size); } // FIXME check bits here align_get_bits(&h->gb); } return 0; }
21,884
0
av_cold int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation) { const int isRgb = c->dstFormat == AV_PIX_FMT_RGB32 || c->dstFormat == AV_PIX_FMT_RGB32_1 || c->dstFormat == AV_PIX_FMT_BGR24 || c->dstFormat == AV_PIX_FMT_RGB565BE || c->dstFormat == AV_PIX_FMT_RGB565LE || c->dstFormat == AV_PIX_FMT_RGB555BE || c->dstFormat == AV_PIX_FMT_RGB555LE || c->dstFormat == AV_PIX_FMT_RGB444BE || c->dstFormat == AV_PIX_FMT_RGB444LE || c->dstFormat == AV_PIX_FMT_RGB8 || c->dstFormat == AV_PIX_FMT_RGB4 || c->dstFormat == AV_PIX_FMT_RGB4_BYTE || c->dstFormat == AV_PIX_FMT_MONOBLACK; const int isNotNe = c->dstFormat == AV_PIX_FMT_NE(RGB565LE, RGB565BE) || c->dstFormat == AV_PIX_FMT_NE(RGB555LE, RGB555BE) || c->dstFormat == AV_PIX_FMT_NE(RGB444LE, RGB444BE) || c->dstFormat == AV_PIX_FMT_NE(BGR565LE, BGR565BE) || c->dstFormat == AV_PIX_FMT_NE(BGR555LE, BGR555BE) || c->dstFormat == AV_PIX_FMT_NE(BGR444LE, BGR444BE); const int bpp = c->dstFormatBpp; uint8_t *y_table; uint16_t *y_table16; uint32_t *y_table32; int i, base, rbase, gbase, bbase, abase, needAlpha; const int yoffs = fullRange ? 384 : 326; int64_t crv = inv_table[0]; int64_t cbu = inv_table[1]; int64_t cgu = -inv_table[2]; int64_t cgv = -inv_table[3]; int64_t cy = 1 << 16; int64_t oy = 0; int64_t yb = 0; if (!fullRange) { cy = (cy * 255) / 219; oy = 16 << 16; } else { crv = (crv * 224) / 255; cbu = (cbu * 224) / 255; cgu = (cgu * 224) / 255; cgv = (cgv * 224) / 255; } cy = (cy * contrast) >> 16; crv = (crv * contrast * saturation) >> 32; cbu = (cbu * contrast * saturation) >> 32; cgu = (cgu * contrast * saturation) >> 32; cgv = (cgv * contrast * saturation) >> 32; oy -= 256 * brightness; c->uOffset = 0x0400040004000400LL; c->vOffset = 0x0400040004000400LL; c->yCoeff = roundToInt16(cy * 8192) * 0x0001000100010001ULL; c->vrCoeff = roundToInt16(crv * 8192) * 0x0001000100010001ULL; c->ubCoeff = roundToInt16(cbu * 8192) * 0x0001000100010001ULL; c->vgCoeff = roundToInt16(cgv * 8192) * 0x0001000100010001ULL; c->ugCoeff = roundToInt16(cgu * 8192) * 0x0001000100010001ULL; c->yOffset = roundToInt16(oy * 8) * 0x0001000100010001ULL; c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy << 13); c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9); c->yuv2rgb_v2r_coeff = (int16_t)roundToInt16(crv << 13); c->yuv2rgb_v2g_coeff = (int16_t)roundToInt16(cgv << 13); c->yuv2rgb_u2g_coeff = (int16_t)roundToInt16(cgu << 13); c->yuv2rgb_u2b_coeff = (int16_t)roundToInt16(cbu << 13); //scale coefficients by cy crv = ((crv << 16) + 0x8000) / cy; cbu = ((cbu << 16) + 0x8000) / cy; cgu = ((cgu << 16) + 0x8000) / cy; cgv = ((cgv << 16) + 0x8000) / cy; av_free(c->yuvTable); switch (bpp) { case 1: c->yuvTable = av_malloc(1024); y_table = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024 - 110; i++) { y_table[i + 110] = av_clip_uint8((yb + 0x8000) >> 16) >> 7; yb += cy; } fill_table(c->table_gU, 1, cgu, y_table + yoffs); fill_gv_table(c->table_gV, 1, cgv); break; case 4: case 4 | 128: rbase = isRgb ? 3 : 0; gbase = 1; bbase = isRgb ? 0 : 3; c->yuvTable = av_malloc(1024 * 3); y_table = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024 - 110; i++) { int yval = av_clip_uint8((yb + 0x8000) >> 16); y_table[i + 110] = (yval >> 7) << rbase; y_table[i + 37 + 1024] = ((yval + 43) / 85) << gbase; y_table[i + 110 + 2048] = (yval >> 7) << bbase; yb += cy; } fill_table(c->table_rV, 1, crv, y_table + yoffs); fill_table(c->table_gU, 1, cgu, y_table + yoffs + 1024); fill_table(c->table_bU, 1, cbu, y_table + yoffs + 2048); fill_gv_table(c->table_gV, 1, cgv); break; case 8: rbase = isRgb ? 5 : 0; gbase = isRgb ? 2 : 3; bbase = isRgb ? 0 : 6; c->yuvTable = av_malloc(1024 * 3); y_table = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024 - 38; i++) { int yval = av_clip_uint8((yb + 0x8000) >> 16); y_table[i + 16] = ((yval + 18) / 36) << rbase; y_table[i + 16 + 1024] = ((yval + 18) / 36) << gbase; y_table[i + 37 + 2048] = ((yval + 43) / 85) << bbase; yb += cy; } fill_table(c->table_rV, 1, crv, y_table + yoffs); fill_table(c->table_gU, 1, cgu, y_table + yoffs + 1024); fill_table(c->table_bU, 1, cbu, y_table + yoffs + 2048); fill_gv_table(c->table_gV, 1, cgv); break; case 12: rbase = isRgb ? 8 : 0; gbase = 4; bbase = isRgb ? 0 : 8; c->yuvTable = av_malloc(1024 * 3 * 2); y_table16 = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024; i++) { uint8_t yval = av_clip_uint8((yb + 0x8000) >> 16); y_table16[i] = (yval >> 4) << rbase; y_table16[i + 1024] = (yval >> 4) << gbase; y_table16[i + 2048] = (yval >> 4) << bbase; yb += cy; } if (isNotNe) for (i = 0; i < 1024 * 3; i++) y_table16[i] = av_bswap16(y_table16[i]); fill_table(c->table_rV, 2, crv, y_table16 + yoffs); fill_table(c->table_gU, 2, cgu, y_table16 + yoffs + 1024); fill_table(c->table_bU, 2, cbu, y_table16 + yoffs + 2048); fill_gv_table(c->table_gV, 2, cgv); break; case 15: case 16: rbase = isRgb ? bpp - 5 : 0; gbase = 5; bbase = isRgb ? 0 : (bpp - 5); c->yuvTable = av_malloc(1024 * 3 * 2); y_table16 = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024; i++) { uint8_t yval = av_clip_uint8((yb + 0x8000) >> 16); y_table16[i] = (yval >> 3) << rbase; y_table16[i + 1024] = (yval >> (18 - bpp)) << gbase; y_table16[i + 2048] = (yval >> 3) << bbase; yb += cy; } if (isNotNe) for (i = 0; i < 1024 * 3; i++) y_table16[i] = av_bswap16(y_table16[i]); fill_table(c->table_rV, 2, crv, y_table16 + yoffs); fill_table(c->table_gU, 2, cgu, y_table16 + yoffs + 1024); fill_table(c->table_bU, 2, cbu, y_table16 + yoffs + 2048); fill_gv_table(c->table_gV, 2, cgv); break; case 24: case 48: c->yuvTable = av_malloc(1024); y_table = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024; i++) { y_table[i] = av_clip_uint8((yb + 0x8000) >> 16); yb += cy; } fill_table(c->table_rV, 1, crv, y_table + yoffs); fill_table(c->table_gU, 1, cgu, y_table + yoffs); fill_table(c->table_bU, 1, cbu, y_table + yoffs); fill_gv_table(c->table_gV, 1, cgv); break; case 32: base = (c->dstFormat == AV_PIX_FMT_RGB32_1 || c->dstFormat == AV_PIX_FMT_BGR32_1) ? 8 : 0; rbase = base + (isRgb ? 16 : 0); gbase = base + 8; bbase = base + (isRgb ? 0 : 16); needAlpha = CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat); if (!needAlpha) abase = (base + 24) & 31; c->yuvTable = av_malloc(1024 * 3 * 4); y_table32 = c->yuvTable; yb = -(384 << 16) - oy; for (i = 0; i < 1024; i++) { unsigned yval = av_clip_uint8((yb + 0x8000) >> 16); y_table32[i] = (yval << rbase) + (needAlpha ? 0 : (255u << abase)); y_table32[i + 1024] = yval << gbase; y_table32[i + 2048] = yval << bbase; yb += cy; } fill_table(c->table_rV, 4, crv, y_table32 + yoffs); fill_table(c->table_gU, 4, cgu, y_table32 + yoffs + 1024); fill_table(c->table_bU, 4, cbu, y_table32 + yoffs + 2048); fill_gv_table(c->table_gV, 4, cgv); break; default: c->yuvTable = NULL; if(!isPlanar(c->dstFormat) || bpp <= 24) av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp); return -1; } return 0; }
21,886
0
static int vp3_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int i; s->avctx = avctx; s->width = avctx->width; s->height = avctx->height; avctx->pix_fmt = PIX_FMT_YUV420P; avctx->has_b_frames = 0; dsputil_init(&s->dsp, avctx); /* initialize to an impossible value which will force a recalculation * in the first frame decode */ s->quality_index = -1; s->superblock_width = (s->width + 31) / 32; s->superblock_height = (s->height + 31) / 32; s->superblock_count = s->superblock_width * s->superblock_height * 3 / 2; s->u_superblock_start = s->superblock_width * s->superblock_height; s->v_superblock_start = s->superblock_width * s->superblock_height * 5 / 4; s->superblock_coding = av_malloc(s->superblock_count); s->macroblock_width = (s->width + 15) / 16; s->macroblock_height = (s->height + 15) / 16; s->macroblock_count = s->macroblock_width * s->macroblock_height; s->fragment_width = s->width / FRAGMENT_PIXELS; s->fragment_height = s->height / FRAGMENT_PIXELS; /* fragment count covers all 8x8 blocks for all 3 planes */ s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; s->u_fragment_start = s->fragment_width * s->fragment_height; s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4; debug_init(" width: %d x %d\n", s->width, s->height); debug_init(" superblocks: %d x %d, %d total\n", s->superblock_width, s->superblock_height, s->superblock_count); debug_init(" macroblocks: %d x %d, %d total\n", s->macroblock_width, s->macroblock_height, s->macroblock_count); debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n", s->fragment_count, s->fragment_width, s->fragment_height, s->u_fragment_start, s->v_fragment_start); s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); s->pixel_addresses_inited = 0; /* init VLC tables */ for (i = 0; i < 16; i++) { /* Dc histograms */ init_vlc(&s->dc_vlc[i], 5, 32, &dc_bias[i][0][1], 4, 2, &dc_bias[i][0][0], 4, 2); /* group 1 AC histograms */ init_vlc(&s->ac_vlc_1[i], 5, 32, &ac_bias_0[i][0][1], 4, 2, &ac_bias_0[i][0][0], 4, 2); /* group 2 AC histograms */ init_vlc(&s->ac_vlc_2[i], 5, 32, &ac_bias_1[i][0][1], 4, 2, &ac_bias_1[i][0][0], 4, 2); /* group 3 AC histograms */ init_vlc(&s->ac_vlc_3[i], 5, 32, &ac_bias_2[i][0][1], 4, 2, &ac_bias_2[i][0][0], 4, 2); /* group 4 AC histograms */ init_vlc(&s->ac_vlc_4[i], 5, 32, &ac_bias_3[i][0][1], 4, 2, &ac_bias_3[i][0][0], 4, 2); } /* build quantization table */ for (i = 0; i < 64; i++) quant_index[dequant_index[i]] = i; /* work out the block mapping tables */ s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); s->macroblock_coded = av_malloc(s->macroblock_count + 1); init_block_mapping(s); for (i = 0; i < 3; i++) { s->current_frame.data[i] = NULL; s->last_frame.data[i] = NULL; s->golden_frame.data[i] = NULL; } return 0; }
21,887
1
static void gen_tlbsync(DisasContext *ctx) { #if defined(CONFIG_USER_ONLY) GEN_PRIV; #else CHK_HV; /* tlbsync is a nop for server, ptesync handles delayed tlb flush, * embedded however needs to deal with tlbsync. We don't try to be * fancy and swallow the overhead of checking for both. */ gen_check_tlb_flush(ctx); #endif /* defined(CONFIG_USER_ONLY) */ }
21,888
1
static void search_for_ms(AACEncContext *s, ChannelElement *cpe) { int start = 0, i, w, w2, g, sid_sf_boost; float M[128], S[128]; float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; const float lambda = s->lambda; const float mslambda = FFMIN(1.0f, lambda / 120.f); SingleChannelElement *sce0 = &cpe->ch[0]; SingleChannelElement *sce1 = &cpe->ch[1]; if (!cpe->common_window) return; for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { int min_sf_idx_mid = SCALE_MAX_POS; int min_sf_idx_side = SCALE_MAX_POS; for (g = 0; g < sce0->ics.num_swb; g++) { if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT) min_sf_idx_mid = FFMIN(min_sf_idx_mid, sce0->sf_idx[w*16+g]); if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT) min_sf_idx_side = FFMIN(min_sf_idx_side, sce1->sf_idx[w*16+g]); } start = 0; for (g = 0; g < sce0->ics.num_swb; g++) { float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f; cpe->ms_mask[w*16+g] = 0; if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float Mmax = 0.0f, Smax = 0.0f; /* Must compute mid/side SF and book for the whole window group */ for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+(w+w2)*128+i] + sce1->coeffs[start+(w+w2)*128+i]) * 0.5; S[i] = M[i] - sce1->coeffs[start+(w+w2)*128+i]; } abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) { Mmax = FFMAX(Mmax, M34[i]); Smax = FFMAX(Smax, S34[i]); } } for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) { float dist1 = 0.0f, dist2 = 0.0f; int B0 = 0, B1 = 0; int minidx; int mididx, sididx; int midcb, sidcb; minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]); mididx = av_clip(minidx, min_sf_idx_mid, min_sf_idx_mid + SCALE_MAX_DIFF); sididx = av_clip(minidx - sid_sf_boost * 3, min_sf_idx_side, min_sf_idx_side + SCALE_MAX_DIFF); midcb = find_min_book(Mmax, mididx); sidcb = find_min_book(Smax, sididx); if ((mididx > minidx) || (sididx > minidx)) { /* scalefactor range violation, bad stuff, will decrease quality unacceptably */ continue; } /* No CB can be zero */ midcb = FFMAX(1,midcb); sidcb = FFMAX(1,sidcb); for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; float minthr = FFMIN(band0->threshold, band1->threshold); int b1,b2,b3,b4; for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+(w+w2)*128+i] + sce1->coeffs[start+(w+w2)*128+i]) * 0.5; S[i] = M[i] - sce1->coeffs[start+(w+w2)*128+i]; } abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], L34, sce0->ics.swb_sizes[g], sce0->sf_idx[(w+w2)*16+g], sce0->band_type[(w+w2)*16+g], lambda / band0->threshold, INFINITY, &b1, NULL, 0); dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], R34, sce1->ics.swb_sizes[g], sce1->sf_idx[(w+w2)*16+g], sce1->band_type[(w+w2)*16+g], lambda / band1->threshold, INFINITY, &b2, NULL, 0); dist2 += quantize_band_cost(s, M, M34, sce0->ics.swb_sizes[g], sce0->sf_idx[(w+w2)*16+g], sce0->band_type[(w+w2)*16+g], lambda / minthr, INFINITY, &b3, NULL, 0); dist2 += quantize_band_cost(s, S, S34, sce1->ics.swb_sizes[g], sce1->sf_idx[(w+w2)*16+g], sce1->band_type[(w+w2)*16+g], mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0); B0 += b1+b2; B1 += b3+b4; dist1 -= B0; dist2 -= B1; } cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0; if (cpe->ms_mask[w*16+g]) { /* Setting the M/S mask is useful with I/S or PNS, but only the flag */ if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) { sce0->sf_idx[w*16+g] = mididx; sce1->sf_idx[w*16+g] = sididx; sce0->band_type[w*16+g] = midcb; sce1->band_type[w*16+g] = sidcb; } break; } else if (B1 > B0) { /* More boost won't fix this */ break; } } } start += sce0->ics.swb_sizes[g]; } } }
21,890
1
static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt) { struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG]; uint32_t csum_cntr; uint16_t csum = 0; uint32_t cso; /* num of iovec without vhdr */ uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1; uint16_t csl; struct ip_header *iphdr; size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset; /* Put zero to checksum field */ iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum); /* Calculate L4 TCP/UDP checksum */ csl = pkt->payload_len; /* add pseudo header to csum */ iphdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base; csum_cntr = eth_calc_ip4_pseudo_hdr_csum(iphdr, csl, &cso); /* data checksum */ csum_cntr += net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso); /* Put the checksum obtained into the packet */ csum = cpu_to_be16(net_checksum_finish(csum_cntr)); iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum); }
21,891
1
static av_cold int xvid_encode_init(AVCodecContext *avctx) { int xerr, i, ret = -1; int xvid_flags = avctx->flags; struct xvid_context *x = avctx->priv_data; uint16_t *intra, *inter; int fd; xvid_plugin_single_t single = { 0 }; struct xvid_ff_pass1 rc2pass1 = { 0 }; xvid_plugin_2pass2_t rc2pass2 = { 0 }; xvid_plugin_lumimasking_t masking_l = { 0 }; /* For lumi masking */ xvid_plugin_lumimasking_t masking_v = { 0 }; /* For variance AQ */ xvid_plugin_ssim_t ssim = { 0 }; xvid_gbl_init_t xvid_gbl_init = { 0 }; xvid_enc_create_t xvid_enc_create = { 0 }; xvid_enc_plugin_t plugins[4]; x->twopassfd = -1; /* Bring in VOP flags from ffmpeg command-line */ x->vop_flags = XVID_VOP_HALFPEL; /* Bare minimum quality */ if (xvid_flags & AV_CODEC_FLAG_4MV) x->vop_flags |= XVID_VOP_INTER4V; /* Level 3 */ if (avctx->trellis) x->vop_flags |= XVID_VOP_TRELLISQUANT; /* Level 5 */ if (xvid_flags & AV_CODEC_FLAG_AC_PRED) x->vop_flags |= XVID_VOP_HQACPRED; /* Level 6 */ if (xvid_flags & AV_CODEC_FLAG_GRAY) x->vop_flags |= XVID_VOP_GREYSCALE; /* Decide which ME quality setting to use */ x->me_flags = 0; switch (x->me_quality) { case 6: case 5: x->me_flags |= XVID_ME_EXTSEARCH16 | XVID_ME_EXTSEARCH8; case 4: case 3: x->me_flags |= XVID_ME_ADVANCEDDIAMOND8 | XVID_ME_HALFPELREFINE8 | XVID_ME_CHROMA_PVOP | XVID_ME_CHROMA_BVOP; case 2: case 1: x->me_flags |= XVID_ME_ADVANCEDDIAMOND16 | XVID_ME_HALFPELREFINE16; #if FF_API_MOTION_EST FF_DISABLE_DEPRECATION_WARNINGS break; default: switch (avctx->me_method) { case ME_FULL: /* Quality 6 */ x->me_flags |= XVID_ME_EXTSEARCH16 | XVID_ME_EXTSEARCH8; case ME_EPZS: /* Quality 4 */ x->me_flags |= XVID_ME_ADVANCEDDIAMOND8 | XVID_ME_HALFPELREFINE8 | XVID_ME_CHROMA_PVOP | XVID_ME_CHROMA_BVOP; case ME_LOG: /* Quality 2 */ case ME_PHODS: case ME_X1: x->me_flags |= XVID_ME_ADVANCEDDIAMOND16 | XVID_ME_HALFPELREFINE16; case ME_ZERO: /* Quality 0 */ default: break; } FF_ENABLE_DEPRECATION_WARNINGS #endif } /* Decide how we should decide blocks */ switch (avctx->mb_decision) { case 2: x->vop_flags |= XVID_VOP_MODEDECISION_RD; x->me_flags |= XVID_ME_HALFPELREFINE8_RD | XVID_ME_QUARTERPELREFINE8_RD | XVID_ME_EXTSEARCH_RD | XVID_ME_CHECKPREDICTION_RD; case 1: if (!(x->vop_flags & XVID_VOP_MODEDECISION_RD)) x->vop_flags |= XVID_VOP_FAST_MODEDECISION_RD; x->me_flags |= XVID_ME_HALFPELREFINE16_RD | XVID_ME_QUARTERPELREFINE16_RD; default: break; } /* Bring in VOL flags from ffmpeg command-line */ #if FF_API_GMC if (avctx->flags & CODEC_FLAG_GMC) x->gmc = 1; #endif x->vol_flags = 0; if (x->gmc) { x->vol_flags |= XVID_VOL_GMC; x->me_flags |= XVID_ME_GME_REFINE; } if (xvid_flags & AV_CODEC_FLAG_QPEL) { x->vol_flags |= XVID_VOL_QUARTERPEL; x->me_flags |= XVID_ME_QUARTERPELREFINE16; if (x->vop_flags & XVID_VOP_INTER4V) x->me_flags |= XVID_ME_QUARTERPELREFINE8; } xvid_gbl_init.version = XVID_VERSION; xvid_gbl_init.debug = 0; xvid_gbl_init.cpu_flags = 0; /* Initialize */ xvid_global(NULL, XVID_GBL_INIT, &xvid_gbl_init, NULL); /* Create the encoder reference */ xvid_enc_create.version = XVID_VERSION; /* Store the desired frame size */ xvid_enc_create.width = x->xsize = avctx->width; xvid_enc_create.height = x->ysize = avctx->height; /* Xvid can determine the proper profile to use */ /* xvid_enc_create.profile = XVID_PROFILE_S_L3; */ /* We don't use zones */ xvid_enc_create.zones = NULL; xvid_enc_create.num_zones = 0; xvid_enc_create.num_threads = avctx->thread_count; #if (XVID_VERSION <= 0x010303) && (XVID_VERSION >= 0x010300) /* workaround for a bug in libxvidcore */ if (avctx->height <= 16) { if (avctx->thread_count < 2) { xvid_enc_create.num_threads = 0; } else { av_log(avctx, AV_LOG_ERROR, "Too small height for threads > 1."); return AVERROR(EINVAL); } } #endif xvid_enc_create.plugins = plugins; xvid_enc_create.num_plugins = 0; /* Initialize Buffers */ x->twopassbuffer = NULL; x->old_twopassbuffer = NULL; x->twopassfile = NULL; if (xvid_flags & AV_CODEC_FLAG_PASS1) { rc2pass1.version = XVID_VERSION; rc2pass1.context = x; x->twopassbuffer = av_malloc(BUFFER_SIZE); x->old_twopassbuffer = av_malloc(BUFFER_SIZE); if (!x->twopassbuffer || !x->old_twopassbuffer) { av_log(avctx, AV_LOG_ERROR, "Xvid: Cannot allocate 2-pass log buffers\n"); return AVERROR(ENOMEM); } x->twopassbuffer[0] = x->old_twopassbuffer[0] = 0; plugins[xvid_enc_create.num_plugins].func = xvid_ff_2pass; plugins[xvid_enc_create.num_plugins].param = &rc2pass1; xvid_enc_create.num_plugins++; } else if (xvid_flags & AV_CODEC_FLAG_PASS2) { rc2pass2.version = XVID_VERSION; rc2pass2.bitrate = avctx->bit_rate; fd = avpriv_tempfile("xvidff.", &x->twopassfile, 0, avctx); if (fd < 0) { av_log(avctx, AV_LOG_ERROR, "Xvid: Cannot write 2-pass pipe\n"); return fd; } x->twopassfd = fd; if (!avctx->stats_in) { av_log(avctx, AV_LOG_ERROR, "Xvid: No 2-pass information loaded for second pass\n"); return AVERROR(EINVAL); } ret = write(fd, avctx->stats_in, strlen(avctx->stats_in)); if (ret == -1) ret = AVERROR(errno); else if (strlen(avctx->stats_in) > ret) { av_log(avctx, AV_LOG_ERROR, "Xvid: Cannot write to 2-pass pipe\n"); ret = AVERROR(EIO); } if (ret < 0) return ret; rc2pass2.filename = x->twopassfile; plugins[xvid_enc_create.num_plugins].func = xvid_plugin_2pass2; plugins[xvid_enc_create.num_plugins].param = &rc2pass2; xvid_enc_create.num_plugins++; } else if (!(xvid_flags & AV_CODEC_FLAG_QSCALE)) { /* Single Pass Bitrate Control! */ single.version = XVID_VERSION; single.bitrate = avctx->bit_rate; plugins[xvid_enc_create.num_plugins].func = xvid_plugin_single; plugins[xvid_enc_create.num_plugins].param = &single; xvid_enc_create.num_plugins++; } if (avctx->lumi_masking != 0.0) x->lumi_aq = 1; /* Luminance Masking */ if (x->lumi_aq) { masking_l.method = 0; plugins[xvid_enc_create.num_plugins].func = xvid_plugin_lumimasking; /* The old behavior is that when avctx->lumi_masking is specified, * plugins[...].param = NULL. Trying to keep the old behavior here. */ plugins[xvid_enc_create.num_plugins].param = avctx->lumi_masking ? NULL : &masking_l; xvid_enc_create.num_plugins++; } /* Variance AQ */ if (x->variance_aq) { masking_v.method = 1; plugins[xvid_enc_create.num_plugins].func = xvid_plugin_lumimasking; plugins[xvid_enc_create.num_plugins].param = &masking_v; xvid_enc_create.num_plugins++; } if (x->lumi_aq && x->variance_aq ) av_log(avctx, AV_LOG_INFO, "Both lumi_aq and variance_aq are enabled. The resulting quality" "will be the worse one of the two effects made by the AQ.\n"); /* SSIM */ if (x->ssim) { plugins[xvid_enc_create.num_plugins].func = xvid_plugin_ssim; ssim.b_printstat = x->ssim == 2; ssim.acc = x->ssim_acc; ssim.cpu_flags = xvid_gbl_init.cpu_flags; ssim.b_visualize = 0; plugins[xvid_enc_create.num_plugins].param = &ssim; xvid_enc_create.num_plugins++; } /* Frame Rate and Key Frames */ xvid_correct_framerate(avctx); xvid_enc_create.fincr = avctx->time_base.num; xvid_enc_create.fbase = avctx->time_base.den; if (avctx->gop_size > 0) xvid_enc_create.max_key_interval = avctx->gop_size; else xvid_enc_create.max_key_interval = 240; /* Xvid's best default */ /* Quants */ if (xvid_flags & AV_CODEC_FLAG_QSCALE) x->qscale = 1; else x->qscale = 0; xvid_enc_create.min_quant[0] = avctx->qmin; xvid_enc_create.min_quant[1] = avctx->qmin; xvid_enc_create.min_quant[2] = avctx->qmin; xvid_enc_create.max_quant[0] = avctx->qmax; xvid_enc_create.max_quant[1] = avctx->qmax; xvid_enc_create.max_quant[2] = avctx->qmax; /* Quant Matrices */ x->intra_matrix = x->inter_matrix = NULL; #if FF_API_PRIVATE_OPT FF_DISABLE_DEPRECATION_WARNINGS if (avctx->mpeg_quant) x->mpeg_quant = avctx->mpeg_quant; FF_ENABLE_DEPRECATION_WARNINGS #endif if (x->mpeg_quant) x->vol_flags |= XVID_VOL_MPEGQUANT; if ((avctx->intra_matrix || avctx->inter_matrix)) { x->vol_flags |= XVID_VOL_MPEGQUANT; if (avctx->intra_matrix) { intra = avctx->intra_matrix; x->intra_matrix = av_malloc(sizeof(unsigned char) * 64); if (!x->intra_matrix) return AVERROR(ENOMEM); } else intra = NULL; if (avctx->inter_matrix) { inter = avctx->inter_matrix; x->inter_matrix = av_malloc(sizeof(unsigned char) * 64); if (!x->inter_matrix) return AVERROR(ENOMEM); } else inter = NULL; for (i = 0; i < 64; i++) { if (intra) x->intra_matrix[i] = (unsigned char) intra[i]; if (inter) x->inter_matrix[i] = (unsigned char) inter[i]; } } /* Misc Settings */ xvid_enc_create.frame_drop_ratio = 0; xvid_enc_create.global = 0; if (xvid_flags & AV_CODEC_FLAG_CLOSED_GOP) xvid_enc_create.global |= XVID_GLOBAL_CLOSED_GOP; /* Determines which codec mode we are operating in */ avctx->extradata = NULL; avctx->extradata_size = 0; if (xvid_flags & AV_CODEC_FLAG_GLOBAL_HEADER) { /* In this case, we are claiming to be MPEG4 */ x->quicktime_format = 1; avctx->codec_id = AV_CODEC_ID_MPEG4; } else { /* We are claiming to be Xvid */ x->quicktime_format = 0; if (!avctx->codec_tag) avctx->codec_tag = AV_RL32("xvid"); } /* Bframes */ xvid_enc_create.max_bframes = avctx->max_b_frames; xvid_enc_create.bquant_offset = 100 * avctx->b_quant_offset; xvid_enc_create.bquant_ratio = 100 * avctx->b_quant_factor; if (avctx->max_b_frames > 0 && !x->quicktime_format) xvid_enc_create.global |= XVID_GLOBAL_PACKED; av_assert0(xvid_enc_create.num_plugins + (!!x->ssim) + (!!x->variance_aq) + (!!x->lumi_aq) <= FF_ARRAY_ELEMS(plugins)); /* Encode a dummy frame to get the extradata immediately */ if (x->quicktime_format) { AVFrame *picture; AVPacket packet; int size, got_packet, ret; av_init_packet(&packet); picture = av_frame_alloc(); if (!picture) return AVERROR(ENOMEM); xerr = xvid_encore(NULL, XVID_ENC_CREATE, &xvid_enc_create, NULL); if( xerr ) { av_frame_free(&picture); av_log(avctx, AV_LOG_ERROR, "Xvid: Could not create encoder reference\n"); return AVERROR_EXTERNAL; } x->encoder_handle = xvid_enc_create.handle; size = ((avctx->width + 1) & ~1) * ((avctx->height + 1) & ~1); picture->data[0] = av_malloc(size + size / 2); if (!picture->data[0]) { av_frame_free(&picture); return AVERROR(ENOMEM); } picture->data[1] = picture->data[0] + size; picture->data[2] = picture->data[1] + size / 4; memset(picture->data[0], 0, size); memset(picture->data[1], 128, size / 2); ret = xvid_encode_frame(avctx, &packet, picture, &got_packet); if (!ret && got_packet) av_packet_unref(&packet); av_free(picture->data[0]); av_frame_free(&picture); xvid_encore(x->encoder_handle, XVID_ENC_DESTROY, NULL, NULL); } /* Create encoder context */ xerr = xvid_encore(NULL, XVID_ENC_CREATE, &xvid_enc_create, NULL); if (xerr) { av_log(avctx, AV_LOG_ERROR, "Xvid: Could not create encoder reference\n"); return AVERROR_EXTERNAL; } x->encoder_handle = xvid_enc_create.handle; return 0; }
21,892
1
static void test_submit_co(void) { WorkerTestData data; Coroutine *co = qemu_coroutine_create(co_test_cb); qemu_coroutine_enter(co, &data); /* Back here once the worker has started. */ g_assert_cmpint(active, ==, 1); g_assert_cmpint(data.ret, ==, -EINPROGRESS); /* qemu_aio_wait_all will execute the rest of the coroutine. */ qemu_aio_wait_all(); /* Back here after the coroutine has finished. */ g_assert_cmpint(active, ==, 0); g_assert_cmpint(data.ret, ==, 0); }
21,893
1
static void pcnet_transmit(PCNetState *s) { hwaddr xmit_cxda = 0; int count = CSR_XMTRL(s)-1; int add_crc = 0; int bcnt; s->xmit_pos = -1; if (!CSR_TXON(s)) { s->csr[0] &= ~0x0008; return; } s->tx_busy = 1; txagain: if (pcnet_tdte_poll(s)) { struct pcnet_TMD tmd; TMDLOAD(&tmd, PHYSADDR(s,CSR_CXDA(s))); #ifdef PCNET_DEBUG_TMD printf(" TMDLOAD 0x%08x\n", PHYSADDR(s,CSR_CXDA(s))); PRINT_TMD(&tmd); #endif if (GET_FIELD(tmd.status, TMDS, STP)) { s->xmit_pos = 0; xmit_cxda = PHYSADDR(s,CSR_CXDA(s)); if (BCR_SWSTYLE(s) != 1) add_crc = GET_FIELD(tmd.status, TMDS, ADDFCS); } if (s->lnkst == 0 && (!CSR_LOOP(s) || (!CSR_INTL(s) && !BCR_TMAULOOP(s)))) { SET_FIELD(&tmd.misc, TMDM, LCAR, 1); SET_FIELD(&tmd.status, TMDS, ERR, 1); SET_FIELD(&tmd.status, TMDS, OWN, 0); s->csr[0] |= 0xa000; /* ERR | CERR */ s->xmit_pos = -1; goto txdone; } if (s->xmit_pos < 0) { goto txdone; } bcnt = 4096 - GET_FIELD(tmd.length, TMDL, BCNT); /* if multi-tmd packet outsizes s->buffer then skip it silently. Note: this is not what real hw does */ if (s->xmit_pos + bcnt > sizeof(s->buffer)) { s->xmit_pos = -1; goto txdone; } s->phys_mem_read(s->dma_opaque, PHYSADDR(s, tmd.tbadr), s->buffer + s->xmit_pos, bcnt, CSR_BSWP(s)); s->xmit_pos += bcnt; if (!GET_FIELD(tmd.status, TMDS, ENP)) { goto txdone; } #ifdef PCNET_DEBUG printf("pcnet_transmit size=%d\n", s->xmit_pos); #endif if (CSR_LOOP(s)) { if (BCR_SWSTYLE(s) == 1) add_crc = !GET_FIELD(tmd.status, TMDS, NOFCS); s->looptest = add_crc ? PCNET_LOOPTEST_CRC : PCNET_LOOPTEST_NOCRC; pcnet_receive(qemu_get_queue(s->nic), s->buffer, s->xmit_pos); s->looptest = 0; } else { if (s->nic) { qemu_send_packet(qemu_get_queue(s->nic), s->buffer, s->xmit_pos); } } s->csr[0] &= ~0x0008; /* clear TDMD */ s->csr[4] |= 0x0004; /* set TXSTRT */ s->xmit_pos = -1; txdone: SET_FIELD(&tmd.status, TMDS, OWN, 0); TMDSTORE(&tmd, PHYSADDR(s,CSR_CXDA(s))); if (!CSR_TOKINTD(s) || (CSR_LTINTEN(s) && GET_FIELD(tmd.status, TMDS, LTINT))) s->csr[0] |= 0x0200; /* set TINT */ if (CSR_XMTRC(s)<=1) CSR_XMTRC(s) = CSR_XMTRL(s); else CSR_XMTRC(s)--; if (count--) goto txagain; } else if (s->xmit_pos >= 0) { struct pcnet_TMD tmd; TMDLOAD(&tmd, xmit_cxda); SET_FIELD(&tmd.misc, TMDM, BUFF, 1); SET_FIELD(&tmd.misc, TMDM, UFLO, 1); SET_FIELD(&tmd.status, TMDS, ERR, 1); SET_FIELD(&tmd.status, TMDS, OWN, 0); TMDSTORE(&tmd, xmit_cxda); s->csr[0] |= 0x0200; /* set TINT */ if (!CSR_DXSUFLO(s)) { s->csr[0] &= ~0x0010; } else if (count--) goto txagain; } s->tx_busy = 0; }
21,894
1
long do_sigreturn(CPUMBState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; target_sigset_t target_set; sigset_t set; int i; frame_addr = env->regs[R_SP]; trace_user_do_sigreturn(env, frame_addr); /* Make sure the guest isn't playing games. */ if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto badframe; /* Restore blocked signals */ __get_user(target_set.sig[0], &frame->uc.tuc_mcontext.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); do_sigprocmask(SIG_SETMASK, &set, NULL); restore_sigcontext(&frame->uc.tuc_mcontext, env); /* We got here through a sigreturn syscall, our path back is via an rtb insn so setup r14 for that. */ env->regs[14] = env->sregs[SR_PC]; unlock_user_struct(frame, frame_addr, 0); return env->regs[10]; badframe: force_sig(TARGET_SIGSEGV); }
21,895
1
static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, bool secondary, target_ulong ptem, ppc_hash_pte64_t *pte) { CPUPPCState *env = &cpu->env; int i; uint64_t token; target_ulong pte0, pte1; target_ulong pte_index; pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; token = ppc_hash64_start_access(cpu, pte_index); if (!token) { return -1; } for (i = 0; i < HPTES_PER_GROUP; i++) { pte0 = ppc_hash64_load_hpte0(cpu, token, i); pte1 = ppc_hash64_load_hpte1(cpu, token, i); if ((pte0 & HPTE64_V_VALID) && (secondary == !!(pte0 & HPTE64_V_SECONDARY)) && HPTE64_V_COMPARE(pte0, ptem)) { pte->pte0 = pte0; pte->pte1 = pte1; ppc_hash64_stop_access(cpu, token); return (pte_index + i) * HASH_PTE_SIZE_64; } } ppc_hash64_stop_access(cpu, token); /* * We didn't find a valid entry. */ return -1; }
21,896
1
static void qemu_kvm_eat_signal(CPUState *env, int timeout) { struct timespec ts; int r, e; siginfo_t siginfo; sigset_t waitset; ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; sigemptyset(&waitset); sigaddset(&waitset, SIG_IPI); qemu_mutex_unlock(&qemu_global_mutex); r = sigtimedwait(&waitset, &siginfo, &ts); e = errno; qemu_mutex_lock(&qemu_global_mutex); if (r == -1 && !(e == EAGAIN || e == EINTR)) { fprintf(stderr, "sigtimedwait: %s\n", strerror(e)); exit(1); } }
21,897
1
static int write_representation(AVFormatContext *s, AVStream *stream, char *id, int output_width, int output_height, int output_sample_rate) { WebMDashMuxContext *w = s->priv_data; AVDictionaryEntry *irange = av_dict_get(stream->metadata, INITIALIZATION_RANGE, NULL, 0); AVDictionaryEntry *cues_start = av_dict_get(stream->metadata, CUES_START, NULL, 0); AVDictionaryEntry *cues_end = av_dict_get(stream->metadata, CUES_END, NULL, 0); AVDictionaryEntry *filename = av_dict_get(stream->metadata, FILENAME, NULL, 0); AVDictionaryEntry *bandwidth = av_dict_get(stream->metadata, BANDWIDTH, NULL, 0); if ((w->is_live && (!filename)) || (!w->is_live && (!irange || !cues_start || !cues_end || !filename || !bandwidth))) { return -1; } avio_printf(s->pb, "<Representation id=\"%s\"", id); // FIXME: For live, This should be obtained from the input file or as an AVOption. avio_printf(s->pb, " bandwidth=\"%s\"", w->is_live ? (stream->codec->codec_type == AVMEDIA_TYPE_AUDIO ? "128000" : "1000000") : bandwidth->value); if (stream->codec->codec_type == AVMEDIA_TYPE_VIDEO && output_width) avio_printf(s->pb, " width=\"%d\"", stream->codec->width); if (stream->codec->codec_type == AVMEDIA_TYPE_VIDEO && output_height) avio_printf(s->pb, " height=\"%d\"", stream->codec->height); if (stream->codec->codec_type = AVMEDIA_TYPE_AUDIO && output_sample_rate) avio_printf(s->pb, " audioSamplingRate=\"%d\"", stream->codec->sample_rate); if (w->is_live) { // For live streams, Codec and Mime Type always go in the Representation tag. avio_printf(s->pb, " codecs=\"%s\"", get_codec_name(stream->codec->codec_id)); avio_printf(s->pb, " mimeType=\"%s/webm\"", stream->codec->codec_type == AVMEDIA_TYPE_VIDEO ? "video" : "audio"); // For live streams, subsegments always start with key frames. So this // is always 1. avio_printf(s->pb, " startsWithSAP=\"1\""); avio_printf(s->pb, ">"); } else { avio_printf(s->pb, ">\n"); avio_printf(s->pb, "<BaseURL>%s</BaseURL>\n", filename->value); avio_printf(s->pb, "<SegmentBase\n"); avio_printf(s->pb, " indexRange=\"%s-%s\">\n", cues_start->value, cues_end->value); avio_printf(s->pb, "<Initialization\n"); avio_printf(s->pb, " range=\"0-%s\" />\n", irange->value); avio_printf(s->pb, "</SegmentBase>\n"); } avio_printf(s->pb, "</Representation>\n"); return 0; }
21,898
1
static inline int set_options(AVFilterContext *ctx, const char *args) { HueContext *hue = ctx->priv; int n, ret; char c1 = 0, c2 = 0; char *old_hue_expr, *old_hue_deg_expr, *old_saturation_expr; AVExpr *old_hue_pexpr, *old_hue_deg_pexpr, *old_saturation_pexpr; if (args) { /* named options syntax */ if (strchr(args, '=')) { old_hue_expr = hue->hue_expr; old_hue_deg_expr = hue->hue_deg_expr; old_saturation_expr = hue->saturation_expr; old_hue_pexpr = hue->hue_pexpr; old_hue_deg_pexpr = hue->hue_deg_pexpr; old_saturation_pexpr = hue->saturation_pexpr; hue->hue_expr = NULL; hue->hue_deg_expr = NULL; hue->saturation_expr = NULL; if ((ret = av_set_options_string(hue, args, "=", ":")) < 0) return ret; if (hue->hue_expr && hue->hue_deg_expr) { av_log(ctx, AV_LOG_ERROR, "H and h options are incompatible and cannot be specified " "at the same time\n"); hue->hue_expr = old_hue_expr; hue->hue_deg_expr = old_hue_deg_expr; return AVERROR(EINVAL); } /* * if both 'H' and 'h' options have not been specified, restore the * old values */ if (!hue->hue_expr && !hue->hue_deg_expr) { hue->hue_expr = old_hue_expr; hue->hue_deg_expr = old_hue_deg_expr; } if (hue->hue_deg_expr) PARSE_EXPRESSION(hue_deg, h); if (hue->hue_expr) PARSE_EXPRESSION(hue, H); if (hue->saturation_expr) PARSE_EXPRESSION(saturation, s); hue->flat_syntax = 0; av_log(ctx, AV_LOG_VERBOSE, "H_expr:%s h_deg_expr:%s s_expr:%s\n", hue->hue_expr, hue->hue_deg_expr, hue->saturation_expr); /* compatibility h:s syntax */ } else { n = sscanf(args, "%f%c%f%c", &hue->hue_deg, &c1, &hue->saturation, &c2); if (n != 1 && (n != 3 || c1 != ':')) { av_log(ctx, AV_LOG_ERROR, "Invalid syntax for argument '%s': " "must be in the form 'hue[:saturation]'\n", args); return AVERROR(EINVAL); } if (hue->saturation < SAT_MIN_VAL || hue->saturation > SAT_MAX_VAL) { av_log(ctx, AV_LOG_ERROR, "Invalid value for saturation %0.1f: " "must be included between range %d and +%d\n", hue->saturation, SAT_MIN_VAL, SAT_MAX_VAL); return AVERROR(EINVAL); } hue->hue = hue->hue_deg * M_PI / 180; hue->flat_syntax = 1; av_log(ctx, AV_LOG_VERBOSE, "H:%0.1f h:%0.1f s:%0.1f\n", hue->hue, hue->hue_deg, hue->saturation); } } compute_sin_and_cos(hue); return 0; }
21,900
1
static int iothread_stop(Object *object, void *opaque) { IOThread *iothread; iothread = (IOThread *)object_dynamic_cast(object, TYPE_IOTHREAD); if (!iothread || !iothread->ctx) { return 0; } iothread->stopping = true; aio_notify(iothread->ctx); if (atomic_read(&iothread->main_loop)) { g_main_loop_quit(iothread->main_loop); } qemu_thread_join(&iothread->thread); return 0; }
21,902
1
SCSIDevice *scsi_disk_init(BlockDriverState *bdrv, int tcq, scsi_completionfn completion, void *opaque) { SCSIDevice *d; SCSIDeviceState *s; s = (SCSIDeviceState *)qemu_mallocz(sizeof(SCSIDeviceState)); s->bdrv = bdrv; s->tcq = tcq; s->completion = completion; s->opaque = opaque; if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) { s->cluster_size = 4; } else { s->cluster_size = 1; } bdrv_get_geometry(s->bdrv, &nb_sectors); nb_sectors /= s->cluster_size; if (nb_sectors) nb_sectors--; s->max_lba = nb_sectors; strncpy(s->drive_serial_str, drive_get_serial(s->bdrv), sizeof(s->drive_serial_str)); if (strlen(s->drive_serial_str) == 0) pstrcpy(s->drive_serial_str, sizeof(s->drive_serial_str), "0"); qemu_add_vm_change_state_handler(scsi_dma_restart_cb, s); d = (SCSIDevice *)qemu_mallocz(sizeof(SCSIDevice)); d->state = s; d->destroy = scsi_destroy; d->send_command = scsi_send_command; d->read_data = scsi_read_data; d->write_data = scsi_write_data; d->cancel_io = scsi_cancel_io; d->get_buf = scsi_get_buf; return d; }
21,903
1
static void usbredir_handle_destroy(USBDevice *udev) { USBRedirDevice *dev = DO_UPCAST(USBRedirDevice, dev, udev); qemu_chr_delete(dev->cs); /* Note must be done after qemu_chr_close, as that causes a close event */ qemu_bh_delete(dev->chardev_close_bh); qemu_del_timer(dev->attach_timer); qemu_free_timer(dev->attach_timer); usbredir_cleanup_device_queues(dev); if (dev->parser) { usbredirparser_destroy(dev->parser); } if (dev->watch) { g_source_remove(dev->watch); } free(dev->filter_rules); }
21,904
1
static int find_optimal_param(uint32_t sum, int n) { int k; uint32_t sum2; if (sum <= n >> 1) return 0; sum2 = sum - (n >> 1); k = av_log2(n < 256 ? FASTDIV(sum2, n) : sum2 / n); return FFMIN(k, MAX_RICE_PARAM); }
21,905
1
static void set_pixel_format(VncState *vs, int bits_per_pixel, int depth, int big_endian_flag, int true_color_flag, int red_max, int green_max, int blue_max, int red_shift, int green_shift, int blue_shift) { int host_big_endian_flag; #ifdef WORDS_BIGENDIAN host_big_endian_flag = 1; #else host_big_endian_flag = 0; #endif if (!true_color_flag) { fail: vnc_client_error(vs); return; } if (bits_per_pixel == 32 && bits_per_pixel == vs->depth * 8 && host_big_endian_flag == big_endian_flag && red_max == 0xff && green_max == 0xff && blue_max == 0xff && red_shift == 16 && green_shift == 8 && blue_shift == 0) { vs->depth = 4; vs->write_pixels = vnc_write_pixels_copy; vs->send_hextile_tile = send_hextile_tile_32; } else if (bits_per_pixel == 16 && bits_per_pixel == vs->depth * 8 && host_big_endian_flag == big_endian_flag && red_max == 31 && green_max == 63 && blue_max == 31 && red_shift == 11 && green_shift == 5 && blue_shift == 0) { vs->depth = 2; vs->write_pixels = vnc_write_pixels_copy; vs->send_hextile_tile = send_hextile_tile_16; } else if (bits_per_pixel == 8 && bits_per_pixel == vs->depth * 8 && red_max == 7 && green_max == 7 && blue_max == 3 && red_shift == 5 && green_shift == 2 && blue_shift == 0) { vs->depth = 1; vs->write_pixels = vnc_write_pixels_copy; vs->send_hextile_tile = send_hextile_tile_8; } else { /* generic and slower case */ if (bits_per_pixel != 8 && bits_per_pixel != 16 && bits_per_pixel != 32) goto fail; if (vs->depth == 4) { vs->send_hextile_tile = send_hextile_tile_generic_32; } else if (vs->depth == 2) { vs->send_hextile_tile = send_hextile_tile_generic_16; } else { vs->send_hextile_tile = send_hextile_tile_generic_8; } vs->pix_big_endian = big_endian_flag; vs->write_pixels = vnc_write_pixels_generic; } vs->client_red_shift = red_shift; vs->client_red_max = red_max; vs->client_green_shift = green_shift; vs->client_green_max = green_max; vs->client_blue_shift = blue_shift; vs->client_blue_max = blue_max; vs->pix_bpp = bits_per_pixel / 8; vga_hw_invalidate(); vga_hw_update(); }
21,906
1
static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, size_t size) { int64_t len; if (!bdrv_is_inserted(bs)) return -ENOMEDIUM; if (bs->growable) return 0; len = bdrv_getlength(bs); if (offset < 0) if ((offset > len) || (len - offset < size)) return 0;
21,907
1
static void net_socket_accept(void *opaque) { NetSocketListenState *s = opaque; NetSocketState *s1; struct sockaddr_in saddr; socklen_t len; int fd; for(;;) { len = sizeof(saddr); fd = qemu_accept(s->fd, (struct sockaddr *)&saddr, &len); if (fd < 0 && errno != EINTR) { return; } else if (fd >= 0) { break; } } s1 = net_socket_fd_init(s->vlan, s->model, s->name, fd, 1); if (!s1) { closesocket(fd); } else { snprintf(s1->nc.info_str, sizeof(s1->nc.info_str), "socket: connection from %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); } }
21,908
1
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp) { const int qmul = svq3_dequant_coeff[qp]; #define stride 16 int i; int temp[16]; static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride }; for (i = 0; i < 4; i++) { const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]); const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]); const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3]; const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3]; temp[4 * i + 0] = z0 + z3; temp[4 * i + 1] = z1 + z2; temp[4 * i + 2] = z1 - z2; temp[4 * i + 3] = z0 - z3; } for (i = 0; i < 4; i++) { const int offset = x_offset[i]; const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]); const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]); const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i]; const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i]; output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20; output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20; output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20; output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20; } }
21,909
1
static av_cold int adpcm_encode_init(AVCodecContext *avctx) { ADPCMEncodeContext *s = avctx->priv_data; uint8_t *extradata; int i; if (avctx->channels > 2) return -1; /* only stereo or mono =) */ if (avctx->trellis && (unsigned)avctx->trellis > 16U) { av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n"); return -1; } if (avctx->trellis) { int frontier = 1 << avctx->trellis; int max_paths = frontier * FREEZE_INTERVAL; FF_ALLOC_OR_GOTO(avctx, s->paths, max_paths * sizeof(*s->paths), error); FF_ALLOC_OR_GOTO(avctx, s->node_buf, 2 * frontier * sizeof(*s->node_buf), error); FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error); FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error); } avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id); switch (avctx->codec->id) { case CODEC_ID_ADPCM_IMA_WAV: /* each 16 bits sample gives one nibble and we have 4 bytes per channel overhead */ avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* seems frame_size isn't taken into account... have to buffer the samples :-( */ avctx->block_align = BLKSIZE; break; case CODEC_ID_ADPCM_IMA_QT: avctx->frame_size = 64; avctx->block_align = 34 * avctx->channels; break; case CODEC_ID_ADPCM_MS: /* each 16 bits sample gives one nibble and we have 7 bytes per channel overhead */ avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; avctx->block_align = BLKSIZE; avctx->extradata_size = 32; extradata = avctx->extradata = av_malloc(avctx->extradata_size); if (!extradata) return AVERROR(ENOMEM); bytestream_put_le16(&extradata, avctx->frame_size); bytestream_put_le16(&extradata, 7); /* wNumCoef */ for (i = 0; i < 7; i++) { bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4); bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4); } break; case CODEC_ID_ADPCM_YAMAHA: avctx->frame_size = BLKSIZE * avctx->channels; avctx->block_align = BLKSIZE; break; case CODEC_ID_ADPCM_SWF: if (avctx->sample_rate != 11025 && avctx->sample_rate != 22050 && avctx->sample_rate != 44100) { av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, " "22050 or 44100\n"); goto error; } avctx->frame_size = 512 * (avctx->sample_rate / 11025); break; default: goto error; } avctx->coded_frame = avcodec_alloc_frame(); return 0; error: av_freep(&s->paths); av_freep(&s->node_buf); av_freep(&s->nodep_buf); av_freep(&s->trellis_hash); return -1; }
21,910
1
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl) { ERContext *er = &sl->er; int mb_array_size = h->mb_height * h->mb_stride; int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); int c_size = h->mb_stride * (h->mb_height + 1); int yc_size = y_size + 2 * c_size; int x, y, i; sl->ref_cache[0][scan8[5] + 1] = sl->ref_cache[0][scan8[7] + 1] = sl->ref_cache[0][scan8[13] + 1] = sl->ref_cache[1][scan8[5] + 1] = sl->ref_cache[1][scan8[7] + 1] = sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; if (sl != h->slice_ctx) { memset(er, 0, sizeof(*er)); } else if (CONFIG_ERROR_RESILIENCE) { /* init ER */ er->avctx = h->avctx; er->decode_mb = h264_er_decode_mb; er->opaque = h; er->quarter_sample = 1; er->mb_num = h->mb_num; er->mb_width = h->mb_width; er->mb_height = h->mb_height; er->mb_stride = h->mb_stride; er->b8_stride = h->mb_width * 2 + 1; // error resilience code looks cleaner with this FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * h->mb_stride + h->mb_width; FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, mb_array_size * sizeof(uint8_t), fail); FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride, fail); FF_ALLOCZ_OR_GOTO(h->avctx, sl->dc_val_base, yc_size * sizeof(int16_t), fail); er->dc_val[0] = sl->dc_val_base + h->mb_width * 2 + 2; er->dc_val[1] = sl->dc_val_base + y_size + h->mb_stride + 1; er->dc_val[2] = er->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) sl->dc_val_base[i] = 1024; } return 0; fail: return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us }
21,911
1
static void test_visitor_in_alternate_number(TestInputVisitorData *data, const void *unused) { Visitor *v; Error *err = NULL; AltStrBool *asb; AltStrNum *asn; AltNumStr *ans; AltStrInt *asi; AltIntNum *ain; AltNumInt *ani; /* Parsing an int */ v = visitor_input_test_init(data, "42"); visit_type_AltStrBool(v, &asb, NULL, &err); error_free_or_abort(&err); qapi_free_AltStrBool(asb); /* FIXME: Order of alternate should not affect semantics; asn should * parse the same as ans */ v = visitor_input_test_init(data, "42"); visit_type_AltStrNum(v, &asn, NULL, &err); /* FIXME g_assert_cmpint(asn->type, == ALT_STR_NUM_KIND_N); */ /* FIXME g_assert_cmpfloat(asn->u.n, ==, 42); */ error_free_or_abort(&err); qapi_free_AltStrNum(asn); v = visitor_input_test_init(data, "42"); visit_type_AltNumStr(v, &ans, NULL, &error_abort); g_assert_cmpint(ans->type, ==, ALT_NUM_STR_KIND_N); g_assert_cmpfloat(ans->u.n, ==, 42); qapi_free_AltNumStr(ans); v = visitor_input_test_init(data, "42"); visit_type_AltStrInt(v, &asi, NULL, &error_abort); g_assert_cmpint(asi->type, ==, ALT_STR_INT_KIND_I); g_assert_cmpint(asi->u.i, ==, 42); qapi_free_AltStrInt(asi); v = visitor_input_test_init(data, "42"); visit_type_AltIntNum(v, &ain, NULL, &error_abort); g_assert_cmpint(ain->type, ==, ALT_INT_NUM_KIND_I); g_assert_cmpint(ain->u.i, ==, 42); qapi_free_AltIntNum(ain); v = visitor_input_test_init(data, "42"); visit_type_AltNumInt(v, &ani, NULL, &error_abort); g_assert_cmpint(ani->type, ==, ALT_NUM_INT_KIND_I); g_assert_cmpint(ani->u.i, ==, 42); qapi_free_AltNumInt(ani); /* Parsing a double */ v = visitor_input_test_init(data, "42.5"); visit_type_AltStrBool(v, &asb, NULL, &err); error_free_or_abort(&err); qapi_free_AltStrBool(asb); v = visitor_input_test_init(data, "42.5"); visit_type_AltStrNum(v, &asn, NULL, &error_abort); g_assert_cmpint(asn->type, ==, ALT_STR_NUM_KIND_N); g_assert_cmpfloat(asn->u.n, ==, 42.5); qapi_free_AltStrNum(asn); v = visitor_input_test_init(data, "42.5"); visit_type_AltNumStr(v, &ans, NULL, &error_abort); g_assert_cmpint(ans->type, ==, ALT_NUM_STR_KIND_N); g_assert_cmpfloat(ans->u.n, ==, 42.5); qapi_free_AltNumStr(ans); v = visitor_input_test_init(data, "42.5"); visit_type_AltStrInt(v, &asi, NULL, &err); error_free_or_abort(&err); qapi_free_AltStrInt(asi); v = visitor_input_test_init(data, "42.5"); visit_type_AltIntNum(v, &ain, NULL, &error_abort); g_assert_cmpint(ain->type, ==, ALT_INT_NUM_KIND_N); g_assert_cmpfloat(ain->u.n, ==, 42.5); qapi_free_AltIntNum(ain); v = visitor_input_test_init(data, "42.5"); visit_type_AltNumInt(v, &ani, NULL, &error_abort); g_assert_cmpint(ani->type, ==, ALT_NUM_INT_KIND_N); g_assert_cmpfloat(ani->u.n, ==, 42.5); qapi_free_AltNumInt(ani); }
21,912
1
static int coroutine_fn iscsi_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors, QEMUIOVector *iov) { IscsiLun *iscsilun = bs->opaque; struct IscsiTask iTask; uint64_t lba; uint32_t num_sectors; uint8_t *data = NULL; uint8_t *buf = NULL; if (!is_request_lun_aligned(sector_num, nb_sectors, iscsilun)) { return -EINVAL; } lba = sector_qemu2lun(sector_num, iscsilun); num_sectors = sector_qemu2lun(nb_sectors, iscsilun); #if !defined(LIBISCSI_FEATURE_IOVECTOR) /* if the iovec only contains one buffer we can pass it directly */ if (iov->niov == 1) { data = iov->iov[0].iov_base; } else { size_t size = MIN(nb_sectors * BDRV_SECTOR_SIZE, iov->size); buf = g_malloc(size); qemu_iovec_to_buf(iov, 0, buf, size); data = buf; } #endif iscsi_co_init_iscsitask(iscsilun, &iTask); retry: if (iscsilun->use_16_for_rw) { iTask.task = iscsi_write16_task(iscsilun->iscsi, iscsilun->lun, lba, data, num_sectors * iscsilun->block_size, iscsilun->block_size, 0, 0, 0, 0, 0, iscsi_co_generic_cb, &iTask); } else { iTask.task = iscsi_write10_task(iscsilun->iscsi, iscsilun->lun, lba, data, num_sectors * iscsilun->block_size, iscsilun->block_size, 0, 0, 0, 0, 0, iscsi_co_generic_cb, &iTask); } if (iTask.task == NULL) { g_free(buf); return -ENOMEM; } #if defined(LIBISCSI_FEATURE_IOVECTOR) scsi_task_set_iov_out(iTask.task, (struct scsi_iovec *) iov->iov, iov->niov); #endif while (!iTask.complete) { iscsi_set_events(iscsilun); qemu_coroutine_yield(); } if (iTask.task != NULL) { scsi_free_scsi_task(iTask.task); iTask.task = NULL; } if (iTask.do_retry) { iTask.complete = 0; goto retry; } g_free(buf); if (iTask.status != SCSI_STATUS_GOOD) { return -EIO; } iscsi_allocationmap_set(iscsilun, sector_num, nb_sectors); return 0; }
21,913
1
static void add_sel_entry(IPMIBmcSim *ibs, uint8_t *cmd, unsigned int cmd_len, uint8_t *rsp, unsigned int *rsp_len, unsigned int max_rsp_len) { IPMI_CHECK_CMD_LEN(18); if (sel_add_event(ibs, cmd + 2)) { rsp[2] = IPMI_CC_OUT_OF_SPACE; return; } /* sel_add_event fills in the record number. */ IPMI_ADD_RSP_DATA(cmd[2]); IPMI_ADD_RSP_DATA(cmd[3]); }
21,915
1
static void vmdk_free_last_extent(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; if (s->num_extents == 0) { return; } s->num_extents--; s->extents = g_realloc(s->extents, s->num_extents * sizeof(VmdkExtent)); }
21,916
1
static int libschroedinger_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { int enc_size = 0; SchroEncoderParams *p_schro_params = avctx->priv_data; SchroEncoder *encoder = p_schro_params->encoder; struct FFSchroEncodedFrame *p_frame_output = NULL; int go = 1; SchroBuffer *enc_buf; int presentation_frame; int parse_code; int last_frame_in_sequence = 0; int pkt_size, ret; if (!frame) { /* Push end of sequence if not already signalled. */ if (!p_schro_params->eos_signalled) { schro_encoder_end_of_stream(encoder); p_schro_params->eos_signalled = 1; } } else { /* Allocate frame data to schro input buffer. */ SchroFrame *in_frame = libschroedinger_frame_from_data(avctx, frame); if (!in_frame) return AVERROR(ENOMEM); /* Load next frame. */ schro_encoder_push_frame(encoder, in_frame); } if (p_schro_params->eos_pulled) go = 0; /* Now check to see if we have any output from the encoder. */ while (go) { int err; SchroStateEnum state; state = schro_encoder_wait(encoder); switch (state) { case SCHRO_STATE_HAVE_BUFFER: case SCHRO_STATE_END_OF_STREAM: enc_buf = schro_encoder_pull(encoder, &presentation_frame); if (enc_buf->length <= 0) return AVERROR_BUG; parse_code = enc_buf->data[4]; /* All non-frame data is prepended to actual frame data to * be able to set the pts correctly. So we don't write data * to the frame output queue until we actually have a frame */ if ((err = av_reallocp(&p_schro_params->enc_buf, p_schro_params->enc_buf_size + enc_buf->length)) < 0) { p_schro_params->enc_buf_size = 0; return err; } memcpy(p_schro_params->enc_buf + p_schro_params->enc_buf_size, enc_buf->data, enc_buf->length); p_schro_params->enc_buf_size += enc_buf->length; if (state == SCHRO_STATE_END_OF_STREAM) { p_schro_params->eos_pulled = 1; go = 0; } if (!SCHRO_PARSE_CODE_IS_PICTURE(parse_code)) { schro_buffer_unref(enc_buf); break; } /* Create output frame. */ p_frame_output = av_mallocz(sizeof(FFSchroEncodedFrame)); if (!p_frame_output) return AVERROR(ENOMEM); /* Set output data. */ p_frame_output->size = p_schro_params->enc_buf_size; p_frame_output->p_encbuf = p_schro_params->enc_buf; if (SCHRO_PARSE_CODE_IS_INTRA(parse_code) && SCHRO_PARSE_CODE_IS_REFERENCE(parse_code)) p_frame_output->key_frame = 1; /* Parse the coded frame number from the bitstream. Bytes 14 * through 17 represent the frame number. */ p_frame_output->frame_num = AV_RB32(enc_buf->data + 13); ff_schro_queue_push_back(&p_schro_params->enc_frame_queue, p_frame_output); p_schro_params->enc_buf_size = 0; p_schro_params->enc_buf = NULL; schro_buffer_unref(enc_buf); break; case SCHRO_STATE_NEED_FRAME: go = 0; break; case SCHRO_STATE_AGAIN: break; default: av_log(avctx, AV_LOG_ERROR, "Unknown Schro Encoder state\n"); return -1; } } /* Copy 'next' frame in queue. */ if (p_schro_params->enc_frame_queue.size == 1 && p_schro_params->eos_pulled) last_frame_in_sequence = 1; p_frame_output = ff_schro_queue_pop(&p_schro_params->enc_frame_queue); if (!p_frame_output) return 0; pkt_size = p_frame_output->size; if (last_frame_in_sequence && p_schro_params->enc_buf_size > 0) pkt_size += p_schro_params->enc_buf_size; if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size, 0)) < 0) goto error; memcpy(pkt->data, p_frame_output->p_encbuf, p_frame_output->size); #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->coded_frame->key_frame = p_frame_output->key_frame; avctx->coded_frame->pts = p_frame_output->frame_num; FF_ENABLE_DEPRECATION_WARNINGS #endif /* Use the frame number of the encoded frame as the pts. It is OK to * do so since Dirac is a constant frame rate codec. It expects input * to be of constant frame rate. */ pkt->pts = p_frame_output->frame_num; pkt->dts = p_schro_params->dts++; enc_size = p_frame_output->size; /* Append the end of sequence information to the last frame in the * sequence. */ if (last_frame_in_sequence && p_schro_params->enc_buf_size > 0) { memcpy(pkt->data + enc_size, p_schro_params->enc_buf, p_schro_params->enc_buf_size); enc_size += p_schro_params->enc_buf_size; av_freep(&p_schro_params->enc_buf); p_schro_params->enc_buf_size = 0; } if (p_frame_output->key_frame) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; error: /* free frame */ libschroedinger_free_frame(p_frame_output); return ret; }
21,917
1
static int qcow2_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { Coroutine *co; AioContext *aio_context = bdrv_get_aio_context(bs); Qcow2WriteCo data = { .bs = bs, .sector_num = sector_num, .buf = buf, .nb_sectors = nb_sectors, .ret = -EINPROGRESS, }; co = qemu_coroutine_create(qcow2_write_co_entry); qemu_coroutine_enter(co, &data); while (data.ret == -EINPROGRESS) { aio_poll(aio_context, true); } return data.ret; }
21,920
1
static void virtio_scsi_hotplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(hotplug_dev); VirtIOSCSI *s = VIRTIO_SCSI(vdev); SCSIDevice *sd = SCSI_DEVICE(dev); if (s->ctx && !s->dataplane_disabled) { VirtIOSCSIBlkChangeNotifier *insert_notifier, *remove_notifier; if (blk_op_is_blocked(sd->conf.blk, BLOCK_OP_TYPE_DATAPLANE, errp)) { return; } blk_op_block_all(sd->conf.blk, s->blocker); aio_context_acquire(s->ctx); blk_set_aio_context(sd->conf.blk, s->ctx); aio_context_release(s->ctx); insert_notifier = g_new0(VirtIOSCSIBlkChangeNotifier, 1); insert_notifier->n.notify = virtio_scsi_blk_insert_notifier; insert_notifier->s = s; insert_notifier->sd = sd; blk_add_insert_bs_notifier(sd->conf.blk, &insert_notifier->n); QTAILQ_INSERT_TAIL(&s->insert_notifiers, insert_notifier, next); remove_notifier = g_new0(VirtIOSCSIBlkChangeNotifier, 1); remove_notifier->n.notify = virtio_scsi_blk_remove_notifier; remove_notifier->s = s; remove_notifier->sd = sd; blk_add_remove_bs_notifier(sd->conf.blk, &remove_notifier->n); QTAILQ_INSERT_TAIL(&s->remove_notifiers, remove_notifier, next); } if (virtio_vdev_has_feature(vdev, VIRTIO_SCSI_F_HOTPLUG)) { virtio_scsi_push_event(s, sd, VIRTIO_SCSI_T_TRANSPORT_RESET, VIRTIO_SCSI_EVT_RESET_RESCAN); } }
21,922
1
static CharDriverState *qemu_chr_open_pty(const char *id, ChardevReturn *ret) { CharDriverState *chr; PtyCharDriver *s; int master_fd, slave_fd; char pty_name[PATH_MAX]; master_fd = qemu_openpty_raw(&slave_fd, pty_name); if (master_fd < 0) { return NULL; } close(slave_fd); qemu_set_nonblock(master_fd); chr = qemu_chr_alloc(); chr->filename = g_strdup_printf("pty:%s", pty_name); ret->pty = g_strdup(pty_name); ret->has_pty = true; fprintf(stderr, "char device redirected to %s (label %s)\n", pty_name, id); s = g_malloc0(sizeof(PtyCharDriver)); chr->opaque = s; chr->chr_write = pty_chr_write; chr->chr_update_read_handler = pty_chr_update_read_handler; chr->chr_close = pty_chr_close; chr->chr_add_watch = pty_chr_add_watch; chr->explicit_be_open = true; s->fd = io_channel_from_fd(master_fd); s->timer_tag = 0; return chr; }
21,923
1
static void RENAME(uyvytoyuv420)(uint8_t *ydst, uint8_t *udst, uint8_t *vdst, const uint8_t *src, int width, int height, int lumStride, int chromStride, int srcStride) { int y; const int chromWidth = FF_CEIL_RSHIFT(width, 1); for (y=0; y<height; y++) { RENAME(extract_even)(src+1, ydst, width); if(y&1) { RENAME(extract_even2avg)(src-srcStride, src, udst, vdst, chromWidth); udst+= chromStride; vdst+= chromStride; } src += srcStride; ydst+= lumStride; } __asm__( EMMS" \n\t" SFENCE" \n\t" ::: "memory" ); }
21,924
1
av_cold int ff_h264_decode_init(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; int ret; h->avctx = avctx; h->bit_depth_luma = 8; h->chroma_format_idc = 1; h->cur_chroma_format_idc = 1; ff_h264dsp_init(&h->h264dsp, 8, 1); av_assert0(h->sps.bit_depth_chroma == 0); ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, 8); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1); h->dequant_coeff_pps = -1; h->current_sps_id = -1; /* needed so that IDCT permutation is known early */ ff_videodsp_init(&h->vdsp, 8); memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t)); h->picture_structure = PICT_FRAME; h->slice_context_count = 1; h->workaround_bugs = avctx->workaround_bugs; h->flags = avctx->flags; /* set defaults */ // s->decode_mb = ff_h263_decode_mb; if (!avctx->has_b_frames) h->low_delay = 1; avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; ff_h264_decode_init_vlc(); ff_init_cabac_states(); h->pixel_shift = 0; h->cur_bit_depth_luma = h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? H264_MAX_THREADS : 1; h->slice_ctx = av_mallocz_array(h->nb_slice_ctx, sizeof(*h->slice_ctx)); if (!h->slice_ctx) { h->nb_slice_ctx = 0; return AVERROR(ENOMEM); } for (i = 0; i < h->nb_slice_ctx; i++) h->slice_ctx[i].h264 = h; h->outputed_poc = h->next_outputed_poc = INT_MIN; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->prev_poc_msb = 1 << 16; h->prev_frame_num = -1; h->x264_build = -1; h->sei_fpa.frame_packing_arrangement_cancel_flag = -1; ff_h264_reset_sei(h); if (avctx->codec_id == AV_CODEC_ID_H264) { if (avctx->ticks_per_frame == 1) { if(h->avctx->time_base.den < INT_MAX/2) { h->avctx->time_base.den *= 2; } else h->avctx->time_base.num /= 2; } avctx->ticks_per_frame = 2; } if (avctx->extradata_size > 0 && avctx->extradata) { ret = ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size); if (ret < 0) { ff_h264_free_context(h); return ret; } } if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames < h->sps.num_reorder_frames) { h->avctx->has_b_frames = h->sps.num_reorder_frames; h->low_delay = 0; } avctx->internal->allocate_progress = 1; ff_h264_flush_change(h); if (h->enable_er) { av_log(avctx, AV_LOG_WARNING, "Error resilience is enabled. It is unsafe and unsupported and may crash. " "Use it at your own risk\n"); } return 0; }
21,926
1
static int decode_hextile(VmncContext *c, uint8_t* dst, GetByteContext *gb, int w, int h, int stride) { int i, j, k; int bg = 0, fg = 0, rects, color, flags, xy, wh; const int bpp = c->bpp2; uint8_t *dst2; int bw = 16, bh = 16; for (j = 0; j < h; j += 16) { dst2 = dst; bw = 16; if (j + 16 > h) bh = h - j; for (i = 0; i < w; i += 16, dst2 += 16 * bpp) { if (bytestream2_get_bytes_left(gb) <= 0) { av_log(c->avctx, AV_LOG_ERROR, "Premature end of data!\n"); return AVERROR_INVALIDDATA; } if (i + 16 > w) bw = w - i; flags = bytestream2_get_byte(gb); if (flags & HT_RAW) { if (bytestream2_get_bytes_left(gb) < bw * bh * bpp) { av_log(c->avctx, AV_LOG_ERROR, "Premature end of data!\n"); return AVERROR_INVALIDDATA; } paint_raw(dst2, bw, bh, gb, bpp, c->bigendian, stride); } else { if (flags & HT_BKG) bg = vmnc_get_pixel(gb, bpp, c->bigendian); if (flags & HT_FG) fg = vmnc_get_pixel(gb, bpp, c->bigendian); rects = 0; if (flags & HT_SUB) rects = bytestream2_get_byte(gb); color = !!(flags & HT_CLR); paint_rect(dst2, 0, 0, bw, bh, bg, bpp, stride); if (bytestream2_get_bytes_left(gb) < rects * (color * bpp + 2)) { av_log(c->avctx, AV_LOG_ERROR, "Premature end of data!\n"); return AVERROR_INVALIDDATA; } for (k = 0; k < rects; k++) { if (color) fg = vmnc_get_pixel(gb, bpp, c->bigendian); xy = bytestream2_get_byte(gb); wh = bytestream2_get_byte(gb); paint_rect(dst2, xy >> 4, xy & 0xF, (wh>>4)+1, (wh & 0xF)+1, fg, bpp, stride); } } } dst += stride * 16; } return 0; }
21,927
1
int msi_init(struct PCIDevice *dev, uint8_t offset, unsigned int nr_vectors, bool msi64bit, bool msi_per_vector_mask) { unsigned int vectors_order; uint16_t flags; uint8_t cap_size; int config_offset; if (!msi_nonbroken) { return -ENOTSUP; } MSI_DEV_PRINTF(dev, "init offset: 0x%"PRIx8" vector: %"PRId8 " 64bit %d mask %d\n", offset, nr_vectors, msi64bit, msi_per_vector_mask); assert(!(nr_vectors & (nr_vectors - 1))); /* power of 2 */ assert(nr_vectors > 0); assert(nr_vectors <= PCI_MSI_VECTORS_MAX); /* the nr of MSI vectors is up to 32 */ vectors_order = ctz32(nr_vectors); flags = vectors_order << ctz32(PCI_MSI_FLAGS_QMASK); if (msi64bit) { flags |= PCI_MSI_FLAGS_64BIT; } if (msi_per_vector_mask) { flags |= PCI_MSI_FLAGS_MASKBIT; } cap_size = msi_cap_sizeof(flags); config_offset = pci_add_capability(dev, PCI_CAP_ID_MSI, offset, cap_size); if (config_offset < 0) { return config_offset; } dev->msi_cap = config_offset; dev->cap_present |= QEMU_PCI_CAP_MSI; pci_set_word(dev->config + msi_flags_off(dev), flags); pci_set_word(dev->wmask + msi_flags_off(dev), PCI_MSI_FLAGS_QSIZE | PCI_MSI_FLAGS_ENABLE); pci_set_long(dev->wmask + msi_address_lo_off(dev), PCI_MSI_ADDRESS_LO_MASK); if (msi64bit) { pci_set_long(dev->wmask + msi_address_hi_off(dev), 0xffffffff); } pci_set_word(dev->wmask + msi_data_off(dev, msi64bit), 0xffff); if (msi_per_vector_mask) { /* Make mask bits 0 to nr_vectors - 1 writable. */ pci_set_long(dev->wmask + msi_mask_off(dev, msi64bit), 0xffffffff >> (PCI_MSI_VECTORS_MAX - nr_vectors)); } return 0; }
21,928
1
static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) { int t, sign, v; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(avctx, AV_LOG_ERROR, "Too many motion values\n"); return -1; } if (get_bits1(gb)) { v = get_bits(gb, 4); if (v) { sign = -get_bits1(gb); v = (v ^ sign) - sign; } memset(b->cur_dec, v, t); b->cur_dec += t; } else { do { v = GET_HUFF(gb, b->tree); if (v) { sign = -get_bits1(gb); v = (v ^ sign) - sign; } *b->cur_dec++ = v; } while (b->cur_dec < dec_end); } return 0; }
21,929
1
static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv t0) { TCGv tmp; if (spsr) { /* ??? This is also undefined in system mode. */ if (IS_USER(s)) return 1; tmp = load_cpu_field(spsr); tcg_gen_andi_i32(tmp, tmp, ~mask); tcg_gen_andi_i32(t0, t0, mask); tcg_gen_or_i32(tmp, tmp, t0); store_cpu_field(tmp, spsr); } else { gen_set_cpsr(t0, mask); } dead_tmp(t0); gen_lookup_tb(s); return 0; }
21,930
1
int av_image_fill_linesizes(int linesizes[4], enum PixelFormat pix_fmt, int width) { int i; const AVPixFmtDescriptor *desc = &av_pix_fmt_descriptors[pix_fmt]; int max_step [4]; /* max pixel step for each plane */ int max_step_comp[4]; /* the component for each plane which has the max pixel step */ memset(linesizes, 0, 4*sizeof(linesizes[0])); if ((unsigned)pix_fmt >= PIX_FMT_NB || desc->flags & PIX_FMT_HWACCEL) return AVERROR(EINVAL); if (desc->flags & PIX_FMT_BITSTREAM) { if (width > (INT_MAX -7) / (desc->comp[0].step_minus1+1)) return AVERROR(EINVAL); linesizes[0] = (width * (desc->comp[0].step_minus1+1) + 7) >> 3; return 0; } av_image_fill_max_pixsteps(max_step, max_step_comp, desc); for (i = 0; i < 4; i++) { int s = (max_step_comp[i] == 1 || max_step_comp[i] == 2) ? desc->log2_chroma_w : 0; int shifted_w = ((width + (1 << s) - 1)) >> s; if (max_step[i] > INT_MAX / shifted_w) return AVERROR(EINVAL); linesizes[i] = max_step[i] * shifted_w; } return 0; }
21,931
1
static int nbd_negotiate_options(NBDClient *client, uint16_t myflags, Error **errp) { uint32_t flags; bool fixedNewstyle = false; bool no_zeroes = false; /* Client sends: [ 0 .. 3] client flags Then we loop until NBD_OPT_EXPORT_NAME or NBD_OPT_GO: [ 0 .. 7] NBD_OPTS_MAGIC [ 8 .. 11] NBD option [12 .. 15] Data length ... Rest of request [ 0 .. 7] NBD_OPTS_MAGIC [ 8 .. 11] Second NBD option [12 .. 15] Data length ... Rest of request */ if (nbd_read(client->ioc, &flags, sizeof(flags), errp) < 0) { error_prepend(errp, "read failed: "); return -EIO; be32_to_cpus(&flags); trace_nbd_negotiate_options_flags(flags); if (flags & NBD_FLAG_C_FIXED_NEWSTYLE) { fixedNewstyle = true; flags &= ~NBD_FLAG_C_FIXED_NEWSTYLE; if (flags & NBD_FLAG_C_NO_ZEROES) { no_zeroes = true; flags &= ~NBD_FLAG_C_NO_ZEROES; if (flags != 0) { error_setg(errp, "Unknown client flags 0x%" PRIx32 " received", flags); while (1) { int ret; uint32_t option, length; uint64_t magic; if (nbd_read(client->ioc, &magic, sizeof(magic), errp) < 0) { error_prepend(errp, "read failed: "); magic = be64_to_cpu(magic); trace_nbd_negotiate_options_check_magic(magic); if (magic != NBD_OPTS_MAGIC) { error_setg(errp, "Bad magic received"); if (nbd_read(client->ioc, &option, sizeof(option), errp) < 0) { error_prepend(errp, "read failed: "); option = be32_to_cpu(option); if (nbd_read(client->ioc, &length, sizeof(length), errp) < 0) { error_prepend(errp, "read failed: "); length = be32_to_cpu(length); trace_nbd_negotiate_options_check_option(option, nbd_opt_lookup(option)); if (client->tlscreds && client->ioc == (QIOChannel *)client->sioc) { QIOChannel *tioc; if (!fixedNewstyle) { error_setg(errp, "Unsupported option 0x%" PRIx32, option); switch (option) { case NBD_OPT_STARTTLS: if (length) { /* Unconditionally drop the connection if the client * can't start a TLS negotiation correctly */ return nbd_reject_length(client, length, option, true, errp); tioc = nbd_negotiate_handle_starttls(client, errp); if (!tioc) { return -EIO; ret = 0; object_unref(OBJECT(client->ioc)); client->ioc = QIO_CHANNEL(tioc); break; case NBD_OPT_EXPORT_NAME: /* No way to return an error to client, so drop connection */ error_setg(errp, "Option 0x%x not permitted before TLS", option); default: if (nbd_drop(client->ioc, length, errp) < 0) { return -EIO; ret = nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_TLS_REQD, option, errp, "Option 0x%" PRIx32 "not permitted before TLS", option); /* Let the client keep trying, unless they asked to * quit. In this mode, we've already sent an error, so * we can't ack the abort. */ if (option == NBD_OPT_ABORT) { return 1; break; } else if (fixedNewstyle) { switch (option) { case NBD_OPT_LIST: if (length) { ret = nbd_reject_length(client, length, option, false, errp); } else { ret = nbd_negotiate_handle_list(client, errp); break; case NBD_OPT_ABORT: /* NBD spec says we must try to reply before * disconnecting, but that we must also tolerate * guests that don't wait for our reply. */ nbd_negotiate_send_rep(client->ioc, NBD_REP_ACK, option, NULL); return 1; case NBD_OPT_EXPORT_NAME: return nbd_negotiate_handle_export_name(client, length, myflags, no_zeroes, errp); case NBD_OPT_INFO: case NBD_OPT_GO: ret = nbd_negotiate_handle_info(client, length, option, myflags, errp); if (ret == 1) { assert(option == NBD_OPT_GO); return 0; break; case NBD_OPT_STARTTLS: if (length) { ret = nbd_reject_length(client, length, option, false, errp); } else if (client->tlscreds) { ret = nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_INVALID, option, errp, "TLS already enabled"); } else { ret = nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_POLICY, option, errp, "TLS not configured"); break; case NBD_OPT_STRUCTURED_REPLY: if (length) { ret = nbd_reject_length(client, length, option, false, errp); } else if (client->structured_reply) { ret = nbd_negotiate_send_rep_err( client->ioc, NBD_REP_ERR_INVALID, option, errp, "structured reply already negotiated"); } else { ret = nbd_negotiate_send_rep(client->ioc, NBD_REP_ACK, option, errp); client->structured_reply = true; myflags |= NBD_FLAG_SEND_DF; break; default: if (nbd_drop(client->ioc, length, errp) < 0) { return -EIO; ret = nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_UNSUP, option, errp, "Unsupported option 0x%" PRIx32 " (%s)", option, nbd_opt_lookup(option)); break; } else { /* * If broken new-style we should drop the connection * for anything except NBD_OPT_EXPORT_NAME */ switch (option) { case NBD_OPT_EXPORT_NAME: return nbd_negotiate_handle_export_name(client, length, myflags, no_zeroes, errp); default: error_setg(errp, "Unsupported option 0x%" PRIx32 " (%s)", option, nbd_opt_lookup(option)); if (ret < 0) { return ret;
21,932
1
static int virtio_ccw_blk_init(VirtioCcwDevice *ccw_dev) { VirtIOBlkCcw *dev = VIRTIO_BLK_CCW(ccw_dev); DeviceState *vdev = DEVICE(&dev->vdev); virtio_blk_set_conf(vdev, &(dev->blk)); qdev_set_parent_bus(vdev, BUS(&ccw_dev->bus)); if (qdev_init(vdev) < 0) { return -1; } return virtio_ccw_device_init(ccw_dev, VIRTIO_DEVICE(vdev)); }
21,933
1
static av_cold int libschroedinger_decode_close(AVCodecContext *avctx) { SchroDecoderParams *p_schro_params = avctx->priv_data; /* Free the decoder. */ schro_decoder_free(p_schro_params->decoder); av_freep(&p_schro_params->format); /* Free data in the output frame queue. */ ff_schro_queue_free(&p_schro_params->dec_frame_queue, libschroedinger_decode_frame_free); return 0; }
21,934
1
static void parse_forced_key_frames(char *kf, OutputStream *ost, AVCodecContext *avctx) { char *p; int n = 1, i; int64_t t; for (p = kf; *p; p++) if (*p == ',') n++; ost->forced_kf_count = n; ost->forced_kf_pts = av_malloc(sizeof(*ost->forced_kf_pts) * n); if (!ost->forced_kf_pts) { av_log(NULL, AV_LOG_FATAL, "Could not allocate forced key frames array.\n"); exit(1); } p = kf; for (i = 0; i < n; i++) { char *next = strchr(p, ','); if (next) *next++ = 0; t = parse_time_or_die("force_key_frames", p, 1); ost->forced_kf_pts[i] = av_rescale_q(t, AV_TIME_BASE_Q, avctx->time_base); p = next; } }
21,935
1
void decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y) { VP8Macroblock *mb_edge[3] = { mb + 2 /* top */, mb - 1 /* left */, mb + 1 /* top-left */ }; enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; int idx = CNT_ZERO; int cur_sign_bias = s->sign_bias[mb->ref_frame]; int8_t *sign_bias = s->sign_bias; VP56mv near_mv[4]; uint8_t cnt[4] = { 0 }; VP56RangeCoder *c = &s->c; AV_ZERO32(&near_mv[0]); AV_ZERO32(&near_mv[1]); /* Process MB on top, left and top-left */ #define MV_EDGE_CHECK(n)\ {\ VP8Macroblock *edge = mb_edge[n];\ int edge_ref = edge->ref_frame;\ if (edge_ref != VP56_FRAME_CURRENT) {\ uint32_t mv = AV_RN32A(&edge->mv);\ if (mv) {\ if (cur_sign_bias != sign_bias[edge_ref]) {\ /* SWAR negate of the values in mv. */\ mv = ~mv;\ mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\ }\ if (!n || mv != AV_RN32A(&near_mv[idx]))\ AV_WN32A(&near_mv[++idx], mv);\ cnt[idx] += 1 + (n != 2);\ } else\ cnt[CNT_ZERO] += 1 + (n != 2);\ }\ } MV_EDGE_CHECK(0) MV_EDGE_CHECK(1) MV_EDGE_CHECK(2) mb->partitioning = VP8_SPLITMVMODE_NONE; if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) { mb->mode = VP8_MVMODE_MV; /* If we have three distinct MVs, merge first and last if they're the same */ if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT])) cnt[CNT_NEAREST] += 1; /* Swap near and nearest if necessary */ if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); } if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) { if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) { /* Choose the best mv out of 0,0 and the nearest mv */ clamp_mv(s, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]); cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + (mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + (mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) { mb->mode = VP8_MVMODE_SPLIT; mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1]; } else { mb->mv.y += read_mv_component(c, s->prob->mvc[0]); mb->mv.x += read_mv_component(c, s->prob->mvc[1]); mb->bmv[0] = mb->mv; } } else { clamp_mv(s, &mb->mv, &near_mv[CNT_NEAR]); mb->bmv[0] = mb->mv; } } else { clamp_mv(s, &mb->mv, &near_mv[CNT_NEAREST]); mb->bmv[0] = mb->mv; } } else { mb->mode = VP8_MVMODE_ZERO; AV_ZERO32(&mb->mv); mb->bmv[0] = mb->mv; } }
21,936
0
static int check_output_constraints(InputStream *ist, OutputStream *ost) { OutputFile *of = output_files[ost->file_index]; int ist_index = input_files[ist->file_index]->ist_index + ist->st->index; if (ost->source_index != ist_index) return 0; if (of->start_time && ist->pts < of->start_time) return 0; if (of->recording_time != INT64_MAX && av_compare_ts(ist->pts, AV_TIME_BASE_Q, of->recording_time + of->start_time, (AVRational){ 1, 1000000 }) >= 0) { ost->is_past_recording_time = 1; return 0; } return 1; }
21,937
1
CPUState *mon_get_cpu(void) { if (!cur_mon->mon_cpu) { monitor_set_cpu(0); } cpu_synchronize_state(cur_mon->mon_cpu); return cur_mon->mon_cpu; }
21,939
1
static int vc1_decode_p_mb_intfr(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int val; /* temp value */ int first_block = 1; int dst_idx, off; int skipped, fourmv = 0, twomv = 0; int block_cbp = 0, pat, block_tt = 0; int idx_mbmode = 0, mvbp; int stride_y, fieldtx; mquant = v->pq; /* Loosy initialization */ if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; if (!skipped) { if (v->fourmvswitch) idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done else idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) { /* store the motion vector type in a flag (useful later) */ case MV_PMODE_INTFR_4MV: fourmv = 1; v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; break; case MV_PMODE_INTFR_4MV_FIELD: fourmv = 1; v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; break; case MV_PMODE_INTFR_2MV_FIELD: twomv = 1; v->blk_mv_type[s->block_index[0]] = 1; v->blk_mv_type[s->block_index[1]] = 1; v->blk_mv_type[s->block_index[2]] = 1; v->blk_mv_type[s->block_index[3]] = 1; break; case MV_PMODE_INTFR_1MV: v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; break; } if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0; s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA; s->mb_intra = v->is_intra[s->mb_x] = 1; for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 1; fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb); mb_has_coeffs = get_bits1(gb); if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb); GET_MQUANT(); s->current_picture.f.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same (not sure if necessary here) */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; dst_idx = 0; for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); v->mb_type[0][s->block_index[i]] = s->mb_intra; v->a_avail = v->c_avail = 0; if (i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if (i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i & 4) ? v->codingset2 : v->codingset); if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; v->vc1dsp.vc1_inv_trans_8x8(s->block[i]); if (i < 4) { stride_y = s->linesize << fieldtx; off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize; } else { stride_y = s->uvlinesize; off = 0; } s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y); //TODO: loop filter } } else { // inter MB mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3]; if (mb_has_coeffs) cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) { v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1); } else { if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV) || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) { v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1); } } s->mb_intra = v->is_intra[s->mb_x] = 0; for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0; fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1]; /* for all motion vector read MVDATA and motion compensate each block */ dst_idx = 0; if (fourmv) { mvbp = v->fourmvbp; for (i = 0; i < 6; i++) { if (i < 4) { val = ((mvbp >> (3 - i)) & 1); if (val) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_4mv_luma(v, i, 0); } else if (i == 4) { vc1_mc_4mv_chroma4(v); } } } else if (twomv) { mvbp = v->twomvbp; if (mvbp & 2) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_4mv_luma(v, 0, 0); vc1_mc_4mv_luma(v, 1, 0); if (mvbp & 1) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_4mv_luma(v, 2, 0); vc1_mc_4mv_luma(v, 3, 0); vc1_mc_4mv_chroma4(v); } else { mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2]; if (mvbp) { get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0); } vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_1mv(v, 0); } if (cbp) GET_MQUANT(); // p. 227 s->current_picture.f.qscale_table[mb_pos] = mquant; if (!v->ttmbf && cbp) ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i = 0; i < 6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); if (!fieldtx) off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); else off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize)); if (val) { pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : (s->linesize << fieldtx), (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt); block_cbp |= pat << (i << 2); if (!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; } } } } else { // skipped s->mb_intra = v->is_intra[s->mb_x] = 0; for (i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.f.qscale_table[mb_pos] = 0; v->blk_mv_type[s->block_index[0]] = 0; v->blk_mv_type[s->block_index[1]] = 0; v->blk_mv_type[s->block_index[2]] = 0; v->blk_mv_type[s->block_index[3]] = 0; vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_1mv(v, 0); } if (s->mb_x == s->mb_width - 1) memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride); return 0; }
21,940
1
ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_) { NE2000State *s = qemu_get_nic_opaque(nc); int size = size_; uint8_t *p; unsigned int total_len, next, avail, len, index, mcast_idx; uint8_t buf1[60]; static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; #if defined(DEBUG_NE2000) printf("NE2000: received len=%d\n", size); #endif if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) return -1; /* XXX: check this */ if (s->rxcr & 0x10) { /* promiscuous: receive all */ } else { if (!memcmp(buf, broadcast_macaddr, 6)) { /* broadcast address */ if (!(s->rxcr & 0x04)) return size; } else if (buf[0] & 0x01) { /* multicast */ if (!(s->rxcr & 0x08)) return size; mcast_idx = compute_mcast_idx(buf); if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) return size; } else if (s->mem[0] == buf[0] && s->mem[2] == buf[1] && s->mem[4] == buf[2] && s->mem[6] == buf[3] && s->mem[8] == buf[4] && s->mem[10] == buf[5]) { /* match */ } else { return size; } } /* if too small buffer, then expand it */ if (size < MIN_BUF_SIZE) { memcpy(buf1, buf, size); memset(buf1 + size, 0, MIN_BUF_SIZE - size); buf = buf1; size = MIN_BUF_SIZE; } index = s->curpag << 8; if (index >= NE2000_PMEM_END) { index = s->start; } /* 4 bytes for header */ total_len = size + 4; /* address for next packet (4 bytes for CRC) */ next = index + ((total_len + 4 + 255) & ~0xff); if (next >= s->stop) next -= (s->stop - s->start); /* prepare packet header */ p = s->mem + index; s->rsr = ENRSR_RXOK; /* receive status */ /* XXX: check this */ if (buf[0] & 0x01) s->rsr |= ENRSR_PHY; p[0] = s->rsr; p[1] = next >> 8; p[2] = total_len; p[3] = total_len >> 8; index += 4; /* write packet data */ while (size > 0) { if (index <= s->stop) avail = s->stop - index; else avail = 0; len = size; if (len > avail) len = avail; memcpy(s->mem + index, buf, len); buf += len; index += len; if (index == s->stop) index = s->start; size -= len; } s->curpag = next >> 8; /* now we can signal we have received something */ s->isr |= ENISR_RX; ne2000_update_irq(s); return size_; }
21,941
1
static av_cold int decode_init_thread_copy(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i, ret; if ((ret = ff_huffyuv_alloc_temp(s)) < 0) { ff_huffyuv_common_end(s); return ret; } for (i = 0; i < 8; i++) s->vlc[i].table = NULL; if (s->version >= 2) { if ((ret = read_huffman_tables(s, avctx->extradata + 4, avctx->extradata_size)) < 0) return ret; } else { if ((ret = read_old_huffman_tables(s)) < 0) return ret; } return 0; }
21,942
1
static void get_pci_host_devaddr(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { DeviceState *dev = DEVICE(obj); Property *prop = opaque; PCIHostDeviceAddress *addr = qdev_get_prop_ptr(dev, prop); char buffer[] = "xxxx:xx:xx.x"; char *p = buffer; int rc = 0; rc = snprintf(buffer, sizeof(buffer), "%04x:%02x:%02x.%d", addr->domain, addr->bus, addr->slot, addr->function); assert(rc == sizeof(buffer) - 1); visit_type_str(v, name, &p, errp); }
21,943
0
static int cin_probe(AVProbeData *p) { if (p->buf_size < 18) return 0; /* header starts with this special marker */ if (AV_RL32(&p->buf[0]) != 0x55AA0000) return 0; /* for accuracy, check some header field values */ if (AV_RL32(&p->buf[12]) != 22050 || p->buf[16] != 16 || p->buf[17] != 0) return 0; return AVPROBE_SCORE_MAX; }
21,944
0
static int try_decode_frame(AVStream *st, AVPacket *avpkt, AVDictionary **options) { AVCodec *codec; int got_picture = 1, ret = 0; AVFrame picture; AVPacket pkt = *avpkt; if(!st->codec->codec){ AVDictionary *thread_opt = NULL; codec = avcodec_find_decoder(st->codec->codec_id); if (!codec) return -1; /* force thread count to 1 since the h264 decoder will not extract SPS * and PPS to extradata during multi-threaded decoding */ av_dict_set(options ? options : &thread_opt, "threads", "1", 0); ret = avcodec_open2(st->codec, codec, options ? options : &thread_opt); if (!options) av_dict_free(&thread_opt); if (ret < 0) return ret; } while ((pkt.size > 0 || (!pkt.data && got_picture)) && ret >= 0 && (!has_codec_parameters(st->codec) || !has_decode_delay_been_guessed(st) || (!st->codec_info_nb_frames && st->codec->codec->capabilities & CODEC_CAP_CHANNEL_CONF))) { got_picture = 0; avcodec_get_frame_defaults(&picture); switch(st->codec->codec_type) { case AVMEDIA_TYPE_VIDEO: ret = avcodec_decode_video2(st->codec, &picture, &got_picture, &pkt); break; case AVMEDIA_TYPE_AUDIO: ret = avcodec_decode_audio4(st->codec, &picture, &got_picture, &pkt); break; default: break; } if (ret >= 0) { if (got_picture) st->info->nb_decoded_frames++; pkt.data += ret; pkt.size -= ret; ret = got_picture; } } return ret; }
21,945
0
static void validate_thread_parameters(AVCodecContext *avctx) { int frame_threading_supported = (avctx->codec->capabilities & CODEC_CAP_FRAME_THREADS) && !(avctx->flags & CODEC_FLAG_TRUNCATED) && !(avctx->flags & CODEC_FLAG_LOW_DELAY) && !(avctx->flags2 & CODEC_FLAG2_CHUNKS); if (avctx->thread_count == 1) { avctx->active_thread_type = 0; } else if (frame_threading_supported && (avctx->thread_type & FF_THREAD_FRAME)) { avctx->active_thread_type = FF_THREAD_FRAME; } else { avctx->active_thread_type = FF_THREAD_SLICE; } }
21,946
1
static int xan_unpack_luma(const uint8_t *src, const int src_size, uint8_t *dst, const int dst_size) { int tree_size, eof; const uint8_t *tree; int bits, mask; int tree_root, node; const uint8_t *dst_end = dst + dst_size; const uint8_t *src_end = src + src_size; tree_size = *src++; eof = *src++; tree = src - eof * 2 - 2; tree_root = eof + tree_size; src += tree_size * 2; node = tree_root; bits = *src++; mask = 0x80; for (;;) { int bit = !!(bits & mask); mask >>= 1; node = tree[node*2 + bit]; if (node == eof) break; if (node < eof) { *dst++ = node; if (dst > dst_end) break; node = tree_root; } if (!mask) { bits = *src++; if (src > src_end) break; mask = 0x80; } } return dst != dst_end; }
21,947
1
PPC_OP(set_T1) { T1 = PARAM(1); RETURN(); }
21,949
1
static int nbd_co_send_request(BlockDriverState *bs, NBDRequest *request, QEMUIOVector *qiov) { NBDClientSession *s = nbd_get_client_session(bs); int rc, ret, i; qemu_co_mutex_lock(&s->send_mutex); while (s->in_flight == MAX_NBD_REQUESTS) { qemu_co_queue_wait(&s->free_sema, &s->send_mutex); } s->in_flight++; for (i = 0; i < MAX_NBD_REQUESTS; i++) { if (s->recv_coroutine[i] == NULL) { s->recv_coroutine[i] = qemu_coroutine_self(); break; } } g_assert(qemu_in_coroutine()); assert(i < MAX_NBD_REQUESTS); request->handle = INDEX_TO_HANDLE(s, i); if (!s->ioc) { qemu_co_mutex_unlock(&s->send_mutex); return -EPIPE; } if (qiov) { qio_channel_set_cork(s->ioc, true); rc = nbd_send_request(s->ioc, request); if (rc >= 0) { ret = nbd_rwv(s->ioc, qiov->iov, qiov->niov, request->len, false, NULL); if (ret != request->len) { rc = -EIO; } } qio_channel_set_cork(s->ioc, false); } else { rc = nbd_send_request(s->ioc, request); } qemu_co_mutex_unlock(&s->send_mutex); return rc; }
21,950
1
static void __attribute__((__constructor__)) rcu_init(void) { QemuThread thread; qemu_mutex_init(&rcu_gp_lock); qemu_event_init(&rcu_gp_event, true); qemu_event_init(&rcu_call_ready_event, false); qemu_thread_create(&thread, "call_rcu", call_rcu_thread, NULL, QEMU_THREAD_DETACHED); rcu_register_thread(); }
21,952
1
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, const uint8_t *buf, int buf_size) { GetByteContext gb; const uint8_t *bs_hdr; uint32_t frame_num, word2, check_sum, data_size; uint32_t y_offset, u_offset, v_offset, starts[3], ends[3]; uint16_t height, width; int i, j; bytestream2_init(&gb, buf, buf_size); /* parse and check the OS header */ frame_num = bytestream2_get_le32(&gb); word2 = bytestream2_get_le32(&gb); check_sum = bytestream2_get_le32(&gb); data_size = bytestream2_get_le32(&gb); if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) { av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n"); return AVERROR_INVALIDDATA; } /* parse the bitstream header */ bs_hdr = gb.buffer; if (bytestream2_get_le16(&gb) != 32) { av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n"); return AVERROR_INVALIDDATA; } ctx->frame_num = frame_num; ctx->frame_flags = bytestream2_get_le16(&gb); ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3; ctx->cb_offset = bytestream2_get_byte(&gb); if (ctx->data_size == 16) return 4; if (ctx->data_size > buf_size) ctx->data_size = buf_size; bytestream2_skip(&gb, 3); // skip reserved byte and checksum /* check frame dimensions */ height = bytestream2_get_le16(&gb); width = bytestream2_get_le16(&gb); if (av_image_check_size(width, height, 0, avctx)) return AVERROR_INVALIDDATA; if (width != ctx->width || height != ctx->height) { int res; av_dlog(avctx, "Frame dimensions changed!\n"); if (width < 16 || width > 640 || height < 16 || height > 480 || width & 3 || height & 3) { av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n", width, height); return AVERROR_INVALIDDATA; } ctx->width = width; ctx->height = height; free_frame_buffers(ctx); if ((res = allocate_frame_buffers(ctx, avctx)) < 0) return res; avcodec_set_dimensions(avctx, width, height); } y_offset = bytestream2_get_le32(&gb); v_offset = bytestream2_get_le32(&gb); u_offset = bytestream2_get_le32(&gb); bytestream2_skip(&gb, 4); /* unfortunately there is no common order of planes in the buffer */ /* so we use that sorting algo for determining planes data sizes */ starts[0] = y_offset; starts[1] = v_offset; starts[2] = u_offset; for (j = 0; j < 3; j++) { ends[j] = ctx->data_size; for (i = 2; i >= 0; i--) if (starts[i] < ends[j] && starts[i] > starts[j]) ends[j] = starts[i]; } ctx->y_data_size = ends[0] - starts[0]; ctx->v_data_size = ends[1] - starts[1]; ctx->u_data_size = ends[2] - starts[2]; if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 || FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 || FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) { av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n"); return AVERROR_INVALIDDATA; } ctx->y_data_ptr = bs_hdr + y_offset; ctx->v_data_ptr = bs_hdr + v_offset; ctx->u_data_ptr = bs_hdr + u_offset; ctx->alt_quant = gb.buffer; if (ctx->data_size == 16) { av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n"); return 16; } if (ctx->frame_flags & BS_8BIT_PEL) { avpriv_request_sample(avctx, "8-bit pixel format"); return AVERROR_PATCHWELCOME; } if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) { avpriv_request_sample(avctx, "Halfpel motion vectors"); return AVERROR_PATCHWELCOME; } return 0; }
21,953
1
static int libquvi_probe(AVProbeData *p) { int score; quvi_t q; QUVIcode rc; rc = quvi_init(&q); if (rc != QUVI_OK) return AVERROR(ENOMEM); score = quvi_supported(q, (char *)p->filename) == QUVI_OK ? AVPROBE_SCORE_EXTENSION : 0; quvi_close(&q); return score; }
21,954
1
void rgb16tobgr16(const uint8_t *src, uint8_t *dst, unsigned int src_size) { unsigned i; unsigned num_pixels = src_size >> 1; for(i=0; i<num_pixels; i++) { unsigned b,g,r; register uint16_t rgb; rgb = src[2*i]; r = rgb&0x1F; g = (rgb&0x7E0)>>5; b = (rgb&0xF800)>>11; dst[2*i] = (b&0x1F) | ((g&0x3F)<<5) | ((r&0x1F)<<11); } }
21,955
1
static int mpeg_decode_mb(MpegEncContext *s, int16_t block[12][64]) { int i, j, k, cbp, val, mb_type, motion_type; const int mb_block_count = 4 + (1 << s->chroma_format); int ret; ff_tlog(s->avctx, "decode_mb: x=%d y=%d\n", s->mb_x, s->mb_y); av_assert2(s->mb_skipped == 0); if (s->mb_skip_run-- != 0) { if (s->pict_type == AV_PICTURE_TYPE_P) { s->mb_skipped = 1; s->current_picture.mb_type[s->mb_x + s->mb_y * s->mb_stride] = MB_TYPE_SKIP | MB_TYPE_L0 | MB_TYPE_16x16; } else { int mb_type; if (s->mb_x) mb_type = s->current_picture.mb_type[s->mb_x + s->mb_y * s->mb_stride - 1]; else // FIXME not sure if this is allowed in MPEG at all mb_type = s->current_picture.mb_type[s->mb_width + (s->mb_y - 1) * s->mb_stride - 1]; if (IS_INTRA(mb_type)) { av_log(s->avctx, AV_LOG_ERROR, "skip with previntra\n"); return AVERROR_INVALIDDATA; } s->current_picture.mb_type[s->mb_x + s->mb_y * s->mb_stride] = mb_type | MB_TYPE_SKIP; if ((s->mv[0][0][0] | s->mv[0][0][1] | s->mv[1][0][0] | s->mv[1][0][1]) == 0) s->mb_skipped = 1; } return 0; } switch (s->pict_type) { default: case AV_PICTURE_TYPE_I: if (get_bits1(&s->gb) == 0) { if (get_bits1(&s->gb) == 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid mb type in I-frame at %d %d\n", s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } mb_type = MB_TYPE_QUANT | MB_TYPE_INTRA; } else { mb_type = MB_TYPE_INTRA; } break; case AV_PICTURE_TYPE_P: mb_type = get_vlc2(&s->gb, ff_mb_ptype_vlc.table, MB_PTYPE_VLC_BITS, 1); if (mb_type < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid mb type in P-frame at %d %d\n", s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } mb_type = ptype2mb_type[mb_type]; break; case AV_PICTURE_TYPE_B: mb_type = get_vlc2(&s->gb, ff_mb_btype_vlc.table, MB_BTYPE_VLC_BITS, 1); if (mb_type < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid mb type in B-frame at %d %d\n", s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } mb_type = btype2mb_type[mb_type]; break; } ff_tlog(s->avctx, "mb_type=%x\n", mb_type); // motion_type = 0; /* avoid warning */ if (IS_INTRA(mb_type)) { s->bdsp.clear_blocks(s->block[0]); if (!s->chroma_y_shift) s->bdsp.clear_blocks(s->block[6]); /* compute DCT type */ // FIXME: add an interlaced_dct coded var? if (s->picture_structure == PICT_FRAME && !s->frame_pred_frame_dct) s->interlaced_dct = get_bits1(&s->gb); if (IS_QUANT(mb_type)) s->qscale = get_qscale(s); if (s->concealment_motion_vectors) { /* just parse them */ if (s->picture_structure != PICT_FRAME) skip_bits1(&s->gb); /* field select */ s->mv[0][0][0] = s->last_mv[0][0][0] = s->last_mv[0][1][0] = mpeg_decode_motion(s, s->mpeg_f_code[0][0], s->last_mv[0][0][0]); s->mv[0][0][1] = s->last_mv[0][0][1] = s->last_mv[0][1][1] = mpeg_decode_motion(s, s->mpeg_f_code[0][1], s->last_mv[0][0][1]); check_marker(s->avctx, &s->gb, "after concealment_motion_vectors"); } else { /* reset mv prediction */ memset(s->last_mv, 0, sizeof(s->last_mv)); } s->mb_intra = 1; // if 1, we memcpy blocks in xvmcvideo if ((CONFIG_MPEG1_XVMC_HWACCEL || CONFIG_MPEG2_XVMC_HWACCEL) && s->pack_pblocks) ff_xvmc_pack_pblocks(s, -1); // inter are always full blocks if (s->codec_id == AV_CODEC_ID_MPEG2VIDEO) { if (s->avctx->flags2 & AV_CODEC_FLAG2_FAST) { for (i = 0; i < 6; i++) mpeg2_fast_decode_block_intra(s, *s->pblocks[i], i); } else { for (i = 0; i < mb_block_count; i++) if ((ret = mpeg2_decode_block_intra(s, *s->pblocks[i], i)) < 0) return ret; } } else { for (i = 0; i < 6; i++) { ret = ff_mpeg1_decode_block_intra(&s->gb, s->intra_matrix, s->intra_scantable.permutated, s->last_dc, *s->pblocks[i], i, s->qscale); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "ac-tex damaged at %d %d\n", s->mb_x, s->mb_y); return ret; } s->block_last_index[i] = ret; } } } else { if (mb_type & MB_TYPE_ZERO_MV) { av_assert2(mb_type & MB_TYPE_CBP); s->mv_dir = MV_DIR_FORWARD; if (s->picture_structure == PICT_FRAME) { if (s->picture_structure == PICT_FRAME && !s->frame_pred_frame_dct) s->interlaced_dct = get_bits1(&s->gb); s->mv_type = MV_TYPE_16X16; } else { s->mv_type = MV_TYPE_FIELD; mb_type |= MB_TYPE_INTERLACED; s->field_select[0][0] = s->picture_structure - 1; } if (IS_QUANT(mb_type)) s->qscale = get_qscale(s); s->last_mv[0][0][0] = 0; s->last_mv[0][0][1] = 0; s->last_mv[0][1][0] = 0; s->last_mv[0][1][1] = 0; s->mv[0][0][0] = 0; s->mv[0][0][1] = 0; } else { av_assert2(mb_type & MB_TYPE_L0L1); // FIXME decide if MBs in field pictures are MB_TYPE_INTERLACED /* get additional motion vector type */ if (s->picture_structure == PICT_FRAME && s->frame_pred_frame_dct) { motion_type = MT_FRAME; } else { motion_type = get_bits(&s->gb, 2); if (s->picture_structure == PICT_FRAME && HAS_CBP(mb_type)) s->interlaced_dct = get_bits1(&s->gb); } if (IS_QUANT(mb_type)) s->qscale = get_qscale(s); /* motion vectors */ s->mv_dir = (mb_type >> 13) & 3; ff_tlog(s->avctx, "motion_type=%d\n", motion_type); switch (motion_type) { case MT_FRAME: /* or MT_16X8 */ if (s->picture_structure == PICT_FRAME) { mb_type |= MB_TYPE_16x16; s->mv_type = MV_TYPE_16X16; for (i = 0; i < 2; i++) { if (USES_LIST(mb_type, i)) { /* MT_FRAME */ s->mv[i][0][0] = s->last_mv[i][0][0] = s->last_mv[i][1][0] = mpeg_decode_motion(s, s->mpeg_f_code[i][0], s->last_mv[i][0][0]); s->mv[i][0][1] = s->last_mv[i][0][1] = s->last_mv[i][1][1] = mpeg_decode_motion(s, s->mpeg_f_code[i][1], s->last_mv[i][0][1]); /* full_pel: only for MPEG-1 */ if (s->full_pel[i]) { s->mv[i][0][0] *= 2; s->mv[i][0][1] *= 2; } } } } else { mb_type |= MB_TYPE_16x8 | MB_TYPE_INTERLACED; s->mv_type = MV_TYPE_16X8; for (i = 0; i < 2; i++) { if (USES_LIST(mb_type, i)) { /* MT_16X8 */ for (j = 0; j < 2; j++) { s->field_select[i][j] = get_bits1(&s->gb); for (k = 0; k < 2; k++) { val = mpeg_decode_motion(s, s->mpeg_f_code[i][k], s->last_mv[i][j][k]); s->last_mv[i][j][k] = val; s->mv[i][j][k] = val; } } } } } break; case MT_FIELD: s->mv_type = MV_TYPE_FIELD; if (s->picture_structure == PICT_FRAME) { mb_type |= MB_TYPE_16x8 | MB_TYPE_INTERLACED; for (i = 0; i < 2; i++) { if (USES_LIST(mb_type, i)) { for (j = 0; j < 2; j++) { s->field_select[i][j] = get_bits1(&s->gb); val = mpeg_decode_motion(s, s->mpeg_f_code[i][0], s->last_mv[i][j][0]); s->last_mv[i][j][0] = val; s->mv[i][j][0] = val; ff_tlog(s->avctx, "fmx=%d\n", val); val = mpeg_decode_motion(s, s->mpeg_f_code[i][1], s->last_mv[i][j][1] >> 1); s->last_mv[i][j][1] = 2 * val; s->mv[i][j][1] = val; ff_tlog(s->avctx, "fmy=%d\n", val); } } } } else { av_assert0(!s->progressive_sequence); mb_type |= MB_TYPE_16x16 | MB_TYPE_INTERLACED; for (i = 0; i < 2; i++) { if (USES_LIST(mb_type, i)) { s->field_select[i][0] = get_bits1(&s->gb); for (k = 0; k < 2; k++) { val = mpeg_decode_motion(s, s->mpeg_f_code[i][k], s->last_mv[i][0][k]); s->last_mv[i][0][k] = val; s->last_mv[i][1][k] = val; s->mv[i][0][k] = val; } } } } break; case MT_DMV: if (s->progressive_sequence){ av_log(s->avctx, AV_LOG_ERROR, "MT_DMV in progressive_sequence\n"); return AVERROR_INVALIDDATA; } s->mv_type = MV_TYPE_DMV; for (i = 0; i < 2; i++) { if (USES_LIST(mb_type, i)) { int dmx, dmy, mx, my, m; const int my_shift = s->picture_structure == PICT_FRAME; mx = mpeg_decode_motion(s, s->mpeg_f_code[i][0], s->last_mv[i][0][0]); s->last_mv[i][0][0] = mx; s->last_mv[i][1][0] = mx; dmx = get_dmv(s); my = mpeg_decode_motion(s, s->mpeg_f_code[i][1], s->last_mv[i][0][1] >> my_shift); dmy = get_dmv(s); s->last_mv[i][0][1] = my * (1 << my_shift); s->last_mv[i][1][1] = my * (1 << my_shift); s->mv[i][0][0] = mx; s->mv[i][0][1] = my; s->mv[i][1][0] = mx; // not used s->mv[i][1][1] = my; // not used if (s->picture_structure == PICT_FRAME) { mb_type |= MB_TYPE_16x16 | MB_TYPE_INTERLACED; // m = 1 + 2 * s->top_field_first; m = s->top_field_first ? 1 : 3; /* top -> top pred */ s->mv[i][2][0] = ((mx * m + (mx > 0)) >> 1) + dmx; s->mv[i][2][1] = ((my * m + (my > 0)) >> 1) + dmy - 1; m = 4 - m; s->mv[i][3][0] = ((mx * m + (mx > 0)) >> 1) + dmx; s->mv[i][3][1] = ((my * m + (my > 0)) >> 1) + dmy + 1; } else { mb_type |= MB_TYPE_16x16; s->mv[i][2][0] = ((mx + (mx > 0)) >> 1) + dmx; s->mv[i][2][1] = ((my + (my > 0)) >> 1) + dmy; if (s->picture_structure == PICT_TOP_FIELD) s->mv[i][2][1]--; else s->mv[i][2][1]++; } } } break; default: av_log(s->avctx, AV_LOG_ERROR, "00 motion_type at %d %d\n", s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } } s->mb_intra = 0; if (HAS_CBP(mb_type)) { s->bdsp.clear_blocks(s->block[0]); cbp = get_vlc2(&s->gb, ff_mb_pat_vlc.table, MB_PAT_VLC_BITS, 1); if (mb_block_count > 6) { cbp <<= mb_block_count - 6; cbp |= get_bits(&s->gb, mb_block_count - 6); s->bdsp.clear_blocks(s->block[6]); } if (cbp <= 0) { av_log(s->avctx, AV_LOG_ERROR, "invalid cbp %d at %d %d\n", cbp, s->mb_x, s->mb_y); return AVERROR_INVALIDDATA; } // if 1, we memcpy blocks in xvmcvideo if ((CONFIG_MPEG1_XVMC_HWACCEL || CONFIG_MPEG2_XVMC_HWACCEL) && s->pack_pblocks) ff_xvmc_pack_pblocks(s, cbp); if (s->codec_id == AV_CODEC_ID_MPEG2VIDEO) { if (s->avctx->flags2 & AV_CODEC_FLAG2_FAST) { for (i = 0; i < 6; i++) { if (cbp & 32) mpeg2_fast_decode_block_non_intra(s, *s->pblocks[i], i); else s->block_last_index[i] = -1; cbp += cbp; } } else { cbp <<= 12 - mb_block_count; for (i = 0; i < mb_block_count; i++) { if (cbp & (1 << 11)) { if ((ret = mpeg2_decode_block_non_intra(s, *s->pblocks[i], i)) < 0) return ret; } else { s->block_last_index[i] = -1; } cbp += cbp; } } } else { if (s->avctx->flags2 & AV_CODEC_FLAG2_FAST) { for (i = 0; i < 6; i++) { if (cbp & 32) mpeg1_fast_decode_block_inter(s, *s->pblocks[i], i); else s->block_last_index[i] = -1; cbp += cbp; } } else { for (i = 0; i < 6; i++) { if (cbp & 32) { if ((ret = mpeg1_decode_block_inter(s, *s->pblocks[i], i)) < 0) return ret; } else { s->block_last_index[i] = -1; } cbp += cbp; } } } } else { for (i = 0; i < 12; i++) s->block_last_index[i] = -1; } } s->current_picture.mb_type[s->mb_x + s->mb_y * s->mb_stride] = mb_type; return 0; }
21,956
1
static inline void RENAME(rgb15ToUV)(uint8_t *dstU, uint8_t *dstV, uint8_t *src1, uint8_t *src2, int width) { int i; assert(src1 == src2); for(i=0; i<width; i++) { int d0= ((uint32_t*)src1)[i]; int dl= (d0&0x03E07C1F); int dh= ((d0>>5)&0x03E0F81F); int dh2= (dh>>11) + (dh<<21); int d= dh2 + dl; int g= d&0x7F; int r= (d>>10)&0x7F; int b= d>>21; dstU[i]= ((RU*r + GU*g + BU*b)>>(RGB2YUV_SHIFT+1-3)) + 128; dstV[i]= ((RV*r + GV*g + BV*b)>>(RGB2YUV_SHIFT+1-3)) + 128; } }
21,959
1
const char *av_get_string(void *obj, const char *name, const AVOption **o_out, char *buf, int buf_len){ const AVOption *o= av_find_opt(obj, name, NULL, 0, 0); void *dst; if(!o || o->offset<=0) return NULL; if(o->type != FF_OPT_TYPE_STRING && (!buf || !buf_len)) return NULL; dst= ((uint8_t*)obj) + o->offset; if(o_out) *o_out= o; if(o->type == FF_OPT_TYPE_STRING) return dst; switch(o->type){ case FF_OPT_TYPE_FLAGS: snprintf(buf, buf_len, "0x%08X",*(int *)dst);break; case FF_OPT_TYPE_INT: snprintf(buf, buf_len, "%d" , *(int *)dst);break; case FF_OPT_TYPE_INT64: snprintf(buf, buf_len, "%"PRId64, *(int64_t*)dst);break; case FF_OPT_TYPE_FLOAT: snprintf(buf, buf_len, "%f" , *(float *)dst);break; case FF_OPT_TYPE_DOUBLE: snprintf(buf, buf_len, "%f" , *(double *)dst);break; case FF_OPT_TYPE_RATIONAL: snprintf(buf, buf_len, "%d/%d", ((AVRational*)dst)->num, ((AVRational*)dst)->den);break; default: return NULL; } return buf; }
21,960
1
static void increase_dynamic_storage(IVShmemState *s, int new_min_size) { int j, old_nb_alloc; old_nb_alloc = s->nb_peers; while (new_min_size >= s->nb_peers) s->nb_peers = s->nb_peers * 2; IVSHMEM_DPRINTF("bumping storage to %d guests\n", s->nb_peers); s->peers = g_realloc(s->peers, s->nb_peers * sizeof(Peer)); /* zero out new pointers */ for (j = old_nb_alloc; j < s->nb_peers; j++) { s->peers[j].eventfds = NULL; s->peers[j].nb_eventfds = 0; } }
21,961
1
static void usb_host_auto_check(void *unused) { struct USBHostDevice *s; struct USBAutoFilter *f; libusb_device **devs; struct libusb_device_descriptor ddesc; int unconnected = 0; int i, n; if (usb_host_init() != 0) { return; } if (runstate_is_running()) { n = libusb_get_device_list(ctx, &devs); for (i = 0; i < n; i++) { if (libusb_get_device_descriptor(devs[i], &ddesc) != 0) { continue; } if (ddesc.bDeviceClass == LIBUSB_CLASS_HUB) { continue; } QTAILQ_FOREACH(s, &hostdevs, next) { f = &s->match; if (f->bus_num > 0 && f->bus_num != libusb_get_bus_number(devs[i])) { continue; } if (f->addr > 0 && f->addr != libusb_get_device_address(devs[i])) { continue; } if (f->port != NULL) { char port[16] = "-"; usb_host_get_port(devs[i], port, sizeof(port)); if (strcmp(f->port, port) != 0) { continue; } } if (f->vendor_id > 0 && f->vendor_id != ddesc.idVendor) { continue; } if (f->product_id > 0 && f->product_id != ddesc.idProduct) { continue; } /* We got a match */ s->seen++; if (s->errcount >= 3) { continue; } if (s->dh != NULL) { continue; } if (usb_host_open(s, devs[i]) < 0) { s->errcount++; continue; } break; } } libusb_free_device_list(devs, 1); QTAILQ_FOREACH(s, &hostdevs, next) { if (s->dh == NULL) { unconnected++; } if (s->seen == 0) { if (s->dh) { usb_host_close(s); } s->errcount = 0; } s->seen = 0; } #if 0 if (unconnected == 0) { /* nothing to watch */ if (usb_auto_timer) { timer_del(usb_auto_timer); trace_usb_host_auto_scan_disabled(); } return; } #endif } if (!usb_vmstate) { usb_vmstate = qemu_add_vm_change_state_handler(usb_host_vm_state, NULL); } if (!usb_auto_timer) { usb_auto_timer = timer_new_ms(QEMU_CLOCK_REALTIME, usb_host_auto_check, NULL); if (!usb_auto_timer) { return; } trace_usb_host_auto_scan_enabled(); } timer_mod(usb_auto_timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 2000); }
21,963
1
int tcg_gen_code(TCGContext *s, TranslationBlock *tb) { #ifdef CONFIG_PROFILER TCGProfile *prof = &s->prof; #endif int i, oi, oi_next, num_insns; #ifdef CONFIG_PROFILER { int n; n = s->gen_op_buf[0].prev + 1; atomic_set(&prof->op_count, prof->op_count + n); if (n > prof->op_count_max) { atomic_set(&prof->op_count_max, n); } n = s->nb_temps; atomic_set(&prof->temp_count, prof->temp_count + n); if (n > prof->temp_count_max) { atomic_set(&prof->temp_count_max, n); } } #endif #ifdef DEBUG_DISAS if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) && qemu_log_in_addr_range(tb->pc))) { qemu_log_lock(); qemu_log("OP:\n"); tcg_dump_ops(s); qemu_log("\n"); qemu_log_unlock(); } #endif #ifdef CONFIG_PROFILER atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); #endif #ifdef USE_TCG_OPTIMIZATIONS tcg_optimize(s); #endif #ifdef CONFIG_PROFILER atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); atomic_set(&prof->la_time, prof->la_time - profile_getclock()); #endif liveness_pass_1(s); if (s->nb_indirects > 0) { #ifdef DEBUG_DISAS if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) && qemu_log_in_addr_range(tb->pc))) { qemu_log_lock(); qemu_log("OP before indirect lowering:\n"); tcg_dump_ops(s); qemu_log("\n"); qemu_log_unlock(); } #endif /* Replace indirect temps with direct temps. */ if (liveness_pass_2(s)) { /* If changes were made, re-run liveness. */ liveness_pass_1(s); } } #ifdef CONFIG_PROFILER atomic_set(&prof->la_time, prof->la_time + profile_getclock()); #endif #ifdef DEBUG_DISAS if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) && qemu_log_in_addr_range(tb->pc))) { qemu_log_lock(); qemu_log("OP after optimization and liveness analysis:\n"); tcg_dump_ops(s); qemu_log("\n"); qemu_log_unlock(); } #endif tcg_reg_alloc_start(s); s->code_buf = tb->tc.ptr; s->code_ptr = tb->tc.ptr; #ifdef TCG_TARGET_NEED_LDST_LABELS s->ldst_labels = NULL; #endif #ifdef TCG_TARGET_NEED_POOL_LABELS s->pool_labels = NULL; #endif num_insns = -1; for (oi = s->gen_op_buf[0].next; oi != 0; oi = oi_next) { TCGOp * const op = &s->gen_op_buf[oi]; TCGOpcode opc = op->opc; oi_next = op->next; #ifdef CONFIG_PROFILER atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); #endif switch (opc) { case INDEX_op_mov_i32: case INDEX_op_mov_i64: tcg_reg_alloc_mov(s, op); break; case INDEX_op_movi_i32: case INDEX_op_movi_i64: tcg_reg_alloc_movi(s, op); break; case INDEX_op_insn_start: if (num_insns >= 0) { s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); } num_insns++; for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { target_ulong a; #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); #else a = op->args[i]; #endif s->gen_insn_data[num_insns][i] = a; } break; case INDEX_op_discard: temp_dead(s, arg_temp(op->args[0])); break; case INDEX_op_set_label: tcg_reg_alloc_bb_end(s, s->reserved_regs); tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); break; case INDEX_op_call: tcg_reg_alloc_call(s, op); break; default: /* Sanity check that we've not introduced any unhandled opcodes. */ tcg_debug_assert(tcg_op_supported(opc)); /* Note: in order to speed up the code, it would be much faster to have specialized register allocator functions for some common argument patterns */ tcg_reg_alloc_op(s, op); break; } #ifdef CONFIG_DEBUG_TCG check_regs(s); #endif /* Test for (pending) buffer overflow. The assumption is that any one operation beginning below the high water mark cannot overrun the buffer completely. Thus we can test for overflow after generating code without having to check during generation. */ if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { return -1; } } tcg_debug_assert(num_insns >= 0); s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); /* Generate TB finalization at the end of block */ #ifdef TCG_TARGET_NEED_LDST_LABELS if (!tcg_out_ldst_finalize(s)) { return -1; } #endif #ifdef TCG_TARGET_NEED_POOL_LABELS if (!tcg_out_pool_finalize(s)) { return -1; } #endif /* flush instruction cache */ flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); return tcg_current_code_size(s); }
21,964
1
void palette_destroy(VncPalette *palette) { if (palette == NULL) { qemu_free(palette); } }
21,965
1
static int ivshmem_setup_interrupts(IVShmemState *s) { /* allocate QEMU callback data for receiving interrupts */ s->msi_vectors = g_malloc0(s->vectors * sizeof(MSIVector)); if (ivshmem_has_feature(s, IVSHMEM_MSI)) { if (msix_init_exclusive_bar(PCI_DEVICE(s), s->vectors, 1)) { return -1; } IVSHMEM_DPRINTF("msix initialized (%d vectors)\n", s->vectors); ivshmem_msix_vector_use(s); } return 0; }
21,966
1
static int wavpack_encode_block(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, uint8_t *out, int out_size) { int block_size, start, end, data_size, tcount, temp, m = 0; int i, j, ret = 0, got_extra = 0, nb_samples = s->block_samples; uint32_t crc = 0xffffffffu; struct Decorr *dpp; PutByteContext pb; if (!(s->flags & WV_MONO) && s->optimize_mono) { int32_t lor = 0, diff = 0; for (i = 0; i < nb_samples; i++) { lor |= samples_l[i] | samples_r[i]; diff |= samples_l[i] - samples_r[i]; if (lor && diff) break; } if (i == nb_samples && lor && !diff) { s->flags &= ~(WV_JOINT_STEREO | WV_CROSS_DECORR); s->flags |= WV_FALSE_STEREO; if (!s->false_stereo) { s->false_stereo = 1; s->num_terms = 0; CLEAR(s->w); } } else if (s->false_stereo) { s->false_stereo = 0; s->num_terms = 0; CLEAR(s->w); } } if (s->flags & SHIFT_MASK) { int shift = (s->flags & SHIFT_MASK) >> SHIFT_LSB; int mag = (s->flags & MAG_MASK) >> MAG_LSB; if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, shift); else shift_stereo(samples_l, samples_r, nb_samples, shift); if ((mag -= shift) < 0) s->flags &= ~MAG_MASK; else s->flags -= (1 << MAG_LSB) * shift; } if ((s->flags & WV_FLOAT_DATA) || (s->flags & MAG_MASK) >> MAG_LSB >= 24) { av_fast_padded_malloc(&s->orig_l, &s->orig_l_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_l, samples_l, sizeof(int32_t) * nb_samples); if (!(s->flags & WV_MONO_DATA)) { av_fast_padded_malloc(&s->orig_r, &s->orig_r_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_r, samples_r, sizeof(int32_t) * nb_samples); } if (s->flags & WV_FLOAT_DATA) got_extra = scan_float(s, samples_l, samples_r, nb_samples); else got_extra = scan_int32(s, samples_l, samples_r, nb_samples); s->num_terms = 0; } else { scan_int23(s, samples_l, samples_r, nb_samples); if (s->shift != s->int32_zeros + s->int32_ones + s->int32_dups) { s->shift = s->int32_zeros + s->int32_ones + s->int32_dups; s->num_terms = 0; } } if (!s->num_passes && !s->num_terms) { s->num_passes = 1; if (s->flags & WV_MONO_DATA) ret = wv_mono(s, samples_l, 1, 0); else ret = wv_stereo(s, samples_l, samples_r, 1, 0); s->num_passes = 0; } if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) crc += (crc << 1) + samples_l[i]; if (s->num_passes) ret = wv_mono(s, samples_l, !s->num_terms, 1); } else { for (i = 0; i < nb_samples; i++) crc += (crc << 3) + (samples_l[i] << 1) + samples_l[i] + samples_r[i]; if (s->num_passes) ret = wv_stereo(s, samples_l, samples_r, !s->num_terms, 1); } if (ret < 0) return ret; if (!s->ch_offset) s->flags |= WV_INITIAL_BLOCK; s->ch_offset += 1 + !(s->flags & WV_MONO); if (s->ch_offset == s->avctx->channels) s->flags |= WV_FINAL_BLOCK; bytestream2_init_writer(&pb, out, out_size); bytestream2_put_le32(&pb, MKTAG('w', 'v', 'p', 'k')); bytestream2_put_le32(&pb, 0); bytestream2_put_le16(&pb, 0x410); bytestream2_put_le16(&pb, 0); bytestream2_put_le32(&pb, 0); bytestream2_put_le32(&pb, s->sample_index); bytestream2_put_le32(&pb, nb_samples); bytestream2_put_le32(&pb, s->flags); bytestream2_put_le32(&pb, crc); if (s->flags & WV_INITIAL_BLOCK && s->avctx->channel_layout != AV_CH_LAYOUT_MONO && s->avctx->channel_layout != AV_CH_LAYOUT_STEREO) { put_metadata_block(&pb, WP_ID_CHANINFO, 5); bytestream2_put_byte(&pb, s->avctx->channels); bytestream2_put_le32(&pb, s->avctx->channel_layout); bytestream2_put_byte(&pb, 0); } if ((s->flags & SRATE_MASK) == SRATE_MASK) { put_metadata_block(&pb, WP_ID_SAMPLE_RATE, 3); bytestream2_put_le24(&pb, s->avctx->sample_rate); bytestream2_put_byte(&pb, 0); } put_metadata_block(&pb, WP_ID_DECTERMS, s->num_terms); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; bytestream2_put_byte(&pb, ((dpp->value + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0)); } if (s->num_terms & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECWEIGHT(type) do { \ temp = store_weight(type); \ bytestream2_put_byte(&pb, temp); \ type = restore_weight(temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECWEIGHTS); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = s->num_terms - 1; i >= 0; --i) { struct Decorr *dpp = &s->decorr_passes[i]; if (store_weight(dpp->weightA) || (!(s->flags & WV_MONO_DATA) && store_weight(dpp->weightB))) break; } tcount = i + 1; for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i < tcount) { WRITE_DECWEIGHT(dpp->weightA); if (!(s->flags & WV_MONO_DATA)) WRITE_DECWEIGHT(dpp->weightB); } else { dpp->weightA = dpp->weightB = 0; } } end = bytestream2_tell_p(&pb); out[start - 2] = WP_ID_DECWEIGHTS | (((end - start) & 1) ? WP_IDF_ODD: 0); out[start - 1] = (end - start + 1) >> 1; if ((end - start) & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECSAMPLE(type) do { \ temp = log2s(type); \ type = wp_exp2(temp); \ bytestream2_put_le16(&pb, temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECSAMPLES); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i == 0) { if (dpp->value > MAX_TERM) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesA[1]); if (!(s->flags & WV_MONO_DATA)) { WRITE_DECSAMPLE(dpp->samplesB[0]); WRITE_DECSAMPLE(dpp->samplesB[1]); } } else if (dpp->value < 0) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesB[0]); } else { for (j = 0; j < dpp->value; j++) { WRITE_DECSAMPLE(dpp->samplesA[j]); if (!(s->flags & WV_MONO_DATA)) WRITE_DECSAMPLE(dpp->samplesB[j]); } } } else { CLEAR(dpp->samplesA); CLEAR(dpp->samplesB); } } end = bytestream2_tell_p(&pb); out[start - 1] = (end - start) >> 1; #define WRITE_CHAN_ENTROPY(chan) do { \ for (i = 0; i < 3; i++) { \ temp = wp_log2(s->w.c[chan].median[i]); \ bytestream2_put_le16(&pb, temp); \ s->w.c[chan].median[i] = wp_exp2(temp); \ } \ } while (0) put_metadata_block(&pb, WP_ID_ENTROPY, 6 * (1 + (!(s->flags & WV_MONO_DATA)))); WRITE_CHAN_ENTROPY(0); if (!(s->flags & WV_MONO_DATA)) WRITE_CHAN_ENTROPY(1); if (s->flags & WV_FLOAT_DATA) { put_metadata_block(&pb, WP_ID_FLOATINFO, 4); bytestream2_put_byte(&pb, s->float_flags); bytestream2_put_byte(&pb, s->float_shift); bytestream2_put_byte(&pb, s->float_max_exp); bytestream2_put_byte(&pb, 127); } if (s->flags & WV_INT32_DATA) { put_metadata_block(&pb, WP_ID_INT32INFO, 4); bytestream2_put_byte(&pb, s->int32_sent_bits); bytestream2_put_byte(&pb, s->int32_zeros); bytestream2_put_byte(&pb, s->int32_ones); bytestream2_put_byte(&pb, s->int32_dups); } if (s->flags & WV_MONO_DATA && !s->num_passes) { for (i = 0; i < nb_samples; i++) { int32_t code = samples_l[i]; for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) { int32_t sam; if (dpp->value > MAX_TERM) { if (dpp->value & 1) sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; else sam = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesA[0] = code; } else { sam = dpp->samplesA[m]; dpp->samplesA[(m + dpp->value) & (MAX_TERM - 1)] = code; } code -= APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, code); } m = (m + 1) & (MAX_TERM - 1); samples_l[i] = code; } if (m) { for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) if (dpp->value > 0 && dpp->value <= MAX_TERM) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; int k; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } } } else if (!s->num_passes) { if (s->flags & WV_JOINT_STEREO) { for (i = 0; i < nb_samples; i++) samples_r[i] += ((samples_l[i] -= samples_r[i]) >> 1); } for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16 || dpp->delta != 2) decorr_stereo_pass2(dpp, samples_l, samples_r, nb_samples); else decorr_stereo_pass_id2(dpp, samples_l, samples_r, nb_samples); } } bytestream2_put_byte(&pb, WP_ID_DATA | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 3, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); } else { for (i = 0; i < nb_samples; i++) { wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); wavpack_encode_sample(s, &s->w.c[1], s->samples[1][i]); } } encode_flush(s); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 1) >> 1); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); if (got_extra) { bytestream2_put_byte(&pb, WP_ID_EXTRABITS | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 7, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_FLOAT_DATA) pack_float(s, s->orig_l, s->orig_r, nb_samples); else pack_int32(s, s->orig_l, s->orig_r, nb_samples); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 5) >> 1); bytestream2_put_le32(&pb, s->crc_x); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); } block_size = bytestream2_tell_p(&pb); AV_WL32(out + 4, block_size - 8); return block_size; }
21,968
1
virtio_crypto_check_cryptodev_is_used(Object *obj, const char *name, Object *val, Error **errp) { if (cryptodev_backend_is_used(CRYPTODEV_BACKEND(val))) { char *path = object_get_canonical_path_component(val); error_setg(errp, "can't use already used cryptodev backend: %s", path); g_free(path); } else { qdev_prop_allow_set_link_before_realize(obj, name, val, errp); } }
21,970
1
static void unterminated_dict(void) { QObject *obj = qobject_from_json("{'abc':32", NULL); g_assert(obj == NULL); }
21,973
0
static void* attribute_align_arg worker(void *v) { AVCodecContext *avctx = v; SliceThreadContext *c = avctx->internal->thread_ctx; unsigned last_execute = 0; int our_job = c->job_count; int thread_count = avctx->thread_count; int self_id; pthread_mutex_lock(&c->current_job_lock); self_id = c->current_job++; for (;;){ while (our_job >= c->job_count) { if (c->current_job == thread_count + c->job_count) pthread_cond_signal(&c->last_job_cond); while (last_execute == c->current_execute && !c->done) pthread_cond_wait(&c->current_job_cond, &c->current_job_lock); last_execute = c->current_execute; our_job = self_id; if (c->done) { pthread_mutex_unlock(&c->current_job_lock); return NULL; } } pthread_mutex_unlock(&c->current_job_lock); c->rets[our_job%c->rets_count] = c->func ? c->func(avctx, (char*)c->args + our_job*c->job_size): c->func2(avctx, c->args, our_job, self_id); pthread_mutex_lock(&c->current_job_lock); our_job = c->current_job++; } }
21,975
0
static void avc_h_loop_filter_luma_mbaff_intra_msa(uint8_t *src, int32_t stride, int32_t alpha_in, int32_t beta_in) { uint64_t load0, load1; uint32_t out0, out2; uint16_t out1, out3; v8u16 src0_r, src1_r, src2_r, src3_r, src4_r, src5_r, src6_r, src7_r; v8u16 dst0_r, dst1_r, dst4_r, dst5_r; v8u16 dst2_x_r, dst2_y_r, dst3_x_r, dst3_y_r; v16u8 dst0, dst1, dst4, dst5, dst2_x, dst2_y, dst3_x, dst3_y; v8i16 tmp0, tmp1, tmp2, tmp3; v16u8 alpha, beta; v16u8 p0_asub_q0, p1_asub_p0, q1_asub_q0, p2_asub_p0, q2_asub_q0; v16u8 is_less_than, is_less_than_alpha, is_less_than_beta; v16u8 is_less_than_beta1, is_less_than_beta2; v16i8 src0 = { 0 }; v16i8 src1 = { 0 }; v16i8 src2 = { 0 }; v16i8 src3 = { 0 }; v16i8 src4 = { 0 }; v16i8 src5 = { 0 }; v16i8 src6 = { 0 }; v16i8 src7 = { 0 }; v16i8 zeros = { 0 }; load0 = LOAD_DWORD(src - 4); load1 = LOAD_DWORD(src + stride - 4); src0 = (v16i8) __msa_insert_d((v2i64) src0, 0, load0); src1 = (v16i8) __msa_insert_d((v2i64) src1, 0, load1); load0 = LOAD_DWORD(src + (2 * stride) - 4); load1 = LOAD_DWORD(src + (3 * stride) - 4); src2 = (v16i8) __msa_insert_d((v2i64) src2, 0, load0); src3 = (v16i8) __msa_insert_d((v2i64) src3, 0, load1); load0 = LOAD_DWORD(src + (4 * stride) - 4); load1 = LOAD_DWORD(src + (5 * stride) - 4); src4 = (v16i8) __msa_insert_d((v2i64) src4, 0, load0); src5 = (v16i8) __msa_insert_d((v2i64) src5, 0, load1); load0 = LOAD_DWORD(src + (6 * stride) - 4); load1 = LOAD_DWORD(src + (7 * stride) - 4); src6 = (v16i8) __msa_insert_d((v2i64) src6, 0, load0); src7 = (v16i8) __msa_insert_d((v2i64) src7, 0, load1); src0 = __msa_ilvr_b(src1, src0); src1 = __msa_ilvr_b(src3, src2); src2 = __msa_ilvr_b(src5, src4); src3 = __msa_ilvr_b(src7, src6); tmp0 = __msa_ilvr_h((v8i16) src1, (v8i16) src0); tmp1 = __msa_ilvl_h((v8i16) src1, (v8i16) src0); tmp2 = __msa_ilvr_h((v8i16) src3, (v8i16) src2); tmp3 = __msa_ilvl_h((v8i16) src3, (v8i16) src2); src6 = (v16i8) __msa_ilvr_w((v4i32) tmp2, (v4i32) tmp0); src0 = __msa_sldi_b(zeros, src6, 8); src1 = (v16i8) __msa_ilvl_w((v4i32) tmp2, (v4i32) tmp0); src2 = __msa_sldi_b(zeros, src1, 8); src3 = (v16i8) __msa_ilvr_w((v4i32) tmp3, (v4i32) tmp1); src4 = __msa_sldi_b(zeros, src3, 8); src5 = (v16i8) __msa_ilvl_w((v4i32) tmp3, (v4i32) tmp1); src7 = __msa_sldi_b(zeros, src5, 8); p0_asub_q0 = __msa_asub_u_b((v16u8) src2, (v16u8) src3); p1_asub_p0 = __msa_asub_u_b((v16u8) src1, (v16u8) src2); q1_asub_q0 = __msa_asub_u_b((v16u8) src4, (v16u8) src3); alpha = (v16u8) __msa_fill_b(alpha_in); beta = (v16u8) __msa_fill_b(beta_in); is_less_than_alpha = (p0_asub_q0 < alpha); is_less_than_beta = (p1_asub_p0 < beta); is_less_than = is_less_than_alpha & is_less_than_beta; is_less_than_beta = (q1_asub_q0 < beta); is_less_than = is_less_than & is_less_than_beta; alpha >>= 2; alpha += 2; is_less_than_alpha = (p0_asub_q0 < alpha); p2_asub_p0 = __msa_asub_u_b((v16u8) src0, (v16u8) src2); is_less_than_beta1 = (p2_asub_p0 < beta); q2_asub_q0 = __msa_asub_u_b((v16u8) src5, (v16u8) src3); is_less_than_beta2 = (q2_asub_q0 < beta); src0_r = (v8u16) __msa_ilvr_b(zeros, src0); src1_r = (v8u16) __msa_ilvr_b(zeros, src1); src2_r = (v8u16) __msa_ilvr_b(zeros, src2); src3_r = (v8u16) __msa_ilvr_b(zeros, src3); src4_r = (v8u16) __msa_ilvr_b(zeros, src4); src5_r = (v8u16) __msa_ilvr_b(zeros, src5); src6_r = (v8u16) __msa_ilvr_b(zeros, src6); src7_r = (v8u16) __msa_ilvr_b(zeros, src7); dst2_x_r = src1_r + src2_r + src3_r; dst2_x_r = src0_r + (2 * (dst2_x_r)) + src4_r; dst2_x_r = (v8u16) __msa_srari_h((v8i16) dst2_x_r, 3); dst1_r = src0_r + src1_r + src2_r + src3_r; dst1_r = (v8u16) __msa_srari_h((v8i16) dst1_r, 2); dst0_r = (2 * src6_r) + (3 * src0_r); dst0_r += src1_r + src2_r + src3_r; dst0_r = (v8u16) __msa_srari_h((v8i16) dst0_r, 3); dst2_y_r = (2 * src1_r) + src2_r + src4_r; dst2_y_r = (v8u16) __msa_srari_h((v8i16) dst2_y_r, 2); dst2_x = (v16u8) __msa_pckev_b((v16i8) dst2_x_r, (v16i8) dst2_x_r); dst2_y = (v16u8) __msa_pckev_b((v16i8) dst2_y_r, (v16i8) dst2_y_r); dst2_x = __msa_bmnz_v(dst2_y, dst2_x, is_less_than_beta1); dst3_x_r = src2_r + src3_r + src4_r; dst3_x_r = src1_r + (2 * dst3_x_r) + src5_r; dst3_x_r = (v8u16) __msa_srari_h((v8i16) dst3_x_r, 3); dst4_r = src2_r + src3_r + src4_r + src5_r; dst4_r = (v8u16) __msa_srari_h((v8i16) dst4_r, 2); dst5_r = (2 * src7_r) + (3 * src5_r); dst5_r += src4_r + src3_r + src2_r; dst5_r = (v8u16) __msa_srari_h((v8i16) dst5_r, 3); dst3_y_r = (2 * src4_r) + src3_r + src1_r; dst3_y_r = (v8u16) __msa_srari_h((v8i16) dst3_y_r, 2); dst3_x = (v16u8) __msa_pckev_b((v16i8) dst3_x_r, (v16i8) dst3_x_r); dst3_y = (v16u8) __msa_pckev_b((v16i8) dst3_y_r, (v16i8) dst3_y_r); dst3_x = __msa_bmnz_v(dst3_y, dst3_x, is_less_than_beta2); dst2_y_r = (2 * src1_r) + src2_r + src4_r; dst2_y_r = (v8u16) __msa_srari_h((v8i16) dst2_y_r, 2); dst3_y_r = (2 * src4_r) + src3_r + src1_r; dst3_y_r = (v8u16) __msa_srari_h((v8i16) dst3_y_r, 2); dst2_y = (v16u8) __msa_pckev_b((v16i8) dst2_y_r, (v16i8) dst2_y_r); dst3_y = (v16u8) __msa_pckev_b((v16i8) dst3_y_r, (v16i8) dst3_y_r); dst2_x = __msa_bmnz_v(dst2_y, dst2_x, is_less_than_alpha); dst3_x = __msa_bmnz_v(dst3_y, dst3_x, is_less_than_alpha); dst2_x = __msa_bmnz_v((v16u8) src2, dst2_x, is_less_than); dst3_x = __msa_bmnz_v((v16u8) src3, dst3_x, is_less_than); is_less_than = is_less_than_alpha & is_less_than; dst1 = (v16u8) __msa_pckev_b((v16i8) dst1_r, (v16i8) dst1_r); is_less_than_beta1 = is_less_than_beta1 & is_less_than; dst1 = __msa_bmnz_v((v16u8) src1, dst1, is_less_than_beta1); dst0 = (v16u8) __msa_pckev_b((v16i8) dst0_r, (v16i8) dst0_r); dst0 = __msa_bmnz_v((v16u8) src0, dst0, is_less_than_beta1); dst4 = (v16u8) __msa_pckev_b((v16i8) dst4_r, (v16i8) dst4_r); is_less_than_beta2 = is_less_than_beta2 & is_less_than; dst4 = __msa_bmnz_v((v16u8) src4, dst4, is_less_than_beta2); dst5 = (v16u8) __msa_pckev_b((v16i8) dst5_r, (v16i8) dst5_r); dst5 = __msa_bmnz_v((v16u8) src5, dst5, is_less_than_beta2); dst0 = (v16u8) __msa_ilvr_b((v16i8) dst1, (v16i8) dst0); dst1 = (v16u8) __msa_ilvr_b((v16i8) dst3_x, (v16i8) dst2_x); dst2_x = (v16u8) __msa_ilvr_b((v16i8) dst5, (v16i8) dst4); tmp0 = __msa_ilvr_h((v8i16) dst1, (v8i16) dst0); tmp1 = __msa_ilvl_h((v8i16) dst1, (v8i16) dst0); tmp2 = __msa_ilvr_h((v8i16) zeros, (v8i16) dst2_x); tmp3 = __msa_ilvl_h((v8i16) zeros, (v8i16) dst2_x); dst0 = (v16u8) __msa_ilvr_w((v4i32) tmp2, (v4i32) tmp0); dst1 = (v16u8) __msa_sldi_b(zeros, (v16i8) dst0, 8); dst2_x = (v16u8) __msa_ilvl_w((v4i32) tmp2, (v4i32) tmp0); dst3_x = (v16u8) __msa_sldi_b(zeros, (v16i8) dst2_x, 8); dst4 = (v16u8) __msa_ilvr_w((v4i32) tmp3, (v4i32) tmp1); dst5 = (v16u8) __msa_sldi_b(zeros, (v16i8) dst4, 8); dst2_y = (v16u8) __msa_ilvl_w((v4i32) tmp3, (v4i32) tmp1); dst3_y = (v16u8) __msa_sldi_b(zeros, (v16i8) dst2_y, 8); out0 = __msa_copy_u_w((v4i32) dst0, 0); out1 = __msa_copy_u_h((v8i16) dst0, 2); out2 = __msa_copy_u_w((v4i32) dst1, 0); out3 = __msa_copy_u_h((v8i16) dst1, 2); STORE_WORD((src - 3), out0); STORE_HWORD((src + 1), out1); src += stride; STORE_WORD((src - 3), out2); STORE_HWORD((src + 1), out3); src += stride; out0 = __msa_copy_u_w((v4i32) dst2_x, 0); out1 = __msa_copy_u_h((v8i16) dst2_x, 2); out2 = __msa_copy_u_w((v4i32) dst3_x, 0); out3 = __msa_copy_u_h((v8i16) dst3_x, 2); STORE_WORD((src - 3), out0); STORE_HWORD((src + 1), out1); src += stride; STORE_WORD((src - 3), out2); STORE_HWORD((src + 1), out3); src += stride; out0 = __msa_copy_u_w((v4i32) dst4, 0); out1 = __msa_copy_u_h((v8i16) dst4, 2); out2 = __msa_copy_u_w((v4i32) dst5, 0); out3 = __msa_copy_u_h((v8i16) dst5, 2); STORE_WORD((src - 3), out0); STORE_HWORD((src + 1), out1); src += stride; STORE_WORD((src - 3), out2); STORE_HWORD((src + 1), out3); src += stride; out0 = __msa_copy_u_w((v4i32) dst2_y, 0); out1 = __msa_copy_u_h((v8i16) dst2_y, 2); out2 = __msa_copy_u_w((v4i32) dst3_y, 0); out3 = __msa_copy_u_h((v8i16) dst3_y, 2); STORE_WORD((src - 3), out0); STORE_HWORD((src + 1), out1); src += stride; STORE_WORD((src - 3), out2); STORE_HWORD((src + 1), out3); }
21,976
0
static int mov_read_tkhd(MOVContext *c, ByteIOContext *pb, MOVAtom atom) { int i; int width; int height; int64_t disp_transform[2]; int display_matrix[3][2]; AVStream *st = c->fc->streams[c->fc->nb_streams-1]; MOVStreamContext *sc = st->priv_data; int version = get_byte(pb); get_be24(pb); /* flags */ /* MOV_TRACK_ENABLED 0x0001 MOV_TRACK_IN_MOVIE 0x0002 MOV_TRACK_IN_PREVIEW 0x0004 MOV_TRACK_IN_POSTER 0x0008 */ if (version == 1) { get_be64(pb); get_be64(pb); } else { get_be32(pb); /* creation time */ get_be32(pb); /* modification time */ } st->id = (int)get_be32(pb); /* track id (NOT 0 !)*/ get_be32(pb); /* reserved */ /* highlevel (considering edits) duration in movie timebase */ (version == 1) ? get_be64(pb) : get_be32(pb); get_be32(pb); /* reserved */ get_be32(pb); /* reserved */ get_be16(pb); /* layer */ get_be16(pb); /* alternate group */ get_be16(pb); /* volume */ get_be16(pb); /* reserved */ //read in the display matrix (outlined in ISO 14496-12, Section 6.2.2) // they're kept in fixed point format through all calculations // ignore u,v,z b/c we don't need the scale factor to calc aspect ratio for (i = 0; i < 3; i++) { display_matrix[i][0] = get_be32(pb); // 16.16 fixed point display_matrix[i][1] = get_be32(pb); // 16.16 fixed point get_be32(pb); // 2.30 fixed point (not used) } width = get_be32(pb); // 16.16 fixed point track width height = get_be32(pb); // 16.16 fixed point track height sc->width = width >> 16; sc->height = height >> 16; //transform the display width/height according to the matrix // skip this if the display matrix is the default identity matrix // to keep the same scale, use [width height 1<<16] if (width && height && (display_matrix[0][0] != 65536 || display_matrix[0][1] || display_matrix[1][0] || display_matrix[1][1] != 65536 || display_matrix[2][0] || display_matrix[2][1])) { for (i = 0; i < 2; i++) disp_transform[i] = (int64_t) width * display_matrix[0][i] + (int64_t) height * display_matrix[1][i] + ((int64_t) display_matrix[2][i] << 16); //sample aspect ratio is new width/height divided by old width/height st->sample_aspect_ratio = av_d2q( ((double) disp_transform[0] * height) / ((double) disp_transform[1] * width), INT_MAX); } return 0; }
21,977
1
static void v9fs_read(void *opaque) { int32_t fid; int64_t off; ssize_t err = 0; int32_t count = 0; size_t offset = 7; int32_t max_count; V9fsFidState *fidp; V9fsPDU *pdu = opaque; V9fsState *s = pdu->s; pdu_unmarshal(pdu, offset, "dqd", &fid, &off, &max_count); fidp = get_fid(pdu, fid); if (fidp == NULL) { err = -EINVAL; goto out_nofid; } if (fidp->fid_type == P9_FID_DIR) { if (off == 0) { v9fs_co_rewinddir(pdu, fidp); } count = v9fs_do_readdir_with_stat(pdu, fidp, max_count); if (count < 0) { err = count; goto out; } err = offset; err += pdu_marshal(pdu, offset, "d", count); err += count; } else if (fidp->fid_type == P9_FID_FILE) { int32_t cnt; int32_t len; struct iovec *sg; struct iovec iov[128]; /* FIXME: bad, bad, bad */ sg = iov; pdu_marshal(pdu, offset + 4, "v", sg, &cnt); sg = cap_sg(sg, max_count, &cnt); do { if (0) { print_sg(sg, cnt); } /* Loop in case of EINTR */ do { len = v9fs_co_preadv(pdu, fidp, sg, cnt, off); if (len >= 0) { off += len; count += len; } } while (len == -EINTR && !pdu->cancelled); if (len < 0) { /* IO error return the error */ err = len; goto out; } sg = adjust_sg(sg, len, &cnt); } while (count < max_count && len > 0); err = offset; err += pdu_marshal(pdu, offset, "d", count); err += count; } else if (fidp->fid_type == P9_FID_XATTR) { err = v9fs_xattr_read(s, pdu, fidp, off, max_count); } else { err = -EINVAL; } out: put_fid(pdu, fidp); out_nofid: trace_v9fs_read_return(pdu->tag, pdu->id, count, err); complete_pdu(s, pdu, err); }
21,978
1
int qio_channel_readv_all(QIOChannel *ioc, const struct iovec *iov, size_t niov, Error **errp) { int ret = -1; struct iovec *local_iov = g_new(struct iovec, niov); struct iovec *local_iov_head = local_iov; unsigned int nlocal_iov = niov; nlocal_iov = iov_copy(local_iov, nlocal_iov, iov, niov, 0, iov_size(iov, niov)); while (nlocal_iov > 0) { ssize_t len; len = qio_channel_readv(ioc, local_iov, nlocal_iov, errp); if (len == QIO_CHANNEL_ERR_BLOCK) { if (qemu_in_coroutine()) { qio_channel_yield(ioc, G_IO_IN); } else { qio_channel_wait(ioc, G_IO_IN); } continue; } else if (len < 0) { goto cleanup; } else if (len == 0) { error_setg(errp, "Unexpected end-of-file before all bytes were read"); goto cleanup; } iov_discard_front(&local_iov, &nlocal_iov, len); } ret = 0; cleanup: g_free(local_iov_head); return ret; }
21,979
1
void qvirtio_pci_device_disable(QVirtioPCIDevice *d) { qpci_iounmap(d->pdev, d->addr); d->addr = NULL; }
21,981
1
static void vfio_vga_quirk_teardown(VFIODevice *vdev) { int i; for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); QLIST_REMOVE(quirk, next); g_free(quirk); } } }
21,982
1
int ff_v4l2_m2m_codec_full_reinit(V4L2m2mContext *s) { void *log_ctx = s->avctx; int ret; av_log(log_ctx, AV_LOG_DEBUG, "%s full reinit\n", s->devname); /* wait for pending buffer references */ if (atomic_load(&s->refcount)) while(sem_wait(&s->refsync) == -1 && errno == EINTR); /* close the driver */ ff_v4l2_m2m_codec_end(s->avctx); /* start again now that we know the stream dimensions */ s->draining = 0; s->reinit = 0; s->fd = open(s->devname, O_RDWR | O_NONBLOCK, 0); if (s->fd < 0) return AVERROR(errno); ret = v4l2_prepare_contexts(s); if (ret < 0) goto error; /* if a full re-init was requested - probe didn't run - we need to populate * the format for each context */ ret = ff_v4l2_context_get_format(&s->output); if (ret) { av_log(log_ctx, AV_LOG_DEBUG, "v4l2 output format not supported\n"); goto error; } ret = ff_v4l2_context_get_format(&s->capture); if (ret) { av_log(log_ctx, AV_LOG_DEBUG, "v4l2 capture format not supported\n"); goto error; } ret = ff_v4l2_context_set_format(&s->output); if (ret) { av_log(log_ctx, AV_LOG_ERROR, "can't set v4l2 output format\n"); goto error; } ret = ff_v4l2_context_set_format(&s->capture); if (ret) { av_log(log_ctx, AV_LOG_ERROR, "can't to set v4l2 capture format\n"); goto error; } ret = ff_v4l2_context_init(&s->output); if (ret) { av_log(log_ctx, AV_LOG_ERROR, "no v4l2 output context's buffers\n"); goto error; } /* decoder's buffers need to be updated at a later stage */ if (!av_codec_is_decoder(s->avctx->codec)) { ret = ff_v4l2_context_init(&s->capture); if (ret) { av_log(log_ctx, AV_LOG_ERROR, "no v4l2 capture context's buffers\n"); goto error; } } return 0; error: if (close(s->fd) < 0) { ret = AVERROR(errno); av_log(log_ctx, AV_LOG_ERROR, "error closing %s (%s)\n", s->devname, av_err2str(AVERROR(errno))); } s->fd = -1; return ret; }
21,983
1
static av_cold int wmv2_decode_init(AVCodecContext *avctx){ Wmv2Context * const w= avctx->priv_data; if(avctx->idct_algo==FF_IDCT_AUTO){ avctx->idct_algo=FF_IDCT_WMV2; } if(ff_msmpeg4_decode_init(avctx) < 0) return -1; ff_wmv2_common_init(w); ff_intrax8_common_init(&w->x8,&w->s); return 0; }
21,984
1
static inline int divide3(int x) { return ((x+1)*21845 + 10922) >> 16; }
21,985