label
int64 0
1
| func1
stringlengths 23
97k
| id
int64 0
27.3k
|
---|---|---|
1 | static av_cold int libopus_decode_init(AVCodecContext *avc) { struct libopus_context *opus = avc->priv_data; int ret, channel_map = 0, gain_db = 0, nb_streams, nb_coupled; uint8_t mapping_arr[8] = { 0, 1 }, *mapping; avc->sample_rate = 48000; avc->sample_fmt = avc->request_sample_fmt == AV_SAMPLE_FMT_FLT ? AV_SAMPLE_FMT_FLT : AV_SAMPLE_FMT_S16; avc->channel_layout = avc->channels > 8 ? 0 : ff_vorbis_channel_layouts[avc->channels - 1]; if (avc->extradata_size >= OPUS_HEAD_SIZE) { gain_db = sign_extend(AV_RL16(avc->extradata + 16), 16); channel_map = AV_RL8 (avc->extradata + 18); if (avc->extradata_size >= OPUS_HEAD_SIZE + 2 + avc->channels) { nb_streams = avc->extradata[OPUS_HEAD_SIZE + 0]; nb_coupled = avc->extradata[OPUS_HEAD_SIZE + 1]; if (nb_streams + nb_coupled != avc->channels) av_log(avc, AV_LOG_WARNING, "Inconsistent channel mapping.\n"); mapping = avc->extradata + OPUS_HEAD_SIZE + 2; } else { if (avc->channels > 2 || channel_map) { av_log(avc, AV_LOG_ERROR, "No channel mapping for %d channels.\n", avc->channels); return AVERROR(EINVAL); nb_streams = 1; nb_coupled = avc->channels > 1; mapping = mapping_arr; if (avc->channels > 2 && avc->channels <= 8) { const uint8_t *vorbis_offset = ff_vorbis_channel_layout_offsets[avc->channels - 1]; int ch; /* Remap channels from Vorbis order to libav order */ for (ch = 0; ch < avc->channels; ch++) mapping_arr[ch] = mapping[vorbis_offset[ch]]; mapping = mapping_arr; opus->dec = opus_multistream_decoder_create(avc->sample_rate, avc->channels, nb_streams, nb_coupled, mapping, &ret); if (!opus->dec) { av_log(avc, AV_LOG_ERROR, "Unable to create decoder: %s\n", opus_strerror(ret)); return ff_opus_error_to_averror(ret); ret = opus_multistream_decoder_ctl(opus->dec, OPUS_SET_GAIN(gain_db)); if (ret != OPUS_OK) av_log(avc, AV_LOG_WARNING, "Failed to set gain: %s\n", opus_strerror(ret)); avc->delay = 3840; /* Decoder delay (in samples) at 48kHz */ return 0; | 19,618 |
1 | gen_intermediate_code_internal(CPUCRISState *env, TranslationBlock *tb, int search_pc) { uint16_t *gen_opc_end; uint32_t pc_start; unsigned int insn_len; int j, lj; struct DisasContext ctx; struct DisasContext *dc = &ctx; uint32_t next_page_start; target_ulong npc; int num_insns; int max_insns; qemu_log_try_set_file(stderr); if (env->pregs[PR_VR] == 32) { dc->decoder = crisv32_decoder; dc->clear_locked_irq = 0; } else { dc->decoder = crisv10_decoder; dc->clear_locked_irq = 1; } /* Odd PC indicates that branch is rexecuting due to exception in the * delayslot, like in real hw. */ pc_start = tb->pc & ~1; dc->env = env; dc->tb = tb; gen_opc_end = tcg_ctx.gen_opc_buf + OPC_MAX_SIZE; dc->is_jmp = DISAS_NEXT; dc->ppc = pc_start; dc->pc = pc_start; dc->singlestep_enabled = env->singlestep_enabled; dc->flags_uptodate = 1; dc->flagx_known = 1; dc->flags_x = tb->flags & X_FLAG; dc->cc_x_uptodate = 0; dc->cc_mask = 0; dc->update_cc = 0; dc->clear_prefix = 0; cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->cc_size_uptodate = -1; /* Decode TB flags. */ dc->tb_flags = tb->flags & (S_FLAG | P_FLAG | U_FLAG \ | X_FLAG | PFIX_FLAG); dc->delayed_branch = !!(tb->flags & 7); if (dc->delayed_branch) { dc->jmp = JMP_INDIRECT; } else { dc->jmp = JMP_NOJMP; } dc->cpustate_changed = 0; if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { qemu_log( "srch=%d pc=%x %x flg=%" PRIx64 " bt=%x ds=%u ccs=%x\n" "pid=%x usp=%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n", search_pc, dc->pc, dc->ppc, (uint64_t)tb->flags, env->btarget, (unsigned)tb->flags & 7, env->pregs[PR_CCS], env->pregs[PR_PID], env->pregs[PR_USP], env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], env->regs[5], env->regs[6], env->regs[7], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15]); qemu_log("--------------\n"); qemu_log("IN: %s\n", lookup_symbol(pc_start)); } next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; lj = -1; num_insns = 0; max_insns = tb->cflags & CF_COUNT_MASK; if (max_insns == 0) { max_insns = CF_COUNT_MASK; } gen_icount_start(); do { check_breakpoint(env, dc); if (search_pc) { j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf; if (lj < j) { lj++; while (lj < j) { tcg_ctx.gen_opc_instr_start[lj++] = 0; } } if (dc->delayed_branch == 1) { tcg_ctx.gen_opc_pc[lj] = dc->ppc | 1; } else { tcg_ctx.gen_opc_pc[lj] = dc->pc; } tcg_ctx.gen_opc_instr_start[lj] = 1; tcg_ctx.gen_opc_icount[lj] = num_insns; } /* Pretty disas. */ LOG_DIS("%8.8x:\t", dc->pc); if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) { gen_io_start(); } dc->clear_x = 1; insn_len = dc->decoder(env, dc); dc->ppc = dc->pc; dc->pc += insn_len; if (dc->clear_x) { cris_clear_x_flag(dc); } num_insns++; /* Check for delayed branches here. If we do it before actually generating any host code, the simulator will just loop doing nothing for on this program location. */ if (dc->delayed_branch) { dc->delayed_branch--; if (dc->delayed_branch == 0) { if (tb->flags & 7) { t_gen_mov_env_TN(dslot, tcg_const_tl(0)); } if (dc->cpustate_changed || !dc->flagx_known || (dc->flags_x != (tb->flags & X_FLAG))) { cris_store_direct_jmp(dc); } if (dc->clear_locked_irq) { dc->clear_locked_irq = 0; t_gen_mov_env_TN(locked_irq, tcg_const_tl(0)); } if (dc->jmp == JMP_DIRECT_CC) { int l1; l1 = gen_new_label(); cris_evaluate_flags(dc); /* Conditional jmp. */ tcg_gen_brcondi_tl(TCG_COND_EQ, env_btaken, 0, l1); gen_goto_tb(dc, 1, dc->jmp_pc); gen_set_label(l1); gen_goto_tb(dc, 0, dc->pc); dc->is_jmp = DISAS_TB_JUMP; dc->jmp = JMP_NOJMP; } else if (dc->jmp == JMP_DIRECT) { cris_evaluate_flags(dc); gen_goto_tb(dc, 0, dc->jmp_pc); dc->is_jmp = DISAS_TB_JUMP; dc->jmp = JMP_NOJMP; } else { t_gen_cc_jmp(env_btarget, tcg_const_tl(dc->pc)); dc->is_jmp = DISAS_JUMP; } break; } } /* If we are rexecuting a branch due to exceptions on delay slots dont break. */ if (!(tb->pc & 1) && env->singlestep_enabled) { break; } } while (!dc->is_jmp && !dc->cpustate_changed && tcg_ctx.gen_opc_ptr < gen_opc_end && !singlestep && (dc->pc < next_page_start) && num_insns < max_insns); if (dc->clear_locked_irq) { t_gen_mov_env_TN(locked_irq, tcg_const_tl(0)); } npc = dc->pc; if (tb->cflags & CF_LAST_IO) gen_io_end(); /* Force an update if the per-tb cpu state has changed. */ if (dc->is_jmp == DISAS_NEXT && (dc->cpustate_changed || !dc->flagx_known || (dc->flags_x != (tb->flags & X_FLAG)))) { dc->is_jmp = DISAS_UPDATE; tcg_gen_movi_tl(env_pc, npc); } /* Broken branch+delayslot sequence. */ if (dc->delayed_branch == 1) { /* Set env->dslot to the size of the branch insn. */ t_gen_mov_env_TN(dslot, tcg_const_tl(dc->pc - dc->ppc)); cris_store_direct_jmp(dc); } cris_evaluate_flags(dc); if (unlikely(env->singlestep_enabled)) { if (dc->is_jmp == DISAS_NEXT) { tcg_gen_movi_tl(env_pc, npc); } t_gen_raise_exception(EXCP_DEBUG); } else { switch (dc->is_jmp) { case DISAS_NEXT: gen_goto_tb(dc, 1, npc); break; default: case DISAS_JUMP: case DISAS_UPDATE: /* indicate that the hash table must be used to find the next TB */ tcg_gen_exit_tb(0); break; case DISAS_SWI: case DISAS_TB_JUMP: /* nothing more to generate */ break; } } gen_icount_end(tb, num_insns); *tcg_ctx.gen_opc_ptr = INDEX_op_end; if (search_pc) { j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf; lj++; while (lj <= j) { tcg_ctx.gen_opc_instr_start[lj++] = 0; } } else { tb->size = dc->pc - pc_start; tb->icount = num_insns; } #ifdef DEBUG_DISAS #if !DISAS_CRIS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { log_target_disas(env, pc_start, dc->pc - pc_start, dc->env->pregs[PR_VR]); qemu_log("\nisize=%d osize=%td\n", dc->pc - pc_start, tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf); } #endif #endif } | 19,619 |
1 | int fw_cfg_add_callback(FWCfgState *s, uint16_t key, FWCfgCallback callback, void *callback_opaque, uint8_t *data, size_t len) { int arch = !!(key & FW_CFG_ARCH_LOCAL); if (!(key & FW_CFG_WRITE_CHANNEL)) return 0; key &= FW_CFG_ENTRY_MASK; if (key >= FW_CFG_MAX_ENTRY || len > 65535) return 0; s->entries[arch][key].data = data; s->entries[arch][key].len = len; s->entries[arch][key].callback_opaque = callback_opaque; s->entries[arch][key].callback = callback; return 1; } | 19,621 |
1 | void do_subfmeo_64 (void) { T1 = T0; T0 = ~T0 + xer_ca - 1; if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely((uint64_t)T1 != UINT64_MAX)) xer_ca = 1; } | 19,622 |
1 | static void jpeg2000_dec_cleanup(Jpeg2000DecoderContext *s) { int tileno, compno; for (tileno = 0; tileno < s->numXtiles * s->numYtiles; tileno++) { if (s->tile[tileno].comp) { for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = s->tile[tileno].comp + compno; Jpeg2000CodingStyle *codsty = s->tile[tileno].codsty + compno; ff_jpeg2000_cleanup(comp, codsty); } av_freep(&s->tile[tileno].comp); } } av_freep(&s->tile); s->numXtiles = s->numYtiles = 0; } | 19,623 |
1 | static void quantize_and_encode_band_cost_ESC_mips(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, const float ROUNDING) { const float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; int i; int qc1, qc2, qc3, qc4; uint8_t *p_bits = (uint8_t* )ff_aac_spectral_bits[cb-1]; uint16_t *p_codes = (uint16_t*)ff_aac_spectral_codes[cb-1]; float *p_vectors = (float* )ff_aac_codebook_vectors[cb-1]; abs_pow34_v(s->scoefs, in, size); scaled = s->scoefs; if (cb < 11) { for (i = 0; i < size; i += 4) { int curidx, curidx2, sign1, count1, sign2, count2; int *in_int = (int *)&in[i]; uint8_t v_bits; unsigned int v_codes; int t0, t1, t2, t3, t4; const float *vec1, *vec2; qc1 = scaled[i ] * Q34 + ROUNDING; qc2 = scaled[i+1] * Q34 + ROUNDING; qc3 = scaled[i+2] * Q34 + ROUNDING; qc4 = scaled[i+3] * Q34 + ROUNDING; __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "ori %[t4], $zero, 16 \n\t" "ori %[sign1], $zero, 0 \n\t" "ori %[sign2], $zero, 0 \n\t" "slt %[t0], %[t4], %[qc1] \n\t" "slt %[t1], %[t4], %[qc2] \n\t" "slt %[t2], %[t4], %[qc3] \n\t" "slt %[t3], %[t4], %[qc4] \n\t" "movn %[qc1], %[t4], %[t0] \n\t" "movn %[qc2], %[t4], %[t1] \n\t" "movn %[qc3], %[t4], %[t2] \n\t" "movn %[qc4], %[t4], %[t3] \n\t" "lw %[t0], 0(%[in_int]) \n\t" "lw %[t1], 4(%[in_int]) \n\t" "lw %[t2], 8(%[in_int]) \n\t" "lw %[t3], 12(%[in_int]) \n\t" "slt %[t0], %[t0], $zero \n\t" "movn %[sign1], %[t0], %[qc1] \n\t" "slt %[t2], %[t2], $zero \n\t" "movn %[sign2], %[t2], %[qc3] \n\t" "slt %[t1], %[t1], $zero \n\t" "sll %[t0], %[sign1], 1 \n\t" "or %[t0], %[t0], %[t1] \n\t" "movn %[sign1], %[t0], %[qc2] \n\t" "slt %[t3], %[t3], $zero \n\t" "sll %[t0], %[sign2], 1 \n\t" "or %[t0], %[t0], %[t3] \n\t" "movn %[sign2], %[t0], %[qc4] \n\t" "slt %[count1], $zero, %[qc1] \n\t" "slt %[t1], $zero, %[qc2] \n\t" "slt %[count2], $zero, %[qc3] \n\t" "slt %[t2], $zero, %[qc4] \n\t" "addu %[count1], %[count1], %[t1] \n\t" "addu %[count2], %[count2], %[t2] \n\t" ".set pop \n\t" : [qc1]"+r"(qc1), [qc2]"+r"(qc2), [qc3]"+r"(qc3), [qc4]"+r"(qc4), [sign1]"=&r"(sign1), [count1]"=&r"(count1), [sign2]"=&r"(sign2), [count2]"=&r"(count2), [t0]"=&r"(t0), [t1]"=&r"(t1), [t2]"=&r"(t2), [t3]"=&r"(t3), [t4]"=&r"(t4) : [in_int]"r"(in_int) : "memory" ); curidx = 17 * qc1; curidx += qc2; curidx2 = 17 * qc3; curidx2 += qc4; v_codes = (p_codes[curidx] << count1) | sign1; v_bits = p_bits[curidx] + count1; put_bits(pb, v_bits, v_codes); v_codes = (p_codes[curidx2] << count2) | sign2; v_bits = p_bits[curidx2] + count2; put_bits(pb, v_bits, v_codes); if (out) { vec1 = &p_vectors[curidx*2 ]; vec2 = &p_vectors[curidx2*2]; out[i+0] = copysignf(vec1[0] * IQ, in[i+0]); out[i+1] = copysignf(vec1[1] * IQ, in[i+1]); out[i+2] = copysignf(vec2[0] * IQ, in[i+2]); out[i+3] = copysignf(vec2[1] * IQ, in[i+3]); } } } else { for (i = 0; i < size; i += 4) { int curidx, curidx2, sign1, count1, sign2, count2; int *in_int = (int *)&in[i]; uint8_t v_bits; unsigned int v_codes; int c1, c2, c3, c4; int t0, t1, t2, t3, t4; const float *vec1, *vec2; qc1 = scaled[i ] * Q34 + ROUNDING; qc2 = scaled[i+1] * Q34 + ROUNDING; qc3 = scaled[i+2] * Q34 + ROUNDING; qc4 = scaled[i+3] * Q34 + ROUNDING; __asm__ volatile ( ".set push \n\t" ".set noreorder \n\t" "ori %[t4], $zero, 16 \n\t" "ori %[sign1], $zero, 0 \n\t" "ori %[sign2], $zero, 0 \n\t" "shll_s.w %[c1], %[qc1], 18 \n\t" "shll_s.w %[c2], %[qc2], 18 \n\t" "shll_s.w %[c3], %[qc3], 18 \n\t" "shll_s.w %[c4], %[qc4], 18 \n\t" "srl %[c1], %[c1], 18 \n\t" "srl %[c2], %[c2], 18 \n\t" "srl %[c3], %[c3], 18 \n\t" "srl %[c4], %[c4], 18 \n\t" "slt %[t0], %[t4], %[qc1] \n\t" "slt %[t1], %[t4], %[qc2] \n\t" "slt %[t2], %[t4], %[qc3] \n\t" "slt %[t3], %[t4], %[qc4] \n\t" "movn %[qc1], %[t4], %[t0] \n\t" "movn %[qc2], %[t4], %[t1] \n\t" "movn %[qc3], %[t4], %[t2] \n\t" "movn %[qc4], %[t4], %[t3] \n\t" "lw %[t0], 0(%[in_int]) \n\t" "lw %[t1], 4(%[in_int]) \n\t" "lw %[t2], 8(%[in_int]) \n\t" "lw %[t3], 12(%[in_int]) \n\t" "slt %[t0], %[t0], $zero \n\t" "movn %[sign1], %[t0], %[qc1] \n\t" "slt %[t2], %[t2], $zero \n\t" "movn %[sign2], %[t2], %[qc3] \n\t" "slt %[t1], %[t1], $zero \n\t" "sll %[t0], %[sign1], 1 \n\t" "or %[t0], %[t0], %[t1] \n\t" "movn %[sign1], %[t0], %[qc2] \n\t" "slt %[t3], %[t3], $zero \n\t" "sll %[t0], %[sign2], 1 \n\t" "or %[t0], %[t0], %[t3] \n\t" "movn %[sign2], %[t0], %[qc4] \n\t" "slt %[count1], $zero, %[qc1] \n\t" "slt %[t1], $zero, %[qc2] \n\t" "slt %[count2], $zero, %[qc3] \n\t" "slt %[t2], $zero, %[qc4] \n\t" "addu %[count1], %[count1], %[t1] \n\t" "addu %[count2], %[count2], %[t2] \n\t" ".set pop \n\t" : [qc1]"+r"(qc1), [qc2]"+r"(qc2), [qc3]"+r"(qc3), [qc4]"+r"(qc4), [sign1]"=&r"(sign1), [count1]"=&r"(count1), [sign2]"=&r"(sign2), [count2]"=&r"(count2), [c1]"=&r"(c1), [c2]"=&r"(c2), [c3]"=&r"(c3), [c4]"=&r"(c4), [t0]"=&r"(t0), [t1]"=&r"(t1), [t2]"=&r"(t2), [t3]"=&r"(t3), [t4]"=&r"(t4) : [in_int]"r"(in_int) : "memory" ); curidx = 17 * qc1; curidx += qc2; curidx2 = 17 * qc3; curidx2 += qc4; v_codes = (p_codes[curidx] << count1) | sign1; v_bits = p_bits[curidx] + count1; put_bits(pb, v_bits, v_codes); if (p_vectors[curidx*2 ] == 64.0f) { int len = av_log2(c1); v_codes = (((1 << (len - 3)) - 2) << len) | (c1 & ((1 << len) - 1)); put_bits(pb, len * 2 - 3, v_codes); } if (p_vectors[curidx*2+1] == 64.0f) { int len = av_log2(c2); v_codes = (((1 << (len - 3)) - 2) << len) | (c2 & ((1 << len) - 1)); put_bits(pb, len*2-3, v_codes); } v_codes = (p_codes[curidx2] << count2) | sign2; v_bits = p_bits[curidx2] + count2; put_bits(pb, v_bits, v_codes); if (p_vectors[curidx2*2 ] == 64.0f) { int len = av_log2(c3); v_codes = (((1 << (len - 3)) - 2) << len) | (c3 & ((1 << len) - 1)); put_bits(pb, len* 2 - 3, v_codes); } if (p_vectors[curidx2*2+1] == 64.0f) { int len = av_log2(c4); v_codes = (((1 << (len - 3)) - 2) << len) | (c4 & ((1 << len) - 1)); put_bits(pb, len * 2 - 3, v_codes); } if (out) { vec1 = &p_vectors[curidx*2]; vec2 = &p_vectors[curidx2*2]; out[i+0] = copysignf(c1 * cbrtf(c1) * IQ, in[i+0]); out[i+1] = copysignf(c2 * cbrtf(c2) * IQ, in[i+1]); out[i+2] = copysignf(c3 * cbrtf(c3) * IQ, in[i+2]); out[i+3] = copysignf(c4 * cbrtf(c4) * IQ, in[i+3]); } } } } | 19,624 |
0 | static int vc9_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { VC9Context *v = avctx->priv_data; int ret = FRAME_SKIPED, len, start_code; AVFrame *pict = data; uint8_t *tmp_buf; v->avctx = avctx; //buf_size = 0 -> last frame if (!buf_size) return 0; len = avpicture_get_size(avctx->pix_fmt, avctx->width, avctx->height); tmp_buf = (uint8_t *)av_mallocz(len); avpicture_fill((AVPicture *)pict, tmp_buf, avctx->pix_fmt, avctx->width, avctx->height); if (avctx->codec_id == CODEC_ID_WMV3) { init_get_bits(&v->gb, buf, buf_size*8); av_log(avctx, AV_LOG_INFO, "Frame: %i bits to decode\n", buf_size*8); #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { if (advanced_decode_picture_header(v) == FRAME_SKIPED) return buf_size; switch(v->pict_type) { case I_TYPE: ret = advanced_decode_i_mbs(v); break; case P_TYPE: ret = decode_p_mbs(v); break; case B_TYPE: case BI_TYPE: ret = decode_b_mbs(v); break; default: ret = FRAME_SKIPED; } if (ret == FRAME_SKIPED) return buf_size; //We ignore for now failures } else #endif { if (standard_decode_picture_header(v) == FRAME_SKIPED) return buf_size; switch(v->pict_type) { case I_TYPE: ret = standard_decode_i_mbs(v); break; case P_TYPE: ret = decode_p_mbs(v); break; case B_TYPE: case BI_TYPE: ret = decode_b_mbs(v); break; default: ret = FRAME_SKIPED; } if (ret == FRAME_SKIPED) return buf_size; } /* Size of the output data = image */ av_log(avctx, AV_LOG_DEBUG, "Consumed %i/%i bits\n", get_bits_count(&v->gb), buf_size*8); } else { #if 0 // search for IDU's // FIXME uint32_t scp = 0; int scs = 0, i = 0; while (i < buf_size) { for (; i < buf_size && scp != 0x000001; i++) scp = ((scp<<8)|buf[i])&0xffffff; if (scp != 0x000001) break; // eof ? scs = buf[i++]; init_get_bits(&v->gb, buf+i, (buf_size-i)*8); switch(scs) { case 0xf: decode_sequence_header(avctx, &v->gb); break; // to be finished } i += get_bits_count(&v->gb)*8; } #else av_abort(); #endif } *data_size = len; /* Fake consumption of all data */ return buf_size; //Number of bytes consumed } | 19,626 |
0 | static int compand_delay(AVFilterContext *ctx, AVFrame *frame) { CompandContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const int channels = inlink->channels; const int nb_samples = frame->nb_samples; int chan, i, av_uninit(dindex), oindex, av_uninit(count); AVFrame *out_frame = NULL; if (s->pts == AV_NOPTS_VALUE) { s->pts = (frame->pts == AV_NOPTS_VALUE) ? 0 : frame->pts; } av_assert1(channels > 0); /* would corrupt delay_count and delay_index */ for (chan = 0; chan < channels; chan++) { AVFrame *delay_frame = s->delay_frame; const double *src = (double *)frame->extended_data[chan]; double *dbuf = (double *)delay_frame->extended_data[chan]; ChanParam *cp = &s->channels[chan]; double *dst; count = s->delay_count; dindex = s->delay_index; for (i = 0, oindex = 0; i < nb_samples; i++) { const double in = src[i]; update_volume(cp, fabs(in)); if (count >= s->delay_samples) { if (!out_frame) { out_frame = ff_get_audio_buffer(inlink, nb_samples - i); if (!out_frame) { av_frame_free(&frame); return AVERROR(ENOMEM); } av_frame_copy_props(out_frame, frame); out_frame->pts = s->pts; s->pts += av_rescale_q(nb_samples - i, (AVRational){ 1, inlink->sample_rate }, inlink->time_base); } dst = (double *)out_frame->extended_data[chan]; dst[oindex++] = av_clipd(dbuf[dindex] * get_volume(s, cp->volume), -1, 1); } else { count++; } dbuf[dindex] = in; dindex = MOD(dindex + 1, s->delay_samples); } } s->delay_count = count; s->delay_index = dindex; av_frame_free(&frame); return out_frame ? ff_filter_frame(ctx->outputs[0], out_frame) : 0; } | 19,627 |
0 | static void vc1_overlap_block(MpegEncContext *s, DCTELEM block[64], int n, int do_hor, int do_vert) { int i; if(do_hor) { //TODO } if(do_vert) { //TODO } for(i = 0; i < 64; i++) block[i] += 128; } | 19,628 |
0 | static int32_t parse_gain(const char *gain) { char *fraction; int scale = 10000; int32_t mb = 0; int db; if (!gain) return INT32_MIN; gain += strspn(gain, " \t"); db = strtol(gain, &fraction, 0); if (*fraction++ == '.') { while (av_isdigit(*fraction) && scale) { mb += scale * (*fraction - '0'); scale /= 10; fraction++; } } if (abs(db) > (INT32_MAX - mb) / 100000) return INT32_MIN; return db * 100000 + FFSIGN(db) * mb; } | 19,629 |
1 | int ffurl_read(URLContext *h, unsigned char *buf, int size) { if (h->flags & AVIO_FLAG_WRITE) return AVERROR(EIO); return retry_transfer_wrapper(h, buf, size, 1, h->prot->url_read); } | 19,630 |
1 | static void spapr_vio_bridge_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = spapr_vio_bridge_init; dc->no_user = 1; } | 19,631 |
1 | int kvm_arch_init_vcpu(CPUState *env) { struct { struct kvm_cpuid2 cpuid; struct kvm_cpuid_entry2 entries[100]; } __attribute__((packed)) cpuid_data; uint32_t limit, i, j, cpuid_i; uint32_t eax, ebx, ecx, edx; cpuid_i = 0; cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx); limit = eax; for (i = 0; i <= limit; i++) { struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 2: { /* Keep reading function 2 till all the input is received */ int times; cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx); times = eax & 0xff; c->function = i; c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; c->eax = eax; c->ebx = ebx; c->ecx = ecx; c->edx = edx; for (j = 1; j < times; ++j) { cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx); c->function = i; c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; c->eax = eax; c->ebx = ebx; c->ecx = ecx; c->edx = edx; c = &cpuid_data.entries[++cpuid_i]; } break; } case 4: case 0xb: case 0xd: for (j = 0; ; j++) { cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx); c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; c->eax = eax; c->ebx = ebx; c->ecx = ecx; c->edx = edx; c = &cpuid_data.entries[++cpuid_i]; if (i == 4 && eax == 0) break; if (i == 0xb && !(ecx & 0xff00)) break; if (i == 0xd && eax == 0) break; } break; default: cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx); c->function = i; c->eax = eax; c->ebx = ebx; c->ecx = ecx; c->edx = edx; break; } } cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx); limit = eax; for (i = 0x80000000; i <= limit; i++) { struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++]; cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx); c->function = i; c->eax = eax; c->ebx = ebx; c->ecx = ecx; c->edx = edx; } cpuid_data.cpuid.nent = cpuid_i; return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); } | 19,632 |
1 | static int webm_dash_manifest_read_header(AVFormatContext *s) { char *buf; int ret = matroska_read_header(s); MatroskaTrack *tracks; MatroskaDemuxContext *matroska = s->priv_data; if (ret) { av_log(s, AV_LOG_ERROR, "Failed to read file headers\n"); return -1; if (!matroska->is_live) { buf = av_asprintf("%g", matroska->duration); if (!buf) return AVERROR(ENOMEM); av_dict_set(&s->streams[0]->metadata, DURATION, buf, 0); av_free(buf); // initialization range // 5 is the offset of Cluster ID. av_dict_set_int(&s->streams[0]->metadata, INITIALIZATION_RANGE, avio_tell(s->pb) - 5, 0); // basename of the file buf = strrchr(s->filename, '/'); av_dict_set(&s->streams[0]->metadata, FILENAME, buf ? ++buf : s->filename, 0); // track number tracks = matroska->tracks.elem; av_dict_set_int(&s->streams[0]->metadata, TRACK_NUMBER, tracks[0].num, 0); // parse the cues and populate Cue related fields return matroska->is_live ? 0 : webm_dash_manifest_cues(s); | 19,634 |
1 | static int build_table(VLC *vlc, int table_nb_bits, int nb_codes, VLCcode *codes, int flags) { int table_size, table_index, index, code_prefix, symbol, subtable_bits; int i, j, k, n, nb, inc; uint32_t code; VLC_TYPE (*table)[2]; table_size = 1 << table_nb_bits; if (table_nb_bits > 30) return -1; table_index = alloc_table(vlc, table_size, flags & INIT_VLC_USE_NEW_STATIC); av_dlog(NULL, "new table index=%d size=%d\n", table_index, table_size); if (table_index < 0) return table_index; table = &vlc->table[table_index]; for (i = 0; i < table_size; i++) { table[i][1] = 0; //bits table[i][0] = -1; //codes } /* first pass: map codes and compute auxiliary table sizes */ for (i = 0; i < nb_codes; i++) { n = codes[i].bits; code = codes[i].code; symbol = codes[i].symbol; av_dlog(NULL, "i=%d n=%d code=0x%x\n", i, n, code); if (n <= table_nb_bits) { /* no need to add another table */ j = code >> (32 - table_nb_bits); nb = 1 << (table_nb_bits - n); inc = 1; if (flags & INIT_VLC_LE) { j = bitswap_32(code); inc = 1 << n; } for (k = 0; k < nb; k++) { av_dlog(NULL, "%4x: code=%d n=%d\n", j, i, n); if (table[j][1] /*bits*/ != 0) { av_log(NULL, AV_LOG_ERROR, "incorrect codes\n"); return AVERROR_INVALIDDATA; } table[j][1] = n; //bits table[j][0] = symbol; j += inc; } } else { /* fill auxiliary table recursively */ n -= table_nb_bits; code_prefix = code >> (32 - table_nb_bits); subtable_bits = n; codes[i].bits = n; codes[i].code = code << table_nb_bits; for (k = i+1; k < nb_codes; k++) { n = codes[k].bits - table_nb_bits; if (n <= 0) break; code = codes[k].code; if (code >> (32 - table_nb_bits) != code_prefix) break; codes[k].bits = n; codes[k].code = code << table_nb_bits; subtable_bits = FFMAX(subtable_bits, n); } subtable_bits = FFMIN(subtable_bits, table_nb_bits); j = (flags & INIT_VLC_LE) ? bitswap_32(code_prefix) >> (32 - table_nb_bits) : code_prefix; table[j][1] = -subtable_bits; av_dlog(NULL, "%4x: n=%d (subtable)\n", j, codes[i].bits + table_nb_bits); index = build_table(vlc, subtable_bits, k-i, codes+i, flags); if (index < 0) return index; /* note: realloc has been done, so reload tables */ table = &vlc->table[table_index]; table[j][0] = index; //code i = k-1; } } return table_index; } | 19,635 |
1 | static int mp3_write_audio_packet(AVFormatContext *s, AVPacket *pkt) { MP3Context *mp3 = s->priv_data; if (pkt->data && pkt->size >= 4) { MPADecodeHeader c; int av_unused base; avpriv_mpegaudio_decode_header(&c, AV_RB32(pkt->data)); if (!mp3->initial_bitrate) mp3->initial_bitrate = c.bit_rate; if ((c.bit_rate == 0) || (mp3->initial_bitrate != c.bit_rate)) mp3->has_variable_bitrate = 1; #ifdef FILTER_VBR_HEADERS /* filter out XING and INFO headers. */ base = 4 + xing_offtbl[c.lsf == 1][c.nb_channels == 1]; if (base + 4 <= pkt->size) { uint32_t v = AV_RB32(pkt->data + base); if (MKBETAG('X','i','n','g') == v || MKBETAG('I','n','f','o') == v) return 0; } /* filter out VBRI headers. */ base = 4 + 32; if (base + 4 <= pkt->size && MKBETAG('V','B','R','I') == AV_RB32(pkt->data + base)) return 0; #endif if (mp3->xing_offset) mp3_xing_add_frame(mp3, pkt); } return ff_raw_write_packet(s, pkt); } | 19,636 |
1 | static int handle_instruction(CPUState *env, struct kvm_run *run) { unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16; int r = -1; dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb); switch (ipa0) { case IPA0_PRIV: r = handle_priv(env, run, ipa1); break; case IPA0_DIAG: r = handle_diag(env, run, ipb_code); break; case IPA0_SIGP: r = handle_sigp(env, run, ipa1); break; } if (r < 0) { enter_pgmcheck(env, 0x0001); } return r; } | 19,637 |
1 | static int process_output_surface(AVCodecContext *avctx, AVPacket *pkt, NvencSurface *tmpoutsurf) { NvencContext *ctx = avctx->priv_data; NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs; NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs; uint32_t slice_mode_data; uint32_t *slice_offsets; NV_ENC_LOCK_BITSTREAM lock_params = { 0 }; NVENCSTATUS nv_status; int res = 0; enum AVPictureType pict_type; switch (avctx->codec->id) { case AV_CODEC_ID_H264: slice_mode_data = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData; break; case AV_CODEC_ID_H265: slice_mode_data = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown codec name\n"); res = AVERROR(EINVAL); goto error; } slice_offsets = av_mallocz(slice_mode_data * sizeof(*slice_offsets)); if (!slice_offsets) goto error; lock_params.version = NV_ENC_LOCK_BITSTREAM_VER; lock_params.doNotWait = 0; lock_params.outputBitstream = tmpoutsurf->output_surface; lock_params.sliceOffsets = slice_offsets; nv_status = p_nvenc->nvEncLockBitstream(ctx->nvencoder, &lock_params); if (nv_status != NV_ENC_SUCCESS) { res = nvenc_print_error(avctx, nv_status, "Failed locking bitstream buffer"); goto error; } if (res = ff_alloc_packet2(avctx, pkt, lock_params.bitstreamSizeInBytes,0)) { p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); goto error; } memcpy(pkt->data, lock_params.bitstreamBufferPtr, lock_params.bitstreamSizeInBytes); nv_status = p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface); if (nv_status != NV_ENC_SUCCESS) nvenc_print_error(avctx, nv_status, "Failed unlocking bitstream buffer, expect the gates of mordor to open"); if (avctx->pix_fmt == AV_PIX_FMT_CUDA) { p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, tmpoutsurf->in_map.mappedResource); av_frame_unref(tmpoutsurf->in_ref); ctx->registered_frames[tmpoutsurf->reg_idx].mapped = 0; tmpoutsurf->input_surface = NULL; } switch (lock_params.pictureType) { case NV_ENC_PIC_TYPE_IDR: pkt->flags |= AV_PKT_FLAG_KEY; case NV_ENC_PIC_TYPE_I: pict_type = AV_PICTURE_TYPE_I; break; case NV_ENC_PIC_TYPE_P: pict_type = AV_PICTURE_TYPE_P; break; case NV_ENC_PIC_TYPE_B: pict_type = AV_PICTURE_TYPE_B; break; case NV_ENC_PIC_TYPE_BI: pict_type = AV_PICTURE_TYPE_BI; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown picture type encountered, expect the output to be broken.\n"); av_log(avctx, AV_LOG_ERROR, "Please report this error and include as much information on how to reproduce it as possible.\n"); res = AVERROR_EXTERNAL; goto error; } #if FF_API_CODED_FRAME FF_DISABLE_DEPRECATION_WARNINGS avctx->coded_frame->pict_type = pict_type; FF_ENABLE_DEPRECATION_WARNINGS #endif ff_side_data_set_encoder_stats(pkt, (lock_params.frameAvgQP - 1) * FF_QP2LAMBDA, NULL, 0, pict_type); res = nvenc_set_timestamp(avctx, &lock_params, pkt); if (res < 0) goto error2; av_free(slice_offsets); return 0; error: timestamp_queue_dequeue(ctx->timestamp_list); error2: av_free(slice_offsets); return res; } | 19,638 |
1 | yuv2422_1_c_template(SwsContext *c, const int16_t *buf0, const int16_t *ubuf[2], const int16_t *vbuf[2], const int16_t *abuf0, uint8_t *dest, int dstW, int uvalpha, int y, enum PixelFormat target) { const int16_t *ubuf0 = ubuf[0], *vbuf0 = vbuf[0]; int i; if (uvalpha < 2048) { for (i = 0; i < (dstW >> 1); i++) { int Y1 = buf0[i * 2] >> 7; int Y2 = buf0[i * 2 + 1] >> 7; int U = ubuf0[i] >> 7; int V = vbuf0[i] >> 7; output_pixels(i * 4, Y1, U, Y2, V); } } else { const int16_t *ubuf1 = ubuf[1], *vbuf1 = vbuf[1]; for (i = 0; i < (dstW >> 1); i++) { int Y1 = buf0[i * 2] >> 7; int Y2 = buf0[i * 2 + 1] >> 7; int U = (ubuf0[i] + ubuf1[i]) >> 8; int V = (vbuf0[i] + vbuf1[i]) >> 8; output_pixels(i * 4, Y1, U, Y2, V); } } } | 19,639 |
1 | static int coroutine_fn iscsi_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors, QEMUIOVector *iov) { IscsiLun *iscsilun = bs->opaque; struct IscsiTask iTask; uint64_t lba; uint32_t num_sectors; if (!is_sector_request_lun_aligned(sector_num, nb_sectors, iscsilun)) { return -EINVAL; } if (bs->bl.max_transfer_length && nb_sectors > bs->bl.max_transfer_length) { error_report("iSCSI Error: Read of %d sectors exceeds max_xfer_len " "of %d sectors", nb_sectors, bs->bl.max_transfer_length); return -EINVAL; } if (iscsilun->lbprz && nb_sectors >= ISCSI_CHECKALLOC_THRES && !iscsi_allocationmap_is_allocated(iscsilun, sector_num, nb_sectors)) { int64_t ret; int pnum; BlockDriverState *file; ret = iscsi_co_get_block_status(bs, sector_num, INT_MAX, &pnum, &file); if (ret < 0) { return ret; } if (ret & BDRV_BLOCK_ZERO && pnum >= nb_sectors) { qemu_iovec_memset(iov, 0, 0x00, iov->size); return 0; } } lba = sector_qemu2lun(sector_num, iscsilun); num_sectors = sector_qemu2lun(nb_sectors, iscsilun); iscsi_co_init_iscsitask(iscsilun, &iTask); retry: if (iscsilun->use_16_for_rw) { iTask.task = iscsi_read16_task(iscsilun->iscsi, iscsilun->lun, lba, num_sectors * iscsilun->block_size, iscsilun->block_size, 0, 0, 0, 0, 0, iscsi_co_generic_cb, &iTask); } else { iTask.task = iscsi_read10_task(iscsilun->iscsi, iscsilun->lun, lba, num_sectors * iscsilun->block_size, iscsilun->block_size, 0, 0, 0, 0, 0, iscsi_co_generic_cb, &iTask); } if (iTask.task == NULL) { return -ENOMEM; } scsi_task_set_iov_in(iTask.task, (struct scsi_iovec *) iov->iov, iov->niov); while (!iTask.complete) { iscsi_set_events(iscsilun); qemu_coroutine_yield(); } if (iTask.task != NULL) { scsi_free_scsi_task(iTask.task); iTask.task = NULL; } if (iTask.do_retry) { iTask.complete = 0; goto retry; } if (iTask.status != SCSI_STATUS_GOOD) { return iTask.err_code; } return 0; } | 19,640 |
1 | static void spapr_numa_cpu(const void *data) { char *cli; QDict *resp; QList *cpus; const QObject *e; cli = make_cli(data, "-smp 4,cores=4 " "-numa node,nodeid=0 -numa node,nodeid=1 " "-numa cpu,node-id=0,core-id=0 " "-numa cpu,node-id=0,core-id=1 " "-numa cpu,node-id=0,core-id=2 " "-numa cpu,node-id=1,core-id=3"); qtest_start(cli); cpus = get_cpus(&resp); g_assert(cpus); while ((e = qlist_pop(cpus))) { QDict *cpu, *props; int64_t core, node; cpu = qobject_to_qdict(e); g_assert(qdict_haskey(cpu, "props")); props = qdict_get_qdict(cpu, "props"); g_assert(qdict_haskey(props, "node-id")); node = qdict_get_int(props, "node-id"); g_assert(qdict_haskey(props, "core-id")); core = qdict_get_int(props, "core-id"); if (core >= 0 && core < 3) { g_assert_cmpint(node, ==, 0); } else if (core == 3) { g_assert_cmpint(node, ==, 1); } else { g_assert(false); } } QDECREF(resp); qtest_end(); g_free(cli); } | 19,641 |
1 | ssize_t vnc_client_read_buf(VncState *vs, uint8_t *data, size_t datalen) { ssize_t ret; #ifdef CONFIG_VNC_TLS if (vs->tls.session) { ret = vnc_client_read_tls(&vs->tls.session, data, datalen); } else { #endif /* CONFIG_VNC_TLS */ ret = qemu_recv(vs->csock, data, datalen, 0); #ifdef CONFIG_VNC_TLS } #endif /* CONFIG_VNC_TLS */ VNC_DEBUG("Read wire %p %zd -> %ld\n", data, datalen, ret); return vnc_client_io_error(vs, ret, socket_error()); } | 19,642 |
1 | void qemu_put_be64(QEMUFile *f, uint64_t v) { qemu_put_be32(f, v >> 32); qemu_put_be32(f, v); } | 19,644 |
1 | void lance_init(NICInfo *nd, int irq, uint32_t leaddr, uint32_t ledaddr) { LANCEState *s; int lance_io_memory, ledma_io_memory; s = qemu_mallocz(sizeof(LANCEState)); if (!s) return; s->irq = irq; lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s); cpu_register_physical_memory(leaddr, 4, lance_io_memory); ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s); cpu_register_physical_memory(ledaddr, 16, ledma_io_memory); memcpy(s->macaddr, nd->macaddr, 6); lance_reset(s); s->vc = qemu_new_vlan_client(nd->vlan, lance_receive, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x", s->macaddr[0], s->macaddr[1], s->macaddr[2], s->macaddr[3], s->macaddr[4], s->macaddr[5]); register_savevm("lance", leaddr, 1, lance_save, lance_load, s); qemu_register_reset(lance_reset, s); } | 19,645 |
1 | static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb, int channel, int *last) { int t, t2; int sign, base, add, ret; WvChannel *c = &ctx->ch[channel]; *last = 0; if((ctx->ch[0].median[0] < 2U) && (ctx->ch[1].median[0] < 2U) && !ctx->zero && !ctx->one){ if(ctx->zeroes){ ctx->zeroes--; if(ctx->zeroes){ c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } }else{ t = get_unary_0_33(gb); if(t >= 2) t = get_bits(gb, t - 1) | (1 << (t-1)); ctx->zeroes = t; if(ctx->zeroes){ memset(ctx->ch[0].median, 0, sizeof(ctx->ch[0].median)); memset(ctx->ch[1].median, 0, sizeof(ctx->ch[1].median)); c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } } } if(get_bits_count(gb) >= ctx->data_size){ *last = 1; return 0; } if(ctx->zero){ t = 0; ctx->zero = 0; }else{ t = get_unary_0_33(gb); if(get_bits_count(gb) >= ctx->data_size){ *last = 1; return 0; } if(t == 16) { t2 = get_unary_0_33(gb); if(t2 < 2) t += t2; else t += get_bits(gb, t2 - 1) | (1 << (t2 - 1)); } if(ctx->one){ ctx->one = t&1; t = (t>>1) + 1; }else{ ctx->one = t&1; t >>= 1; } ctx->zero = !ctx->one; } if(ctx->hybrid && !channel) update_error_limit(ctx); if(!t){ base = 0; add = GET_MED(0) - 1; DEC_MED(0); }else if(t == 1){ base = GET_MED(0); add = GET_MED(1) - 1; INC_MED(0); DEC_MED(1); }else if(t == 2){ base = GET_MED(0) + GET_MED(1); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); DEC_MED(2); }else{ base = GET_MED(0) + GET_MED(1) + GET_MED(2) * (t - 2); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); INC_MED(2); } if(!c->error_limit){ ret = base + get_tail(gb, add); }else{ int mid = (base*2 + add + 1) >> 1; while(add > c->error_limit){ if(get_bits1(gb)){ add -= (mid - base); base = mid; }else add = mid - base - 1; mid = (base*2 + add + 1) >> 1; } ret = mid; } sign = get_bits1(gb); if(ctx->hybrid_bitrate) c->slow_level += wp_log2(ret) - LEVEL_DECAY(c->slow_level); return sign ? ~ret : ret; } | 19,646 |
1 | static int block_save_setup(QEMUFile *f, void *opaque) { int ret; DPRINTF("Enter save live setup submitted %d transferred %d\n", block_mig_state.submitted, block_mig_state.transferred); qemu_mutex_lock_iothread(); init_blk_migration(f); /* start track dirty blocks */ set_dirty_tracking(); qemu_mutex_unlock_iothread(); ret = flush_blks(f); blk_mig_reset_dirty_cursor(); qemu_put_be64(f, BLK_MIG_FLAG_EOS); return ret; } | 19,647 |
1 | static void test_dynamic_globalprop(void) { MyType *mt; static GlobalProperty props[] = { { TYPE_DYNAMIC_PROPS, "prop1", "101" }, { TYPE_DYNAMIC_PROPS, "prop2", "102" }, { TYPE_DYNAMIC_PROPS"-bad", "prop3", "103", true }, {} }; int all_used; qdev_prop_register_global_list(props); mt = DYNAMIC_TYPE(object_new(TYPE_DYNAMIC_PROPS)); qdev_init_nofail(DEVICE(mt)); g_assert_cmpuint(mt->prop1, ==, 101); g_assert_cmpuint(mt->prop2, ==, 102); } | 19,649 |
0 | void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size) { if (min_size < *size) return ptr; min_size = FFMAX(min_size + min_size / 16 + 32, min_size); ptr = av_realloc(ptr, min_size); /* we could set this to the unmodified min_size but this is safer * if the user lost the ptr and uses NULL now */ if (!ptr) min_size = 0; *size = min_size; return ptr; } | 19,651 |
0 | static inline int decode_residual_inter(AVSContext *h) { int block; /* get coded block pattern */ int cbp = get_ue_golomb(&h->gb); if (cbp > 63) { av_log(h->avctx, AV_LOG_ERROR, "illegal inter cbp\n"); return AVERROR_INVALIDDATA; } h->cbp = cbp_tab[cbp][1]; /* get quantizer */ if (h->cbp && !h->qp_fixed) h->qp = (h->qp + get_se_golomb(&h->gb)) & 63; for (block = 0; block < 4; block++) if (h->cbp & (1 << block)) decode_residual_block(h, &h->gb, inter_dec, 0, h->qp, h->cy + h->luma_scan[block], h->l_stride); decode_residual_chroma(h); return 0; } | 19,652 |
0 | static int decode_pulses(Pulse *pulse, GetBitContext *gb, const uint16_t *swb_offset, int num_swb) { int i, pulse_swb; pulse->num_pulse = get_bits(gb, 2) + 1; pulse_swb = get_bits(gb, 6); if (pulse_swb >= num_swb) return -1; pulse->pos[0] = swb_offset[pulse_swb]; pulse->pos[0] += get_bits(gb, 5); if (pulse->pos[0] > 1023) return -1; pulse->amp[0] = get_bits(gb, 4); for (i = 1; i < pulse->num_pulse; i++) { pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; if (pulse->pos[i] > 1023) return -1; pulse->amp[i] = get_bits(gb, 4); } return 0; } | 19,653 |
0 | static int aiff_probe(AVProbeData *p) { /* check file header */ if (p->buf_size < 16) return 0; if (p->buf[0] == 'F' && p->buf[1] == 'O' && p->buf[2] == 'R' && p->buf[3] == 'M' && p->buf[8] == 'A' && p->buf[9] == 'I' && p->buf[10] == 'F' && (p->buf[11] == 'F' || p->buf[11] == 'C')) return AVPROBE_SCORE_MAX; else return 0; } | 19,655 |
0 | static int encode_residual(FlacEncodeContext *ctx, int ch) { int i, n; int min_order, max_order, opt_order, precision, omethod; int min_porder, max_porder; FlacFrame *frame; FlacSubframe *sub; int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; int shift[MAX_LPC_ORDER]; int32_t *res, *smp; frame = &ctx->frame; sub = &frame->subframes[ch]; res = sub->residual; smp = sub->samples; n = frame->blocksize; /* CONSTANT */ for(i=1; i<n; i++) { if(smp[i] != smp[0]) break; } if(i == n) { sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; res[0] = smp[0]; return sub->obits; } /* VERBATIM */ if(n < 5) { sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; encode_residual_verbatim(res, smp, n); return sub->obits * n; } min_order = ctx->options.min_prediction_order; max_order = ctx->options.max_prediction_order; min_porder = ctx->options.min_partition_order; max_porder = ctx->options.max_partition_order; precision = ctx->options.lpc_coeff_precision; omethod = ctx->options.prediction_order_method; /* FIXED */ if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) { uint32_t bits[MAX_FIXED_ORDER+1]; if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; opt_order = 0; bits[0] = UINT32_MAX; for(i=min_order; i<=max_order; i++) { encode_residual_fixed(res, smp, n, i); bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n, i, sub->obits); if(bits[i] < bits[opt_order]) { opt_order = i; } } sub->order = opt_order; sub->type = FLAC_SUBFRAME_FIXED; sub->type_code = sub->type | sub->order; if(sub->order != max_order) { encode_residual_fixed(res, smp, n, sub->order); return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n, sub->order, sub->obits); } return bits[sub->order]; } /* LPC */ opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, max_order, precision, coefs, shift, ctx->options.use_lpc, omethod, MAX_LPC_SHIFT, 0); if(omethod == ORDER_METHOD_2LEVEL || omethod == ORDER_METHOD_4LEVEL || omethod == ORDER_METHOD_8LEVEL) { int levels = 1 << omethod; uint32_t bits[levels]; int order; int opt_index = levels-1; opt_order = max_order-1; bits[opt_index] = UINT32_MAX; for(i=levels-1; i>=0; i--) { order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; if(order < 0) order = 0; encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]); bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, order+1, sub->obits, precision); if(bits[i] < bits[opt_index]) { opt_index = i; opt_order = order; } } opt_order++; } else if(omethod == ORDER_METHOD_SEARCH) { // brute-force optimal order search uint32_t bits[MAX_LPC_ORDER]; opt_order = 0; bits[0] = UINT32_MAX; for(i=min_order-1; i<max_order; i++) { encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, i+1, sub->obits, precision); if(bits[i] < bits[opt_order]) { opt_order = i; } } opt_order++; } else if(omethod == ORDER_METHOD_LOG) { uint32_t bits[MAX_LPC_ORDER]; int step; opt_order= min_order - 1 + (max_order-min_order)/3; memset(bits, -1, sizeof(bits)); for(step=16 ;step; step>>=1){ int last= opt_order; for(i=last-step; i<=last+step; i+= step){ if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX) continue; encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, i+1, sub->obits, precision); if(bits[i] < bits[opt_order]) opt_order= i; } } opt_order++; } sub->order = opt_order; sub->type = FLAC_SUBFRAME_LPC; sub->type_code = sub->type | (sub->order-1); sub->shift = shift[sub->order-1]; for(i=0; i<sub->order; i++) { sub->coefs[i] = coefs[sub->order-1][i]; } encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order, sub->obits, precision); } | 19,656 |
1 | static int decode_stream_header(NUTContext *nut){ AVFormatContext *s= nut->avf; ByteIOContext *bc = &s->pb; StreamContext *stc; int class, nom, denom, stream_id; uint64_t tmp, end; AVStream *st; end= get_packetheader(nut, bc, 1); end += url_ftell(bc) - 4; GET_V(stream_id, tmp < s->nb_streams && !nut->stream[tmp].time_base.num); stc= &nut->stream[stream_id]; st = s->streams[stream_id]; if (!st) return AVERROR_NOMEM; class = get_v(bc); tmp = get_fourcc(bc); st->codec->codec_tag= tmp; switch(class) { case 0: st->codec->codec_type = CODEC_TYPE_VIDEO; st->codec->codec_id = codec_get_bmp_id(tmp); if (st->codec->codec_id == CODEC_ID_NONE) av_log(s, AV_LOG_ERROR, "Unknown codec?!\n"); break; case 1: st->codec->codec_type = CODEC_TYPE_AUDIO; st->codec->codec_id = codec_get_wav_id(tmp); if (st->codec->codec_id == CODEC_ID_NONE) av_log(s, AV_LOG_ERROR, "Unknown codec?!\n"); break; case 2: // st->codec->codec_type = CODEC_TYPE_TEXT; // break; case 3: st->codec->codec_type = CODEC_TYPE_DATA; break; default: av_log(s, AV_LOG_ERROR, "Unknown stream class (%d)\n", class); return -1; } GET_V(stc->time_base_id , tmp < nut->time_base_count); GET_V(stc->msb_pts_shift , tmp < 16); stc->max_pts_distance= get_v(bc); GET_V(stc->decode_delay , tmp < 1000); //sanity limit, raise this if moors law is true st->codec->has_b_frames= stc->decode_delay; get_v(bc); //stream flags GET_V(st->codec->extradata_size, tmp < (1<<30)); if(st->codec->extradata_size){ st->codec->extradata= av_mallocz(st->codec->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); get_buffer(bc, st->codec->extradata, st->codec->extradata_size); } if (st->codec->codec_type == CODEC_TYPE_VIDEO){ GET_V(st->codec->width , tmp > 0) GET_V(st->codec->height, tmp > 0) st->codec->sample_aspect_ratio.num= get_v(bc); st->codec->sample_aspect_ratio.den= get_v(bc); if((!st->codec->sample_aspect_ratio.num) != (!st->codec->sample_aspect_ratio.den)){ av_log(s, AV_LOG_ERROR, "invalid aspect ratio\n"); return -1; } get_v(bc); /* csp type */ }else if (st->codec->codec_type == CODEC_TYPE_AUDIO){ GET_V(st->codec->sample_rate , tmp > 0) tmp= get_v(bc); // samplerate_den if(tmp > st->codec->sample_rate){ av_log(s, AV_LOG_ERROR, "bleh, libnut muxed this ;)\n"); st->codec->sample_rate= tmp; } GET_V(st->codec->channels, tmp > 0) } if(skip_reserved(bc, end) || check_checksum(bc)){ av_log(s, AV_LOG_ERROR, "Stream header %d checksum mismatch\n", stream_id); return -1; } stc->time_base= nut->time_base[stc->time_base_id]; av_set_pts_info(s->streams[stream_id], 63, stc->time_base.num, stc->time_base.den); return 0; } | 19,657 |
1 | void avformat_close_input(AVFormatContext **ps) { AVFormatContext *s = *ps; AVIOContext *pb = (s->iformat->flags & AVFMT_NOFILE) || (s->flags & AVFMT_FLAG_CUSTOM_IO) ? NULL : s->pb; flush_packet_queue(s); if (s->iformat->read_close) s->iformat->read_close(s); avformat_free_context(s); *ps = NULL; avio_close(pb); } | 19,658 |
1 | static void cris_alu(DisasContext *dc, int op, TCGv d, TCGv op_a, TCGv op_b, int size) { TCGv tmp; int writeback; writeback = 1; if (op == CC_OP_BOUND || op == CC_OP_BTST) tmp = tcg_temp_local_new(TCG_TYPE_TL); else tmp = tcg_temp_new(TCG_TYPE_TL); if (op == CC_OP_CMP) { writeback = 0; } else if (size == 4) { tmp = d; writeback = 0; } cris_pre_alu_update_cc(dc, op, op_a, op_b, size); cris_alu_op_exec(dc, op, tmp, op_a, op_b, size); cris_update_result(dc, tmp); /* Writeback. */ if (writeback) { if (size == 1) tcg_gen_andi_tl(d, d, ~0xff); else tcg_gen_andi_tl(d, d, ~0xffff); tcg_gen_or_tl(d, d, tmp); } if (tmp != d) tcg_temp_free(tmp); } | 19,660 |
1 | int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix, int stride) { int in_channels, out_channels, i, o; in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if ( in_channels < 0 || in_channels > AVRESAMPLE_MAX_CHANNELS || out_channels < 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n"); return AVERROR(EINVAL); } if (avr->am->matrix) av_freep(avr->am->matrix); #define CONVERT_MATRIX(type, expr) \ avr->am->matrix_## type[0] = av_mallocz(out_channels * in_channels * \ sizeof(*avr->am->matrix_## type[0])); \ if (!avr->am->matrix_## type[0]) \ return AVERROR(ENOMEM); \ for (o = 0; o < out_channels; o++) { \ if (o > 0) \ avr->am->matrix_## type[o] = avr->am->matrix_## type[o - 1] + \ in_channels; \ for (i = 0; i < in_channels; i++) { \ double v = matrix[o * stride + i]; \ avr->am->matrix_## type[o][i] = expr; \ } \ } \ avr->am->matrix = (void **)avr->am->matrix_## type; switch (avr->mix_coeff_type) { case AV_MIX_COEFF_TYPE_Q8: CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v))) break; case AV_MIX_COEFF_TYPE_Q15: CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v))) break; case AV_MIX_COEFF_TYPE_FLT: CONVERT_MATRIX(flt, v) break; default: av_log(avr, AV_LOG_ERROR, "Invalid mix coeff type\n"); return AVERROR(EINVAL); } /* TODO: detect situations where we can just swap around pointers instead of doing matrix multiplications with 0.0 and 1.0 */ return 0; } | 19,661 |
1 | av_cold void ff_vp9dsp_init(VP9DSPContext *dsp, int bpp, int bitexact) { if (bpp == 8) { ff_vp9dsp_init_8(dsp); } else if (bpp == 10) { ff_vp9dsp_init_10(dsp); } else { av_assert0(bpp == 12); ff_vp9dsp_init_12(dsp); } if (ARCH_X86) ff_vp9dsp_init_x86(dsp, bpp, bitexact); if (ARCH_MIPS) ff_vp9dsp_init_mips(dsp, bpp); } | 19,663 |
1 | FFAMediaCodec* ff_AMediaCodec_createCodecByName(const char *name) { JNIEnv *env = NULL; FFAMediaCodec *codec = NULL; jstring codec_name = NULL; codec = av_mallocz(sizeof(FFAMediaCodec)); if (!codec) { return NULL; } codec->class = &amediacodec_class; env = ff_jni_get_env(codec); if (!env) { av_freep(&codec); return NULL; } if (ff_jni_init_jfields(env, &codec->jfields, jni_amediacodec_mapping, 1, codec) < 0) { goto fail; } codec_name = ff_jni_utf_chars_to_jstring(env, name, codec); if (!codec_name) { goto fail; } codec->object = (*env)->CallStaticObjectMethod(env, codec->jfields.mediacodec_class, codec->jfields.create_by_codec_name_id, codec_name); if (ff_jni_exception_check(env, 1, codec) < 0) { goto fail; } codec->object = (*env)->NewGlobalRef(env, codec->object); if (!codec->object) { goto fail; } if (codec_init_static_fields(codec) < 0) { goto fail; } if (codec->jfields.get_input_buffer_id && codec->jfields.get_output_buffer_id) { codec->has_get_i_o_buffer = 1; } return codec; fail: ff_jni_reset_jfields(env, &codec->jfields, jni_amediacodec_mapping, 1, codec); if (codec_name) { (*env)->DeleteLocalRef(env, codec_name); } av_freep(&codec); return NULL; } | 19,664 |
1 | void ide_drive_get(DriveInfo **hd, int max_bus) { int i; if (drive_get_max_bus(IF_IDE) >= max_bus) { fprintf(stderr, "qemu: too many IDE bus: %d\n", max_bus); exit(1); } for(i = 0; i < max_bus * MAX_IDE_DEVS; i++) { hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); } } | 19,668 |
1 | static void release_keys(void *opaque) { int i; for (i = 0; i < keycodes_size; i++) { if (keycodes[i] & 0x80) { kbd_put_keycode(0xe0); } kbd_put_keycode(keycodes[i]| 0x80); } free_keycodes(); } | 19,669 |
1 | static int mace6_decode_frame(AVCodecContext *avctx, void *data, int *data_size, const uint8_t *buf, int buf_size) { int16_t *samples = data; MACEContext *ctx = avctx->priv_data; int i, j; for(i = 0; i < avctx->channels; i++) { int16_t *output = samples + i; for (j = 0; j < buf_size / avctx->channels; j++) { uint8_t pkt = buf[i + j*avctx->channels]; chomp6(&ctx->chd[i], output, pkt >> 5 , MACEtab1, MACEtab2, 8, avctx->channels); output += avctx->channels << 1; chomp6(&ctx->chd[i], output,(pkt >> 3) & 3, MACEtab3, MACEtab4, 4, avctx->channels); output += avctx->channels << 1; chomp6(&ctx->chd[i], output, pkt & 7, MACEtab1, MACEtab2, 8, avctx->channels); output += avctx->channels << 1; } } *data_size = 2 * 6 * buf_size; return buf_size; } | 19,670 |
1 | static void new_video_stream(AVFormatContext *oc) { AVStream *st; AVCodecContext *video_enc; enum CodecID codec_id; AVCodec *codec= NULL; st = av_new_stream(oc, oc->nb_streams < nb_streamid_map ? streamid_map[oc->nb_streams] : 0); if (!st) { fprintf(stderr, "Could not alloc stream\n"); ffmpeg_exit(1); } output_codecs = grow_array(output_codecs, sizeof(*output_codecs), &nb_output_codecs, nb_output_codecs + 1); if(!video_stream_copy){ if (video_codec_name) { codec_id = find_codec_or_die(video_codec_name, AVMEDIA_TYPE_VIDEO, 1, avcodec_opts[AVMEDIA_TYPE_VIDEO]->strict_std_compliance); codec = avcodec_find_encoder_by_name(video_codec_name); output_codecs[nb_output_codecs-1] = codec; } else { codec_id = av_guess_codec(oc->oformat, NULL, oc->filename, NULL, AVMEDIA_TYPE_VIDEO); codec = avcodec_find_encoder(codec_id); } } avcodec_get_context_defaults3(st->codec, codec); bitstream_filters[nb_output_files] = grow_array(bitstream_filters[nb_output_files], sizeof(*bitstream_filters[nb_output_files]), &nb_bitstream_filters[nb_output_files], oc->nb_streams); bitstream_filters[nb_output_files][oc->nb_streams - 1]= video_bitstream_filters; video_bitstream_filters= NULL; avcodec_thread_init(st->codec, thread_count); video_enc = st->codec; if(video_codec_tag) video_enc->codec_tag= video_codec_tag; if( (video_global_header&1) || (video_global_header==0 && (oc->oformat->flags & AVFMT_GLOBALHEADER))){ video_enc->flags |= CODEC_FLAG_GLOBAL_HEADER; avcodec_opts[AVMEDIA_TYPE_VIDEO]->flags|= CODEC_FLAG_GLOBAL_HEADER; } if(video_global_header&2){ video_enc->flags2 |= CODEC_FLAG2_LOCAL_HEADER; avcodec_opts[AVMEDIA_TYPE_VIDEO]->flags2|= CODEC_FLAG2_LOCAL_HEADER; } if (video_stream_copy) { st->stream_copy = 1; video_enc->codec_type = AVMEDIA_TYPE_VIDEO; video_enc->sample_aspect_ratio = st->sample_aspect_ratio = av_d2q(frame_aspect_ratio*frame_height/frame_width, 255); } else { const char *p; int i; AVRational fps= frame_rate.num ? frame_rate : (AVRational){25,1}; video_enc->codec_id = codec_id; set_context_opts(video_enc, avcodec_opts[AVMEDIA_TYPE_VIDEO], AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM, codec); if (codec && codec->supported_framerates && !force_fps) fps = codec->supported_framerates[av_find_nearest_q_idx(fps, codec->supported_framerates)]; video_enc->time_base.den = fps.num; video_enc->time_base.num = fps.den; video_enc->width = frame_width; video_enc->height = frame_height; video_enc->sample_aspect_ratio = av_d2q(frame_aspect_ratio*video_enc->height/video_enc->width, 255); video_enc->pix_fmt = frame_pix_fmt; st->sample_aspect_ratio = video_enc->sample_aspect_ratio; choose_pixel_fmt(st, codec); if (intra_only) video_enc->gop_size = 0; if (video_qscale || same_quality) { video_enc->flags |= CODEC_FLAG_QSCALE; video_enc->global_quality= st->quality = FF_QP2LAMBDA * video_qscale; } if(intra_matrix) video_enc->intra_matrix = intra_matrix; if(inter_matrix) video_enc->inter_matrix = inter_matrix; p= video_rc_override_string; for(i=0; p; i++){ int start, end, q; int e=sscanf(p, "%d,%d,%d", &start, &end, &q); if(e!=3){ fprintf(stderr, "error parsing rc_override\n"); ffmpeg_exit(1); } video_enc->rc_override= av_realloc(video_enc->rc_override, sizeof(RcOverride)*(i+1)); video_enc->rc_override[i].start_frame= start; video_enc->rc_override[i].end_frame = end; if(q>0){ video_enc->rc_override[i].qscale= q; video_enc->rc_override[i].quality_factor= 1.0; } else{ video_enc->rc_override[i].qscale= 0; video_enc->rc_override[i].quality_factor= -q/100.0; } p= strchr(p, '/'); if(p) p++; } video_enc->rc_override_count=i; if (!video_enc->rc_initial_buffer_occupancy) video_enc->rc_initial_buffer_occupancy = video_enc->rc_buffer_size*3/4; video_enc->me_threshold= me_threshold; video_enc->intra_dc_precision= intra_dc_precision - 8; if (do_psnr) video_enc->flags|= CODEC_FLAG_PSNR; /* two pass mode */ if (do_pass) { if (do_pass == 1) { video_enc->flags |= CODEC_FLAG_PASS1; } else { video_enc->flags |= CODEC_FLAG_PASS2; } } } if (video_language) { av_metadata_set2(&st->metadata, "language", video_language, 0); av_freep(&video_language); } /* reset some key parameters */ video_disable = 0; av_freep(&video_codec_name); video_stream_copy = 0; frame_pix_fmt = PIX_FMT_NONE; } | 19,671 |
1 | void visit_start_implicit_struct(Visitor *v, void **obj, size_t size, Error **errp) { if (!error_is_set(errp) && v->start_implicit_struct) { v->start_implicit_struct(v, obj, size, errp); } } | 19,672 |
1 | static int multiwrite_f(int argc, char **argv) { struct timeval t1, t2; int Cflag = 0, qflag = 0; int c, cnt; char **buf; int64_t offset, first_offset = 0; /* Some compilers get confused and warn if this is not initialized. */ int total = 0; int nr_iov; int nr_reqs; int pattern = 0xcd; QEMUIOVector *qiovs; int i; BlockRequest *reqs; while ((c = getopt(argc, argv, "CqP:")) != EOF) { switch (c) { case 'C': Cflag = 1; break; case 'q': qflag = 1; break; case 'P': pattern = parse_pattern(optarg); if (pattern < 0) { return 0; } break; default: return command_usage(&writev_cmd); } } if (optind > argc - 2) { return command_usage(&writev_cmd); } nr_reqs = 1; for (i = optind; i < argc; i++) { if (!strcmp(argv[i], ";")) { nr_reqs++; } } reqs = g_malloc0(nr_reqs * sizeof(*reqs)); buf = g_malloc0(nr_reqs * sizeof(*buf)); qiovs = g_malloc(nr_reqs * sizeof(*qiovs)); for (i = 0; i < nr_reqs; i++) { int j; /* Read the offset of the request */ offset = cvtnum(argv[optind]); if (offset < 0) { printf("non-numeric offset argument -- %s\n", argv[optind]); return 0; } optind++; if (offset & 0x1ff) { printf("offset %lld is not sector aligned\n", (long long)offset); return 0; } if (i == 0) { first_offset = offset; } /* Read lengths for qiov entries */ for (j = optind; j < argc; j++) { if (!strcmp(argv[j], ";")) { break; } } nr_iov = j - optind; /* Build request */ buf[i] = create_iovec(&qiovs[i], &argv[optind], nr_iov, pattern); if (buf[i] == NULL) { goto out; } reqs[i].qiov = &qiovs[i]; reqs[i].sector = offset >> 9; reqs[i].nb_sectors = reqs[i].qiov->size >> 9; optind = j + 1; pattern++; } gettimeofday(&t1, NULL); cnt = do_aio_multiwrite(reqs, nr_reqs, &total); gettimeofday(&t2, NULL); if (cnt < 0) { printf("aio_multiwrite failed: %s\n", strerror(-cnt)); goto out; } if (qflag) { goto out; } /* Finally, report back -- -C gives a parsable format */ t2 = tsub(t2, t1); print_report("wrote", &t2, first_offset, total, total, cnt, Cflag); out: for (i = 0; i < nr_reqs; i++) { qemu_io_free(buf[i]); if (reqs[i].qiov != NULL) { qemu_iovec_destroy(&qiovs[i]); } } g_free(buf); g_free(reqs); g_free(qiovs); return 0; } | 19,673 |
0 | static void vaapi_encode_h264_write_sps(PutBitContext *pbc, VAAPIEncodeContext *ctx) { VAEncSequenceParameterBufferH264 *vseq = ctx->codec_sequence_params; VAAPIEncodeH264Context *priv = ctx->priv_data; VAAPIEncodeH264MiscSequenceParams *mseq = &priv->misc_sequence_params; int i; vaapi_encode_h264_write_nal_header(pbc, NAL_SPS, 3); u(8, mseq_var(profile_idc)); u(1, mseq_var(constraint_set0_flag)); u(1, mseq_var(constraint_set1_flag)); u(1, mseq_var(constraint_set2_flag)); u(1, mseq_var(constraint_set3_flag)); u(1, mseq_var(constraint_set4_flag)); u(1, mseq_var(constraint_set5_flag)); u(2, 0, reserved_zero_2bits); u(8, vseq_var(level_idc)); ue(vseq_var(seq_parameter_set_id)); if (mseq->profile_idc == 100 || mseq->profile_idc == 110 || mseq->profile_idc == 122 || mseq->profile_idc == 244 || mseq->profile_idc == 44 || mseq->profile_idc == 83 || mseq->profile_idc == 86 || mseq->profile_idc == 118 || mseq->profile_idc == 128 || mseq->profile_idc == 138) { ue(vseq_field(chroma_format_idc)); if (vseq->seq_fields.bits.chroma_format_idc == 3) u(1, mseq_var(separate_colour_plane_flag)); ue(vseq_var(bit_depth_luma_minus8)); ue(vseq_var(bit_depth_chroma_minus8)); u(1, mseq_var(qpprime_y_zero_transform_bypass_flag)); u(1, vseq_field(seq_scaling_matrix_present_flag)); if (vseq->seq_fields.bits.seq_scaling_matrix_present_flag) { av_assert0(0 && "scaling matrices not supported"); } } ue(vseq_field(log2_max_frame_num_minus4)); ue(vseq_field(pic_order_cnt_type)); if (vseq->seq_fields.bits.pic_order_cnt_type == 0) { ue(vseq_field(log2_max_pic_order_cnt_lsb_minus4)); } else if (vseq->seq_fields.bits.pic_order_cnt_type == 1) { u(1, mseq_var(delta_pic_order_always_zero_flag)); se(vseq_var(offset_for_non_ref_pic)); se(vseq_var(offset_for_top_to_bottom_field)); ue(vseq_var(num_ref_frames_in_pic_order_cnt_cycle)); for (i = 0; i < vseq->num_ref_frames_in_pic_order_cnt_cycle; i++) se(vseq_var(offset_for_ref_frame[i])); } ue(vseq_var(max_num_ref_frames)); u(1, mseq_var(gaps_in_frame_num_allowed_flag)); ue(vseq->picture_width_in_mbs - 1, pic_width_in_mbs_minus1); ue(vseq->picture_height_in_mbs - 1, pic_height_in_mbs_minus1); u(1, vseq_field(frame_mbs_only_flag)); if (!vseq->seq_fields.bits.frame_mbs_only_flag) u(1, vseq_field(mb_adaptive_frame_field_flag)); u(1, vseq_field(direct_8x8_inference_flag)); u(1, vseq_var(frame_cropping_flag)); if (vseq->frame_cropping_flag) { ue(vseq_var(frame_crop_left_offset)); ue(vseq_var(frame_crop_right_offset)); ue(vseq_var(frame_crop_top_offset)); ue(vseq_var(frame_crop_bottom_offset)); } u(1, vseq_var(vui_parameters_present_flag)); if (vseq->vui_parameters_present_flag) vaapi_encode_h264_write_vui(pbc, ctx); vaapi_encode_h264_write_trailing_rbsp(pbc); } | 19,675 |
0 | static int pix_norm1_c(uint8_t * pix, int line_size) { int s, i, j; uint32_t *sq = ff_squareTbl + 256; s = 0; for (i = 0; i < 16; i++) { for (j = 0; j < 16; j += 8) { #if 0 s += sq[pix[0]]; s += sq[pix[1]]; s += sq[pix[2]]; s += sq[pix[3]]; s += sq[pix[4]]; s += sq[pix[5]]; s += sq[pix[6]]; s += sq[pix[7]]; #else #if LONG_MAX > 2147483647 register uint64_t x=*(uint64_t*)pix; s += sq[x&0xff]; s += sq[(x>>8)&0xff]; s += sq[(x>>16)&0xff]; s += sq[(x>>24)&0xff]; s += sq[(x>>32)&0xff]; s += sq[(x>>40)&0xff]; s += sq[(x>>48)&0xff]; s += sq[(x>>56)&0xff]; #else register uint32_t x=*(uint32_t*)pix; s += sq[x&0xff]; s += sq[(x>>8)&0xff]; s += sq[(x>>16)&0xff]; s += sq[(x>>24)&0xff]; x=*(uint32_t*)(pix+4); s += sq[x&0xff]; s += sq[(x>>8)&0xff]; s += sq[(x>>16)&0xff]; s += sq[(x>>24)&0xff]; #endif #endif pix += 8; } pix += line_size - 16; } return s; } | 19,676 |
0 | static void restore_median(uint8_t *src, int step, int stride, int width, int height, int slices, int rmode) { int i, j, slice; int A, B, C; uint8_t *bsrc; int slice_start, slice_height; const int cmask = ~rmode; for (slice = 0; slice < slices; slice++) { slice_start = ((slice * height) / slices) & cmask; slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start; bsrc = src + slice_start * stride; // first line - left neighbour prediction bsrc[0] += 0x80; A = bsrc[0]; for (i = step; i < width * step; i += step) { bsrc[i] += A; A = bsrc[i]; } bsrc += stride; if (slice_height == 1) continue; // second line - first element has top prediction, the rest uses median C = bsrc[-stride]; bsrc[0] += C; A = bsrc[0]; for (i = step; i < width * step; i += step) { B = bsrc[i - stride]; bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C)); C = B; A = bsrc[i]; } bsrc += stride; // the rest of lines use continuous median prediction for (j = 2; j < slice_height; j++) { for (i = 0; i < width * step; i += step) { B = bsrc[i - stride]; bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C)); C = B; A = bsrc[i]; } bsrc += stride; } } } | 19,677 |
0 | static int svq1_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; SVQ1Context *s = avctx->priv_data; AVFrame *cur = s->cur; uint8_t *current; int result, i, x, y, width, height; svq1_pmv *pmv; if (cur->data[0]) avctx->release_buffer(avctx, cur); /* initialize bit buffer */ init_get_bits(&s->gb, buf, buf_size * 8); /* decode frame header */ s->frame_code = get_bits(&s->gb, 22); if ((s->frame_code & ~0x70) || !(s->frame_code & 0x60)) return AVERROR_INVALIDDATA; /* swap some header bytes (why?) */ if (s->frame_code != 0x20) { uint32_t *src = (uint32_t *)(buf + 4); if (buf_size < 36) return AVERROR_INVALIDDATA; for (i = 0; i < 4; i++) src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i]; } result = svq1_decode_frame_header(avctx, cur); if (result != 0) { av_dlog(avctx, "Error in svq1_decode_frame_header %i\n", result); return result; } avcodec_set_dimensions(avctx, s->width, s->height); if ((avctx->skip_frame >= AVDISCARD_NONREF && s->nonref) || (avctx->skip_frame >= AVDISCARD_NONKEY && cur->pict_type != AV_PICTURE_TYPE_I) || avctx->skip_frame >= AVDISCARD_ALL) return buf_size; result = ff_get_buffer(avctx, cur); if (result < 0) return result; pmv = av_malloc((FFALIGN(s->width, 16) / 8 + 3) * sizeof(*pmv)); if (!pmv) return AVERROR(ENOMEM); /* decode y, u and v components */ for (i = 0; i < 3; i++) { int linesize = cur->linesize[i]; if (i == 0) { width = FFALIGN(s->width, 16); height = FFALIGN(s->height, 16); } else { if (avctx->flags & CODEC_FLAG_GRAY) break; width = FFALIGN(s->width / 4, 16); height = FFALIGN(s->height / 4, 16); } current = cur->data[i]; if (cur->pict_type == AV_PICTURE_TYPE_I) { /* keyframe */ for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { result = svq1_decode_block_intra(&s->gb, ¤t[x], linesize); if (result) { av_log(avctx, AV_LOG_ERROR, "Error in svq1_decode_block %i (keyframe)\n", result); goto err; } } current += 16 * linesize; } } else { /* delta frame */ uint8_t *previous = s->prev->data[i]; if (!previous) { av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n"); result = AVERROR_INVALIDDATA; goto err; } memset(pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv)); for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { result = svq1_decode_delta_block(avctx, &s->dsp, &s->gb, ¤t[x], previous, linesize, pmv, x, y); if (result) { av_dlog(avctx, "Error in svq1_decode_delta_block %i\n", result); goto err; } } pmv[0].x = pmv[0].y = 0; current += 16 * linesize; } } } *(AVFrame*)data = *cur; cur->qscale_table = NULL; if (!s->nonref) FFSWAP(AVFrame*, s->cur, s->prev); *got_frame = 1; result = buf_size; err: av_free(pmv); return result; } | 19,678 |
0 | static int init_context_frame(MpegEncContext *s) { int y_size, c_size, yc_size, i, mb_array_size, mv_table_size, x, y; s->mb_width = (s->width + 15) / 16; s->mb_stride = s->mb_width + 1; s->b8_stride = s->mb_width * 2 + 1; s->b4_stride = s->mb_width * 4 + 1; mb_array_size = s->mb_height * s->mb_stride; mv_table_size = (s->mb_height + 2) * s->mb_stride + 1; /* set default edge pos, will be overriden * in decode_header if needed */ s->h_edge_pos = s->mb_width * 16; s->v_edge_pos = s->mb_height * 16; s->mb_num = s->mb_width * s->mb_height; s->block_wrap[0] = s->block_wrap[1] = s->block_wrap[2] = s->block_wrap[3] = s->b8_stride; s->block_wrap[4] = s->block_wrap[5] = s->mb_stride; y_size = s->b8_stride * (2 * s->mb_height + 1); c_size = s->mb_stride * (s->mb_height + 1); yc_size = y_size + 2 * c_size; if (s->mb_height & 1) yc_size += 2*s->b8_stride + 2*s->mb_stride; FF_ALLOCZ_OR_GOTO(s->avctx, s->mb_index2xy, (s->mb_num + 1) * sizeof(int), fail); // error ressilience code looks cleaner with this for (y = 0; y < s->mb_height; y++) for (x = 0; x < s->mb_width; x++) s->mb_index2xy[x + y * s->mb_width] = x + y * s->mb_stride; s->mb_index2xy[s->mb_height * s->mb_width] = (s->mb_height - 1) * s->mb_stride + s->mb_width; // FIXME really needed? if (s->encoding) { /* Allocate MV tables */ FF_ALLOCZ_OR_GOTO(s->avctx, s->p_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->b_forw_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->b_back_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->b_bidir_forw_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->b_bidir_back_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->b_direct_mv_table_base, mv_table_size * 2 * sizeof(int16_t), fail) s->p_mv_table = s->p_mv_table_base + s->mb_stride + 1; s->b_forw_mv_table = s->b_forw_mv_table_base + s->mb_stride + 1; s->b_back_mv_table = s->b_back_mv_table_base + s->mb_stride + 1; s->b_bidir_forw_mv_table = s->b_bidir_forw_mv_table_base + s->mb_stride + 1; s->b_bidir_back_mv_table = s->b_bidir_back_mv_table_base + s->mb_stride + 1; s->b_direct_mv_table = s->b_direct_mv_table_base + s->mb_stride + 1; /* Allocate MB type table */ FF_ALLOCZ_OR_GOTO(s->avctx, s->mb_type, mb_array_size * sizeof(uint16_t), fail) // needed for encoding FF_ALLOCZ_OR_GOTO(s->avctx, s->lambda_table, mb_array_size * sizeof(int), fail) FF_ALLOC_OR_GOTO(s->avctx, s->cplx_tab, mb_array_size * sizeof(float), fail); FF_ALLOC_OR_GOTO(s->avctx, s->bits_tab, mb_array_size * sizeof(float), fail); } if (s->codec_id == AV_CODEC_ID_MPEG4 || (s->flags & CODEC_FLAG_INTERLACED_ME)) { /* interlaced direct mode decoding tables */ for (i = 0; i < 2; i++) { int j, k; for (j = 0; j < 2; j++) { for (k = 0; k < 2; k++) { FF_ALLOCZ_OR_GOTO(s->avctx, s->b_field_mv_table_base[i][j][k], mv_table_size * 2 * sizeof(int16_t), fail); s->b_field_mv_table[i][j][k] = s->b_field_mv_table_base[i][j][k] + s->mb_stride + 1; } FF_ALLOCZ_OR_GOTO(s->avctx, s->b_field_select_table [i][j], mb_array_size * 2 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(s->avctx, s->p_field_mv_table_base[i][j], mv_table_size * 2 * sizeof(int16_t), fail) s->p_field_mv_table[i][j] = s->p_field_mv_table_base[i][j] + s->mb_stride + 1; } FF_ALLOCZ_OR_GOTO(s->avctx, s->p_field_select_table[i], mb_array_size * 2 * sizeof(uint8_t), fail) } } if (s->out_format == FMT_H263) { /* cbp values */ FF_ALLOCZ_OR_GOTO(s->avctx, s->coded_block_base, y_size + (s->mb_height&1)*2*s->b8_stride, fail); s->coded_block = s->coded_block_base + s->b8_stride + 1; /* cbp, ac_pred, pred_dir */ FF_ALLOCZ_OR_GOTO(s->avctx, s->cbp_table , mb_array_size * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(s->avctx, s->pred_dir_table, mb_array_size * sizeof(uint8_t), fail); } if (s->h263_pred || s->h263_plus || !s->encoding) { /* dc values */ // MN: we need these for error resilience of intra-frames FF_ALLOCZ_OR_GOTO(s->avctx, s->dc_val_base, yc_size * sizeof(int16_t), fail); s->dc_val[0] = s->dc_val_base + s->b8_stride + 1; s->dc_val[1] = s->dc_val_base + y_size + s->mb_stride + 1; s->dc_val[2] = s->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) s->dc_val_base[i] = 1024; } /* which mb is a intra block */ FF_ALLOCZ_OR_GOTO(s->avctx, s->mbintra_table, mb_array_size, fail); memset(s->mbintra_table, 1, mb_array_size); /* init macroblock skip table */ FF_ALLOCZ_OR_GOTO(s->avctx, s->mbskip_table, mb_array_size + 2, fail); // Note the + 1 is for a quicker mpeg4 slice_end detection return init_er(s); fail: return AVERROR(ENOMEM); } | 19,679 |
0 | static void mpeg4_encode_gop_header(MpegEncContext * s){ int hours, minutes, seconds; int64_t time; put_bits(&s->pb, 16, 0); put_bits(&s->pb, 16, GOP_STARTCODE); time= s->current_picture_ptr->pts; if(s->reordered_input_picture[1]) time= FFMIN(time, s->reordered_input_picture[1]->pts); time= time*s->avctx->time_base.num; seconds= time/s->avctx->time_base.den; minutes= seconds/60; seconds %= 60; hours= minutes/60; minutes %= 60; hours%=24; put_bits(&s->pb, 5, hours); put_bits(&s->pb, 6, minutes); put_bits(&s->pb, 1, 1); put_bits(&s->pb, 6, seconds); put_bits(&s->pb, 1, !!(s->flags&CODEC_FLAG_CLOSED_GOP)); put_bits(&s->pb, 1, 0); //broken link == NO s->last_time_base= time / s->avctx->time_base.den; ff_mpeg4_stuffing(&s->pb); } | 19,680 |
0 | static int ws_snd_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; // WSSNDContext *c = avctx->priv_data; int in_size, out_size; int sample = 128; int i; uint8_t *samples = data; uint8_t *samples_end; if (!buf_size) return 0; if (buf_size < 4) { av_log(avctx, AV_LOG_ERROR, "packet is too small\n"); return AVERROR(EINVAL); } out_size = AV_RL16(&buf[0]); in_size = AV_RL16(&buf[2]); buf += 4; if (out_size > *data_size) { av_log(avctx, AV_LOG_ERROR, "Frame is too large to fit in buffer\n"); return -1; } if (in_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "Frame data is larger than input buffer\n"); return -1; } samples_end = samples + out_size; if (in_size == out_size) { for (i = 0; i < out_size; i++) *samples++ = *buf++; *data_size = out_size; return buf_size; } while (samples < samples_end && buf - avpkt->data < buf_size) { int code, smp, size; uint8_t count; code = (*buf) >> 6; count = (*buf) & 0x3F; buf++; /* make sure we don't write past the output buffer */ switch (code) { case 0: smp = 4; break; case 1: smp = 2; break; case 2: smp = (count & 0x20) ? 1 : count + 1; break; default: smp = count + 1; break; } if (samples_end - samples < smp) break; /* make sure we don't read past the input buffer */ size = ((code == 2 && (count & 0x20)) || code == 3) ? 0 : count + 1; if ((buf - avpkt->data) + size > buf_size) break; switch(code) { case 0: /* ADPCM 2-bit */ for (count++; count > 0; count--) { code = *buf++; sample += ws_adpcm_2bit[code & 0x3]; sample = av_clip_uint8(sample); *samples++ = sample; sample += ws_adpcm_2bit[(code >> 2) & 0x3]; sample = av_clip_uint8(sample); *samples++ = sample; sample += ws_adpcm_2bit[(code >> 4) & 0x3]; sample = av_clip_uint8(sample); *samples++ = sample; sample += ws_adpcm_2bit[(code >> 6) & 0x3]; sample = av_clip_uint8(sample); *samples++ = sample; } break; case 1: /* ADPCM 4-bit */ for (count++; count > 0; count--) { code = *buf++; sample += ws_adpcm_4bit[code & 0xF]; sample = av_clip_uint8(sample); *samples++ = sample; sample += ws_adpcm_4bit[code >> 4]; sample = av_clip_uint8(sample); *samples++ = sample; } break; case 2: /* no compression */ if (count & 0x20) { /* big delta */ int8_t t; t = count; t <<= 3; sample += t >> 3; sample = av_clip_uint8(sample); *samples++ = sample; } else { /* copy */ for (count++; count > 0; count--) { *samples++ = *buf++; } sample = buf[-1]; } break; default: /* run */ for(count++; count > 0; count--) { *samples++ = sample; } } } *data_size = samples - (uint8_t *)data; return buf_size; } | 19,681 |
1 | static int doTest(uint8_t *ref[3], int refStride[3], int w, int h, int srcFormat, int dstFormat, int srcW, int srcH, int dstW, int dstH, int flags){ uint8_t *src[3]; uint8_t *dst[3]; uint8_t *out[3]; int srcStride[3], dstStride[3]; int i; uint64_t ssdY, ssdU, ssdV; struct SwsContext *srcContext, *dstContext, *outContext; int res; res = 0; for(i=0; i<3; i++){ // avoid stride % bpp != 0 if(srcFormat==PIX_FMT_RGB24 || srcFormat==PIX_FMT_BGR24) srcStride[i]= srcW*3; else srcStride[i]= srcW*4; if(dstFormat==PIX_FMT_RGB24 || dstFormat==PIX_FMT_BGR24) dstStride[i]= dstW*3; else dstStride[i]= dstW*4; src[i]= (uint8_t*) malloc(srcStride[i]*srcH); dst[i]= (uint8_t*) malloc(dstStride[i]*dstH); out[i]= (uint8_t*) malloc(refStride[i]*h); if ((src[i] == NULL) || (dst[i] == NULL) || (out[i] == NULL)) { perror("Malloc"); res = -1; goto end; } } dstContext = outContext = NULL; srcContext= sws_getContext(w, h, PIX_FMT_YUV420P, srcW, srcH, srcFormat, flags, NULL, NULL, NULL); if (srcContext == NULL) { fprintf(stderr, "Failed to get %s ---> %s\n", sws_format_name(PIX_FMT_YUV420P), sws_format_name(srcFormat)); res = -1; goto end; } dstContext= sws_getContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, NULL, NULL, NULL); if (dstContext == NULL) { fprintf(stderr, "Failed to get %s ---> %s\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); res = -1; goto end; } outContext= sws_getContext(dstW, dstH, dstFormat, w, h, PIX_FMT_YUV420P, flags, NULL, NULL, NULL); if (outContext == NULL) { fprintf(stderr, "Failed to get %s ---> %s\n", sws_format_name(dstFormat), sws_format_name(PIX_FMT_YUV420P)); res = -1; goto end; } // printf("test %X %X %X -> %X %X %X\n", (int)ref[0], (int)ref[1], (int)ref[2], // (int)src[0], (int)src[1], (int)src[2]); sws_scale(srcContext, ref, refStride, 0, h , src, srcStride); sws_scale(dstContext, src, srcStride, 0, srcH, dst, dstStride); sws_scale(outContext, dst, dstStride, 0, dstH, out, refStride); #if defined(ARCH_X86) asm volatile ("emms\n\t"); #endif ssdY= getSSD(ref[0], out[0], refStride[0], refStride[0], w, h); ssdU= getSSD(ref[1], out[1], refStride[1], refStride[1], (w+1)>>1, (h+1)>>1); ssdV= getSSD(ref[2], out[2], refStride[2], refStride[2], (w+1)>>1, (h+1)>>1); if(srcFormat == PIX_FMT_GRAY8 || dstFormat==PIX_FMT_GRAY8) ssdU=ssdV=0; //FIXME check that output is really gray ssdY/= w*h; ssdU/= w*h/4; ssdV/= w*h/4; if(ssdY>100 || ssdU>100 || ssdV>100){ printf(" %s %dx%d -> %s %4dx%4d flags=%2d SSD=%5lld,%5lld,%5lld\n", sws_format_name(srcFormat), srcW, srcH, sws_format_name(dstFormat), dstW, dstH, flags, ssdY, ssdU, ssdV); } end: sws_freeContext(srcContext); sws_freeContext(dstContext); sws_freeContext(outContext); for(i=0; i<3; i++){ free(src[i]); free(dst[i]); free(out[i]); } return res; } | 19,683 |
1 | static int local_mknod(FsContext *fs_ctx, const char *path, FsCred *credp) { int err = -1; int serrno = 0; /* Determine the security model */ if (fs_ctx->fs_sm == SM_MAPPED) { err = mknod(rpath(fs_ctx, path), SM_LOCAL_MODE_BITS|S_IFREG, 0); if (err == -1) { return err; } local_set_xattr(rpath(fs_ctx, path), credp); if (err == -1) { serrno = errno; goto err_end; } } else if (fs_ctx->fs_sm == SM_PASSTHROUGH) { err = mknod(rpath(fs_ctx, path), credp->fc_mode, credp->fc_rdev); if (err == -1) { return err; } err = local_post_create_passthrough(fs_ctx, path, credp); if (err == -1) { serrno = errno; goto err_end; } } return err; err_end: remove(rpath(fs_ctx, path)); errno = serrno; return err; } | 19,686 |
1 | uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, float *X, float *Y, int N, int b, uint32_t blocks, float *lowband, int duration, float *lowband_out, int level, float gain, float *lowband_scratch, int fill) { const uint8_t *cache; int dualstereo, split; int imid = 0, iside = 0; //uint32_t N0 = N; int N_B; //int N_B0; int B0 = blocks; int time_divide = 0; int recombine = 0; int inv = 0; float mid = 0, side = 0; int longblocks = (B0 == 1); uint32_t cm = 0; //N_B0 = N_B = N / blocks; split = dualstereo = (Y != NULL); if (N == 1) { /* special case for one sample - the decoder's output will be +- 1.0f!!! */ int i; float *x = X; for (i = 0; i <= dualstereo; i++) { if (f->remaining2 >= 1<<3) { ff_opus_rc_put_raw(rc, x[0] < 0, 1); f->remaining2 -= 1 << 3; b -= 1 << 3; } x = Y; } if (lowband_out) lowband_out[0] = X[0]; return 1; } if (!dualstereo && level == 0) { int tf_change = f->tf_change[band]; int k; if (tf_change > 0) recombine = tf_change; /* Band recombining to increase frequency resolution */ if (lowband && (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { int j; for (j = 0; j < N; j++) lowband_scratch[j] = lowband[j]; lowband = lowband_scratch; } for (k = 0; k < recombine; k++) { celt_haar1(X, N >> k, 1 << k); fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; } blocks >>= recombine; N_B <<= recombine; /* Increasing the time resolution */ while ((N_B & 1) == 0 && tf_change < 0) { celt_haar1(X, N_B, blocks); fill |= fill << blocks; blocks <<= 1; N_B >>= 1; time_divide++; tf_change++; } B0 = blocks; //N_B0 = N_B; /* Reorganize the samples in time order instead of frequency order */ if (B0 > 1) celt_deinterleave_hadamard(f->scratch, X, N_B >> recombine, B0 << recombine, longblocks); } /* If we need 1.5 more bit than we can produce, split the band in two. */ cache = ff_celt_cache_bits + ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { N >>= 1; Y = X + N; split = 1; duration -= 1; if (blocks == 1) fill = (fill & 1) | (fill << 1); blocks = (blocks + 1) >> 1; } if (split) { int qn; int itheta = celt_calc_theta(X, Y, dualstereo, N); int mbits, sbits, delta; int qalloc; int pulse_cap; int offset; int orig_fill; int tell; /* Decide on the resolution to give to the split parameter theta */ pulse_cap = ff_celt_log_freq_range[band] + duration * 8; offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : CELT_QTHETA_OFFSET); qn = (dualstereo && band >= f->intensity_stereo) ? 1 : celt_compute_qn(N, b, offset, pulse_cap, dualstereo); tell = opus_rc_tell_frac(rc); if (qn != 1) { itheta = (itheta*qn + 8192) >> 14; /* Entropy coding of the angle. We use a uniform pdf for the * time split, a step for stereo, and a triangular one for the rest. */ if (dualstereo && N > 2) ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); else if (dualstereo || B0 > 1) ff_opus_rc_enc_uint(rc, itheta, qn + 1); else ff_opus_rc_enc_uint_tri(rc, itheta, qn); itheta = itheta * 16384 / qn; if (dualstereo) { if (itheta == 0) celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N); else celt_stereo_ms_decouple(X, Y, N); } } else if (dualstereo) { inv = itheta > 8192; if (inv) { int j; for (j=0;j<N;j++) Y[j] = -Y[j]; } celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N); if (b > 2 << 3 && f->remaining2 > 2 << 3) { ff_opus_rc_enc_log(rc, inv, 2); } else { inv = 0; } itheta = 0; } qalloc = opus_rc_tell_frac(rc) - tell; b -= qalloc; orig_fill = fill; if (itheta == 0) { imid = 32767; iside = 0; fill = av_mod_uintp2(fill, blocks); delta = -16384; } else if (itheta == 16384) { imid = 0; iside = 32767; fill &= ((1 << blocks) - 1) << blocks; delta = 16384; } else { imid = celt_cos(itheta); iside = celt_cos(16384-itheta); /* This is the mid vs side allocation that minimizes squared error in that band. */ delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); } mid = imid / 32768.0f; side = iside / 32768.0f; /* This is a special case for N=2 that only works for stereo and takes advantage of the fact that mid and side are orthogonal to encode the side with just one bit. */ if (N == 2 && dualstereo) { int c; int sign = 0; float tmp; float *x2, *y2; mbits = b; /* Only need one bit for the side */ sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; mbits -= sbits; c = (itheta > 8192); f->remaining2 -= qalloc+sbits; x2 = c ? Y : X; y2 = c ? X : Y; if (sbits) { sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; ff_opus_rc_put_raw(rc, sign, 1); } sign = 1 - 2 * sign; /* We use orig_fill here because we want to fold the side, but if itheta==16384, we'll have cleared the low bits of fill. */ cm = ff_celt_encode_band(f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, lowband_out, level, gain, lowband_scratch, orig_fill); /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), and there's no need to worry about mixing with the other channel. */ y2[0] = -sign * x2[1]; y2[1] = sign * x2[0]; X[0] *= mid; X[1] *= mid; Y[0] *= side; Y[1] *= side; tmp = X[0]; X[0] = tmp - Y[0]; Y[0] = tmp + Y[0]; tmp = X[1]; X[1] = tmp - Y[1]; Y[1] = tmp + Y[1]; } else { /* "Normal" split code */ float *next_lowband2 = NULL; float *next_lowband_out1 = NULL; int next_level = 0; int rebalance; /* Give more bits to low-energy MDCTs than they would * otherwise deserve */ if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { if (itheta > 8192) /* Rough approximation for pre-echo masking */ delta -= delta >> (4 - duration); else /* Corresponds to a forward-masking slope of * 1.5 dB per 10 ms */ delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); } mbits = av_clip((b - delta) / 2, 0, b); sbits = b - mbits; f->remaining2 -= qalloc; if (lowband && !dualstereo) next_lowband2 = lowband + N; /* >32-bit split case */ /* Only stereo needs to pass on lowband_out. * Otherwise, it's handled at the end */ if (dualstereo) next_lowband_out1 = lowband_out; else next_level = level + 1; rebalance = f->remaining2; if (mbits >= sbits) { /* In stereo mode, we do not apply a scaling to the mid * because we need the normalized mid for folding later */ cm = ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, next_lowband_out1, next_level, dualstereo ? 1.0f : (gain * mid), lowband_scratch, fill); rebalance = mbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 0) sbits += rebalance - (3 << 3); /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ cm |= ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, duration, NULL, next_level, gain * side, NULL, fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); } else { /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ cm = ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, duration, NULL, next_level, gain * side, NULL, fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); rebalance = sbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 16384) mbits += rebalance - (3 << 3); /* In stereo mode, we do not apply a scaling to the mid because * we need the normalized mid for folding later */ cm |= ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, next_lowband_out1, next_level, dualstereo ? 1.0f : (gain * mid), lowband_scratch, fill); } } } else { /* This is the basic no-split case */ uint32_t q = celt_bits2pulses(cache, b); uint32_t curr_bits = celt_pulses2bits(cache, q); f->remaining2 -= curr_bits; /* Ensures we can never bust the budget */ while (f->remaining2 < 0 && q > 0) { f->remaining2 += curr_bits; curr_bits = celt_pulses2bits(cache, --q); f->remaining2 -= curr_bits; } if (q != 0) { /* Finally do the actual quantization */ cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), f->spread, blocks, gain); } } return cm; } | 19,687 |
1 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c5_data = extended_mpu_ap_bits(value); } | 19,688 |
0 | static int mv_read_packet(AVFormatContext *avctx, AVPacket *pkt) { MvContext *mv = avctx->priv_data; AVIOContext *pb = avctx->pb; AVStream *st = avctx->streams[mv->stream_index]; const AVIndexEntry *index; int frame = mv->frame[mv->stream_index]; int ret; uint64_t pos; if (frame < st->nb_frames) { index = &st->index_entries[frame]; pos = avio_tell(pb); if (index->pos > pos) avio_skip(pb, index->pos - pos); else if (index->pos < pos) { if (!pb->seekable) return AVERROR(EIO); ret = avio_seek(pb, index->pos, SEEK_SET); if (ret < 0) return ret; } ret = av_get_packet(pb, pkt, index->size); if (ret < 0) return ret; pkt->stream_index = mv->stream_index; pkt->pts = index->timestamp; pkt->flags |= AV_PKT_FLAG_KEY; mv->frame[mv->stream_index]++; mv->eof_count = 0; } else { mv->eof_count++; if (mv->eof_count >= avctx->nb_streams) return AVERROR_EOF; } mv->stream_index++; if (mv->stream_index >= avctx->nb_streams) mv->stream_index = 0; return 0; } | 19,690 |
0 | static int adx_parse(AVCodecParserContext *s1, AVCodecContext *avctx, const uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { ADXParseContext *s = s1->priv_data; ParseContext *pc = &s->pc; int next = END_NOT_FOUND; if (!avctx->extradata_size) { int ret; ff_combine_frame(pc, END_NOT_FOUND, &buf, &buf_size); if (!s->header_size && pc->index >= MIN_HEADER_SIZE) { if (ret = avpriv_adx_decode_header(avctx, pc->buffer, pc->index, &s->header_size, NULL)) return AVERROR_INVALIDDATA; s->block_size = BLOCK_SIZE * avctx->channels; } if (s->header_size && s->header_size <= pc->index) { avctx->extradata = av_mallocz(s->header_size + FF_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) return AVERROR(ENOMEM); avctx->extradata_size = s->header_size; memcpy(avctx->extradata, pc->buffer, s->header_size); memmove(pc->buffer, pc->buffer + s->header_size, s->header_size); pc->index -= s->header_size; } *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } if (pc->index - s->buf_pos >= s->block_size) { *poutbuf = &pc->buffer[s->buf_pos]; *poutbuf_size = s->block_size; s->buf_pos += s->block_size; return 0; } if (pc->index && s->buf_pos) { memmove(pc->buffer, &pc->buffer[s->buf_pos], pc->index - s->buf_pos); pc->index -= s->buf_pos; s->buf_pos = 0; } if (buf_size + pc->index >= s->block_size) next = s->block_size - pc->index; if (ff_combine_frame(pc, next, &buf, &buf_size) < 0 || !buf_size) { *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } *poutbuf = buf; *poutbuf_size = buf_size; return next; } | 19,691 |
0 | void ff_put_h264_qpel8_mc10_msa(uint8_t *dst, const uint8_t *src, ptrdiff_t stride) { avc_luma_hz_qrt_8w_msa(src - 2, stride, dst, stride, 8, 0); } | 19,692 |
0 | static int decode_dvd_subtitles(AVSubtitle *sub_header, const uint8_t *buf, int buf_size) { int cmd_pos, pos, cmd, x1, y1, x2, y2, offset1, offset2, next_cmd_pos; int big_offsets, offset_size, is_8bit = 0; const uint8_t *yuv_palette = 0; uint8_t colormap[4], alpha[256]; int date; int i; int is_menu = 0; if (buf_size < 10) return -1; memset(sub_header, 0, sizeof(*sub_header)); if (AV_RB16(buf) == 0) { /* HD subpicture with 4-byte offsets */ big_offsets = 1; offset_size = 4; cmd_pos = 6; } else { big_offsets = 0; offset_size = 2; cmd_pos = 2; } cmd_pos = READ_OFFSET(buf + cmd_pos); while (cmd_pos > 0 && cmd_pos < buf_size - 2 - offset_size) { date = AV_RB16(buf + cmd_pos); next_cmd_pos = READ_OFFSET(buf + cmd_pos + 2); av_dlog(NULL, "cmd_pos=0x%04x next=0x%04x date=%d\n", cmd_pos, next_cmd_pos, date); pos = cmd_pos + 2 + offset_size; offset1 = -1; offset2 = -1; x1 = y1 = x2 = y2 = 0; while (pos < buf_size) { cmd = buf[pos++]; av_dlog(NULL, "cmd=%02x\n", cmd); switch(cmd) { case 0x00: /* menu subpicture */ is_menu = 1; break; case 0x01: /* set start date */ sub_header->start_display_time = (date << 10) / 90; break; case 0x02: /* set end date */ sub_header->end_display_time = (date << 10) / 90; break; case 0x03: /* set colormap */ if ((buf_size - pos) < 2) goto fail; colormap[3] = buf[pos] >> 4; colormap[2] = buf[pos] & 0x0f; colormap[1] = buf[pos + 1] >> 4; colormap[0] = buf[pos + 1] & 0x0f; pos += 2; break; case 0x04: /* set alpha */ if ((buf_size - pos) < 2) goto fail; alpha[3] = buf[pos] >> 4; alpha[2] = buf[pos] & 0x0f; alpha[1] = buf[pos + 1] >> 4; alpha[0] = buf[pos + 1] & 0x0f; pos += 2; av_dlog(NULL, "alpha=%x%x%x%x\n", alpha[0],alpha[1],alpha[2],alpha[3]); break; case 0x05: case 0x85: if ((buf_size - pos) < 6) goto fail; x1 = (buf[pos] << 4) | (buf[pos + 1] >> 4); x2 = ((buf[pos + 1] & 0x0f) << 8) | buf[pos + 2]; y1 = (buf[pos + 3] << 4) | (buf[pos + 4] >> 4); y2 = ((buf[pos + 4] & 0x0f) << 8) | buf[pos + 5]; if (cmd & 0x80) is_8bit = 1; av_dlog(NULL, "x1=%d x2=%d y1=%d y2=%d\n", x1, x2, y1, y2); pos += 6; break; case 0x06: if ((buf_size - pos) < 4) goto fail; offset1 = AV_RB16(buf + pos); offset2 = AV_RB16(buf + pos + 2); av_dlog(NULL, "offset1=0x%04x offset2=0x%04x\n", offset1, offset2); pos += 4; break; case 0x86: if ((buf_size - pos) < 8) goto fail; offset1 = AV_RB32(buf + pos); offset2 = AV_RB32(buf + pos + 4); av_dlog(NULL, "offset1=0x%04x offset2=0x%04x\n", offset1, offset2); pos += 8; break; case 0x83: /* HD set palette */ if ((buf_size - pos) < 768) goto fail; yuv_palette = buf + pos; pos += 768; break; case 0x84: /* HD set contrast (alpha) */ if ((buf_size - pos) < 256) goto fail; for (i = 0; i < 256; i++) alpha[i] = 0xFF - buf[pos+i]; pos += 256; break; case 0xff: goto the_end; default: av_dlog(NULL, "unrecognised subpicture command 0x%x\n", cmd); goto the_end; } } the_end: if (offset1 >= 0) { int w, h; uint8_t *bitmap; /* decode the bitmap */ w = x2 - x1 + 1; if (w < 0) w = 0; h = y2 - y1; if (h < 0) h = 0; if (w > 0 && h > 0) { if (sub_header->rects != NULL) { for (i = 0; i < sub_header->num_rects; i++) { av_freep(&sub_header->rects[i]->pict.data[0]); av_freep(&sub_header->rects[i]->pict.data[1]); av_freep(&sub_header->rects[i]); } av_freep(&sub_header->rects); sub_header->num_rects = 0; } bitmap = av_malloc(w * h); sub_header->rects = av_mallocz(sizeof(*sub_header->rects)); sub_header->rects[0] = av_mallocz(sizeof(AVSubtitleRect)); sub_header->num_rects = 1; sub_header->rects[0]->pict.data[0] = bitmap; decode_rle(bitmap, w * 2, w, (h + 1) / 2, buf, offset1, buf_size, is_8bit); decode_rle(bitmap + w, w * 2, w, h / 2, buf, offset2, buf_size, is_8bit); sub_header->rects[0]->pict.data[1] = av_mallocz(AVPALETTE_SIZE); if (is_8bit) { if (yuv_palette == 0) goto fail; sub_header->rects[0]->nb_colors = 256; yuv_a_to_rgba(yuv_palette, alpha, (uint32_t*)sub_header->rects[0]->pict.data[1], 256); } else { sub_header->rects[0]->nb_colors = 4; guess_palette((uint32_t*)sub_header->rects[0]->pict.data[1], colormap, alpha, 0xffff00); } sub_header->rects[0]->x = x1; sub_header->rects[0]->y = y1; sub_header->rects[0]->w = w; sub_header->rects[0]->h = h; sub_header->rects[0]->type = SUBTITLE_BITMAP; sub_header->rects[0]->pict.linesize[0] = w; } } if (next_cmd_pos == cmd_pos) break; cmd_pos = next_cmd_pos; } if (sub_header->num_rects > 0) return is_menu; fail: if (sub_header->rects != NULL) { for (i = 0; i < sub_header->num_rects; i++) { av_freep(&sub_header->rects[i]->pict.data[0]); av_freep(&sub_header->rects[i]->pict.data[1]); av_freep(&sub_header->rects[i]); } av_freep(&sub_header->rects); sub_header->num_rects = 0; } return -1; } | 19,693 |
0 | static AVFrame *apply_palette(AVFilterLink *inlink, AVFrame *in) { int x, y, w, h; AVFilterContext *ctx = inlink->dst; PaletteUseContext *s = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return NULL; } av_frame_copy_props(out, in); set_processing_window(s->diff_mode, s->last_in, in, s->last_out, out, &x, &y, &w, &h); av_frame_free(&s->last_in); av_frame_free(&s->last_out); s->last_in = av_frame_clone(in); s->last_out = av_frame_clone(out); if (!s->last_in || !s->last_out || av_frame_make_writable(s->last_in) < 0) { av_frame_free(&in); av_frame_free(&out); return NULL; } ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n", w, h, x, y, x+w, y+h, in->width, in->height); if (s->set_frame(s, out, in, x, y, w, h) < 0) { av_frame_free(&out); return NULL; } memcpy(out->data[1], s->palette, AVPALETTE_SIZE); if (s->calc_mean_err) debug_mean_error(s, in, out, inlink->frame_count_out); av_frame_free(&in); return out; } | 19,694 |
1 | static av_cold int flic_decode_init(AVCodecContext *avctx) { FlicDecodeContext *s = avctx->priv_data; unsigned char *fli_header = (unsigned char *)avctx->extradata; int depth; if (avctx->extradata_size != 0 && avctx->extradata_size != 12 && avctx->extradata_size != 128 && avctx->extradata_size != 1024) { av_log(avctx, AV_LOG_ERROR, "Expected extradata of 12, 128 or 1024 bytes\n"); return AVERROR_INVALIDDATA; } s->avctx = avctx; if (s->avctx->extradata_size == 12) { /* special case for magic carpet FLIs */ s->fli_type = FLC_MAGIC_CARPET_SYNTHETIC_TYPE_CODE; depth = 8; } else if (avctx->extradata_size == 1024) { uint8_t *ptr = avctx->extradata; int i; for (i = 0; i < 256; i++) { s->palette[i] = AV_RL32(ptr); ptr += 4; } depth = 8; } else if (avctx->extradata_size == 0) { /* FLI in MOV, see e.g. FFmpeg trac issue #626 */ s->fli_type = FLI_TYPE_CODE; depth = 8; } else { s->fli_type = AV_RL16(&fli_header[4]); depth = AV_RL16(&fli_header[12]); } if (depth == 0) { depth = 8; /* Some FLC generators set depth to zero, when they mean 8Bpp. Fix up here */ } if ((s->fli_type == FLC_FLX_TYPE_CODE) && (depth == 16)) { depth = 15; /* Original Autodesk FLX's say the depth is 16Bpp when it is really 15Bpp */ } switch (depth) { case 8 : avctx->pix_fmt = PIX_FMT_PAL8; break; case 15 : avctx->pix_fmt = PIX_FMT_RGB555; break; case 16 : avctx->pix_fmt = PIX_FMT_RGB565; break; case 24 : avctx->pix_fmt = PIX_FMT_BGR24; /* Supposedly BGR, but havent any files to test with */ av_log(avctx, AV_LOG_ERROR, "24Bpp FLC/FLX is unsupported due to no test files.\n"); return -1; default : av_log(avctx, AV_LOG_ERROR, "Unknown FLC/FLX depth of %d Bpp is unsupported.\n",depth); return -1; } avcodec_get_frame_defaults(&s->frame); s->frame.data[0] = NULL; s->new_palette = 0; return 0; } | 19,695 |
1 | static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) { PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); uint64_t remote_hps, remote_tps; trace_loadvm_postcopy_handle_advise(); if (ps != POSTCOPY_INCOMING_NONE) { error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); return -1; } if (!postcopy_ram_supported_by_host()) { postcopy_state_set(POSTCOPY_INCOMING_NONE); return -1; } remote_hps = qemu_get_be64(mis->from_src_file); if (remote_hps != getpagesize()) { /* * Some combinations of mismatch are probably possible but it gets * a bit more complicated. In particular we need to place whole * host pages on the dest at once, and we need to ensure that we * handle dirtying to make sure we never end up sending part of * a hostpage on it's own. */ error_report("Postcopy needs matching host page sizes (s=%d d=%d)", (int)remote_hps, getpagesize()); return -1; } remote_tps = qemu_get_be64(mis->from_src_file); if (remote_tps != (1ul << qemu_target_page_bits())) { /* * Again, some differences could be dealt with, but for now keep it * simple. */ error_report("Postcopy needs matching target page sizes (s=%d d=%d)", (int)remote_tps, 1 << qemu_target_page_bits()); return -1; } if (ram_postcopy_incoming_init(mis)) { return -1; } postcopy_state_set(POSTCOPY_INCOMING_ADVISE); return 0; } | 19,696 |
1 | static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda) { int start = 0, i, w, w2, g; int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f); float dists[128] = { 0 }, uplims[128] = { 0 }; float maxvals[128]; int fflag, minscaler; int its = 0; int allz = 0; float minthr = INFINITY; // for values above this the decoder might end up in an endless loop // due to always having more bits than what can be encoded. destbits = FFMIN(destbits, 5800); //XXX: some heuristic to determine initial quantizers will reduce search time //determine zero bands and upper limits for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { int nz = 0; float uplim = 0.0f, energy = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; uplim += band->threshold; energy += band->energy; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; } nz = 1; } uplims[w*16+g] = uplim *512; sce->zeroes[w*16+g] = !nz; if (nz) minthr = FFMIN(minthr, uplim); allz |= nz; } } for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { if (sce->zeroes[w*16+g]) { sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); } } if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { const float *scaled = s->scoefs + start; maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); start += sce->ics.swb_sizes[g]; } } //perform two-loop search //outer loop - improve quality do { int tbits, qstep; minscaler = sce->sf_idx[0]; //inner loop - quantize spectrum to fit into given number of bits qstep = its ? 1 : 32; do { int prev = -1; tbits = 0; for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { const float *coefs = sce->coeffs + start; const float *scaled = s->scoefs + start; int bits = 0; int cb; float dist = 0.0f; if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { start += sce->ics.swb_sizes[g]; continue; } minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, scaled + w2*128, sce->ics.swb_sizes[g], sce->sf_idx[w*16+g], cb, 1.0f, INFINITY, &b, 0); bits += b; } dists[w*16+g] = dist - bits; if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } tbits += bits; start += sce->ics.swb_sizes[g]; prev = sce->sf_idx[w*16+g]; } } if (tbits > destbits) { for (i = 0; i < 128; i++) if (sce->sf_idx[i] < 218 - qstep) sce->sf_idx[i] += qstep; } else { for (i = 0; i < 128; i++) if (sce->sf_idx[i] > 60 - qstep) sce->sf_idx[i] -= qstep; } qstep >>= 1; if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) qstep = 1; } while (qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) sce->sf_idx[w*16+g]--; else //Try to make sure there is some energy in every band sce->sf_idx[w*16+g]-=2; } sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); } } its++; } while (fflag && its < 10); } | 19,697 |
1 | static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix, bool *rebuild, int64_t *highest_cluster, uint16_t *refcount_table, int64_t nb_clusters) { BDRVQcowState *s = bs->opaque; int64_t i; uint64_t refcount1, refcount2; int ret; for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) { ret = qcow2_get_refcount(bs, i, &refcount1); if (ret < 0) { fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", i, strerror(-ret)); res->check_errors++; continue; } refcount2 = refcount_table[i]; if (refcount1 > 0 || refcount2 > 0) { *highest_cluster = i; } if (refcount1 != refcount2) { /* Check if we're allowed to fix the mismatch */ int *num_fixed = NULL; if (refcount1 == 0) { *rebuild = true; } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { num_fixed = &res->leaks_fixed; } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { num_fixed = &res->corruptions_fixed; } fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64 " reference=%" PRIu64 "\n", num_fixed != NULL ? "Repairing" : refcount1 < refcount2 ? "ERROR" : "Leaked", i, refcount1, refcount2); if (num_fixed) { ret = update_refcount(bs, i << s->cluster_bits, 1, refcount_diff(refcount1, refcount2), refcount1 > refcount2, QCOW2_DISCARD_ALWAYS); if (ret >= 0) { (*num_fixed)++; continue; } } /* And if we couldn't, print an error */ if (refcount1 < refcount2) { res->corruptions++; } else { res->leaks++; } } } } | 19,698 |
1 | static void xilinx_spips_realize(DeviceState *dev, Error **errp) { XilinxSPIPS *s = XILINX_SPIPS(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); int i; DB_PRINT_L(0, "realized spips\n"); s->spi = g_new(SSIBus *, s->num_busses); for (i = 0; i < s->num_busses; ++i) { char bus_name[16]; snprintf(bus_name, 16, "spi%d", i); s->spi[i] = ssi_create_bus(dev, bus_name); } s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]); ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]); sysbus_init_irq(sbd, &s->irq); for (i = 0; i < s->num_cs * s->num_busses; ++i) { sysbus_init_irq(sbd, &s->cs_lines[i]); } memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, "spi", XLNX_SPIPS_R_MAX * 4); sysbus_init_mmio(sbd, &s->iomem); s->irqline = -1; fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); } | 19,699 |
1 | int32_t HELPER(sdiv)(int32_t num, int32_t den) { if (den == 0) return 0; return num / den; } | 19,700 |
1 | static void bdrv_move_feature_fields(BlockDriverState *bs_dest, BlockDriverState *bs_src) { /* move some fields that need to stay attached to the device */ bs_dest->open_flags = bs_src->open_flags; /* dev info */ bs_dest->dev_ops = bs_src->dev_ops; bs_dest->dev_opaque = bs_src->dev_opaque; bs_dest->dev = bs_src->dev; bs_dest->guest_block_size = bs_src->guest_block_size; bs_dest->copy_on_read = bs_src->copy_on_read; bs_dest->enable_write_cache = bs_src->enable_write_cache; /* i/o throttled req */ memcpy(&bs_dest->throttle_state, &bs_src->throttle_state, sizeof(ThrottleState)); bs_dest->throttled_reqs[0] = bs_src->throttled_reqs[0]; bs_dest->throttled_reqs[1] = bs_src->throttled_reqs[1]; bs_dest->io_limits_enabled = bs_src->io_limits_enabled; /* r/w error */ bs_dest->on_read_error = bs_src->on_read_error; bs_dest->on_write_error = bs_src->on_write_error; /* i/o status */ bs_dest->iostatus_enabled = bs_src->iostatus_enabled; bs_dest->iostatus = bs_src->iostatus; /* dirty bitmap */ bs_dest->dirty_bitmaps = bs_src->dirty_bitmaps; /* reference count */ bs_dest->refcnt = bs_src->refcnt; /* job */ bs_dest->in_use = bs_src->in_use; bs_dest->job = bs_src->job; /* keep the same entry in bdrv_states */ pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), bs_src->device_name); bs_dest->device_list = bs_src->device_list; /* keep the same entry in graph_bdrv_states * We do want to swap name but don't want to swap linked list entries */ bs_dest->node_list = bs_src->node_list; } | 19,701 |
1 | int ff_dxva2_common_end_frame(AVCodecContext *avctx, AVFrame *frame, const void *pp, unsigned pp_size, const void *qm, unsigned qm_size, int (*commit_bs_si)(AVCodecContext *, DECODER_BUFFER_DESC *bs, DECODER_BUFFER_DESC *slice)) { AVDXVAContext *ctx = avctx->hwaccel_context; unsigned buffer_count = 0; #if CONFIG_D3D11VA D3D11_VIDEO_DECODER_BUFFER_DESC buffer11[4]; #endif #if CONFIG_DXVA2 DXVA2_DecodeBufferDesc buffer2[4]; #endif DECODER_BUFFER_DESC *buffer,*buffer_slice; int result, runs = 0; HRESULT hr; unsigned type; do { #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) { if (D3D11VA_CONTEXT(ctx)->context_mutex != INVALID_HANDLE_VALUE) WaitForSingleObjectEx(D3D11VA_CONTEXT(ctx)->context_mutex, INFINITE, FALSE); hr = ID3D11VideoContext_DecoderBeginFrame(D3D11VA_CONTEXT(ctx)->video_context, D3D11VA_CONTEXT(ctx)->decoder, ff_dxva2_get_surface(frame), 0, NULL); } #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) hr = IDirectXVideoDecoder_BeginFrame(DXVA2_CONTEXT(ctx)->decoder, ff_dxva2_get_surface(frame), NULL); #endif if (hr == E_PENDING) av_usleep(2000); } while (hr == E_PENDING && ++runs < 50); if (FAILED(hr)) { av_log(avctx, AV_LOG_ERROR, "Failed to begin frame: 0x%lx\n", hr); #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) if (D3D11VA_CONTEXT(ctx)->context_mutex != INVALID_HANDLE_VALUE) ReleaseMutex(D3D11VA_CONTEXT(ctx)->context_mutex); #endif return -1; } #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) { buffer = &buffer11[buffer_count]; type = D3D11_VIDEO_DECODER_BUFFER_PICTURE_PARAMETERS; } #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) { buffer = &buffer2[buffer_count]; type = DXVA2_PictureParametersBufferType; } #endif result = ff_dxva2_commit_buffer(avctx, ctx, buffer, type, pp, pp_size, 0); if (result) { av_log(avctx, AV_LOG_ERROR, "Failed to add picture parameter buffer\n"); goto end; } buffer_count++; if (qm_size > 0) { #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) { buffer = &buffer11[buffer_count]; type = D3D11_VIDEO_DECODER_BUFFER_INVERSE_QUANTIZATION_MATRIX; } #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) { buffer = &buffer2[buffer_count]; type = DXVA2_InverseQuantizationMatrixBufferType; } #endif result = ff_dxva2_commit_buffer(avctx, ctx, buffer, type, qm, qm_size, 0); if (result) { av_log(avctx, AV_LOG_ERROR, "Failed to add inverse quantization matrix buffer\n"); goto end; } buffer_count++; } #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) { buffer = &buffer11[buffer_count + 0]; buffer_slice = &buffer11[buffer_count + 1]; } #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) { buffer = &buffer2[buffer_count + 0]; buffer_slice = &buffer2[buffer_count + 1]; } #endif result = commit_bs_si(avctx, buffer, buffer_slice); if (result) { av_log(avctx, AV_LOG_ERROR, "Failed to add bitstream or slice control buffer\n"); goto end; } buffer_count += 2; /* TODO Film Grain when possible */ assert(buffer_count == 1 + (qm_size > 0) + 2); #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) hr = ID3D11VideoContext_SubmitDecoderBuffers(D3D11VA_CONTEXT(ctx)->video_context, D3D11VA_CONTEXT(ctx)->decoder, buffer_count, buffer11); #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) { DXVA2_DecodeExecuteParams exec = { .NumCompBuffers = buffer_count, .pCompressedBuffers = buffer2, .pExtensionData = NULL, }; hr = IDirectXVideoDecoder_Execute(DXVA2_CONTEXT(ctx)->decoder, &exec); } #endif if (FAILED(hr)) { av_log(avctx, AV_LOG_ERROR, "Failed to execute: 0x%lx\n", hr); result = -1; } end: #if CONFIG_D3D11VA if (avctx->pix_fmt == AV_PIX_FMT_D3D11VA_VLD) { hr = ID3D11VideoContext_DecoderEndFrame(D3D11VA_CONTEXT(ctx)->video_context, D3D11VA_CONTEXT(ctx)->decoder); if (D3D11VA_CONTEXT(ctx)->context_mutex != INVALID_HANDLE_VALUE) ReleaseMutex(D3D11VA_CONTEXT(ctx)->context_mutex); } #endif #if CONFIG_DXVA2 if (avctx->pix_fmt == AV_PIX_FMT_DXVA2_VLD) hr = IDirectXVideoDecoder_EndFrame(DXVA2_CONTEXT(ctx)->decoder, NULL); #endif if (FAILED(hr)) { av_log(avctx, AV_LOG_ERROR, "Failed to end frame: 0x%lx\n", hr); result = -1; } return result; } | 19,702 |
1 | static int xsub_encode(AVCodecContext *avctx, unsigned char *buf, int bufsize, void *data) { AVSubtitle *h = data; uint64_t startTime = h->pts / 1000; // FIXME: need better solution... uint64_t endTime = startTime + h->end_display_time - h->start_display_time; int start_tc[4], end_tc[4]; uint8_t *hdr = buf + 27; // Point behind the timestamp uint8_t *rlelenptr; uint16_t width, height; int i; PutBitContext pb; if (bufsize < 27 + 7*2 + 4*3) { av_log(avctx, AV_LOG_ERROR, "Buffer too small for XSUB header.\n"); return -1; } // TODO: support multiple rects if (h->num_rects > 1) av_log(avctx, AV_LOG_WARNING, "Only single rects supported (%d in subtitle.)\n", h->num_rects); // TODO: render text-based subtitles into bitmaps if (!h->rects[0]->pict.data[0] || !h->rects[0]->pict.data[1]) { av_log(avctx, AV_LOG_WARNING, "No subtitle bitmap available.\n"); return -1; } // TODO: color reduction, similar to dvdsub encoder if (h->rects[0]->nb_colors > 4) av_log(avctx, AV_LOG_WARNING, "No more than 4 subtitle colors supported (%d found.)\n", h->rects[0]->nb_colors); // TODO: Palette swapping if color zero is not transparent if (((uint32_t *)h->rects[0]->pict.data[1])[0] & 0xff) av_log(avctx, AV_LOG_WARNING, "Color index 0 is not transparent. Transparency will be messed up.\n"); if (make_tc(startTime, start_tc) || make_tc(endTime, end_tc)) { av_log(avctx, AV_LOG_WARNING, "Time code >= 100 hours.\n"); return -1; } snprintf(buf, 28, "[%02d:%02d:%02d.%03d-%02d:%02d:%02d.%03d]", start_tc[3], start_tc[2], start_tc[1], start_tc[0], end_tc[3], end_tc[2], end_tc[1], end_tc[0]); // Width and height must probably be multiples of 2. // 2 pixels required on either side of subtitle. // Possibly due to limitations of hardware renderers. // TODO: check if the bitmap is already padded width = FFALIGN(h->rects[0]->w, 2) + PADDING * 2; height = FFALIGN(h->rects[0]->h, 2); bytestream_put_le16(&hdr, width); bytestream_put_le16(&hdr, height); bytestream_put_le16(&hdr, h->rects[0]->x); bytestream_put_le16(&hdr, h->rects[0]->y); bytestream_put_le16(&hdr, h->rects[0]->x + width); bytestream_put_le16(&hdr, h->rects[0]->y + height); rlelenptr = hdr; // Will store length of first field here later. hdr+=2; // Palette for (i=0; i<4; i++) bytestream_put_be24(&hdr, ((uint32_t *)h->rects[0]->pict.data[1])[i]); // Bitmap // RLE buffer. Reserve 2 bytes for possible padding after the last row. init_put_bits(&pb, hdr, bufsize - (hdr - buf) - 2); if (xsub_encode_rle(&pb, h->rects[0]->pict.data[0], h->rects[0]->pict.linesize[0]*2, h->rects[0]->w, (h->rects[0]->h + 1) >> 1)) return -1; bytestream_put_le16(&rlelenptr, put_bits_count(&pb) >> 3); // Length of first field if (xsub_encode_rle(&pb, h->rects[0]->pict.data[0] + h->rects[0]->pict.linesize[0], h->rects[0]->pict.linesize[0]*2, h->rects[0]->w, h->rects[0]->h >> 1)) return -1; // Enforce total height to be be multiple of 2 if (h->rects[0]->h & 1) { put_xsub_rle(&pb, h->rects[0]->w, PADDING_COLOR); align_put_bits(&pb); } flush_put_bits(&pb); return hdr - buf + put_bits_count(&pb)/8; } | 19,703 |
1 | void avcodec_register_all(void) { static int initialized; if (initialized) return; initialized = 1; /* hardware accelerators */ REGISTER_HWACCEL(H263_CUVID, h263_cuvid); REGISTER_HWACCEL(H263_VAAPI, h263_vaapi); REGISTER_HWACCEL(H263_VIDEOTOOLBOX, h263_videotoolbox); REGISTER_HWACCEL(H264_CUVID, h264_cuvid); REGISTER_HWACCEL(H264_D3D11VA, h264_d3d11va); REGISTER_HWACCEL(H264_DXVA2, h264_dxva2); REGISTER_HWACCEL(H264_MEDIACODEC, h264_mediacodec); REGISTER_HWACCEL(H264_MMAL, h264_mmal); REGISTER_HWACCEL(H264_QSV, h264_qsv); REGISTER_HWACCEL(H264_VAAPI, h264_vaapi); REGISTER_HWACCEL(H264_VDA, h264_vda); REGISTER_HWACCEL(H264_VDA_OLD, h264_vda_old); REGISTER_HWACCEL(H264_VDPAU, h264_vdpau); REGISTER_HWACCEL(H264_VIDEOTOOLBOX, h264_videotoolbox); REGISTER_HWACCEL(HEVC_CUVID, hevc_cuvid); REGISTER_HWACCEL(HEVC_D3D11VA, hevc_d3d11va); REGISTER_HWACCEL(HEVC_DXVA2, hevc_dxva2); REGISTER_HWACCEL(HEVC_QSV, hevc_qsv); REGISTER_HWACCEL(HEVC_VAAPI, hevc_vaapi); REGISTER_HWACCEL(HEVC_VDPAU, hevc_vdpau); REGISTER_HWACCEL(MPEG1_XVMC, mpeg1_xvmc); REGISTER_HWACCEL(MPEG1_VDPAU, mpeg1_vdpau); REGISTER_HWACCEL(MPEG1_VIDEOTOOLBOX, mpeg1_videotoolbox); REGISTER_HWACCEL(MPEG2_XVMC, mpeg2_xvmc); REGISTER_HWACCEL(MPEG2_D3D11VA, mpeg2_d3d11va); REGISTER_HWACCEL(MPEG2_DXVA2, mpeg2_dxva2); REGISTER_HWACCEL(MPEG2_MMAL, mpeg2_mmal); REGISTER_HWACCEL(MPEG2_QSV, mpeg2_qsv); REGISTER_HWACCEL(MPEG2_VAAPI, mpeg2_vaapi); REGISTER_HWACCEL(MPEG2_VDPAU, mpeg2_vdpau); REGISTER_HWACCEL(MPEG2_VIDEOTOOLBOX, mpeg2_videotoolbox); REGISTER_HWACCEL(MPEG4_CUVID, mpeg4_cuvid); REGISTER_HWACCEL(MPEG4_MMAL, mpeg4_mmal); REGISTER_HWACCEL(MPEG4_VAAPI, mpeg4_vaapi); REGISTER_HWACCEL(MPEG4_VDPAU, mpeg4_vdpau); REGISTER_HWACCEL(MPEG4_VIDEOTOOLBOX, mpeg4_videotoolbox); REGISTER_HWACCEL(VC1_CUVID, vc1_cuvid); REGISTER_HWACCEL(VC1_D3D11VA, vc1_d3d11va); REGISTER_HWACCEL(VC1_DXVA2, vc1_dxva2); REGISTER_HWACCEL(VC1_VAAPI, vc1_vaapi); REGISTER_HWACCEL(VC1_VDPAU, vc1_vdpau); REGISTER_HWACCEL(VC1_MMAL, vc1_mmal); REGISTER_HWACCEL(VC1_QSV, vc1_qsv); REGISTER_HWACCEL(VP8_CUVID, vp8_cuvid); REGISTER_HWACCEL(VP9_CUVID, vp9_cuvid); REGISTER_HWACCEL(VP9_D3D11VA, vp9_d3d11va); REGISTER_HWACCEL(VP9_DXVA2, vp9_dxva2); REGISTER_HWACCEL(VP9_VAAPI, vp9_vaapi); REGISTER_HWACCEL(WMV3_D3D11VA, wmv3_d3d11va); REGISTER_HWACCEL(WMV3_DXVA2, wmv3_dxva2); REGISTER_HWACCEL(WMV3_VAAPI, wmv3_vaapi); REGISTER_HWACCEL(WMV3_VDPAU, wmv3_vdpau); /* video codecs */ REGISTER_ENCODER(A64MULTI, a64multi); REGISTER_ENCODER(A64MULTI5, a64multi5); REGISTER_DECODER(AASC, aasc); REGISTER_DECODER(AIC, aic); REGISTER_ENCDEC (ALIAS_PIX, alias_pix); REGISTER_ENCDEC (AMV, amv); REGISTER_DECODER(ANM, anm); REGISTER_DECODER(ANSI, ansi); REGISTER_ENCDEC (APNG, apng); REGISTER_ENCDEC (ASV1, asv1); REGISTER_ENCDEC (ASV2, asv2); REGISTER_DECODER(AURA, aura); REGISTER_DECODER(AURA2, aura2); REGISTER_ENCDEC (AVRP, avrp); REGISTER_DECODER(AVRN, avrn); REGISTER_DECODER(AVS, avs); REGISTER_ENCDEC (AVUI, avui); REGISTER_ENCDEC (AYUV, ayuv); REGISTER_DECODER(BETHSOFTVID, bethsoftvid); REGISTER_DECODER(BFI, bfi); REGISTER_DECODER(BINK, bink); REGISTER_ENCDEC (BMP, bmp); REGISTER_DECODER(BMV_VIDEO, bmv_video); REGISTER_DECODER(BRENDER_PIX, brender_pix); REGISTER_DECODER(C93, c93); REGISTER_DECODER(CAVS, cavs); REGISTER_DECODER(CDGRAPHICS, cdgraphics); REGISTER_DECODER(CDXL, cdxl); REGISTER_DECODER(CFHD, cfhd); REGISTER_ENCDEC (CINEPAK, cinepak); REGISTER_ENCDEC (CLJR, cljr); REGISTER_DECODER(CLLC, cllc); REGISTER_ENCDEC (COMFORTNOISE, comfortnoise); REGISTER_DECODER(CPIA, cpia); REGISTER_DECODER(CSCD, cscd); REGISTER_DECODER(CYUV, cyuv); REGISTER_DECODER(DDS, dds); REGISTER_DECODER(DFA, dfa); REGISTER_DECODER(DIRAC, dirac); REGISTER_ENCDEC (DNXHD, dnxhd); REGISTER_ENCDEC (DPX, dpx); REGISTER_DECODER(DSICINVIDEO, dsicinvideo); REGISTER_DECODER(DVAUDIO, dvaudio); REGISTER_ENCDEC (DVVIDEO, dvvideo); REGISTER_DECODER(DXA, dxa); REGISTER_DECODER(DXTORY, dxtory); REGISTER_DECODER(DXV, dxv); REGISTER_DECODER(EACMV, eacmv); REGISTER_DECODER(EAMAD, eamad); REGISTER_DECODER(EATGQ, eatgq); REGISTER_DECODER(EATGV, eatgv); REGISTER_DECODER(EATQI, eatqi); REGISTER_DECODER(EIGHTBPS, eightbps); REGISTER_DECODER(EIGHTSVX_EXP, eightsvx_exp); REGISTER_DECODER(EIGHTSVX_FIB, eightsvx_fib); REGISTER_DECODER(ESCAPE124, escape124); REGISTER_DECODER(ESCAPE130, escape130); REGISTER_DECODER(EXR, exr); REGISTER_ENCDEC (FFV1, ffv1); REGISTER_ENCDEC (FFVHUFF, ffvhuff); REGISTER_DECODER(FIC, fic); REGISTER_ENCDEC (FLASHSV, flashsv); REGISTER_ENCDEC (FLASHSV2, flashsv2); REGISTER_DECODER(FLIC, flic); REGISTER_ENCDEC (FLV, flv); REGISTER_DECODER(FOURXM, fourxm); REGISTER_DECODER(FRAPS, fraps); REGISTER_DECODER(FRWU, frwu); REGISTER_DECODER(G2M, g2m); REGISTER_ENCDEC (GIF, gif); REGISTER_ENCDEC (H261, h261); REGISTER_ENCDEC (H263, h263); REGISTER_DECODER(H263I, h263i); REGISTER_ENCDEC (H263P, h263p); REGISTER_DECODER(H264, h264); REGISTER_DECODER(H264_CRYSTALHD, h264_crystalhd); REGISTER_DECODER(H264_MEDIACODEC, h264_mediacodec); REGISTER_DECODER(H264_MMAL, h264_mmal); REGISTER_DECODER(H264_QSV, h264_qsv); REGISTER_DECODER(H264_VDA, h264_vda); #if FF_API_VDPAU REGISTER_DECODER(H264_VDPAU, h264_vdpau); #endif REGISTER_ENCDEC (HAP, hap); REGISTER_DECODER(HEVC, hevc); REGISTER_DECODER(HEVC_QSV, hevc_qsv); REGISTER_DECODER(HNM4_VIDEO, hnm4_video); REGISTER_DECODER(HQ_HQA, hq_hqa); REGISTER_DECODER(HQX, hqx); REGISTER_ENCDEC (HUFFYUV, huffyuv); REGISTER_DECODER(IDCIN, idcin); REGISTER_DECODER(IFF_ILBM, iff_ilbm); REGISTER_DECODER(INDEO2, indeo2); REGISTER_DECODER(INDEO3, indeo3); REGISTER_DECODER(INDEO4, indeo4); REGISTER_DECODER(INDEO5, indeo5); REGISTER_DECODER(INTERPLAY_VIDEO, interplay_video); REGISTER_ENCDEC (JPEG2000, jpeg2000); REGISTER_ENCDEC (JPEGLS, jpegls); REGISTER_DECODER(JV, jv); REGISTER_DECODER(KGV1, kgv1); REGISTER_DECODER(KMVC, kmvc); REGISTER_DECODER(LAGARITH, lagarith); REGISTER_ENCODER(LJPEG, ljpeg); REGISTER_DECODER(LOCO, loco); REGISTER_DECODER(M101, m101); REGISTER_DECODER(MAGICYUV, magicyuv); REGISTER_DECODER(MDEC, mdec); REGISTER_DECODER(MIMIC, mimic); REGISTER_ENCDEC (MJPEG, mjpeg); REGISTER_DECODER(MJPEGB, mjpegb); REGISTER_DECODER(MMVIDEO, mmvideo); REGISTER_DECODER(MOTIONPIXELS, motionpixels); #if FF_API_XVMC REGISTER_DECODER(MPEG_XVMC, mpeg_xvmc); #endif /* FF_API_XVMC */ REGISTER_ENCDEC (MPEG1VIDEO, mpeg1video); REGISTER_ENCDEC (MPEG2VIDEO, mpeg2video); REGISTER_ENCDEC (MPEG4, mpeg4); REGISTER_DECODER(MPEG4_CRYSTALHD, mpeg4_crystalhd); REGISTER_DECODER(MPEG4_MMAL, mpeg4_mmal); #if FF_API_VDPAU REGISTER_DECODER(MPEG4_VDPAU, mpeg4_vdpau); #endif REGISTER_DECODER(MPEGVIDEO, mpegvideo); #if FF_API_VDPAU REGISTER_DECODER(MPEG_VDPAU, mpeg_vdpau); REGISTER_DECODER(MPEG1_VDPAU, mpeg1_vdpau); #endif REGISTER_DECODER(MPEG2_MMAL, mpeg2_mmal); REGISTER_DECODER(MPEG2_CRYSTALHD, mpeg2_crystalhd); REGISTER_DECODER(MPEG2_QSV, mpeg2_qsv); REGISTER_DECODER(MSA1, msa1); REGISTER_DECODER(MSMPEG4_CRYSTALHD, msmpeg4_crystalhd); REGISTER_DECODER(MSMPEG4V1, msmpeg4v1); REGISTER_ENCDEC (MSMPEG4V2, msmpeg4v2); REGISTER_ENCDEC (MSMPEG4V3, msmpeg4v3); REGISTER_DECODER(MSRLE, msrle); REGISTER_DECODER(MSS1, mss1); REGISTER_DECODER(MSS2, mss2); REGISTER_ENCDEC (MSVIDEO1, msvideo1); REGISTER_DECODER(MSZH, mszh); REGISTER_DECODER(MTS2, mts2); REGISTER_DECODER(MVC1, mvc1); REGISTER_DECODER(MVC2, mvc2); REGISTER_DECODER(MXPEG, mxpeg); REGISTER_DECODER(NUV, nuv); REGISTER_DECODER(PAF_VIDEO, paf_video); REGISTER_ENCDEC (PAM, pam); REGISTER_ENCDEC (PBM, pbm); REGISTER_ENCDEC (PCX, pcx); REGISTER_ENCDEC (PGM, pgm); REGISTER_ENCDEC (PGMYUV, pgmyuv); REGISTER_DECODER(PICTOR, pictor); REGISTER_ENCDEC (PNG, png); REGISTER_ENCDEC (PPM, ppm); REGISTER_ENCDEC (PRORES, prores); REGISTER_ENCODER(PRORES_AW, prores_aw); REGISTER_ENCODER(PRORES_KS, prores_ks); REGISTER_DECODER(PRORES_LGPL, prores_lgpl); REGISTER_DECODER(PTX, ptx); REGISTER_DECODER(QDRAW, qdraw); REGISTER_DECODER(QPEG, qpeg); REGISTER_ENCDEC (QTRLE, qtrle); REGISTER_ENCDEC (R10K, r10k); REGISTER_ENCDEC (R210, r210); REGISTER_ENCDEC (RAWVIDEO, rawvideo); REGISTER_DECODER(RL2, rl2); REGISTER_ENCDEC (ROQ, roq); REGISTER_DECODER(RPZA, rpza); REGISTER_DECODER(RSCC, rscc); REGISTER_ENCDEC (RV10, rv10); REGISTER_ENCDEC (RV20, rv20); REGISTER_DECODER(RV30, rv30); REGISTER_DECODER(RV40, rv40); REGISTER_ENCDEC (S302M, s302m); REGISTER_DECODER(SANM, sanm); REGISTER_DECODER(SCREENPRESSO, screenpresso); REGISTER_DECODER(SDX2_DPCM, sdx2_dpcm); REGISTER_ENCDEC (SGI, sgi); REGISTER_DECODER(SGIRLE, sgirle); REGISTER_DECODER(SHEERVIDEO, sheervideo); REGISTER_DECODER(SMACKER, smacker); REGISTER_DECODER(SMC, smc); REGISTER_DECODER(SMVJPEG, smvjpeg); REGISTER_ENCDEC (SNOW, snow); REGISTER_DECODER(SP5X, sp5x); REGISTER_ENCDEC (SUNRAST, sunrast); REGISTER_ENCDEC (SVQ1, svq1); REGISTER_DECODER(SVQ3, svq3); REGISTER_ENCDEC (TARGA, targa); REGISTER_DECODER(TARGA_Y216, targa_y216); REGISTER_DECODER(TDSC, tdsc); REGISTER_DECODER(THEORA, theora); REGISTER_DECODER(THP, thp); REGISTER_DECODER(TIERTEXSEQVIDEO, tiertexseqvideo); REGISTER_ENCDEC (TIFF, tiff); REGISTER_DECODER(TMV, tmv); REGISTER_DECODER(TRUEMOTION1, truemotion1); REGISTER_DECODER(TRUEMOTION2, truemotion2); REGISTER_DECODER(TRUEMOTION2RT, truemotion2rt); REGISTER_DECODER(TSCC, tscc); REGISTER_DECODER(TSCC2, tscc2); REGISTER_DECODER(TXD, txd); REGISTER_DECODER(ULTI, ulti); REGISTER_ENCDEC (UTVIDEO, utvideo); REGISTER_ENCDEC (V210, v210); REGISTER_DECODER(V210X, v210x); REGISTER_ENCDEC (V308, v308); REGISTER_ENCDEC (V408, v408); REGISTER_ENCDEC (V410, v410); REGISTER_DECODER(VB, vb); REGISTER_DECODER(VBLE, vble); REGISTER_DECODER(VC1, vc1); REGISTER_DECODER(VC1_CRYSTALHD, vc1_crystalhd); #if FF_API_VDPAU REGISTER_DECODER(VC1_VDPAU, vc1_vdpau); #endif REGISTER_DECODER(VC1IMAGE, vc1image); REGISTER_DECODER(VC1_MMAL, vc1_mmal); REGISTER_DECODER(VC1_QSV, vc1_qsv); REGISTER_ENCODER(VC2, vc2); REGISTER_DECODER(VCR1, vcr1); REGISTER_DECODER(VMDVIDEO, vmdvideo); REGISTER_DECODER(VMNC, vmnc); REGISTER_DECODER(VP3, vp3); REGISTER_DECODER(VP5, vp5); REGISTER_DECODER(VP6, vp6); REGISTER_DECODER(VP6A, vp6a); REGISTER_DECODER(VP6F, vp6f); REGISTER_DECODER(VP7, vp7); REGISTER_DECODER(VP8, vp8); REGISTER_DECODER(VP9, vp9); REGISTER_DECODER(VQA, vqa); REGISTER_DECODER(WEBP, webp); REGISTER_ENCODER(WRAPPED_AVFRAME, wrapped_avframe); REGISTER_ENCDEC (WMV1, wmv1); REGISTER_ENCDEC (WMV2, wmv2); REGISTER_DECODER(WMV3, wmv3); REGISTER_DECODER(WMV3_CRYSTALHD, wmv3_crystalhd); #if FF_API_VDPAU REGISTER_DECODER(WMV3_VDPAU, wmv3_vdpau); #endif REGISTER_DECODER(WMV3IMAGE, wmv3image); REGISTER_DECODER(WNV1, wnv1); REGISTER_DECODER(XAN_WC3, xan_wc3); REGISTER_DECODER(XAN_WC4, xan_wc4); REGISTER_ENCDEC (XBM, xbm); REGISTER_ENCDEC (XFACE, xface); REGISTER_DECODER(XL, xl); REGISTER_ENCDEC (XWD, xwd); REGISTER_ENCDEC (Y41P, y41p); REGISTER_DECODER(YLC, ylc); REGISTER_DECODER(YOP, yop); REGISTER_ENCDEC (YUV4, yuv4); REGISTER_DECODER(ZERO12V, zero12v); REGISTER_DECODER(ZEROCODEC, zerocodec); REGISTER_ENCDEC (ZLIB, zlib); REGISTER_ENCDEC (ZMBV, zmbv); /* audio codecs */ REGISTER_ENCDEC (AAC, aac); REGISTER_DECODER(AAC_FIXED, aac_fixed); REGISTER_DECODER(AAC_LATM, aac_latm); REGISTER_ENCDEC (AC3, ac3); REGISTER_ENCDEC (AC3_FIXED, ac3_fixed); REGISTER_ENCDEC (ALAC, alac); REGISTER_DECODER(ALS, als); REGISTER_DECODER(AMRNB, amrnb); REGISTER_DECODER(AMRWB, amrwb); REGISTER_DECODER(APE, ape); REGISTER_DECODER(ATRAC1, atrac1); REGISTER_DECODER(ATRAC3, atrac3); REGISTER_DECODER(ATRAC3P, atrac3p); REGISTER_DECODER(BINKAUDIO_DCT, binkaudio_dct); REGISTER_DECODER(BINKAUDIO_RDFT, binkaudio_rdft); REGISTER_DECODER(BMV_AUDIO, bmv_audio); REGISTER_DECODER(COOK, cook); REGISTER_ENCDEC (DCA, dca); REGISTER_DECODER(DSD_LSBF, dsd_lsbf); REGISTER_DECODER(DSD_MSBF, dsd_msbf); REGISTER_DECODER(DSD_LSBF_PLANAR, dsd_lsbf_planar); REGISTER_DECODER(DSD_MSBF_PLANAR, dsd_msbf_planar); REGISTER_DECODER(DSICINAUDIO, dsicinaudio); REGISTER_DECODER(DSS_SP, dss_sp); REGISTER_DECODER(DST, dst); REGISTER_ENCDEC (EAC3, eac3); REGISTER_DECODER(EVRC, evrc); REGISTER_DECODER(FFWAVESYNTH, ffwavesynth); REGISTER_ENCDEC (FLAC, flac); REGISTER_ENCDEC (G723_1, g723_1); REGISTER_DECODER(G729, g729); REGISTER_DECODER(GSM, gsm); REGISTER_DECODER(GSM_MS, gsm_ms); REGISTER_DECODER(IAC, iac); REGISTER_DECODER(IMC, imc); REGISTER_DECODER(INTERPLAY_ACM, interplay_acm); REGISTER_DECODER(MACE3, mace3); REGISTER_DECODER(MACE6, mace6); REGISTER_DECODER(METASOUND, metasound); REGISTER_DECODER(MLP, mlp); REGISTER_DECODER(MP1, mp1); REGISTER_DECODER(MP1FLOAT, mp1float); REGISTER_ENCDEC (MP2, mp2); REGISTER_DECODER(MP2FLOAT, mp2float); REGISTER_ENCODER(MP2FIXED, mp2fixed); REGISTER_DECODER(MP3, mp3); REGISTER_DECODER(MP3FLOAT, mp3float); REGISTER_DECODER(MP3ADU, mp3adu); REGISTER_DECODER(MP3ADUFLOAT, mp3adufloat); REGISTER_DECODER(MP3ON4, mp3on4); REGISTER_DECODER(MP3ON4FLOAT, mp3on4float); REGISTER_DECODER(MPC7, mpc7); REGISTER_DECODER(MPC8, mpc8); REGISTER_ENCDEC (NELLYMOSER, nellymoser); REGISTER_DECODER(ON2AVC, on2avc); REGISTER_DECODER(OPUS, opus); REGISTER_DECODER(PAF_AUDIO, paf_audio); REGISTER_DECODER(QCELP, qcelp); REGISTER_DECODER(QDM2, qdm2); REGISTER_ENCDEC (RA_144, ra_144); REGISTER_DECODER(RA_288, ra_288); REGISTER_DECODER(RALF, ralf); REGISTER_DECODER(SHORTEN, shorten); REGISTER_DECODER(SIPR, sipr); REGISTER_DECODER(SMACKAUD, smackaud); REGISTER_ENCDEC (SONIC, sonic); REGISTER_ENCODER(SONIC_LS, sonic_ls); REGISTER_DECODER(TAK, tak); REGISTER_DECODER(TRUEHD, truehd); REGISTER_DECODER(TRUESPEECH, truespeech); REGISTER_ENCDEC (TTA, tta); REGISTER_DECODER(TWINVQ, twinvq); REGISTER_DECODER(VMDAUDIO, vmdaudio); REGISTER_ENCDEC (VORBIS, vorbis); REGISTER_ENCDEC (WAVPACK, wavpack); REGISTER_DECODER(WMALOSSLESS, wmalossless); REGISTER_DECODER(WMAPRO, wmapro); REGISTER_ENCDEC (WMAV1, wmav1); REGISTER_ENCDEC (WMAV2, wmav2); REGISTER_DECODER(WMAVOICE, wmavoice); REGISTER_DECODER(WS_SND1, ws_snd1); REGISTER_DECODER(XMA1, xma1); REGISTER_DECODER(XMA2, xma2); /* PCM codecs */ REGISTER_ENCDEC (PCM_ALAW, pcm_alaw); REGISTER_DECODER(PCM_BLURAY, pcm_bluray); REGISTER_DECODER(PCM_DVD, pcm_dvd); REGISTER_ENCDEC (PCM_F32BE, pcm_f32be); REGISTER_ENCDEC (PCM_F32LE, pcm_f32le); REGISTER_ENCDEC (PCM_F64BE, pcm_f64be); REGISTER_ENCDEC (PCM_F64LE, pcm_f64le); REGISTER_DECODER(PCM_LXF, pcm_lxf); REGISTER_ENCDEC (PCM_MULAW, pcm_mulaw); REGISTER_ENCDEC (PCM_S8, pcm_s8); REGISTER_ENCDEC (PCM_S8_PLANAR, pcm_s8_planar); REGISTER_ENCDEC (PCM_S16BE, pcm_s16be); REGISTER_ENCDEC (PCM_S16BE_PLANAR, pcm_s16be_planar); REGISTER_ENCDEC (PCM_S16LE, pcm_s16le); REGISTER_ENCDEC (PCM_S16LE_PLANAR, pcm_s16le_planar); REGISTER_ENCDEC (PCM_S24BE, pcm_s24be); REGISTER_ENCDEC (PCM_S24DAUD, pcm_s24daud); REGISTER_ENCDEC (PCM_S24LE, pcm_s24le); REGISTER_ENCDEC (PCM_S24LE_PLANAR, pcm_s24le_planar); REGISTER_ENCDEC (PCM_S32BE, pcm_s32be); REGISTER_ENCDEC (PCM_S32LE, pcm_s32le); REGISTER_ENCDEC (PCM_S32LE_PLANAR, pcm_s32le_planar); REGISTER_ENCDEC (PCM_S64BE, pcm_s64be); REGISTER_ENCDEC (PCM_S64LE, pcm_s64le); REGISTER_ENCDEC (PCM_U8, pcm_u8); REGISTER_ENCDEC (PCM_U16BE, pcm_u16be); REGISTER_ENCDEC (PCM_U16LE, pcm_u16le); REGISTER_ENCDEC (PCM_U24BE, pcm_u24be); REGISTER_ENCDEC (PCM_U24LE, pcm_u24le); REGISTER_ENCDEC (PCM_U32BE, pcm_u32be); REGISTER_ENCDEC (PCM_U32LE, pcm_u32le); REGISTER_DECODER(PCM_ZORK, pcm_zork); /* DPCM codecs */ REGISTER_DECODER(INTERPLAY_DPCM, interplay_dpcm); REGISTER_ENCDEC (ROQ_DPCM, roq_dpcm); REGISTER_DECODER(SOL_DPCM, sol_dpcm); REGISTER_DECODER(XAN_DPCM, xan_dpcm); /* ADPCM codecs */ REGISTER_DECODER(ADPCM_4XM, adpcm_4xm); REGISTER_ENCDEC (ADPCM_ADX, adpcm_adx); REGISTER_DECODER(ADPCM_AFC, adpcm_afc); REGISTER_DECODER(ADPCM_AICA, adpcm_aica); REGISTER_DECODER(ADPCM_CT, adpcm_ct); REGISTER_DECODER(ADPCM_DTK, adpcm_dtk); REGISTER_DECODER(ADPCM_EA, adpcm_ea); REGISTER_DECODER(ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa); REGISTER_DECODER(ADPCM_EA_R1, adpcm_ea_r1); REGISTER_DECODER(ADPCM_EA_R2, adpcm_ea_r2); REGISTER_DECODER(ADPCM_EA_R3, adpcm_ea_r3); REGISTER_DECODER(ADPCM_EA_XAS, adpcm_ea_xas); REGISTER_ENCDEC (ADPCM_G722, adpcm_g722); REGISTER_ENCDEC (ADPCM_G726, adpcm_g726); REGISTER_DECODER(ADPCM_G726LE, adpcm_g726le); REGISTER_DECODER(ADPCM_IMA_AMV, adpcm_ima_amv); REGISTER_DECODER(ADPCM_IMA_APC, adpcm_ima_apc); REGISTER_DECODER(ADPCM_IMA_DAT4, adpcm_ima_dat4); REGISTER_DECODER(ADPCM_IMA_DK3, adpcm_ima_dk3); REGISTER_DECODER(ADPCM_IMA_DK4, adpcm_ima_dk4); REGISTER_DECODER(ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs); REGISTER_DECODER(ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead); REGISTER_DECODER(ADPCM_IMA_ISS, adpcm_ima_iss); REGISTER_DECODER(ADPCM_IMA_OKI, adpcm_ima_oki); REGISTER_ENCDEC (ADPCM_IMA_QT, adpcm_ima_qt); REGISTER_DECODER(ADPCM_IMA_RAD, adpcm_ima_rad); REGISTER_DECODER(ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg); REGISTER_ENCDEC (ADPCM_IMA_WAV, adpcm_ima_wav); REGISTER_DECODER(ADPCM_IMA_WS, adpcm_ima_ws); REGISTER_ENCDEC (ADPCM_MS, adpcm_ms); REGISTER_DECODER(ADPCM_MTAF, adpcm_mtaf); REGISTER_DECODER(ADPCM_PSX, adpcm_psx); REGISTER_DECODER(ADPCM_SBPRO_2, adpcm_sbpro_2); REGISTER_DECODER(ADPCM_SBPRO_3, adpcm_sbpro_3); REGISTER_DECODER(ADPCM_SBPRO_4, adpcm_sbpro_4); REGISTER_ENCDEC (ADPCM_SWF, adpcm_swf); REGISTER_DECODER(ADPCM_THP, adpcm_thp); REGISTER_DECODER(ADPCM_THP_LE, adpcm_thp_le); REGISTER_DECODER(ADPCM_VIMA, adpcm_vima); REGISTER_DECODER(ADPCM_XA, adpcm_xa); REGISTER_ENCDEC (ADPCM_YAMAHA, adpcm_yamaha); /* subtitles */ REGISTER_ENCDEC (SSA, ssa); REGISTER_ENCDEC (ASS, ass); REGISTER_DECODER(CCAPTION, ccaption); REGISTER_ENCDEC (DVBSUB, dvbsub); REGISTER_ENCDEC (DVDSUB, dvdsub); REGISTER_DECODER(JACOSUB, jacosub); REGISTER_DECODER(MICRODVD, microdvd); REGISTER_ENCDEC (MOVTEXT, movtext); REGISTER_DECODER(MPL2, mpl2); REGISTER_DECODER(PGSSUB, pgssub); REGISTER_DECODER(PJS, pjs); REGISTER_DECODER(REALTEXT, realtext); REGISTER_DECODER(SAMI, sami); REGISTER_ENCDEC (SRT, srt); REGISTER_DECODER(STL, stl); REGISTER_ENCDEC (SUBRIP, subrip); REGISTER_DECODER(SUBVIEWER, subviewer); REGISTER_DECODER(SUBVIEWER1, subviewer1); REGISTER_ENCDEC (TEXT, text); REGISTER_DECODER(VPLAYER, vplayer); REGISTER_ENCDEC (WEBVTT, webvtt); REGISTER_ENCDEC (XSUB, xsub); /* external libraries */ REGISTER_ENCDEC (AAC_AT, aac_at); REGISTER_DECODER(AC3_AT, ac3_at); REGISTER_DECODER(ADPCM_IMA_QT_AT, adpcm_ima_qt_at); REGISTER_ENCDEC (ALAC_AT, alac_at); REGISTER_DECODER(AMR_NB_AT, amr_nb_at); REGISTER_DECODER(EAC3_AT, eac3_at); REGISTER_DECODER(GSM_MS_AT, gsm_ms_at); REGISTER_ENCDEC (ILBC_AT, ilbc_at); REGISTER_DECODER(MP1_AT, mp1_at); REGISTER_DECODER(MP2_AT, mp2_at); REGISTER_DECODER(MP3_AT, mp3_at); REGISTER_ENCDEC (PCM_ALAW_AT, pcm_alaw_at); REGISTER_ENCDEC (PCM_MULAW_AT, pcm_mulaw_at); REGISTER_DECODER(QDMC_AT, qdmc_at); REGISTER_DECODER(QDM2_AT, qdm2_at); REGISTER_DECODER(LIBCELT, libcelt); REGISTER_ENCODER(LIBFAAC, libfaac); REGISTER_ENCDEC (LIBFDK_AAC, libfdk_aac); REGISTER_ENCDEC (LIBGSM, libgsm); REGISTER_ENCDEC (LIBGSM_MS, libgsm_ms); REGISTER_ENCDEC (LIBILBC, libilbc); REGISTER_ENCODER(LIBMP3LAME, libmp3lame); REGISTER_ENCDEC (LIBOPENCORE_AMRNB, libopencore_amrnb); REGISTER_DECODER(LIBOPENCORE_AMRWB, libopencore_amrwb); REGISTER_ENCDEC (LIBOPENJPEG, libopenjpeg); REGISTER_ENCDEC (LIBOPUS, libopus); REGISTER_ENCDEC (LIBSCHROEDINGER, libschroedinger); REGISTER_ENCODER(LIBSHINE, libshine); REGISTER_ENCDEC (LIBSPEEX, libspeex); REGISTER_ENCODER(LIBTHEORA, libtheora); REGISTER_ENCODER(LIBTWOLAME, libtwolame); REGISTER_ENCODER(LIBVO_AMRWBENC, libvo_amrwbenc); REGISTER_ENCDEC (LIBVORBIS, libvorbis); REGISTER_ENCDEC (LIBVPX_VP8, libvpx_vp8); REGISTER_ENCDEC (LIBVPX_VP9, libvpx_vp9); REGISTER_ENCODER(LIBWAVPACK, libwavpack); REGISTER_ENCODER(LIBWEBP_ANIM, libwebp_anim); /* preferred over libwebp */ REGISTER_ENCODER(LIBWEBP, libwebp); REGISTER_ENCODER(LIBX262, libx262); REGISTER_ENCODER(LIBX264, libx264); REGISTER_ENCODER(LIBX264RGB, libx264rgb); REGISTER_ENCODER(LIBX265, libx265); REGISTER_ENCODER(LIBXAVS, libxavs); REGISTER_ENCODER(LIBXVID, libxvid); REGISTER_DECODER(LIBZVBI_TELETEXT, libzvbi_teletext); /* text */ REGISTER_DECODER(BINTEXT, bintext); REGISTER_DECODER(XBIN, xbin); REGISTER_DECODER(IDF, idf); /* external libraries, that shouldn't be used by default if one of the * above is available */ REGISTER_ENCDEC (LIBOPENH264, libopenh264); REGISTER_DECODER(H263_CUVID, h263_cuvid); REGISTER_DECODER(H264_CUVID, h264_cuvid); REGISTER_ENCODER(H264_NVENC, h264_nvenc); REGISTER_ENCODER(H264_OMX, h264_omx); REGISTER_ENCODER(H264_QSV, h264_qsv); REGISTER_ENCODER(H264_VAAPI, h264_vaapi); REGISTER_ENCODER(H264_VIDEOTOOLBOX, h264_videotoolbox); #if FF_API_NVENC_OLD_NAME REGISTER_ENCODER(NVENC, nvenc); REGISTER_ENCODER(NVENC_H264, nvenc_h264); REGISTER_ENCODER(NVENC_HEVC, nvenc_hevc); #endif REGISTER_DECODER(HEVC_CUVID, hevc_cuvid); REGISTER_ENCODER(HEVC_NVENC, hevc_nvenc); REGISTER_ENCODER(HEVC_QSV, hevc_qsv); REGISTER_ENCODER(HEVC_VAAPI, hevc_vaapi); REGISTER_ENCODER(LIBKVAZAAR, libkvazaar); REGISTER_DECODER(MJPEG_CUVID, mjpeg_cuvid); REGISTER_ENCODER(MJPEG_VAAPI, mjpeg_vaapi); REGISTER_DECODER(MPEG1_CUVID, mpeg1_cuvid); REGISTER_DECODER(MPEG2_CUVID, mpeg2_cuvid); REGISTER_ENCODER(MPEG2_QSV, mpeg2_qsv); REGISTER_DECODER(MPEG4_CUVID, mpeg4_cuvid); REGISTER_DECODER(VC1_CUVID, vc1_cuvid); REGISTER_DECODER(VP8_CUVID, vp8_cuvid); REGISTER_DECODER(VP9_CUVID, vp9_cuvid); /* parsers */ REGISTER_PARSER(AAC, aac); REGISTER_PARSER(AAC_LATM, aac_latm); REGISTER_PARSER(AC3, ac3); REGISTER_PARSER(ADX, adx); REGISTER_PARSER(BMP, bmp); REGISTER_PARSER(CAVSVIDEO, cavsvideo); REGISTER_PARSER(COOK, cook); REGISTER_PARSER(DCA, dca); REGISTER_PARSER(DIRAC, dirac); REGISTER_PARSER(DNXHD, dnxhd); REGISTER_PARSER(DPX, dpx); REGISTER_PARSER(DVAUDIO, dvaudio); REGISTER_PARSER(DVBSUB, dvbsub); REGISTER_PARSER(DVDSUB, dvdsub); REGISTER_PARSER(DVD_NAV, dvd_nav); REGISTER_PARSER(FLAC, flac); REGISTER_PARSER(G729, g729); REGISTER_PARSER(GSM, gsm); REGISTER_PARSER(H261, h261); REGISTER_PARSER(H263, h263); REGISTER_PARSER(H264, h264); REGISTER_PARSER(HEVC, hevc); REGISTER_PARSER(MJPEG, mjpeg); REGISTER_PARSER(MLP, mlp); REGISTER_PARSER(MPEG4VIDEO, mpeg4video); REGISTER_PARSER(MPEGAUDIO, mpegaudio); REGISTER_PARSER(MPEGVIDEO, mpegvideo); REGISTER_PARSER(OPUS, opus); REGISTER_PARSER(PNG, png); REGISTER_PARSER(PNM, pnm); REGISTER_PARSER(RV30, rv30); REGISTER_PARSER(RV40, rv40); REGISTER_PARSER(TAK, tak); REGISTER_PARSER(VC1, vc1); REGISTER_PARSER(VORBIS, vorbis); REGISTER_PARSER(VP3, vp3); REGISTER_PARSER(VP8, vp8); REGISTER_PARSER(VP9, vp9); } | 19,704 |
1 | static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { error_setg(errp, "Memory hot unplug not supported by sPAPR"); } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { if (!smc->dr_cpu_enabled) { error_setg(errp, "CPU hot unplug not supported on this machine"); return; } spapr_core_unplug(hotplug_dev, dev, errp); } } | 19,705 |
1 | static int mkv_add_cuepoint(mkv_cues *cues, int stream, int64_t ts, int64_t cluster_pos) { mkv_cuepoint *entries = cues->entries; entries = av_realloc(entries, (cues->num_entries + 1) * sizeof(mkv_cuepoint)); if (entries == NULL) return AVERROR(ENOMEM); if (ts < 0) return 0; entries[cues->num_entries ].pts = ts; entries[cues->num_entries ].tracknum = stream + 1; entries[cues->num_entries++].cluster_pos = cluster_pos - cues->segment_offset; cues->entries = entries; return 0; } | 19,706 |
1 | static void gen_exception(int excp) { TCGv tmp = new_tmp(); tcg_gen_movi_i32(tmp, excp); gen_helper_exception(tmp); dead_tmp(tmp); } | 19,708 |
1 | static int yop_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { YopDecContext *s = avctx->priv_data; int tag, firstcolor, is_odd_frame; int ret, i; uint32_t *palette; if (s->frame.data[0]) avctx->release_buffer(avctx, &s->frame); if (avpkt->size < 4 + 3*s->num_pal_colors) { av_log(avctx, AV_LOG_ERROR, "packet of size %d too small\n", avpkt->size); return AVERROR_INVALIDDATA; } ret = avctx->get_buffer(avctx, &s->frame); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } s->frame.linesize[0] = avctx->width; s->dstbuf = s->frame.data[0]; s->dstptr = s->frame.data[0]; s->srcptr = avpkt->data + 4; s->row_pos = 0; s->low_nibble = NULL; is_odd_frame = avpkt->data[0]; if(is_odd_frame>1){ av_log(avctx, AV_LOG_ERROR, "frame is too odd %d\n", is_odd_frame); return AVERROR_INVALIDDATA; } firstcolor = s->first_color[is_odd_frame]; palette = (uint32_t *)s->frame.data[1]; for (i = 0; i < s->num_pal_colors; i++, s->srcptr += 3) { palette[i + firstcolor] = (s->srcptr[0] << 18) | (s->srcptr[1] << 10) | (s->srcptr[2] << 2); palette[i + firstcolor] |= 0xFF << 24 | (palette[i + firstcolor] >> 6) & 0x30303; } s->frame.palette_has_changed = 1; while (s->dstptr - s->dstbuf < avctx->width * avctx->height && s->srcptr - avpkt->data < avpkt->size) { tag = yop_get_next_nibble(s); if (tag != 0xf) { yop_paint_block(s, tag); }else { tag = yop_get_next_nibble(s); ret = yop_copy_previous_block(s, tag); if (ret < 0) { avctx->release_buffer(avctx, &s->frame); return ret; } } yop_next_macroblock(s); } *data_size = sizeof(AVFrame); *(AVFrame *) data = s->frame; return avpkt->size; } | 19,710 |
1 | static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) { DNXHDEncContext *ctx = avctx->priv_data; int first_field = 1; int offset, i, ret; if (buf_size < ctx->cid_table->frame_size) { av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n"); return -1; } dnxhd_load_picture(ctx, data); encode_coding_unit: for (i = 0; i < 3; i++) { ctx->src[i] = ctx->frame.data[i]; if (ctx->interlaced && ctx->cur_field) ctx->src[i] += ctx->frame.linesize[i]; } dnxhd_write_header(avctx, buf); if (avctx->mb_decision == FF_MB_DECISION_RD) ret = dnxhd_encode_rdo(avctx, ctx); else ret = dnxhd_encode_fast(avctx, ctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints\n"); return -1; } dnxhd_setup_threads_slices(ctx, buf); offset = 0; for (i = 0; i < ctx->m.mb_height; i++) { AV_WB32(ctx->msip + i * 4, offset); offset += ctx->slice_size[i]; assert(!(ctx->slice_size[i] & 3)); } avctx->execute(avctx, dnxhd_encode_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*)); AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF if (ctx->interlaced && first_field) { first_field = 0; ctx->cur_field ^= 1; buf += ctx->cid_table->coding_unit_size; buf_size -= ctx->cid_table->coding_unit_size; goto encode_coding_unit; } ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA; return ctx->cid_table->frame_size; } | 19,711 |
1 | static void mb_cpu_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); MicroBlazeCPUClass *mcc = MICROBLAZE_CPU_CLASS(oc); mcc->parent_realize = dc->realize; dc->realize = mb_cpu_realizefn; mcc->parent_reset = cc->reset; cc->reset = mb_cpu_reset; cc->has_work = mb_cpu_has_work; cc->do_interrupt = mb_cpu_do_interrupt; cc->cpu_exec_interrupt = mb_cpu_exec_interrupt; cc->dump_state = mb_cpu_dump_state; cc->set_pc = mb_cpu_set_pc; cc->gdb_read_register = mb_cpu_gdb_read_register; cc->gdb_write_register = mb_cpu_gdb_write_register; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = mb_cpu_handle_mmu_fault; #else cc->do_unassigned_access = mb_cpu_unassigned_access; cc->get_phys_page_debug = mb_cpu_get_phys_page_debug; #endif dc->vmsd = &vmstate_mb_cpu; dc->props = mb_properties; cc->gdb_num_core_regs = 32 + 5; cc->disas_set_info = mb_disas_set_info; } | 19,713 |
1 | static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, Error **errp) { VFIOContainer *container; int ret, fd; VFIOAddressSpace *space; space = vfio_get_address_space(as); QLIST_FOREACH(container, &space->containers, next) { if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); vfio_kvm_device_add_group(group); return 0; fd = qemu_open("/dev/vfio/vfio", O_RDWR); if (fd < 0) { error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); ret = -errno; goto put_space_exit; ret = ioctl(fd, VFIO_GET_API_VERSION); if (ret != VFIO_API_VERSION) { error_setg(errp, "supported vfio version: %d, " "reported version: %d", VFIO_API_VERSION, ret); ret = -EINVAL; goto close_fd_exit; container = g_malloc0(sizeof(*container)); container->space = space; container->fd = fd; QLIST_INIT(&container->giommu_list); QLIST_INIT(&container->hostwin_list); if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU) || ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1v2_IOMMU)) { bool v2 = !!ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1v2_IOMMU); struct vfio_iommu_type1_info info; ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); error_setg_errno(errp, errno, "failed to set group container"); ret = -errno; goto free_container_exit; container->iommu_type = v2 ? VFIO_TYPE1v2_IOMMU : VFIO_TYPE1_IOMMU; error_setg_errno(errp, errno, "failed to set iommu for container"); ret = -errno; goto free_container_exit; /* * FIXME: This assumes that a Type1 IOMMU can map any 64-bit * IOVA whatsoever. That's not actually true, but the current * kernel interface doesn't tell us what it can map, and the * existing Type1 IOMMUs generally support any IOVA we're * going to actually try in practice. */ info.argsz = sizeof(info); ret = ioctl(fd, VFIO_IOMMU_GET_INFO, &info); /* Ignore errors */ if (ret || !(info.flags & VFIO_IOMMU_INFO_PGSIZES)) { /* Assume 4k IOVA page size */ info.iova_pgsizes = 4096; vfio_host_win_add(container, 0, (hwaddr)-1, info.iova_pgsizes); } else if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_SPAPR_TCE_IOMMU) || ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_SPAPR_TCE_v2_IOMMU)) { struct vfio_iommu_spapr_tce_info info; bool v2 = !!ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_SPAPR_TCE_v2_IOMMU); ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); error_setg_errno(errp, errno, "failed to set group container"); ret = -errno; goto free_container_exit; container->iommu_type = v2 ? VFIO_SPAPR_TCE_v2_IOMMU : VFIO_SPAPR_TCE_IOMMU; error_setg_errno(errp, errno, "failed to set iommu for container"); ret = -errno; goto free_container_exit; /* * The host kernel code implementing VFIO_IOMMU_DISABLE is called * when container fd is closed so we do not call it explicitly * in this file. */ if (!v2) { ret = ioctl(fd, VFIO_IOMMU_ENABLE); error_setg_errno(errp, errno, "failed to enable container"); ret = -errno; goto free_container_exit; } else { container->prereg_listener = vfio_prereg_listener; memory_listener_register(&container->prereg_listener, &address_space_memory); if (container->error) { memory_listener_unregister(&container->prereg_listener); ret = container->error; error_setg(errp, "RAM memory listener initialization failed for container"); goto free_container_exit; info.argsz = sizeof(info); ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); error_setg_errno(errp, errno, "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); ret = -errno; if (v2) { memory_listener_unregister(&container->prereg_listener); goto free_container_exit; if (v2) { /* * There is a default window in just created container. * To make region_add/del simpler, we better remove this * window now and let those iommu_listener callbacks * create/remove them when needed. */ ret = vfio_spapr_remove_window(container, info.dma32_window_start); error_setg_errno(errp, -ret, "failed to remove existing window"); goto free_container_exit; } else { /* The default table uses 4K pages */ vfio_host_win_add(container, info.dma32_window_start, info.dma32_window_start + info.dma32_window_size - 1, 0x1000); } else { error_setg(errp, "No available IOMMU models"); ret = -EINVAL; goto free_container_exit; vfio_kvm_device_add_group(group); QLIST_INIT(&container->group_list); QLIST_INSERT_HEAD(&space->containers, container, next); group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); container->listener = vfio_memory_listener; memory_listener_register(&container->listener, container->space->as); if (container->error) { ret = container->error; error_setg_errno(errp, -ret, "memory listener initialization failed for container"); goto listener_release_exit; container->initialized = true; return 0; listener_release_exit: QLIST_REMOVE(group, container_next); QLIST_REMOVE(container, next); vfio_kvm_device_del_group(group); vfio_listener_release(container); free_container_exit: g_free(container); close_fd_exit: close(fd); put_space_exit: vfio_put_address_space(space); return ret; | 19,714 |
1 | static void FUNCC(pred4x4_top_dc)(uint8_t *_src, const uint8_t *topright, int _stride){ pixel *src = (pixel*)_src; int stride = _stride/sizeof(pixel); const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2; ((pixel4*)(src+0*stride))[0]= ((pixel4*)(src+1*stride))[0]= ((pixel4*)(src+2*stride))[0]= ((pixel4*)(src+3*stride))[0]= PIXEL_SPLAT_X4(dc); } | 19,715 |
1 | static void print_report(int is_last_report, int64_t timer_start) { char buf[1024]; OutputStream *ost; AVFormatContext *oc; int64_t total_size; AVCodecContext *enc; int frame_number, vid, i; double bitrate, ti1, pts; static int64_t last_time = -1; static int qp_histogram[52]; if (!print_stats && !is_last_report) return; if (!is_last_report) { int64_t cur_time; /* display the report every 0.5 seconds */ cur_time = av_gettime(); if (last_time == -1) { last_time = cur_time; return; } if ((cur_time - last_time) < 500000) return; last_time = cur_time; } oc = output_files[0]->ctx; total_size = avio_size(oc->pb); if (total_size <= 0) // FIXME improve avio_size() so it works with non seekable output too total_size = avio_tell(oc->pb); if (total_size < 0) { char errbuf[128]; av_strerror(total_size, errbuf, sizeof(errbuf)); av_log(NULL, AV_LOG_VERBOSE, "Bitrate not available, " "avio_tell() failed: %s\n", errbuf); total_size = 0; } buf[0] = '\0'; ti1 = 1e10; vid = 0; for (i = 0; i < nb_output_streams; i++) { float q = -1; ost = output_streams[i]; enc = ost->st->codec; if (!ost->stream_copy && enc->coded_frame) q = enc->coded_frame->quality / (float)FF_QP2LAMBDA; if (vid && enc->codec_type == AVMEDIA_TYPE_VIDEO) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "q=%2.1f ", q); } if (!vid && enc->codec_type == AVMEDIA_TYPE_VIDEO) { float t = (av_gettime() - timer_start) / 1000000.0; frame_number = ost->frame_number; snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "frame=%5d fps=%3d q=%3.1f ", frame_number, (t > 1) ? (int)(frame_number / t + 0.5) : 0, q); if (is_last_report) snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "L"); if (qp_hist) { int j; int qp = lrintf(q); if (qp >= 0 && qp < FF_ARRAY_ELEMS(qp_histogram)) qp_histogram[qp]++; for (j = 0; j < 32; j++) snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%X", (int)lrintf(log2(qp_histogram[j] + 1))); } if (enc->flags&CODEC_FLAG_PSNR) { int j; double error, error_sum = 0; double scale, scale_sum = 0; char type[3] = { 'Y','U','V' }; snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "PSNR="); for (j = 0; j < 3; j++) { if (is_last_report) { error = enc->error[j]; scale = enc->width * enc->height * 255.0 * 255.0 * frame_number; } else { error = enc->coded_frame->error[j]; scale = enc->width * enc->height * 255.0 * 255.0; } if (j) scale /= 4; error_sum += error; scale_sum += scale; snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%c:%2.2f ", type[j], psnr(error / scale)); } snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "*:%2.2f ", psnr(error_sum / scale_sum)); } vid = 1; } /* compute min output value */ pts = (double)ost->st->pts.val * av_q2d(ost->st->time_base); if ((pts < ti1) && (pts > 0)) ti1 = pts; } if (ti1 < 0.01) ti1 = 0.01; bitrate = (double)(total_size * 8) / ti1 / 1000.0; snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "size=%8.0fkB time=%0.2f bitrate=%6.1fkbits/s", (double)total_size / 1024, ti1, bitrate); if (nb_frames_dup || nb_frames_drop) snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " dup=%d drop=%d", nb_frames_dup, nb_frames_drop); av_log(NULL, AV_LOG_INFO, "%s \r", buf); fflush(stderr); if (is_last_report) { int64_t raw= audio_size + video_size + extra_size; av_log(NULL, AV_LOG_INFO, "\n"); av_log(NULL, AV_LOG_INFO, "video:%1.0fkB audio:%1.0fkB global headers:%1.0fkB muxing overhead %f%%\n", video_size / 1024.0, audio_size / 1024.0, extra_size / 1024.0, 100.0 * (total_size - raw) / raw ); } } | 19,717 |
1 | static void store_slice_mmx(uint8_t *dst, const uint16_t *src, int dst_stride, int src_stride, int width, int height, int log2_scale, const uint8_t dither[8][8]) { int y; for (y = 0; y < height; y++) { uint8_t *dst1 = dst; const int16_t *src1 = src; __asm__ volatile( "movq (%3), %%mm3 \n" "movq (%3), %%mm4 \n" "movd %4, %%mm2 \n" "pxor %%mm0, %%mm0 \n" "punpcklbw %%mm0, %%mm3 \n" "punpckhbw %%mm0, %%mm4 \n" "psraw %%mm2, %%mm3 \n" "psraw %%mm2, %%mm4 \n" "movd %5, %%mm2 \n" "1: \n" "movq (%0), %%mm0 \n" "movq 8(%0), %%mm1 \n" "paddw %%mm3, %%mm0 \n" "paddw %%mm4, %%mm1 \n" "psraw %%mm2, %%mm0 \n" "psraw %%mm2, %%mm1 \n" "packuswb %%mm1, %%mm0 \n" "movq %%mm0, (%1) \n" "add $16, %0 \n" "add $8, %1 \n" "cmp %2, %1 \n" " jb 1b \n" : "+r" (src1), "+r"(dst1) : "r"(dst + width), "r"(dither[y]), "g"(log2_scale), "g"(MAX_LEVEL - log2_scale) ); src += src_stride; dst += dst_stride; } } | 19,718 |
1 | av_cold int ff_vc2enc_init_transforms(VC2TransformContext *s, int p_width, int p_height) { s->vc2_subband_dwt[VC2_TRANSFORM_9_7] = vc2_subband_dwt_97; s->vc2_subband_dwt[VC2_TRANSFORM_5_3] = vc2_subband_dwt_53; s->vc2_subband_dwt[VC2_TRANSFORM_HAAR] = vc2_subband_dwt_haar; s->vc2_subband_dwt[VC2_TRANSFORM_HAAR_S] = vc2_subband_dwt_haar_shift; s->buffer = av_malloc(2*p_width*p_height*sizeof(dwtcoef)); if (!s->buffer) return 1; return 0; } | 19,719 |
1 | static void fill_buffer(AVIOContext *s) { int max_buffer_size = s->max_packet_size ? s->max_packet_size : IO_BUFFER_SIZE; uint8_t *dst = s->buf_end - s->buffer + max_buffer_size < s->buffer_size ? s->buf_end : s->buffer; int len = s->buffer_size - (dst - s->buffer); /* can't fill the buffer without read_packet, just set EOF if appropriate */ if (!s->read_packet && s->buf_ptr >= s->buf_end) s->eof_reached = 1; /* no need to do anything if EOF already reached */ if (s->eof_reached) return; if (s->update_checksum && dst == s->buffer) { if (s->buf_end > s->checksum_ptr) s->checksum = s->update_checksum(s->checksum, s->checksum_ptr, s->buf_end - s->checksum_ptr); s->checksum_ptr = s->buffer; } /* make buffer smaller in case it ended up large after probing */ if (s->read_packet && s->orig_buffer_size && s->buffer_size > s->orig_buffer_size) { if (dst == s->buffer) { ffio_set_buf_size(s, s->orig_buffer_size); s->checksum_ptr = dst = s->buffer; } av_assert0(len >= s->orig_buffer_size); len = s->orig_buffer_size; } if (s->read_packet) len = s->read_packet(s->opaque, dst, len); else len = 0; if (len <= 0) { /* do not modify buffer if EOF reached so that a seek back can be done without rereading data */ s->eof_reached = 1; if (len < 0) s->error = len; } else { s->pos += len; s->buf_ptr = dst; s->buf_end = dst + len; s->bytes_read += len; } } | 19,720 |
0 | static int apply_param_change(AVCodecContext *avctx, AVPacket *avpkt) { int size = 0, ret; const uint8_t *data; uint32_t flags; data = av_packet_get_side_data(avpkt, AV_PKT_DATA_PARAM_CHANGE, &size); if (!data) return 0; if (!(avctx->codec->capabilities & CODEC_CAP_PARAM_CHANGE)) { av_log(avctx, AV_LOG_ERROR, "This decoder does not support parameter " "changes, but PARAM_CHANGE side data was sent to it.\n"); return AVERROR(EINVAL); } if (size < 4) goto fail; flags = bytestream_get_le32(&data); size -= 4; if (flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT) { if (size < 4) goto fail; avctx->channels = bytestream_get_le32(&data); size -= 4; } if (flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT) { if (size < 8) goto fail; avctx->channel_layout = bytestream_get_le64(&data); size -= 8; } if (flags & AV_SIDE_DATA_PARAM_CHANGE_SAMPLE_RATE) { if (size < 4) goto fail; avctx->sample_rate = bytestream_get_le32(&data); size -= 4; } if (flags & AV_SIDE_DATA_PARAM_CHANGE_DIMENSIONS) { if (size < 8) goto fail; avctx->width = bytestream_get_le32(&data); avctx->height = bytestream_get_le32(&data); size -= 8; ret = ff_set_dimensions(avctx, avctx->width, avctx->height); if (ret < 0) return ret; } return 0; fail: av_log(avctx, AV_LOG_ERROR, "PARAM_CHANGE side data too small.\n"); return AVERROR_INVALIDDATA; } | 19,722 |
0 | static int get_number(void *obj, const char *name, const AVOption **o_out, double *num, int *den, int64_t *intnum) { const AVOption *o = av_opt_find(obj, name, NULL, 0, 0); void *dst; if (!o || o->offset<=0) goto error; dst= ((uint8_t*)obj) + o->offset; if (o_out) *o_out= o; switch (o->type) { case FF_OPT_TYPE_FLAGS: *intnum= *(unsigned int*)dst;return 0; case FF_OPT_TYPE_INT: *intnum= *(int *)dst;return 0; case FF_OPT_TYPE_INT64: *intnum= *(int64_t*)dst;return 0; case FF_OPT_TYPE_FLOAT: *num= *(float *)dst;return 0; case FF_OPT_TYPE_DOUBLE: *num= *(double *)dst;return 0; case FF_OPT_TYPE_RATIONAL: *intnum= ((AVRational*)dst)->num; *den = ((AVRational*)dst)->den; return 0; } error: *den=*intnum=0; return -1; } | 19,723 |
0 | static int dts_probe(AVProbeData *p) { const uint8_t *buf, *bufp; uint32_t state = -1; int markers[4*16] = {0}; int exss_markers = 0, exss_nextpos = 0; int sum, max, pos, i; int64_t diff = 0; uint8_t hdr[12 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 }; for (pos = FFMIN(4096, p->buf_size); pos < p->buf_size - 2; pos += 2) { int marker, sample_blocks, sample_rate, sr_code, framesize; int lfe, wide_hdr, hdr_size; GetBitContext gb; bufp = buf = p->buf + pos; state = (state << 16) | bytestream_get_be16(&bufp); if (pos >= 4) diff += FFABS(((int16_t)AV_RL16(buf)) - (int16_t)AV_RL16(buf-4)); /* extension substream (EXSS) */ if (state == DCA_SYNCWORD_SUBSTREAM) { if (pos < exss_nextpos) continue; init_get_bits(&gb, buf - 2, 96); skip_bits_long(&gb, 42); wide_hdr = get_bits1(&gb); hdr_size = get_bits(&gb, 8 + 4 * wide_hdr) + 1; framesize = get_bits(&gb, 16 + 4 * wide_hdr) + 1; if (hdr_size & 3 || framesize & 3) continue; if (hdr_size < 16 || framesize < hdr_size) continue; if (pos - 2 + hdr_size > p->buf_size) continue; if (av_crc(av_crc_get_table(AV_CRC_16_CCITT), 0xffff, buf + 3, hdr_size - 5)) continue; if (pos == exss_nextpos) exss_markers++; else exss_markers = FFMAX(1, exss_markers - 1); exss_nextpos = pos + framesize; continue; } /* regular bitstream */ if (state == DCA_SYNCWORD_CORE_BE && (bytestream_get_be16(&bufp) & 0xFC00) == 0xFC00) marker = 0; else if (state == DCA_SYNCWORD_CORE_LE && (bytestream_get_be16(&bufp) & 0x00FC) == 0x00FC) marker = 1; /* 14 bits big-endian bitstream */ else if (state == DCA_SYNCWORD_CORE_14B_BE && (bytestream_get_be16(&bufp) & 0xFFF0) == 0x07F0) marker = 2; /* 14 bits little-endian bitstream */ else if (state == DCA_SYNCWORD_CORE_14B_LE && (bytestream_get_be16(&bufp) & 0xF0FF) == 0xF007) marker = 3; else continue; if (avpriv_dca_convert_bitstream(buf-2, 12, hdr, 12) < 0) continue; init_get_bits(&gb, hdr, 96); skip_bits_long(&gb, 39); sample_blocks = get_bits(&gb, 7) + 1; if (sample_blocks < 8) continue; framesize = get_bits(&gb, 14) + 1; if (framesize < 95) continue; skip_bits(&gb, 6); sr_code = get_bits(&gb, 4); sample_rate = avpriv_dca_sample_rates[sr_code]; if (sample_rate == 0) continue; get_bits(&gb, 5); if (get_bits(&gb, 1)) continue; skip_bits_long(&gb, 9); lfe = get_bits(&gb, 2); if (lfe > 2) continue; marker += 4* sr_code; markers[marker] ++; } if (exss_markers > 3) return AVPROBE_SCORE_EXTENSION + 1; sum = max = 0; for (i=0; i<FF_ARRAY_ELEMS(markers); i++) { sum += markers[i]; if (markers[max] < markers[i]) max = i; } if (markers[max] > 3 && p->buf_size / markers[max] < 32*1024 && markers[max] * 4 > sum * 3 && diff / p->buf_size > 200) return AVPROBE_SCORE_EXTENSION + 1; return 0; } | 19,726 |
0 | static int wc3_read_packet(AVFormatContext *s, AVPacket *pkt) { Wc3DemuxContext *wc3 = s->priv_data; ByteIOContext *pb = s->pb; unsigned int fourcc_tag; unsigned int size; int packet_read = 0; int ret = 0; unsigned char preamble[WC3_PREAMBLE_SIZE]; unsigned char text[1024]; unsigned int palette_number; int i; unsigned char r, g, b; int base_palette_index; while (!packet_read) { /* get the next chunk preamble */ if ((ret = get_buffer(pb, preamble, WC3_PREAMBLE_SIZE)) != WC3_PREAMBLE_SIZE) ret = AVERROR(EIO); fourcc_tag = AV_RL32(&preamble[0]); /* chunk sizes are 16-bit aligned */ size = (AV_RB32(&preamble[4]) + 1) & (~1); switch (fourcc_tag) { case BRCH_TAG: /* no-op */ break; case SHOT_TAG: /* load up new palette */ if ((ret = get_buffer(pb, preamble, 4)) != 4) return AVERROR(EIO); palette_number = AV_RL32(&preamble[0]); if (palette_number >= wc3->palette_count) return AVERROR_INVALIDDATA; base_palette_index = palette_number * PALETTE_COUNT * 3; for (i = 0; i < PALETTE_COUNT; i++) { r = wc3->palettes[base_palette_index + i * 3 + 0]; g = wc3->palettes[base_palette_index + i * 3 + 1]; b = wc3->palettes[base_palette_index + i * 3 + 2]; wc3->palette_control.palette[i] = (r << 16) | (g << 8) | (b); } wc3->palette_control.palette_changed = 1; break; case VGA__TAG: /* send out video chunk */ ret= av_get_packet(pb, pkt, size); pkt->stream_index = wc3->video_stream_index; pkt->pts = wc3->pts; if (ret != size) ret = AVERROR(EIO); packet_read = 1; break; case TEXT_TAG: /* subtitle chunk */ #if 0 url_fseek(pb, size, SEEK_CUR); #else if ((unsigned)size > sizeof(text) || (ret = get_buffer(pb, text, size)) != size) ret = AVERROR(EIO); else { int i = 0; av_log (s, AV_LOG_DEBUG, "Subtitle time!\n"); av_log (s, AV_LOG_DEBUG, " inglish: %s\n", &text[i + 1]); i += text[i] + 1; av_log (s, AV_LOG_DEBUG, " doytsch: %s\n", &text[i + 1]); i += text[i] + 1; av_log (s, AV_LOG_DEBUG, " fronsay: %s\n", &text[i + 1]); } #endif break; case AUDI_TAG: /* send out audio chunk */ ret= av_get_packet(pb, pkt, size); pkt->stream_index = wc3->audio_stream_index; pkt->pts = wc3->pts; if (ret != size) ret = AVERROR(EIO); /* time to advance pts */ wc3->pts++; packet_read = 1; break; default: av_log (s, AV_LOG_ERROR, " unrecognized WC3 chunk: %c%c%c%c (0x%02X%02X%02X%02X)\n", preamble[0], preamble[1], preamble[2], preamble[3], preamble[0], preamble[1], preamble[2], preamble[3]); ret = AVERROR_INVALIDDATA; packet_read = 1; break; } } return ret; } | 19,727 |
1 | int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup) { AVCodecContext *const avctx = h->avctx; int err = 0; h->mb_y = 0; if (!in_setup && !h->droppable) ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) { if (!h->droppable) { err = ff_h264_execute_ref_pic_marking(h); h->poc.prev_poc_msb = h->poc.poc_msb; h->poc.prev_poc_lsb = h->poc.poc_lsb; } h->poc.prev_frame_num_offset = h->poc.frame_num_offset; h->poc.prev_frame_num = h->poc.frame_num; } if (avctx->hwaccel) { if (avctx->hwaccel->end_frame(avctx) < 0) av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n"); } #if CONFIG_ERROR_RESILIENCE /* * FIXME: Error handling code does not seem to support interlaced * when slices span multiple rows * The ff_er_add_slice calls don't work right for bottom * fields; they cause massive erroneous error concealing * Error marking covers both fields (top and bottom). * This causes a mismatched s->error_count * and a bad error table. Further, the error count goes to * INT_MAX when called for bottom field, because mb_y is * past end by one (callers fault) and resync_mb_y != 0 * causes problems for the first MB line, too. */ if (!FIELD_PICTURE(h) && h->enable_er) { h264_set_erpic(&sl->er.cur_pic, h->cur_pic_ptr); h264_set_erpic(&sl->er.last_pic, sl->ref_count[0] ? sl->ref_list[0][0].parent : NULL); h264_set_erpic(&sl->er.next_pic, sl->ref_count[1] ? sl->ref_list[1][0].parent : NULL); ff_er_frame_end(&sl->er); } #endif /* CONFIG_ERROR_RESILIENCE */ emms_c(); h->current_slice = 0; return err; } | 19,729 |
1 | static void pic_common_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_pic_common; dc->no_user = 1; dc->props = pic_properties_common; dc->realize = pic_common_realize; } | 19,730 |
1 | static AVFrame *alloc_frame(enum AVPixelFormat pixfmt, int w, int h) { AVFrame *frame = av_frame_alloc(); if (!frame) return NULL; frame->format = pixfmt; frame->width = w; frame->height = h; if (av_frame_get_buffer(frame, 32) < 0) return NULL; return frame; } | 19,731 |
1 | void qdev_init_nofail(DeviceState *dev) { Error *err = NULL; assert(!dev->realized); object_property_set_bool(OBJECT(dev), true, "realized", &err); if (err) { error_reportf_err(err, "Initialization of device %s failed: ", object_get_typename(OBJECT(dev))); exit(1); } } | 19,732 |
1 | static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn) { int op; int q; int rd, rn, rm; int size; int shift; int pass; int count; int pairwise; int u; int n; uint32_t imm, mask; TCGv tmp, tmp2, tmp3, tmp4, tmp5; TCGv_i64 tmp64; if (!s->vfp_enabled) return 1; q = (insn & (1 << 6)) != 0; u = (insn >> 24) & 1; VFP_DREG_D(rd, insn); VFP_DREG_N(rn, insn); VFP_DREG_M(rm, insn); size = (insn >> 20) & 3; if ((insn & (1 << 23)) == 0) { /* Three register same length. */ op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1); if (size == 3 && (op == 1 || op == 5 || op == 8 || op == 9 || op == 10 || op == 11 || op == 16)) { /* 64-bit element instructions. */ for (pass = 0; pass < (q ? 2 : 1); pass++) { neon_load_reg64(cpu_V0, rn + pass); neon_load_reg64(cpu_V1, rm + pass); switch (op) { case 1: /* VQADD */ if (u) { gen_helper_neon_add_saturate_u64(CPU_V001); } else { gen_helper_neon_add_saturate_s64(CPU_V001); } break; case 5: /* VQSUB */ if (u) { gen_helper_neon_sub_saturate_u64(CPU_V001); } else { gen_helper_neon_sub_saturate_s64(CPU_V001); } break; case 8: /* VSHL */ if (u) { gen_helper_neon_shl_u64(cpu_V0, cpu_V1, cpu_V0); } else { gen_helper_neon_shl_s64(cpu_V0, cpu_V1, cpu_V0); } break; case 9: /* VQSHL */ if (u) { gen_helper_neon_qshl_u64(cpu_V0, cpu_env, cpu_V1, cpu_V0); } else { gen_helper_neon_qshl_s64(cpu_V0, cpu_env, cpu_V1, cpu_V0); } break; case 10: /* VRSHL */ if (u) { gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0); } else { gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0); } break; case 11: /* VQRSHL */ if (u) { gen_helper_neon_qrshl_u64(cpu_V0, cpu_env, cpu_V1, cpu_V0); } else { gen_helper_neon_qrshl_s64(cpu_V0, cpu_env, cpu_V1, cpu_V0); } break; case 16: if (u) { tcg_gen_sub_i64(CPU_V001); } else { tcg_gen_add_i64(CPU_V001); } break; default: abort(); } neon_store_reg64(cpu_V0, rd + pass); } return 0; } switch (op) { case 8: /* VSHL */ case 9: /* VQSHL */ case 10: /* VRSHL */ case 11: /* VQRSHL */ { int rtmp; /* Shift instruction operands are reversed. */ rtmp = rn; rn = rm; rm = rtmp; pairwise = 0; } break; case 20: /* VPMAX */ case 21: /* VPMIN */ case 23: /* VPADD */ pairwise = 1; break; case 26: /* VPADD (float) */ pairwise = (u && size < 2); break; case 30: /* VPMIN/VPMAX (float) */ pairwise = u; break; default: pairwise = 0; break; } for (pass = 0; pass < (q ? 4 : 2); pass++) { if (pairwise) { /* Pairwise. */ if (q) n = (pass & 1) * 2; else n = 0; if (pass < q + 1) { tmp = neon_load_reg(rn, n); tmp2 = neon_load_reg(rn, n + 1); } else { tmp = neon_load_reg(rm, n); tmp2 = neon_load_reg(rm, n + 1); } } else { /* Elementwise. */ tmp = neon_load_reg(rn, pass); tmp2 = neon_load_reg(rm, pass); } switch (op) { case 0: /* VHADD */ GEN_NEON_INTEGER_OP(hadd); break; case 1: /* VQADD */ GEN_NEON_INTEGER_OP_ENV(qadd); break; case 2: /* VRHADD */ GEN_NEON_INTEGER_OP(rhadd); break; case 3: /* Logic ops. */ switch ((u << 2) | size) { case 0: /* VAND */ tcg_gen_and_i32(tmp, tmp, tmp2); break; case 1: /* BIC */ tcg_gen_andc_i32(tmp, tmp, tmp2); break; case 2: /* VORR */ tcg_gen_or_i32(tmp, tmp, tmp2); break; case 3: /* VORN */ tcg_gen_orc_i32(tmp, tmp, tmp2); break; case 4: /* VEOR */ tcg_gen_xor_i32(tmp, tmp, tmp2); break; case 5: /* VBSL */ tmp3 = neon_load_reg(rd, pass); gen_neon_bsl(tmp, tmp, tmp2, tmp3); dead_tmp(tmp3); break; case 6: /* VBIT */ tmp3 = neon_load_reg(rd, pass); gen_neon_bsl(tmp, tmp, tmp3, tmp2); dead_tmp(tmp3); break; case 7: /* VBIF */ tmp3 = neon_load_reg(rd, pass); gen_neon_bsl(tmp, tmp3, tmp, tmp2); dead_tmp(tmp3); break; } break; case 4: /* VHSUB */ GEN_NEON_INTEGER_OP(hsub); break; case 5: /* VQSUB */ GEN_NEON_INTEGER_OP_ENV(qsub); break; case 6: /* VCGT */ GEN_NEON_INTEGER_OP(cgt); break; case 7: /* VCGE */ GEN_NEON_INTEGER_OP(cge); break; case 8: /* VSHL */ GEN_NEON_INTEGER_OP(shl); break; case 9: /* VQSHL */ GEN_NEON_INTEGER_OP_ENV(qshl); break; case 10: /* VRSHL */ GEN_NEON_INTEGER_OP(rshl); break; case 11: /* VQRSHL */ GEN_NEON_INTEGER_OP_ENV(qrshl); break; case 12: /* VMAX */ GEN_NEON_INTEGER_OP(max); break; case 13: /* VMIN */ GEN_NEON_INTEGER_OP(min); break; case 14: /* VABD */ GEN_NEON_INTEGER_OP(abd); break; case 15: /* VABA */ GEN_NEON_INTEGER_OP(abd); dead_tmp(tmp2); tmp2 = neon_load_reg(rd, pass); gen_neon_add(size, tmp, tmp2); break; case 16: if (!u) { /* VADD */ if (gen_neon_add(size, tmp, tmp2)) return 1; } else { /* VSUB */ switch (size) { case 0: gen_helper_neon_sub_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_sub_u16(tmp, tmp, tmp2); break; case 2: tcg_gen_sub_i32(tmp, tmp, tmp2); break; default: return 1; } } break; case 17: if (!u) { /* VTST */ switch (size) { case 0: gen_helper_neon_tst_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_tst_u16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_tst_u32(tmp, tmp, tmp2); break; default: return 1; } } else { /* VCEQ */ switch (size) { case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break; default: return 1; } } break; case 18: /* Multiply. */ switch (size) { case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break; case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break; default: return 1; } dead_tmp(tmp2); tmp2 = neon_load_reg(rd, pass); if (u) { /* VMLS */ gen_neon_rsb(size, tmp, tmp2); } else { /* VMLA */ gen_neon_add(size, tmp, tmp2); } break; case 19: /* VMUL */ if (u) { /* polynomial */ gen_helper_neon_mul_p8(tmp, tmp, tmp2); } else { /* Integer */ switch (size) { case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break; case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break; default: return 1; } } break; case 20: /* VPMAX */ GEN_NEON_INTEGER_OP(pmax); break; case 21: /* VPMIN */ GEN_NEON_INTEGER_OP(pmin); break; case 22: /* Hultiply high. */ if (!u) { /* VQDMULH */ switch (size) { case 1: gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); break; case 2: gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); break; default: return 1; } } else { /* VQRDHMUL */ switch (size) { case 1: gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); break; case 2: gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); break; default: return 1; } } break; case 23: /* VPADD */ if (u) return 1; switch (size) { case 0: gen_helper_neon_padd_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_padd_u16(tmp, tmp, tmp2); break; case 2: tcg_gen_add_i32(tmp, tmp, tmp2); break; default: return 1; } break; case 26: /* Floating point arithnetic. */ switch ((u << 2) | size) { case 0: /* VADD */ gen_helper_neon_add_f32(tmp, tmp, tmp2); break; case 2: /* VSUB */ gen_helper_neon_sub_f32(tmp, tmp, tmp2); break; case 4: /* VPADD */ gen_helper_neon_add_f32(tmp, tmp, tmp2); break; case 6: /* VABD */ gen_helper_neon_abd_f32(tmp, tmp, tmp2); break; default: return 1; } break; case 27: /* Float multiply. */ gen_helper_neon_mul_f32(tmp, tmp, tmp2); if (!u) { dead_tmp(tmp2); tmp2 = neon_load_reg(rd, pass); if (size == 0) { gen_helper_neon_add_f32(tmp, tmp, tmp2); } else { gen_helper_neon_sub_f32(tmp, tmp2, tmp); } } break; case 28: /* Float compare. */ if (!u) { gen_helper_neon_ceq_f32(tmp, tmp, tmp2); } else { if (size == 0) gen_helper_neon_cge_f32(tmp, tmp, tmp2); else gen_helper_neon_cgt_f32(tmp, tmp, tmp2); } break; case 29: /* Float compare absolute. */ if (!u) return 1; if (size == 0) gen_helper_neon_acge_f32(tmp, tmp, tmp2); else gen_helper_neon_acgt_f32(tmp, tmp, tmp2); break; case 30: /* Float min/max. */ if (size == 0) gen_helper_neon_max_f32(tmp, tmp, tmp2); else gen_helper_neon_min_f32(tmp, tmp, tmp2); break; case 31: if (size == 0) gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env); else gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env); break; default: abort(); } dead_tmp(tmp2); /* Save the result. For elementwise operations we can put it straight into the destination register. For pairwise operations we have to be careful to avoid clobbering the source operands. */ if (pairwise && rd == rm) { neon_store_scratch(pass, tmp); } else { neon_store_reg(rd, pass, tmp); } } /* for pass */ if (pairwise && rd == rm) { for (pass = 0; pass < (q ? 4 : 2); pass++) { tmp = neon_load_scratch(pass); neon_store_reg(rd, pass, tmp); } } /* End of 3 register same size operations. */ } else if (insn & (1 << 4)) { if ((insn & 0x00380080) != 0) { /* Two registers and shift. */ op = (insn >> 8) & 0xf; if (insn & (1 << 7)) { /* 64-bit shift. */ size = 3; } else { size = 2; while ((insn & (1 << (size + 19))) == 0) size--; } shift = (insn >> 16) & ((1 << (3 + size)) - 1); /* To avoid excessive dumplication of ops we implement shift by immediate using the variable shift operations. */ if (op < 8) { /* Shift by immediate: VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */ /* Right shifts are encoded as N - shift, where N is the element size in bits. */ if (op <= 4) shift = shift - (1 << (size + 3)); if (size == 3) { count = q + 1; } else { count = q ? 4: 2; } switch (size) { case 0: imm = (uint8_t) shift; imm |= imm << 8; imm |= imm << 16; break; case 1: imm = (uint16_t) shift; imm |= imm << 16; break; case 2: case 3: imm = shift; break; default: abort(); } for (pass = 0; pass < count; pass++) { if (size == 3) { neon_load_reg64(cpu_V0, rm + pass); tcg_gen_movi_i64(cpu_V1, imm); switch (op) { case 0: /* VSHR */ case 1: /* VSRA */ if (u) gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1); else gen_helper_neon_shl_s64(cpu_V0, cpu_V0, cpu_V1); break; case 2: /* VRSHR */ case 3: /* VRSRA */ if (u) gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1); else gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1); break; case 4: /* VSRI */ if (!u) return 1; gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1); break; case 5: /* VSHL, VSLI */ gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1); break; case 6: /* VQSHLU */ if (u) { gen_helper_neon_qshlu_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); } else { return 1; } break; case 7: /* VQSHL */ if (u) { gen_helper_neon_qshl_u64(cpu_V0, cpu_env, cpu_V0, cpu_V1); } else { gen_helper_neon_qshl_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); } break; } if (op == 1 || op == 3) { /* Accumulate. */ neon_load_reg64(cpu_V1, rd + pass); tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1); } else if (op == 4 || (op == 5 && u)) { /* Insert */ cpu_abort(env, "VS[LR]I.64 not implemented"); } neon_store_reg64(cpu_V0, rd + pass); } else { /* size < 3 */ /* Operands in T0 and T1. */ tmp = neon_load_reg(rm, pass); tmp2 = new_tmp(); tcg_gen_movi_i32(tmp2, imm); switch (op) { case 0: /* VSHR */ case 1: /* VSRA */ GEN_NEON_INTEGER_OP(shl); break; case 2: /* VRSHR */ case 3: /* VRSRA */ GEN_NEON_INTEGER_OP(rshl); break; case 4: /* VSRI */ if (!u) return 1; GEN_NEON_INTEGER_OP(shl); break; case 5: /* VSHL, VSLI */ switch (size) { case 0: gen_helper_neon_shl_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_shl_u16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_shl_u32(tmp, tmp, tmp2); break; default: return 1; } break; case 6: /* VQSHLU */ if (!u) { return 1; } switch (size) { case 0: gen_helper_neon_qshlu_s8(tmp, cpu_env, tmp, tmp2); break; case 1: gen_helper_neon_qshlu_s16(tmp, cpu_env, tmp, tmp2); break; case 2: gen_helper_neon_qshlu_s32(tmp, cpu_env, tmp, tmp2); break; default: return 1; } break; case 7: /* VQSHL */ GEN_NEON_INTEGER_OP_ENV(qshl); break; } dead_tmp(tmp2); if (op == 1 || op == 3) { /* Accumulate. */ tmp2 = neon_load_reg(rd, pass); gen_neon_add(size, tmp, tmp2); dead_tmp(tmp2); } else if (op == 4 || (op == 5 && u)) { /* Insert */ switch (size) { case 0: if (op == 4) mask = 0xff >> -shift; else mask = (uint8_t)(0xff << shift); mask |= mask << 8; mask |= mask << 16; break; case 1: if (op == 4) mask = 0xffff >> -shift; else mask = (uint16_t)(0xffff << shift); mask |= mask << 16; break; case 2: if (shift < -31 || shift > 31) { mask = 0; } else { if (op == 4) mask = 0xffffffffu >> -shift; else mask = 0xffffffffu << shift; } break; default: abort(); } tmp2 = neon_load_reg(rd, pass); tcg_gen_andi_i32(tmp, tmp, mask); tcg_gen_andi_i32(tmp2, tmp2, ~mask); tcg_gen_or_i32(tmp, tmp, tmp2); dead_tmp(tmp2); } neon_store_reg(rd, pass, tmp); } } /* for pass */ } else if (op < 10) { /* Shift by immediate and narrow: VSHRN, VRSHRN, VQSHRN, VQRSHRN. */ shift = shift - (1 << (size + 3)); size++; switch (size) { case 1: imm = (uint16_t)shift; imm |= imm << 16; tmp2 = tcg_const_i32(imm); TCGV_UNUSED_I64(tmp64); break; case 2: imm = (uint32_t)shift; tmp2 = tcg_const_i32(imm); TCGV_UNUSED_I64(tmp64); break; case 3: tmp64 = tcg_const_i64(shift); TCGV_UNUSED(tmp2); break; default: abort(); } for (pass = 0; pass < 2; pass++) { if (size == 3) { neon_load_reg64(cpu_V0, rm + pass); if (q) { if (u) gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, tmp64); else gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, tmp64); } else { if (u) gen_helper_neon_shl_u64(cpu_V0, cpu_V0, tmp64); else gen_helper_neon_shl_s64(cpu_V0, cpu_V0, tmp64); } } else { tmp = neon_load_reg(rm + pass, 0); gen_neon_shift_narrow(size, tmp, tmp2, q, u); tmp3 = neon_load_reg(rm + pass, 1); gen_neon_shift_narrow(size, tmp3, tmp2, q, u); tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3); dead_tmp(tmp); dead_tmp(tmp3); } tmp = new_tmp(); if (op == 8 && !u) { gen_neon_narrow(size - 1, tmp, cpu_V0); } else { if (op == 8) gen_neon_narrow_sats(size - 1, tmp, cpu_V0); else gen_neon_narrow_satu(size - 1, tmp, cpu_V0); } neon_store_reg(rd, pass, tmp); } /* for pass */ if (size == 3) { tcg_temp_free_i64(tmp64); } else { tcg_temp_free_i32(tmp2); } } else if (op == 10) { /* VSHLL */ if (q || size == 3) return 1; tmp = neon_load_reg(rm, 0); tmp2 = neon_load_reg(rm, 1); for (pass = 0; pass < 2; pass++) { if (pass == 1) tmp = tmp2; gen_neon_widen(cpu_V0, tmp, size, u); if (shift != 0) { /* The shift is less than the width of the source type, so we can just shift the whole register. */ tcg_gen_shli_i64(cpu_V0, cpu_V0, shift); if (size < 2 || !u) { uint64_t imm64; if (size == 0) { imm = (0xffu >> (8 - shift)); imm |= imm << 16; } else { imm = 0xffff >> (16 - shift); } imm64 = imm | (((uint64_t)imm) << 32); tcg_gen_andi_i64(cpu_V0, cpu_V0, imm64); } } neon_store_reg64(cpu_V0, rd + pass); } } else if (op >= 14) { /* VCVT fixed-point. */ /* We have already masked out the must-be-1 top bit of imm6, * hence this 32-shift where the ARM ARM has 64-imm6. */ shift = 32 - shift; for (pass = 0; pass < (q ? 4 : 2); pass++) { tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass)); if (!(op & 1)) { if (u) gen_vfp_ulto(0, shift); else gen_vfp_slto(0, shift); } else { if (u) gen_vfp_toul(0, shift); else gen_vfp_tosl(0, shift); } tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass)); } } else { return 1; } } else { /* (insn & 0x00380080) == 0 */ int invert; op = (insn >> 8) & 0xf; /* One register and immediate. */ imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf); invert = (insn & (1 << 5)) != 0; switch (op) { case 0: case 1: /* no-op */ break; case 2: case 3: imm <<= 8; break; case 4: case 5: imm <<= 16; break; case 6: case 7: imm <<= 24; break; case 8: case 9: imm |= imm << 16; break; case 10: case 11: imm = (imm << 8) | (imm << 24); break; case 12: imm = (imm << 8) | 0xff; break; case 13: imm = (imm << 16) | 0xffff; break; case 14: imm |= (imm << 8) | (imm << 16) | (imm << 24); if (invert) imm = ~imm; break; case 15: imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); break; } if (invert) imm = ~imm; for (pass = 0; pass < (q ? 4 : 2); pass++) { if (op & 1 && op < 12) { tmp = neon_load_reg(rd, pass); if (invert) { /* The immediate value has already been inverted, so BIC becomes AND. */ tcg_gen_andi_i32(tmp, tmp, imm); } else { tcg_gen_ori_i32(tmp, tmp, imm); } } else { /* VMOV, VMVN. */ tmp = new_tmp(); if (op == 14 && invert) { uint32_t val; val = 0; for (n = 0; n < 4; n++) { if (imm & (1 << (n + (pass & 1) * 4))) val |= 0xff << (n * 8); } tcg_gen_movi_i32(tmp, val); } else { tcg_gen_movi_i32(tmp, imm); } } neon_store_reg(rd, pass, tmp); } } } else { /* (insn & 0x00800010 == 0x00800000) */ if (size != 3) { op = (insn >> 8) & 0xf; if ((insn & (1 << 6)) == 0) { /* Three registers of different lengths. */ int src1_wide; int src2_wide; int prewiden; /* prewiden, src1_wide, src2_wide */ static const int neon_3reg_wide[16][3] = { {1, 0, 0}, /* VADDL */ {1, 1, 0}, /* VADDW */ {1, 0, 0}, /* VSUBL */ {1, 1, 0}, /* VSUBW */ {0, 1, 1}, /* VADDHN */ {0, 0, 0}, /* VABAL */ {0, 1, 1}, /* VSUBHN */ {0, 0, 0}, /* VABDL */ {0, 0, 0}, /* VMLAL */ {0, 0, 0}, /* VQDMLAL */ {0, 0, 0}, /* VMLSL */ {0, 0, 0}, /* VQDMLSL */ {0, 0, 0}, /* Integer VMULL */ {0, 0, 0}, /* VQDMULL */ {0, 0, 0} /* Polynomial VMULL */ }; prewiden = neon_3reg_wide[op][0]; src1_wide = neon_3reg_wide[op][1]; src2_wide = neon_3reg_wide[op][2]; if (size == 0 && (op == 9 || op == 11 || op == 13)) return 1; /* Avoid overlapping operands. Wide source operands are always aligned so will never overlap with wide destinations in problematic ways. */ if (rd == rm && !src2_wide) { tmp = neon_load_reg(rm, 1); neon_store_scratch(2, tmp); } else if (rd == rn && !src1_wide) { tmp = neon_load_reg(rn, 1); neon_store_scratch(2, tmp); } TCGV_UNUSED(tmp3); for (pass = 0; pass < 2; pass++) { if (src1_wide) { neon_load_reg64(cpu_V0, rn + pass); TCGV_UNUSED(tmp); } else { if (pass == 1 && rd == rn) { tmp = neon_load_scratch(2); } else { tmp = neon_load_reg(rn, pass); } if (prewiden) { gen_neon_widen(cpu_V0, tmp, size, u); } } if (src2_wide) { neon_load_reg64(cpu_V1, rm + pass); TCGV_UNUSED(tmp2); } else { if (pass == 1 && rd == rm) { tmp2 = neon_load_scratch(2); } else { tmp2 = neon_load_reg(rm, pass); } if (prewiden) { gen_neon_widen(cpu_V1, tmp2, size, u); } } switch (op) { case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */ gen_neon_addl(size); break; case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */ gen_neon_subl(size); break; case 5: case 7: /* VABAL, VABDL */ switch ((size << 1) | u) { case 0: gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2); break; case 1: gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2); break; case 2: gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2); break; case 3: gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2); break; case 4: gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2); break; case 5: gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2); break; default: abort(); } dead_tmp(tmp2); dead_tmp(tmp); break; case 8: case 9: case 10: case 11: case 12: case 13: /* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */ gen_neon_mull(cpu_V0, tmp, tmp2, size, u); break; case 14: /* Polynomial VMULL */ cpu_abort(env, "Polynomial VMULL not implemented"); default: /* 15 is RESERVED. */ return 1; } if (op == 5 || op == 13 || (op >= 8 && op <= 11)) { /* Accumulate. */ if (op == 10 || op == 11) { gen_neon_negl(cpu_V0, size); } if (op != 13) { neon_load_reg64(cpu_V1, rd + pass); } switch (op) { case 5: case 8: case 10: /* VABAL, VMLAL, VMLSL */ gen_neon_addl(size); break; case 9: case 11: /* VQDMLAL, VQDMLSL */ gen_neon_addl_saturate(cpu_V0, cpu_V0, size); gen_neon_addl_saturate(cpu_V0, cpu_V1, size); break; /* Fall through. */ case 13: /* VQDMULL */ gen_neon_addl_saturate(cpu_V0, cpu_V0, size); break; default: abort(); } neon_store_reg64(cpu_V0, rd + pass); } else if (op == 4 || op == 6) { /* Narrowing operation. */ tmp = new_tmp(); if (!u) { switch (size) { case 0: gen_helper_neon_narrow_high_u8(tmp, cpu_V0); break; case 1: gen_helper_neon_narrow_high_u16(tmp, cpu_V0); break; case 2: tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); tcg_gen_trunc_i64_i32(tmp, cpu_V0); break; default: abort(); } } else { switch (size) { case 0: gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0); break; case 1: gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0); break; case 2: tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31); tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); tcg_gen_trunc_i64_i32(tmp, cpu_V0); break; default: abort(); } } if (pass == 0) { tmp3 = tmp; } else { neon_store_reg(rd, 0, tmp3); neon_store_reg(rd, 1, tmp); } } else { /* Write back the result. */ neon_store_reg64(cpu_V0, rd + pass); } } } else { /* Two registers and a scalar. */ switch (op) { case 0: /* Integer VMLA scalar */ case 1: /* Float VMLA scalar */ case 4: /* Integer VMLS scalar */ case 5: /* Floating point VMLS scalar */ case 8: /* Integer VMUL scalar */ case 9: /* Floating point VMUL scalar */ case 12: /* VQDMULH scalar */ case 13: /* VQRDMULH scalar */ tmp = neon_get_scalar(size, rm); neon_store_scratch(0, tmp); for (pass = 0; pass < (u ? 4 : 2); pass++) { tmp = neon_load_scratch(0); tmp2 = neon_load_reg(rn, pass); if (op == 12) { if (size == 1) { gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); } else { gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); } } else if (op == 13) { if (size == 1) { gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); } else { gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); } } else if (op & 1) { gen_helper_neon_mul_f32(tmp, tmp, tmp2); } else { switch (size) { case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break; case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break; default: return 1; } } dead_tmp(tmp2); if (op < 8) { /* Accumulate. */ tmp2 = neon_load_reg(rd, pass); switch (op) { case 0: gen_neon_add(size, tmp, tmp2); break; case 1: gen_helper_neon_add_f32(tmp, tmp, tmp2); break; case 4: gen_neon_rsb(size, tmp, tmp2); break; case 5: gen_helper_neon_sub_f32(tmp, tmp2, tmp); break; default: abort(); } dead_tmp(tmp2); } neon_store_reg(rd, pass, tmp); } break; case 2: /* VMLAL sclar */ case 3: /* VQDMLAL scalar */ case 6: /* VMLSL scalar */ case 7: /* VQDMLSL scalar */ case 10: /* VMULL scalar */ case 11: /* VQDMULL scalar */ if (size == 0 && (op == 3 || op == 7 || op == 11)) return 1; tmp2 = neon_get_scalar(size, rm); /* We need a copy of tmp2 because gen_neon_mull * deletes it during pass 0. */ tmp4 = new_tmp(); tcg_gen_mov_i32(tmp4, tmp2); tmp3 = neon_load_reg(rn, 1); for (pass = 0; pass < 2; pass++) { if (pass == 0) { tmp = neon_load_reg(rn, 0); } else { tmp = tmp3; tmp2 = tmp4; } gen_neon_mull(cpu_V0, tmp, tmp2, size, u); if (op == 6 || op == 7) { gen_neon_negl(cpu_V0, size); } if (op != 11) { neon_load_reg64(cpu_V1, rd + pass); } switch (op) { case 2: case 6: gen_neon_addl(size); break; case 3: case 7: gen_neon_addl_saturate(cpu_V0, cpu_V0, size); gen_neon_addl_saturate(cpu_V0, cpu_V1, size); break; case 10: /* no-op */ break; case 11: gen_neon_addl_saturate(cpu_V0, cpu_V0, size); break; default: abort(); } neon_store_reg64(cpu_V0, rd + pass); } break; default: /* 14 and 15 are RESERVED */ return 1; } } } else { /* size == 3 */ if (!u) { /* Extract. */ imm = (insn >> 8) & 0xf; if (imm > 7 && !q) return 1; if (imm == 0) { neon_load_reg64(cpu_V0, rn); if (q) { neon_load_reg64(cpu_V1, rn + 1); } } else if (imm == 8) { neon_load_reg64(cpu_V0, rn + 1); if (q) { neon_load_reg64(cpu_V1, rm); } } else if (q) { tmp64 = tcg_temp_new_i64(); if (imm < 8) { neon_load_reg64(cpu_V0, rn); neon_load_reg64(tmp64, rn + 1); } else { neon_load_reg64(cpu_V0, rn + 1); neon_load_reg64(tmp64, rm); } tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8); tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8)); tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); if (imm < 8) { neon_load_reg64(cpu_V1, rm); } else { neon_load_reg64(cpu_V1, rm + 1); imm -= 8; } tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); tcg_gen_shri_i64(tmp64, tmp64, imm * 8); tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64); tcg_temp_free_i64(tmp64); } else { /* BUGFIX */ neon_load_reg64(cpu_V0, rn); tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8); neon_load_reg64(cpu_V1, rm); tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); } neon_store_reg64(cpu_V0, rd); if (q) { neon_store_reg64(cpu_V1, rd + 1); } } else if ((insn & (1 << 11)) == 0) { /* Two register misc. */ op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf); size = (insn >> 18) & 3; switch (op) { case 0: /* VREV64 */ if (size == 3) return 1; for (pass = 0; pass < (q ? 2 : 1); pass++) { tmp = neon_load_reg(rm, pass * 2); tmp2 = neon_load_reg(rm, pass * 2 + 1); switch (size) { case 0: tcg_gen_bswap32_i32(tmp, tmp); break; case 1: gen_swap_half(tmp); break; case 2: /* no-op */ break; default: abort(); } neon_store_reg(rd, pass * 2 + 1, tmp); if (size == 2) { neon_store_reg(rd, pass * 2, tmp2); } else { switch (size) { case 0: tcg_gen_bswap32_i32(tmp2, tmp2); break; case 1: gen_swap_half(tmp2); break; default: abort(); } neon_store_reg(rd, pass * 2, tmp2); } } break; case 4: case 5: /* VPADDL */ case 12: case 13: /* VPADAL */ if (size == 3) return 1; for (pass = 0; pass < q + 1; pass++) { tmp = neon_load_reg(rm, pass * 2); gen_neon_widen(cpu_V0, tmp, size, op & 1); tmp = neon_load_reg(rm, pass * 2 + 1); gen_neon_widen(cpu_V1, tmp, size, op & 1); switch (size) { case 0: gen_helper_neon_paddl_u16(CPU_V001); break; case 1: gen_helper_neon_paddl_u32(CPU_V001); break; case 2: tcg_gen_add_i64(CPU_V001); break; default: abort(); } if (op >= 12) { /* Accumulate. */ neon_load_reg64(cpu_V1, rd + pass); gen_neon_addl(size); } neon_store_reg64(cpu_V0, rd + pass); } break; case 33: /* VTRN */ if (size == 2) { for (n = 0; n < (q ? 4 : 2); n += 2) { tmp = neon_load_reg(rm, n); tmp2 = neon_load_reg(rd, n + 1); neon_store_reg(rm, n, tmp2); neon_store_reg(rd, n + 1, tmp); } } else { goto elementwise; } break; case 34: /* VUZP */ /* Reg Before After Rd A3 A2 A1 A0 B2 B0 A2 A0 Rm B3 B2 B1 B0 B3 B1 A3 A1 */ if (size == 3) return 1; gen_neon_unzip(rd, q, 0, size); gen_neon_unzip(rm, q, 4, size); if (q) { static int unzip_order_q[8] = {0, 2, 4, 6, 1, 3, 5, 7}; for (n = 0; n < 8; n++) { int reg = (n < 4) ? rd : rm; tmp = neon_load_scratch(unzip_order_q[n]); neon_store_reg(reg, n % 4, tmp); } } else { static int unzip_order[4] = {0, 4, 1, 5}; for (n = 0; n < 4; n++) { int reg = (n < 2) ? rd : rm; tmp = neon_load_scratch(unzip_order[n]); neon_store_reg(reg, n % 2, tmp); } } break; case 35: /* VZIP */ /* Reg Before After Rd A3 A2 A1 A0 B1 A1 B0 A0 Rm B3 B2 B1 B0 B3 A3 B2 A2 */ if (size == 3) return 1; count = (q ? 4 : 2); for (n = 0; n < count; n++) { tmp = neon_load_reg(rd, n); tmp2 = neon_load_reg(rd, n); switch (size) { case 0: gen_neon_zip_u8(tmp, tmp2); break; case 1: gen_neon_zip_u16(tmp, tmp2); break; case 2: /* no-op */; break; default: abort(); } neon_store_scratch(n * 2, tmp); neon_store_scratch(n * 2 + 1, tmp2); } for (n = 0; n < count * 2; n++) { int reg = (n < count) ? rd : rm; tmp = neon_load_scratch(n); neon_store_reg(reg, n % count, tmp); } break; case 36: case 37: /* VMOVN, VQMOVUN, VQMOVN */ if (size == 3) return 1; TCGV_UNUSED(tmp2); for (pass = 0; pass < 2; pass++) { neon_load_reg64(cpu_V0, rm + pass); tmp = new_tmp(); if (op == 36 && q == 0) { gen_neon_narrow(size, tmp, cpu_V0); } else if (q) { gen_neon_narrow_satu(size, tmp, cpu_V0); } else { gen_neon_narrow_sats(size, tmp, cpu_V0); } if (pass == 0) { tmp2 = tmp; } else { neon_store_reg(rd, 0, tmp2); neon_store_reg(rd, 1, tmp); } } break; case 38: /* VSHLL */ if (q || size == 3) return 1; tmp = neon_load_reg(rm, 0); tmp2 = neon_load_reg(rm, 1); for (pass = 0; pass < 2; pass++) { if (pass == 1) tmp = tmp2; gen_neon_widen(cpu_V0, tmp, size, 1); tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size); neon_store_reg64(cpu_V0, rd + pass); } break; case 44: /* VCVT.F16.F32 */ if (!arm_feature(env, ARM_FEATURE_VFP_FP16)) return 1; tmp = new_tmp(); tmp2 = new_tmp(); tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 0)); gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 1)); gen_helper_vfp_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env); tcg_gen_shli_i32(tmp2, tmp2, 16); tcg_gen_or_i32(tmp2, tmp2, tmp); tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 2)); gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 3)); neon_store_reg(rd, 0, tmp2); tmp2 = new_tmp(); gen_helper_vfp_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env); tcg_gen_shli_i32(tmp2, tmp2, 16); tcg_gen_or_i32(tmp2, tmp2, tmp); neon_store_reg(rd, 1, tmp2); dead_tmp(tmp); break; case 46: /* VCVT.F32.F16 */ if (!arm_feature(env, ARM_FEATURE_VFP_FP16)) return 1; tmp3 = new_tmp(); tmp = neon_load_reg(rm, 0); tmp2 = neon_load_reg(rm, 1); tcg_gen_ext16u_i32(tmp3, tmp); gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 0)); tcg_gen_shri_i32(tmp3, tmp, 16); gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 1)); dead_tmp(tmp); tcg_gen_ext16u_i32(tmp3, tmp2); gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 2)); tcg_gen_shri_i32(tmp3, tmp2, 16); gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 3)); dead_tmp(tmp2); dead_tmp(tmp3); break; default: elementwise: for (pass = 0; pass < (q ? 4 : 2); pass++) { if (op == 30 || op == 31 || op >= 58) { tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass)); TCGV_UNUSED(tmp); } else { tmp = neon_load_reg(rm, pass); } switch (op) { case 1: /* VREV32 */ switch (size) { case 0: tcg_gen_bswap32_i32(tmp, tmp); break; case 1: gen_swap_half(tmp); break; default: return 1; } break; case 2: /* VREV16 */ if (size != 0) return 1; gen_rev16(tmp); break; case 8: /* CLS */ switch (size) { case 0: gen_helper_neon_cls_s8(tmp, tmp); break; case 1: gen_helper_neon_cls_s16(tmp, tmp); break; case 2: gen_helper_neon_cls_s32(tmp, tmp); break; default: return 1; } break; case 9: /* CLZ */ switch (size) { case 0: gen_helper_neon_clz_u8(tmp, tmp); break; case 1: gen_helper_neon_clz_u16(tmp, tmp); break; case 2: gen_helper_clz(tmp, tmp); break; default: return 1; } break; case 10: /* CNT */ if (size != 0) return 1; gen_helper_neon_cnt_u8(tmp, tmp); break; case 11: /* VNOT */ if (size != 0) return 1; tcg_gen_not_i32(tmp, tmp); break; case 14: /* VQABS */ switch (size) { case 0: gen_helper_neon_qabs_s8(tmp, cpu_env, tmp); break; case 1: gen_helper_neon_qabs_s16(tmp, cpu_env, tmp); break; case 2: gen_helper_neon_qabs_s32(tmp, cpu_env, tmp); break; default: return 1; } break; case 15: /* VQNEG */ switch (size) { case 0: gen_helper_neon_qneg_s8(tmp, cpu_env, tmp); break; case 1: gen_helper_neon_qneg_s16(tmp, cpu_env, tmp); break; case 2: gen_helper_neon_qneg_s32(tmp, cpu_env, tmp); break; default: return 1; } break; case 16: case 19: /* VCGT #0, VCLE #0 */ tmp2 = tcg_const_i32(0); switch(size) { case 0: gen_helper_neon_cgt_s8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_cgt_s16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_cgt_s32(tmp, tmp, tmp2); break; default: return 1; } tcg_temp_free(tmp2); if (op == 19) tcg_gen_not_i32(tmp, tmp); break; case 17: case 20: /* VCGE #0, VCLT #0 */ tmp2 = tcg_const_i32(0); switch(size) { case 0: gen_helper_neon_cge_s8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_cge_s16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_cge_s32(tmp, tmp, tmp2); break; default: return 1; } tcg_temp_free(tmp2); if (op == 20) tcg_gen_not_i32(tmp, tmp); break; case 18: /* VCEQ #0 */ tmp2 = tcg_const_i32(0); switch(size) { case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break; case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break; case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break; default: return 1; } tcg_temp_free(tmp2); break; case 22: /* VABS */ switch(size) { case 0: gen_helper_neon_abs_s8(tmp, tmp); break; case 1: gen_helper_neon_abs_s16(tmp, tmp); break; case 2: tcg_gen_abs_i32(tmp, tmp); break; default: return 1; } break; case 23: /* VNEG */ if (size == 3) return 1; tmp2 = tcg_const_i32(0); gen_neon_rsb(size, tmp, tmp2); tcg_temp_free(tmp2); break; case 24: case 27: /* Float VCGT #0, Float VCLE #0 */ tmp2 = tcg_const_i32(0); gen_helper_neon_cgt_f32(tmp, tmp, tmp2); tcg_temp_free(tmp2); if (op == 27) tcg_gen_not_i32(tmp, tmp); break; case 25: case 28: /* Float VCGE #0, Float VCLT #0 */ tmp2 = tcg_const_i32(0); gen_helper_neon_cge_f32(tmp, tmp, tmp2); tcg_temp_free(tmp2); if (op == 28) tcg_gen_not_i32(tmp, tmp); break; case 26: /* Float VCEQ #0 */ tmp2 = tcg_const_i32(0); gen_helper_neon_ceq_f32(tmp, tmp, tmp2); tcg_temp_free(tmp2); break; case 30: /* Float VABS */ gen_vfp_abs(0); break; case 31: /* Float VNEG */ gen_vfp_neg(0); break; case 32: /* VSWP */ tmp2 = neon_load_reg(rd, pass); neon_store_reg(rm, pass, tmp2); break; case 33: /* VTRN */ tmp2 = neon_load_reg(rd, pass); switch (size) { case 0: gen_neon_trn_u8(tmp, tmp2); break; case 1: gen_neon_trn_u16(tmp, tmp2); break; case 2: abort(); default: return 1; } neon_store_reg(rm, pass, tmp2); break; case 56: /* Integer VRECPE */ gen_helper_recpe_u32(tmp, tmp, cpu_env); break; case 57: /* Integer VRSQRTE */ gen_helper_rsqrte_u32(tmp, tmp, cpu_env); break; case 58: /* Float VRECPE */ gen_helper_recpe_f32(cpu_F0s, cpu_F0s, cpu_env); break; case 59: /* Float VRSQRTE */ gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env); break; case 60: /* VCVT.F32.S32 */ gen_vfp_sito(0); break; case 61: /* VCVT.F32.U32 */ gen_vfp_uito(0); break; case 62: /* VCVT.S32.F32 */ gen_vfp_tosiz(0); break; case 63: /* VCVT.U32.F32 */ gen_vfp_touiz(0); break; default: /* Reserved: 21, 29, 39-56 */ return 1; } if (op == 30 || op == 31 || op >= 58) { tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass)); } else { neon_store_reg(rd, pass, tmp); } } break; } } else if ((insn & (1 << 10)) == 0) { /* VTBL, VTBX. */ n = ((insn >> 5) & 0x18) + 8; if (insn & (1 << 6)) { tmp = neon_load_reg(rd, 0); } else { tmp = new_tmp(); tcg_gen_movi_i32(tmp, 0); } tmp2 = neon_load_reg(rm, 0); tmp4 = tcg_const_i32(rn); tmp5 = tcg_const_i32(n); gen_helper_neon_tbl(tmp2, tmp2, tmp, tmp4, tmp5); dead_tmp(tmp); if (insn & (1 << 6)) { tmp = neon_load_reg(rd, 1); } else { tmp = new_tmp(); tcg_gen_movi_i32(tmp, 0); } tmp3 = neon_load_reg(rm, 1); gen_helper_neon_tbl(tmp3, tmp3, tmp, tmp4, tmp5); tcg_temp_free_i32(tmp5); tcg_temp_free_i32(tmp4); neon_store_reg(rd, 0, tmp2); neon_store_reg(rd, 1, tmp3); dead_tmp(tmp); } else if ((insn & 0x380) == 0) { /* VDUP */ if (insn & (1 << 19)) { tmp = neon_load_reg(rm, 1); } else { tmp = neon_load_reg(rm, 0); } if (insn & (1 << 16)) { gen_neon_dup_u8(tmp, ((insn >> 17) & 3) * 8); } else if (insn & (1 << 17)) { if ((insn >> 18) & 1) gen_neon_dup_high16(tmp); else gen_neon_dup_low16(tmp); } for (pass = 0; pass < (q ? 4 : 2); pass++) { tmp2 = new_tmp(); tcg_gen_mov_i32(tmp2, tmp); neon_store_reg(rd, pass, tmp2); } dead_tmp(tmp); } else { return 1; } } } return 0; } | 19,733 |
1 | static av_cold int pcx_end(AVCodecContext *avctx) { PCXContext *s = avctx->priv_data; if(s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); return 0; } | 19,735 |
1 | static void gen_dccci(DisasContext *ctx) { #if defined(CONFIG_USER_ONLY) gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); #else if (unlikely(ctx->pr)) { gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); return; } /* interpreted as no-op */ #endif } | 19,736 |
1 | static void vmsvga_init(struct vmsvga_state_s *s, MemoryRegion *address_space, MemoryRegion *io) { DisplaySurface *surface; s->scratch_size = SVGA_SCRATCH_SIZE; s->scratch = g_malloc(s->scratch_size * 4); s->vga.con = graphic_console_init(vmsvga_update_display, vmsvga_invalidate_display, vmsvga_screen_dump, vmsvga_text_update, s); surface = qemu_console_surface(s->vga.con); s->fifo_size = SVGA_FIFO_SIZE; memory_region_init_ram(&s->fifo_ram, "vmsvga.fifo", s->fifo_size); vmstate_register_ram_global(&s->fifo_ram); s->fifo_ptr = memory_region_get_ram_ptr(&s->fifo_ram); vga_common_init(&s->vga); vga_init(&s->vga, address_space, io, true); vmstate_register(NULL, 0, &vmstate_vga_common, &s->vga); /* Save some values here in case they are changed later. * This is suspicious and needs more though why it is needed. */ s->depth = surface_bits_per_pixel(surface); s->bypp = surface_bytes_per_pixel(surface); } | 19,737 |
1 | static void init_frame_decoder(APEContext *ctx) { int i; init_entropy_decoder(ctx); init_predictor_decoder(ctx); for (i = 0; i < APE_FILTER_LEVELS; i++) { if (!ape_filter_orders[ctx->fset][i]) break; init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]); } } | 19,738 |
1 | static ssize_t local_readlink(FsContext *fs_ctx, const char *path, char *buf, size_t bufsz) { ssize_t tsize = -1; if (fs_ctx->fs_sm == SM_MAPPED) { int fd; fd = open(rpath(fs_ctx, path), O_RDONLY); if (fd == -1) { return -1; } do { tsize = read(fd, (void *)buf, bufsz); } while (tsize == -1 && errno == EINTR); close(fd); return tsize; } else if (fs_ctx->fs_sm == SM_PASSTHROUGH) { tsize = readlink(rpath(fs_ctx, path), buf, bufsz); } return tsize; } | 19,739 |
1 | static int dump_cleanup(DumpState *s) { int ret = 0; guest_phys_blocks_free(&s->guest_phys_blocks); memory_mapping_list_free(&s->list); if (s->fd != -1) { close(s->fd); } if (s->resume) { vm_start(); } return ret; } | 19,740 |
1 | static int svq1_decode_block_intra(GetBitContext *bitbuf, uint8_t *pixels, ptrdiff_t pitch) { uint32_t bit_cache; uint8_t *list[63]; uint32_t *dst; const uint32_t *codebook; int entries[6]; int i, j, m, n; int stages; unsigned mean; unsigned x, y, width, height, level; uint32_t n1, n2, n3, n4; /* initialize list for breadth first processing of vectors */ list[0] = pixels; /* recursively process vector */ for (i = 0, m = 1, n = 1, level = 5; i < n; i++) { SVQ1_PROCESS_VECTOR(); /* destination address and vector size */ dst = (uint32_t *)list[i]; width = 1 << ((4 + level) / 2); height = 1 << ((3 + level) / 2); /* get number of stages (-1 skips vector, 0 for mean only) */ stages = get_vlc2(bitbuf, svq1_intra_multistage[level].table, 3, 3) - 1; if (stages == -1) { for (y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], 0, width); continue; /* skip vector */ } if ((stages > 0 && level >= 4)) { ff_dlog(NULL, "Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i\n", stages, level); return AVERROR_INVALIDDATA; /* invalid vector */ } av_assert0(stages >= 0); mean = get_vlc2(bitbuf, svq1_intra_mean.table, 8, 3); if (stages == 0) { for (y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], mean, width); } else { SVQ1_CALC_CODEBOOK_ENTRIES(ff_svq1_intra_codebooks); for (y = 0; y < height; y++) { for (x = 0; x < width / 4; x++, codebook++) { n1 = n4; n2 = n4; SVQ1_ADD_CODEBOOK() /* store result */ dst[x] = n1 << 8 | n2; } dst += pitch / 4; } } } return 0; } | 19,741 |
1 | static int omap2_intc_init(SysBusDevice *sbd) { DeviceState *dev = DEVICE(sbd); struct omap_intr_handler_s *s = OMAP_INTC(dev); if (!s->iclk) { hw_error("omap2-intc: iclk not connected\n"); } if (!s->fclk) { hw_error("omap2-intc: fclk not connected\n"); } s->level_only = 1; s->nbanks = 3; sysbus_init_irq(sbd, &s->parent_intr[0]); sysbus_init_irq(sbd, &s->parent_intr[1]); qdev_init_gpio_in(dev, omap_set_intr_noedge, s->nbanks * 32); memory_region_init_io(&s->mmio, OBJECT(s), &omap2_inth_mem_ops, s, "omap2-intc", 0x1000); sysbus_init_mmio(sbd, &s->mmio); return 0; } | 19,742 |
1 | static int h264_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; AVFrame *pict = data; int buf_index = 0; H264Picture *out; int i, out_idx; int ret; h->flags = avctx->flags; ff_h264_unref_picture(h, &h->last_pic_for_ec); /* end of stream, output what is still in the buffers */ if (buf_size == 0) { out: h->cur_pic_ptr = NULL; h->first_field = 0; // FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; if (out) { out->reference &= ~DELAYED_PIC_REF; ret = output_frame(h, pict, out); if (ret < 0) return ret; *got_frame = 1; return buf_index; if (h->is_avc && av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) { int side_size; uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size); if (is_extra(side, side_size)) ff_h264_decode_extradata(h, side, side_size); if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){ if (is_extra(buf, buf_size)) return ff_h264_decode_extradata(h, buf, buf_size); buf_index = decode_nal_units(h, buf, buf_size, 0); if (buf_index < 0) return AVERROR_INVALIDDATA; if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { av_assert0(buf_index <= buf_size); goto out; if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { if (avctx->skip_frame >= AVDISCARD_NONREF || buf_size >= 4 && !memcmp("Q264", buf, 4)) return buf_size; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return AVERROR_INVALIDDATA; if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) || (h->mb_y >= h->mb_height && h->mb_height)) { if (avctx->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1); ff_h264_field_end(h, &h->slice_ctx[0], 0); /* Wait for second field. */ *got_frame = 0; if (h->next_output_pic && ( h->next_output_pic->recovered)) { if (!h->next_output_pic->recovered) h->next_output_pic->f->flags |= AV_FRAME_FLAG_CORRUPT; if (!h->avctx->hwaccel && (h->next_output_pic->field_poc[0] == INT_MAX || h->next_output_pic->field_poc[1] == INT_MAX) ) { int p; AVFrame *f = h->next_output_pic->f; int field = h->next_output_pic->field_poc[0] == INT_MAX; uint8_t *dst_data[4]; int linesizes[4]; const uint8_t *src_data[4]; av_log(h->avctx, AV_LOG_DEBUG, "Duplicating field %d to fill missing\n", field); for (p = 0; p<4; p++) { dst_data[p] = f->data[p] + (field^1)*f->linesize[p]; src_data[p] = f->data[p] + field *f->linesize[p]; linesizes[p] = 2*f->linesize[p]; av_image_copy(dst_data, linesizes, src_data, linesizes, f->format, f->width, f->height>>1); ret = output_frame(h, pict, h->next_output_pic); if (ret < 0) return ret; *got_frame = 1; if (CONFIG_MPEGVIDEO) { ff_print_debug_info2(h->avctx, pict, NULL, h->next_output_pic->mb_type, h->next_output_pic->qscale_table, h->next_output_pic->motion_val, &h->low_delay, h->mb_width, h->mb_height, h->mb_stride, 1); av_assert0(pict->buf[0] || !*got_frame); ff_h264_unref_picture(h, &h->last_pic_for_ec); return get_consumed_bytes(buf_index, buf_size); | 19,743 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.