label
int64 0
1
| func1
stringlengths 23
97k
| id
int64 0
27.3k
|
---|---|---|
0 | int rom_add_option(const char *file) { if (!rom_enable_driver_roms) return 0; return rom_add_file(file, "genroms", file, 0); } | 20,371 |
0 | static target_ulong h_client_architecture_support(PowerPCCPU *cpu_, sPAPRMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong list = ppc64_phys_to_real(args[0]); target_ulong ov_table; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu_); CPUState *cs; bool cpu_match = false, cpu_update = true; unsigned old_cpu_version = cpu_->cpu_version; unsigned compat_lvl = 0, cpu_version = 0; unsigned max_lvl = get_compat_level(cpu_->max_compat); int counter; sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates; /* Parse PVR list */ for (counter = 0; counter < 512; ++counter) { uint32_t pvr, pvr_mask; pvr_mask = ldl_be_phys(&address_space_memory, list); list += 4; pvr = ldl_be_phys(&address_space_memory, list); list += 4; trace_spapr_cas_pvr_try(pvr); if (!max_lvl && ((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) { cpu_match = true; cpu_version = 0; } else if (pvr == cpu_->cpu_version) { cpu_match = true; cpu_version = cpu_->cpu_version; } else if (!cpu_match) { cas_handle_compat_cpu(pcc, pvr, max_lvl, &compat_lvl, &cpu_version); } /* Terminator record */ if (~pvr_mask & pvr) { break; } } /* Parsing finished */ trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match, cpu_version, pcc->pcr_mask); /* Update CPUs */ if (old_cpu_version != cpu_version) { CPU_FOREACH(cs) { SetCompatState s = { .cpu_version = cpu_version, .err = NULL, }; run_on_cpu(cs, do_set_compat, RUN_ON_CPU_HOST_PTR(&s)); if (s.err) { error_report_err(s.err); return H_HARDWARE; } } } if (!cpu_version) { cpu_update = false; } /* For the future use: here @ov_table points to the first option vector */ ov_table = list; ov5_guest = spapr_ovec_parse_vector(ov_table, 5); /* NOTE: there are actually a number of ov5 bits where input from the * guest is always zero, and the platform/QEMU enables them independently * of guest input. To model these properly we'd want some sort of mask, * but since they only currently apply to memory migration as defined * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need * to worry about this for now. */ ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); /* full range of negotiated ov5 capabilities */ spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); spapr_ovec_cleanup(ov5_guest); /* capabilities that have been added since CAS-generated guest reset. * if capabilities have since been removed, generate another reset */ ov5_updates = spapr_ovec_new(); spapr->cas_reboot = spapr_ovec_diff(ov5_updates, ov5_cas_old, spapr->ov5_cas); if (!spapr->cas_reboot) { spapr->cas_reboot = (spapr_h_cas_compose_response(spapr, args[1], args[2], cpu_update, ov5_updates) != 0); } spapr_ovec_cleanup(ov5_updates); if (spapr->cas_reboot) { qemu_system_reset_request(); } return H_SUCCESS; } | 20,372 |
0 | static void rtas_ibm_configure_connector(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t wa_addr; uint64_t wa_offset; uint32_t drc_index; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; sPAPRConfigureConnectorState *ccs; sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; int rc; if (nargs != 2 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); drc_index = rtas_ld(wa_addr, 0); drc = spapr_drc_by_index(drc_index); if (!drc) { trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); rc = RTAS_OUT_PARAM_ERROR; goto out; } if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)) { /* Need to unisolate the device before configuring */ rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; goto out; } g_assert(drc->fdt); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); ccs = drc->ccs; if (!ccs) { ccs = g_new0(sPAPRConfigureConnectorState, 1); ccs->fdt_offset = drc->fdt_start_offset; drc->ccs = ccs; } do { uint32_t tag; const char *name; const struct fdt_property *prop; int fdt_offset_next, prop_len; tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next); switch (tag) { case FDT_BEGIN_NODE: ccs->fdt_depth++; name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL); /* provide the name of the next OF node */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; break; case FDT_END_NODE: ccs->fdt_depth--; if (ccs->fdt_depth == 0) { uint32_t drc_index = spapr_drc_index(drc); /* done sending the device tree, move to configured state */ trace_spapr_drc_set_configured(drc_index); drc->state = drck->ready_state; g_free(ccs); drc->ccs = NULL; ccs = NULL; resp = SPAPR_DR_CC_RESPONSE_SUCCESS; } else { resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; } break; case FDT_PROP: prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset, &prop_len); name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); /* provide the name of the next OF property */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); /* provide the length and value of the OF property. data gets * placed immediately after NULL terminator of the OF property's * name string */ wa_offset += strlen(name) + 1, rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; break; case FDT_END: resp = SPAPR_DR_CC_RESPONSE_ERROR; default: /* keep seeking for an actionable tag */ break; } if (ccs) { ccs->fdt_offset = fdt_offset_next; } } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); rc = resp; out: rtas_st(rets, 0, rc); } | 20,373 |
0 | static void term_show_prompt2(void) { term_printf("(qemu) "); fflush(stdout); term_last_cmd_buf_index = 0; term_last_cmd_buf_size = 0; term_esc_state = IS_NORM; } | 20,374 |
0 | static void pxa2xx_lcdc_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; int ch; switch (offset) { case LCCR0: /* ACK Quick Disable done */ if ((s->control[0] & LCCR0_ENB) && !(value & LCCR0_ENB)) s->status[0] |= LCSR0_QD; if (!(s->control[0] & LCCR0_LCDT) && (value & LCCR0_LCDT)) printf("%s: internal frame buffer unsupported\n", __FUNCTION__); if ((s->control[3] & LCCR3_API) && (value & LCCR0_ENB) && !(value & LCCR0_LCDT)) s->status[0] |= LCSR0_ABC; s->control[0] = value & 0x07ffffff; pxa2xx_lcdc_int_update(s); s->dma_ch[0].up = !!(value & LCCR0_ENB); s->dma_ch[1].up = (s->ovl1c[0] & OVLC1_EN) || (value & LCCR0_SDS); break; case LCCR1: s->control[1] = value; break; case LCCR2: s->control[2] = value; break; case LCCR3: s->control[3] = value & 0xefffffff; s->bpp = LCCR3_BPP(value); break; case LCCR4: s->control[4] = value & 0x83ff81ff; break; case LCCR5: s->control[5] = value & 0x3f3f3f3f; break; case OVL1C1: if (!(s->ovl1c[0] & OVLC1_EN) && (value & OVLC1_EN)) printf("%s: Overlay 1 not supported\n", __FUNCTION__); s->ovl1c[0] = value & 0x80ffffff; s->dma_ch[1].up = (value & OVLC1_EN) || (s->control[0] & LCCR0_SDS); break; case OVL1C2: s->ovl1c[1] = value & 0x000fffff; break; case OVL2C1: if (!(s->ovl2c[0] & OVLC1_EN) && (value & OVLC1_EN)) printf("%s: Overlay 2 not supported\n", __FUNCTION__); s->ovl2c[0] = value & 0x80ffffff; s->dma_ch[2].up = !!(value & OVLC1_EN); s->dma_ch[3].up = !!(value & OVLC1_EN); s->dma_ch[4].up = !!(value & OVLC1_EN); break; case OVL2C2: s->ovl2c[1] = value & 0x007fffff; break; case CCR: if (!(s->ccr & CCR_CEN) && (value & CCR_CEN)) printf("%s: Hardware cursor unimplemented\n", __FUNCTION__); s->ccr = value & 0x81ffffe7; s->dma_ch[5].up = !!(value & CCR_CEN); break; case CMDCR: s->cmdcr = value & 0xff; break; case TRGBR: s->trgbr = value & 0x00ffffff; break; case TCR: s->tcr = value & 0x7fff; break; case 0x200 ... 0x1000: /* DMA per-channel registers */ ch = (offset - 0x200) >> 4; if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS)) goto fail; switch (offset & 0xf) { case DMA_FDADR: s->dma_ch[ch].descriptor = value & 0xfffffff0; break; default: goto fail; } break; case FBR0: s->dma_ch[0].branch = value & 0xfffffff3; break; case FBR1: s->dma_ch[1].branch = value & 0xfffffff3; break; case FBR2: s->dma_ch[2].branch = value & 0xfffffff3; break; case FBR3: s->dma_ch[3].branch = value & 0xfffffff3; break; case FBR4: s->dma_ch[4].branch = value & 0xfffffff3; break; case FBR5: s->dma_ch[5].branch = value & 0xfffffff3; break; case FBR6: s->dma_ch[6].branch = value & 0xfffffff3; break; case BSCNTR: s->bscntr = value & 0xf; break; case PRSR: break; case LCSR0: s->status[0] &= ~(value & 0xfff); if (value & LCSR0_BER) s->status[0] &= ~LCSR0_BERCH(7); break; case LCSR1: s->status[1] &= ~(value & 0x3e3f3f); break; default: fail: hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset); } } | 20,375 |
0 | static void v9fs_clunk(void *opaque) { int err; int32_t fid; size_t offset = 7; V9fsFidState *fidp; V9fsPDU *pdu = opaque; V9fsState *s = pdu->s; pdu_unmarshal(pdu, offset, "d", &fid); trace_v9fs_clunk(pdu->tag, pdu->id, fid); fidp = clunk_fid(s, fid); if (fidp == NULL) { err = -ENOENT; goto out_nofid; } /* * Bump the ref so that put_fid will * free the fid. */ fidp->ref++; err = offset; put_fid(pdu, fidp); out_nofid: complete_pdu(s, pdu, err); } | 20,376 |
0 | static void pcie_aer_update_log(PCIDevice *dev, const PCIEAERErr *err) { uint8_t *aer_cap = dev->config + dev->exp.aer_cap; uint8_t first_bit = ffs(err->status) - 1; uint32_t errcap = pci_get_long(aer_cap + PCI_ERR_CAP); int i; assert(err->status); assert(!(err->status & (err->status - 1))); errcap &= ~(PCI_ERR_CAP_FEP_MASK | PCI_ERR_CAP_TLP); errcap |= PCI_ERR_CAP_FEP(first_bit); if (err->flags & PCIE_AER_ERR_HEADER_VALID) { for (i = 0; i < ARRAY_SIZE(err->header); ++i) { /* 7.10.8 Header Log Register */ uint8_t *header_log = aer_cap + PCI_ERR_HEADER_LOG + i * sizeof err->header[0]; stl_be_p(header_log, err->header[i]); } } else { assert(!(err->flags & PCIE_AER_ERR_TLP_PREFIX_PRESENT)); memset(aer_cap + PCI_ERR_HEADER_LOG, 0, PCI_ERR_HEADER_LOG_SIZE); } if ((err->flags & PCIE_AER_ERR_TLP_PREFIX_PRESENT) && (pci_get_long(dev->config + dev->exp.exp_cap + PCI_EXP_DEVCAP2) & PCI_EXP_DEVCAP2_EETLPP)) { for (i = 0; i < ARRAY_SIZE(err->prefix); ++i) { /* 7.10.12 tlp prefix log register */ uint8_t *prefix_log = aer_cap + PCI_ERR_TLP_PREFIX_LOG + i * sizeof err->prefix[0]; stl_be_p(prefix_log, err->prefix[i]); } errcap |= PCI_ERR_CAP_TLP; } else { memset(aer_cap + PCI_ERR_TLP_PREFIX_LOG, 0, PCI_ERR_TLP_PREFIX_LOG_SIZE); } pci_set_long(aer_cap + PCI_ERR_CAP, errcap); } | 20,377 |
0 | static int hdev_create(const char *filename, QEMUOptionParameter *options) { int fd; int ret = 0; struct stat stat_buf; int64_t total_size = 0; /* Read out options */ while (options && options->name) { if (!strcmp(options->name, "size")) { total_size = options->value.n / 512; } options++; } fd = open(filename, O_WRONLY | O_BINARY); if (fd < 0) return -EIO; if (fstat(fd, &stat_buf) < 0) ret = -EIO; else if (!S_ISBLK(stat_buf.st_mode)) ret = -EIO; else if (lseek(fd, 0, SEEK_END) < total_size * 512) ret = -ENOSPC; close(fd); return ret; } | 20,378 |
0 | void net_rx_pkt_set_protocols(struct NetRxPkt *pkt, const void *data, size_t len) { assert(pkt); eth_get_protocols(data, len, &pkt->isip4, &pkt->isip6, &pkt->isudp, &pkt->istcp); } | 20,379 |
0 | static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; const uint8_t *buf_end = avpkt->data + avpkt->size; int buf_size = avpkt->size; DPXContext *const s = avctx->priv_data; AVFrame *picture = data; AVFrame *const p = &s->picture; uint8_t *ptr; int magic_num, offset, endian; int x, y; int w, h, stride, bits_per_color, descriptor, elements, target_packet_size, source_packet_size; unsigned int rgbBuffer; if (avpkt->size <= 1634) { av_log(avctx, AV_LOG_ERROR, "Packet too small for DPX header\n"); return AVERROR_INVALIDDATA; } magic_num = AV_RB32(buf); buf += 4; /* Check if the files "magic number" is "SDPX" which means it uses * big-endian or XPDS which is for little-endian files */ if (magic_num == AV_RL32("SDPX")) { endian = 0; } else if (magic_num == AV_RB32("SDPX")) { endian = 1; } else { av_log(avctx, AV_LOG_ERROR, "DPX marker not found\n"); return -1; } offset = read32(&buf, endian); if (avpkt->size <= offset) { av_log(avctx, AV_LOG_ERROR, "Invalid data start offset\n"); return AVERROR_INVALIDDATA; } // Need to end in 0x304 offset from start of file buf = avpkt->data + 0x304; w = read32(&buf, endian); h = read32(&buf, endian); // Need to end in 0x320 to read the descriptor buf += 20; descriptor = buf[0]; // Need to end in 0x323 to read the bits per color buf += 3; avctx->bits_per_raw_sample = bits_per_color = buf[0]; buf += 825; avctx->sample_aspect_ratio.num = read32(&buf, endian); avctx->sample_aspect_ratio.den = read32(&buf, endian); if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0) av_reduce(&avctx->sample_aspect_ratio.num, &avctx->sample_aspect_ratio.den, avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den, 0x10000); else avctx->sample_aspect_ratio = (AVRational){ 0, 0 }; switch (descriptor) { case 51: // RGBA elements = 4; break; case 50: // RGB elements = 3; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported descriptor %d\n", descriptor); return -1; } switch (bits_per_color) { case 8: if (elements == 4) { avctx->pix_fmt = PIX_FMT_RGBA; } else { avctx->pix_fmt = PIX_FMT_RGB24; } source_packet_size = elements; target_packet_size = elements; break; case 10: avctx->pix_fmt = PIX_FMT_RGB48; target_packet_size = 6; source_packet_size = 4; break; case 12: case 16: if (endian) { avctx->pix_fmt = elements == 4 ? PIX_FMT_RGBA64BE : PIX_FMT_RGB48BE; } else { avctx->pix_fmt = elements == 4 ? PIX_FMT_RGBA64LE : PIX_FMT_RGB48LE; } target_packet_size = source_packet_size = elements * 2; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported color depth : %d\n", bits_per_color); return -1; } if (s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); if (av_image_check_size(w, h, 0, avctx)) return -1; if (w != avctx->width || h != avctx->height) avcodec_set_dimensions(avctx, w, h); if (avctx->get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } // Move pointer to offset from start of file buf = avpkt->data + offset; ptr = p->data[0]; stride = p->linesize[0]; if (source_packet_size*avctx->width*avctx->height > buf_end - buf) { av_log(avctx, AV_LOG_ERROR, "Overread buffer. Invalid header?\n"); return -1; } switch (bits_per_color) { case 10: for (x = 0; x < avctx->height; x++) { uint16_t *dst = (uint16_t*)ptr; for (y = 0; y < avctx->width; y++) { rgbBuffer = read32(&buf, endian); // Read out the 10-bit colors and convert to 16-bit *dst++ = make_16bit(rgbBuffer >> 16); *dst++ = make_16bit(rgbBuffer >> 6); *dst++ = make_16bit(rgbBuffer << 4); } ptr += stride; } break; case 8: case 12: // Treat 12-bit as 16-bit case 16: if (source_packet_size == target_packet_size) { for (x = 0; x < avctx->height; x++) { memcpy(ptr, buf, target_packet_size*avctx->width); ptr += stride; buf += source_packet_size*avctx->width; } } else { for (x = 0; x < avctx->height; x++) { uint8_t *dst = ptr; for (y = 0; y < avctx->width; y++) { memcpy(dst, buf, target_packet_size); dst += target_packet_size; buf += source_packet_size; } ptr += stride; } } break; } *picture = s->picture; *data_size = sizeof(AVPicture); return buf_size; } | 20,380 |
0 | static int hls_write_trailer(struct AVFormatContext *s) { HLSContext *hls = s->priv_data; AVFormatContext *oc = hls->avf; av_write_trailer(oc); avio_closep(&oc->pb); avformat_free_context(oc); av_free(hls->basename); append_entry(hls, hls->duration); hls_window(s, 1); free_entries(hls); return 0; } | 20,381 |
0 | static int g726_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; G726Context *c = avctx->priv_data; int16_t *samples = data; GetBitContext gb; init_get_bits(&gb, buf, buf_size * 8); while (get_bits_count(&gb) + c->code_size <= buf_size*8) *samples++ = g726_decode(c, get_bits(&gb, c->code_size)); if(buf_size*8 != get_bits_count(&gb)) av_log(avctx, AV_LOG_ERROR, "Frame invalidly split, missing parser?\n"); *data_size = (uint8_t*)samples - (uint8_t*)data; return buf_size; } | 20,382 |
0 | static inline void downmix_mono_to_stereo(float *samples) { int i; for (i = 0; i < 256; i++) samples[i + 256] = samples[i]; } | 20,383 |
0 | dshow_cycle_devices(AVFormatContext *avctx, ICreateDevEnum *devenum, enum dshowDeviceType devtype, enum dshowSourceFilterType sourcetype, IBaseFilter **pfilter) { struct dshow_ctx *ctx = avctx->priv_data; IBaseFilter *device_filter = NULL; IEnumMoniker *classenum = NULL; IMoniker *m = NULL; const char *device_name = ctx->device_name[devtype]; int skip = (devtype == VideoDevice) ? ctx->video_device_number : ctx->audio_device_number; int r; const GUID *device_guid[2] = { &CLSID_VideoInputDeviceCategory, &CLSID_AudioInputDeviceCategory }; const char *devtypename = (devtype == VideoDevice) ? "video" : "audio only"; const char *sourcetypename = (sourcetype == VideoSourceDevice) ? "video" : "audio"; r = ICreateDevEnum_CreateClassEnumerator(devenum, device_guid[sourcetype], (IEnumMoniker **) &classenum, 0); if (r != S_OK) { av_log(avctx, AV_LOG_ERROR, "Could not enumerate %s devices (or none found).\n", devtypename); return AVERROR(EIO); } while (!device_filter && IEnumMoniker_Next(classenum, 1, &m, NULL) == S_OK) { IPropertyBag *bag = NULL; char *friendly_name = NULL; char *unique_name = NULL; VARIANT var; IBindCtx *bind_ctx = NULL; LPOLESTR olestr = NULL; LPMALLOC co_malloc = NULL; int i; r = CoGetMalloc(1, &co_malloc); if (r = S_OK) goto fail1; r = CreateBindCtx(0, &bind_ctx); if (r != S_OK) goto fail1; /* GetDisplayname works for both video and audio, DevicePath doesn't */ r = IMoniker_GetDisplayName(m, bind_ctx, NULL, &olestr); if (r != S_OK) goto fail1; unique_name = dup_wchar_to_utf8(olestr); /* replace ':' with '_' since we use : to delineate between sources */ for (i = 0; i < strlen(unique_name); i++) { if (unique_name[i] == ':') unique_name[i] = '_'; } r = IMoniker_BindToStorage(m, 0, 0, &IID_IPropertyBag, (void *) &bag); if (r != S_OK) goto fail1; var.vt = VT_BSTR; r = IPropertyBag_Read(bag, L"FriendlyName", &var, NULL); if (r != S_OK) goto fail1; friendly_name = dup_wchar_to_utf8(var.bstrVal); if (pfilter) { if (strcmp(device_name, friendly_name) && strcmp(device_name, unique_name)) goto fail1; if (!skip--) { r = IMoniker_BindToObject(m, 0, 0, &IID_IBaseFilter, (void *) &device_filter); if (r != S_OK) { av_log(avctx, AV_LOG_ERROR, "Unable to BindToObject for %s\n", device_name); goto fail1; } } } else { av_log(avctx, AV_LOG_INFO, " \"%s\"\n", friendly_name); av_log(avctx, AV_LOG_INFO, " Alternative name \"%s\"\n", unique_name); } fail1: if (olestr && co_malloc) IMalloc_Free(co_malloc, olestr); if (bind_ctx) IBindCtx_Release(bind_ctx); av_free(friendly_name); av_free(unique_name); if (bag) IPropertyBag_Release(bag); IMoniker_Release(m); } IEnumMoniker_Release(classenum); if (pfilter) { if (!device_filter) { av_log(avctx, AV_LOG_ERROR, "Could not find %s device with name [%s] among source devices of type %s.\n", devtypename, device_name, sourcetypename); return AVERROR(EIO); } *pfilter = device_filter; } return 0; } | 20,384 |
0 | static void rgb24_to_yuvj444p(AVPicture *dst, AVPicture *src, int width, int height) { int src_wrap, x, y; int r, g, b; uint8_t *lum, *cb, *cr; const uint8_t *p; lum = dst->data[0]; cb = dst->data[1]; cr = dst->data[2]; src_wrap = src->linesize[0] - width * BPP; p = src->data[0]; for(y=0;y<height;y++) { for(x=0;x<width;x++) { RGB_IN(r, g, b, p); lum[0] = RGB_TO_Y(r, g, b); cb[0] = RGB_TO_U(r, g, b, 0); cr[0] = RGB_TO_V(r, g, b, 0); cb++; cr++; lum++; } p += src_wrap; lum += dst->linesize[0] - width; cb += dst->linesize[1] - width; cr += dst->linesize[2] - width; } } | 20,386 |
0 | static int vf_open(vf_instance_t *vf, char *args){ vf->config=config; vf->put_image=put_image; vf->get_image=get_image; vf->query_format=query_format; vf->uninit=uninit; vf->control= control; vf->priv=malloc(sizeof(struct vf_priv_s)); memset(vf->priv, 0, sizeof(struct vf_priv_s)); if (args) sscanf(args, "%d:%d", &vf->priv->qp, &vf->priv->mode); if(vf->priv->qp < 0) vf->priv->qp = 0; init_thres2(); switch(vf->priv->mode){ case 0: requantize= hardthresh_c; break; case 1: requantize= softthresh_c; break; default: case 2: requantize= mediumthresh_c; break; } #if HAVE_MMX if(ff_gCpuCaps.hasMMX){ dctB= dctB_mmx; } #endif #if 0 if(ff_gCpuCaps.hasMMX){ switch(vf->priv->mode){ case 0: requantize= hardthresh_mmx; break; case 1: requantize= softthresh_mmx; break; } } #endif return 1; } | 20,387 |
0 | static void ff_id3v2_parse(AVFormatContext *s, int len, uint8_t version, uint8_t flags, ID3v2ExtraMeta **extra_meta) { int isv34, tlen, unsync; char tag[5]; int64_t next, end = avio_tell(s->pb) + len; int taghdrlen; const char *reason = NULL; AVIOContext pb; AVIOContext *pbx; unsigned char *buffer = NULL; int buffer_size = 0; void (*extra_func)(AVFormatContext*, AVIOContext*, int, char*, ID3v2ExtraMeta**) = NULL; switch (version) { case 2: if (flags & 0x40) { reason = "compression"; goto error; } isv34 = 0; taghdrlen = 6; break; case 3: case 4: isv34 = 1; taghdrlen = 10; break; default: reason = "version"; goto error; } unsync = flags & 0x80; if (isv34 && flags & 0x40) /* Extended header present, just skip over it */ avio_skip(s->pb, get_size(s->pb, 4)); while (len >= taghdrlen) { unsigned int tflags = 0; int tunsync = 0; if (isv34) { avio_read(s->pb, tag, 4); tag[4] = 0; if(version==3){ tlen = avio_rb32(s->pb); }else tlen = get_size(s->pb, 4); tflags = avio_rb16(s->pb); tunsync = tflags & ID3v2_FLAG_UNSYNCH; } else { avio_read(s->pb, tag, 3); tag[3] = 0; tlen = avio_rb24(s->pb); } if (tlen <= 0 || tlen > len - taghdrlen) { av_log(s, AV_LOG_WARNING, "Invalid size in frame %s, skipping the rest of tag.\n", tag); break; } len -= taghdrlen + tlen; next = avio_tell(s->pb) + tlen; if (tflags & ID3v2_FLAG_DATALEN) { avio_rb32(s->pb); tlen -= 4; } if (tflags & (ID3v2_FLAG_ENCRYPTION | ID3v2_FLAG_COMPRESSION)) { av_log(s, AV_LOG_WARNING, "Skipping encrypted/compressed ID3v2 frame %s.\n", tag); avio_skip(s->pb, tlen); /* check for text tag or supported special meta tag */ } else if (tag[0] == 'T' || (extra_meta && (extra_func = get_extra_meta_func(tag, isv34)->read))) { if (unsync || tunsync) { int i, j; av_fast_malloc(&buffer, &buffer_size, tlen); if (!buffer) { av_log(s, AV_LOG_ERROR, "Failed to alloc %d bytes\n", tlen); goto seek; } for (i = 0, j = 0; i < tlen; i++, j++) { buffer[j] = avio_r8(s->pb); if (j > 0 && !buffer[j] && buffer[j - 1] == 0xff) { /* Unsynchronised byte, skip it */ j--; } } ffio_init_context(&pb, buffer, j, 0, NULL, NULL, NULL, NULL); tlen = j; pbx = &pb; // read from sync buffer } else { pbx = s->pb; // read straight from input } if (tag[0] == 'T') /* parse text tag */ read_ttag(s, pbx, tlen, tag); else /* parse special meta tag */ extra_func(s, pbx, tlen, tag, extra_meta); } else if (!tag[0]) { if (tag[1]) av_log(s, AV_LOG_WARNING, "invalid frame id, assuming padding"); avio_skip(s->pb, tlen); break; } /* Skip to end of tag */ seek: avio_seek(s->pb, next, SEEK_SET); } if (version == 4 && flags & 0x10) /* Footer preset, always 10 bytes, skip over it */ end += 10; error: if (reason) av_log(s, AV_LOG_INFO, "ID3v2.%d tag skipped, cannot handle %s\n", version, reason); avio_seek(s->pb, end, SEEK_SET); av_free(buffer); return; } | 20,388 |
0 | static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx) { int b, c, i; unsigned int u; int buffer1[10]; int buffer2[10]; int *bp1 = buffer1; int *bp2 = buffer2; for (i=0; i < 10; i++) buffer2[i] = coefs[i]; refl[9] = bp2[9]; if ((unsigned) bp2[9] + 0x1000 > 0x1fff) { av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n"); return 1; } for (c=8; c >= 0; c--) { b = 0x1000-((bp2[c+1] * bp2[c+1]) >> 12); if (!b) b = -2; for (u=0; u<=c; u++) bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12; refl[c] = bp1[c]; if ((unsigned) bp1[c] + 0x1000 > 0x1fff) return 1; FFSWAP(int *, bp1, bp2); } return 0; } | 20,389 |
0 | static char *sdp_media_attributes(char *buff, int size, AVCodecContext *c, int payload_type) { char *config = NULL; switch (c->codec_id) { case CODEC_ID_MPEG4: if (c->flags & CODEC_FLAG_GLOBAL_HEADER) { config = extradata2config(c->extradata, c->extradata_size); } av_strlcatf(buff, size, "a=rtpmap:%d MP4V-ES/90000\r\n" "a=fmtp:%d profile-level-id=1%s\r\n", payload_type, payload_type, config ? config : ""); break; case CODEC_ID_AAC: if (c->flags & CODEC_FLAG_GLOBAL_HEADER) { config = extradata2config(c->extradata, c->extradata_size); } else { /* FIXME: maybe we can forge config information based on the * codec parameters... */ av_log(NULL, AV_LOG_ERROR, "AAC with no global headers is currently not supported\n"); return NULL; } if (config == NULL) { return NULL; } av_strlcatf(buff, size, "a=rtpmap:%d MPEG4-GENERIC/%d/%d\r\n" "a=fmtp:%d profile-level-id=1;" "mode=AAC-hbr;sizelength=13;indexlength=3;" "indexdeltalength=3%s\r\n", payload_type, c->sample_rate, c->channels, payload_type, config); break; default: /* Nothing special to do, here... */ break; } av_free(config); return buff; } | 20,390 |
0 | static int mpegvideo_parse(AVCodecParserContext *s, AVCodecContext *avctx, const uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { ParseContext1 *pc1 = s->priv_data; ParseContext *pc= &pc1->pc; int next; if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){ next= buf_size; }else{ next= ff_mpeg1_find_frame_end(pc, buf, buf_size); if (ff_combine_frame(pc, next, &buf, &buf_size) < 0) { *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } } /* we have a full frame : we just parse the first few MPEG headers to have the full timing information. The time take by this function should be negligible for uncorrupted streams */ mpegvideo_extract_headers(s, avctx, buf, buf_size); #if 0 printf("pict_type=%d frame_rate=%0.3f repeat_pict=%d\n", s->pict_type, (double)avctx->time_base.den / avctx->time_base.num, s->repeat_pict); #endif *poutbuf = buf; *poutbuf_size = buf_size; return next; } | 20,391 |
0 | int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count) { int i, av_uninit(j); int current_ref_assigned = 0, err = 0; H264Picture *av_uninit(pic); if ((h->avctx->debug & FF_DEBUG_MMCO) && mmco_count == 0) av_log(h->avctx, AV_LOG_DEBUG, "no mmco here\n"); for (i = 0; i < mmco_count; i++) { int av_uninit(structure), av_uninit(frame_num); if (h->avctx->debug & FF_DEBUG_MMCO) av_log(h->avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg); if (mmco[i].opcode == MMCO_SHORT2UNUSED || mmco[i].opcode == MMCO_SHORT2LONG) { frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure); pic = find_short(h, frame_num, &j); if (!pic) { if (mmco[i].opcode != MMCO_SHORT2LONG || !h->long_ref[mmco[i].long_arg] || h->long_ref[mmco[i].long_arg]->frame_num != frame_num) { av_log(h->avctx, AV_LOG_ERROR, "mmco: unref short failure\n"); err = AVERROR_INVALIDDATA; } continue; } } switch (mmco[i].opcode) { case MMCO_SHORT2UNUSED: if (h->avctx->debug & FF_DEBUG_MMCO) av_log(h->avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count); remove_short(h, frame_num, structure ^ PICT_FRAME); break; case MMCO_SHORT2LONG: if (h->long_ref[mmco[i].long_arg] != pic) remove_long(h, mmco[i].long_arg, 0); remove_short_at_index(h, j); h->long_ref[ mmco[i].long_arg ] = pic; if (h->long_ref[mmco[i].long_arg]) { h->long_ref[mmco[i].long_arg]->long_ref = 1; h->long_ref_count++; } break; case MMCO_LONG2UNUSED: j = pic_num_extract(h, mmco[i].long_arg, &structure); pic = h->long_ref[j]; if (pic) { remove_long(h, j, structure ^ PICT_FRAME); } else if (h->avctx->debug & FF_DEBUG_MMCO) av_log(h->avctx, AV_LOG_DEBUG, "mmco: unref long failure\n"); break; case MMCO_LONG: // Comment below left from previous code as it is an interresting note. /* First field in pair is in short term list or * at a different long term index. * This is not allowed; see 7.4.3.3, notes 2 and 3. * Report the problem and keep the pair where it is, * and mark this field valid. */ if (h->short_ref[0] == h->cur_pic_ptr) remove_short_at_index(h, 0); /* make sure the current picture is not already assigned as a long ref */ if (h->cur_pic_ptr->long_ref) { for (j = 0; j < FF_ARRAY_ELEMS(h->long_ref); j++) { if (h->long_ref[j] == h->cur_pic_ptr) remove_long(h, j, 0); } } if (h->long_ref[mmco[i].long_arg] != h->cur_pic_ptr) { remove_long(h, mmco[i].long_arg, 0); h->long_ref[mmco[i].long_arg] = h->cur_pic_ptr; h->long_ref[mmco[i].long_arg]->long_ref = 1; h->long_ref_count++; } h->cur_pic_ptr->reference |= h->picture_structure; current_ref_assigned = 1; break; case MMCO_SET_MAX_LONG: assert(mmco[i].long_arg <= 16); // just remove the long term which index is greater than new max for (j = mmco[i].long_arg; j < 16; j++) { remove_long(h, j, 0); } break; case MMCO_RESET: while (h->short_ref_count) { remove_short(h, h->short_ref[0]->frame_num, 0); } for (j = 0; j < 16; j++) { remove_long(h, j, 0); } h->frame_num = h->cur_pic_ptr->frame_num = 0; h->mmco_reset = 1; h->cur_pic_ptr->mmco_reset = 1; break; default: assert(0); } } if (!current_ref_assigned) { /* Second field of complementary field pair; the first field of * which is already referenced. If short referenced, it * should be first entry in short_ref. If not, it must exist * in long_ref; trying to put it on the short list here is an * error in the encoded bit stream (ref: 7.4.3.3, NOTE 2 and 3). */ if (h->short_ref_count && h->short_ref[0] == h->cur_pic_ptr) { /* Just mark the second field valid */ h->cur_pic_ptr->reference = PICT_FRAME; } else if (h->cur_pic_ptr->long_ref) { av_log(h->avctx, AV_LOG_ERROR, "illegal short term reference " "assignment for second field " "in complementary field pair " "(first field is long term)\n"); err = AVERROR_INVALIDDATA; } else { pic = remove_short(h, h->cur_pic_ptr->frame_num, 0); if (pic) { av_log(h->avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n"); err = AVERROR_INVALIDDATA; } if (h->short_ref_count) memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count * sizeof(H264Picture*)); h->short_ref[0] = h->cur_pic_ptr; h->short_ref_count++; h->cur_pic_ptr->reference |= h->picture_structure; } } if (h->long_ref_count + h->short_ref_count - (h->short_ref[0] == h->cur_pic_ptr) > h->sps.ref_frame_count) { /* We have too many reference frames, probably due to corrupted * stream. Need to discard one frame. Prevents overrun of the * short_ref and long_ref buffers. */ av_log(h->avctx, AV_LOG_ERROR, "number of reference frames (%d+%d) exceeds max (%d; probably " "corrupt input), discarding one\n", h->long_ref_count, h->short_ref_count, h->sps.ref_frame_count); err = AVERROR_INVALIDDATA; if (h->long_ref_count && !h->short_ref_count) { for (i = 0; i < 16; ++i) if (h->long_ref[i]) break; assert(i < 16); remove_long(h, i, 0); } else { pic = h->short_ref[h->short_ref_count - 1]; remove_short(h, pic->frame_num, 0); } } print_short_term(h); print_long_term(h); return (h->avctx->err_recognition & AV_EF_EXPLODE) ? err : 0; } | 20,392 |
0 | static int libschroedinger_encode_close(AVCodecContext *avctx) { SchroEncoderParams *p_schro_params = avctx->priv_data; /* Close the encoder. */ schro_encoder_free(p_schro_params->encoder); /* Free data in the output frame queue. */ ff_schro_queue_free(&p_schro_params->enc_frame_queue, libschroedinger_free_frame); /* Free the encoder buffer. */ if (p_schro_params->enc_buf_size) av_freep(&p_schro_params->enc_buf); /* Free the video format structure. */ av_freep(&p_schro_params->format); av_frame_free(&avctx->coded_frame); return 0; } | 20,393 |
0 | static void apply_window_mp3(float *in, float *win, int *unused, float *out, int incr) { LOCAL_ALIGNED_16(float, suma, [17]); LOCAL_ALIGNED_16(float, sumb, [17]); LOCAL_ALIGNED_16(float, sumc, [17]); LOCAL_ALIGNED_16(float, sumd, [17]); float sum; /* copy to avoid wrap */ memcpy(in + 512, in, 32 * sizeof(*in)); apply_window(in + 16, win , win + 512, suma, sumc, 16); apply_window(in + 32, win + 48, win + 640, sumb, sumd, 16); SUM8(MACS, suma[0], win + 32, in + 48); sumc[ 0] = 0; sumb[16] = 0; sumd[16] = 0; #define SUMS(suma, sumb, sumc, sumd, out1, out2) \ "movups " #sumd "(%4), %%xmm0 \n\t" \ "shufps $0x1b, %%xmm0, %%xmm0 \n\t" \ "subps " #suma "(%1), %%xmm0 \n\t" \ "movaps %%xmm0," #out1 "(%0) \n\t" \ \ "movups " #sumc "(%3), %%xmm0 \n\t" \ "shufps $0x1b, %%xmm0, %%xmm0 \n\t" \ "addps " #sumb "(%2), %%xmm0 \n\t" \ "movaps %%xmm0," #out2 "(%0) \n\t" if (incr == 1) { __asm__ volatile( SUMS( 0, 48, 4, 52, 0, 112) SUMS(16, 32, 20, 36, 16, 96) SUMS(32, 16, 36, 20, 32, 80) SUMS(48, 0, 52, 4, 48, 64) :"+&r"(out) :"r"(&suma[0]), "r"(&sumb[0]), "r"(&sumc[0]), "r"(&sumd[0]) :"memory" ); out += 16*incr; } else { int j; float *out2 = out + 32 * incr; out[0 ] = -suma[ 0]; out += incr; out2 -= incr; for(j=1;j<16;j++) { *out = -suma[ j] + sumd[16-j]; *out2 = sumb[16-j] + sumc[ j]; out += incr; out2 -= incr; } } sum = 0; SUM8(MLSS, sum, win + 16 + 32, in + 32); *out = sum; } | 20,394 |
0 | static int mp_user_removexattr(FsContext *ctx, const char *path, const char *name) { char buffer[PATH_MAX]; if (strncmp(name, "user.virtfs.", 12) == 0) { /* * Don't allow fetch of user.virtfs namesapce * in case of mapped security */ errno = EACCES; return -1; } return lremovexattr(rpath(ctx, path, buffer), name); } | 20,396 |
0 | static void sdhci_data_transfer(SDHCIState *s) { SDHCIClass *k = SDHCI_GET_CLASS(s); if (s->trnmod & SDHC_TRNS_DMA) { switch (SDHC_DMA_TYPE(s->hostctl)) { case SDHC_CTRL_SDMA: if ((s->trnmod & SDHC_TRNS_MULTI) && (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) { break; } if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) { k->do_sdma_single(s); } else { k->do_sdma_multi(s); } break; case SDHC_CTRL_ADMA1_32: if (!(s->capareg & SDHC_CAN_DO_ADMA1)) { ERRPRINT("ADMA1 not supported\n"); break; } k->do_adma(s); break; case SDHC_CTRL_ADMA2_32: if (!(s->capareg & SDHC_CAN_DO_ADMA2)) { ERRPRINT("ADMA2 not supported\n"); break; } k->do_adma(s); break; case SDHC_CTRL_ADMA2_64: if (!(s->capareg & SDHC_CAN_DO_ADMA2) || !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) { ERRPRINT("64 bit ADMA not supported\n"); break; } k->do_adma(s); break; default: ERRPRINT("Unsupported DMA type\n"); break; } } else { if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) { s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; SDHCI_GET_CLASS(s)->read_block_from_card(s); } else { s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT; SDHCI_GET_CLASS(s)->write_block_to_card(s); } } } | 20,397 |
0 | static void disas_cc(DisasContext *s, uint32_t insn) { unsigned int sf, op, y, cond, rn, nzcv, is_imm; int label_continue = -1; TCGv_i64 tcg_tmp, tcg_y, tcg_rn; if (!extract32(insn, 29, 1)) { unallocated_encoding(s); return; } if (insn & (1 << 10 | 1 << 4)) { unallocated_encoding(s); return; } sf = extract32(insn, 31, 1); op = extract32(insn, 30, 1); is_imm = extract32(insn, 11, 1); y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ cond = extract32(insn, 12, 4); rn = extract32(insn, 5, 5); nzcv = extract32(insn, 0, 4); if (cond < 0x0e) { /* not always */ int label_match = gen_new_label(); label_continue = gen_new_label(); arm_gen_test_cc(cond, label_match); /* nomatch: */ tcg_tmp = tcg_temp_new_i64(); tcg_gen_movi_i64(tcg_tmp, nzcv << 28); gen_set_nzcv(tcg_tmp); tcg_temp_free_i64(tcg_tmp); tcg_gen_br(label_continue); gen_set_label(label_match); } /* match, or condition is always */ if (is_imm) { tcg_y = new_tmp_a64(s); tcg_gen_movi_i64(tcg_y, y); } else { tcg_y = cpu_reg(s, y); } tcg_rn = cpu_reg(s, rn); tcg_tmp = tcg_temp_new_i64(); if (op) { gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); } else { gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); } tcg_temp_free_i64(tcg_tmp); if (cond < 0x0e) { /* continue */ gen_set_label(label_continue); } } | 20,399 |
0 | static void xenfb_handle_events(struct XenFB *xenfb) { uint32_t prod, cons, out_cons; struct xenfb_page *page = xenfb->c.page; prod = page->out_prod; out_cons = page->out_cons; if (prod - out_cons >= XENFB_OUT_RING_LEN) { return; } xen_rmb(); /* ensure we see ring contents up to prod */ for (cons = out_cons; cons != prod; cons++) { union xenfb_out_event *event = &XENFB_OUT_RING_REF(page, cons); uint8_t type = event->type; int x, y, w, h; switch (type) { case XENFB_TYPE_UPDATE: if (xenfb->up_count == UP_QUEUE) xenfb->up_fullscreen = 1; if (xenfb->up_fullscreen) break; x = MAX(event->update.x, 0); y = MAX(event->update.y, 0); w = MIN(event->update.width, xenfb->width - x); h = MIN(event->update.height, xenfb->height - y); if (w < 0 || h < 0) { xen_be_printf(&xenfb->c.xendev, 1, "bogus update ignored\n"); break; } if (x != event->update.x || y != event->update.y || w != event->update.width || h != event->update.height) { xen_be_printf(&xenfb->c.xendev, 1, "bogus update clipped\n"); } if (w == xenfb->width && h > xenfb->height / 2) { /* scroll detector: updated more than 50% of the lines, * don't bother keeping track of the rectangles then */ xenfb->up_fullscreen = 1; } else { xenfb->up_rects[xenfb->up_count].x = x; xenfb->up_rects[xenfb->up_count].y = y; xenfb->up_rects[xenfb->up_count].w = w; xenfb->up_rects[xenfb->up_count].h = h; xenfb->up_count++; } break; #ifdef XENFB_TYPE_RESIZE case XENFB_TYPE_RESIZE: if (xenfb_configure_fb(xenfb, xenfb->fb_len, event->resize.width, event->resize.height, event->resize.depth, xenfb->fb_len, event->resize.offset, event->resize.stride) < 0) break; xenfb_invalidate(xenfb); break; #endif } } xen_mb(); /* ensure we're done with ring contents */ page->out_cons = cons; } | 20,400 |
0 | static always_inline void gen_ext_l(void (*tcg_gen_ext_i64)(TCGv t0, TCGv t1), int ra, int rb, int rc, int islit, uint8_t lit) { if (unlikely(rc == 31)) return; if (ra != 31) { if (islit) { tcg_gen_shri_i64(cpu_ir[rc], cpu_ir[ra], (lit & 7) * 8); } else { TCGv tmp = tcg_temp_new(TCG_TYPE_I64); tcg_gen_andi_i64(tmp, cpu_ir[rb], 7); tcg_gen_shli_i64(tmp, tmp, 3); tcg_gen_shr_i64(cpu_ir[rc], cpu_ir[ra], tmp); tcg_temp_free(tmp); } if (tcg_gen_ext_i64) tcg_gen_ext_i64(cpu_ir[rc], cpu_ir[rc]); } else tcg_gen_movi_i64(cpu_ir[rc], 0); } | 20,401 |
0 | eth_calc_pseudo_hdr_csum(struct ip_header *iphdr, uint16_t csl) { struct ip_pseudo_header ipph; ipph.ip_src = iphdr->ip_src; ipph.ip_dst = iphdr->ip_dst; ipph.ip_payload = cpu_to_be16(csl); ipph.ip_proto = iphdr->ip_p; ipph.zeros = 0; return net_checksum_add(sizeof(ipph), (uint8_t *) &ipph); } | 20,404 |
0 | static int ftp_auth(FTPContext *s, char *auth) { const char *user = NULL, *pass = NULL; char *end = NULL, buf[CONTROL_BUFFER_SIZE]; int err; av_assert2(auth); user = av_strtok(auth, ":", &end); pass = av_strtok(end, ":", &end); if (user) { snprintf(buf, sizeof(buf), "USER %s\r\n", user); if ((err = ffurl_write(s->conn_control, buf, strlen(buf))) < 0) return err; ftp_status(s, &err, NULL, NULL, NULL, -1); if (err == 3) { if (pass) { snprintf(buf, sizeof(buf), "PASS %s\r\n", pass); if ((err = ffurl_write(s->conn_control, buf, strlen(buf))) < 0) return err; ftp_status(s, &err, NULL, NULL, NULL, -1); } else return AVERROR(EACCES); } if (err != 2) { return AVERROR(EACCES); } } else { const char* command = "USER anonymous\r\n"; if ((err = ffurl_write(s->conn_control, command, strlen(command))) < 0) return err; ftp_status(s, &err, NULL, NULL, NULL, -1); if (err == 3) { if (s->anonymous_password) { snprintf(buf, sizeof(buf), "PASS %s\r\n", s->anonymous_password); } else snprintf(buf, sizeof(buf), "PASS nopassword\r\n"); if ((err = ffurl_write(s->conn_control, buf, strlen(buf))) < 0) return err; ftp_status(s, &err, NULL, NULL, NULL, -1); } if (err != 2) { return AVERROR(EACCES); } } return 0; } | 20,405 |
0 | static void omap_l4_io_writew(void *opaque, target_phys_addr_t addr, uint32_t value) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_writew_fn[i](omap_l4_io_opaque[i], addr, value); } | 20,406 |
0 | static void pl050_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { pl050_state *s = (pl050_state *)opaque; switch (offset >> 2) { case 0: /* KMICR */ s->cr = value; pl050_update(s, s->pending); /* ??? Need to implement the enable/disable bit. */ break; case 2: /* KMIDATA */ /* ??? This should toggle the TX interrupt line. */ /* ??? This means kbd/mouse can block each other. */ if (s->is_mouse) { ps2_write_mouse(s->dev, value); } else { ps2_write_keyboard(s->dev, value); } break; case 3: /* KMICLKDIV */ s->clk = value; return; default: hw_error("pl050_write: Bad offset %x\n", (int)offset); } } | 20,408 |
0 | static int eject_device(Monitor *mon, BlockDriverState *bs, int force) { if (!bdrv_is_removable(bs)) { qerror_report(QERR_DEVICE_NOT_REMOVABLE, bdrv_get_device_name(bs)); return -1; } if (!force && bdrv_dev_is_medium_locked(bs)) { qerror_report(QERR_DEVICE_LOCKED, bdrv_get_device_name(bs)); return -1; } bdrv_close(bs); return 0; } | 20,409 |
0 | static int load_dtb(target_phys_addr_t addr, const struct arm_boot_info *binfo) { #ifdef CONFIG_FDT uint32_t *mem_reg_property; uint32_t mem_reg_propsize; void *fdt = NULL; char *filename; int size, rc; uint32_t acells, scells, hival; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); if (!filename) { fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); return -1; } fdt = load_device_tree(filename, &size); if (!fdt) { fprintf(stderr, "Couldn't open dtb file %s\n", filename); g_free(filename); return -1; } g_free(filename); acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells"); scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); if (acells == 0 || scells == 0) { fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); return -1; } mem_reg_propsize = acells + scells; mem_reg_property = g_new0(uint32_t, mem_reg_propsize); mem_reg_property[acells - 1] = cpu_to_be32(binfo->loader_start); hival = cpu_to_be32(binfo->loader_start >> 32); if (acells > 1) { mem_reg_property[acells - 2] = hival; } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM start address > 4GB\n"); exit(1); } mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); hival = cpu_to_be32(binfo->ram_size >> 32); if (scells > 1) { mem_reg_property[acells + scells - 2] = hival; } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM size > 4GB\n"); exit(1); } rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, mem_reg_propsize * sizeof(uint32_t)); if (rc < 0) { fprintf(stderr, "couldn't set /memory/reg\n"); } if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", binfo->kernel_cmdline); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/bootargs\n"); } } if (binfo->initrd_size) { rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start", binfo->loader_start + INITRD_LOAD_ADDR); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); } rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", binfo->loader_start + INITRD_LOAD_ADDR + binfo->initrd_size); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); } } cpu_physical_memory_write(addr, fdt, size); return 0; #else fprintf(stderr, "Device tree requested, " "but qemu was compiled without fdt support\n"); return -1; #endif } | 20,411 |
0 | static void flush_compressed_data(QEMUFile *f) { int idx, len, thread_count; if (!migrate_use_compression()) { return; } thread_count = migrate_compress_threads(); for (idx = 0; idx < thread_count; idx++) { if (!comp_param[idx].done) { qemu_mutex_lock(comp_done_lock); while (!comp_param[idx].done && !quit_comp_thread) { qemu_cond_wait(comp_done_cond, comp_done_lock); } qemu_mutex_unlock(comp_done_lock); } if (!quit_comp_thread) { len = qemu_put_qemu_file(f, comp_param[idx].file); bytes_transferred += len; } } } | 20,412 |
0 | sPAPRDRConnector *spapr_dr_connector_new(Object *owner, sPAPRDRConnectorType type, uint32_t id) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(TYPE_SPAPR_DR_CONNECTOR)); g_assert(type); drc->type = type; drc->id = id; drc->owner = owner; object_property_add_child(owner, "dr-connector[*]", OBJECT(drc), NULL); object_property_set_bool(OBJECT(drc), true, "realized", NULL); /* human-readable name for a DRC to encode into the DT * description. this is mainly only used within a guest in place * of the unique DRC index. * * in the case of VIO/PCI devices, it corresponds to a * "location code" that maps a logical device/function (DRC index) * to a physical (or virtual in the case of VIO) location in the * system by chaining together the "location label" for each * encapsulating component. * * since this is more to do with diagnosing physical hardware * issues than guest compatibility, we choose location codes/DRC * names that adhere to the documented format, but avoid encoding * the entire topology information into the label/code, instead * just using the location codes based on the labels for the * endpoints (VIO/PCI adaptor connectors), which is basically * just "C" followed by an integer ID. * * DRC names as documented by PAPR+ v2.7, 13.5.2.4 * location codes as documented by PAPR+ v2.7, 12.3.1.5 */ switch (drc->type) { case SPAPR_DR_CONNECTOR_TYPE_CPU: drc->name = g_strdup_printf("CPU %d", id); break; case SPAPR_DR_CONNECTOR_TYPE_PHB: drc->name = g_strdup_printf("PHB %d", id); break; case SPAPR_DR_CONNECTOR_TYPE_VIO: case SPAPR_DR_CONNECTOR_TYPE_PCI: drc->name = g_strdup_printf("C%d", id); break; case SPAPR_DR_CONNECTOR_TYPE_LMB: drc->name = g_strdup_printf("LMB %d", id); break; default: g_assert(false); } /* PCI slot always start in a USABLE state, and stay there */ if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) { drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; } return drc; } | 20,413 |
0 | int bdrv_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info) { BlockDriver *drv = bs->drv; if (!drv) return -ENOMEDIUM; if (drv->bdrv_snapshot_create) return drv->bdrv_snapshot_create(bs, sn_info); if (bs->file) return bdrv_snapshot_create(bs->file, sn_info); return -ENOTSUP; } | 20,414 |
0 | static char *tcg_get_arg_str_idx(TCGContext *s, char *buf, int buf_size, int idx) { assert(idx >= 0 && idx < s->nb_temps); return tcg_get_arg_str_ptr(s, buf, buf_size, &s->temps[idx]); } | 20,415 |
0 | static inline int mpeg4_is_resync(MpegEncContext *s){ const int bits_count= get_bits_count(&s->gb); if(s->workaround_bugs&FF_BUG_NO_PADDING){ return 0; } if(bits_count + 8 >= s->gb.size*8){ int v= show_bits(&s->gb, 8); v|= 0x7F >> (7-(bits_count&7)); if(v==0x7F) return 1; }else{ if(show_bits(&s->gb, 16) == ff_mpeg4_resync_prefix[bits_count&7]){ int len; GetBitContext gb= s->gb; skip_bits(&s->gb, 1); align_get_bits(&s->gb); for(len=0; len<32; len++){ if(get_bits1(&s->gb)) break; } s->gb= gb; if(len>=ff_mpeg4_get_video_packet_prefix_length(s)) return 1; } } return 0; } | 20,416 |
1 | ssize_t v9fs_list_xattr(FsContext *ctx, const char *path, void *value, size_t vsize) { ssize_t size = 0; char *buffer; void *ovalue = value; XattrOperations *xops; char *orig_value, *orig_value_start; ssize_t xattr_len, parsed_len = 0, attr_len; /* Get the actual len */ buffer = rpath(ctx, path); xattr_len = llistxattr(buffer, value, 0); if (xattr_len <= 0) { g_free(buffer); return xattr_len; } /* Now fetch the xattr and find the actual size */ orig_value = g_malloc(xattr_len); xattr_len = llistxattr(buffer, orig_value, xattr_len); g_free(buffer); /* store the orig pointer */ orig_value_start = orig_value; while (xattr_len > parsed_len) { xops = get_xattr_operations(ctx->xops, orig_value); if (!xops) { goto next_entry; } if (!value) { size += xops->listxattr(ctx, path, orig_value, value, vsize); } else { size = xops->listxattr(ctx, path, orig_value, value, vsize); if (size < 0) { goto err_out; } value += size; vsize -= size; } next_entry: /* Got the next entry */ attr_len = strlen(orig_value) + 1; parsed_len += attr_len; orig_value += attr_len; } if (value) { size = value - ovalue; } err_out: g_free(orig_value_start); return size; } | 20,418 |
1 | static int mov_write_udta_tag(ByteIOContext *pb, MOVContext* mov, AVFormatContext *s) { int pos = url_ftell(pb); int i; put_be32(pb, 0); /* size */ put_tag(pb, "udta"); /* iTunes meta data */ mov_write_meta_tag(pb, mov, s); /* Requirements */ for (i=0; i<MAX_STREAMS; i++) { if(mov->tracks[i].entry <= 0) continue; if (mov->tracks[i].enc->codec_id == CODEC_ID_AAC || mov->tracks[i].enc->codec_id == CODEC_ID_MPEG4) { int pos = url_ftell(pb); put_be32(pb, 0); /* size */ put_tag(pb, "\251req"); put_be16(pb, sizeof("QuickTime 6.0 or greater") - 1); put_be16(pb, 0); put_buffer(pb, "QuickTime 6.0 or greater", sizeof("QuickTime 6.0 or greater") - 1); updateSize(pb, pos); break; } } /* Encoder */ if(!(mov->tracks[0].enc->flags & CODEC_FLAG_BITEXACT)) { int pos = url_ftell(pb); put_be32(pb, 0); /* size */ put_tag(pb, "\251enc"); put_be16(pb, sizeof(LIBAVFORMAT_IDENT) - 1); /* string length */ put_be16(pb, 0); put_buffer(pb, LIBAVFORMAT_IDENT, sizeof(LIBAVFORMAT_IDENT) - 1); updateSize(pb, pos); } if( s->title[0] ) { int pos = url_ftell(pb); put_be32(pb, 0); /* size */ put_tag(pb, "\251nam"); put_be16(pb, strlen(s->title)); /* string length */ put_be16(pb, 0); put_buffer(pb, s->title, strlen(s->title)); updateSize(pb, pos); } if( s->author[0] ) { int pos = url_ftell(pb); put_be32(pb, 0); /* size */ put_tag(pb, /*"\251aut"*/ "\251day" ); put_be16(pb, strlen(s->author)); /* string length */ put_be16(pb, 0); put_buffer(pb, s->author, strlen(s->author)); updateSize(pb, pos); } if( s->comment[0] ) { int pos = url_ftell(pb); put_be32(pb, 0); /* size */ put_tag(pb, "\251des"); put_be16(pb, strlen(s->comment)); /* string length */ put_be16(pb, 0); put_buffer(pb, s->comment, strlen(s->comment)); updateSize(pb, pos); } return updateSize(pb, pos); } | 20,419 |
1 | static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val) { static const char shutdown_str[8] = "Shutdown"; static int shutdown_index = 0; switch(addr) { /* Bochs BIOS messages */ case 0x400: case 0x401: /* used to be panic, now unused */ break; case 0x402: case 0x403: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; case 0x8900: /* same as Bochs power off */ if (val == shutdown_str[shutdown_index]) { shutdown_index++; if (shutdown_index == 8) { shutdown_index = 0; qemu_system_shutdown_request(); } } else { shutdown_index = 0; } break; /* LGPL'ed VGA BIOS messages */ case 0x501: case 0x502: fprintf(stderr, "VGA BIOS panic, line %d\n", val); exit(1); case 0x500: case 0x503: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; } } | 20,420 |
1 | void error_propagate(Error **dst_err, Error *local_err) { if (dst_err) { *dst_err = local_err; } else if (local_err) { error_free(local_err); } } | 20,421 |
1 | static int macio_newworld_initfn(PCIDevice *d) { MacIOState *s = MACIO(d); NewWorldMacIOState *ns = NEWWORLD_MACIO(d); SysBusDevice *sysbus_dev; MemoryRegion *timer_memory = g_new(MemoryRegion, 1); int i; int cur_irq = 0; int ret = macio_common_initfn(d); if (ret < 0) { return ret; } sysbus_dev = SYS_BUS_DEVICE(&s->cuda); sysbus_connect_irq(sysbus_dev, 0, ns->irqs[cur_irq++]); if (s->pic_mem) { /* OpenPIC */ memory_region_add_subregion(&s->bar, 0x40000, s->pic_mem); } /* IDE buses */ for (i = 0; i < ARRAY_SIZE(ns->ide); i++) { qemu_irq irq0 = ns->irqs[cur_irq++]; qemu_irq irq1 = ns->irqs[cur_irq++]; ret = macio_initfn_ide(s, &ns->ide[i], irq0, irq1, 0x16 + (i * 4)); if (ret < 0) { return ret; } } /* Timer */ memory_region_init_io(timer_memory, OBJECT(s), &timer_ops, NULL, "timer", 0x1000); memory_region_add_subregion(&s->bar, 0x15000, timer_memory); return 0; } | 20,423 |
1 | static void cpu_openrisc_load_kernel(ram_addr_t ram_size, const char *kernel_filename, OpenRISCCPU *cpu) { long kernel_size; uint64_t elf_entry; hwaddr entry; if (kernel_filename && !qtest_enabled()) { kernel_size = load_elf(kernel_filename, NULL, NULL, &elf_entry, NULL, NULL, 1, ELF_MACHINE, 1); entry = elf_entry; if (kernel_size < 0) { kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL); } if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, ram_size - KERNEL_LOAD_ADDR); entry = KERNEL_LOAD_ADDR; } if (kernel_size < 0) { fprintf(stderr, "QEMU: couldn't load the kernel '%s'\n", kernel_filename); exit(1); } } cpu->env.pc = entry; } | 20,424 |
1 | void qmp_migrate(const char *uri, bool has_blk, bool blk, bool has_inc, bool inc, bool has_detach, bool detach, Error **errp) { Error *local_err = NULL; MigrationState *s = migrate_get_current(); MigrationParams params; const char *p; params.blk = has_blk && blk; params.shared = has_inc && inc; if (migration_is_setup_or_active(s->state) || s->state == MIGRATION_STATUS_CANCELLING) { error_setg(errp, QERR_MIGRATION_ACTIVE); return; } if (runstate_check(RUN_STATE_INMIGRATE)) { error_setg(errp, "Guest is waiting for an incoming migration"); return; } if (qemu_savevm_state_blocked(errp)) { return; } if (migration_blockers) { *errp = error_copy(migration_blockers->data); return; } s = migrate_init(¶ms); if (strstart(uri, "tcp:", &p)) { tcp_start_outgoing_migration(s, p, &local_err); #ifdef CONFIG_RDMA } else if (strstart(uri, "rdma:", &p)) { rdma_start_outgoing_migration(s, p, &local_err); #endif #if !defined(WIN32) } else if (strstart(uri, "exec:", &p)) { exec_start_outgoing_migration(s, p, &local_err); } else if (strstart(uri, "unix:", &p)) { unix_start_outgoing_migration(s, p, &local_err); } else if (strstart(uri, "fd:", &p)) { fd_start_outgoing_migration(s, p, &local_err); #endif } else { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "uri", "a valid migration protocol"); migrate_set_state(&s->state, MIGRATION_STATUS_SETUP, MIGRATION_STATUS_FAILED); return; } if (local_err) { migrate_fd_error(s); error_propagate(errp, local_err); return; } } | 20,426 |
0 | static void avc_luma_hv_qrt_and_aver_dst_16x16_msa(const uint8_t *src_x, const uint8_t *src_y, int32_t src_stride, uint8_t *dst, int32_t dst_stride) { uint32_t multiple8_cnt; for (multiple8_cnt = 2; multiple8_cnt--;) { avc_luma_hv_qrt_and_aver_dst_8x8_msa(src_x, src_y, src_stride, dst, dst_stride); src_x += 8; src_y += 8; dst += 8; } src_x += (8 * src_stride) - 16; src_y += (8 * src_stride) - 16; dst += (8 * dst_stride) - 16; for (multiple8_cnt = 2; multiple8_cnt--;) { avc_luma_hv_qrt_and_aver_dst_8x8_msa(src_x, src_y, src_stride, dst, dst_stride); src_x += 8; src_y += 8; dst += 8; } } | 20,427 |
0 | uint32_t net_checksum_add(int len, uint8_t *buf) { uint32_t sum = 0; int i; for (i = 0; i < len; i++) { if (i & 1) sum += (uint32_t)buf[i]; else sum += (uint32_t)buf[i] << 8; } return sum; } | 20,428 |
0 | static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr) { HPETState *s = opaque; uint64_t cur_tick, index; DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr); index = addr; /*address range of all TN regs*/ if (index >= 0x100 && index <= 0x3ff) { uint8_t timer_id = (addr - 0x100) / 0x20; HPETTimer *timer = &s->timer[timer_id]; if (timer_id > s->num_timers) { DPRINTF("qemu: timer id out of range\n"); return 0; } switch ((addr - 0x100) % 0x20) { case HPET_TN_CFG: return timer->config; case HPET_TN_CFG + 4: // Interrupt capabilities return timer->config >> 32; case HPET_TN_CMP: // comparator register return timer->cmp; case HPET_TN_CMP + 4: return timer->cmp >> 32; case HPET_TN_ROUTE: return timer->fsb; case HPET_TN_ROUTE + 4: return timer->fsb >> 32; default: DPRINTF("qemu: invalid hpet_ram_readl\n"); break; } } else { switch (index) { case HPET_ID: return s->capability; case HPET_PERIOD: return s->capability >> 32; case HPET_CFG: return s->config; case HPET_CFG + 4: DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n"); return 0; case HPET_COUNTER: if (hpet_enabled(s)) { cur_tick = hpet_get_ticks(s); } else { cur_tick = s->hpet_counter; } DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick); return cur_tick; case HPET_COUNTER + 4: if (hpet_enabled(s)) { cur_tick = hpet_get_ticks(s); } else { cur_tick = s->hpet_counter; } DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick); return cur_tick >> 32; case HPET_STATUS: return s->isr; default: DPRINTF("qemu: invalid hpet_ram_readl\n"); break; } } return 0; } | 20,429 |
0 | static void gen_jump(DisasContext *dc, uint32_t imm, uint32_t reg, uint32_t op0) { target_ulong tmp_pc; /* N26, 26bits imm */ tmp_pc = sign_extend((imm<<2), 26) + dc->pc; switch (op0) { case 0x00: /* l.j */ tcg_gen_movi_tl(jmp_pc, tmp_pc); break; case 0x01: /* l.jal */ tcg_gen_movi_tl(cpu_R[9], (dc->pc + 8)); tcg_gen_movi_tl(jmp_pc, tmp_pc); break; case 0x03: /* l.bnf */ case 0x04: /* l.bf */ { int lab = gen_new_label(); TCGv sr_f = tcg_temp_new(); tcg_gen_movi_tl(jmp_pc, dc->pc+8); tcg_gen_andi_tl(sr_f, cpu_sr, SR_F); tcg_gen_brcondi_i32(op0 == 0x03 ? TCG_COND_EQ : TCG_COND_NE, sr_f, SR_F, lab); tcg_gen_movi_tl(jmp_pc, tmp_pc); gen_set_label(lab); tcg_temp_free(sr_f); } break; case 0x11: /* l.jr */ tcg_gen_mov_tl(jmp_pc, cpu_R[reg]); break; case 0x12: /* l.jalr */ tcg_gen_movi_tl(cpu_R[9], (dc->pc + 8)); tcg_gen_mov_tl(jmp_pc, cpu_R[reg]); break; default: gen_illegal_exception(dc); break; } dc->delayed_branch = 2; dc->tb_flags |= D_FLAG; gen_sync_flags(dc); } | 20,430 |
0 | static int net_init_nic(const NetClientOptions *opts, const char *name, NetClientState *peer, Error **errp) { int idx; NICInfo *nd; const NetLegacyNicOptions *nic; assert(opts->type == NET_CLIENT_OPTIONS_KIND_NIC); nic = opts->u.nic; idx = nic_get_free_idx(); if (idx == -1 || nb_nics >= MAX_NICS) { error_setg(errp, "too many NICs"); return -1; } nd = &nd_table[idx]; memset(nd, 0, sizeof(*nd)); if (nic->has_netdev) { nd->netdev = qemu_find_netdev(nic->netdev); if (!nd->netdev) { error_setg(errp, "netdev '%s' not found", nic->netdev); return -1; } } else { assert(peer); nd->netdev = peer; } nd->name = g_strdup(name); if (nic->has_model) { nd->model = g_strdup(nic->model); } if (nic->has_addr) { nd->devaddr = g_strdup(nic->addr); } if (nic->has_macaddr && net_parse_macaddr(nd->macaddr.a, nic->macaddr) < 0) { error_setg(errp, "invalid syntax for ethernet address"); return -1; } if (nic->has_macaddr && is_multicast_ether_addr(nd->macaddr.a)) { error_setg(errp, "NIC cannot have multicast MAC address (odd 1st byte)"); return -1; } qemu_macaddr_default_if_unset(&nd->macaddr); if (nic->has_vectors) { if (nic->vectors > 0x7ffffff) { error_setg(errp, "invalid # of vectors: %"PRIu32, nic->vectors); return -1; } nd->nvectors = nic->vectors; } else { nd->nvectors = DEV_NVECTORS_UNSPECIFIED; } nd->used = 1; nb_nics++; return idx; } | 20,431 |
0 | static int dxtory_decode_v2_410(AVCodecContext *avctx, AVFrame *pic, const uint8_t *src, int src_size) { GetByteContext gb; GetBitContext gb2; int nslices, slice, slice_height, ref_slice_height; int cur_y, next_y; uint32_t off, slice_size; uint8_t *Y, *U, *V; int ret; bytestream2_init(&gb, src, src_size); nslices = bytestream2_get_le16(&gb); off = FFALIGN(nslices * 4 + 2, 16); if (src_size < off) { av_log(avctx, AV_LOG_ERROR, "no slice data\n"); return AVERROR_INVALIDDATA; } if (!nslices || avctx->height % nslices) { avpriv_request_sample(avctx, "%d slices for %dx%d", nslices, avctx->width, avctx->height); return AVERROR_PATCHWELCOME; } ref_slice_height = avctx->height / nslices; if ((avctx->width & 3) || (avctx->height & 3)) { avpriv_request_sample(avctx, "Frame dimensions %dx%d", avctx->width, avctx->height); } avctx->pix_fmt = AV_PIX_FMT_YUV410P; if ((ret = ff_get_buffer(avctx, pic, 0)) < 0) return ret; Y = pic->data[0]; U = pic->data[1]; V = pic->data[2]; cur_y = 0; next_y = ref_slice_height; for (slice = 0; slice < nslices; slice++) { slice_size = bytestream2_get_le32(&gb); slice_height = (next_y & ~3) - (cur_y & ~3); if (slice_size > src_size - off) { av_log(avctx, AV_LOG_ERROR, "invalid slice size %"PRIu32" (only %"PRIu32" bytes left)\n", slice_size, src_size - off); return AVERROR_INVALIDDATA; } if (slice_size <= 16) { av_log(avctx, AV_LOG_ERROR, "invalid slice size %"PRIu32"\n", slice_size); return AVERROR_INVALIDDATA; } if (AV_RL32(src + off) != slice_size - 16) { av_log(avctx, AV_LOG_ERROR, "Slice sizes mismatch: got %"PRIu32" instead of %"PRIu32"\n", AV_RL32(src + off), slice_size - 16); } init_get_bits(&gb2, src + off + 16, (slice_size - 16) * 8); dx2_decode_slice_410(&gb2, avctx->width, slice_height, Y, U, V, pic->linesize[0], pic->linesize[1], pic->linesize[2]); Y += pic->linesize[0] * slice_height; U += pic->linesize[1] * (slice_height >> 2); V += pic->linesize[2] * (slice_height >> 2); off += slice_size; cur_y = next_y; next_y += ref_slice_height; } return 0; } | 20,432 |
0 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) { struct kvm_irq_routing_entry kroute; if (!kvm_irqchip_in_kernel()) { return -ENOSYS; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_MSI; kroute.flags = 0; kroute.u.msi.address_lo = (uint32_t)msg.address; kroute.u.msi.address_hi = msg.address >> 32; kroute.u.msi.data = msg.data; return kvm_update_routing_entry(s, &kroute); } | 20,435 |
0 | type_init(pflash_cfi01_register_types) pflash_t *pflash_cfi01_register(hwaddr base, DeviceState *qdev, const char *name, hwaddr size, BlockDriverState *bs, uint32_t sector_len, int nb_blocs, int bank_width, uint16_t id0, uint16_t id1, uint16_t id2, uint16_t id3, int be) { DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01); if (bs && qdev_prop_set_drive(dev, "drive", bs)) { abort(); } qdev_prop_set_uint32(dev, "num-blocks", nb_blocs); qdev_prop_set_uint64(dev, "sector-length", sector_len); qdev_prop_set_uint8(dev, "width", bank_width); qdev_prop_set_uint8(dev, "big-endian", !!be); qdev_prop_set_uint16(dev, "id0", id0); qdev_prop_set_uint16(dev, "id1", id1); qdev_prop_set_uint16(dev, "id2", id2); qdev_prop_set_uint16(dev, "id3", id3); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); return CFI_PFLASH01(dev); } | 20,437 |
0 | static void vnc_write_u16(VncState *vs, uint16_t value) { uint8_t buf[2]; buf[0] = (value >> 8) & 0xFF; buf[1] = value & 0xFF; vnc_write(vs, buf, 2); } | 20,438 |
0 | type_init(assign_register_types) static void assigned_dev_load_option_rom(AssignedDevice *dev) { int size = 0; pci_assign_dev_load_option_rom(&dev->dev, OBJECT(dev), &size, dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function); if (!size) { error_report("pci-assign: Invalid ROM."); } } | 20,439 |
0 | static void ide_issue_trim_cb(void *opaque, int ret) { TrimAIOCB *iocb = opaque; if (ret >= 0) { while (iocb->j < iocb->qiov->niov) { int j = iocb->j; while (++iocb->i < iocb->qiov->iov[j].iov_len / 8) { int i = iocb->i; uint64_t *buffer = iocb->qiov->iov[j].iov_base; /* 6-byte LBA + 2-byte range per entry */ uint64_t entry = le64_to_cpu(buffer[i]); uint64_t sector = entry & 0x0000ffffffffffffULL; uint16_t count = entry >> 48; if (count == 0) { continue; } /* Got an entry! Submit and exit. */ iocb->aiocb = blk_aio_pdiscard(iocb->blk, sector << BDRV_SECTOR_BITS, count << BDRV_SECTOR_BITS, ide_issue_trim_cb, opaque); return; } iocb->j++; iocb->i = -1; } } else { iocb->ret = ret; } iocb->aiocb = NULL; if (iocb->bh) { qemu_bh_schedule(iocb->bh); } } | 20,440 |
0 | static void usbredir_device_disconnect(void *priv) { USBRedirDevice *dev = priv; int i; /* Stop any pending attaches */ qemu_del_timer(dev->attach_timer); if (dev->dev.attached) { usb_device_detach(&dev->dev); /* * Delay next usb device attach to give the guest a chance to see * see the detach / attach in case of quick close / open succession */ dev->next_attach_time = qemu_get_clock_ms(vm_clock) + 200; } /* Reset state so that the next dev connected starts with a clean slate */ usbredir_cleanup_device_queues(dev); memset(dev->endpoint, 0, sizeof(dev->endpoint)); for (i = 0; i < MAX_ENDPOINTS; i++) { QTAILQ_INIT(&dev->endpoint[i].bufpq); } usb_ep_init(&dev->dev); dev->interface_info.interface_count = 0; } | 20,441 |
0 | static void pm_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { DPRINTF("pm_write_config address 0x%x val 0x%x len 0x%x \n", address, val, len); pci_default_write_config(d, address, val, len); } | 20,442 |
0 | static int rv20_decode_picture_header(MpegEncContext *s) { int seq, mb_pos, i; i= get_bits(&s->gb, 2); switch(i){ case 0: s->pict_type= I_TYPE; break; case 1: s->pict_type= I_TYPE; break; //hmm ... case 2: s->pict_type= P_TYPE; break; case 3: s->pict_type= B_TYPE; break; default: av_log(s->avctx, AV_LOG_ERROR, "unknown frame type\n"); return -1; } if (get_bits(&s->gb, 1)){ av_log(s->avctx, AV_LOG_ERROR, "unknown bit set\n"); return -1; } s->qscale = get_bits(&s->gb, 5); if(s->qscale==0){ av_log(s->avctx, AV_LOG_ERROR, "error, qscale:0\n"); return -1; } if(s->avctx->sub_id == 0x20200002) seq= get_bits(&s->gb, 16); else seq= get_bits(&s->gb, 8); for(i=0; i<6; i++){ if(s->mb_width*s->mb_height < ff_mba_max[i]) break; } mb_pos= get_bits(&s->gb, ff_mba_length[i]); s->mb_x= mb_pos % s->mb_width; s->mb_y= mb_pos / s->mb_width; s->no_rounding= get_bits1(&s->gb); s->f_code = 1; s->unrestricted_mv = 1; s->h263_aic= s->pict_type == I_TYPE; // s->alt_inter_vlc=1; // s->obmc=1; // s->umvplus=1; // s->modified_quant=1; if(s->avctx->debug & FF_DEBUG_PICT_INFO){ av_log(s->avctx, AV_LOG_INFO, "num:%5d x:%2d y:%2d type:%d qscale:%2d rnd:%d\n", seq, s->mb_x, s->mb_y, s->pict_type, s->qscale, s->no_rounding); } if (s->pict_type == B_TYPE){ av_log(s->avctx, AV_LOG_ERROR, "b frame not supported\n"); return -1; } return s->mb_width*s->mb_height - mb_pos; } | 20,443 |
0 | static void test_visitor_in_union_flat(TestInputVisitorData *data, const void *unused) { Visitor *v; Error *err = NULL; UserDefFlatUnion *tmp; UserDefUnionBase *base; v = visitor_input_test_init(data, "{ 'enum1': 'value1', " "'integer': 41, " "'string': 'str', " "'boolean': true }"); visit_type_UserDefFlatUnion(v, &tmp, NULL, &err); g_assert(err == NULL); g_assert_cmpint(tmp->enum1, ==, ENUM_ONE_VALUE1); g_assert_cmpstr(tmp->string, ==, "str"); g_assert_cmpint(tmp->integer, ==, 41); g_assert_cmpint(tmp->u.value1->boolean, ==, true); base = qapi_UserDefFlatUnion_base(tmp); g_assert(&base->enum1 == &tmp->enum1); qapi_free_UserDefFlatUnion(tmp); } | 20,445 |
0 | static void s390_pcihost_hot_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PCIDevice *pci_dev = NULL; PCIBus *bus; int32_t devfn; S390PCIBusDevice *pbdev = NULL; S390pciState *s = s390_get_phb(); if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_BRIDGE)) { error_setg(errp, "PCI bridge hot unplug currently not supported"); return; } else if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { pci_dev = PCI_DEVICE(dev); QTAILQ_FOREACH(pbdev, &s->zpci_devs, link) { if (pbdev->pdev == pci_dev) { break; } } assert(pbdev != NULL); } else if (object_dynamic_cast(OBJECT(dev), TYPE_S390_PCI_DEVICE)) { pbdev = S390_PCI_DEVICE(dev); pci_dev = pbdev->pdev; } switch (pbdev->state) { case ZPCI_FS_RESERVED: goto out; case ZPCI_FS_STANDBY: break; default: s390_pci_generate_plug_event(HP_EVENT_DECONFIGURE_REQUEST, pbdev->fh, pbdev->fid); pbdev->release_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, s390_pcihost_timer_cb, pbdev); timer_mod(pbdev->release_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + HOT_UNPLUG_TIMEOUT); return; } if (pbdev->release_timer && timer_pending(pbdev->release_timer)) { timer_del(pbdev->release_timer); timer_free(pbdev->release_timer); pbdev->release_timer = NULL; } s390_pci_generate_plug_event(HP_EVENT_STANDBY_TO_RESERVED, pbdev->fh, pbdev->fid); bus = pci_dev->bus; devfn = pci_dev->devfn; object_unparent(OBJECT(pci_dev)); s390_pci_msix_free(pbdev); s390_pci_iommu_free(s, bus, devfn); pbdev->pdev = NULL; pbdev->state = ZPCI_FS_RESERVED; out: pbdev->fid = 0; QTAILQ_REMOVE(&s->zpci_devs, pbdev, link); g_hash_table_remove(s->zpci_table, &pbdev->idx); object_unparent(OBJECT(pbdev)); } | 20,446 |
1 | static int parse_presentation_segment(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int64_t pts) { PGSSubContext *ctx = avctx->priv_data; int i, state, ret; // Video descriptor int w = bytestream_get_be16(&buf); int h = bytestream_get_be16(&buf); uint16_t object_index; ctx->presentation.pts = pts; av_dlog(avctx, "Video Dimensions %dx%d\n", w, h); ret = ff_set_dimensions(avctx, w, h); if (ret < 0) return ret; /* Skip 1 bytes of unknown, frame rate */ buf++; // Composition descriptor ctx->presentation.id_number = bytestream_get_be16(&buf); /* * state is a 2 bit field that defines pgs epoch boundaries * 00 - Normal, previously defined objects and palettes are still valid * 01 - Acquisition point, previous objects and palettes can be released * 10 - Epoch start, previous objects and palettes can be released * 11 - Epoch continue, previous objects and palettes can be released * * reserved 6 bits discarded */ state = bytestream_get_byte(&buf) >> 6; if (state != 0) { flush_cache(avctx); } /* * skip palette_update_flag (0x80), */ buf += 1; ctx->presentation.palette_id = bytestream_get_byte(&buf); ctx->presentation.object_count = bytestream_get_byte(&buf); if (ctx->presentation.object_count > MAX_OBJECT_REFS) { av_log(avctx, AV_LOG_ERROR, "Invalid number of presentation objects %d\n", ctx->presentation.object_count); ctx->presentation.object_count = 2; if (avctx->err_recognition & AV_EF_EXPLODE) { return AVERROR_INVALIDDATA; } } for (i = 0; i < ctx->presentation.object_count; i++) { if (buf_end - buf < 8) { av_log(avctx, AV_LOG_ERROR, "Insufficent space for object\n"); ctx->presentation.object_count = i; return AVERROR_INVALIDDATA; } ctx->presentation.objects[i].id = bytestream_get_be16(&buf); ctx->presentation.objects[i].window_id = bytestream_get_byte(&buf); ctx->presentation.objects[i].composition_flag = bytestream_get_byte(&buf); ctx->presentation.objects[i].x = bytestream_get_be16(&buf); ctx->presentation.objects[i].y = bytestream_get_be16(&buf); // If cropping if (ctx->presentation.objects[i].composition_flag & 0x80) { ctx->presentation.objects[i].crop_x = bytestream_get_be16(&buf); ctx->presentation.objects[i].crop_y = bytestream_get_be16(&buf); ctx->presentation.objects[i].crop_w = bytestream_get_be16(&buf); ctx->presentation.objects[i].crop_h = bytestream_get_be16(&buf); } av_dlog(avctx, "Subtitle Placement x=%d, y=%d\n", ctx->presentation.objects[i].x, ctx->presentation.objects[i].y); if (ctx->presentation.objects[i].x > avctx->width || ctx->presentation.objects[i].y > avctx->height) { av_log(avctx, AV_LOG_ERROR, "Subtitle out of video bounds. x = %d, y = %d, video width = %d, video height = %d.\n", ctx->presentation.objects[i].x, ctx->presentation.objects[i].y, avctx->width, avctx->height); ctx->presentation.objects[i].x = 0; ctx->presentation.objects[i].y = 0; if (avctx->err_recognition & AV_EF_EXPLODE) { return AVERROR_INVALIDDATA; } } } return 0; } | 20,447 |
1 | static int crypto_close(URLContext *h) { CryptoContext *c = h->priv_data; if (c->hd) ffurl_close(c->hd); av_freep(&c->aes); av_freep(&c->key); av_freep(&c->iv); return 0; } | 20,448 |
1 | static int mimic_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int swap_buf_size = buf_size - MIMIC_HEADER_SIZE; MimicContext *ctx = avctx->priv_data; GetByteContext gb; int is_pframe; int width, height; int quality, num_coeffs; int res; if (buf_size <= MIMIC_HEADER_SIZE) { av_log(avctx, AV_LOG_ERROR, "insufficient data\n"); return AVERROR_INVALIDDATA; } bytestream2_init(&gb, buf, MIMIC_HEADER_SIZE); bytestream2_skip(&gb, 2); /* some constant (always 256) */ quality = bytestream2_get_le16u(&gb); width = bytestream2_get_le16u(&gb); height = bytestream2_get_le16u(&gb); bytestream2_skip(&gb, 4); /* some constant */ is_pframe = bytestream2_get_le32u(&gb); num_coeffs = bytestream2_get_byteu(&gb); bytestream2_skip(&gb, 3); /* some constant */ if (!ctx->avctx) { int i; if (!(width == 160 && height == 120) && !(width == 320 && height == 240)) { av_log(avctx, AV_LOG_ERROR, "invalid width/height!\n"); return AVERROR_INVALIDDATA; } ctx->avctx = avctx; avctx->width = width; avctx->height = height; avctx->pix_fmt = AV_PIX_FMT_YUV420P; for (i = 0; i < 3; i++) { ctx->num_vblocks[i] = AV_CEIL_RSHIFT(height, 3 + !!i); ctx->num_hblocks[i] = width >> (3 + !!i); } } else if (width != ctx->avctx->width || height != ctx->avctx->height) { avpriv_request_sample(avctx, "Resolution changing"); return AVERROR_PATCHWELCOME; } if (is_pframe && !ctx->frames[ctx->prev_index].f->data[0]) { av_log(avctx, AV_LOG_ERROR, "decoding must start with keyframe\n"); return AVERROR_INVALIDDATA; } ff_thread_release_buffer(avctx, &ctx->frames[ctx->cur_index]); ctx->frames[ctx->cur_index].f->pict_type = is_pframe ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; if ((res = ff_thread_get_buffer(avctx, &ctx->frames[ctx->cur_index], AV_GET_BUFFER_FLAG_REF)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return res; } ctx->next_prev_index = ctx->cur_index; ctx->next_cur_index = (ctx->cur_index - 1) & 15; ff_thread_finish_setup(avctx); av_fast_padded_malloc(&ctx->swap_buf, &ctx->swap_buf_size, swap_buf_size); if (!ctx->swap_buf) return AVERROR(ENOMEM); ctx->bbdsp.bswap_buf(ctx->swap_buf, (const uint32_t *) (buf + MIMIC_HEADER_SIZE), swap_buf_size >> 2); init_get_bits(&ctx->gb, ctx->swap_buf, swap_buf_size << 3); res = decode(ctx, quality, num_coeffs, !is_pframe); ff_thread_report_progress(&ctx->frames[ctx->cur_index], INT_MAX, 0); if (res < 0) { if (!(avctx->active_thread_type & FF_THREAD_FRAME)) ff_thread_release_buffer(avctx, &ctx->frames[ctx->cur_index]); return res; } if ((res = av_frame_ref(data, ctx->frames[ctx->cur_index].f)) < 0) return res; *got_frame = 1; flip_swap_frame(data); ctx->prev_index = ctx->next_prev_index; ctx->cur_index = ctx->next_cur_index; /* Only release frames that aren't used for backreferences anymore */ ff_thread_release_buffer(avctx, &ctx->frames[ctx->cur_index]); return buf_size; } | 20,449 |
1 | static void vmgenid_set_guid_auto_test(void) { const char *cmd; QemuUUID measured; cmd = "-machine accel=tcg -device vmgenid,id=testvgid," "guid=auto"; qtest_start(cmd); read_guid_from_memory(&measured); /* Just check that the GUID is non-null */ g_assert(!qemu_uuid_is_null(&measured)); qtest_quit(global_qtest); } | 20,450 |
1 | static TCGv gen_lea_indexed(CPUM68KState *env, DisasContext *s, TCGv base) { uint32_t offset; uint16_t ext; TCGv add; TCGv tmp; uint32_t bd, od; offset = s->pc; ext = cpu_lduw_code(env, s->pc); s->pc += 2; if ((ext & 0x800) == 0 && !m68k_feature(s->env, M68K_FEATURE_WORD_INDEX)) return NULL_QREG; if (ext & 0x100) { /* full extension word format */ if (!m68k_feature(s->env, M68K_FEATURE_EXT_FULL)) return NULL_QREG; if ((ext & 0x30) > 0x10) { /* base displacement */ if ((ext & 0x30) == 0x20) { bd = (int16_t)cpu_lduw_code(env, s->pc); s->pc += 2; } else { bd = read_im32(env, s); } else { bd = 0; tmp = tcg_temp_new(); if ((ext & 0x44) == 0) { /* pre-index */ add = gen_addr_index(ext, tmp); } else { add = NULL_QREG; if ((ext & 0x80) == 0) { /* base not suppressed */ if (IS_NULL_QREG(base)) { base = tcg_const_i32(offset + bd); bd = 0; if (!IS_NULL_QREG(add)) { tcg_gen_add_i32(tmp, add, base); add = tmp; } else { add = base; if (!IS_NULL_QREG(add)) { if (bd != 0) { tcg_gen_addi_i32(tmp, add, bd); add = tmp; } else { add = tcg_const_i32(bd); if ((ext & 3) != 0) { /* memory indirect */ base = gen_load(s, OS_LONG, add, 0); if ((ext & 0x44) == 4) { add = gen_addr_index(ext, tmp); tcg_gen_add_i32(tmp, add, base); add = tmp; } else { add = base; if ((ext & 3) > 1) { /* outer displacement */ if ((ext & 3) == 2) { od = (int16_t)cpu_lduw_code(env, s->pc); s->pc += 2; } else { od = read_im32(env, s); } else { od = 0; if (od != 0) { tcg_gen_addi_i32(tmp, add, od); add = tmp; } else { /* brief extension word format */ tmp = tcg_temp_new(); add = gen_addr_index(ext, tmp); if (!IS_NULL_QREG(base)) { tcg_gen_add_i32(tmp, add, base); if ((int8_t)ext) tcg_gen_addi_i32(tmp, tmp, (int8_t)ext); } else { tcg_gen_addi_i32(tmp, add, offset + (int8_t)ext); add = tmp; return add; | 20,451 |
1 | int swr_convert_frame(SwrContext *s, AVFrame *out, const AVFrame *in) { int ret, setup = 0; if (!swr_is_initialized(s)) { if ((ret = swr_config_frame(s, out, in)) < 0) return ret; if ((ret = swr_init(s)) < 0) return ret; setup = 1; } else { // return as is or reconfigure for input changes? if ((ret = config_changed(s, out, in))) return ret; } if (out) { if (!out->linesize[0]) { out->nb_samples = swr_get_delay(s, s->out_sample_rate) + in->nb_samples*(int64_t)s->out_sample_rate / s->in_sample_rate + 3; if ((ret = av_frame_get_buffer(out, 0)) < 0) { if (setup) swr_close(s); return ret; } } else { if (!out->nb_samples) out->nb_samples = available_samples(out); } } return convert_frame(s, out, in); } | 20,452 |
0 | av_cold static int fbdev_read_header(AVFormatContext *avctx, AVFormatParameters *ap) { FBDevContext *fbdev = avctx->priv_data; AVStream *st = NULL; enum PixelFormat pix_fmt; int ret, flags = O_RDONLY; ret = av_parse_video_rate(&fbdev->framerate_q, fbdev->framerate); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Couldn't parse framerate.\n"); return ret; } #if FF_API_FORMAT_PARAMETERS if (ap->time_base.num) fbdev->framerate_q = (AVRational){ap->time_base.den, ap->time_base.num}; #endif if (!(st = av_new_stream(avctx, 0))) return AVERROR(ENOMEM); av_set_pts_info(st, 64, 1, 1000000); /* 64 bits pts in microseconds */ /* NONBLOCK is ignored by the fbdev driver, only set for consistency */ if (avctx->flags & AVFMT_FLAG_NONBLOCK) flags |= O_NONBLOCK; if ((fbdev->fd = open(avctx->filename, flags)) == -1) { ret = AVERROR(errno); av_log(avctx, AV_LOG_ERROR, "Could not open framebuffer device '%s': %s\n", avctx->filename, strerror(ret)); return ret; } if (ioctl(fbdev->fd, FBIOGET_VSCREENINFO, &fbdev->varinfo) < 0) { ret = AVERROR(errno); av_log(avctx, AV_LOG_ERROR, "FBIOGET_VSCREENINFO: %s\n", strerror(errno)); goto fail; } if (ioctl(fbdev->fd, FBIOGET_FSCREENINFO, &fbdev->fixinfo) < 0) { ret = AVERROR(errno); av_log(avctx, AV_LOG_ERROR, "FBIOGET_FSCREENINFO: %s\n", strerror(errno)); goto fail; } pix_fmt = get_pixfmt_from_fb_varinfo(&fbdev->varinfo); if (pix_fmt == PIX_FMT_NONE) { ret = AVERROR(EINVAL); av_log(avctx, AV_LOG_ERROR, "Framebuffer pixel format not supported.\n"); goto fail; } fbdev->width = fbdev->varinfo.xres; fbdev->heigth = fbdev->varinfo.yres; fbdev->bytes_per_pixel = (fbdev->varinfo.bits_per_pixel + 7) >> 3; fbdev->frame_linesize = fbdev->width * fbdev->bytes_per_pixel; fbdev->frame_size = fbdev->frame_linesize * fbdev->heigth; fbdev->time_frame = AV_NOPTS_VALUE; fbdev->data = mmap(NULL, fbdev->fixinfo.smem_len, PROT_READ, MAP_SHARED, fbdev->fd, 0); if (fbdev->data == MAP_FAILED) { ret = AVERROR(errno); av_log(avctx, AV_LOG_ERROR, "Error in mmap(): %s\n", strerror(errno)); goto fail; } st->codec->codec_type = AVMEDIA_TYPE_VIDEO; st->codec->codec_id = CODEC_ID_RAWVIDEO; st->codec->width = fbdev->width; st->codec->height = fbdev->heigth; st->codec->pix_fmt = pix_fmt; st->codec->time_base = (AVRational){fbdev->framerate_q.den, fbdev->framerate_q.num}; st->codec->bit_rate = fbdev->width * fbdev->heigth * fbdev->bytes_per_pixel * av_q2d(fbdev->framerate_q) * 8; av_log(avctx, AV_LOG_INFO, "w:%d h:%d bpp:%d pixfmt:%s fps:%d/%d bit_rate:%d\n", fbdev->width, fbdev->heigth, fbdev->varinfo.bits_per_pixel, av_pix_fmt_descriptors[pix_fmt].name, fbdev->framerate_q.num, fbdev->framerate_q.den, st->codec->bit_rate); return 0; fail: close(fbdev->fd); return ret; } | 20,453 |
1 | static abi_long target_to_host_data_route(struct nlmsghdr *nlh) { struct ifinfomsg *ifi; struct ifaddrmsg *ifa; struct rtmsg *rtm; switch (nlh->nlmsg_type) { case RTM_GETLINK: break; case RTM_NEWLINK: case RTM_DELLINK: ifi = NLMSG_DATA(nlh); ifi->ifi_type = tswap16(ifi->ifi_type); ifi->ifi_index = tswap32(ifi->ifi_index); ifi->ifi_flags = tswap32(ifi->ifi_flags); ifi->ifi_change = tswap32(ifi->ifi_change); target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*ifi))); break; case RTM_GETADDR: case RTM_NEWADDR: case RTM_DELADDR: ifa = NLMSG_DATA(nlh); ifa->ifa_index = tswap32(ifa->ifa_index); target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*ifa))); break; case RTM_GETROUTE: break; case RTM_NEWROUTE: case RTM_DELROUTE: rtm = NLMSG_DATA(nlh); rtm->rtm_flags = tswap32(rtm->rtm_flags); target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*rtm))); break; default: return -TARGET_EOPNOTSUPP; } return 0; } | 20,454 |
1 | PPC_OP(cmp) { if (Ts0 < Ts1) { T0 = 0x08; } else if (Ts0 > Ts1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } | 20,456 |
1 | static int parse_channel_expressions(AVFilterContext *ctx, int expected_nb_channels) { EvalContext *eval = ctx->priv; char *args1 = av_strdup(eval->exprs); char *expr, *last_expr, *buf; double (* const *func1)(void *, double) = NULL; const char * const *func1_names = NULL; int i, ret = 0; if (!args1) return AVERROR(ENOMEM); if (!eval->exprs) { av_log(ctx, AV_LOG_ERROR, "Channels expressions list is empty\n"); return AVERROR(EINVAL); } if (!strcmp(ctx->filter->name, "aeval")) { func1 = aeval_func1; func1_names = aeval_func1_names; } #define ADD_EXPRESSION(expr_) do { \ if (!av_dynarray2_add((void **)&eval->expr, &eval->nb_channels, \ sizeof(*eval->expr), NULL)) { \ ret = AVERROR(ENOMEM); \ goto end; \ } \ eval->expr[eval->nb_channels-1] = NULL; \ ret = av_expr_parse(&eval->expr[eval->nb_channels - 1], expr_, \ var_names, func1_names, func1, \ NULL, NULL, 0, ctx); \ if (ret < 0) \ goto end; \ } while (0) /* reset expressions */ for (i = 0; i < eval->nb_channels; i++) { av_expr_free(eval->expr[i]); eval->expr[i] = NULL; } av_freep(&eval->expr); eval->nb_channels = 0; buf = args1; while (expr = av_strtok(buf, "|", &buf)) { ADD_EXPRESSION(expr); last_expr = expr; } if (expected_nb_channels > eval->nb_channels) for (i = eval->nb_channels; i < expected_nb_channels; i++) ADD_EXPRESSION(last_expr); if (expected_nb_channels > 0 && eval->nb_channels != expected_nb_channels) { av_log(ctx, AV_LOG_ERROR, "Mismatch between the specified number of channel expressions '%d' " "and the number of expected output channels '%d' for the specified channel layout\n", eval->nb_channels, expected_nb_channels); ret = AVERROR(EINVAL); goto end; } end: av_free(args1); return ret; } | 20,458 |
1 | static int sdp_probe(AVProbeData *p1) { const char *p = p1->buf, *p_end = p1->buf + p1->buf_size; /* we look for a line beginning "c=IN IP" */ while (p < p_end && *p != '\0') { if (p + sizeof("c=IN IP") - 1 < p_end && av_strstart(p, "c=IN IP", NULL)) return AVPROBE_SCORE_EXTENSION; while (p < p_end - 1 && *p != '\n') p++; if (++p >= p_end) break; if (*p == '\r') p++; } return 0; } | 20,459 |
0 | int avcodec_decode_audio(AVCodecContext *avctx, int16_t *samples, int *frame_size_ptr, uint8_t *buf, int buf_size) { int ret; *frame_size_ptr= 0; ret = avctx->codec->decode(avctx, samples, frame_size_ptr, buf, buf_size); avctx->frame_number++; return ret; } | 20,460 |
0 | static int mpeg4_unpack_bframes_filter(AVBSFContext *ctx, AVPacket *out) { UnpackBFramesBSFContext *s = ctx->priv_data; int pos_p = -1, nb_vop = 0, pos_vop2 = -1, ret = 0; AVPacket *in; ret = ff_bsf_get_packet(ctx, &in); if (ret < 0) return ret; scan_buffer(in->data, in->size, &pos_p, &nb_vop, &pos_vop2); av_log(ctx, AV_LOG_DEBUG, "Found %d VOP startcode(s) in this packet.\n", nb_vop); if (pos_vop2 >= 0) { if (s->b_frame_buf) { av_log(ctx, AV_LOG_WARNING, "Missing one N-VOP packet, discarding one B-frame.\n"); av_freep(&s->b_frame_buf); s->b_frame_buf_size = 0; } /* store the packed B-frame in the BSFContext */ s->b_frame_buf_size = in->size - pos_vop2; s->b_frame_buf = create_new_buffer(in->data + pos_vop2, s->b_frame_buf_size); if (!s->b_frame_buf) { s->b_frame_buf_size = 0; av_packet_free(&in); return AVERROR(ENOMEM); } } if (nb_vop > 2) { av_log(ctx, AV_LOG_WARNING, "Found %d VOP headers in one packet, only unpacking one.\n", nb_vop); } if (nb_vop == 1 && s->b_frame_buf) { /* use frame from BSFContext */ ret = av_packet_copy_props(out, in); if (ret < 0) { av_packet_free(&in); return ret; } av_packet_from_data(out, s->b_frame_buf, s->b_frame_buf_size); if (in->size <= MAX_NVOP_SIZE) { /* N-VOP */ av_log(ctx, AV_LOG_DEBUG, "Skipping N-VOP.\n"); s->b_frame_buf = NULL; s->b_frame_buf_size = 0; } else { /* copy packet into BSFContext */ s->b_frame_buf_size = in->size; s->b_frame_buf = create_new_buffer(in->data, in->size); if (!s->b_frame_buf) { s->b_frame_buf_size = 0; av_packet_unref(out); av_packet_free(&in); return AVERROR(ENOMEM); } } } else if (nb_vop >= 2) { /* use first frame of the packet */ av_packet_move_ref(out, in); out->size = pos_vop2; } else if (pos_p >= 0) { av_log(ctx, AV_LOG_DEBUG, "Updating DivX userdata (remove trailing 'p').\n"); av_packet_move_ref(out, in); /* remove 'p' (packed) from the end of the (DivX) userdata string */ out->data[pos_p] = '\0'; } else { /* copy packet */ av_packet_move_ref(out, in); } av_packet_free(&in); return 0; } | 20,461 |
1 | static int set_string_number(void *obj, void *target_obj, const AVOption *o, const char *val, void *dst) { int ret = 0; int num, den; char c; if (sscanf(val, "%d%*1[:/]%d%c", &num, &den, &c) == 2) { if ((ret = write_number(obj, o, dst, 1, den, num)) >= 0) return ret; ret = 0; } for (;;) { int i = 0; char buf[256]; int cmd = 0; double d; int64_t intnum = 1; if (o->type == AV_OPT_TYPE_FLAGS) { if (*val == '+' || *val == '-') cmd = *(val++); for (; i < sizeof(buf) - 1 && val[i] && val[i] != '+' && val[i] != '-'; i++) buf[i] = val[i]; buf[i] = 0; } { const AVOption *o_named = av_opt_find(target_obj, buf, o->unit, 0, 0); int res; int ci = 0; double const_values[64]; const char * const_names[64]; if (o_named && o_named->type == AV_OPT_TYPE_CONST) d = DEFAULT_NUMVAL(o_named); else { if (o->unit) { for (o_named = NULL; o_named = av_opt_next(target_obj, o_named); ) { if (o_named->type == AV_OPT_TYPE_CONST && o_named->unit && !strcmp(o_named->unit, o->unit)) { if (ci + 6 >= FF_ARRAY_ELEMS(const_values)) { av_log(obj, AV_LOG_ERROR, "const_values array too small for %s\n", o->unit); return AVERROR_PATCHWELCOME; } const_names [ci ] = o_named->name; const_values[ci++] = DEFAULT_NUMVAL(o_named); } } } const_names [ci ] = "default"; const_values[ci++] = DEFAULT_NUMVAL(o); const_names [ci ] = "max"; const_values[ci++] = o->max; const_names [ci ] = "min"; const_values[ci++] = o->min; const_names [ci ] = "none"; const_values[ci++] = 0; const_names [ci ] = "all"; const_values[ci++] = ~0; const_names [ci] = NULL; const_values[ci] = 0; res = av_expr_parse_and_eval(&d, i ? buf : val, const_names, const_values, NULL, NULL, NULL, NULL, NULL, 0, obj); if (res < 0) { av_log(obj, AV_LOG_ERROR, "Unable to parse option value \"%s\"\n", val); return res; } } } if (o->type == AV_OPT_TYPE_FLAGS) { read_number(o, dst, NULL, NULL, &intnum); if (cmd == '+') d = intnum | (int64_t)d; else if (cmd == '-') d = intnum &~(int64_t)d; } if ((ret = write_number(obj, o, dst, d, 1, 1)) < 0) return ret; val += i; if (!i || !*val) return 0; } return 0; } | 20,462 |
1 | static void qmp_input_pop(QmpInputVisitor *qiv, Error **errp) { StackObject *tos = &qiv->stack[qiv->nb_stack - 1]; assert(qiv->nb_stack > 0); if (qiv->strict) { GHashTable *const top_ht = tos->h; if (top_ht) { GHashTableIter iter; const char *key; g_hash_table_iter_init(&iter, top_ht); if (g_hash_table_iter_next(&iter, (void **)&key, NULL)) { error_setg(errp, QERR_QMP_EXTRA_MEMBER, key); } g_hash_table_unref(top_ht); } tos->h = NULL; } qiv->nb_stack--; } | 20,463 |
1 | static void large_dict(void) { GString *gstr = g_string_new(""); QObject *obj; gen_test_json(gstr, 10, 100); obj = qobject_from_json(gstr->str, NULL); g_assert(obj != NULL); qobject_decref(obj); g_string_free(gstr, true); } | 20,464 |
1 | static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx) { Flash *s = M25P80(ss); uint32_t r = 0; switch (s->state) { case STATE_PAGE_PROGRAM: DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n", s->cur_addr, (uint8_t)tx); flash_write8(s, s->cur_addr, (uint8_t)tx); s->cur_addr++; break; case STATE_READ: r = s->storage[s->cur_addr]; DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr, (uint8_t)r); s->cur_addr = (s->cur_addr + 1) % s->size; break; case STATE_COLLECTING_DATA: case STATE_COLLECTING_VAR_LEN_DATA: s->data[s->len] = (uint8_t)tx; s->len++; if (s->len == s->needed_bytes) { complete_collecting_data(s); } break; case STATE_READING_DATA: r = s->data[s->pos]; s->pos++; if (s->pos == s->len) { s->pos = 0; s->state = STATE_IDLE; } break; default: case STATE_IDLE: decode_new_cmd(s, (uint8_t)tx); break; } return r; } | 20,465 |
1 | static void dec_scall(DisasContext *dc) { if (dc->imm5 == 7) { LOG_DIS("scall\n"); } else if (dc->imm5 == 2) { LOG_DIS("break\n"); } else { cpu_abort(dc->env, "invalid opcode\n"); } if (dc->imm5 == 7) { tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_SYSTEMCALL); } else { tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_BREAKPOINT); } } | 20,466 |
1 | static int ohci_service_iso_td(OHCIState *ohci, struct ohci_ed *ed, int completion) { int dir; size_t len = 0; #ifdef DEBUG_ISOCH const char *str = NULL; #endif int pid; int ret; int i; USBDevice *dev; struct ohci_iso_td iso_td; uint32_t addr; uint16_t starting_frame; int16_t relative_frame_number; int frame_count; uint32_t start_offset, next_offset, end_offset = 0; uint32_t start_addr, end_addr; addr = ed->head & OHCI_DPTR_MASK; if (!ohci_read_iso_td(ohci, addr, &iso_td)) { printf("usb-ohci: ISO_TD read error at %x\n", addr); return 0; } starting_frame = OHCI_BM(iso_td.flags, TD_SF); frame_count = OHCI_BM(iso_td.flags, TD_FC); relative_frame_number = USUB(ohci->frame_number, starting_frame); #ifdef DEBUG_ISOCH printf("--- ISO_TD ED head 0x%.8x tailp 0x%.8x\n" "0x%.8x 0x%.8x 0x%.8x 0x%.8x\n" "0x%.8x 0x%.8x 0x%.8x 0x%.8x\n" "0x%.8x 0x%.8x 0x%.8x 0x%.8x\n" "frame_number 0x%.8x starting_frame 0x%.8x\n" "frame_count 0x%.8x relative %d\n" "di 0x%.8x cc 0x%.8x\n", ed->head & OHCI_DPTR_MASK, ed->tail & OHCI_DPTR_MASK, iso_td.flags, iso_td.bp, iso_td.next, iso_td.be, iso_td.offset[0], iso_td.offset[1], iso_td.offset[2], iso_td.offset[3], iso_td.offset[4], iso_td.offset[5], iso_td.offset[6], iso_td.offset[7], ohci->frame_number, starting_frame, frame_count, relative_frame_number, OHCI_BM(iso_td.flags, TD_DI), OHCI_BM(iso_td.flags, TD_CC)); #endif if (relative_frame_number < 0) { DPRINTF("usb-ohci: ISO_TD R=%d < 0\n", relative_frame_number); return 1; } else if (relative_frame_number > frame_count) { /* ISO TD expired - retire the TD to the Done Queue and continue with the next ISO TD of the same ED */ DPRINTF("usb-ohci: ISO_TD R=%d > FC=%d\n", relative_frame_number, frame_count); OHCI_SET_BM(iso_td.flags, TD_CC, OHCI_CC_DATAOVERRUN); ed->head &= ~OHCI_DPTR_MASK; ed->head |= (iso_td.next & OHCI_DPTR_MASK); iso_td.next = ohci->done; ohci->done = addr; i = OHCI_BM(iso_td.flags, TD_DI); if (i < ohci->done_count) ohci->done_count = i; ohci_put_iso_td(ohci, addr, &iso_td); return 0; } dir = OHCI_BM(ed->flags, ED_D); switch (dir) { case OHCI_TD_DIR_IN: #ifdef DEBUG_ISOCH str = "in"; #endif pid = USB_TOKEN_IN; break; case OHCI_TD_DIR_OUT: #ifdef DEBUG_ISOCH str = "out"; #endif pid = USB_TOKEN_OUT; break; case OHCI_TD_DIR_SETUP: #ifdef DEBUG_ISOCH str = "setup"; #endif pid = USB_TOKEN_SETUP; break; default: printf("usb-ohci: Bad direction %d\n", dir); return 1; } if (!iso_td.bp || !iso_td.be) { printf("usb-ohci: ISO_TD bp 0x%.8x be 0x%.8x\n", iso_td.bp, iso_td.be); return 1; } start_offset = iso_td.offset[relative_frame_number]; next_offset = iso_td.offset[relative_frame_number + 1]; if (!(OHCI_BM(start_offset, TD_PSW_CC) & 0xe) || ((relative_frame_number < frame_count) && !(OHCI_BM(next_offset, TD_PSW_CC) & 0xe))) { printf("usb-ohci: ISO_TD cc != not accessed 0x%.8x 0x%.8x\n", start_offset, next_offset); return 1; } if ((relative_frame_number < frame_count) && (start_offset > next_offset)) { printf("usb-ohci: ISO_TD start_offset=0x%.8x > next_offset=0x%.8x\n", start_offset, next_offset); return 1; } if ((start_offset & 0x1000) == 0) { start_addr = (iso_td.bp & OHCI_PAGE_MASK) | (start_offset & OHCI_OFFSET_MASK); } else { start_addr = (iso_td.be & OHCI_PAGE_MASK) | (start_offset & OHCI_OFFSET_MASK); } if (relative_frame_number < frame_count) { end_offset = next_offset - 1; if ((end_offset & 0x1000) == 0) { end_addr = (iso_td.bp & OHCI_PAGE_MASK) | (end_offset & OHCI_OFFSET_MASK); } else { end_addr = (iso_td.be & OHCI_PAGE_MASK) | (end_offset & OHCI_OFFSET_MASK); } } else { /* Last packet in the ISO TD */ end_addr = iso_td.be; } if ((start_addr & OHCI_PAGE_MASK) != (end_addr & OHCI_PAGE_MASK)) { len = (end_addr & OHCI_OFFSET_MASK) + 0x1001 - (start_addr & OHCI_OFFSET_MASK); } else { len = end_addr - start_addr + 1; } if (len && dir != OHCI_TD_DIR_IN) { ohci_copy_iso_td(ohci, start_addr, end_addr, ohci->usb_buf, len, 0); } if (completion) { ret = ohci->usb_packet.len; } else { ret = USB_RET_NODEV; for (i = 0; i < ohci->num_ports; i++) { dev = ohci->rhport[i].port.dev; if ((ohci->rhport[i].ctrl & OHCI_PORT_PES) == 0) continue; ohci->usb_packet.pid = pid; ohci->usb_packet.devaddr = OHCI_BM(ed->flags, ED_FA); ohci->usb_packet.devep = OHCI_BM(ed->flags, ED_EN); ohci->usb_packet.data = ohci->usb_buf; ohci->usb_packet.len = len; ret = usb_handle_packet(dev, &ohci->usb_packet); if (ret != USB_RET_NODEV) break; } if (ret == USB_RET_ASYNC) { return 1; } } #ifdef DEBUG_ISOCH printf("so 0x%.8x eo 0x%.8x\nsa 0x%.8x ea 0x%.8x\ndir %s len %zu ret %d\n", start_offset, end_offset, start_addr, end_addr, str, len, ret); #endif /* Writeback */ if (dir == OHCI_TD_DIR_IN && ret >= 0 && ret <= len) { /* IN transfer succeeded */ ohci_copy_iso_td(ohci, start_addr, end_addr, ohci->usb_buf, ret, 1); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_NOERROR); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, ret); } else if (dir == OHCI_TD_DIR_OUT && ret == len) { /* OUT transfer succeeded */ OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_NOERROR); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, 0); } else { if (ret > (ssize_t) len) { printf("usb-ohci: DataOverrun %d > %zu\n", ret, len); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_DATAOVERRUN); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, len); } else if (ret >= 0) { printf("usb-ohci: DataUnderrun %d\n", ret); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_DATAUNDERRUN); } else { switch (ret) { case USB_RET_NODEV: OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_DEVICENOTRESPONDING); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, 0); break; case USB_RET_NAK: case USB_RET_STALL: printf("usb-ohci: got NAK/STALL %d\n", ret); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_STALL); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_SIZE, 0); break; default: printf("usb-ohci: Bad device response %d\n", ret); OHCI_SET_BM(iso_td.offset[relative_frame_number], TD_PSW_CC, OHCI_CC_UNDEXPETEDPID); break; } } } if (relative_frame_number == frame_count) { /* Last data packet of ISO TD - retire the TD to the Done Queue */ OHCI_SET_BM(iso_td.flags, TD_CC, OHCI_CC_NOERROR); ed->head &= ~OHCI_DPTR_MASK; ed->head |= (iso_td.next & OHCI_DPTR_MASK); iso_td.next = ohci->done; ohci->done = addr; i = OHCI_BM(iso_td.flags, TD_DI); if (i < ohci->done_count) ohci->done_count = i; } ohci_put_iso_td(ohci, addr, &iso_td); return 1; } | 20,468 |
1 | int spapr_vio_send_crq(VIOsPAPRDevice *dev, uint8_t *crq) { int rc; uint8_t byte; if (!dev->crq.qsize) { fprintf(stderr, "spapr_vio_send_creq on uninitialized queue\n"); return -1; } /* Maybe do a fast path for KVM just writing to the pages */ rc = spapr_tce_dma_read(dev, dev->crq.qladdr + dev->crq.qnext, &byte, 1); if (rc) { return rc; } if (byte != 0) { return 1; } rc = spapr_tce_dma_write(dev, dev->crq.qladdr + dev->crq.qnext + 8, &crq[8], 8); if (rc) { return rc; } kvmppc_eieio(); rc = spapr_tce_dma_write(dev, dev->crq.qladdr + dev->crq.qnext, crq, 8); if (rc) { return rc; } dev->crq.qnext = (dev->crq.qnext + 16) % dev->crq.qsize; if (dev->signal_state & 1) { qemu_irq_pulse(dev->qirq); } return 0; } | 20,469 |
1 | static void vhost_log_put(struct vhost_dev *dev, bool sync) { struct vhost_log *log = dev->log; if (!log) { return; } dev->log = NULL; dev->log_size = 0; --log->refcnt; if (log->refcnt == 0) { /* Sync only the range covered by the old log */ if (dev->log_size && sync) { vhost_log_sync_range(dev, 0, dev->log_size * VHOST_LOG_CHUNK - 1); } if (vhost_log == log) { g_free(log->log); vhost_log = NULL; } else if (vhost_log_shm == log) { qemu_memfd_free(log->log, log->size * sizeof(*(log->log)), log->fd); vhost_log_shm = NULL; } g_free(log); } } | 20,470 |
1 | static void mirror_set_speed(BlockJob *job, int64_t speed, Error **errp) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common); if (speed < 0) { error_setg(errp, QERR_INVALID_PARAMETER, "speed"); return; } ratelimit_set_speed(&s->limit, speed / BDRV_SECTOR_SIZE, SLICE_TIME); } | 20,473 |
1 | static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1, uint64_t prp2, uint32_t len, NvmeCtrl *n) { hwaddr trans_len = n->page_size - (prp1 % n->page_size); trans_len = MIN(len, trans_len); int num_prps = (len >> n->page_bits) + 1; if (!prp1) { return NVME_INVALID_FIELD | NVME_DNR; } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr && prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) { qsg->nsg = 0; qemu_iovec_init(iov, num_prps); qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len); } else { pci_dma_sglist_init(qsg, &n->parent_obj, num_prps); qemu_sglist_add(qsg, prp1, trans_len); } len -= trans_len; if (len) { if (!prp2) { goto unmap; } if (len > n->page_size) { uint64_t prp_list[n->max_prp_ents]; uint32_t nents, prp_trans; int i = 0; nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); while (len != 0) { uint64_t prp_ent = le64_to_cpu(prp_list[i]); if (i == n->max_prp_ents - 1 && len > n->page_size) { if (!prp_ent || prp_ent & (n->page_size - 1)) { goto unmap; } i = 0; nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); nvme_addr_read(n, prp_ent, (void *)prp_list, prp_trans); prp_ent = le64_to_cpu(prp_list[i]); } if (!prp_ent || prp_ent & (n->page_size - 1)) { goto unmap; } trans_len = MIN(len, n->page_size); if (qsg->nsg){ qemu_sglist_add(qsg, prp_ent, trans_len); } else { qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len); } len -= trans_len; i++; } } else { if (prp2 & (n->page_size - 1)) { goto unmap; } if (qsg->nsg) { qemu_sglist_add(qsg, prp2, len); } else { qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len); } } } return NVME_SUCCESS; unmap: qemu_sglist_destroy(qsg); return NVME_INVALID_FIELD | NVME_DNR; } | 20,474 |
1 | static int init_input(AVFormatContext *s, const char *filename, AVDictionary **options) { int ret; AVProbeData pd = {filename, NULL, 0}; if(s->iformat && !strlen(filename)) return 0; if (s->pb) { s->flags |= AVFMT_FLAG_CUSTOM_IO; if (!s->iformat) return av_probe_input_buffer(s->pb, &s->iformat, filename, s, 0, 0); else if (s->iformat->flags & AVFMT_NOFILE) av_log(s, AV_LOG_WARNING, "Custom AVIOContext makes no sense and " "will be ignored with AVFMT_NOFILE format.\n"); return 0; } if ( (s->iformat && s->iformat->flags & AVFMT_NOFILE) || (!s->iformat && (s->iformat = av_probe_input_format(&pd, 0)))) return 0; if ((ret = avio_open2(&s->pb, filename, AVIO_FLAG_READ, &s->interrupt_callback, options)) < 0) return ret; if (s->iformat) return 0; return av_probe_input_buffer(s->pb, &s->iformat, filename, s, 0, 0); } | 20,475 |
1 | static GuestPCIAddress *get_pci_info(char *guid, Error **errp) { HDEVINFO dev_info; SP_DEVINFO_DATA dev_info_data; DWORD size = 0; int i; char dev_name[MAX_PATH]; char *buffer = NULL; GuestPCIAddress *pci = NULL; char *name = g_strdup(&guid[4]); if (!QueryDosDevice(name, dev_name, ARRAY_SIZE(dev_name))) { error_setg_win32(errp, GetLastError(), "failed to get dos device name"); goto out; } dev_info = SetupDiGetClassDevs(&GUID_DEVINTERFACE_VOLUME, 0, 0, DIGCF_PRESENT | DIGCF_DEVICEINTERFACE); if (dev_info == INVALID_HANDLE_VALUE) { error_setg_win32(errp, GetLastError(), "failed to get devices tree"); goto out; } dev_info_data.cbSize = sizeof(SP_DEVINFO_DATA); for (i = 0; SetupDiEnumDeviceInfo(dev_info, i, &dev_info_data); i++) { DWORD addr, bus, slot, func, dev, data, size2; while (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_PHYSICAL_DEVICE_OBJECT_NAME, &data, (PBYTE)buffer, size, &size2)) { size = MAX(size, size2); if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) { g_free(buffer); /* Double the size to avoid problems on * W2k MBCS systems per KB 888609. * https://support.microsoft.com/en-us/kb/259695 */ buffer = g_malloc(size * 2); } else { error_setg_win32(errp, GetLastError(), "failed to get device name"); goto out; } } if (g_strcmp0(buffer, dev_name)) { continue; } /* There is no need to allocate buffer in the next functions. The size * is known and ULONG according to * https://support.microsoft.com/en-us/kb/253232 * https://msdn.microsoft.com/en-us/library/windows/hardware/ff543095(v=vs.85).aspx */ if (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_BUSNUMBER, &data, (PBYTE)&bus, size, NULL)) { break; } /* The function retrieves the device's address. This value will be * transformed into device function and number */ if (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_ADDRESS, &data, (PBYTE)&addr, size, NULL)) { break; } /* This call returns UINumber of DEVICE_CAPABILITIES structure. * This number is typically a user-perceived slot number. */ if (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_UI_NUMBER, &data, (PBYTE)&slot, size, NULL)) { break; } /* SetupApi gives us the same information as driver with * IoGetDeviceProperty. According to Microsoft * https://support.microsoft.com/en-us/kb/253232 * FunctionNumber = (USHORT)((propertyAddress) & 0x0000FFFF); * DeviceNumber = (USHORT)(((propertyAddress) >> 16) & 0x0000FFFF); * SPDRP_ADDRESS is propertyAddress, so we do the same.*/ func = addr & 0x0000FFFF; dev = (addr >> 16) & 0x0000FFFF; pci = g_malloc0(sizeof(*pci)); pci->domain = dev; pci->slot = slot; pci->function = func; pci->bus = bus; break; } out: g_free(buffer); g_free(name); return pci; } | 20,476 |
1 | int target_get_monitor_def(CPUState *cs, const char *name, uint64_t *pval) { int i, regnum; PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; /* General purpose registers */ if ((tolower(name[0]) == 'r') && ppc_cpu_get_reg_num(name + 1, ARRAY_SIZE(env->gpr), ®num)) { *pval = env->gpr[regnum]; return 0; } /* Floating point registers */ if ((tolower(name[0]) == 'f') && ppc_cpu_get_reg_num(name + 1, ARRAY_SIZE(env->fpr), ®num)) { *pval = env->fpr[regnum]; return 0; } /* Special purpose registers */ for (i = 0; i < ARRAY_SIZE(env->spr_cb); ++i) { ppc_spr_t *spr = &env->spr_cb[i]; if (spr->name && (strcasecmp(name, spr->name) == 0)) { *pval = env->spr[i]; return 0; } } /* Segment registers */ #if !defined(CONFIG_USER_ONLY) if ((strncasecmp(name, "sr", 2) == 0) && ppc_cpu_get_reg_num(name + 2, ARRAY_SIZE(env->sr), ®num)) { *pval = env->sr[regnum]; return 0; } #endif return -EINVAL; } | 20,477 |
1 | PPC_OP(update_nip) { env->nip = PARAM(1); RETURN(); } | 20,479 |
1 | static int mpeg1_decode_sequence(AVCodecContext *avctx, const uint8_t *buf, int buf_size) { Mpeg1Context *s1 = avctx->priv_data; MpegEncContext *s = &s1->mpeg_enc_ctx; int width, height; int i, v, j; init_get_bits(&s->gb, buf, buf_size * 8); width = get_bits(&s->gb, 12); height = get_bits(&s->gb, 12); if (width == 0 || height == 0) { av_log(avctx, AV_LOG_WARNING, "Invalid horizontal or vertical size value.\n"); if (avctx->err_recognition & (AV_EF_BITSTREAM | AV_EF_COMPLIANT)) return AVERROR_INVALIDDATA; } s->aspect_ratio_info = get_bits(&s->gb, 4); if (s->aspect_ratio_info == 0) { av_log(avctx, AV_LOG_ERROR, "aspect ratio has forbidden 0 value\n"); if (avctx->err_recognition & (AV_EF_BITSTREAM | AV_EF_COMPLIANT)) return AVERROR_INVALIDDATA; } s->frame_rate_index = get_bits(&s->gb, 4); if (s->frame_rate_index == 0 || s->frame_rate_index > 13) { av_log(avctx, AV_LOG_WARNING, "frame_rate_index %d is invalid\n", s->frame_rate_index); s->frame_rate_index = 1; } s->bit_rate = get_bits(&s->gb, 18) * 400; if (check_marker(&s->gb, "in sequence header") == 0) { return AVERROR_INVALIDDATA; } s->avctx->rc_buffer_size = get_bits(&s->gb, 10) * 1024 * 16; skip_bits(&s->gb, 1); /* get matrix */ if (get_bits1(&s->gb)) { load_matrix(s, s->chroma_intra_matrix, s->intra_matrix, 1); } else { for (i = 0; i < 64; i++) { j = s->idsp.idct_permutation[i]; v = ff_mpeg1_default_intra_matrix[i]; s->intra_matrix[j] = v; s->chroma_intra_matrix[j] = v; } } if (get_bits1(&s->gb)) { load_matrix(s, s->chroma_inter_matrix, s->inter_matrix, 0); } else { for (i = 0; i < 64; i++) { int j = s->idsp.idct_permutation[i]; v = ff_mpeg1_default_non_intra_matrix[i]; s->inter_matrix[j] = v; s->chroma_inter_matrix[j] = v; } } if (show_bits(&s->gb, 23) != 0) { av_log(s->avctx, AV_LOG_ERROR, "sequence header damaged\n"); return AVERROR_INVALIDDATA; } s->width = width; s->height = height; /* We set MPEG-2 parameters so that it emulates MPEG-1. */ s->progressive_sequence = 1; s->progressive_frame = 1; s->picture_structure = PICT_FRAME; s->first_field = 0; s->frame_pred_frame_dct = 1; s->chroma_format = 1; s->codec_id = s->avctx->codec_id = AV_CODEC_ID_MPEG1VIDEO; s->out_format = FMT_MPEG1; s->swap_uv = 0; // AFAIK VCR2 does not have SEQ_HEADER if (s->avctx->flags & AV_CODEC_FLAG_LOW_DELAY) s->low_delay = 1; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_DEBUG, "vbv buffer: %d, bitrate:%"PRId64", aspect_ratio_info: %d \n", s->avctx->rc_buffer_size, s->bit_rate, s->aspect_ratio_info); return 0; } | 20,481 |
1 | static void vnc_async_encoding_end(VncState *orig, VncState *local) { orig->tight = local->tight; orig->zlib = local->zlib; orig->hextile = local->hextile; orig->zrle = local->zrle; orig->lossy_rect = local->lossy_rect; } | 20,482 |
1 | static int s302m_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { S302Context *s = avctx->priv_data; AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int block_size, ret; int i; int non_pcm_data_type = -1; int frame_size = s302m_parse_frame_header(avctx, buf, buf_size); if (frame_size < 0) return frame_size; buf_size -= AES3_HEADER_LEN; buf += AES3_HEADER_LEN; /* get output buffer */ block_size = (avctx->bits_per_raw_sample + 4) / 4; frame->nb_samples = 2 * (buf_size / block_size) / avctx->channels; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; avctx->bit_rate = 48000 * avctx->channels * (avctx->bits_per_raw_sample + 4) + 32 * 48000 / frame->nb_samples; buf_size = (frame->nb_samples * avctx->channels / 2) * block_size; if (avctx->bits_per_raw_sample == 24) { uint32_t *o = (uint32_t *)frame->data[0]; for (; buf_size > 6; buf_size -= 7) { *o++ = (ff_reverse[buf[2]] << 24) | (ff_reverse[buf[1]] << 16) | (ff_reverse[buf[0]] << 8); *o++ = (ff_reverse[buf[6] & 0xf0] << 28) | (ff_reverse[buf[5]] << 20) | (ff_reverse[buf[4]] << 12) | (ff_reverse[buf[3] & 0x0f] << 4); buf += 7; } o = (uint32_t *)frame->data[0]; if (avctx->channels == 2) for (i=0; i<frame->nb_samples * 2 - 6; i+=2) { if (o[i] || o[i+1] || o[i+2] || o[i+3]) break; if (o[i+4] == 0x96F87200U && o[i+5] == 0xA54E1F00) { non_pcm_data_type = (o[i+6] >> 16) & 0x1F; break; } } } else if (avctx->bits_per_raw_sample == 20) { uint32_t *o = (uint32_t *)frame->data[0]; for (; buf_size > 5; buf_size -= 6) { *o++ = (ff_reverse[buf[2] & 0xf0] << 28) | (ff_reverse[buf[1]] << 20) | (ff_reverse[buf[0]] << 12); *o++ = (ff_reverse[buf[5] & 0xf0] << 28) | (ff_reverse[buf[4]] << 20) | (ff_reverse[buf[3]] << 12); buf += 6; } o = (uint32_t *)frame->data[0]; if (avctx->channels == 2) for (i=0; i<frame->nb_samples * 2 - 6; i+=2) { if (o[i] || o[i+1] || o[i+2] || o[i+3]) break; if (o[i+4] == 0x6F872000U && o[i+5] == 0x54E1F000) { non_pcm_data_type = (o[i+6] >> 16) & 0x1F; break; } } } else { uint16_t *o = (uint16_t *)frame->data[0]; for (; buf_size > 4; buf_size -= 5) { *o++ = (ff_reverse[buf[1]] << 8) | ff_reverse[buf[0]]; *o++ = (ff_reverse[buf[4] & 0xf0] << 12) | (ff_reverse[buf[3]] << 4) | (ff_reverse[buf[2]] >> 4); buf += 5; } o = (uint16_t *)frame->data[0]; if (avctx->channels == 2) for (i=0; i<frame->nb_samples * 2 - 6; i+=2) { if (o[i] || o[i+1] || o[i+2] || o[i+3]) break; if (o[i+4] == 0xF872U && o[i+5] == 0x4E1F) { non_pcm_data_type = (o[i+6] & 0x1F); break; } } } if (non_pcm_data_type != -1) { if (s->non_pcm_mode == 3) { av_log(avctx, AV_LOG_ERROR, "S302 non PCM mode with data type %d not supported\n", non_pcm_data_type); return AVERROR_PATCHWELCOME; } if (s->non_pcm_mode & 1) { return avpkt->size; } } avctx->sample_rate = 48000; *got_frame_ptr = 1; return avpkt->size; } | 20,483 |
0 | static gboolean tcp_chr_read(GIOChannel *chan, GIOCondition cond, void *opaque) { CharDriverState *chr = opaque; TCPCharDriver *s = chr->opaque; uint8_t buf[READ_BUF_LEN]; int len, size; if (!s->connected || s->max_size <= 0) { return FALSE; } len = sizeof(buf); if (len > s->max_size) len = s->max_size; size = tcp_chr_recv(chr, (void *)buf, len); if (size == 0) { /* connection closed */ s->connected = 0; if (s->listen_chan) { s->listen_tag = g_io_add_watch(s->listen_chan, G_IO_IN, tcp_chr_accept, chr); } if (s->tag) { g_source_remove(s->tag); s->tag = 0; } g_io_channel_unref(s->chan); s->chan = NULL; closesocket(s->fd); s->fd = -1; qemu_chr_be_event(chr, CHR_EVENT_CLOSED); } else if (size > 0) { if (s->do_telnetopt) tcp_chr_process_IAC_bytes(chr, s, buf, &size); if (size > 0) qemu_chr_be_write(chr, buf, size); } return TRUE; } | 20,484 |
0 | static void ivshmem_realize(PCIDevice *dev, Error **errp) { IVShmemState *s = IVSHMEM_COMMON(dev); if (!qtest_enabled()) { error_report("ivshmem is deprecated, please use ivshmem-plain" " or ivshmem-doorbell instead"); } if (!!qemu_chr_fe_get_driver(&s->server_chr) + !!s->shmobj != 1) { error_setg(errp, "You must specify either 'shm' or 'chardev'"); return; } if (s->sizearg == NULL) { s->legacy_size = 4 << 20; /* 4 MB default */ } else { int64_t size = qemu_strtosz_MiB(s->sizearg, NULL); if (size < 0 || (size_t)size != size || !is_power_of_2(size)) { error_setg(errp, "Invalid size %s", s->sizearg); return; } s->legacy_size = size; } /* check that role is reasonable */ if (s->role) { if (strncmp(s->role, "peer", 5) == 0) { s->master = ON_OFF_AUTO_OFF; } else if (strncmp(s->role, "master", 7) == 0) { s->master = ON_OFF_AUTO_ON; } else { error_setg(errp, "'role' must be 'peer' or 'master'"); return; } } else { s->master = ON_OFF_AUTO_AUTO; } if (s->shmobj) { desugar_shm(s); } /* * Note: we don't use INTx with IVSHMEM_MSI at all, so this is a * bald-faced lie then. But it's a backwards compatible lie. */ pci_config_set_interrupt_pin(dev->config, 1); ivshmem_common_realize(dev, errp); } | 20,486 |
0 | void css_conditional_io_interrupt(SubchDev *sch) { /* * If the subchannel is not currently status pending, make it pending * with alert status. */ if (!(sch->curr_status.scsw.ctrl & SCSW_STCTL_STATUS_PEND)) { S390CPU *cpu = s390_cpu_addr2state(0); uint8_t isc = (sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ISC) >> 11; trace_css_io_interrupt(sch->cssid, sch->ssid, sch->schid, sch->curr_status.pmcw.intparm, isc, "(unsolicited)"); sch->curr_status.scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; sch->curr_status.scsw.ctrl |= SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND; /* Inject an I/O interrupt. */ s390_io_interrupt(cpu, css_build_subchannel_id(sch), sch->schid, sch->curr_status.pmcw.intparm, (0x80 >> isc) << 24); } } | 20,487 |
0 | int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) { uint8_t *compressed_data = NULL; uint8_t *data = NULL; gsize len; ssize_t bytes; int ret = -1; if (!g_file_get_contents(filename, (char **) &compressed_data, &len, NULL)) { goto out; } /* Is it a gzip-compressed file? */ if (len < 2 || compressed_data[0] != 0x1f || compressed_data[1] != 0x8b) { goto out; } if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; } data = g_malloc(max_sz); bytes = gunzip(data, max_sz, compressed_data, len); if (bytes < 0) { fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", filename); goto out; } rom_add_blob_fixed(filename, data, bytes, addr); ret = bytes; out: g_free(compressed_data); g_free(data); return ret; } | 20,488 |
0 | static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) { ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); if (req->state != STATE_IOREQ_READY) { DPRINTF("I/O request not ready: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); return NULL; } xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ req->state = STATE_IOREQ_INPROCESS; return req; } | 20,489 |
0 | static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); uint32_t val_le = cpu_to_le32(val); DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, 0x%x, len=0x%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, val, len); /* Write everything to VFIO, let it filter out what we can't write */ if (pwrite(vdev->fd, &val_le, len, vdev->config_offset + addr) != len) { error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, val, len); } /* Write standard header bits to emulation */ if (addr < PCI_CONFIG_HEADER_SIZE) { pci_default_write_config(pdev, addr, val, len); return; } /* MSI/MSI-X Enabling/Disabling */ if (pdev->cap_present & QEMU_PCI_CAP_MSI && ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { int is_enabled, was_enabled = msi_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msi_enabled(pdev); if (!was_enabled && is_enabled) { vfio_enable_msi(vdev); } else if (was_enabled && !is_enabled) { vfio_disable_msi(vdev); } } if (pdev->cap_present & QEMU_PCI_CAP_MSIX && ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { int is_enabled, was_enabled = msix_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msix_enabled(pdev); if (!was_enabled && is_enabled) { vfio_enable_msix(vdev); } else if (was_enabled && !is_enabled) { vfio_disable_msix(vdev); } } } | 20,490 |
0 | static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix, uint16_t **refcount_table, int64_t *nb_clusters) { BDRVQcowState *s = bs->opaque; int64_t i; for(i = 0; i < s->refcount_table_size; i++) { uint64_t offset, cluster; offset = s->refcount_table[i]; cluster = offset >> s->cluster_bits; /* Refcount blocks are cluster aligned */ if (offset_into_cluster(s, offset)) { fprintf(stderr, "ERROR refcount block %" PRId64 " is not " "cluster aligned; refcount table entry corrupted\n", i); res->corruptions++; continue; } if (cluster >= *nb_clusters) { fprintf(stderr, "ERROR refcount block %" PRId64 " is outside image\n", i); res->corruptions++; continue; } if (offset != 0) { inc_refcounts(bs, res, *refcount_table, *nb_clusters, offset, s->cluster_size); if ((*refcount_table)[cluster] != 1) { fprintf(stderr, "%s refcount block %" PRId64 " refcount=%d\n", fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i, (*refcount_table)[cluster]); if (fix & BDRV_FIX_ERRORS) { int64_t new_offset; new_offset = realloc_refcount_block(bs, i, offset); if (new_offset < 0) { res->corruptions++; continue; } /* update refcounts */ if ((new_offset >> s->cluster_bits) >= *nb_clusters) { /* increase refcount_table size if necessary */ int old_nb_clusters = *nb_clusters; *nb_clusters = (new_offset >> s->cluster_bits) + 1; *refcount_table = g_renew(uint16_t, *refcount_table, *nb_clusters); memset(&(*refcount_table)[old_nb_clusters], 0, (*nb_clusters - old_nb_clusters) * sizeof(uint16_t)); } (*refcount_table)[cluster]--; inc_refcounts(bs, res, *refcount_table, *nb_clusters, new_offset, s->cluster_size); res->corruptions_fixed++; } else { res->corruptions++; } } } } return 0; } | 20,491 |
0 | static void gen_lwarx(DisasContext *ctx) { TCGv t0; gen_set_access_type(ctx, ACCESS_RES); t0 = tcg_temp_local_new(); gen_addr_reg_index(ctx, t0); gen_check_align(ctx, t0, 0x03); gen_qemu_ld32u(ctx, cpu_gpr[rD(ctx->opcode)], t0); tcg_gen_mov_tl(cpu_reserve, t0); tcg_temp_free(t0); } | 20,492 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.